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The Rotation and Translation block (RTB) method of Durand et al. [1] [Biopolymers 34, 759 

(1994)] and Tama et al. [2] [Proteins 41, 1 (2000)], which is an appealing way to calculate low 

frequency normal modes of biomolecules by restricting the space of motions to exclude internal 

motions of pre-selected rigid fragments within the molecule, is extended to a method for 

computing the Newtonian dynamics of a biomolecule, or any large molecule, with effective 

rigid-body constraints applied to a pre-chosen set of internal molecular fragments. This method, 

to be termed RTB-dynamics does not require the construction of the matrix of second spatial 

derivatives of the potential energy function, and can be used to compute the classical dynamics 

of a system moving in an arbitrary anharmonic force field with an efficient way of freezing out 

the  high frequency motions within rigid fragments. Moreover, an approximation scheme is 

developed to compute Brownian motion according to the Langevin Equation for a molecular 

system moving in a harmonic force field and characterized by one or more rigid internal 

fragments by using the RTB methodology. To illustrate these methods elementary numerical 

applications to signal propagation in the small membrane-bound polypeptide gramicidin-A are 

presented. 

  Finally, Dynamic Linear Response Theory (DLRT) is adapted to the problem of 

computing the time evolution of the atomic coordinates of a protein in response to the unbinding 
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of a ligand molecule from a binding pocket within the protein.  DLRT relates the non-

equilibrium motion of the protein atoms which ensues after the ligand molecule dissociates to 

equilibrium dynamics in the force field, or equivalently, on the potential energy surface (PES) 

relevant to the unliganded protein. We numerically illustrate the application of DLRT for a 

simple harmonic oscillator model of the ferric binding protein, and for an analogous model of T4 

lysozyme including the solvent effects on the motion using the Langevin prescription.  Using a 

physically appropriate value of the viscosity of water to guide the choice of friction parameters, 

we find relaxation time scales of residue-residue distances on the order of several hundred ps.  

Comparison is made to relevant experimental measurements. 
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1.0  INTRODUCTION 

1.1 DYNAMICS OF BIOMOLECULES 

Computational studies have proven to be valuable for understanding the dynamics of the 

proteins at a level of resolution that is necessary to get a complete picture of how they function. 

Since biomolecules such as proteins, nucleic acids, and polysaccharides change their structures 

or conformations both “on their own” and when they interact with other biomolecules, a single 

static structure does not provide enough information to fully explain how they function. 

Although the conformational substates of proteins (located in energy wells) and their rates of 

inter-conversion can in happy circumstances be detected experimentally, obtaining a structural 

description of the transition state configurations directly via experimental studies is very 

challenging because of the low probability and short life time of the high energy conformers on 

the transition pathway from one static substate to the other. Thus, computational simulation 

studies which follow the precise position of each atom at any instant in time are valuable in 

terms of connecting the static pictures of proteins to their action. When the time scale of the 

conformational changes of biomolecules is considered, it scans a very broad range from 

femtoseconds to hours (cf.Table 1). Dynamics on the s ms   time scale have received much 

attention recently, because many biological processes such as enzyme catalysis, protein-protein 

interactions, and signal transduction occur on this time scale. However, to be able to capture the 
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motions on the time scale of milliseconds or even microseconds for such processes is very 

challenging with today’s computational power when the size of  the biomolecule under study 

reaches 104-105 atoms, which is the case with most multi-subunit protein complexes[3]. 

 

Table 1 An Overview of Characteristic Motions in Proteins[4] 

 

Type of Motion Functionality  
Time and 

amplitude  

Atomic fluctuation 

Side chain motion 

Ligand docking 

flexibility, temporal 

diffusion pathways 

Femtoseconds to 

picoseconds (10-15-

10-12 s); less than 1 

ǺLoop motion 

Terminal-arm motion 

Rigid-body motion(helices) 

Active site conformation 

adaptation, binding 

specificity 

Nanoseconds to 

microseconds (10-9-

106 s); 1-5 Ǻ 

Domain motion 

Subunit motion 

Hinge-bending motion, 

allosteric transitions 

Microseconds to 

milliseconds (10-6-

10-3 s); 5-10 Ǻ 

Helix-coil transition 

Subunit association 

 

Hormone activation 

 

Milliseconds to 

hours(10-3 – 10-4 s); 

more than 10 Ǻ 
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1.2 ION CHANNEL PROTEINS 

Ion channels play an essential role in cell membranes by being the key component of many 

fundamental physiological functions such as electrical signaling in between muscle and nerve 

cells, muscle contraction,  auto-regulation of cell volume, loss of ionized waste products, release 

of pancreatic insulin, regulation of blood pressure, and memory acquisition[5]. A cell is 

protected from its environment with a lipid bilayer which also acts like an electrical insulator by 

creating an impermeable barrier to many molecules (cf. Figure 1) and all ions. Because of the 

amphiphilic nature of the ion channel proteins, they provide a hydrophilic surface for the 

diffusion of ions which play an essential role in intra/inter cellular signaling. In response to the 

changes in their environment, they are able to change their structural conformations from a 

closed to an open state in which ions are driven through them by an electrochemical gradient. 

The conformation change between closed and open states is called gating and major stimuli 

which induce this conformational change are a change in the membrane potential (voltage-

gated),  mechanical stretching of the membrane (mechanosensitive ion channels), and ligand 

binding to extracelluar or intracellular domains (ligand-gated)[5]. 

Dysfunction of ion channels is related to important diseases such as epilepsy, 

migraine, arrhythmias, schizophrenia, and some muscular disorders[6-8], thus they are very 

important drug targets for pharmaceutical studies. 
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Figure 1. Diffusion of select molecules through phospholipid bilayer 

(http://saints.css.edu/bio/schroeder/carriers.html) 

 

The first atomic structure of an ion channel was obtained by Arseniev’s group in 1985 for 

Gramicidin A using solution state Nuclear Magnetic Resonance (NMR) [9]. Gramicidin A is a 

linear polypeptide consisting of 15 amino acids with alternating L- and D- configurations. The 

channel is formed via an amino-terminal to amino-terminal right-handed β-helix dimer via 

hydrogen bonding carbonyl, and amino groups six residues apart. Two monomers are held 

together by six hydrogen bonds and this configuration of the channel is selectively permeable to 

monovalent cations. The Gramicidin A dimer structure has been widely used as an ion channel 

model protein for computational studies, because it was the only available atomic resolution 

structure for ion channel proteins till 1998.  

In general, when compared to the globular proteins, the present level of understanding of 

membrane proteins, and ion channels in particular, is more primitive. Intensive computational 

efforts together with advanced X-ray and NMR techniques [10-12] have been helpful in 

providing more detailed structural information of ion channel proteins. However, due to the 

difficulty of obtaining high resolution X-ray structures and the huge computational cost of full 

atomistic simulation techniques for such sized systems (lipid molecules + protein + water 

http://saints.css.edu/bio/schroeder/carriers.html�
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molecules), there is a pressing need to develop coarse grained models for simulating dynamics of 

these systems. This is particularly the case when gating mechanisms are of interest. In addition to 

the system size, the time scale of gating makes full-atomistic simulation techniques infeasible. 

1.3 GATING AND SIGNAL TRANSDUCTION IN NICOTINICOID 

RECEPTOR SUPERFAMILY 

The members of the superfamily of nicotinicoid receptors belong to the neurotransmitter ligand-

gated ion channel (LGIC) proteins which play an essential role in the propagation of electrical 

signals between cells at the chemical synapse. They are also referred to as the Cys-Loop 

superfamily of LGIC because of a conserved 15-amino acid-spaced disulfide loop in their 

extracellular domain. They are receptor-ion channel complexes with three domains: a large N-

terminal hydrophilic extracelluar ligand binding site (ECD), a gated transmembrane pore (TMD), 

and smaller intracellular domain, forming an architecture around 160 Å in length along the 

direction perpendicular to the membrane. The members of this sequence related superfamily are 

gamma-aminobutyric acid type A (GABA-A), nicotinic acetylcholine, glycine, and the serotonin 

receptors, all of which are the targets of anesthetics and alcohols. The members of this 

superfamily have either homo- or hetero- pentameric structures. In the transmembrane segment, 

each subunit consists of 4 α-helices, M1-M4 (cf. Figure 2). Amphiphilic M2 helices from each 

subunit form the central pore of the channel, which is also the gate of the closed channel. The 

ligand binding sites are located at the interface between different subunits of the ECD and  two 

to five ligand molecules can initiate the activation of the channel depending on hetero or homo 

pentameric configuration of the receptor [13]. The complete amino acid sequences of each of the 
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246                     253          308            393

220              270                285     410   

         M1       M2       M3       M4

1

421

A

subunits of the nicotinicoid receptors are known, and there is high degree of sequence identity 

and similarity through different members of the family. 

Figure 2. Nicotinicoid receptor structures. Schematic representation of the topology of 

the 1 subunit of GlyR [14]. 

 

Like the ion channel proteins in general, the major challenge in the field of ligand-gated 

ion channel studies is the lack of atomic resolution structures. Until relatively recently, most 

computational studies of nicotinicoid receptors have utilized the crystal structure of acetylcholine 

binding protein (AChBP) from Lymnaea stagnalis [15] which has around 20% amino acid 

sequence identity with ligand binding domain of the nicotinic acetylcholine receptor (nAchR) 

and the cryo-electron microscopy structure of the Torpedo receptor nAchR TMD at 4 Å 

resolution [16] as templates for building 3-D structures with comparative modeling.  For GlyR, 

structures of the M2 helices[17]  and of the M2-M3 bundle[18] have been obtained via NMR 

studies. In 2005, the structure of the entire nAchR in the closed-channel state, including the 

ligand-binding and intracellular domains, was resolved at 4 Å by cryo-electron microscopy by 
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Unwin et al. [19]. Even though the resolution of this structure is low, it provided essential 

information for modeling the regions connecting ECD and TMD of these receptors. Quite 

recently, in 2008 and 2009, three crystal structures of prokaryotic ligand gated ion channels have 

been obtained: two from bacterial Gloebacter violaceous (GLIC), one at 2.9 Å resolution [20] 

and another one at 3.1 Å resolution [21], plus one from bacterial Erwinia chrysanthemi (ELIC) at 

3.3 Å resolution [22]. These are pentameric ligand gated ion channel homologues with ~20% 

amino acid sequence identity to the different members of the nicotinicoid superfamily. The ELIC 

structure, which presumably corresponds to a non-conducting state while GLIC structure with a 

5 Å wide pore, was the first atomic-resolution open channel structure obtained. Although both 

ELIC and GLIC lack the signature conserved disulphide bonding in the ECD, the comparison of 

the open GLIC pore structure with the other, closed pore structures, will provide crucial 

information about the exact gate position and gating mechanism of the nicotinicoid receptor 

proteins. 

 Despite the difficulties due to the lack of even static pictures of different structural states 

of the LGIC receptors, many experimental and theoretical studies have been carried out 

successfully to understand crucial principles concerning how binding of neurotransmitter into the 

extracelluar domain induces large scale structural deformations in the transmembrane region 

which lets opening of the central pore. In the conformational pathway studies connecting the 

closed to open states of the receptor by using rate-equilibrium free-energy relationships, 

Auerbach et al. described the propagation of conformational changes through the receptor as a 

conformational wave. The mechanism suggested by these workers describes gating as the result 

of diffusion of a “defect”, which is instigated in response to ligand binding to a well-defined 

binding pocket in the ECD, and through connecting loops ECD and TMD (this conformational 
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defect is distributed to the TMD) where a small change in the pore radius leads the passage of 

ions [23-25].  (That is, the term conformational defect is used for the initial disturbance to the 

equilibrium structure of the receptor which is created by the introduction of ligand into binding 

pocket.) 

A number of more detailed structural models for the conformational changes leading to 

channel activation have also been proposed. In the cryo-electron microscopy studies of Unwin et 

al., the proposed model for gating mechanism is the following: ligand binding induces 

conformational change which entails 15 º-16 º rotational movements of the -subunit inner 

sheets relative to the outer sheets of the ECD domain. The rotational motion in the inner sheet of 

-subunits is transmitted by their connected M2 helices to the hydrophobic girdle, thus 

weakening the hydrophobic interactions that hold the girdle together (cf.  Figure 6 in ref.16 ).   

In a 15 ns molecular dynamics simulation study of ECD+TMD of  human 7 nAchR 

with explicit water and lipid bilayer molecules, Law and coworkers observed a twist to close 

motion in which movements of the C-loops in the ECD domain correlated with a 10 degree 

rotation and inward movement of two nonadjacent subunits in the TMD [26]. Interestingly, in 

another molecular dynamics simulation study of the same group, they modeled the receptor via 

recently available cryo-electron microscopy structure of Unwin et al. instead of using two 

separate structures for modeling ECD and TMD parts which is the case in their previous study, a 

lateral tilting of M2 helices initiating the channel to open has been observed [27].  
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Figure 3. Quaternary Twist Model: Proposed gating model suggested for nAchR (The 

figure is created from pdb file 2BG9 [19] by using VMD software [98] ). 

 

Due to the large scale conformational changes and reorganization of different sub-

structures within the molecule, the time scale of ligand binding is in the order of microseconds, 

whereas the transformation which is induced by that is in the time scale of milliseconds. 

Moreover, the size of the system is very large; specifically, there are ca. 1700 residues in the 

nAchR. Since all atom molecular dynamics studies when explicit water and lipid molecules are 

included for these large systems can generally be carried out to tens of nanoseconds  (although a 

few  all-atom MD simulations of large [> 410 ] proteins propagated to ca.10 μs have been reported 

[29]), some other alternative analytical techniques have also been used to study the gating 

mechanism in nicotinicoid receptor proteins. In three of such studies that used normal mode 

analysis at various coarse-graining levels of description, two for nAchR [30, 31] and one for 

GlyR [28], the characteristic gating mechanism suggested is a “quaternary twist” (cf. Figure 3) 

model in which ECD rotates counterclockwise around the central axis and TMD rotates in the 
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opposite direction . This motion is observed in the single lowest frequency vibrational normal 

mode in all three studies. In the nAchR studies, an open channel state of the receptor has been 

proposed. In the study of Taly et al., out of 10 lowest frequency normal modes, only the first 

mode produced a structural reorganization compatible with a wide opening of the channel pore. 

In the study of Cheng et al., this twist motion of two domains with respect to each other was also 

observed in the lowest frequency normal mode; however they built the structural model for open 

pore as a linear combination of first and second lowest frequency modes (The main criteria for 

building an open state model was the observation of significant opening of the pore along the 

selected normal mode displacements without generating any steric clashes in the structure.) Even 

though there is still much controversy over this type of rotational motion for ligand-gated ion 

channel proteins, since substituted cysteine-accessibility (SCAM) experiments have shown that 

this type of rotational motion is disfavored for pore lining helices [32, 33], superposition of 

M1,M2, M3 helices in TMD and large portion of  β-sandwich structure in ECD of putative open 

prokaryotic GLIC and the closed state ELIC structures displayed this type of quaternary twist 

motion of ECD with respect to TMD However, the lowest frequency normal mode is found to be 

not enough to explain the entire conformational transition, i.e. the structural displacement 

between the open and closed superimposed forms of GLIC and ELIC. The projection of the 

displacement vector between the open and closed superimposed forms of GLIC and ELIC onto 

each of the 100 lowest frequency normal modes shows that a basis set composed of the 100 

lowest frequency normal modes only accounts for 50% of the whole transition [21] (Cf. 

reference [34] for further details of the projection technique). 
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1.4 LIMITATIONS OF CURRENT METHODS 

1.4.1 Molecular Dynamics  

Classical molecular dynamics is a highly useful simulation technique to investigate time 

evolution of the system which allows prediction of static and dynamic properties of substances. 

By numerically solving Newton’s equations of motion for all atoms in the system, it propagates 

dynamics of molecules.  However, due to the time scale of the motions present in the system, it 

requires a very fine time step.  Ideally the time step in a molecular dynamics simulation should 

be 1/10 of the highest frequency vibration which is present in the system in order to satisfy the 

assumption that velocities and accelerations are constant during the time step taken. Since the 

temporal period corresponding to the highest frequency motion in biomolecules (X-H bond 

stretching) is ca. 10-14 seconds (X-H bond stretching), the proper time step should be on the order 

of 10-15 seconds.  To be able to capture the motions on the time scale of milli or micro seconds 

(10-3 or 10-6) with such a small time step is very challenging with today’s computational power, 

especially for the case of membrane-bound proteins. In order to represent the system properly, 

the lipid bilayer molecules are needed to be included in addition to the solvent molecules. 

Consequently, the maximum realistic time scales for all-atom molecular dynamics simulations of 

such systems are typically just tens of ns [35].       

Several techniques have been developed in order to overcome the problem of time step 

size in classical molecular dynamics simulations. One of those techniques, constraint dynamics, 

simply replaces high frequency vibrations by physical constraints. The SHAKE[36, 37] 

algorithm is representative of this type of dynamical constraint. In SHAKE, each constraint is 

imposed by adding an appropriate Lagrange multiplier term to the classical Lagrangian. The 
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Lagrange multiplier terms modify the Newtonian equations of motion in such as way as to 

constrain the desired bond lengths within a pre-set range (the smaller the tolerance in bond-

length variations, the more iterations are needed to solve the constrained equations of motion). 

The additional work required to solve these constraint equations can significantly impede 

attempts to speed up molecular dynamics simulation methods [35]. 

Alternatively, instead of trying to increase the simulation time step by exclusion of 

calculation of  high frequency motions present in the system, the dynamic process under the 

simulation study can be accelerated via introduction of a biasing external force in methods such 

as targeted MD[38] in which the force is used to drive the evolution of the simulation toward the 

targeted state, or steered molecular dynamics[39], in which the force is used to steer the system 

only along particular degrees of freedom. There are many other methods for accelerating the 

molecular dynamics studies.  However, in most of these techniques the main assumption is that 

processes which are occurring on a long time scale are rare rather than slow: thus the aim is  

more towards sampling the rare events efficiently[40].  

One other issue concerning all atom molecular dynamics studies is the inclusion of 

environment effects such as solvent (also lipid bilayer for membrane proteins). The simplest way 

to include solvent effects on dynamics of proteins is to explicitly introduce the solvent molecules 

into the simulation. However, simply adding 200 water molecules to the simulation box means 

additional 1800 degrees of freedom need to be simulated. An alternative way to incorporate 

solvent effects into MD-type simulations is to adopt a Langevin description [41] in which solvent 

water molecules are not explicitly included in the simulation, but rather their effect on protein is 

encompassed by friction and compensating random force terms that act upon the protein.  Thus, 

the force on a particle arises from three sources. The first one is the standard systematic force 
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which is due to interaction between the particle and other particles. The second force on the 

particle is due to the motion of the particle through a viscous medium, i.e., the solvent: this 

retarding force is proportional to the particle’s instantaneous velocity and a friction coefficient 

which depends on the intrinsic viscosity of the solvent and the particle’s solvent accessibility. 

The final contribution to the force on the particle is due to random fluctuations, caused by 

interactions with solvent molecules, which obey a Gaussian distribution with zero mean value 

and delta-function two-time correlation function [42]. 

Incorporation of the Langevin scheme into molecular dynamics simulations is effective 

not only in terms of incorporating solvent effects or other environment effects such as those of 

the embedding lipid bilayer, but also it enables temperature control, since the prescribed system 

temperature is automatically maintained via a relationship, namely the Fluctuation-Dissipation 

Theorem [43], between the random force and the friction coefficient of the medium. 

1.4.2 Vibrational Normal Modes and Related Techniques 

The fact that some large-scale conformational changes are not accessible to standard molecular 

dynamics simulations makes vibrational normal mode analysis (NMA) potentially valuable in 

the study of biological systems, since NMA is not limited by the time scale of the process. NMA 

starts with calculation of the Hessian matrix which is comprised of the second derivatives of the 

potential energy matrix evaluated at the system’s equilibrium configuration.  From the Hessian, 

vibrational normal mode frequencies (obtained from the eigenvalues of the Hessian) and patterns 

of motion (given by the eigenvectors of the Hessian) can be extracted by standard matrix 

diagonalization. The major bottleneck is the difficulty in numerically evaluating the complete 

Hessian (which increases quadratically with system size) and diagonalizing it (direct matrix 
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diagonalization scales as N3) [4, 44]. Special numerical methods such as the Lanczos algorithm 

can be employed to extract some of the lowest frequency normal modes by partially 

diagonalizing the Hessian matrix [45]. 

In a related but distinct method termed quasi-harmonic analysis, principal component 

analysis of the covariance matrix, which is extracted from very long MD trajectories on the full 

anharmonic potential surface, yields  global modes of motion [46].  Berendsen and coworkers 

took one further step in this type of analysis by dividing up the configurational space into a very 

small size “essential subspace” (representing low frequency, global motions of the [protein] 

molecule) which is presumed to be enough to describe motions which are relevant for the 

function of protein, plus an irrelevant subspace which only includes local (high frequency) 

Gaussian fluctuations. In this method, an MD trajectory is run, and then from this MD data the 

covariance matrix of C-α atoms is constructed, i.e. i jQ Q   , where iQ  is the displacement 

of one cartesian component from the average equilibrium position of the i’th C-α atom. 

Diagonalization of this matrix yields the eigenvalues which are average square displacements. 

These are sorted in descending order. The essential subspace contains the modes corresponding 

to the k largest eigenvalues (with the cutoff determined by the condition that the sum of these k 

eigenvalues be a certain fraction of the sum of all the eigenvalues). This methodology [47], 

which is generally known as “essential dynamics”, is able to identify slow, concerted motions of 

biological importance (e.g., hinge-bending [48]) from MD trajectories, but there are still some 

unresolved problems with it, such as the MD simulation length necessary to produce meaningful 

modes [49]. 

RTB normal modes analysis, developed by Sanejouand and collaborators, has been used 

as an alternative approach to normal mode analysis in order to determine low-frequency normal 
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modes of macromolecules[1]. In this method the molecule is partitioned into internally rigid 

fragments by using 3 translational and 3 rotational vectors for each rigid fragment. Thus, the 

number of degrees of freedom is significantly reduced in the hessian calculation since the 

internal vibrational motions within the rigid fragments are taken to be frozen out. Previous 

studies have been carried out in order to justify the RTB model by monitoring the agreement 

level between full all-atom normal modes and RTB-based normal modes [2, 44]. With the 

computationally improved implementation of the model by Li and Cui, the RTB normal modes 

method has been used to characterize large scale conformational changes in biomolecules by 

analyzing the collection of low frequency normal modes obtained via this method [2, 44, 50]. It 

has been shown that these studies RTB-based normal modes techniques can be used as an 

alternative approach to standard NMA if only low-frequency normal modes of the molecule are 

of interest, since it yields rather accurate results for low frequency modes of the system. In the 

RTB normal modes method, the interactions between atoms are calculated via an all atom force 

field. Thus, except excluding the internal degrees of freedom within rigid fragments there is no 

other simplification in the calculation of the interaction energies. In an alternative method called 

elastic network analysis[51], the interaction energy between particles (generally each residue is 

represented via C-α atoms) within a certain distance from each other is modeled as if they are 

connected via springs, and the spring force constant is taken to be uniform for all interactions. 

Unlike the RTB method, no detailed interaction potential energy function is employed in ENM 

models. The number of neighboring atoms, i.e. the structural organization of each C-alpha atom 

in protein’s equilibrium structure, is the only factor effecting the calculation of interaction 

potential. This method is widely used to calculate only low frequency normal mode vectors of 

the protein systems for predicting conformational changes. Comparison of crystallographic B-
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factors with the average root mean square fluctuation of C-α atoms which is calculated with 

ENM normal modes yields generally good agreement despite employing such a simplified model 

for representing the interaction potential energy in the system. However, the applications of this 

method are primarily restricted to guessing static pictures from normal mode eigenvectors [52-

56], since the frequencies out of the analysis do not reflect the real frequencies of the system at 

all. 

