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TOWARDS AN OPTIMAL CORE OPTICAL NETWORKS USING OVERFLOW 

CHANNELS 

Pratibha Menon, PhD 

University of Pittsburgh, 2009                                            

 

 

This dissertation is based on a traditional circuit switched core WDM network that is 
supplemented by a pool of wavelengths that carry optical burst switched overflow data. These 
overflow channels function to absorb channel overflows from traditional circuit switched 
networks and they also provide wavelengths for newer, high bandwidth applications. The 
channel overflows that appear at the overflow layer as optical bursts are either carried over a 
permanently configured, primary light path, or over a burst-switched, best-effort path while 
traversing the core network.  

At every successive hop along the best effort path, the optical bursts will attempt to enter 
a primary light path to its destination. Thus, each node in the network is a Hybrid Node that will 
provide entry for optical bursts to hybrid path that is made of a point to point, pre-provisioned 
light path or a burst switched path. The dissertation’s main outcome is to determine the cost 
optimality of a Hybrid Route, to analyze cost-effectiveness of a Hybrid Node and compare it to a 
route and a node performing non-hybrid operation, respectively. Finally, an example network 
that consists of several Hybrid Routes and Hybrid Nodes is analyzed for its cost-effectiveness.  

Cost-effectiveness and optimality of a Hybrid Route is tested for its dependency on the 
mean and variance of channel demands offered to the route, the number of sources sharing the 
route, and the relative cost of a primary and overflow path called path cost ratio. An optimality 
condition that relates the effect of traffic statistics to the path cost ratio is analytically derived 
and tested. Cost-effectiveness of a Hybrid Node is compared among different switching fabric 
architecture that is used to construct the Hybrid Node. Broadcast-Select, Benes and Clos 
architectures are each considered with different degrees of chip integration. An example Hybrid 
Network that consists of several Hybrid Routes and Hybrid Nodes is found to be cost-effective 
and dependent of the ratio of switching to transport costs. 
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1.0 INTRODUCTION 

Today, core optical networks are characterized by wavelength division multiplexed (WDM) 

channels, being able to provide cheap and bulk transport capability to edge traffic sources. Not 

only are the number of wavelengths per channel increasing, the bit rates of individual channels 

are also getting bigger. Today, a long haul fiber can support 40-100 wavelengths/fiber, with a 

speed of 10-40 Gbps each. In order to enable several end users to share a wavelength, the 

bandwidth of a single wavelength channel can be further divided into granular trunks using time 

division multiplexing (TDM).  

Along with an increase in WDM transmission rates, there is also a proliferation of newer 

applications at the access layer that require both large and dynamic transmission capacity, from 

the core networks. Typical applications have been identified as GRID applications, Storage area 

networks (SANs), On-demand applications, etc [1]. Current WDM circuit switched core 

networks can provide some degree of channel flexibility to the end users by using protocol based 

on MPLS, ATM, RSVP etc. All these protocols help regulate channel access, class based 

services, traffic smoothing and policing functions that enable judicious used of pre-provisioned 

channels. In order to enable a truly next generation optical core network, on demand automatic 

switching and connection of WDM channels will be required [1]. However, development of such 

a dynamic optical WDM backbone network will depend on the development of fast optical 

switches, standardization of control planes and design of cost optimal network architectures. 

Among the different optical switching techniques, WDM circuit switching, burst switching and 

packet switching techniques have been proposed by the research community [2].
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Edge sources that supply traffic to the core networks have benefited from the immense 

channel capacity of wavelengths. This benefit can be explained by the economy of scale, where a 

larger number of edge traffic sources can be aggregated onto a single wavelength than ever 

before. The economy of scale, however, becomes strained as the speed of the channel far out 

paces the speed of aggregation at the edge. It is seen that at higher channel rates such as 40 Gbps, 

the aggregation may cost about 40% of the total node cost, compared to only 17% at 10 Gbps 

[35]. Optical aggregation schemes have been identified as a solution to bring scalability at the 

edge nodes. The optical packet (OPS) and burst switches (OBS) have been proposed at the edge 

nodes, to provide this high capacity aggregation [3].  However, the design of OPS and OBS 

switches are still in their research stages and their feasibility in core networks is still an open 

research problem.   

OPS and OBS differ from the existing optical circuit switched scheme because they can 

enable core nodes to provide statistical multiplexing gains for the core links. Currently there 

exists a functional demarcation between edge and core nodes because edge nodes perform traffic 

aggregation and core nodes perform optical bypass. Optical bypass is the ability of optical 

channels to ‘bypass’ any switching/aggregation function at the core nodes. With the introduction 

of OPS/OBS switches in core nodes, the functional demarcation between edge and core nodes 

will disappear.  

But the introduction of OPS and OBS switches in to the core nodes may result in 

expensive core nodes, compared to their optically-bypassed counterparts. Optical bypass enables 

simpler switching nodes, which can be constructed from optical cross-connects (OXCs) that can 

switch at slower speeds. However, optical bypass results in inefficient use of core link 

wavelengths, which cannot be reconfigured fast enough to support dynamic channel demand. 

Capacity inefficiency of optically bypassed channels may become more acute as the offered 

traffic shows high statistical variance. In an OPS/OBS scheme, statistical access of channel 

capacity can help provide efficient use of channels in response to a statistically varying channel 

demand. However, compared to an optically bypassed scheme, OPS/OBS has more complex 

switching requirements, such as: high switching speeds (order of ns), the need for optical buffers 

due to the statistical nature of the traffic and high fabric cost due to immature devices and 

integration technology [11][15][39]. Part of the problem may be alleviated by framing packets 
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into optical bursts. However, even an OBS switch has similar requirements, except that 

switching speed may be relaxed to milliseconds by putting up with more framing delay. Thus, it 

can be seen that statistical channel gains provided by OPS/OBS switches comes with a higher 

switching costs and penalties. 

The stringent requirements that OPS/OBS switches may place on the core node makes 

one re-think about the possibility of optical bypass. It may be possible to provide some degree of 

optical bypass, along with statistical channel gains, in core nodes. A core node’s switching 

capability may be divided between the two complementary switching schemes, OPS/OBS and 

OCS. Doing so will also divide the channels of the core links. Thus, we may envision a core 

network, whose channels are divided between OPS/OBS and OCS schemes.  

If we consider the current optical circuit switching and optical packet/burst switching 

schemes, as opposite ends of the switching spectrum, the question becomes how much each type 

of switching scheme is optimal in a core network? Alternatively, one might ask, if it is possible 

to divide the core network capacity into OCS and OPS/OBS schemes in the most optimal 

manner? This obviously raises questions about the design of a hybrid OCS/OPS/OBS core node 

that will help divide incoming traffic load into OCS and OPS/OBS channels.  A Hybrid Network 

will also be able to provide some degree of channel over provisioning along with better channel 

performance, in a cost efficient manner. A research study aimed at this issue would be of 

practical interest to systems designers and researchers aiming to create optimal core network 

architecture 

               In order to realize optimal hybrid operation in a core network, a theoretical framework 

to partition the network channel capacity into OCS and OPS/OBS channels is required. The 

channels can be partitioned if the channel demand offered to the node is divided between the two 

schemes. The concept of overflow provides a simple threshold based rule, to partition demand 

for channels into circuit switched and packet/burst switched layers of the core network. The 

overflow mechanism can be extended to establish end to end paths using an alternate switching 

scheme (alternate to circuit switching). In effect, partitioning the traffic via overflow provides a 

mechanism to study, the existence of complementary switching schemes within the same core 

node/network.     
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1.1 THE OPTIMALITY PROBLEM 

1.1.1 CORE NETWORK INFRASTRUCTURE 

Consider a core WDM network, as shown in Figure 1.1. The nodes in the network perform the 

function of aggregating regional access network traffic onto core WDM channels and for this 

reason, the nodes functions as an edge node. Figure 1.1 shows that the edge node numbered 

Region 11 aggregating regional traffic from the four central states, of the USA that constitute 

Region 11. The same node also functions as a core node, containing optical cross connects, in 

order to complete a light path between other network nodes.  In Figure 1.1 Region 11 

concatenates wavelengths of light paths to/from Regions 6, 7 and 12. Thus, any node in the given 

core network can function as an edge node or as a core node.  

 
Figure 1.1 Core Networks 

 

If the core network shown in Figure 1.1 contained burst switched channels, there will be 

no pre-provisioned point-to-point connection between any two regions. Instead, sections of a 

path between any two regions will be shared by several other paths between other regions. In 

such a case, a core node will aggregate optical bursts belonging to several paths that share the 

same link. For instance, the path from Region 6 to Region 12 and the path from Region 7 to 

Region 12, will intersect at Region 11. In this case, the core node in Region 11 will aggregate 
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bursts from regions 6 and 7. In an OBS based core network, both core nodes aggregate bursts 

belonging to different regions and edge nodes aggregate bursts belonging to different states of a 

region. 

Optical burst switching can be introduced into the core WDM network in the form of an 

overflow layer. The overflow layer may carry channel overflows from traditional Facility-

Switched WDM light paths or offered traffic from newer applications that require dynamic 

channel access. Figure 1.2 shows the OBS-based overflow layer, which accepts overflows from 

the Facility-Switched light-paths and also from another access-source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2 Proposed OBS-based Overflow Layer 

 

Although the proposed overflow layer uses a burst transport mechanism, it is possible for 

the channels to enter a pre-provisioned light-path or remain on the best-effort, OBS path. Entry 

of the bursts into a light-path provides a guaranteed direct path to carry optical bursts between a 

pair of nodes. A light-path is provisioned between a pair of nodes if there is enough optical burst 

traffic to keep the light-paths loaded at a fixed value. In case the light-paths are loaded above the 
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fixed value, an overflow occurs, which is handled by the OBS channels. The optical bursts 

carried along OBS channels will appear at the next core node along its path, where they try to 

enter a light path.  

Each edge/core node in the network performs the operation of filling its outgoing light-

paths with incoming optical bursts and diverting the overflows along OBS channels. We may 

call each node a Hybrid Core Node, since it functions as a point of entry to either a light-path or 

a best-effort path. The light-path behaves like a pre-provisioned circuit switched path that will 

carry optical bursts and the best effort-path is an OBS path. In Figure 1.2, Hybrid Node 1 

provides light path and best-effort path entry to access sources, while Hybrid Node 3 provides 

light path and best effort path entry to optical bursts from  Hybrid Node 1 and Hybrid Node 2. If 

Hybrid Node 3 is attached to its access source, it will also function as an edge node like Hybrid 

Node 1.  The proposed overflow network, which is made of Hybrid Nodes, will be called a 

‘Hybrid Network’.  

Managing the channel load offered to the core network using the hybrid mechanism is 

viable only if it is cost optimal to do so. Combining OCS and OBS features is advantageous only 

if it results in a synergy that occurs due to the combined operation. In the dissertation, an attempt 

is made to study cost optimality of hybrid operation with regards to total cost of a network. 

 

1.1.2  OPTIMALITY PROBLEM 

    

 Consider an edge traffic source, whose channel demand is relatively smooth with respect to 

time. Since traffic demand remains invariant with respect to time, the number of channels to be 

provided by the core network also remains static. Now consider an edge traffic source with a 

highly variable channel demand. In order to provide a statically configured light-path to the 

traffic source, the traffic demand must be estimated to be a constant over a time period. By 

assuming a constant demand equal to the peak demand, sufficient carrying capacity may be 

provided at the cost of severe channel underutilization. In order to achieve better channel 

efficiency, several traffic sources may be allowed to access the net fixed capacity in a statistical 
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manner. We may assume that the traffic sources may access the core channels in the form of 

optical bursts.  

 

 
 Figure 1.3 The optimality problem 

 

  The number of core network channels required by an edge node is dictated by the highly 

aggregated access level traffic coming from regional networks. The traffic aggregation and 

optical burst assembly may take place at a point of presence, POP, which is the edge node. 

Aggregation and burst assembly partially smoothes out some of the variance in traffic demand, 

although it may not provide a completely smooth traffic. Thus, it becomes possible to envision 

an edge source channel demand, consisting of a smooth average and a residual variable / 

‘peaked’ component. Statistically, the smoothness and the Peakedness components can be 

gauged by the steady state mean and variance of the offered load. Depending on the mean and 

variance of the channel demand, the core network channels accessed by the traffic source can be 

divided into statically accessed OCS and dynamically accessed OBS channels. In this manner, it 

may be possible to achieve an optimal division of access channel demands between OCS and 

OBS schemes. 

The optimality achieved by partitioning the core node capacity into OCS/OBS parts, is a 

trade off between costs of statistical multiplexing gains and switching simplicity. In a Hybrid 

Node, balancing these features may result in a cost optimal switching node. This may be 

especially true in optical networks, where there exists a wide discrepancy between the realization 

complexity of OCS and OBS switches. If the cost of an OBS switch is much higher than its OCS 

counterpart, part of statistical multiplexing gains attained by OBS may be offset by higher 
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switching costs. Thus, partitioning the node capacity between OCS and OBS schemes not only 

depends on traffic mean and variance, but also on relative costs of both the channel types. 

The optimal split of the core network into OCS and OBS channels also depends on the 

performance conditions to be achieved at the node. Performance criteria, such as blocking of 

channel requests will decide how many channels may be required in each category. The general 

assumption that we make here, is that there exists a hierarchical relationship between OCS and 

OBS channels and the blocking constraint is met by the joint effort of OCS and OBS schemes. 

The hierarchical relationship between OCS and OBS channels is via the overflow process and 

the percentage of channel demand offered to the OBS channels depends on available OCS 

channels.                

The hierarchical relation between OCS and OBS channels, via the concept of overflow, 

brings forth the notion of a channel threshold. A channel threshold is the number of OCS 

channels available to a traffic source and it will be henceforth called, “primary channels”. If the 

threshold is high, there are more OCS primary channels that can be exclusively accessed by a 

traffic source and subsequently, there will be a smaller overflow load. A high threshold will thus 

mean a smaller requirement of OBS channels, which will be henceforth called the “overflow 

channels”. The primary channel threshold available to each access source and the overflow 

channels required to support all primary channel overflows, will depend on channel demand 

statistics (mean and variance), cost/complexity of the OCS and OBS channels and the blocking 

performance required for the access source. In this dissertation, we analyze a hybrid scheme 

consisting of primary/overflow channels for an optimal operation.  

 
 

1.2   RESEARCH STATEMENT 

The research statement includes the problem statement and the research purpose statement. The 

problem statement explains the research problem in light of the optimality problem. The purpose 

statement draws from the problem statement to formally state the research purpose. 
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1.2.1  PROBLEM STATEMENT 

Optical circuit switching (OCS) and optical burst switching (OBS) can be viewed as 

complementary schemes, with regards to their switching complexity and channel efficiency. In 

order to improve efficiency of OCS channels and help OBS become more practical/ feasible, a 

hybrid operation can be considered in core networks. The Hybrid Networks may neither provide 

channel efficiency of pure OBS, nor switching simplicity of OCS. In stead, feasibility of Hybrid 

Networks depends on their ability to balance the features of OBS and OCS, to provide cost 

optimal networks for a given level of performance.  In order to study the optimality, as well as 

feasibility of such Hybrid Nodes/networks, suitable design and analysis of Hybrid Node 

operation is required.  

 Previous researches on hybrid optical networks were concerned with partitioning the 

network capacity to aid the migration of core networks to a pure OPS/OBS system [22]. A set of 

conditions, under which pure OBS, pure OCS or a hybrid of OCS/OBS may be feasible, is a 

problem to which only minimal attention has been paid. Hybrid Networks consisting of hybrid 

edge nodes have also been proposed in some researches [17][18]. In this research, the traffic is 

split into circuit and burst switched channels, only once, at the edge nodes. It still needs to be 

found out if core nodes too, can function in a hybrid mode and be able to optically split the 

traffic into circuit and burst switched channels. Currently lacking in the literature is a general 

method to analyze feasibility and optimality of hybrid operation in either edge or core nodes. 

In order to answer the questions concerning optimality and feasibility of hybrid operation 

in edge and core nodes, a mechanism of partitioning/splitting the offered packet traffic into OCS 

and OBS channel is required. The optimality problem discussed in Section 1.1 is approached via 

the concept of overflow.  

            Feasibility of optimal hybrid operation in core networks can be quantitatively analyzed, 

by studying the total cost of a Hybrid Network. In order to do so, the cost of a Hybrid Network is 

analyzed by using two approaches. One approach is to consider the role played by hybrid 

operation in reducing the cost of routes between two Hybrid Nodes of the network. The other 

approach is to study the role played by hybrid operation in reducing switching cost in the 

network. In both cases, hybrid operation is compared with non-hybrid operation, which is either 

pure OCS or pure OBS operation. The effects of various parameters such as traffic mean and 
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variance, channel utilization, number of traffic sources and cost structure of hybrid switching 

nodes on optimal hybrid operation is also studied.  

 

1.2.2 PURPOSE STATEMENT 

 

The purpose of this study is to (1) quantitatively test the feasibility of optimal hybrid OCS/OBS 

operation in core WDM networks that support channel overflow, (2) by relating the effect of 

variables such as traffic statistics, cost structure of OCS and OBS paths, switching architecture 

and network topology, and to (3) determine the optimal number of OCS and OPS channels for a 

given blocking probability at the Hybrid Node. 

1.3  RESEARCH QUESTIONS, HYPOTHESES AND GOALS 

A Hybrid Network that combines OCS and OBS operations is feasible only if some sort of cost 

optimality can be achieved by the hybrid operation. Cost optimality of hybrid operation occurs 

when total cost of network is minimum for a hybrid operation, compared to purely OCS or OBS 

operations in the same network. In order to assess the total cost of a network, the network may be 

viewed either as a collection of hybrid routes, or as a collection of switching nodes and 

transmission links. If the network is seen as a network of hybrid routes, the total network cost is 

the total costs of primary light paths and best effort paths for every route in the network. If cost 

of a network is viewed as cost of a collection of switching and channel entities, total costs of 

switching nodes and channels are required. In the dissertation, optimal hybrid operation is tested 

by considering both the approaches. In order to test optimality of hybrid operation, following 

questions are put forth. 
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• Cost optimality of a hybrid route. 

 

1) How to determine cost of a route that consists of primary and overflow channels? 

 

A hybrid route consists of a path between two nodes in a network. A hybrid route is made 

of primary and overflow paths. While number of primary light paths is the same as number of 

primary channels originating at the source node, the number of overflow channels in the best 

effort path is not the same as number of overflow channels available in the first hop. In the same 

route, there are as many overflow paths, as there are overflow channels between the source and 

destination nodes of a route. In order to determine number of overflow channels required for a 

route, one needs to consider the possibility of light path entry and loss within the route. Total 

cost of the route depends on total number of primary light paths and overflow paths in the route. 

 

        2) How do factors such as channel load statistics, relative costs of primary and overflow 

paths and the number of sources sharing the overflow path determine feasibility of a hybrid 

route? 

Channel load statistics such as mean and variance of the offered load will determine number 

of primary and overflow channels in the links. If the load is such that benefit of statistical sharing 

of overflow channels is high, higher cost of overflow path is compensated by smaller channel 

requirement. Benefit of statistical sharing is expected to increase for loads that have high 

variance relative to its mean load value. Also if there are more sources sharing the overflow 

channels, optimal hybrid operation can be realized even if relative cost of an overflow path is 

higher than the cost of a primary path.  

 

• Cost optimality of a Hybrid Node 

 

1) How does cost optimality of a Hybrid Node depend on the switching fabric architecture 

used to construct the switch? 

Cost of a Hybrid Node depends on the cost of switching hardware. Partitioning the channels 

of all output links of a Hybrid Node may also result in partitioning the switch within the 

node. A partitioned switch fabric, with lesser interconnection among switching elements may 
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help reduce the total cost of a switch. The number of switching elements within a hybrid 

switch depends on the switching fabric architecture used to construct the switch. Switching 

fabric architectures can be classified based on wide-sense and rearrangably non-blocking 

properties provided by the Broadcast-Select and Benes architecture, respectively. The cost of 

a hybrid switch made from the Benes architectures requires a minimum number of switching 

elements and it grows ‘slowly’ with an increase in number of output channels. On the other 

hand, the Broadcast-Select architecture requires a larger number of switching elements, and 

the switch size grows faster with an increase in number of output channels. It is expected that 

the proposed hybrid switch architecture may greatly help minimize number of elementary 

switches in a Broadcast–Select architecture switch, when compared to a Benes switch that is 

already optimal to begin with. 

 

2) How does the cost optimality of a Hybrid Node depend on the relative cost of switching 

elements compared to other non-switching elements, such as amplifiers and transmission 

costs? 

The total cost of a node not only depends on its switching elements, but also on non 

switching elements that depend on the number of channels in outgoing links of a Hybrid 

Node. Channel-dependent costs increase with output channels, which increases when there 

are more primary channels. Even if hybrid operation may minimize switching costs, other 

non-switching costs may grow with an increase in the number of output channels. This may 

undo the hybrid advantage. 

 

• Network analysis of Hybrid Network 

 

1) How does total cost of a network depend on average channel utilization at the primary 

layer? 

Average channel utilization of the primary layer will determine the amount of load offered to 

the overflow layer. A high value of average primary channel utilization can be obtained if 

there are fewer primary channels. Fewer primary channel results in a larger overflow at the 

edge node, which will try to enter a light path at the next node along the path.  At the next 

node, light path entry is provided for the incoming overflow, such that the light paths are 
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utilized by the same fixed amount. Light path entry reduces the amount of overflow load that 

remains in the overflow layer, by providing a high probability of light path entry for the 

overflow path. Thus, to provide high channel utilization, there are fewer primary light paths 

originating at the edge node, but more light paths in the core node. Analysis of an example 

network will provide the overall effect of average channel utilization of total cost of network. 

 

 

2)  How does the optimal hybrid operation depend on the ratio of switching to transmission 

costs in a network? 

Due to the aggregation of optical burst at hop of its path, an overflow path requires more 

switching resources than the corresponding primary path. At the same time, due to dedicated 

light-paths, primary path requires more channels than the corresponding overflow path. Thus, 

the ratio of channel transmission to switching costs will determine number primary and 

overflow paths in a route. This ratio, along with the average probability of light-path entry, 

will provide the cost ratio of the route. A network consists of several such routes and the 

links are shared by several routes. Analysis of an example network will show the effect of 

ratio of switching to transmission costs in a network. 

The above questions are answered sequentially in the following chapters: 

 

1) Chapter 3: Analysis of a hybrid route 

A hybrid route, which contains primary and overflow paths, will be analyzed for its cost 

optimality by varying the offered load and cost-ratio of primary and overflow paths. The goal 

is to discover how the offered traffic, along with the ratio of primary and overflow path costs 

will affect optimal number of primary/overflow channels in the route. 

 

2) Chapter 4: Analysis of a Hybrid Node 

A Hybrid Node, consisting of a hybrid switch, is analyzed for optimal hybrid operation by 

varying the switching fabric architecture and the load offered to the Hybrid Node. The goal is 

to understand if the optimality of the underlying switching fabric architecture will determine 

the possibility of hybrid cost advantage. The sensitivity of this hybrid cost advantage towards 

offered load and the relative cost of non-switching components will also be studied. 
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3) Chapter 5: Analysis of a Hybrid Network 

Since Chapters 3 and 4 consider an isolated hybrid route and an isolated Hybrid Node, they 

only provide the conditions for a local optimum when subjected to varying external load and 

cost conditions. However, when we consider a Hybrid Network, some of the load values and 

cost conditions are modulated by the network. For instance, in a core node, the load offered 

by other nodes will depend on the primary and overflow channels in the incoming link. In the 

same way, the number of primary channels in the outgoing links of the core node will 

determine how much load will be offered to its neighboring nodes. The cost ratio of primary 

and overflow paths, are also modulated by the network, since possibility of light path entry 

within the path depends on number of primary channels in the links that constitute the path. 

Thus, the primary/overflow channels in a network link will affect the number of 

primary/overflow channels in other links. Optimality of an example Hybrid Network is 

analyzed by considering the total cost of all routes and the total cost of switching and 

transmission.  

1.4 NATURE OF STUDY  

The purpose of the research is to study the optimality of hybrid operation. The effect of hybrid 

operation on the total cost of a hybrid route, a Hybrid Node, and a Hybrid Network, is studied 

analytically. Out of all combinations of number of primary and overflow channels in the link, 

optimal hybrid operation is expected to be achieved only for a particular combination of primary 

and overflow channels. The optimum number of primary and overflow channels in a hybrid route 

is tested for its dependence, on independent variables such as traffic mean and variance, the 

number of sources, relative cost of primary and overflow paths. Optimality of a Hybrid Node is 

studied for the underlying switch fabric architecture used to construct the node switch and load 

offered to the core node. An example network that consists of hybrid routes and Hybrid Nodes is 

tested for optimal hybrid operation by varying the utilization of primary channels. 



 12 

The study consists of quantitative analyses, where the Hybrid Node is analyzed in three 

different ways. As shown in Table1, the Hybrid Node is positioned independently (Level 2), 

within a network (Level 1) and at the switch level (Level 3). Appropriate independent/dependent 

variables, which may affect the hybrid operation is identified, along with the system constants 

and assumptions appropriate for each level. Results of the study provide information on the 

effect of each of the independent variables, on optimal hybrid operation.  

1.4.1  MODELING 

The study follows four different models, in which each model considers the Hybrid Node from a 

particular level of detail. In Chapter 3, the source node attached to a hybrid route is modeled as a 

loss node consisting of GI/M/C primary and overflow queues. Costs of primary and overflow 

paths are made comparable using the notion of path cost ratio, which gives the total cost of an 

overflow path to the total cost of a primary path. The total cost of an overflow path takes into 

account the probabilities of light-path entry in the intermediate hops of the overflow path and the 

ratio of costs of a path within a node and a link. 

In Chapter 4, the Hybrid Node is modeled as a switching node consisting of primary and 

overflow layers. The primary layer consists of smaller dedicated switches and the overflow layer 

consists of a single big switch shared by all sources. The primary and overflow switches can be 

fabricated using any of the common architectures, out of which Benes and Broadcast-select are 

selected as examples of re-arrangably and wide-sense non-blocking fabrics. In the two layered 

hybrid switch model, switching elements can also be integrated on a chip. The cost of a hybrid 

switch is expressed as a function of the basic switching element and the cost of all non-switching 

operations can be described relative to the cost of the basic switching element.  

Chapter 5 considers a network topology, which can be modeled as a graph. The Hybrid 

Network consists of different graphs, representing the physical topology, primary layer, and the 

overflow layer. Vertices of each graph represent the Hybrid Nodes and the edges represent the 

network links. The weight of each link is equal to number of wavelengths in the link. Chapter 5 

devises a technique to determine the weight of links in each of the three network graphs. The 

technique calculates the traffic load of all routes in the links, by taking into account the 
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possibility of light path entry and loss experienced at the overflow path. Once the link loads are 

known, the number of overflow channels is calculated and the graphs are updated. The procedure 

is repeated and the graphs are updated for each value of primary channel utilization, which is 

assumed to be a constant on all primary channels of the network. Chapter 5 extends the analyses 

in chapters3 and 4 to calculate total costs of all routes and all nodes in the network.    

1.4.2 ANALYSIS 

The Hybrid Node, depending on its level of detail, is analyzed for its optimality. In Chapter 3, 

the total cost of a hybrid route is obtained for different values of offered access load, Peakedness 

of access load, the number of access sources and cost ratio of hybrid path.  

The total cost of a hybrid route is obtained for values of primary channels per access 

source, varying from zero to P, where, P is the total number of primary channels if there were 

absolutely no overflow channels.  Once the number of overflow channels is obtained for all 

values of primary channels, the primary/overflow channel combination that gives the minimum 

total cost is selected as the one that provides optimal hybrid operation. A parameter called 

‘overflow gain’, which is the slope of the overflow channel curve with respect to the primary 

channel curve, is analyzed for different values of offered load. The overflow gain relates the 

traffic load to the path cost ratio of primary/ overflow paths and provides the condition for 

optimal hybrid operation. 

In Chapter 4, the total cost of a Hybrid Node is represented in terms of the cost of a basic 

switching element used to construct the hybrid switch. The number of basic elements for a 

hybrid switch made out of Benes, Broadcast-select and Clos architectures, is determined. In 

addition, for each of the three switching architectures, the degree of switch integration is varied. 

The sensitivity of total node cost to switching and non-switching costs is analyzed by varying the 

cost ratios of non-switching elements with respect to the cost of a switching element.  

Optimality of a Hybrid Node is studied by measuring a parameter called the ‘hybrid 

advantage’ which is the cost saving achieved by a Hybrid Node as opposed to the corresponding 

non-Hybrid Node. The strength of this hybrid advantage is studied by measuring if some degree 

of hybrid advantage occurs for all cases of hybrid operation. The hybrid cost advantage is 
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analyzed for Hybrid Nodes made of different switching fabrics, when offered with different load 

values. 

 
Table 1.1 Structure of the dissertation, showing the 3 levels of modeling and analysis. 

 
 

                              I. Network Level   

         

        

       Constants 
• Overflow Loss  rate 
• Switching arch. 
• Offered load 

   II.  Route Level 

 
  Independent Variables 

• Offered load 
(mean, variance). 

• Relative cost of 
primary and 
overflow path 

• Primary channels 
per source 

 Dependent Variables 

• Number of overflow 
channels. 

• Optimum number of 
primary and overflow 
channels. 

• Total cost of the 
route. 

      Constants  
• Fixed overflow loss probability.  
 

Assumptions 
• Homogenous inputs. 
• General independent arrival, 

exponential holding. 
• Probability of lightpath entry and 

path loss given by path cost ratio. 
• Cost ratio is independent of 

primary/overflow channels 

Independent 
variables 
• .Primary channel 

utilization 
 Relative cost of 

switching to 
transmission of a 
channel. 

 

 

 

      Assumptions 
• Independent access load 
• Buffer less operation. 
• Homogenous access load 
• One access source per Hybrid 

Node. 

    Dependent variables 

• Primary/overflow link 
loads. 

• Number of primary 
/overflow channels /link. 

• Cost Ratio of hybrid 
routes 

• Optimality of Hybrid 
Network. 

                                   III. Node Level  
Independent Variables 

• Offered load 
(mean, variance). 

• Switching 
architecture 

• Ratio of costs of 
active/passive 
elements. 

• Number of input 
traffic sources. 

• Number of 
wavelengths/fiber 

• Primary channels 
per source. 
 

Dependent Variables 

• Number of overflow 
channels. 

• Optimum number of 
primary/overflow 
channels. 

• Channels dependent 
cost ratio at point of 
optimality. 

• Cost of the optimal 
node. 

    Constants 
• Loss probability. 

     Assumptions 

• Non blocking switching 
architecture. 

• Buffer less operation. 
• Full wavelength conversion. 
• Cost of transport scales linearly 

with number of channels. 
• Cost of switching is a function 

of number of switching 
elements. 

• Homogenous inputs 
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The network level analysis in Chapter 5 consists of determining the primary/overflow 

channels in each link of the network. An iterative procedure is used to determine the number of 

primary/overflow channels in all links of the network for a given value of primary channel 

utilization. The number of primary and overflow links in the network is determined for all links 

of the network. Once the input and output channels of all nodes in the network are known, the 

total cost of a node is determined using the procedure developed in Chapter 4. The total cost of 

each node is obtained for different values of primary channel utilization. The effect of node 

degree, on total node cost is analyzed for different values of primary channel utilization.  

The total cost of a network can also be obtained as the sum of the cost of all routes in the 

network. The effect of varying primary channel utilization on total cost of the network is 

analyzed. By varying primary channels utilization, the probability of light-path entry within the 

routes will vary for each route. The effect of varying primary channel utilization will show up in 

the path cost ratios of each path and on the average path cost ratio of the entire network. In 

addition to the primary channel utilization, the ratio of the cost of switching a channel through 

the node to the cost of a transmitting the channel on a link also affects the cost ratio of the routes. 

The effect of switching to transmission cost ratio on optimality of hybrid operation is also 

studied in Chapter 5. 

   The optimization carried on to determine the number of optimal primary/overflow 

channels in a link, will be performed numerically using Matlab package. Simulation studies used 

to validate the queuing models is performed using CSIM simulation package. 

1.4.3  REPRESENTING RESULTS 

The results of Chapter 3 will consist of a graphical representation of results showing the 

feasibility of hybrid operation. The results show the total cost of hybrid operation obtained for 

different values of cost ratios and when subjected to different load condition. The feasibility 

graphs are provided to routes containing ten and one hundred access sources respectively.  

Chapter 3 will also provide a table of results comparing the overflow gain for each addition of 

primary channels, for different values of average load, Peakedness and number of sources. 
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Results from the table and the graphs will be used to validate an equation that relates overflow 

gains to path cost ratio and number of sources.  

Chapter 4 will provide cost curves for total switching costs and total node costs for 

different number of primary channels provided to each access source. The cost curves are 

obtained for different cases of switching architecture, load and relative cost of amplifiers and 

channel transmission elements. Cost optimality of hybrid operation can be visually inspected 

from the total cost curves, which also gives sensitivity of hybrid operation to non-switching 

parameters. In addition to the total cost curves, there are bar charts that represent hybrid cost 

advantage for each test case. 

Chapter 4 will also contain tables that show the slopes of the overflow and primary 

switch costs for Broadcast and select and Benes architectures. The table will represent the 

condition for hybrid optimal operation, which depends on incremental values of primary and 

overflow switch costs. Results from chapter 4, will be used to validate the condition for 

optimality that relates the incremental cost of overflow and primary layers to the overflow gain 

Chapter 5 illustrates an iterative technique to determine the number of primary and 

overflow channels in all the links, of a given example network topology and offered access load 

and primary channels utilization. For each value of primary channel utilization, an adjacency 

matrix of primary and overflow layer graphs are provided. For each set of primary and overflow 

adjacency matrices, total cost of Hybrid Nodes is calculate. The primary channels utilization that 

corresponds to minimum total cost is represented as a graph. In the graphs, the x-axis consists of 

values of primary channels provided to each access source. For a fixed value of primary channel 

utilization and fixed value of offered load, number of primary channels for each access source is 

fixed. Chapter 5 also contains a total cost curve represented as the sum of total route cost.                                     
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1.5 SIGNIFICANCE OF STUDY 

1.5.1  CONCEPTUAL AND THEORETICAL FRAMEWORK 

The research study can be broadly classified under the research field of hybrid optical networks. 

Hybrid optical networks have been classified based the interaction between OCS and OBS/OPS 

paradigms. The three classifications are parallel, integrated and client server architectures [17]. 

The benefits of the OCS layer have been previously identified as the ability to optically bypass 

switching operation by providing a virtual connection between the end nodes. This dissertation 

quantitatively analyzes the feasibility and optimality of a hybrid OCS/OBS mechanism, by 

subjecting it to varying traffic parameters, node architectures and network topology.  

Much of the motivation for the study comes from the need to match channel demand 

profiles to channel allocation policies. Historically, attempts have been made to allocate a pool of 

shared capacity in addition to fixed capacity, for a global TDM based network architecture [5]. 

Such networks have been called Capacity Switched Networks [2]. In the existing literature, all 

nodes under this architecture access network capacity in the form of time slots and performed 

electronic switching. This study extends the same idea to a WDM network, where an entire 

wavelength channel is accessed for duration of an asynchronous, variable length burst and 

switching is performed all optically. It has to be noted, however, that the TDM based networks 

with fixed and shared capacity didn’t address the impact of alternate switching schemes in the 

network,; instead the fixed and variably accessed channels were all circuit switched. 

  The approach used to study a hybrid operation in this dissertation, is based on an  

overflow mechanism. Overflow channels, in the form of circuit switched channels have been 

used to carry traffic overload in toll telephone networks [28]. The general concepts of overflow 

paths and overflow switching come from the literature on alternate path routing. However, 

alternate path routing generally considers only path diversity, without any form of switching 

diversity. In this study, we consider a special case of alternate paths, with two different switching 

schemes. The paths of OBS wavelengths, considered in this dissertation, is a shadow of the paths 

followed by the OCS network. The figure shown below maps the dissertation among the related 
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historical, seminal and current research.  A more detailed mapping of the dissertation among the 

existing literature will be provided in Chapter 2.                                                   

1.5.2 CONTRIBUTIONS 

 The basic question in the dissertation study is: how many of OBS and OCS channels result in 

cost-optimal core networks? The motivation for answering the question lies in the fact that there 

exists a wide discrepancy in the switching and transportation capabilities of OBS and OCS 

paradigms, as discussed in the previous sections.  

The main contribution of this dissertation is that it proposes a hybrid operation 

characterized by primary channel overflows and it aims to find the optimum number of primary 

and overflow channels, in order to minimize the total cost of a network. Optimality of hybrid 

operation may depend on the method by which we may assess total cost. In the dissertation, total 

cost of network is calculated by considering the total cost of all routes and the constructional cost 

of all nodes and links in the network. The two fold approach used in the dissertation to analyze 

optimality of Hybrid Network operation is not present in the current literature. 

