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Abstract 

Gaze stabilization test (GST) and dynamic visual acuity (DVA) test are functional 

measures of the vestibulo-ocular reflex which helps to maintain clear vision during head 

movement. The purposes of this dissertation were threefold; first the reliability of GST and DVA 

test were examined. Twenty-nine patients with vestibular disease were tested repeatedly using 

the computerized InVision™ test. Results showed that the reliability of the tests were fair to poor 

with the DVA reliability better than the GST and the within-session reliability better than 

between-session reliability. 

In the second Aim, the goal was to obtain better understanding of the effect of optotype 

(the letter E) parameters on subjects’ performance. The performance of twenty-one healthy 

young subjects on the GST was examined over a range of optotype sizes and presentation times. 

Results showed that the optotype parameters had a significant effect on subjects’ performance 

with only one combination in which most healthy subjects were able to accomplish fast head 

velocities while being able to identify the optotype correctly. An optotype that is 0.30 logMAR 

above a subject’s static vision and presented for 40 msec longer than minimum presentation time 

is recommended for future testing.  
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Lastly, the preferred combination from the second Aim was used to examine the 

performance of twenty-two young patients following concussion and compare it with the healthy 

subjects from Aim 2. Correlations between patients’ performance on the GST and their scores on 

tests commonly used following concussion were also examined. Results showed no significant 

differences between the performance of patients and that of healthy subjects on the GST. Also, 

there were no significant correlations between the GST and other measures used following 

concussion.  

Results show that the protocol used for the GST needed refinement. Special consideration 

is to be given to the optotype parameters used since these were found to significantly influence 

performance. The lack of significant differences between patients following concussion and 

healthy subjects could be due to the inclusion of all patients following concussion without 

objective evidence of vestibular involvement. Future studies should use specific optotype 

parameters and include patients following concussion with evidence of vestibular dysfunction. 
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1.0  INTRODUCTION 

Vestibular disorders manifest with a variety of signs. These signs include dizziness and vertigo 

[96], disturbed balance and increased sway [92, 96], nystagmus and oscillopsia [20, 25, 108], in 

addition to problems with spatial information processing [12] and increased cognitive load [71, 

79, 98, 111]. 

Visual blurring and oscillopsia are common complaints following a vestibular disorder 

[7, 20]. Oscillopsia is the term used to describe the illusory movement of stationary objects [14]. 

Visual disturbances following a vestibular disorder are the result of a dysfunction of the 

vestibulo-ocular reflex (VOR). The VOR helps stabilize gaze during head movement [31, 90]. 

Stabilization of gaze during movement is accomplished by detecting the amount of head 

movement and inducing eye movements of equal amount in the opposite direction to the head 

movement [25, 90]. The otolith organs detect translational head movements while the 

semicircular canals detect rotational head movements [59, 90]. Maintaining fixed eye position in 

relation to space (fixed gaze) during head motion insures that the images are held steady on the 

retina, thus maintaining clear vision during head movement. 

Vestibular dysfunction that affects the vestibulo-ocular reflex (VOR) leads to 

deterioration of vision while walking that may lead to falling [35, 108] . Assessment of visual 

function, in static and dynamic situations, is important because static and dynamic visual acuity 
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might contribute to postural instability [44]. Tests of dynamic acuity have also been found to be 

reliable indicators of vestibular pathology and rehabilitative success in patients with peripheral 

vestibular pathologies [20, 46, 103]. 

The dynamic visual acuity (DVA) test compares visual acuity during head movement to 

static visual acuity [46, 61].  The amount of visual acuity loss during head movement provides 

information about the function of the VOR during dynamic situations [60]. The bedside DVA is 

relatively easy to apply in any clinical setting. Using a visual acuity chart, a loss of visual acuity 

during head movement greater than 2 lines above the static acuity has been considered indicative 

of a VOR abnormality [60].  The computerized DVA test provides the advantage of accurately 

monitoring the speed of head movement and limiting the presentation of the letter to when the 

required head velocity is achieved [46]. 

A problem with the DVA test is the use of small sized letters. The use of the test with 

patients with visual abnormalities is limited by the patient’s vision rather than the function of the 

VOR [25, 77]. In addition, having the head movement fixed to certain predetermined velocities 

during the test limits the generalizeability of the test to different functional tasks in which 

different head velocities are required. 

The gaze stabilization test (GST) is another method to test the function of the VOR. 

During the GST, the optotype size is held fixed while the speed of head movement changes [6, 

25, 77, 108]. The GST is a measure of the maximum speed of head movement at which clear 

vision is maintained [25]. 

The goals of this study were to examine the reliability and response stability of the GST 

and to compare it with the reliability of a computerized version of the DVA test. In addition, the 

performance of healthy young subjects on the GST was studied using different testing 
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parameters. Finally, the performance of patients following head concussion on the GST test was 

compared to that of healthy subjects. Patients’ scores on the GST were correlated with other 

measures used following concussion. The measures used were the ImPACT scores (Immediate 

Post Concussion Assessment and Cognitive Testing, Pittsburgh, PA, USA) [62], the Dizziness 

Handicap Inventory (DHI) [53], and the Activities-specific Balance Confidence scale (ABC) 

[75]. 
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2.0  BACKGROUND 

2.1 VESTIBULO-OCULAR REFLEX 

The vestibular system acts, by means of vestibulo-ocular reflex (VOR), to help stabilize vision 

during head movement.  The ability to see clearly while moving the head depends on keeping the 

eyes fixed in relation to space (fixed gaze) regardless of the head movement so that images of 

objects are held steady on the retina [31, 90].  Degradation in visual acuity with head movement 

may occur due to movement of images on the retina (retinal slip). A decline of visual acuity 

occurs when retinal slip exceeds 2 – 4°/s [31]. Another possible explanation for a decline in 

visual acuity during head movements is the displacement of images off the fovea.  In the human 

eyes, optimal visual acuity is at the fovea.  Thus, the image of an object of interest in the visual 

field should be focused on the fovea [22].  Having the image off the fovea by as little as 2 

degrees will cause deterioration of vision [28].  

The brain uses different eye movement control systems to maintain fixed gaze during 

head movement. These include smooth pursuit, saccades, optokinetic, the cervico-ocular reflex 

in addition to the vesibulo-ocular reflex [45, 59, 92, 95].  The different systems have specific 

ranges in which they work efficiently.  Based on target velocity and distance plus head 

movement velocity and frequency, the brain decides which system to use.   
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The smooth pursuit system generates eye velocities at speeds < 60 deg/ sec [56, 57] that 

enable the tracking of slowly moving objects. The latency of the smooth pursuit system is up to 

100 msec [56, 100]. Saccades quickly redirect vision to an area of interest by producing rapid 

eye movements (400 – 800 deg/ sec) that last <100 msec [94]. The latency of a saccade is around 

200 msec [95].  The optokinetic system relies on visual input about the motion of images over 

the retina and supplements the VOR in the low frequency range [95].  The cervico-ocular reflex 

generates eye movement in response to stimulation of the neck proprioceptors [9].  In patients 

with vestibular dysfunction, the contribution of the cervico-ocular reflex to eye movement 

control is enhanced [59, 87].  The VOR works at higher speeds up to 350 deg/ sec [78] and has a 

latency as short as 5 msec [50, 59].  

If images are not maintained on the fovea during head movement, visual blurring occurs.  

Head movement-induced visual blurring is termed oscillopsia [14]. Oscillopsia is an illusory 

sensation of movement or jumping of the surrounding stationary environment [22].  Oscillopsia 

indicates that the compensation for the vestibular function impairment has not occurred yet, in 

other words, oscillopsia is a reflection of VOR dysfunction [44].  Retinal slip, i.e. movement of 

the images off the fovea, manifests as oscillopsia and acts as an error signal to activate the 

adaptation of the VOR [42].  Another error signal that potentially activates the VOR adaptation 

is the position error signal [23, 85].  Position error occurs when there is a difference between the 

position of the gaze and the position of a target of interest during head movement [85, 90]. 

Preliminary evidence suggests that position error enhances VOR adaptation by increasing VOR 

gain [85, 90] and VOR substitution by increasing compensatory saccades [23]. 

Maintaining clear vision during the different activities of daily living is important for the 

continual and safe performance of these tasks.  Visual blurring during walking or any head 
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movements has the potential of limiting the patients’ ambulation to avoid head movements [25, 

108] leading to increased dependence and isolation [43]. 

2.2 VOR GAIN AND PHASE 

As discussed above, the VOR serves to maintain fixed gaze during head movements; this means 

that if the head is rotating to one side, the eyes should be moving at the same speed in the 

opposite direction. The function of the VOR is studied in terms of VOR gain and phase.  The 

gain of the VOR is the ratio of eyes velocity divided by head velocity, if the VOR is functioning 

optimally, the VOR gain should be 1.0 or close to 1.0 [31, 59].  The VOR phase reflects the 

temporal difference between eye and head movements. 

2.3 ANATOMY OF THE VOR 

The VOR is a 3-neuron reflex-arc that connects the labyrinth with the extra-ocular muscles 

(Figure 1).  Each semicircular canal (SCC) has excitatory connections to a specific pair of extra-

ocular muscles and inhibitory connections to another pair [59, 97].  In a study by Szentagothai 

[97], individual SCCs were stimulated to determine which pairs of extra-ocular muscles are 

connected to the stimulated SCC.  The superior SCC had excitatory connections with the 

ipsilateral superior rectus and the contra-lateral inferior oblique, while it had inhibitory 

connections with the ipsilateral inferior rectus and the contra-lateral superior oblique [97]. 

Stimulation of the posterior SCC resulted in contraction of the ipsilateral superior oblique and 
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the contra-lateral inferior rectus.  Stimulus to the posterior SCC also resulted in inhibition of the 

ipsilateral inferior oblique and the contra-lateral superior rectus.  Finally, stimulation of the 

horizontal SCC resulted in activation of the ipsilateral medial rectus and the contralateral lateral 

rectus and inhibition of the ipsilateral lateral rectus and the contralateral medial rectus.  Figure 2 

illustrates the excitatory pathways between the SCC and the extra-ocular muscles.  These 

connections between the SCC and the extra-ocular muscles are reflected in the patterns of 

nystagmus seen in patients with SCC involvement. 

It is worth noting that the control of the horizontal VOR is slightly different from the 

control of the vertical VOR [59]. While horizontal head movements stimulate the right and left 

horizontal SCCs, vertical head movements activate both the superior and the posterior SCCs on 

the right and left side. This implies that upward head movements stimulate a different SCC than 

downward head movements (posterior and superior SCC, respectively). Accordingly, the neural 

pathways stimulated by these movements also differ [59].    

 

Figure 1. A simplified diagram of the vestibulo-ocular reflex 
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Figure 2. Excitatory connections between the three semicircular canals (SCC) and the extraocular 

muscles 

 

The neurons of the VOR are located in the vestibular ganglion, the vestibular nuclei, and 

the ocular motor nuclei.  The ampulla in each SCC sends afferents to the vestibular ganglion by 

means of the vestibular cranial nerve (part of CN VIII).  The vestibular ganglion axons enter the 

brainstem to go to the vestibular nuclei which are located in the medulla and pons [10].  From 

the vestibular nuclei, axons travel through either the posterior longitudinal fasciculus or the 

substantia reticularis to the ocular motor nuclei.  The posterior longitudinal fasciculus is mainly 

responsible for conveying excitatory stimuli, while inhibitory stimuli are conveyed through the 

substantia reticularis [97].  The ocular motor nuclei that receive SCC afferents are the 

oculomotor (CN III), trochlear (CN IV), and abducens nerves (CN VI).  

The superior SCC (a) has 
excitatory connections with the 
ipsilateral superior rectus (d) and 
the contralateral inferior oblique 
(i). The posterior SCC (c) has 
excitatory connections with the 
ipsilateral superior oblique (e) and 
the contralateral inferior rectus 
(h). The lateral SCC (b) has 
excitatory connections with the 
ipsilateral medial rectus (f) and 
the contralateral lateral rectus (g). 
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There are 4 major vestibular nuclei: the medial vestibular nucleus (MVN), the lateral 

vestibular nucleus (LVN), the descending vestibular nucleus (DVN), and the superior vestibular 

nucleus (SVN) [9].  Fibers from these nuclei project to different areas of the nervous system; 

examples of these areas include the ocular motor nuclei, the cerebellum, descending spinal cord 

tracts, and the reticular formation [59].  

The MVN is the largest of the vestibular nuclei [9].  The rostral portion of the MVN 

receives input from the SCCs and sends efferent output to the III, IV, and VI cranial nerve 

nuclei.  The MVN plays a major role in controlling the VOR.  The MVN also has connections to 

the cervical spinal cord and the cerebellum.  The rostro-ventral portion of the LVN receives 

afferents from the cristae of the SCC and the macula of the utricle and sends efferent information 

to the occulo-motor nucleus.  The LVN also sends projections to the spinal cord.  The DVN 

sends projections to the ocular motor nuclei through its most rostral part.  The SVN receives 

input from all SCCs.  The extensive connections between the vestibular end organs and the 

vestibular nuclei require divergence of the data from the vestibular nerve afferents to the 

vestibular nuclei; a single axon from one of the SCCs activates several neurons in multiple 

vestibular nuclei [59].   

The aforementioned connections of the vestibular nuclei from the vestibular receptors 

enable these nuclei to process head movement data.  The vestibular nuclei also receive input 

from other sources which include visual, cerebellar, and proprioceptive sensory information.  For 

example, in the vestibular nuclei several neurons that modulate the VOR receive eye movement 

data; these neurons include the position vestibular pause (PVP) neurons [81].  The PVP neurons 

receive SCC afferents about movement of the head and send efferent information to the ocular 

motor nuclei.  Position vestibular pause neurons are active in tasks where steady fixation of 
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vision on targets during head movements is required (i.e. active VOR with maximum gain).  The 

neurons’ activity is attenuated whenever the task involves a gaze shift, via saccades or smooth 

pursuit.  The activity is more attenuated (i.e. the neurons pause) if the gaze shift is achieved by 

saccades.  The inactivation of the VOR is required to reduce the VOR gain whenever redirection 

of vision from one object to another is performed during head movement [94, 95].   

The activity of PVP neurons is independent of whether head movement is passive or self-

generated [81].  It is proposed that efference copies of oculomotor commands sent to the PVP 

neurons underlie their pattern of activity.  These copies can be sent from premotor circuits that 

generate saccades and smooth pursuit [81].     

Another special type of secondary vestibular neuron is the Vestibular Only (VO) neurons 

which are thought to mediate the vestibulo-collic reflex [82].  These neurons are responsible for 

differentiating passive from active head movements.  Vestibular Only neurons encode passive 

and not active head movements.  The distinction between passive and active movement is 

accomplished by comparing incoming neck proprioceptive sensory information to an internal 

expectation of the consequences of motor commands.  If sensory information matches what is 

expected, then movement is active and VO neurons are not activated.  If there is a discrepancy, 

however, between what is expected and the sensory information from the neck, then the VO 

neurons are activated to encode passive head movement [82].  

