
Fluid Extraction of Metals from Coal Fly Ash: 
Geochemical Simulation of Natural Leaching

by

Ann Gallagher Kim

BA Carlow College 1964

MS University of Pittsburgh 1972

MSEM National Technological University 1992

Submitted to the Graduate Faculty of

College of the Arts and Sciences  in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2002



ii

UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented 

by

Ann Gallagher Kim

It was defended on

April 26, 2002

and approved by

Michael Bikerman, Ph.D.  Emeritus Faculty, Department of Geology and Planetary Science

Rosemary  Capo, Ph.D.  Associate Professor, Department of Geology and Planetary Science

Ronald Neufeld, Ph.D.  Professor, Department of Civil and Environmental Engineering

Harold Rollins, Ph.D.  Professor, Department of Geology and Planetary Science

Brian Stewart, Ph.D.  Associate Professor, Department of Geology and Planetary Science

Dissertation Director



iii

FLUID EXTRACTION OF METALS FROM FLY ASH: 
GEOCHEMICAL SIMULATION OF NATURAL LEACHING

Ann Gallagher Kim, PhD

University of Pittsburgh, 2002

Abstract

The objective of this study was to develop data that are broadly  applicable to the release

of trace metals from fly ash, and to quantify the rate of release as a function of the composition

of the ash.  Thirty-two samples of Class F fly ash from pulverized coal combustion boilers were

leached with seven leaching solutions simulating natural fluids.  The leachate was analyzed for

21 cations that were major, minor, or trace constituents of the ash.  The rate at which metal ions

are released from fly ash is a complex function of the alkalinity of the ash, the distribution of

elements in various chemical compounds or minerals, and characteristics of the leachant

solution, particularly its pH.  In this experiment, the release of cations is defined as a solubility

function with respect to the volume of leachant solution.  During the first leaching interval, the

ashes alkalinity is neutralized, and the release of metal ions, except for Ca, is relatively low.   At

some point, the release  of metal ions increases by one or more orders of magnitude, and remains

at that level, until the readily soluble ions are released.  Then the elemental release decreases,

again by one or more orders of magnitude. 

The solubility of an element is defined by the three volumetric functions and the median

volumes for those functions.  The N LF (neutralization leaching function) is describes the release

of cations until the sample is neutralized (dMN/dVN, meq/L).  The RLF (rapid leaching function)

rate is the average slope of cumulative curve between inflection points (dML/dVL, meq/L).  The
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TLF  (terminal leaching function)  is the average  slope of cumulative curve after 2nd inflection

point (dMT/dVT, meq/L). In a natural setting, if the infiltration rate is known (L/d), the time

dependent release of the elements can be estimated.  The results of this study show that most

cations  in fly ash are only slightly soluble, that elements, other than arsenic, tend to be most

soluble in acid solutions, and that non-silicates tend to be more soluble than silicates.
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PREFACE

The  project on which this dissertation is based was begun at the Pittsburgh Research

Center of the US Bureau of Mines.  It was originally intended to address environmental issues

from the use of  fly ash to remediate acid mine drainage.  In 1995, when the Environmental

Technology Division of the Bureau was transferred to the National Energy Technology

Laboratory (NETL) of the U.S. Department of Energy, the project was broadened to include

environmental  exposure of coal combustion by-products (CCB) to natural fluids in a variety of

applications.  During the execution of the project, 48 samples were subjected to leaching in

seven leaching fluids for as long as six months.  As Research Supervisor/Team leader, the

general execution of the project was my responsibility; I designed the project and analyzed the

leaching data.  

However, a project of this magnitude is not the work of one person.  I wish to

acknowledge the contributions  of personnel at the Bureau of Mines and at the Department of

Energy to its completion: Robert Kleinmann, Director of the Environmental Technology

Division; Frederick Sharp (retired), George Kazonich, Andrew Kociban, Joseph Slivon (retired),

Ethyl Burse and Michael Dahlberg who have been responsible at various times for the daily

operation of the Column Leaching Laboratory; Willisha Davidson, summer research associate,

and Robert Thompson of Parsons Analytical Laboratory for the microwave digestion and

analysis of the fly ash  samples; Peter Hesbach and Steven Lamey (retired) who collected the

information on leaching methods; Bernard Kenny of the NETL library who located copies of all
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the methods and articles that I asked for, Maurice Deul (retired)and Robert Chaiken (retired),

supervisors and supporters, for the opportunities to do good research.  

I also wish to express my gratitude to my family and friends for their unfailing support

and encouragement.  My daughters, Katherine Beiber, Jody Kim and Kerry Kim,  by their

achievements, reinforced my commitment to continued education; and my husband, Paul Kim,

took up the slack in our daily lives so that I could concentrate on writing this dissertation.
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Chapter 1

Introduction

In 1999, over 1 billion metric tons of coal were mined in the US, and 90% (854 million

mt) was used to generate electricity (EIA, 2001).  Over 50% of the electricity generated in the

U.S. is produced by coal burning power plants (Figure 1).   In spite of increasing interest in using

natural gas as the fuel for new power generation, coal continues to be the dominant source of

electricity in the U.S. (Figure 2).  

Coal and Coal Combustion By-Products in Energy Production

Coal is classified as a fossil fuel, preserved organic matter that can be burned to produce

energy.  In addition to combustible organics, coal and other fossil fuels, contain a variable

proportion of non-combustible material.  In an average year, 10 to 15% of coal burned is

recovered by some post combustion collection system.  These materials are collectively referred

to as fossil fuel combustion wastes (FFCW)1 by the Environmental Protection Agency (EPA)

and as coal combustion products (CCP) by the utility industry and ash marketers.  The

Department of Energy (DOE) and other federal agencies identify them as coal combustion by-

products (CCB) or coal utilization by-products (CUB)  which become products when utilized

and wastes when disposed.    

The CCB are primarily the inorganic residue from coal; they contain iron (Fe), aluminum

(Al), magnesium (Mg), manganese (Mn), calcium (Ca), potassium (K), sodium (Na), and silica

(Si), and any carbon that was not consumed during combustion.  CCB also contain less than 1%

of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), selenium (Se) and zinc (Zn).  These
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elements, generally referred to as heavy metals or trace elements are variously considered

essential nutrients, toxic elements, or priority pollutants.  Most of these elements are believed to

have some environmental or public health consequences.  The extent to which they can be

released from the residues of coal combustion by naturally occurring fluids affects the suitability

of CCB for various beneficial uses, like bulk fill and mine remediation.  

Due to the large quantity of CCB generated annually and the escalating cost of landfills,

there is increased interest in finding new and profitable uses for this material. To reduce costs

and to limit the need for off-site disposal, many power producers are actively marketing CCB for

a variety of applications, including cement/concrete, structural fill, road base, waste stabilization

and agriculture.  However, a continuing concern is the potential release of trace elements when

the CCB are exposed to environmental fluids such as acid rain, groundwater or acid mine

drainage. The U.S. Department of Energy (DOE) National Energy Technology Laboratory

(NETL) has had a research program to promote increased utilization of CCB, particularly large

volume uses like mine backfill; the study reported here is a significant part of that program.

Problem Definition

The inorganic portion of coal is composed of various elements in a variety of mineral

forms.  During combustion, these elements may volatilize, oxidize, react with other elements,

undergo heat dependent rearrangement of the mineral lattice or change in physical form.  Post

combustion cooling will also have an effect on the final form and composition of an ash particle. 

Many of the elements contained in ash are considered health or environmental risks; however,

the magnitude of the risk from release of elements from CCB is not well quantified.  In many

applications,  CCB are exposed to natural fluids, such as acid rain, groundwater, and acid mine

drainage.  Although there have been numerous studies on the release of trace elements from coal
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ash, many of these have been restricted to a particular ash under particular conditions.  The rate

of release of various elements from CCB and the conditions that control solubility have not been

quantified in generally applicable terms.