Some of the literature on hybrid networks proposes a combination of circuit switching 

with other switching schemes such as OBS/OPS in order to facilitate the migration of core 

networks to more complex switching paradigms [22] . In this work, no such migration strategy is 

formulated; instead it provides a cost optimization mechanism that may serve as one of the 

decision criteria to aid a migration strategy.  

In this research, we consider a particular kind of hybrid network, which is characterized 

by overflow capability. The optimality problem is solved for a particular kind of stationary 

hybrid network involving overflow channels. Compared to the literature on hybrid networks, the 

contribution of this work is to present a mechanism for splitting traffic/capacity into OCS and 

OBS domains, via the process of overflow. Although the publication by Gauger et.al, has used 

OBS to carry the overflow traffic, the capability to split channel demand is limited to the edge 

nodes. This research study provides this traffic splitting capability to all nodes within the 

network, which includes optical traffic splitting, in core nodes. The feasibility of such an 

operation in edge and core optical nodes is analyzed in the research. 
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Figure 1.4 Conceptual/theoretical framework. 

 

  

The dependence of optimal hybrid operation on channel load, switching parameters and 

network topology is analyzed. The relationship between the optimal number of primary/overflow 

channels and parameters such as load statistics, nodal cost structure, and network topology is 

examined in various levels of detail. Hybrid operation is analyzed for general traffic types with 

known load statistics, instead of the Poisson arrival used in most previous studies.  

The dissertation makes use of the overflow theory to perform modeling and analysis of 

the Hybrid Node [28]. The literature on overflow theory, involving circuit switched primary and 

overflow channels, is extended to WDM systems with burst switching in overflow channels. 

Traditionally, overflow channels have been used to provide cost optimal alternate routing for 
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telephone traffic. The possibility of using an alternate burst switching scheme, in addition to the 

existing circuit switching scheme, is considered in the dissertation.  The overflow path provides 

channel efficiency for bursty overflow via statistical multiplexing gains. Thus, function of the 

overflow process is extended to provide an alternate switching scheme in an optimal Hybrid 

Node.  

The general approach to design and analyze an optimal hybrid network is based on 

partitioning the channels in a link and diversifying the switching techniques in a node/network. 

In general, the dissertation attempts to answer the larger question of the feasibility of partitioning 

traffic demand and capacity in to circuit/packet switched channels of core optical networks 

In a Hybrid Node, this partitioning of channel capacity also leads to partitioning the 

switching fabric. This means that in a Hybrid Node, a single large packet switch is partitioned 

into two smaller modules, primary and overflows switching. Within a primary/overflow 

switching module, the switching fabric may be constructed using smaller switching modules. In 

the dissertation, the criteria of partitioning the switching capacity into primary/overflow modules 

is examined based on their output channels, the number of elementary modules required and cost 

relationship between switching and transport elements in the node. So far, this is the first known 

attempt to relate the cost of switching and transport resources, to the optimality of a Hybrid 

Node. 

1.5.3  SCOPE AND LIMITATIONS  

The dissertation analyses hybrid OCS/OBS operation by optimizing the hybrid routes and Hybrid 

Nodes that belong to a hybrid network.  Chapter 3 of the dissertation presents design, modeling, 

and analysis of a hybrid route for cost-optimal operation. Chapter 4 proposes a hybrid switch 

architecture, which is tested for cost optimality. Chapter 5 provides an adhoc optimization of a 

hybrid network, by working out an example. The scope and limitations of each chapter are 

provided below. 

 

• Chapter 3 
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            The operation of a hybrid edge and core node is shown in Figure 1.2. The dotted lines in 

the figures demarcate the scope of hybrid operation considered in the dissertation. Although 

Chapter 3 includes a brief description of burst assembly, it just shows that burst formation can 

affect the load offered to the hybrid layer. An efficient assembly mechanism, which may result in 

cost optimal hybrid operation is beyond the scope of this dissertation. It is assumed that channel 

request for optical bursts, arrive to the Hybrid Node as an ON-OFF process that can be 

represented as a second order hyper exponential process. It is also assumed that channel holding 

times are exponentially distributed, which may not be the case in real networks. However, the 

analysis of a Hybrid Node queue, which has both general arrival rates and general holding 

distributions, can only be approximate and is not considered in the dissertation. 

            The function of a Hybrid Node is to allocate primary light-paths to channel requests 

arriving from the access source or from other core nodes. A Hybrid Node will also aggregate the 

primary channel request overflows, and allocate them to available overflow channels. The 

process of overflow takes place at the electronic control plane whenever optical burst headers 

arrive at the Hybrid Node. The control plane will posses all the route information required to 

transport the burst to the destination node. The control plane doesn’t choose among multiple 

alternative routes, because hybrid routes in the dissertation don’t have alternate physical paths.  

The control plane also doesn’t perform any kind of scheduling other than random scheduling of 

primary/overflow channels. Both alternate route paths and intelligent channel scheduling may 

help improve performance of the Hybrid Network. However, in the dissertation, the function of 

the control plane is to read the final destination of the burst header and randomly allot a free 

primary light path or overflow channels along a fixed route path.  

           In analyzing the cost of a hybrid route, it is assumed that total cost of route path is equal 

to the cost of traversing several nodes and links along the route path. The cost of traversing a 

node is assumed to be the same for all nodes and the cost of traversing a link is assumed to be the 

same for all links. However, the cost of traversing a node and the cost of passing along a link are 

not equal. It is assumed that there already exists a method to calculate the cost of passing through 

a node and a link and that the costs are already given. The dissertation does not provide a method 

to calculate these costs. The two costs are related by a transmission to switching cost ratio that 

appears in the path cost ratio.  
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        The optical bursts travelling along overflow channels of a hybrid path will have a certain 

probability that it will enter a light path on the successive hops toward the destination. The bursts 

will keep along the overflow channels until it enters a light path and keeps itself in the light path 

all the way to the destination. A dual to this process of light path entry is the case where bursts 

belonging to several routes are aggregated onto primary channels and later split into overflow 

channels at successive hops towards the destination node. The dissertation does not consider the 

light path entry process as described in the dual problem.  

          

• Hybrid Node 

A Hybrid Node contains the necessary hardware required to switch and transmit/receive 

optical bursts. The switch present in a Hybrid Node contains interconnected switching elements. 

Cost of the switch greatly depends on number of switching elements present in the node. Number 

of elements depends on the switch architecture used to fabricate the switch. Other than the 

switching elements, the node also contains amplifiers to combat switching losses, wavelength 

converters to resolve channel contention and provide wavelength adaptation and transmitters/ 

receivers for all the channels. Cost of wavelength converters and transmitter/receiver is assumed 

to grow linearly with number of channels. 

        In analyzing the cost of Hybrid Node, it is assumed that relative cost of transmission with 

respect to the cost of switching elements is a quantity that is pre-determined. Total cost of the 

Hybrid Node is expressed in terms of cost of a switching element, since it is difficult to obtain 

absolute costs of switching and transmission elements from the vendors. 

     The Hybrid Node analysis is limited to three non-blocking fabric architectures, namely Benes, 

Broadcast-Select and Clos. The analysis considers switching elements ranging from 1x1 for 

Broadcast-Select, 2x2 for Benes and 4x4 for Clos. The load values range from 0.75 Erlangs to 6 

Erlangs.  

 

 

• Hybrid Network 

The dissertation provides an adhoc solution for optimality of Hybrid Network. Cost of the 

network is assumed to depend on the constructional costs, such as cost of switching and 

transmission elements and on route costs, which depends on cost of channel paths. The 
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dissertation keeps the two approaches to be unrelated, although in reality both the approaches 

may be related.  

        The example network represents a network with varying node degrees and multiple hops 

between sources and destinations. All access sources provide a fixed load to the core nodes. 

While calculating total cost of route, it is assumed that cost of traversing all nodes is equal and 

cost of traversing the links are the same too.  While calculating the constructional cost of the 

network, the nodes are assumed to contain Broadcast-Select switches.  

       The Hybrid Network performance is limited to a fixed average channel load of primary layer 

and a fixed channel blocking probability at each hop of the overflow layer. Since the nodes do 

not contain optical buffers, delay is not a valid performance measure.  

 

1.6  CHAPTER CONCLUSION                                        

In this chapter, the motivation for the research and the approaches used for the research has been 

outlined. The underlying research problem is identified as an optimality problem for Hybrid 

Nodes supporting overflow channels. The research problem is approached in a quantitative 

manner, by considering the variables and situations that may affect the optimal operation of a 

Hybrid Node. In effect, feasibility of hybrid operation in core nodes is analyzed. The optimality 

and feasibility of optimal hybrid operation is analyzed at the node, switch and network levels and 

the dissertation chapters are designed to focus on the three levels. Questions, hypothesis and 

goals, addressed by each chapter is provided, along with modeling, analysis and expected 

deliverables. The dissertation is identified for its contribution to the existing literature on optical 

Hybrid Networks and overflow theory. Scope and limitations of the research has also been 

provided, that may clearly mark the bounds, within which the study is based.           
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2.0 LITERATURE REVIEW 

In this chapter, literature closely associated with the dissertation problem and approach is 

reviewed and summarized. The past and current state of knowledge about this topic is discussed 

and the need for the proposed study is identified with respect to the existing literature on the 

topic. Past studies on the concept of TDM-based capacity switching and emerging studies on 

WDM hybrid switching will be covered in this chapter. The bulk of the review will focus on 

capacity switching schemes, termed Hybrid Networks in the current literature, on WDM 

networks. An explanation of key methods used in overflow traffic analysis is also provided since 

overflow theory will be extensively used throughout the dissertation.  

2.1 FACILITY SWITCHING IN CORE NETWORKS 

Historically, attempts were made to combine static and dynamic channel allocation/access 

schemes in Time Division Multiplexed (TDM) systems. Prior to the advent of WDM networks, 

core networks were typically TDM-based fiber channels. Hence, most of the research efforts 

were based on enhancing the capabilities of traditional circuit-switched TDM channels by 

enabling dynamic/shared access to an additional/spare pool of channels.  
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2.1.1  CHANNEL ACCESS SCHEMES 

Access to a core network channel by an edge traffic source can be classified into static or 

statistical access schemes. The channels can be accessed in the form of fixed/variable number of 

timeslots, or single/multiple wavelengths. The traffic entity provided by the traffic source, for a 

single event of channel access, can be fixed/variable length packets, framed packets (bursts), 

flows or calls/connections. A channel is accessed by the traffic entity for a holding time that 

depends on the duration of the traffic entity and the channel rate.  

 

 
Figure 2.1 A Literature review map of switching techniques.    

 

An edge traffic source’s access to the core network channels can be classified as either 

static or dynamic in nature. Dynamic access can also be called statistical access to better reflect 

the statistical nature of edge-traffic demand. In a statistical channel access scheme, a given set of 

channel is accessed by the traffic source with a probability dependent on the arrival of the traffic 
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availability to a traffic source. One, or a group of, outgoing channel(s) are exclusively ‘reserved’ 

for access by a traffic source and channels allocated to a particular traffic source cannot be 

accessed by any other traffic sources. This is unlike dynamic/statistical access where there is 

usually statistical sharing of available channels.  

Examples of dynamic access schemes are packet, burst, and flow switching schemes 

where there is statistical sharing of a given set of channels by several traffic sources. In addition 

to these switching schemes, there can be fast circuit switching schemes, where end to end 

circuits are created or destroyed as per demand. Such schemes are typically used for protection 

switching or during events such as congestion or demand overloads. 

2.1.2  CAPACITY AND FACILITY SWITCHING 

Additional core channels may be required by an edge node in events such as link failure, 

temporary overloads etc. Protection switching may be invoked by the edge and core node by re-

configuring the existing channels to transport the edge traffic.  It is not just during contingency 

situations, but also during routine traffic peaks hours, capacity that can be added to existing 

statically allocated channels. Since, peak hour’s demand can be predetermined; the core nodes 

can be pre-configured to provision additional channels between a pair of nodes. Such a scheme is  

circuit switched at the core and fast provisioned at the physical layer on a regular schedule. 

A capacity switched scheme is an extension of fast provisioning, where capacity is 

reallocated at the physical layer in a statistical manner. A combination of circuit and packet 

switching scheme has been identified by Thompson, as a possibility to implement capacity 

switching in core networks [1]. Capacity switching does not try to bring circuit and packet 

switching schemes under an “integrated paradigm”; rather it tries to carry circuit and packet 

switched signals over an “integrated set of facilities”. Thompson also identifies a spectrum of 

switching paradigms that considers capacity switching, protection switching and fast 

provisioning under the general scheme of “facility switching”. Facility switching is the scheme 

that supports static and dynamic or quasi-dynamic channel access over an integrated set of 

facilities. Capacity switching is the term used to describe the kind of facility switching where 

channel access is relatively more dynamic /statistical in nature.  
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2.1.3  FACILITY SWITCHING ON TDM CHANNELS 

Historically, facility switching schemes began as enhanced circuit-switched schemes. Facility 

switching can be performed on TDM networks by reallocating channel time slots available to a 

traffic source. A traffic source is assigned a fixed set of time-slots, to which they have exclusive 

access. Additionally, there are latent time-slots that can be shared by traffic sources, either 

periodically or statistically.  

 Fast circuit switching was proposed for use in telephone systems way back in the 1980s 

[2]. A fast circuit switched telephone network allocates a circuit-switched channel to users only 

when they are actively transmitting any information and makes use of channel idle time to 

accommodate more calls. Fast circuit switching relies on more intelligent and faster signaling 

than traditional circuit switching. Fast circuit switching can be enabled for interactive data 

applications while traditional circuit switching applies to bulk data and voice applications. This 

means that the decision between fast and traditional circuit switching depends on the gap 

between the interactive messages. The switchover between methods would be a function of the 

size of the interactive message, the transmission rate, and implementation costs.   

Time Assigned Speech Interpolation is an example of fast/enhanced circuit switching 

used for voice and data applications [3]. The dynamic synchronous architecture, DTM, is yet 

another fast circuit-switching architecture with dynamic resource allocation capability [4]. 

Channels of DTM are made of time-slots and each source can posses any number of slots based 

on its requirements. DTM also supports multicasting by defining a channel as a set of time slots 

between a sender and an arbitrary number of receivers. During system start up, the nodes are 

allocated time-slots in some pre-determined fashion and it can be said that nodes ‘own’ these 

time-slots. In order to reallocate time-slots, a distributed control system is used to distribute a 

pool of available time slots among the nodes. Upon receiving a request for bandwidth, a node 

first looks into its local pool of time slots and sends a connection request to the next hop. If a 

node cannot find any time slots in its local pool, it requests free time slots from other nodes. 

Each node contains updated information on time slots available to other nodes. A distributed 

scheme of using local pool of time slots to set up a channel provides a relatively faster and more 

adaptable response to varying demands, compared to using a central pool of time slots. However, 
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the disadvantage of a distributed scheme lies in the high signaling overhead to maintain 

neighboring node information, compared to a centralized scheme. 

A nation-wide TDM based photonic network was proposed by Amos Joel [5] [2]. A 

centralized scheme allows for certain time-slots to be permanently reserved for communication 

between certain pre determined pairs of nodes. Other than these reserved time-slots, there exists 

a pool of latent time slots that can be used by the nodes when required.  The latent time slots may 

be assigned by making arrangements with the neighboring nodes. The simplicity of this scheme 

lays in the fixed time pre assigned time- slots between pairs of nodes, which means the TDM 

switch doesn’t need to be reconfigured frequently. The scheme is also flexible by allowing the 

latent time-slots to be shared by the nodes.   

It can be seen from the above examples that facility switching schemes for TDM 

channels does not involve multiple switching schemes, as in Hybrid Networks. Rather, in all the 

examples discussed above, static circuit switching is enhanced by dynamic set up or teardown of 

channels. This is an important difference compared to hybrid switching schemes proposed for 

WDM channels. In a hybrid switching scheme, there may exist two or more alternative switching 

schemes, which may complement each other’s capabilities. For instance, the traffic intensity 

based alternate routing for WDM networks, proposed by Lin. et.al, propose alternate paths of 

circuit-switched channels [65]. This scheme is not a Hybrid Switched scheme because it uses 

circuit-switching (fast circuit switching) in alternate paths. In fact, most hybrid switching 

schemes proposed for WDM networks are a combination of circuit and packet switching 

schemes, which is very much the idea of capacity switching. Hybrid switching, as mentioned in 

the existing literature, can be termed as special kind of capacity switching scheme applicable to 

WDM networks.                   

2.2 HYBRID SWITCHING SCHEMES IN WDM NETWORKS  

The proliferation of data traffic in the access layer led to the need for high capacity transport in 

the core networks.  Wavelength division multiplexing is a scalable solution currently deployed in 

the core network, to provide cheap bulk carrying capacity for the ever growing access traffic. 
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Currently, the core network traffic is circuit-switched, where a circuit consists of concatenated 

wavelengths that are pre-configured between a pair of edge nodes.  Research initiatives may be 

taken to provide on all optical core switching capability that is dynamic in nature. Dynamic light 

paths, optical burst switching, and optical packet switching are some examples of schemes that 

support the dynamic/statistical access of core network wavelengths.  

Unlike a statically-provisioned light-path, dynamic schemes do not nail-down 

wavelengths between a pair of nodes. Dynamic schemes treat wavelengths as fluid entities that 

can be switched among traffic sources as per demand. Although dynamic schemes provide 

flexibility to core networks, they nevertheless introduce additional complexities compared to 

static schemes. Partly due to the immaturity of high speed photonic devices and partly due to 

uncertainty regarding the applications and bandwidth demands, a hybrid approach is considered 

for core networks. Most of the existing literature on this topic combines OCS and OPS/OBS 

schemes in different ways. In this section, different optical switching schemes, including hybrid 

schemes will be reviewed in sufficient detail. 

2.2.1  CIRCUIT SWITCHING IN WDM 

The basic component of a WDM core network is the circuit-switched light-path. A light-path is 

an end-to-end path set up by concatenating wavelengths at each intermediate node of the path. 

The light paths are circuit switched channels that are dedicated to a pair of source-destination 

nodes. The intermediate nodes in a light-path serve to switch wavelengths/fibers either statically 

or dynamically. Optical patch panels are used to perform static switching and either 

reconfigurable optical add-drop multiplexers (ROADMs) or optical cross connects (OXCs) are 

used for dynamic switching [7]. Using OXCs or ROADMs, light-paths can be dynamically set 

up, or torn down, depending on traffic demands. Such optical circuit switched WDM network, is 

also called wavelength switched network. In a wavelength switched network, wavelength 

converters may also be needed if the light path has to maintain continuity of multiple 

wavelengths [7][8].      

  Once a light path is set up, the traffic on the light-path does not undergo further 

processing, which maintains switching simplicity and the scalability attributed to the circuited-
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switched paradigm. Figure 2.2 shows two light paths of wavelengths λ1 and λ2 set up within the 

core optical network. The light paths are created between the client access networks, which in 

Figure 2.2 are the IP networks. The light-paths and the optical cross connects are transparent to 

the traffic unit they carry. In Figure 2.2, filling the transport wavelengths the light-path carries IP 

packets and packet switching is performed only at the edge nodes of the IP network.  

 

 
Figure 2.2 Light paths in an optical circuit switched network, with IP access layer [19] 

 

   Light-paths can be set up statically or dynamically within the core network. Routing 

and Wavelength Assignment (RAW) are important tasks to be performed while setting up a 

light-path, [65]. Dynamic wavelength switched networks enable automated provisioning of light 

paths and capacity adaptation in the optical core network. They also provide shared protection 

paths in case of failure situations. 

   Wavelength switched networks can support client traffic of multiple granularities by 

transporting different services along different light paths.  In carrying client traffic of a smaller 

granularity than an entire wavelength, the wavelength needs to be packed for transport 

efficiency. Such a process of packing wavelengths is termed grooming [63]. Grooming is 

performed electronically at the edge nodes, using SONET/SDH or MPLS standards.  Although 

grooming allows efficient use of wavelength capacity, it introduces additional layers between the 

client traffic (for instance IP) and the WDM transport layers.  
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2.2.2   OPTICAL PACKET/BURST SWITCHING 

 Due to the coarse granularity of circuit switched wavelengths, the access layer traffic needs to 

be aggregated and statistically multiplexed onto WDM channels. This makes the architecture of a 

core network layered as IP/SONET/WDM or MPLS/ WDM etc. Typically the aggregation and 

multiplexing is performed electronically and such schemes have scalability problems as the 

channel rate increases [1] [8]. In order to overcome the scalability problem, optical 

aggregation/statistical multiplexing schemes have been proposed [12]. Optical packet switching 

was initially proposed for IP/WDM, by removing all intermediate layers [64]. OPS, however, 

requires fast packet switches that can reconfigure in nanoseconds.  Due to slow switching rates 

(ns) of optical switches or due to the inability to integrate switching elements in a cost effective 

manner, OPS switching has not been commercially implemented.  

 OPS is also constrained by lack of efficient optical processors and optical buffers 

[10][12]. Dynamic channel allocation, which comes naturally to packet switches, is highly 

dependent on fast processors and efficient buffers. All optical buffers can only be implemented 

using fiber delay lines. Fiber delay lines (FDL) of various graduated lengths may be used to 

produce delay if there is a contention for wavelengths. Yet another option to provide contention 

resolution in OPS is to use wavelength converters [6]. Even though wavelength conversion 

provides an efficient mechanism for contention resolution, they are more expensive than FDLs.  

    In order to overcome the constraints posed by switching, processing and buffering 

devices in OPS, Optical burst switching (OBS) has been proposed [15][16]. While OPS 

switching every packet, OBS does so for a train of packets called bursts. Burst switching times 

may range from milliseconds to seconds and MEMS based switching devices can easily support 

these switching rates. Also, MEMS devices can be integrated into large port count switches. 

OBS also simplifies header processing by doing it electronically and transmitting the header in a 

different channel than the bursts. The header is sent shortly before the bursts are sent, in order to 

reserve the switching resources, prior to the burst arrival. Both the offset duration and the burst 

length may be optimized for maximum through put.  

  OBS has some features common to circuit and packet switching. While OBS provides 

statistical multiplexing gains and dynamic channel allocation, it also uses reservation and out of 

band signaling mechanisms that are similar to circuit-switching. It is also assumed that 
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contention resolution is obtained by reserving resources prior to the burst’s arrival at the switch. 

Contention of bursts may still be a problem at heavy loads, in which case huge buffers may be 

required.  

OBS may be asynchronous or time synchronized. A time synchronous OBS will 

synchronize the arrival of each burst at the switch and it is seen that synchronization enables use 

of re-arrangably non-fabric that requires lesser cross points [54][55]. 

 

2.3 HYBRID NETWORKS 

The literature of Hybrid Networks classifies optical Hybrid Networks into client-server, parallel, 

and integrated schemes based on the method of interaction between the two alternative switching 

schemes [17]. This literature review uses a different approach to classify the Hybrid Networks, 

one based on the hierarchy among the circuit and packet/burst switched paradigms, as shown in 

Figure 2.1. In a non-hierarchical paradigm, the switching schemes do not directly interact with 

each other. A non-hierarchical scheme is referred to as parallel scheme in the literature. In such a 

scheme the edge traffic is usually partitioned based on it performance requirements. This kind of 

traffic partitioning, is different from a hierarchical scheme, where the traffic is partitioned based 

on its capacity requirements in a strictly hierarchical manner.  The hierarchical scheme is 

characterized by a traffic overload situation, in which the packet/burst switched (or an alternative 

scheme) is allowed to carry the overload. Yet another approach of conceiving the hierarchical 

approach is to, consider the circuit switched layer as providing a virtual point to point topology 

for the burst/packet switched layer. Such an approach is also called a client-server approach, 

where the “client” OBS layer, requests a virtual topology from the “server” OCS layer [18]. In 

this section, some of the current and emerging literature on optical Hybrid Networks in 

discussed.  
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2.3.1  NON-HIERARCHICAL, PARALLEL SCHEMES 

In a parallel hybrid switching scheme, packet and circuit switched channels exist in parallel, 

serving different kinds of traffic, in order to meet their respective performance goals [17][18].  

For instance, services requiring deterministic service guarantees can use the circuit switched 

channels and those requiring best effort service can use separate packet switched channels. Such 

services create separate circuit/packet switched logical networks based on the service 

requirements. The edge nodes segregate traffic into circuit/packet switched networks based on 

the traffic bandwidth requirement, grade of service etc. Parallel circuit/packet switched networks 

may involve greater degree of interaction if they are set dynamically based on changing traffic 

pattern. In such a case, the hybrid switches may need to support circuit/packet switching 

capabilities for all available channels and the switches need to be flexible enough to be able to 

function in circuit/packet mode.  

                In most of the parallel schemes, the edge node selects the appropriate transport 

method. For instance, an IP packet can be transported as an optical byte stream along a 

permanent or dynamic light-path or as packets (or bursts), along the same or different paths. 

There are also parallel schemes where it is not the edge node, but the user, who selects the 

appropriate switching scheme [21]. In CHEETAH, an end user can select among a primary 

SONET/SDH path or a secondary TCP/IP path.  

In addition to meeting various performance goals of different traffic types, the multi 

service architecture also aids migration of core networks into more sophisticated schemes [22]. 

For instance, in the Polymorphic architecture, different kinds of switching schemes may exists at 

different times, depending on the evolution of complex switching schemes such as OBS and OPS 

etc.  

While this sharing of network channels by different switching schemes provides resource 

efficiency, it may also call for a unified control plane to facilitate network operation. In order to 

do so, the details of all the technologies need to be considered and the process itself may take 

much time and effort. The time and effort may become a more crucial issue if the constantly 

changing switching technology may introduce newer schemes into the core network. As is the 

case with most Hybrid Networks there is a clear tradeoff between resource sharing and 

realization complexity.   
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2.3.2  HIERARCHICAL SCHEMES  

A hierarchical scheme is characterized by a distinct hierarchy between the operations of the 

circuit and packet/burst switching schemes. The hierarchy causes the traffic to be split into 

primary and alternative switching schemes. The primary switching scheme is usually a circuit 

switched scheme and the alternative packet/burst switched scheme is accessed during an 

overload at the primary level. The hierarchy also causes the wavelengths in a link to be 

partitioned between circuit and packet/burst mode operation, at any instance of time. Although a 

link’s wavelengths are partitioned, they are not independent of each other. The switching 

operations on the partitioned wavelengths are bound to each other by the overflow process. This 

kind of hierarchical relationship between the primary and alternative switching schemes makes 

hierarchical schemes different from the parallel schemes. Although the concept of hierarchical 

operation, characterized by the event of overflow, has not been explicitly categorized in the 

literature, several papers have alluded to this concept in different ways. In this section, such 

papers will be identified and compared among each other.  

Hierarchical schemes can be further classified into stationary and non-stationary 

methods. In a stationary approach, the number of partitioned wavelengths available for circuit 

and packet/burst switched operations are relatively static in nature. In a non- stationary approach, 

a wavelength can operate in circuit or packet switched mode, depending on the traffic conditions. 

In such schemes, the proportion of wavelengths that carry circuit and packet switched traffic 

vary with time. 

 

2.3.2.1 NON-STATIONARY, HIERARCHICAL AND INTERGRATED SCHEMES 

In a non-stationary approach, the wavelengths operate in circuit or packet switched mode 

depending on overload conditions. Such a hybrid operation is also classified under the name of 

Integrated Hybrid Operation in the existing literature because the wavelengths that support 

hybrid operation are enabled to function in circuit and packet switched modes depending on the 

traffic loads. Thus, a wavelength may be accessed by, both, the packet and circuit switched 

components of an integrated switch. In the ORION and ‘OpiMigua’ project, an integrated 

network is made of nodes that can set up dynamic circuit switched light-paths and perform 

packet switching at the same time [23][24]. If a certain light path is overloaded with traffic, 
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additional packet switched paths are accessed to carry the overload. Packet switched paths are 

created from idle light paths, by inserting marked ‘overspill’ packets onto these light paths. The 

light path is said to function in ‘overspill’ mode for the duration it carries the over-spilled 

packets. The ‘over-spill’ packets are switched at every hop of the path, unlike the primary light-

path accessed by the non-overspill packets.  

The ORION project provides the router architecture and routing policies that may 

influence the network performance. Cases of constrained and unconstrained routing policies are 

considered, along with cases where the ‘overspill’ packets enter or do not enter a light path along 

its path. Performance evaluation of utilization, delay, and packet loss has been performed for 

examples of non-stationary IP traffic. It can be seen that the ORION can absorb temporary 

overloads, provided sufficient buffering is provided at the nodes.  

In case of ORION, the number of packet switched ports is conserved by concentrating the 

number of incoming packets at the receiving side of the packet switch. It can be seen that the 

concentration ratio plays an important role in the loss performance of the node. Decreasing the 

size of the packet switch may impact the dimension of the buffers and the complexity of the 

routing technique to achieve the same performance. It still is not known how much ORION’s 

complexity trades off against the size of the packet switch. In other words, whether there exists 

an optimal size of an ORION packet switch, to achieve a required performance level.  

Besides the ORION project, there is also the HOTNET architecture, which can be 

classified as an integrated architecture [20]. In the case of HOTNET, the time multiplexed OCS 

and slotted OBS operate on a given set of wavelengths in an integrated manner. The traffic 

offered to an edge node is classified, based on its flow duration and bandwidth needs and 

forwarded to an appropriate forwarding queue. The mode of transport for the given traffic stream 

is selected from the circuit or burst switching schemes. Long flows are wavelength routed, 

whereas short flows are ‘message’/burst switched. The architecture of HOTNET provides a 

control structure consisting of resource managers and bandwidth brokers that help assign 

bandwidth to the traffic sources in real time.  

    Although HOTNET and ORION are similar with respect each other in their integrated 

use of wavelengths, HOTNET does not contain any hierarchy between the OCS and OBS 

schemes. Both the schemes work parallel to each other and the traffic is partitioned based on Qos 
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requirements, rather than any overload situation. Thus, we can include HOTNET under an 

integrated scheme but not under a hierarchical scheme. 

      Both ORION and HOTNET are optical networks, where the OCS paradigms have 

dynamic light path capabilities. The difference between invoking a new light path and the 

packet/burst mode operation, depends on the time scale of traffic overload or flow duration, for 

ORION and HOTNET respectively. Light paths may be set up for larger timescales and 

packet/burst mode for smaller ones. For a given time scale / time frame, the traffic overload 

situation can be measured by its statistical variance and mean parameters. It would be a 

worthwhile study to examine the effect of traffic mean and variance on the number of 

wavelengths using circuit and packet/burst switched modes. This would provide the relationship 

between the number of circuit and packet switched channels and the traffic mean and variance at 

various time scales.  

       

2.3.2.2  STATIONARY, HIERARCHICAL SCHEMES In a stationary hierarchical scheme, 

the OBS/OPS layer is used to absorb overloads from the OCS scheme. The OCS layer is 

assumed to consist of static or quasi-static wavelength switched network (WSN) channels. This 

means, the reconfiguration of OCS channels occur at a very large time scale compared to time 

scales of end to end delay.  

 Example of a stationary hierarchical scheme is the Optical burst Switched Transport 

Network (OBTN) architecture [18]. In an OBTN, burst switched traffic offered by the edge node, 

is transported over a primary OCS channel or an alternative path of shared OBS channels. The 

hierarchy proposed in the paper has more levels consisting of OCS channels (no contention 

resolution), OCS channels with wavelength conversion and then with buffering, alternative 

channels without and with contention resolution, respectively. OCS channels, without contention 

resolution gets the highest priority and OBS channels with buffering gets the lowest priority. In 

case of OBTN, the alternative path is a shadow of the primary physical path. 

The OBTN scheme is classified under the client-server approach of Hybrid Networks. 

The burst switched ‘client’ layer requests a virtual topology service from the ‘server’ OCS layer. 

The virtual one hop path is created by the OCS layer by optically bypassing the intermediate 

physical hops. The virtual topology in OBTN can be created using a demand based or path based 

approach. In the demand based approach, virtual paths are created only if the demand exceeds a 
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certain threshold. In the path based approach, virtual paths are created only if the number hops 

exceeds a certain number. The effect of both approaches on the number of OBS switch ports has 

been studied.  

The OBTN, which has both OBS and OCS layers, can be extended to pure OBS and 

‘Burst over Circuits’ (BoCs) schemes [18]. In BoCs, the burst traffic is carried to its destination 

by a circuit switched virtual hop. It has been found that number of OBS switches ports and fiber 

hops of OBTN lies in between that of OBS and BoCs schemes. Relative to OBS and BoCs, 

OBTN provides an optimal performance regarding resource usage (switch ports and hops) for 

intermediate loads. As the load increases, the margin shifts towards BoCs and for smaller loads 

OBS is favored.  

 

2.4 HYBRID SCHEME WITH OVERFLOW CHANNELS 

The hybrid scheme presented in this dissertation can be classified as a stationary hierarchical 

approach. There exists a clearly defined hierarchy between the primary circuit switched and 

alternative packet/burst switched layer. The two layers are connected through the overflow 

process. In this respect the proposed approach is more or less similar to the OBTN. However, the 

proposed Hybrid Node, because of the optimality condition it has to satisfy, is different from an 

OBTN core node. The number of primary and overflow channels for a given traffic load, 

performance, and cost should satisfy the optimality condition. Although OBTN does relate traffic 

load to the number of switch ports and fiber hops, it does not explicitly state that the demand or 

path threshold used to dimension the links should be optimal. Thus, it needs to be shown 

quantitatively that a hybrid link is more beneficial than purely OCS or OBS links. 

The dimensioning procedure used in this dissertation is different from the one used in 

OBTN. In OBTN the offered traffic is split in a certain arbitrary ratio between the OCS and OBS 

layers. The split in demand causes the traffic in OBS to be more bursty than the traffic carried by 

the OCS layer. The effect of traffic burstiness in the overflow layer is to require more resources 

(switch ports) for a given loss/delay performance.  Thus, overflow theory is used, in order to 
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determine the dimension of OCS and OBS channels by considering the effect of burstiness in 

traffic overflow.   

The proposed hybrid scheme uses overflow theory to determine the number of overflow 

channels required for a given size of primary channels. The number of primary channels 

provides the threshold in this case, which would trigger an overflow into the alternate layer. The 

optimum threshold is then determined by balancing the switching and transport costs of both 

layers in the nodes. The optimality is specified as minimum node cost, achieved by balancing the 

number of primary and overflow channels in the node. In the next section, an overview of 

overflow theory will be provided.  

 

2.5 OVERFLOW THEORY 

A brief introduction of overflow theory is a pre-requisite to understanding the traffic models used 

in this chapter. In the classical Erlang-B formula, traffic arrival is assumed to be pure chance 

traffic described by the Poisson distribution. However, in networks that use overflow channels, 

the overflow traffic is no longer a pure chance traffic.  Since classical Erlang B formula cannot 

accurately calculate the blocking probability for the overflow traffic, a new model for the 

overflow traffic had to be developed. In principle the study of overflow models can be split into 

vertical and horizontal methods [25]. By vertical studies we can calculate the state probabilities 

of the overflow system and by horizontal studies, we analyze the distance between the overflow 

call arrival processes. 

2.5.1  STATE PROBAILITIES OF OVERFLOW CHANNELS 

The overflow process can be described by the distribution of busy circuits when overflow traffic 

is offered to a group of servers. Kosten derived the state probabilities when the overflow 

channels constituted an infinite server group [27][28]. The distribution of calls in the overflow 

channel group is linked to the states in the primary channel group. Thus, in order to consider the 
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states of an overflow system, we need a two-dimensional approach that considers the primary 

and overflow channel groups. The state transition diagram of the Kosten system is shown in 

Figure 2.3. It is assumed in this case, that the traffic offered to the primary group is a Poisson 

arrival process with mean λ. Brockmeyer extended the state transition diagram to limited channel 

systems [29]. The mean and variance of the busy circuit distribution used to characterize the 

overflow process, is given by  

The mean of the overflow traffic offered to overflow channels, ( )),* NAEAM = , 

where µλ /=A  and ),( NAE is the Erlang blocking probability of the primary channel 

system with N channels. 
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Figure 2.3 State transition diagram for Kosten’s system.  
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Figure 2.4 Effect of peakedness on blocking probability [26]. 

 

   For a peaked traffic, unlike Poisson traffic, the mean number of arrivals during an 

instance is not equal to its variance. An offered traffic is considered to be peaked or smooth, if its 

variance is greater or lesser than its mean, respectively. We call the traffic ‘bursty’ or ‘smooth’ if 

the Peakedness is greater or less than one, respectively. For Poisson traffic, the Peakedness is 

equal to one.  The effect of a peaked traffic compared to a Poisson arrival, is to produce more 

blocking, when offered to the same number of ‘markovian’ servers. Thus, the basic Erlang 

formula, that we apply for Poisson traffic needs to be modified /generalized for peaked traffic 

[26]. One of the effects of peaked traffic is to actually spread the probability of busy server over 

a wider range compared to Poisson distribution. Figure 2.4  shows the effect of Peakedness on 

generalized Erlang distribution.    