Accordingly, VO neurons activate the vestibulo-collic reflex whenever passive head 

movement is detected to maintain the position of the head in space.  When self-generated head 

movement is required the VO neurons are not active since the vestibulo-collic reflex in these 

instances is counterproductive.  The ability to differentiate between sensory information that is 



 

11 

 

the result of our own actions versus changes in the surrounding environment is critical for 

posture control, sensory orientation, and motor control. 

2.4 VOR DURING GAIT 

During gait, head movements occur at high frequencies. Dominant head perturbations during 

walking or running may reach up to 8 Hz [30]. The VOR is the only system capable of producing 

short latency responses to control eye movements. The vestibulo-ocular reflex generates eye 

movements at latencies of less than 5 msec [59, 95]. 

During walking, horizontal and vertical head velocities in normal subjects do not exceed 

90 deg/ sec, and during running, horizontal and vertical head velocities do not exceed 170 deg/ 

sec [30]. However, these velocities of head movement were obtained during trials in which 

subjects were looking at a wall 7.3 meters away [30], i.e. subjects were looking straight and did 

not perform the horizontal and/or vertical head movements that normally accompany walking 

and running in different environments.  

When examining the vestibulo-ocular reflex performance in normal subjects during 

walking and running in place while visually fixing on a target 100 meters away, Grossman et al 

[31] showed that peak gaze velocity was < 3.0 deg/ sec during walking (horizontally and 

vertically) and running (horizontally). Vertical peak gaze velocity during running ranged up to 

9.3 deg/ sec. The gain of the horizontal VOR during walking and running in place ranged 

between 0.89 and 1.03. The gain of the vertical VOR ranged between 0.94 and 1.23. Grossman et 

al’s work showed that the VOR was able to maintain clear vision during walking and running in 
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place.  Pozzo et al [76] examined the control of head position during activities similar to the 

activities examined by Grossman (walking, walking in place, running in place, and hopping). 

The head velocities in the sagittal plane were always <100 deg/ sec in all tested activities. 

2.5 TESTING VOR FUNCTION 

Laboratory testing of the VOR function includes the caloric, the rotational chair, and ocular 

motor testing. The VOR parameters measured using these tests are useful to detect vestibular 

lesions [66]. The head thrust test is another clinical test of the VOR. One of the shortcomings of 

these tests is that none are functional tests. In addition, the frequencies examined in these tests 

are not similar to the actual frequencies during the activities of daily living during which the 

VOR is usually active [30]. 

2.5.1 Head impulse (thrust) test 

The impulse test was developed by Halmagyi and Curthoys as a simple bedside clinical 

examination of the horizontal VOR [36]. The purpose of this test is to assess the function of the 

horizontal VOR in maintaining fixed gaze during rapid head movements. Small-amplitude (≈ 5 – 

20 degrees), high-acceleration (3,000 – 4,000 deg/sec2), and unexpected head thrust is applied 

while a subject is trying to maintain fixed gaze on a target [93]. The VOR helps maintain the 

eyes fixed on the target by causing slow phase eye movement that is equal in magnitude and 

opposite in direction to the head movement (VOR gain = 1.0). In patients with peripheral 
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vestibular hypofunction, the eye movement caused by the VOR is not sufficient (reduced VOR 

gain) and a catch-up saccade in the direction of the site of the vestibular lesion is required to 

bring the eyes back to the initial location [36]. 

In patients with unilateral vestibular hypofunction, the sensitivity of the head impulse test 

is 34 – 39% and the specificity is 95 – 100% [11, 37, 38]. However, these sensitivity and 

specificity values were calculated using the caloric test as a gold standard. The use of the caloric 

test as a reference is problematic, since the VOR frequencies tested in the caloric differ from 

those tested in the bedside impulse test. Using the scleral search coil head impulse test as a gold 

standard, the sensitivity of the clinical impulse test is 63 – 72% and the specificity is 64 – 78% 

[55]. Performing the head thrusts in the plane of the horizontal semicircular canal (i.e. with the 

head flexed 30 degrees) improves the sensitivity (75%) but not the specificity (82%) [93].    

The timing of occurrence of the saccade relative to the head thrust influences the 

accuracy of the test; if the catch-up saccades occurred after the head thrust (overt saccades), the 

examiner can detect them and a positive diagnosis is confirmed. However, if the catch-up 

saccades occurred during the head thrust (covert saccades), it is impossible for the examiner to 

detect them leading to a false negative test result [65, 107]. The use of a scleral search coil 

during the head impulse test to objectively measure head and eye movement is the gold standard 

to detect the catch-up saccades (100% specificity and sensitivity) [55]. A new study using a light 

weight video occulography system attached to spectacle frames showed that the new system is as 

good as the gold standard in detecting the catch-up saccades [65]. 
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2.5.2 Head shake test 

During the head shake test, the subject is instructed to close his/ her eyes while the examiner 

applies horizontal oscillations at a rate of about 2 Hz [5, 38]. The subject is then instructed to 

open his/ her eyes and the therapist observes the eyes for any nystagmus. Patients with unilateral 

vestibular lesions manifest a nystagmus beating towards the uninvolved side [13]. Negative 

response (i.e. fixed gaze with no nystagmus) is observed in healthy subjects and patients with 

bilateral vestibular loss, the latter being due to the lack of stimulation to both vestibular systems 

with the head movement. Closing the eyes during this test is important since visual fixation on a 

target suppresses the nystagmus. An alternative to closing the eyes would be using Frenzel’s 

goggles [13].  A 30 degree forward head flexion during the test enables examining the function 

of the horizontal SCC specifically [38]. 

The head shake test has low sensitivity (35%) and high specificity (92%) [38].  A positive 

head shake test is likely to indicate a vestibular lesion and has been correlated with abnormal 

caloric testing. However, a negative head shake test does not exclude a vestibular lesion [5, 38].   

2.5.3 Caloric test 

The caloric test is considered a gold standard test of vestibular function [1]. Bithermal caloric 

irrigation examines the function of the horizontal SCC and the superior vestibular nerve [13].  

Testing is done in a darkened room using infrared goggles to record eye movement [52]. During 

the caloric test, warm (44° C) and cold (30° C) water is irrigated through the external auditory 

canal [13]. Cold water irrigation evokes horizontal nystagmus beating away from stimulated ear 
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while warm water irrigation causes horizontal nystagmus beating towards the stimulated ear. 

Asymmetrical response between the right and left labyrinthe (>25% asymmetry), reduced 

response (< 4 deg/ sec), and directional preponderance (> 30 %) are considered pathological 

findings [52]. The caloric test examines the function of the VOR at low frequencies (0.002 – 

0.004 Hz) [1, 13]. 

2.5.4 Rotational chair test 

During the rotational chair test, the subject is seated on a chair that rotates with certain 

frequency.  Most frequencies used for the rotational chair test are between 0.01 – 0.10 Hz [1, 4].  

Eye movements are recorded via electro-oculography.  Nystagmus is observed during 

accelerating the rotary chair and when the chair movement is stopped [13].  During the 

acceleration phase, fast beating nystagmus is observed in the direction of rotation while slow eye 

movements are opposite to the direction of rotation [4]. The reverse is observed when the rotary 

chair is suddenly stopped [13].    

The rotational chair examines the function of the horizontal SCC [1, 13].  Outcome 

measures of the rotational chair test include the VOR gain and phase [4, 13]. If the chair rotation 

was done at a frequency of 0.05 Hz, then VOR gain < 0.25 and VOR phase > 24 ° are considered 

abnormal findings [52]. 
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2.6 DYNAMIC VISUAL ACUITY TESTING 

The dynamic visual acuity test (DVA) compares visual acuity during active head movement and 

static visual acuity.  In the bedside DVA test, subjects were asked to move their heads at constant 

speeds (at a rate between 1 – 2 Hz) while viewing a Snellen chart, the examiner reported the size 

of the smallest optotype (letter) subjects could correctly identify while moving their head.  The 

frequency of head movement during the DVA test affects subject’s performance; the higher the 

frequency, the worse the DVA test score [19].  A computerized version of the test was developed 

and made commercially available by NeuroCom (NeuroCom International, Inc., Clackamas, OR, 

USA).  In the computerized version, a head mounted sensor (an InterSense Inertia Cube2, 3-axis 

integrating gyro) is used to measure the range and the velocity of head movement and provide 

feedback to the subject and the examiner about the head movement.  Other computerized 

versions of the DVA test are also available in the market. 

Early studies of the bedside dynamic visual acuity test show that there were significant 

differences between DVA test scores of patients with vestibular disease and healthy age-matched 

subjects [60].  A drop of more than 2 lines with head movement was considered abnormal.  The 

performance on the DVA test correlated with the degree of abnormality in the caloric test [60].  

The bedside DVA test was found to be highly specific but not highly sensitive test [15].  The 

head movement in these early studies of the bedside DVA test was always passive.  In a study 

examining the contribution of preprogrammed eye movements during the performance of the 

DVA test, unpredictable (passive) head movements caused greater decrement in the DVA than 

predictable (active) head movements [45].      
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A problem with the bedside tests of dynamic visual acuity is the lack of accurate 

monitoring of head movement speed. Accordingly, the optotype presentation was not 

coordinated with achieving the required head velocity. In addition, the contribution of eye 

movement control systems other than the VOR could not be excluded; the lack of accurate 

monitoring of the head velocity could not account for a slowing down of the head that allows for 

the contribution of eye control systems other than the VOR in maintaining gaze. In addition, 

since the bedside tests used a Snellen chart, the continuous optotype presentation during the head 

movement could allow the slower eye control systems to contribute to maintaining the gaze.   

The computerized DVA test minimizes the use of preprogrammed eye movements by 

presenting the optotype at unpredictable intervals during the head movement.  In addition, using 

a computerized test limits the optotype presentation time to an interval between 40 – 75 msec.  A 

short presentation interval has the advantage of excluding the contribution of eye movement 

control systems other than the VOR, an advantage over the bedside DVA that uses the Snellen 

chart. In a study examining the effect of testing position on passive DVA test scores, Danenbaum 

et al [18] demonstrated that testing position (sitting, standing, semi-tandem standing) did not 

have an effect on patients’ scores on the horizontal and vertical DVA test when the head 

movement was performed by the therapist at a rate of 1.5 Hz.   

The computerized dynamic visual acuity test has been shown to improve following 

vestibular physical therapy in patients with unilateral [44, 49] and bilateral [43] vestibular 

hypofunction.  In these studies, the DVA was measured during active head movements in the 

yaw plane only and not in the pitch plane.  In a study of the vertical DVA, Schubert et al. 

reported that patients with bilateral vestibular hypofunction had significantly lower scores on the 

vertical DVA than healthy subjects and patients with unilateral vestibular hypofunction [89].   
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Roberts et al. [80] reported that the horizontal DVA was two times more sensitive than vertical 

DVA in detecting dysfunction of the VOR.  Examining visual acuity while walking revealed that 

patients with a history of severe bilateral vestibular dysfunction had significant degradation in 

visual acuity compared to healthy controls [47]. 

A general problem of the DVA test is that the use of progressively smaller optotype size 

during the test limits its use with patients with visual comorbidities such as cataracts and diabetic 

retinopathy.  In this patient population, the inability to see a small size optotype can be either due 

to a visual comorbidity or VOR dysfunction.    

The velocity of head movement during the DVA test does not change while the optotype 

size changes.  Few research labs that use the computerized version of the DVA test use a velocity 

range between 120 – 180 deg/ sec [6, 46]. The rationale for using this relatively high speed range 

is that at such high velocities the pursuit system cannot be used to control the eye movement and 

the VOR is the only system that can be used to maintain the stability of images on the retina [46].  

In addition, a velocity of 120 deg/ sec is the upper range of head velocity during gait [30, 89].   

2.7 GAZE STABILIZATION TEST 

The gaze stabilization test (GST) is the most recent addition to the functional tests that 

objectively examine the function of the VOR.  The GST measures the maximum speed at which 

subjects could move their head while still able to view an optotype clearly.  At fast head 

movement velocities (> 100 deg/ sec), the VOR is the only eye control system capable of 
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maintaining fixed gaze and reducing retinal slip [59].  Patients with vestibular dysfunction may 

limit their head movement in order to maintain clear vision and reduce retinal slip [25, 108].   

As discussed above, at slower head movement velocities, eye movements can be 

controlled by the smooth pursuit, the optokinetic system, the cervico-ocular reflex, and 

preprogrammed eye movements [45, 59, 92].  Since the GST measures the maximum speed a 

subject can achieve while still maintaining fixed gaze on an optotype of a certain size, the score 

on the test provides information about which activities may be limited due to the vestibulopathy, 

such information may prove important when following the improvement of patients with 

therapy.  Functional performance during the activities of daily living can become limited if one’s 

head movement is restricted to speeds below 70 deg/ sec [29-31]. 

In patients with vestibular hypofunction, head velocities measured using the GST 

significantly correlated with the patient gait performance measured using the Dynamic Gait  

Index and the Timed “Up and Go” test [108].  The GST cutoff values for identification of gait 

abnormalities were 65 deg/ sec in the pitch plane and 63 deg/ sec in the yaw plane [108].  

Maximum head velocities measured using the GST test in patients with unilateral vestibular loss 

were reduced on the affected side and the unaffected side [25].   

One of the advantages of the GST over the DVA test is the use of a fixed optotype size 

during the GST.  The change in optotype size during the DVA test limits its use with patients 

with visual comorbidities.  A patient’s inability to see the optotype while moving the head during 

the DVA test can be attributed to either the visual comorbidity or the VOR dysfunction.  

However, in the GST, the size of the optotype used during the head movement is always large 

enough to account for the subject’s visual comorbidity.   
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Similar to the computerized DVA test, the GST minimizes the use of preprogrammed eye 

movements by presenting the optotype at unpredictable intervals. In addition, using a 

computerized test limits the optotype presentation to an interval between 40 – 75 msec.  The 

short presentation interval has the advantage of excluding the contribution of eye movement 

control systems other than the VOR.  A limitation of the GST is that with patients with neck 

musculoskeletal problems, for example older patients with arthritis, the head movement might 

cause pain or limit their neck mobility. 

Goebel et al. [25] and Whitney et al. [108] examined the sensitivity and the specificity of 

earlier versions of the computerized GST. Goebel et al. reported 93% sensitivity and 64% 

specificity, Whitney et al. reported 44% sensitivity and 90% specificity.  Goebel et al. reported a 

reliability index of 0.91.  While Goebel et al. examined head movement in the yaw plane only; 

Whitney et al. examined head movement in the yaw and the pitch planes.  