Objective of this Study

The objective of this study was to develop data that are broadly  applicable to the

problem of the release of trace metals from fly ash and to quantify the release as a function of the

composition of the ash.  

To that end certain experimental conditions were imposed on the study.  First, the sample

population must be relatively large and random in order to encompass the inherent variability of

the material.  The study must involve a long term column leaching experiment to simulate

natural conditions, to determine variations in rate with changes in chemical composition and to

allow for the development of secondary reactions.  The sample size must be sufficiently large to

eliminate any problems due to the non-homogeneous material.  The study was originally applied

to reaction of ash with AMD, but it was broadened to include other leaching fluids.  The leachant

solutions are synthetic surrogates for naturally occurring fluids, such as acid rain and landfill

leachate,  and cover a broad pH range.  

The objective of this study is to determine solubility of trace elements in coal fly ash as a

function of the natural alkalinity of the ash, as a function of leachant pH, and as a function of the

concentration of an element in the non-silicate portion of the ash concentration as opposed to the

total concentration in the solid.  This data are used to develop a quantitative function that relates

the release of trace elements to the alkalinity of the ash, the soluble concentration, as well as to

fluid volume. 
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Figure 1.  Distribution of electric power generation by fuel. Source: U.S. Department
of Energy, Energy Information Agency: Electric Power Annual, V.1, Fig.5, 2001.
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Figure 2.  Coal use for the generation of electricity is projected to grow until 2020.  Source:
Energy Information Agency, U.S. department of Energy, Fig. 6., Annual Energy Review, 2000.
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Chapter 2

Background

Ash is the inorganic particulate residue of combustion; it may be produced from coal or

from other fuels, such as pet coke or biomass.  Coal combustion by-products (CCB) are the 

residues from coal combustion and include materials that are not considered ash. 

Types of CCB

In an average year, 10 to 15% of the coal burned to generate electricity in pulverized coal

(PC) boilers is recovered as CCB, in the form of fly ash, bottom ash, boiler slag and flue gas

desulfurization (FGD) material.  These materials are produced in different parts of a coal fired

boiler (Figure3).  Bottom ash is the heavier material that falls to the bottom of the furnace and is

removed as non-molten particles.  Boiler slag is molten material that drains to the bottom of wet-

bottom furnaces and is discharged to a water filled pit where it cools to form glassy particles,

resembling sand.  Fly ash is the finely divided residue from the combustion of coal collected by

a particulate collection devise, usually an electronic precipitator (ESP) or fabric filter

(baghouse).  The FGD material is produced by processes to control sulfur emissions, such as wet

scrubbers, spray dryers, sorbent injection.  It is primarily calcium sulfite or calcium sulfate.  

Fly ash is also classified by the source of the coal.  According to ASTM C618 (ASTM,

1992), class C ash is the residue from subbituminous coals and lignites.  Class F ash is produced

from bituminous coals.  The sum of silicon, aluminum, and iron oxides must exceed 70.0 % in

class F ashes and 50.0 % in class C ashes.  Typical composition of class F and class C ashes is

given in Table 1.  A major difference is the much higher concentration of Ca in class C ashes.  
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The combustion system also influences the ash characteristics.  Pulverized coal firing is the

dominant combustion technology for generation of electricity.  Since the rate of combustion is

controlled by the particle surface area, pulverized coal, ground to a nominal 50 :m diameter

burns completely within one to 2 seconds.  Temperatures in a PC boiler average 1200 °C, with

maximum temperature in the range of 1500 to 2000 °C.  Due to the small fuel particle size, most

of the ash in PC boilers is fly ash (CIBO, 1997).  

In fluidized bed combustion (FBC), fuel is burned in a bed of hot incombustible solid

particles suspended in upward flowing air.  The temperature is usually maintained between 800

and 900 °C.  Limestone, injected into the bed for sulfur capture, eliminates the need for a

downstream FGD unit.  In FBC fly ash, typically collected by an ESP or baghouse, the

concentration of CaO may exceed 40 %, due to the injection of limestone sorbent (CIBO, 1997).

Although FBC combustion systems are becoming more common, PC combustion is presently the

dominant system used for coal-fired electric power generation.

Annual CCB Production

In 1966, the first year for which data are available, fly ash and bottom ash totaled 25.2

million st (Figure 4) and 3.1 million st were utilized (12%).  By 1973, the amount produced had

almost doubled, but only 16% was utilized.  In the next 15 years, CCB production was between

50 and 60 million st of which 27 % was utilized.  Between 1988, when FGD material was

included, and 1994, annual CCB production averaged 86 million st  (ACAA, 1996).  In 1999, the

last year for which data are currently available, 107 million st of CCB were produced, including

62.7 million st of fly ash, 16.9 million st of bottom ash, 2.8 million st of boiler slag and 24.6

million st of FGD material (ACAA, 2000).
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CCB Utilization

 With increased production of CCB, there has been increased interest in utilization. 

Revenue generated from the sale of CCB is almost all profit, and if the avoided disposal cost is

included, CCB sales are financially attractive.  Utilization of CCB also preserves other

resources, and as a replacement for cement clinker, it reduces the generation of CO2.  A primary

driver for the increased utilization of CCB is decreasing landfill capacity.  Often space for new

landfills is not available near power plants, and the time, effort and money required to permit a

new landfill is often considered cost prohibitive.  

In spite of the interest in increased utilization, the amount of CCB used has remained

constant at approximately 30 %.  Half of the fly ash utilized is used in cement and concrete

(Table 2).  In other countries,  a much higher proportion of CCB, from 50 % in Australia to more

than 60 % in Finland, and 100 % in parts of Europe (Sloss, 1999).  

In a report to Congress (US DOE, 1994), prepared for the U.S. Department of Energy, it

was noted that increased use of CCB would produce economic and environmental benefits. 

These would include reduced solid waste disposal, reduced use of natural resources, and reduced

energy consumption and reduced CO2 emissions in cement production.  Although major barriers

to increased utilization in the US include inadequate data and inefficient information transfer,

inadequate specifications and lack of promotional programs, the most serious barrier is an

attitudinal one.  CCB are frequently perceived as a waste, and one that poses an environmental

danger.  The CCB contain the inorganic elements originally present in the coal, and the most

frequently cited hazard is the potential release of heavy metals when they are exposed to

surface or ground water.  Although cases of environmental damage have been reported
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near CCB disposal sites, there has been a lack of scientifically compelling  evidence to

settle the question (Kim et al, 2001).  There have been a number of leaching studies of

CCB, but most dealt with a single ash or particular conditions.  This study addressed the

need for a broad, multi-sample study conducted by independent third party researchers.   
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Table 1.  Typical major element composition of Class F and Class C fly ashes, wt%.

Component Class F Class C

SiO2   52  31

Al2O3  24  17

FeO  14   5

CaO   3  30

MgO   2   7

SO3 <1   3

TiO2   1   1

K2O   3 <1
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Table 2.  CCB Utilization, % of amount generated, in 1999 based on data from the American
Coal Ash Association (ACAA, 2000)

Use Fly Ash Bottom Ash Slag FGD1

Cement/Concrete/Grout 15.9 4.1 <1 1.1

Cement clinker 2.0 1.0 0.0 0.0

Flowable Fill 1.2 <1 0.0 0.0

Structural Fills 5.1 8.3 1.7 2.4

Road Base 1.9 6.5 <1 <1

Soil Modification <1 <1 <1 <1

Mineral Filler <1 <1 <1 0.0

Anti-Skid <1 6.5 1.7 0.0

Blasting Grit/Roofing Granules 0.0 <1 73.4 0.0

Mining Applications 2.3 <1 <1 1.0

Wallboard 0.0 0.0 0.0 12.4

Waste Stabilization 3.0 <1 0.0 <1

Agriculture <1 <1 0.0 <1

Other <1 2.7 2.8 <1

                                        TOTAL 33.2 32.1 81.8 18.1

Production, million st 62.7 16.9 2.9 24.6
1FGD: Flue Gas Desulfurization Product
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Figure 3.  Schematic of pulverized (PC) electric utility boiler, indicating sources of coal
combustion by-products (CCB). (After Senior, 2001)  
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Figure 4.  Coal combustion by-product (CCB) production has increased by over 400 % since
1966. Data provided by American Coal Ash Association (ACAA).
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Chapter 3

Origin and Composition of Coal Ash 

Coal Combustion By-Products (CCB) are formed from the non-combustible mineral

portion of coal that has been subjected to temperatures above 500 °C.  The origin of this heat

treated residue, fly ash or bottoms ash, is related to the formation of coal.

