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 This thesis explores four research areas that are examined using DNS traffic analysis.  

The tools used for this analysis are presented first.  The four topics examined are domain 

mapping, response time of anti-phishing block lists to find the phishing sites, automated 

identification of malicious fast-flux hosting domains, and identification of distributed denial of 

service attacks.  The first three approaches yielded successful results, and the fourth yields 

primarily negative lessons for using DNS traffic analysis in such a scenario.  Much of the 

analysis concerns the anti-phishing response time, which has yielded tentative results. It is found 

that there is significant overlap between the automatically identified fast-flux sites and those sites 

on the block list.  It appears that domains were being put onto the list approximately 11 hours 

after becoming active, in the median case, which is very nearly the median lifetime of a phishing 

site.  More recently collected data indicates that this result is extremely difficult to verify.  While 

further work is necessary to verify these claims, the initial indication is that finding and listing 

phishing sites is the bottleneck in propagating data to protect consumers from malicious phishing 

sites. 
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1.0  INTRODUCTION 

The primary purpose of this thesis is to demonstrate and describe novel analysis that is 

possible using passive Domain Name System (DNS) traffic analysis. Prior to this research, 

passive DNS gathering was primarily used for domain mapping.  In this technique 

researchers attempt to correlate, or map, domain names to Internet Protocol (IP) addresses 

and how these change over time.  This thesis demonstrates further applications of passive 

DNS traffic analysis such as inspecting the speed of identification of phishing attacks.  

Passive gathering is desirable in security research because the researcher need only listen to 

the traffic going across the network and does not need to initiate queries or otherwise leave 

any trace of her activity for those being investigated.  DNS is a desirable protocol for 

analysis because it is both ubiquitous and rich with information, while remaining concise.   

The remainder of chapter 1 presents pertinent background information.  Section 1.1 

will discuss the elements of DNS relevant to this thesis and point to additional sources.  The 

next section will introduce the various goals of the research, and section 1.3 will describe 

the data with which the analysis worked. 

Chapter 2 describes noteworthy software tools that were used to perform the 

analysis.  2.1 describes Ncaptool, a tool developed by the Internet Systems Consortium 

(ISC).  2.2 describes updates to Ncaptool that were made in order to facilitate the analysis.  
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Section 2.3 describes the non-obvious shell scripts that are used to collect, manage, and 

maintain the DNS data. 

The results of the various analysis goals are presented in part 3.  First, novel results 

achieved with mapping different top-level domains are presented.  Section 3.2 presents the 

primary results of the study, which analyze the effectiveness of anti-phishing block lists on 

the lifetime of a phishing website.  In a topic that is closely related to anti-phishing due to 

one of the manners in which malicious sites are hosted, section 3.3 describes an algorithm to 

detect fast-flux websites automatically.  The final analysis section, 3.4, describes attempts to 

detect distributed denial of service (DDoS) attacks using DNS information. 

Part 4 indicates directions of potential future work in this area.  Part 5 offers a 

summary of the findings and some conclusions to be drawn from them.  Finally, for a 

glossary of terms and acronyms, the reader may consult Appendix A.  For a compendium of 

most of the scripts used in the course of the research, consult Appendix B. 

1.1 ABOUT DNS 

The Internet is supported by an addressing scheme and packet delivery protocol known as 

the Internet Protocol.  Each host has a unique thirty-two-bit address.  For example, the 

machine I am sitting at has the address 10001000-10001110-01111001-01001101, with 

dashes added for readability.  Early on in the development of the Internet, many of the 

developers were able to remember these numbers by converting the binary byte values to 

decimal.  This is called the dotted decimal notation and the address above has the dotted 

decimal value 136.142.121.77.  Through the 1970’s, it was possible for human users to 
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organize and remember the numbers for several machines and to memorize “domains” – e.g. 

all machines at the University of Pittsburgh begin with 136.142.  However, as the number of 

machines grew into the millions and more casual users became involved, something more 

was needed.  What was developed was a mapping between human consumable names and 

IP addresses. The Domain Name System (DNS) is the standard that provides for this 

mapping.  It allows machine names such as “augment.sis.pitt.edu” to be mapped to the IP 

address and the location of a host.  DNS also provides a means by which a name can be 

easily reassigned to a new address should that need arise. The DNS protocol dates back to 

1983 and RFCs 882 and 883 (Mockapetris 1983).  (DNS and Bind

DNS is administered through a hierarchy of servers that store Domain name data, 

keep it up-to-date, and respond to requests.  The hierarchy divides responsibility for DNS 

into smaller and smaller chunks.  The root servers for “edu” keep track of the servers 

responsible at the next level down e.g. pitt.  The pitt.edu name servers keep track of the 

name servers at Pitt e.g. the name server for sis – “sis.pitt.edu”.  At the highest level of the 

hierarchy are the root name servers, of which there are 13.  These 13 servers answer queries 

about the top-level domains such as .com, .edu, and .uk; no more general DNS data base 

exists, and so these servers are the “root” or base of the DNS hierarchy.  Although there are 

13 logical root name servers, multiple physical servers exist in a distributed architecture, 

e.g., there are upwards of 200 machines answering queries at the root level (www.root-

servers.org).  The global DNS architecture is designed to shield higher-level servers from 

traffic, since personal computers and every DNS server caches and stores the answers it gets 

for a period of time to keep it from having to send a DNS request every time it needs to 

, by Cricket Liu and Paul 

Albitz, provides a detailed description of the protocol and its evolution.) 
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know where a certain web address is.  Even so, the root servers receive a significant amount 

of traffic.  The H root server experienced an average of 8500 queries per second during a 

test carried out as part of the “A Day in the Life of the Internet” (DITL) project (Kash 

2008).   

The information contained in the millions of DNS requests can be quite valuable.  

DNS packets are of variable size, and are generally limited technically by the size of the 

User Datagram Protocol (UDP) packet in which they are sent.  In practice, they are observed 

to average about 200 bytes per packet.  They contain several IP addresses, domain name 

text, timestamps, several flags, and some information about where this information came 

from.  There are three entities about which one can gather information by looking at DNS 

packets: the initiator, the target, and the subject of the query.  A DNS request contains the IP 

addresses of the requestor and the DNS server as well as the target’s domain name.  The 

DNS response will contain the request and the answer, which is often an IP address, 

although other types of information can be shared via DNS as well. While the goal of DNS 

is to provide information about the subject, the other information in the packets can be 

analyzed in aggregate to provide network intelligence information.  The packet includes 

information about the name server or name servers that are responsible for being the 

authority on the subject’s information.  This information sheds light on the initiator and 

target as well, such as who knows what about whom, when and how often questions are 

asked, and who answers for those who hold the authoritative knowledge about a site.  This 

kind of analysis is often referred to as a traffic analysis and is the basis for our research into 

evaluating the speed of identification of phishing attacks. 
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1.2 RELATED PRIOR WORK AND INTENDED CONTRIBUTIONS 

Various research has been conducted on the state of phishing and malicious activity on the 

internet.  There is solid research into how data breaches and hacking tend to occur (Baker 

2008).  In the same year, Cyveillance published a white paper detail the costs and damages 

caused by phishing attacks (Cyveillance 2008).  Furthermore, there is evidence that 

takedown and blocking efforts have a significant effect on the lifetime of phishing sites and 

on phishing activity (Moore 2007).  There exist reliable numbers about the total lifetime of 

phishing sites, from when they go live until when they are taken down (Aaron 2009).  The 

Anti-phishing Working Group has published four such reports since 2007.  It is established 

that phishing is damaging and that takedown has a significant effect on reducing this 

damage, however precise numbers as to how long it takes the takedown process to get 

started are unknown.  The primary focus of this thesis is to evaluate the ability to derive 

such numbers using passive DNS traffic analysis and contrast them with those for the 

lifetimes of phishing sites on average.   

The thesis also touches on other novel results achieved through use of DNS traffic 

analysis that could also be derived from the same data source as the phishing response time 

analysis.  This data source itself presents a non-trivial database and data analysis difficulty 

due to the volume of data available; see section 1.4 for details.  This thesis does not present 

the first DNS traffic analysis of malicious network activity.  Passive analysis of DNS traffic 

collected at high traffic routers has been used to detect malicious flux networks outside of 

email spam lists (Perdisci 2009).  This is closely related to work presented in section 3.3.  

DNS traffic has also been used to build relational databases to generate IP to domain name 

mappings of various domains (Weimer 2005). The uses of such databases relate closely to 
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section 3.1, however the approach taken to store the data in our approach was much more 

simple, arguably more robust, and does not seem to have disadvantages to the relational 

database approach in terms of performance speed, which neither hold as a focus of the work.   

It was initially believed a database would need to be engineered to efficiently store 

multiple weeks of DNS information.  This was demonstrated to be untrue early on when it 

was recognized that the native DNS format was by far the most compact and data rich 

format.  In order to compact the data at all, many flags and bits of information would have 

to be discarded that had unknown potential value to this or future research.  Furthermore, 

whereas data storage of flat, albeit compressed, DNS packets within Ncap files could be set 

up with little expertise in the matter of a few weeks, engineering of a complex database to 

deconstruct and extract data from the DNS packets into a relational database is expected to 

take the better part of two years, if a current project stays on track.  The work in this thesis 

therefore employs the native DNS format. 

If worldwide phishing is to be monitored, the entirety of worldwide web must be 

monitored.  The only tenable protocol with which to do this is DNS, because other 

ubiquitous protocols, such as TCP/IP, either don’t provide sufficient information about the 

actors involved or are far to voluminous to allow for anywhere near real time analysis of the 

ever-changing landscape, such as HTTP.  Given these limitations, it is important to learn 

how to analyze DNS data because it is the best target for this very valuable real time 

analysis of the Internet.  DNS does have various shortcomings, which vary depending on the 

analysis, that are presented throughout this thesis.  This thesis aims to demonstrate the 

benefits of DNS traffic analysis for answering various questions about malicious activity on 

the Internet, particularly phishing, and to advance the state of this analysis by introducing a 
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novel method of correcting for the shortcomings in DNS analysis of phishing sites.  It also 

will demonstrate some of the benefits of retaining the native DNS packet format in terms of 

increases in analysis detail over previous work that used relational databases to store DNS 

data.   

1.3 ANALYSIS GOALS 

Initial goals of the project were simply to establish the technical infrastructure to allow 

analysis to be done.  The Security Information Exchange (SIE) provides a community 

driven data source consisting entirely of observed DNS packets.  Section 1.4 describes the 

data stream, which needed to be captured, stored, and rendered searchable.  In order to 

facilitate useful analysis, this would have to be done in near real time, because of the 

dynamic and volatile nature of addressing in the global computer network.  This was the 

primary initial goal of the project, but due to the the amount of data able to be stored using 

the native DNS format and simple linux utilities it was accomplished rather quickly. 

The primary goal of the research then became to determine how effective anti-

phishing block lists were at getting malicious sites onto their lists.  DNS would provide a 

manner of checking this because one could, hypothetically, discover the earliest detected 

instance of a request for the malicious site and compare that timestamp to the time at which 

the site is added to the block list.   

Another goal, more established in DNS research generally, was to attempt to 

describe the structure of a domain passively.  Here, the level of detail that could be achieved 
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and the simplicity of the acquisition were in question.   Also an easily accessible and 

viewable interface was needed. 

A goal that was added to the project partway through was to use this DNS data to 

identify fast flux hosting in the data.  Fast flux hosting is a technique of hosting a service at 

a rapidly changing series of IP addresses.  The domain name in question is generally 

constant while the IP address is often changed at least once every five minutes 

(www.spamhaus.org).  This is of particular interest because this practice is highly correlated 

with malicious activity by the site being hosted, as it is an effective way to avoid detection 

and blocking.   

Since very little work had been done attempting to utilize DNS as a data source 

besides the passive domain mapping, anything else novel was to be pursued in order to 

discover what information it might yield (Faber 2009).  This led to attempts to unearth 

information about DDoS attacks, such as the one targeting South Korea and United States 

government sites in early July 2009, while data was being collected from the SIE DNS data 

stream.  This was also a motivation behind the attempt at a novel passive domain map. 

