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STUDYING PHYSICAL ACTIVITY DECLINE FROM ADOLESCENCE TO 

LTHOOD USING LATENT GROWTH CURVE AND RANDOM COEFFICIENT 

MODELS 

Binqi Yang, M.S. 

University of Pittsburgh, 2007
The level of physical activity is important for maintenance of good health. Research has 

strated that virtually all individuals can benefit from physical activities which have been 

to reduce the morbidity from many chronic diseases, like cardiovascular disease and 

s. Therefore, understanding the trend in activity level from adolescence to young 

od is very important for public health study.  

The purpose of this thesis is to describe the natural history of participation in leisure time 

l activity from adolescence to young adulthood. The study data are from the University of 

rgh Physical Activity Study (PittPAS), which recorded physical activities of 1245 high 

students over a period of 14 years. Two longitudinal growth models, a latent growth curve 

 model and a random coefficient model are applied to characterize the changes in activity 

er week (HRWK) as well as the effects of sex, race, and grade on these changes. Our 

s results show: Male students are more physically active and have the larger decline rate 

male students; White students are more active, and also have the larger decline rate than 

students; Students from the lower grades spend more time in physical activity and also 

e larger decline rate than students in the higher grades.  

Through analyzing the above physical activity, we also investigate the similarities and 

ces of LGC models and random coefficient models, such as both models share the same 

iv 



objectives. The LGC model is a multivariate approach, while random coefficient model is a 

univariate one in terms of the dependent variables. Random coefficient model does not require 

time-structure data and allows the explanatory variable ‘time’ to take on different values for each 

subject. Thus, the random coefficient model has the advantage to handle large amount of missing 

and irregular data acquired in non-uniform time occasions. Since our study data have a large 

amount of missing observations and are non-uniformly acquired, random coefficient model is 

more appropriate in characterizing the changes of HRWK.  
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1.0  INTRODUCTION 

Longitudinal data are common in the social, education and biology sciences. A wide 

array of statistical models is available for the analysis of longitudinal data. In recent years, 

methods that study a growth curve of longitudinal data have become popular. Such growth curve 

models provide a way to account efficiently for the dependency caused by the fact that the same 

subjects have been assessed repeatedly. The typical growth curve models include random 

coefficient model (Goldstein H, 1998) and latent growth curve model (McArdle JJ et al, 1987; 

Meredith W et al, 1990; Duncan TE et al, 2006). These two models are elegant in representing 

both collective and individual change as a function of time. They are highly similar because both 

approaches share the same objectives and have a similar model representation. However, they 

have different model assumptions, leading to the different features in processing the longitudinal 

data. In this thesis, we studied the similarities and differences between these two models by 

applying them to a set of longitudinal psychosomatic data.  

1.1 RESEARCH STATEMENT 

In psychosomatic research, there has been a long-standing interest in understanding how 

physical activity declines during adolescence (Mechelen WV et al, 2000; Kimm SYK et al, 

2002). General findings in the epidemiological research of physical activity in young people are 
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that boys are more active than girls, the amount of physical activity declines with increasing age, 

the decline rate is greater in girls than in boys (Mechelen WV et al, 2000), and declines are 

greater in black girls than in white girls (Kimm SYK et al, 2002). Studying data from the 

Amsterdam Longitudinal Growth and Healthy,  Mechelen and his colleagues tried to describe the 

natural development of habitual physical activity (HPA) of young Dutch male and female 

individuals between the ages of 13 and 27 (Mechelen WV et al, 2000). They used ANOVA 

method to separately analyze the repeated measurements of total HPA, sports activity, leisure 

time activity and all other activity, and found that the male individuals had a significant decrease 

in weekly time spent on HPA. Moreover, they found that the activity changes of males and 

females were different regarding the three levels of intensity, i.e., moderate activity, vigorous 

activity, and very vigorous activity. Kimm and her colleagues did cross-sectional studies for 

1213 black girls and 1166 white girls who had been followed annually from the ages of 9 or 10 

years to 18 or 19 years (Kimm SYK et al, 2002). They used a validated questionnaire to measure 

leisure-time physical activity on the basis of metabolic equivalents (MET) of the reported 

activity and their MET-times per week. They used two-sample tests to examine racial differences 

in descriptive characteristics. Their findings showed that race was a factor, with black girls 

having a decline in activity twice that of white girls. Behavioral risk factors such as smoking and 

pregnancy also affected the decline in activity. An interesting finding was that the level of 

parental education instead of household income was associated with the decline of activity. 

Although people have studied the physical activity during adolescence, none have 

captured the activity change over time. To fully understand the development of physical activity 

patterns throughout the life span, longitudinal change in physical activity needs to be examined. 

This thesis will evaluate the role that different factors, (i.e., sex, race, socioeconomic status, and 
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grade), play in the decline of physical activity. We use latent growth curve (LGC) models and 

random coefficient models to analyze how the trend of physical activity changes over time or at 

each time point; how much it changes, and to compare the change among different groups. 

Through this study, we could not only provide answers to some questions such as, “Do boys do 

more exercise than girls as they grow up?”, “Do adolescents from wealthy families better 

maintain their exercise habit than those from poor families?”, “Is race relevant?”, but also we 

could address how the time spent in activity changes over time, and whether such changes 

depend on race, sex, or socio-economic status. 

1.2 THESIS CONTENT AND ORGANIZATION 

This thesis mainly investigates the similarities and differences between two longitudinal 

models: latent growth curve model and random coefficient model. These two models are both 

used to address the trend in physical activity from adolescence to adulthood. The study data are 

from University of Pittsburgh Physical Activity Study (PittPAS), which recorded physical 

activities of 1245 high school students at different time points over a period of 14 years. The 

thesis is organized as follows: Chapter 1 briefly introduces the background of this thesis work; 

Chapter 2 introduces basic concepts of a LGC model and a random coefficient model, and 

discusses similarities and differences between these two models; Chapter 3 gives the descriptive 

statistics of our study PittPAS data; Chapter 4 shows the similarities of a LGC model and a 

random coefficient model through studying the uniformly acquired data in the first four years; 

Chapter 5 compares the different features of these two models by analyzing the data observed in 

 3 



the whole time period; Finally, the characteristics of the trend of physical activity from 

adolescence to adulthood are presented and conclusions are drawn in the last Chapter. 
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2.0  LATENT GROWTH CURVE MODEL AND ROMDOM COEFFICIENT MODEL 

Under the names of growth models (McArdle JJ et al, 1987), hierarchical linear models 

(Li F et al, 1999), random regression (Laird NM et al, 1982), or mixed models (Goldstein H, 

1995), the popularity of latent growth curve (LGC) models and random coefficient models is the 

result of theoretical developments and the availability of software such as SAS, Mplus, LISREL, 

Amos, to conduct data analyses (Llabre MM et al, 2004). The most important reason for the 

popularity of the longitudinal growth models is their elegance in representing both collective and 

individual change as a function of time. In this Chapter, we briefly introduce the LGC model, 

and discuss its similarities and differences with random coefficient model. 

2.1 LGC MODEL AND ITS TWO-FACTOR MODEL SPECIFICATION 

As one type of growth curve models, the LGC model aims to capitalize on repeated 

observations of subjects across time (Goldstein H, 1998). It has emerged as a versatile tool for 

analyzing data in repeated measures designs, especially for studying longitudinal changes 

(McArdle JJ et al, 1987; Meredith W et al, 1990; Duncan TE et al, 2006). Considering data 

change over time as an underlying latent process, the LGC model establishes a trajectory of 

change over time for each individual in a sample. Characteristics of each trajectory varying 

across individuals are then treated as latent variables. The change pattern over time can be 

 5 



assumed to follow a linear or nonlinear function. The LGC model provides large flexibility and 

potentials to allow the complex representations of growth and correlates of change as a function 

of time. Particularly, the flexibility not only relies on the combination of individual and group 

levels of analysis, but also concerns the integration of factorial structure of the repeatedly 

measured variables, the shape of the growth curves, residual structures, missing data on predictor 

variables (Duncan TE et al, 2006). 

A simple LGC model consists of two-level equations, where parameters in the first level 

are dependent variables of the second level equation. As depicted in Figure 1, a linear straight 

line growth curve model can be expressed as  
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resulting in the random effects. Thus, the LGC model given in (2.1) combines the fixed and 

random effects, and is very similar to the random coefficient model. 
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Figure 1. Conceptual latent growth curve diagram for each individual i 

2.2 RANDOM COEFFICIENT MODEL 

Random coefficient model is another popular growth curve model, which can also be 

applied to study longitudinal data changes. A random coefficient model shares the same 

objectives as that of a LGC model and have a similar model representation. In order to see this 

point clearly, we first recall the model specification of a simple random coefficient model. 

Specifically, a random coefficient model with linear growth pattern can be denoted as  

ititiitiiiitislpitslpiit TimeXaTimeXaXaXaTimeeTimeueuY ε++++++++= 24132211,int,int ,   (2.2) 
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where each individual is examined repeatedly at four time occasions . By 

simple manipulation, (2.2) can be written as  

Ni ,,2,1 K= 3,2,1,0=t

ititislpiislpiiiit TimeeXaXaueXaXauY ε++++++++= ）（）（ ,2413int,2211int .           (2.3) 

Writing ,  iiii eXaXau int,2211intint +++= isliislpi eXaXau ,2413slp +++= , (2.2) can be expressed 

as   
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Here, itε  is a residual at the measurement level and , is a variable, which 

denotes one of the measurement occasions [0, 1, 2, 3]. The initial level (intercept) and linear 

shape (slope) for each individual are expressed by  and . The effects of time-invariant 

covariate  and on the intercept and slope are represented by coefficients , , , 

. And inter-individual differences between the intercept and slope are characterized by 

random effects  and , which are assumed to be normally distributed as 
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2.3 COMPARISIONS OF LGC MODEL AND RANDOM COEFFICIENT MODEL 

Comparing (2.4) with (2.1), there are no important differences in the specification of the 

LGC model and random coefficient model for the linear growth curve. The major difference 

between these two models is the way how time is introduced. In the random coefficient model 

(2.4), time is introduced as a fixed explanatory variable , whereas in the LGC model (2.1), 

time is introduced via parameter 

itTime

itλ , which is constrained in such a way that they represent time. 

The consequence of such difference is that the random coefficient model is essentially a 

univariate approach, with time points treated as observations of the same variables, whereas the 

LGC model is essentially a multivariate approach, with each time point treated as a separate 

variable. This distinction leads to the different properties of these two methods in the following 

three aspects: time estimation, residual specification and missing data handling.  

2.3.1 Estimating the Growth Curve Pattern  

(2.1) and (2.4) show that the LGC model and random coefficient model share the same 

features for the linear growth curve. In practice, the linear pattern of the growth curve is usually 

too restricted to fit the data. A higher-order polynomial such as quadratic or cubic pattern of the 

growth curve can be used to model the nonlinear change or development in the longitudinal data. 

It shows that the LGC model and random coefficient model also share the same features 

regarding the estimation of nonlinear growth curves (MacCallum RC et al, 1997).  

 The difference between the LGC model and random coefficient model lies on the way to 

process the time factor. As given in (2.1) and (2.4), the time factor is introduced differently, by 

 9 



setting parameter itλ  in the LGC model, or including time as an independent variable  in 

random coefficient model. LCG subjects to a restriction that even time space for all individuals 

between different interview occasions should be maintained. However, time factor in random 

coefficient model treated as an observation variable could include irregular time interval.  

Generally speaking, the fixed values of 

itTime

itλ , and the values of time variable  represent the 

occasions at which individuals have been measured. As a univariate approach, time is given as 

an observation variable in the LGC model. However, it is still possible to estimate time factor 

parameters in the LGC models (McArdle JJ et al, 1987). In other words, instead of fixing the 

factor parameters 

itTime

tiλ  to known values [0, 1,…, T], we can set them to [0,1, …, ] , where 

…, are to be estimated for a specific growth curve pattern.  Such freedom to estimate time 

factor parameters instead of fixing them is quite helpful especially in the case when the 

measurement time is unknown.  

2b Tb

2b Tb

2.3.2 Specification of Residual Correlation Structures 

LGC model and random coefficient model are different in the flexibility of incorporating 

the alternative structures for the residuals. As a multivariate method, the LGC model allows very 

flexible specifications of residual covariance structures. Since  measured at time occasion [0, 

1, 2, 3] is treated as a separate variable, it is easy to estimate its variances, and covariance 

between each dependent variable in the LGC model. Therefore, the effectiveness of a variety of 

reasonable error structures can be compared, and the most appropriate one can be used for the 

particular problem (Willett JB et al, 2004).  

ity
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For random coefficient model, the available residual structures are designed to handle 

repeated measurer data, and usually provided by the software packages, such as SAS Proc Mixed. 

2.3.3 Missing data  

Comparing with LGC model, random coefficient model has more advantages to handle 

missing data. In LCG model, if one individual has the missing data in a subject at one occasion, 

all data relative to this individual will be considered as missing. That’s, observations with 

missing values for any variables in the analysis are omitted from the computations in the LGC 

model (SAS, 2006). However, if there is a missing observation in one or more occasions in 

random coefficient model, the data related to those occasions are omitted and other time 

occasions associated with this individual are still be processed. Therefore, random coefficient 

model is more robust in modeling the data including a large amount of missing observations.  