Even though the idea that a few low frequency normal modes are enough to capture a 

functionally relevant (“essential”) subspace can be very useful in the study of long-time scale 

motions, it has not been widely used to coarse grain the propagation of  time evolution of bio-

molecular systems. Rabitz and coworkers developed a subspace integration method in order to 

study long time scale behavior of anharmonic crystals and glasses by solving Newtonian 

equations of motion in the reduced subspace which is spanned by calculating instantaneous low-

frequency normal modes [57].  The major drawback of this method is the computational cost of  

calculating these low frequency normal modes “on the fly”, i.e. at each instant of time 

calculation of the full Hessian matrix and partial diagonalization of this matrix [45] must be 

carried out. 

1.5 OUTLINE OF THE DISSERTATION 

In the RTB propagated dynamics which is presented in Section 2, we coarse grain the dynamics 

of the molecule by following RTB method developed for normal mode analysis for reducing the 

number of degrees of freedom. We do this by dividing the whole molecule into rigid bodies, or 

frozen blocks. In this manner, some local functionally irrelevant fluctuations of the molecule are 
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excluded, and the relative motion of these frozen blocks will help us to overcome the difficulty 

of simulating the “long-time scale” motion such as gating and signal transduction dynamics in 

ion channel proteins. A similar method called Multiple-Body O(N)[35] dynamics has been 

developed for propagating the dynamics of the molecule which is represented via rigid bodies 

and hinges connecting them. The orientation of each rigid body with respect to one another is 

described through series of vectors that span the hinge points between bodies, and through a 

corresponding series of angular coordinates that define the relative orientation of the bodies.  

These orientation vectors use Euler angles and spherical coordinates for defining the relative 

orientation of each rigid body. The rigid body representation scheme in RTB dynamics is much 

less complicated than the Multiple-BodyO(N) approach to partition molecule into rigid bodies. 

Namely, in the RTB partitioning scheme, there are several rigid blocks as well as a number of 

atoms which do not partition naturally into any rigid blocks.  These latter atoms are treated 

explicitly, i.e., employing 3 Cartesian displacement coordinates per atom.  By contrast, the 

motion of each internally rigid fragment is described by 6 Cartesian vectors, namely: 3 rotational 

displacement vectors plus 3 center of mass translational displacement vectors. Moreover, unlike 

the Multiple-BodyO(N) method, the RTB-dynamics partitioning scheme does not require explicit 

(and somewhat artificial) identification of hinge points between rigid blocks. 

 To test the RTB-dynamics method, gramicidin A embedded in a membrane mimetic is 

used. The type of motion which motivated us to develop these coarse-grained methods is the 

conformational wave motion suggested by Auerbach et al. in nAChR [23-25] , in which an initial 

disturbance to an equilibrium system from one end of the molecule is distributed through the 

molecule via loops and other interacting parts.  Consequently, we developed a similar illustrative 

model utilizing gramicidin-A. In this toy model, initially gramicidin A dimer embedded in a 
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membrane mimetic is in an equilibrium state. Then a disturbance to the equilibrium system is 

introduced from one end of the molecule along the channel axis. This initial perturbation is 

employed by displacing the atoms of the first two residues from the top of the molecule from 

their equilibrium positions along the channel axis. The dynamics of the molecule propagated via 

classic all-atom Newtonian dynamics, RTB-dynamics, RTB normal modes, and ENM normal 

modes are monitored till the effect of initial disturbance reaches to the other end of the molecule 

along the channel axis. Only 8 indole groups are represented as rigid bodies in the gramicidin A 

dimer 

  In Section 3, the RTB method is used to freeze the local vibrations of internally rigid 

fragments in the propagation of Langevin dynamics of a molecule moving on a quadratic 

potential energy surface (PES).  We term this method RTB-langevin dynamics: it represents a 

first step towards the future development of an algorithm for RTB-Langevin dynamics on 

general anharmonic PESs.  Again, to test the validity of the method, gramicidin A dimer 

structure inside a membrane mimetic is studied, regarding the 8 indole groups as the only rigid 

bodies in the molecule. An initial perturbation is incorporated to the system by assigning an 

initial non-zero velocity to all the atoms of the third residue from the top of the molecule along 

the channel axis. The propagation is monitored via RTB-langevin dynamics on a quadratic PES 

and the all atom dynamics version until the effect of initial disturbance reaches to the end of the 

molecule or until the fluctuations of the molecule damp totally due to the friction imposed by 

solvent. 

The concept of initial perturbation to an equilibrium system may be extended in general 

for any ligand binding process. In such processes the protein is in a certain equilibrium state with 

its environment, and introduction of a ligand molecule means a perturbation to this existing 
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equilibrium. The protein will go through conformational changes, in order to reach a new 

equilibrium with the existence of new forces due to ligand molecules. In this ligand induced 

mechanism , first proposed by Koshland [58] in 1958, the protein is a flexible molecule which 

will be able to adopt a new conformation when the ligand is bound to protein. In a recent study 

by Ikeguchi et. al.[59] ligand-induced binding model was employed in conjunction with classic 

linear response theory [60] in physics to ligand binding proteins. The structure of the ligand-

bound conformation of the protein was predicted with the knowledge of only the ligand-free 

structure. Ligand-binding was modeled as an external perturbation force to the previously 

equilibrated protein system. In linear response theory, the core idea is that the equilibrium 

fluctuations of a system dictate the response to an external linear perturbation potential exerted 

onto the equilibrium system. By using the variance-covariance matrices calculated via a 

molecular dynamics trajectory or normal mode analysis in ligand free state of the protein, 

Ikeguchi et. al. effectively predicted the conformation of the ligand-bound form of three proteins 

by using the static LRT formalism. The perturbing force, representing ligand-protein 

interactions, was modeled by an attractive force vector between a selected atom in the ligand 

binding cite and the center of the ligand  in the ligand-bound form of the protein [59]. 

As a generalization of the static LRT picture presented by Ikeguchi et al., we developed 

the dynamical analog of it (with the addition of a Langevin scheme to account for the effects of 

solvent) to monitor temporal relaxation of ligand-binding proteins going from ligand-bound to 

ligand-free state. These types of temporal relaxations can be monitored experimentally via 

spectroscopic techniques such as FRET[61] and ESR[62]. By tagging two sides of a protein with 

acceptor and donor fluorophores and by measuring the relative intensity of  energy transfer  in 

between them at different conformations of the protein, these techniques provide a 
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“spectroscopic ruler”  for monitoring the conformational change of the solvated protein molecule 

in real time [63]. In section 4, a dynamic version of the LRT approach is developed to monitor 

the time scale required to go from ligand-bound to ligand-free state of two proteins by using the 

equilibrium time correlation functions on the final state PES. We used a harmonic oscillator 

model to describe the relevant PESs. 

In order to test the dynamic LRT scheme effectively, we need the structure of ligand 

binding protein in each state, i.e. ligand-bound and ligand-free states. The proteins used for this 

study are both categorized as “hinge-bending” proteins with two domains due to the 

conformational change they go through upon ligand binding/unbinding events[64] The first 

example chosen for this study is the periplasmic ferric binding protein which has 309 residues; 

for this protein, both ligand-bound and ligand-free structures have been determined by X-ray 

crystallography [65, 66]. Upon binding of Fe+3 ions, the protein undergoes a conformational 

change of closure of two domains around ligand binding site. The second protein, T4 lysozyme 

is somewhat smaller globular protein with 164-residues. After binding to bacterial cell 

saccharide, it cleaves the glycosidic between the glycosidic bond between N-acetlymuramic and 

N-acetlyglucosamine. In the case of T4L, we utilized one of the X-ray structure of a mutant 

version of the protein as the open state [67] and the wild type X-ray structure for the liganded 

state [68].  T4 lysozyme is also composed of two domains connected by a long alpha-helix. As 

with the two domain closure observed in FBP, crystallographic studies of a T4L mutant in which 

a substrate is bound to the enzyme suggest that the substrate bound enzyme is locked in a state in 

which two domains have closed around the substrate binding site [69]. Finally, the time scales of 

relaxation upon ligand-dissociation for these two proteins calculated via dynamic LRT are 

compared to relevant experimental measurements. 
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2.0  A RIGID-BODY NEWTONIAN PROPAGATION SCHEME BASED ON 

INSTANTANEOUS DECOMPOSITION INTO ROTATION AND TRANSLATION 

BLOCKS 

Essiz, S. and R.D. Coalson, J. of Chem. Phys., 2006. 124: p:144116 . 

2.1 ABSTRACT 

The Rotation and Translation block (RTB) method of Sanejouand et al. [1, 2] provides an 

appealing way to calculate low frequency normal modes of large biomolecules by restricting the 

space of motions to exclude internal motions of pre-selected rigid fragments within the molecule.  

These fragments are modeled essentially as rigid bodies and the need to calculate high-frequency 

relative motions of the atoms that form them is obviated in a natural way.  Here we extend the 

RTB approach into a method for computing the classical (Newtonian) dynamics of a 

biomolecule, or any large molecule, with effective rigid-body constraints applied to a pre-chosen 

set of internal molecular fragments.  This method, to be termed RTB-dynamics, is easy to 

implement, conserves the total energy of the system, does not require the construction of the 

matrix of second spatial derivatives of the potential energy function (Hessian matrix), and can be 

used to compute the classical dynamics of a system moving in an arbitrary anharmonic force 
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field.  An elementary numerical application to signal propagation in the small membrane-bound 

polypeptide gramicidin-A is presented for illustration purposes. 

2.2 INTRODUCTION 

Since the first attempts to perform Molecular Dynamics (MD) simulation on proteins [3] MD has 

developed into an exceedingly useful tool for elucidating structure/function relations in these and 

other bio-molecules.  However, when explicit water solvent is added to the system (and in the 

case of membrane proteins, a lipid bilayer membrane as well), the time scale of all-atom MD 

simulations is restricted to 10’s of nanoseconds -- sub-microsecond at most, even with the most 

powerful supercomputers currently available.  This is, of course, quite short on biologically 

relevant time scales.  To take one specific example, consider the case of membrane bound ion 

channel proteins [5]. Relevant dynamics of these molecules spans a wide range of time scales.  

The time scale of permeation of a single ion through such a channel is typically on the order of 

nanoseconds [70] thus MD treatment of ion permeation through channel proteins is at the edge of 

feasibility [71-73],while somewhat coarse grained Brownian Dynamics models are widely 

applicable. [74-81]  However, processes such as the binding of a ligand to a Ligand Gated Ion 

Channel (LGIC) take on the order of microseconds, while channel gating (a deformation of the 

protein that opens or closes the pore to the passage of ions) typically takes milliseconds to 

seconds [13, 82-85], far beyond the all-atom MD time scale achievable with today’s computers. 

This situation motivates the development of coarse-graining computational strategies 

which leave out some, hopefully inconsequential, details of the overall atomic motions of the 

protein-environment system in order to simplify the system description so as to enable temporal 
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evolution to longer times scales [57, 86, 87]. In Normal Mode Analysis (NMA) [42, 88-90] a 

single evaluation of the 2nd derivative matrix at the equilibrium configuration of the protein 

followed by diagonalization of this (“Hessian”)  matrix generates a set of normal mode 

eigenvectors and eigenvalues, the former determining the vibrational pattern of each normal 

mode and the latter the corresponding frequency.  From these one can synthesize the motion of 

the protein to arbitrarily long time scales.  However, this type of analysis is intrinsically 

restricted to small amplitude motion around a single equilibrium reference configuration.  Thus it 

is incapable of describing many interesting large scale conformational motions, such as the 

crossing of a transition state to go from reactant to product states of a chemical reaction.  

Nevertheless, the simplicity of harmonic oscillator models render them physically and 

mathematically appealing.  Assuming that such a description is physically appropriate, there 

remains the difficulty of actually computing and manipulating the Hessian for large biomolecular 

systems.  To simplify this aspect of the problem, approximations to the Hessian matrix have been 

introduced.  As an extreme example, Elastic Network Models suppress all details of the 

underlying potential energy surface, except for the equilibrium configuration that the potential 

surface implies.[51, 52, 56]  That is, all details of the chemical bonding and other intermolecular 

interactions are ignored, and subsumed by a network of springs connecting all pairs of essential 

atoms (which may be a subset of all the atoms in the systems, e.g., C-α atoms only).  This 

network restores the system to a preset equilibrium configuration (generally taken from an X-ray 

crystal structure), while the values of the network spring constant and the cut-off distance 

beyond which atoms are presumed to be “unconnected” are taken as adjustable parameters.  

While this approach may describe the qualitative motion of large, tightly packed globular 

proteins [91], its applicability for describing critical motions of ion channels, particularly in the 
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transmembrane pore, where chemical detail is important to understanding the passage of ions 

through the narrow pore region, is as yet unclear. 

The Rotation-Translation Block (RTB) method of Sanejouand et al.[1, 2] provides an 

alternative approach for reducing the complexity of the Hessian matrix required for normal 

modes calculations on protein molecules.  In this approach, quasi-rigid fragments of the 

molecule are (pre)identified, and then displacement vectors that describe overall translation and 

rotation of each block are easily constructed.  This generates a partial basis of displacement 

vectors for describing small vibrations about equilibrium.  These displacements allow for the 

coupled motion of different blocks, but ignore small (high-frequency) vibrations within each 

rigid block.  The full all-atom Hessian can then be projected in terms of this RTB basis, thus 

generating a reduced Hessian of much smaller dimension than the full version. 

The goal of the present work is to extend some of the key ideas of the RTB normal modes 

procedure into a general Newtonian propagation scheme that uses the instantaneous RTB basis 

vectors to evolve the protein system in time so that the essential low-frequency large amplitude 

motions of the molecular are retained, but irrelevant high-frequency local vibrations are ignored.  

The method does not assume an underlying harmonic potential surface and thus in principle is 

applicable to complex reaction dynamics on anharmonic potential energy surfaces.  The outline 

of this paper is as follows. The relevant theory is developed in Section 2.3.  An illustrative 

example, namely, perturbation induced protein deformations (signal transduction) in an ion 

channel, is presented in Section 2.4, where we compare trajectory results obtained by integrating 

Newton’s Equations for all atoms in the protein with the corresponding results obtained from 

RTB-dynamics and also via approximate normal modes analyses.  As the degree of initial (and 

propagated) distortion increases, so do the effects of force field anharmonicity.  RTB-dymamics 
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can account for these effects, whereas a normal modes description based on a single 

(equilibrium) reference configuration can not.  Finally, Section 2.5 contains pertinent Discussion 

and Conclusions. 

2.3 THEORY 

2.3.1 Review of RTB decomposition 

The motion of the atoms in a molecule can be described as Cartesian displacements around a 

reference configuration, in particular, the coordinates of the molecule at t=0. Given an initial 

configuration of the N atoms in the molecule, represented by the 3N-d Cartesian coordinate 

vector 0x


, we can write  

                             1/ 2
0 0x x x x x     

    
M .                    (2.1) 

Here x  is the 3N-d Cartesian displacement vector, and x


is its mass-weighted equivalent 

(M being the 3Nx3N diagonal matrix whose non-zero elements contain the masses associated 

with each degree of freedom). We assume that we have identified groups of atoms that form 

rigid blocks (cf. Figure 4), and describe their displacements with particular linear combinations 

of the displacement vectors for those atoms.  For concreteness, denote by jN  the number of 

atoms in block j.  We construct six 3N-d vectors that describe rigid motions of the atoms of this 

block.   
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Figure 4. Schematic depiction of rigid blocks and independent atoms employed in the 

RTB decomposition procedure 
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Namely, there are three vectors that correspond to the overall translation of the center of mass of 

the block (the displacements of all atoms not in block j are set to 0).  Further, three vectors 

corresponding to overall rotations of the block are also easily constructed.  All that is required is 

diagonalization of the 3x3 moment of inertia tensor for the block under consideration.  This gives 

the 3 principal rotation axes, and a simple twist motion (linear transformation) about each of 

these axes generates the displacement corresponding to infinitesimal rotation about it. (Again, 

the displacements of all atoms not in the block under consideration are set to 0.)   A detailed 

description of the linear transformations  underlying RTB decomposition can be found in [44, 

88].   In mass weighted displacement coordinates, these 6 vectors are mutually orthogonal. This 

procedure is repeated for each rigid block.  Any atom which is not part of a rigid block is 

represented simply by its 3 mass-weighted Cartesian displacements.  If there are an  independent 

atoms (not associated with rigid blocks), then the end result of this procedure is to generate 

6 3B a rn n n   mutually orthogonal “relevant” unit vectors in the 3N-d mass-weighted 

displacement space.  This will in general be much fewer than the complete set of 3N mass 

weighted Cartesian displacement vectors, due to the fact that there are many atoms in each block, 

and displacements corresponding to internal vibrational motion within each block are 

suppressed.  In the standard RTB normal modes procedure [1, 2], one considers the case of small 

vibrations around an equilibrium configuration 0x


, and takes matrix elements of the full 3Nx3N 

Hessian matrix (matrix of 2nd derivatives of the potential energy function) in the basis of the rn  

vectors just constructed.  This generates a reduced r rn xn  Hessian matrix, which in turn implies 

normal modes of vibration that correspond to relative motion of the rigid fragments (and the 

independent atoms).  In the present development we follow a somewhat different route, 

exploring the possibility of computing Newtonian dynamics of these coupled rigid bodies 
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by propagating for a short time along the “instantaneous” relevant coordinate axes, then 

recalculating the RTB displacement axes based on the output configuration and repeating the 

procedure for many steps.  Details of this scheme are developed in the following subsections. 

2.3.2 Exact Propagation in local orthogonal RTB-based coordinates 

Given the initial (t=0) coordinates of all the atoms, and the desired physical decomposition into 

rigid body fragments within the (N-atom) molecule, first switch to standard mass-weighted 

Cartesian displacements, ( , , )x y z   , for each atom.  There are 3N such coordinates, denoted 

collectively as x


.  Next, find the 3 overall translation displacement vectors (in the 3N-dim. 

space) and the 3 overall rotation displacement vectors for each of the Bn  fragments  using the 

RTB procedure: denote these unit-normed vectors as ( )ˆ ku , 1 6 bk n  .  Add to this set the 3 an  

unit vectors corresponding to mass weighted Cartesian displacements of the an  atoms which are 

not contained in any rigid block.  Now, we need (formally) 3 rN n  other unit-normed vectors 

(all these vectors have length 3N), which are orthogonal to each other and to the rn  ( )ˆ ku ’s above.   

This can be done numerically, block by block, using standard linear algebraic projection 

techniques. [92] We now have a complete orthonormal set of vectors ( )ˆ ku , 1 3k N   that span 

the 3N-dimensional Cartesian vector space (hence the set of Cartesian displacements of all the 

atoms). 

We can propagate classical mechanics (Newton’s 2nd law) in the u-basis.  We simply 

project all relevant 3N-d vectors, namely the system displacement vector, velocity vector, and 

force vector, onto the u-axes.  This is easily achieved by taking the dot product with the 

appropriate ( )ˆ ku .  More specifically, let ( ) ( )k t be the displacement along unit vector ( )ˆ ku . The 
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initial value of this coordinate is ( ) (0) 0k   (by construction all displacements from the 

reference configuration are 0 at t=0).  If 0x

  is the initial velocity in the lab (or Cartesian 

displacement) frame, then 1/ 2
0 0v x

 M  is the velocity in the mass-weighted displacement 

coordinate system.  We then project this 3N-d system velocity vector along the u-axes to obtain  

( ) ( )
0ˆ(0)k ku v  
 . Similarly, if the force on the atoms in the system in lab frame Cartesian space 

(again, 3N degrees of freedom in all) is 0F


 , with the corresponding force in mass-weighted 

coordinates being 1/ 2
0 0F F 
 

M   , then the force along the ( )ˆ ku  axis is ( ) ( )
0ˆk k

uF u F  


   The 

equation of motion governing ( ) ( )k t is: 

                                                   ( ) ( )( )k k
ut F  .                              (2.2) 

This is just Newton’s 2nd Law in the u-axis coordinate system.  Given the initial value of each 

( )k  and its initial time derivative (velocity), then the set of Equations 2.2 (one for each k=1-3N) 

can be integrated for any desired length of time.  There is actually no need to re-expand around a 

different reference configuration after each time step; all that is needed is to be able to revaluate 

the force along the course of the trajectory (this is straightforward; see below).  But, for the sake 

of developing a rigid-body dynamics propagation scheme, let us specify the following strategy 

for exact propagation (rigid body dynamics will emerge as an approximation to this scheme in 

Section. 2.3.3 below). 

At t=0, 0x


 and 0x
  are specified.  We also assume that we have an explicit form for the 

Cartesian components of the force on each atom for any configuration of the system, i.e. ( )F x
 

.  

Normally, we are provided with a potential energy function ( )V x


.   Then, the y-component of 

the force on atom α is /V y  ,etc.  Given ( )F x
 

, the force in the mass-weighted coordinate 
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system F 


 can easily be obtained, as prescribed above, and then projected onto the u-axes as 

required for the present propagation scheme. 

Based on the initial configuration 0x


, we find the 6 Bn  orthonormal RTB vectors plus the 

(trivially determined) 3 an  mass-weighted Cartesian displacement vectors for each independent 

atom in the molecule; then we construct 3 rN n other orthonormal vectors, as described above.  

Now we have the complete set of basis vectors ( )ˆ ku , 1 3k N  .   Next, let T  be the 3Nx3N 

matrix whose columns are the unit-normed ( )ˆ ku  (expressed in the full 3N-d mass-weighted 

coordinate basis). Note the general linear transformations: 

                                        ( ) ( )t x t  
 tT ; ( ) ( )t v t 

  tT .                          (2.3) 

[ tT  is the transpose of the matrix T ; and tT T 1 .]  The dynamical update procedure then goes 

as follows.  By construction, (0) 0x 


; thus, from Equation 2.3, (0) 0 


.  Also, from Equation 

2.3, 0(0) v 
  tT  .  The components of the initial force along the u-axes are given similarly: 

'
,0 0( )uF F x
  tT .  (These conditions are consistent with the discussion centered around Equation 

2.1 above.)  For concreteness, we use the velocity Verlet scheme [42, 93] to dynamically update 

all 3N of the  -coordinates by a small time step t  : 

                     ( ) ( ) ( ) ( ) 21
,02( ) (0)k k k k

f ut t F t        ;  k=1-3N .                                  (2.4) 

This gives us the output coordinates. To obtain the output velocities according to the velocity 

Verlet algorithm, we also need to evaluate the force experienced at t , that is, at the final 

configuration (in lab Cartesian coordinates), 0
-1/2

f fx x x  
  

M  , where fx


 is obtained from 

f via the backwards linear transformation implied in Equation 2.3.  Thus, in the u-frame, 

, ( )u f fF F x
  tT .  Now: 
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                    ( ) ( ) ( ) ( ) ( )1
,0 ,2( ) (0) [ ]k k k k k

f u u ft F F t            ;  k=1-3N .                  (2.5) 

The back linear transformation of these  -velocities to the corresponding velocities in mass-

weighted lab Cartesian displacement coordinates is prescribed in Equation 2.3. (The Cartesian 

lab frame velocities are then obtained as 1/ 2
f fx v
  M .)  This completes one time step.  To start 

the next step, regard the final lab Cartesian positions and velocities as the “initial” ones, and 

repeat (beginning with the recalculation of the RTB-based displacement coordinates). 