2.5.2  MOMENT MATCHING METHODS 

The moment matching method forms the basis of all techniques used in network analysis and 

synthesis of overflow traffic [37]. The moment matching technique works as follows. The arrival 

process is represented by a small set of parameters, which are its first two (or at most three) 

moments. Another process, called the equivalent process, is selected to represent the arrival 

process. The equivalent process is represented by a set of parameters such that the traffic it 
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generates has moments similar to the moments of the real arrival process. The equivalent process 

is then used to compute performance measures of interest such as call congestion, delay etc.  The 

Equivalent Random Transformation and the Interrupted Poisson Process are the two equivalent 

processes that we use for blocking analysis and simulation of bursty traffic. Both methods use 

the mean and Peakedness of the offered /overflow traffic to analyze the performance of the 

primary and overflow channel system. 

 

2.5.2.1 EQUIVALENT RANDOM TRANSFORMATION The Equivalent Random 

Transformation is the earliest application of the moment matching method [28] [31] [32]. We 

have already seen in the previous discussion on state transition diagram of overflow process that 

the overflow is always more peaked than the offered traffic.  This overflow model can be used to 

generate a bursty arrival process by the moment matching method.  This is done by assuming the 

bursty process, with mean M and variance V, is an overflow from a fictitious group of primary 

channels. The fictitious primary channels are given by parameters A* and N*, where A* 

represents the equivalent Poisson load and N* the number of primary channels that produced an 

overflow with mean M and variance V, as shown in Figure 2.3. From Kosten’s model, M and V 

must satisfy the relation 

( )**,* NAEAM =  and  ( )

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Approximate values of A* and N* are given by Rapp [31][32] as  

( )13* −+≈ ZZVA                                                                                                (2) 

( ) 1
1

** −−
−+

+
≈ M

ZM
ZMAN  

If the traffic described by M and V are offered to a group of N servers, the resulting 

overflow M’ and V’, can be calculated from the Brockmeyer model given by [Girard]: 
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The Brockemeyer model is similar to Kosten’s model shown in Figure 2.4, except that 

the state space is truncated at N overflow servers (instead of infinite servers). 
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2.6 INTERRUPTED POISSON PROCESS 

 In order to model the bursty traffic pattern for our performance analysis, we use the Interrupted 

Poisson Process. The Interrupted Poisson Process (IPP) is an ON/OFF model that can be 

described by three parameters; the on-to-off rate γ, the off-to-on rate ω and the arrival rate during 

on period, λ. The inter arrival time of an IPP stream can be characterized by a second order hyper 

exponential distribution, H2, A(t) given by [32][33];  
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Figure 2.5 Equivalent Random Process. 
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Figure 2.6 Interrupted Poisson Process. 
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2.7 CONCLUSION 

 As a part of the literature review, past and current research on capacity switching scheme has 

been discussed. The literature review provides a classification of capacity switched scheme, 

which includes the upcoming topic of hybrid optical networks. Some of the current researches on 

hybrid optical networks that come close to the proposed dissertation topic have been explained in 

detail. Since the dissertation topic makes extensive use of the overflow concept, a sufficiently 

detailed explanation of the overflow theory is also provided.         
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3.0 HYBRID PATH WITH OVERFLOW CHANNELS 

3.1 INTRODUCTION 

 Alternate path routing is typically used in networks to alleviate traffic congestion during busy 

hours. Fixed hierarchical alternate routing is traditionally used in toll telephone networks to 

absorb call overflows during peak busy hours [31].  Typically, an alternate path is dynamically 

shared by several overflowing calls during busy hours. Calls overflow whenever call volume 

exceeds the carrying capacity of a call’s primary path.  In hierarchical alternate routing schemes, 

a primary path does not carry any overflows from other primary paths. Instead it only provides 

overflows to be carried by the overflow channels. However, in non-hierarchical schemes, the 

primary path for one traffic source may be the overflow path for another.  In both cases, the 

function of alternate paths is to provide ‘path redundancy’ to absorb primary channel overflows, 

as shown in Figure 3.1.  

Overflow channels behave like a ‘bandwidth-buffer’ that is statistically shared by several 

sources during traffic overloads. Overflow channels are the extra channel capacity, statistically 

accessed by the sources, whenever their dedicated primary channels cannot keep up with their 

channel demand. Apparently, the combination of primary and overflow channel usage by a 

traffic source mirrors the statistical nature of channel demand offered by the traffic source to the 

core network. Channel demand of a source can be statistically classified into a static average 

demand, which is stable over a given time, and a variable demand that fluctuates in the same 

time frame. Intuitively, primary channels can carry the ‘relatively static’ part of offered traffic, 

while the overflow channels can be used to meet the capacity demand variation above the 

primary channel capacity.  
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Figure 3.1 Alternate path routing along AD. Path AD carries overflow traffic to destinations 

B and C. 
 

It is intuitively apparent that static and variable components of the offered traffic load may be 

related to the number of primary and overflow channels.  

Overflow theory, developed over the past decades provides the method to determine the 

number of overflow channels, once we know how many primary channels are present to carry 

the source traffic load. However, the question of how many primary channels to provide may 

depend on factors other than just the traffic demand placed by the source.  

Factors that will decide the number of primary/overflow channels available to carry a 

given traffic demand may depend on several assumptions such as: the core network architecture, 

performance requirements, the transport mechanism, and the cost structure of the network. The 

proposed hybrid network architecture consists of a primary layer with OCS light paths and an 

overflow layer with OBS channels. The performance requirement of interest for the primary 

layer is the average primary channel utilization and that for the overflow layer is a fixed blocking 

probability. The transport unit for both primary and overflow channels is the optical burst. The 

cost structure assumes that an overflow path, due to its rapidly switched paths will require more 

resource than a similar primary path that bypasses any fast switching at the intermediate hops. 

The assumptions are explained in detail in sections 3.1 and 3.2  

 The assumed hybrid network contains several routes that connect the hybrid nodes 

among themselves. A ‘hybrid route’ is characterized by its source and destination hybrid nodes. 

Each route consists of a possible ‘hybrid path’ that contains a primary path and an overflow path. 

The primary and overflow paths are made of several primary and overflow channels, 

respectively. Thus, a route between any two hybrid nodes may be composed of a different 
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number of primary and overflow channels. The number of primary and overflow channels in a 

route may depend on several factors such as: the load offered to the route, the relative cost of the 

primary and the overflow paths and number of access sources sharing the route. Sections 3.2 and 

3.3 will examine the dependency of an optimal hybrid route on all these factors. In addition, 

section 3.4 will show how the optical burst formation at the edge node can impact the hybrid 

operation of a route.                                                          

3.2 A HYBRID CORE NETWORK ARCHITECTURE 

 Functionally, the nodes in a core network can be classified as edge and core nodes. The edge 

nodes aggregate traffic load from low-speed access-layer channels and place it on high speed 

core channels. For a core WDM network, the high speed channels are made of multiple 

wavelengths operating at 10 or 40 Gbps. The edge node aggregates low speed access traffic and 

it packs the high speed links appropriately. Typically, lower speed SONET/SDH streams in the 

access layer are aggregated into higher speed SONET/SDH streams in the core layer. There is, 

however, a growing trend in the industry to replace SONET standards with carrier-grade 

Ethernet at the access layer. Also, optical packet/burst switching concepts have been discussed as 

a possible method to aggregate and transport edge-traffic in an asynchronous manner. In this 

dissertation, a core-network architecture based on OBS is proposed. 

3.2.1  HYBRID NETWORK ARCHITECTURE 

The proposed overflow network is an OBS-based network that will provide end to end paths for 

the access networks that are connected to it. The existing core network consists of the facility-

switched paths that carry both telephone traffic and Internet traffic. The PSTN and the Internet 

form ‘virtual networks’ that use the same underlying core network infrastructure, as shown in 

Figure 3.2. Any overflows from the ‘virtual networks’ are absorbed by the proposed overflow 

network that also uses the same underlying core-network infrastructure.  
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     Figure 3.2 The Proposed Overflow Network. 
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incoming packets to the proposed overflow layer. The overflows are assembled into optical 
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overflow path, for the remaining offered bursts. The bursts are lost if the proposed network 

cannot provide either of these paths within the core network. Both, the primary and the 

secondary overflow paths are fabricated from the same traditional facility-switched infrastructure 
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However, these packets access the alternate overflow paths as optical bursts and burst assembly 

has to be performed at the access-core interface to the proposed network. 

The optical bursts, which carry overflows from several access sources (virtual networks), 

are aggregated at the nodes of the proposed network. Some of these bursts are provided with a 

primary path and some of them take the secondary overflow path. The primary path, for which 

the channel configurations are permanently set up, is facility- switched. It appears that the 

channels in the primary path ‘by-pass’ any fast switching operation at the intermediate nodes.  

The bursts that enter the secondary overflow channels (shown as vertical dotted lines) are 

further aggregated with other overflows. If the burst remains on the secondary overflow path 

throughout its transit to the destination, it will be aggregated with more overflows at each hop.  

A burst that enters the overflow path, may attempt to enter a primary path at each hop of 

its path. If the burst enters a primary path, it will remain in the primary path, all the way, to the 

destination. For instance, in Figure 3.3 incoming bursts along the overflow channels from Nodes 

1 and 2 will enter a primary light-path at Node 4. The figure shows the access-core interface of 

the proposed overflow network. As an example, in the figure, Nodes1, 2 and 3 sends bursts to 

node 6, via Nodes 4 and 5. In Figure 3.3, Nodes 1, 2 and 3 aggregate the incoming overflows and 

put those on primary and secondary overflow paths that go to edge-node 6. 
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Figure 3.3 The Proposed Overflow Network and its access-core interface 
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At Nodes 4 and 5, the bursts that appear on the incoming primary channels ‘by-pass’ any 

aggregation. Bursts along the incoming overflow channels are aggregated and switched using 

optical burst switches. These bursts are aggregated on outgoing primary and overflow channels. 

When all bursts reach Node 6 (along different paths), they are segregated and segmented and 

then sent to appropriate access networks.  

All nodes within the proposed overflow network perform both Facility-Switching and 

optical burst switching. Nodes perform Facility-Switching on incoming primary channels and 

they forward the bursts arriving via a primary channel, to a fixed output primary channel. Bursts 

that arrive at a node, via overflow channels can be destined to any of the output channels and 

thus, Optical-Burst switching is performed for bursts arriving the nodes via overflow channels. 

In Figure 3.3, the overflow channels are depicted by dotted lines and primary channels by dark 

lines. Facility switched primary channels are shown as ‘bypassing’ the Optical Burst switching 

operation and they have a hardwired ‘internal’ path within the Nodes. On the other hand, there is 

no hardwired ‘internal’ path between an incoming overflow channel and outgoing 

primary/overflow channels.  

3.2.2  HYBRID NODES 

All the nodes depicted in the proposed overflow network in Figure 3.3, do not perform the same 

functions. While Nodes 1, 2 and 3 perform aggregation of bursts formed at the access-core 

interface, Nodes 4 and 5 aggregate bursts that overflow from nodes 1, 2 and 3. In general, a node 

in the proposed network may perform some, or all of the functions, as shown in Figure 3.4. The 

node depicted in Figure 3.4 is called a Hybrid Node because it performs both Facility Switching 

and Burst Switching, in the same ‘physical’ node.  
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Figure 3.4 A Hybrid Node.   
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A Hybrid Node may obtain overflows from the access-core interface, or from other 

Hybrid Nodes in the proposed network. For instance, in Figure 3.4, S1 and S2 may be two 

gateway routers and S3 may be another Hybrid Node in the proposed network. The Hybrid nodes 

may have incoming primary channels, which may be the last leg of a primary path and all bursts 

arriving through this path may have to be dropped at the Hybrid Node. There may also be 

incoming primary channels that belong to a facility switched, primary path.  

The Hybrid Node contains primary and secondary overflow channels as its outputs. The 

Hybrid Node will place some of the input overflows on the respective outgoing primary 

channels. For instance, part of the overflows from S1 and S2 are placed to two different sets of 

primary channels. A portion of the overflow from S3 is placed on a different set of primary 

channels. Whatever portion of input overflows could not be placed on primary channels, are 

called ‘internal overflows’ in the Hybrid Node. The internal overflows are aggregated onto 

outgoing overflow channels. These outgoing overflow channels will appear as inputs to a 

subsequent Hybrid Node along the path. 

 The proposed network, which is made of Hybrid Nodes, will be called the Hybrid 

Network. The Hybrid Network will contain a primary layer consisting of primary channels and 

the overflow layer consisting of the secondary overflow channels. The primary layer, which 

consists of facility-switched light-paths, may operate with certain fixed average channel 

utilization. The higher the primary-channel utilization, the lower the degree of over-provisioning 

in the network. In the same vein, under-utilized primary channels implies, too much over-

provisioning in the core network. The secondary overflow channels, unlike the primary channels, 

enable statistical sharing of channels, which results in efficient use of the channels. Since better 

channel efficiency also results in contention for channels, some degree of burst blocking 

probability occurs at the secondary overflow layer. 

The network architecture shown in Figure 3.5 contains a secondary overflow layer that 

provides a fixed maximum blocking rate. Over this fixed blocking rate, the core network 

provides a better burst loss-performance by providing primary channel paths with guaranteed 

delivery of bursts for part of the offered edge traffic. The primary channels provide service 

guarantees by increasing the degree of over-provisioning, which occurs by decreasing the degree 

of channel utilization. The main question that we seek to answer is how many primary channels 
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can be put in the network, in addition to the secondary overflow channels that provide a fixed 

maximum blocking rate, in order to achieve an optimal proposed overflow network.  

 

Figure 3.5 The proposed overflow network (Hybrid Network) layers 

3.2.3  TRUNCATION OF ARRIVAL PROCESS  

We have seen in Figure 3.3 that overflows may occur both, inside and outside the realms of the 

proposed overflow network. An overflow may occur first, outside the proposed network, which 

we call “primary overflows”. In Figure 3.6, this overflow occurs, when buffers and channels of 

system S1, which is outside the realms of the proposed network system S2, allows only part of 

the offered arrivals to be carried. System S1 may consist of the gateway router, whose output 

ports and buffer-size limitations may result in primary overflows. The primary overflows are 

assembled into optical bursts and offered to the primary channels. In Figure 3.6, the primary 

overflows are carried by the primary channels of system S2. All those optical bursts not carried 

by the primary channels are offered to the secondary overflow channels of system S2. 
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Figure 3.6. Case 1. Truncation of offered arrival process in three steps. 
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The distribution of TX(x) is further altered by the burst assembly process. It is known that 

burst assemblers smooth the incoming traffic arrival process[] . Section 3.6 contains an example 

that shows the smoothing process. During burst assembly, say by using a timer, all packets that 

arrive in the time interval T are considered to be part of an optical burst. The next burst is formed 

when the first overflow packet arrives in the next time interval T. The inter-arrival time of bursts 

is equal to the inter-arrival time of the packets, plus some deterministic time T. In this way, the 

burst assembly process ‘smoothes’ the arrival distribution, as it appears to overflow system S2 in 

Figure 3.6. It can be seen that burst formation, cuts of the ‘head’ portion of the pdf of the packet 

arrival distribution TX(x). Probability of a burst-arrival is equal to the probability that the first 

packet arrives in time interval T. All other packets that arrive within time interval T will not be 

considered as a burst arrival; instead they will be part of the burst formed in the respective time 

interval. Even if the burst assembly process is not timer-based, but based on a fixed number of 

packets per burst, similar smoothing of the arrival process is expected to take place. 

The distribution T’Y(x) gives the pdf of the arrival process of the optical bursts to the 

primary channels in system S2. T’Y(x) is obtained by truncating TX(x) and considering only the 

portion between X and Y (including Y). The denominator of T’Y(x) contains the cdf of TX(x) up 

to x = Y.  



 56 

The optical burst-arrivals, whose distribution is given by T’Y(x) are further truncated by 

the primary channels of system S2. This time the tail of T’Y(x) is truncated and offered to the 

secondary overflow channels. Let’s assume that, depending on the number of primary channels, 

the tail of T’Y(x) gets truncated at x=Z. We thus have TZ(x), which is obtained by scaling T’Y(x) 

by the cdf of T’Y(x) at x=Y. Let the offered arrival-process F(x) be truncated successively to 

obtain TX(x), T’Y(x) and TZ(x), respectively. Figure 3.6 depicts pdf of TX(x), T’Y(x) and TZ(x). We 

may call such a truncation as “case 1”. 

Figure 3.6 depicts Case 1, in which, TZ(x), which is offered to the secondary overflow 

channels, is obtained by truncating the tail of the pdf of F(x) twice; once by system S1 and then 

once again by the primary channels of system S2. As an alternative, we may consider Case 2, 

where primary channels may be removed from system S2, so that it contains only overflow 

channels. In such a case, system S1 contains only primary channels that may not carry optical 

bursts. Let system S1, truncate the pdf of the arrival F(x) by an amount X’ and let TX’(x) be the 

truncated arrival pdf. The truncated arrival is then offered to a burst assembler, which will then, 

result in a pdf T’Y’(x). The truncated arrival T’Y’(x) is offered to the overflow channels of system 

S2. Figure 3.7 shows the distribution of the arrival process at different stages. 

 
Figure 3.7. Case 2. Truncation at two levels. 
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The overflow arrivals offered to the secondary overflow channels in Case 1 and to the 

overflow channels in Case 2, are equal if the section of F(x), between Z and Y for Case 1 is equal 

to the section of F(x) , between X’ and Y’ for Case 2. This means, if truncation by the burst 

assemblers in the two cases is equal, then the double truncation of the tail of F(x) in Case 1 is 

equal to the single ‘deeper’ truncation of the tail of F(x) in Case2.   

Since there is no end to end primary overflow path between any two pairs of nodes for 

Case 2, the primary path of Case 2 lies exclusively in system S1, and system S2 is used to carry 

only the overflows using OBS. In Case 1, however, the OBS based system S2, provides primary 

and secondary paths for overflows from system S1. In addition, system S2 also provides the 

possibility of primary path entry after the optical bursts take subsequent hops along the 

secondary overflow channels. In the dissertation, Case 1 is focused upon and Case 2 is 

represented as a limiting condition of Case 1 when there are no primary paths in the overflow 

system S2.  

In the rest of the document we may focus only on system S2 and we assume that the 

distribution of optical burst arrival to system S2 is known. Hence, we consider only one 

truncation, which will result in secondary overflow arrival process. We may call the secondary 
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overflow channels as overflow channels and the primary overflow channels as the primary 

channels 

3.2.4  PRIMARY AND OVERFLOW CHANNEL MECHANISM 

In the proposed architecture, WDM links connected to each Hybrid Node is partitioned into 

primary and overflow channels. On a given outgoing link, sets of primary light paths are 

exclusively pre-provisioned between pairs of source and destination Hybrid Nodes to carry bursts 

belonging to each traffic source, attached to the Hybrid Node. At the same time, a number of 

wavelengths are dedicated to collect bursts that overflow from the primary channels, which must 

also be routed along that link. While primary channels are light paths reserved for each traffic 

sources connecting to specific destinations, overflow channels are shared by all the sources.  

Figure 3.8 shows an example of primary and overflow paths for two kinds of traffic 

sources using the core node. Primary path P1 is reserved for source S1 to send traffic to 

destination D1, and P2 is similarly reserved between S1 and D2.  Source 2 (S2) has a bundle of 

primary light-paths P3 and P4 going to D1 and D2 respectively. Overflow channels O1 are shared 

by S1 and S2 and are used to send traffic to D1 and D2. Any burst that is sent along O1 will 

appear at core node N1, where it will contend with bursts from other overflow channels from other 

nodes. Assume that a burst from S1, going to D1, appears at N1. The burst will first try to enter a 

set of primary light-paths P5 that goes to D1 and is reserved for overflow traffic that appears on 

O1 and goes to D1. It is to be noted that traffic that appears along O1 will contain bursts that 

belong to source S1 and S2.  If the burst finds P5 to be all occupied, it will look for a free 

overflow channels in O2 that go to node N2, which is on the way to D1. Meanwhile, primary 

light-paths P5 will cut through N2, without performing any fast switching. The bursts that enter 

N2 along O2 will once again try to enter a set of primary light-paths P6 reserved for traffic that 

arrives along O2 and goes to D1.  
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Figure 3.8 Primary and Overflow channels 

 

 

At each core node, bursts that arrive along the overflow channels will try to enter an 

appropriately reserved light path. Once the burst enters a light path, it has a guaranteed path to the 

destination node. If the burst cannot enter a light path, it will contend for the overflow channels. 

Contention at the overflow channels will result in the loss of some of the bursts that may find all 

overflow channels to be busy. If a burst is not lost at the overflow channels, it will enter the 

overflow channels and look to enter a primary light path at the next hybrid core node. 

The main entity of the proposed network architecture, which will manage channel 

allocation for the optical bursts, is the Hybrid Node. The Hybrid Node is an edge node if it accepts 

incoming optical bursts directly form the access layer. Although an edge node may also perform 

burst assembly, the scope of the dissertation is limited to the switching and queuing of bursts 

performed by the nodes. However, a brief explanation of the compatibility of the burst assembly 

process with the proposed architecture appears in section 3.4. A core node performs no assembly 

and it merely grooms incoming bursts onto primary/overflow channels via switching operation.  
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3.3 HYBRID NODE 

A core node/edge node depicted in Figure 3.3 and Figure 3.4, are Hybrid Nodes because they 

serve as entry points to a facility (circuit) switched and burst switched path. The Hybrid Node 

control layer makes a routing decision for an incoming optical burst. Once the control layer 

decides on the route path for the burst, it will make the decision of placing an optical burst on 

either a primary or an overflow channel. The probability that an incoming burst takes either a 

primary, or an overflow channel, depends on the relative amount of primary/overflow channels 

available in the links. By appropriate dimensioning, the probability of primary/overflow channel 

availability can be tuned. Once the control layer decides the route path, the switching hardware in 

the core /edge node will switch the incoming optical bursts into the primary and overflow channel 

groups. 

3.3.1    OVERFLOW PROCESS 

The process of overflow takes place prior to the actual arrival of an optical burst at a core node. 

Figure 3.9 shows the queuing of burst headers for node N0 in Figure 3.8. A burst header, sent 

prior to the actual burst, will request an appropriate primary light path through the core node. The 

control layer of the core node will queue the header based on its incoming link and destination 

node. If there is a primary light path available to satisfy the request made by the header, the light 

path is reserved on a first-come first-served basis. The link on which the burst arrives is connected 

to the reserved primary light path by reconfiguring the core node switch.  
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 Figure 3.9 Operation in a Hybrid Node, showing header queues for primary and overflow channels. 

 

If the channel request made by the header cannot be provided by any of the primary light 

paths associated to the header queue, the request overflows to an overflow queue. An overflow 

queue aggregates headers from all overflowing primary queues. There are as many overflow 

queues, as there are output links attached to the hybrid node. It is assumed that there is mapping 

between final destination of the headers and the output links. Once an overflow channel on an 

appropriate link is identified for the header, the core switch is reconfigured to connect the input 

link on which the burst corresponding to the header arrives, to the overflow channel that is 

reserved by the header. If the overflow channel request made by a header cannot be satisfied, the 

header is dropped from the core node. Along with the header, the incoming burst is also dropped.  

Scheduling primary and overflow channels in response to a burst request may depend on 

several criteria. One such criterion could be to minimize the need for wavelength conversion 

within a switch. In our case, we assume that full range wavelength conversion is possible and 

there are enough wavelength converter devices to make all interchanges possible. Thus, we may 

assume random scheduling of channels. It has to be kept in mind that bursts from a particular 

traffic source can only occupy a fixed set of reserved primary channels and each source has its 

own set of such channels that it can randomly access.  
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path. The only difference between the two paths is that the overflow channels perform switching 

at all hops, while primary channels bypass any switching at the intermediate hops.  

The hybrid node function can be classified into two parts. First, the hybrid node schedules 

an incoming burst to either primary/overflow channels along a route path. Second, the node 

provides the required hardware to perform the switching function upon burst arrival. The 

remaining sections of this chapter focus on the first function and chapter 4 focuses on the second 

function. Both functions can be viewed as two aspects of hybrid network that can be cost-

optimized.  

3.3.2  GENERAL CORE NODE 

 This description of a general core node is an attempt to generalize and model the function of the 

edge and core nodes in a network. An edge node has, as its traffic source, the access networks. A 

core node on the other hand, connects to several edge and other core nodes. The incoming traffic 

to a core node consists of primary and overflow traffic from other core/edge nodes as shown in 

Figure 3.8. While the primary channels bypass any fast switching operation within the core node, 

the overflow traffic will be fast- switched.  If we ignore the primary channels bypassing through 

a core node, its functions are similar to that of an edge node. The function of any general node, 

be it edge or core node, is to split the incoming traffic into primary and overflow channels. A 

core node performs this general node operation as well as optical bypass of incoming primary 

channels; an edge node performs only the general node operation.    

 A general node can do any of the following three functions. First, it can decide to have 

only primary channels carry the incoming traffic; that is, there are only primary channel groups 

for each traffic source. Figure 3.10 shows the case, where core Node 3 has only dedicated 

primary channels in its outgoing ports. Second, a node can also decide to switch all incoming 

traffic onto shared outgoing channels. In this case, the traffic sources are not provided with any 

primary channels; rather they are all aggregated and switched onto the next node. In Figure 3.10, 

Node 2 performs such a function. As a third option for the nodes, a node can decide to split its 

incoming traffic from each source into primary and overflow channels. Overflows from each 

primary channel group (attached to a traffic source) are statistically multiplexed along with other 
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overflows onto the overflow channels.  Node 4 in Figure 3.10 performs this function. It may be 

assumed that the first two cases are limiting conditions of the third case.  

 
Figure 3.10 Possibilities of operation. 

 

As far as a general node is concerned, we have the following questions to answer:  

 

1) How many primary and overflow channels are feasible in a core node for a given 

required blocking performance in the overflow layer? What is the optimal combination? 

2) Under what conditions will the core node have only primary, only overflow, and a 

combination of primary and overflow channels? 

3) How do questions 1) and 2) respond to various traffic characteristics and the   

relative cost of operating primary/overflow channels? 

          Thus, the question is to determine the optimal number of primary and overflow 

channels in a path, subject to measurable traffic load statistics, and channel cost conditions, in 

order to satisfy a given blocking performance at the overflow layer. In order to perform the 

performance modeling of a system, we first need to create a traffic model, a cost model, and a 

queuing model for the system. The traffic model is derived from the overflow theory discussed in 

chapter 2. In the coming sections, the cost and queuing model is explained. 
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3.4 MODELING THE GENERAL NODE     

The optimal design of a general node, mentioned in Section 3.3.2, entails optimizing the number 

of primary and overflow channels. The optimality condition needs to be satisfied for any given 

load and loss probability. In addition to performance and traffic demand, the cost structure of the 

node may affect the optimum number of primary and overflow channels. In this section, a 

general node is modeled as a loss node, operating for a given loss probability and offered traffic. 

In addition, the cost structure of the node is represented by the notion of cost ratio. 

3.4.1  QUEUEING MODEL 

 Traffic modeling for the offered and overflow arrival process was mentioned in section 2.3 of 

chapter 2. In this section, we develop a queuing model for the general node that will use the 

traffic model developed in the overflow theory. 

  The queuing model of a node consists of nodes called LossNode1 and LossNode2, 

which are connected together, as shown in Figure 3.11. Both the nodes are modeled as a GI/M/C 

queue. 

 

 
Figure 3.11 Queuing model of a Hybrid Node. 

 

There is a LossNode1 for every incoming channel group and outgoing primary channel 

group. Input traffic to a LossNode1 queue, is assumed to be a 2- moment matched Interrupted 

Poisson Process (IPP). The IPP parameters can be mapped into the corresponding second-order 
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hyper-exponential (H2) parameters, r1, r2 and k. Using a recursive formula, the kth Factorial 

moments (Fk), of the overflow, can be calculated [41]. The first and second factorial moments, F1 

and F2 respectively, are then used to calculate the mean, mi  and the variance vi of the overflow 

process.  

   

   

     Mean overflow, im 1F=  ; 

     Variance overflow, 12
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Overflows from LossNode1 are aggregated and offered to a single LossNode2. Since we 

assume independent overflows, the moments of all the overflow processes algebraically add up 

during aggregation. Thus, the moments of the aggregated traffic offered to LossNode2 can be 

characterized by a single set of moments, M and V, as shown in Figure 3.11. This set of 

moments, is used to model the aggregated overflow as an IPP. The aggregated overflow arrival 

process can be approximated by a second-order hyper-exponential [32][41]. Thus, LossNode2 is 

modeled as a general independent arrival process. The first moment of overflow from 

LossNode2 can be calculated using the same recursive algorithm used for LossNode1, as shown 

in equations (3.4a), (3.4b) and (3.4c).                                                      

       

3.4.2  COST RATIO OF A HYBRID ROUTE 

In order to dimension the channels in the primary and overflow layers, it is important to balance 

cost of the two layers. For a given traffic load offered to the core network by a number of traffic 
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sources, the primary layer may provide better service guarantees, because it isolates bursts from 

each source. However, isolating the channels will result in under utilization or over provisioning 

of channels, particularly if the load offered to the channels is peaked. In order to carry the same 

offered traffic load offered by the same number of sources, the overflow layer helps provide 

better channel utilization. Overflow channels improve channel efficiency in the core network, by 

allowing traffic sources to share available link capacities. 

 For the sources to be able to statistically share overflow channels, the core nodes should 

be able to reconfigure input and output channel connections for each arriving burst. While there 

are some commercial products, fast switches working in the order of microseconds will be 

expensive until a large market develops. Although the overflow layer may save channels due to 

statistical sharing, these channels incur higher switching cost. On the other hand, a static/semi 

static primary layer need not reconfigure wavelengths along its route very often, thereby reduces 

the need for expensive fast switches.  

                Due to the current lack of scalability and prohibitive cost of terabit electronic routers, 

the research community is investigating optical switching schemes.  However, as of now, there 

are few commercially manufactured optical packet and burst switches and the cost of an OBS 

switch is not known. Thus, at this point we can only speculate the cost of switching and 

transporting over an overflow channel path, in relation to doing the same operations over a 

primary channel path. We define the relative cost of using an overflow channel and a primary 

channel by the path cost ratio, CRpath. The cost ratio depends on the switching and transportation 

costs of both the channels.  

 

3.4.2.1 COST RATIO, CRPATH OF A PRIMARY AND AN OVERFLOW PATH 

The Path Cost Ratio is the relative cost of a primary path to the cost of an overflow path. A 

primary path consists of a light path between the source and destination nodes of a route. An 

overflow path originates at the source of a route and consists of a concatenation of wavelengths 

at each hop of the path, until the destination node. The   cost of a primary path includes both the 

transmission cost of channels that make a light- path and the switching costs to interconnect the 

wavelengths of the links, as shown in Figure 3.12. Just like the primary path, cost of an overflow 

path includes transmission and switching costs. If the routing path between two ends is the same 

for primary and overflow paths, the physical hops traversed by the two paths, and any channel 
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amplification/regeneration performed on the paths, are the same. Further, if the transmission 

costs do not depend on the wavelength of the channel, we may assume that transmission costs of 

a primary and overflow path are the same between any two given end points.  

 
           Figure 3.12 Path cost ratio, CRpath 

            

 Unlike the transmission costs for primary and overflow paths, switching costs may not 

be the same for both the layers. The configuration of the primary layer is assumed more or less 

static, in which case, there is no need to reconfigure the wavelengths that may constitute a light 

path. Thus, the nodes that constitute intermediate hops of a primary path do not need a fast 

switching capability. We may assume the cost of concatenating the wavelength channels of a 

light-path to be some constant average value, Sp, as shown in Figure 3.12. There is, however, a 

need for a fast switching operation to groom the incoming channels to a primary light path. The 

cost of switching these incoming channels to a primary light-path may be much more than the 

cost of just concatenating the wavelengths at each hop. The cost of finding an internal path 

through a grooming switch at the source of each route is assumed to be some constant average 

value, Sp’, where Sp’ is much higher than Sp.  

            In an overflow path there is fast reconfiguration of the wavelengths that may constitute 

the path. The hops of an overflow path are made up of fast switches and cost of finding an 

internal path through the hop is assumed to be some average constant value, So, as shown in 

Figure 3.12. It may be assumed that So is equal to Sp. 
           Equation (3.5a) expresses cost of a primary path and its corresponding overflow path, in 

terms of per-hop switching and transmission costs, by assuming negligible loss at the 
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intermediate hops and no chance of light-path entry for the overflow channels. The cost of the 

overflow path is expressed in terms of the ratio of the costs of per-hop switching to transmission, 

CR_(So_T)i  .  If we assume that So equals Sp’ and if Sp is very small compared to Sp’, then 

CRpath depends on number of hops in the path and to the ratio of So to channel costs Ti, 

CR_(So_T)i. Further, if we assume that CR_(So_T)i, is the same for all hops, we can express the 

path cost ratio, as shown in equation (3.5c). 
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            Equations (3.5a), (3.5b) and (3.5c) assume that there is no light-path entry at intermediate 

hops along the overflow path. Without light-path entry, the bursts travelling along the overflow 

path have to be fast-switched among input and output links at every hop. However, if there is 

light-path entry for the optical bursts at intermediate hops, there is no need to perform fast-

switching on the bursts for the portion the of route path travelled along the light-path. If there is 

light-path entry for optical bursts at intermediate hops, the route’s overflow path may be realized 

in multiple ways, as shown by Figure 3.13. The multiple overflow paths associated with a route 

will each provide different switching costs.  Thus, if there is possibility of light-path entry within 

an overflow path of a route, the total switching costs of the overflow path will be less than 

Coverflow_path in equation (3.5a).  
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 Figure 3.13 Effect on light path entry on cost ratio. 

 

3.4.2.2 PATH COST RATIO OF MULTIPLE OVERFLOW PATHS  Optical bursts entering 

an overflow path at a node may enter a primary light-path at any of the successive hops.  

Therefore, a burst may not always keep along the overflow path until it reaches the destination 

node. Figure 3.13 shows several possibilities of transporting an overflow burst.  If a burst enters 

a light path, it will not incur a switching cost, Sp’ on any of the successive hops. Let the 

possibility that an overflow burst enters a primary light path at hop i, be pi . Then, the cost of the 

overflow path, given by equation (3.5a) must be modified to include the possibility of light path 
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entry for the overflow bursts. In addition, chance of using the overflow path depends on the 

probability of blocking at each node.  

If we assume a fixed blocking probability, B, at each node, we may derive the total cost 

of an overflow path as shown below. In this derivation, the cost of each overflow path is given as 

C overflow_path_N, where N indentifies the overflow path by its Nth hops on the overflow path, prior 

to light-path entry.  
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 In general if the overflow path makes a light-path entry at the N+1th hop after the source node, 

where N =1,2....hops, then, 
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The average switching cost, C overflow_path_switch   of multiple overflow paths in a route is given as, 
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Total cost of an overflow path, C overflow_path may be expressed as, 
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Where, C overflow_path_switch gives the average switching cost for all multiple overflow paths 

between a source and destination route. 

 

Cost of primary path for the route is given as, 
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If we make the same assumptions as in equation (3.5b) and (3.5c), then 
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So the Cost ratio, CR_path is the ratio of the cost of an overflow path to the cost of a primary path: 
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                As the values probability of light-path entry (pi ), increases, the cost of an overflow 

path decreases. A high value of pi signifies a greater chance that the overflow burst will enter a 

light-path at the ith hop. If an overflow burst has a high chance of entering a light-path at 

intermediate hops of a route path, then there is a high probability that it will cost less to switch 

the burst along the route path. The value of pi depends on the number of primary light-paths 

available at the ith hop to transport incoming bursts to the destination node. A method to 
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determine number of light paths on all links of the route and, as a result, the values of pi for a 

Hybrid Node is provided in Chapter 5. 

3.4.3  TOTAL COST OF A HYBRID ROUTE 

 A hybrid route path that originates at the hybrid node and ends at a destination node is 

composed of primary and overflow components. The costs of a primary and an overflow path are 

related via the notion of cost path ratio, CRpath. In order to determine total cost of a path, we must 

determine number of primary light-paths and overflow channels that are required at the source 

node.  

While a primary light-path is made of wavelengths dedicated to a traffic source, in order 

to carry bursts belonging to a fixed route, overflow channels may carry bursts belonging to 

several sources that offer traffic to the same destination. It is to be noted that a route is described 

as the connection between the source Hybrid Node, to which the traffic sources are attached, to 

another destination Hybrid Node. A route is not a connection between a traffic source and a 

destination Hybrid Node.   

The total cost of a hybrid route is calculated by sum of total number of primary light-

paths belonging to all sources and the total number of overflow channels on the output link of the 

source Hybrid Node, each weighed by the cost of a primary path and the cost of an overflow 

path, respectively. The total cost of a hybrid route may be expressed as, 
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             Dividing both sides of equation 3.7a, by Cprimary_path gives: 
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              The total number of overflow channels required for a route in the intermediate links of 

the route path is actually less than what is required at the first hops of the path. Due to losses and 

light-path entry at the intermediate hops, traffic belonging to the route that may remain in the 

overflow layer decreases. It can be inferred from equation (3.6d) that CRpath takes into account, 

the probability that a burst will remain on an overflow channel from source to destination nodes.  