2.4 IMPLEMENTATION OF LGC AND RANDOM COEFFICIENT MODEL 

2.4.1 Random Coefficient Model Fitting 

In this thesis, random coefficient model is fitted by PROC MIXED procedure in SAS 

version 9.0. The estimation of random coefficient model can be done either by the Maximum 

Likelihood (ML) method or the restricted/residual maximum likelihood (REML). The ML 

method is an iterative estimation approach, which produces estimates for the population 

parameters that maximizing the probability of observing the data given one model (Diggle P et al, 
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2002). By maximizing the likelihood function, ML estimation is expected to provide 

asymptotically efficient and consistent estimations given the relatively large sample size. The 

REML is another method can be used to fit the model structure. Both ML and REML iteratively 

optimize the parameters estimates for the model effects. Differently, REML only maximizes the 

likelihood of the data for the random effects. Therefore, REML leads to a restricted solution 

(SAS, 2006). In Proc Mixed procedure, REML is the default estimation method. Akaike’s 

Information Criterion (AIC) is calculated to assess the goodness of model fitness. The model 

with the smallest AIC among all competing models is considered as the best model.  

2.4.2 LGC Model Fitting 

The LGC modelling approach is one of structural equation modelling (SEM) approaches, 

which expresses relationships among several directly observed variables (manifest variables) or 

unobserved hypothetical variables (latent variables). Hence, fitting growth trajectory models can 

be carried out using standard computer software for SEM, such as Amos, EQS, LISREL, Mplus, 

and SAS PROC CALIS (Li F et al, 1999). There have been a lot of literatures about comparing 

these software performances (Li F et al, 1999; Bollen KA et al, 2006). In this thesis, PROC 

CALIS (Covariance Analysis of Linear Structural Equations) routine in SAS 9.0 is used to 

estimate the LGC model parameters. It uses the default method maximum likelihood (ML) and 

generalizes the least-squares to estimate model parameters (SAS, 2006). Moreover, CALIS 

procedure assumes that random variables have an approximately multivariate normal distribution. 

CALIS routines in SAS provide several statistical tests to determine the adequacy of model fit to 

the data. Commonly accepted indices of fit are Chi-square test, the goodness fit index (GFI), and 
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the root mean square error of approximation (RMSEA) (Duncan TE et al, 1999; Suhr DD, 2004). 

These three indices are used to assess the goodness of model fit in this Chapter.   

The Chi-square test indicates the amount of difference between expected and observed 

covariance matrices. A chi-square value close to zero indicates little difference between the 

expected and observed covariance matrices. When one model with the constraints is nested with 

the model without the constraints, the Chi-square difference test can be used to compare these 

two models. If the constraints lead to a significant deterioration of the model fit, we can conclude 

such constraints are not valid.  

The GFI represents the discrepancy function adjusted for sample size. The GFI should be 

between 0 and 1, with a larger value indicating better model fit. The acceptable model fit is 

indicated by a GFI value of 0.90 or greater (Hu LT et al, 1999). More information about the GFI 

can be found in the SAS online help (SAS, 2006). 

The RMSEA is related to residuals. It represents the discrepancy per degree of freedom 

for the model. The RMSEA values range from 0 to 1 with a smaller RMSEA value indicating 

better model fit. Better model fit is indicated by an RMSEA value of 0.06 or less. 

Beside the above three indices, we also use Akaike's Information Criterion (AIC) to 

justify our LGC model fitting. This is the same as random coefficient model. The model yields 

the smallest value of AIC is considered the best.  
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3.0  DESCRIPTION OF THE MATERIAL 

3.1 STUDY DATA 

A longitudinal study, University of Pittsburgh Physical Activity Study (PittPAS), was 

conducted to examine changes in physical activity of adolescents recruited from a single 

suburban school district. The study began in Year 1990 and included two phases: phase 1 

conducted from Year 1990 ~ Year 1993 and phase 2 conducted from Year 2000 ~ Year 2003. A 

total of 1245 individuals were recruited into the study at Year 1990. 1171 of these individuals 

had been followed until 1993 in phase 1 study. To better describe the study data, we denote the 

interviews happened during Year 1990 ~ Year 1993 as the first, second, third and fourth 

interviews for each individual. Information had been recorded about their time spent in some 

typical sport activity for each of four years. The activities included aerobics, band/drill team, 

baseball, basketball, bicycling, bowling, cheerleading, dance class, football, garden/yard work, 

and tennis. Moreover, the recorded data also included some summaries of physical activity 

information, such as the number of activity taken per week, the total time spent per week, the 

time spent per week in team activities and individual activities, and the activity intensity, which 

was characterized into light, moderate and vigorous classes. Phase 1 of the study ended in 1993. 

Phase 2 began in 1999, and the individuals completed their fifth interviews during the period 

between 24-MAY-1999 and 23-FEB-2003 (denoted as R1), of which the median interview date 
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is 25-January-2001, and their sixth visits between 18-JUN-2001 and 27-SEP-2004 (denoted as 

R2), of which the median interview date is 17-March-2003. Due to the difficulty in tracking the 

individuals, these two interview periods overlapped, resulting in non-regular observation time.  

During the study periods, students’ information had been obtained by a trained 

interviewer. Several questionnaire forms were used as the standard assessment procedures. Table 

1 and Table 2 present the notations of continuous and categorical data, which are used through 

the thesis. Table 1 lists the notations of the continuous data such as age and total time spent in 

physical activity (HRWK). Moreover, we denote HRWK90, HRWK91, HRWK92 and HRWK93 

as HRWK acquired in the first, second, third, and fourth interviews, respectively. HRWKR1 and 

HRWKR2 are defined as HRWK values acquired in the fifth and sixth interview, respectively. 

Table 2 presents the notations of categorical variables of each individual. We define 

HARDEX90-HARDEX93, EASYEX90-EASYEX93, and TV90-TV93 as the values of 

HARDEX, EASYEX, and TV from Year 1990 ~ Year 1993. 

Due to long time intervals between two study phases, many participants could not be 

tracked and followed, thus resulting in many missing data. As presented in Table 3, the 

maximum drop-out rate reaches 20%. The study shows that the White participants are more 

likely to stay in the study compared to the Black participants; individuals from the “High SES” 

families are more likely to stay; individuals from the “Middle SES” families have a nearly 

constant rate to stay, while students from the “Low SES” families have the highest dropping 

rates. 
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Table 1. Continuous data 

Descriptions Variable Name 
Age when attend the study, calculated using birthday AGE 

Number of activity students reported NUMACT 
Total time spent per week in physical activity HRWK 
Time spent per week in team physical activity THRWK 

Time spent per week in individual activity IHRWK 
Time spent per week in vigorous activity VHRWK 

Time spent per week in light moderate activity LMHRWK 
 

Table 2. Categorical data 
 

Descriptions Variable 
Grade when students enter this study GRADE 

Sex SEX 
Race RACE 

Social and economics status SES 
Days of hard exercise in past two weeks HARDEX 
Days of easy exercise in past two weeks EASYEX 
Hours of TV/Computer/Video per day TV 

 

Table 3. Demographic status (%) of the whole population through years 

 Adolescence Young Adulthood 
Visit time 1st  2nd  3rd  4th  5th  6th  

Year 1990 1991 1992 1993 R1 R2 
Students participated (N) 1171 1088 957 809 828 678 

Male 51.6 52.6 52.5 52.4 47.6 45.8 SEX 
Female 48.4 47.4 47.5 47.6 52.4 54.3 
White 75.8 76.3 78.4 81.8 82.8 85.9 RACE 
Black 24.2 23.8 21.6 18.2 17.2 14.1 

High SES 27.5 28.0 29.9 32.3 32.9 36.4 

Mid SES 53.5 53.3 52.3 52.5 52.7 50.0 

 
SES 

Low SES 19.0 18.7 17.9 15.2 14.5 13.6 
Grade 7 33.1 33.0 33.9 33.6 31.8 30.8 
Grade 8 31.3 33.2 32.4 31.2 31.6 31.4 

 
GRADE 

Grade 9 35.5 33.8 33.8 35.2 36.6 37.8 
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3.2 DESCRIPTIVES OF CONTINUOUS VARIABLES 

Table 4 lists the detailed characteristics of each activity. It shows that at baseline students 

usually attended four activities (NUMACT), and spent more than eighteen hours per week in all 

activities (HRWK), including ten hours in individual activity (IHRWK), eight hours in team 

activity (THRWK); twelve hours in vigorous activity (VHRWK), and six hours in light-moderate 

activity (LMHRWK). Over the course of the study, there is an obvious decline in the NUMACT 

and HRWK. At their sixth interview, individuals only had three activities averagely, and HRWK 

has declined to 5.4 hours, including only 4.6 hour of IHRWK, and 0.8 hours of THRWK, 1.8 

hours of VHRWK, and 3.6 hours of LMHRWK. 

 

Table 4. Means and standard deviations (in parenthesis) of the continuous variables  

 Adolescence Young Adulthood 
Visit time 1st  2nd  3rd  4th  5th  6th  

Year 1990 1991 1992 1993 R1 R2 
Students 

participated (N) 
1171 1088 957 809 828 682 

NUMACT 4.54 
(2.42) 

4.20 
(2.51) 

3.22 
(2.26) 

2.71 
(2.07) 

3.39 
(2.18) 

3.09 
(1.96) 

HRWK 18.36 
(21.40) 

15.97 
(15.31) 

12.61 
(13.13) 

10.42 
(11.24)

6.87 
(8.75) 

5.52 
(6.06) 

IHRWK 10.32 
(15.14) 

7.92 
(10.66) 

5.19 
(6.97) 

4.04 
(6.06) 

5.81 
(7.81) 

4.65 
(5.15) 

THRWK 8.04 
(11.39) 

8.05 
(9.72) 

7.42 
(10.03) 

6.39 
(8.44) 

1.06 
(2.24) 

0.87 
(2.22) 

VHRWK 12.32 
(16.83) 

10.23 
(11.07) 

7.95 
(10.00) 

6.51 
(8.72) 

2.43 
(3.97) 

1.88 
(3.06) 

LMHRWK 6.05 
(9.39) 

5.74 
(7.89) 

4.66 
(6.25) 

3.92 
(5.39) 

4.44 
(5.94) 

3.64 
(4.39) 
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3.3 DESCRIPTIVES OF CATEGORICAL VARIABLES 

Table 5 presents the percentage of time spent in each activity within two weeks. During 

the transition from adolescence to adulthood, we can see that more participants spent little time 

in HARDEX and EASYEX.  

Table 5. Status (%) of categorical variables 

 Adolescence Adulthood 
Visit time 1st  2nd 3rd  4th  5th  6th  

Year 1990 1991 1992 1993 R1 R2 
None 9.40 8.64 10.95 11.37 27.93 29.91

1 to 2 days 14.46 14.15 18.14 20.07 15.96 13.78
3 to 5 days 26.99 26.84 27.53 29.87 19.71 21.85
6 to 8 days 20.08 21.23 16.68 15.36 15.96 17.60

 
 

HARDEX 

9 or more days 25.14 29.14 26.69 23.34 20.44 16.86
None 11.14 11.2 13.67 ** 14.99 16.28

1 to 2 days 18.59 19.49 20.46 ** 13.06 13.93
3 to 5 days 25.63 24.82 26.30 ** 20.56 24.49
6 to 8 days 14.99 14.89 13.67 ** 13.30 12.46

 
 

EASYEX 

9 or more days 29.65 29.60 25.89 ** 38.09 32.84
None 1.83 1.56 2.71 3.02 3.38 ** 

1 hour or less 14.49 17.37 23.28 23.46 25.12 ** 
2 to 3 hours 42.63 47.89 46.97 49.33 48.19 ** 
4 to 5 hours 19.65 19.85 17.85 15.24 14.25 ** 

 

TV 

6 or more hours 21.40 13.33 9.19 8.95 9.06 ** 
** indicates that the corresponding data are not available. 

3.4 DATA TRANSFORMATION 

In this thesis, we study the change in physical activity through the observations of 

HRWK.  As normality is the major assumption of both LGC model and random coefficient 

model, we need to examine the normality of HRWK. Figure 2(a) demonstrates the HRWK 

distribution at the first interview. It shows that HRWK is not normally distributed. To improve 
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the normality of HRWK, we apply log transform after comparing several transformations 

including the cubic, square, square-root, log, reciprocal root functions. The log transform could 

eliminate the serious “skewness” problem and shrink extreme high values. As the log function 

cannot be directly applied to the zero-value HRWK, we can either exclude zero-value HRWK or 

assign a small value, for example 0.0005, to the zero-value HRWK. We denote the log values of 

HRWK after excluding zero-value observations as LHRWK (i.e., LHRWK=log(HRWK)), and 

define the log values of HRWK after introducing the small number 0.0005 as rLHRWK (i.e., 

rLHRWK=log(HRWK+0.0005)). Figure 2(b) and Figure 2(c) depict the distributions of 

LHRWK and rLHRWK, respectively. Figure 2(b) shows that LHRWK has approximate normal 

distribution. Thus, we label zero-value HRWK data missing when we compute LHRWK values 

for the tradeoff of normality. As demonstrated in Figure 2(b), we can preserve zero-value 

HRWK observations when calculating rLHRWK, while we still have the skewness problem.  