1.4 ABOUT SIE DATA 

As far as the collection infrastructure of the SIE data feed it is worthwhile to directly quote 

the official description:  

“SIE maintains collection infrastructure for several sets of recursive nameservers 

around the Internet. The nameservers query authoritative nameservers on behalf of 

their customers' queries and the answers returned from the authoritative nameservers 

to the recursive nameservers are captured off the network interface and batch-
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forwarded to SIE. At an SIE rebroadcast facility, the packets from uploaded batches 

are replayed.” (ISC 2009) 

Although the location and identity of these collection points is considered sensitive 

information, each collection point is given a random unique identifier.  This allows us to 

count the number of collection points, which number about a dozen.  This low number raises 

some questions about how representative of a sample the SIE data is of the Internet as a 

whole.  However, without further information about where these collection points are and 

how interconnected they are it is impossible to know exactly what biases are in one’s data.  

Section 3.1 presents some evidence that the sample is representative. 

 Some filters are applied to the data as it wends its way towards information 

subscribers’ sensors on SIE’s rebroadcast facility.  At the sensor point a Berkley Packet 

Filter (BPF) is applied that only allows valid DNS responses to be captured.  The filter 

applied is: 

“(dst host NSNAME and udp src port 53 and 

udp[10] & 0xf8 = 0x80 and udp[11] & 0xf = 0) 

or 

(src host NSNAME and icmp[icmptype] = icmp-unreach)” (ISC 2009) 

This filter ultimately has broad repercussions on what work we are able to do.  Through this 

filter the SIE’s primary channel receives approximately 10,000 packets per second.  This is 

channel 2, which is further filtered and reprocessed and rebroadcast onto 12 other channels, 

each with its own different filter and purpose.  A channel is basically a virtual private 

network established for the purpose of segregating the various sets of data created by 

applying the various filters.  Each channel is a live feed of the DNS packets passing through 

the Internet, delayed perhaps a few hours depending on the type of filtering that is applied to 

it.   
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 This research is primarily concerned with channel 5, which is a version of channel 2 

that has been deduplicated by suppressing duplicate Resource Record (RR) sets over a 4-

hour time window and incrementing a counter to indicate how often the RR set was 

suppressed.  According to the provider, this reduces the traffic flow from 10,000 packets per 

second to about 2,000, and is the channel recommended by SIE for monitoring passive DNS 

(ISC 2009).  During data collection channel 5 was observed to exhibit a data flow of about 

3,100 packets per second, yielding just under 5 Mb per second.  This was observed to 

produce roughly 56 GB of data per day, which could be reduced to 17 GB per day simply by 

applying the gzip utility. 

 Several of these design choices are excellent for passively mapping out huge swaths 

of IP-domain name pairs.  However, they are not ideal for every DNS-based research 

undertaking and have hampered the research presented in this thesis in certain ways.  For 

example, the decision to include only valid DNS packets that are responses, and not queries 

nor “no such domain” error responses has several repercussions.  No data is lost about the 

query in the response packet because a response includes all the information in the query so 

that the initiator can identify what question is being answered.  However for certain 

applications the information that could be gleaned from unanswered or malformed queries 

would be very valuable, and by some estimates only 2% of queries to the root servers are 

well-formed and answerable (Wessels 2003).  The SIE filter is therefore a double-edged 

sword.  It would be splendid to be able to have certain ill-formed DNS queries accessible to 

the research, however it is probably the case that the data rate would then become 

unmanageable.  Furthermore, the SIE data is the only source of its kind as it is, and so the 
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research must cope with the data available and be aware of the limits of the questions one 

may ask of the data.   
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2.0  SOFTWARE TOOLS 

In any research one can only delve as far as her tools allow.  The previous section described 

the information architecture with which our tools can work.  And while the focus of this 

thesis is not to describe advances in software engineering, it is important to have a sense of 

what tools are available and what their limitations are in understanding this research, 

planning future research, and planning any improvements to the tools of the trade necessary 

for that research.  

This chapter will focus primarily on Ncaptool.  This program is used to collect the 

DNS data at the collection points, rebroadcast within the SIE, apply filters both natively and 

through plugins, and format the data for human readability.  Section 2 relates the 

improvements that were made to ncaptool during the course of this research, primarily 

by Ron Bandes.  Section 3 contains the bash scripts that are used to manipulate both the data 

and ncaptool to make the analysis possible.  These scripts are available in Appendix B. 

2.1 NCAPTOOL 

Ncaptool is the primary tool used in this research because it is the primary tool used by 

the SIE is collecting DNS data.  It is available at ftp://ftp.isc.org/isc/ncap/.  Given the 

amount of data that it has been designed to handle, its design is focused on efficiency.  It is 

ftp://ftp.isc.org/isc/ncap/�
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architecturally reliant upon libncap, a stable build of core functions.  Ncaptool interfaces 

directly with this library in order to provide further functionality to the user by allowing a 

wider range of options including the ability to include plug-in modules.  Figure 1 is a 

representation of all the input and output types for the architecture of the tool. 

 

 

Figure 1: NCAP sources and sinks  

Ncap also focused on ameliorating some of the issues with its predecessors, Pcap 

and DNScap.  For example, Ncap incorporated nanosecond resolutions on its timestamps, 

improving upon Pcap’s microsecond resolution because it had been observed to be 

insufficiently precise.  Ncap provided for filtering besides what could be provided by 

incorporating a BPF filter, even though it still utilizes BPF when possible.  These DNS 

filters allow various DNS message fields to be specified, such as flags, initiator, target, 

opcode, qname, qtype, rcode, or a regular expression to be specified.   
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In designing Ncap the decision was made to no longer capture layer-2 network 

information such as Media Access Control (MAC) addresses because they weren’t very 

useful and are generally considered sensitive information.  Furthermore, Ncap defines file 

and stream formats for both input and output, and allows for multiple simultaneous inputs, 

which are both features that make the SIE possible.   

The Ncap format, which is used both when broadcasting data streams and writing to 

files, adds little overhead to the DNS message.  Each file begins with a simple header 

identifying the version of Ncap used and the file descriptor.  Each DNS message is kept 

essentially intact, except that at the beginning of each DNS message two fields are 

prepended, termed simply “user 1” and “user 2.”  In practice, user 1 is used as a counter for 

how many times an RR set has been observed on the deduplicated broadcast channel.  For 

example, if 3 copies of a packet are observed during the time window, only 1 copy is 

rebroadcast, however that copy will have a 3 in this field.  The other field customarily 

contains the unique identifier assigned to the point at which the packet was collected.   

As of fall 2009 development of Ncap has ceased and it is considered to be in its final 

form.  Work has begun on its successor, Nmsg, and builds are available as of this writing 

from http://ftp.isc.org/isc/nmsg/.  Nmsg is backwards compatible with Ncap, although it is 

not known when Nmsg will supplant use of Ncap.  As of April 2010, the SIE data feed still 

runs on Ncap. 

http://ftp.isc.org/isc/nmsg/�
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2.2 IMPROVEMENTS TO NCAPTOOL 

There were both minor and significant improvements made to Ncaptool in order to 

facilitate this DNS research.  All of the following improvements are included in the last 

version of Ncap that is available from the SIE.  The more minor improvements included 

adding some RR types to those that Ncaptool recognized as well as some query types, 

and correcting the filter specifications so that the “initiator” and “target” fields were actually 

those machines and not merely synonyms for “source” and “destination.” 

However, the primary enhancement to Ncaptool was the development of the 

qnames.so plug-in module.  This plug-in was necessary to provide the functionality of 

searching through a huge number of DNS messages for a long list of domain names.  

Ncaptool provides the functionality to search for one qname, or for a regular expression, 

however it does not provide for any way to search for multiple distinct domain names.  The 

most computationally expensive step in this search is unzipping each ncap file and stepping 

through it to each DNS packet to compare its query name to the target, and that happens 

millions of times per search.  Qnames.so allows the researcher to make only one pass 

through the target date range for the list of domain names, instead of 5000 passes.  Even if 

the names in the list could be reduced to a regular expression, it takes seven hours for 

Ncaptool to search one week of messages for a single regular expression.  Using 

qnames.so, it took one hour and a half to search the same number of messages for any of 

a list of 5300 domain names.  Furthermore, qnames.so allows for the use of wildcards 

within subdomains.  For example, within the text list one could specify *.evil.co.uk instead 

of trying to enumerate every subdomain of evil.co.uk in the list. 
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In addition to qnames.so a small utility program was developed to supplement the 

capabilities of Ncaptool.  The utility, called ncapappend, is a stand alone program that 

is to be used in conjunction with Ncaptool when multiple ncap files are being unzipped.  

It takes as arguments what the input and output files are, ‘-‘ representing standard in or out, 

and removes ncap file headers besides the first one.  Without this functionality multiple ncap 

files cannot be sent to Ncaptool for processes because it crashes when another file header 

comes in after the first one.  A common implementation is ‘gunzip *.ncap | 

ncapappend - - | ncaptool …’ 

2.3 COLLECTION AND ANALYSIS SCRIPTS 

Several different bash scripts are used to gather and maintain the collection of Ncap files.  

Many of these are included in Appendix B for easy reuse; however note the license 

agreement at the beginning of the appendix.  Several scripts were used to do the various 

pieces of analysis with the DNS data.  These ranged from quite simple to things that should 

probably have been done in a compiled language.  However, efficiency was not a primary 

goal of this project and neither was software engineering, and the analysis machinery was all 

written in bash and not ported to another language when it began to stretch the bounds of 

that approach.  

The broadest and most simple scripts involve the capture and sorting of the Ncap 

files from the SIE data feed.  The most basic of these scripts is 

MaintainDirectoryCreation.sh.  It is to be run sometime before midnight in order 

to create the directory for the next day.  A slightly more complicated script is 
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MaintainRollingCapture.sh, which serves two functions.  First, it checks if the 

Ncaptool process is running, and if not, restarts it.  Since this is a critical consistency 

check, this script is run every 5 to 10 minutes.  Its second function is to move all of the Ncap 

files out of the temporary directory into which they are initially captured to a directory for 

the day during which the file was recorded.  Ncaptool automatically writes files with a 

timestamp, and this convention is utilized in identifying what day’s directory to which to 

send the file. 

The third script is the most complicated one involved with maintenance of the Ncap 

files.  This script, MaintainDiskSpace.sh, checks to see if the disk storage is overly 

full, and removes the oldest directory if the percentage of used disk space is above a certain 

threshold.  It contains the added functionality of removing unique answer records from each 

day’s DNS messages and storing them in a text file.  This reduces the storage cost of each 

day from 17 GB a day to about 400-500 MB a day and continues to allow analysis of the 

DNS data.  Particularly, these condensed daily records have allowed for a much more robust 

usage of the algorithms to determine if a domain has been newly registered.  These 

algorithms are utilized in the discussion in section 3.4.   

The other scripts in Appendix B were used for analysis of the DNS data.  These fall 

into two sets of scripts for two different tasks.  One set is for the mapping out of the 

hierarchical structure of a domain from the observed DNS data, and the other is to help shed 

light on the question of how much time it takes a phishing site to be put on an anti-phishing 

block-list. A detailed discussion of the logic in the scripts is not offered, rather a view of 

what they accomplish.  For detail on the actual logic it is simplest to refer to the code and in-

line comments in Appendix B. 
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The domain mapping scripts operate in two basic phases.  The goal of the first script 

is to prepare a text file that will be usable by the second script to build the desired structure.  

The contents of this preparatory text file are selected on some basic premises.  Firstly, it is 

observed that the information that is of interest to describing the interrelations in the target 

domain exists almost exclusively in the resource records of the DNS packets.  As such, the 

actual DNS packets, and duplicate resource records, are not necessary.  Ncaptool’s 

regular expression matching capability is utilized to narrow down the scope of DNS packets 

handled in text file format.  Without this narrowing, the list is too large to be used in a 

reasonable amount of time.  Regular expression matching is used instead of the 

qnames.so plug-in because this search is concerned with every resource record in the 

DNS packet, and not just the query, because any information relating to the domain in 

question adds to the completeness of the description.  Once these packets are sorted out, 

Ncaptool is used again to convert them to text and then various algorithms are applied to 

standardize the form of the resource records in the text list.  This standardization is 

necessary so that the list of records can be sorted and the unique records identified properly 

and kept in the list.  In this state the list can be passed to the second phase of the process. 