Ward et al [105] reported that the GST scores for young healthy subjects (age range 21 – 

35) were 159.4 (34.6) deg/ sec in the yaw plane and 141.3 (26.6) deg/ sec in the pitch plane and 

in old healthy subjects (age range 65 – 88) 124.0 (32.5) deg/ sec in the yaw plane and 108.7 

(30.2) deg/ sec in the pitch plane.  In Ward et al’s study, the optotype size was fixed at 0.25 

LogMAR above subjects’ SVA. There were significant differences in GST scores between the 

young and the old healthy subjects in the yaw and the pitch planes [105]. 

The specific aims of this dissertation were to help improve the performance of a 

computerized system that quantitatively measures the function of the VOR using the gaze 

stabilization test.  The first part of this dissertation examined the reliability of the commercially 

available InVision™ system. Second, the size and presentation time characteristics of the 

optotype used for the GST were examined. In this aim, performance curves for the GST were 
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created. Finally, the performance of high school athletes following mild concussion on the GST 

was examined. Correlations of the GST scores with objective and subjective measures used in 

this patient population were also investigated. 
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3.0  SPECIFIC AIMS 

3.1 SPECIFIC AIM 1 

Since the InVision™ device is new technology for assessing visual/vestibular function; we first 

investigated the test-retest reliability and response stability of the device. In Aim 1, we 

determined the test-retest reliability and response stability of the InVision™ device in patients 

with vestibular dysfunction and correlated the patients’ InVision™ test scores with their 

headache, dizziness, nausea, and visual blurring reported using a Visual Analog Scale (VAS). 

3.2 SPECIFIC AIM 2 

Contrary to what was hypothesized in Aim 1, the reliability of the InVision™ GST was poor.  

Accordingly, Aim 2 was adjusted to further examine the GST.  In Aim 2, the optotype 

parameters used for the GST were examined and the algorithm used in the test was changed.  

The goal of this study was to examine the performance of healthy young subjects on the gaze 

stabilization test using different optotype size and presentation time combinations over a wide 

range of head velocities. Plots of performance versus head velocity were created for various 
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optotype size and presentation time combinations. At the end of this study we were able to 

decide which combination was optimal for future measurements of the GST. 

3.3 SPECIFIC AIM 3 

Using the optotype size/ presentation time combination obtained in Aim 2, in specific Aim 3 we 

examined the GST scores in young subjects following head concussion. This was a pilot study in 

a population in which the GST will potentially provide important information about the impact 

of a concussion.  Our goal was to compare the performance of patients following concussion to 

that of healthy young subjects without concussion and to correlate the GST scores with measures 

used with concussion patients. The measures examined included the ImPACT scores, the DHI, 

and the ABC scale. 
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4.0  THE RELIABILITY AND RESPONSE STABILITY OF DYNAMIC TESTING OF THE 

VESTIBULO-OCULAR REFLEX IN PATIENTS WITH VESTIBULAR DISEASE 

4.1 ABSTRACT 

The purpose of the study was to investigate the test-retest reliability and response stability of the 

Dynamic Visual Acuity (DVA) and Gaze Stabilization Test (GST) in patients with vestibular 

disorders. Twenty-nine patients with vestibular disease (16 – 78 years) participated. Subjects 

performed the GST and DVA in pitch and yaw planes, twice in one session and once after 7 – 10 

days. The GST output is the maximum head velocity at which the patient was able to identify 

orientation of the letter E. The DVA output is the change in visual acuity when moving the head 

compared to static acuity. Subjects indicated their level of dizziness and visual blurring using a 

visual analog scale. Within- and between-sessions intraclass correlation coefficients ranged 

between 0 – 0.5 for the DVA and GST measures, with better correlations for within-session 

assessments. Response stability (standard error of measurement / mean) of the GST ranged 

between 21 – 32% and the DVA ranged between 25 – 69% with vertical DVA being most 

influenced by measurement error. Subjects’ symptoms did not correlate with performance on 

either test. The current test protocol needs refinement to enhance reliability and stability in 

persons with vestibular disorders.   
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4.2 INTRODUCTION 

In order to maintain gaze on a stationary target while the head is moving, the vestibular system 

detects the velocity of the head movement and, by means of the VOR, induces eye movements 

that are equal in magnitude and opposite in direction to the head movements [31, 59, 90]. 

Maintaining fixed gaze during head movement insures that images are held steady on the retina, 

thus maintaining clear vision. Compared to the other systems that control the movement of the 

eyes, the VOR has the shortest latency (<5 msec) [59]. The function of the VOR is measured by 

means of the VOR gain, i.e. the ratio of the eye velocity to the head velocity. VOR gain should 

normally equal 1. Reduced or increased VOR gain indicates that the velocity of the eyes’ 

movements is not equal to that of the head. 

Dysfunction of the VOR leads to deterioration of vision during head movements that may 

lead to postural instability and increased risk of falling [35], may limit patients’ ambulation to 

avoid falling [108],  and may result in avoidance of social activities and increased dependence 

[43].  It is somewhat controversial as to whether vestibular dysfunction interferes with driving 

abilities [64]. Visual blurring indicates that compensation following a vestibular insult has not 

taken place yet or has been insufficient to regain normal vestibulo-ocular reflex (VOR) gain [41, 

90].  

The dynamic visual acuity test (DVA) [43-46, 91] and the gaze stabilization test (GST) 

[6, 25, 108] are two functional measures of the VOR. During DVA testing, visual acuity during 

head movement is compared with visual acuity with the head stationary to provide an indication 

about the amount of loss of visual acuity due to head movement. The DVA test was first 

introduced as the dynamic illegible E test [60, 61]. In the dynamic illegible E test, the subject 
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attempts to determine the orientation of the letter E on a visual acuity chart while the head is 

moved passively by the examiner at predetermined frequencies (1 or 2 Hz). The letter E was 

chosen because it has good legibility compared to other letters of the alphabet [60]. A 

computerized version of the test was later introduced in which the letters were presented on a 

computer screen when the head velocity reached a certain, predetermined value [46]. In the 

computerized version of the DVA, head movements are monitored using a velocity sensor 

mounted on the patient’s head. The GST provides another way of examining the dynamic 

function of the VOR. In the GST, the maximum velocity a subject is able to achieve while still 

being able to correctly identify the orientation of an optotype (the letter E) presented at a specific 

size is measured [25, 105].  

Patients with unilateral or bilateral vestibular lesions perform significantly worse on the 

DVA [7, 19, 43, 44, 91] and the GST [7, 25, 77, 108] when compared with healthy subjects. The 

performance of patients improves following a program of vestibular physical therapy which 

included gaze stabilization exercises [6, 8, 34, 43, 44, 49, 84]. Accordingly, the DVA test and the 

GST results can provide valuable information about the function of the VOR, degree of 

compensation, and provide a method to track changes during the physical therapy intervention. 

Earlier versions of the GST and DVA test were reliable [25, 46, 77, 89].  NeuroCom 

International recently introduced a new computerized version of the tests; the InVision™ Tunnel 

System.   

The purpose of the current study was to examine the test-retest reliability and the 

response stability of the GST and the DVA test using the computerized InVision™ Tunnel 

system in patients with vestibular disorders. This study also examined the influence of patients’ 
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perceived levels of visual blurring and dizziness symptoms on their performance on the GST and 

DVA tests. 

4.3 METHODS 

4.3.1 Subjects 

Twenty-nine subjects (mean age = 50 years, SD = 14, range: 16 – 78, 5 male) with vestibular 

dysfunction were recruited for the study.  Participants were included in the study if they were 

diagnosed with a vestibular disorder by a neuro-otologist. Patients were referred to the study by 

their treating physical therapists when the subjects demonstrated that they could tolerate the head 

movements required for the DVA and GST, as demonstrated by their ability to perform the 

VORx1 exercise without a large increase in the their symptoms. The study procedures were 

approved by the Institutional Review Board at the University of Pittsburgh. All participants 

signed the written consent before the start of the research activities.  Exclusion criteria included: 

1) a musculo-skeletal problem that limited neck mobility, 2) severe nausea, headache, or 

dizziness symptoms with head movement, 3) or static visual acuity (with corrective eye wear) 

worse than 20/40.  

Sixteen subjects had peripheral vestibular disorders (8 right, 4 left, 2 bilateral peripheral 

hypofunction, and 2 with non-localized peripheral vestibular lesion), 10 subjects had central 

vestibular disorders (6 subjects post-concussion), and 3 subjects had mixed central and 

peripheral vestibular disorders. Nine of the subjects had been previously treated for benign 
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paroxysmal positional vertigo in addition to their vestibular pathology. Alternate binaural 

bithermal caloric irrigation was performed on 23 subjects; 10 subjects showed an abnormal 

response. Twenty five subjects were tested on rotational chair, ocular motor, and positional 

nystagmus tests and results were abnormal in 13, 3, and 8 subjects, respectively. Vestibular 

evoked myogenic potentials test was abnormal in 9 out of 21 subjects. Table 1 provides a 

summary of subjects’ diagnoses and vestibular laboratory testing results. 

4.3.2 Equipment 

The InVision™ device (NeuroCom International, Inc., Clackamas, OR, USA) is composed of a 

CRT computer monitor that is placed inside a cabinet with a series of four mirrors that reflect the 

image on the screen; the subject was seated on a chair near the edge of the cabinet so that the 

total visual distance between the subject and the image displayed on the computer monitor was 

approximately 4 meters. Using testing distance of 4 meters insures that the semicircular canal 

system is the one being used to help maintain fixed gaze [59, 73]. Presenting visual targets close 

to the eyes during head movement requires the function of the otolith system to help maintain 

gaze in addition to conjugate eyes movements [59, 73].  Testing distance was standardized at 4 

meters to better match other traditional visual assessments and testing was conducted with the 

subjects personal lens correction, if needed. The operator viewed a separate computer screen to 

control the InVision™ testing (Figure 3). A head mounted sensor (an InterSense Inertia Cube2, 

3-axis integrating gyro) was used to provide feedback about the speed and range of head 

movements. The head sensor had 3 degrees of freedom, an update rate of 180 Hz, and an 
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accuracy of 1 degree in the yaw plane and 0.4 degrees in the pitch and roll planes [51]. The head 

sensor is mounted on a headband that is secured around the head using an adjustable strap. 

The InVision™ device was placed in a quiet room with white walls in the background. 

Room light was measured using a lux meter and fixed at 70 lux (per manufacturer 

recommendation). 

 

 

 

Figure 3. The InVision™ test setup. 

 

4.3.3 Testing protocol 

During all testing an optotype (the letter E) was presented on the computer screen. The open end 

of the E was pointing either up, down, right, or left and the subject was asked to determine the 

orientation of the E and verbally respond to the operator, who entered the response using the 

corresponding arrow key. The size of the E was reported in logMAR units. A logMAR is a 

The InVision™ 
device (NeuroCom 
International, Inc., 
Clackamas, OR, USA). A 
CRT computer monitor is 
placed inside a cabinet 
(Center). Four mirrors reflect 
the image from the screen so 
that the distance between the 
subject and the computer 
screen is 4 meters. The 
operator views a different 
screen to control the test 
(Left monitor). A head 
mounted sensor (an 
InterSense Inertia Cube2, 3-
axis integrating gyro) 
provides information about 
the range and the speed of 
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logarithm of minimal angle of resolution [39] and is considered the standard psychophysical unit 

for assessing visual acuity [40, 89]. All trials started with a short practice to ensure that subjects 

understood the required tasks and were comfortable performing the eye/head movements. 

4.3.3.1 Static visual acuity 

Testing commenced with the assessment of static visual acuity (SVA). The SVA test 

determined the smallest size of the optotype E the subject could see and identify correctly while 

the head was stationary. For this test, an outline of a black square was presented for two seconds 

in the center of the screen to ensure that the subject fixed his/ her vision on the location where 

the E would appear. After two seconds, the square disappeared, then after a 200 msec delay, the 

E appeared. The E remained on the screen for 2 seconds. The best Parameter Estimate by 

Sequential Testing (best PEST) adaptive algorithm was used to calculate the subject’s SVA 

score. The original PEST algorithm was developed by Taylor and Creelman as an adaptive 

procedure to measure psychometric properties [99]. Pentland proposed a modification of the 

original PEST algorithm, i.e. the best PEST adaptive algorithm [72]. Compared to other 

algorithms, the best PEST algorithm is a more efficient procedure, requiring the fewest trials to 

reach a certain precision [58]. The best PEST algorithm has been used in the InVision device to 

determine the SVA score, in addition to determining the minimum perception time (mPT), DVA, 

and GST scores as will be discussed. A new SVA score was established during each testing 

session. 
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4.3.3.2 Minimum perception time 

After establishing the subject’s SVA, the mPT was measured. In the mPT test, the 

shortest duration of optotype presentation while the subject could still correctly identify the 

orientation of the optotype was determined. The optotype size during the mPT was fixed at 0.25 

logMAR above the subject’s SVA. During the mPT test a square was presented at the center of 

the computer screen. After two seconds the square disappeared and 200 msec later an E appeared 

in its place.  Based on the duration of presentation of the optotype and the subject’s performance, 

the best PEST algorithm was used to calculate the mPT score.  

4.3.3.3 Dynamic visual acuity and gaze stabilization tests 

The outcomes of the SVA and mPT tests were used as the baseline for the GST and DVA 

tests. During the GST, the size of the E was held constant at 0.25 logMAR above the subject’s 

SVA. A value of 0.25 logMAR above SVA has been previously used in the literature. During the 

GST and the DVA test, the duration of the optotype presentation was calculated as follows: 

- If the mPT  was 40 msec or less, the optotype E was presented for 40 - 75 msec 

- If the mPT was greater than 40 msec, the optotype E presentation time ranged between 

(mPT) and (mPT + 35) msec 

According to the above criteria, an mPT score > 70 msec would lead to a presentation 

time >100 msec. Such long presentation time in the GST or the DVA test may allow for other 

eye movement systems, such as saccades, to contribute to the fixation of the eyes on the target 

during head movement. The InVision system flags the output in such cases as “unreliable”. 

The DVA and the GST required the patients to move their heads in the pitch or yaw planes 

while watching the computer screen. Feedback was provided to the subject and the operator via 
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two feedback bars that appeared on the screen before each task (Figure 4). One of the bars 

provided feedback regarding the range of head movement.  The amount of head movement was 

reflected by the movement of a dot on the feedback bar. For all tasks, the subject was expected to 

move his/ her head approximately 20 degrees to the right, left, up, and down from the subject’s 

neutral head position. The second feedback bar provided speed of head movement information 

which turned from grey to green whenever the required head velocity was achieved. Subjects 

were given a practice trial before each test to ensure they understood the task and the feedback 

provided via the two bars.  

Each trial began with a presentation of the feedback bars on the screen to show the subject 

the required range and speed of head movement. Once the subject achieved the required speed, 

the bars disappeared and the subject was instructed to continue the head movement and focus 

his/ her vision on the square in the middle of the screen where the E appeared. 