              It appears from equation (3.7b) that both primary and overflow channels behave, as if 

they are part of an end-to-end light-path. Figure 3.14 shows the overflow channels of Route1 as 

an ‘equivalent light-path’. Such an assumption is required to compare cost of a primary path to 

the cost of an overflow path despite the fact that the overflow path, unlike the primary path, is 

not a true light-path. 

     The ‘equivalent light path’ representation of overflow channels for Route 1 gives each 

overflow channel a probability that it will be concatenated to yet another overflow channel at the 

intermediate hops of a route. This probability depends, on the probability of light-path entry for a 

burst belonging to Route 1 in all intermediate hops and on the probability of blocking 

experienced at each hop. Since the cost ratio, CRpath, is related to this probability, it is possible to 

map an overflow path into its equivalent light- path.  If we assume probability of light path entry 

is pi on the ith hop and the loss probability as B on each hop, equation (3.6e)  gives the cost ratio 

CRpath.  
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            Figure 3.14 Assumption in calculating cost of a hybrid route 
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In Figure 3.14, Route 1 consists of a path between nodes A and B. Node A, aggregates 

overflows from all primary paths belonging to S1 and S2 that go to node D. At node B part of the 

aggregated route traffic enters light-paths going to node D. There is also some loss occurring at 

node B. Similarly, route 1 traffic may incur loss at node C. In order to compare primary and 

overflow channel costs of a single path it is assumed that an overflow channels for Route 1 

behaves like a light-path. Since the path cost ratio accounts for the reduction in number of 

overflow channels at each successive hop, it   enables us to calculate total cost of the entire 

overflow path, by just knowing the number of channels in the first link.          

In real networks, a multi-channel overflow link between two nodes may carry several 

routes simultaneously. The same link may also originate some of the routes it actually carries. So 

the total overflow cost of these routes is calculated by knowing the average cost ratio of the 

entire network. Chapter 5 shows the method to calculate cost of the overflow layer of a network 

by determining average path cost ratio for the entire network. 

                A hybrid path is said to be cost optimal if minimum total cost can be obtained by 

hybrid operation. A path between a source and a destination is said to operate in a hybrid mode if 

the path can be realized using both primary light-paths and overflow channels. A path is said to 

operate in a non-hybrid mode, if the path is made of either primary light-paths, or overflow 

channels, but not both. For a given hybrid path R, the number of primary and overflow channels 

Rp and Ro can be given as a function of primary light-paths per source, li, as shown in equation 

(3.8a). If there are S sources attached to the Hybrid Node, then the total cost of the hybrid path, 

given by equation (3.7b) can be modified as shown in equation (3.8b).  In equations (3.8a) and 

(3.8b) , the path is said to operate in hybrid mode only if li is not equal to either 0, or P. When li = 

0, there is absolutely no primary layer and if li = P there is absolutely no overflow layer.                   

  

                        ……….(3.8a) 

                        

                       ……………………………...(3.8b) 
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                Throughout the remaining analysis, it is assumed that the cost of a primary channel 

group increases linearly with the number of wavelengths in the group. This will be the case if the 

wavelengths in the fiber do not produce significant non-linear effects [35]. If the wavelengths 

within the fiber are very dense and closely spaced, non-linear compensation may be required. 

Non-linear compensation may require complex devices within the transmission path, which may 

drive the transportation costs. We ignore such a scenario and assume that the cost of a channel 

remains fixed at all times. Thus, we assume that the cost of primary channels scale linearly with 

the number of wavelengths in the group. 

3.5    RESULTS 

The queuing model in Figure 3.11, is used to analyze the number of primary and overflow 

channels, needed to provide a blocking probability of 0 .001. The moments of overflow from 

LossNode1 and blocking probability at LossNode2, are determined using the recursive algorithm 

mentioned in the previous section. Alternatively, computer simulation of a GI/M/C queue was 

also used to check the accuracy of the results obtained from the recursive algorithm. The 

accuracy of the recursive algorithm was found to be comparable to that of the simulation. The 

number of overflow wavelengths obtained from the simulation and recursive algorithm varied by 

only 0.002% in the worst case. However, due to constraints on the simulation tool (CSIM) used, 

we could not simulate the LossNode2 queue, for more than 100 sources attached to the node.  

3.5.1  OPTIMAL COMBINATION OF PRIMARY/OVERFLOW CHANNELS 

 Figure 3.15 shows the cost optimization obtained by using the hybrid approach. In the figure, 

the dotted line called the ‘primary channels’ gives the cost of the primary path. Number of 

primary paths is also equal to the number of primary channels in each link and hence, the X-axis 
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is termed ‘Primary Channels’. In the analysis, cost of a primary path is assumed to be of unit 

value and cost of an overflow path is assumed to be equal to the path cost ratio (CRpath). In the 

figure, the path cost ratio is denoted as ‘CR’ and the curve named ‘Overflow Channels CR =1’ is 

the cost of the overflow paths in the route for a path cost ratio of one and this curve also gives 

the number of overflow paths, for a given number of primary paths and a given blocking 

probability. Similarly, the curve named ‘Overflow Channels CR=2’ gives the cost of the 

overflow paths in the route when the path cost ratio is two. By adding the values on the 

‘Overflow Channel’ curve, with that of the ‘Primary Channel’ curve, we obtain the ‘Total Cost’ 

curve for the respective value of CR.  

 
Figure 3.15 Cost of primary, overflow and sum of primary and overflow channels, for a load of 3 

Erlangs per traffic source; 100 sources and a peakedness of 2.  
 

 

The cost of a Hybrid Node in Figure 3.15 spans two extremes. One extreme point on each 

hybrid cost curve occurs at the right edge, where there are only primary channels in the hybrid 

path. The other extreme point occurs at the left edge, where all traffic offered to a Hybrid Node 

is multiplexed onto overflow channels. In between these two extremes there may exist a point at 

which the total cost of primary and overflow paths is at a minimum. This minimum point occurs 

for a certain optimal number of primary and overflow channels, such that there is a balance 

between operational costs and statistical multiplexing gains. 
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             The minimum cost of a hybrid path can be determined by taking the derivative of 

equation (3.8b) 
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3.5.1.1 THE OVERFLOW GAIN Overflow gain measures the savings in the average number 

of overflow channels accessed per source, when each source is provided an additional primary 

channel. The overflow advantage plays an important role in determining the optimal number of 

primary/overflow channels in a hybrid route. The left hand side of equation (3.9), represents the 

overflow gain, whose value depends on system parameters such as the number of sources and the 

path cost ratio. In order to obtain the cost of the optimal hybrid route, the cost savings due to 

overflow gain has to balance the cost incurred due to the addition of an extra primary channel for 

each source.  

The overflow gain of a hybrid path depends on the load experienced in the overflow 

layer. Overflow load not only depends on load offered to the primary layer, but also on the 

number of primary channels from which the overflow occurred. This means, every increment in 

primary channels may yield a different amount of overflow gain. Overflow gain may also depend 

on the number of sources sharing the overflow channels. Overflow gain, as observed from 

equation (3.9), decreases with an increase with number of sources sharing overflow channels. 

Overflow gain also depends on the smoothness of the load offered to the hybrid node. In 

general, for a peaked load of a given mean value, channel requirements are higher than what is 

required for a smooth load of the same mean value. Compared to channel requirements for a 

smooth load, an increment in primary channels will not substantially reduce the load on overflow 

channels for a peaked load condition. In effect, channel requirements of the overflow layer do 

not reduce due to an additional primary channel. Hence, overflow gain for a peaked load may be 

smaller than the overflow gain of a smooth load. 
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Overflow gain is related to the notion of statistical multiplexing gain in the overflow 

channels. Overflow gain is inversely proportional to number of sources, but statistical 

multiplexing gain is directly proportional to the number of sources that share the overflow 

channels. Statistical multiplexing gains obtained by aggregating a large number of sources at the 

overflow layer tend to equalize channels requirements, due to which channels requirement at the 

overflow layer decreases. In this manner, statistical multiplexing gains provides a better channel 

gain, which is otherwise small due to higher Peakedness of offered load. In effect, statistical 

multiplexing gains at the overflow layer tend to reduce the possibility of improving the overflow 

gain. Thus, lowering of overflow channel requirement upon addition of a primary channel, is 

small because of an already high channel gain due to aggregation.  

Statistical multiplexing gain for a peaked-load is possibly higher than what can be 

obtained for a smooth load. Since the effect of statistical multiplexing gains is to reduce overflow 

gains, from equation (3.9), we may infer that statistical multiplexing gains is directly 

proportional to path cost ratio. Hence, higher statistical multiplexing gains may possibly balance 

high path cost ratio of the hybrid path. 

Overflow gain provides the condition for optimal hybrid operation by relating the loading 

on the primary and overflow channels to the cost ratio of the primary and overflow paths. 

Loading on the primary channels is determined by the mean and Peakedness of the load offered 

by each source. Loading on the overflow channels is determined by mean and Peakedness of the 

load offered by each source and also on the number of sources sharing the overflow channels. 

 

 

3.5.1.2 ANALYSIS OF OVERFLOW GAIN For example, let there be 100 sources, each with 

an offered load of 3 Erlangs and a Peakedness of 2. Table 3.1a shows the values of overflow 

channels Ro(li) for some given values of primary channels, li, . A curve fitting tool in Matlab is 

used to determine the polynomial that best represents the function Ro(li). The curve fitting 

process maps the data points in Table 3.1a into a polynomial of a certain degree. The polynomial 

is selected to closely represent the data points and goodness of fit parameters is obtained. An R-

square that is very close to one means a good fit. 
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Table 3.1a  Overflow gain 

   li    0     1    3    5    7     9   11   13  15 

   Ro(li) 364   302   193   115   63   33    18    12   0 

 

Curve fitting parameters for the data: 

 
 

Where, p1 = -6.407e-11 ;  p2 = 7.12e-8 ;  p3 = 0.000327;  p4 = -0.677;  p5 =364.5 

Goodness of fit: SSE=3.41, R-square =1 

 
Table 3.1b Results from curve fitting 

li 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Overflow 

gain 
>.

6 
.6 .53 .46 .39 .32 .26 .20 .14 .10 .07 .05 .03 .03 .02 .01 

 

Table 3.1 b shows the decrease in the number of overflow channel for each increase in primary 

channels. If we are given a CRpath = 1 and S =100, then from equation (3.9), the minimum total 

cost is obtained for an overflow gain is equal to 1. But since, such a value of overflow gain does 

not appear in Table 3.1 b, it is not possible to obtain optimal hybrid operation for a CRpath = 1. 

However, if CRpath =2, optimal hybrid operation is obtained for overflow gain equals to 0.5, 

which occurs for li ≈ 3, in Table 3.1 b. Figure 3.15 depicts this example graphically. It can be 

seen from the total cost curves of Figure 3.15, that optimal hybrid operation occurs only for CR 

= 2, where CR is also the path cost ratio, CRpath. This optimum occurs at approximately 300 

primary channels. Since the total cost value is equal to cost of 700 primary channels, the number 

of overflow channels is about ((700 – 300)/2) 200.  

The relative position of the minimum cost point, between the two extreme points depends 

on the cost ratio. For a very high cost ratio, the minimum point leans towards more primary 

channels. On the contrary, for a lower cost ratio, the optimum hybrid path can afford more 

overflow channels.  

A hybrid route can afford more overflow channels if the cost of overflow gain equals the 

cost of adding an extra primary channel. The overflow gain is not the same for every addition of 
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primary light-path; instead, it decreases with every successive addition of primary light-paths. 

Thus, we obtain a range of values for the overflow advantage, as we increase primary channels 

one by one.  

The values of overflow gain may depend on the offered load characteristics and on the 

number of sources using the hybrid path. Table 3.2 provides various data sets classified 

according to the load offered by each traffic source. Figure 3.16 plots overflow gain for different 

values of offered load and number of sources. The offered load may be characterized by mean 

load and Peakedness of the load. 

 It can be observed from Table 3.2 and Figure 3.16 that with an increase in the  average 

value of offered load, overflow gain increases if Peakedness is maintained constant. For a fixed 

number of primary channels, overflow gain is greater when offered load is higher. For instance, 

if primary channels are held at 4, overflow gain for data set 1, is smaller than overflow gain for 

data set 2. At the same time, for a fixed mean offered load, overflow gain decreases, as 

Peakedness increases. Thus, overflow gain increases whenever the smoothness of load offered to 

the primary channels increases. Smoothness of load may increase either due to an increase in 

average load or due to a decrease in Peakedness of offered load. 

 

Table 3.2 Values of li and )l(( iRo∆  for different offered loads. 

                                           Data Set 1: 3 Erlangs, Peakedness=2 and 100 sources 
li 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

   Ro(li) 365 300 244 194 150 115 85 62 45 32 24 19 15 11 8 0 

Overflow 

Gain 

>.65 .60 .53 .46 .39 .32 .26 .20 .14 .10 .07 .05 .04 .04 .03  

                        Data Set 2: 6 Erlangs, Peakedness=2 and 100 sources 
li    0    2  4  6   8    10   12  14  16   18   20 

Ro(li) 687   536 402    287 193   123  73    42  26      17     7    

Overflow 

Gain 

.79  .72 .63     .52   .41   .29     .20   .11     .06   .04   

                        Data Set 3: 3 Erlangs, Peakedness=1 and 100 sources 
li    0    1  2  3   4    5   6  7   8    9   10 
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Ro(li) 343   269 199    140  92   56  33   19  12     8     0    

Overflow 

Gain 

.77  .73 .65     .53  . 41   .29     .18  .0 9     .05   .05   

                  Data Set 4: 3 Erlangs, Peakedness=2 and 10 sources 

li 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
   Ro(li) 57 50 44 38 32 26 22 18 15 13 12 11 10 9 6 0 

Overflow 

Gain 

.65 .7 .6 .58 .55 .49 .42 .34 .25 .16 .08 .08 .08 .02 .03  

 
 

 

 

 

 

 

 

 

 
Figure 3.16 Overflow Gain 

 

 

The overflow gain also depends on the total load offered to the overflow layer by all traffic 

sources. As number of traffic sources increases, the aggregate load that is carried by the overflow 

layer becomes smoother. It is observed that, as long as the load offered by a traffic source to the 

primary layer is a constant and if there is an increase in number of sources, overflow gain 

decreases. This is because aggregation of more number of traffic sources lowers the net channel 

requirement at the overflow layer. Hence, the relative effect of adding a primary channel will not 

be substantial, when compared to the effect of statistical multiplexing gains at the overflow layer. 

Figure 3.16 shows an increase in overflow gain for Data_Set4, which contains 10 sources, when 

compared to the overflow gain of Data_Set1, which contains 100 sources.    
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Overflow gain is depends on the average value of load offered at the primary layer. The 

effect of adding a primary channel results in a relatively fewer overflow channels, when the load 

offered to the primary layer is high. For instance, in Figure 3.16, overflow gain of Data_Set2, 

which has 6 Erlangs, is consistently higher than the overflow gain of Data_Set1, which has 3 

Erlangs.  

Overflow gain is seen to increase, as smoothness of load offered by a traffic source (at 

the primary layer) increases. However, the increase in overflow gain is not consistent for all 

values of li, as observed in Figure 3.16 for Data_Set1, with a Peakedness (Z) of 2 and for 

Data_Set3, with a Z of 1.This is possibly due to the modulation of Peakedness by the primary 

channels, especially at lower values of overflow load. The results can be observed from Figure 

3.16 and inferred from Table 3.2. 

  Each value of overflow gain, can provide an optimal hybrid path for a certain fixed 

value of cost ratio. From equation (3.9), CRpath needed to provide a cost-optimal hybrid path can 

be determined for a given value of overflow gain.  

3.5.2  RANGE OF HYBRID OPERATION 

The window of the CRpath values for which hybrid operation yields minimum cost gives the range 

of hybrid operation. The range of hybrid operation represents the feasibility of hybrid operation 

and its sensitivity to values of CRpath . The path cost ratio , CRpath , itself depends on several 

parameters, such as switching and channel costs and the probability of light-path entry at 

intermediate nodes. None of these parameters may be constant at all times and any change will 

result in a new value of CRpath for the hybrid route. In response to such a change in the values of 

the path cost ratio, the number of primary/overflow channels in the route can be changed. 

Although the proposed overflow- layer architecture is not analyzed for dynamic operation, 

possibility of such an operation can be assessed by the range of hybrid operation.   

Via the notion of overflow gain, the range of hybrid operation depends on the number of 

sources and the mean load and traffic Peakedness,. As overflow gain increases, either through an 

increase in smoothness (decrease in Peakedness) of the offered primary load or due to an 

increase in the number of sources sharing the overflow channels, the feasibility of hybrid 
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operation increases. As represented by equation 3.9, overflow gain is the benefit seen by a traffic 

source, in reducing its share of overflow channels, by increasing its access to primary channels. 

As overflow gain increases, the benefit of adding primary channels increases. At the same time, 

an increase in overflow gain tends to reduce the CRpath at which optimal hybrid operation can be 

obtained. The result is that window of optimal hybrid operation will approach its non-hybrid 

(primary channel only) value, for smaller values of cost ratio. Figures 3.17 and 3.18 show the 

range of hybrid operation for 100 and 10 sources respectively [57][59].  

In Figures 3.17 and 3.18, total cost of a hybrid route is determined in terms of cost of a 

primary channel. The total cost is determined for different values of average offered load and 

Peakedness. The range of hybrid operation for a given load and Peakedness is obtained for a 

range of path cost ratios. The dark curves in the figures show the range of hybrid operation in 

terms of its cost ratio and the dotted curves shows the cost ratios for which hybrid operation 

becomes infeasible. A hybrid operation is feasible only if it provides minimum total cost, when 

compared to a non-hybrid operation. 

The range of hybrid operation decreases for higher values of primary offered loads 

values. We have seen in Figure 3.16 that overflow gains are smaller on 3-Erlang traffic than on 

the 6-Erlang traffic for the same value of Peakedness. A smaller overflow gain causes the hybrid 

operation to achieve a high CRpath in the 3- Erlang curve compared to a 12-Erlang curve in 

Figures 3.17 and 3.18.  

If we assume the average load and the number of sources to be constants, an increase in 

the Peakedness corresponds to an increase in value of CR path. With an increase in CR path ( at the 

point of optimality) optimal hybrid operation can be achieved despite high cost of overflow path. 

When peakedness of offered load reduces, overflow gain increases and CR path for optimal hybrid 

operation reduces.  
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Figure 3.17 Feasibility of a hybrid node with 100 traffic sources. 

 

 
Figure 3.18  Feasibility of a hybrid node with 10 traffic sources 

 

An increase in number of traffic sources results in a decrease in overflow gain, as is 

apparent from equation 3.9. This means that the addition of primary channels results in only a 

small cost benefit. Due to the possibility of greater statistical multiplexing gains, it may be more 

cost-effective to save dedicated primary channels despite the high cost of the overflow path. The 

range of hybrid operation across the x-axis in Figure 3.17, where there are 100 sources, is greater 

than the range in Figure 3.18, which has only 10 sources.  

The feasibility of hybrid operation depends on the range of values of CRpath for which 

hybrid operation is cost-optimal. An increase in overflow gain means there is greater cost benefit 
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by adding primary channels and the range of hybrid operation approaches non-hybrid (primary 

channels only) operation faster.  

An increase in overflow gain also means a smaller value of CRpath at which optimal 

hybrid operation occurs. A large offered primary load and small number of sources sharing the 

overflow channels results in high overflow gain and subsequently causes the value of CRpath to 

be low. At the same time, a large value of offered Peakedness reduces overflow gain and thus, 

increases the CRpath at which not adding primary channels becomes optimal. It is observed that, 

as the value of CRpath for optimal hybrid operation becomes small, the range of values of  CRpath 

for which optimal hybrid operation occurs too shrinks. 

3.5.3   USEFULNESS AND LIMITATIONS OF  USING PATH COST RATIO  

The path cost ratio, CRpath compared the cost of a primary and an overflow path in a system. 

There are advantages and disadvantages to use the cost ratio as a measure to describe the cost of 

a switching node. 

The path cost ratio, considers the cost disparity between the primary and overflow 

sections of a hybrid node. The cost disparity may stem from differences in switching and 

transport complexities in their respective sections. The switching complexity of the system may 

be due to an increase in required switching speed or the greater size of the control of switching 

elements. Increasing the number of channels may increase the cost of transportation devices and 

switch size. However, the cost ratio is oblivious to the details of the switching techniques within 

a node. Thus, cost ratio considers the hybrid node to be a black box.  

The black box nature of the hybrid node omits several details that may help understand 

the practical feasibility of the hybrid node. For instance, in Figure 3.17, at a cost ratio of 3, for a 

traffic of 12 Erlangs and Z=2, hybrid operation is theoretically feasible. But looking at Figure 

3.17, it cannot be said, if it is practically possible to design a switch with a cost ratio of 3. It may 

also be the case that different switching-fabric architecture may yield different cost ratios within 

a node, for the same load. Thus, the measure of cost ratio may be dependent on several factors 

internal and external to the switch.  
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3.6 EFFECT OF OPTICAL BURST FORMATION ON HYBID OPERATION 

One of the main assumptions of the network architecture is the adaptation of access layer traffic 

into bursts at the access-core interface, as shown in Figure 3.3. Bursts are created by collecting 

multiple streams of input traffic coming from a source and assembling them into bursts. A timer-

based assembly of input traffic streams may limit the size of the burst.  

The process of framing/assembling the input traffic may change the statistical properties 

of traffic arrival rates and holding times when a burst arrives at the hybrid network. If the access 

traffic stream consists of bursty arrivals, assembling these smaller frames into larger bursts may 

result in a smoother burst arrival at the hybrid nodes. The smoothness of the burst arrival rates 

and burst holding-times can be varied by adjusting the timer value associated with the burst 

assembler. The value of the assembler timer may be limited by the delay requirements at the 

edge node. 

     Optical bursts may also be created by fragmenting large input frames into smaller 

bursts and ‘dispersing’ them along primary/channels.  Fragmentation causes the opposite effect 

of burst assembly, namely it offers a peaked traffic to the hybrid network. Both the assembly and 

segmentation processes at the access-hybrid core interface will tend to equalize input traffic 

characteristics, in order to conform to the operational requirements of the hybrid network.  

3.6.1   TRAFFIC ADAPTATION AT THE EDGE-CORE INTERFACE 

OBS enables traffic adaptation to make it possible to realize all-optical switching, along with 

statistical multiplexing at the core network. Typically, OBS performs packet assembly at the 

edge node. In the proposed hybrid network architecture, traffic adaptation is performed only at 

the edge node. Traffic adaptation can be the assembly of small packet/frames or the 

segmentation of large frames/streams. It is also assumed that each traffic source may differ with 

the kind of traffic adaptation it uses. 

 

3.6.1.1 ADAPTING TRAFFIC ARRIVAL DISTRIBUTION By adjusting the Peakedness of 

the traffic-arrival process, it may be possible to realize the required overflow advantage for a 
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hybrid path. It is possible to come up with situations where the cost ratio of a path remains fixed 

and it may not be possible to realize hybrid operation. But traffic adaptation can help shape the 

traffic arrival process, in order to make it possible to realize optimal hybrid operation for the 

given cost ratio. 

   Figure 3.19 shows the time sequence of the assembly process. It is assumed that each 

source offers packets/frames via multiple input channels to the hybrid core node.   At t = 0, the 

assembly begins with the arrival of the first packet/frame. At t = t1, the second packet/frame 

arrives with an inter-arrival time of t2. The inter-arrival time distribution of packet/frame arrival 

may be described by a second-order-hyper exponential process [44]. By time T, the timer expires 

and a total of N+1 packets/frame arrive.  After collecting N+1 frames, a burst is scheduled to be 

transported on the channel.  At tn+1, the next channel overflow arrives and a different assembly 

begins.  

    If the inter arrival distribution of the access traffic is given by a 2-order, hyper- 

exponential process, the burst inter-arrival time is a time shifted process of the packet inter 

arrival time. The inter-arrival time distribution is given by : 

 
xx eqeqtimeerarrival 21 ****_int 2211

λλ λλ −− +=  ;  …………………… (3.10a) 

 

 
Figure 3.19 Timer based assembly process. 
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 Where q1 and q2 are the probabilities with whether phase 1 or 2 of the arrival rates 

occurs. Phase1 can be assumed to be the on-state of the overflow process and phase2 the off-

state. λ1 and λ2 give the mean on-rate and off-rate of the arrival process. It is assume that the on 

and off periods are exponentially distributed. 

 The mean and variance of the inter arrival time is given by: 
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The Burstiness of the arrival rates can be measured using the square coefficient- of- 

variation given by, 
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3.6.1.2 ADAPTING CHANNEL HOLDING DURATION Traffic adaptation not only results 

in altering the arrival process, but it also alters the channel-holding distribution. Traffic assembly 

via a timer may result in a more deterministic channel holding duration. The process of 

segmentation does just the opposite; it creates a more stochastic component. 

The frames/packet sizes are assumed to be exponentially distributed, with mean holding 

time of one unit if it is offered to the channels. In such a case, the burst holding time is given by 

the number of packets/frames assembled in period T.  The average number of packets/frames 

assembled in time T equals the product of the average arrival rate and the timer value T plus one, 

to account for the first request that arrived when the timer began. The timer always begins with 
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the arrival of the first channel request.  The variance of the burst holding-time is dependent on 

the convolution of frame service times [45].  
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3.6.2  AN EXAMPLE 

 As an example, let’s assume that each packet/frame is converted into an optical burst without 

any form of assembly. Let total burst traffic offered by each access source be 3 Erlangs with a 

Peakedness of 2. Let’s assume that the offered traffic stream follows a hyper-exponential 

distribution, whose parameters can be mapped from its load values in Erlangs. Chapter 2 gives 

the mapping between the load in Erlangs, the Peakedness, and its corresponding hyper-

exponential parameters. 

The square coefficient-of-variations of the arrival process can be calculated using   

equations (3.11) and (3.12). Since we assume that the burst holding distribution is exponential, it 

SCOV_holding is one.  
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Now, let’s assume that the burst size is made big by assembling more packets/frames into 

a burst using a timer value of T=0.3 time units. In this case, using equations (3.11) and (3.12), 

the SOCV_arrival and SOCV_ holding are 0.9 and 0.95 respectively. An SOCV_arrival of 0.9 

suggests a nearly Poisson arrival-rate of the assembled burst. The holding-time distribution is 

slightly smoother than the exponential distribution. If we approximate holding time distribution 
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to be exponential, then assembly process leads to an offered load of 3 Erlangs and Peakedness of 

approximately one, to be offered to the hybrid path.  

Smoothing the arrival process leads to greater overflow gain, which is greater than the 

gain obtained by retaining the Peakedness of offered access traffic. Compared to the optimal 

overflow gain of the original offered traffic, the smoothed traffic can provide the same optimal 

overflow gain with a greater number of primary channels. For instance, it can be observed in 

Table 3.2 that for an overflow gain of .65 to be optimal, it requires 0 primary channels if offered 

load is 3 Erlangs, with a Peakedness of 2. If Peakedness is reduced to 1, it takes 2 primary 

channels to support an optimal overflow gain of .65. A given value of optimal overflow gain 

corresponds to a fixed cost ratio, as in equation (3.9).Thus, smoothing allows a hybrid path to 

achieve optimality for a given cost ratio by adding more primary channels.  

The addition of primary light-paths, implies better end to end blocking performance for 

the traffic source. Smoothing the arrival process also implies an additional assembly delay at the 

edge node. This is the performance penalty paid in order to achieve optimal operation along with 

better blocking performance.  

Segmenting the offered traffic frames provides an effect opposite to that of smoothing. 

Segmentation may cause an increase in traffic burstiness of the traffic offered to the hybrid 

network. If we assume the cost ratio of the path is a constant, segmentation serves to decrease the 

primary channels in order to provide optimal hybrid path. From Figures 3.17 and 3.18 it is seen 

that the feasibility of hybrid operation extends over a wider range of cost ratios if the traffic 

offered to the Hybrid Node is more peaked. Segmentation, however, affects the blocking 

probability attainable with an optimal hybrid path. 

3.7 CONCLUSION 

A hybrid path consisting of primary and overflow channels may result in greater cost-

effectiveness than purely OBS or OCS paths. Cost optimality of a hybrid path is found to depend 

on several factors such as traffic-load characteristics, the number of traffic sources and the 

relative costs of a primary and an overflow path. It is seen that optimal hybrid operation of a 
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hybrid route occurs when the incremental cost of adding a primary path to each source is equal to 

the corresponding decremented cost of channels in the overflow path.  

The optimality condition for hybrid routes is related to the offered load statistics via a 

ratio called overflow gain. Overflow gain is the reduction in the number of overflow channels 

accessed by a traffic source for each addition of a primary light-path per traffic source. Overflow 

gain increases with an increase in the average load offered to the primary channels. Overflow 

gain also increases when the Peakedness of the offered load decreases. In both these cases, 

addition of a primary channel will result in a substantial reduction of number of overflow 

channels. Hence, for an optimal hybrid operation, the path cost ratio, decreases, with an increase 

in the smoothness of load and with an increase in the average offered load. In addition to the 

offered load, the optimality condition also depends on the number of sources sharing the 

overflow channels. If there are more number of sources sharing the overflow channels, the 

aggregate load that appears on the overflow channels will appear smooth. However, overflow 

gain decreases when there are more sources sharing the overflow channels.  

The optimality condition shows that overflow gain has an inverse relationship with the 

path cost-ratio, which relates the relative costs of an overflow and a primary path. The feasibility 

of hybrid operation depends on the range of cost ratios for which hybrid operation remains cost-

effective (optimal). The feasibility of hybrid operation increases whenever overflow gain 

decreases, either due to an increase in the Peakedness of the load offered to the primary channels 

or due to an increase in number of sources sharing the overflow channels.  

The optical burst formation process may manipulate the smoothness of traffic offered to 

the hybrid network. The assembly or segmentation of packets/frames arriving via multichannel 

access channels form bursts. This burst assembly process may smooth the access traffic offered 

to the hybrid path; and such smoothing can cause an increase in overflow gain. With an increase 

in overflow gain, optimal hybrid operation is achieved with a greater number of primary 

channels for a hybrid path with a fixed cost ratio. Burst formation by segmentation of access 

frame results in an optimal hybrid path with fewer primary channels. With an increase in 

Peakedness, hybrid operation becomes cost- optimal over a larger range of cost ratios. 

In this chapter, the cost ratio of a hybrid route is assumed a constant, even if number of 

primary channels is varied (Figure 3.15). However, it possible that cost ratio is a function of 

number of primary channels provided per source, or on the load per primary channel 
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(utilization). In such a case, the cost ratio of a route, whose value depends on the possibility of 

light-path entry within the path, may vary for different values of primary channel utilization. In 

Chapter 5, the cost of a hybrid network is analyzed by considering the possibility of light-path 

entry within a hybrid path. 

The cost ratio of a hybrid route depends on the cost of a path within a switching node. 

The cost of a switching node may be sensitive to the number of incoming and outgoing channels 

from the switch ports. The number of incoming and outgoing channels from a switch depends on 

the number of primary and overflow channels in the links. In Chapter 4, it is shown that the cost 

of switching, expressed as number of switching elements used to construct the switch, depends 

on the number of input and output channels and also on the  fabric architecture of the switch. 
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4.0  DESIGN AND ANALYSIS OF A HYBRID CORE NODE 

4.1 INTRODUCTION 

   A basic Hybrid-Node, allocates incoming optical bursts, onto outgoing primary and overflow 

channels. In order to perform such an operation, the core node should at least be able to switch 

an incoming traffic entity to an appropriate output channel. In addition to its switching 

capability, the core node is attached to a network control plane. The control plane routes the 

traffic entity across the network and schedule incoming traffic onto appropriate switch outputs. 

In this chapter, the switching operation of a Hybrid Node will be considered and the resulting 

hardware complexity of constructing such a node will be analyzed. 

 

     
 

Figure 4.1 A Hybrid-Node switch 
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   Figure 4.1, depicts a Hybrid-Node switch, that contains a facility switched cross-

connect, and called the F-Switch and the optical burst switch called the OB-Switch. Although not 

shown in the figure, in addition to the F-Switch and the OB-Switch, the core node contains 

devices such as wavelength interchangers/converters, multiplexers /de-multiplexers etc, which 

are associated with channel transmission. The input ports of the OB-switch connect to incoming 

overflow channels from the neighboring nodes. The output ports of the OB-switch are attached 

to outgoing primary and overflow channels, shown by the dotted and dark lines, respectively. 

The main function of an OB-Switch is to groom/pack primary light-paths and overflow channels, 

beginning at the Hybrid Node. 

 The F-switches help cross-connect incoming and outgoing primary channels that form a 

primary light-path. The primary light-paths that traverse an F-Switch, are groomed at a previous 

Hybrid Node, which initiates the primary path began. In this chapter, the cost of an F-switch is 

assumed to be negligible compared to the cost of an OB-Switch. Therefore, in order to optimize 

the cost of a Hybrid-Switch, it is important to focus on the design and analysis of the OB-Switch.  

Thus, the main focus of this Chapter will be on the design and analysis of the OB-Switch that 

constitutes a Hybrid-Node. 

  The core nodes are controlled by a control plane that may be either distributed or 

centralized. The control plane makes routing and scheduling decisions prior to connecting each 

input channel to the appropriate output channel. Once the appropriate output channel is selected 

by the control plane, the OB-switch fabric is configured to provide an ‘internal path’ between the 

input and output ports. The ‘internal path’ is configured within an OB-switch fabric by setting 

appropriate switching elements. The OB-switch elements are each controlled electrically by the 

switching logic circuit. In addition to the OB-switching elements, there are amplifiers and 

wavelength converters associated with the OB-switch hardware.  

 The size of the switching hardware ( in terms of number of switching elements in the 

OB-switch fabric, amplifiers and wavelength converters) constitute the most expensive part of a 

core node. Thus, assuming that the OB-switching operation is the most expensive part of a 

Hybrid Node operation, it can be assumed that the cost of primary and overflow layers can be 

weighed by the associated OB-switching costs, in addition to the channel transport costs. 



 96 

  The total hardware cost of a Hybrid Node may be represented by equation 4.1. The 

hardware cost includes all switching and transport costs for primary and overflow channels.  

 

                            facovovpp KSTSTCostTotal ++++=_   ……………….. (4.1) 

 

Tp and Tov are the transport (channel) costs of outgoing primary and overflow channels 

that begin at the Hybrid-Node, respectively. Sp and Sov are the OB-switching costs (along with 

the cost of wavelength converters and amplifiers) for primary and overflow channels 

respectively. In equation (4.1), it is assumed that the cost of the F-switch and the outgoing 

facility switched channels is a constant, Kfac, which does not depend on the Hybrid operation of 

the core node in which it is located. 

        Total cost is obtained minimized with respect to the number of primary channels, for 

a given value of outgoing primary channel, p , and a corresponding value of overflow channel, 

ov, by differentiating equation (4.1) as follows: 
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       The above equation gives the condition for obtaining minimum total cost of the core 

node. If either p, or ov is non-zero, the core node can be considered to be a Hybrid Node. If a 

particular value of {p, ov} provides minimum cost, then the point of optimality is found when the 

ratio of incremental hardware (transport and switching) cost of primary channels to the 
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incremental hardware cost of overflow channels is equal to the negative of the slope of the 

overflow channels curve given by ov = f(p). 

      The rest of this chapter focuses on determining the total cost of a core node for a 

given set of values of {p, ov} and a given overflow blocking probability B:  

                             

                                  ov = f(p,B)………………………(4.3) 

 

The design of the OB-switch will be discussed in part A of this chapter.  The  OB-

switching fabrics that may be constructed using some well-known architectures such as 

Broadcast-Select, Benes etc. Part B of this chapter will analytically determine the total cost of a 

Hybrid Node, whose OB-switch design is proposed in part A. 

    The main goal of this chapter is to determine if hybrid operation can help minimize the 

total cost of a core node, compared to a core node that performs a non-hybrid operation. 

Equation (4.2), which states a condition for optimal hybrid operation, is tested for different OB-

switch fabric architectures. A metric called Hybrid Cost Advantage is used to quantify the 

benefit of hybrid operation in minimizing OB-switching cost. The sensitivity of the hybrid cost 

advantage is analyzed for different switch fabric architectures, different offered loads, and core-

node cost parameters.  
                                             

 

 

                                                     PART  A 

4.2 ARCHITECTURE OF A HYBRID CORE NODE OB-SWITCH      

 A Hybrid Node OB-switch is an all-optical fabric that switches a large number of input channels 

(overflow only) to outgoing primary and overflow channels. In its most basic form, an optical 

OB-switch that connects F input fibers to F output fibers, each with w wavelengths, consists of 
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five stages [45]. These stages are de-multiplexing, wavelength interchange/adaptation, space 

switching, wavelength interchange/adaptation and a multiplexing stage, as shown in Figure 4.2.  

 

 

 
Figure 4.2 Five stages of a Hybrid Node. 