For sufficiently small t , this algorithm will clearly generate the exact Newtonian 

dynamics of the 3N-d (N-atom) molecule. 

2.3.3 Approximate RTB-dynamics 

In the space of small displacements around 0x


, linear combinations of the 6 RTB displacement 

vectors describe motions of the overall complex that keep the initial rigid fragments rigid. For 

block j, amplitude along any of the other 3 6jN  local displacement vectors changes the distance 

between one or more pairs of atoms within this fragment, and hence corresponds to deviation 

from the rigid fragment model.  Adding the full range of motions of the independent atoms to the 

relevant set of displacement vectors (bringing the total to rn ), let us organize the complete set of 

“rotated” basis vectors so that the rn relevant ones are recorded first, i.e., vectors 1,...,3rn N  

correspond to “irrelevant” internal vibrations within the various rigid blocks. Then, the basic idea 

is that when updating atomic displacements over a time step t  the output values of  ( ) ( )k t   

should be set to 0 for 1,...,3rk n N    , while updating the relevant coordinates in the fashion 

described above, i.e., by projecting the force vector, etc., along the appropriate u-axes.  This 
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turns out to be part of the final prescription, but there is one additional subtlety that has to be 

dealt with, which concerns the manner in which the velocities are processed.  The most naïve 

procedure would be to set ( ) 0k  , 1,...,3rk n N  ,  identically.  However, this would cause an 

unphysical “disruption” of the dynamics which is problematic (e.g., leads to energy non-

conservation).  At t=0, the Cartesian velocities of all the atoms are unrestricted.  Thus when they 

are projected onto the u-axes, there will in general be non-zero components along the irrelevant 

u-axes, just as there will be along the relevant u-axes.  Arbitrarily setting the velocities of the 

irrelevant  -coordinates to 0 actually violates the initial conditions, and leads to deviation in the 

propagated atomic trajectories over the course of many time steps from the exact Newtonian 

dynamics of the (rigid fragment) system.  A more systematic approach is to add, at t=0, a 

specific additional force of constraint (which is constant over the propagation time interval t ).  

The effect of this force of constraint should be to cause the net displacement along all non-RTB 

u-coordinates to be zero at t t .  The appropriate constraint force and its consequences for the 

irrelevant  -coordinate velocities turn out to relatively simple. Details are provided in Appendix 

A.  Here we simply state the final computational prescription: 

For a given initial lab Cartesian 0x


 and 0x
 , 

1) Find the 6 Bn  RTB displacement vectors and add to these the 3 an  mass-displacement 

coordinates of the independent atoms: this brings the total of relevant basis vectors to rn .  (The 

other3 rN n  internal displacement vectors never have to be constructed!)  Project the initial 

mass-weighted velocity and force onto the relevant u-axes.  Also calculate the “remainder” 

velocity (0)v


, i.e., the component of the velocity perpendicular to the relevant displacement 

subspace, 
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                                     (0) ( ) ( )
0

1

ˆ(0)
rn

k k

k

v v u


    .                                            (2.6) 

2) Dynamically update each of the rn  relevant coordinates and velocities by t , using the 

velocity Verlet algorithm as described above. 

3) The output mass-weighted Cartesian displacement coordinates are then given by 

                                      ( ) ( )

1

ˆ( ) ( )
rn

k k

k

x t t u  


 
,                                               (2.7) 

and the output mass-weighted Cartesian velocities are given by 

                                     ( ) ( ) (0)

1

ˆ( ) ( )
rn

k k

k

v t t u v   


   .                              (2.8) 

Repeat these steps to achieve propagation over a macroscopic time interval.  As shown in 

Appendix B, provided that the time step t is small enough, this procedure will conserve energy.  

The RTB-dynamics rigid body propagation scheme presented here bears some 

resemblance to the Multibody Order (N) Dynamics [MBO(N)D] scheme developed in Ref. [35].  

Both methods produce approximate Newtonian dynamics of coupled rigid bodies which form a 

super-system of interest (e.g., a large protein molecule).  However, there are significant 

differences in the details of implementation.  The MBO(N)D scheme follows the motion of the 

pre-determined rigid bodies (coupled by hinges) using Euler angles, while our RTB-dynamics 

approximately freezes, over a short time step, the internal motion of pre-determined fragments 

within the overall molecule by suppressing modes of motion (the “irrelevant” degrees of 

freedom) that correspond to relative motion within each fragment.  The RTB-method then has to 

re-characterize the rigid fragments after each time step by re-calculating the RTB coordinate unit 

vectors based on the updated configuration of the full molecule.  It has the advantage that the 
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entire calculation is done in Cartesian coordinates, and thus the need to integrate Newton’s (or 

Hamilton’s) Equations [94] in non-Cartesian coordinates (e.g., Euler angles), is avoided. 

2.4 ILLUSTRATIVE NUMERICAL EXAMPLE: APPLICATION TO SIGNAL 

PROPAGATION IN GRAMICIDIN 

As a relatively simple but nontrivial application of the RTB-dynamics scheme to the process of 

signal propagation in an ion channel, we consider a gramicidin-A (GA) dimer, embedded in a 

membrane mimetic; cf. Figure 5. As indicated in the figure, the membrane model used here is 

simply a random array of 245 “pinning balls”, i.e.,  Lennard-Jones centers of force that interact 

with the atoms of the GA polypeptide to hold it in place, in a membrane-spanning configuration.  

Similar minimalist mimetic models of the bilayer membrane have been used in studies of ion 

permeation through GA. [95]  The NMR-derived GA structure of Arsen’ev et al. was used as a 

template. [96]   This structure, embedded in the membrane mimetic described above, was 

subjected to energy minimization based on the Amber 94 force field [97] in order to determine 

the equilibrium configuration of the membrane-embedded GA dimer. (Lennard-Jones parameters 

 =0.45 kcal/mol and  =1.78 Å for the well depth and van der Waals diameter, respectively, 

were used to generate the pairwise interactions between each pinning ball and GA atom.) No 

water molecules were included in the calculation.  The GA dimer protein was found to be 

mechanically stable in this environment, i.e., upon displacement of any atom from equilibrium, 

the system experienced a restoring force back towards the equilibrium configuration. 
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Figure 5. Equilibrium structure for a gramicidin-A dimer spanning an artificial lipid 

bilayer. The parts of the molecule highlighted in red are the indole groups which are treated as 

rigid bodies in the RTB rigid body decomposition procedure. Residue index runs from top to 

bottom, i.e., in the -z direction. 

 

At t=0, the two residues at one end of the GA dimer were displaced from their 

equilibrium positions along the channel axis (all atoms of each amino acid [AA] residue being 

displaced by the same amount).  The GA dimer was subsequently allowed to move according to 

Newtonian mechanics.  The expectation was that the displacements would propagate from one  

end of the channel to the other, and this expectation was indeed borne out by direct integration of 

Newton’s Equations for all atoms in the system, as depicted qualitatively in Figure 6.  

Furthermore, in addition to all-atom microcanonical (i.e., constant total energy) MD [42], 

calculations of the time evolution of this system were carried out using several approximate 

propagation schemes. Namely: 
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Figure 6. Schematic representation of signal propagation through the Gramicidin-A 

dimer. White ribbon depicts the equilibrium configuration of the gramicidin in the artificial lipid 

bilayer. At t=0, the two end residues at the “top” of the molecule are displaced downwards by 0.3 

Å, as depicted in red. Time evolution is computed via classical mechanics. Red color indicates 

the protein structure as time progresses. The VMD [98] software was utilized to render these 

figures from MD data. 

 

 

 

 

 

 

 

 

 

Equilibrium t=0 t=0.1 ps t=1.3 ps 
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1) RTB-dynamics, the rigid body fragment propagation scheme developed in this paper.  

We treated each of the 8 indole groups (cf. Figure 5) in the dimer as a rigid fragment, and all 

other atoms as independent (each characterized by its 3 Cartesian components).  Since each 

indole group really is, by the nature of its constitutive chemical bonds, rather rigid, this provides 

a good test of the performance of the RTB-dynamics method.  That is, we expect that with this 

rigid body decomposition there should be good correspondence between all atom Newtonian 

dynamics and RTB-dynamics.  Such behavior was in fact observed in our numerical studies, as 

described below. 

2) RTB normal modes. To test the role played by potential surface anharmonicity on the 

motion of a mechanical deformation propagated through GA, we also studied the system’s time 

evolution under an appropriate harmonic approximation.  In particular, we calculated RTB 

normal modes [1, 2, 44] using the same indole rigid body decomposition employed in the RTB-

dynamics scheme outlined above. Again, because the indole groups are rigid, the normal modes 

amplitude vectors and associated frequencies which arise from the RTB normal modes analysis 

(NMA) should accurately represent the low frequency normal modes of the full system (i.e., not 

assuming any partial rigid fragments).  It is these modes which control large amplitude 

conformational changes in the molecule. Thus, if we superpose the initial displacements of 

interest to us here (see above) as a linear combination of RTB normal modes and then allow the 

system to propagate according to the usual tenets of normal modes theory [88, 90], we expect 

that the resultant dynamics will be essentially the same as would be obtained via full all-atom 

NMA.  Further, we expect that for small initial displacements, this harmonic approximation 

should be accurate, i.e., give the same trajectory obtained by direct integration of Newton’s 

equations (scheme 1 above).  However, for sufficiently large displacements, the full Newtonian 
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dynamics of the GA system will be influenced by anharmonic terms in the potential energy 

surface (with respect to expansion about the configuration of mechanical equilibrium), and thus 

deviate from the predictions of the normal modes analysis inherent in the RTB normal modes 

model.  In contrast, the RTB-dynamics method, which re-expands the RTB basis vectors that 

represent rigid body motions of the RTB fragments at each time step, does not suffer from this 

limitation.  We expect that it can follow the true Newtonian dynamics of the system even for 

large amplitude motion.  Indeed, we find this to be the case in the GA propagation example 

studied in this work. 

3) ENM normal modes.  In the spirit of the RTB normal modes propagation scheme 2, we 

considered the analogous procedure utilizing the Elastic Network Model framework. [51, 52, 56] 

The ENM is a harmonic oscillator model in which the underlying quadratic potential energy 

surface is assumed to arise from a network of springs which couple the motion of all pairs of 

atoms within a specified cutoff separation.  This potential energy surface is ad-hoc except for its 

incorporation of an assumed mechanical equilibrium configuration – in our case, this would be 

the equilibrium configuration of the GA used in all four propagation schemes.  In particular, the 

values of the cutoff separation and the spring force constant (which is assumed to be the same for 

all pairs of connected atoms in the system) are arbitrary.  In the implementation presented here, 

we assumed a cutoff distance of 5 Å.  Furthermore, to incorporate the confining effect of the 

pinning balls in our membrane mimetic on the motion of the GA protein, we included spring 

contacts between all pairs of pinning balls and GA atoms within the specified cutoff distance.  

(The pinning balls are immobile, but these spring contacts modify the Hessian which determines 

the normal modes of vibration of the GA atoms within the ENM model).  Finally, we fix the 

value of the force constant in the ENM model by noting that since there is only one such 



 39 

constant, the frequencies of all the ENM normal modes scale directly as the square root of this 

force constant, and thus by varying it we can adjust the overall time scale of the motion implied 

by ENM.  This adjustment was done in order to make the time scale of the propagation of 

displacement amplitude from one side of the GA system to the other resemble the time scale 

obtained by full all-atom MD as closely as possible. 

In our numerical studies we considered a range of initial displacements of the two end 

AA’s (as described above).  Figure 7 illustrates the behavior found in the small displacement 

limit. In particular, in this figure the end two AA’s of GA are initially displaced by  -0.05 Å 

(corresponding to a slight compression of the protein, qualitatively similar to the picture depicted 

in Figure 6), and then the subsequent displacement of each C-α atom along the channel axis is 

monitored at several times. Propagation of the initial displacement from one side of the molecule 

to the other, followed by reflection back into the center of the system, is clearly apparent.  It is 

also apparent that all-atom MD, RTB-dynamics and RTB normal modes are all substantially in 

agreement, while the ENM-dynamics produces noticeably different results.  It is interesting to 

note that RTB-dynamics and RTB normal modes are in nearly perfect agreement, and deviate by 

a tiny amount from the all atom MD trajectory.   This is actually to be expected, since in the limit 

of small displacements the Newtonian equations of motion become the same for RTB-dynamics 

and RTB normal modes schemes. (The “difference” in the two methods is simply in the way 

these equations of motion are integrated.)  They deviate, formally, from the equations of motion 

implied by all-atom Newtonian mechanics in the treatment of the motion of the rigid fragments 

assumed in the RTB-dynamics scheme.  (In the RTB-dynamics this motion is frozen out, while it 

is allowed to evolve fully in all-atom MD.)  However, since the indole fragments are in fact quite 

rigid, the errors incurred in freezing out their internal motion are minor. 
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It is interesting to contrast the behavior just described with what transpires when the 

initial displacement of the end two AA’s of the GA system is increased to -0.3 Å. In Figure 8, the 

time evolution of displacements of the backbone C-α’s along the propagation axis is shown for 

all atom MD, RTB normal modes and ENM normal modes.  Of course, any motion synthesized 

within the framework of single reference vibrational normal modes theory scales proportionally 

to the overall initial displacement of the system.  That is, the results for the RTB normal modes 

and ENM normal modes schemes are identical except for an obvious scale factor in the 

displacement amplitude.  However, full MD deviates from the corresponding RTB-normal mode 

predictions by a noticeable amount, particularly as time progresses.  Again, this is a consequence 

of the fact that the atoms of the GA protein experience contributions to the full (AMBER) 

potential energy surface corresponding to cubic and higher terms in a Taylor series expansion 

about the configuration of mechanical equilibrium.  In contrast, Figure 9 compares the behavior 

of all-atom MD vs. RTB-dynamics.  RTB-dynamics can faithfully follow the full range of 

anharmonic motion, as explained above. (The small deviations between all-atom MD and RTB-

dynamics can be attributed to errors made in the RTB-dynamics by assuming that the chosen 

rigid fragments are in fact completely rigid.) 
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Figure 7. Signal propagation through the GA dimer. In each panel, the displacement from 

mechanical equilibrium along the pore axis of each C-α in the GA sequence is shown. At t=0, the 

first two residues from the top of the molecule are displaced from their equilibrium structure 

along the pore axis by -0.05 Å as indicated. The displacement of each C-α from the equilibrium 

structure is monitored until the effect of initial displacement reaches the other end of the 

molecule. 

All-atom Newtonian dynamics RTB-dynamics RTB normal modes ENM normal modes
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Figure 8. Signal propagation through the GA dimer. In each panel, the displacement from 

mechanical equilibrium along the pore axis of each C-α in the GA sequence is shown. At t=0, the 

first two residues from the top of the molecule are displaced from their equilibrium structure 

along the pore axis by-0.3 Å as indicated. The displacement of each C-α from the equilibrium 

structure is monitored until the effect of initial displacement reaches the other end of the 

molecule.    
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Figure 9. Signal propagation through the GA dimer. In each panel, the displacement from 

mechanical equilibrium along the pore axis of each C-α in the GA sequence is shown. At t=0, the 

first two residues from the top of the molecule are displaced from their equilibrium structure 

along the pore axis by -0.3 Å as indicated. The displacement of each C-α from the equilibrium 

structure is monitored until the effect of initial displacement reaches the other end of the 

molecule. 
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2.5 DISCUSSION AND CONCLUSIONS 

The RTB-dynamics treatment presented here is rudimentary in certain aspects.  To develop it 

into an MD technique for sampling from a canonical (finite temperature) ensemble, the classical 

dynamics should be thermostated so that a constant temperature can be automatically 

maintained. [42] Development of a barostat would be another useful extension.  Further, it 

should be possible to adapt the ideas underlying the RTB-dynamics algorithm to a Langevin 

dynamics analog by replacing the short-time Newtonian (Verlet) update step with an analogous 

Brownian dynamics (drift-diffusion) or Langevin dynamics update. [42, 99] 

A major issue that was not dealt with in this paper is how to choose the rigid fragments 

that are essential to the RTB strategy (either normal modes or full Newtonian dynamics). We 

illustrated our RTB-dynamics scheme with an example where obvious rigid fragments could be 

identified.  In the general case this identification a priori (i.e., in the absence of performing all-

atom MD simulations on the system) is difficult.  Nevertheless, certain methodologies offer 

some promise of being able to identify rigid (vs. flexible) parts of a protein with far less 

computational effort than full MD would entail.  These methods include the FIRST algorithm of 

Thorpe et al. [100], and the Elastic Network model introduced by Tirion  [51] and recently 

utilized by many workers[52, 54, 101-103].  Both methods require only a reference structure – 

typically, the equilibrium structure of the protein, but do not attempt to generate or input any 

information about the all-atom potential energy surface, to run all-atom MD, etc.  Thus they may 

be able to provide a rapid and qualitatively accurate zeroth order assessment of rigid parts of the 

protein, which can then be uploaded into the RTB-dynamics procedure.  (In cases where the 

RTB-dynamics procedure is used to follow large amplitude motion on an anharmonic potential 

surface, it may be appropriate to repeat these rigidity analyses every few time steps, to obtain a 
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time-dependent rigid fragment decomposition that reflects the global course of the dynamics.)  

The incorporation of an effective (time-dependent) rigidity analysis of this type into the RTB-

dynamics algorithm would boost its utility considerably. 
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3.0  LANGEVIN DYNAMICS OF MOLECULES WITH INTERNAL RIGID 

FRAGMENTS IN THE HARMONIC REGIME 

Essiz, S.G. and R.D. Coalson,  J. of Chem. Phys., 2007. 127: p. 104109 

3.1 ABSTRACT 

An approximation scheme is developed to compute Brownian motion according to the Langevin 

Equation for a molecular system moving in a harmonic force field (corresponding to a quadratic 

potential energy surface) and characterized by one or more rigid internal fragments. This 

scheme, which relies on elements of the Rotation Translation Block (RTB) method for 

computing vibrational normal modes of large molecules developed by Sanejouand and 

coworkers, provides a natural and efficient way to freeze out the small amplitude, high frequency 

motions within each rigid fragment. The number of dynamical degrees of freedom in the 

problem is thereby reduced, often dramatically. To illustrate the method, the relaxation kinetics 

of the small membrane-bound ion channel protein gramicidin-A, subjected to an externally 

imposed impulse, is computed. The results obtained from all-atom dynamics are compared to 

those obtained using the RTB-Langevin Dynamics approximation (treating 8 indole moieties as 

internal rigid fragments): good agreement between the two treatments is found. 
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3.2 INTRODUCTION 

There is at present considerable interest in methods for computing large scale protein dynamics, 

including conformational changes which relate structure to the function of these molecules. 

Significant difficulties arise due to the long time scales (milliseconds and longer) on which 

functionally important conformational changes occur. Some progress can be made by 

recognizing that many large scale conformational changes are determined by collective motions 

in which internal quasi-rigid fragments (e.g., domains, or elements of the protein's secondary 

structure) move with respect to each other -- relatively slowly, since high frequency local atomic 

fluctuations corresponding to local vibrational motions of atoms within a fragment are naturally 

frozen out. Progress in numerical methods for rigid fragment Newtonian propagation has been 

made at the levels of both normal modes vibrational analysis [1, 2], which presumes that motion 

takes place on a a quadratic potential energy surface (PES), and fully anharmonic molecular 

(Newtonian) dynamics [35, 104] based on an arbitrary PES. 

The time scale on which rigid-fragment molecular dynamics (MD) can be carried out is 

still limited. All-atom MD simulations on solvated proteins can typically be carried out for 

several nanoseconds on extant computer platforms. Much of the effort goes into the explicit 

inclusion of water molecules (as many as tens of thousands of these in modern protein dynamics 

simulations). Even a factor of 10 increase in time step which might come about by eliminating 

the need to accurately evolve high frequency local motions in the protein molecule would not 

allow one to access biologically relevant time scales of milliseconds and longer. One way to 

address these difficulties is to adopt a Langevin description [41], in which some atoms in the 

protein molecule are subjected to a frictional damping force proportional to their velocity, 

counterbalanced by a random force chosen so as to drive the entire protein to thermal 
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equilibrium at long times [105]. In this approach, solvent water molecules are not explicitly 

included. Rather, their effect on the protein motion is encompassed by the friction and random 

force terms that act upon the protein. Advantages of the Langevin Equation framework include: 

1) a longer time step can be taken (the more so as the frictional damping becomes larger), 2) the 

natural incorporation of temperature (as embodied, for example, in the long-time relaxation to 

the Boltzmann distribution of atomic positions and momenta), and 3) inclusion of effects due to 

coupling with the environment (e.g., water solvent, and in the case of membrane bound proteins, 

a lipid bilayer membrane as well), which will not only modify the time scales of relaxation to 

thermal equilibrium, but also the modes of relaxation (e.g., by putting frictional contacts only on 

those atoms of the protein which are exposed to water, the dynamics of these parts of the protein 

will be preferentially and sometimes significantly modified). 

Given the success of Newtonian dynamics schemes that exploit the partial rigid body 

decomposition noted above, it is natural to enquire whether these can be generalized to a 

Langevin dynamics scheme. Here we take a first step in this direction. Namely, we devise an 

algorithm for carrying out rigid-body Langevin dynamics when the PES governing the molecular 

motion is quadratic (i.e., contains no terms cubic or higher in the system coordinates). The theory 

is then similar in spirit to that of vibrational normal modes[1, 2], having the same advantages and 

disadvantages. Its advantages include an essentially analytic solution of the relevant equations of 

motion for any number of coupled coordinates (“degrees of freedom”), enabling the trajectory of 

the molecule to be computed out to infinitely long times. In practice, if the molecular system has 

D  degrees of freedom, solution of the Langevin Equations of Motion (EOMs) involves linear 

algebraic manipulations in a D2  dimensional vector space: thus, a computer is needed for 

numerical solution in most cases. Still, the existence of a closed set of linear equations that 
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determines exact time evolution for all times is highly advantageous for obvious reasons: for 

example, thermally averaged correlation functions between various degrees of freedom can 

easily be extracted from solutions of the fundamental EOMs [105]. Of course, there are a number 

of inherent disadvantages of the harmonic oscillator model. All effects associated with inherent 

anharmonicities in the PES are missed (for example, barrier crossing from one quadratic basin of 

attraction to another). Also, determining the appropriate frictional damping coefficient for each 

degree of freedom is a nontrivial enterprise. A full reckoning would entail all-atom MD of the 

entire system (protein and environmental degrees of freedom), which would be computationally 

demanding, and in many cases intractable. There are useful shortcuts that can be employed, e.g., 

a molecular hydrodynamics approximation in which the friction coefficient associated with a 

given atom depends in a simple manner on its effective radius and the viscosity of the solvent 

that surrounds it [105-107], but the validity of these approximations is by no means 

incontrovertible. 