The second phase of the process utilizes the innate directory hierarchy structure of 

operating systems to sort out each resource record in the list.  The list is fed into a loop, and 

for each record a file path is created for the name or names in the record.  Any resource 

record that refers to that name is then added to a file in the appropriate directory.  

Additionally, any information about the domain generally, which usually includes such 

record types as those that involve DNS-SEC (DNS security functionalities) and start of 

authority (SOA) records are included.  For example, a folder for the .edu top level domain 
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would have an information file with anything that mentioned exactly ‘.edu’ as well as 

several directories for subdomains within .edu such as pitt.edu.  These directories would 

have the same structure until the directory had no further subsidiary directories.   

The second phase of the domain map contains one other decision making process.  

The script attempts to determine if a domain name mentioned in a record is for a host or for 

a domain.  This distinction in not made innately in the DNS protocol, and so some rough 

heuristics are applied to attempt to make the distinction.  This distinction is helpful because 

if a name is a host, and not a domain, then the domain name does not have any subdomains, 

by definition of a host.  For a human user, it would be helpful to represent a host as an 

endpoint in the directory structure and not as yet another folder.  The endpoint analog in this 

case would be a file that contained all the resource records relevant to that host.  This helps 

make clear what exists within a domain.  The basic heuristic applied is that if the name has 

an answer or canonical name record about it, or it claims to be a name server for anything, 

then it is a host.  Since these records can appear about domains also, the script then checks 

to see if there are any records indicative of being a domain and if so overrides the decision 

to call it a host. 

The result of this sorting is a file hierarchy that can be viewed using any common 

GUI operating system.  A sample of the output is shown in Figure 2.  If this approach were 

to be taken on a large scale it is advisable to utilize a file format that does not require a 

minimum file size of 4 KB, however even for a domain the size of .edu a standard home PC 

or Mac is able to handle the directory structure fine.  Figure 3 displays a sample of the 

contents of a host’s file in this structure, which contains a line for each RR that was found to 

include the name of that host in some way.   
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Figure 2: Example domain mapping output 
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Figure 3: Example contents of file in domain mapping output 

Whereas the domain mapping scripts produce a nearly finished product on their own, 

the scripts used for the analysis of the lifecycle of phishing sites are primarily a means to 

acquire the statistics that will then be analyzed.  Furthermore, several of the phishing 

analysis scripts involved standardizing inputs into the script that managed the search of the 

Ncap files.  These standardization scripts are not included because they accomplish mere 

text formatting that is specific to the source of our phishing site block list.   

The search script, manySiteSearch.sh, is included in Appendix B.  It takes as 

inputs a text file that is a list of domain names as well as start and stop dates for the search 

and outputs all DNS packets from the data source whose query name matches any of a list of 

domain names into an Ncap file.  The next script included in Appendix B, 

checkEarliestDates.sh, takes this ncap file and the text list, as long as the text list included 

dates for when the domains were added to it, and calculates the difference between the date 

on the list and the date of the first DNS packet that asks for the domain name in question.  

These differences are the basic data for the analysis of how long it takes a phishing site to be 

added to a block list, but as will be explained in section 3.2, there are several other factors in 
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between the list of differences output at this stage and the complete answer to the question.  

The third script included in this section, evaluateDNhack.sh, aims to discern whether 

or not a given phishing site was hosted on a hacked server, thus hijacking that server’s 

domain name for malicious purposes, or if the domain name was registered exclusively for 

the purpose of hosting malicious content.  It organizes these answers into a basic histogram, 

counting the sites separately in different categories based on the latency between when the 

site was in the DNS traffic and when it was block-listed.  The script determines this by 

querying for the site, and keying on the HTTP return code.  If the lookup is successful, then 

it is assumed that the site has been cleaned and reopened, whereas if the return code is an 

error or redirection it is counted as having been hacked because no one cared to clean up the 

site and bring it back online after it was blocked.  Redirections are counted here because it 

was observed that ISP or other intermediaries often do not simply deny requests for known 

malicious sites, but redirect the user to a page that explains the site that they requested is a 

known malicious site and gently admonishes them to be more careful.    
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3.0  ANALYSIS 

DNS data is a rich source of information about many of the events and transactions of the 

Internet.  Therefore, there are several different applications of the data collected in this 

research.  This chapter presents the several approaches that were investigated in the 

available time, however it is not an exhaustive list of the types of analysis one could conduct 

using DNS data.  It is an interesting and fruitful protocol to research for several reasons, as 

highlighted in section 1.1.  The applications and interpretations of the DNS data will 

hopefully continue to grow and change as more researches take interest in the protocol’s 

value.  This analysis begins that path. 

3.1 DOMAIN MAPPING 

The attempts at domain mapping were undertaken simply to see what could be passively 

constructed with a comprehensive DNS source such as the SIE data feed.  The original 

hypothesis, which was hardly discussed, was that it wouldn’t turn up anything that 

interesting or that impressive.  However, the file structure that was built up from the DNS 

data using some primitive scripts was quite comprehensive.  By sampling about two weeks 

of DNS traffic a complete-looking description of whole top-level domains could be 

generated in a very naturally explorable format (see figures 2 and 3 for sample output).  For 
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smaller top level domains (TLD) the structure was generated at a speed that the files could 

be updated daily without falling behind the production of data. 

The information that is included in the generated description includes some 

potentially sensitive information, however none of it is data that is not public to anyone who 

cares to ask.  IP addresses will be revealed to the world if you publish answer records.  Not 

only logical locations of machines are revealed through DNS, however, because records 

such as cname records reveal what services are probably co-located on one machine.  Start 

of authority records can indicate what machine or organization administrates for other 

machines or organizations and therefore describes possible trusted relationships.  There 

were also a few organizations, which shall remain nameless, whose structures were 

unorthodox in myriad ways, and this sort of information can be used to make inferences 

about the quality of technical oversight.  These indicate the most obvious sensitive 

inferences to glean from the maps; however there seem to be many more bits of information 

one could extract with a fine-toothed comb and some perseverance.  It is this extra 

information that differentiates this approach from previous domain mapping attempts, as 

these approaches incorporated only IP addresses and domain names into their maps.    

All of these tidbits of information are items that in a secure environment one would 

prefer not to share with the world.  At the very least, the operator of a domain should want 

to know what information about the domain is publically available if privacy is a concern 

for the domain at all.  Operators could also check this data for inconsistencies or anomalies, 

and certain anomalies may be more easily discoverable in this data.  For example, if your 

name server were claiming to be authoritative over an unknown domain, it would be clearly 

displayed in the file for the name server, even if the frequency were very low.    
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There are further curiosities that arise when using these scripts in creative ways.  

Through chance, it was noticed that McAfee.com was claiming certain other domains as a 

subdomain.  For example, entries such as ‘www.sis.pitt.edu.phishing.mcafee.com’ were 

noticed.  To investigate, the scripts were pointed at mcafee.com as the top-level domain to 

search under.  This search returned a very interesting domain tree, which included a couple 

of different subdomains which in turn included fully qualified domain names from all over 

the internet such as the example above.  It seems that these domain names are registered by 

the company as a way to communicate the danger of sites, as different response codes to the 

DNS lookup of these domain names at McAfee indicated different levels of trust in the 

safeness of the indicated domain.  This appears to be simply an instance of intentional 

misuse of the DNS database for other purposes, such as those discussed by Paul Vixie 

recently (Vixie 2009).  Another site that was noticed to operate on a very similar principle 

was rfc-ignorant.org.   

Both the McAfee and Rfc-ignorant data can be leveraged in interesting ways as well.  

It can be used to identify what sites are thought to be malicious in the one case, or which 

sites are reported to violate various RFCs in the other.  When viewing large swaths of the 

domain space it is interesting to use this data to pick out what domains fall into these 

categories, and this is one of many sources of data about a domain that an administrator 

might like to monitor for unusual activity about her network. 

The amount of information gleaned is particularly interesting because it is essentially 

public.  Anyone with a capability to listen to enough Internet traffic should be able to 

acquire such a map of any domain that communicates directly with the Internet.  It is 

unknown how many collection points and their necessary data rates in order to construct a 
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comprehensive DNS mapping such as was obtained here.  However in theory all DNS data 

is public and the whole worldwide DNS database is connected, so persistent, small actors 

could acquire this amount of information.   

Regardless, continuing with the collected “.edu” example, we observed 6,537 second 

level domains.  Educause, the official registrar for the domain, reports that there are about 

7,000 second level domains (McTurk 2010).  So merely by listening to public DNS requests 

we acquired information about 93-94% of the second level domains.  It is unknown the 

popularity or size of the domains that were missed, but intuitively the smaller, less requested 

sites are the ones absent from the data.  Following this logic, if the percentage of records 

included down through the second and third level domains could be calculated, it is 

predicted this percentage would be approximately equal.  The percentage is difficult to 

calculate because many of these 6,500 institutions would need to be contacted to check the 

number of domains they have, however a cursory inspection of the lower level domains does 

not indicate any obvious gaps in information.  In order to increase completeness a larger 

sample time can be queried from the ncap database, however this requires a constant 

increase in the time to build the domain structure and provides diminishing returns insofar 

as percentage of records included.   

3.2 PHISHING RESPONSE TIME 

Phishing attacks involve malicious web pages that attempt to trick users into divulging 

sensitive information such as social security numbers, credit card numbers, or user names 

and passwords.  These attacks can cause a massive amount of financial damage to both the 
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targeted trusted entity, such as a bank, as well as the entity’s customers.  Figure 4 presents a 

graph of the estimated cost of a particular phishing attack over time, reaching a total of 

about $4.3 million over 72 hours (Cyveillance 2008). 
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Figure 4: Approximate cost (USD) vs. Duration of attack (hrs) for an example phishing attack 
(Cyveillance 2008) 

As shown in the figure, phishing attacks often cause the majority of their monetary 

damage early in their deployment.  Figures for the number of users compromised take a 

similar shape.  There are several parties that take interest in minimizing the damage done by 

phishing.  It has been demonstrated that publishing “block lists” or “black lists” for 

consumers and, in some cases, Internet service providers (ISP), causes a significant 

reduction in the time that a phishing site can remain active (Moore 2007).  There is also 

good information as to how long phishing sites stay active (Aaron 2009).  The goal of this 

part of the research was to shed some light on the latency between initiation of a phishing 
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attack and the phishing site being listed on an industry block list.  The analysis of DNS 

traffic was accomplished by examining records collected from the Internet Systems 

Consortium Security Information Exchange (ISC-SIE).  The ISC SIE is a trusted, private 

framework for information sharing in the Internet Security field. 

The basic premise is simple.  A user’s computer would have to ask where the 

phishing site is before the user could be taken there to be tricked into revealing information.  

This timestamp can then be compared to that on the block-list and the difference is how 

much time elapsed between the site going live and being put on the block-list.  Given access 

to the SIE data, we could look for the first instance of when the name was requested in the 

DNS traffic and have a fairly accurate measure of when the site began receiving traffic.     

The block-list utilized in this research was downloaded daily and checked, even 

though the block-list is updated more frequently.  Its provider has requested that it remain 

anonymous.  Over the course of 135 days the list contained an average of 3603 unique 

URL’s per day, with a median number of URL’s equal to 2324.  The standard deviation was 

2860 URL’s, with the list skewed to the right.  The number of unique domain names was 

significantly lower, and the date-added-to-the-list was not valid a date for several entries.  