If the subject was unable to achieve the required range or velocity of head movement within 

8 seconds from the start of the task or could not maintain the required speed for the minimum 

duration of the optotype presentation (see above), the trial was interrupted and a message 

appeared on the screen to indicate that the required task velocity was not achieved. The latter 

was considered a failed trial. 
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A.  

 

B.  

 

Figure 4. Screen view of (A) patient and (B) operator screen during the gaze stabilization and the 

dynamic visual acuity tests. 

 

 

Feedback bars provided 
information about the head 
movement; the upper feedback 
bar reflected the range of the 
head motion (degrees). The 
lower feedback bar reflected the 
velocity of the head movement 
(degrees/ sec). 
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Dynamic visual acuity test 

In the DVA test, the speed of required head movement was fixed while the size of the 

optotype E changed. The InVision™ system (version 8.3.0) developed by NeuroCom uses a 

velocity range between 85 – 120 deg/ sec for the horizontal DVA test and 60 – 85 deg/ sec for 

the vertical direction.  The maximum velocity at which the smooth pursuit system can be used is 

60 deg/ sec [56, 57].  So, although the velocity we used (85 deg/ sec) is slower than the velocity 

chosen by the other laboratories (120 – 180 deg/ sec) [6, 34, 43, 44, 46, 89], there is no evidence 

that eye movement systems other than the VOR can be used at a speed of 85 deg/ sec to maintain 

fixed gaze.  In addition, functional performance during activities of daily living can become 

limited if one’s head movement is restricted to speeds below 70 deg/ sec [29-31]. Early trials of 

the DVA test using the InVision system with patients with vestibular disease showed more 

symptom aggravation and reduced patient tolerance at head velocities greater than 120 deg/ sec 

(personal communication with NeuroCom, Feb 1, 2010). 

The size of the optotype in each trial varied based on the subject’s responses and the best 

PEST adaptive algorithm until the DVA score was achieved. The DVA scores were determined 

for the left and right head movements during the yaw head movement test. Likewise DVA scores 

for up and down directions were determined during the pitch head movement test. The DVA 

score is the size of the smallest optotype that the subject was able to correctly identify while 

moving his/ her head within the predetermined speed limits. This “dynamic” visual acuity was 

then compared to the “static” visual acuity to determine the amount of loss in visual acuity 

during head movement. The DVA loss is defined as the DVA minus the SVA (DVA loss = DVA 
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– SVA).  The DVA loss score is computed for the left, right, up, and down head movements. The 

outcome of the DVA test is reported as the logarithm of minimum angle of resolution (logMAR) 

units.  

Gaze stabilization test 

In the GST, the size of the optotype was fixed at 0.25 logMAR above the subject’s SVA 

while the speed of head movements changed based on subject’s performance and the best PEST 

algorithm. The test was stopped when the subject could no longer increase the head velocity 

while still being able to accurately identify the orientation of the optotype. The outcome of this 

test is the maximum speed at which the subject can move his/ her head while still able to identify 

the orientation of the E. The outcome is reported for the left, right, up, and down directions in 

degrees/second. 

4.3.3.4 Experimental procedure 

In order to establish the test-retest reliability and response stability of the InVision™ test, 

patients with vestibular disorders were tested twice within one session with a 30 minute rest 

between testing and once again 7 – 10 days later. The order of testing, i.e. DVA vs. GST, and the 

direction of the head movement, i.e. horizontal vs. vertical, were randomly chosen for each 

subject. Each repetition of the whole battery of testing was completed in 20 – 25 minutes. 

Before the start of head movement testing and after each head movement task, a visual 

analog scale (VAS) was used to indicate the subject’s level of headache, dizziness, nausea, and 

visual blurring [33].  For each symptom, a 10-cm vertical line marked with “no symptom at all” 

at the bottom of the line and “as bad as it can be” on top of the line was used. Subjects were 
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asked to place a mark on the line for each symptom based on how they felt [33]. In order to 

examine the change in subject’s symptoms at any given test, their VAS score following that test 

was compared to the score following the immediately preceding test.   

4.3.4 Statistical analysis 

To determine the test-retest reliability of the measures, an intraclass correlation coefficient (ICC 

two-way mixed-effects model, model 3.1) [24] and 95% confidence intervals (95% CI) were 

calculated for the 2 within-session repetitions (the first and the second repetitions) and the 

between-session repetitions (the first and the third repetitions which were 7 – 10 days apart).  

The ICC is the ratio of between-subject variability to total variability with values ranging 

between 0 (no reliability) and 1.0 (perfect reliability) [74].  Values of the ICC between 0.75 and 

1.0 indicate excellent reliability, values between 0.40 and 0.74 indicate fair to good reliability, 

while values less than 0.39 indicate poor reliability [24]. Excellent reliability (i.e. high ICC 

values) indicates that subject’s scores are consistent over repeated measures. Intraclass 

correlation coefficients were calculated for subjects’ scores on the SVA test, GST, DVA loss 

(DVA – SVA), and DVA scores. 

Response stability of the GST and the DVA test was examined using the standard error of 

the measurement (SEM) and the SEM% for the two within-session repetitions and the first and 

third repetitions (between-session). Response stability is a measure of the consistency of 

repeated responses over time [74]. The SEM is an estimate of the within-subject variability 

(standard deviation of an individual’s score) after repeated measures.  The SEM was calculated 

using the sample standard deviation (SD) and the ICC as follows: SEM = SD √ (1 – ICC). The 
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SEM% provides a standardization of the SEM to enable the comparison of measurement error 

across different tests. The SEM% equals SEM/ mean * 100%. Using the SEM, the minimal 

detectable change (MDC) was calculated for those tests with ICC values that are significantly 

different from 0. The MDC is the amount of change in the measure that is greater than chance or 

measurement error [54]. The MDC is an important measure when examining the change in 

subjects’ performance after repeated measurements on a test. The 95% MDC = SEM * 1.96 * √2. 

Correlational analysis between the GST and the SVA was performed using Pearson 

product moment correlation (PPMC). The goal was to examine whether high SVA scores (larger 

optotypes) correlated with faster GST scores. The correlation between the GST and the DVA test 

was calculated to examine the relationship between the two tests. In order to examine the change 

in subjects’ dizziness and visual blurring after each head movement testing, repeated-measures t-

tests were calculated on subjects’ VAS scores before and after each test.  In order to examine 

whether subjects’ symptoms were associated with their performance on the GST or DVA test, 

correlational analysis between the GST or DVA loss scores and subjects’ symptoms was 

performed using Spearman non-parametric correlations. Spearman correlations were chosen due 

to the non-normal distribution of the VAS which was used to report the subjects’ symptoms.  

Due to the multiple comparisons performed in the correlational analyses, alpha levels (α) were 

set at 0.01. All analyses were performed using SPSS (version 17, SPSS Inc., Chicago, IL.) 
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4.4 RESULTS 

Table 2 shows the mean (SD) scores for subjects over the 3 repetitions of testing on the SVA, 

GST, DVA loss, and DVA. The GST and DVA scores are shown for left/right and up/down 

directions. Of the 29 subjects who participated in the study, 24 subjects returned for the second 

visit in which the third repetition of testing was performed. One of the subjects who returned for 

the second visit did not repeat the DVA for the 3rd repetition due to limited session time (i.e. n 

for DVA on 3rd repetition = 23) but the subject did complete the GST. The overall mean of the 

SVA scores was -0.04 ± 0.12 logMAR.  

On the mPT test, one subject who came for one session of testing only scored 90 msec on 

one repetition of the mPT. As discussed earlier, an mPT score of 90 msec leads to an optotype 

presentation range during the GST and DVA test between 90 – 125 msec. Such an extended 

presentation time renders the GST and DVA test invalid since the contribution of eye movement 

systems other than the VOR to the fixation of the eyes during the head movement could not be 

excluded.  This subject’s scores were excluded from the analyses. With that subject excluded, the 

mPT scores ranged between 20 and 50 msec in increments of 10 msec. The median of the mPT 

score was 20 msec. 

On average, patients’ scores ranged between 124 – 152 deg/ sec on the GST and 0.16 – 

0.25 logMAR on the DVA loss test. On the DVA loss test, patients’ scores in the yaw plane were 

worse than in the pitch plane, perhaps due to the higher head velocity in the yaw plane (85 – 120 

deg/ sec) compared to the pitch plane (60 – 85 deg/ sec); the difference was not statistically 

significant. There were no significant differences between patient’s performance on the left and 

right directions or between up and down directions in the GST and DVA test.   
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Test-retest reliability was examined using the ICC (model 3.1). The reliability was 

examined within-session (using the first and the second repetitions) and between-session (using 

the first and the third repetitions). Test-retest reliability for the SVA was excellent for the within-

session repetitions (ICC = 0.89, 95% CI: 0.78 – 0.95) and between-session repetitions (ICC = 

0.85, 95% CI: 0.68 – 0.93). 

Estimates of the reliability of the GST and the DVA test were higher within-session than 

between-session (Table 3). The reliability of the GST was generally poor (ICC values between 0 

and 0.48). Estimates of the GST reliability in the horizontal direction (ICC: 0 – 0.48) were 

slightly better than the vertical direction (ICC: 0 – 0.35). In the DVA test, the reliability of the 

DVA loss was poor to fair in all four directions (ICC: 0 – 0.50). However, when DVA scores 

were examined, the ICC values were good to excellent (ICC: 0.64 – 0.79) (Table 3). 

For the GST, the number of subjects used to calculate the reliability estimates varied in 

each direction tested (Table 3). Using the best PEST algorithm, if the subject was unable to 

perform the GST in one direction after the first few trials, even at very slow speed, testing for 

that direction was stopped and the subject was assigned a “No Score” for that direction. 

The response stability of the GST and DVA loss tests was examined using the SEM and 

SEM%. Table 4 shows the SEM and SEM% values for the GST and DVA loss test. The SEM% 

for the GST ranged between 21 – 32% and for the DVA loss between 25 – 69%. The vertical 

DVA test appeared to be the most influenced by measurement error (SEM%: 44 – 69%). 

The GST and DVA scores of the 12 patients with a unilateral peripheral lesion (8 right 

and 4 left lesions) in terms of lesion vs. non-lesion sides are displayed in Table 5.  There were no 

significant differences toward the lesion and non-lesion sides. There were no significant 

correlations between subjects’ scores on the GST and their SVA scores (R < 0.40) (Table 6). The 



 

40 

 

lack of significant correlation between GST and SVA indicated that, within the parameters used 

in the current test, patients’ performance on the GST was not influenced by the size of the 

optotype presented during the test.  The correlations between the GST and the DVA test were 

examined. The correlations were expected to be somewhat strong to reflect that the two tests 

measure two constructs that are similar (the function of the VOR) but not identical. In general, 

the GST and the DVA loss were inversely correlated.  Higher GST scores (i.e. faster head 

velocities) were correlated with lower DVA loss scores (i.e. reduced loss of visual acuity with 

head movement). Most of the correlations (8 out of 12) were weak (R < 0.38, Table 7). However, 

4 of the 12 correlations were strong (R: 0.52 – 0.72). The correlations seemed to be slightly 

stronger in the yaw plane (left and right) compared to the pitch plane (down and up). 

Patients were asked to report their symptoms of nausea, headache, dizziness, and visual 

blurring on a 10-cm VAS before and after each test. Most patients did not report any nausea or 

headache symptoms during testing. On average, patients’ level of dizziness before testing was 

3.7 cm out of 10.0 cm. The average increase in dizziness after testing was 1.5 cm (SD = 2.3). 

The level of visual blurring before testing was 2.6 / 10.0 cm and the average increase in the 

symptom after testing was 0.6 cm (SD = 1.5). Over the 3 repetitions of testing, patients were 

asked about their symptoms 12 times (3 repetitions of 2 tests (GST and DVA) with 2 directions 

in each test (horizontal and vertical)). The change in dizziness was statistically significant 6 out 

of the 12 times. The change in visual blurring was statistically significant only once; after the 3rd 

repetition of the vertical GST. None of the correlations between patients’ scores on the GST or 

the DVA loss test and their dizziness or visual blurring symptoms were significant. 
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4.5 DISCUSSION 

The reliability of the NeuroCom InVision™ GST and DVA test in patients with vestibular 

disorders is poor to fair.  Overall, the reliability of the tests was better within-session than 

between-session with the reliability of the DVA test better than that of the GST. To our 

knowledge, no other study has examined the reliability of the DVA or the GST between-session 

in persons with vestibular disorders; all reliability studies available in the literature repeated 

testing in one session on the same day [25, 46, 89]. 

The DVA loss is defined as DVA – SVA. Although the DVA scores were reliable (ICC 

between 0.65 and 0.79) and the SVA test was also reliable (ICC between 0.84 and 0.89), the 

DVA loss scores were not as reliable (ICC between 0.11 and 0.50). The drop in reliability raises 

the question that maybe the patient’s SVA scores should be established at the beginning of the 

intervention and the same SVA scores should be used for all follow up DVA tests. The 

standardization of the test procedure could increase the reliability of the test and ensure that any 

changes in the DVA loss scores are attributed to the changes in DVA and not SVA scores. The 

method described in the available literature that examined the reliability of the DVA loss test 

suggests that the SVA test was not repeated and only the DVA test was repeated [46, 89]. 

In a previous GST study, the reliability of the NeuroCom InVision™ system was 

examined in healthy young (25 ± 3 years) and older (76 ± 5 years) subjects [105]. The device 

was found to be reliable for both the GST (ICC values between 0.54 – 0.75) and the DVA test 

(ICC values between 0.10 and 0.60)[105]. In the study of healthy subjects, right and left test 

scores were averaged into a single yaw plane score. Similarly, up and down scores were 

averaged into a single pitch plane score. The statistical analyses in the current study were 
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conducted differently since the nature of the patients’ vestibular diseases renders the 

unidirectional performance asymmetrical, thus averaging the scores was not plausible in the 

patient population. However, when patients’ scores in the yaw plane were averaged, the 

reliability values did not improve; the reliability within-session was 0.44 and between-session 

0.09. It appears that the low reliability in the current study was not due to the different statistical 

methods used. 

Herdman et al [46] examined the reliability of an earlier version of the computerized 

DVA test in the horizontal direction while Schubert et al [89] examined the vertical direction.  

Their results indicate that the computerized DVA test was reliable when used with patients with 

vestibular deficits (ICC = 0.83 for horizontal and 0.94 for vertical DVA). Several differences 

exist between the current study and the ones conducted by Herdman et al. and Schubert et al. that 

render the comparison between the studies difficult. First, as discussed above, when examining 

the reliability of the DVA test, only the dynamic component of the test was repeated and not the 

SVA test. Second, testing distance in our study was fixed at 4 meters; the other two studies used 

a testing distance of 2 m. We chose 4 m to better match other traditional visual assessments. In 

addition, the head velocity used for the DVA test in the Herdman et al. and Schubert et al. 

studies was 120 – 180 deg/ sec for both horizontal and vertical DVA. In our study, we used a 

slower velocity range (80 – 120 deg/ sec for horizontal and 60 – 85 deg/ sec for vertical). Finally, 

while the InVision system uses the best PEST algorithm to calculate the final DVA score, the 

algorithm used by Herdman et al and Schubert et al always used 5 presentations of the optotype 

(the letter E) at each acuity level; such an algorithm can be time consuming and may trigger 

patients’ symptoms, especially when considering that the DVA test is done for right, left, up, and 

down directions. One of the advantages of the best PEST adaptive algorithm is that it uses fewer 
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trials to calculate the final score but the increased efficiency may come at a cost of reduced 

reliability. 