The remainder of the paper is outlined as follows. In Section 3.3, we briefly review time 

evolution of a collection of harmonic oscillators under the Langevin Equation, which we shall 

also refer to as Langevin Dynamics, since it serves as the starting point for the development of an 

approximate solution to the same set of stochastic equations that incorporates pre-selected 

subsets of the particles (atoms) as rigid bodies. The rigid-body decomposition follows a strategy 

previously developed for analysis of vibrational normal modes of large protein molecules, 

known as the Rotation Translation Block (RTB) method [1, 2]. To provide explicit details of our 

partial rigid body Langevin dynamics procedure, we need to review the basic principles of RTB 

decomposition of the full space of D  atomic displacements into a a set of Rn  relevant 

orthogonal displacements (largely collective in nature), which span a subspace of the full D  
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dimensional displacement space, and a complementary set of RnD   irrelevant orthogonal 

coordinates. This is done in Section 3.4. Given an explicit specification of the relevant 

coordinates, the RTB-Langevin approximation is prescribed as the equations of motion of an Rn  

dimensional harmonic oscillator system characterized by RR nn   dimensional force constant and 

friction matrices which are obtained by projecting the full DD  dim. (all-atom) versions of 

these matrices onto the subspace of relevant displacements. (In the most frequently encountered 

case of unrestricted 3-dim. molecular motion, ND 3= , where N  is the number of atoms in the 

molecule.) The number of irrelevant displacements is typically much larger than the number of 

relevant displacements, particularly if large quasi-rigid internal fragments can be identified. Thus 

the RTB-Langevin approximation will generally result in a significant reduction in the 

dimensionality of the dynamical problem that needs to be solved. The RTB-Langevin 

prescription is also provided in Section 3.4. To fully justify this prescription, we derive it in 

Section 3.5 as a mode decoupling approximation to the full dynamics, valid in the limit where 

the vibrational frequencies of the motions that are internal to a given quasi-rigid block are large 

compared to those which couple the collective motions of two or more such blocks. In Section 

3.6, we illustrate the principles of RTB-Langevin dynamics for a prototypical two degree of 

freedom system, corresponding to the collinear motion of two masses (atoms) attached to an 

appropriate set of Hooke's Law springs. This simple system allows us to illustrate the basic 

principles of RTB-Langevin dynamics in transparent detail. To directly demonstrate the 

applicability of the method to protein systems, we present in Section 3.7 a more elaborate 

numerical example. There the gramicidin-A ion channel is embedded in a lipid membrane 

mimetic in a membrane-spanning orientation, and we follow the dynamical response of the 



 51 

molecule to an external impulse applied at one end of the molecule at 0=t . Finally, Discussion 

and Conclusions are presented in Section 3.8. 

3.3 REVIEW OF THEORY OF LANGEVIN DYNAMICS UNDER THE 

INFLUENCE OF A GENERAL MULTIDIMENSIONAL HARMONIC 

OSCILLATOR FORCE FIELD 

This section closely follows the excellent exposition of Lamm and Szabo [105]. Consider motion 

in D Cartesian dimensions on a general quadratic potential energy surface (PES). Denote the 

coordinates as iq , Di 1,2...= , and assemble these into the coordinate vector T
Dqqq ),...,(= 1


. 

Then the relevant PES is 

      ,
2

1
=)( qqqV T 

V                             (3.1) 

where V   is the relevant DD  force constant matrix. In the case of an N-atom molecule 

moving in 3-dim., each iq  represents the displacement from mechanical equilibrium along one 

of 3 cartesian dimensions, and hence ND 3= , as noted above. 

The most general Langevin Equation consistent with this potential energy surface is 

    DitrtqVtqtqm ijji

D

j
jji

D

j
ii   1=;)()()(=)( ,

1=
,

1=

  .         (3.2) 

In Equation 3.2, im  is the mass associated with coordinate i . The velocity dependent frictional 

damping (1st term on the r.h.s.) is, in the most general case, a linear combination of the velocities 

of all the coordinates, with appropriate superposition constants ji, , i.e., friction coefficients. The 
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friction matrix ji,  is always symmetric. Furthermore, the )(tri  in Equation 3.2 are Gaussian 

random force terms defined by the behavior of their expectation values, namely, 0>=)(< tri , 

Di 1= , and their two-time correlation functions, namely, )(2>=)()(< 21,21 ttTktrtr jiBji  , 

Dji 1=, , with Bk  being Boltzmann's constant and T  the absolute temperature. These 

properties of the random force components guarantee that the velocity distribution will approach 

Maxwell-Boltzmann form at long times, corresponding to thermal equilibrium. 

It is useful to transform to mass-weighted coordinates, thereby removing the particle 

masses from the equations of motion. Defining )(=)( tqmtx iii , we obtain the analog of 

Equation 3.2, which can be conveniently written in matrix-vector notation as 

          ,)()()(=)( tRtxtxtx
  FΓ         (3.3) 

with the renormalized friction and force constant matrices jijiji mm/= ,,   and 

jijiji mmVF /= ,,  , respectively, and the Gaussian random noise functions )(tRi  characterized by 

0>=)(< tRi , Di 1=  and )(2>=)()(< 21,21 ttTktRtR jiBji   , Dji 1=, . We shall regard 

Equation 3.3 as the fundamental vector EOM that we seek to solve, both exactly and 

approximately (via the RTB-Langevin prescription developed below). 

The set of coupled Langevin Equations 3.3 admits stochastic solutions which are 

statistically equivalent to the phase space probability distribution associated with an appropriate 

Fokker-Planck Equation (see Section II of Lamm and Szabo [105]). If we designate the 

momentum conjugate to displacement coordinate ix  as ii xp  , and the 2D vector containing all 

phase space components as T
DD ppxxX ),...,,,...,(= 11


, then the phase-space probability density 

),( tXP


 evolves according to 
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In particular, an initially Gaussian phase space distribution remains Gaussian for all times, 

namely, 

 )})(()(
2

1
{exp

)]([det)(2

1
=),( 1

1/2 t
T

tD
XXtXX

t
tXP


 Σ

Σ
.                 (3.5) 

In Equation 3.5, T
tDttDtt ppxxX ),...,,,...,( ,1,,1,


 is a 2D-dimensional vector of time-evolving 

parameters which specify the expectation values of position and momentum at time t . 

Furthermore, )(tΣ  is a DD 22   matrix of time-evolving parameters which determines the 

variance of the phase space probability distribution at a given instant of time, i.e., 

>))((=<)( ,,, tkktjjkj XXXXt   for Dkj 21=,  , with the average being taken over the 

instantaneous probability distribution ),( tXP


 given in Equation 3.5. 

Substitution of the ansatz for the phase space probability density given in Equation 3.5 

into the Fokker-Planck Equation 3.4 generates the following time evolution for tX : 

tt XX
 A=  ,         (3.6) 

 where A  is the DD 22   matrix, 

             =
 
   

0 1
A

F Γ
.                    (3.7) 

Equation 3.6 is formally solved as 0)(exp= XtX t


A , with 0X


 prescribing the desired initial 

values. In practice, the DD 22   propagator matrix )(exp tA  can be synthesized from the 

eigenvalues and eigenvectors of A , which can be computed easily via standard applied math 



 54 

subroutines [108, 109]. The same substitution which generates Equation 3.6 generates an EOM 

for the spread matrix, namely, 

          BAΣAΣΣ 2)()(=)(  Tttt ,         (3.8) 

where B  is the DD 22   matrix given by 

                    1=    
 
 

0 0
B

0 Γ
,                    (3.9) 

with 1)(= TkB . The long-time value )(Σ  is unique, namely, 

               
1

1( ) = 


  
  

 

F 0
Σ

0 1
.                                        (3.10) 

For an initial value matrix (0)Σ , the time evolution implied by Equation 3.8 is formally obtained 

as 

          )(exp(0)])()[(exp)(=)( ttt TAΣΣAΣΣ  .                           (3.11) 

In practice, as noted above, evaluation of the matrices )(exp tA  and )(exp tTA  is easily 

accomplished by computing their respective eigenvalues and eigenvectors (vide supra). 
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3.4  ROTATION TRANSLATION BLOCK DISPLACEMENTS AND THE 

RTB-LANGEVIN PRESCRIPTION FOR HARMONIC OSCILLATOR SYSTEMS 

3.4.1 Relevant/Irrelevant Coordinate Decomposition based on Rotation-Translation 

Block (RTB) Displacement Amplitudes 

The RTB decomposition is useful for spring systems in which certain groups of contiguous 

particles are connected by large spring constants, so that the group moves approximately as a 

rigid body. By constructing the 6 small displacement vectors that correspond to rigid body 

motion of the fragment (i.e., three overall translational modes and three orthogonal 

displacements corresponding to overall rotation of the rigid fragment), and ignoring all other 

internal motions of the fragment, the number of operative degrees of freedom is significantly 

reduced, and the rigid body character of the fragment's motion is naturally built into the ensuing 

classical mechanics of the full system. [Note: In this subsection we focus on the most common 

and important case that all atoms move in three dimensions and all rigid body fragments are non-

collinear. Other special cases can be treated by direct analogy. One such example, namely, a 

collinear spring system, is studied in detail in Section 3.6.] For a given fragment (which in the 

case of immediate interest here will correspond to a molecular fragment within a larger 

molecule), the three overall translational basis vectors are trivial to construct. The basis vectors 

corresponding to small amplitude rotations of the rigid body can be obtained in a straightforward 

manner as appropriate ``twists" of the fragment -- one twist about each of the three principal 

rotation axes [44, 110]. The lab frame twist displacement vectors are easily converted to mass-

weighted cartesian coordinates (vide supra), as are the overall translation vectors. Thus, each 

rigid body fragment gives rise to 6  mutually orthogonal unit vectors in the ND 3=  dimensional 
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space of small amplitude motion of the complete molecule. (All components of these N3 -dim. 

vectors corresponding to motion of atoms that are not part of a given rigid fragment are set to 

zero.) It may well be the case that some atoms are not part of any internal rigid fragment. These 

must be treated in full atomistic detail (3 cartesian displacements for motion in 3 dimensions). 

The set of all RTB basis vectors for all rigid fragments in the overall ``macromolecule" plus all 

relevant cartesian coordinates for the atoms that cannot be assigned to a rigid fragment form Rn  

relevant basis vectors (mutually orthogonal and unit-normed) in the physical N3 -dim. 

displacement space. They comprise a subset of all small physical displacements of all the atoms 

in the macromolecule. Let us denote these unit vectors as ix̂ , Rni 1,...,= . In principle, we can 

construct RI nNn 3=  other unit vectors, all mutually orthogonal to each other and the Rn  

relevant displacement vectors, e.g., by the Gram-Schmidt orthogonalization procedure [92]. (In 

fact, within the RTB approximation we will not have to do this, thus significantly reducing the 

computational effort required to evolve the desired dynamics, whether Newtonian or Langevin in 

nature.) Let us term these ix̂ , Nni R 1,...,3=  . Now we have a complete set of unit vectors 

which spans the N3 -dim. space of atomic displacements. By writing the general small-atom 

displacement as a linear combination of these, i.e. ii

N

i
xtxtx ˆ)(=)(

3

1=

, we obtain equations of 

motion of the time-dependent amplitudes )(tx
 , i.e., in the primed basis. This procedure is valid 

for both Newtonian and Langevin dynamics schemes. Naturally, the EOM's have the same form 

in the x̂  frame as they do in the frame of lab-fixed cartesian displacements. 
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3.4.2 The RTB-Langevin dynamics prescription for harmonic oscillator systems 

We focus here on the Langevin Equation 3.3, which when subjected to the orthogonal linear 

transformation introduced in the preceding subsection becomes 

 )()()(=)( tRtxtxtx
  FΓ .          (3.12) 

Again, the form of the Langevin Equation is unchanged, but the friction matrix, force constant 

matrix and random force vector are transformed into the x̂  frame. Specifically, if we denote the 

matrix of ix ˆ  unit vectors expressed in the mass-weighted lab frame as T  (with each column of 

T  containing one ix ˆ ), then 

 )(=)(;=;= tRtR TTT


TFTTFΓTTΓ  .    (3.13) 

Note that the random force components in the primed frame naturally obey the relations 

 DitRi 1,...,=;0>=)(<   

and 

 DjittTktRtR jiBji 1,...,=,;)(2>=)()(< 12,12   . 

The transformed Langevin Equation 3.12 describing motion in the primed frame are of course 

completely equivalent to the original Langevin Equations in mass-weighted lab cartesian 

displacement coordinates. [Note: In this subsection and the following section, we label the total 

number of degrees of freedom by D , with the understanding that the relevant coordinates have 

been identified via the procedure outlined in the previous subsection.] 

When groups of atoms are tightly bound into a quasi-rigid body via springs with large 

force constants, RTB decomposition suggests a natural way to ``freeze out" high frequency 

motions from the relevant Langevin dynamics. This entails making a closed set Rn  Langevin 



 58 

equations out of equations Rn1,2,...,  in the primed frame, which in turn is accomplished by 

setting the remaining RnD   irrelevant components 0=)(txi , Dni R 1,...,=   identically (hence 

their corresponding velocities 0=/dtxd i , too). Such an approximation can be justified based on 

the following reasoning. The expectation values of irrelevant coordinates and momenta, i.e., 

>)(< txi  and >)(< tpi , should become negligibly small as the springs in the quasi-rigid 

fragments become stiffer. (Again, they get ``frozen out" of the frictively damped Newtonian 

dynamics that determines their time evolution.) To show in a rigorous fashion that the rapid 

fluctuations in these stochastic variables around their mean values have no net influence on the 

motion of the slow (relevant) coordinates, a more detailed analysis is necessary: this is provided 

in the next section. 

Assuming for now that our assumptions about the separability of fast and slow variable 

motion in the limit of very stiff internal fragments is valid, the relevant coordinate Langevin 

Equations form a closed set of EOM's. Note that the RR nn   force constant matrix describing this 

motion is precisely the reduced Hessian matrix of standard RTB normal modes theory [1, 2]. 

These Rn  Langevin Equations are equivalent to a Rn2  dimensional phase-space Fokker-Planck 

Equation which has the standard harmonic oscillator form, but utilizes the reduced RR nn   

relevant coordinate force constant and friction constant matrices. 

To state the operational EOM's for the relevant coordinates, let RF  be the RR nn   matrix 

obtained by projecting the full mass-weighted laboratory displacement coordinate force constant 

matrix F  onto the subspace spanned by the Rn  relevant coordinate unit vectors; specifically, 

k
T

jkj
R xx ˆˆ=][ ,  FF . Similarly, define the projection of the primed frame friction coefficient matrix 
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onto the relevant coordinate subspace as k
T

jkj
R xx ˆˆ=][ ,  ΓΓ . Finally, we need to project the 

complete set of initial conditions onto the relevant coordinate subset. 

In the case of the expectation values of position and momentum, this is straightforward: 

the D-dimensional vector of mass-weighted position coordinates is projected via the appropriate 

dot products on the Rn  relevant coordinate axes, and similarly for the momentum expectation 

value vector. [Any non-zero irrelevant coordinate and momentum components are presumed to 

be negligibly small at 0=t .] Arranging the expectation values of position and momentum of the 

relevant coordinates into the Rn2  dimensional vector T
tRnttRnt

R
t ppxxX ),...,,,...,(= ,1,,1,  , then 

RRR
t XtX 0)(exp=


A , with 

 =R
R R

 
   

0 1
A

F Γ
.  (3.14) 

Note that RA  is a RR nn 22   dimensional matrix composed of the indicated RR nn   sub-matrix 

blocks. 

Time evolution of the RR nn 22   spread matrix for the relevant coordinates, )(tRΣ , is 

done using Equation 3.11, appropriately specialized to the relevant coordinate subspace; namely, 

 ,)]([exp(0)])()[(exp)(=)( ttt TRRRRRR AΣΣAΣΣ   (3.15) 

with 

 
1

1 ( )
( ) =

R
R 


  

  
 

F 0
Σ

0 1
 (3.16) 

(thus implying that the long-time limit of )(tRΣ  is given uniquely by Equation 3.16). Of course, 

an initial relevant coordinate spread matrix is needed as input into the computation of )(tRΣ . 

This implies a decoupling of the relevant from the irrelevant coordinates in the full DD 22   
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initial spread matrix. Usually construction of the appropriate (0)RΣ  will be clear on intuitive 

grounds. 

3.5 MODE DECOUPLING ROUTE TO THE RTB-LANGEVIN HARMONIC 

OSCILLATOR DYNAMICS 

We start from the prescription for exact all-atom Langevin dynamics monitored in the primed 

coordinate frame. As noted above, the full D2  dimensional phase space includes Rn2  

coordinates/momenta corresponding to the subset of degrees of freedom termed ``relevant" and 

RnD 22   coordinates/momenta corresponding to the remaining, ``irrelevant" degrees of 

freedom. The full Langevin dynamics of this D  dimensional harmonic oscillator system couples 

the motion of relevant and irrelevant degrees of freedom. We seek to identify the details of this 

coupling, and determine conditions under which it can be ignored. Our task is facilitated by 

transforming to a new basis in which the phase space variables are ``shuffled" so that the 

relevant coordinates and momenta are listed first, followed by their irrelevant counterparts. The 

decoupling of the motion of relevant and irrelevant coordinates/momenta then corresponds to the 

block diagonalization of all relevant phase-space matrices, e.g., A , (0)Σ , etc. Mathematically, 

the appropriate matrix transformations are easily accomplished using a DD 22   shuffling matrix 

shT , in which each column consists of an appropriate unit vector. (An explicit example is given 

in the next section.) The appropriate matrices will naturally be orthogonal in nature, i.e., 

1= 
sh

T
sh TT . Using these matrices, we can transform to the shuffled coordinate system, which will 

be denoted as ``double primed", via sh
T
sh TATA  = , sh

T
sh TΣTΣ  = , etc. 
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The double-primed EOM's have precisely the same content as those in the primed frame, 

but the former suggest fruitful approximations due to their approximately block-diagonal 

structure. For example, A   can be presented as 

 =
R RI

RI I

 
   

 

1,2

2,1

A a
A

a A
. (3.17) 

Here RA  is the 2 2R Rn n  submatrix which connects the relevant coordinates/momenta to each 

other (vide supra). Analogously, IA  is the 2 2I In n  submatrix which connects the irrelevant 

coordinates/momenta to each other. The off-diagonal matrices RI
1,2a , which has dimensions 

2 2R In n , and RI
2,1a , which has dimensions 2 2I Rn n , couple relevant to irrelevant 

coordinates/momenta. The key feature of A   is that in the limit of nearly rigid fragments, all the 

eigenvalues of the submatrix RA  are well-separated from those of the submatrix IA , due to the 

large spring constants that characterize the irrelevant coordinate subset. These large spring 

constant values are entirely absent from the submatrix RA , and also from the off-diagonal blocks 

RI
1,2a  and RI

2,1a . Hence, the eigenvalues and eigenvectors of the full DD 22   propagator matrix 

are well approximated by those associated with the block-diagonal approximant to A   obtained 

by setting the submatrices RI
1,2a  and RI

2,1a  to 0, or, equivalently, 

 
0

,
0

R

I

 
   

 

A
A

A
 (3.18) 

thus decoupling the (slow) relevant coordinate motion from that of the (fast) irrelevant 

coordinates. 

To finalize the derivation of the RTB-Langevin approximation, we need to consider the 

time-evolution of the spread matrix )(tΣ . Given the block-diagonalization of A   noted above, 
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then the propagators )(exp tA   and )(exp tTA   factorize in a similar fashion. The only remaining 

issue is the structure of )(' Σ , which must also factorize appropriately in order to achieve 

decoupling of the time evolution of the spread matrices governing the relevant and irrelevant 

coordinates. Let us begin by expressing the exact infinite-time version of the spread matrix in the 

primed coordinate system, i.e., 

1
1( ) = 


   

   
 

F 0
Σ

0 1
.                   (3.19) 

Now, the high values of the force constants which enter (exclusively) into the irrelevant sub-

block of F  allow us, by virtue of the usual arguments about the eigenvalues and eigenvectors of 

this matrix (vide supra), to approximate it as 

       
R

I

 
   

 

F 0
F

0 F
.                  (3.20) 

Note that this is precisely the factorization which underlies the RTB-normal modes procedure for 

computing normal modes of vibration as solutions to Newton's Equations of motion. Given this 

essential factorization approximation, it follows immediately that 

    
1

1

1

( )

( )

R

I






 
   

 

F 0
F

0 F
.                 (3.21) 

Upon ``shuffling" to the double-primed coordinate system, we thus obtain 

       1 ( )
( ) =

( )

R

I
      

 

Σ 0
Σ

0 Σ
,                                        (3.22) 

with )(RΣ  given in Equation 3.16, and analogously for )(IΣ . Now the entire propagation 

scheme for the spread matrix factorizes into relevant and irrelevant pieces, with relevant 
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submatrices constructed out of matrix elements of F  and Γ  with respect to relevant mode basis 

vectors, as anticipated above. 

 

 

Figure 10. Two-atom collinear spring chain attached to a wall. Details are given in the text. 

3.6 A SIMPLE 2 DIMENSIONAL EXAMPLE 

We can illustrate the basic principles of the RTB-Langevin dynamics procedure by studying the 

two dimensional collinear spring system depicted in Figure 10. Taking the spring constant 12  

connecting masses 1 and 2 to be sufficiently large will effectively freeze the ``bond" connecting 

the two particles (``atoms"), rendering it a quasi-rigid diatomic molecule. The RTB-Langevin 

approximation generates a 1-D prescription for computing the motion of the ``slow" coordinate 

(essentially, the center of mass [c.o.m.] of the diatomic) without having to explicitly calculate the 

rapid small amplitude relative vibrational motion of the diatomic. Adopting a harmonic oscillator 

model of the underlying PES, we have 

1 2
κ12κ1

1 2
κ12κ1



 64 

   ,)(
2

1

2

1
=),( 2

1212
2
1121 xxxxxV                    (3.23) 

where 1x  is the position of coordinate 1 along the chain axis, 0=1x  being the position of atom 1 

when the system is at mechanical equilibrium (i.e., all springs are unstretched), etc. Further, we 

take the masses of both atoms to be unity, with no loss of generality, and consider the case of 

arbitrary diagonal frictional couplings 0>, jj , 1,2=j  on the two atoms (cf. Equation 3.2 

above). Clearly, we can write the PES prescribed in Equation 3.23 in the matrix form 

xxxxV T 
F

2

1
=),( 21 , with TT xxx ),(= 21


 and 

    1 12 12

12 12

=
  

 
  

  
F .                  (3.24) 

Furthermore, the friction constant matrix in the same basis reads: ),(= 2,21,1 diagΓ . 

Next, we identify the relevant internal coordinates, namely the relative and center of mass 

motion of the diatomic. Specifically, let 2)/(= 121 xxx   and 2)/(= 122 xxx  . Clearly, 1x  is 

the center of mass coordinate for motion along the collinear axis, while 2x  is the relative 

coordinate, specifying the degree of expansion/compression of the diatomic's bond length. The 

normalization factors are chosen to make the transformation between unprimed and primed 

coordinate frames orthonormal. Thus, )(=)( txtx T 
T , with 

    
1 11

=
1 12

 
 
 

T .                  (3.25) 

 Then we can compute FTTF T= , namely, 

     1 1

1 1 12

/ 2 / 2
=

/ 2 / 2 2

 
  

 
    

F .      (3.26) 
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Analogously, 

  1,1 1,2 2,2 1,1 2,2 1,1

2,1 2,2 2,2 1,1 2,2 1,1

' ' ( ) / 2 ( ) / 2
= =

' ' ( ) / 2 ( ) / 2

        
            

Γ .               (3.27) 

Now we can synthesize A , 

    =
      

0 1
A

F Γ
.                  (3.28) 

Next, we introduce a shuffling transformation that simply exchanges the order in which 

the 4 relevant phase-space coordinates are labeled, from ),,,( 2121 ppxx   in the primed basis to 

),,,( 2211 pxpx   in the double primed basis, 

            

1 0 0 0

0 0 1 0
=

0 1 0 0

0 0 0 1

sh

 
 
 
 
 
 

T .                  (3.29) 

In the double primed basis, the propagation matrix is given by shsh TATA  = . Explicitly, it takes 

the form of Equation 3.17, with 

  
1 1,1 1 1,2 2,2

0 1 0 1
= ; =

/ 2 [ / 2 2 ]
R I

  
   
           

A A                        (3.30) 

and 

                                          
1 1,2 1 2,1

0 0 0 0
= ; =

/ 2 / 2
RI RI

 
   
        

1,2 2,1a a .                            (3.31) 

Note that the stiff spring constant 12  appears only in the block IA . Thus, as 12  the 

eigenvalues of IA  become large in magnitude (in the present example they approach the values 

122i ), while the eigenvalues of RA  remain of order 1, as do the elements of the matrices 
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RI
1,2a , RI

2,1a . Thus, the matrix A   becomes well represented by the block diagonal approximant 

in which 0RI
1,2a  and 0RI

2,1a . This achieves the desired decoupling between the time-

evolution of the relevant (R) and irrelevant (I) subsets of phase space variables. Since the 

irrelevant phase space coordinates do not affect the motion of the relevant ones, the irrelevant 

variables do not have to be explicitly tracked (or even constructed) if we are only interested in 

the motion of the slow (``relevant") degrees of freedom. 