Coal Formation

Coal formation has been described as “an inefficiency in the carbon cycle,” (Barghoorn,

1952) when carbon from plants remains in terrestrial sediments and is not recycled to the

atmosphere (Figure 5).  It can be considered a geologic mechanisms of carbon sequestration.  

Coal is, by definition, a readily combustible rock containing more than fifty per cent by weight

and seventy per cent by volume of carbonaceous material (Schopf, 1966).  Another definition

describes coal as a combustible solid, usually stratified, which originated from the accumulation,

burial and compaction of partially decomposed vegetation in previous geologic ages (Hendricks,

T.A. 1945). 

The formation of coal deposits required abundant plant material, a suitable climate, areas

for accumulating peat and means of preserving the carbonaceous sediment.  These conditions

were prevalent over large areas during the Pennsylvanian (Carboniferous) period, 240 million

years bp.  During this period, large areas of what is now the Eastern U.S., Europe, Asia and

Australia were located near the equator and apparently had a climate that was tropical to

subtropical with mild temperatures, high humidity and heavy rainfall, without cold winters or

extended dry periods (White, 1925).  Terrestrial plants had been developing for 100 million

years, and by the Pennsylvanian, plants adapted to semi-aquatic or marshy areas were abundant. 
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The majority of coal forming plants were fern-like pteridophytes and club mosses.  Both grew to

over 30 m and had diameters in excess of 1.2m.  Smaller plants, 4.5 to 12 m  high, formed dense

jungles, similar to canebrakes.  (Kummel, 1961; Janssen, 1939).  

A site in which carbonaceous sediments could accumulate was created by erosion and the

retreat of shallow seas.  Broad level areas at or very near sea level, such as coastal plains, deltas

or a partially filled basins, could readily develop the marshy conditions needed for the growth of

a carbonaceous swamp.  The consistent gradual rise in sea level or continuous slow land

subsidence was required for between 1,000 and 100,000 years in order to form  a 10 m peat

deposit which would be converted to a 1.5 m coal seam (Ashley, 1928).  

Marshy conditions fostered the formation of peat and the preservation of the organic

sediment.  Under aerobic conditions, plants are rapidly decomposed to cell carbon, CO2 and

water.  In a marshy area, the movement of fresh water is inhibited, and an anaerobic environment

develops, slowing the rate of microbial decay and allowing carbonaceous sediments to

accumulate.  Toxic products also accumulate in the slow moving water, decreasing microbial

activity and preserving the sediments from further alteration (Alexander, 1961).   A rapid rise in

sea level or increase in the rate of subsidence would flood the swamp, halting growth and

burying the peat under an inorganic sediment.  

In contrast to the slow deposition of peat, the deposition of inorganic sediments was

relatively rapid, turbulent and variable.   The rocks associated with coal seams are usually fine

grained clastics, particularly shales, mudstones and siltstones.  Black shales overlying many coal

seams represent a gradational change as more sediments were carried into the peat swamp. 

Sandstones immediately above a coal seam may be related to erosion and subsequent deposition

within an existing seam.  Channel sands can be seen as stream erosion of an existing coal or peat
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deposit and deposition of sediments within the stream channel. (McCulloch et al, 1975).  The

rate of sediment deposition within or immediately above the peat would affect the concentration

of syngenetic minerals, while sandstones deposited above a coal seam could increase the

concentration of epigenetic minerals.  

Peat formation is the biochemical stage of coal formation, during which plant residues

are partially decomposed.  The geochemical stage of coal  formation is a continuous and

irreversible process that produces a rock from the organic sediment.  Coalification progresses

through lignite, subbituminous, high volatile bituminous, medium volatile bituminous, low

volatile bituminous to anthracite (Figure 6).    Heat and pressure are the primary agents of coal

metamorphism, rather than age.  Temperature and pressure increase as a function of depth, and

high temperature is also related to folding and faulting and the presence of igneous intrusions.

On a proximate basis, coal is composed of moisture, mineral matter, volatile matter and

fixed carbon (Hessley et al, 1986).  The mineral matter in coal is emplaced during or after coal

formation.   Minerals that are an integral part of the organic matrix are considered included

minerals, while those in the cleats and fractures are termed excluded minerals.

The mineral or inorganic portion of coal was considered a diluent, that reduced the

heating value of the coal, and an engineering problem when it caused slagging and fouling in the

boiler.  In the last 30 years, the non-carbonaceous portion of the coal has been targeted as the

source of contaminants in power plant emissions and residues.  The potential release of heavy

metals from coal combustion by-products is related to the distribution of elements in coal ash.  

Minerals in Coal and Ash

The obvious origin of coal ash is the inorganic portion of the coal.  However, combustion

and post combustion cooling have a significant effect on the mineral phases in CCB.
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Minerals in Coal

A variety of minerals have been identified in coal.  Although some of the inorganic

compounds originate in the plant material, most are deposited during (syngenetic) or after

(epigenetic) coalification.  Syngenetic minerals can be formed by precipitation in an anoxic,

aqueous medium during the biochemical stage of coalification, or they may be detrital clastics

transported into the peat swamp by wind or water.  Epigenetic minerals are deposited within the

coal seam, in cracks, fractures and bedding planes, by migrating fluids.  They may also be

produced from syngenetic minerals by increased temperature and pressure.  Mackowsky (1968)

indicated that most of the silicates, quartz and phosphates had been transported into the peat

swamp.  Carbonates, sulfides, and chalcedony from the weathering of feldspar and mica were

formed within the swamp.  These minerals tended to be intimately intergrown with the organic

matrix, and are sometimes described as included minerals.  Some carbonates, sulfides, and

oxides were deposited in cleats and fractures. Since these epigenetic minerals are independent of

the organic portion, they are designated as excluded minerals.  

Coal mineral matter  includes a variety of minor or trace elements.  The concentration of

these elements in coal may be greater than their average concentration in the earth’s crust (Table

3).    The distribution of trace elements varies too widely to be described by a general statement. 

Coals from different areas may show distinctive trace element characteristics, and, within a

single coal seam, the trace element distribution may not be consistent.  This suggests that no

single process has been responsible for the accumulation of trace elements in coal.  When

compared to the overlying carbonaceous shale, the concentration of trace elements is lower in

coal, reflecting the influx of detrital inorganic sediments that eventually terminated the

formation of the peat swamp (Table 3).
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In a study of 35 coal samples from eight countries, Vassilev and Vassileva (1996)

identified approximately 100 minerals.  The minerals were characterized as major (> 1% by wt),

minor (.1><1% by wt), and trace (<0.1 % by wt).  On a semi-quantitative basis, the mineral

groups in decreasing order of importance are: silicates > carbonates > oxyhydroxides > sulfides

> sulfates > phosphates > others.  The coals were divided according to rank, based on dry ash

free carbon concentration (Cdaf).  The lower rank coals are enriched in mineral matter, including

calcium and magnesium oxides.  The highest rank coals have increased contents of silica,

aluminum, iron, potassium, sodium, and titanium. 