 

Figure 4.2 shows that incoming ‘overflow’ fibers are each de-multiplexed into their 

constituent (3) wavelengths using a de-mux (de-multiplexer). The wavelength channels may then 

undergo a wavelength interchange (WI) if there is channel contention at the output. Wavelength 

adaptation (WA) may be needed for multi-vendor equipments, or if the set of output wavelengths 

are different from the input ones. In stage three, space switching is performed. 

The OB-switching stage in Figure 4.2 is made of OB-switches, each tuned to operate on 

single wavelength. In the figure, there are three OB-switches operating on red, blue and green 

wavelengths. The OB-switches are used to switch incoming channels (overflow only) to 

outgoing primary and overflow channels. Thus, an OB-switch of Figure 4.2, consists of two 

stages, which are the primary and overflow switching stages, as shown in Figure 4.3.  
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Figure 4.3 Primary and overflow layer of an OB-Switch 

 

 

 The OB-switches operate on a particular wavelength and in Figure 4.3, the primary space 

switch (operating on the red wavelength) connects two input fibers of each source,  to one 

primary output fiber (shown by the dark lines on the output of the primary OB-switch). In the 

same figure, the overflow switch connects the three inputs, S1, S2 and S3, to three outputs 

(shown by the dotted lines at the output of the overflow OB-switch).The primary OB-switch in 

Figure 4.3 is shown to contain three mutually exclusive, source-specific switch modules. Each of 

these source-specific switch module is a space switch fabric between each input channel group 

(S1, S2 and S3) and their respective output primary channels. Section 4.2.1 explains the need for 

source specific modules in a primary OB-switch and the reason for their absence in an overflow 

OB-switch. 

   In some designs, it is also possible to contain wavelength interchange/ adaptation 

succeeding the space switch, as shown in Figure 4.2. In such a case, receivers of the next hop 

node should be tuned to the appropriate wavelengths as the transmitter, in the preceding hop. In 

the fifth stage, the wavelengths are de-multiplexed. 

The primary and the overflow layers of the OB-switch are connected by optical 

splitters/1x2 switches. While the splitter is a passive device, the 1x2 switch is an active device, 
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which is set up by the switch control layer. The space switch fabric of the primary and overflow 

OB-switches are disconnected except for the splitter/1x2 switches.  

4.2.1  PRIMARY AND OVERFLOW OB-SWITCHES  

 A primary OB-switch consists of source-specific switch modules, while an overflow OB-switch 

does not contain any. The primary channel assignment is such that, output channels are 

exclusively assigned to a group of input channels (shown as S1, S2 and S3 in Figure 4.3). 

Therefore, a source-specific switch module in a primary OB-switch provides a space switching 

fabric, to switch input channels of a group, to its respective output primary channels. Unlike the 

primary channels, the overflow channels are shared by all sources (input groups) and hence, they 

do not require source-specific switching modules.  

Figure 4.4 shows an example containing output channel and output fiber assignment, to 

explain why source-specific switch modules are required in a primary OB-switch. In Figure 4.4, 

there are two wavelengths per input and output fibers and there are two sources (input groups), 

S1 and S2 and two destinations, D1 and D2. The primary  path from S1 to D1 are made of 

channels R1 and B1, which is part of output fiber 1 and channel R2  of fiber 2. Primary channels 

from S1 to D2 are made of channels   R3 and B3 of fiber 3 and channel R4 of fiber4. Similarly, 

for source S2, channels R5, B5 and B2 are the primary channels to D1 and channels B4, R6 and 

B6 are the primary channels to D2.The primary channel assignment between each source and 

destination is shown in the table within Figure 4.4.  

 Figure 4.4 shows the required interconnections in primary OB-switches that operate in R 

and B wavelengths. For instance,  Source S1 uses the R wavelengths, which are R1 , R2, R3 and  

R4  to switch to destinations D1 and D2. The same source uses the B wavelengths B1 and B3 to 

switch to D1 and D2. Thus, the primary OB-switch requires a 3x4 switch fabric to interconnect 

S1 with D1 and D2 in R wavelength and it requires a 2x2 switch fabric in B wavelength. These 

switch fabrics are independent of the switch fabric used to interconnect S2 to its primary 

channels. Thus, the primary OB-switches are source specific, as shown in Figure 4.4.   
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Figure 4.4 Source-specific switching modules in a primary OB-switch. 

 

 

 If all the traffic sources have identical primary channel requirements, as assumed in this 

chapter, the primary space switches are replicated as many times, as there are traffic sources. In 

addition, due to the space switches being wavelength specific, there is further replication of 

primary space switches for different wavelengths. Four instance, there are two traffic sources and 

two wavelengths in the primary OB-switch of Figure 4.4 and therefore, there are four source-

specific switches. Altogether, the primary layer consists of several independent source-specific 

switch modules. It is an important property of the primary layer that a ‘source-specific primary 

switch’ module is not interconnected to any other ‘source-specific primary switch’. 

While the primary layer separates primary channel groups and switches among the traffic 

sources, the overflow layer does just the opposite. The overflow channels are shared by all traffic 

sources and the overflow switch aggregates all input channels to a common set of output 

channels. The space switch enables sharing of overflow channel among all the traffic sources. 

Thus, there is a requirement to create switch modules, in which all input fibers (of all sources) 

are connected to all output fibers, without the formation of any exclusive groups. However, like 

the primary OB-switch, the overflow- layer OB-switch is wavelength specific and the space-

switches have to replicated as many times, as there are wavelengths.   

A hybrid core node differs from a non-Hybrid Node, due to the presence of the primary 

and overflow-layer space switches with the OB-Switch, which is depicted in Figure 4.1. For all 

other operations other than the space switching function, such as wavelength conversion and 

multiplexing /demultiplexing, Hybrid and non-Hybrid Nodes are alike. Thus, it is the space-
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switch stage of the core node OB-Switch that characterizes hybrid operation. Such a partitioning 

of space switch fabric may lead to different cost characteristics of the primary switch, Sp and the 

overflow switch, Sov. In part B, values of Sp and Sov are analyzed for various switch fabric 

architectures of the primary and overflow layer modules. Meanwhile, the rest of part A will 

explain the design of the space switch modules in the primary and overflow layers of the OB-

Switch. Practical implementation issues for a Hybrid Node cross connect are also discussed in 

part A.  

4.2.2   SPACE SWITCH ARCHITECTURE OF AN OB-SWITCH 

In general, a ‘stand-alone space switch’ module is an entity that is not inter-connected to any 

other space switch module in the OB-Switch. For instance, the primary layer consists of source-

specific switch modules that can be considered as stand-alone space switch modules. The 

overflow switch is also a stand-alone space switch module, whose inputs or outputs are not 

interconnected to any of the primary standalone modules. Internal architecture of a stand-alone 

space switch module may itself be modular, as in Figure 4.5 . For instance, a standalone 

asymmetrical K x M space switch may be constructed using N number of symmetrical  MxM 

modules, where N may be less than or equal to M.  

    Each K x M switch may be a standalone primary switch, dedicated to one source, or it 

may be a standalone overflow switch.  If a K x M switch belongs to the primary layer, then M 

equals to the number of primary ‘fibers’ used to carry the primary channels. If the K x M switch 

is a stand-alone overflow switch, it has M equal to the number of overflow channels. For both, 

primary and overflow layers, the K x M switches are replicated as many times, as there are 

distinct wavelengths in the primary or overflow channel group. In Figure 4.5, the shadow boxes 

show replication of a KxM space-switch into another two wavelengths.  
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Figure 4.5 Constructing KxM space switches using MxM switch modules. 

              

 

4.2.2.1 SYMMETRIC SWITCHES A symmetric M x M, shown in Figure 4.5, may be 

constructed using different kinds of ‘non-blocking’ switch fabric architectures. The M x M 

switch fabrics are non-blocking because there is an internal path for every input to output 

connection within the fabric. An internal path is formed by setting a certain set of elementary 

switches within the M x M switch fabric. An “N-(M x M)” switch may be realized using a 

Broadcast-Select or Benes architecture, where N represents the number of wavelengths in the 

system and M the fiber input-outputs. In the two cases, the elementary switch is either a 1 x 1 

switch or a 2 x 2 switch, respectively.  

 

4.2.2.2 BROADCAST AND SELECT SWITCH  An  M x M switch may be constructed as per 

the Broadcast and Select architecture using fiber splitters, combiners and 1x1 gates. In B-S 

architecture, signal arriving on an input fiber are split M times and selected for an appropriate 

fiber output using a 1 x 1 gate. The 1 x 1 may be implemented as a wavelength selective cross-

connect (WSC), as shown in Figure 4.6.  
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             Figure 4.6 N- (M x M), Broadcast and Select space switch using a 1 x 1 WSC. 

 

The WSC may consist of an array of Semiconductor Optical Amplifiers (SOA), tuned to 

switch a particular wavelength [46]. The center-stage of a B-S switch contains M2  WSC 

elements to provide a non-blocking performance. Since a 1x1 WSC has N SOAs in it, there are 

N*M2 SOAs in a strictly non-blocking multi-wavelength space switch. The B-S architecture also 

provides a multicasting capability. Signal on a particular channel of an input fiber can be sent to 

multiple output fibers by setting appropriate SOA, on appropriate WSCs. A B-S space switch 

along with wavelength interchangers can provide multicasting of an input signal on several 

output channels.         

An SOA device provides gain-based switching by controlling the current provided to the 

device. Since the switching speed of an SOA, is less than a micro-second, they can be used to 

provide fast reconfiguration in the cross-connect. An array of SOAs, along with the mux-demux 

used to construct a WSC, can be monolithically integrated using InP [47]. Monolithic integration 

of SOAs in InP is attractive due to compactness and cost of production. In order to ease coupling 

the active SOA arrays with the passive Mux-Demux, hybrid integration can also be performed . 

Hybridization of SOA arrays on silicon motherboard provides a more scalable approach than 

monolithic integration [49]. Also, the hybrid silicon platform may contain passive devices along 

with the SOAs, in order to provide greater functionality. For instance, the De-mux/mux, which 

are passive devices can co-exist with active SOAs in a hybrid scheme.              

             A B-S switch also contains passive elements such as splitters and combiners. Passive 

splitters can cause power loss of signals arriving on WSCs. In the analysis, we may assume the 
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splitters to be independent elements connected to the WSCs using fiber. There is power loss of 

about 10 dB at the fiber interface between the splitters-combiners and a WSC. 

 

 

4.2.2.3 BENES ARCHITECTURE   Benes architecture can be constructed using basic 2 x 2 

switching elements, as shown in figure 4.6.  A Benes fabric can provide re-arrangable non-

blocking performance with lowest number of cross-points, possible to attain non-blocking 

performance. Multi wavelength Benes switch can be fabricated using Optical Add-drop 

multiplexers (OADMs), as shown in Figure 4.7.  

                
Figure 4.7 N-(MxM) Benes space switch using a 2x2 Optical Add Drop Multiplexer (OADM).  
 

 

An OADM is a 2 x 2 switching device that can be put in either a cross or a bar state [45]. 

The 2 x 2 device may be realized using directional couplers such as those based on SOAs, 

integrated on a single chip. Once again, the 2 x 2 active switch can be integrated with other 

passive elements such as mux/demux.  

           Compared to B-S switch, a Benes switch of comparable size will need more stages, as well 

as, more interconnections among stages. For an M x M switch, total number of Benes stages is 

2log2M-1. While a B-S switch needs M2 WSCs, a Benes needs M(2log2M-1)/2. However, 

complexity of a 2 x 2 WSC is roughly twice that of a 1 x 1 WSC. An MxM   B-S switch needs M2 

fibers to interconnect the splitter to the switching stage. On the other hand, a Benes switch of 

(w1......wN) 

 

  

 

(w1......wN) 

 

 

 

 

PC 

1xN 

PC 

Nx1 

De-Mux Mux 

 

 



 106 

comparable size needs 4*(number of 2x2 WSC) fibers to interconnect the 2x2 WSCs. The fiber 

interconnections introduce loss, at the junction of fibers and WSCs, within the switch fabric. 

Thus, integration of as many active elements on a single chip can minimize fiber interconnections 

and yield lower loss within the switch.  

 

4.2.2.4 CLOS INTERCONNECTION ARCHITECTURE    Integrated 4 x 4 or 8 x 8 space 

switches have been realized on Lithium Niobate/ Indium Phosphide substrates [49]. These space 

switches can be realized using the Benes / dilated Benes internal architecture, which in turn can 

be interconnected under Clos architecture to realize larger M x M switches. The Clos 

architecture consists of three stages, as shown in Figure 4.8, where the switch fabric provides a 

re-arrangably non-blocking performance.  

 

 

Figure 4.8 Clos interconnection architecture 

4.2.3  WAVELENGTH INTERCHANGERS 

 In a hybrid OB-switch, channel contention is solved by using full-range wavelength interchanger. 

An N wavelength interchanger is constructed by de-multiplexing the N channels and individually 

converting the channels to the required wavelength using wavelength translators. Power 

combiners may be required at the output. The translators can be all optical non-linear devices or 

opto-electronic devices requiring tunable lasers [50]. Thus, wavelength combiners are expensive 

components requiring N active elements.  
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Figure 4.9 A Wavelength Interchanger  

 

Wavelength interchangers are placed either near the input or near the output of the hybrid 

switch. In either case, the fiber wavelengths should be compatible with the ones in the succeeding 

or preceding Hybrid Nodes, respectively. A wavelength adapter is yet another class of tunable 

device that may be needed either at the input or at the output of a node to realize wavelength 

conformity among the nodes. It is assumed in the dissertation that wavelength compatibility 

among nodes already exists and that wavelength adapters are not part of the design. However, 

wavelength interchangers will be included in the design in order to realize non-blocking 

performance in the node.  

4.2.4  REALIZING OVERFLOW PROCESS IN A HYBRID SWITCH 

A Hybrid-Node OB-Switch is characterized by the overflow process that links the primary layer 

to the overflow layer. Overflow is realized either by active 1x2 switches, or by passive 1 x 2 

splitters and the two schemes will be henceforth called, active and passive overflows, 

respectively. While the active 1x2 switches use an SOA switch array for every input channel, a 

passive splitter is required for every input fiber.  

In both cases, wavelength interchange can be performed in the input or output side of the 

space switch. Active overflow switches (1x2 switches) may also be placed within the integrated 

chip that performs wavelength interchange, at the input side.  

Active 1 x 2 switches may be realized by setting gain-based switches, as shown in Figure 

4.10 b. The switches are placed at the input side of the switch , after the input fibers are de-
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multiplexed and the channels are passed through the tunable transmitters for wavelength 

translation. In the passive overflow scheme, 1:2 splitters are present at the input fibers. Figure 

4.10 a shows such an arrangement, where splitters are placed after the wavelength interchangers. 

Such a scheme may lead to splitting loss, which may need to be compensated within the core 

node switch. If the space switch is B-S, there in an additional splitter within the B-S fabric, which 

can combined back to back, with the 1:2 overflow splitter. 

 

 
 Figure 4.10(a). Passive overflow using 1:2 splitters. (b) Active overflow using gates.              

  

 Thus, the choice between active and passive overflows would primarily depend on loss 

occurring within the core node and the impact of the number of overflow gates in realizing cost 

effectiveness in the node. Loss offered by the overflow process depends on several features such 
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as integratability of 1x2 switches, choice of space switch architecture and placement of 

wavelength interchangers within the core node.                                                        

 

4.3 SUMMARY OF HYBRID NODE SWITCH DESIGN CHOICES 

There are several design choices in order to implement the OB-Switch of a Hybrid Node. The 

design choices may be based on the architecture of the MxM switch and the granularity of the 

basic space switch element used to construct an M x M switch. In addition to the space switch, 

the overflows can be implemented using active gates or by using passive splitters.  The active 

switch arrays can be monolithically integrated or it can exist as a standalone element. 

  In order to analyze the cost of an OB-Switch, three main architectures for the standalone 

M x M switch were considered. They are, B-S, Benes using OADMs and Clos architecture using 

integrated switches. While the B-S architecture will provide strictly non-blocking performance, 

Benes and Clos will be considered for re-arrangably non- blocking [43] . Also, the three 

architectures differ in the granularity of basic switching elements used. The B-S architecture may 

use 1 x 1 SOAs, either as standalone elements or as an array of multi-wavelength gates, 

integrated on a chip. The Benes architecture uses, 2 x 2 OADM modules, which like the 1 x 1 

gates can be implemented as an array of multi-wavelength switches. The Clos architecture is 

used to interconnect elements of larger size, like a multi-wavelength 4 x 4 switching element.  

   Wavelength switching will be performed using wavelength translators, as shown in 

Figure 4.9. Wavelength Interchangers may be placed either at the input or at the out put side of 

the space switch. In the analysis, wavelength interchangers are placed at the output side, in order 

to study the cost effect of varying primary and overflow channels.  

   In addition to the space switch, overflow 1x2 switch/splitter and wavelength converters, 

there might also be amplifiers to combat losses within the core node. Erbium- doped fiber/ SOA 

amplifiers will be placed whenever there is a 30 dB net loss in the core node. In addition, an 

EDFA/SOA could be placed at the core node inputs to overcome power loss during transmission.  
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Figure 4.11 Hybrid Node architecture, considered in the analysis. 

  
                    

 Figure 4.11 shows the Hybrid Node architecture considered from a high level. There are 

two sources, each with K fibers on the input side of the node.  Table 4.1 shows some of the 

methods used to realize the architecture in Figure 4.11. Part B of this chapter will analyze  the  

cost of a Hybrid Node, in terms of elementary switch modules, for the design choices outlined in 

Table 4.1. 

 

   Table 4.1 Design choices considered for the Hybrid Node analysis. 
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                                                   PART B  

4.4 ANALYSIS OF A HYBRID NODE SWITCH 

Hybrid operation in a network calls for a Hybrid Switch architecture in the nodes, as represented in 

Figure 4.1. Just like the Hybrid Routes, the OB-Switches within a Hybrid Switch are divided into 

primary and overflow OB-switches. The primary OB-switch is made of mutually exclusive source-

specific switch modules and the overflow OB-switch interconnects all sources, as explained in part 

A of this chapter. In this part of the chapter, the effect of such a hybrid operation on the cost of a 

node is studied.   

 The cost of a Hybrid Node depends on both the switching and transport costs associated 

with the node. The transport cost associated with a node is primarily the cost of the receiver and 

transmitter ports associated with the Hybrid Node. The transport cost in a Hybrid Node is expected 

to scale linearly with number of output channels. Thus, transport costs depend on the sum of all 

primary channels and overflow channels. As the number of primary channels increases, the 

number of overflow channels (that provide a fixed blocking probability) decreases. However, with 

the increase in the number of primary channels, the total number of channels per Hybrid Node 

increases, which causes higher channel costs. Thus, transport cost is expected to increase with 

increase in number of primary channels.  

              Unlike transport costs (channel costs), the total switching cost may not increase/decrease 

linearly with an increase/decrease in the number of channels. For instance, the number of cross-

points in a cross-bar switch has a square relation with the number of channels, while the number 

of cross-points in a Benes switch follows a log relation.  A non-linear relationship between 

switch-size and channel-count suggests that the incremental increase in the cost of a switch is not 

the same for all channel counts. It means that while this increase in the number of primary 

channels leads to an increase in the primary switch cost, this increase may not always have a 

corresponding decrease, by the same amount, in the cost of an overflow switch.  
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             Such differences in the incremental costs of switching at the primary and overflow layers 

suggest the possibility of an optimal point, where the total cost of switching is at a minimum. If 

switching cost dominates over other non-switching costs, the total cost of the node also attains a 

minimum value. Minimization of total cost, and the sensitivity of optimal operation to changes in 

the cost of non-switching components may strongly depend on the underlying switch fabric 

architecture and the load offered to the node. Thus, the goal of this chapter is to investigate the 

effect of the underlying fabric architecture and offered load values on realizing this minimum 

total cost in the core node by operating in hybrid mode. The sensitivity of the optimal hybrid 

operation on transport/channel cost components is also studied.                                                                                 

4.4.1  TOTAL COST OF A NODE       

By performing cost analysis of a Hybrid Node, the benefits and/or penalties of hybrid operation 

are studied at the level of a core node. In this analysis, the cost of a facility switch and facility 

switched primary channels are assumed to be a constant and that they do not contribute to the 

optimality of the Hybrid-Node.  In addition, the number of input channels is assumed to be a 

constant, while the number of output channels, which depends on the number of outgoing 

primary and overflow channels, is a variable quantity.  Thus, the total cost of a Hybrid Node, 

which is equal to the sum of transport and switching costs, varies with the number of output 

channels. The transport costs of interest are the cost of the output ports/line cards, amplification, 

synchronization etc. for all the output channels. The switching cost is calculated in terms of the 

number of elementary ‘off the shelf’ switches used to construct the large core switch. It is 

assumed in this chapter that the number of elementary switching modules depends on the 

switching architecture, in addition to the number of primary/overflow channels. 

 

4.4.1.1 COST COMPONENTS The total cost of a node is divided into two main parts, the 

channel-dependent cost and the switching cost. The channel-dependent cost results from any 

operation performed at the input and/or output channels. Such operations may include fiber 

amplification, synchronization, full-range wavelength conversation, signal regeneration etc. We 

can further classify the channel costs into input and output channel costs. In the analysis 
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performed in this chapter, it is assumed that the number of output channels varies with the 

number of primary and overflow channels, while the number input channels remains a constant. 

  Switching (space switching) costs result from any operation performed on both input and 

output fibers simultaneously. Such operations are the space switching operations and any 

amplification that may result from switching losses. The cost of a space-switching operation is 

quantified in terms of the cost of the elementary switching module used to construct the space 

switch. We define the following elementary switch modules: 

• Array of w, multi-wavelength 1 x 1 switches per elementary module: ES 1x1_w 

• Array of w, multi-wavelength 2 x 2 switches per elementary module: ES 2x2_w 

• In general Array of w multi-wavelength  N x N switches per elementary module: ES 

NxN_w 

 

The total cost of a core node can be expressed as the sum of three different costs, the cost 

of the input side, the cost of the output side, and the switching costs. 

 

       Total cost = Input costs + Switching costs + Output costs  ……………(4.4)                                   

Where Input costs = Cost of Input fiber ports, transmission, amplification, channel adaptation 

and synchronization. 

And, Output costs = cost of output fiber ports, transmission, amplification/regeneration, channel 

adaptation, wavelength conversion 

 

Both Input and Output costs are expressed as a function of the total number of input and 

output fibers respectively. Switching costs can be represented as a function of both input and 

output fibers. 

 

   Total cost = f(input fibers) + f(input fibers, output fibers) + f(output fibers)……(4.5) 

 

Since Input fibers are assumed to be a constant in this chapter, the only variable to 

determine total cost is the set of output fibers. Thus, 

     Total cost = Kinput + Kswitch*fswitch(output fibers) + Koutput*ftransport(output fibers)    

                                                                                                     ..................(4.6) 
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where, Kinput , Kswitch, and Koutput are the constants associated with the input, switching, and 

output costs, respectively. fswitch(output fibers) and ftransport(output fibers) are the switching and 

transport functions that relate node costs to the number of output fibers, respectively. The 

number of output fibers is a variable quantity that depends on the number of primary and 

overflow channels assigned to the output links. Since the number of overflow channels is a 

function of the number of primary channels, as discussed in Chapter 3, we can re-write total cost 

as, 

 

    Total cost = Kinput + K’switch*f’switch(p) + K’output*f’transport(p) ……………(4.7)                                     

 

where, K’switch and K’output are the constants associated with the switching and output 

costs, respectively and f’switch(p) and f’transport(p) are the switching and transport functions that 

relate node costs to the number of primary channels. It is assumed that f’transport(p)is equal to the  

total number of output channels, given as, 

 

                                  f’transport(p) = p*D*I + f Ov(p)…………………………(4.8)                                                                                     

 

where fOv(p) is the total number of overflow channels that provide a fixed blocking 

probability for overflows from a given value of p channels per source-destination nodes; and D 

and I are the total number of destination nodes and source (input) nodes attached to the core 

Hybrid Node.  

   This cost analysis of a hybrid switch is classified into three main parts, based on the 

switching architecture used to construct the stand-alone MxM switch described in section 4.2.3. 

The three architectural choices are B-S, Benes and Clos. For each of these architectural choices, 

the two cases of implementing overflow, namely, active and passive overflow scheme are 

considered. For each case, the number of elementary SOA switches, ‘off-the-shelf’ integrated 

elementary switches, amplifiers and wavelength converters will be calculated.               
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4.4.2    COST ANALYSIS OF A HYBRID SWITCH 

As described in part A of this chapter, there are several design choices for a hybrid core node 

switch. We consider multi-wavelength 1x1 or 2x2 switches as basic elements used to construct a 

switch. The cost of a Hybrid Node will be quantified in terms of the number of elementary 

switch modules. 

 

4.4.2.1 CROSS POINTS IN A HYBRID SWITCH The cross points in the hybrid switch may 

be  1x1 switches for a B-S architecture or 2x2 switches for the Benes architecture. The number 

of cross-points in a hybrid switch may depend, not only on the space switch architecture, but also 

on external parameters, such as the number of traffic sources, fiber-links per source (neighbor 

node), wavelengths per fiber and destination nodes. Ee may denote these parameters as follows: 

 

 Number of Input groups= I 

 Number of fibers/input group = K 

 Number of Destinations = D 

 Number of next-hop nodes = G 

 Number of wavelengths/Fiber = W 

   

The internal variables that may affect size of a hybrid switch may be given by: 

 

 Number of primary channels/source-destination beginning at the Hybrid Node = p 

 Number of outgoing overflow channels = v= fov(p) 

 

 As discussed in part A of the chapter, the primary and overflow switches are assumed to 

consist of symmetric M x M switches .From our design choices, the switch architecture function 

for a standalone M x M switch, given as Sswitch(M), where 
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Each input group, which corresponds to each traffic source, has all W *K wavelengths 

connected to p primary channels. The asymmetrical primary space-switch(OB-switch), which 

has K input fibers and Mprim primary output fibers, is made of Nprim switches per input group 

which have Mprim ports, similar to what is shown in Figure 4.5.  The primary switch is used to 

interconnect input fibers to all the outgoing fibers used by the group. In order to determine the 

number of output primary fibers, the value of Mprim, is deduced from the given value of p. In fact, 

the value of p may not be an integral multiple of the number of wavelength per fiber W.  There 

are m wavelengths out of W that have space switches with Plarge output fibers and (W-m) 

wavelengths that have space switches with Psmall output fiber. The value of m is determined using 

the ‘floor’ function of the ratio of p and W as:  

 

                      ……………………………….(4.10) 

 

 It is assumed that there are dedicated fibers to each destination. So, Mprim, can be 

expressed as: 

 

 

                      ….....(4.11) 

          

In the above equation, Psmall and Plarge is determined using the ‘floor’ and ‘ceiling’ functions 

respectively, on the ratio of p and W.  

 Due to Psmall and Plarge components of the set  Mprim , the number of switches required to 

construct the asymmetrical primary space switches of size KxPsmall and KxPlarge are given by 

Nprim_small  and Nprim_large, respectively as:  

 

                                   

 
                                                                          …………………(4.12) 
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Assuming all input groups have same number of primary channels to all destinations, the 

total number of ‘primary’ elementary switches, Cp  is given by, 

 

               ( ))(*)(** arg__ gelarelprimsmallsmallprim PSNPSNICp +=   ……………...(4.13) 

 

For the overflow switch, n out of W wavelengths possess Vlarge output fibers in total, 

going to all neighboring nodes and (W-n) wavelengths posses Vsmall output fibers.  
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Once again, number of overflow switches may be either Noverflow_large or Noverflow_small, 

where  
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The number of elementary switches in an overflow switch is given by 

 

            )(*)(* arg smallswitchsmallelswitchlar VSNVSNCo +=  ………………………(4.16)    

 

In addition to the primary and overflow switches, there may be gates at the input to 

primary/overflow switches,  
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                                       WFIGates **= …………………………………(4.17)                 

The Total number of cross-points/elementary switches in the core node is given by 

   

GatesCoCpcrossptsTotal ++=_  ………………………………….(4.18) 

 

 

4.4.2.2 MULTIWAVELENGTH INTEGRATED SWITCH Integrating the arrays of 

elementary switches of multiple wavelengths, to a single substrate can minimize the number of 

interconnections and the loss within a switch fabric. Let W be number of switching elements of 

different wavelengths that can be integrated on a single chip. In this case, the total cross-

points/elementary switch, as given by equations (4.11),(4.12) and (4.13) changes in the following 

ways, 
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Similarly for the overflow layer 
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It is also possible to integrate the gates which gives total number of overflow gates as, 

                                                               

                                       FIGatesw *= …………………………(4.21) 
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The Cost of a multi-wavelength 1x2 switch  cost(1x2_switch), is compared to the cost of an 

elementary switch cost(ESNxN_W) by a cost ratio CR1x2_switch , 

                            
)(cos

)_21(cos

_
_21

WNxN
switchx ESt

switchxtCR =    …………….(4.22)                                  

        

 

4.4.2.3  WAVELENGTH CONVERTERS AND INTERCHANGERS   A wavelength 

interchanger is a device that converts the wavelength of a channel. They are needed if there is 

contention among the bursts to access a particular wavelength. To construct a wavelength 

interchanger (WI) for W channels in a fiber, we need to de-multiplex the W channels and convert 

them individually. Each channel in the WI module passes through a tunable 

translator/transmitter, which are active elements. For a KxK switch, where each fiber has W 

wavelengths, a WI with W active elements makes the WI rearrangably non-blocking. The WIs 

may be provided at the input to each space switch, in which case number of active elements is 

equal to total number of input channels.  

 

                             KWIWIinput **=   ……………………..(4.23)               

 

   Multi-wavelength integration of w wavelength translators on a single chip will yield: 

 

                               KIWIinput *= ....................................(4.24) 

         

4.4.2.4      AMPLIFIERS Signal amplification may have to be performed within the switch 

fabric to overcome loss introduced by the switching elements. Let’s assume that each integrated 

element introduces 10dB of splicing loss and that an amplifier can overcome 30dB of noise. 

Ideally, then, an amplifier is needed whenever the signal passes through three switching 

elements. The number of amplifiers Ampswitch required for an MxM switch depends on fabric 

architecture. The total number of amplifiers in core node composed of a general switch fabric 

‘switch’ is given by, 
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)(*)(* _ larswitchlaroverflowlarswitchlarswitch VAmpNPAmpNAmp +=
  

    Where, 

    },{ BenesSBswitch AmpAmpAmp −= …………………………….(4.25) 

 

    In a Broadcast and Select switch, there is just one stage of space-switch elements, 

which will introduce about 10 dB noise. In addition, the passive splitter may split the power M 

times. Also, the degree of integration, as mentioned in Part A of this chapter, will affect the loss. 

The total loss between an input and output for an MxM  B-S switch is given by: 

 

                   )(log*2010)( 10 KKLoss SB +=− …………………..(4.26)                                                              

 

The number of amplifiers per KxK fabric is given by 

                

( )
30

)(*
)(

KLossKKAmp SB
SB

−
− =       ……………….(4.27) 

                

  For a KxK Benes switch, there are 2*log2K-1 stages and each stage produces a loss of 

10 dB. The loss through a Benes fabric, and number of amplifiers per input-output path is given 

by  
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  The total switching cost is obtained by adding the cost of amplifiers to the switching 

costs. It is assumed that  the cost of a fiber amplifier, cost(Amp),  is compared to the cost of a 

multi-wavelength integrated Nx N switch element, via the amplifier cost ratio, CRamp_N ,  
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4.4.2.5    TOTAL COST    The total cost of a Hybrid Node can be written in terms of the cost of 

an elementary switch as, 

 

                                 

                                      

                                    
                                                                         …………………….(4.30) 

 

 

            Here, )(cos**)(
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KFICRCRCR =++  ………..(4.31)      

Equation (4.31) gives the relative cost of the input components, with respect to the cost of an 

elementary switch. The constant Kinput is the cost of the input channels, as defined in equation 

(4.6) and cost(ESNxN_W) is the cost of an NxN multi-wavelength elementary switch, as defined in 

Section 4.4.1.1. Similarly, the cost of output channel transport can also be expressed relative to 

the cost of an elementary switch as: 
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The quantity K’output_trans is defined in equation (4.7), and it represents the cost of an output 

channel.  

4.5 ANALYSIS OF TOTAL COST 

Total cost, as derived in equation 4.30, has three main parts. The first part, which contains the 

input costs, is assumed to be a constant, because the number of input channels is assumed to 

remain the same. The second part, which consists of OB-switching costs, varies non-linearly 

with respect to the number of output channels and the relationship depends on the switching 
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architecture used to construct the standalone OB-switches. The third part, which consists of 

output costs, varies linearly with the number of channels. 

Total cost varies with the total number of output channels and the total number of output 

channels depends on the number of primary and overflow channels. For a given load, the number 

of overflow channels depends on the number of primary channels. Hence, equation 4.30 can be 

parsimoniously, modeled as a function of the number of primary channels. The input, output and 

switching parts of the equation can then be studied as a function of the number of primary 

channels.  

Total cost may depend only on the switching costs if CR input_trans , CR output_trans and CRWT 

are very small compared to cost of an elementary switch. In this case, it is of interest to learn if 

hybrid operation will produce a cost optimal core node switch. Cost optimality of a hybrid switch 

will be tested for various internal fabric architectures. In addition, the effect of chip integration is 

also studied.  

As discussed in equation (4.2), earlier in this chapter, at this point of optimality, the 

incremental growth in overflow channels (with respect to the primary channels) should equal the 

ratio of the incremental growth of primary and overflow layer costs. The incremental cost of a 

switch may strongly depend on the switch fabric architecture used to construct the standalone 

MxM switches, as described in part A of this chapter. This incremental cost will also depend on 

the value of M, which may depend on the number of output channels of the switch. 

Analysis of the total cost can also be extended to the case in which the cost of an 

elementary switch is negligible compared to the cost of transportation. In this case, only transport 

costs are considered and the optimal number of primary/overflow channels is obtained.  

In this chapter, total cost analysis is performed by considering the switching and transport 

costs individually. Such an analysis will test cost-optimality under very special conditions and it 

can help explain the effect of switching and transport costs on hybrid operation.   

4.5.1  ADVANTAGE OF HYBRID OPERATION      

A hybrid operation is said to be cost advantageous compared to its non-hybrid counterpart, if 

there is a reduction in total node cost due to hybrid operation. In order to quantify the hybrid 
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advantage due to switching, the cost of hybrid operation is compared to the cost of non-hybrid 

operation. In a non-hybrid operation, offered traffic is exclusively transported either along 

overflow channels or via primary channels, but not both. Non-hybrid operation offers a fixed 

blocking probability to each traffic source, where the blocking probability of the overflow layer 

in hybrid operation is assumed to equal the blocking probability in non-hybrid operation. The 

remaining sections show if hybrid operation can help reduce the cost of a node. In section 4.5 the 

advantage of the hybrid operation is tested for its sensitivity to the OB-switch architecture, 

offered load, degree of integration and cost of non-switch components (such as channels and 

amplifiers). 

In order to quantify this cost advantage due to hybrid operation we introduce a metric 

called ‘hybrid cost advantage’, HCA, which is represented as a function of number of primary 

channels per source-destination, p. The HCA(p) function relates a hybrid operation to non-hybrid 

operation by the difference in total costs of the two operation modes. A non-hybrid operation 

could be either an exclusively primary operation or an exclusively overflow operation at a fixed 

blocking rate. Thus HCA (p) is actually a 2-tuple function defined by equation (4.33). In this 

equation HCAprim(p) and HCAoverflow(p) are hybrid cost advantages of operating a hybrid node 

with p primary channels, with respect to operating a hybrid node exclusively with primary and 

overflow channels, respectively. 

 

 

                      

                     

                                                 
                                                                      ………………………(4.33) 

 

In the above set of equations, a non-Hybrid Node that operates with P primary channels, 

contains no overflow channels and the total cost of such a node, which is given by Total cost(P), 

is used to obtain HCA prim(p). In the same set of equations, total cost of a non-Hybrid Node that 

operates with zero primary channels is given by Total cost(0) and it is used to obtain 

HCAoverflow(p).Total cost of a Hybrid Node, which is given by Total cost(p) in equation (4.33), is 

calculated using equation (4.30).  
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Hybrid cost advantage of a node can also be represented using its percentage values such 

as: 

 
                       

 
                                                                    …………………..(4.34) 

        

  A Hybrid Node with p primary channels is said to posses hybrid cost advantage if both 

HCAprim(p) and HCAoverflow(p), are positive values. If hybrid cost advantage is obtained for all 

values of p between 0 and P, then it is called ‘complete hybrid cost advantage’, as defined in 

Definition 4.1.In the definitions below a set ∏ contains all integer values between 1 and (P-1).  

On the other hand, the if hybrid cost advantage is obtained only for a subset of ∏, then it is 

called ‘partial hybrid cost advantage’, as in Definition 4.2. 