We turn now to some representative numerical calculations. Let us focus first on the time 

evolution of the frictively damped positions and momenta of the two particles (cf. Equation 3.6). 

For concreteness, consider the initial condition that the center of mass (c.o.m.) coordinate )(1 tx   

is displaced from its equilibrium position, while the relative coordinate is not displaced, and the 

initial velocities of both coordinates are zero. When the system is released from this 

configuration at 0=t  the c.o.m. coordinate will oscillate, and in doing so will induce motion in 

the diatomic relative coordinate. As t , the oscillations of both coordinates will damp out, 

with the particles ultimately coming to rest at their equilibrium positions, i.e. 0=)(=)( 21  xx . 

The central issue is to what extent the motion of the c.o.m. coordinate is independent of that of 

the relative coordinate. 

The answer depends directly on the value of 12  (all other parameters being held 

constant). To illustrate this, we set the value of 1.0=1 . Further, we take the values of the 

atomic friction constants in mass weighted coordinates as 0.15=1,1  and 0.20=2,2 . Then, for a 

diatomic spring constant of 5.0=12 , the exact time-evolution of the center of mass position 

)(1 tx  , center of mass momentum )(1 tp  , relative coordinate position )(2 tx  , and relative 

coordinate momentum )(2 tp   are shown in Figure 11a. These results should then be compared to 
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the corresponding results obtained for the case that 20.0=12 , all other parameters being held 

fixed, which are presented in Figure 11b. The main difference between Figure 11a ( 5.0=12 ) 

and Figure 11b ( 20.0=12 ) is that the relative coordinate motion is significantly reduced in 

Figure 11b. The time evolution of the c.o.m. coordinate and momentum appears to be rather 

similar in the two cases. This is confirmed more quantitatively in Figure 12, where we compare 

the exact c.o.m. trajectory )(1 tx   for 5.0=12  and 20.0=12  with the corresponding TB 

approximant, i.e., 1-dim. effective harmonic oscillator motion of the c.o.m. corresponding to 

force constant /2=' 11,1 F  and friction constant '1,1 . (We term this the TB approximant because 

it is obtained using the RTB-Langevin strategy, but for a quasi-rigid fragment confined to 

collinear motion such as the diatomic considered here, there is only one rigid body collective 

motion, namely, translation of the center of mass.) Note that )('1, tx TB  is, by construction, 

independent of the value of 12 . The full all-atom trajectory )(1 tx   does of course depend on the 

value of 12 . Clearly, it approaches the TB approximant curve uniformly as 12 . 
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Figure 11. Exact all-atom '( ), '( )x t p t
 

 for initial displacement conditions specified in text 

when: a) 12 = 5.0  , b) 12 = 20.0 . 
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Figure 12. Time evolution of c.o.m. coordinate )(1 tx   for initial displacement conditions 

specified in text, comparing TB approximant with exact all-atom Langevin dynamics when 

5.0=12  and when 20.0=12 . 

 

Next, we analyze the time-evolution of the spread matrix )(tΣ  of this system. Again, 

there are many possible choices for the initial values of the elements in this matrix. For 

concreteness and simplicity, let us consider the case that all of them are zero, i.e., 0=(0)Σ , 

which corresponds to the situation where the positions and momenta of both atoms are precisely 

specified. At 0=t , these atoms are coupled to the heat bath inherent in the Langevin dynamics 

model, so that at long time they relax to their Boltzmann equilibrium phase space distribution of 

values. The time course of this relaxation process is of interest. For concreteness, we set the 

temperature 1=TkB . Figure 13a then shows for the case that 5.0=12  the time evolution of 

second moments of the probability distribution involving the center of mass position and/or 

momentum, comparing the all-atom (exact) values to the corresponding TB approximants. In 
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both the exact and TB approximation scenarios, we expect that Tkp B>=)(< 2
1  . Furthermore, 

the long time value of >)(< 2
1 tx   reflects the underlying potential energy surface. In particular, 

since the TB approximation represents a decoupling of c.o.m. from relative coordinate motions, 

the long time value of >)(< 2
1, tx TB  obeys the standard formula for a 1-d unit mass harmonic 

oscillator with the effective spring constant /21 eff , namely effTkx BTB />=)(< 2
1,  . Finally, 

the cross correlation function >)()(< 11 tptx   is expected to evolve from a value of 0  at 0=t  to 

non-zero values for 0>t , and then return to 0  as t . The agreement between the full 

dynamics and their TB approximants is reasonable. The most pronounced discrepancy between 

the TB approximate dynamics and the exact dynamics appears in the mean squared position 

expectation value, >)(< 2
1 tx  . The TB approximation goes to a slightly different long-time 

asymptotic value, as, indeed, it should. From the discussion above, the exact value of >)(< 2
1 x  

is 

  /4/2)2/2()/2/2(=>=)(< 2
11121121

1
1,1

2
1   
 TkTkx BB F . 

Clearly, this approaches the value of the corresponding TB approximant noted above as 

12 , keeping all other parameters fixed. In Figure 13b, we show the analogous results for a 

system with 20.0=12 : here the correspondence between all-atom and TB approximant 

dynamics is very good. 

While the 2-dim. collinear example considered above nicely illustrates the theoretical 

underpinnings of the RTB-Langevin scheme, it is perhaps not totally convincing, in that the 

motion of a real protein is non-collinear, and we do not have ``tunable" control  
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over the fragments of the protein which we designate as quasi-rigid. Consequently, it 

behooves us to study a more realistic example in detail, as is done in the next section. 
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Figure 13. >)(< 2
1 tx , >)(< 2

1 tp  and >)()(< 11 tptx   for: a) 5.0=12  , b) 20.0=12 . The results 

of exact all-atom Langevin dynamics are compared with the corresponding TB approximants as 

noted in the figure legend. Long-time asymptotic values of >< 2
1x  associated with exact all-

atom Langevin dynamics and TB-Langevin dynamics are also indicated. 
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3.7 APPLICATION OF THE RTB-LANGEVIN DYNAMICS METHOD TO 

RELAXATION DYNAMICS OF GRAMICIDIN-A IN RESPONSE TO A SUDDEN 

IMPULSE 

Gramicidin-A (GA) is a small antibiotic peptide, 15 amino acids in length, that dimerizes in lipid 

bilayer membranes so as to form a membrane-spanning pore. Ions, primarily cations, are then 

able to permeate through the protein pore, and hence to pass through the membrane. For present 

purposes, GA serves as a model system for illustrating the dynamical response of a protein to an 

external perturbation. Our goal is to identify an appropriate collection of internal rigid fragments 

within the GA dimer molecule, and then to compute RTB-Langevin dynamics arising in response 

to an initial disturbance of the molecule. Because the GA dimer is modest in size, we can also 

perform all-atom Langevin dynamics for the same system and thus assess the accuracy of RTB-

Langevin dynamics. The specific disturbance we will consider here is a sudden velocity kick at 

0=t  applied near one end of the GA dimer. This choice is motivated in part by the observation 

that in some ion channels, most notably ligand gated ion channel (LGIC) proteins[13, 26, 30], 

binding of an appropriate ligand to the extra-cellular domain (ECD) of the protein induces a 

conformational change in the ECD which is subsequently propagated into the transmembrane 

domain, ultimately causing the latter to gate open or shut. The simple model system and 

dynamical scenario investigated here thus bear some resemblance to signal transduction in 

LGICs. 

We embedded the GA dimer in a membrane mimetic consisting of a random array of 245 

pinning balls, as illustrated in Figure 5. These interact with the gramicidin peptide via Lennard-

Jones pair potentials to hold the peptide in place. For the initial GA dimer structure we used 

Arseniev's NMR-derived coordinates [96]. This structure was subjected to energy minimization 
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based on the Amber 94 force field [97] in order to determine the equilibrium configuration of the 

membrane-embedded GA dimer. (Lennard-Jones parameters   =0.15 kcal/mol and   =1.78 Å  

for the well depth and van der Waals diameter, respectively, were used to generate the pairwise 

interactions between each pinning ball and GA atom.) No explicit water molecules were included 

in the calculation and the pinning balls which form the mimetic membrane bilayer were not 

allowed to move. 

For the RTB decomposition of the molecule, each of the eight indole groups was treated 

as a rigid fragment (the parts highlighted in red in Figure 5), and all other atoms in the system as 

independent atoms. For each rigid body fragment, RTB basis vectors corresponding to the 3 

c.o.m. translational degrees of freedom and the rotations about each of the 3 principal moments 

of inertia were constructed, and each independent atom was represented via its 3 Cartesian 

displacement coordinates. We chose indole groups as the rigid fragments within the molecule 

because by virtue of their chemical composition they are indeed relatively rigid, as was borne out 

in our previous study of RTB-Newtonian dynamics in the same system [104]. 

3.7.1 Properties of the Friction Matrix 

The friction matrix used here was modeled as a diagonal matrix of friction coefficients with 

numerical values determined by applying Stokes's formula to the individual atoms. In mass 

weighted Cartesian displacement coordinates iiii ma /6=,   , where   is the solvent viscosity, 

ia  is the hydrodynamic radius of the atom and im  is its mass; furthermore, 0=, ji  for ji  . 

Hydrodynamic interactions [99] between the atoms of the GA dimer were neglected. 
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The hydrodynamic radii of the atoms in the GA dimer were determined by the relative 

degree of surface exposure of each atom [106] to the solvent in the presence of the membrane 

mimetic. The array of pinning balls of the membrane were included in this calculation to account 

for the shielding of gramicidin-A by the membrane. The GETAREA [111] molecular surface 

program was used with a probe radius of 1.4 Å  to determine the surface area exposed to solvent 

for each atom in the GA dimer model shown in Fig 5. Van der Waals parameters for the atoms 

were obtained from the AMBER 94 force field. Following Pastor and Karplus [107] , for a fully 

exposed atom a hydrodynamic radius of 0.77 Å  was employed, except for hydrogen atoms. For 

a fully exposed hydrogen atom the value of the hydrodynamic radius was taken as 0.2 Å . After 

the degree of surface exposure was ascertained, the hydrodynamic radius of each atom was 

scaled to these fully exposed atomic radii using the square root of the fraction of the solvent 

accessible surface area, which was obtained via the GETAREA program. 

3.7.2 Time evolution of the position and momentum expectation values 

After determining the force constant and friction constant matrices, the eigenvalues and 

eigenvectors of the propagator matrix A (Equation 3.7) are computed using the HQR2, 

BALANC and QRTHES routines in EISPACK [109]. These have the following general 

properties. All the eigenvalues have negative or zero real parts. All complex-valued eigenvectors 

occur in conjugate pairs (with their corresponding eigenvalues also being complex conjugates). 

As noted in section 3.3, the eigenvalues and eigenvectors of the A matrix can be used to 

propagate the relaxation kinetics of a GA system subjected to an externally imposed initial 

perturbation. Denoting the diagonal matrix of eigenvalues of A as Λ  and the corresponding 

matrix of eigenvectors as U (with one eigenvector in each column of U), we can write 
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0
1= XeX t

t


UU Λ . The initial phase space expectation values of the molecular 

coordinates/momenta, 0X


, can be chosen in any manner desired. In the numerical examples 

presented below, the initial conformation of the GA dimer is chosen to represent the effect of a 

sudden external impulse on the molecule. At 0=t , starting with all the atoms in the GA dimer at 

rest in their equilibrium positions, the atoms in the third residue from the top of the molecule are 

given a non-zero velocity along the channel axis (all atoms in the amino acid are assigned the 

same velocity value). This velocity kick is the mechanical impulse applied to the molecule: we 

expect that this impulse will be transmitted along the channel axis via inter-atomic interactions 

until the system relaxes back to its equilibrium state (the GA dimer is held in place via the 

presence of pinning ball membrane mimetic). 

To summarize the chosen initial conditions for 0X


: In the illustrations of the propagation 

scheme presented here (cf. Figures. 14-16), an initial velocity kick 0.1 Å /ps in magnitude is 

imparted to all atoms in the third amino acid from the top of the molecule, which does not 

contain any of rigid indole groups, the direction of the kick being vertically downward (from top 

to bottom in Figure 5). We subsequently compute the time evolution of the phase space 

distribution function that describes the relaxation of the perturbed molecule back to thermal 

equilibrium, via both all-atom Langevin dynamics and approximate RTB-Langevin dynamics. 

For illustrative purposes, we present here a variety of details concerning the displacement of the 

C-  atoms along the channel axis. 

We consider three different values of solvent viscosity, namely i) 0= , the zero friction 

limit, ii) cp1= , a value which is representative of the magnitude of the friction typically 

experienced by a protein molecule in the presence of water solvent [112] , and iii) cp10= , 

which represents a hypothetical highly viscous medium. For each case, the RTB-Langevin 
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dynamics propagation is compared with all-atom Langevin dynamics. In Figures. 14-16, we 

focus on the time evolution of the z-coordinate displacement of the αC  atoms in the peptide 

(presented in laboratory displacement coordinates, i.e., the iq 's of Equation 3.1). 

Figure 14 displays the results for the z-coordinate displacement (note: the direction the z-

axis is upward [from bottom to top] in Figure 5) of the αC  atoms in the peptide when there is no 

solvent, i.e., 0= . Even for relatively long times, reasonable agreement between the exact all-

atom and RTB-Langevin dynamics is sustained. As a consistency check, we have compared the 

results for both all-atom and RTB-Langevin dynamics with the corresponding results obtained by 

standard vibrational normal modes analysis [1, 2, 88]. Since 0= , the Langevin dynamics 

should reduce to Newtonian dynamics, and we found (results not shown) that it indeed does so. 

Figure 15 displays results for a solvent characterized by viscosity cp1= . The initial 

time dynamics is very similar to that obtained when there is no solvent damping (Figure 14). For 

longer times, the effect of damping by solvent becomes clearly visible. The initial velocity kick 

is still transmitted through the molecule, but the interaction of the protein molecule with solvent 

causes the propagating deformation of the protein to damp to zero after a finite period of time. 

For the parameter choices and initial conditions invoked here, RTB-Langevin dynamics is seen 

to be in nearly perfect agreement with all-atom Langevin dynamics for all times. 

In Figure 16, we present results for the high viscosity solvent characterized by cp10= . 

As is clear from the figure, solvent damping is discernably stronger in this case. The energy in 

the initial velocity kick nearly dies out before it reaches the other end of the molecule due to the 

high solvent viscosity. From Figure 15 and Figure 16, it is apparent that taking the indole groups 

in the GA dimer to be rigid bodies leads to a smaller error in the RTB-Langevin dynamics 
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trajectory with respect to exact all-atom results when frictional damping is applied than in the 

zero friction case (Figure 14). 
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Figure 14 Time evolution of z (channel axis) displacements of αC  atoms from the 

equilibrium structure of gramicidin-A dimer for 0=  cp. Two propagation schemes are 

compared: RTB-Langevin dynamics (filled squares) and all-atom Langevin dynamics (filled 

diamonds). At t=0, the third amino acid from top of the molecule is kicked with a velocity of -0.1 

Å / ps. Residue number presented here is along the channel axis, numbering from top to bottom 

(cf. Figure 5). 
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Figure 15. Time evolution of z (channel axis) displacements of αC  atoms from the equilibrium 

structure of gramicidin-A dimer for 1=  cp. Two propagation schemes are compared: RTB-

Langevin dynamics (filled squares) and all-atom Langevin dynamics (filled diamonds). At t=0, 

the third amino acid from top of the molecule is kicked with a velocity of -0.1 Å /ps. Residue 

number presented here is along the channel axis, numbering from top to bottom (cf. Figure 5). 
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Figure 16. Time evolution of z (channel axis) displacements of αC  atoms from the equilibrium 

structure of gramicidin-A dimer for 10=  cp. Two propagation schemes are compared: RTB-

Langevin dynamics (filled squares) and all-atom Langevin dynamics (filled diamonds). At t=0, 

the third amino acid from top of the molecule is kicked with a velocity of -0.1 Å /ps. Residue 

number presented here is along the channel axis, numbering from top to bottom (cf. Figure 5). 
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3.7.3 Time evolution of the spread matrix 

Next we analyze the time evolution of the spread matrix, as prescribed by Equation 3.11. A wide 

range of possible initial values of the spread matrix can be contemplated, depending on the 

physical scenario of interest. As was done in our study of the 2-dim. collinear oscillator system 

in Section. 3.6, in the calculations presented here we chose for concreteness and simplicity 

0=(0)Σ , which corresponds to the case where all position and momentum values are precisely 

specified (have zero dispersion about their mean values) at t=0. Because of the coupling to a heat 

bath in the Langevin model, they will relax to the appropriate Boltzmann distribution at long 

times. 

We compare the time evolution of the spread matrix as calculated via all-atom Langevin 

dynamics to that obtained within the RTB-Langevin approximation for solvents with two 

different viscosities, namely, again, =  1 cp and 10 cp. In the all-atom case, the matrix A  is 

built using the full atomic force constant matrix F  and friction matrix Γ  (expressed in the basis 

of mass-weighted Cartesian displacements) which are both NN 33   in size. Consequently, for 

all-atom dynamics )(Σ  is the NN 66   matrix given by Equation 3.10. To compare these 

results to RTB reduced space results in which we neglect the RnN 3  irrelevant degrees of 

freedom, a transformation from all-atom to RTB reduced space is carried out by projecting the 

all-atom )(tΣ  onto the subspace spanned by the Rn  relevant coordinate RTB unit vectors; the 

resultant RR nn 22   dimensional matrix will be denoted as Rt)]([Σ . The long time steady state 

value of Rt)]([Σ  is given, independent of its initial value, by the RR nn 22   matrix 

   












10

0)(
=)]([

1
1

R
R F

Σ  ,                          (3.32) 
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where each of the indicated sub-blocks is an RR nn   matrix. 

For the RTB-Langevin case, the matrix RA  is built using the RTB reduced force constant 

and friction matrices, which are both RR nn   in size (cf. Section 3.4.2 for details of RTB 

projection). Time evolution of the spread matrix )(tRΣ  leads to the long time steady state 

prescribed by Equation 3.16. 

In Figure 17a, one representative diagonal element of the upper left sub-block of Rt)]([Σ  

(designated in the figure legend as ``exact") and )(tRΣ  (designated in the figure legend as 

``RTB") is shown for the viscosity values cp1=  and cp10 . Here we illustrate the time 

evolution of the variance in the motion of the z coordinate of the αC  carbon in residue 16 (cf. 

Figure 5 for the residue index labeling convention). Note that for the initial condition 0=(0)Σ , 

the entire time-evolved matrix )(tΣ  scales proportional to TkB  (cf. Equations 3.10,3.11). Thus, 

we plot in Figure 17a Tktztz BJJ />)()(<  , where )()( tzztz JJJ  , with Jz  being the mass-

weighted z coordinate of the αC  carbon in residue 16, which we label here as J  (the average 

being taken over the phase space distribution at time t ). Note that the long-time asymptotic 

values of the all-atom Langevin and RTB-Langevin results are discernably different. (We 

checked that the asymptotic values of the spread matrix elements shown in 17a are consistent 

with the formulae for R)]([ Σ  and )(RΣ  given above. Similar consistency checks were 

performed for the long-time steady state dynamics displayed in Figure 17b and Figure 17d 

below.) This is expected since the indole groups in the GA dimer system are not absolutely rigid: 

for the ideal case in which the frozen groups are completely rigid the steady state values would 

be identical, as illustrated for the two-atom collinear spring system analyzed above (cf. Figure 

13). 
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In Figure 17b, we plot the time evolution of the quadratic correlation of the mass-

weighted displacement of the z components of the residue 16 αC  carbon and the residue 15 αC  

carbon atom, once again normalized by TkB , viz. Tktztz BKJ />)()(<  , where K represents the 

mass-weighted z coordinate of the αC  atom in residue 15. This element of the matrix illustrates 

the general trend which is seen in the off-diagonal elements within the upper left sub-blocks of 

Rt)]([Σ  and )(tRΣ . 

In Figure 17c, we show the early-time evolution of the variance in the mass-weighted 

momentum of residue 16 αC  in the z direction, normalized again by TkB , i.e., 

Tktptp BJJ />)()(<  . It is clear from this figure that the momentum distribution reaches 

Maxwell-Boltzmann equilibrium more quickly as the viscosity of the solvent is increased. Figure 

17d presents the same spread matrix element out to much longer times. This element of the 

matrix illustrates the general trend which is seen in the diagonal elements from the lower right 

sub-block of the spread matrix of Rt)]([Σ  and )(tRΣ . 

We have also computed the time evolution of lower left and upper right sub-blocks of the 

spread matrix, which detail the time evolution of bilinear correlation between momentum and 

position values. The long-time steady-state values for those parts of the spread matrices (not 

shown) go to zero, as expected. 
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Figure 17. Time evolution of selected elements of the phase space distribution spread matrix 

)(tΣ  for the gramicidin-A dimer. Panel: a) The mean squared displacement of the z 

displacement of the αC  atom of residue 16. b) The cross-correlation of the z displacements of the 

αC  atoms of residues 16 and 15. c) The mean squared displacement of the z component of the 

momentum of the αC  atom of residue 16. d) The same element as c) but out to 1500 ps. 
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3.7.4 Accuracy and Efficiency Issues 

The primary purpose of the numerical illustrations presented in this section is to establish the 

accuracy of the RTB-Langevin approximation for computing Langevin dynamics in the 

harmonic regime of a protein characterized by a set of nearly rigid internal fragments. We chose 

the GA dimer as a test system because it is small enough that exact all-atom Langevin dynamics 

can be computed to benchmark results obtained by the approximate RTB-Langevin method. In 

the same spirit, we identified the 8 indole groups as rigid fragments, because these are 

guaranteed to be nearly rigid by virtue of their chemical bonding. Using this system as a test 

case, we were indeed able to demonstrate reasonable accuracy of the RTB-Langevin dynamics 

approximation, as demonstrated in Figures 14-17. 

The efficiency gain in freezing the 8 indole groups in this system is modest. The number 

of dynamical degrees of freedom goes from 1656 (corresponding to 552 atoms in the peptide) to 

1344 relevant coordinates utilized in the RTB-Langevin calculation, resulting in a time savings 

of roughly a factor of two. However, dramatically improved scaling (reduction of storage space 

and cpu time) is inevitable when the procedure is applied to large proteins with many frozen 

internal fragments ranging from 1 amino acid in size up to entire helices, domains, etc. In closely 

related RTB normal modes calculations, there are several examples in the recent literature where 

breaking a large protein into fragments consisting of 1-5 contiguous amino acids enabled a 

normal modes analysis (NMA) to be performed successfully, whereas the analogous computation 

incorporating all 3 Cartesian coordinates of every atom in the NMA would not have been 

feasible [30, 91]. From a computational standpoint, RTB-Langevin analysis is essentially 

identical to RTB NMA, except that the relevant vector space is twice as large for the Langevin 

case (since one works in phase space rather than configuration space, as done in NMA): thus the 
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basic scaling properties with system size and number/size of internally rigid blocks must be 

similar. 