For example, the date was in the future, or 20 years ago.  Normalizing the list to acquire a 

list of unique domain names with valid dates reduced the size of the list to an average of 

2002 entries per day, with a standard deviation of 1266, and reduced the median number of 

entries to 1550.  During the whole period approximately 101,000 unique phishing sites were 

reported, for an average of 581 new unique sites per day. 
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3.2.1 Difficulties in analyzing DNS data from the SIE data feed 

There are several potential limitations in using DNS data for this analysis.  For example, the 

assumption that a phishing site’s launch can be detected by its first appearance in the DNS 

traffic is not always true. If a phishing site utilizes static IP addresses instead of domain 

names no DNS request will be issued. Luckily for DNS analysis, this style of phishing 

represents 8.4% of all phishing addresses observed in the second half of 2008 and 10.5% of 

those in the first half of 2009 (Aaron 2009; Aaron 2009).  Attacks using these phishing sites 

will be invisible to the DNS analysis technique.  None-the-less, being able to evaluate the 

performance of the block-list in finding roughly 90% of phishing sites is still significant.  

Another limitation arises from the fact that in order to operate efficiently, the DNS 

protocol makes extensive use of caching and a distributed infrastructure.  So if a server 

receives an answer to a question, the server will store the answer for a period of time so it 

can respond itself instead of referring the question to another server.  Furthermore, UDP 

DNS messages between hosts are not the only way of transferring DNS information.  DNS 

servers can periodically initiate zone transfers between themselves, if they are so 

configured, to update their records en masse.  The SIE data would not reflect these zone 

transfers.  The problem with these two features of DNS is that the SIE sensor points are 

irregularly distributed throughout the Internet in locations that are not allowed to be 

disclosed.  There is thus some uncertain probability of information about a phishing site 

eluding our sensors.  However, there is reason to believe that the information obtained 

through SIE is representative of the Internet as a whole.  Anecdotally, the ISC SIE has a 

reputation for reliability, and a high degree of trust that they have acquired high-profile and 

quality sensor points.  Verification of complete coverage may be found in the completeness 
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of the domain maps constructed and described in section 3.1, which were found to contain 

just over 93% of the second-level domains that are registered in the “.edu” top-level domain. 

Most vexing for this research is that according to the most recent statistics made 

available by the Anti-Phishing Working Group (APWG), which are for the first half of 

2009, only 14.5% of phishing site domains are actively registered by the phishers; this is 

down from 18% in the second half of 2008 (Aaron 2009).  This is extremely problematic for 

the proposed analysis method using DNS because virtually all of the rest of the domain 

names used for phishing were comprised of hacked domains that already existed in the DNS 

traffic before they were compromised.  These packets completely invalidate the DNS 

packets as a timestamp of when the malicious site became active and started attracting 

targets.  This situation means approximately 15% of the sites that are observable are valid 

data points for analysis.  Further complicating the issue, the bad data points are not merely 

undetectable; they introduce a high degree of noise into measurements that can be made.   

The lists provided other questionable data points as well, regardless of whether the 

domain was maliciously registered or hacked.  The problem with these data points centers 

around the observation that several of the entries on the block-list cannot be considered to be 

wholly independent events.  For example, consider the six entries in Table 1.  There are two 

distinct confounding factors represented by these entries, which are almost certainly 

maliciously registered domain names and so otherwise valid data points.  First, two of the 

entries are for sites with identical domain names (those numbered 244).  This occurs 

because the block-list uses hypertext transfer protocol (http) addresses, because multiple 

websites can be hosted on one domain name.  This allows the block list to be more fine-

grained and not block entire domains if not necessary.  This is particularly beneficial when 
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there are innocent bystanders – websites that are not malicious on domains that have been 

hacked.  However this feature can skew the data because every domain name will have the 

same first observed date while different dates they were block-listed.  This can lead to a 

phenomenon in which, as far as this DNS data is concerned, the domain is blocked before it 

is requested.  But even if this is not the case, it appears to give the block-list organization a 

head start on finding the site, because another site of the same domain name already existed.  

To ameliorate this issue, only unique entries in the block list are kept, and the earliest time 

stamp for a given unique name is kept. 

Table 1: Example Dependent Block-list Entries. 

Domain name Date block-
listed 

Date first 
observed 

Difference 

businessconnect.comerica.com.session-
id-233

2009-07-14 
17:46:56 .fikhi.com.mx 

2009-07-14 
15:01:23 

0000-00-00 02:45:33 

businessconnect.comerica.com.session-
id-244

2009-07-14 
14:17:57 .fikhi.com.mx 

2009-07-14 
15:28:20 

^No requests before 
phishing Listing 

businessconnect.comerica.com.session-
id-244

2009-07-14 
15:57:47 .fikhi.com.mx 

2009-07-14 
15:28:20 

0000-00-00 00:29:27 

businessconnect.comerica.com.session-
id-246

2009-07-14 
16:34:40 .fikhi.com.mx 

2009-07-14 
18:35:46 

^No requests before 
phishing Listing 

businessconnect.comerica.com.session-
id-257

2009-07-14 
17:44:23 .fikhi.com.mx 

2009-07-14 
17:00:13 

0000-00-00 00:44:10 

businessconnect.comerica.com.session-
id-270

2009-07-14 
18:00:26 .fikhi.com.mx 

2009-07-14 
17:35:54 

0000-00-00 00:24:32 

 

The other issue indicated by the entries in Table 1 is that all six clearly represent a 

correlated string of registered domain names.  If an employee of the block-list organization 

notices a run of site names like this, the sensible thing to do would be to block some broader 

swath of the domain space.  The block-list organization does employ humans for this sort of 

task. A confidence rating of 100% is only provided after a human has verified an entry.  

This issue is more difficult to mitigate than the previous issue.  Here, it is a legitimate 
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foresight by the blocking organization to do this and does not unfairly bias each individual 

data point.  However it is also often an unduly large percentage of the total domain names 

on a given list that are registered in this way due to the volume of domains registered en 

masse. The importance of discovering this one massive registration event over other single 

registration events is inflated, even though there is no evidence as to which actually caused 

more harm and was more important to find.  These incidents are also much more difficult to 

cleanly filter out.   

3.2.2 Countermeasures to increase data validity 

Two steps were taken to reduce problems that might be caused because of questionable data.  

The first was to throw away entries for which the difference between the date blocked and 

the date observed in the DNS data was negative; i.e. the blocked date was before the 

observed date.  This action allows for several of the sites to remain in the data, while 

eliminating several of the packets that could inflate the data or result in an average of 

negative value, which is a nonsensical answer to the question of how long it takes to find a 

phishing site.   

The second step was to statistically weight data points based on how quickly the 

domains were discovered.  Since many of the data points on our list were unusable because 

the domain name in question existed in the DNS traffic long before the site became a 

phishing site, a complicated schema had to be devised to enact a simple premise.  Basically 

the longer the latency between a site being blocked and the beginning of the site’s DNS 

activity, the more likely it is to be a hacked site.  This is because, hypothetically, if 

www.harmless.com has existed since 1998, and it was hacked and blocked in 2009, it 
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should exist all the way back to the edge of our database.  Chance comes into play in that it 

is possible that a DNS request for www.harmless.com was not observed by the SIE sensors 

for 15 days, and then one occurred, and then nothing, and then 15 days later when it was 

hacked a flurry of activity happens just before it is blocked.  It will appear in the data with a 

latency of 15 days.  Principally, the probability that a site was a hacked site, and thus an 

invalid data point, increases proportionally with the value of the difference between the date 

observed and the date blocked.  The difficulty lies in discovering exactly what proportion 

that is. 

The relationship between latency and chance-hacked was verified by hand.  The 

results were sorted by the difference in dates and each site was judged by the human 

observer as to whether or not they appeared to have been hacked or maliciously registered.  

Clues were taken from various locations.  The pronouncibility and simplicity of the domain 

name was taken into account, as was its perceived deceitfulness.  Each site was also visited.  

Through this process it became clear that many domain names that were clearly registered 

maliciously were no longer accessible, with various error messages being presented.  These 

error messages ranged from simple “page not found (404)” errors to redirections to ISP 

pages warning the user that the site they attempted to visit was a malicious site.  On the 

other hand, hacked domains had often been cleaned up and were accessible again and their 

forward facing pages appeared legitimate.   

This observation led to an approach to automate this evaluation process for the large 

numbers of domain names on each of several lists that needed to be counted so a probability 

could be calculated.  The strategy is that if sufficient data points are collected about the 

change in probability of being a maliciously registered site versus listing latency, then a 
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curve can be calculated to fit those data points.  This regression function can then be used to 

weight the validity of each data point based on what its latency value is.  Thereby, if there is 

a 90% chance that a given data point is valid based on its short latency value, say 2 hours, 

and another data point, one whose latency is much longer, say 9 days, has a 10% chance of 

being a maliciously registered data point; the point with a short latency will count towards 

the average latency of all sites blocked nine times as much as the other.  This is because it is 

much more likely to have been maliciously registered and therefore a data point that we can 

accurately measure in DNS data. 

The script evaluateDNhack.sh contains this automation attempt.  By keying on 

the http return code when attempting to access the website, the script is able to count 

whether or not each site on the block-list has been taken down or reopened.  The 

percentages are calculated for blocks of time, using 4-hour windows for latencies of less 

than one day and daylong windows for greater latencies.  The window size was increased 

because there are insufficient phishing sites still undiscovered after one day for the smaller 

window to produce valid sample sizes. The results from this method correspond with the 

results acquired from by hand, however at low and high latency values it varies noticeably 

from the human estimations.  However, since it is not known if the human estimation is 

actually correct in the first place, it is not clear how to handle this phenomenon.  Primarily, 

the data was adjusted by having a cut-off value, after which the site in question was assumed 

to be hacked and an invalid data point.  This cut-off was after a full 14-day latency, and was 

based on the manual observation of sites.  The probability that any phishing site is alive for 

this long is scant, around 0.2% (Moore 2007).  Therefore, the chances that a request two 

weeks before the domain was blocked is due to malicious activity is close enough to zero 
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that, in conjunction with the observed evidence most sites at this high of a value appear to 

have been hacked, that the data is cut off and a value of 0 is manually input for the 

trustworthiness of day 14. 

Data was collected over two distinct intervals.  The first was eight days of 

collections for eight block-lists from the end of July and first week of August 2009, which 

will be referred to as interval 1.  The second interval comprised of 28 days between 

February 20th and March 23rd, 2010.  These timeframes were driven primarily by external 

factors, such as availability of computing resources or internship and school schedules, and 

were not selected for any experimental design purpose.   

3.2.3 Results 

The two distinct intervals of data collection are sufficiently different to deserve individual 

presentation and discussion.  Within interval 1, collected late July and early August 2009, 

the statistics varied widely from block-list release to block-list release, however they appear 

to be evenly distributed.  During interval 1 the median values of the latency between first 

observed DNS request and the time of blocking per day’s list ranged between 3:51 

(HH:MM) and 16:20.  The average of the medians is 11:02, while the median of the 

medians is 11:18.  The average latency ranged between 31:52 and 54:37 per each day’s 

block-list.  The average of the averages is 41:58, while the median of the averages is 41:32.  

Since the average and median values of both of these two ranges are nearly the same, the 

values should be nearly normally distributed. 

These values are based on an estimation of trustworthiness of whether or not a site is 

a valid data point.  This estimation is used to weight each latency value before it is included 
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in the average and median values.  The regression equation that was fitted to this 

trustworthiness estimation was the following: P = [(1-t1.542294) / (3585.228*t)] + 0.699 

Where P is the probability that a site is a valid data point and t is the time, or latency, 

in seconds between when the site occurs in DNS data and when it was block-listed.  The r-

squared value for the equation is .90.  This equation is dynamically applied to each t value to 

weight it when calculating both the mean and the average for the above values.  Table two 

contains a summary of the data that was collected during interval 1.  Note the large number 

of the sites that were found and block-listed within about 4 hours of their going live. 