The quartz in 40 samples of a Powder River Basin (PRB) coal was primarily detrital, but

trace amounts of $-form quartz, with apatite and zircon, was attributed to air-fall and reworked

volcanic ash deposited in the peat swamp (Brownfield et al, 1999).  In a study of Gulf Coast

lignites, enrichment of some elements was attributed to proximity to igneous rocks or to

deposition of volcanic ash(Warwick et al, 1997).   The mineral composition of the coal seam can

also be modified by post-coalification circulation of geothermal fluids (Kolker, 1999; Daniels et

al, 1990).   

The minerals phases identified in various coals are summarized in Table 4, and the

modes of occurrence and maximum concentration of selected elements is given in Table5.  

Combustion System  

In addition to their concentration in coal, the distribution and compounds of cations in

coal combustion by-products depend on the operating conditions in the combustion zone and

post-combustion conditions. In pulverized coal (PC) fired power stations, the furnace operating

temperature is typically above 1400 ° C (~2500° F).  The finely divided coal particles are

injected into the furnace and ignited while suspended in air.  The volatile matter and organic
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matrix react with air to produce heat, CO2, H2O, SO2 and NOx.   At these temperatures, minerals

may oxidize, decompose, fuse, disintegrate or agglomerate (Clarke and Sloss, 1992).  For

instance, most  SO2 is produced from the oxidation of pyrite.  Another product of pyrite

oxidation is iron oxide, which is found in ash particles either as hematite or magnetite.  Excluded 

mineral particles may undergo fusion and partial melting in the boiler.  If  the temperature in the

post combustion zone decreases slowly, fluid mineral  particles may cool slowly and develop the

characteristic crystalline structure (Figure 7).  If cooling is rapid, the minerals may condense to a

spherical, glassy particle.  As the coal matrix is removed by combustion, the included mineral

grains become fluid, and volatile elements enter the vapor phase.  As they cool,  gaseous

compounds may condense to very small spherical particles or coalesce to slightly larger

particles.  They may also condense on the surface of other particles, leading to surface

enrichment of volatile species.  Non-volatile compounds will agglomerate to form fly ash

particles.  Expansion of trapped volatile matter may cause the particle to expand, forming a

hollow, low density cenosphere.  Residence time within the boiler is relatively short and some

minerals, especially those with high melting points, are transported through the combustion zone

unchanged.  

Based on their boiling points and the phase change temperature of their oxides, several

authors have described the partitioning of trace elements in CCB (Germani and Zoller, 1988,

Meij, 1989; Yokoyama et al, 1991).  The first group of elements, which  are concentrated in

bottom ash or equally distributed between bottom ash and fly ash, includes typically lithophile

elements:  Ba, Mg, Mn.  In a second group, trace elements, enriched in the fine particulate

fraction are usually chalcophile elements such as As, Cd, Pb, Se, and Zn.  Group 3 includes
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volatile elements which remain in the vapor state, Hg, Br.  Several elements partition between

groups (Figure 8).

According to Davison et al (1974) the concentration of the elements, Pb, Sb, Cd, Se, As,

Ni, Cr, and Zn increased with decreasing particle size.  The concentration of the elements Fe,

Mn, V, Si, Mg, C, Be, and Al was found to increase with decreased particle size only for

particles with a diameter less the 11 :m.  These elements showed no size dependence for larger

particles.  The concentrations of Bi, Sn, Cu, Ti, Ca and K showed no dependence on particle

size. 

Vaporization and condensation form an ultrafine aerosol during pulverized coal (PC)

combustion (Senior et al, 2000a).   Factors such as residence time, temperature history and level

of turbulence control the size and morphology of the aerosol particles.  Fly ash particles with

aerodynamic diameters less than 0.4 :m were attributed to condensation.  Non-volatile elements,

such as Fe, were found to concentrate in larger ash particles.  Between 10 and 30 pct of the

volatile elements, As, Sb, Se, and Zn, are in the condensed fly ash particles.  Arsenic and Sb are

soluble in silicate glass and may be retained by glassy particles that form by coalescence of

minerals.  Correlations between the concentrations of arsenic and calcium in fly ash are assumed

to indicate the formation of calcium arsenate.  

Radioactive elements, radon, thorium and uranium, are present in coal at concentrations

between 1 and 4 ppm (USGS, 1997), which is greater than basaltic rocks but less than common

shales and granites.  During combustion, radon is transferred to the gas phase.  Although 

uranium may be enriched in finer sized fly ash particles, the concentration of radioactive

elements in fly ash is not significantly greater than in common soils or rocks.
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Minerals in Ash

Volatilization, melting, decomposition and the formation of new minerals, as well as

oxidation are the mechanisms that transform the minerals during coal combustion.   The

transition of minerals in coal to those found in combustion by-products is related to the high

temperature oxidation and to the rate of cooling of the inorganic melt. There is a significant

difference between the minerals in coal and those in the ash produced from the same coals.   The

inclusion of heavy metals or hazardous air pollutants (HAPs) in the ash and their solubility are

the primary determinants of toxicity.  Concentration is not the only factor; volatility, toxicity and

solubility determine the potential for health and environmental effects, and these factors are

functions of speciation within the ash.   A summary of the minerals identified in coal ash is given

in Table 6.  Because different authors use different methods of mineral identification and

different concentration units, some degree of interpretation was necessary to assemble the

comparative table.  The mineral association of trace elements is summarized in Table 7.  

Chemical Composition of Coal Ash

EPRI (1987a) conducted a study of the composition of 39 fly ash samples and 40 bottom

ash samples from power plants in the U.S.  The trace element composition indicated that more

volatile elements (As, B, Cl, F, S and Se) were preferentially partitioned to the fly ash, and it

tended to be higher in fly ash derived from bituminous coal.  The mean and range of

concentrations for major elements is shown in Table 8; maximum trace element concentrations

are given in Table 9.  EPRI also conducted an extensive literature search on the inorganic and

organic constituents of fossil fuel combustion residues(EPRI, 1987b,c).  They concluded that the

inorganic composition was highly variable.  Some non-volatile elements were evenly distributed

between fly ash and bottom ash, while volatile elements tended to be concentrated in fly ash. 
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The Council of Industrial Boiler Owners (CIBO) conducted a survey of operators of FBC

units, requesting information on the physical and chemical characteristics of FBC fly ash. Trace

elements were found to be concentrated in the smaller ash particles.  The composition of the

FBC fly ash, as provided by respondents to the CIBO (1997) survey, is given in Table 8; trace

element data are given in Table 9.

The Pennsylvania Department of Environmental Protection (PADEP) allowed DOE

personnel to copy applications and reports relative to placement of CCB at surface mine sites 

(Kim and Cardone, 1997).  The information included analyses of 99 fly ash samples.  A

summary of the major element and trace element data are given in Tables 8 and 9. The mean 

concentration of major and trace elements in ash from Bulgarian power plants, as reported by

Vassilev and Vassileva (1997), is in the same range as the data reported in Tables 6 and 7

In evaluating the chemical composition of fly ash in Tables 6 and 7, it must be

recognized that the data provided by several entities have limitations.  First, ash is a non-

homogeneous material, and it must be assumed that a given sample is representative.  In the data

submitted, blanks are not always identified as values below detection limits or as elements not

included in the analysis.  Also, detection limits may vary, which makes comparing analyses 

difficult.  It is also possible to dissolve solid samples by several methods (metaborate fusion,

aqua regia, hydrofluoric acid, for example), and the method used may have some effect on the

analytical results.  Therefore, compilations of fly ash analyses give good indications of the range

of compositions, but are not reliable indicators of concentration of elements in an “average” fly

ash.