In the GA dimer example, we could not control the stiffness of the indole moieties, but 

we asserted that these were stiff, and indeed found from direct comparison with all-atom exact 

results errors of ca. 10 % in the long-time values of quadratic positional correlation functions. In 

the case of a large protein, where exact all-atom calculations are intractable, there is no simple 

prescription for computing the ``percentage accuracy" of the RTB-Langevin approximation. The 

only simple systematic check is to reduce the size of the originally assumed rigid blocks, and see 

if the predicted large time and length scale dynamics changes significantly [2]. If not, the blocks 

are ``small enough". 

3.8 DISCUSSION AND CONCLUSIONS 

In this paper we have developed an approximate solution of the Langevin Equation for a system 

comprised of many coupled harmonic oscillators which is designed to accelerate computations of 

the Langevin dynamics of large molecules characterized by one or more quasi-rigid fragments. 

The essence of our method is to ``freeze" the rigid internal fragments in a conceptually appealing 

and computationally straightforward manner, namely, using the RTB decomposition procedure 

previously introduced by Sanejouand and coworkers [1, 2] in the context of standard vibrational 

normal modes of protein molecules. This can significantly reduce the number of dynamical 

degrees of freedom in the problem, allowing one to focus on the low frequency collective modes 

that drive large scale conformational changes in the protein. We were able to derive the RTB-

Langevin prescription in a controlled fashion, i.e., as a mode decoupling approximation to the 
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full all-atom Langevin dynamics in the limit that the internal vibrational frequencies 

corresponding to relative motion of atoms within each internal fragment become very high (as 

the springs holding these fragments become very stiff). In the present work we focused 

exclusively on systems governed by quadratic (harmonic oscillator) potential energy surfaces 

(PESs). While this model has proven to be quite useful for studying many types of protein 

motions, it has obvious limitations, namely, it cannot account for any effects due to inherent 

anharmonicities in the molecular force field. However, even for an anharmonic system, the PES 

becomes locally harmonic about any reference point in configuration space, and thus, if we take 

small enough time steps, the analysis presented in this paper holds for each small time step (with 

the potential energy surface expanded locally about the instantaneous configuration). This 

observation can potentially be exploited to develop a stochastic propagation algorithm, directly 

in the spirit of standard (all-atom) Langevin dynamics algorithms [99], that identifies at each 

time step the RTB displacements corresponding to overall translation and rotation of each 

internal rigid-fragment, and propagates only the relative motion between fragments, 

automatically ``freezing" the internal motion of the fragments. 
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4.0  DYNAMIC LINEAR RESPONSE THEORY FOR CONFORMATIONAL 

RELAXATION OF PROTEINS 

4.1 ABSTRACT 

Dynamic Linear Response Theory is adapted to the problem of computing the time evolution of 

the atomic coordinates of a protein in response to the unbinding of a ligand molecule from a 

binding pocket within the protein.  When the ligand dissociates from the molecule, the protein 

molecule finds itself out of equilibrium, and its configuration begins to change, ultimately 

coming to a new stable configuration corresponding to equilibrium in a force field which lacks 

the ligand-protein interaction terms.  Dynamic Linear Response Theory relates the non-

equilibrium motion of the protein atoms which ensues after the ligand molecule dissociates to 

equilibrium dynamics in the force field, or equivalently, on the potential energy surface (PES) 

relevant to the unliganded protein.  In general the connection implied by Linear Response 

Theory hold only when the ligand-protein force field is small.   However, in the case where the 

PES of the unliganded protein system is a quadratic (harmonic oscillator) function of the 

coordinates, and the force of the ligand upon the protein molecule in the ligand-bound 

conformation is constant (independent of the positions of the protein atoms), dynamic LRT is 

exact for any ligand-protein force field strength.  An analogous statement can be made for the 

case where the atoms in the protein are subjected to frictional and random noise forces in accord 
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with the Langevin Equation (to account for interaction of the protein with solvent, for example).  

We numerically illustrate the application of dynamic LRT for a simple harmonic oscillator 

model of the ferric binding protein, and for an analogous model of T4 lysozyme. Using a 

physically appropriate value of the viscosity of water to guide the choice of friction parameters, 

we find relaxation time scales of residue-residue distances on the order of several hundred ps.  

Comparison is made to relevant experimental measurements. 

4.2 INTRODUCTION 

Protein conformational transformations induced by an externally applied perturbation are of 

great biological importance.  Consider, for example, the response of a protein to ligand binding. 

Introduction of a ligand molecule into a binding pocket generates new forces on the protein, 

causing it to distort in a fashion that has direct functional implications.  Specific types of ligand 

binding include: i) binding of  agonist molecules to a pocket  in the extra-cellular domain of a 

ligand-gated ion channel (ultimately this causes the transmembrane pore to gate open)[13]; ii) 

binding of an oxygen molecule to a binding pocket in myoglobin for storage purposes[113];  iii) 

binding of a drug molecule to a specific site or pocket in a protein, thus inducing conformational 

changes in the protein which are significant enough to alter its function [114-117]. Numerous 

approaches to calculating these effects (as well as those associated with the reverse process, i.e., 

ligand dissociation from a binding pocket) have been proposed [56, 118-122].  One promising 

approach for predicting the final configuration given the initial configuration and the applied 

perturbation force is static Linear Response Theory [59]: all relevant quantities can be calculated 

from static equilibrium correlation functions based on the Boltzmann distribution associated with 
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the final state potential energy surface (PES).  Such averages can be computed via Metropolis 

Monte Carlo or molecular dynamics (MD) for general PESs, including effects of protein force 

field anharmonicities and water solvent. 

Also of considerable interest are the temporal signatures of the relaxation process, the 

most obvious being the essential time scale needed for the transformation to take place.  Indeed, 

with modern spectroscopic methods (e.g., FRET [61] or ESR [62]) finer details of the relaxation 

process can be gleaned. In particular, by tagging two residues of the protein with appropriate 

chromophores, the time-evolution of the distance between these residues can be directly 

monitored over the course of the relaxation from initial to final conformations.  In the present 

paper we develop the dynamical analog of static LRT, namely dynamical LRT, which enables 

such temporal and intrinsically non-equilibrium details to be computed from equilibrium time 

correlation functions on the final state PES.  We then illustrate the basic principles of dynamic 

linear response theory by applying it in a simplistic  manner to ligand binding/unbinding 

processes associated with two proteins, namely the ferric binding protein (FBP), which binds 

Fe3+ ions, and the enzyme T4 lysozyme (T4L), which binds polysaccharide molecules prior to 

cleaving them.  For  FBP, X-ray crystal structures have been obtained for both the unliganded 

(“apo”, hence “open”) and liganded states .  In the case of T4L, we utilize the X-ray structure of 

a mutant version of this protein as the open state and the wild type [WT] X-ray structure as our 

template for the liganded state.  For concreteness, we focus on the scenario in which the ligand is 

initially bound in the binding pocket, and the protein is in thermal equilibrium.  At time t=0, the 

ligand dissociates from the binding pocket, and the protein, now out of equilibrium because the 

“perturbation” force supplied by the ligand has been removed, begins to relax towards its 

equilibrium structure in the absence of ligand.  Thus, we consider the unliganded (“apo”) form of 
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the protein as the final state.  Using standard Hessian matrix techniques, we construct a quadratic 

approximation to the final state PES which encodes mechanical equilibrium at the appropriate 

protein conformation.  Then we deduce the constant force perturbation which would shift the 

equilibrium configuration to that of the initial (liganded) state, thus mimicking the effect of the 

bound glutamate molecule on the protein to which it binds.  This establishes initial and final state 

PESs, and hence the perturbation potential connecting them.  We then couple the protein motion 

to the solvent in an approximate way, i.e., using a Langevin model (adding friction and random 

force to all the atoms in the system, with the atomic friction values chosen based on the solvent-

accessible surface area of each atom).  We show that the dynamical LRT prescription holds for 

such a dissipative system.  Numerical solutions of the harmonic oscillator-Langevin Equation are 

presented for each of the two proteins noted above, in particular for the time-evolution of pairs of 

C-alpha atoms that lie along the protein’s exterior (and hence could in principle be tagged in a 

FRET or ESR experiment).  Insights are thereby gained into the time scales of the relaxation 

process, and the degree of validity of harmonic oscillator PESs for describing them. 

In Section 4.3 of this paper we present the general theory of dynamic Linear Response 

Theory (LRT) for protein conformational changes induced by an appropriate perturbation 

potential, and show that it contains static LRT as a specific limit.  In Section 4.4 we develop the 

details of dynamic LRT for two D-dimensional Harmonic Oscillator Hamiltonians related by a 

linear potential shift, corresponding to a constant perturbation force.  For such a system dynamic 

LRT is exact for any perturbation force, however large.  Explicit formulae for calculating the 

relevant relaxation dynamics are provided. Then, in Section 4.5, we illustrate the principles of 

dynamic LRT for the same multidimensional harmonic oscillator system, but under the 

additional influence of friction and a compensating fluctuating random force, i.e., the Langevin 
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Dynamics analog of the isolated Hamiltonian dynamical system considered in Section  4.4.  We 

show that dynamic LRT is also exact for this system for any perturbation potential strength, and 

provide explicit formulae for computing the time evolution of the coordinate relaxation from 

equilibrium on the initial to the final state potential energy surfaces when the protein system is 

coupled to a heat bath in accord with the Langevin Equation  In Section 4.6, we apply the 

principles developed in Sections 4.4 and 4.5 to study a simplistic model of the conformational 

change induced when 3Fe  bound to the appropriate pocket in the FBP protein escapes.  In 

Section 4.7, we provide an analogous analysis T4L, treating the polysaccharide substrate 

molecule as the ligand.   Finally, Discussion and Conclusions are presented in Section  4.8. 

4.3 DYNAMIC LINEAR RESPONSE THEORY OF PROTEIN RELAXATION 

DYNAMICS: GENERAL THEORY 

Consider a high dimensional system governed by the reference Hamiltonian F FH V  , where 

  is the system’s kinetic energy and FV  is the relevant multi-dimensional potential energy 

surface.  Now imagine that a perturbation potential V is applied to the system, which is then 

allowed to equilibrate in the perturbed potential, i.e., under I FH H V  .   At time t=0 the 

perturbation is turned off.  The classical phase space density describing the system will 

eventually relax back to equilibrium on FV . [Note: The subscript “F” indicates final state, i.e., the 

one to which the system ultimately relaxes after the perturbation V is removed. Analogously, 

the subscript “I” indicates initial state, i.e., the one in which the system equilibrates when the 

perturbation potential is present, up until t=0.]   Consequently, the average of the phase space 
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function ( ( ), ( )) ( )A x t p t A t
 

, where ( ( ), ( ))x t p t
 

denotes time evolution of the initial phase point 

( , )x p
 

 under Hamiltonian FH , should relax to FA , the (static) equilibrium average on FV : 

                      ( , ) ( , )( , ) /F FH x p H x p
F FA A dxdpe A x p dxdpe      

        
,                    (4.1) 

with 1( )Bk T  .  Let us denote by ( )A t  the non-equilibrium average of A of the initial phase 

space swarm of trajectories distributed according to exp( )IH , and evolving under FH  . Then, 

according to LRT,  ( ) ( ) FA t A t A    evolves to lowest order in the perturbation strength as [43] 

                                ( ) ( ( ) )( )FF FA t A t A V V         .                              (4.2) 

Note that for long times we expect ( ) 0A t  .   

To take a concrete example, let j j
j

V f x   , where the sum runs over all system 

coordinates jx  and the jf ’s are constants. Further, choose the coordinate origin such that 

0k Fx   , i.e. the equilibrium position of kx  on FV  is 0.  Then Equation 4.2 takes the form, 

                                   ( ) ( ( ) )F j F j
j

A t A t A x f     .                                   (4.3) 

Specializing further to kA x  implies: 

                                    ( ) ( )k I k j F j
j

x t x t x f     .                                      (4.4) 

Note that we require as input on the r.h.s. of Equation 4.4 a set of quadratic equilibrium time 

correlation functions. These are calculated entirely based on FH : the classical dynamics is 

generated by this Hamiltonian, and the relevant phase-space average is taken over the relative 



 95 

thermal equilibrium distribution exp( )FH .  Note also that at t=0  a previously derived [59] 

static version of the LRT formula is recovered.  That is,  

                                (0)k I k j F j
j

x x x f     ,                                              (4.5) 

where (0)k Ix   prescribes the change in the equilibrium displacement of coordinate kx  on IV  

relative the corresponding value on FV , and the r.h.s. of the static LRT formula (Equation 4.5) 

shows how this change can be obtained from static equilibrium correlation functions associated 

with FV  only. 

4.4  DYNAMIC LINEAR RESPONSE THEORY IS EXACT FOR A 

HARMONIC OSCILLATOR POTENTIAL ENERGY SURFACE WITH A LINEAR 

PERTURBATION POTENTIAL. 

4.4.1 Formal Theory 

While Equation 4.4 holds to first order in V  for any reference potential FV , for reasons that 

will become clear below it is of particular interest to consider the multi-dimensional harmonic 

oscillator reference Hamiltonian, 

                         2 1
/ 2

2F j j
j

H p m x x     
K .                                      (4.6) 

Here the index j runs over all D degrees of freedom. (Typically, we will be concerned with the 

motion of an N-atom molecule in three dimensions, in which case D=3N.  For the sake of 

generality we will not make this specialization until specific applications are considered in 
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Section 4.6.)   If the same system is subjected to a constant additional (perturbation) force, the 

Hamiltonian is then modified to 

2 1
/ 2

2I j j
j

H p m x x x f     
  

K .                                        (4.7) 

The subscript I designates this as the Hamiltonian, generated by adding the perturbation force 

(last term on the r.h.s. of Equation 4.7), that determines the initial thermal phase space 

distribution, exp( ) /I IH Z , with the normalization integral (partition function) IZ  given by 

exp( )I IZ dxdp H 
 

. Since f


 is a D-dimensional vector of constants, by completing the 

square Equation 4.7 can be written equivalently as 

           2 1 1
/ 2 ( ) ( )

2 2I j j eq eq eq eq
j

H p m x x x x x x              
K K ,                       (4.8) 

where 1
eqx f


K  gives the equilibrium positions of all degrees of freedom on potential energy 

surface IV  (i.e., IH  minus the kinetic energy term) relative to the analogous quantities on 

surface FV .  The quantity eqx


can be approximated via static LRT.  Recalling that the elements of 

the positional two-point static correlation function are given for the Hamiltonian FH  in Equation 

4.6 by 1 1[ ]j k F jkx x      K , then according to LRT (cf. Equation 4.5): 

                                     1 1 1( ) eq eqf x x       
  

K K K .                                        (4.9) 

Thus, static LRT correctly predicts the equilibrium shifts induced by the perturbation in the 

model under consideration.  In fact, it predicts the correct answer no matter how large f


 is.   

Proceeding now to the time-dependent case, the 2D-dim. Gaussian phase space density 

corresponding to thermal equilibrium on IH  is the same as that for FH  except that the 
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Boltzmann distribution for IH  is centered in position space at the displacements eqx


 noted 

above, whereas the Boltzmann distribution corresponding to FH  is centered at 0x 


.  

Designating the normalized thermal density distribution corresponding to IH  as 

( , ) exp( ) /I I Ix p H Z  
 

, then the nonequilibrium average of  one of the Cartesian 

components, say ( )jx t , is given by 

                           0 0 0 0 0 0( ) ( , ) ( , , )j I I jx t dx dp x p x x p t   
     

,                               (4.10) 

where 0, 0( , )jx x p t
 

is the time propagation of ( )jx t according to Hamilton’s Equations based on 

Hamiltonian FH , starting from the initial phase point 0 0( , )x p
 

. 

The quantity 0, 0( , )jx x p t
 

 is formally determined as follows.  The relevant Hamiltonian 

equations of motion (fully equivalent to Newton’s 2nd Law here, but expressed as a set of 

coupled 1st order ODE’s) are linear. Specifically,  

                                    
10

0

x xx

p pp

       
              

  
  

m
A

K
.                             (4.11) 

The formal solution of these EOMs is given by 0

0

( )
( )

( )

xx t
t

pp t

  
   

   


 U , with the 2Dx2D propagator 

matrix  ( ) exp( )t tU A .  The essential points are i) ( )tU  is independent of initial conditions, and 

ii) it can be used to construct the time evolution of any initial conditions as a linear combination 

of those initial conditions. Namely, 

                           0 0 , ,0 , ,0
1

( , , ) [ ( ) ( ) ]
D

j j k k j k D k
k

x x p t U t x U t p


  
.                           (4.12) 



 98 

Substituting into Equation 4.10 above, and using the properties that 0 0 0 0 ,0 .( , )I k k eqdx dp x p x x 
   

 

while 0 0 0 0 ,0( , ) 0I kdx dp x p p 
   

, we obtain the following time evolution for the average position 

of coordinate k: 

                                       , ,
1

( ) ( )
D

j I j k k eq
k

x t U t x


     ,                                           (4.13) 

where I   indicates that the average is performed over the Boltzmann distribution 

corresponding to IH  (although, again, the indicated time evolution of jx  is carried out on the 

PES / 2FV x x  
 
K ). An explicit prescription for ( )jkU t in terms of vibrational normal mode 

eigenvalues and eigenvectors is given below. 

Now, let us examine the related equilibrium fluctuations associated with FH , as detailed 

on the r.h.s. of Equation 4.4 above, with eqf x
 
K .  The key quantity that needs to be calculated 

here is ( )k j Fx t x  , where Hamiltonian dynamics is evolved on FH  and the relevant phase 

space density for performing the average is the classical Boltzmann distribution corresponding to 

FH , i.e., 0 0( , ) exp( ) /F F Fx p H Z  
 

, with exp( )F FZ dxdp H 
 

.    We then have 

                    0 0 0 0 0, 0 0,( ) ( , ) ( , )k j F F k jx t x dx dp x p x x p t x   
     

,                                    (4.14) 

where ,0jx  is the jth component of 0x


. Using the expression for 0 0( , , )jx x p t
 

 in Equation 4.12 

above, and the properties that 0j k Fx p    and 11
[ ]j k F jkx x


   K , we find that 

                       1
,

1

1
( ) ( )[ ]

D

j m F j k km
k

x t x U t






    K .                                              (4.15) 

Combining appropriate equations above, we find  
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           1
, , ,

1 1 1

( ) ( ) ( )
D D D

n j F j n k eq n k k eq
j k kk

x t x f U t U t x 

  

       K Kx                 (4.16) 

Comparing Equations 4.13 and 4.16, we see that the dynamic LRT relation given in Equation 4.4 

is indeed exactly satisfied for arbitrary f


.  As will be shown in Section  4.5 below, the same 

demonstration of the connection of non-equilibrium relaxation dynamics based on I  and 

equilibrium fluctuations based on F  can be carried out in the case that time evolution proceeds 

via the analogous Langevin Equation. 

4.4.2 Explicit Prescription for Computing Relaxation to Equilibrium on a Harmonic 

Oscillator PES 

We wish to compute the quantity ( ) Ix t 


,  where the classical (Hamiltonian) dynamics is 

carried out on FH  and the average is over the Boltzmann distribution relevant to IH .    To do 

this, we decompose the mass-weighted Hessian matrix  -1/2 -1/2W m Km , where m is the 

(diagonal) mass matrix,  in the usual manner, i.e.,  

                                      

2
1

2

0

0

t

D





 
 

  
 
 


  


W T T .                                             (4.17) 

Here the D D  matrix T contains the D unit-normed eigenvectors of W , one per column.  T  is 

an orthogonal matrix, and thus t-1T = T ;  furthermore, 2 0j   is the eigenvalue corresponding to 

the eigenvector in the j’th column of T . 

Using the eigenvectors and eigenvalues prescribed in Equation (4.17), one determines 

that 
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1
2
1

1/ 2 1/ 2

2

cos( )
0

( )

cos( )
0

t
I

D

D

t

x t f

t







 

 
 
 
   
 
 
 
 


   



m T T m .                         (4.18) 

Note the reduction at 0t  : 

         

2
1

1/ 2 1/ 2 1/ 2 1 1/ 2 1

2

1
0

(0)

1
0

t
I

D

x f f f





     

 
 
 
     
 
 
 
 


     



m T T m m W m K , 

as expected. 

4.5 LANGEVIN EQUATION ANALOG: RELAXATION ON A HARMONIC 

OSCILLATOR PES 

For motion according to the harmonic oscillator Hamiltonian FH  introduced in Section 

4.4, the relevant Langevin Equation reads: 

                               
1

1

00

( )

xx

p R tp





       
               

   
m

K γm
 ,                                     (4.19) 

where γ is the relevant DxD friction constant matrix and ( )R t


 is a vector of  random force 

components imbued with the appropriate statistical properties [105, 123, 124] .   As above, we 

wish to compute the time development of the coordinate kx  on FH ,   given the initial phase 

space density ( , )I x p  
.  In fact, the time evolution of this entire phase space density on FH  , i.e.,  
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( , , )I x p t  
, can be calculated in a straightforward manner.  One finds [105] that the initial 

Gaussian density remains Gaussian, with the expectation values of position and momentum 

given by the solution of the Langevin EOMs in Equation 4.19 in the zero temperature  (T=0) 

limit, i.e., setting ( ) 0R t 


.  These equations then have the same generic structure as the 

Hamiltonian equations in Equation  4.11.  Specifically, 

                         
1

1

0
'

x xx

p pp





       
               

  
  

m
A

K γm
.                                            (4.20) 

Equation 4.20 has the formal solution 0

0

( )
'( )

( )

xx t
t

pp t

  
   

   


 U , with '( ) exp( ' )t tU A .  The time 

evolution of any given initial conditions can then be expressed as a linear combination of those 

initial conditions: 

                         
3

0 0 , ,0 , ,0
1

( , , ) [ ' ( ) ' ( ) ]
D N

j j k k j k D k
k

x x p t U t x U t p





  
,                    (4.21) 

where, as in the Hamiltonian dynamics case, the coefficients ' ( )jkU t  are independent of initial 

conditions.  Using the same averaging analysis, we obtain: 

                                , ,
1

( ) ' ( )
D

j I j k k eq
k

x t U t x


   .                                                         (4.22) 

Note as a practical aside that this provides us with a straightforward way to compute ( )j Ix t  .  