 

Definition 4.1 

 

‘Complete Hybrid Cost Advantage’ is said to occur in a Hybrid Node if, for all values of 

y in the set ∏, 

 

 

 
  

Definition 4.2 

 

‘Partial Hybrid Cost Advantage’ is said to occur in a Hybrid Node if, for all values of y’, 

 

                                  
Although a complete hybrid cost advantage provides hybrid cost advantage for all 

elements of  ∏, there may or may not be a global minimum for the Total Cost. At the same time, 
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a partial hybrid cost advantage in a Hybrid  Node may still yield a unique, global minimum value 

of total cost. A ‘global maximum hybrid cost advantage’ is obtained, if the hybrid cost advantage 

occurs for a total cost, which is a global minimum over the set ∏.  

 

Definition 4.4 

A Hybrid Node attains a ‘Global Maximum Value of Hybrid Cost Advantage’, HCA(x),  

at x* if  

 

 
 

 

A complete or partial hybrid cost advantage may occur, for which there may not be a 

global maximum value. This happens when the total cost of a Hybrid Node doesnot incur a 

global minimum for the set ∏; instead attains a strong local minimum over a subset of ∏. 

 

Definition 4.5 

A Hybrid Node attains a ‘Strong Local Maximum value of Hybrid Cost Advantage’, 

HCA(x) at y* if 

 

 

 
 

N(y*,δ) is a set of feasible points that belongs to ∏ and lies in the neighborhood of y*. 

Value of δ is such that y*+ δ  < P and y*- δ >0. There could be multiple local maximum 

for HCA(x) in the set of ∏.  
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4.5.2  TEST CASES 

As discussed in the part A of this chapter, the total cost of a Hybrid Node depends on several 

design parameters and variables. Each choice of design parameter or variable will be considered 

as a test case.  

For the test cases, the following choice of design parameters is considered.  

• Architecture: B-S, Benes or Clos (Re-arrangably non-blocking). 

• Size of basic space switch element, NxN :  

                             1x1 (for B-S) , 2x2 (for Benes) and 4x4 (for Clos). 

• Number of wavelengths per NxN switch, W: 

                             1 (single wavelength gates) or W(multi-wavelength gate array). 

• Overflow: Active or Passive 

• Number of sources sharing the overflow channels: 10 sources 

• Number of different destinations: 8 destinations 

•          Load: Total offered load in Erlangs per Hybrid Node between every input source 

and final destination. Since the load is assumed to be peaked, we define the load 

by its average Erlang units and long term average Peakedness. 

• Cost ratios are as defined in section 4.4. 

 

While performing switching cost analysis, we may assume the transport costs to be zero, 

by setting   CR input_trans and CR output_trans to be zero. Main components of the switching cost are 

total cost of basic switching elements, cost of fiber amplifiers needed due to switching loss and 

cost of overflow gates.  
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4.6 RESULTS OF SWITCHING AND TRANSPORT ANALYSIS 

4.6.1  SWITCH CONTACTS USING B-S ARCHITECTURE 

 Broadcast and select switches have 1x1 gates as the main switching element, so the cost of 

switching is expressed in terms of the cost of one 1x1 element. For the B-S architecture, we 

consider the value of W, the number of wavelengths per switching element, to be either one or 

10, which is also the number of wavelengths per fiber. For each of these cases, either active or 

passive overflows are possible. In the latter case, the cost ratio of overflow gates may be set to 

zero. The cost of amplification and switching are considered separately in order to study the 

individual effect of each of the components. In this analysis, total cost of a hybrid node 

containing B-S architecture is considered for 0.75 Erlangs, 3 Erlangs and 6 Erlangs of offered 

load per source. In all the three cases, the value of CRamp, which gives the cost ratio of fiber 

amplifiers with respect to the cost of an elementary switch, can range from 0 to infinity. 

 

 
Figure 4.12 Total number of 1x1 switches for an offered load is 0.75 Erlangs and CRamp = 0 
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Figure 4.13 Total number of 1x1 switches for an offered load is 3 Erlangs and CRamp = 0 

 

 

Figure 4.14 Total number of 1x1 switches for an offered load is 6 Erlangs and CRamp = 0 

 

It is observed from the above plots that the number of 1x1 elements reaches a minimum 

value for all three considered load values. Thus, hybrid operation may help lower the number of 

gates required, when compared to a non-hybrid operation of having only primary channels or 
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only overflow channels, in the Hybrid Node. This lowering of total switching element cost 

occurs despite the fact that hybrid operation requires ‘extra’ overflow switches, when compared 

to a non-hybrid operation.  From Figures 4.12, 4.13 and 4.14, we observe that ‘partial hybrid 

advantage’ occurs for an offered load of 0.75 3 and 6 Erlangs, respectively. For a load of 0.75 

Erlangs, hybrid cost advantage occurs  for a value of p  from 1 to 6 and outside this range, it is 

cost effective to have only overflow channels ( and no primary channels).  When the offered load 

is 3 Erlangs, the values of p for hybrid cost advantage is from 5 to 15 and for the values of p 

outside this range, it is cost effective to have only primary channels. Finally, for a load of 6 

Erlangs hybrid cost advantage is seen for p varying from 7 to 21, and outside this range it is cost 

efficient to have only primary channels.   

Figures 4.12, 4.13 and 4.14 exhibit a ‘global hybrid cost advantage’ occurring at the point 

of minimum total cost. At all three loads, it is possible to obtain a unique global minimum cost, 

which occurs due to the hybrid operation. For the offered loads of 0.753 and 6 Erlangs, the 

global minimum occurs at p equal to 3, 7 and 12, respectively. As the load increases, the value of 

p at which the global minimum occurs also increases. This means that at higher loads, it is cost 

effective to introduce source-specific stand-alone switches, rather than build a single large 

overflow OB-switch. Introducing more source-specific stand-alone switches in lieu of more 

interconnections in a single large switch, minimizes the number of switching elements and helps 

bring down total cost of the OB-switch.  

It can be observed that for an offered load of 0.75 Erlangs the cost curve is skewed to the 

left and for a load of 6 Erlangs, it is skewed to the right. This is because, al low loads, one can 

build a single large switch which is cheaper than building a large number of smaller switches. 

Therefore, a non-hybrid operation containing only primary channels will be expensive than the 

non-hybrid operation with only overflow channels. On the other hand, for a large offered load, 

building a single large switch is far more expensive than building several small switches. Hence, 

when we consider the two non-hybrid operation, it is cheaper to have only primary channels, 

compared to overflow channels. This skewness in the cost curve is reflected in the position of the 

global minimum point, in the three figures above. 
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Figure 4.15 Amplifiers to overcome switching loss. Offered load is 0.75 Erlangs. 

 

 
Figure 4.16 Amplifiers to overcome switching loss. Offered load is 3 Erlangs. 
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Figure 4.17 Amplifiers to overcome switching loss. Offered load is 6 Erlangs. 

 

Hybrid operation may not lower the number of amplifiers required in the switch, when 

compared to a non-hybrid operation, as seen in Figures 4.15, 4.16 and 4.17. For all three values 

of loads considered, hybrid operation increases the need for amplifiers. It is assumed that a single 

amplifier can overcome about 30 dB of loss. It is also assumed that the splicing loss of 10 dB 

occurs at the wavelength selective switch, which forms the center stage of B-S architecture for 

both active and passive overflow schemes. Yet another splicing loss of 10 dB may occur at the 

overflow gates for active overflows. On the other hand, splitter loss of 3 dB may occur at the 

overflow splitters for passive overflow. Both active and passive overflows are subjected to loss 

occurring at the splitter prior to the WSC stage but after the overflow stage. Loss at this splitter 

depends on the dimension of the standalone switch, which in turn depends on the number of 

output channels.  For a non-hybrid operation, however, there is no overflow stage, which may 

minimize need for amplification, as evident from the dip in the plots at the two ends of the x-

axis. 

          The number of amplifiers in a B-S switch depends on the number of wavelength selective 

switches (WSCs), in its center stage. Number of WSCs may decrease due to hybrid operation 

and this may help reduce the number of amplifiers required to overcome the splicing loss of 10 

dB occurs at the WSC interface. For an offered load of 3 Erlangs, in Figure 4.16, there is 
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pronounced dip in the number of amplifiers within the range of the hybrid operation, for the case 

when active overflow switches are used. In this curve, it appears as if, lowering of losses in the 

WSC, is almost equal to the loss due to the overflow switches. If this were the case, similar dip 

should also occur for the design using passive splitters. However, due to the fact that an amplifier 

is required for all losses less than 30 dB, makes it necessary to use one, even if losses were 

reduced by a certain value. Had the amplifiers been limited to overcome a smaller loss, the dip in 

number of number of amplifiers due to the hybrid operation would have been more apparent. For 

an offered load of 6 Erlangs (in Figure 4.17) also, there is a small dip in the number of amplifiers 

during hybrid operation for an OB-switch using active overflow switches. This dip is also 

reflected in the OB-switch that uses passive splitters, instead of active switches. For an offered 

load of 0.75 Erlangs in Figure 4.12, the lowering of WSCs is small and this does not help to 

lower the number of amplifiers.  

 

 

Figure 4.18 Total cost of switching for various values of CR amp. Offered load is 0.75 Erlangs 
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Figure 4.19 Total cost of switching for various values of CR amp. Offered load is 3 Erlangs 

  
  

 
 

 
Figure 4.20 Total cost of switching for various values of CR amp. Offered load is 6 Erlangs. 
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            For non-zero values of CRamp, the hybrid cost advantage is lost as CRamp gets 

larger, as seen in Figures 4.18, 4.19 and 4.20. It is also seen that the benefit of reducing 1x1 

contacts becomes apparent only when the cost of 1x1 contacts dominates the switching cost 

largely. If the cost of a 1x1 contact is small compared to the cost of amplifiers, hybrid operation 

may become less cost effective when compared to non-hybrid operation.      

4.6.2  B-S ARCHITECTURE WITH MULTI-WAVELENGTH CHIPS 

The B-S architecture can also be implemented using arrays of multi-wavelength 1x1 switches on 

a single chip, as discussed in section 4.2.2.2. In this case, an elementary switch is a multi-

wavelength 1x1 switch on a chip. Integrating several switch contacts may result in modifying the 

total number of elementary switches required. We analyze the following test cases, which will 

consider arrays of 10-wavelength 1x1 switches on a chip. It is assumed that a splicing loss of 10 

dB occurs at the chip-fiber intersection. Similarly, the overflow gates are integrated in a chip 

with an array of 10 wavelengths. The overflow gates are also integrated on a chip and the gates, 

too, produce a splicing loss of 10 dB.  

Figures 4.21, 4.22 and 4.23 shows the number of 10-wavelength , 1x1 switching elements 

required to construct the OB-switch, for an offered load per source of 0.75, 3 and 6 Erlangs, 

respectively. The OB-switches contain either passive splitters, or active overflow switches. In all 

these three figures, cost of an amplifier, which is given by the value of CRamp, is assumed to be 

zero.  

 

 

 

 



 136 

 
Figure 4.21 Total number of multi-wavelength 1x1 switches. Offered load = 0.75 Erlangs ; CR amp=0 

 

 
Figure 4.22 Total number of multi-wavelength 1x1 switches. Offered load = 3 Erlangs ; CR amp=0 
 

 

Figure 4.23 Total number of multi-wavelength 1x1 switches. Offered load = 6 Erlangs ; CR amp=0 
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 For multi-wavelength integrated 1x1 switches, there are 10 gates per chip, each 

tuned to a different wavelength. All the gates on a chip may not be used, because the number of 

input/output channels per standalone MxM switch may not always be an integer multiple of the 

number of wavelengths per fiber. This is particularly the case for nodes under low loads, where 

the total number of unused gates adds to the total switching costs. Thus, the benefit of hybrid 

operation in reducing the switch sizes of primary and overflow layers may be compensated by 

unused gates. It can be observed from Figure 4.21  that for an offered load of 0.75 Erlangs, 

hybrid operation may not lower the switching costs. On the other hand, there is lowering of 

switching costs due to hybrid operation, as it can be observed from Figures 4.22 and 4.23, for 3 

and 6 Erlangs respectively. 

 Hybrid cost advantage is not obtained in Figure 4.21, for an offered load of 0.75 Erlangs, 

because total switching cost is minimum for the non-hybrid operation with zero primary 

channels. Only a ‘partial hybrid cost advantage’ is obtained for an offered load of 3 and 6 

Erlangs. It can be observed from Figures 4.22 and 4.23 that hybrid cost advantage is lost for 

smaller values of p, and it is obtained for larger values of p. At p = 1, there is a sudden rise in the 

number of switching elements. This is explained due to the unused switching elements in the 

array of 10-wavelength 1x1 switch and also due to extra overflow switches, not present at p = 0.  

A ‘global maximum value of hybrid cost advantage’ is obtained in Figure 4.22 for an 

offered load of 3 Erlangs. In this figure, the global minimum for total switching cost occurs at p 

= 9. For an offered load of 6 Erlangs, in Figure 4.23, a ‘strong local maximum value of hybrid 

cost advantage’ is obtained at p = 7 and at p = 17. This is because of the interaction between the 

value of p, the number of overflow channels, ov and the fact that the switching elements come 

wavelength division multiplexed (WDMed) for 10 wavelengths. Such an effect is not observed in 

Figure 4.14, where the 1x1 switch is not WDMed and it operates only on a single wavelength.  

Figures 4.24, 4.25 and 4.26 show the total cost of an OB-switch for 0.75, 3 and 6 Erlangs 

of offered load per source. These figures include the cost of the switching elements and the cost 

of the amplifiers, used to overcome losses in the switch.  
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Figure 4.24 Total cost of switching for various values of CR amp. Offered load =0.75 Erlangs 

 

 
Figure 4.25 Total cost of switching for various values of CR amp. Offered load = 3 Erlangs 

 
 

 
Figure 4.26 Total cost of switching for various values of CR amp. Offered load = 6 Erlangs 
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The number of amplifiers required in an OB-switch does not depend on the number of 

wavelengths in a multi-wavelength switching element. Since fiber amplifiers amplify an entire 

fiber, including its entire constituent wavelengths, number of required amplifiers for an OB-

switch made of 10-wavelength 1x1 switches, is the same as in Figures 4.15, 4.16 and 4.17. Since 

hybrid operation introduces an additional switching stage, switching loss increases, thereby 

requiring more amplifiers in the switch. The hybrid cost advantage due to lowering the number 

of elementary switches may be compensated by the high cost of amplifiers. At high values of 

CRamp, the hybrid cost advantage is lost. Also, compared to total cost of a non-integrated hybrid 

switch, the cost of an integrated switch is highly sensitive to CRamp. It is seen that hybrid cost 

advantage is lost for a smaller value of CRamp, when compared to values of CRamp for un-

integrated B-S architecture. 

   Thus, for an OB-switch constructed using the B-S architecture, we can conclude that 

hybrid operation may help reduce switching costs by reducing the number of elementary 

switches in the node. At lower offered loads, integration of gates may lead to wasting of gates on 

the chip, thus adding to the total cost of hybrid switches. For both cases, fiber amplifiers may 

have to be used to combat switching losses at the overflow and the space switching stages. A 

very high cost ratio of fiber amplifiers may hinder the cost effectiveness of hybrid operation. 

4.6.3  BENES ARCHITECTURE USING 2X2 SWITCHES 

Figures 4.27, 4.28 and 4.29 shows the total number of  single wavelength 2x2 switching required 

to construct a hybrid OB-switch based on Benes architecture, for an offered load of 0.75, 3 and 6 

Erlangs. In these figures, both active and passive overflows are considered for the OB-switch. 
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        Figure 4.27 Total number of 2x2 switches. Offered load = .75 Erlangs. 

 

 
           Figure 4.28 Total number of 2x2 switches. Offered load = 3 Erlangs.   

 

 Figure 4.29 Total number of 2x2 switches. Offered load = 6 Erlangs. 
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It can be observed from Figures 4.27, 4.28 and 4.29 that Hybrid Nodes with the Benes 

architecture and active overflow do not provide minimum number of 2x2 elements. Hence, 

hybrid cost advantage is not possible if the hybrid OB-switch is constructed using Benes 

architecture and if it contains active overflows. On the other hand, Hybrid Nodes with passive 

overflow are able to achieve minimum number of 2x2 elements. For all the three offered load 

values, a partial hybrid cost advantage is obtained. The minimization of 2x2 elements is more 

pronounced at lower loads such as .75 and 3 Erlangs, compared to an offered load of 6 Erlangs.  

Figures 4.30, 4.31 and 4.32 represents the total number of amplifiers required for a 2x2 

Benes based OB-switch, for an offered load of 0.75, 3 and 6 Erlangs, respectively. 

   

 

       Figure 4.30 Amplifiers to overcome switching loss. Offered load is 0.75 Erlangs. 

 
        Figure 4.31  Amplifiers to overcome switching loss. Offered load is 3 Erlangs. 

 



 142 

 
 Figure 4.32 Amplifiers to overcome switching loss. Offered load is 6 Erlangs. 

 

It can be observed from Figures 4.30, 4.31 and 4.32 that hybrid operation is not a 

favorable mode of operation, when it comes to minimizing total number of amplifiers in the 

node. This is because hybrid operation adds an additional stage of loss, either at the active 

overflow gates, or at the passive overflow splitters. 

Figures 4.33, 4.34 and 4.35 represent the total switching cost of a Hybrid Node 

constructed using 2x2 Benes fabric and passive overflows. The total switching cost of a Hybrid 

Node is equal to the cost of 2x2 elements and the cost of amplifiers used to overcome losses in 

the switch.  

 

 
Figure 4.33 Total cost of switching for various values of CR amp. Offered load = 3 Erlangs 
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 Figure 4.34 Total cost of switching for various values of CR amp. Offered load = 3 Erlangs 

             
 

 
Figure 4.35 Total cost of switching for various values of CR amp. Offered load = 6 Erlangs 

 
 

 It can be observed from Figures 4.33, 4.34 and 4.35 that for Hybrid Nodes minimization 

of total node cost is very sensitive to values of CRamp, particularly at low loads.  The advantage 

of hybrid operation in minimizing total node cost is lost with a large value of CRamp. 
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4.6.4  BENES ARCHITECTURE USING MULTIWAVELENGTH INTEGRATED 2X2 

SWITCHES 

  A hybrid switch may be based on the Benes architecture that uses arrays of multi-wavelength 

2x2 switches integrated on a single chip. In this case, the switching costs are calculated with 

respect to the chip cost. Figures 4.36, 4.37 and 4.38 shows the total number of multi-wavelength 

2x2 switching elements needed to construct a Hybrid Node, for an offered load of 0.75, 3 and 6 

Erlangs, respectively. 

 

 
Figure 4.36 Total number of 2x2 chips. Offered load = 0.75 Erlangs. 

 
    Figure 4.37 Total number of 2x2 chips. Offered load = 3 Erlangs. 
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Figure 4.38 Total number of 2x2 elements. Offered load = 6 Erlangs. 

 
 

For a Hybrid Node based on the Benes architecture using multi-wavelength 2x2 

integrated switches, hybrid operation does not minimize the number of elementary switches. In 

all the three cases of offered load, hybrid operation requires more 2x2 elements compared to a 

non-hybrid operation. 

4.6.5  CLOS ARCHITECTURE USING 4X4 SWITCHES 

 For a Hybrid Node implemented using the Clos architecture, we consider a multi- wavelength 

4x4 switch as the basic switching element. The 4x4 switch may be constructed using the Benes 

architecture and splicing loss for each chip is assumed to be 10 dB. The Clos fabric is assumed to 

be rearrangebly non-blocking. The overflow gates used for passive overflow are also constructed 

using multi-wavelength 4x4 switches. 

Figures 4.39, 4.40 and 4.41 show the total cost of constructing a Hybrid Node using Clos 

architecture. In these figures, the curve labeled CRamp = 0, gives the total number of multi-

wavelength 4x4 elementary switch.  

 

 



 146 

 

 
Figure 4.39 Total cost of switching for various values of CR amp for a load of 0.75 Erlangs  

 

 

 
Figure 4.40 Total cost of switching for various values of CR amp for a load of 3 Erlangs  
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Figure 4.41 Total cost of switching for various values of CR amp for a load of 6 Erlangs  

            
   It can be observed from Figures 4.39, 4.40 and 4.41 that cost minimization due to 

hybrid operation occurs for an offered load 3 Erlangs and 6 Erlangs, but not for 0.75 Erlangs. A 

partial hybrid cost advantage occurs at CRamp = 0 for 3 and 6 Erlangs. The effect of higher values 

of CRamp is to negate the hybrid advantage that occurs due to minimization of 4x4 switches. 

4.6.6  TRANSPORT COSTS 

Transport cost includes all channel-related costs that may increase linearly with the channel 

count. There are two main components to the channel cost: the number of channels and the cost 

per channel. The number of channels depends on the number of primary and overflow channels 

and we quantify the cost of a channel using a cost ratio CRoutput, which relates the channel cost to 

the cost of a switching element. The intention of considering the transport costs in this manner is 

to study how the two main cost components may affect the total cost of a Hybrid Node.  

 

4.6.6.1 TOTAL NUMBER OF CHANNELS Transport cost depends on the total number of 

output channels, which includes the primary channels (which is part of the primary light-paths)  

and the overflow channels. The cost of a single channel is quantified relative to the cost of an 

elementary switch, which is used to construct the Hybrid Node. As mentioned in equation 4.32, 



 148 

the cost ratio CR output relates the transport cost to the switching cost. The advantage of a lower 

number of cross-points in a hybrid switch, compared to non-hybrid operation, may be lost due to 

higher transport costs. This is because every additional primary channel will lower channel 

utilization and improve the overall loss performance obtained by the traffic source. Thus, 

transport costs rise with an increase in the number of primary channels. Figure 4.42 shows the 

total number of output channels (wavelengths) required in a hybrid OB-switch that is offered 

0.75, 3 and 6 Erlangs. In addition to the offered load, the output channels also depend on the 

number of primary and overflow path destinations. It is assumed that the traffic sources are 

identical with respect to their offered load and that all routes (between the Hybrid Node and the 

destinations) are equally loaded.  

 
Figure 4.42 Total number of output channels 

 

Figure 4.42 shows that the total number of output channels increases almost linearly with 

an increase in the number of primary channels for an offered load in the range 0.75 Erlangs to 6 

Erlangs. The total number of output channels also depends on amount of sources/destination 

traffic multiplexed onto the output channels. It is assumed that each source-destination traffic 

load offers equal load on the hybrid channels. For instance in Figure 4.42, when traffic to 8 

destinations are multiplexed together on the overflow channels, the increase in the total number 
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of channel is nearly linear. Whereas, when traffic to only one destination uses the overflow 

channels, the total channel remains more flat. Flattening of the total channel curve also occurs 

for high average traffic loads. For instance, in Figure 4.42, when traffic to 8 destinations share 

the overflow channels, there is greater flattening of total channel curve for a load of 6 Erlangs, 

compared to the total channel curve of 0.75 Erlang traffic.  

Flattening of the total number of channels occurs when an increase in the primary 

channels (per source-destination), is ‘somewhat’ cancelled by a decrease in the number of 

overflow channels, so that the net increase in the total number of channels becomes very small. 

On the other hand, the total number of channels increases linearly when an increase in the 

number of primary channels (per source-destination) is substantial compared to the decrease in 

the number overflows channels. Therefore, as the number of routes (destinations) increases, a 

small increase in the number of primary channels (per source-destination) results in a substantial 

increase in the total number of primary channels. In order to counter this increase in the number 

of primary channels, there is a higher statistical multiplexing gain at the overflow layer. 

However, when the number of primary channels is already very high the overflow gain, which is 

described in section 3.3 drops. A small overflow gain corresponds to a small decrease in the 

number of overflow channels, in response to an increase in the number of primary channels.  

 

4.6.6.2 COST RATIO CROUTPUT Total channel cost not only depends on the total number of 

channels, but also on the value of CR output, which relates the cost per channel to the cost per 

switching element. As the relative cost of a channel becomes very small, which causes to tend 

toward zero; the Hybrid Node will be able to obtain the cost advantage due to lowering of the 

number of cross-points. However, if CRoutput becomes very large, it may be more prudent to 

conserve channels rather than conserve switch cross-points. In such a case, it may become 

prohibitively expensive to provide primary channels in addition to overflow channels. Without 

primary channels, the loss performance of each source becomes equal to the loss provided by the 

overflow layer.  

               For a low value of CR output , it is possible to realize a minimum-cost node by 

minimizing the number of switch contacts. Even if channel costs become infinitely cheap 

compared to the cost of a switch contact, it may not be cost optimal to operate with primary 
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channels alone. Some amount of overflow channels will be required to provide a minimum cost 

node, as it is apparent from the curve labeled CRamp = 0, in Figure 4.43. 

 

 
Figure 4.43 Total cost of a node.  

Figures 4.43, 4.44 and 4.45 shows the total cost of a Hybrid node constructed using un-integrated 
B-S architecture and for an offered load of 0.75, 3 and 6 Erlangs, respectively.  
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Figure 4.44 Total cost of a node. Offered load = 3 Erlangs 

  

 
Figure 4.45 Total cost of a node. Offered load is 6 Erlangs. 

          

 

From Figures 4.43, 4.44 and 4.45, it can be seen that channel cost affects the hybrid 

advantage for the B-S architecture. The effect of transport cost on undoing the advantage of 

hybrid operation on switching cost is felt more, at lower offered loads.  For instance, in Figure 

4.43, the hybrid cost advantage is lost, when minimum total cost occurs when the number of 
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primary channels per source-destination is either 0, or 11. In this figure, it requires a CRoutput of 

20 to overcome the hybrid cost advantage. On the other hand, in Figure 4.45, for a 6 Erlangs 

offered load, CRoutput should be as high as 100 to overcome the hybrid advantage. At a CRoutput of 

100, the total cost of the node is minimum when p = 21, which indicated a non-hybrid operation 

with only primary channels.  In this figure, for a CRoutput that is less than 100, hybrid cost 

advantage is always obtained for values of p between (but not including) 0 and 21. 

For a core-node constructed using the Benes architecture, hybrid operation provides a 

minimization of cross-points over a wide range of primary channels. This advantage is lost when 

total cost includes a large transport cost. It is also seen that, for a smaller value of offered load, 

such as 0.75 Erlangs, the total cost curve is highly sensitive to transport costs, compared to a core 

node with an offered load of 6 Erlangs. Figures 4.46, 4.47 and 4.48 shows the total cost of a node 

constructed using Benes architecture, whose basic element is a single-wavelength 2x2 switch. 

 
Figure 4.46 Total cost for a core node with an offered load of 0.75 Erlangs per source-destination. 
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Figure 4.47 Total cost for a core node with an offered load of 3 Erlangs per source-destination. 
 
 

 
 

Figure 4.48 Total cost for a core node with an offered load of 6 Erlangs per source-destination.   
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4.7 HYBRID COST ADVANTAGE 

4.7.1  HYBRID COST ADVANATGE FOR CRAMP =0 AND CR OUTPUT =0  

The hybrid cost advantage due to lowering of the number of cross-points can be obtained by 

setting values of CR amp and CR output at zero in the Total cost(p) in equation 4.30. A maximum 

hybrid cost advantage is obtained when Total cost(p) is a minimum at p, which is the number of 

primary channels (per source-destination) at the output of the Hybrid Node. Plots depicted below 

show the percentage value of hybrid cost advantage for various switching fabric architecture and 

various values of offered load. Percentage hybrid cost advantage is given by the value of 

percent_HCA(p), in equation 4.34 and calculated using the minimum value of Total cost(p). 

Minimum value of Total cost(p) occurs at a value of p that lies between 0 and P, where P is the 

number of primary channels allotted to a route when there are no overflow channels in the path. 

The hybrid cost advantage components at p, HCAprim(p) and HCA overflow(p),  are calculated 

separately for active and passive overflow schemes using equation 4.33. Figures 4.49, 4.50 , 

4.51and 4.52, shows the percentage value of HCA for a Hybrid node constructed using  the B-S, 

the Benes and the Clos architecture.  

       

 
Figure 4.49 Percentage values of HCA for a core node made using B-S architecture. 
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Comparing the values of HCA in Figures 4.49 and 4.50 for the same load values, it is 

seen that HCA is more pronounced for B-S architecture, specially at higher loads. It is also seen 

that gates in active overflow case cause HCA to reduce to almost zero for Benes- based core 

nodes.  

 
        Figure 4.50 Percentage values of HCA for a core node made using Benes architecture 

 

 
         Figure 4.51 Percentage values of HCA for a core node made using Integrated B-S architecture. 
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Figure 4.52 Percentage values of HCA for a core node made using Clos architecture                            

     In Figure 4.51, a multi wavelength 1x1 switch is the basic element. In Figure 4.52, the 

basic element is a multi wavelength 4x4 switch. In Figure 4.51, HCA is realized for higher loads, 

but in Figure 4.52 HCA is not realized for any of the loads considered, because HCAoverflow  is 

zero, since total cost is a minimum when there are no primary channels, asseen in Figures 4.39, 

4.40 and 4.41 . 

4.7.2  EFFECT OF SWITCH FABRIC ARCHITECTURE 

 Switch fabric architecture such as Broadcast-Select, Benes and Re-arrangable Clos, are 

considered to test the possibility of hybrid advantage. In all the three cases, the hybrid cost 

advantage occurs with varying sensitivities toward offered load and cost ratios. The Broadcast-

and-select architecture shows the minimization of 1x1 switch elements at all three values of 

offered load ( .75 Erlangs, 3 Erlangs and 6 Erlangs) between a source and a destination node. 

The Benes architecture also shows a minimization of 2x2 switches, but the hybrid advantage 

seems to be more pronounced at lower values of offered load, compared to higher values of 

offered load. Also, the hybrid advantage in nodes using Benes architecture is found to be more 

sensitive to channel and amplifier cost ratios. The Broadcast-and-Select architecture, on the other 

hand, requires a larger cost ratio to undo the hybrid advantage. The degree of integration also 
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affects the hybrid advantage of realizing minimum cross-points, in a core node with Benes 

architecture, compared to B-S architecture.  

 The hybrid cost advantage is more pronounced in B-S based core node due to the 

underlying sensitivity of growth in cross points to the growth in the output channels. For an NxN 

switch, the 1x1 elements in a B-S based switch grows at a rate of N*N, whereas 2x2 elements in 

a Benes switch of the same dimension, grows at the lower bound of 2*log2N-1. This makes the 

Benes architecture conserve cross-points, compared to the B-S architecture.  

Tables 4.2, 4.3, 4.4 and 4,5 shows the slope of the primary and the overflow OB-switches 

by measuring the increments in the number of cross-points for B-S and Benes architectures, for a 

load of 0.75 and 6 Erlangs. The slope of the primary and the overflow layers is obtained by first, 

calculating the number of overflow channels for a given number of primary channels, using 

equation (4.3) and then calculating the total number of  cross-points for the primary and the 

overflow switches using equations (4.13) and (4.16), respectively. The slope of the curve 

depicting the number of cross-points is calculated using a curve fitting procedure, as shown in 

the tables below. Figure  

 
Table 4.2  Slopes of the primary and overflow layer OB-switch based on B-S architecture for an 

offered load of 0.75 Erlangs per source-destination. 
 

      Primary channels        0        1   2   3   4   5   6   7   8        9   10 

         Slope of  

       Primary Layer           

      427.7        400.8 390.6       391.846        399.4       408.151  413        408       390.5       352.4       290.2 

     Slope of  

      Overflow Layer           

  -773.6       -472      -570.48      -647      -549.336      -305.33      -44.02       -91.25       -27.06      -156.1 

 

      -139.47  

Curve fit parameters of the Primary layer curve: f(x) = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5 

Coefficients with 95%confidence: p1 = -.214 ; p2 = 3.617 ; p3 = -18.42 ; p4 = 427.7 ; p5 = -4.545 

Goodness of fit : SSE = 539.4 ; R-square = 1 

 

Curve Fit parameters for Overflow layer curve:  

 f(x) = p1*x^6 + p2*x^5 + p3*x^4 + p4*x^3 + p5*x^2 + p6*x + p7 

Coefficients with 95% confidence:  

p1 = .1172 ; p2 = -3.63 ; p3=40.45 ; p4=-189.6 ; p5 = 363.3; p6 = -773.8 ; p7 = 2865 

Goodness of fit: SSE = 8915; R-square = 0.9991 . 
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Figure 4.53 Number of 1x1 switches for a core node using B-S architecture and an offered load of .75 

Erlangs, 10 sources and 1 destination. 
 

 
Table 4.3 Slopes of the primary and overflow layer OB-switch based on B-S architecture for an 

offered load of 6 Erlangs per source-destination. 
      Primary channels        0        2 4   6   8   10   12   14   16        18 20 

         Slope of  

       Primary Layer           

      473.467        377.2 402.73       417.56       374.5       283.17 186.06        131.5       148.31       219.0       215.2 

     Slope of  

      Overflow Layer           

  1263       -160       -585      -567      -439.336      -363.58      -369.045       -405.2       -384.5      -229.1 

 

      77.9 

Curve fit parameters of the Primary layer curve:  

f(x) = p1*x^6 + p2*x^5 + p3*x^4 + p4*x^3 + p5*x^2+ p6*x + p7 

Coefficients with 95%confidence: 

 p1 = -.00112 ; p2 =.07066 ; p3 = -1.573 ;  p4 = 14.66 ; p5 = -56.7 ;  p6 = 473.5 ;  p7 =  .7752 

Goodness of fit : SSE = 2062 ; R-square = .9999 

 

Curve Fit parameters for Overflow layer curve:  

 f(x) = p1*x^6 + p2*x^5 + p3*x^4 + p4*x^3 + p5*x^2 + p6*x + p7 

Coefficients with 95% confidence:  

p1 = -.002012 ; p2 = 0.1636  ; p3= -5.048  ; p4= 74.88 ; p5 =-543.5 ; p6 = 1264 ; p7 = 5918 

Goodness of fit: SSE = 221.3; R-square =1  
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Figure 4.54 Number of 1x1 switches for a core node using B-S architecture and an offered load of .75 

Erlangs, 10 sources and 1 destination. 
 
 
 
Table 4.4 Slopes of the primary and overflow layer OB-switch based on Benes architecture for an 

offered load of 0.75 Erlangs per source-destination. 
      Primary 

s 

       0        1 2   3   4   5   6   7   8        9   10 

         Slope of  

       Primary 

           

      1280       1280 1280       1280       1280       1280        1280       1280       1280        1280       1280 

     Slope of  

      Overflow 

           

    -3116.2.3       -2547      -1866      -1229      -738.9      -444.8      -346.4      -393.3       -480.6      -454.1 

 

      -107.1 

Curve Fit parameters for Overflow layer curve:  f(x) = p1*x^5 + p2*x^4+p3*x^3+p4*x^2+p5*x^1+p6 

Coefficients with 95% confidence:  

p1 = 0.4282 ; p2 = -9.613; p3=51.8 ; p4=225.4 ; p5 = -3116 ; p6 = 9827 

Goodness of fit: SSE = 2.839e+004 ; R-square = 0.9997 . 
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Figure 4.55 Number of 2x2 switches for a core node using Benes architecture and an offered load of 

.75 Erlangs, 10 sources and 1 destination. 
 

 
 
 Table 4.5 Slopes of the primary and overflow layer OB-switch based on Benes architecture for an 

offered load of 6 Erlangs per source-destination. 
      Primary 

channels 

       0        2   4   6   8   10   12   14   16        18   20 

         Slope of  

       Primary Layer           

      1458       1350 1272       1225       1207       1220        1263       1337       1440        1574       1737 

     Slope of  

      Overflow Layer           

   -13769        -6685      -10507      -7751       -4105      -1954      -1445      -1549       -1125      -150.5 

 

      -48.23 

Curve fit parameters for Primary layer curve: f(x) = p1*x^3 + p2*x^2+p3*x+p4 

Coefficients with 95% confidence: 

p1= 1.257 ; p2 = -30.71 ; p3 = 1458 ; p4 = -116.8 

Goodness of fit: SSE = 3.91e+.005 ; R-square = 0.9994 

 

Curve Fit parameters for Overflow layer curve:   

f(x) = p1*x^6 + p2*x^5+p3*x^4+p4*x^3+p5*x^2+p6*x+p7 

Coefficients with 95% confidence:  

p1 = -0.04616 ; p2 = 3.382;  p3= -96.17;  p4=1316 ; p5 = -8357 ; p6 = 9827 

Goodness of fit: SSE = 1.053e+006 ; R-square = 0.9998 . 

 



 161 

 
Figure 4.56 Number of 2x2 switches for a core node using Benes architecture and an offered load of 6 

Erlangs, 10 sources and 1 destination. 
 

 

It can be seen from the tables associated with the Figures 4.53and 4.54 that, for the B-S 

architecture, the slope of the overflow layer decreases continuously. For the Benes architecture 

in Tables 4.4 and 4.5 and in Figures 4.55 and 4.56, however, the slope of the overflow layer 

remains more or less constant over a wide range.  