Table 2: August phishing entry totals 

Latency is 
greater than 

(days) 

Total 
suspected 

Registered 
(automated) 

Total 
Phishing 

Entries Percentage 
0.0 692 949 72.92% 

0.21 74 120 61.67% 
0.42 77 104 74.04% 
0.63 43 66 65.15% 
0.83 76 92 82.61% 
1.0 125 200 62.50% 
2.0 58 115 50.43% 
3.0 34 85 40.00% 
4.0 34 81 41.98% 
5.0 24 71 33.80% 
6.0 17 63 26.98% 
7.0 41 77 53.25% 
8.0 28 66 42.42% 
9.0 33 69 47.83% 

10.0 20 62 32.26% 
11.0 11 86 12.79% 
12.0 24 81 29.63% 
13.0 19 78 24.36% 
14.0 22 80 27.50% 
15.0 30 120 25.00% 
16.0 25 120 20.83% 

Table 3 compares the average and median values for the lifetime of phishing sites 

that are reported in APWG’s biannual report on the status of phishing on the Internet to 
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those that were acquired for the interval 1 data.  While the information on the standard 

deviation size for the APWG reports is not available in the report, it can be calculated for 

the observed latency data.  The standard deviation for the median latency is 5 hours, zero 

minutes, and for the average latency it is 7 hours 35 minutes, which indicates that the data is 

widely variable.  For reasons explained in the following, more data did not alleviate this 

high variability.  However it is clear from the data that both of the reported medians fall 

within one standard deviation of the median time it takes a site to be block-listed.  Taking 

the values as is, which must be done cautiously due to the high variability, one would 

conclude from the medians that it only takes 2-3 hours for a site to be shut down after it is 

put on the block list.  The rest of the time, 11 hours, is the time it takes a site to be listed 

after it begins phishing.   

Table 3: Phishing lifetime statistics compared to anti-phishing response time 

 APWG 2H2008 
phishing lifetimes 

APWG 1H2009 
phishing lifetimes 

Observed latency to 
list a phishing site 
(August 2009) 

Average value (HH:MM) 52:02 39:11 41:45 
Median value (HH:MM) 14:43 13:16 11:02 

 

Let us return briefly to figure 4, and compare the time value of the second inflection 

point in the graph to the median lifetime values reported by APWG.  The point at which the 

damage done by the site significantly abates is between 12 and 14 hours after launch, at 

which time this particular attack had already caused some $3 million in damages.  In just 

two hours between 10 and 12 hours after launch the attack did approximately $800,000 in 

damage.  It is obvious that the return on investment of reducing phishing times by even an 

hour or two is great, as just a couple hours can save a tremendous about of money for 
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victims.  As phishing becomes increasingly profitable for malicious actors and more 

resources are devoted to separating web users from their money, the Internet community 

must take steps to safeguard the legitimacy of the web space.  Even though returns may 

appear to be small in terms of reducing uptimes, phishing attacks deal with a tiny profit 

window and any reduction of that prime revenue generating window is of great importance. 

The interval 2 data was collected with the intent of corroborating the statistics from 

interval 1.  However within interval 2, collected late February through late March 2010, the 

data is problematic to analyze in the same manner at all.  The reason for this can be 

apprehended readily by considering table 4, which presents the total number of phishing 

entries and the number suspected to be maliciously registered ordered by their latency of 

discovery.  
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Table 4: February and March phishing entry totals 

Latency is 
greater than 

(days) 

Total 
suspected 
registered  

Total Phishing 
Entries Percentage 

0.0 162 271 59.78% 
0.21 108 242 44.63% 
0.42 73 199 36.68% 
0.63 81 203 39.90% 
0.83 47 121 38.84% 
1.0 203 629 32.27% 
2.0 196 669 29.30% 
3.0 136 544 25.00% 
4.0 128 553 23.15% 
5.0 122 700 17.43% 
6.0 122 722 16.90% 
7.0 138 791 17.45% 
8.0 177 1070 16.54% 
9.0 204 1369 14.90% 

10.0 405 2246 18.03% 
11.0 699 4031 17.34% 
12.0 636 3549 17.92% 
13.0 468 2386 19.61% 

 

When contrasting table 2 with table 4 one difference is immediately apparent.  The 

number of phishing entries reported in table 4 is extremely bottom heavy; the distribution of 

sites versus the latency of their discovery is reversed from table 2.  This is problematic for 

analysis of the sort done with the interval 1 data because the majority of the noise, i.e. 

hacked sites that have been used for phishing, exists at the higher latency values.  The 

method used during interval 1 to remove this noise is not sufficiently precise to rectify data 

in which there is up to 20 times as much noise as there is data; it operated with the noise in 

the reciprocal proportion.  

The percentage of sites suspected to be maliciously registered via the automated tool 

is, on average, 25% lower within interval 2.  The average and median latency values are 
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completely suspect for this collection period because of the above reasons.  As explained in 

section 3.2.1, the premise of the research is that sites that were maliciously registered will 

become active in the DNS data shortly, within hours or a couple days the majority of the 

time, before being blocked.  Since according to APWG statistics 14.5-18% of phishing sites 

are malicious registrations, this should apply to approximately 15% of the data; the 

remainder of sites are hacked or otherwise are unanalyzable.  In August, it was tenable to 

filter out these sites because 1646 sites were listed within 2 days while only 1139 took 3-16 

days to list.  There were many sites that were found simply at the edge of the database’s 

collection limit, which obviously fell into the hacked category.  So while these 1646 sites 

make up the majority, nearly 60%, of sites in question they do comprise about 15%-20% of 

the total number of domains on all the lists. The remainder 1139 that are still in question as 

viable data points can be sufficiently remediated to count the few important sites that would 

slip through the cracks if the analysis were just cut off at 2 days, which appears to be too 

heavy handed a tactic to generate useful results.  For interval 2, which surveyed over 3 times 

as many days as the first interval, 2334 sites were listed within 2 days of going live and 

17961 took 3-14 days.  Here, only about 11% of the sites fall within the range that used to 

contain 60%.  What accounts for this large swing in only six months time is an interesting 

question in its own right, however the data cannot serve its intended purpose of providing 

additional robustness to the data from interval 1.    



 41 

3.3 FAST-FLUX DETECTION 

A fast-flux implementation of DNS aims to have one fully-qualified domain name be 

directed to a multiplicity of IP addresses.  One domain name could have thousands of IP 

addresses.  Legitimate web servers pioneered the technique because it facilitates high 

availability and efficient load sharing.  These are also traits that botnets and malicious web 

hosting strive for, and so it has been adopted in the malicious realm as well (Riden 2008). 

There is basic, shared network architecture among these fast-flux networks, 

comprised of the compromised hosts, the backend servers, and the fast-flux “motherships.”  

The infected hosts, which make up the botnet controlled by the phisher or other evil-doer, 

primarily serve as proxies that obfuscate the actual location of the backend servers (Riden 

2008).  It is these servers that actually contain the malicious web pages and will store any 

stolen data; the ever-changing IP addresses used within the botnet serve the traditional 

benefits mentioned above as well as providing those privacy and secrecy benefits of 

operating behind an anonymizing proxy service.   

Even though fast-flux need not be a malicious activity, there are certain activities 

and attributes that are identifiable within DNS traffic that allow for a very high rate of 

successful automated identification of malicious fast-flux sites.  Initially sites with 30 or 

more distinct A records in a single day are extracted from the data.  These are further 

filtered for sites that have a low time-to-live (TTL) value.  The domain name is then 

checked for the number of unique characters within the name.  A greater number of unique 

characters is considered more suspicious because it has been observed that malicious sites 

tend to use a wider variety of characters.  The remaining domain names are checked against 

the database of all domain names that have been observed on the data feed previously, 
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dating back to mid-July 2009.  Newly registered and little used domains are considered 

more suspicious, and this controls for known dynamic hosting services such as Akamai, 

which are observed daily.  The sites remaining after this filter are newly registered fast-flux 

hosting domains, and they are weighted further by checking known sources for identifying 

malicious or benign domains.  If the site in question is found upon querying Google News or 

some such service to be a legitimate site that has been newly registered to provide services it 

is heavily weighted towards being benign, whereas if it appears on an anti-phishing block 

list then it is confirmed as malicious.   

The average number of fast-flux domain names detected over 174 days from 

September 4, 2009 to February 24, 2010 on the SIE data feed using these criteria was 64.5 

sites.  The median number was 58.  However, the standard deviation was 59, and the data 

exhibits a long tail to the right, with a handful of extremely high values, the greatest of 

which was observed on February 17, 2010 at 525 unique domain names.  The sum of every 

day’s domain names yields a total of 11,222 observed domains; of these, 7,729 domain 

names were unique.  Of these, only one is known to be a falsely identified malicious site that 

was actually benign. 

Since fast-flux hosting is not specific to phishing, but could host any sort of 

malicious content, it would be expected for the list of detected fast-flux sites not to all be on 

the phishing lists.  Likewise, since a phishing site can be hosted without the use of fast-flux 

hosting, it would also be expected that the fast-flux list would not be sufficient for detecting 

all phishing sites.  During the 174 days summarized above, 2,962 unique sites were both 

detected by the fast-flux detection algorithm and listed on the phishing list.  The phishing 

list contained approximately 101,000 unique domains over this period.  The overlap 
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therefore amounts to 2.9% of the phishing list, while 38.3% of the fast-flux sites are 

accounted for in this overlap. 

However, for the time frame of February 20, 2010 to March 23, 2010 there were 

only 20 unique domains in common between the phishing list and the fast-flux detection 

algorithm.  The reason for this is unknown.  These dates are the same as those for interval 2 

of the phishing block list response time study, which were also unorthodox.  However it is 

unknown at what date between August and February these results became unorthodox, as 

the requisite data analysis was not done continuously, in fact not done at all, during the 

period that the fast-flux detection was run from September until February 20th.  Therefore it 

is unknown if these observations are related in any way.   

3.4 DDoS AND OTHER DISTRIBUTED MALWARE ANALYSES 

The hypothesis with DNS detection of Distributed Denial of Service (DDoS) attacks is that 

if infected hosts are attempting to overwhelm a specific target, they will first have to figure 

out where that target is.  This spike in requests should then be visible on the SIE data feed.  

This oversimplifies several difficulties in performing the analysis related to the DNS 

protocol and the SIE data feed.  These problems were discussed in section 3.2.1 in relation 

to phishing response time analysis, however many of the same issues arise in regards to 

DDoS detection. IP addresses can be used as targets instead of domains, however statistics 

for how often this occurs were not found.  Furthermore, when counting how many hosts are 

involved in an attack, the DNS protocol’s proclivity for caching responses becomes much 
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more troublesome.  Likewise, the uncertain distribution and completeness of the data feed is 

further exacerbated by the goals of DDoS analysis.    

In addition to the relevant difficulties explained in 3.2.1, DDoS detection suffers 

from a problem of scale.  It is not computationally feasible at this time to keep the status of 

all domains in order to notice when a spike of DNS requests about that domain occurs.  If 

the SIE feed is being used to monitor for attacks on one’s own network, it is 

computationally feasible to monitor yourself, however you would almost certainly have 

noticed internally that you were being attacked by the time the SIE data could tell you that.  

This is especially true due to the fact that DNS packets contain a variable time-to-live (TTL) 

field that describes how long a DNS answer should remain stored in a cache.  If the attacked 

site has a long TTL, the chances that a DNS server outside of the stream of data collected by 

the SIE will already have the answer stored increases, thereby decreasing the likelihood it 

will be detected by the SIE.  A low TTL for the target site’s DNS information is observed to 

be correlated with the size of the spike in DNS requests spawned by a DDoS attack on the 

site.  The lower the TTL, the larger the change in number of DNS requests is observed to be.  

This is yet another variable that would have to be controlled for in analyzing the size of a 

DDoS attack on a site or number of infected hosts involved in other phenomena.   

For these reasons, the attempt at detecting DDoS attacks using the DNS data was not 

nearly so successful as the other analysis attempts made utilizing the SIE data. Even though 

DNS data is not a viable means for detection of these attacks, it is an additional source of 

information that one can utilize for a posteriori analysis of various widely-distributed 

phenomena.  In DDoS attacks, the number of DNS requests for the targeted system could be 

viewed as a lower bound on the number of infected hosts involved in the attack.  The data 
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can also be valuable in describing the minimum number of infected hosts contacting 

malicious hosts that are used as command and control centers if these malicious hosts 

become known.  These are lower bounds because even if one infected host makes several 

requests, those requests should also be cached on the first server it asks, which should not 

enter the traffic flow monitored by the SIE data.  Similarly, it is likely to be an 

underestimation, as other infected hosts utilizing the same DNS server will receive the 

answer cached on that local DNS server, and so the request will likewise not be captured.  