Namely: i) Determine the 2D eigenvalues and eigenvectors of 'A ; ii) synthesize 

'( ) exp( ' )t tU A  from these eigenvalues/vectors; iii)  then: 

                                  ( ) '( )
0
eq

j I

j

x
x t t

  
     

  


U  .                                                        (4.23) 

This procedure is implemented numerically in Section  4.6 below. 
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Next, we consider fluctuations about equilibrium on FH . The essential quantity that we 

need to compute is again ( )k j Fx t x   except now ( )kx t  is the evolution of kx  from the initial 

phase point 0 0( , )x p
 

 based on the Harmonic oscillator Langevin Equation above, and the average 

includes both an average over initial phase points and the random noise vector ( )R t


.  The formal 

solution of the Langevin Equation in the case of a non-zero random noise vector, which is 

obtained by integrating  Equations 4.19, is of the form: 

        0 0 , ,0 , ,0 0
1

( , , ) ' ( ) ' ( ) ' ( ') ( ')
D t

j j k k j k D k jk k
k

x x p t U t x U t p dt D t t R t


       
 

,           (4.24) 

where the ( )jkD t  can be calculated from the eigenvalues/vectors of 'A if desired.  Full details are 

not needed here: one simply has to note that the ( )jkD t  are independent of initial phase space 

values and the specifics of the random force vector function ( )R t


.  Now, we consider the average 

( )j k FR t x   where the average over system coordinate kx  is taken over the canonical 

Boltzmann distribution based on FH , and the average over the random force function ( )jR t  is 

taken over realizations of this noise function with properties prescribed by Langevin theory.  We 

find that ( ) ( ) 0j k F j k FR t x R t x        (in fact, both factors in the factorized correlation 

function evaluate to 0), and thus the third (inhomogeneous) term in Equation 4.24 does not 

contribute to the two point correlation functions of interest.  Only the 1st two terms on the r.h.s. 

of Equation 4.24 are relevant, and these are computed from the T=0 solution of the Langevin 

Equation, i.e., the friction-damped relaxation of the initial phase point  ( ,0)t
eqx


 given above.  

From this point on, the derivation follows that of the zero-friction case (ordinary Hamilton’s 

Equations; cf. Equation 4.11) exactly, leading to the equality: 
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1

( ) ( )
D

n I n j F j
j

x t x t x f


     .                                         (4.25) 

as in the case of non-dissipative Hamiltonian mechanics.   Also as in the case of Hamiltonian 

mechanics, the equality indicated in Equation 4.25 holds for an arbitrarily large perturbation 

force f


.  

At first glance it may seem purely coincidental that there exists a version of dynamic 

LRT for a multi-dimensional harmonic oscillator system coupled to a heat bath via the Langevin 

Equation which is completely analogous to the version formulated in Section 4.4 for the same, 

isolated, harmonic oscillator system (not coupled to a heat bath, and evolving according to 

deterministic Hamilton’s Equations). There is, however, a more direct connection between the 

two.  If the protein “system” is bilinearly coupled to a large set of auxiliary harmonic oscillator 

coordinates (a harmonic oscillator “bath”) in an appropriate fashion, and the entire system+bath 

super-system is then evolved via Hamilton’s Equations, the motion of the system coordinates can 

be shown to obey a Generalized Langevin Equation (GLE) with memory friction kernel 

determined by the detailed bilinear coupling coefficients.  Since the overall super-system is of 

harmonic oscillator type and is time evolved as an isolated Hamiltonian system, the results of 

Section 4.4 apply directly.  But because the system motion obeys a GLE, these results can be cast 

into the form arrived at in the present subsection.  Full details of this equivalence are provided in 

the Appendix C. 
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4.6 NUMERICAL EXAMPLE 1: AN ELEMENTARY MODEL OF 

CONFORMATIONAL CHANGE IN THE FERRIC BINDING PROTEIN (FBP) 

INDUCED BY LIGAND DISSOCIATION FROM A BINDING POCKET. 

We wish to provide a tractable example that illustrates some of the basic principles of dynamic 

LRT.  Since all-atom MD of large proteins in 2H O  solvent is extremely time-consuming, with 

maximum time scales attainable on extant computational platforms being 10s of ns, we invoke 

here a harmonic oscillator (quadratic PES) model of the relaxation of a globular protein from one 

(crystallized) stable state to a second one upon unbinding of an appropriate ligand from the 

binding pocket in the protein.  A harmonic oscillator Hamiltonian can be evolved to arbitrarily 

long times in a relatively painless fashion, i.e., by standard linear algebraic manipulations 

performed on finite dimensional matrices.  As part of this computational strategy, we will treat 

the solvent implicitly, i.e. as a source of friction and random buffeting that influences motion of 

the explicitly treated mechanical degrees of freedom, which are the atoms of the protein.  Thus, 

for a protein consisting of N atoms, there are 6N dynamical phase space degrees of freedom, and 

this is the dimensionality of the relevant matrices needed for time propagation. 

Consider the bacterial Ferric Binding Protein (FBP), which is used by pathogenic bacteria 

to absorb iron from the host environment.  This protein, comprised of 309 residues, provides an 

easily appreciated example of a ligand-binding induced protein conformational transition.  

Furthermore, X-ray crystal structures have been obtained for both ligand-bound and apo states.  

Thus we know the equilibrium conformations in both states (after minor refinements described 

below), and therefore have a reasonable way to construct Hamiltonians that approximately 

govern fluctuations around both equilibrium configurations, as discussed in detail below. 
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 In the present paper we will utilize the X-ray structure FBP in the apo (“open”) and in 

the liganded (“closed”) state.  X-ray structures for ligand-free (PDB code: 1D9V) and Fe3+-

bound (PDB code: 1MRP) forms were downloaded from the Protein Data Bank. Both structures 

were energetically minimized using the AMBER 94 force field. in vacuum (no solvent molecules 

were included in the minimization process) by gradually decreasing harmonic restraints on the 

backbone atoms, using a mixed steepest descent and conjugate gradient minimization protocol, 

until an RMS gradient on the order of 10-5  kcal/(mol·Å2) was reached. No cutoff distance for 

non-bonded interactions was enforced. For the closed state structure, the ligand, i.e. an Fe3+ ion, 

was also removed. (Including the Fe3+ ion bound inside the pocket was found to have little effect 

on the final geometric configuration.) Then these two structures were superimposed by standard 

fitting techniques [98]. 

As noted above, we will consider the ligand-free (apo) form as the final state.  A 

perturbation potential supplied by the bound Fe3+ ion ligand shifts the equilibrium conformation 

to that associated with the ligand-bound conformation, which serves as the initial state of our 

model.  At t=0, the ligand dissociates from the binding pocket, and the protein begins to relax to 

the final state conformation.  (See Figure 18 for a schematic depiction of this process.) Hence we 

consider the apo structure as our final state, i.e., the one upon which dynamics occurs subsequent 

to t=0.  We model IV , FV  as multi-dimensional harmonic oscillator PESs that describe 

fluctuations of all the protein atoms about the equilibrium positions implied by the initial (ligand 

bound) and final (apo) state structures, respectively.  We base the harmonic oscillator PES on a 

local quadratic expansion of the AMBER PES about the mechanical equilibrium positions 

attained by the atoms after “quenching” to a local minimum of the full (anharmonic) AMBER 

PES, starting from the appropriate X-ray crystal structure.   In order to apply the form of 
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dynamic LRT developed in Sections. 4.4 and 4.5 above, we need to select one of the two 

equilibrium configurations, apo or ligand-bound, and compute the 2nd derivative matrix K  via 

local quadratic expansion on the AMBER 94 force field [97].  In order to apply the mathematical 

models developed in Sections. 4.4, 4.5 above, we will then adopt the same 2nd derivative matrix 

for the other configuration.  Again, the two relevant PESs will be identical except that one will 

be shifted relative to the other in coordinate space based on the X-ray structure coordinates 

(suitably quenched as indicated above). In the present work we have chosen to compute K for 

the apo form of FBP. 

 

 

 

 

 

 



 107 

 

Figure 18. Schematic illustration of a protein conformation change from the Initial 

(dashed line) to Final (solid line) equilibrium structure (“state”). The change is induced by 

removal of an applied perturbation force, such as that generated by a ligand molecule introduced 

into a binding pocket of the protein prior to t=0. In the process of the indicated conformational 

change the distance between two residues A and B on the protein evolves in time from Id  to Fd . 

 

IV  then has the same general form (characterized by the same  2nd derivative matrix), but 

expanded about a different mechanical equilibrium configuration, namely the one obtained by 

quenching to a local equilibrium conformation using the full (anharmonic) AMBER PES starting 

from the ligand-bound X-ray structure.  We shall denote this set of coordinates as eqx


 (measured 

w.r.t. the corresponding equilibrium position values on FV ).  Note that this procedure directly 

determines the effective linear perturbation potential which would have to be exerted by a ligand 

bound in the initial state in order to generate the desired final state equilibrium configuration, 

given the posited quadratic fluctuation potentials assumed for the two PESs.  We thereby 
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sidestep the problem of explicitly calculating the force supplied by the bound Fe3+ ligand on the 

protein, which would make an interesting subject for further work on the applicability of the 

dynamic LRT approach for FBP and other systems.  

Our goal is to carry out Langevin dynamics based on the system potential FV . Thus, we 

need to specify a friction constant matrix for motion on this PES.  To do this in the simplest 

possible fashion, we assume that the matrix of friction coefficients is diagonal, with numerical 

values determined by applying Stokes’ formula [41] to the individual atoms.  Thus, for Cartesian 

displacement coordinate i (1 3i N  ), , 6i i ia   where    is the solvent viscosity, and ia  is 

the hydrodynamic radius associated with coordinate i (for each atom, all three Cartesian 

coordinates are characterized by the same hydrodynamic radius); furthermore, , 0i j  for i j .  

Bearing this in mind, in our calculations we will consider a range of solvent viscosities in order 

to better understand the connection between this parameter and the relaxation time scales 

computed for the protein. 

The hydrodynamic radii of the atoms in the protein were determined by the relative 

degree of surface exposure of each atom to the solvent.  The NACCESS molecular surface 

program [125]  was used with a probe radius of 1.4 Å to determine the solvent accessible surface 

area (SASA) for each atom. For a fully exposed atom a hydrodynamic radius of 0.77 Å was 

employed. After the degree of surface exposure was ascertained, the hydrodynamic radius of 

each atom was scaled to these fully exposed atomic radii using the square root of the fraction of 

surface accessible area obtained via the NACCESS program.  For hydrogen atoms only, the 

hydrodynamic radius was set to a maximum value of 0.2 Å if the resulting effective radius was 

larger than this value. 
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After constructing the matrix 'A   from the second potential derivative matrix and the 

friction matrix described above, the propagator matrix '( )tU  can be synthesized at any time from 

the eigenvalues and eigenvectors of 'A  using standard procedures for matrix exponentiation.  

(Equivalently, the entire computation can be carried out in mass-weighted coordinates: explicit 

details of this implementation are given in Ref. [126].)  The propagator matrix can then be 

utilized to obtain ( )j Ix t  , representative values of which are presented in the results section 

below. 

For purposes of analysis (again, see below), it is useful to work with a friction matrix 

which can be inverted. Because the entire friction matrix scales linearly with the solvent 

viscosity, we set the latter temporarily to 1 cP, and thus focus on the intrinsic geometry of the 

protein (in particular, the SASA of each atom). Atoms which are completely shielded from water 

solvent by other atoms in the protein, and hence have zero SASA and a friction constant of 0, are 

re-assigned a non-zero friction constant whose value is 1000 times smaller than the smallest non-

zero element of the original 1   cP friction matrix.  This proportionality is maintained for 

arbitrary values of the solvent viscosity simply by re-scaling the entire friction matrix 

accordingly.  We checked that this modification (i.e., replacing zero on-diagonal elements of the 

friction matrix with tiny non-zero values) had no effect on the results for ( )j Ix t   obtained 

from Equation 4.23 for any value of the viscosity considered in the numerical results presented 

below.  
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4.6.1 Results 

We selected several amino acid pairs and monitored their motion after the perturbation potential 

was turned off at t=0 (when the initial phase space density function exp( ) /I IH Z  began to 

evolve on the PES FV ).  We first considered the case of zero friction (solvent viscosity 0  ),  

i.e., we carried out Hamiltonian dynamics on the protein system in vacuum. Since there are 

3 14376N   degrees of freedom in the protein, one might expect that the motion of a single 

atomic coordinate (or the displacement between atomic coordinates on two chosen atoms), being 

a linear combination of many vibrational normal modes of the system which are characterized by 

incommensurate frequencies, would dephase to zero at long times. However, we found that this 

did not happen, i.e., the displacement coordinates continued to oscillate in time (“ring”) ad 

infinitum.  

In order to ascertain why, we examined the degree of participation of various normal 

modes in the motion of the oscillator system. If we denote the jth unit-normalized eigenvector of 

the mass-weighted hessian matrix as v j


 and its corresponding eigenvalue as 2

j (cf. Equation 

4.17 in section 4.4.2), then for initial conditions corresponding to (0) 0x 

  (no initial velocity), 

the exact time propagation of the system is given by:
3

1

( ) cos( )v
N

j j j
j

y t b t


 
. Here y


 is the 

vector of mass-weighted coordinates defined by 1/2( ) ( )y t x t
 

m  where m is the (diagonal) mass 

matrix. The superposition coefficients jb , which prescribe the degree to which mode j 

participates in the motion of the oscillator system for a given set of initial displacements, can 

easily obtained using the orthonormality of the Hessian eigenvectors, namely v (0)j jb y 
 

. For 

a PES based on a local quadratic Taylor’s series expansion about mechanical equilibrium of an 
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isolated protein molecule, one always finds 6 zero modes corresponding to zero frequency, i.e., 3 

modes corresponding to center of mass translation and 3 modes corresponding to overall 

rotations. Motion along these modes does not influence the relative internal protein motion, and 

thus they can be disgarded from the present analysis.  Focusing on the remaining 3N-6 

vibrational modes (all characterized by 2 0j  ), we first identified the mode with the maximum 

value of | |jb .  Then, each mode for which | |jb  was greater than 5% percent of the maximal 

value, for a particular j, was considered “significant”. For FBP, we obtained a participation 

number of ca. 90, i.e., relatively few out of >14,000 normal modes in the overall superposition. 

Hence, within the harmonic oscillator model adopted here an additional feature, namely, 

frictional damping, needs to be added to generate irreversible relaxation to the desired final state 

configuration..  

When frictional damping is included, the relaxation dynamics is computed via Equation 

4.22.  Note that because of the exactness of the LRT formula Equation 4.25 for the system under 

consideration here, evaluation of the equilibrium time correlation functions on the r.h.s. of  

Equation 4.25 (as would be done in more general implementations of dynamic LRT) would lead 

to the same prediction for the time dependence of the mean displacements  ( )j Ix t  .  The time 

evolution of the distance between selected pairs of residues now proceeds in a qualitatively 

reasonable fashion, as illustrated in Figure 19 for solvent viscosity 1   cP.   

Three residue pairs, depicted in Figure 19a, were selected for detailed study.  All three 

pairs have the characteristic that each member of the pair is on the exterior (solvent exposed) 

surface of the protein. Presumably, each of these residues could be tagged by chemically 

attaching a FRET fluorophore, since such an attachment would not be sterically hindered. The 

separation distance for the C-alpha atoms of the residue pair E167-K237, which is depicted in 
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red in Figure 19a, and for which the computed distance vs. time curve is shown in Figure 19b, 

can be taken as a measure of the domain opening motion since the residues are in two different 

domains and the distance between them changes significantly in going from ligand-bound to apo 

state. The computed distance vs. time curve for the C-alpha atoms of the residue pair G33-T110 

(orange pair in Figure 19a) is displayed in Figure 19c. Again, these two residues are in two 

different domains, and their separation distance monitors the opening motion around the ligand 

binding site. The distance in the closed conformation is around 36.5 Å while the same distance is 

around 40.5 Å in the open conformation. The magnitude of the change in distance is almost the 

same as for the residue pair in Figure 19b, although the absolute distance between two residues is 

much smaller. The final residue pair N184-D270 is indicated in yellow in Figure 19a.  The time 

evolution of the distance between the C-alpha atoms of these two residues is displayed in Figure 

19d.  This distance changes in going from the initial to the final state configuration by ca. 1.5 Å, 

which is much smaller than the distance changes observed in Figure 19b and Figure 19c. 

Furthermore, the distance between this pair actually decreases in going from ligand bound to the 

ligand free state.  The detailed time-evolution of each inter-AA distance investigated, which, 

again, could be probed by FRET or ESR measurements, is different.   Nevertheless, the overall 

time scale of all three AA pair distances lies in the ~200-300 picosecond range.  This time scale 

is consistent with previous computational studies of Langevin normal modes in proteins [106, 

127], which reported time scales of collective motions in the 10ps-1ns range, although to our 

knowledge ours is the first study in which the time dependence of  inter-residue distances in a 

protein undergoing conformational transformation as a result of ligand dissociation has been 

directly calculated via harmonic oscillator level Langevin dynamics.  
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To the best of our knowledge real-time relaxation of FBP upon dissociation of the Fe3+ 

ligand from its binding pocket has not yet been monitored at the single molecule level via 

experiment.  Below we discuss experimental measurements and relevant all-atom MD studies of 

binding cleft conformational changes in other proteins of roughly similar size below. Before 

doing so, it behooves us to consider a second numerical example, namely, T4 lysozyme (T4L), 

which we analyzed in the same manner as FBP.  
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Figure 19. (FBP) Panel a) depicts 3 pairs of residues whose separation distance vs. time 

is monitored via Langevin dynamics model described in detail in the text. The two domains 

which close and open around ligand binding site is colored via blue and green (Domains are 

determined via DYNDOM program [128]).Temporal relaxation of the selected distance pairs is 

shown in panels b-d. In each panel, green line is the inter-residue separation distance in the 

ligand free state. Red line is the analogous distance in the ligand-bound state. Blue line shows the 

propagation via the Langevin Eq, with a solvent viscosity of 1 cP. Specifically: b) Red pair of C 

alpha atoms indicated in a) c) Orange pair of C alpha atoms indicated in a) d) Yellow pair of C 

alpha atoms indicated in a). 

 

b) 

c) d) 

Ligand-bound          Ligand-free 

a) 

Fe3+ 
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4.7  NUMERICAL EXAMPLE 2: AN ELEMENTARY MODEL OF 

CONFORMATIONAL CHANGE IN T4L INDUCED BY SUBSTRATE 

DISSOCIATION FROM A BINDING POCKET. 

The enzyme T4L is a 164-residue globular protein with two domains which binds polysaccharide 

molecules prior to cleaving them. When substrate is covalently bound to the cleft in between two 

domains, the substrate-bound enzyme is locked in a state in which two domains have closed 

around the substrate with respect to the unbound state.  An X-ray crystal structure of the WT 

protein has been obtained. In addition, there are a number of extant X-ray structures for T4L 

molecules that have been selectively mutated in such a way the cleft of the crystallized structure 

is considerably more open than in the WT structure.  These structures are hypothesized to be 

similar in geometric detail to that of wild type T4L substrate in the absence of bound ligand.  

Thus we will use one of these mutated T4L X-ray structures as our model of the ligand-free form 

of the protein and the WT X-ray structure as an approximate configuration of the ligand-bound 

enzyme (cf. Figure 20a, in which the ligand-bound form is the one obtained after energy 

minimization and ligand-free form of the protein mutant is X-ray structure). 

The crystallographic WT state (PDB entry 2LZM) was energy minimized in vacuum.  

We used decreasing harmonic restraints on the backbone atoms using a mixed steepest descent 

and conjugate gradient minimization protocol, until an RMS gradient on the order of 10-5  

kcal/(mol·Å2) was reached. No cutoff distance for non-bonded interactions was enforced. All the 

minimizations were carried out with the AMBER 94 force field  

The choice of which surface to perform the Hessian evaluation on was dictated by our 

desire to focus on the protein without any mutations. We chose to explicitly calculate the force 

constant matrix for the ligand-bound form (WT structure), and then use this K matrix to describe 
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harmonic fluctuations about the apo state equilibrium configuration as well. (This necessitated 

the minimization of the WT X-ray structure under the AMBER force field, as described above.) 

Again, the two PESs surfaces used in our multidimensional harmonic oscillator model are 

identical except that one is shifted relative to the other in coordinate space based on the X-ray 

structure coordinates. In the case of T4L the equilibrium configuration of the closed structure is 

given by the end product of the minimization of the relevant X-ray structure (using the protocol 

described above), while that of the open structure is taken for simplicity to be the X-ray crystal 

structure coordinates of the mutant T4L selected to represent the WT protein structure.  In 

particular, the PDB structure 150L fourth conformer is used for the final (apo, i.e. open) structure 

by computationally mutating the single M6I mutation back to the appropriate WT residue (M). 

The hinge bending angle in this structure is ca. 35 degrees greater than in the energy-minimized 

WT structure (cf Figure 20a) (as compared to a change of 30.5 degrees for this angle when the 

X-ray structure of the WT protein is employed). Note: The two structures are first superimposed 

by standard fitting techniques [98] and residues 163 and 164 are excluded from the analysis, 

since their coordinates are absent in the mutated X-ray structure. 

4.7.1 Results 

As in the FBP case, we first considered the case of zero friction (solvent viscosity 0  ),  i.e., 

we carried out Hamiltonian dynamics on the protein system in vacuum and monitor the motion 

of several amino acids. The motion of a single atomic coordinate (or the displacement between 

atomic coordinates of two chosen atoms) did not dephase to zero at long times. Thus we checked 

the degree of participation of various normal modes in the motion of the oscillator system as we 



 117 

did in FBP case: again, ca. 90 normal modes out of overall 3N=7830 participate significantly in 

the cleft opening process in our T4L model.  

In order to generate irreversible relaxation to the desired final state configuration, 

frictional damping is included. The friction matrix was calculated via the same protocol as in 

FBP case: the NACCESS program was used to calculate the surface exposure of each atom by 

using the coordinates of the apo(open) structure. 

With frictional damping included, the relaxation dynamics was calculated using Equation 

4.22. The time evolution of the distance between selected pairs of residues is illustrated in Figure 

20b-d for solvent viscosity 1   cP.  When choosing the residue pairs to study, the two criteria, 

namely (i) being exposed to solvent and (ii) not being next to bulky side chains (and hence being 

a viable candidate for tagging in a possible FRET experiment), are considered as was the case in 

our FBP study.  Figure 20b shows the relaxation dynamics of the distance between the C-alpha 

atoms of the E22-R137 pair.  These two residues are in very close contact when the structure is 

in its ligand-bound state, and there is ca. 11 Å increase in distance going from closed to open 

state of the protein. This distance can be taken as a measure of opening of the two domains (cf. 

Figure 20a for an illustration of the domain opening motion). The residue pair R52-A160, for 

which the corresponding relaxation dynamics of the C-alpha atoms of these residues is indicated 

in Figure 20c, behaves somewhat differently. In going from ligand-bound to ligand-free state, the 

distance between these two residues decreases. The time evolution of the distance between the 

C-alpha atoms of the final residue pair studied, namely, S38-K135, is displayed in Figure 20d.  It 

behaves like the residue pair in Figure 20b, except that the absolute distance between the two 

residues in Figure 20d is much larger than for those in Figure 20b, since the two residues 

“tagged” in Figure 20d lie on the outermost surface of the protein away from the ligand binding 
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cleft. Nevertheless, the change in the distance between this residue pair can be taken as a 

measure of the degree of the conformational change of the protein, i.e., the degree of domain 

opening. In spite of the different locations of the chosen pairs, their time scales of relaxation are 

quite similar. Comparing to the relaxation times extracted for FBP (cf. Figure 19), the relaxation 

is almost 3 times faster for T4L.  Indeed, the relaxation times predicted for T4L by our harmonic 

oscillator Langevin model are similar to suggested time scales (several hundred picoseconds) 

extracted from previous MD simulations of the same protein by de Groot et al.[129] for related 

(though not identical) cleft opening and closing events. It is also intuitively reasonable, since the 

moving domains of T4L are smaller than those of FBP, and thus not only easier to move, but 

easier to bring together as the binding cleft closes.  
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Figure 20. (T4L) Panel a) depicts 3 pairs of residues whose separation distance vs. time is 

monitored via Langevin dynamics model described in detail in the text. The two domains which 

close and open around ligand binding site are colored via blue and green (Domains are 

determined via DYNDOM program[128]). Temporal relaxation of the selected distance pairs is 

shown in panels b-d. In each panel, green line is the inter-residue separation distance in the 

ligand free state. Red line is the analogous distance in the ligand-bound state. Blue line shows the 

propagation via the Langevin Eq, with a solvent viscosity of 1 cP. Specifically: b) Red pair of C 

alpha atoms indicated in a). c) Orange pair of C alpha atoms indicated in a). d) Yellow pair of C 

alpha atoms indicated in a). 