It is also seen that in a Hybrid Node, the growth rate of cross points of the underlying 

switch architecture also makes hybrid advantage sensitive to the value of cost ratios, such as CR 

amp and CR output. For instance, by observing Figures 4.54 and 4.56, we may compare Hybrid 

Nodes with B-S and Benes architectures and an offered load of 6 Erlangs. It is seen in section 4.6 

that the values of CRamp and CR outputs tend to undo the hybrid cost advantage. It is also seen in 

section 4.6 that compared to a B-S based node,  the Benes based Hybrid Node requires  only very 

small values to CRamp and CR outputs  to overcome hybrid advantage completely. This may be 

explained by the slope of total number of switching elements, labeled as ‘Total’ in the figures 

above. For a Benes-based Hybrid Node, a relatively ‘stable’ slope of the ‘Total’ curve over 

different values of number of primary channels makes it more susceptible to absorb cost curves 

of amplifiers and output transport costs. However, the slope of the ‘Total’  curve for a B-S-based 

Hybrid Node has a ‘steeper’ slope, which is not easily susceptible to the cost curves of amplifiers 

and output channel cost. To put it another manner, the incremental cost of the number of 
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switching elements in a B-S based Hybrid Node has a higher resistance to being influenced by 

the relative cost structure of amplifiers and channel costs. On the contrary, the incremental cost 

of the switching elements in a Benes-based Hybrid Node has a low resistance to the relative cost 

structure of amplifiers and channels costs.       

4.8 CHAPTER CONCLUSION 

Optical Burst Switching operation plays a central role in implementing a Hybrid Node. In this 

chapter a general design for the OB-Switch of a Hybrid Node is proposed. The OB-Switch can 

be constructed using space-switches that may be constructed using any kind of switch fabric 

architecture. However, the potential of the Hybrid Node to realize the hybrid cost advantage 

(HCA) strongly depends on the underlying space switch fabric architecture.  

A Hybrid Node is cost optimal if the incremental cost of the primary layer is equal to the 

decremented cost of overflow layer. It is assumed that the predominant cost components of each 

layer is the switching cost, which depends on the switch architecture and on the transport costs. 

The switching costs are further classified into the facility switching costs and the OB-switching 

costs.  The OB-switching cost grows at a nearly linear rate for primary layer and at a polynomial 

rate for the overflow layer of the OB-switch. If we assume the channel related costs and the 

facility switching to be negligible, the optimality of the OB-switch will decide the optimality of 

the Hybrid Node.  

It is seen that a wide sense non-blocking switch fabric, such as the one constructed using 

the Broadcast-Select architecture, realizes hybrid cost advantage over a wider range of offered 

load and it is less sensitive to the changes in non-switching parameters such as CR amp and CR 

output. The rearrangebly non-blocking space-switch fabrics that minimize the number of switching 

elements, such as the Benes and Clos, causes the hybrid cost advantage to be highly sensitive to 

offered load and the non-switching parameters. 

Space-switch fabric architectures that help conserve the constructional costs of a Hybrid 

Node, either via minimizing the number of switching elements or by monolithic integration, may 

not result in a large hybrid cost advantage. In re-arrangably non- blocking switch fabrics such, as 
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the Benes and Clos architectures, the switch size grows slowly with an increase in the number of 

output channels. On the other hand, space switch fabrics that are not constructionally optimal to 

begin with, may benefit greatly from the hybrid architecture in cutting the total cost of the node.  

Hybrid operation of a core node requires an additional stage of overflow, which is not 

present in non-hybrid operation. The overflow process can be implemented in a passive manner 

using splitters or actively using gates. The addition of overflow gates has little effect on the total 

cost of a B-S switch based node and HCA is seen for both active and passive overflows. For a 

Benes switch based node, however, active overflows increase the total cost substantially, as to 

not provide any HCA. 

Thus, we conclude that hybrid operation has the potential to reduce total switching cost, 

which is strongly dependent on the underlying space architecture. Other main costs, such as the 

cost of amplification and channel costs (including the cost of wavelength conversion on each 

channel), only increase due to hybrid operation. Hybrid operation has the greatest potential to 

provide cost advantage if the switching-element cost dominates over other costs and if there is 

much scope to minimize the number of switch elements in the switch fabric and still maintain the 

wide-sense non-blocking property.
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5.0 ANALYSIS OF A NETWORK OF HYBRID NODES 

5.1    INTRODUCTION 

A Hybrid Network consists of a set of interconnected Hybrid Nodes, linked together by primary 

and overflow channels.  The primary and overflow channels divide the physical network into two 

layers, the primary and overflow layers, respectively. To an optical burst entering the core 

network, the primary path provides a direct ‘virtual’ path to the destination node, although 

physically, the burst passes through several node hops. Hence, we call the primary layer a 

‘virtual layer’.  

The average load or channel occupancy of a primary channel in the primary layer is an 

important metric that can be used to design a hybrid optical network. The channel occupancy of 

primary channels corresponds to the average load carried by the channel, and it is measured in 

Erlangs unit.  A channel occupancy/load of nearly 1 Erlang corresponds to a channel utilization 

of nearly one hundred percent. The average load or channel occupancy that is required to be 

carried by a primary channel, along with the net load offered to the Hybrid Nodes, determines 

the number of primary/overflow channels in the system. It was seen in Chapter 3 that, for a given 

offered load at a Hybrid Node, the primary layer modulates the traffic load offered to the 

overflow layer.  

Provisioning a rich primary layer in the proposed overflow network tends to increase the 

cost due to over-provisioning. However, a rich primary layer also brings down the cost of the 

overflow layer, because there is a smaller load on the overflow channels. A cost-optimal Hybrid 

Network will seek to balance these two costs by appropriately selecting the level of primary 

channel utilization/channel occupancy.  An optimal value of primary channel utilization/channel 
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occupancy can help balance the primary and overflow channel costs in a Hybrid Network, and 

leads to minimizing the total cost of the core network.  

The total cost of a network can be calculated in terms of the total cost of switching and 

transport infrastructure used to construct the network. Chapter 4 addressed the construction cost 

of a single Hybrid Node. In a Hybrid Network, however, the Hybrid Nodes are not isolated; 

instead they are interconnected by the network links, made up of primary/overflow channels. The 

first goal of this chapter is to determine the number of primary/overflow channels in the links, 

such that the total switching and transport cost of the entire network is a minimum. 

Yet another approach to determine an optimal Hybrid Network is to determine the total 

cost of all routes in the network. A route exists for every pair of core nodes in the network. A 

route may contain both primary and overflow paths. The relative cost of an overflow path, with 

respect to the cost of a primary path along the same route, is given by the path cost ratio, CR path. 

It was seen in Chapter 3 that, for a fixed value of path cost ratio and for a given offered load, it is 

possible to obtain the optimal number of primary/overflow channels in the route. However, the 

path cost ratio itself is dependent on the number of primary channels because cost ratio depends 

on the possibility of light-path entry in the nodes along the route, as shown by Equation (3.6a) in 

Chapter 3. If there are more primary channels, the possibility of light-path entry increases and 

the path cost ratio may possibly decrease. If there are more primary channels available to carry a 

given offered load, channel load/utilization will decrease. The second goal in this chapter is to 

consider a network scenario and to determine CRpath of all the routes in the network. The value of 

CRpath depends on the probabilities of light-path entry at the network nodes; and the probability 

of light-path entry in turn, depends on the required primary channel utilization. Thus, a cost- 

optimal solution of a Hybrid Network may depend on the primary channel utilization with which 

we choose to operate our primary channels.  

Both, total switching cost and total route cost of a network depends on the number of 

primary and overflow channels in the network links. The number of primary and overflow 

channels in the links depends on the probability of light-path entry within the network. In this 

chapter, light-path entry is provided for the optical bursts at a Hybrid Node as long as a primary 

channel may not carry a load that exceeds a certain given value. In this manner we also specify 

the amount of over-provisioning provided at the primary layer and we place this constraint on 
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primary channel performance in addition to the required blocking performance at the overflow 

layer.  

The average carried channel-load in Erlangs, which also corresponds to the average 

channel utilization, is represented by letter U. For a given value of the offered access load, the 

total infrastructure cost and the total route costs may depend on the value of U required for the 

primary channels. Total infrastructure cost and total route costs, which depend on the value of U, 

are determined for a network topology example. The chapter provides only an ad-hoc solution 

for the optimality of a Hybrid Network. A general solution is beyond the scope of this chapter.  

In this chapter, a method will be provided to determine the number of primary and 

overflow channels in each link of the network, for a given load, given value of U and given 

blocking rate B, at the nodes. The method can be used to determine number of primary/overflow 

channels in each link of the network for different values of U, ranging from 0 to 1. By knowing 

the number of primary and overflow channels in the links, the total infrastructure cost and the 

total route cost will be determined. The value of U, for which the cost of the network is at a 

minimum, is then determined. This value of U, which gives the optimal number of primary and 

overflow channels, is examined for its dependency of the relative costs of switching and 

transport components.              

5.2 HYBRID NETWORK MODELING 

A Hybrid Network, consisting of N nodes and L links, is modeled as a graph containing N 

vertices and L edges. The primary layer is modeled using two interrelated graphs, one of which 

is the graph representing the virtual connections made by the primary channel and the other one 

contains the actual physical mapping of the virtual connections on the network graph. The 

following graphs are used to model a Hybrid Network, 

1. A physical network graph, GN 

2. A virtual primary-layer graph, GV 

3. A physical primary-layer graph, GP 

4. An overflow-layer graph, GO  
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5.2.1 GRAPH DEFINITIONS AND EXAMPLES 

Consider a core network, whose nodes N, and physical links L, are shown in Figure 5.1.  

 

 

Figure 5.1 A example core-network topology 

 

In the example shown above, N = 6 and L = 10. The core-network topology in the figure 

above can be mapped into its Network Graph, GN, as defined below. 

                            

 

• Definition 5.1: Network Graph, GN 

 

              For a given physical network consisting of N Hybrid Nodes and L links, a unidirectional 

physical network graph, GN, consists of vertices vi and edges eij, 

                              where i = 1,2,..N   ;   j = 1,2,...,N  and i is not equal to j. 

The incidence matrix of GN is given by IN,  

                where IN(i,j) = 1 when there exists a physical link between nodes i and j  

                 and IN(i,j) = 0, when there is no physical link between nodes i and j. 

The Adjacency matrix of GN is given by AN,  
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where AN(i,j) = AP(i,j)+AO(i,j). AP(i,j) and AO(i,j) are the adjacency  matrices of 

the primary and overflow layer graphs, GP and GO,  respectively. 

  The properties of GP and GO are defined in definitions 5.3 and 5.4. The incidence matrix 

IN is a symmetric matrix but the adjacency matrix AN may not be so. 

 

For the example shown in Figure 5.1, the network graph, GN and its incidence matrix IN 

is as shown in Figure 5.2. 

 

 
Figure 5.2  An example Network Graph and its Incidence matrix. 

 

 

• Definition 5.2: Virtual primary layer graph, Gv 

 

 For a given network consisting of N Hybrid Nodes and L links, a unidirectional virtual 

primary layer graph, GV, consists of vertices vi and edges eij, 

                                    where i = 1,2,..N   ;   j = 1,2,...,N  and i is not equal to j. 

     

The incidence matrix of GV is given by IV,  

where IV(i,j) = 1 when there exists a primary link/light path between 

nodes  i and j  
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                               and IV(i,j) = 0, when there is no primary link/light path between   

nodes i and  j. 

 The adjacency matrix of GV is given by AV , 

                              where AV(i,j) is equal to the number of primary light paths between 

nodes i and j. 

 Graph GV is said to be a fully-connected graph if there exists at least one primary light 

path between every pair of nodes. For a fully connected graph, IV(i,j) = 1 for all values of i and j, 

except when i = j.  

 The example topology in Figure 5.1 is re-drawn to depict partially connected virtual 

primary graph, GV, in which there is no light-path between some nodes. 

 

  

 

 

      

 

 

 

 

 

 
Figure 5.3 Example of a Virtual  Primary layer graph. 

 

 

In a network consisting of hybrid routes the light-paths in the primary layer is made of 

primary channels in each hop of the path. Therefore, a virtual primary layer graph can be mapped 

into its associated primary layer graph, as shown in Figure 5.4 below, for the example in Figure 

5.3. In the above figure, node 6 is not connected to the other nodes using primary light-paths and 

node 4 does not have any incoming primary light-paths/channels. Therefore, column 6 and the 

entry (3,4) in the IN matrix is a zero.  
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Figure 5.4 An example physical primary layer graph. 

 

 

• Definition 5.3: Physical primary layer graph, Gp 

 

 For a given network consisting of N Hybrid Nodes and L links, a unidirectional physical 

primary layer graph, GP, consists of vertices vi and edges eij, 

                            where i = 1,2,..N   ;   j = 1,2,...,N  and i is not equal to j. 

The incidence matrix of GP is given by IP,  

where IP(i,j) = 1 when there exists a primary channel between nodes i 

and j and IP(i,j) = 0, when there is no primary channel between nodes i 

and j. 

The adjacency matrix of GP is given by AP , 

 where AP(i,j) is equal to the number of primary light paths between 

nodes i and j. 

 

       A physical primary layer graph, GP, can be constructed from a physical network 

graph, GN, and a virtual primary graph, GV, using appropriate path-routing principle. The routing 

function R(i,k, GN) produces an ordered set of edges, E = (e(i,j1), e(j1,j2 ), e(j2,j3 ) ,...., e(jn-1,jn), 

e(jn,k)) , where jk is a vertex from V, which belongs to set (1,2...,N) . For each non-zero value of 

IV(i,j), which stands for the primary light-path connection between nodes 1 and j,  the values of 
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(IP (i,j1 ), IP (j1,j2 ), IP (j2,j3 ) ,...., IP (jn-1,jn), IP (jn,k)) , in Ip are reset to 1. Also, the matrix Ap is 

updated by updating the values of elements, AP (i,j1), AP (j1,j2), AP (j2,j3) ,...., AP (jn-1,jn), AP (jn,j), 

by the amounts e(i,j1), e(j1,j2), e(j2,j3) ,...., e(jn-1,jn), e(jn,k), respectively. The values of edges e(jk, 

jk+1) are the number of primary channels in each link needed to complete the primary path 

connection between nodes i and k.  

While the physical primary layer graph maps only the primary layers in a link, the 

overflow graph, Go gives the overflow channels in each link of the network. The overflow graph, 

Go, will contain an edge between two vertices, if there is an overflow channels between the 

corresponding nodes. Unlike Gv, the overflow graph Go can have edges between two vertices 

only if the two vertices are neighbors in the actual physical topology. An overflow graph can be 

defined as : 

 

• Definition 5.4 : Overflow graph, Go 

 

 For a given network consisting of N Hybrid Nodes and L links, a unidirectional physical 

primary layer graph, GO, consists of vertices vi and edges eij, 

                                    where i = 1,2,..N   ;   j = 1,2,...,N  and i is not equal to j. 

 

The incidence matrix of GO is given by IO,  

where IO(i,j) = 1 when there exists an overflow channel between nodes 

i and j and IO(i,j) = 0, when there is no overflow channel between 

nodes i and j. 

 

 The adjacency matrix of GO is given by AO , 

 where AO(i,j) is equal to the number of overflow channels between 

nodes i and  j. 

 

Figure 5.5 shows an overflow graph for the example network in Figure 5.2.  
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Figure 5.5 Example of an overflow layer graph 

 

5.2.2 ROUTE AND TRAFFIC LOAD MATRICES 

For a given graph, GN, prior to determining the graphs, GP , GV and GO, the route matrix and the 

traffic matrix is determined. In order to calculate the matrices GP , GV and GO , the physical 

topology graph, GN, and the load offered to each edge node is assumed to be provided. In 

addition, it is assumed that each edge node sends equal burst traffic load to all other nodes.    

 

5.2.2.1 ROUTE MATRIX The optical bursts entering a primary path or a secondary overflow 

path at a Hybrid Node are assumed to follow the same shortest path to the destination. Using the 

physical topology graph GN,  a shortest path table is created for every pair of source-destination 

nodes. Floyd’s algorithm is used to create the shortest path table [52][53]. The algorithm 

provides a predecessor matrix, P(GN) and the adjacency matrix A(GN). Each element of A(GN), 

is identified/indexed by a unique integer valued identifier and placed in link matrix L(GN), which 

labels the physical links between two Hybrid Nodes. The Predecessor matrix, P(GN), gives the 

next hop-node to the destination, along a shortest path from a given source node. In addition, we 

identify each route between a pair of source and destination nodes, as elements of a route matrix, 

R (GN).If there are N nodes in a network, the R(GN) matrix is an NxN matrix, in which each 
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element is assigned a distinct integer value to signify a Route-Id. Element R(i,j) gives the Route 

Id for a route from node i to node j. 

  The example network topology in Figure 5.1, is re-drawn below in Figure 5.6, along 

with the link Id for each link. 

 

• Step 1:  Obtain, I(GN )  the incidence matrix of GN . 

 

The rows and columns of the incidence matrix identify the source and destination nodes, 

respectively.  

 
Figure 5.6 Physical Network in the example with link IDs . 

 

 

Incidence matrix, I(GN) =           
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Where, rows give the source node and columns, the next hop destination. 
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• Step 2: Map I(GN) into the appropriate Link matrix, L(GN), by giving each 

unidirectional link a link-Id. Also, map I(GN)  into the appropriate route matrix, R(GN), 

by identifying the route between a pair of nodes with  a route-Id. The rows identify the 

source and the columns identify the destination in both matrices. 

        

L(GN) =  









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
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


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               R(GN) = 


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
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


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L(GN)  matrix names each link in the physical network and R(GN)  identifies each end-to-

end path in the physical network. 

 

 

• Step 3:  Determine the predecessor matrix, P(GN), using Floyd’s algorithm. 

   

               P(GN ) =   
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The rows of the predecessor matrix identify the source nodes and columns identify 

destination nodes. Each element of the matrix gives the next hop node to the end 

destination. 

                              

5.2.2.2 TRAFFIC LOAD MATRIX A Traffic Load Matrix, T (GN), is created to obtain the 

overflow traffic of a particular route, which passes through a physical unidirectional link of GN. 

T (GN) has NxN rows and 2*E columns, where 2*E is the number of unidirectional edges of GN.. 
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An entry, T(r,s), of the T(GN) matrix gives the amount of overflow traffic of route ‘ r’ that is 

present in link  ‘s’. Route r, which begins in node i and ends in node j, has its Route-Id r, 

obtained from R(i,j) element in matrix R (GN) . Link s, which links node p to node q, is the value 

of entry L(p,q) of link matrix L(GN).  

The T(GN ) matrix provides a decomposition of the overflow load on a route, on a link- 

by-link basis. Traffic decomposition is important to consider because the OBS control plane will 

decompose headers and queue them on the outgoing links of a node based on their route 

information. The route information will provide the source and destination of the header, as 

mentioned in section 3.3.1. 

Each entry in the T(GN ) matrix is determined by considering the load entering the 

overflow channels of a link, after considering the loss probability and the probability of primary 

path entry, for a given offered load to the Hybrid Node, as shown in Figure 5.7. Losses occur, 

when a burst-traffic load offered to a Hybrid Node cannot be accommodated on the overflow 

link considered. In addition, due to primary light path entry of some of the bursts, only a fraction 

of the total offered load is carried along the overflow links. 

 

 
Figure 5.7 Calculating overflow traffic on each hop of the path 

 

Let X Erlangs of traffic load going to a destination ‘D’, enter a Hybrid Node from a 

neighboring node via the overflow links Li. At the Hybrid Node, a fraction p, of X Erlangs enters 

an appropriate primary light path reserved between the neighboring node from which the burst 

arrives, Ns, and the destination node, D. Out of the remaining (1-p)*X Erlangs, only a fraction 

(1-B) is carried by the outgoing overflow link Lo. The overflow link may consist of multiple 

Li        X Primary channel to D pi*X 

(1-pi)*X*B 

Y=(1-pi)*X*(1-B) 

 
(1-pi+1)*(1-B) *Y 

Primary channel to D 
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wavelengths that constitute the link. A similar operation takes place at the next hop on the route 

to the destination. At the next hop, however, the value of fraction p may vary from that of the 

current hop. At all hops, the value of B is assumed to be a constant.  

The method by which the traffic matrix T(GN) will be calculated for a given graph GN,  is 

explained by Step 4, for the given example network topology. In order to determine the traffic 

matrix, we assume that 3 Erlang traffic load is offered between every pair of source-destination 

nodes (routes) in the network.  

 

 

• Step 4:  The graph, shown in Figure 5.6,  has N = 6 nodes and E = 5 edges. Create 

an empty traffic matrix, T(GN ) matrix with N*N=36 rows and 2*E=10 columns. This 

matrix will be updated with overflow load values in the subsequent steps. 

 

                 T(GN) = all_zero_matrix [36,10] 

 

• Step 5:   For each row of T(GN) , determine the source and destination nodes i and 

j.  Staring from node i determine the next links in the route until destination j is reached. 

Loop on the P(GN ) matrix for the next hop link, until the next hop is the destination j. 

The pseudo-code for this algorithm is shown below. 

 

For route between source node i and destination j 

       Begin loop  

       Loop until Next_hop = j 

       Let Current_hop = t  

       Link_number = n, gives the nth link traversed along the route. 

       Determine Next_hop = PN(current_hop, j) 

       Link_id of next_hop = L(GN) (current_hop, next_hop)        

       Set Current_hop = Next_hop 
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For each Next_hop link, assume the probability of light-path entry, p =0 and the 

blocking probability at the overflow layer,  B = 0.001. Update the carried route traffic of 

the link, in the following steps of the algorithm. 

                                   

    Begin with, offered edge node load, X=3, p = 0 and B = 0.001 

    For route between source i and destination j, determine Route_id, RN (i,j) 

    Update load in T(GN) (Route_id, Link_id) 

     T(GN) (Route_id, Link_id) = X*(1-B)n* (1-p)                                                  

       

      Set current_hop = next_hop 

      Set n = n+1 

      Continue the loop 

 

Step 5 gives the overflow traffic matrix T(GN), such that there are no lightpaths for any 

route. While calculating the overflow load on each link, it is assumed that average burst 

load from each route is independent. 

 

• Step 6:  For each column of the traffic load matrix T(GN), add all the elements in 

the column to obtain the total traffic in the corresponding link and place it in a overflow 

link matrix To. To has six rows, where each row corresponds to a destination node. The 

number of columns in To, is equal to the number of links in the physical network. In the 

example, there are 10 links and 6 nodes, hence To has 10 columns and 6 rows. While To 

gives the average load in each link, Zo gives the net Peakedness of this load. 

               In the example, it is assumed that each access source offers an average load of 3 

Erlangs, which has a Peakedness of 2, to every other Hybrid Node in the network.  
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[ ]2222222222

099.2961.1400976.110991.5099.2
99.200991.59670.1400991.5099.2
99.299.2000976.110991.5099.2
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99.299.20991.500976.1109610.140
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Each element of To gives the link traffic that is destined to a particular destination. For 

instance the circled element in the To matrix shows the load on link 5 (which connects 

node 3 and 4) that is destined to go to node 4 is 11.976 Erlangs. This load contains bursts 

originating at nodes 1,2 ,3 and 5, destined to go to node 4.  In the example, for an offered 

access load of 3 Erlangs with no primary channels available, the load offered to the 

overflow layer is  X = 3Erlangs and the load carried is 2.996 Erlangs (after considering 

blocking at the node). This load suffers an additional blocking at subsequent nodes.  In 

the example of To, it is assumed that p =0, since there is no light path entry at any nodes. 

Therefore, the elements of To consider-only link blocking probability B. 

     The Peakedness of the overflow load is assumed to be 2, which also the 

peakedness of the access load offered to the proposed network. The Peakedness is 

maintained at a value of 2, by assuming independent addition of variances and means of 

individual traffic streams. Peakedness of load is assumed to be constant along the entire 

route. We may neglect the smoothing effect of traffic carried along overflow channels, 

which is found to be very small for a blocking probability of B = 0.001, for carried traffic 

on the links. Matrix Zo gives the Peakedness of each link load. 

 

• Step 7.  By adding all elements of a column of matrix To, total link traffic for the 

link represented by the respective column is obtained. For each link, number of overflow 

channels that yield a blocking probability of 0.001 is obtained. 

 

Divide To with (1-.001), to consider the offered link traffic to each link prior to the loss. 

By adding up all the elements of the column, we may obtain, 
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Offered traffic to each link= [ ]15151524152424241515  

 

Number of overflow channels required to yield a blocking probability of 0.001 in each 

link is determined using the method described in section 3.3.1. 

 

Number of overflow channels =  [ ]35353548354848483535  

 

• Step 8. Determine matrices  

               GN = GO             GP=GV = all zero matrices 

         Adjacency matrices,    AN=AO = 
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
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




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0000350

 

  

    The adjacency matrices give the number of overflow channels in each link of the 

network, by assuming that there no primary channels in the network. In the remaining steps of 

the example, possibility of light-path entry is introduced in the analysis. 

5.3  LIGHTPATH ENTRY OF OVERFLOW TRAFFIC  

The matrix T (GN) decomposes the route traffic in all links of GN by assuming there is absolutely 

no primary layer in the network. This means, the adjacency matrices of Gv and GP are assumed to 

be zero. This is the case when all the offered edge traffic is carried by the overflow layer and 

remains in the overflow channel though out the core network, without any possibility of light-

path entry. In this section, we begin to introduce primary channels in varying amounts at the 

edge nodes. Light-path entry is provided for optical bursts at intermediate nodes of its route, but 
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only if the light-path is occupied by a certain amount U. U is the average Erlang-load carried by 

a primary channel. The Average primary light-path utilization/occupancy of a certain number of 

primary channels originating at the Hybrid Node, PL, is shown in Table 5.1. It is assumed in 

Table 5.1 that the offered access load is 3 Erlangs and Peakedness is 2. 

 
Table 5.1Primary channels for each route at edge node. 

Primary Channels, PL,  

For given access load 

Avg. channel Utilization, U Overflow percent, po 

at the Hybrid Node 

               1                 60%            40%           

               3                 53%            47% 

               5                 45.8%            55% 

               7                 38.1%             62% 

               9                 31.9%             68% 

11   26.9%             73.1%  

13   22.1%             77.9% 

15   20%              80% 

                   

In Table 5.1, PL is the amount of primary channels that accepts a part of the offered load, 

which is 3 Erlangs and a Peakedness of 2. The percentage of the offered load which is not 

accepted by PL channels overflows. Therefore, the percentage of offered load carried by PL 

number of primary channels is found out by knowing the probability of overflow at the primary 

channels. The value of U, which is the amount of load carried by each primary channel out of a 

group of PL channels, is found by dividing the total carried load by PL. This value of carried 

load per primary channel is also the channel utilization, which is given by the value of U in 

Table 5.1. In calculating the value of U, it is assumed that all PL channels are equally loaded. 

The amount of offered load per primary channel that overflows is given by the value of po in 

Table 5.1.  

Each Hybrid Node, is assumed to be connected to just one access node that sends an 

aggregate load of 3 Erlangs, with a Peakedness of 2, to another Hybrid Node in the network. 

Each Hybrid Node, is also assumed to be connected to its ‘physical’ neighboring nodes. For each 

Hybrid Node, as depicted in Figure 3.4, one of its sources is the access traffic source and all 

other sources are neighboring core nodes that offer their overflow traffic. In this section a 



 181 

method of light-path entry is discussed, in which primary light-paths, PL, are provided to each 

access source, as shown in Table 5.1. Each value of PL is associated with a value of average 

primary channel utilization, U, as shown in Table 5.1.If the value of offered access load is 

changed, the value of U changes.  

The access traffic-load that overflows from PL primary channels at the edge node, 

appears at a subsequent core node along the traffic path.  At any core node, the incoming links 

contain aggregated overflow traffic that may enter a light-path only if the light-path can be 

utilized by an amount of U. For instance if there are Y Erlangs of overflow load, destined to node 

‘D’, along an incoming link ‘K’  of core node ‘S’. There will be as many light-paths from node 

‘S’ to node ‘D’, carrying a portion of the offered Y Erlangs load, such that the light-paths are 

utilized by a given amount U. This value of U, corresponds to PL, which is the number of light 

paths given to each access source at the core node. Thus, number of primary light-paths assigned 

at any core node. 

5.3.1  ITERATING OVERFLOW TRAFFIC LOAD MATRIX 

Prior to allotting the primary light-paths to a route, an overflow traffic matrix, To is formed, as 

shown in Step 6 of example in Section 5.1.2 and plotted in Figure 5.8. The matrix has 2*E 

columns and N rows. The columns identify the link and the row corresponds to the destination 

node. Each entry To (i,j) corresponds to the sum of all traffic elements, whose final destination is 

node i and passes through link j.  

 
Figure 5.8 Number of overflow channels in the example network, with out any primary channels. 
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The To matrix is updated whenever a primary light-path is provided at any of the Hybrid 

Nodes. Primary light paths are added in a step-by-step manner for all possible routes and, each 

time a primary light-path is added, the load in the overflow layer is recalculated and the To 

matrix is updated. A primary light-path is provided for a route only if the average primary path- 

utilization has a value U.            

5.3.2  ADDING PRIMARY LIGHTPATHS IN EXAMPLE 1 

Let a given value of utilization, U, be obtained to carry the access traffic using PL light-paths 

originating at the Hybrid Nodes. Starting from each of the N nodes in the Hybrid Network, PL 

light-paths are added along the shortest routing-path to the other N-1 nodes. The addition of 

primary light-paths, which only carries load from a single access source, results in a ‘new’ value 

of overflow load at each link of the network shown in Figure 5.8.  

The overflow load, on each link of the network, which is given by each element of To 

matrix, was calculated, along with the Peakedness values, using steps 1 to 8 of Example 1. The 

overflow traffic matrix, To, was updated by considering the value of the overflow percentage, po, 

for the respective value of PL and U. Steps 5 and 6 of the example were performed after 

updating value of po,, in order to obtain the new overflow matrix. Step 9 in this example 

performs this iteration on the To matrices for an offered access load of 3, Peakendess of 2, U = 

0.53, PL = 3  and po =0. 47. 

 

• Step 9 : Add light paths for each access source: Redo Step 5 with offered load X = 

3*p. Then perform step 6 to obtain the updated To matrix. 

 In this step, the overflow layer is provided with an overflow traffic of 3*po Erlangs, 

whose Peakedness can be calculated using Rapp’s approximation, as described in Section 

3.3.1. By ignoring the smoothing effect of the link traffic due to loss at each node, we 

may assume the Peakedness of the link traffic to be a constant. For an offered load of 3 

Erlangs and po = 0.47, we may obtain Peakedness of the overflow to be 2.3286, which is 

slightly greater than the offered Peakedness of 2. 
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• Step 10. Matrices Gv and Gp are updated to account for primary light paths.  

 

In the example, for the given load and a utilization of 53%, PL = 3. Matrix Av, 

which is the adjacency matrix of Gv, is updated by adding PL to all the entries. Similarly 

Gp is updated by updating the adjacency matrix Ap with the traffic in all the links. For 

instance, in the link between nodes 1 and 2 of Figure 5.9, there are 5 primary paths going 

to each of the five nodes in the network. Each primary path on link 1 (between nodes 1 

and 2) consists of PL=3 light-paths/primary channels, resulting in 15 primary channels. 

The adjacency matrix element Ap(1,2), which represents link 1, is updated to 15. 
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Figure 5.9  Gp for the given example network, after performing Step 10. 

 

 

• Step 11 Adding primary light-paths to carry load from neighboring nodes 

 

In Step 10, the primary light-paths carrying access load from only one (access) 

source were added to the Hybrid Network at the Hybrid Node. In this step, the possibility 

of adding more light-paths is examined. As mentioned earlier, light-paths are added such 

that each light-path will have a mean occupancy of U. From the traffic matrix To obtained 

in Step 9, select all routes on any link that can be assigned N primary light-paths with 

utilization U. In the To matrix below, the highlighted entries correspond to the 

decomposed load values in link 3, that can be each provided a primary light-path. Update 

the Av and Ap matrices by N on the respective links of the path. 

 
Table 5.2 Value of To after Iteration 1 

1 2 3 4 5 6 7 8 9 10 
 
 

0 7.0576 0 5.6495 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 0 5.6495 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 5.6495 0 0 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 7.0604 2.8262 0 0 1.4138 
1.4138 0 2.8262 0 5.6495 0 0 7.0576 1.4138 0 
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Ch. added     2 1  1   
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Zo = 2.3286 2.3286 2.3286 2.3286 2.3286 2.3286 2.3286 2.3286 2.3286 2.3286 
nodes       1      2       3       4       5      6 

po     0       0 0.806        0       0         0 

Orig.Lightpath      3    

 

 

 

Figure 5.10 shows the newly added primary channels on Links 5, 6 and 8, as 2 ,1 

and 1 channels, respectively. For instance, we may select Link 3, which contains bursts 

going to nodes 3,4, 5 and 6. Each traffic component on Link 3 can be put into a light-path 

to yield a utilization close to U = 53%, which we require in this example. There are four 

traffic components on Link 3, destined to nodes 3, 4, 5 and 6. Two out of the four traffic 

components on Link 3, also pass through Link 5. Thus, Link 5 gets 2 light-paths/primary 

channels originating at Node 3. Also, one component passes through Link 6, through 

which, there is a light-path that originates at Node 3. At this stage of the iteration, the 

primary light-paths originate from node 2, where the probability of light-path entry, po  is 

19.4% and the probability of overflow po =  80.6% 

 
Figure 5.10 Gp for the example network, after Iteration 1.  

 

• Step 12. Updating To and Zo , as result of light-paths added in Step 11 

 

With the new value po, obtained Step 11, Step 5 is re-run in order to obtain the new 

matrix To. Also the values of Zo  on each link are updated.  
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Zo is updated on all links to which new primary channels are added. In the example, the 

Peakedness of Links 3, 5, 6 and 8 are to be updated. The Peakedness of Link 3 traffic is 

equal to the Peakedness of overflow traffic, which is found to be 2.454 by Rapp’s 

approximation. All components of Link 3 load is equal. Any one component of link 3, 

after light-path entry, produces an overflow of 2.826*.806 = 2.2779, Erlangs, which is 

offered to, say, Link 5.  Overflow load along Link 5 is updated, due to change in 

overflow from Link 3 and all this process is carried out in Step 5, with probability of 

light-path entry p = .194(or po = .806). 

The change in Peakedness of the load offered by Link 3 due to light-path entry at Node 3, 

will result in change in Peakedness of overflow load in Link 5.  Link 5 carries, not only 

the traffic carried from Links 3 and 9 , but also some traffic native to Node 3.  Link 3 

now offers a load of 2.2779 Erlangs with a Peakedness of 2.454. In addition, on Link 5, 

there is 2.82 Erlangs native to node 3, and this load has a Peakedness of 2.3286. The 

Peakedness of overflow load in link 5 given by [37] 

 

 

           Z0(5) = (2.2779*2.454 + 2.82*2.3286)/(2.2779+2.82) = 2.3849 

 

Similarly, Peakedness of links 6 and 8, which gets effected by light-path entry of Link 3 

load at Node 3, is updated as shown in Table 5.3.  

Table 5.3, shows the updated value of link-loads and Peakedness. In Iteration 2, load 

offered by Link 4 is selected for light-path entry. As a result, 7 light-paths are added on 

Link 2, as shown in Table 5.3 and Figure 5.11 
 

Table 5.3 Value of To after Iteration 2 

Links    1 2 3 4 5 6 7 8 9 10 
0 7.0576 0 5.6495 0 0 2.8262 0 1.4138 1.4138 

1.4138 0 0 5.6495 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 6.5127 2.8262 0 0 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 6.5104 1.4138 0 

Prim.          7   
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Figure 5.11 Gp after addition of 7 primary channels after Iteration 2. 

 

 

• Step 13 Further updating To and Zo 

Primary light-paths are added to the outgoing links of yet another node and the To matrix 

is updated. The iteration process continues until there is no link traffic element in the To matrix 

that can be provided a primary light-path with utilization U. 

In this example, the next node we consider is Node 4. A primary light-path is provided to 

all traffic elements in Link 5. For a traffic load of 5.1018 on Link 5, 7 primary light-paths can be 

provided, resulting in channel utilization of 52.8%. Since Link 5 carries traffic from two route 

paths, there are 14 primary channels in the Link. The addition of primary light-paths in Link 5 

has an effect on traffic elements in Link 8, which is also provided 7 primary channels. Node 3’s 
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overflow percentage, po, is 0.2712 and the To matrix is updated by running step 5. The 

Peakedness of the traffic elements in Links 5 and 8 is updated, using the method in Step 12. 

Figure 5.11 shows addition of new primary channels on Gp obtained from Iteration 1. 

The process of updating To, Zo and Gp continues for several rounds until there is no 

traffic element in To that can be assigned a light-path. 

Table 5.4, shows the updated value of link-loads and Peakedness. In Iteration 3, load 

offered by Link 7 is selected for light-path entry. As a result, 2 light-paths are added on Link 3 

and one channel each on Links 2 and 5, as shown in Table 5.4 and Figure 5.12. 

 

 
Table 5.4 Iteration 3  

Links   1          2        3          4        5        6       7        8        9      10 

0 7.0576 0 5.6495 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 0 5.6495 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 6.5127 2.8262 0 0 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 2.796 1.4138 0 

Prim. 
Channels 
              1 2  1      

Zo 
=2.3286 2.3286 2.3286 2.3286 2.3849 2.3719 2.3286 2.7116 2.3286 2.3286 

nodes       1      2       3       4       5      6 

po   0.806  0.2712   

Orig. 