Schubert et al [89, 90] reported that when examining visual acuity of their subjects, 

testing was stopped when a subject scored 0 logMAR on the SVA or the DVA. A score of 0 

logMAR corresponds to 20/20 vision on the standard Snellen chart. In our experience, subjects, 

especially those with corrected vision, can score below 0 on visual acuity testing, especially the 

SVA. For example, in the current study, 19 out of the 28 patients had an SVA score below 0 

logMAR. Stopping testing at 0 logMAR means that the DVA loss score will not reflect the real 

difference between subjects’ DVA and SVA scores but the difference between their DVA score 

and 0.  Assessing reliability of DVA loss when using a lower limit of 0 for SVA would be 

similar to assessing reliability for DVA (not DVA loss). Our study found that reliability for DVA 

was higher than that for DVA loss and more similar to the findings of Schubert et al. 

When examining the DVA test or the GST in the vertical direction, it is important to 

document if the patient is wearing bifocal glasses. During the testing of the downward direction, 

the optotype is presented shortly after the subject starts moving downward after reaching the 

maximum upward excursion; thus the optotype may be presented while the patient is looking 

through the lower half of the lens which is typically used for reading. Since the optotype is 

presented at a distance of 4 meters, the subjects’ inability to identify the orientation of the 

optotype may be due to the inappropriate correction rather than a VOR deficiency. The DVA test 

would be expected to reflect this problem more than the GST since the size of the optotype in the 

GST is held constant above the subject’s SVA. Eight patients were tested while wearing bifocals; 

the mean score on the DVA loss test for the bifocal wearers in the down direction was 0.16 
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logMAR vs. 0.13 logMAR in the up direction. On the GST, the mean score of the bifocal 

wearers was 148 deg/ sec for both up and down directions. 

Goebel et al [25] examined the reliability of the GST in the horizontal direction only on 

an earlier version of the InVision™ system. The ICC for the GST in the horizontal direction was 

0.91. The optotype used by Goebel et al was 0.30 logMAR above the subjects’ SVA and the 

testing distance was 3 meters. In the current study the optotype size was 0.25 logMAR above 

SVA at a 4-meter distance. Goebel et al [25] used larger optotypes at a shorter testing distance. 

In our clinical experience, such a seemingly minor change in optotype increment and testing 

distance could significantly affect the patients’ performance on the test, rendering the 

comparison between the results of the two studies difficult.   

Ward et al. [105] calculated the MDC for the GST and DVA loss test using a sample of 

healthy subjects. The MDC for the GST was 51 – 55 deg/ sec and for the DVA loss test 0.14 – 

0.24 logMAR. The MDC values for the GST in the current study are larger than those of Ward et 

al. The difference is mainly due to the larger ICC value for the horizontal GST in the sample of 

healthy subjects (ICC = 0.69). A possible explanation for the larger MDC value in patients is that 

there was greater variability in the patients’ performance. 

The correlation between the GST and the SVA was examined to investigate whether 

higher SVA scores were correlated with better/ faster GST scores. Higher SVA scores mean that 

larger optotypes would be presented during the GST.   We wanted to confirm that the larger 

optotypes did not make the GST easier for subjects with poor vision simply due to the size of the 

optotype used. There were no significant correlations between the GST and the SVA suggesting 

that the larger optotypes used did not affect the findings. 
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The DVA test is widely used to functionally examine the VOR in patients with vestibular 

disorders. The GST is a relatively new test. The correlations between the GST and the DVA tests 

were generally weak, suggesting that the GST and the DVA tests may measure different aspects 

of the function of the VOR. 

Several studies have examined the correlation between patients’ symptoms during 

testing, specifically visual blurring, and their GST or DVA scores [7, 43, 44, 89]. Our results 

were consistent with previous findings; there were no significant correlations between patients’ 

symptoms and their functional VOR test results. The only study that found a significant 

correlation between DVA (specifically in the up direction) and visual blurring used a passive 

DVA test and had more stringent inclusion criteria (>50% asymmetry on the Caloric test 

compared to >25% asymmetry in other studies) [7].  The lack of significant correlation between 

the GST and DVA test and the patients’ symptoms may be because symptom provocation and 

the GST/DVA tests may measure different constructs.  

The algorithm used for the GST appears to need further refinement. While most available 

studies in the literature used an algorithm where the optotype was presented five times at each 

head velocity and testing advanced in increments of 10 deg/ sec [25, 77, 108], the InVision 

system used in the current study utilized the best PEST adaptive algorithm to control the 

progress of the test and calculate final GST scores. The earlier algorithm is time consuming and 

may provoke patients’ symptoms, especially when considering that testing is usually done for the 

right, left, up, and down directions. At the same time, while the best PEST algorithm uses fewer 

trials to calculate patients’ scores, its use may not be optimal for the GST but appears to be 

acceptable for the DVA.   



 

46 

 

4.6 CONCLUSION 

Future research will be aimed at improving reliability and stability of DVA testing and of the 

GST.  To accomplish this, the best PEST algorithm may need to be replaced with an algorithm 

that can be tailored for each patient.  The GST and DVA tests provide valuable information 

about the functional performance of the VOR. If the SVA used for the DVA test is standardized, 

the InVision system’s DVA test appears to have good reliability. As for the GST test, the current 

protocol needs to be altered to improve the reliability of the test scores and the ease of 

comparison across different laboratories. Testing distance, size and presentation time of the 

optotype, and the testing protocol should all be examined further in an attempt to enhance the 

reliability of the GST in persons with vestibular dysfunction. 
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Table 1. Patient diagnoses and vestibular laboratory testing results 

Patient Diagnoses N (%) 
Peripheral vestibular disorders 16 (55%) 

 Right 8 
 Left 4 
 Bilateral 2 
 Non-localized 2 

Central vestibular disorders 10 (35%) 

 Post –concussion 6 
Mixed central and peripheral vestibular disorders 3 (10%) 

Vestibular disorder plus BPPV 9 (31%) 

Vestibular Laboratory Testing  
Caloric test (n = 23) 10 
Rotational chair (n = 25) 13 
Ocular motor (n = 25) 3 
Positional (n = 25) 8 
Vestibular evoked myogenic potential (n = 21) 9 
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Table 2. Mean and standard deviation of static visual acuity (SVA), gaze stabilization test (GST/ left, 

right, up, and down), dynamic visual acuity loss (DVA loss/ left, right, up, and down), and DVA (left, right, 

up, and down) for all 3 repetitions of testing in patients with vestibular disease. 

 Session 1 Session 2 
 1st repetition 2nd repetition 3rd repetition 
SVA (logMAR) -0.03 (0.11) -0.04 (0.13) -0.06 (0.14) 
GST (deg/sec)    

Left 130 (48) 139 (50) 152 (39) 
Right 136 (38) 143 (50) 143 (42) 
Up 131 (45) 138 (42) 124 (37) 

Down 138 (35) 142 (37) 128 (36) 
DVA loss (DVA – 
SVA) (logMAR) 

   

Left 0.24 (0.09) 0.20 (0.12) 0.19 (0.10) 
Right 0.25 (0.09) 0.18 (0.12) 0.18 (0.10) 
Up 0.16 (0.12) 0.18 (0.11) 0.17 (0.09) 

Down 0.16 (0.10) 0.16 (0.11) 0.17 (0.09) 
DVA (logMAR)    

Left  0.21 (0.14) 0.17 (0.13) 0.12 (0.13) 
Right  0.22 (0.14) 0.14 (0.16) 012 (0.17) 
Up  0.12 (0.18) 0.15 (0.17) 0.10 (0.17) 

Down  0.12 (0.15) 0.12 (0.16) 0.10 (0.15) 
 
DVA loss = DVA – SVA. 
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Table 3. Intraclass correlation coefficient (ICC) with 95% confidence intervals for the SVA, GST, 

DVA loss, and DVA in the left, right, up, and down directions within-session (1st and 2nd repetitions) and 

between-session (1st and 3rd repetitions). 

 Test (direction) Within-session Between-session 

SVA  0.89 (n = 29, CI: 0.78 – 0.95)  0.85 (n = 24 , 0.68 – 0.93) 

GST Left 0.48 (n = 27, CI: 0.13 – 0.72)  0† (n = 24) 

 Right 0.38 (n = 28, CI: 0.01 – 0.66) 0.25† (n = 24) 

 Up 0.25† (n = 26) 0.35† (n = 21) 

 Down 0.29† (n = 27) 0† (n = 23) 

DVA loss Left  0.50 (n = 28, CI: 0.16 – 0.73) 0.10† (n = 23) 

 Right  0.22† (n = 28) 0.50 (n = 23, CI: 0.12 – 0.75) 

 Up 0.26 † (n = 28) 0† (n = 23) 

 Down  0.47 (n = 28, CI: 0.13 – 0.72)  0.23† (n = 23) 

DVA Left 0.79 (n = 28, CI: 0.59 – 0.90)  0.76 (n = 23, CI: 0.52 – 0.89) 

 Right 0.65 (n = 28, CI: 0.37 – 0.82) 0.79 (n = 23, CI: 0573 – 0.91) 

 Up 0.77 (n = 28,CI: 0.56 – 0.88) 0.64 (n = 23, CI: 0.32 – 0.83) 

 Down 0.77 (n = 28, CI: 0.56 – 0.89) 0.79 (n = 23, CI: 0.56 – 0.90) 

† ICC value not statistically different from ICC = 0 (α = 0.05, Analysis of Variance F-test) 

GST = gaze stabilization test (deg/ sec); DVA: dynamic visual acuity (logMAR); DVA loss = 
DVA – static visual acuity (SVA); CI: 95% confidence interval 
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Table 4. Standard error of the measurement (SEM) and SEM% values for the GST and the DVA 

loss. 

 Within-session Between-session 

SEM SEM% MDC SEM SEM% MDC 

GST Left 35 26.9 97 42 32.3  
Right 30 22.1 83 31 22.8  
Up 39 29.8  37 28.2  

Down 29 21.0  33 23.9  
DVA loss Left 0.06 25.0 0.17 0.07 29.2  

Right 0.08 32.0  0.08 32.0 0.22 
Up 0.10 62.5  0.11 68.8  

Down 0.07 43.8 0.19 0.08 50.0  
 
 
GST = gaze stabilization test (deg/ sec); DVA loss = dynamic visual acuity – static visual acuity 
(logMAR); SEM = standard error of the measurement; MDC = minimal detectable change; SEM 
= SD √ (1 – ICC); SEM% = SEM/ mean * 100%; MDC = SEM * 1.96 * √2, MDC was 
calculated for measures with significant ICC values only.  
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Table 5. GST and DVA loss scores (means and standard deviations) in the horizontal plane for 

patients with peripheral lesion (n = 12) toward the lesion vs. non-lesion side. 

 Session 1 Session 2 
 1st repetition 2nd repetition 3rd repetition 
 Non-lesion 

side 
Lesion side Non-lesion 

side 
Lesion side Non-lesion 

side 
Lesion side 

GST 136 (42) 129 (29) 124 (47) 116 (50) 152 (51) 151 (39) 
DVA loss 0.25 (0.08) 0.25 (0.07) 0.22 (0.14) 0.18 (0.14) 0.18 (0.09) 0.13 (0.12) 

 
GST = gaze stabilization test (deg/ sec); DVA loss = dynamic visual acuity – static visual acuity 
(logMAR).  
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Table 6. Pearson product moment correlations between subjects' SVA and their GST scores. 

 SVA 
Session 1 Session 2 

1st repetition 2nd repetition 3rd repetition  
GST Left Correlation 

p-value 
n 

0.17 
0.387 

28 

0.400 
0.039 

27 

-0.146 
0.496 

24 
Right        Correlation 

p-value 
n 

-0.056 
0.777 

28 

0.237 
0.225 

28 

0.341 
0.102 

24 
Up Correlation 

p-value 
n 

-0.003 
0.989 

27 

-0.072 
0.722 

27 

-0.384 
0.078 

22 
Down Correlation 

p-value 
n 

-0.058 
0.769 

28 

0.017 
0.932 

27 

0.031 
0.889 

23 
 
GST = gaze stabilization test (deg/ sec); SVA = static visual acuity (logMAR); α = 0.01 
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Table 7. Pearson product moment correlations between each GST score and the DVA loss score in 

the same direction for the three repetitions of testing. 

 
  

Session 1 Session 2 

1st repetition 2nd repetition 3rd repetition 

 

 

 

 

 

 

GST and DVA loss  

correlations 

Left Pearson Correlation -.299 -.517** -.222 

p-value .123 .006 .309 

n 28 27 23 

Right Pearson Correlation .104 -.606** -.529** 

p-value .600 .001 .009 

n 28 28 23 

Up Pearson Correlation -.382 -.715** .139 

p-value .049 .000 .549 

n 27 27 21 

Down Pearson Correlation -.279 -.378 -.119 

p-value .151 .052 .597 

n 28 27 22 

 
GST = gaze stabilization test (deg/ sec); DVA = dynamic visual acuity (logMAR); α = 0.01 
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5.0  THE EFFECT OF OPTOTYPE AND VELOCITY PARAMETERS ON THE 

PERFORMANCE OF HEALTHY YOUNG ADULT SUBJECTS ON THE GAZE 

STABILIZATION TEST 

5.1 ABSTRACT   

The gaze stabilization test (GST) is a functional measure of the vestibulo-ocular reflex. The 

purpose of the current study was to examine the influence of the optotype (the letter E) size, 

presentation time, and head velocity on GST performance. Twenty one healthy young subjects 

(mean age:  26 ± 4, range 21 – 34, 10 male) performed the computerized GST. Testing was 

repeated several times using different combinations of the optotype size and presentation time 

over a wide range of head velocities (less than 60 to greater than 220 deg/ sec). The sizes 

examined were 0.20, 0.25, and 0.30 logMAR above the subject’s static visual acuity (SVA). The 

presentation times examined were 20, 30, and 40 msec above subject’s minimum perception time 

(mPT). Performance varied considerably based on the optotype parameters used in the GST. The 

optotype combination of SVA + 0.20 logMAR and mPT + 20 msec was the most difficult 

combination with the average of all subjects’ performance less than 64% at all velocities. The 

optotype combination SVA + 0.30 logMAR and mPT + 40 msec was the easiest combination 

with subjects being able to correctly identify the optotype at any head velocity with greater than 

70% average accuracy. Increasing the head velocity in any size/time combination caused 
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deterioration in subjects’ performance. Our study findings show that optotype parameters have 

significant influence on subjects’ performance on the GST.  