Additional information on the chemical and mineral composition of coal ash is given in

Appendix B.
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Physical Properties

The physical characteristics of combustion residues include particle size, particle shape

or morphology, hardness, density and color.  These properties are a function of the particle size

of the feed coal, the type of combustion, and the particulate control device.  PC boilers typically

use fuel that is ground to a diameter of less than 0.075 mm (CIBO, 1997).  The fly ash has a

particle diameter less than 0.010 mm.  Due to the high temperature of P.C. combustion, fly ash 

particles tend to melt and condense as spheres.  Fly ash particles from FBC boilers, although

having similar diameters and density, tend to have a less regular shape.  Armesto and Merino

(1999) also found that residues from PC systems are smaller than those generated in FBC

systems.  

Sized fractions of fly ashes were found to have similar mineral compositions (Erdogdu

and Turker, 1998).  However, when used as a cement replacement in concrete, higher strengths

were correlated with smaller particle size.  The effect was attributed to the decreased porosity

due to small particles filling a higher percentage of concrete pores.  

Comparing the size distribution of minerals in fly ash with that in the original coal,

showed that both types of particles are larger than 1:m, but fly ash particles are larger with a

median diameter of 20:m and a maximum diameter in the range of 150 to 200 :m (Wigley and

Williamson, 1998).  The larger size of fly ash particles is attributed to coalescence of mineral

grains during cooling. 

In a study of 27 samples of pulverized fuel ash from Australian and Japanese coals,

Nagataki et al (1995) determined that specific gravity of the samples varied from 2.01 to 2.31. 

The maximum bulk density was between 0.7 and 1.4 g/cm3, while the surface area varied

between 0.7 and 37 m2/g.  
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The morphology of fly ash grains is determined by the heating and cooling regimes in the

PC boiler.  Microspheres, typically between 30 and 100 :m in diameter, can be hollow

cenospheres or noncrystalline glass beads (Shao et al, 1997).  Unburned carbon particles,

irregular partially melted minerals, particle fragments and agglomerated particles tend to be

slightly larger.  

Summary: Minerals in Coal and Ash

Inorganic compounds in coal may originate in plant material, but most are deposited

during (syngenetic) or after (epigenetic) coalification.  Syngenetic minerals are either chemical

precipitates or detrital clastics.  Epigenetic minerals are deposited within the coal seam after

coalification is complete.   Minerals identified in coal include silicates, carbonates, oxides,

oxyhydroxides, sulfides, sulfates, and phosphates.  In coal, the more volatile elements (As, Hg,

Mo, PB, Sb, and Se) tend to be associated with pyrite. The elements, Cd and Cu are associated

with sulfides, possibly with Pb and Zn sulfide.  The carbonates are apparently limited to Ca, Mg

and Mn.  Several elements are associated with the organic matrix or with silicates.

During combustion, minerals in coal become fluid, are subject to high temperature

oxidation and then are cooled.  The maximum temperature and the rate of cooling influence the

morphology and composition of the ash.  Generally, over 50 % of fly ash is composed of

spherical amorphous particles.  Inorganic compounds may also be present in fly ash as crystals

or as surface coatings on other particles.  In fly ash, the major cations are Si, Al, Fe and Ca with

lesser amounts of Na, Mg, K, Sr and Ti.  Trace elements include As, B, Ba, Cd, Cu, Hg, Mn,

Mo, Ni, Pb, Sb, Se, V, and Zn.  The primary minerals are quartz, mullite, hematite, clays and

feldspars.  Volatilization and condensation are believed to be primary determinants of trace

element partitioning in fly ash, but there are limited data on trace element association.  
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Table 3.  Distribution of trace elements in coal ash compared to the average concentration 
in the earth’s crust and shales, ppm.  (After Nicholls, 1968)

Element Crust Shale Coal ash,
minimum

Coal ash,
maximum

Ag 0.7 .07 1 10

As 1.8 13 100 900

B 10 100 86 5800

Ba 425 580 300 3500

Be 2.8 3 1 30

Co 25 19 30 300

Cr 100 90 50 400

Cu 55 45 20 500

Mn 950 830 200 1000

Mo 1.5 2.6 10 200

Ni 75 68 50 800

Pb 12.5 20 5 700

Sr 375 300 80 3500

V 135 100 1000

Zn 70 95 100 1000
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Table 4.  Minerals Identified in Coal.

Sample Bituminous1 PRB 1 PRB 2 Various3 Lignite 4 UK5 Bituminous6

Units wt% mm wt% mm Ma/ Mi/ T vol%mm NA NA # of samples

# of Samples 3 1 40 34 48 75

Quartz 12 27 "    Ma 33 U U 63

$    T cristobolite U

Kaolinite 13 19 Ma 10 U 73

Illite 13 8 4 U 9

Montmorillonite <1 2 1

Feldspar <1 2 4 U

Silicates 27 29 2 U 15

Pyrite 16 1 T 4 U U 18

Sulfides <1 1 2

Siderite <1 <1 15

Calcite 3 Mi 6 U 62

Carbonates 2 <1 6 U 56

Rutile/Anatase <1 3 T 0

Phosphates <1 6 T 3 U 47

Micas Mi 3

Zeolites U

Barite T 1

Zircon T

Plagioclase T 12

Sulfates 10 U U 17

Oxides &

Hydroxides

11 1

1
Senior et al, 2000b                                 Ma/Mi/T = Major, Minor, Trace

2Brownfield et al, 1999                            wt% mm  = weight % of mineral matter
3Vassilev et al, 1997                                 PRB = Powder River Basin
4Karayigit et al, 2001                               
5Spears et al, 1999                                    UK = United Kingdom
6Kimura, 1998
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Table 5.  Modes of Occurrence and Maximum Concentration (ppm) of Elements in Coal.

Reference Senior et al Shao et al Palmer et al

Element Mode Max Mode Max Mode Max

As Py 250 S 25 Py, Sl 45

B Cly, O 500

Ba O, SO4 500

Be Cly,O 30 Sl, O 2

Cd ZnS 10 S 2.5

Co S 25 Sl, O 12

Cr Cly, Fe, OOH 100 O 80 Sl, O 97

Cu S, O 200

Fe S 2000 Py, Sl 2.6 %

Hg S, E 10 Py, O 0.50

K O 14000

Mn O, CO3 1000 Sl, CO3 230

Mo Py, O 50

Na O, SO4 4500

Ni S, O 100 S Sl, O 48

Pb Py, S 100 O, S, Py 25

Sb S, Py 40 Sl, O 2.1

Se Py 6.1

Sn Ox, S 20

Sr O, SO4 300

Zn S, O 300 O, SO4 50 Sl, S, Py 190

Py = Pyrite        S = Sulfide   Cly = Clay      CO3 = Carbonate           Sl = Silicate

O = Organic      OOH = O xyhydroxide         Ox = Oxide                   E = Elemental SO4 = Sulfate     
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Table 6.  Minerals Identified in Fly Ash

Reference Vassilev

&

Vassileva

(1996)

Mukhopadhyay et

al (1996)

Yamashita

et al, 1998

Hower et al,

1999

McCartyy et al, 1999

Class F Class C

Units M-m-T Vol % wt% wt % wt% wt %

Quartz M 5 5 - 40 <0.5 7.1

Cristobalite T-M

Kaolinite

Illite M

Plagioclase m-M 1 - 20

K-feldspar m-M 1 - 10

Micas m-M

Mullite a-M <1 13.3

Hematite m-M 25 1 - 10 4.1

Magnetite T 65 7.0 2.5

Goethite T-M

Spinel T-m

Gypsum 1 - 20

Calcite 0.5 5.7

Ettringite 3.5 7.8

Alumino-

Silicates

20 - 70

Corundum T-M

Gibbsite T-M

Rutile T-m

Lime T-M

Portlandite T-M

Anhydrite M

Amorphous 50 - 90

vol %

75-86 64.5 74.8

M-m-T = M ajor, minor, Trace
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Table 7. Trace Element Association in Fly Ash (FA)

Reference

Huggins et al, 1997 As in FA is As (V); 25% of As in BA is As(III), < 5% of Cr is
toxic Cr(VI); Ni is +2 valence and Se may be selinide or
selenate.