One example where this was useful was in estimating the extent of Conficker infections in 

2009 (Kriegisch 2009).   

For these malware analyses it is unfortunately not viable to attempt to identify 

infected hosts using DNS data.  Even though a DNS packet contains the IP address of the 

host making the request, this is often a recursive DNS server who is merely doing as it is 

asked and making the request on behalf of the infected host.  Given all of these restrictions, 

it is obvious that DNS data would be playing an assisting role in analyzing malicious 

activity on the Internet.  However, this particular analysis was also significantly hampered 

by the design goals of the data feed that was used; if a DNS data collection is designed with 

malware analysis as the goal the potential of DNS information should be reevaluated before 

it written off. 
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4.0  FUTURE WORK 

 

It was desirable to utilize the DNS data to also confirm other measurements of the lifetime 

of phishing sites, especially because this data set would have allowed the correlation 

between when each site was blacklisted and how long after that time it was no longer 

available.  However, the SIE data feed is not configured to allow such analysis because it 

only collects valid DNS messages, and the key message to determine the takedown of a site 

would be a “no such domain” message.  This type of message is considered an error by the 

SIE data feed, for good reason concerning their primary goal of actively mapping a domain 

as it actually is.  One aspect of future work regarding DNS traffic analysis would be to 

establish a data feed that is tailored to the needs of the analysis.  However this is a large 

undertaking, and not something near the scope of this thesis.  The work that is in the 

planning stages mostly involves refining the tools used in this analysis to languages or data 

structures better suited to the task at hand.  Undertakings that might be more interesting are 

the two following ideas, which propose extensions of the work described in chapter 3 that 

would provide further insight into those questions. 
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4.1 AUTOMATED BLOCK-LIST GENERATION 

It is hoped that the fast-flux detection algorithms could be used in conjunction with other 

resources to generate an automated block-list of malicious sites.  Do to the high rate of 

publication of malicious sites and the extremely high value in blocking them as quickly as 

possible accurate and fast generation of an accurate and comprehensive block list would 

help increase Internet browsing safety.  Other resources that would be leveraged into this 

attempt would include an analysis of domain names that have already been observed in 

order to identify newly registered domains.  This task could be done quickly from a database 

that included all of the domain names observed on the SIE data feed, for example.  The 

current text file based format has outgrown the size limits such a clumsy implementation 

should have.  These newly observed domain names could then be checked against various 

sources for evil or benign sites.   

One source of evil sites would be the fast-flux detection algorithm discussed in 

section 3.4.  Spam filters, honey pots, and other malware collection or detection resources 

would also be cross-referenced.  Other canonical block-list sites could also be checked, 

however these cannot be relied upon in the effort to fully automate the list and speed up the 

list if the goal is to improve upon the rate at which they report new sites.  Sources for benign 

sites that the list would not want to block could continue to be used as the fast-flux detection 

algorithm already uses them. 

Given the real-time nature of Ncaptool, it would be possible to update the list 

almost continuously for new content with only as much lag as is introduced by the SIE data 

feed, its processor, and external link speed.  Given the implications of the phishing detection 

studies in section 3.2 and the high impact of phishing activity on businesses and consumers, 
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it is highly desirable to improve the response time of block-lists.  If the analysis of block-list 

response time is even nearly correct, over half of the time that a phishing site is active is 

granted to it because it has not been put on a block list yet.  Very soon after these lists are 

published, the site becomes inactive.  This seems to indicate that the block-list distribution 

and updating infrastructure is working reasonably well, even though it could always update 

more quickly.  If the data is tentatively taken as is, 75% of a phishing site’s lifetime it is not 

on a block-list.  This indicates the need for faster block listing.  Refinement and integration 

of several techniques, including the automated fast-flux detection, would aid a more rapid 

listing process.  One approach that could be fruitful to explore would be keeping track of IP 

addresses that host blocked domain names.  If it were noticed that a particular IP address 

space was being used more frequently than others to host malicious content, either 

knowingly or unknowingly, these IP spaces could be monitored more closely in the future, 

hopefully leading to improved detection rates of malicious URLs being hosted in the IP 

space.  DNS is the natural protocol with which to track this activity. 

4.2 FUTURE ANALYSIS OF PHISHING RESPONSE TIME 

 

The future of the actual DNS based analysis of phishing block-list response time is highly 

uncertain.  Since the last month’s worth of data collection yielded no actionable data, it may 

seem that the undertaking is not worthwhile.  However, the data does provide insight into 

the current state of phishing activity, and does so in near real time.  The future usefulness of 

the technique will largely depend on the accuracy of predictions made in chapter 5 about 
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what other sources will publish.  If the data proves to be a useful indicator of trends, at the 

very least it would be wise to incorporate it into current phishing analysis frameworks.  

Nothing would be lost, and if it begins to provide actionable data on the efficacy of block-

listing organizations, which would happen if the ratio of quickly found sites returns to near 

interval 1 levels, then new and unique information would be gained. 

If these predictions provide several false positives, then a new approach to acquiring 

this data should be taken.  In minimizing the lifetime of phishing sites it is important to 

understand which parts of the life cycle and defense cycle have the largest areas of 

improvement so as to focus industry efforts on these areas.  This analysis has been one 

attempt to do just that, but if it proves not to be repeatable a different approach to the 

analysis ought to be undertaken.  Ncaptool and its successors being designed at the ISC 

will remain valuable tools for this analysis, since they can provide the data in real time.   

One further interesting project would be to compare the efficacy of various phishing 

block-listing organizations.  If one could be shown to be significantly more effective at 

discovering phishing sites than others, there would be clear evidence to use that list over 

other available lists.  Furthermore, these algorithms could be used to provide daily feedback 

to a list publisher as to its performance for the previous day.  Since the requisite analysis 

requires about a day’s computation from when the list is published, the publisher could get 

numbers for how well it did on a particular list very quickly, and if it notices that its 

performance is beginning to slip, could take actions to correct that reduction in performance 

before it becomes unmanageable.   
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5.0  CONCLUSION 

DNS traffic analysis is an area of network situational analysis that is ripe for further 

development.  The projects described in this thesis generally are describing proof of concept 

work, rather than a refined product.  Section 3.1 provides evidence that DNS traffic is rich in 

information and that public data can be leveraged to build a comprehensive map of a domain 

with relatively little effort.  The uses of this data are many and varied, and the familiar file-

browser interface structure makes it easy for users and administrators to explore data and 

discover uses that will suit their needs.  

Section 3.4 demonstrates the limits of DNS traffic analysis and where it would be 

better to consider analysis of more traditional targets such as bit rates or HTTP traffic.  

Unlike the analysis in the rest of chapter 3 in which DNS bears the burden of providing 

information alone, the information desired in section 3.4 cannot be acquired from analysis of 

DNS alone.  Currently, tools such as the System for Internet Level Knowledge (SiLK) allow 

users to analyze and aggregate a large amount of network flow data, however they ignore 

DNS data (CERT 2009).  Questions raised in section 3.4, as well as the fast-flux data from 

3.3, would enhance the functionality of such comprehensive tools and DNS could provide 

much more sensible answers if it were juxtaposed with the rest of the flow data.   

 There are multiple conclusions to draw from section 3.2.  In regards to the interval 1 

data, it appears that the time it takes a phishing site to be listed on a block list is the 
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bottleneck point in quickly taking down phishing sites.  This conclusion is gleaned from a 

minority percentage of the total corpus of phishing sites, however even if it only describes 

malicious registrations and not phishing sites of all procurements it would be generally 

helpful to the Internet community if block-listing organizations could respond more quickly.  

Until future research manages to better identify the response time, these values are the only 

known measures of the response time of organizations to block-list phishing sites.  

Therefore, despite the uncertainty, the data provides a unique piece of information in the 

task of reducing malicious activity on the Internet.  

There are several hypotheses as to why the nature of the data changed so much for 

the interval 2 data.  One hypothesis is that when the APWG publishes is biannual report on 

phishing that will include the months of February and March, i.e. interval 2, that the report 

will find a much reduced presence of maliciously registered phishing sites and a much 

higher percentage of either hacked sites or sites registered with a static IP address.  The data 

from the automated fast-flux detection could also be interpreted to support this hypothesis.  

The fast-flux detection algorithm primarily detects newly registered fast-flux domains, and 

it recorded a sharp drop in the number of such domains detected during interval 2.   

There are a few easily conceivable reasons for this shift away from phishers 

registering domain names themselves.  It is possible that registrars have made a concerted, 

successful effort to vet those who wish to register a domain name, making it economically 

inefficient for a phisher to attempt to register the domain.  On the other hand, it is possible 

that a vulnerability in a common server distribution has gone unnoticed and has made it 

exceedingly easy for a hacker to gain access to a server and make it into a phish-hosting 

machine.  This seems unlikely, because the high levels of abnormal activity associated with 
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a massive vulnerability usually do not go unchecked for a month, however it is possible.  

Whatever the reason, if the shift is identified within the APWG report, then the interval 2 

data has provided some insight into the nature of phishing.  However this result is far short 

of what was hoped to be learned by the attempt at duplicating the interval 1 data.   

Another hypothesis for the disparity between the distributions of the interval 1 and 2 

data is that the block list organization’s ability to find and list these domains decreased 

markedly between August and February.  Some aspect of the community effort that was 

collecting these URLs could have shifted, and the organizations ability to report quickly on 

hacked domains fell off sharply.  This would be a very dangerous turn of events, since 

potentially millions of dollars hang in the balance over even small changes in the efficacy of 

blocking phishing sites.  If the appropriate APWG report does not discover a marked 

decrease in phishing registrations, then this becomes the leading hypothesis.   
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APPENDIX A: Glossary of Terms and Acronyms 

APWG – Anti-Phishing Working Group.  See <www.apwg.org>. 
 
BPF – Berkley Packet Filter. 
 
CERT – Computer Emergency Response Team.  See <http://www.cert.org>. 
 
DDoS – Distributed denial of service. 
 
DITL – Day in the Life of the Internet.  See <http://www.caida.org/projects/ditl/>. 
 
DNS – Domain Name System.  See <http://www.zoneedit.com/doc/rfc/> or 

<http://www.dns.net/dnsrd/rfc/> for the list of RFC’s in which the Domain Name 
System is described. 

 
HTTP – Hypertext Transfer Protocol 
 
IP – Internet Protocol. 
 
ISC – Internet Systems Consortium.  See <www.isc.org> 
 
Ncap – Primary program used by the SIE to share DNS data amongst consumers and to 

facilitate this research. It is available at <http://ftp.isc.org/isc/ncap/> 
 
RFC – Request for Comments.  Managed by the Internet Engineering Task Force (IETF).  

See <http://www.ietf.org/rfc.html>. 
 
SEI – Software Engineering Institute.  Operated by Carnegie Mellon University. 
 
SIE – Security Information Exchange.  Operated by the Internet Systems Consortium (ISC). 
 
SiLK - System for Internet Level Knowledge.  A network traffic flow analysis tool 

developed by the CERT-CC 
 
TCP/IP – Transport Control Protocol / Internet Protocol.  Two distinct protocols that are 

used extensively in delivering packets of information on networks. 
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TLD – Top level domains of the internet’s domain name structure, such as .com, .edu, and 
.uk. 

 
UDP – User Datagram Protocol. 
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APPENDIX B: Bash Scripts 

The following are bash scripts that were used to maintain and manipulate the ncap 

data.  They are presented in no particular order, however are grouped into scripts with 

related functions. 

All code in this appendix is subject to the following license.  Please note that the 

owner of the code copyright is the Software Engineering Institute and Carnegie Mellon 

University, as the code was written largely under their employ.   