5.2 INTRODUCTION 

In recent years there has been growing interest in functional tests of the vestibulo-ocular reflex 

(VOR), namely the dynamic visual acuity (DVA) [40, 43, 44, 47, 60, 61, 88-91] test and the gaze 

stabilization test (GST) [6, 25, 77, 105, 106, 108]. The VOR helps to stabilize vision during head 

movements by producing eye movements that are equal in magnitude and opposite in direction to 

the movements of the head [31, 59, 90]. Maintaining clear vision during head movements 

requires stabilizing the images of objects on the fovea (the area of the retina with maximum 

visual acuity) [22]. Dysfunction of the VOR causes deterioration of vision during head 

movements, which can lead to postural instability and increased risk of falling [35, 108].  

The DVA test estimates the size of the smallest optotype (e.g. the letter E) that a subject 

can clearly see during head movement [46]. Dynamic visual acuity is then compared to the visual 

acuity with the head stationary to produce a visual acuity loss score. The visual acuity loss equals 

the dynamic visual acuity minus the static visual acuity (SVA) (DVA loss= DVA – SVA). The 

GST estimates the maximum head velocities a subject can achieve while still being able to 

correctly identify the orientation of a fixed-size optotype [25, 106]. 

The performance of healthy subjects during the DVA and GST tests varies widely. 

Young healthy subjects’ horizontal DVA loss scores have been reported as 0.043 (SD = 0.048) 

[46], 0.26 (SD = 0.13) [101, 102], 0.189 (SD = 0.072) [25], and 0.13 (SD = 0.07) [105] logMAR. 
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The use of different test parameters may help to explain the variability across the studies. For 

example, various testing distances have been used in both tests. Distances used for the DVA test 

include 1.5 m [6], 2 m [43-46, 84, 89, 90], 3 m [25], and 4 m [105]. Distances used for the GST 

include 1.5 m [6, 7, 77, 106, 108], 3 m [25], and 4 m [105]. In addition, the velocity of head 

movement during the DVA test has been variable. Some studies have used 120 – 180 degrees/ 

sec as the range of head velocity during DVA testing [6, 43, 44, 46, 89] while others have used 

85 – 120 degrees/ sec [105]. Optotype size has also varied between studies. During the GST, 

optotype increments of 0.20 [77, 108], 0.25 [105, 106], and 0.30 [25] logMAR above subjects’ 

SVA have been used.  

In addition, the duration of the presentation of the optotype can be manipulated. An 

optimal optotype presentation time would be long enough to allow for identifying the orientation 

of the optotype using the VOR but not too long to allow for other eye movement control systems 

to be used to identify the target.  While the VOR has latencies as short as 5 msec, the latency of 

saccades is around 100 msec [59].  If the presentation time is less than 100 msec, it is unlikely 

that the saccadic system can assist in identifying the target. Presentation times have varied in the 

literature between 40 – 75 msec [25, 77, 108]. A few studies have not reported the presentation 

time used for the DVA [43, 44, 46, 89] or the GST [27]. Other studies have used presentation 

times that were adjusted according to each subject’s minimum perception time (mPT) [105, 106]. 

The mPT is the shortest presentation time required for an optotype to appear on the screen for the 

subject to correctly identify the orientation of the optotype. Adjusting the presentation time 

according to the subject’s mPT assures that each subject is provided enough time to visualize the 

target. However, in the case of a patient with a very slow mPT (>70 msec), the optotype 

presentation time may be so long that saccades could compensate for a deficient VOR. 
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 The purpose of the current study was to examine the influence of optotype size, 

presentation time, and velocity of head movement on subjects’ performance on the GST in 

young healthy adult subjects. The results of the study should be helpful in selecting the optimal 

parameters for the GST.  

 

5.3 METHODS 

5.3.1 Subjects 

Twenty-one young healthy subjects were recruited for this study (mean age = 26 years, SD = 4, 

range = 21 – 34, 10 male). Subjects were University students with no history of neurological 

disorders. Subjects were excluded from the study if their visual acuity (with corrective eye wear) 

was worse than 20/40. The study procedures were approved by the Institutional Review Board at 

the University of Pittsburgh.  All participants signed the written consent before the start of 

research activities. Subjects were tested with best corrected vision.  

5.3.2 Experimental procedure 

The InVision™ device (NeuroCom International, Inc., Clackamas, OR, USA) was used for 

testing. The procedure used for testing was described previously [69]. In summary, testing 

started with measuring the subject’s SVA and mPT. The SVA test measured the size of the 

smallest optotype that a subject could see and identify correctly without any time constraints. 
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The mPT test measured the shortest duration of the optotype presentation that a subject required 

while still being able to correctly identify the orientation of the optotype.  The SVA and mPT 

were then used as baseline for further testing of the VOR. During all testing an optotype (the 

letter E) was presented on the computer screen. The open end of the E was pointing either up, 

down, right, or left and the subject was asked to determine the orientation of the E. Testing 

distance was 4 meters. The device was placed in a quiet room with room light measured at 70 

lux. The operator viewed a separate computer screen to control testing. 

The size of the E was reported in logMAR units. A logMAR is a logarithm of minimal 

angle of resolution [39] and is the standard unit for measuring visual acuity [40, 89]. The 

InVision system uses the best Parameter Estimate by Sequential Testing (the best PEST) 

adaptive algorithm to control the progress of testing and calculate the subject’s SVA and mPT 

scores. The original PEST algorithm was developed by Taylor and Creelman as an adaptive 

procedure to measure psychometric properties [99]. A modification of the original method was 

proposed by Pentland; the best PEST adaptive algorithm [72]. The best PEST algorithm is an 

efficient procedure, requiring the fewest number of trials to reach scores with good precision 

[58].  

The outcomes of the SVA and mPT tests were used as the baseline for testing with head 

movement.  Three increments of the optotype size were examined; 0.20, 0.25, and 0.30 logMAR 

above the subject’s SVA. As for the presentation time, three increments were examined; 20, 30, 

and 40 msec above the subject’s mPT.  These optotype size and presentation time increments 

were chosen because they match the increments that were already used in the available literature. 

A head mounted sensor (an InterSense Inertia Cube2, 3-axis integrating gyro) was placed on each 

subject’s head to provide feedback about head velocity and range of head motion. 
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5.3.2.1 Choice of optotype size and presentation time combination 

 

At the beginning of this research study, the first 9 subjects were tested using 3 out of the 9 

possible optotype combinations. The 3 combinations used for testing were randomly chosen for 

each subject.  Later, guidelines were developed to select the combination of optotype size and 

presentation time (Figure 5). The 9 subjects who were tested on 3 random combinations returned 

to be tested using the guidelines.  At the end of this research study, one optotype combination, 

i.e. an optotype size of SVA + 0.30 logMAR and a presentation time of mPT + 40 msec, was 

chosen as preferred combination for future testing. Subjects who were not tested using this 

combination (n = 9) were asked to come back to perform the test using this combination. Seven 

out of the nine subjects were able to come back for testing. 

During the testing of any combination, optimal performance was defined as having 

correct responses on greater than 50% of the trials at the velocity range 140 – 179 deg/ sec. If 

subjects were able to achieve ≥ 50% correct responses at the velocity range 140 – 179 deg/ sec, 

this was considered a good performance at this combination. 

- Testing started with the combination of the smallest optotype size (SVA + 0.20 logMAR) 

and shortest presentation time (mPT + 20 msec) (Combination A). 

- The next trial utilized a larger optotype size (SVA + 0.25 logMAR) and a longer 

presentation time (mPT + 30 msec) (Combination B).  

- If the subject performed well on combination B, 2 more trials were performed: 

-  A trial with the same optotype size as combination B but shorter presentation time 

(mPT + 20 msec) 
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- A trial with same presentation time as combination B but smaller optotype (SVA 

+ 0.20 logMAR)  

- If the subject did not perform well on combination B, the next trial utilized a larger 

optotype size (SVA + 0.30 logMAR) and a longer presentation time (mPT + 40 msec) 

(combination C). 

- If the subject performed well on combination C, 2 more trials were performed: 

- A trial with same optotype size as combination C but shorter presentation time 

(mPT + 30 msec) 

- A trial with same presentation time as combination C but smaller optotype (SVA 

+ 0.25 logMAR)  
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Perform well 

Perform well 

Not perform well 

Not perform well 

 
 
  

 
Combination A 

(SVA + 0.20 / mPT + 20) 

Two combinations in 
random order: 

1.  Same optotype size 
(SVA + 0.25) 
Shorter presentation time 
 (mPT + 20) 

2. Smaller optotype size 
(SVA + 0.20) 
Same presentation time 
(mPT + 30) 
 

 
Combination B 

(SVA + 0.25 / mPT + 30) 

 
Combination C 

(SVA + 0.30 / mPT + 40) 

Two combinations in 
random order: 

1. Same optotype size 
(SVA + 0.30) 
Shorter presentation time 
(mPT + 30) 

2. Smaller optotype size 
(SVA + 0.25) 
Same presentation time 
(mPT + 40) 
  

Stop testing 

 

 

Figure 5. Flowchart of the 

guidelines used to determine 

optotype size and presentation time 

combination. 

 

 

SVA = static visual acuity; mPT = minimum perception time.  
Perform well: ≥50% correct responses at 140 – 179 deg/sec head velocity. 

Not perform well: <50% correct responses at 140 – 179 deg/sec 
head velocity.  

Figure 5. Flowchart of the 

guidelines used to determine 

optotype size and presentation time 

combination. 



 

62 

 

5.3.2.2 The velocity of head movement 

Once an optotype size and presentation time combination was chosen, testing commenced with 

head movement in the yaw plane. The optotype was presented on the computer screen only when 

the head velocity required in each trial was reached. Data obtained from the head mounted sensor 

was used to provide feedback to the patient and the technician regarding the velocity and range 

of head movement.  

Subjects were first instructed to move their heads in the yaw plane at a slow speed (<60 

deg/ sec). After 10 optotype presentations at this slow speed, subjects were asked to move at a 

speed between 60 and 99 deg/ sec. After another 10 presentations at the new speed range, head 

velocity was increased between 100 and 139 deg/ sec. The same pattern of velocity increase by 

increments of 40 deg/ sec was followed until the head velocity was greater than 220 deg/ sec. For 

any given combination, the test was stopped when the maximum head velocity (>220 deg/ sec) 

was achieved or when the percent of correct responses within any 2 consecutive velocity ranges 

was less than 50%. Subjects were asked to report any complaints of nausea, headache, dizziness, 

and visual blurring on a visual analog scale before and after each repetition of the test. 

5.3.3 Data analysis 

Box plots were made of the performance versus the velocity of head movement for each 

combination. The velocity bins corresponded to head velocities used in the test (<60, 60 – 99, 

100 – 139, 140 – 179, 180 – 219, and > 220 deg/ sec). Performance was defined as the 

percentage of the number of trials in which subjects correctly identified the orientation of the 
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optotype divided by the total number of trials (correct response/ total number of trials). 

Accordingly, 100% performance indicated correct identification of the optotype in all trials and 

0% performance indicated inability to correctly identify the optotype orientation in any trial. 

Means and standard deviations were also used to describe the performance.  

 In order to examine the influence of increasing the head velocity on performance at any 

given optotype combination, a non-parametric repeated-measures analysis was performed across 

the 6 velocity bins.  A 2-way within-subjects analysis of variance was performed on a subsample 

of 4 combinations to examine the effect of optotype size (SVA + 0.20 and SVA + 0.25 logMAR) 

and presentation time (mPT + 20 msec and mPT + 30 msec) on performance. Analyses were 

performed using PASW (version 18, SPSS Inc., Chicago, IL). 

5.4 RESULTS 

Figure 6 shows box plots of subjects’ performance at the 9 different optotype size/ presentation 

time combinations used in this study.  For each combination, subjects’ performance declined as 

the velocity of head movement increased. The decline in performance as the head velocity 

increased was significant (p < 0.029) in all combinations except one (SVA + 0.30 logMAR and 

mPT + 20 msec, possibly due to the small number of subjects = 5). A 2-way analysis of variance 

performed on the subsample of 4 combinations showed that increasing the optotype size and/ or 

presentation time improved subjects’ performance. With head velocity up to 179 deg/ sec, 

increasing the optotype size or the presentation time significantly improved performance (p < 

0.041). At 180 – 219 deg/ sec, increasing the presentation time, but not the size, improved 
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performance (p <0.01). The optotype combination A, (SVA + 0.20 logMAR and mPT + 20 

msec), was the most difficult combination. In combination A, the average of subjects’ 

performance at slow head velocities (<60 deg/ sec) was 63% (median = 50%, range 40 – 100 %), 

as the velocity of head movement increased, performance declined reaching an average 

performance of 36% at head velocities of >220 deg/ sec (median = 40%, performance range 0 – 

75%). 

 Across all the different optotype combinations used in this study, at the slow head 

velocity range (<60 deg/ sec), the average performance ranged between 63 – 94% (median 56 – 

100%). Combination C, optotype size (SVA + 0.30 logMAR) and presentation time (mPT + 40 

msec) (Figure 6), was the only combination in which a majority of subjects (n = 12/17) scored 

100% at the slow head velocity (median = 100%). 

 Subjects’ symptoms of nausea, headache, dizziness, and visual blurring were monitored 

using a 10-cm visual analog scale. Only one subject had a minimal complaint of nausea after the 

repeated testing (mean = 0.4 cm, SD = 0.2), three subjects had headache following testing (mean 

= 0.5 cm, SD = 0.2). Dizziness symptoms were reported by 9 subjects (mean = 1.1 cm, SD = 0.7) 

and visual blurring by 8 subjects (mean = 0.9 cm, SD = 0.6). The other subjects did not report 

any symptoms following testing. 
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Figure 6. Boxplots of healthy subjects' performance on the nine combinations of optotype size and presentation time. 
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Performance is defined as the number of correct responses divided by the total number of trials at 

any given velocity range. 

SVA = static visual acuity; mPT = minimum perception time 
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5.5 DISCUSSION 

The gaze stabilization test scores in this study varied depending on the optotype parameters (size 

and presentation time) chosen for testing. Similarly, subjects’ performance at a given optotype 

combination varied depending on the head velocity used for testing.  Combination A, optotype 

size (SVA + 0.20 logMAR) and presentation time (mPT + 20 msec) was the most difficult 

combination for the GST. Previous studies have not reported the combination of SVA + 0.20 and 

mPT + 20, but have used a similar optotype size (SVA + 0.20 logMAR) with longer presentation 

times [77, 108].  