Figure 3 ~ Figure 7 depict the distribution of HRWK, LHRWK and rHRWK in the 2nd-6th 

interviews.  However, to label zero-value HRWK observations missing results in many missing 

data. Table 6 lists the number of zero-value HRWK and its percentage among the total number 

of participants (given in Table 4) in each interview. 

 

 Table 6.  Number of zero-value HRWK in each interview 
 

Visit time 1st  2nd  3rd  4th  5th  6th  
Number of zero-

value HRWK 
38 55 95 99 37 34 

Percentage (%) 3.24 5.06 9.93 12.24 4.47 4.99 
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(a) Distribution of HRWK in Year 1990 

 

(b) Distribution of LHRWK in Year 1990 

 

(c) Distribution of rLHRWK in Year 1990 

Figure 2.  Transformation of HRWK in the 1st interview 
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             (a) Distribution of HRWK in Year 1991        (b) Distribution of LHRWK in Year 1991 

 

 

(c) Distribution of rLHRWK in Year 1991 

Figure 3. Transformation of HRWK in 2nd interview 

 

 

 

 

 

 

 21 



  

             (a) Distribution of HRWK in Year 1992           (b) Distribution of LHRWK in Year 1992 

 

 

             (c) Distribution of rLHRWK in Year 1992 

Figure 4. Transformation of HRWK in the 3rd interview 
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             (a) Distribution of HRWK in Year 1993          (b) Distribution of LHRWK in Year 1993 

 

(c) Distribution of rLHRWK in Year 1993 

Figure 5. Transformation of HRWK in the 4th interview. 
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          (a) Distribution of HRWK during Year R1   (b) Distribution of LHRWK during Year R1 

 

 

(c) Distribution of rLHRWK during Year R1 

Figure 6. Transformation of HRWK in the 5th interview 
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        (a) Distribution of HRWK during Year R2       (b) Distribution of LHRWK during Year R2 

 

(c) Distribution of rLHRWK during Year R2 

Figure 7. Transformation of HRWK in the 6th interview 

3.5 PHYSICAL ACTIVITY DECLINE ACROSS TIME 

In this thesis, we study the change of HRWK, which represents the change in physical 

activity across time. The mean of HRWK depicted in Figure 8 shows that physical activity 

declines across time. Such decline is almost linear with respective to time during the first four 

interview occasions, as shown in Figure 9. Figure 10 and Figure 11 demonstrate the change of 
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mean values of rLHRWK and LHRWK, respectively. The trend of rLHRWK is hard to be 

observed. Especially, the mean value of rLHRWK in the fourth interview (Year 1993) is much 

smaller than that of R1. It is mainly because there are more zeros value HRWK in the fourth 

interview (Year 1993) than the fifth interview at R1 as listed in Table 6. By labeling the zero-

value HRWK as missing, we can largely improve the linearity of the mean LHRWK as depicted 

in Figure 11. 

 

Figure 8. Mean of HRWK through years         

 

Figure 9. Mean of HRWK at first four years        
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Figure 11. Mean of LHRWK through years 
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(a) Time distribution of the fifth interview 
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(b) Time distribution of the six interview 

Figure 12. There are overlapping periods during the fifth and sixth interview time 
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3.6 SUMMARY OF DATA CHARACTERISTICS 

The above descriptive statistics shows that the longitudinal data have three major problems, i.e., 

irregular interview time intervals, non-normality, and missing data. Firstly, these data are 

measured at irregular observation occasions. Although the observation occasions are regular at 

the first four interview occasions, there are overlapping periods during the fifth and sixth 

interview time as shown in Figure 12. Secondly, the observation data such as HRWK is not 

normally distributed. After excluding zero-value HRWK observations and applying log 

transformation, LHRWK is approximately normally distributed, as shown in Figure 2 ~ Figure 7. 

However, this introduces more missing data. Thirdly, because of the large time space between 

the phase 1 study and phase 2 study, many individuals are lost to follow-up. This leads to many 

missing data, especially in the fifth interview and sixth interview.  
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4.0  COMPARISIONS OF LGC AND RANDOM COEFFICIENT MODEL FOR DATA 

WITHOUT MISSING 

As described in Chapter 2, the LGC model and random coefficient model are highly 

similar. They share the same objectives and have a similar representation. If they are used to 

represent the same set of good longitudinal data, their models would yield identical estimates of 

the relevant parameters (Hox, 2000). As an illustration of the equivalence of these two models, 

we use both LGC model and random coefficient model to analyze the decline of physical activity 

data described in Chapter 3. Specifically, we apply both models to characterize the trajectory of 

HRWK collected in the first four observation years (from Year 1990 to Year 1993) in this 

Chapter. Because these two models are different in processing the missing data, we only consider 

the observation data set without missing.  As depicted in Figure 9, the mean of HRWK during 

the first four years has nearly linear relationship with the observation time. We hence assume for 

simplicity that HRWK has a linear change shape. This Chapter consists of three sections: Section 

4.1 presents the formulation of LGC model for HRWK. Section 4.2 uses the random coefficient 

model to analyze the HRWK data. Finally, we discuss and compare the estimate results of these 

two models in the last section. 
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4.1 LATENT GROWTH CURVE MODEL FOR HRWK 

As described in Chapter 3, HRWK values are different for individuals with different SEX, 

SES, RACE, and GRADE. We use LGC model to characterize the change of HRWK with these 

four effects. Specifically, we define  as HRWK value of individual i  ( ) at 

measurement occasion t ( ). That’s, 

ity Ni ,...,2,1=

3,2,1,0=t 90HRWK0 =iy , 91HRWK1 =iy , , 

and . We also denote four fixed effects SEX, RACE, SES, GRADE as , 

, , and , respectively. Similar to (2.1), we have the linear shape LGC model 

representation for HRWK as 

92HRWK2 =iy

93HRWK3 =iy iSEXx ,

iRACEx , iSESx , iGRADEx ,

islp,,8,7,6,5

int,,4,3,2,1int

i

slp
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slpint

exxxx

exxxx
y

iSESiGRADEiRACEiSEXslpi
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,           (4.1) 

where the initial level and linear shape for each individual subject are presented by the latent 

factors,  and , with initial value iint islp intµ  and slpµ , and normal deviations, ,  

and . As the LGC is a multivariate approach, the LGC model is flexible 

in selecting the covariance structure of the residual. In (4.1), 
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1α , 2α , 3α , 4α , 5α , 6α , 7α and 8α  

are the fixed effects parameters of , , , and . As given in Appendix A, 

we have the following definitions: 

iSEXx , iRACEx , iSESx , iGRADEx ,

1, =
iSEXx  if ‘the individual is female’,  if ‘the 

individual is male’;  if ‘race is White’, 

0, =
iSEXx

0, =
iRACEx 1, =

iRACEx  if ‘race is Black’; and 0, =
iSESx  if 

the individual is from the high SES, 1, =
iSESx  if the individual is from the middle SES, 
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2, =
iSESx  if the individual is from the low SES; and  is the grade of the individual 

received his or her first interview in Year 1990. The possible values of  are 7, 8, 9 in our 

study data. 

iGRADEx ,

iGRADEx ,

The LGC model (4.1) introduces the time effect by constraining itλ  values.  As described 

in Section 3.1, the observation data were acquired uniformly during the first four interviews from 

Year 1990 to Year 1993. Year 1990 is considered as the baseline time. Thus, we then 

assign 00 =iλ , 11 =iλ , 22 =iλ , and 33 =iλ . The LGC model (4.1) for HRWK can then be 

rewritten as (4.2).  The graphic representation of (4.1) is also depicted in Figure 13. 
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Figure 13. Graphic representation of the LGC model for HRWK with four fixed effects 
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4.2 RANDOM COEFFICIENT MODEL ANALYSIS 

In the random coefficient model analysis, let  be the observation HRWK of each 

individual subject, i ( ) measured at each of four time occasions  (from 

Year 1990 to Year 1993). Similar to (2.2), the linear pattern random coefficient model can then 

be presented as  

itY

Ni ,,2,1 K= 3,2,1,0=t

ititiSESTSESitiGRADETGRADEitiRACETRACEitiSEXTSEX

iSESSESiGRADEGRADEiRACERACEiSEXSEXitislptislpiit

TimeXaTimeXaTimeXaTimeXa

XaXaXaXaTimeeTimeueuY

ε+++++

+++++++=

,,,,,,,,

,,,,,int,int ,   (4.3) 

where  is a variable denoting measurement occasions. For the uniformly acquired HRWK 

at  during Year 1990 ~ Year 1993, 

itTime

3,2,1,0=t 00 =iTime , 11 =iTime ,  and 22 =iTime 33 =iTime . 

The initial level and linear shape for each individual subject have the expectations  and , 

and random deviations  and , which are normally distributed , where 
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itε  is a residual at the measurement level and .  Fixed 

effects , , , and  represents the factors of SES, RACE, GRADE and 

SES for individual i , respectively. They have the same values as those in the LGC model. That’s, 

 if ‘the individual is female’, 

),0(~ 2
εσε Nit

iSEXX , iRACEX , iGRADEX , iSESX ,

1, =
iSEXX 0, =

iSEXX  if ‘the individual is Male’; 0, =
iRACEX  if 

‘RACE is White’,  if ‘RACE is Black’; and if the individual is from the high SES, 

;  for the individual who is from the middle SES, and  if the 

individual is from the low SES; and  is the grade of the individual received his or her 

first interview in 1990, and has one of the values 7, 8, 9. Finally, , ,  and  

1, =
iRACEX

0, =
iSESX 1, =

iSESX 2, =
iSESX

iGRADEX ,

SEXa RACEa GRADEa SESa

 33 



represent respectively fours fixed effects on the initial level, and , ,  

and  represent respectively fixed effects on the linear shape. 

TSEXa , TRACEa , TGRADEa ,

TSESa ,

4.3 COMPARISIONS 

PROC CALIS routine in SAS 9.0 with the default maximum likelihood (ML) estimation 

described in Chapter 2 is used to estimate parameters of LGC model (4.2). For random 

coefficient models (4.3), SAS Proc Mixed procedure is used to estimate model parameters. As 

the ML method cannot lead to the convergence of model estimation processing, the default 

Restricted Maximum Likelihood (REML) method is used for random coefficient model 

parameter estimations. The complete SAS codes for these two model estimations are included in 

Appendix C, and the corresponding full model fit statistics and model estimation results are 

presented in Appendix D.  

The parameter estimates of LGC model (4.2) and random coefficient model (4.3) are 

listed in Table 7, where the first two columns present the relevant parameters of (4.2), and the 

last two columns list the parameters of (4.3). Similar to Figure 13, the estimate LGC model (4.2) 

is also demonstrated in Figure 14.  Due to the different maximum-likelihood methods used, the 

parameter estimates are close but with different standard errors and random effects. However, 

the estimated fixed effect parameters of these two models are the same, as listed in Table 7. 

These two models lead to the same substantive conclusions summarized as follows: after 

controlling for the effect of the covariates, a mean growth curve of activity time emerges with an 

initial level of 27.2362 and a growth rate of -2.6418 (the negative sign indicates the activity time 

is decline). SEX has negative effects on the initial level and positive effect on the growth rate, 

 34 



leading to the conclusion that Male ( 0=SEXX ) had more activity time at the first measurement 

occasion (Year 1990), and a larger decline rate of physical time than female ( ).  RACE 

has a negative effect on both the initial level and the growth rate. That is, the White students 

spent more time in the physical activity at Year 1990, and also had the smaller physical activity 

decline rate than the Black student. Similarly, GRADE has a negative effect on both the initial 

level and the change rate, which means the low grade students spent more time in the physical 

activity at Year 1990, and also had the smaller physical activity decline rate than the high grade 

students. SES has a positive effect on the initial level and the negative effect on the change rate. 

This means that the students from the high social status family spent less time in the physical 

activity at Year 1990, and also had the smaller physical activity decline rate than the students 

from low social status family.   

1=SEXX

4.4 SUMMARY 

In this Chapter, we apply the LGC model and random coefficient model to analyze the no-

missing data in the first four observation occasions. The model estimate results confirm that the 

two models are identical for the data without missing observations. 