 

Ligand-bound       Ligand-free 

a) b) 

c) d) 
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Figure 21. (T4L) Time evolutions of the separation distance of C_alpha_R52 and 

C_alpha_A160 propagated according to Langevin Equation in solvents characterized by 3 

different viscosities. Red line is the inter-residue distance in the ligand-bound state. The abscissa 

plots time normalized by system viscosity. For orange dashed line the calculation is carried out 

with overdamped relaxation equations in 3N-dim. configuration space. Details are given in the 

text.  
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To provide insight into the relationship between input parameters (e.g., solvent viscosity 

and details of the protein Hessian matrix corresponding to FV ) and computed relaxation times 

we performed a range of numerical studies with our model. In particular, we varied the solvent 

viscosity from 1 cP to >>1 cP.  A sample of comparative results is presented in Figure 21 

focusing on the distance between the R52-A160 pair of T4L that was studied for the viscosity 

1cP   in Figure 20c. Note that the AA-pair distance vs. time curve changes only by a 

dilatation of the time coordinate (i.e., doubling the viscosity doubles the decay time) as the 

solvent viscosity is further increased, all other parameters being held constant. (The low 

viscosity case, i.e. 1cP  , shows slight deviation from this behavior, which is, however, 

difficult to discern to the resolution of Figure 21.) 

The behavior noted above suggests that a high friction analysis of the Langevin Equation 

may prove fruitful.  In this limit, the acceleration (“p-dot”) term in the Langevin Equation can be 

set to zero, and the time-dependent expectation value of the displacement coordinates (cf. 

Equation 4.20) is determined by the equation 1( ) exp( )I eqx t t x   
 

γ K . According to this 

overdamped relaxation equation, if only the solvent viscosity changes, i.e., 0γ γ , where 0γ  is 

independent of  , then the eigenvectors of the D D  matrix 1γ K  (here 3D N ) are 

independent of the viscosity coefficient  , while all D  eigenvalues scale directly proportional to 

1 . This implies that for a given initial displacement eqx


, the scaled time evolution 

( / ) Ix t   


 is a universal curve, i.e., obtained for all values of  .  It also allows us to easily 

predict how the relaxation time scales with   in the problem under study here (all other 

parameters being fixed), or, alternatively, how the relaxation time scales with the curvature of 

the PES, i.e., K (all other parameters being fixed).  Figure 21 shows that the overdamped regime 
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has clearly set in when the solvent viscosity parameter reaches the value 100 cP (the time 

evolution calculated via overdamped relaxation equation is denoted as “overdamped limit” in the 

figure legend), and thus the simple overdamped limit expression for ( ) Ix t 


 above can be 

employed to deduce the expected scaling of relaxation times with increasing effective viscosity 

(see Discussion Section below). 

To the best of our knowledge real-time relaxation of either FBP upon dissociation of its 

Fe3+  ligand from its binding pocket or T4L upon dissociation of its polysaccharide ligand from 

its cleft has not been experimentally monitored at the single molecule level. Some evidence that 

the time scales deduced from the present analysis are relevant to ligand unbinding processes in 

cleft opening motions of proteins of the rough size of FBP and T4L comes from measurements 

on 3 periplasmic binding proteins, namely, the L-arabinose binding protein, the L-histidine 

binding protein and the D-maltose binding protein.  For these proteins, cleft closure time scales 

on the order of nanoseconds have been experimentally inferred.   The MD simulations of de 

Groot et al. mentioned above also suggest that significant cleft motion can occur on a time scale 

of several hundred picoseconds.  Of course, we cannot claim that all ligand-binding and 

unbinding processes are well-described by the simple relaxational mechanisms implied by the 

multi-dimensional harmonic oscillator invoked herein.  In particular, experiments on some cleft 

opening/closing proteins suggest much longer time scales for the analogous processes.  For 

example, for the  S1S2 domain of GluR2 [130, 131], the best experimental estimates of the time 

scale of the induced transformation from liganded to un-linganded conformation are on the order 

of milliseconds. Presumably, these long times reflect an underlying thermally activated barrier 

crossing process with significant (multiple Bk T ) barrier(s) separating ligand bound and ligand 

un-bound conformations.  Such a mechanism is probably not well described by either linear 
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response theory (since large-scale conformational distortions are entailed) or by harmonic 

oscillator models for the underlying PESs (due the essential role played by the intrinsically 

anharmonic barriers that separate initial and final states). 

Nevertheless, it is interesting to note that the basic model studied here, i.e., diffusional 

relaxation on effective harmonic oscillator PESs, can in fact accommodate multi-nanosecond 

(and longer) time scales given appropriate values of the PES parameters and friction constants.  

Furthermore, more sophisticated modeling of the PES characteristics and the effective friction 

constants governing the essential conformational motion involved in the relaxation process may 

generate numerical values for these parameters that would imply multi-nanosecond time scales 

for the underlying protein relaxation process according to our basic model.  These issues are 

considered in detail in the Discussion section which follows. 

4.8 DISCUSSION AND CONCLUSIONS   

4.8.1 Discussion 

There are two readily apparent mechanisms by which the basic Langevin harmonic oscillator 

model utilized in our computations can be retained and the time scale of the relaxation extended 

by several orders of magnitude.  First, there is the protein PES itself.  We employed a local 2nd 

order Taylor Series about the minimum of an appropriate reference protein configuration.  Such 

an expansion is designed to account for small amplitude vibrations about equilibrium, but is not 

guaranteed to be accurate for large scale amplitudes of atomic motion.  Although anharmonic 

terms are surely non-negligible over the course of the relatively large amplitude motions under 
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investigation here, it may be possible to subsume these into a roughly quadratic free energy 

surface.  Full computation of this surface is beyond the scope of the present work, but it is 

plausible that the resultant effective mean quadratic restoring forces would be less stiff 

(corresponding to lower effective vibrational frequencies), because steric clashes encountered in 

the course of a typical normal mode vibration would be relaxed via Boltzmann sampling of the 

other protein coordinates.   A recent analysis along these lines by Bertaccini et al. [28] on the 

1655 residue pentameric Glycine Receptor protein showed that when the atoms were moved 

slowly along the directions implied by the lowest vibrational normal mode (which was calculated 

via a local 2nd order Taylor Series as we have done in this work for FBP and  T4L), and 

energetically relaxed using the underlying anharmonic protein PES to relieve the development of 

high energy contacts, the curvature of the effective potential energy vs. coordinate displacement 

curve decreased by a factor of ca. 3600, corresponding to a reduction in vibrational frequency 

from the prediction of a the local 2nd order Taylor series by a factor of ca. 60.  Thus, this analysis 

hints that the relevant PESs for FBP and T4L conformational motion may have a considerably 

smaller curvature along critical coordinates than the values adopted in the calculations presented 

here. If we imagine scaling the 2nd derivative matrix K  by an overall factor of  3 410 10  to 

account for these effects in a crude fashion, this would increase the time scale of the 100-300 ps 

relaxation processes observed in our computations (cf. Figure 19 and Figure 20, for FBP and 

T4L, respectively) to ca. 7 610 10   seconds, i.e., approaching the microsecond time scale.  And 

indeed, there is another effect which could also increase the relaxation time scale further, 

namely, intrinsic roughness of the energy surface. 

The notion that free energy surfaces relevant to large scale conformation changes 

(encountered, for example, in protein folding [132] or ligand binding/unbinding[133])  may 
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include a “rough” corrugation pattern added to a smooth functional dependence on dynamically 

important protein coordinates or other order parameters has been supported by experimental 

evidence for over 20 years[113].  Analysis of models based on this premise has shown  that 

roughness of the energy landscape can lead to a significant increase in the effective friction 

constant governing Brownian motion on a smooth underlying energy surface [134].  For 

Gaussian distributed random roughness with a characteristic energy scale    in the energy 

landscape , the scaling of friction constant with the characteristic energy scale of the surface 

roughness has been postulated to go as 2exp([ / ] )Bk T  [134]: in this case the modest value of 

2.6 Bk T   could generate a factor of 1000 increase in the effective friction constant relevant to 

our FBP and T4L computations, and hence, assuming the corresponding dilatation of time 

implied by the overdamped Langevin Equation analysis sketched at the end of Section  4.7, the 

same scaling factor in the protein conformational relaxation time scale. 

The salient point of the above discussion is that two separate factors, namely (i) a 

reduction in the curvature of the effective harmonic oscillator PES due to relaxation of 

energetically unfavorable contacts in the course of the conformational dynamics and (ii) increase 

in the effective system friction (viscosity) due to intrinsic roughness of the effective free energy 

surface, could each easily lead to a factor of, say, 1000 slowdown in the relaxation dynamics.    

4.8.2 Conclusions 

 In this paper, we have exploited the dynamical version of linear response theory (LRT) to assist 

in the prediction of the response of a macromolecular system (e.g., a protein) to a change in the 

system potential.  Such a change will be induced, for example, when a ligand molecule bound to 
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a well-defined binding pocket within a protein molecule dissociates from the binding pocket.  

Due to the resultant removal of the energetic interactions between ligand molecule and protein, a 

conformational change in the latter occurs[23].  Dynamic LRT enables one to calculate the 

relaxation of the protein from ligand-bound to ligand-free (“apo”) states of the protein in terms 

of equilibrium time correlation functions associated with the apo-state Hamiltonian.  These 

equilibrium time correlation functions can be evaluated by standard MD techniques.  In 

particular, the effects of water solvent on the process can be included in the analysis in a manner 

which is straightforward in principle (by including explicit solvent water molecules in the MD 

simulation). 

Given the time-consuming nature of all-atom MD simulations in explicit solvent, as well 

as the restriction of LRT (implied by its name) to small perturbations in the system force field 

and hence small distortions of the protein molecule, we developed in this work the details of 

dynamic LRT for a multidimensional harmonic oscillator Hamiltonian, of the type extensively 

used to describe protein fluctuations about an equilibrium conformation [89, 90, 135].  The 

analytical advantages of invoking a harmonic oscillator Hamiltonian as compared to a more 

realistic anharmonic Hamiltonian are considerable. First, all desired quantities can be calculated 

from manipulations of finite dimensional matrices (linear dimension at most 2D, where D is the 

number of degrees of Cartesian coordinates in the protein; typically, D=3N, where N is the 

number of protein atoms), in tandem with judicious evaluation of Gaussian integrals.  Second, 

LRT is exact for any perturbation potential (hence protein conformational change) that is linear 

in the system coordinates, large or small.  An obvious disadvantage of a harmonic oscillator 

model is its degree of idealization (i.e., neglect of anharmonic term in the PES), which may be 

considerable.  One immediate concern is the treatment of solvent, which is responsible for 
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critical dissipative effects upon the protein motion.  Fortunately, it is possible to include solvent 

effects in the harmonic oscillator model in a phenomenological but nevertheless physically 

appealing manner by introducing friction and a random force term, i.e., by considering a 

Langevin model of the harmonic oscillator dynamics of the system (protein molecule).  We 

developed the details of this model, too, and showed that dynamic LRT is also exact for any size 

perturbation force which is coordinate independent when frictional (solvent) damping is included 

in this fashion. 

We then applied the Langevin harmonic oscillator LRT formulation to numerically study 

relaxation of two protein systems, FBP and T4L, from ligand-bound to apo structures.  For both 

systems, we utilized the AMBER force field to calculate the Hessian matrix, i.e., matrix of 2nd 

derivatives of the full protein potential at the equilibrium configuration of one of these structures. 

In this way we constructed the required harmonic oscillator model of the protein system.  

Friction coefficients were estimated using the venerable Stokes model, which inputs the solvent 

viscosity.  A main goal of the study was to ascertain the time scales of the relaxation process, 

focusing on the time-dependence of the distance between selected residue pairs. For a reasonable 

choice of solvent viscosity (1 cP), we found relaxation times in 100-300 ps range for these two 

proteins.  Experimental determination these time scales is difficult, and not presently available 

for these proteins.  However, there is some evidence from both experimental measurements on 

proteins of similar size and from all-atom MD simulations that this time scale is not completely 

unrealistic. Of course, there surely exist processes characterized by free energy surfaces which, 

even after averaging over local roughness (as discussed above), are quintessentially anharmonic: 

for example, systems where large-amplitude conformational change requires an activated 

process-type barrier crossing [136, 137]   For such systems, both Linear Response Theory and an 
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effective harmonic oscillator free energy surface model are suspect.   Clearly, a fully satisfactory 

explanation for the relaxation times of ligand dissociation induced conformational changes of 

large proteins will require careful further study, including both accurate free energy 

computations and careful extraction from the resultant energy landscapes of the dynamical 

response to ligand dissociation. 
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APPENDIX A 

THE UNDERLYING CONSTRAINT FORCE IN RTB-DYNAMICS AND ITS 

IMPLICATIONS 

At t=0, we compute the components of the initial (mass-weighted) velocity vector 0v


along each 

of the rn relevant displacement coordinate vectors.  Let us also compute the remainder velocity 

(0)v


 using Equation 2.6 from the text. This describes initial motion in the subspace of irrelevant 

displacements.  So, we introduce a constraint force along the direction of (0)v


. Note that in the 

absence of any forces acting in the space of motions mutually perpendicular to all the relevant 

coordinates, after time t  these displacement coordinates would take on the value 

(0)( )t v t   
 

.  What we want, instead, is to find ( ) 0t  


 .   To achieve this we need to add 

a (constant, time-independent) constraint force CF


 of the form, 

                                                          CF F g  
  

. 

Here F


 is the component of the systematic force (derived from the overall potential function) 

on the non-RTB internal coordinates. (N.B.: this does not have to explicitly calculated, as is 

made clear below.)  Since the net force on the non-RTB coordinates is CF F 
 

, the constraint 

force cancels out the systematic force due to the physical molecular force field, and adds an extra 
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“piece”, namely g


, whose purpose is simply to counter-balance the inertial motion imparted by 

(0)v


.  That is, 

                                        (0) 21
2( )t v t g t     

  
. 

By choosing (0)2 /g v t 
 

, we achieve ( ) 0t  


 , as desired.  The consequence of this 

constraint force for the output velocity of the irrelevant internal coordinates is 

                                         
(0)2(0) (0)( ) [ ]v
tv t v t v 

     
  

. 

The final velocity of each irrelevant z-coordinate is seen to be simply the negative of its 

value at t=0. 
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APPENDIX B 

PROOF OF ENERGY CONSERVATION IN RTB-DYNAMICS 

RTB rigid-body dynamics conserves the total system energy in the limit of small time step, with 

the accuracy of the velocity-Verlet algorithm.  For each propagation time-step we can construct a 

modified time-independent potential energy function V  which corresponds to the desired force 

on the system, including the constraint force needed to freeze all irrelevant coordinates (cf. App. 

A).  Thus, if ( )K t  is the kinetic energy of the system then an exact solution of Newton’s 

Equations will have the property that  

                                           (0) (0) ( ) ( )K V K t V t     .                                            (B1) 

The velocity Verlet algorithm yields an approximate solution of Newton’s Equations, but one 

which is very accurate for small t ; hence for small t , Equation (B1) holds to a very good 

approximation.  Finally, the appropriate  V  turns out to have the property that (0) (0)V V  and 

( ) ( )V t V t  .  Thus, it follows from Equation (B1) that 

                                     (0) (0) ( ) ( )K V K t V t    ,                                             (B2)  

which is the desired conservation of energy condition. 
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We want next to exhibit the pertinent potential energy function CV V V  , where CV  is 

the additional term that must be added to the system potential to generate the appropriate 

constraint force.  To do this, recall a few details from the discussion above.  There are 3 rN n  

irrelevant coordinates; let us label these here via 1,...,3rn N   .  The initial mass-weighted 

“perpendicular velocity” (0)v


 can be written as a linear combination of the irrelevant basis 

vectors, namely, 

                  
3

(0) ( ) ( )
0

1

ˆ
r

N

n

v v u 




 

 
 , 

with ( ) ( )
0 0 ˆv v u  


.  Similarly, the g


 component of the constraint force has a similar 

decomposition, 

      
3

( ) ( )

1

ˆ
r

N

n

g g u 

  

 
. 

We showed above that (0)2 /g v t 
 

, and thus we can identify ( ) ( )
02 /g v t    .  The 

complete constraint force is then given as 

                   
3

( ) ( ) ( )
0

1

ˆ[ 2 / ]
r

N

C S
n

F F v t u  




 

  


 , 

where ( )
SF   is the component of systematic force along ( )û  at 0t  .  It is worth emphasizing that 

( ) ( )
0[ 2 / ]SF v t     is a constant on the interval 0 t t  .  Thus, CF


 is the negative of the 

gradient of the following scalar function: 

                       
3

( ) ( ) ( )
0

1

[ 2 / ]
rN n

C SV F v t  



 




  . 

Note that this time-independent function of coordinates has the critical properties claimed above.  

First, it generates the desired constraint force, which is designed to produce unchanged positions 
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of the irrelevant coordinates at the end of the time interval compared to their initial positions; 

specifically, ( ) ( )(0) 0 ( )t     , 1 , . . . , 3rn N   .Consequently, (0) 0 ( )C CV V t 

. This establishes conservation of energy over the interval (cf. Equation B2).  
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APPENDIX C  

COUPLING TO MULTI-DIMENSIONAL BATH 

We wish to show how the dynamic LRT formulae involving a harmonic oscillator model of 

system (protein) coordinates coupled to a dissipative environment via the Langevin Equation 

which were developed in Section 4. 5 can be obtained by appropriately coupling the system 

Hamiltonian to a large set of auxiliary harmonic oscillator coordinates (a “bath”) and 

subsequently considering the purely Hamiltonian motion (and statistical mechanics) of the 

augmented system-bath super-system.  The basic idea can be conveyed with minimal effort and 

notational clutter for the case of a one-dimensional system described by coordinate X and 

momentum P coupled to a multi-dimensional bath (which mimics frictional effects on the 

system). Thus, consider a final state Hamiltonian of the form: 

                                       F X bathH H H  ,                                                      (C1) 

where 

                  2( , ) / 2 ( )XH X P P V X  , 

with a simple harmonic oscillator system potential 2 21
( )

2
V X X  , and: 
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                22 2 2( , ; ) / 2 / / 2bath j j j j j
j

H x p X p x X       
, 

where the sum is over bN  bath modes, the frequency of mode j (described by coordinate jx  and 

momentum jp ) being j .  Note that we have set all masses to unity, with no loss of generality.  

Of greater significance, note that bathH  depends parametrically on the system coordinate X with 

coefficient j  determining the coupling strength between the system coordinate and bath 

coordinate (mode) jx . 

Now add a linear perturbation which couples directly only to the system coordinate, 

namely V fX   , and define, as prescribed in the main text, I FH H fX  .  Thus, explicitly: 

                          '
I X bathH H H   ,                               (C2) 

with  

                       ' 2 2 21
( , ) / 2

2XH X P P X fX     

                                        2 2 2 2 2 21
/ 2 ( / ) / 2

2
P X f f       . 

FH  in Equation C1 is an 1bN   -dim. harmonic oscillator Hamiltonian, and IH  in Equation C2 

is the same as FH  except with an added perturbation that is linear in the coordinates.  Thus 

,I FH H  are of the form considered in Section 4.4, and therefore we know immediately that: 

                   ( ) ( )I FX t f X t X      ,                                  (C3) 

where, as usual, the dynamics on both sides of Equation C3 is generated according to 

Hamiltonian FH , while the initial phase space density relevant to the left hand side of this 
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Equation is (properly normalized) exp( )IH  and the corresponding initial phase space density 

relevant to the right hand side is exp( )FH .   

Defining XZ  as the thermal partition function associated with the isolated system 

Hamiltonian, and bathZ  as the partition function for the bath in the absence coupling to the 

system coordinate, i.e., 

exp[ ( , )]X XZ dXdP H X P     ;   exp[ ( , ;0)]bath bathZ dxdp H x p 
   

, 

and noting that the complete system-bath partition function is given by the product of these two 

factors, we can write the l.h.s. of Equation C3 as, 

              '
0 0 0 0 0 0

1
( ) exp[ ( , )] ( , , )I X

X

X t dX dP H X P X X P t
Z

    ,                             (C4) 

where  

  0 0 0 0 0 0 0 0 0 0 0

1
( , , ) exp[ ( , ; )] ( , , , , )bath

bath

X X P t dx dp H x p X X X P x p t
Z

 
     

,               (C5) 

with 0 0 0 0( , , , , )X X P x p t
 

 being the time evolution on FH  of the system coordinate out of the 

initial phase point 0 0( , )X P , which is then averaged over initial positions and momenta of the 

bath according to the thermal phase space distribution of the bath for the given initial position of 

the system 0X  to obtain 0 0( , , )X X P t . The equilibrium correlation function ( ) FX t X   can also 

be written in terms of 0 0( , , )X X P t , namely, 

              0 0 0 0 0 0 0

1
( ) exp[ ( , )] ( , , )F X

X

X t X dX dP H X P X X P t X
Z

    .                    (C6) 

Now, the temporal function 0 0 0 0( , , , , )X X P x p t
 

 is obtained by solving Hamilton’s Equations for 

the full 1bN   -dim. system, given the initial values of all 1bN   positions and 1bN   momenta.  
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Because of the bilinear coupling between X and each of the jx , each bath mode is linearly driven 

by the system coordinate trajectory.  This allows the bath degrees of freedom to be “integrated 

out”, leaving a perturbed equation of motion for the system coordinate [138].  Specifically: 

                2 2

0
/ ( ) ( ) ( ) ( )

t
d X dt V X du t u X u R t

X


     

   ,                        (C7) 

where 

                        
2

2
( ) cos( )

j

j
j j

t t





  ,                                                   (C8) 

and 

                
02

0, 0( ) ( / ) cos( ) sin( )
j

j j j j j j
j j

p
R t q Q t t    


 

   
  

 .                        (C9) 

Note that ( )R t  is a Fourier series whose coefficients are linearly dependent on the initial phase 

space variables of the bath modes.  Thus when the bath average 

0 0 0 0 0exp[ ( , ; )]bathdx dp H x p X
   

 is performed, ( )R t  can be described as a Gaussian noise term.  

Its defining properties are that ( ) 0R t   and that ( ) ( ) ( )BR s R t k T t s    .  In other words, 

the Fluctuation-Dissipation Theorem [123, 124] is satisfied, and we can say that 0 0( , , )X X P t  is 

the trajectory of a 1-dim. system evolved out of initial phase point 0 0( , )X P  according to the 

Generalized Langevin Equation C7 corresponding to the memory friction kernel ( )t  prescribed 

in Equation C8.  Since the derivation holds for arbitrary memory friction kernel, it holds for the 

special case of very rapidly decaying memory kernel (this is simply a matter of choosing the 

appropriate values of the j ), i.e., such that the GLE in Equation C7 reduces to the ordinary 

Langevin Equation featured in Section 4.5 of the text with a prescribed time-local friction 
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coefficient.  The proof presented here for a system consisting of a single coordinate can easily be 

generalized to a multi-coordinate system characterized by any desired multi-dimensional 

harmonic oscillator potential and friction constant matrix. 
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