Finkelman et al, 1997 As = 170 ppm in FA from high S coal and 54 ppm in FA from
low S, primarily condensed on ash surfaces.   Cr enriched in the
Fe-oxide phases, such as spinel.  70 pct of Cr in the glassy
silicate.  Similar results for Ni and Co.  Sb and Zn present in
more than one ash phase.  

Senior et al, 2000 Elements vaporized during combustion: 40 to 80 % of As &
Sb, residual may dissolve in silicates or form Ca compounds; >
80 % Se and Zn volatilized; < 40 % Cr in vapor state.  

Furminsky, 2000 Most As, Pb, and Cd in FA; Se and Hg vaporized.  Air/coal
ratio affects partitioning of elements in vapor and solid phases,
shifts condensation to lower temperature.

Hulett et al, 1980 Ba, Sr, Ti, As, Se concentrated in amorphous phase.  V, Cr,
Mn, Ni, Zn and Cu concentrated in Fe oxide/spinel
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Table 8  Major element concentrations in fly ash samples, g/kg.

Element EPRI1 Data CIBO2 Data PADEP 3 Data

n Mean Range n Mean Range n Mean Range

Al 39 113 46-152 14 29.9 4 .02 - 176 89 30 .012 - 140

Ca 39 62 7.4-223 2 56 37 - 74 19 50 .003 - 265

Fe 39 76 25-177 18 314
.02 - 81 89 35 .009 - 675

K 39 14.3 3-25.3 13 1.54 .001 - 15

Mg 39 11.8 1.6-41.8 1 10 22 139 .005 - 4

Na 39 9.1 1.3-62.5 1 5

P 24 3 1.1-10.3 1 0.54

S 39 12.6 1.3-64.4 2 15 8 - 21

Si 39 209 90-275 2 115 90 - 115

Sr 39 1.3 .2 - 7 1 0.3

Ti 39 7 1.3 - 10 1 2
1 EPRI: Electric Power Research Institute
2 CIBO:  Council of Industrial Boiler Owners
3 PA DEP: Pennsylvania Department of  Environmental Protection
4 Median
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Table 9.  Trace element concentration in fly ash, mg/kg

Element EPRI1 Data CIBO2 Data PADEP3 Data

n Mean Maximum n Median Maximum n Median Maximum

Ag 19 1 39 78 0.4 22

As 39 156 385 23 12 46 92 20 21030

Ba 39 1880 10850 20 320  7700 93 212 2960

Be 13 2 12

B 11 90 652 80 50 3995.4

Cd 2 12 17 23 .6 13 81 1 30

Co 16 14 179 30 28 83

Cr 29 247 651 23 29  141 92 40 360

Cu 39 185 1452 20 43 99 91 41 474

Hg 22. 0.3 7 84 0.4 5.44

Mn 39 357 1332 15 126 57700 86 79 27614

Mo 36 44 236 21 6 61 79 12 108

Ni 39 141 353 22 35 1020 91 39 752

Pb 39 171 2120 24 15 73 93 33 225

Sb 7 43 131 17 5 1370 64 27 140

Se 30 14 49 22 5 46 77 3 201

Sn 18 44 56

Th 12 3 25

V 35 272 652 13 61  1120

Zn 39 449 2880 22 36  105 93 41 1196
1 EPRI: Electric Power Research Institute
2 CIBO:  Council of Industrial Boiler Owners
3 PA DEP: Pennsylvania Department of  Environmental Protection
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Figure 5.  Carbon cycle, highlighting transition from plants to fossil fuel resources. From: Deul
and Kim. 1988.
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Figure 6.  Coal rank - variation of heating value with increase in fixed carbon content.  (From Kim and Kissell, 1988)
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Figure 7.  Formation of fly ash particles from excluded and included minerals.  After Clarke,  and Sloss.  1992. 
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Figure 8.  Partitioning of trace elements during combustion: Group 1 - Elements concentrated in
coarse residues; Group 2 - Elements concentrated in fine grained particles; Group 3- Vapor
phase elements.  After Clarke, L.B. and L.L. Sloss.  1992.  
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Chapter 4

Leaching Studies of Coal Ash

Overview of Leaching Chemistry and Methods

Introduction

 The release of metals from CCB has been studied using a variety of methods, samples

and leachant solutions.  The leaching behavior of all types of materials is related to several

critical factors, including specific element solubility or release potential.   Solubility can be

influenced by pH, complexation by inorganic species or dissolved organic matter, and reducing

properties.  A recent survey of the literature identified over 100 leaching methods to remove

soluble components from a solid matrix (Hesbach and Lamey, 2001).   Many leaching methods

are intended to mimic natural conditions, and others are used  obtain information about the

nature of the extractable material within a particular solid.  The methods vary in the amount and

particle size of leached sample, the type and volume of leachant solution(s), the leachant

delivery method, and time.  Most procedures are performed at ambient temperature, although a

few decrease the time required to solubilize components by increasing the temperature. 

Although some methods have been developed for a specific type of material, most leaching

methods have been applied to a variety of materials.

Leaching can be described as the fluid extraction of a compound or element from a solid. 

It is an interactive process in which both leachant and solid variables can control the results.  The

pH of the leachate, which is determined by the pH of the leachant and the alkalinity/acidity of

the solid is generally recognized as a controlling factor.  The  effects of oxidation reduction

potential, dissolution/precipitation equilibrium, complexation, temperature, the concentration of
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dissolved CO2 and O2, is not addressed in most leaching methods.  Many natural materials (ores)

and those produced by industrial processes (slags and ashes) are not simple chemical

compounds. They may be discrete particles fused into a larger mass or small particles trapped in

a different matrix.  For these materials, porosity and diffusion rate will affect the solubility rate

determined by a leaching procedure.

Summaries of many of the more commonly used leaching methods are given by Sorini

(1997) and Wilson (1995) .   The International Ash Working Group (IAWG) based in Europe

has done extensive work on the integration of a variety of tests into a comprehensive leaching

system (Eighmy and van der Sloot, 1994; van der Sloot, 1998).   

Leaching Chemistry

As it applies to this study, leaching involves the dissolution of a solid by an aqueous

chemical solution.  This process can be complicated by secondary reactions such as

precipitation, adsorption or the formation of complexes.  Leaching reactions are characterized as

hydrolysis, caustic (alkaline), acidic, or oxidative reductive (Demoupolous, 1999; Stumm and

Morgan, 1995; van der Sloot, 1998).   Although biochemical leaching, either direct or indirect, is

frequently important in natural processes and hydro metallurgy, it is not usually considered in

regulatory or laboratory leaching tests.  In addition to water, acids and bases are commonly used

as leaching agents.  Basic leachants, hydroxides, soluble carbonates and cyanides, are more

selective than acid solutions. 

The dissolution of mineral components and the behavior of dissolved components is

controlled by the system variables, pH, Eh and the activities of the dissolved species.  The pH is

a function of the acid base character of the system, and the Eh determines the relative stability of
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(1)

(2)

(3)

(4)

multivalent species.  Activities are the product of the activity coefficient and the concentration; 

in dilute solutions, activity and concentration are comparable.  

For a general chemical reaction written as:

The Gibbs free energy change is:

At equilibrium, )G = 0, and the last term in Eq. 2, the reaction quotient, is equal to K, the

equilibrium constant.  If )G < 0, the reaction is thermodynamically favorable.  However, a

thermodynamically favored rate does not occur unless the reaction proceeds at a rate such that

measurable changes in the concentration of reactant and products occur.   

The rate of a reaction can be  written as: 

where A and B are reactants, a and b define the reaction order,  and k, the rate constant for the

reaction is negative.  In terms of the product, the reaction rate is:

where [C] is the concentration of the product and k, which has the units of 1/t, is positive.  The

above reactions are relatively simple and apply to homogeneous reactions in one phase. 