 

 

 

 

 

Table 7. The estimated parameters of LGC model (4.2) and random coefficient model (4.3)
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The LGC model (4.2) Random coefficient model (4.3) 

Parameter Estimate Parameter Estimate 
Fixed effects  Fixed effects  

1α  -14.4078 (1.1788) SEXa  -14.4078 (0.9480) 

2α  -0.8937 (0.5252) RACEa  -0.8937 (1.3684) 

3α  -1.1513 (0.7055) GRADEa  -1.1513 (0.5673) 

4α  0.6462 (0.9728) SESa  0.6462 (0.7824) 

5α  1.8742 (0.3796) TSEXa ,  1.8742 (0.4371) 

6α  -0.8316 (0.6310) TRACEa ,  -0.8316 (0.5480) 

7α  -0.2322 (0.2616) TGRADEa ,  -0.2322 (0.2272) 

8α  -0.3266 (0.3608) TSESa ,  -0.3266 (0.3133) 

intµ  27.2362 (1.8072) intµ  27.2362 (1.4533) 

slpµ  -2.6418 (0.6701) slpµ  -2.6418 (1.7171) 
Random effects  Random effects  

2
εσ  107.1895  2

εσ  128.18 
2
intσ  172.357 (13.382)  2

intσ  6.735e-06 
2
slpσ  12.581 (1.970)  2

slpσ  2.6096 
2

int,slpσ  -41.919 (4.571) 2
int,slpσ  0 

Note: Standard errors are given in parentheses. The Chi-square test of model fit is 
 (p<0.0001); RMSEA=0.1566. GFI=0.9177. For the random coefficient 

model: -2*Res Log Likelihood=22849.1, AIC=22859.1. 
( ) 3881.296162 =χ
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Figure 14. Graphic representation of LGC model (4.2) (standard errors are given in 
parentheses). 
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5.0  COMPARISIONS OF LGC AND RANDOM COEFFICIENT MODEL FOR 

PITTPAS DATA 

LGC is a multivariate model, while random coefficient model is a univariate one. They 

are essentially different, although they have similar results when data sets have no missing 

observations as demonstrated in Chapter 4. To show their difference, we apply these two models 

to analyze the decline of activity in all measured PittPAS data described in Chapter 3, and 

compare their performance. Specifically, we first apply random coefficient model to analyze the 

decline of physical activity recorded in PittPAS data. Due to the normality and missing 

observations of HRWK, we conduct a sensitivity analysis and use three random coefficient 

models to analyze HRWK, LHRWK, and rLHRWK, separately. Then, we use LGC model to 

analyze the same observations as random coefficient model and compare its performance with 

random coefficient model. Our study shows that random coefficient model is more appropriate to 

model the longitudinal data which have a large amount of missing observations and non-uniform 

observation time. 
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5.1 RANDOM COEFFICIENT MODEL ANALYSIS 

5.1.1 Model Specification  

HRWK in PittPAS data is our major observation that reflects the physical activity of each 

individual. As described in Chapter 3, HRWK observations measured at six occasions are not 

normally distributed, whereas LHRWK is nearly normal. Therefore, we consider three random 

coefficient models for observations HRWK, LHRWK, and rLHRWK (recall that 

LHRWK=log(HRWK), rLHRWK=log(HRWK+0.0005)) , respectively. Specifically, three random 

coefficient models with linear growth pattern can be formulated as  

jtijtijiSESjTSESjtijiGRADEjTGRADEjtijiRACEjTRACEjtijiSEXjTSEX

jiSESjSESjiGRADEjGRADEjiRACEjRACEjiSEXjSEXjtijislpjtijslpjijjti

TimeXaTimeXaTimeXaTimeXa

XaXaXaXaTimeeTimeueuY

,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,int,int,,,

ε+++++

+++++++= ,   

(5.1) 

where observations HRWK, LHRWK, and rHRWK of each individual Ni ,,2,1 K=  measured at 

six time occasions  are denoted by (5,4,3,2,1,0=t jtiY ,, 0=j  is for HRWK,  is for LHRWK, 

and  is for rHRWK). In (5.1), 

1=j

2=j jti ,,ε  is a residual at the measurement level 

and , random effects  and  have normal distribution 

, where . Fixed effects , , 

, and  represent factors SES, RACE, GRADE and SES of individual i  at model 

j, respectively. These fixed effects variables are assigned the same values as those presented in 

Appendix A. That’s,  if ‘individual i is Female’, 

),0(~ 2
,,, jjti N εσε jie ,int, jislpe ,,

∑⎟
⎟
⎠
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je

ji N
e

e
,

ji,slp,

,int, ),0(~ ⎟
⎟
⎠

⎞
⎜
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⎛
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,
2

int,,

2
int,,

2
int,

,
jslpjslp

jslpj
je σσ

σσ
jiSEXX ,, jiRACEX ,,

jiGRADEX ,, jiSESX ,,

1,, =jiSEXX 0,, =jiSEXX  if ‘individual i is Male’; 

 if ‘RACE is White’, 0,, =jiRACEX 1,, =jiRACEX  if ‘RACE is Black’; if individual i is from the 
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high SES, ;  for the individual who is from the middle SES, and 

 if the individual is from the low SES.  is the grade of the individual 

received his or her first interview in 1990. The values of  are 7, 8, 9.  

0,, =jiSESX 1,, =jiSESX

2,, =jiSESX jiGRADEX ,,

jiGRADEX ,,

In (5.1), is a variable denoting the measurement occasion. For the uniformly 

acquired observations at first four years, 

jtiTime ,,

0,0, =jiTime , 1,1, =jiTime ,  and 2,2, =jiTime 3,3, =jiTime . 

As the fifth interview and sixth interview time period are overlapping, we assign the values of 

time variables  and  as the differences between the interview year and 1990 for 

each individual i. For example, if an individual i  received the fifth interview at Year 2001, then 

.  

jiTime ,4, jiTime ,5,

11,4, =jiTime

5.1.2 Sensitivity Analysis 

Random coefficient models (5.1) respectively fit into HRWK, LHRWK, rHRWK data 

using SAS Proc Mixed procedure with the Restricted Maximum Likelihood (REML) estimation 

method. The corresponding SAS codes are attached in Appendix E. The complete model fit 

statistics and parameter estimation results of these three random coefficient models are also 

presented in Appendix F. The final parameter estimates of three models are given in Table 8. 

Table 8 shows that random coefficient model for HRWK (j=0) has similar performance 

to that for LHRWK (j=1). In both models, factor  and its interaction with time  are 

non-significant. Moreover, the estimate parameters are quite close in these two models. For 

example, in the random coefficient model for HRWK (i.e., j=0), 

SESa TSESa ,

5203.270int, =u means the initial 

HRWK value in Year 1990 is 27.5203. In the second random coefficient model for LHRWK (i.e., 
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j=1), , which means the initial HRWK value in Year 1990 is . 

However, in the third random coefficient model for rLHRWK (j=2), 

1992.31int, =u 24.51291int, ≈ue

7622.32int, =u  that indicates 

the initial HRWK value in Year 1990 is . Furthermore, the third random 

coefficient model (j=2) has different significant factors with the first and second models. The 

major reason is that we manually introduce the small number 0.0005 into observations in random 

coefficient model for rHRWK. Such operation can prevent data missing when we apply log 

operator. However, it also disturbs the data distribution as shown in Figure 2 ~ Figure 7. 

Moreover, Table 8 shows that the second random coefficient model for LHRWK has the best 

data fitness performance, because it has the lowest AIC value compared with other two random 

coefficient model. This is because LHRWK is more normally distributed which better satisfies 

the normal assumption of random coefficient model. However, because of log operation, there 

are more missing data of LHRWK observations in the second model estimation. Since the first 

.043342int, ≈ue

Table 8. Comparisons of three random coefficient models (5.1) 
 

Observations HRWK LHRWK  rLHRWK  
jSEXa ,  -13.3177 (<.0001) -1.0547 (<.0001) -1.8179 (<.0001) 

jRACEa ,  -2.1792 (0.0060) -0.2307 (0.0003) -0.4042 (0.0041) 

jGRADEa ,  -2.1019 (<.0001) -0.1566 (<.0001) -0.4467 (<.0001) 

jSESa ,  -0.08532 (0.8629) -0.02430 (0.5405) -0.2472 (0.0049) 

jTSEXa ,,  0.9294 (<.0001) 0.04880 (<.0001) 0.09640 (<.0001) 

jTRACEa ,,   0.2386 (0.0185) 0.02466 (0.0018) -0.00490 (0.7933)

jTGRADEa ,,  0.1227 (0.0040) 0.009521 (0.0035) 0.03110 (<.0001) 

jTSESa ,,   0.001897 (0.9733) 0.000062 (0.9886) 0.01581 (0.1311) 

juint,  27.5203 (<.0001) 3.1992 (0.0209) 3.7622 (<.0001) 

 
 
 
 

Fixed  
 

Effects 
 

 

jslpu ,  -1.6474 (0.2608) -0.1271 (0.2274) -0.1942 (0.3812) 

AIC (the smaller the 
better) 

42924.0 14163.3 24662.9 Fitness 
statistics 

-2Resloglikelihood 42914.0 14173.3 24672.9 
Note: p values are given in the parentheses. p>0.05 indicates the factor is non-significant. 
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random coefficient model (j=0) for HRWK has the similar performance to the second random 

coefficient model (j=1) for LHRWK, we finally use the first random coefficient model to study 

the decline of physical activity.   

5.1.3 Random Coefficient Model for HRWK 

Through the above sensitive analysis, the first random coefficient model (j=0) is a good 

trade-off model for our data analysis. Table 8 shows that SES in the model is non-significant 

factor and can be removed. The random coefficient model for HRWK can then be rewritten as  

0,,0,,0,,0,,0,,0,,0,,0,,0,,0,,

0,,0,0,,0,0,,0,0,,0,,0,,0,0,int,0int,0,,

titiiGRADETGRADEtiiRACETRACEtiiSEXTSEX

iGRADEGRADEiRACERACEiSEXSEXtiislptislpiti

TimeXaTimeXaTimeXa

XaXaXaTimeeTimeueuY

ε++++

++++++= .   (5.2) 

Using SAS Proc Mixed procedure with the REML estimation method, we fit model (5.2) to 

HRWK observations. The model parameter estimates are listed in Table 9. The corresponding 

estimate of (5.2) is 

0,,0,,0,,0,,0,,0,,0,,

0,,0,,0,,0,,0,,0,,0,int,0,,

ˆ1227.024.09294.0

1020.22406.23204.13ˆ6459.1ˆ4589.27ˆ

titiiGRADEtiiRACEtiiSEX

iGRADEiRACEiSEXtiislptiiti

TimeXTimeXTimeX

XXXTimeeTimeeY

ε++++

−−−+−+=   , (5.3) 

where )25.136,0(~ˆ Nitε , and , where . ∑⎟
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ˆ
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Table 9. Random coefficient model (5.2) for HRWK 
 

0,SEXa  -13.3204 (<.0001)
0,,TSEXa  0.9294 (<.0001) 

0,RACEa  -2.2406 (0.0016) 
0,,TRACEa  0.2400 (0.0104) 

 
Fixed  

 
Effects 0,GRADEa  -2.1020 (<.0001) 

0,,TGRADEa  0.1227 (0.0040) 

 0int,u  27.4589 (<.0001) 
0,slpu  -1.6459 (<.0001) 

Fitness 
measurements 

AIC 42920.3 -2Resloglikelihood 42910.3 

Note: p values are given in the parentheses. And p>0.05 indicates the corresponding factor is 
non-significant. 
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  The random coefficient model (5.3) leads to the following conclusions about the changes 

of HRWK. After controlling for the effect of the covariates, a mean growth curve of activity time 

emerges with an initial level of 27.4589 and a growth rate of -1.6459 (the negative sign indicates 

the change of physical activity is decline). The small variation ( =7.156E-6 and =6.906E-

6) between the subjects around these mean values implies that HRWK of different individuals 

start their growth process at almost the same values with similar rates. The correlation between 

the initial value and growth rate is almost zero (

2
intσ 2

slpσ

=slpint,σ 5.291E-9), which means the initial level 

has no predictive value for the growth rate. SEX has negative effects on the initial level and 

positive effect on the growth rate, leading to the conclusion that Male ( ) had more 

activity time at the first measurement occasion, Year 1990, and a larger decline rate of physical 

time than the female ( ).  RACE has a negative effect on the initial level and positive 

effect on the growth rate. That means the White students spent more time in the physical activity 

at Year 1990, and also had the larger physical activity decline rate than the Black student. 

Similarly, GRADE has a negative effect on the initial level and positive effect on the change rate, 

which means the low grade students spent more time in the physical activity at Year 1990, and 

also had the larger physical activity decline rate than the high grade students. As SES is not a 

significant factor for the change of HRWK, it means the family social status background has 

little effects on the physical activity time of students. This conclusion is similar to the study by 

Kimm, who used the questionnaire approach to show the household income is not associated 

with the decline of activity (Kimm SYK et al, 2002).  