Lightpath  

     6     7   
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Figure 5.12 Addition of light-paths in Iteration 3 

 

Table 5.5, shows the updated value of link-loads and Peakedness. In Iteration 4, load 

offered by Link 4 is selected for light-path entry. As a result, 7 light-paths are added on Link 2, 

as shown in Table 5.5 and Figure 5.13. 

 
Table 5.5 Iteration 4 

Links   1        2        3        4          5         6         7         8         9        10 

0 6.5104 0 5.1018 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 0 5.1018 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 5.965 2.8262 0 0 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 2.796 1.4138 0 

          
Zo= 

2.3286 2.3719 2.3286 2.3286 2.3849 2.3692 2.3286 2.7116 2.3286 2.3286 
Prim  
Ch. 
added  7         
nodes       1      2       3       4       5      6 

po    0 0.2664 0.806 0.2712      0       0 

Orig. 

Lightpath 
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Figure 5.13 Gp after addition of primary channels on link 2. 

 

The final To matrix gives the link-load elements of the overflow layer that do not enter 

any primary light-paths. At the last round of the iterative process, the final values of p(or po) are 

obtained, which gives probability of  light-path (overflow path) entry at each node. 

Table 5.6, shows the updated value of link-loads and Peakedness. In the final iteration, 

there are no link-loads for light-path entry. This final step is shown in Table 5.6 and Figure 5.13. 

 
             Table 5.6 Final Iteration 

Links  1        2        3        4         5          6         7        8        9      10 

0 2.7715 0 5.1018 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 0 5.1018 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 0 2.8262 0 1.4138 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 0 1.4138 1.4138 
1.4138 0 2.8262 0 0 5.965 2.8262 0 0 1.4138 
1.4138 0 2.8262 0 5.1018 0 0 2.796 1.4138 0 

          
Zo= 

2.3286 2.6819 2.3286 2.3286 2.3849 2.3692 2.3286 2.7116 2.3286 2.3286 
nodes       1      2       3       4       5      6    

po    0 0.2664 0.806 0.2712      0       0    

 

• Step 14. Updating Go and Gp matrices  

 

 The Adjacency matrix Ao, which gives the number of overflow channels in each link, is 

obtained from the matrix To. In order to obtain the number of overflow channels in a link, the 
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total traffic passing through the link is obtained by adding all the elements of   the corresponding 

column in To . Queuing analysis in performed on  the link to obtain the number of overflow 

channels for which a loss of B is obtained. 

In the example, channel blocking is assumed to be 0.001. For this example, the final 

adjacency matrix of the overflow graph is determined as,  
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Figure 5.14 compares the overflow graph obtained after light-path entry, with that in 

which there is no light-path entry. 

 
                                                        Initial Overflow Graph 

 
                                                   Final Overflow Graph 
Figure 5.14 Initial and Final Overflow Graphs. 
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 Adjacency matrix, Ap, of graph Gp, whose links are utilized with an average 

utilization of U is found to be, 
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Figure 5.15 compares the initial and final Primary layer graph. 

 
                                         Initial Primary Layer Graph 

 
                                           Final Primary Layer Graph 
Figure 5.15 Initial and final Primary Layer Graph. 
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5.3.3   RESULTS: PRIMARY AND OVERFLOW CHANNELS IN THE LINKS 

In the previous section, the average channel utilization of the primary layer was assumed 

to be 53%. We may also consider several other possible values of primary channel utilization, as 

given in Table 5.1. The Ap and Ao matrices are determined for all the cases of primary channel 

utilization. 

 

1) Utilization of 60% 
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2) Utilization of 53% 
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3) Utilization of 46% 
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4) Utilization of  38.15% 
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5) Utilization of 31.9% 
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6) Utilization of 26.9% 
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7) Utilization of  22% 
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8) Utilization < 21% 
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9) Utilization >60% 
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Entries in the Ao and Ap matrices depend on the utilization of primary channels. It is seen 

from the entries in the matrices that for a utilization of 60%, 53% and 48%, the number of 

primary and overflow channels are not the same for the bidirectional links between a pair of 

nodes. For instance, for a utilization of 60%, there are 15 primary channels from Node 1 to Node 

2 (Link 1) and 23 primary channels from Node 2 to Node 1 (Link 2). The difference between the 

number of channels in the bidirectional link reduces, as primary channel utilization decreases. 

For instance,  for a utilization of 48%, there are 25 channels in Link 1 and 28 channels in Link 

2.This difference in number of channels disappears as utilization becomes 38.1%. Similar 

behavior is observed for the graph Ao. 

5.3.4  SWITCHING COST OF NODES 

We saw in Chapter 4 that the switching cost of a node depends on the number of switching 

elements in the primary and overflow layers within the Hybrid Node. We also saw that the 

number of switching elements in a Hybrid Node depends on number of primary and overflow 

channels on the outgoing links. We may use the Ap and Ao matrices, for each case of U, to 

determine the number of switching elements in each node of the Hybrid Network. 

  Each node of the primary network performs the following switching functions 

1) To provide light-path entry for access traffic via a ‘primary_access_switch’. 

2) To provide light-path entry for core overflow traffic via a ‘primary_core_switch’. 

3) To provide overflow channel entry for both sources via a single ‘overflow_switch’. 

4) To direct incoming traffic from each source to either the primary or overflow switches. 
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In order to determine the number of switching elements in a ‘primary_access_switch,’ we 

require the number of fibers coming from the access source to the Hybrid Nodes, the number of 

incoming overflow fibers, and the number of outgoing primary fibers. The number of incoming 

access fibers is assumed to be 10 fibers each carrying 10 wavelengths. The number of outgoing 

fibers is determined from the Ap and Ao matrices. 

             The Ap and Ao matrices give the number of primary and overflow wavelengths, 

respectively. Assuming there are 10 wavelengths per fiber, we use the following method to 

determine the number of primary and overflow fibers in each link. Consider an N*N 

Link_Fiber_ matrix, whose elements represent the number of fibers in each link. Also consider 

an N*N primary fiber matrix and an N*N overflow_fiber_matrix  that gives the number of fibers 

carrying primary and overflow channels, respectively. It is assumed that primary  and overflow 

channels are packed onto fibers in the most efficient manner; so it is possible for primary and 

overflow channels of a link to be on the same fiber. 

 

For each link, between nodes i and j, where i,j = 1,2,...N and W is the number of wavelengths per 

fiber, 
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 The primary fiber matrix gives the total number of primary fibers in a link, which 

contain the primary channels originating in the core nodes and the primary channels bypassing 

the core node. In order to determine the dimension of a primary switch, we need the number of 

primary channels originating at the core node. The iterative process described in Section 5.2.2 

creates new light-paths originating at a node during each iterative step. Table 5.2 gives number 

of light-paths originating from each node for a given value of primary channel utilization and an 

offered load of 3 Erlangs with a Peakedness of 2.  
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Figure 5.17 shows the number of primary fibers in each Link of the network. Figure 5.16 

shows overflow channels in each link.  

 

 

 
Figure 5.16 Links showing overflows channels/overflow fibers of each link 

 

 

Figure 5.17 Primary lightpaths/fiber emanating from nodes 2, 3 and 4. 

 

 

 

 

 1      

 

2      

 

 3      

 

 5      

 

4      

 

6      

 

    1/1 

      7/1     1/1 

    7/1 

    1/1 

    1/1 

    1/1 

 1      

 

2      

 

 3      

 

 5      

 

4      

 

6      

 

    25/3 

    19/2 

    27/4 

    21/3 

    17/2 

    23/3 

    27/4 

    25/3 

 25/3   

 

     17/2 



 199 

Table 5.7 Number of input and out put fibers at each node. 

 U=53.8%, load of 3 Erlangs, Z = 2 ;  W =10 wavelength/fiber, 10 access input channels; B= .001 

          Nodes 

Switch 

1   2   3   4   5   6 

Access input       10  10      10         10       10        10 

Prim_access         5  5        5          5        5         5 

Core_ input       0   3      (4,3)         3       0        0 

Prim_core       0   1      (3,3)         1       0          0 

Overflow_in       10    16      20         16   10     10 

Overflow_out       3    6       9          5        3        3 

 

In Table 5.7, Access input is the number of input access fibers, assumed to be 10 fibers. 

Prim_access is the number of primary channels provided for each access source and this number 

depends on the primary channel utilization and offered load. For a primary channel utilization of 

53.8% and an offered load of 3 Erlangs/Peakedness of 2, PL is always 3 channels per destination 

node and these many channel can be accommodated in one single fiber. Since there are 5 

destination nodes, there should be 5 prim_access fibers emanating from a ‘prim_access_switch,’ 

one fiber going to each destination. Therefore, the ‘prim_access_switch’ should be of dimension 

10 * 5, where 10 is the number of access_input fibers and 5 is the number of Prim_access output 

fibers. 

Core_input gives number of overflow fibers entering a core node that may be connected 

to primary channels at the core node. Core_input contains overflow fibers from all the input links 

that may be connected to the node. Overflow fibers in a link is calculated using Equation (5.1). It 

is seen in Table 5.7 that for Node 3, there are two different values for Core_input because there 

are 4 input fibers from Nodes 2 and 4 and 3 input fibers from Node 5.  

By determining the number of input and output fibers in a node, number of switching 

elements in the primary and overflow OB-switches can be determined using the method 

developed in Chapter 4.                              

                            

 
For a core node i, we may calculate total number of switching elements as, 
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 The above formulation of switching elements assumes a passive overflow, implemented 

using passive splitters, as opposed to active overflow. The function S(input,output) is the 

switching function that  depends on the switch fabric architecture used to construct the switches. 

If we assume Broadcast and select architecture with no integration, we may obtain total number 

of switching elements for each core node, as shown in Table 5.8.  

 
Table 5.8 Number of switching elements in each node.  

load of 3 Erlangs, Z = 2 ;  W =10 wavelength/fiber, 10 access_input channels; B= .001;B_S fabric 

Nodes 1   2   3   4   5   6 

Switching 

elements 

u=60%/PL=1 

240     1225      2257         1369        240        240 

Switching 

elements, 

u=53%/PL=3 

455     1327      2250         1125        455        455 

Switching 

elements, 

u=45.8%,PL=

5 

450     843      2252         843        450        450 

Switching 

elements, 

u=38.15%,PL

=7 

500     844      1180         810        500        500 

Switching 

elements, 

u=31.9%,PL=

570     819      1144         679        570        570 
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9 

Switching 

elements, 

u=26.9%,PL=

11 

650     790      1000         790        650        650 

Switching 

elements, 

u=22.9%,PL=

13 

740     866      1055         866        740        740 

Switching 

elements, 

u=20%,PL=15 

750     750      750         750        750        750 

Switching 

elements, 

u>60%,PL=0 

300     2085      3700        2085       300        300 

5.4 COST OF A HYBRID NETWORK 

The cost of a Hybrid Network may be considered to be equal to the sum of its switching and 

transmission costs. The total transmission cost of a network is assumed linearly dependent on the 

total number of wavelength channels that constitute all the links of a network. The total number 

of elementary switches used to construct all the nodes of the network may determine the total 

switching cost of a network. Both switching and transmission costs depend on the number of 

primary and overflow channels in the network links. 

5.4.1  SWITCHING COSTS 

The number of switching elements in each node of the Hybrid Network, which is given in Table 

5.8, is shown in Figure 5.18, for different values of primary light-paths PL provided to each 

access source. The hybrid switches are constructed using the architecture described in Chapter 4. 
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The switch fabric is assumed to use the Broadcast-and-Select architecture, which is made of 1*1 

switching elements.  

 
              Figure 5.18 Number of 1x1 elements for nodes 1, 6 and 5. 

 

Figure 5.18 shows the total number of 1*1 elements, for different values of PL, for Node1 in the 

given example network. Nodes 5 and 6 also contain the same number of 1*1elements. All three 

nodes are connected to their respective access source and to one other node in the network. 

Figure 5.18 shows that with an increase in PL, the number of 1x1 switching elements also 

increases. This is because Nodes 1, 5 and 6 groom incoming access-traffic to outgoing primary 

and overflow channels. With an increase in PL, the number of primary channels used to carry 

this access load increases and as a result, the size of ‘access_prim_switch’ increases. It is also 

observed in the given example that the size of ‘access_prim_switch’ increases at a rate that is 

faster than the corresponding decrease in the size of the overflow switch.  

Figure 5.19 shows total number of 1*1 elements for node 3 that not only connects to the 

access source but also to three other core switches. Node 3 provides light-path entry for traffic 

offered by Nodes 2 and 4. It is observed from Table 5.1 that as the value of PL increases the 

corresponding value of U decreases. In order to provide light-path entry at Node 3 for any 

incoming optical bursts, via overflow channels from Nodes 2 or 5, the average primary channel 

utilization should be of the required value, U.  With an increase in the value of PL, large amount 

of access traffic is placed on primary light-paths with only a small amount left for the overflow 

layer. Hence, only a small amount of overflow traffic from Node1 and 2 reaches Node 3 for 

light-path entry. Thus, for a large value of PL, the number of light-paths originating in Node 3 
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decreases.  In the same manner, a small value of PL results in a heavy overflow from Nodes 1 

and 2, so there is more overflow traffic along Link 3. Therefore, in order to provide an average 

channel utilization of U (corresponding to the value of PL) for the light-paths originating at Node 

3, more primary channels are required. Thus, a small value of PL corresponds to more light-paths 

originating at Node 3.           

 

   
Figure 5.19 Number of 1*1 elements for node 3 

 

For the given example, it is seen that the number of 1*1 elements in Node 3 decreases 

due to an increase in the value of PL. As PL increases, the number of primary light-paths used to 

carry the access load increases. At the same time, the number of primary channels used to 

provide light-path entry decreases, along with a decrease in the number of overflow channels 

emanating from Node 3. The net effect is that the dimension of the Node-3 switch becomes 

smaller, there-by requiring fewer   1*1 elements.  

Figure 5.20 shows that Core-Nodes 2 and 4 are connected to one access source and two 

other core nodes. Core-Node 2 does not receive as much overflow load as Node 3 does, but it 

receives more overflow traffic than Node 1 does. It is seen that the number of 1*1 elements for 

Core-Nodes 2 and 4, decreases slightly with an increase in value of PL. The net percentage 

decrease in the number of 1*1 elements between PL =0 and PL=15 is about 70% for Node 3, 

46% for Node 4 and 37% for Node 2.  
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Figure 5.20 Number of 1x1 elements in nodes 2 and 4 

 

Figure 5.21 shows the variation of the total number of 1*1 elements in the entire network. 

It can be seen that there is a balance between the increase in the number 1*1 elements in Nodes 

1, 5 and 6 and the decrease in the number of 1*1 elements in Nodes 2 , 3 and 4. The minimum 

number of 1x1 elements occurs at PL =7.  

 

              Figure 5.21 Number of 1x1 elements in the entire network 
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5.4.2  TRANSMISSION COSTS      

The total number of wavelength channels in a network is one of the main factors that dictate total 

transport cost of the network. We assume that the cost of a link is linearly dependent on the total 

number of channels in the link and that all channels have the same transmission rate. Figure 5.22 

shows the total number of transmission channels, including both primary and overflow channels, 

in the network. The total number of channels is obtained by summing up the elements of the Ap 

and Ao matrices for each value of utilization U (which corresponds to a value of PL). 

 

 
   Figure 5.22 Total number of channels in the network 

The total cost of a Hybrid Network depends on the relative cost of transporting a channel 

to the cost of switching a channel. In order to calculate total cost, we introduce the metric 

CR_trans, which is the relative cost of a wavelength channel, to the cost of a switching element. 

Figure 5.23 shows the total cost of a Hybrid Network for different values of   CR_trans. The total 

cost of a network is calculated using Equation 5.3.  
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For a small value of CR_trans, total cost curve resembles the curve in Figure 5.21. For 

higher values of CR_trans, total cost is dominated by the transport costs and resembles the curve 

in Figure 5.22. 

 

 
   Figure 5.23 Total cost of the network for different values of CRtrans 

              

 

The total cost of a Hybrid Network depends on the value of CRtrans. The total transport 

cost of the network increases as channel over-provisioning increases. In order to get an optimal 

Hybrid Network, the increase in total transport cost must be balanced by the decrease in 

switching costs. For the given network and its access loads, switching costs depend on the degree 

of over-provisioning, represented by the value of U/PL, for the primary light-paths used to carry 

the access load.  The total switching cost of a node may increase, with an increase in the value of 

PL, if the node is directly linked to fewer core nodes. At the same time, an increase in the value 

of PL results in lowering the switching costs of a highly-linked node.  
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5.5 COST OF ROUTES 

A Hybrid Network consisting of ‘N’ nodes will contain ‘N*(N-1)’ routes between core nodes. 

Each route in the Hybrid Network is associated with a path, which is made of the nodes traversed 

by a burst to get from the source node of the route, to its destination node. Each route path may 

be characterized by it path cost ratio, as discussed in Chapter 3. In order to determine the path 

cost ratio CRpath, we use Equation (3.6e) in Chapter 3. The probability of light-path entry at the 

ith node of the route path, pi, is determined using the iterative technique described in Section 5.2. 

We may calculate cost ratios for all routes in the network, using Equation (3.6) from Chapter 3. 

In order to calculate the cost of all route paths, we need to determine the value of CRpath 

for all routes in the given network. A Matrix CRpath_PL , contains all values of CRpath, for a given 

value of PL. In calculating the cost ratio of each route, it is assumed that all nodes and links have 

identical costs. The cost of switching may be approximated to be the same in all nodes, as 

internal paths through a B-S fabric constitute just one 1*1 element. All transport links are 

assumed to be of equal cost. 

5.5.1  COST OF ROUTES IN EXAMPLE 1 

Prior to calculating the costs of network routes, the value of CRpath associated with each route has 

to be determined. CRpath of each route, as provided in Equation (3.6e) of Chapter 3 is modified, 

by assuming that the cost of switching is one unit and the cost of transport is K units per-hop. 

The cost ratio, CRpath_PL(i) of route i, is obtained by modifying Equation (3.6d) in Section 

3.4.2.1. 
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For the network in the example with N nodes, the N*N hops matrix, whose elements are 

the actual physical hops in a route is given by, 
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In the hops matrix, the rows are the source nodes of a route and columns are the 

destinations. An entry hops(i,j) in the hops matrix gives the number of hops taken by an overflow 

path  between the source and the destination nodes. The average number of hops for all routes of 

the network is given by avghops.  

The value of pi, which is the probability of light-path entry at the ith node, is obtained 

from the iterative process described in Section 5.2. Using the formula given in Equation (5.3), 

avg_overflow_hops is obtained for each route, for a given value of PL/U. It is observed that for 

varying values of  PL, the entries in avg_overflow_hops_PL are always less than or equal to the 

corresponding values in the (physical) hops matrix. Due to light-path entry in the overflow path, 

the average switching hops traversed by a burst will be less than the actual number of physical 

hops in the path. 

 

 For PL=1; average overflow hops is given as : 
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For PL=3; average overflow hops is given as : 

 

 

 

 

 

 

For PL=5, 7 , 9, 11,13 CRpath_5= CRpath_7= CRpath_9 = CRpath_11 average overflow hops is given as:  

 

 

 

 

 

 

 

 

The average value of avg_overflow_hops_PL is obtained for each value of PL as,  

 

 

 

 

       PL     0     1      3      5     7      9    11    13 

avg(avg_overflow_

hops_PL) 

  .98 1.65 1.76  2.08 2.08 2.08 2.08  0 

 

 

In terms of cost of a primary path, the total cost of a hybrid path,  
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In Equation (5.6), Ro_PL (l) is the number of overflow channels in link l of the network 

and Rp_PL(l) is the number of primary light-paths in link l. Rp_PL (l) primary light-paths  on 

link l span an average number of hops equal to avg_hops(PL). On the other hand due to light-

path entry at intermediate hops, Ro_PL(l) overflow channels avg(avg_overflow_hops(PL)) hops 

across the network.  

 
Table 5.9 Number of primary and overflow channels in each link. 

Link,l 0  1   3   5   7   9   11  7  13  

                                                     PL = 0  

Ro_0  35  35  48  48  48  35  48  35  35  35 

Rp_0  0  0  0  0  0  0  0  0  0   0 

                                                     PL = 1  

Ro_1 31  23  42  20  36  25 42  23  31  31 

Rp_1  5  14  4  10  10  9  3  9  5  5 

                                                     PL = 3  

Ro_3  19   17   20  25   25   19    20  17   19  19 

Rp_3  15   10  12   8   8   5   9   10  15  15 

                                                     PL = 5  

Ro_5  15   15  17  17   17    15   15  15   15  15 

Rp_5  25   5  20  10  10  5   15   5   25  25 

                                                     PL = 7  

Ro_5  12   12  13  13   13    12   13  12   12  12 

Rp_5  35   7  28  14  14   7   21   7   35  35 

                                                     PL = 9  

Ro_5  10   10  10  10   10    10   10  10   10  10 
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Rp_5  45    9  36  18  18   9   27   9   45  45 

                                                     PL = 11  

Ro_5  9   9    9   9    9    9   9  9   9  9 

Rp_5  55   11  44  22  22   11   33    11   55  55 

                                                     PL = 13  

Ro_5   0   0   0   0    0    0   0   0    0   0 

Rp_5  65    13  52  26   26   13   26   13   65  65 

 

 

In order to determine the cost of all network routes, we add up all elements of Total_cost_PL (l) 

matrix to obtain Total_cost (PL). PL varies from 0 to 13 in Table 5.9. 

5.5.2  ANALYSIS OF NETWORK ROUTE COSTS FOR EXAMPLE 1 

Total_cost (PL) depends on value of K, as seen in Equations (5.6). Table 5.10 gives the 

avg_CRpath(PL) and the Total_cost(PL) for different values of PL and K. 

 

 
Table 5.10 Total cost of the Hybrid Network 

PL  0  1  3  5  7  9  11  13 

                                                               K = 1 

Avg_CRpath(PL)  .99 1.2136  1.2481  1.356  1.356 1.356 1.356  2 

Total_cost(PL) 400 443 356 690  371 397 441 377 

                                                               K = 10 

Avg_CRpath(PL)  .99 1.03  1.035  1.05  1.05 1.05 1.05  2 

Total_cost(PL) 401  388 314 567 333 366 413 377 

                                                               K = 0.5 

Avg_CRpath(PL)  .99 1.2136  1.2481  1.356  1.356 1.356 1.356  2 

Total_cost(PL) 398 475 381  762  394 414 457 377 
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             The value of K, which is the ratio of cost of transmitting a channel along a link to the 

cost of switching the channel, determines the total cost of network. If the value of K is large, a 

hybrid operation may yield better savings in total cost, compared to the cost of non-hybrid 

operation. In the worked out example above, Hybrid Operation attains a minimum for K =10 and 

for K =1. For K = 10, minimum total cost is obtained for PL = 3 and for K = 1, minimum point 

occurs at PL = 3,as well. However, for a smaller value of K, hybrid operation may not be cost 

optimal. For instance, for K = .5, total cost of network in the example is a minimum if there are 

absolutely no overflow channels.            

                In order to understand the table entries, let us consider the case when K =1 and PL 

=5.The example network, when provided with PL =5, obtains a utilization of 48.5% , as it can be 

obtained from Table 5.1. With this value of utilization, the adjacency matrices of the primary and 

overflow layer graphs, Ap and Av, can be obtained by the Iterative technique described in 

Sections 5.2 and 5.3. The values of Ap and Av are: 
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 From the primary and overflow layer adjacency matrices, number of primary and overflow 

channels , Rp_PL(l) and Ro_PL(l) is obtained for all the ten links, l in the example. 

 

Link,l 0  1   3   5   7   9   11  7  13  

                                                     PL = 5  

Ro_5  15   15  17  17   17    15   15  15   15  15 

Rp_5  25   5  20  10  10  5   15   5   25  25 

 

Sum of Ro_PL and Rp_PL is taken and substituted in Equation (5.6).  
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In order to determine the total cost of all routes, the average value of path cost ratio has to be 

determined. In order to determine the average cost ratio over all routes, we first off all determine 

the hops and avg_hops_PL matric, as in Equation (5.4). 

 

 

 

 

 

 

 

 

For each route in the network between Nodes i and j, Equation (5.4) is used to obtain the elemnst 

of the avg_overflow_hops_5 matrix. Due to light-path entry, each element of the 

avg_overflow_hops_PL matrix will be less than the corresponding values in the hops matrix. 

Average of all elements of this matrix is taken to obtain avg(avg_overflow_hops_5) , which is 

equal to 2.08 . This value along with the value of K,  is substituted in Equation (5.6) to obtain 

avg_CRpath_PL, which is the average cost ratio over all routes for the example network. 

From the value of avg_CRpath_PL, Equation (5.4) is used to obtain the total cost, Total_cost(PL). 

5.6 CHAPTER CONCLUSION   

An example network has been analyzed for hybrid operation. The example brings together two 

approaches, developed in Chapters 3 and 4, in order to assess the total cost of a Hybrid Network. 

The total cost of a Hybrid Network is obtained by calculating the total switching and the total 

transport cost of the given network. The total cost of the Hybrid Network is also obtained by 
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considering the total cost of all the routes in the network. For both approaches, the total cost of 

the network is analyzed for different values of primary channel utilization.  

Prior to calculating the total cost of the Hybrid Network using either of the two 

approaches, an iterative method is developed to obtain the total number of primary and overflow 

channels in all the links. Once the number of input and output channels in a node is known, total 

switching cost of the nodes are determined. The Hybrid Nodes are assumed to posses the 

switching architecture outlined in Chapter 4. Assuming that the core node is constructed using 

Broadcast-Select architecture, the total switching cost is assumed proportional to number of 1x1 

elements in the node.  

It is observed that the number of 1*1 elements in each node of the example network 

depends on the average primary channel utilization/channel load. Since the primary channel 

utilization of the network corresponds to a fixed number of primary channels for the access 

source, we see that the number of 1*1 elements depends on number of access primary channels. 

As the number of access primary channels increases, the number of 1*1 elements also increases 

for nodes with a degree of one. On the contrary, for the node with degree-3, the number of 1*1 

elements decreases with an increase in number of access primary channels. Overall, the total 

number of 1*1 elements in the network obtains a minimum while operating in the hybrid mode 

with 9 access primary channels per source- destination. 

 The total cost of a Hybrid Network is assumed to be the sum of the total switching and 

the total transport costs. The transport cost of the network is assumed to be directly proportional 

to the number of channels in the network. Both switching and transport costs are related by a cost 

ratio, CRtrans, which is the ratio of a channel cost to the cost of a 1*1 switching element. If value 

of CRtrans is very small, total cost of the network follows the cost curve of the switching cost and 

obtains a minimum for hybrid operation. As the value of CRtrans increases, the total cost curve 

tends to resemble the total channel curve, which increases with an increase in the number of 

access primary channels. 

The total cost of a Hybrid Network is also obtained by calculating the total cost of all 

Hybrid Routes in the networks. A Hybrid Route, as explained in Chapter 3, consists of primary 

and overflow paths and the cost of the two paths are related via the notion of path cost ratio, 

CRpath.  The value of CRpath depends on the average number of switching hops taken by a burst 

that was put on the overflow path by the source node. Due to the possibility of light-path entry at 
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all intermediate hops between the source and destination nodes of a route path, the average 

number of hops at which the burst has to be switched reduces. The possibility of light-path entry 

increases when there are only few access primary channels and when there is a huge overflow at 

the edge nodes. Under this condition, the possibility of light-path entry at the core nodes 

increases and therefore, CR_path decreases. Thus, it is seen that for smaller number of primary 

channels per access source, the average path cost ratio of the network decreases and for a large 

number of access primary channels, the average path cost ratio increases. 

   The value of CRpath is determined for all routes in the network assuming a fixed value of 

K, which is the ratio of the per-link transmission cost and the per-hop switching cost.  The total 

cost of the network is determined for each value of access primary channels. It is observed that 

hybrid operation may provide minimum total cost, subject to the value of K. When K is large 

cost savings due to hybrid operation is found to be large and when K is small, the cost savings 

decreases.  
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6.0  CONCLUSION 

A hybrid OCS/OBS operation can be realized in core optical networks by providing hybrid 

OCS/OBS routes between the network nodes. The OCS-based primary path of a hybrid route 

will provide a guaranteed connection between the source and destinations of the route and the 

OBS-based overflow path is a best-effort path used to carry primary path overflows. The  

allotment of primary and overflow paths to the incoming   channel requests are performed at the 

control layer of a hybrid node and the operation is performed for burst headers arriving from, 

access and core links. Once the control layer sets up a route path for the burst header, the switch 

hardware is configured to set up an internal path through the hybrid node. In this dissertation, 

both hybrid routes and hybrid nodes are analyzed for its cost effectiveness that may lead to cost 

optimality. 

The results obtained by analyzing a Hybrid Route, a Hybrid Node and an example Hybrid 

Network, point to the possibility of realizing a cost optimum core network. However, in order to 

make the analyses tractable several simplifying assumptions were made. In order to extend the 

work performed in this dissertation, more studies have to be performed by considering a 

heterogeneous mix of offered traffic and its effect of cost-optimality of core optical networks. In 

addition, more focus needs to be paid to cost and complexity of the access-core interface that 

shapes the incoming access traffic. Several other cost issues that may potentially effect the cost 

structures of the Hybrid Routes, such as alternate path routing, heterogeneous loading of routes 

etc have to be considered.  

The Hybrid Network analysis performed in this work is limited to solving an example 

analytically. However, in order to arrive at a general network solution simulations studies have to 

be performed to a large variety of networks carrying a diverse traffic with diverse requirements. 
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Thus, the existing work is an initial step towards realizing a cost-optimal core optical network 

using OBS based overflow channels.  

6.1 SUMMARY OF RESULTS 

Cost optimality of a hybrid route depends on statistics of the load offered by each source to the 

route, the number of sources sharing the route, and the relative costs of primary and overflow 

paths. Optimality of a hybrid route depends on offered-load statistics such as the smoothness of 

the burst arrivals, through the value of ‘overflow gain’. At the point of cost optimality, overflow 

gain is directly proportional to the number of sources sharing the overflow path and inversely 

proportional to the relative costs of primary and overflow paths. This relation between overflow 

gain, number of sources, and path cost ratio, gives the optimality condition. The optimality 

condition states that a hybrid route is cost optimal only if the incremental cost of primary path in 

the route is equal to the corresponding decremented cost of the overflow path.  

The hybrid route optimality condition is tested in Chapter 3 for a set of offered loads and 

its Peakedness values, the number of sources sharing the overflow channels, and for a range of 

path cost ratios. The overflow gain is obtained under the condition that the blocking probability 

of an overflow link is fixed. The feasibility of hybrid operation is analyzed by determining, for 

each case of offered load and number of sources, the window of path-cost ratios for which 

optimal hybrid operation can be obtained. It is seen that hybrid operation becomes cost-optimal 

compared to a non-hybrid operation, for a larger window of path-cost ratio when the Peakedness 

of offered load is high and overflow gain is small. The window of path cost ratio also increases 

when there are larger number of sources, which corresponds to the case when overflow gain is 

small.  

A hybrid network is made of hybrid nodes that provide switching and transmission 

hardware to set up hybrid route. The function of a hybrid node is to bypass incoming primary 

channels and optical-burst switch(OB-switch) incoming overflow and access links onto outgoing 

primary and overflow channels. Chapter 4 outlines a switching node architecture, which is 

divided into several ‘source-specific’ primary OB-switches and a large overflow OB-switch. In 
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addition to the switching hardware, there are other devices such as wavelength converters, 

amplifiers and transmitters/receiver ports, in the primary and overflow layers of the hybrid node.  

A hybrid node is cost-optimal if incremental cost of the primary layer is equal to the 

decremented cost of the overflow layer. It is assumed that the predominant cost components of 

each layer are the switching cost, which depends on the switch architecture and channel 

dependent costs that scale linearly with the number of output channels. The switching cost grows 

at a nearly linear rate in the primary layer of the hybrid node and at a polynomial rate for 

overflow layer of the hybrid node. If we assume channel-related costs to be negligible, the 

optimality of the hybrid switch will decide the optimality of the hybrid node.  

The cost advantage of an optimal hybrid switch, called the ‘hybrid advantage’ is higher 

for the un-integrated Broadcast-And-Select architecture. Both the Benes architecture and the 

integration of switching elements on a chip reduce this ‘hybrid advantage’. Thus, the hybrid 

advantage is more pronounced if the underlying switch architecture of primary and overflow 

layers is not cost-optimal. Both the Benes architecture and the integration of switching elements 

are traditionally used to minimize switching costs in the electronic domain. Although not 

considered cost-optimal, un-integrated switches and the Broadcast-Select architecture are easier 

to realize in the optical domain.  

Chapter 5 provides an example to test the optimality conditions for hybrid routes and 

hybrid nodes at a network level. The hybrid network provides fixed channel utilization at the 

primary layer and fixed blocking probability at each node of the overflow layer. If we assume a 

fixed blocking probability at the overflow links, the cost optimality of a hybrid network depends 

on the value of primary channel utilization. In order to obtain this value, the total cost of the 

network is calculated using two approaches. First, the total cost of the hybrid nodes and links is 

obtained, over a range of primary channel-utilization. In the second approach, the total cost of 

hybrid network is obtained as the total cost of all routes in the network. 

From the network analysis, it is seen that the total switching cost of nodes with a smaller 

degree, depends on the cost of the primary layer, which increases with a decrease in primary 

channel utilization. On the other hand, the cost of nodes with a higher node-degree, depends on 

the cost of the overflow layer, which decreases for a lower value of primary channel utilization. 

Overall, the total cost of switching obtains a minimum cost by operating in the hybrid mode. 
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This hybrid advantage will help minimize total cost of network, if ratio of cost of a channel, to 

the cost of a switching element is small. 

The total cost of the example network, when viewed as a collection of routes, obtains a 

minimum value due to hybrid operation. While calculating the route costs it is seen that the 

average path cost-ratio of all the routes increases by lowering the primary channel utilization.  

Cost optimality of the hybrid network depends on cost ratio via the value of primary channel 

utilization and on the value of K, the cost ratio of per-link and per-node costs for an overflow 

path.  In the example, cost optimality is lost when K becomes very small. 

6.2 FUTURE WORK 

In the future work on hybrid networks, the aim will be to obtain a general solution for optimal 

hybrid operation in a network. In this dissertation, the light-path entry mechanism of a hybrid 

route proceeds from the source to the destination nodes of hybrid route. The dual of the optimal-

route problem is to consider light-path entry happening near the source node and overflow path 

entry nearer to the destination node. Both the problems are part of a larger problem to optimally 

choose the method of light path and overflow path entry for a route.  

         Efficiency and robustness of a hybrid network depends on its performance when subjected 

to a dynamic load. Under such a case, some wavelengths will be re-allotted between primary and 

overflow layers during epochs of load change. Optimal design of such a dynamic capacity 

switched network will be an interesting topic for future work. Cost efficiency of such a ‘capacity 

switched’ network will require design of switch that will contain interconnections between the 

primary and overflow layers.           

        The hybrid network proposed in the dissertation may be used to provide spare capacity in 

the event of link/node failures. Spare capacity may be provided in the form of primary and/or 

overflow channels. Spare capacity allocation methods in the existing literature can be extended 

to the use of hybrid networks [59]. Cost of optimality of a hybrid network with spare capacity 

may depend on several cost parameters such as channel costs, switching costs, topology etc. 
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        The hybrid operation proposed in the dissertation may be used to provide performance 

differentiation under fixed number of channels in the links. By tweaking the number of primary 

and overflow paths available to each class, performance differentiation can be provided. 

Preliminary analytical and simulation studies on this topic has provided two different approach 

to provide performance differentiation [61][62]. An efficient control algorithm that will monitor 

offered load of each class and adjust primary/overflow channel capacity accordingly is being 

currently studied. 

The primary and overflow channels help modify the topology of existing core networks. 

While primary light-paths overlay a virtual ‘mesh’ topology on the existing network, overflow 

channels conserve existing physical topology. As the network parameters such as the traffic load 

characteristics of the access layer and the cost structure of the network varies, the degree of mesh 

overlay also varies. From a topology perspective, the problem solved in Chapter 5 provides a 

mesh overlay on an existing physical network, using the ‘virtual graph, Gv.  

While the problems solved in the dissertation assumes homogenous traffic sources and 

identical switching architecture of the hybrid node, the solution to cost optimal network is 

constrained to a large extent. In reality however, traffic sources may be heterogeneous and the 

nodes may vary in their switching architecture and the solution space for optimal network 

becomes very large. It is also important to consider the evolution of networks with respect to 

possible cost structures and traffic types, in order to strategically design a core network. 

However, strategic designs also require a high degree of combinatorial analyses of possible 

traffic and cost structures. In order to determine optimal topology for a more realistic network 

consisting of a large solution space, cost optimization may be performed using genetic 

algorithms that can help provide a global optimum in an efficient manner [60].  It will be 

interesting to determine if there are optimal topologies that can help balance cost, performance 

and survivability of core networks. 
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