 Combination C, optotype size (SVA + 0.30 logMAR) and presentation time (mPT + 40 

msec) (Figure 6), was the easiest combination. The average of subjects’ ability to identify the 

orientation of the optotype correctly was between 70 – 94% across all head velocities. Goebel et 

al. used a combination similar to Combination C; the optotype size was 0.30 logMAR above the 

subject’s SVA while the presentation time was always between 40 – 75 msec regardless of the 

subject’s mPT [25]. While the testing distance in the current study was 4 m, Goebel et al used 3 

m. Goebel et al results show good sensitivity, specificity, and reliability of the GST when using 

the large optotype size and presentation time [25]. 

 The measurement of subjects’ performance on the GST as a function of optotype size, 

presentation time, and head velocity has not been previously described in the literature.  Previous 

studies have presented one GST score for each subject (a maximum head velocity score at a 

specific combination of optotype size and presentation time) [6, 25, 27, 77, 102, 105, 106, 108] 

whereas in this study nine combinations of various optotype sizes and presentation times were 

tested to determine which combination was the optimal combination for successful testing.  It is 
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clear from the data that some combinations would reveal little about the subjects’ VOR abilities 

(SVA + 0.20 and mPT + 20; SVA + 0.20 and mPT + 30; SVA + 0.25 and mPT + 20), since so 

few people could successfully see the target even at slow head velocities when using these 

combinations.   

 It was interesting to note that healthy subjects’ performance at very slow head velocities 

was not 100% accurate. Persons may have blinked or may have been not paying attention during 

the optotype presentation, making them unable to correctly identify the orientation of the 

optotype or even not see the optotype.  Subjects also occasionally reported to the test 

administrator that the optotype was too small for them to see within the time frame.   

 The easiest size and presentation time combination was SVA + 0.30 logMAR and mPT + 

40 msec. This combination resulted in the best performance across the widest range of head 

velocities. The authors recommend the use of this optotype combination for the GST in future 

studies with patients. Since the average performance of healthy subjects on this combination 

across all velocities was always >70% (median 68 – 100%), this could establish a criterion to be 

used when comparing the performance of patients and older subjects. Since healthy young 

subjects could not perform well at all velocities on all of the other 8 combinations, then patients 

and older subjects should not be expected to do so and these combinations will provide little 

information about the performance of these subjects. Older adults and persons with VOR 

dysfunction might need to start at this combination in order to determine if they have 

dysfunction. 

 The decline in subjects’ performance as the head velocity increased while viewing 

optotypes of the same size and presentation time also has important implications when 

examining scores on a related test, the DVA test. As reported earlier, head velocities used for the 
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DVA test vary across studies. Dannenbaum et al [19] examined the influence of increasing the 

frequency of head movement while maintaining same range of the motion (i.e. equivalent to 

increasing the velocity of head movement) on performance on the clinical DVA test. 

Dannenbaum et al examined four frequencies of the head velocity in the yaw plane; 0.5, 1.0, 1.5, 

and 2.0 Hz. Their results indicate that the number of patients with abnormal scores increased as 

the frequency of the head movement increased. Essential differences exist in the methods used in 

the current study and that by Dannenbaum et al; the latter used the clinical DVA test in which 

there is continuous presentation of the optotype during the head movement, the head movements 

were performed passively, and the testing distance was 3.48 m. Results of both studies indicate 

that the head velocity chosen for the DVA test influenced the subject’s score on the test. 

 Results of the current study demonstrate that the procedures used for the GST need 

standardization in order to enable comparison of results across laboratories. The use of different 

optotype parameters and testing protocols limits the generalizability of the results of different 

studies and makes the comparisons across different populations challenging. One of the 

limitations of the current study is that head movements were examined in the horizontal plane 

only. Vertical head movements should also be tested in future studies.  

 

5.6 CONCLUSION 

This study suggests that performance on the GST changes as the size and presentation time are 

manipulated.  It is also clear that subjects’ GST performance varies depending on the velocity of 
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head movement.   For future studies, the authors recommend the use of optotype size = SVA + 

0.30 logMAR and presentation time = mPT + 40 msec for the GST since these criteria appeared 

to be associated with best performance by healthy young adult subjects. 
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6.0  PERFORMANCE OF YOUNG SUBJECTS FOLLOWING CONCUSSION ON A TEST 

OF GAZE STABILIZATION. A FEASIBILITY STUDY 

6.1 ABSTRACT 

Vestibular signs including dizziness and blurred vision are common following concussion. The 

computerized gaze stabilization test (GST) provides quantitative information about the dynamic 

capabilities of the vestibulo-ocular reflex (VOR). The purpose of the current study was to 

examine the performance of young subjects following concussion on the GST compared to 

healthy subjects.  Twenty two subjects diagnosed with concussion (mean age:  19 ± 4, range 14 – 

31, 9 females) and 19 control subjects (mean age: 25 ± 3, range 21 – 33, 10) were tested. The 

GST records the speed at which a subject could move their head while being able to correctly 

identify a target presented on a computer screen.  Patients performed the dynamic visual acuity 

test and were also tested on a post-concussion neurocognitive test battery (immediate post-

concussion assessment and cognitive testing, ImPACT) and completed the Dizziness Handicap 

Inventory (DHI) and the Activities-specific Balance Confidence (ABC) scale. Results show that 

there were no significant differences between the performance of patients and healthy subjects (p 

> 0.25). No differences were noticed between the performances of patients who were athletes 

versus the non-athletes (p > 0.09). there was a significant correlation between GST and DVA 

scores in the right direction (Spearman correlation = -0.54). There were no significant 
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correlations between patients’ performance on the GST and their DHI, ABC, or ImPACT scores. 

The lack of significant differences may have been due to the chronicity of concussion in our 

sample (median duration since concussion = 14 weeks) and the inclusion of all patients post-

concussion without objective vestibular abnormalities. Further study of patients following 

concussion with objective findings of VOR abnormalities may unravel more limitations in this 

patient group.  

6.2 INTRODUCTION 

Traumatic brain injury accounts for 1.2 million emergency department visits each year [83]. The 

majority of these visits are due to mild traumatic brain injury (concussion) (Centers for Disease 

Control Website). Concussion is defined as a pathophysiologic alteration in brain function 

following a direct or indirect blow to the head [63]. One of the most common injury mechanisms 

involves acceleration-deceleration of the head [63]. Neuroimaging studies, such as MRI or CT 

scan, usually reveal normal findings, however, advanced imaging techniques, such as diffusion 

tensor imaging, reveal damage to axons and axonal transport following a mild concussion [2, 16, 

110]. 

Vestibular symptoms following a concussion are common; these include balance 

problems, headache, dizziness, blurred vision, and/ or difficulty concentrating [3, 26, 48, 68, 86]. 

Evidence suggests that vestibular involvement following a concussion can be due to problems in 

the vestibulo-spinal and the vestibulo-ocular reflexes (VOR) [48]. Hoffer et al [48] reported that 
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60% of retired and active duty military personnel post mild head injury who complained of 

dizziness had abnormalities of the VOR and the vestibulo-spinal reflex.  

Objective outcome measures of the function of the VOR in patients following concussion 

have been recently reported in order to attempt to quantify vestibular function [3, 27, 48, 86]. 

The gaze stabilization test (GST) and the dynamic visual acuity (DVA) test provide quantitative 

information about the function of the VOR [25, 46, 89, 108]. 

The GST records the fastest speed at which subjects can move their heads while being 

able to correctly identify a visual target [25, 108].  The DVA records the smallest visual target 

that a subject can identify while moving the head at a fixed speed [43, 44, 46].  The GST and 

DVA have been used previously with patients with vestibular disorders to examine the function 

of the VOR [6, 25, 43, 44, 77, 89].  Patients with vestibular disorders generally perform worse 

than healthy control subjects on the DVA and GST demonstrating slower head velocities and 

greater visual acuity loss with head movement [6, 25, 43, 44, 77, 89]. Gaze stabilization 

performance in patients with vestibular disorders has been related to gait performance [108]. 

Dynamic visual acuity improvements have been noted in persons with unilateral and bilateral 

vestibular hypofunction after vestibular rehabilitation [43, 44]. 

The purpose of the current study was to compare the performance of young subjects with 

and without concussion on the gaze stabilization test. The relationship between the performance 

of subjects with concussion on the GST and the Dizziness Handicap Inventory (DHI) [53], 

Activities-specific Balance Confidence scale (ABC) [75], and the Immediate Post Concussion 

Assessment and Cognitive Testing (ImPACT test) [62] was also examined. 
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6.3 METHODS 

6.3.1 Subjects 

Persons with concussion who presented to the University of Pittsburgh concussion clinic were 

eligible for the study.  Twenty two young adults (mean age:  19 ± 4, range 14 – 31, 9 females) 

who had experienced a concussion participated in this study. Patients were included in the study 

if the neuropsychologist believed that the patient could tolerate the head movement required by 

the GST.  Of the 22 patients, 13 had acquired their concussion while engaged in athletic 

activities whereas the remaining 9 were involved in non-athletic incidents at the time of the 

concussion.  

The performance of persons with concussion was compared to that of nineteen healthy 

young subjects without a history of concussion (mean age: 25 ± 3, range 21 – 33, 10 females). 

The healthy subjects were tested on the GST as part of a previous research study [70]. Exclusion 

criteria for the healthy subjects included a diagnosis of a neurological disorder and visual acuity 

worse than 20/40. All of the healthy volunteers were University graduate students.  The study 

was approved by the University of Pittsburgh Institutional Review Board and all subjects 

provided informed consent. 

6.3.2 Experimental procedure 

The experimental procedure for the GST and the DVA test has been described previously [69]. 

The InVision™ device (NeuroCom International, Inc., Clackamas, OR, USA) was used for 
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testing. Testing began with recording the size of the smallest optotype (the letter E) that a subject 

could correctly identify (static visual acuity, SVA, measured in logMAR) and the shortest 

presentation time (the time that the optotype was displayed on the screen) that a subject required 

to identify the orientation of the optotype correctly (minimum perception time, mPT, measured 

in msec).  

 Following the recording of the SVA and mPT, the GST was performed for head 

movements in the yaw plane. The optotype used during the GST was 0.30 logMAR above the 

subject’s SVA and presented for 40 msec longer than the subject’s mPT. This optotype 

combination was chosen because previous study has shown that healthy young subjects can 

perform well with this combination with greater than 70% accuracy in identifying the orientation 

of the optotype even at very fast head velocities [70].  

During testing, a head mounted sensor (an InterSense Inertia Cube2, 3-axis integrating 

gyro) was used to provide feedback about the velocity and the range of head movements. The 

GST started at a slow head velocity (<60 deg/ sec) and the velocity was increased in increments 

of 40 deg/ sec according to the subject’s performance and tolerance until a maximum velocity at 

which the subjects could no longer identity the orientation of the optotype was reached.  

At any velocity range, the optotype was presented for a total of 4 trials. If the subject was 

able to correctly identify the orientation of the optotype in all 4 trials (100% correct 

performance), the speed was increased to the next level. If the subject’s performance was less 

than 100%, 4 more trials at the same speed were attempted. The test was stopped when 1) the 

maximum head velocity (>220 deg/ sec) was achieved, or 2) when the percent of correct 

responses within two consecutive velocity ranges was less than 50%, or 3) when the subjects 

could no longer tolerate the head movement. 
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The DVA test was performed after the GST.  During the DVA test, subjects were asked 

to move their heads in the yaw plane at a constant head velocity (85 – 120 deg/ sec) while 

viewing the computer screen. The DVA test measured the size of the smallest optotype that a 

subject could correctly identify while moving the head. Scores (in logMAR units) were recorded 

for left and right-directed head movements and represent the loss in visual acuity between the 

dynamic and static head positions. Only patients performed the DVA testing. The GST and DVA 

testing were completed in 30 minutes. 

 Subjects’ symptoms of nausea, headache, dizziness, and visual blurring were 

monitored throughout testing using a 10-cm vertical visual analog scale (VAS) [33]. Symptoms 

were monitored at the beginning of testing and after each head movement test (baseline, after 

GST left, after GST right, and after DVA). The change in VAS for each test was calculated by 

subtracting the score before each test from the score after the test.   

Patients were asked to complete the ABC scale [75] and the DHI [53] at the time of gaze 

stability testing. Also, patients were timed while standing on an Airex foam pad with their eyes 

closed, for a maximum of 30 seconds. Patients were examined by neuropsychologists following 

the concussion and the ImPACT test [62] Version 3.0 was administered several times including 

the same day of the GST.  The ImPACT battery takes approximately 20 – 25 minutes to 

administer and includes the following domains:  attention, memory, processing speed, and 

reaction time.  The ImPACT also includes a symptom checklist that each patient completed.  The 

composite ImPACT scores consisted of a verbal memory, visual memory, visual memory speed, 

reaction time, impulse control score, and the symptom checklist scores.   
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6.3.3 Data analysis 

Descriptive statistics were used to determine mean, median, and standard deviation (SD) for 

length of symptoms, DHI, ABC, ImPACT, and VAS scores.  A non-parametric Mann- Whitney 

test was performed to determine if there were significant differences between the GST 

performance on the left and right directions between patients versus healthy subjects at each 

velocity , the GST performance of patients who complained of dizziness versus those who did 

not, the GST performance of patients who had physical therapy ordered versus those not referred 

for physical therapy, the GST performance of athletes versus non-athletes, and scores on the 

ImPACT symptom checklist between athletes versus non-athletes.  

Spearman correlations were computed to determine if there was a relationship between 

GST and DVA scores, and between GST and ImPACT composite score. Spearman correlations 

were also utilized to compare the DHI total score to the ImPACT composite scores.  The p value 

was set at p < 0.05 for significance.  All analyses were performed using PASW (version 18, 

SPSS Inc., Chicago, IL). 

6.4 RESULTS 

The median time since concussion was 14 weeks (range 2 – 240 weeks).  The median value since 

the time of concussion was reported because there were three patients who were 96, 209, and 240 

weeks post-concussion.  Of the 22 subjects, 15 patients had been referred for physical therapy 

intervention for subjective complaints of dizziness, headache, and/or imbalance.  Of these 15 
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patients, 12 attended one or more physical therapy sessions. Three patients did not attend 

vestibular physical therapy although it was prescribed for them.  Thirteen patients were athletes 

and 9 were non-athletes.  All patients except one (20 year old, female; concussion duration 5 

years) were able to successfully perform the 30-second standing on foam task. 