0=SEXX

1=SEXX
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5.2 LATENT GROWTH MODEL ANALYSIS 

In order to compare LGC model and random coefficient model, we use the LGC model to 

characterize HRWK observations measured in the six occasions. Similar to (4.1), the linear 

growth LGC model is adopted and can be formulated as  

islp,,8,7,6,5

int,,4,3,2,1int

i

slp

int
slpint

exxxx

exxxx
y

iSESiGRADEiRACEiSEXslpi

iiSESiGRADEiRACEiSEXi

ititiit

+++++=

+++++=
++=

ααααµ

ααααµ
ελ

,            (5.4) 

where  denotes the HRWK value of individual i  (ity Ni ,...,2,1= ) at measurement occasion t 

(t=0,1,2,3,4,5). That’s, ,90HRWK0 =iy 91HRWK1 =iy , 92HRWK2 =iy 93, , 

, and . Due to the overlapping interview occasions happened 

during R0 and R1 period, we select the median interview date for measurements at the fifth and 

sixth occasions. That’s, time factor 

HRWK3 =iy

0HRWK4 Ryi = 1HRWK5 Ryi =

itλ  is constrained to be 00 =iλ , 11 =iλ , 22 =iλ , 33 =iλ , 

114 =iλ  and 135 =iλ . The other parameters have the same definitions as those in (4.1). Then, the 

LGC model (5.4) can be rewritten as 

islp,,8,7,6,5

int,,4,3,2,1int

5i5

4i4

3i3

2i2

1i1

00

slp
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slp31int

11slpint
3slpint

slp2int
slpint
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exxxx

exxxx
y
y
y
y
y
y

iSESiGRADEiRACEiSEXslpi

iiSESiGRADEiRACEiSEXi
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+=

ααααµ

ααααµ
ε
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ε

.                (5.5) 

PROC CALIS routine in SAS 9.0 with the default maximum likelihood (ML) estimation 

is used to estimate the parameters of (5.5). The complete SAS codes and model estimation 
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results are presented in Appendix F. The parameter estimates of the LGC model (5.5) are 

presented in Table 10.  Since t values of SES and GRADE are less than 2, SES and GRADE are 

not significant factors in LGC model. Moreover, GFI=0.7827 (<0.90) indicates the fitness of (5.5) 

is not good. Removing the non-significant factors SES and GRADE from (5.5), we can rewrite 

the LGC model as (5.6).  The corresponding model fitting results are listed in Table 11. It shows 

that the fitness of LGC model (5.6) (GFI=0.7532) is still not good (GFI<0.9).    

islp,,6,5

int,,2,1int

5i5

4i4

3i3

2i2

1i1

00

slp

int
slp31int

11slpint
3slpint

slp2int
slpint

int

exx

exx
y
y
y
y
y
y

iRACEiSEXslpi

iiRACEiSEXi

iii

iii

iii

iii

iii

iii

+++=

+++=
++=
++=
++=
++=

++=
+=

ααµ

ααµ
ε
ε
ε
ε

ε
ε

              (5.6) 

 

 

Table 10. Latent growth curve model (5.5) for HRWK 
 

-12.3410 (1.008) 0.7800 (0.085) 1α  
t=-12.2415 

5α  
t=9.1778 

-4.1359 (1.736) 0.3886 (0.1464) 2α  
t=-2.3825 

6α  
t=2.6550 

-0.948 (0.6045) 0.0801(0.0510) 3α  
t=-1.5683 

7α  
t=1.5715 

-0.1774 (0.815) 0.0162 (0.0687) 4α  
t=-0.2177 

8α  
t=0.2352 

24.3325 (1.5574) -1.4464 (0.1313)

 
Fixed  

 
 
 

Effects 

intµ  
t=15.6235 

slpµ  
t=-11.0162 

Note: Standard errors are given in parentheses, t represents t-value. The Chi-square test of model 
fit is  (p<0.0001); RMSEA=0.2166. GFI=0.7827.  ( ) 6933.793372 =χ
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Table 11. Latent growth curve model (5.6) for HRWK 
 

-12.214 (1.006) 0.7694 (0.0848) 1α  
T=-12.1418 

5α  
T=9.0717 

-4.1860 (1.6540) 0.3936 (0.1394) 2α  
t=-2.5309 

6α  
T=2.8226 

22.1817 (0.7359) -1.2641 (0.062) 

 
Fixed  

 
Effects 

intµ  
T=-12.1418 

slpµ  
t=-12.1418 

Random Effects 2
intσ  82.7743 2

slpσ  0.24355 

Note: Standard errors are given in parentheses, t represents t-value. The Chi-square test of model 
fit is  (p<0.0001); RMSEA=0.2423. GFI=0.7532.  ( ) 5817.771292 =χ

5.3 COMPARISIONS 

5.3.1 Random Coefficient Model and LGC Model 

From Table 9 and Table 11, one can see that parameter estimates of the LGC model (5.6) 

and random coefficient model (5.3) are not the same. The major difference is that GRADE and 

its interaction with time are significant factors in the random coefficient model (5.3), while 

GRADE has no significant effects on the slope and intercept in the LGC model (5.6).  

Except the factor GRADE, fixed effects of these two models are actually quite similar. At 

least these two models share the same objectives and have similar model representations. 

Therefore, they can lead to many similar conclusions. Both models show that there are physical 

activity declining from childhood to adolescent. The initial LHRWK values at Year 1990 and the 

initial decline rate are quite close. The factors SEX and RACE play the significant roles in both 

models. Specially, SEX in these two models has significantly negative effects on the intercept, 

leading to the conclusion that Male participate more physical activity than the Female (since the 
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initial LHRWK value of Male is larger than that of Female). SEX in these two models has 

significantly positive effects on the growth rate, indicating that the Male has larger physical 

activity decline rate than the Female. Similarly, both these two models disclose that the White 

attends more physical activity at Year 1990 (highest initial values of LHRWK) than other races, 

and have the largest physical decline rate (smallest negative slope values). 

The fitness value GFI in Table 11 is only 0.7532, less than the standard value 0.90. It 

discloses the LGC model (5.6) is not a good fitting model to characterize observation HRWK. 

As explained in Section 2.2, random coefficient model does not assume time-structure data and 

has the advantage to handle missing data. Therefore, random coefficient model (5.3) can better 

disclose the characteristics of physical activity change.  

5.3.2 Random Coefficient Model Analysis for First Four Years Data 

For the non-uniform acquired PittPAS data, random coefficient model can better disclose 

the decline trend of physical activity from adolescence to adulthood than LGC model. Here, we 

further compare the physical activity decline trend characterized by (5.3) with the decline trend 

happened in the first four years.  Fitting random coefficient model (4.3) into the first four years 

data in Chapter 4, we can find factors , , , and  in (4.3) are all non-

significant factors (p>0.05) as given in Appendix D. Removing these non-significant factors, we 

can then rewrite (4.3) as 

SESa TSESa , TGRADEa , TRACEa ,

ititiSEXTSEX

iGRADEGRADEiRACERACEiSEXSEXitislptislpiit

TimeXa

XaXaXaTimeeTimeueuY

ε++

++++++=

,,

,,,,int,int .        (5.7) 

The model parameter estimates of (5.7) are listed in Table 12. The complete fit statistic is also 

included in Appendix G. 
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 Comparing Table 9 and Table 12, we can see the initial HRWK values in (5.3) and (5.7) 

are quite close to each other. This should be true because intµ  in both models represent the mean 

HRWK values measured in Year 1990. Moreover, the decline rate of (5.3) and (5.7) is also quite 

close. Both models show that SEX has very distinct effects on the initial HRWK values and the 

decline trend of HRWK in both long periods and short periods.  RACE and GRADE has strong 

effects on the initial HRWK values (i.e., physical activity in Year 1990), while has little effects 

on the decline of HRWK in the short time period as given in Table 12. Their effects reflect on 

the physical activity trend only when the long period data are evaluated (as presented in Table 9). 

For both models, SES is not significant, which means SES has little effects on the initial HRWK 

values and the change of HRWK in all interview periods. 

 

Table 12. The parameter estimates of random coefficient model (5.7) 
 

Parameter Estimate Parameter Estimate 
Fixed effects 

SEXa  -14.4020 (0.9472) RACEa  -2.0282 (0.9960) 

GRADEa  -1.5009 (0.4533) TSEXa ,  1.8739 (0.3794) 

intµ  28.6556 (1.1482) slpµ  -3.5166 (0.2611) 
Random effects 

2
intσ  -506E-23 (0.0026) 2

slpσ  3.35E-20 (0.0026) 
2

int,slpσ  0 2
εσ  128.49 

Note: Standard errors are given in parentheses. -2*Res Log Likelihood=22855.4, 
AIC=22865.4. 
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6.0  CONCLUSIONS 

Random coefficient model and latent growth model are both popular and useful tools to 

study longitudinal data. These two models are highly similar. In this thesis, similarities and 

differences between random coefficient model and latent growth curve regarding growth curve 

analysis are investigated and illustrated. Both models share the same objectives and have similar 

model specifications. They have almost the same model estimation results and performance for 

regular measured ideal data (for example, no missing data). However, they are in essence 

different methods. As a multivariate approach, the LGC model treats the repeated measurements 

as different variables thus it has more flexibilities than random coefficient model, which is a 

univariate method. Such flexibility mainly reflects in the following aspects: (1) estimating the 

time factors to investigate nonlinear growth curves, and (2) incorporating the growth curve 

model in a larger and more flexible structural model. The major drawback of LGC model is that 

the model requires the number of measurement occasions and spacing to be the same for all 

subjects. As the univariate approach, random coefficient model has no such time-structured data 

requirements. It allows each subject in the data set can be assessed at a different number of 

measurement occasions with randomly assigned temporal spacing. For example, random 

coefficient model allows the explanatory variable ‘time’ to take on different values for each 

individual. Therefore, random coefficient model is more suitable to analyze the data with a large 

amount of missing observations and non-uniform observation time.     
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To illustrate the above similarities and differences between LGC model and random 

coefficient model, we apply both models to study the natural history of participation in leisure 

time in physical activity from adolescence to young adulthood. Firstly, we use LGC and random 

coefficient models to characterize physical activity time spent-per-week (HRWK) at the first four 

interview years. Using exactly the same complete data, both models yield almost the same model 

representations, which show that these two models ideally have identical performance. As 

described in Chapter 2, the normality of HRWK can be improved by applying log operator to 

HRWK. However, direct applying log operator makes zero-value HRWK data to be missing. 

Thus, we evaluate three random coefficient models for HRWK, LHRWK, and rHRWK, 

separately. Our sensitive analysis shows that the two models for HRWK and LHRWK disclose 

the similar characteristics of physical activity decline. Therefore, random coefficient model for 

HRWK is finally used to analyze the change of HRWK. Considering there is a large percentage 

missing data (71.8%) in the LGC analysis and irregular time intervals, we show that random 

coefficient model is more appropriate to study PittPAS data than LGC model. Our random 

coefficient model analysis of HRWK leads to the following conclusions: 

1. The leisure time in physical activity declines from adolescence to young adulthood. 

2. SES factor is not a significant factor on the decline of physical activity. 

3. SEX plays the most significant roles in the decline of physical activity. The Male has 

larger decline rate than the Female students. 

4. White students spent more time in activity per week. But they also have the largest 

decline rate. 

5. The lower grade students spent more time in physical activity per week in Year 1990, and 

they also have the largest decline rate than other grade students. 
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There are still some aspects to further improve our analysis results. First, we assume the 

growth curve of HRWK has the linear growth pattern. Actually, the non-linear pattern property 

of HRWK has been demonstrated in Figure 8. Quadratic polynomial or other non-linear patterns 

could be used to further improve the goodness of modeling fitting. Secondly, PROC MIXED and 

CALIS procedures assume that random variables have an approximately multivariate normal 

distribution. Therefore, non-normality especially high kurtosis would result in poor estimates and 

incorrect standard errors, even in large samples. PROC MIXED is stricter on the normal 

distribution assumption. HRWK in our models is not approximately normally distributed. 

Therefore, we should further improve our data quality for better estimates. Thirdly, but not the 

least, the analysis could be more accurate if we could combine some features of random 

coefficient model and LGC model by using more advanced software package such as Mplus 

(Muthen B, 2000). 
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APPENDIX A  DATA SET DESCRIPTION 

Data set-variable codes 
Variable        code                description 
ID           7001-9818            integer                         
Age           12-16                integer     
Sex                0                           Male 

1                          Female 
Race           0                          White 

1                          Black 
Ses                0                          High SES 

1                          Middle SES 
2                          Low SES 

EASYEX90-EASYEX93 
        1      None 

             2                    1 to 2 days 
             3                    3 to 5 days 
             4                    6 to 8 days 
             5                    9 or more days 
HARDEX90- HARDEX93 

1                    None 
             2                   1 hour or less 
             3                   2 to 3 hours 
             4                   4 to 5 hours   
                      5                   6 or more hours 

TV90-TV93 1                     None 
             2                   1 hour or less 
             3                   2 to 3 hours 
             4                   4 to 5 hours 
             5                   6 or more hours 
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APPENDIX B  COMMON SAS CODE  

title1   "PACS Project" ; 
 
libname   pac      "c:\pittsburgh\pacs"; 
filename  dfile    "d:\pittsburgh\pacs\baseline_demographics.xls"; 
run ; 
 
 
/* data prepration*/ 
title1   "PACS Project"; 
 
PROC IMPORT OUT= WORK.Demo2  
            DATAFILE= dfile  
            DBMS=EXCEL REPLACE ; 
run ; 
 
proc sort data=pac.demo; 
by id; 
run; 
 
 
proc sort data=pac.totalhours; 
by id; 
run; 
 
proc sort data=demo2; 
by id; 
run; 
 
data pac.newdemo; 
merge pac.demo demo2; 
by id; 
run; 
 
 
data round1; 
set pac.round1; 
keep id date1; 
run; 
 
proc sort data=round1; 
by id; 
run; 
 
data round2; 
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set pac.round2; 
keep id date2; 
run; 
 
proc sort data=round2; 
by id; 
run; 
 
 
proc format  ; 
 
      value     hsex 
             1 = "Female" 
             0 = "Male" 
             ; 
     value     hrace 
             0 = "White" 
             1 = "Black" 
             ; 
     value     hses 
             0 "High SES"  = 
             1 = "Middle SES" 
             2 = "Low SES" 
             ; 
 run; 
 