GNU Public License (GPL) Rights pursuant to Version 2, June 1991 

Government Purpose License Rights (GPLR) pursuant to DFARS 252.227.7013 

 

NO WARRANTY 

 

ANY INFORMATION, MATERIALS, SERVICES, INTELLECTUAL 

PROPERTY OR OTHER PROPERTY OR RIGHTS GRANTED OR PROVIDED BY 

CARNEGIE MELLON UNIVERSITY PURSUANT TO THIS LICENSE (HEREINAFTER 

THE "DELIVERABLES") ARE ON AN "AS-IS" BASIS. CARNEGIE MELLON 

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR 

IMPLIED AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY 

OF FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, 
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INFORMATIONAL CONTENT, NONINFRINGEMENT, OR ERROR-FREE 

OPERATION. CARNEGIE MELLON UNIVERSITY SHALL NOT BE LIABLE FOR 

INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, SUCH AS LOSS OF 

PROFITS OR INABILITY TO USE SAID INTELLECTUAL PROPERTY, UNDER THIS 

LICENSE, REGARDLESS OF WHETHER SUCH PARTY WAS AWARE OF THE 

POSSIBILITY OF SUCH DAMAGES.  LICENSEE AGREES THAT IT WILL NOT 

MAKE ANY WARRANTY ON BEHALF OF CARNEGIE MELLON UNIVERSITY, 

EXPRESS OR IMPLIED, TO ANY PERSON CONCERNING THE APPLICATION OF 

OR THE RESULTS TO BE OBTAINED WITH THE DELIVERABLES UNDER THIS 

LICENSE. 

 

Licensee hereby agrees to defend, indemnify, and hold harmless Carnegie Mellon 

University, its trustees, officers, employees, and agents from all claims or demands made 

against them (and any related losses, expenses, or attorney's fees) arising out of, or relating 

to Licensee's and/or its sub licensees' negligent use or willful misuse of or negligent conduct 

or willful misconduct regarding the Software, facilities, or other rights or assistance granted 

by Carnegie Mellon University under this License, including, but not limited to, any claims 

of product liability, personal injury, death, damage to property, or violation of any laws or 

regulations.  

Carnegie Mellon University Software Engineering Institute authored documents are 

sponsored by the U.S. Department of Defense under Contract F19628-00-C-0003. Carnegie 

Mellon University retains copyrights in all material produced under this contract. The U.S. 

Government retains a non-exclusive, royalty-free license to publish or reproduce these 
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documents, or allow others to do so, for U.S. Government purposes only pursuant to the  

copyright license under the contract clause at 252.227.7013. 

 

B.1 MAINTAINENCE OF CONTINUOUS NCAPTOOL CAPTURE 

Command to run the continuous Ncaptool capture, which creates a new file every 2 minutes: 

ncaptool -l 10.16.5.255/7433 -o /home/jspring/RollingCapture/tmp/RC -k 'gzip -9 ' -c 

200000 

This command must be run once to initiate the capture.  After that, the other scripts 

take care of maintaining the files this command produces.  It will run until it is forcibly 

killed from the command line.  The following crontab commands organize this activity.  

Each script is included in a following subsection. 

4 23 * * * /home/jspring/MaintainDirectoryCreation.sh #create directory for tmrw's captures and 
zip up unzipped files. 
0 */6 * * * /home/jspring/MaintainDiskSpace.sh #check every 6 hours if disk usage is too high to 
continue 
*/10 * * * * /home/jspring/MaintainRollingCapture.sh # ensure ncaptool is still running, and 
mv files from /tmp to today's dir. 

 

B.1.1 MaintainDirectoryCreation.sh 

CAPDIR=/var/rollingcapture 
mkdir $CAPDIR/`date -d "tomorrow" +"%Y%m%d"` 
# Create tomorrows directory.  
 
gzip -9q $CAPDIR/tmp/*.ncap 2>/dev/null 
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# sometimes ncap files don't get zipped up properly, for whatever reason. gzip will surpress 
errors if no files exist to zip and any other errors to stderr are rerouted to null. 

B.1.2 MaintainDiskSpace.sh 

## This script is to be run a few times daily in conjunction with a continuous Ncaptool 
process that brings down packets.  It will delete the oldest directories so that new 
data can be captured without interference.  If directories are continuously being 
removed, look for another source of files that are overflowing the system's data 
stores 

 
CAPDIR='/var/rollingcapture' 
percentFull=`df -h | grep -o "[0-9]*% /$" | sed 's-% /--'` 
  #gets the disk usage of the root dir (/ at end of line) 
 
if [[ $percentFull -gt 91 && `ls -1 -D /var/rollingcapture | wc -l` -gt 2 ]]; then  
# require at least 2 files to be in directory, so directory itself isn't removed 
    toTrash=`tree -d $CAPDIR/ | head -2 | grep -o "2[0-9]*"` 
    #since the directories are named by date in such a way as the oldest one is alphabetically 

sorted first, this will select the oldest directory. 
     
    gunzip -c $CAPDIR/$toTrash/*.gz | /var/rollingcapture/ncapappend - | 

/usr/local/bin/ncaptool -n - -g - -m -e" 
" "dns flags=aa type={a,aaaa}" | egrep -h ",IN,A{1,4}," | sed -r -e 's-^[0-9]* --' -e 's-([^0-

9])0$-\1-' -e 's-,[0-9]{1,},?-,-g' -e 's-[[:space:]]--g' | tr "[[:upper:]]" "[[:lower:]]" | sort 
-u | gzip -9 > $CAPDIR/answerSummary.$toTrash.txt.gz 

##This is one command.  Ncaptool does not recognize –e ”\n” so a literal new line must be 
used.  It copies all of the answer records from the day that is about to be deleted, 
cleans them up and standardizes the case, and stores the unique records for the day. 

## Known error: This sed script does not always clean up every A record properly.  
Sometimes it does not remove all trailing 0’s, which are a remnant of Ncaptool 
formatting and not part of the A record.  It does remove them most of the time. 

 
    rm -R $CAPDIR/$toTrash 
    echo "$toTrash removed and unique answer RRs sent to a txt.gz file, collection will 

continue" 
else 
   echo "Sufficient space to continue collection, $percentFull % of space used." 
fi 
## These echos are sent to crontab, which can be configured to email them to the 

administrator. 
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B.1.3 MaintainRollingCapture.sh 

if [ ! "$(/sbin/pidof ncaptool)" ] ; then 
  nohup /usr/local/bin/ncaptool -l 10.16.5.255/7433 -o /var/rollingcapture/tmp/RC -k 'gzip -9 

' -c 200000 & 
  echo "ncaptool process restarted at `date`" 
fi 
# if ncaptool is not running (attempt to find process ID of it fails), restart it. 
 
for file in $(ls /var/rollingcapture/tmp/*.ncap.gz); do 
  TIMESTAMP=`echo $file | cut -d "." -f2` 
  mv $file /var/rollingcapture/`date -d "1970-01-01 $TIMESTAMP sec" +"%Y%m%d"`/ 
done 
# retrieve NCAP generated timestamp out of file name (in seconds since epoch), convert it 

to directory name (YYYYMMDD) and move file there. 

B.2 DOMAIN MAPPING SCRIPTS 

The third script here just calls the first two in the correct order and with some options for the 

scope of the search.  These scripts utilize the fact that a file system has a structure 

similar to that of the domain name system and uses the native GUI for exploring file 

systems within an operating system to view the result of the sorting.  If the sorting is 

done on a non-graphical interface operating system, the tarball that is created by the 

final script can be copied to a machine that does. 

B.2.1 BestMapOfDomainPrep.sh 

CAPDIR=/var/rollingcapture/ 
 
startTime=`date -d "2009-06-17" +%s`  #date Rolling capture was started, in seconds 
endTime=`date  +%s`  #now, in seconds since 1970 
#this captures all possible packets.  To narrow search, reassign from user or manual input 
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startTime=`date -d "2009-06-21 09:02:02" +%s` 
#endTime=`date -d "2009-06-21 02:08:05" +%s` 
 
JobStart=`date` 
TLD=”.su$” 
 
# if TLD regex should only include those records that have TLD as top domain, end string 

with '$', i.e. .co.uk$ 
if [[ $1 != "" ]] 
  then TLD=$1 
fi 
if [[ $2 != "" ]] 
  then startTime=`date -d "$2" +%s` 
fi 
if [[ $3 != "" ]]  
  then endTime=`date -d "$3" +%s` 
fi 
#override defaults with user input, if it is supplied 
 
find $CAPDIR -type f -print  | awk -v ST="$startTime" -v ET="$endTime" ' BEGIN 

{FS="."} {if ($2 >= ST && $2 <= ET) print $0} ' > searchSpace.$TLD.txt 
#the second 'column' of the file name is the time in s since the epoch, per standard NCAP 

formatting 
count=0 
echo "`wc -l searchSpace.$TLD.txt` files will be searched through" 
 
query=1 
qbit=$4 
if [[ $4 != "" && ${qbit:0:1} == 'q' || ${qbit:0:1} == 'Q' ]] 
    then query=0 # if user inputs anything that begins w/ q or Q to query-option field, then set 

qname search flag to 0 (true) 
fi 
# if the query flag is set to 0, search only the qname.  Otherwise, use a regex to search the 

files. 
if [[ $query -ne 0 ]] 
  then  
  TLDregex=`echo $TLD | tr '.' '\.'` # Any .'s in Domain name should be treated as literal 

dots in the search, '\' will escape them in regex.   
  cat searchSpace.$TLD.txt | while read LINE 
  do 
    ##unzip the file first (temporarily, cat will allow such that the file isn't modified), each 

file is on one line in the search Space 
    cat $LINE | gunzip -c | ncaptool -n - -g - -m -e" 
" "dns regex=$TLDregex" >> tmpBestMapOfDomain.$TLD.ncap.txt 
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  # read unzipped file from standard in and output txt to standard out, or file 
    let "count += 1" 
    echo -n $count, #simply so user knows how many files have been searched 
  done 
else  
  cat searchSpace.$TLD.txt | while read LINE 
  do 
    ##unzip the file first (temporarily, cat will allow such that the file isn't modified), each 

file is on one line in the search Space 
    cat $LINE | gunzip -c | ncaptool -n - -g - -m -e" 
" "dns qname=$TLD" >> tmpBestMapOfDomain.$TLD.ncap.txt 
    # read unzipped file from standard in and output txt to standard out, or file 
    let "count += 1" 
    echo -n $count, #simply so user knows how many files have been searched 
  done 
fi 
 
 
## search/manipulate the output, conglomerated text/binary file here 
grep -h ",\(\(IN\)\|\(TYPE41\)\)," tmpBestMapOfDomain.$TLD.ncap.txt | sed -r -e 's-^[0-9]* 

--' -e 's-([^0-9])0$-\1-' -e 's-,[0-9]{1,},?-,-g' -e 's-[[:space:]]--g' | tr "[[:upper:]]" 
"[[:lower:]]" | sort -u > Prepared.$TLD.txt 

# Type 41 is necessary explicitly b/c OPT records use the class field in a novel way and 
ncaptool doesn't recognize them as IN class 

# normalizes the Ncaptool output into a more usable format, removing some formatting bits 
that can't be opted out of from the start.  