Boxplots of subjects’ performance (percent of correct trials over total number of trials) 

versus the head velocity were created for patients with concussion and the healthy subjects 

(Figure 7). There was no significant difference between GST performance of young subjects 

with and without concussion at each velocity (p > 0.252).  There were no significant differences 

between the performances of patients who complained of dizziness versus those who did not. All 

patients except one were able to complete the DVA and the GST, and all healthy subjects were 

able to complete the GST. Only one patient could not move their head to the right fast enough to 

get 50% or more correct responses at <60 deg/ sec.  There was a significant relationship between 

the GST and DVA scores in the right direction in the patients with concussion (Spearman 

correlation = -0.54). No significant correlations were noticed between GST and ImPACT 

composite scores (all r < 0.40)   

When examining the GST performance of patients who underwent physical therapy vs. 

those who were not referred to physical therapy, there were no significant differences between 

the two groups (p > 0.058).  There were no significant differences between the performances of 

athletes versus non-athletes on the GST (p > 0.09). The ImPACT symptom checklist scores 

ranged from 0 – 43 with a mean of 12 (SD 13).  There was a significant difference in the 

symptom checklist items in athletes versus non-athletes (p< 0.04).  Athletes reported fewer 

symptoms than non-athletes (mean = 7 versus 21) (Table 8). 
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Composite DHI scores and the subscale scores (physical, functional, and emotional) and 

ABC scores are included in Table 8.  Dizziness Handicap Inventory scores ranged from 0 – 42 

and the ABC scores ranged from 59 – 100%.  There were no statistically significant differences 

between athletes and non-athletes on the DHI and ABC.  However, it was interesting to note that 

the non-athletes had overall less balance confidence than the athletes.  There was a relationship 

between the total DHI score and the verbal memory composite score of the ImPACT (p < 0.05) 

were higher DHI scores (more handicap) correlated with higher verbal memory composite scores 

(slower responses, Spearman correlation = 0.44).  No other relationships were noted between the 

DHI and the other ImPACT composite scores.   

The VAS scores pre and post testing are included in Table 9. One outlier was removed 

from the analysis under the nausea category (7.7 out of 10) after completing the DVA testing.  

All others had a change in nausea scores that was either 0 or that had improved (less nausea) 

after completing the DVA.  With the outlier removed the average nausea score was -0.04.  

 The symptoms most commonly experienced by patients with concussion as indicated on 

the ImPACT symptom checklist were headache (n=15), difficulty concentrating (n=12), fatigue 

(n=10), dizziness (n=10), sensitivity to light (n=9), and difficulty remembering (n=9). Other 

symptoms noted on the symptom checklist include feeling mentally foggy (n=8) and problems 

with balance (n=8).  All other symptoms were experienced by less than 8 patients following 

concussion. 
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Figure 7. Box plots of subjects’ performance on the gaze stabilization test (GST) 

 

 

Y-axis: Performance indicates the percent of correct trials over the total number of trials. 

X-axis: The velocity was divided according to the velocity ranges used during testing.  

     >60     60 – 99   100 – 139  140 – 179 180 – 219  >219  
Head velocity (deg/ sec) 

C. Healthy subjects 
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Table 8. Dizziness Handicap Inventory (DHI) total scores plus physical, functional, and emotional 

subscores; Activities-specific Balance Confidence (ABC) Scale; ImPACT composite scores (verbal memory, 

visual memory, visual motor speed, reaction time, and impulse control); and ImPACT symptom checklist 

scores for all patients, athletes, and non-athletes (mean, SD). 

 
 

Total Group 
(n=22) 

Athletes (n=13) Non-athletes (n=9) 

DHI  16 (11) 16 (9) 16 (14) 
DHI physical 7 (6) 6 (5) 8 (8) 
DHI functional 5 (4) 6 (4) 4 (4) 
DHI emotional 4 (4) 4 (3) 5 (5) 
ABC 92 (11) 94 (7) 89 (14) 
Verbal Memory 88 (12) 89 (12) 86 (11) 
Visual Memory 73 (11) 73 (12) 73 (9) 
Visual Motor Speed 41 (10) 39 (11) 43 (9) 
Reaction Time 0.59 (0.15) 0.61 (0.17) 0.55 (0.11) 
Impulse Control 8.3 (6) 10 (8) 6 (4) 
Symptom Checklist 
score 12 (13) 7 (7) 21 (16)* 
 

*p<0.05 
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Table 9. Visual analog scale (VAS) scores (mean, SD) on nausea, headache, dizziness, and visual 

blurring in patients following concussion and healthy subjects. Scores are reported at before testing and the 

change in VAS after gaze stabilization (GST) and dynamic visual acuity (DVA) tests. 

 Nausea Headache Dizziness Blurred Vision 

Subjects with 
concussion 

Baseline 
 

0.1† 2.6 (2.1) 0.7 (.8) 2.1 (2.9) 

After GST Left 0 0.5 (1.1) 1.6 (1.9) 0.3 (0.9) 

After GST Right 0 0 -0.1 (1.1) 0 

After DVA 0 -0.2  (0.7) -0.3 (1.3) 0.1 (0.6) 

Healthy subjects Baseline 
 

0 0 0 0.3 (0.6) 

After GST Right 
 

0 0 0 0 

 

† No standard deviation because only one person experienced nausea.  
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6.5 DISCUSSION 

There was no difference noted between GST performance in young persons with and without 

concussion.  It was expected that a difference in GST scores would be seen between persons with 

concussion and healthy controls.  None of the persons post-concussion had vestibular laboratory 

testing, which is a limitation of the current study. However, 46% of the persons post-concussion 

reported dizziness on the ImPACT symptom checklist suggesting that they may have either 

peripheral or central vestibular dysfunction.  Since most persons post-concussion have resolution 

of symptoms within four weeks post-concussion [17, 104], patients with concussion in our study 

who complained of dizziness were not typical of young persons who have experienced a 

concussion. 

The lack of differences on the GST between healthy controls and persons post-

concussion might also be explained by the optotype parameters (size and presentation time) 

chosen in this study.  The current optotype combination (SVA + 0.30 logMAR and mPT + 40 

msec) may have been too easy for the subjects to view during active head movement, thus 

making the task simple and therefore, unable to discriminate between people with and without 

concussion. Another concern with the current optotype combination is that in subjects with poor 

visual acuity or perception time the optotype presented during the head movement testing may be 

too large or presented long enough to allow other eye movement systems to help in keeping the 

focused gaze.  

Another possible explanation for the lack of significant differences is that the VOR may 

not be impaired in all persons post-concussion; Hoffer et al [48] reported that 60% of their mild 

head injury group had objective evidence of VOR abnormality.  The wide range of duration since 
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concussion might have resulted in less people having vestibular symptoms, since vestibular 

symptoms may resolve over time post-concussion. Finally, the inclusion criteria for this study 

which required that the neuropsychologist examining the patients believed they could tolerate the 

head movement required for testing might have resulted in the inclusion of patients who have 

already recovered VOR function. 

The lack of significant differences between the performance of patients who were 

referred to physical therapy and those not referred to therapy (p ≥ 0.058) could have been due to 

the small number of subjects in the current study (type II error). A larger number of subjects is 

expected to increase the power of the sample and reflect significant differences. No power 

analyses were conducted for the purposes of this study because there are no baseline data about 

the test in this patient group in the literature.  

A significant relationship was observed between GST and DVA scores in the right 

direction in patients following concussion (Spearman correlation = -0.54). As expected, the 

correlation between the two scores was negative indicating that higher scores on the GST test 

(i.e. faster head velocities) correlated with less visual acuity loss on the DVA test during head 

movement.  

There was no relationship between GST scores and composite scores on the ImPACT.  

Finding no relationship between the GST and ImPACT scores was somewhat surprising since 

many of the symptoms that the persons with concussion experienced, which included to 

dizziness, headache, and difficulty concentrating are often symptoms that persons with vestibular 

disorders also experience [86].  Persons with vestibular dysfunction perform worse on the GST 

compared to control subjects [25]. The ImPACT symptom checklist identified common 

vestibular-like symptoms experienced by our subjects following concussion:  headache, mentally 



 

86 

 

foggy, dizziness, balance difficulties, difficulty with memory/concentration, and sensitivity to 

light. The ImPACT test did not relate to GST scores, suggesting that they are measuring different 

concepts.    

The overall mean of 16 on the DHI indicates that this study sample would be considered 

“mildly” handicapped as a result of dizziness [109]. There were no differences between athletes 

and non-athletes on the DHI, yet there were significant differences noted on the ImPACT 

symptom checklist between athletes and non-athletes with the non-athletes experiencing more 

symptoms after the concussion.  The ImPACT symptom checklist may be more sensitive at 

identifying problems that young patients experience as a result of a concussion, it is also possible 

that athletes may not be willing to disclose their symptoms in order to return to play more 

quickly.  The DHI was not designed to assess function post-concussion, although many of the 

symptoms reported by persons post-concussion are included in the DHI such as difficulty 

reading, difficulty with vigorous activities such as dancing, difficulty concentrating, interference 

with job responsibilities, and restriction of travel.  Our patients’ scores on the DHI and ABC 

show that our sample was less affected compared to Alsalaheen et al [3] who reported a mean 

DHI of 37 and a mean ABC of 78% in their sample of persons post-concussion.  Alsalaheen et 

al’s sample was a mix of older and younger persons post-concussion [3] while our sample 

included only young subjects following concussion. 

It was surprising that all of the young people, excluding one person with longstanding 

concussion history, were able to stand on a piece of high density foam.  Standing on foam with 

eyes closed was easily attainable.  In older persons post stroke, falls from a foam pad relate to 

increased fall risk [21].  In young people, it appears that the foam pad with eyes closed test 

demonstrated a ceiling effect in our sample.  Standing on foam with eyes closed is part of the 
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Balance Error Scoring System (BESS) [32] that is commonly performed on the sideline at 

sporting events to assess postural control after concussion. The average time since concussion 

was 36 weeks (SD 60 weeks) suggesting that our sample was more chronic.  Most persons post-

concussion have a resolution of their symptoms within 4 weeks [67].  It is possible that the 

persons post-concussion in our sample had already regained normal postural control, thus the 

standing on foam with eyes closed was accomplished successfully.   

Visual analog scores for patients at baseline included symptoms of headache, blurred 

vision, and dizziness with only one person reporting nausea at the start of testing.  Symptoms of 

headache, dizziness and blurred vision increased after testing GST left but stayed the same or got 

better with GST right testing and the DVA testing.  The fact that the VAS scores of headache, 

dizziness, and blurred vision remained stable was of interest, as often movement induced 

symptoms increase with fast head movement [7].  The subjects were asked if they were 

comfortable continuing the testing and typically the rest period lasted 1-2 minutes.  It is possible 

that patients were “learning” to tolerate the testing during the GST left.  During subsequent GST 

right and DVA testing, the overall sample’s symptoms stabilized or got better suggesting that 

there was not a cumulative increase in symptoms during testing.  It is not clear if the stabilization 

of symptoms would be seen if we had tested GST right first. Others have reported visual blurring 

and oscillopsia during DVA and GST testing, suggesting that our patient’s symptoms are 

typically experienced by persons with vestibular dysfunction [7, 43, 44, 89]. 

It may have been possible to differentiate if there were VOR abnormalities between 

control subjects and persons post-concussion if the persons post-concussion were tested sooner 

after onset of concussion.  Additionally, a smaller optotype presentation might have better 

assisted in demonstrating if there were differences between the two groups. Due to the long 
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testing time in the current study (30 minutes) that was required to collect data across the range of 

head velocities in the right and left head movement directions, in addition to the DVA test, 

testing was performed in the horizontal direction only. Future studies should examine the 

performance of patients in the vertical direction.   

 

 

6.6 CONCLUSION 

There was no difference in young people with and without concussion on the GST. Also, no 

differences on the GST were noticed between athletes versus non-athletes following concussion 

or patients referred to physical therapy versus those not referred to therapy. There was no 

relationship between GST scores and ImPACT scores, DHI, or ABC scores in the patients tested. 
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7.0  DIRECTION OF FUTURE RESEARCH 

The GST is a functional test of the VOR. Data obtained from patients’ performance on the test 

will provide information about the limitations of patients’ participation in different daily tasks 

and an objective method to track patients’ recovery during vestibular rehabilitation.  As we gain 

more information about the dynamic demands of different functional activities such as walking, 

running, and driving, the information provided by the GST becomes invaluable in determining 

the functional capabilities of patients with vestibular complaints and detecting their improvement 

over the course of therapy. This information might also guide future decisions such as when 

patients can drive or athletes return to play safely.  In the first Aim, we provided evidence that 

the reliability of the InVision™ Tunnel system is less than desirable. We hypothesized that the 

choice of the best PEST adaptive algorithm to run the test may have been inappropriate to 

produce a reliable test. In addition, no clear justification for the choice of the optotype size and 

presentation time parameters was available in the literature. 

In specific Aim 2, we examined the performance of young healthy adult subjects on the 

GST in the yaw plane using nine different optotype size and presentation time combinations. Our 

results show that the performance of healthy subjects on the GST varied considerably based on 

the optotype combination used for testing. Based on the results of this study, we decided to 
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choose an optotype size 0.30 logMAR above subjects’ SVA and a presentation time 40 msec 

longer than subjects’ mPT for further research.  

In Aim 3, the performance of young subjects following concussion on the GST was 

compared to that of healthy young subjects. The performance of the patients following 

concussion was also correlated with their scores on different measures. No significant 

correlations were found between the performance of patients and healthy subjects or scores on 

ImPACT, DHI, or ABC scale.  

The three stages of the current study raise more questions than answers. Future research 

should examine the reliability of the “new” InVision GST using the new optotype parameters. 

An algorithm to reach a single final score on the GST should be developed to replace the best 

PEST algorithm. Providing a single final head velocity score for each direction of head 

movement on the GST will be desirable to provide a quick summary for therapists to compare 

the performance across patients and track the recovery of patients over the course of therapy. At 

the same time, the authors believe that examining the performance of subjects over a wide range 

of head velocities by means of a performance curve would provide detailed information about 

the performance of the VOR across difference head velocities. The performance of subjects in 

the yaw plane was examined in Aim 2. Future studies should examine subjects’ performance in 

the pitch plane. Differences between the horizontal and vertical VOR and the mechanics of the 

neck joints involved will certainly influence subjects’ performance on the test. 

Our sample size was 21 subjects in Aim 2 and 22 in Aim 3. Further research using a 

larger number of subjects should be conducted. In addition, we examined the performance of 

young subjects following head concussion in Aim 3. The choice of this population was mainly 

due to the ease to access a large number of this population at our facility. Future studies should 
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include patients following concussion with evidence of vestibular involvement. Also, patients 

should be recruited sooner after the concussion. Vestibular complaints following a concussion 

resolve over time in most patients [17, 104]. In addition, the performance of other patient 

populations, mainly patients with vestibular disorders, should be examined and cut-off values for 

clinically significant change should be established.       
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APPENDIX A 

VISUAL ANALOUG SCALE FORM 

The visual analog scale form used to obtain information about subject’s nausea, headache, 

dizziness, and visual blurring before and after the performance of the head movement tests (the 

dynamic visual acuity and the gaze stabilization tests). 
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Date ___/___/____       Subject ID______ 
 
VAS ____  
_____________________________________________________________ 
 
Please place a mark on the line below corresponding to how you feel right now 
when you are sitting regarding the following symptoms: 
 
 
     Nausea                    Headache                     Dizziness       Visual Blurring  
 
As bad as it can be             As bad as it can be                   As bad as it can be                 As bad as it can be 
 

 
No nausea at all                  No Headache at all                  No Dizziness at all                         None at all 
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