/* add label to the data */ 
data pac.all; 
merge pac.newdemo pac.totalhours round1 round2; 
by id; 
length grade 4; 
*grade=suaiybstr(id,9,1); 
if race>=3 then race=.; 
time1=0; 
time2=1; 
time3=2; 
time4=3; 
time5=year(date1)-1990; 
time6=year(date2)-1990; 
if sex=1 then sex=0; 
if sex=2 then sex=1; 
if race=1 then race=0 ; 
if race=2 then race=1; 
if ses=1 then ses=0; 
if ses=2 then ses=1; 
if ses=3 then ses=2; 
 
format sex hsex.; 
format race hrace.; 
format ses hses.; 
run; 
 
 
data pac.hrwk; 
set pac.all; 
keep id race sex  ses grade hrwk90 hrwk91 hrwk92 hrwk93 hrwkr1 hrwkr2 
 time1 time2 time3 time4 time5 time6; 
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run; 
 
 
data pac.loghrwk ; 
set pac.hrwk ; 
 
logHRWK90=log(HRWK90); 
logHRWK91=log(HRWK91); 
logHRWK92=log(HRWK92); 
logHRWK93=log(HRWK93); 
logHRWKR1=log(HRWKR1); 
logHRWKR2=log(HRWKR2); 
 
label logHRWK90='LHRWK90'; 
label logHRWK91='LHRWK91'; 
label logHRWK92='LHRWK92'; 
label logHRWK93='LHRWK93'; 
label logHRWKR1='LHRWKR1'; 
label logHRWKR2='LHRWKR2'; 
run; 
 
 
data pac.ologhrwk ; 
set pac.hrwk ; 
 
logHRWK90=log(HRWK90+0.0005); 
logHRWK91=log(HRWK91+0.0005); 
logHRWK92=log(HRWK92+0.0005); 
logHRWK93=log(HRWK93+0.0005); 
logHRWKR1=log(HRWKR1+0.0005); 
logHRWKR2=log(HRWKR2+0.0005); 
 
label logHRWK90='LHRWK90'; 
label logHRWK91='LHRWK91'; 
label logHRWK92='LHRWK92'; 
label logHRWK93='LHRWK93'; 
label logHRWKR1='LHRWKR1'; 
label logHRWKR2='LHRWKR2'; 
 run; 
/********For 6 years data************************/ 
/******************* HRWK data************/ 
data pac.mixed ; 
set pac.hrwk ; 
 
array lognnh(*)  HRWK90    HRWK91    HRWK92    HRWK93    HRWKR1    HRWKR2 ; 
array new(*)      time1 time2 time3 time4 time5 time6;   
   do i=1 to dim(lognnh) ; 
     a = i;                  
                total_hrs         = lognnh(i)  ;   
                 time =new(i);   
    output ; 
   end ; 
label total_hrs         = 'Total hr/wk' ; 
label time         = 'Interview time' ; 
keep  id   time     total_hrs      
      sex  race   ses  grade time ; 
run ; 
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 data pac.mixed; 
 set pac.mixed; 
 tsex=time*sex; 
tses=time*ses; 
trace=time*race; 
tgrade=time*grade; 
 run; 
/****************LHRWK without 0 data******************/ 
 
data pac.logmixed ; 
set pac.loghrwk ; 
array lognnh(*)  logHRWK90    logHRWK91    logHRWK92    logHRWK93    
logHRWKR1    logHRWKR2 ; 
array new(*)      time1 time2 time3 time4 time5 time6;   
   do i=1 to dim(lognnh) ; 
     a = i;                  
                log_total_hrs         = lognnh(i)  ;   
                 time =new(i);   
    output ; 
   end ; 
label log_total_hrs         = 'Log of Total hr/wk' ; 
label time         = 'Interview time' ; 
keep  id   time     log_total_hrs      
      sex  race   ses  grade time; 
run ; 
 
 
data pac.logmixed ; 
set pac.logmixed  ; 
tsex=time*sex; 
tses=time*ses; 
trace=time*race; 
tgrade=time*grade; 
run; 
 
 
 
 
 
 
/***************************rLOGHRWK with  0  *********************/ 
 
data pac.ologmixed ; 
set pac.ologhrwk ; 
 
array lognnh(*)  logHRWK90    logHRWK91    logHRWK92    logHRWK93    
logHRWKR1    logHRWKR2 ; 
array new(*)      time1 time2 time3 time4 time5 time6;   
   do i=1 to dim(lognnh) ; 
     a = i;                  
                log_total_hrs         = lognnh(i)  ;   
                 time =new(i);   
    output ; 
   end ; 
label log_total_hrs         = 'Log of Total hr/wk' ; 
label time         = 'Interview time' ; 
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keep  id   time     log_total_hrs      
      sex  race   ses  grade time; 
run ; 
 
 
data pac.ologmixed ; 
set pac.ologmixed; 
tsex=time*sex; 
tses=time*ses; 
trace=time*race; 
tgrade=time*grade; 
run; 
 
data pac.try_LGC1(rename=(HRWK90=y1 HRWK91=y2 HRWK92=y3 HRWK93=y4 hrwkr1=y5 
hrwkr2=y6)); 
set pac.hrwk; 
keep id sex  RACE  ses grade  HRWK90 HRWK91 HRWK92 HRWK93 hrwkr1 hrwkr2 ; 
run; 
/***************For 4 years data ********************/ 
 
 
/************************************No missing */ 
 
data pac.nomiss_hrwk; 
set pac.hrwk; 
if sex=. or ses=. or race=. or grade=. or hrwk90=. or hrwk91=. or hrwk92=. or 
hrwk93=. then delete ; 
run; 
 
 
/* PROC MIXED*/ 
/*   Restructuring the data for  MIXED procedures   */ 
data pac.nomiss_try_mixed ; 
set pac.nomiss_hrwk ; 
array lognnh(*)  HRWK90    HRWK91    HRWK92    HRWK93    ; 
array new(*)      time1 time2 time3 time4 ;   
   do i=1 to dim(lognnh) ; 
     a = i;                  
                total_hrs         = lognnh(i)  ;   
                 time =new(i);   
    output ; 
   end ; 
label total_hrs         = ' Total hr/wk' ; 
label time         = 'Interview time' ; 
keep  id   time     total_hrs      
      sex  race   ses  grade time ; 
run ; 
 
data pac.nomiss_try_mixed; 
set pac.nomiss_try_mixed; 
tsex=time*sex; 
tses=time*ses; 
trace=time*race; 
tgrade=time*grade; 
run; 
 
/*****************Graph**********************************/ 
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 /********************4 year HRWK**********************/ 
 proc univariate data=pac.hrwk noprint ; 
var  HRWK90 HRWK91 HRWK92 HRWK93  ;  
output out=make_race mean=mean1990 mean1991 mean1992 mean1993   ; 
run; 
 
proc transpose data=make_race out=make2(rename=(col1=mean_HRWK)); 
run; 
 
 
proc gplot data=make2; 
symbol6 value=dot h=1 interpol=spline  color=red; 
axis1  label=('Total mean hour/week of' justify=right 'activities'); 
 plot mean_HRWK*_NAME_/vaxis=axis1; 
run; 
 
/***********6 year HRWK****************************/ 
 
proc univariate data=pac.hrwk noprint ; 
var  HRWK90 HRWK91 HRWK92 HRWK93 HRWKR1 HRWKR2 ;  
output out=make_race mean=mean1990 mean1991 mean1992 mean1993   meanR1 meanR2; 
run; 
 
proc transpose data=make_race out=make2(rename=(col1=mean_HRWK)); 
run; 
 
data make2; 
set make2; 
if _NAME_="mean1990" THEN time=1; 
if _NAME_="mean1991" THEN time=2; 
if _NAME_="mean1992" THEN time=3; 
if _NAME_="mean1993" THEN time=4; 
if _NAME_="meanR1" THEN time=11; 
if _NAME_="meanR2" THEN time=13; 
run; 
 
proc gplot data=make2; 
symbol6 value=dot h=1 interpol=spline  color=red; 
axis1  label=('Total mean hour/week of' justify=right 'activities'); 
title"Six years data"; 
 plot mean_HRWK*time/vaxis=axis1; 
run; 
 
/***********6 year logHRWK****************************/ 
 
proc univariate data=pac.loghrwk noprint ; 
var  logHRWK90 logHRWK91 logHRWK92 logHRWK93 logHRWKR1 logHRWKR2 ;  
output out=make_race mean=mean1990 mean1991 mean1992 mean1993   meanR1 meanR2; 
run; 
 
proc transpose data=make_race out=make2(rename=(col1=mean_HRWK)); 
run; 
 
data make2; 
set make2; 
if _NAME_="mean1990" THEN time=1; 
if _NAME_="mean1991" THEN time=2; 
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if _NAME_="mean1992" THEN time=3; 
if _NAME_="mean1993" THEN time=4; 
if _NAME_="meanR1" THEN time=11; 
if _NAME_="meanR2" THEN time=13; 
run; 
 
proc gplot data=make2; 
symbol6 value=dot h=1 interpol=spline  color=red; 
axis1  label=('Total mean hour/week of' justify=right 'activities'); 
title"Six years data logHRWK"; 
 plot mean_HRWK*time/vaxis=axis1; 
run; 
 
/*** *******6 y* ear rlogHRWK****************************/ 
proc univariate data=pac.ologhrwk noprint ; 
var  logHRWK90 logHRWK91 logHRWK92 logHRWK93 logHRWKR1 logHRWKR2 ;  
output out=make_race mean=mean1990 mean1991 mean1992 mean1993   meanR1 meanR2; 
run; 
 
proc transpose data=make_race out=make2(rename=(col1=mean_HRWK)); 
run; 
 
data make2; 
set make2; 
if _NAME_="mean1990" THEN time=1; 
if _NAME_="mean1991" THEN time=2; 
if _NAME_="mean1992" THEN time=3; 
if _NAME_="mean1993" THEN time=4; 
if _NAME_="meanR1" THEN time=11; 
if _NAME_="meanR2" THEN time=13; 
run; 
 
proc gplot data=make2; 
symbol6 value=dot h=1 interpol=spline  color=red; 
axis1  label=('Total mean hour/week of' justify=right 'activities'); 
title"Six years data rlogHRWK"; 
 plot mean_HRWK*time/vaxis=axis1; 
run; 
 
/*****************HRWK distr**************/ 
proc univariate data=pac.hrwk  noprint; 
    var HRWK90 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
proc univariate data=pac.hrwk  noprint; 
    var HRWK91 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
proc univariate data=pac.hrwk  noprint; 
    var HRWK92 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
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run; 
proc univariate data=pac.hrwk  noprint; 
    var HRWK93 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
proc univariate data=pac.hrwk  noprint; 
    var HRWKr1 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
 
proc univariate data=pac.hrwk  noprint; 
    var HRWKr2 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
 
 
 
/*** ***loghrwk*  distr****************/ 
proc univariate data=pac.loghrwk  noprint; 
    var logHRWK90 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run  ;
proc univariate data=pac.loghrwk  noprint; 
    var logHRWK91 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run  ;
proc univariate data=pac.loghrwk  noprint; 
    var logHRWK92 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run  ;
proc univariate data=pac.loghrwk  noprint; 
    var logHRWK93 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run  ;
proc univariate data=pac.loghrwk  noprint; 
    var logHRWKr1 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
 
proc univariate data=pac.loghrwk  noprint; 
    var logHRWKr2 ; 
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  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
 
 
 
/*** *********** rloghrwk distribution*************************/ 
proc univariate data=pac.ologhrwk  noprint; 
    var logHRWK90 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
proc univariate data=pac.ologhrwk  noprint; 
    var logHRWK91 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
proc univariate data=pac.ologhrwk  noprint; 
    var logHRWK92 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
proc univariate data=pac.ologhrwk  noprint; 
    var logHRWK93 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
proc univariate data=pac.ologhrwk  noprint; 
    var logHRWKr1 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
 
proc univariate data=pac.ologhrwk  noprint; 
    var logHRWKr2 ; 
  histogram/ normal(noprint) intertile=6 cfill=cyan vscale=count 
                vaxislabel='frequency '; 
      title 'Distribution of  hours in activity per week'; 
run; 
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APPENDIX C  SAS CODE FOR CHAPTER 4 

C.1 PROC CALIS CODE FOR LGC MODEL (4.2) 

proc calis  data= pac.nomiss_try_lgc1 ucov aug ; 
 lineqs 
 y1 = F1 + 0F2 + E0, 
 y2 = F1 + 1F2 + E1, 
 y3 = F1 + 2F2 + E2, 
 y4 = F1 + 3F2 + E3, 
 F1 = al1 intercept + gamma1 sex +gamma2 RACE + gamma3 ses +gamma4 grade + d1, 
 F2 = al2 intercept + gamma5 sex + gamma6 race+ gamma7 ses+gamma8 grade + d2; 
 std 
 E0-E3= error0 error0 error0 error0  , 
 D1-D2=int slp; 
 cov d1-d2=cor1; 
 run; 

C.2 PROC MIXED CODE FOR RANDOM COEFFICIENT  MODEL (4.3) 

PROC MIXED DATA=PAC.NOMISS_TRY_MIXED METHOD=REML; 

model total_hrs= sex race  grade ses time tses tsex trace tgrade /s 
ddfm=satterth; 
random int time/ type=un s G; 
repeated /type=cs subject=id ; 
run; 
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APPENDIX D   ANALYSIS RESULTS OF CHAPTER 4 

D.1 ANALYSIS RESULTS OF LGC MODEL (4.2) 

                       The CALIS Procedure 
                  Covariance Structure Analysis: Maximum Likelihood Estimation 
 