Leaching involves heterogeneous reactions with at least two phases, liquid and solid.  Because

reactants must diffuse across the liquid solid interface, the surface area of the solid is a variable,
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(5)

(6)

and the rate equation is more complicated.  A non-homogeneous material, in which an element is

distributed in more than one chemical compound or crystalline phase, also complicates the

formulation of rate equations for leaching systems.  In most leaching systems, it is assumed that

the leachant remains a dilute solution with respect to the soluble species and that there is

sufficient time for the reaction to reach equilibrium or go to completion.  It is also assumed that

the diffusion rates of a reactant across the liquid-solid interface and the diffusion of products into

the leaching solution are much less than the time frame of the leaching test.  Competing

reactions, secondary reactions and precipitation may also complicate the interpretation of

leaching results. 

The shrinking core model has been applied to a variety of solids leaching processes

(Batarseh et al, 1989).  The model describes a reaction front starting at the surface of the particle

of radius r and moving inward with a velocity  

in which 8 is the distance the reaction front has moved from the surface at time t.  When

applied to homogeneous isotropic spherical particles, the rate of reaction, R, is given by the

equation:

where r is considered constant, and Dr is the density of the solid reactant.  According to

this model the reaction rate is greatest when the leaching solution is at the surface of the particle. 

Calculation of the reaction rate is more complex if the particle is not homogeneous, if more than
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(7)

(8)

one chemical reaction occurs, and if transport rates for reactants and products must be

considered. 

An adsorption/desorption model of intra-particle diffusion was developed by Chaiken

(1992) to account for spatial heterogeneity of particle porosity and temporal changes in porosity

due to leaching reactions.  This model defines 8 as the shortest path to a reactive site, and values

of 8 within a particle or assemblage of particles are assumed to have a log-normal distribution. 

where h is the spread factor of the distribution and 80 is the median “shortest path.”  The

rate of reaction is 

where t0 is the time for the diffusion front to travel the median shortest distance, and ta is

a pre-aging factor to account for reaction that occurred prior to leaching.  In standard  leaching

methods, it is assumed that all particles are equally in contact with the leachant solution.

Leaching Methods

In this dissertation,  leaching methods are categorized as:  (1) regulatory - those

promulgated and approved by a regulatory agency to generate specific information for

submission in a legal context; (2) standard methods are those adopted by a standards
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organization (ASTM, ISO) for a specific set of conditions and, sometimes, for specific materials;

and (3) research methods developed for a particular objective.  Most of this discussion deals with

regulatory and standard methods, although examples of some commonly used research methods

are included.  Regulatory and standard methods are frequently used for research projects. 

However, only if the method is appropriate to the problem studied and if the procedure is

followed exactly can results from different projects be considered comparable.  Leaching

methods are categorized as static or dynamic methods.  Within these categories, static methods

are divided into batch and monolithic; and dynamic methods are column, serial batch, or

sequential batch, although some methods are not uniquely defined within these categories. Due

to the number of leaching methods, this discussion cannot be comprehensive.  The intent is,

rather, to identify commonly used leaching methods and use examples to identify method

characteristics.  

Static Leaching Methods

Static or batch leaching methods can be described as those in which a sample is placed in

a given volume of leachant solution for a set period of time.  Most of the methods require some

type of agitation to insure constant contact between the sample and the leachant.  At the end of

the leaching period, the liquid is removed and analyzed.  Commonly used batch leaching

methods are listed in Table 10 and described in Appendix C.

In serial batch methods, a sample of waste is leached successively  with fresh aliquots of

the same leaching fluid.  This method is intended to eliminate the effect of concentration on

solubility and to simulate long-term exposure to the leachant solution. The  EPA=s Multiple

Extraction Procedure (MEP), the Standard Test Method for Sequential Batch Extraction of
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Waste with Acidic Extraction Fluid (ASTM D 5284), and the  Standard Test Method for

Sequential Batch Extraction of Waste with Water (ASTM D 4793) are described in Appendix C.

Dynamic leaching Methods

Dynamic leaching methods are those incorporating a change in leaching fluid, either as a

function of time or of composition.  Column leaching tests are considered as simulating the flow

of percolating groundwater through a porous bed of granular material.  The flow of the leaching

solution may be in either down-flow or up-flow direction and continuous or intermittent.  The

flow rate is generally accelerated when compared to natural flow conditions.  However, it should

be slow enough to allow leaching reactions to occur.  A basis assumption in column leaching is

that the distribution of the leaching solution is uniform and that all particles are exposed equally

to the leachant solution.  Precipitation or sorption within the column may affect the results.

The Standard Test Method for Leaching Solid Material in a Column Apparatus (ASTM

D-4874) and the  Dutch Standard Column Test (NEN 7343) are  up-flow column procedures.  

Column experiments more closely approximate the flow conditions, particle size distribution and

pore structure, leachant flow and solute transport found in the field (Zachara and Streile, 1990). 

They can be conducted in both saturated and unsaturated conditions.  Unsaturated conditions are

usually intended to mimic vadose zone placement.  Intermittent addition of a given volume of

leachant solution at the top of the column can provide uniform distribution of the fluid and

approximate a constant fluid front moving through the unsaturated column. Saturated columns

are obtained by a constant fluid flux, and allowing the fluid to pond at the top of the column. 

Variables, such as leachate collection, sampling frequency, leachant flow rate, and duration of

the experiment, are determined by the experimental objectives.
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Sequential leaching tests use a single sample that is leached by a series of different

leaching fluids.  The constituents extracted with a particular leachant are associated with a

particular mineral phase or chemical species.  Speciation is considered one of the controlling

factors in the potential release of cations to the environment.  The USGS Sequential Leaching

Method was developed as a rapid indirect method of determining the modes of occurrence of

trace elements in coal (Palmer et al, 1999).

Leachant Solutions

Selection of a leachant solution is critical to the success of a leaching study, and it

depends on the objective of the study.  Water, either DI or RO, is frequently used as the leaching

solution.  It is readily available, and it is an acceptable leachant to mimic natural weathering

processes. 

When methods to evaluate toxicity were developed, disposal in a municipal solid waste

landfill was the scenario being modeled, and acetic acid was the appropriate solution to use.  It is

not particularly applicable to disposal in other situations, but it is often used because  it is 

commonly accepted and because it is a weak acid, more aggressive than water, but less

aggressive than mineral acids.  Stronger mineral acids are used to leach metals and non-silicate

minerals.  Oxyanions are normally leached with bases.  Leachant solutions and the types of

compounds they normally dissolve are listed in Table 11.

Comparison of Leaching Methods

Several studies have attempted to compare different leaching methods, frequently in an

attempt to correlate data from disparate techniques.  Most comparisons were based on

comparative release of particular elements by two or more specific procedures.  Differences in
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such factors as test objective, leachant volume, sample size, and test duration were not

considered. 

In 1981, researchers at the Department of Energy/Los Alamos Scientific Laboratory

(DOE/LASL) compared EPTOX with a procedure used at the laboratory (Heaton, et al, 1981). 

The samples were coal preparation wastes.  The LASL static leach procedure was similar to

EPTOX and the  release of RCRA elements was found to be comparable with both procedures. 

The  differences between one day and longer term tests were not large. 

The Electric Power Research Institute (EPRI) sponsored a round robin evaluation of

TCLP and EPTOX (Mason and Carlile, 1986)that was  intended to evaluate the reproducibility

of the TCLP and compare the results to those obtained with EPTOX.  Seven CCB samples were

sent to each of three laboratories which performed duplicate determinations with both TCLP and

EPTOX.  For the individual procedures, most of the variability was related to consistent

differences in the results from one of the three laboratories.  When comparing the methods, the

TCLP and EPTOX concentrations of 14 elements were comparable for approximately 60 % of

the determinations.  Eighty-three per cent of the concentrations determined with TCLP were

equal to or greater then those determined with EPTOX.  