# Eliminates duplicate records, regardless of some misceleneous timestamps (sed to remove 
[0-9] between ,'s)   

# only operating on the entries in the RR's of the packets (initial grep), which is the prefered 
unit of study for this approach. 

 
rm searchSpace.$TLD.txt 
 
echo "the job started at $JobStart and now it ends at `date`" 
 

B.2.2 DomainGUIprep.sh 

CAPDIR=/var/rollingcapture/ # not used here, but should match where 
BestMapOfDomainPrep.sh is looking 

PREPFILE=prepared.txt # the input file. This default must be overridden, it is obsolete. 
 
if [ -e $1 ] # user input is a file that exists 
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  then PREPFILE=$1 
  TLD=`echo $1| sed -r -e 's-Prepared\.{1,2}--' -e 's-\.txt--' -e 's-\\$--g' `  
  echo $TLD # testing code 
  # remove formatting from BestMapOfDomainPrep.sh 
else 
  echo "Please include a valid file of Prepared Resource Records for inspection" 
exit 3 # The status it will return upon exiting is 3, which will be "invalid input file" 
fi 
 
STARTDIR=/home/jspring/analysis/$TLD 
WorkDir=$STARTDIR 
# working directory will server as something of a pointer to which DN the program is 

working with as well 
 
#Defines three functions, one to determine which of the other 2 to call 
# and one each to gather the information important for a host or zone, respectively 
# the program is recursive, and is kicked off below these function definitions 
 
function isDomain {  
# We will define hosts by anything that has an IP address or CNAME associated with it. 
# Everything else will be treated as a domain 
code=2 
if grep -q "^$1,in,\(\(cname\)\|\(aaaa\)\|a\)," $PREPFILE 
  then code=0 
fi 
if grep -q ",ns,$10\?" $PREPFILE 
  then code=0 
fi 
if grep -q "^$1,in,\(\(ns\)\|\(soa\)\|\(mx\)\)," $PREPFILE 
  then code=1 
fi  
# will return 0 if it found something matching patterns that are indicative that the name is a 

host. 
return $code 
} 
 
function buildPath { 
  echo $1 |tr '.' "\n" | tac | while read LINE  
    do name=$LINE.$name  
    echo $name  
    done | sed 's-.$-/-' | tr -d "\n" | sed 's-/$--' 
  # for 'ns1.ischool.pitt.edu' outputs 'edu/pitt.edu/ischool.pitt.edu/ns1.ischool.pitt.edu/' 
} 
 
function forHost { 
correctPath=$STARTDIR/`buildPath $1 | sed 's-/[^/]*$--'` 
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hostFile="$correctPath/~~HOST.$1.txt" 
if [ ! -d $correctPath ] 
  then mkdir -p $correctPath 
fi 
touch $hostFile 
grep "^$1," $PREPFILE > $hostFile 
grep ",$10\?$" $PREPFILE >> $hostFile 
# intresting stuff will be where the name is at the beginning (cname, A, AAAA) or end (ptr, 

ns) of the RR line. optional '0' is for damn ncaptool formatting workaround 
} 
 
function forDomain { 
WorkDir=$STARTDIR/`buildPath $1` 
if [ ! -d $WorkDir ] 
  then mkdir -p $WorkDir 
fi 
infoFile="$WorkDir/~~INFO.$1.txt" 
touch $infoFile 
grep "^$1," $PREPFILE > $infoFile 
grep ",$10\?$" $PREPFILE >> $infoFile 
# intresting stuff will be where the name is at the beginning (cname, A, AAAA) or end (ptr, 

ns) of the RR line. optional '0' is for damn ncaptool formatting workaround 
# While loop will get all the recorded names exactly one sub-domain below the current 

domain. Assumes ASCII 
# for unicode, perhaps use regex for '^(anything not a .)\.$1,' . untested, may be too general 
grep -o "^[0-9a-z-]*\.$1," $PREPFILE | sed 's-,$--' | sort -u | while read LINE 
do 
  if [ -z "$LINE" ] # if the line is empty, then continue to next line 
    then continue 
  fi 
     # echo $LINE #for testing 
  isDomain $LINE # this if-else contains the potential for recursion 
  if [[ $? == 0 ]] 
    then forHost $LINE  
  else 
    forDomain $LINE 
  fi 
done 
 
} 
 
isDomain $TLD 
if [[ $? == 0 ]] 
  then forHost $TLD 
else  
  forDomain $TLD 
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fi 

B.2.3 DomainMapStart2Finish.sh 

CAPDIR=/home/jspring/RollingCapture/ 
EXCTDIR=/home/jspring/analysis 
 
startTime=`date -d "2009-05-28" +"%Y-%m-%d %H:%M:%S"`  #date Rolling capture was 

started 
endTime=`date  +"%Y-%m-%d %H:%M:%S"`  #now, as the default 
#this captures the most packets.  To narrow search, reassign from user or manual input 
 
TLD=.gov$ 
 
# if TLD regex should only include those records that have TLD as top domain, end string 

with '$', i.e. .gov$ 
if [[ $1 != "" ]] 
  then TLD=$1 
fi 
if [[ $2 != "" ]] 
  then startTime=$2 
fi 
if [[ $3 != "" ]]  
  then endTime=$3 
fi 
#override defaults with user input, if it is supplied 
# the script will handle converting the user inputs to its usable dates. 
 
PrepStart=`date +"%Y-%m-%d %H:%M:%S" ` 
nohup $EXCTDIR/BestMapOfDomainPrep.sh "$TLD" "$startTime" "$endTime"  
 
nohup $EXCTDIR/BestMapOfDomainPrep.sh "$TLD" "$PrepStart"  
 # assumes that the original end time was 'now' and this will run again to check the packets 

collected while the first process was running. 
 
nohup $EXCTDIR/DomainGUIprep.sh "Prepared.$TLD.txt"  
 # create the map of the domain from the file created by BestMapOfDomainPrep.sh 
 
TLDName=`echo $TLD | sed -e 's-^\.--' -e 's-\\$--g' ` 
tar -cf $EXCTDIR/$TLDName/$TLDName.tar $EXCTDIR/$TLDName/*  
 # create a tarball of the directory tree just created to represent a map of the domain. 
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B.3 PHISHING DETECTION SCRIPTS 

Several of the scripts used in the phishing analysis are idiosyncratic to the research 

and the sources of information that were used, and therefore not of general interest.  The 

scripts included here should be of some use.  For example, script B.3.1 takes as input an 

arbitrary list of domain names and dates that they were added to the list and will search 

through an arbitrary number of Ncap files, as organized per the scripts in B.1, and create an 

Ncap file with only queries about names in the list.  This uses the qnames.so plugin.  This 

can be used for further analysis about the names in the list, such as with script B.3.2, which 

will calculate the number of seconds between the first instance of the domain name in the 

DNS data and the date it was added to the list. 

B.3.1 ManySiteSearch.sh 

CAPDIR=/var/rollingcapture/ 
 
startTime=`date -d "2009-05-29" +%s`  #date Rolling capture was started, in seconds 
endTime=`date  +%s`  #now, in seconds since 1970 
#this captures all possible packets.  To narrow search, reassign from user or manual input 
 
phishList=sorted.APWG.txt 
# phishing list needs to be just a list of domain names as they would be queried for and 

times added to list 
 
if [ -e $1 ] # if the user input filename exists. 
  then phishList=$1 
fi 
if [[ $2 != "" ]] 
  then startTime=`date -d "$2" +%s` 
fi 
if [[ $3 != "" ]]  
  then endTime=`date -d "$3" +%s` 
fi 
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#override defaults with user input, if it is supplied 
 
find $CAPDIR -type f -print  | awk -v ST="$startTime" -v ET="$endTime" ' BEGIN 

{FS="."} {if ($2 >= ST && $2 <= ET) print $0} ' > searchSpace.$phishList.txt 
#the second 'column' of the file name is the time in s since the epoch, per standard NCAP 

formatting 
count=0 
echo "`wc -l searchSpace.$phishList.txt` files will be searched through from $startTime to 

$endTime" 
 
cut -f1 -d',' $phishList > tempphishList.txt 
 
cat searchSpace.$phishList.txt | while read LINE 
  do 
    ##unzip the file first (temporarily, cat will allow such that the file isn't modified), each 

file is on one line in the search Space 
    gunzip -c $LINE | ncaptool -n - -o - -D /usr/local/lib/qnames.so,-qftempphishList.txt | 

ncapappend all.$phishList.ncap 
    # read unzipped file from standard in and output binary to Ron's append to file 
    # echo $? 
    let "count += 1" 
    echo -n $count, #simply so user knows how many files have been searched 
done 
 
rm searchSpace.$phishList.txt 
rm tempphishList.txt 

B.3.2 checkEarliestDates.sh 

phishList=sorted.APWGphish20090714.txt 
 
if [ -e $1 ] 
  then phishList=$1 
fi 
# input list must be of the format PhishingDomain,Date first seen(YYYY-MM-DD 

HH:MM:SS) 
ncapFile=all.$phishList.ncap 
# as long as naming convention in ManyPhishSiteSearch.sh is maintained this will work 
if [[ -e $2 && $2 != "" ]] 
  then ncapFile=$2 
fi 
 # allow for manual override of location of NCAP file. 
touch $ncapFile 
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while read LINE  
do 
  Dname=`echo $LINE | cut -f1 -d',' ` 
  listTime=`echo $LINE | cut -f2 -d',' ` 
  firstTime=$(ncaptool -n $ncapFile -g - -e "_" "dns qname=$Dname" | awk ' BEGIN 

{earliestDay ="2999-12-31"; earliestTime = "23:59:59.999999999"}  
    { thisDay = $4; thisTime = $5; 
     if ( thisDay < earliestDay || thisDay == earliestDay && thisTime < earliestTime ) 
     { earliestDay = thisDay ; earliestTime = thisTime } } 
    END { printf "%s %s", earliestDay, earliestTime } ' ) 
   
  if [[ $firstTime != "2999-12-31 23:59:59.999999999" ]] 
    then echo -n "$LINE,$firstTime" >> checked.$phishList 
    firstTime=`date -d"$firstTime" +%s ` 
    listTime=` date -d"$listTime"  +%s ` 
    let "difference=$listTime-$firstTime" 
    if [[ $difference > 0 ]] 
      then echo ",`date -d "0000-01-01 $difference sec" +"%Y-%m-%d %H:%M:%S" `" >> 

checked.$phishList 
    else 
      echo ",^No requests before phishing Listing" >> checked.$phishList 
    fi 
  else  
    echo "$LINE,#No DNS packets found for this name" >> checked.$phishList 
  fi 
   
  echo `date -d "0000-01-01 $difference sec" +"%Y-%m-%d %H:%M:%S" `  
done < $phishList 
#read in the list of phishing sites, and for each find the packet which first asks for the 

domain by checking if the time 
# on the packet is earlier than the earliest seen time.  Output this data to a new file to further 

analyze the data. 

B.3.3 evaluateDNhack.sh 

dataFile=checked.sorted.APWGphish20090727.txt 
if [[ $1 != "" && -e $1 ]] 
  then dataFile=$1 
fi 
 # the default should be overridden by user input, as long as it exists 
 
# loop through the time segments that are most important for inspection 
# the first day is broken up roughly into 5ths, and the rest are binned by days 
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# for each day grep to aquire the list of hosts found that many days distance from the zero 
hour 

# and then for each of those hosts use wget to determine if it matches the hacked or 
registered pattern, and collect statistics, which go to stdout 

for counter in '01 0[0-4]' '01 0[5-9]' '01 1[0-4]' '01 1[5-9]' '01 2[0-4]' 02 03 04 05 06 07 08 
09 `seq 10 22`  

  do 
  grep "0000-01-$counter" $dataFile | cut -f1 -d',' > DNs 
  total=$((0)) 
  registered=$((0)) 
    # these will be the variables to keep track of the total sites for the day and number that 

appear to have been registered maliciously 
 
  while read LINE  
 do 
 total=$((total+1)) 
 wget --tries=3 --spider --timeout=9 --dns-timeout=9 --no-dns-cache --no-cache --

user-agent='Mozilla/5.0' $LINE 2>/dev/stdout | grep -B 1 ' 200 ' > tmpResponse 
 
 if  [[ $? != 0 ]] 
   then registered=$((registered+1)) 
 else  
   grep -q "$LINE" tmpResponse 
   if [[ $? != 0 ]] 
 # If the response code was 200, but the name who made the response was not the 

name we asked about 
 # i.e. there was a redirect or 404 page given, then the real page we were looking for 

was not found 
 # therefore count it as though we didn't get a 200. 
  then registered=$((registered+1)) 
   fi 
 fi 
  
 done < DNs 
  echo "Considering differences of 0000-01-$counter days ,$registered/$total, sites appear to 

be registered maliciously" 
 
done 
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