                  Fit Function                                          0.4145 
                  Goodness of Fit Index (GFI)                           0.9177 
                  GFI Adjusted for Degrees of Freedom (AGFI)            0.7684 
                  Root Mean Square Residual (RMR)                      14.2004 
                  Parsimonious GFI (Mulaik, 1989)                       0.4078 
                  Chi-Square                                          296.3881 
                  Chi-Square DF                                             16 
                  Pr > Chi-Square                                       <.0001 
                  Independence Model Chi-Square                         5763.8 
                  Independence Model Chi-Square DF                          36 
                  RMSEA Estimate                                        0.1566 
                  RMSEA 90% Lower Confidence Limit                      0.1412 
                  RMSEA 90% Upper Confidence Limit                      0.1724 
                  ECVI Estimate                                         0.4542 
                  ECVI 90% Lower Confidence Limit                       0.4021 
                  ECVI 90% Upper Confidence Limit                       0.5595 
                  Probability of Close Fit                              0.0000 
                  Bentler's Comparative Fit Index                       0.9510 
                  Normal Theory Reweighted LS Chi-Square              288.7251 
                  Akaike's Information Criterion                      264.3881 
                  Bozdogan's (1987) CAIC                              175.2092 
                  Schwarz's Bayesian Criterion                        191.2092 
                  McDonald's (1989) Centrality                          0.8222 
                  Bentler & Bonett's (1980) Non-normed Index            0.8899 
                  Bentler & Bonett's (1980) NFI                         0.9486 
                  James, Mulaik, & Brett (1982) Parsimonious NFI        0.4216 
                  Z-Test of Wilson & Hilferty (1931)                   14.0841 
                  Bollen (1986) Normed Index Rho1                       0.8843 
                  Bollen (1988) Non-normed Index Delta2                 0.9512 
                  Hoelter's (1983) Critical N                               65 
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                                      The CALIS Procedure 
                  Covariance Structure Analysis: Maximum Likelihood Estimation 
 
                            Latent Variable Equations with Estimates 
 
 
   F1        = -14.4078*SEX       + -0.8937*RACE      +  0.6462*SES       + -1.1513*GRADE 
   Std Err       1.1788 gamma1       1.7016 gamma2       0.9728 gamma3       0.7055 gamma4 
   t Value     -12.2224             -0.5252              0.6643             -1.6319 
 
                            + 27.2362*Intercept +  1.0000 d1 
                               1.8072 al1 
                              15.0712 
 
   F2        =   1.8742*SEX       + -0.8316*RACE      + -0.3266*SES       + -0.2322*GRADE 
   Std Err       0.4371 gamma5       0.6310 gamma6       0.3608 gamma7       0.2616 gamma8 
   t Value       4.2875             -1.3179             -0.9052             -0.8877 
 
                            + -2.6418*Intercept +  1.0000 d2 
                               0.6701 al2 
                              -3.9422 
 
 
                                Variances of Exogenous Variables 
 
                                                          Standard 
                   Variable  Parameter      Estimate         Error    t Value 
 
                   SEX                       0.47413 
                   RACE                      0.17483 
                   SES                       1.10070 
                   GRADE                     4.70909 
                   Intercept                 1.00140 
                   E0        error0        107.18951       4.00866      26.74 
                   E1        error0        107.18951       4.00866      26.74 
                   E2        error0        107.18951       4.00866      26.74 
                   E3        error0        107.18951       4.00866      26.74 
                   d1        int           172.35696      13.38160      12.88 
                   d2        slp            12.58069       1.96974       6.39 
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D.2 ANALYSIS RESULTS OF RANDOM COEFFICIENT MODEL (4.3) 

         Estimated G Matrix 
 
                            Row    Effect           Col1        Col2 
 
                              1    Intercept    6.735E-6 
                              2    time                       2.6096      
    
                    The Mixed Procedure 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm     Subject    Estimate 
 
                                UN(1,1)                 6.735E-6 
                                UN(2,1)                        0 
                                UN(2,2)                   2.6096 
                                CS           ID          70.2069 
                                Residual                  128.28 
 
 
                                        Fit Statistics 
 
                             -2 Res Log Likelihood         22849.1 
                             AIC (smaller is better)       22859.1 
                             AICC (smaller is better)      22859.1 
                             BIC (smaller is better)       22849.1 
 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                   4        417.68          <.0001 
 
 
                                   Solution for Fixed Effects 
 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept     27.2362      1.4533       1      18.74      0.0339 
                SEX          -14.4078      0.9480    1574     -15.20      <.0001 
                RACE          -0.8937      1.3684    1574      -0.65      0.5138 
                GRADE         -1.1513      0.5673    1574      -2.03      0.0426 
                SES            0.6462      0.7824    1574       0.83      0.4089 
                time          -2.6418      1.7171    2854      -1.54      0.1240 
                tses          -0.3266      0.3133    2143      -1.04      0.2974 
                tsex           1.8742      0.3796    2143       4.94      <.0001 
                trace         -0.8316      0.5480    2143      -1.52      0.1293 
                tgrade        -0.2322      0.2272    2143      -1.02      0.3068 
                            The Mixed Procedure 
 
                                  Solution for Random Effects 
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                                          Std Err 
                Effect       Estimate        Pred      DF    t Value    Pr > |t| 
 
                Intercept    -311E-22    0.002595       1      -0.00      1.0000 
                time         -101E-16      1.6154    2854      -0.00      1.0000 
 
 
                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         SEX             1    1574     230.98    <.0001 
                         RACE            1    1574       0.43    0.5138 
                         GRADE           1    1574       4.12    0.0426 
                         SES             1    1574       0.68    0.4089 
                         time            1    2854       2.37    0.1240 
                         tses            1    2143       1.09    0.2974 
                         tsex            1    2143      24.37    <.0001 
                         trace           1    2143       2.30    0.1293 
                         tgrade          1    2143       1.04    0.3068 
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APPENDIX E  SAS CODE FOR CHAPTER 5 

E.1 PROC MIXED CODE FOR RANDOM COEFFICIENT  MODEL (5.1) 

proc mixed data=pac.mixed METHOD=reML; 
model total_hrs= sex race  grade ses time tses tsex trace tgrade /s 
ddfm=satterth; 
random int time/ type=un s G; 
rep ae ted /type=CS subject=id ; 
run; 

proc mixed data=pac.logmixed METHOD=reML; 
model log_total_hrs= sex race  grade ses time tses tsex trace tgrade /s 
ddfm=satterth; 
random int time/ type=un s G; 
repeated /type=CS subject=id ; 
run; 

proc mixed data=pac.ologmixed METHOD=reML; 
model log_total_hrs= sex race  grade ses time tses tsex trace tgrade /s 
ddfm=satterth; 
random int time/ type=un s G; 
repeated /type=CS subject=id ; 
run; 

E.2 PROC MIXED CODE FOR RANDOM COEFFICIENT  MODEL (5.2) 

proc mixed data=pac.mixed METHOD=reML; 
model total_hrs= sex race  grade  time  tsex trace  tgrade /s ddfm=satterth; 
random int time/ type=un s G; 
repeated /type=CS subject=id ; 
run; 
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E.3 PROC CALIS CODE FOR LATENT  GROWTH MODEL (5.5) 

proc calis  data= pac.try_lgc1 ucov aug ; 
 lineqs 
 y1 = F1 + 0F2 + E0, 
 y2 = F1 + 1F2 + E1, 
 y3 = F1 + 2F2 + E2, 
 y4 = F1 + 3F2 + E3, 
 y5 = F1 + 11F2 +E4, 
 y6=  F1 + 13F2+ E5, 
 F1 = al1 intercept + gamma1 sex +gamma2 RACE + gamma3 ses +gamma4 grade + d1, 
 F2 = al2 intercept + gamma5 sex + gamma6 race+ gamma7 ses+gamma8 grade + d2; 
 std 
 E0-E5= error0 error0 error0 error0 error0 error0, 
 D1-D2=int slp; 
 cov d1-d2=cor1; 
 run; 

E.4 PROC CALIS CODE FOR LATENT  GROWTH MODEL (5.6) 

proc calis  data= pac.try_lgc1 ucov aug ; 
 lineqs 
 y1 = F1 + 0F2 + E0, 
 y2 = F1 + 1F2 + E1, 
 y3 = F1 + 2F2 + E2, 
 y4 = F1 + 3F2 + E3, 
 y5 = F1 + 11F2 +E4, 
 y6=  F1 + 13F2+ E5, 
 F1 = al1 intercept + gamma1 sex +gamma2 RACE + d1, 
 F2 = al2 intercept + gamma5 sex + gamma6 race+  d2; 
 std 
 E0-E5= error0 error0 error0 error0 error0 error0, 
 D1-D2=int slp; 
 cov d1-d2=cor1; 
 run;  

E.5 PROC MIXED CODE FOR RANDOM COEFFICIENT  MODEL (5.7) 

proc mixed data=pac.nomiss_try_mixed METHOD=ReML; 
model total_hrs= sex race  grade time tsex    /s ddfm=satterth; 
random int time/ type=un s G; repeated /type=cs subject=id ; run; 
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APPENDIX F  ANALYSIS RESULTS OF CHAPTER 5 

F.1 ANALYSIS RESULTS OF RANDOM COEFFICIENT  MODEL (5.1) 

              The Mixed Procedure 
 
                                       Estimated G Matrix 
 
                            Row    Effect           Col1        Col2 
 
                              1    Intercept      0.4337      0.1157 
                              2    time           0.1157      0.5001 
 
 
                                 Covariance Parameter Estimates 
 
                                Cov Parm     Subject    Estimate 
 
                                UN(1,1)                   0.4337 
                                UN(2,1)                   0.1157 
                                UN(2,2)                   0.5001 
                                CS           ID          50.9086 
                                Residual                  136.28 
 
 
                                        Fit Statistics 
 
                             -2 Res Log Likelihood         42914.0 
                             AIC (smaller is better)       42924.0 
                             AICC (smaller is better)      42924.0 
                             BIC (smaller is better)       42914.0 
 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                   4        449.62          <.0001 

 
                                   Solution for Fixed Effects 
 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
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                Intercept     27.5203      1.1465    3683      24.00      <.0001 
                SEX          -13.3177      0.6003    1678     -22.19      <.0001 
                RACE          -2.1792      0.7915    1761      -2.75      0.0060 
                GRADE         -2.1019      0.3648    1662      -5.76      <.0001 
                SES          -0.08532      0.4941    1665      -0.17      0.8629 
                time          -1.6474      0.7153       1      -2.30      0.2608 
                tses         0.001897     0.05666    4564       0.03      0.9733 
                tsex           0.9294     0.07063    4551      13.16      <.0001 
                trace          0.2386      0.1012    4755       2.36      0.0185 
                tgrade         0.1227     0.04261    4537       2.88      0.0040 
 
                          Distribution of  hours in activity per week                        334 
                                                                 16:52 Wednesday, March 21, 2007 
 
                                      The Mixed Procedure 
 
                                  Solution for Random Effects 
 
                                          Std Err 
                Effect       Estimate        Pred      DF    t Value    Pr > |t| 
 
                Intercept    -246E-18      0.6586    5376      -0.00      1.0000 
                time         -197E-16      0.7072       1      -0.00      1.0000 
 
 
                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         SEX             1    1678     492.25    <.0001 
                         RACE            1    1761       7.58    0.0060 
                         GRADE           1    1662      33.21    <.0001 
                         SES             1    1665       0.03    0.8629 
                         time            1       1       5.30    0.2608 
                         tses            1    4564       0.00    0.9733 
                         tsex            1    4551     173.12    <.0001 
                         trace           1    4755       5.55    0.0185 
                         tgrade          1    4537       8.29    0.0040 

                                         j=1 

                                    Covariance Parameter Estimates 
 
                                Cov Parm     Subject    Estimate 
 
                                UN(1,1)                 0.005373 
                                UN(2,1)                 -0.00006 
                                UN(2,2)                  0.01101 
                                CS           ID           0.3581 
                                Residual                  0.7459 
 
 
                                        Fit Statistics 
 
                             -2 Res Log Likelihood         14163.3 
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                             AIC (smaller is better)       14173.3 
                             AICC (smaller is better)      14173.3 
                             BIC (smaller is better)       14163.3 
 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                   4        611.40          <.0001 
 
 
                                   Solution for Fixed Effects 
 
                                           Standard 
              Effect           Estimate       Error      DF    t Value    Pr > |t| 
 
              Intercept          3.1992      0.1052       1      30.42      0.0209 
              SEX               -1.0547     0.04837    1655     -21.81      <.0001 
              RACE              -0.2307     0.06387    1744      -3.61      0.0003 
              GRADE             -0.1566     0.02940    1637      -5.33      <.0001 
              SES              -0.02430     0.03969    1625      -0.61      0.5405 
              time              -0.1271      0.1053    5030      -1.21      0.2274 
              tses             0.000062    0.004322    4225       0.01      0.9886 
              tsex              0.04880    0.005398    4233       9.04      <.0001 
              trace             0.02466    0.007883    4425       3.13      0.0018 
              tgrade           0                The Mixed Procedure 
 
                                  Solution for Random Effects 
 
                                          Std Err 
                Effect       Estimate        Pred      DF    t Value    Pr > |t| 
 
                Intercept    1.22E-15     0.07330       1       0.00      1.0000 
                time          9.9E-15      0.1049    5030       0.00      1.0000 
 
 
                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         SEX             1    1655     475.54    <.0001 
                         RACE            1    1744      13.05    0.0003 
                         GRADE           1    1637      28.37    <.0001 
                         SES             1    1625       0.37    0.5405 
                         time            1    5030       1.46    0.2274 
                         tses            1    4225       0.00    0.9886 
                         tsex            1    4233      81.73    <.0001 
                         trace           1    4425       9.78    0.0018 
                         tgrade          1    4227       8.54    0.0035 

                                       j=2 

           Covariance Parameter Estimates 
 
                                Cov Parm     Subject    Estimate 
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                                UN(1,1)                  0.01494 
                                UN(2,1)                 0.003971 
                                UN(2,2)                  0.01718 
                                CS           ID           1.4575 
                                Residual                  4.6802 
 
                                        Fit Statistics 
                             -2 Res Log Likelihood         24662.9 
                             AIC (smaller is better)       24672.9 
                             AICC (smaller is better)      24672.9 
                             BIC (smaller is better)       24662.9 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                   4        397.57          <.0001 
 
                                   Solution for Fixed Effects 
                                           Standard 
              Effect           Estimate       Error      DF    t Value    Pr > |t| 
 
              Intercept          3.7622      0.2067    4350      18.20      <.0001 
              SEX               -1.8179      0.1066    1867     -17.05      <.0001 
              RACE              -0.4042      0.1408    1959      -2.87      0.0041 
              GRADE             -0.4467     0.06478    1849      -6.89      <.0001 
              SES               -0.2472     0.08776    1853      -2.82      0.0049 
              time              -0.1942      0.1325       1      -1.47      0.3812 
              tses              0.01581     0.01047    4666       1.51      0.1311 
              tsex              0.09640     0.01305    4655       7.39      <.0001 
              trace            -0.00490     0.01868    4852      -0.26      0.7933 
              tgrade            0.03110    0.007874    4641       3.95      <.0001 

                                      The Mixed Procedure 
 
                                  Solution for Random Effects 
 
                                          Std Err 
                Effect       Estimate        Pred      DF    t Value    Pr > |t| 
 
                Intercept    6.85E-16      0.1222    5376       0.00      1.0000 
                time         6.21E-16      0.1311       1       0.00      1.0000 
 
                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         SEX             1    1867     290.65    <.0001 
                         RACE            1    1959       8.24    0.0041 
                         GRADE           1    1849      47.54    <.0001 
                         SES             1    1853       7.93    0.0049 
                         time            1       1       2.15    0.3812 
                         tses            1    4666       2.28    0.1311 
                         tsex            1    4655      54.57    <.0001 
                         trace           1    4852       0.07    0.7933 

tgrade          1    4641      15.60    <.0001 
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F.2 ANALYSIS RESULTS OF RANDOM COEFFICIENT MODEL (5.2) 

                                Cov Parm     Subject    Estimate 
 
                                UN(1,1)                 7.156E-6 
                                UN(2,1)                 5.291E-9 
                                UN(2,2)                 6.906E-6 
                                CS           ID          50.8296 
                                Residual                  136.25 
 
 
                                        Fit Statistics 
 
                             -2 Res Log Likelihood         42910.3 
                             AIC (smaller is better)       42920.3 
                             AICC (smaller is better)      42920.3 
                             BIC (smaller is better)       42910.3 
 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
 
                                   4        449.10          <.0001 
 
 
                                   Solution for Fixed Effects 
 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept     27.4589      0.8697    1659      31.57      <.0001 
                SEX          -13.3204      0.5998    1680     -22.21      <.0001 
                RACE          -2.2406      0.7071    1795      -3.17      0.0016 
                GRADE         -2.1020      0.3646    1664      -5.77      <.0001 
                time          -1.6459      0.1017    4557     -16.19      <.0001 
                tsex           0.9294     0.07050    4548      13.18      <.0001 
                trace          0.2400     0.09364    4803       2.56      0.0104 
                tgrade         0.1227     0.04256    4537       2.88      0.0040 
 
                          Distribution of  hours in activity per week                        343 
                                                                 16:52 Wednesday, March 21, 2007 
 
                                      The Mixed Procedure 
 
                                  Solution for Random Effects 
 
                                          Std Err 
                Effect       Estimate        Pred      DF    t Value    Pr > |t| 
 
                Intercept    -332E-22    0.002675    5378      -0.00      1.0000 
                time         -959E-22    0.002628    5378      -0.00      1.0000 
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                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         SEX             1    1680     493.25    <.0001 
                         RACE            1    1795      10.04    0.0016 
                         GRADE           1    1664      33.24    <.0001 
                         time            1    4557     261.99    <.0001 
                         tsex            1    4548     173.79    <.0001 
                         trace           1    4803       6.57    0.0104 
                         tgrade          1    4537       8.31    0.004 

F.3 ANALYSIS RESULTS OF LGC MODEL (5.5) 

 
                                      The CALIS Procedure 
                  Covariance Structure Analysis: Maximum Likelihood Estimation 
 
                  Fit Function                                          1.8204 
                  Goodness of Fit Index (GFI)                           0.7827 
                  GFI Adjusted for Degrees of Freedom (AGFI)            0.6125 
                  Root Mean Square Residual (RMR)                      30.5674 
                  Parsimonious GFI (Mulaik, 1989)                       0.5266 
                  Chi-Square                                          793.6933 
                  Chi-Square DF                                             37 
                  Pr > Chi-Square                                       <.0001 
                  Independence Model Chi-Square                         4466.3 
                  Independence Model Chi-Square DF                          55 
                  RMSEA Estimate                                        0.2166 
                  RMSEA 90% Lower Confidence Limit                      0.2036 
                  RMSEA 90% Upper Confidence Limit                      0.2298 
                  ECVI Estimate                                         1.8864 
                  ECVI 90% Lower Confidence Limit                       1.7176 
                  ECVI 90% Upper Confidence Limit                       2.1436 
 
                  Probability of Close Fit                              0.0000 
                  Bentler's Comparative Fit Index                       0.8285 
                  Normal Theory Reweighted LS Chi-Square              665.5793 
                  Akaike's Information Criterion                      719.6933 
                  Bozdogan's (1987) CAIC                              531.7357 
                  Schwarz's Bayesian Criterion                        568.7357 
                  McDonald's (1989) Centrality                          0.4207 
                  Bentler & Bonett's (1980) Non-normed Index            0.7450 
                  Bentler & Bonett's (1980) NFI                         0.8223 
                  James, Mulaik, & Brett (1982) Parsimonious NFI        0.5532 
                  Z-Test of Wilson & Hilferty (1931)                   23.0269 
                  Bollen (1986) Normed Index Rho1                       0.7358 
                  Bollen (1988) Non-normed Index Delta2                 0.8292 
                  Hoelter's (1983) Critical N                               30 
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                                      The CALIS Procedure 
                  Covariance Structure Analysis: Maximum Likelihood Estimation 
 
                            Latent Variable Equations with Estimates 
 
 
   F1        = -12.3410*SEX       + -4.1359*RACE      + -0.1774*SES       + -0.9480*GRADE 
   Std Err       1.0081 gamma1       1.7360 gamma2       0.8150 gamma3       0.6045 gamma4 
   t Value     -12.2415             -2.3825             -0.2177             -1.5683 
 
                            + 24.3325*Intercept +  1.0000 d1 
                               1.5574 al1 
                              15.6235 
 
   F2        =   0.7800*SEX       +  0.3886*RACE      +  0.0162*SES       +  0.0801*GRADE 
   Std Err       0.0850 gamma5       0.1464 gamma6       0.0687 gamma7       0.0510 gamma8 
   t Value       9.1778              2.6550              0.2352              1.5715 
 
                            + -1.4464*Intercept +  1.0000 d2 
                               0.1313 al2 
                             -11.0162 
 
 
                                Variances of Exogenous Variables 
 
                                                          Standard 
                   Variable  Parameter      Estimate         Error    t Value 
 
                   SEX                       0.51835 
                   RACE                      0.10321 
                   SES                       0.89908 
                   GRADE                     5.01147 
                   Intercept                 1.00229 
                   E0        error0         82.98133       2.81010      29.53 
                   E1        error0         82.98133       2.81010      29.53 
                   E2        error0         82.98133       2.81010      29.53 
                   E3        error0         82.98133       2.81010      29.53 
                   E4        error0         82.98133       2.81010      29.53 
                   E5        error0         82.98133       2.81010      29.53 
                   d1        int            82.13777       7.46958      11.00 
                   d2        slp             0.23900       0.05575       4.29 
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F.4 ANALYSIS RESULTS OF LGC MODEL (5.6) 

                         The CALIS Procedure 
                  Covariance Structure Analysis: Maximum Likelihood Estimation 
 
                  Fit Function                                          1.7697 
                  Goodness of Fit Index (GFI)                           0.7532 
                  GFI Adjusted for Degrees of Freedom (AGFI)            0.6170 
                  Root Mean Square Residual (RMR)                      36.9917 
                  Parsimonious GFI (Mulaik, 1989)                       0.6067 
                  Chi-Square                                          771.5817 
                  Chi-Square DF                                             29 
                  Pr > Chi-Square                                       <.0001 
                  Independence Model Chi-Square                         3197.8 
                  Independence Model Chi-Square DF                          36 
                  RMSEA Estimate                                        0.2423 
                  RMSEA 90% Lower Confidence Limit                      0.2277 
                  RMSEA 90% Upper Confidence Limit                      0.2573 
                  ECVI Estimate                                         1.8166 
                  ECVI 90% Lower Confidence Limit                       1.6294 
                  ECVI 90% Upper Confidence Limit                       2.0495 
                  Probability of Close Fit                              0.0000 
                  Bentler's Comparative Fit Index                       0.7651 
                  Normal Theory Reweighted LS Chi-Square              643.0148 
                  Akaike's Information Criterion                      713.5817 
                  Bozdogan's (1987) CAIC                              566.2636 
                  Schwarz's Bayesian Criterion                        595.2636 
                  McDonald's (1989) Centrality                          0.4276 
                  Bentler & Bonett's (1980) Non-normed Index            0.7085 
                  Bentler & Bonett's (1980) NFI                         0.7587 
                  James, Mulaik, & Brett (1982) Parsimonious NFI        0.6112 
                  Z-Test of Wilson & Hilferty (1931)                   22.7675 
                  Bollen (1986) Normed Index Rho1                       0.7005 
                  Bollen (1988) Non-normed Index Delta2                 0.7657 
        Covariance Structure Analysis: Maximum Likelihood Estimation 
 
                            Latent Variable Equations with Estimates 
 
 
   F1        = -12.2140*SEX       + -4.1860*RACE      + 22.1819*Intercept +  1.0000 d1 
   Std Err       1.0060 gamma1       1.6540 gamma2       0.7359 al1 
   t Value     -12.1418             -2.5309             30.1413 
   F2        =   0.7694*SEX       +  0.3936*RACE      + -1.2641*Intercept +  1.0000 d2 
   Std Err       0.0848 gamma5       0.1394 gamma6       0.0620 al2 
   t Value       9.0717              2.8226            -20.3734 
 
 
                                Variances of Exogenous Variables 
 
                                                          Standard 
                   Variable  Parameter      Estimate         Error    t Value 
 
                   SEX                       0.51835 
                   RACE                      0.10321 
                   Intercept                 1.00229 

 76 



                   E0        error0         82.98133       2.81010      29.53 
                   E1        error0         82.98133       2.81010      29.53 
                   E2        error0         82.98133       2.81010      29.53 
                   E3        error0         82.98133       2.81010      29.53 
                   E4        error0         82.98133       2.81010      29.53 
                   E5        error0         82.98133       2.81010      29.53 
                   d1        int            82.77438       7.51237      11.02 
                   d2        slp             0.24356       0.05604       4.35 

F.5 ANALYSIS RESULTS OF RANDOM COEFFICIENT MODEL (5.7) 

                                 Covariance Parameter Estimates 
 
                                Cov Parm     Subject    Estimate 
 
                                UN(1,1)                 6.746E-6 
                                UN(2,1)                        0 
                                UN(2,2)                 6.746E-6 
                                CS           ID          70.0200 
                                Residual                  128.49 
 
 
                                        Fit Statistics 
 
                             -2 Res Log Likelihood         22855.4 
                             AIC (smaller is better)       22865.4 
                             AICC (smaller is better)      22865.4 
                             BIC (smaller is better)       22855.4 
 
 
                                Null Model Likelihood Ratio Test 
 
                                  DF    Chi-Square      Pr > ChiSq 
                                   4        416.03          <.0001 
 
 
                                   Solution for Fixed Effects 
                                         Standard 
                Effect       Estimate       Error      DF    t Value    Pr > |t| 
                Intercept     28.6556      1.1482     907      24.96      <.0001 
                SEX          -14.4020      0.9472    1577     -15.20      <.0001 
                RACE          -2.0282      0.9960     712      -2.04      0.0421 
                GRADE         -1.5009      0.4533     712      -3.31      0.0010 
                time          -3.5166      0.2611       1     -13.47      0.0472 
                tsex           1.8739      0.3794    2146       4.94      <.0001 

                                  Solution for Random Effects 
                                          Std Err 
                Effect       Estimate        Pred      DF    t Value    Pr > |t| 
                Intercept    -506E-23    0.002597    2858      -0.00      1.0000 
                          time         3.35E-20    0.002597       1       0.00      1.0000  
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