The Netherlands Energy Research Foundation (ECN) compared regulatory test

procedures used in the US, Canada, Germany, France, Switzerland and the Netherlands (van der

Sloot et al, 1991).  Although the effect of pH on release is established, the effects of changes in

redox potential and the concentration of complexing agents, as well as the effect of  temperature

differences, are not known. 

Leaching methods include those to determine regulatory compliance, those approved by

standards organizations, and methods developed for a particular objective.  With exact
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duplication of regulatory or standard methods, tests conducted by different laboratories with the

same protocol will probably produce comparable results.  However, compliance tests and

standard methods are not necessarily appropriate for leaching tests to simulate natural processes,

obtain data on reaction mechanisms or unravel complex solubility relationships.  For these, it is

necessary to select or develop a procedure that addresses the experimental objective, meets the

procedural constraints, and produces data that is directly or functionally  related to the problem

being studied.  Data obtained by different laboratories using standard or regulatory tests are

probably comparable.  Studies performed with different leaching methods do not necessarily

produce comparable data, although researchers using different methods may arrive at similar

conclusions. 

Previous Studies of CCB Leaching

The potential release of cations, particularly heavy metals, from CCB has been the

subject of a number of research studies conducted with a variety of protocols.

Laboratory Studies

A number of researchers have addressed the release of cations, particularly heavy metals

from CCB.  Most of these address the question of the potential effects on groundwater if the

CCB are placed as bulk fills or used in mine remediation. Studies conducted during the last 25

years are summarized below.   The differences in leaching conditions, the duration of leaching

and the different samples, make direct comparisons of results very difficult.  However, the

results of the individual studies can be correlated sufficiently to discern general trends.  The

leaching studies are summarized in Table 12; additional information is include in Appendix D.

Field Tests
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Leaching tests are intended to predict the results of exposing  CCB to environmental

fluids.  Although field tests are not directly comparable to laboratory tests, several were

reviewed to determine if the general results showed the similar trends. 

Power plant fly ashes were placed in mined out areas of the Wujek mine in Silesia

(Cempiel et al, 2000).  The concentration of trace elements is higher in the unamended mine

water, although the concentration of major cations and anions increased in the leachate.

In Illinois, Colorado and Ohio, test cells were constructed to hold 700 to 1000 st of by-

products from Clean Coal Technology processes (Solc et al, 1995).  Relatively high precipitation

and the porosity of the CCB compared to the low permeability of surrounding soil facilitated

leaching within the cells.  Anhydrite was apparently converted to gypsum; thaumasite

(Ca3Si(CO3)(SO4)(OH)6C6H2O) and ettringite (Ca6Al12(SO4)3(OH)12C26H2O) were also produced. 

The concentration of Na, K, Cl, SO4 decreased with time in the cell pore water.  

The pore water from borehole samples of fly ash in the unsaturated zone of a disposal

mound was analyzed to investigate the long term natural weathering (Lee and Spears, 1997).  

The concentration of Al, Na, Ca, SO4, B, Co, Cr, Li, Mo, Ni, Pb ans Sr increased with depth,

while the pH of the pore water, between 7.8 and 8.9, showed no consistent variation with depth.  

To evaluate the effect of fly ash injection on AMD, water quality was monitored at three

reclaimed surface mines (Bognanni, Fran and Pierce) where a fly ash grout was injected into

subsurface areas believed to be zones of acid production (Ackman et al. 1996).  At the Bognanni

site, the difference in the concentration of trace elements  in grouted and ungrouted areas was

less than 0.5 mg/L. At the Fran site, average concentrations of As, Co, Cu, Ni and Zn were

higher  in the injection area than in background areas.  However, the concentrations in downdip

and discharge samples were closer to those in the ungrouted spoil .  Trace element



48

concentrations, at the Pierce site were higher in the injection, downdip and discharge samples

than in inflow or ungrouted spoil samples.  Only the concentrations of Co, Ni and Zn exceeded

0.2 mg/L; all values were less than freshwater aquatic life criteria (Kim, 2000).

Mixtures of FBC by-products and Class F fly ash were placed in test cells, constructed to

mimic a utility landfill, in Illinois (Weinburg et al, 1997).  TCLP characterization indicated high

pH and low soluble metals concentration.  Leachate migration to groundwater resulted in

transient increases in several metals, but no MCL exceedences. 

 Results of Leaching Studies

The  research studies summarized here used a variety of methods and experimental

conditions.  Studies that quantify the amount leached versus the amount in the CCB mention that

almost all of the cations in CCB, including the trace elements, are sparingly soluble at

circumneutral pH.  In several studies, most cations are found to be more soluble in acid

solutions, except for those cations that form oxyanions, which are more soluble at high pH.   

In evaluating the results of leaching studies of CCB, it is apparent that the wide variety of

experimental conditions reflect the broad spectrum of conditions in natural environments to

which CCB may be exposed.  However, it should be noted that all of these studies were

performed with different samples and were often an attempt to simulate a particular situation. 

Since the results were not correlated to an inherent characteristic of the CCB, there was always a

question of whether a different samples would produce the same results under the same

conditions.  
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Table 10.  Batch leaching Methods

Method Leachant Sample size, g pH L/S Time, hr

ASTM 
D-3987

Water 70 20 18

EPTOX Water 100 5.0 20 24

SPLP Water acidified with nitric and
sulfuric acids

100  4.2 20 18

TCLP Acetic Acid or Acetate Buffer 100 2.88 20 18

CA WET 0.2 M sodium citrate 50 5.0 10 48

NEN7341 4,7 100 4

LEP Water acidified with 0.5 N
acetic acid

50 5.0 16 24

SGLP Synthetic Groundwater - site
specific

 10 20 1440

L/S: Liquid to Solid ratio, L/kg
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Table 11.  Common leachant solutions

 

Leachant Solution Soluble Compound

Ammonium Acetate Exchangeable cations

HCl Carbonates, monosulfides

HF Silicates

HNO3 Metals, Disulfides

MgCl2 Extractable metals

Hydroxylamine hydrochloride Fe and Mn oxides

H2O2, Hydroxylamine hydrochloride, HNO3 Organically bound metals
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Table12.  Summary of Experimental Parameters and Results for Laboratory Leaching Experiments

Reference Leach

Type

Sample

Size

Leachant Volume/

Flow

Rate

pH Time Summary of Results

Dreher et al

1990

Column H2O 1 pore 

volume

/wk

>8 15 wk B, Ni, Mo, Se and Sr reported in alkaline leachate

generated by FBC ash

Batch H2O L/S = 4:1 >8 3<>180

d

Dreesen et al

1977

Batch 0.1 M  citric acid

1.0 M HCl

0.001 to 1.0 M

HNO3

H2O

0.1 M NH4OH

L/S = 4:1 3 h Maximum extraction = 30 % in strongly acid solution

Dudas

1981

Column 250 g H2O 124 L

245 L

421 L

> 12  to

8

2 yr max Initial release of cations from simple salts, followed by

dissolution of glassy ash matrix.

Fishman et al

1997

Batch DI H 2O L/S =

20:1

>8

<4

18 hr Ash spheres coated with soluble, poorly crystalline

aluminum potassium sulfate

Fleming et al

1996

Column Acetic Acid 3.0

4.1

6.8

Acid leachable  Cd, Cr, Al, Pb , Hg and Ag assumed to

be present as oxides

Griffin et al

1980

Batch H2O + NaOH 10%

weight to

volume

8.8 3 - 6

months

Concentration of Al, B, Be, Ca, Cd, Cu, Co, Mg, Mn,

Ni, Si, Sr, and Zn increased at low pH; K, Mo and Na

more soluble at high pH.H2O + NaOH 8.0

H2O 4.0



52

H2O +HNO3 2.7

Hequet et al

1999

Batch 5 g H2O

Acetic Acid or

Acetate buffer

L/S =

10:1

>6.5 24 hr Cu and Zn adsorbed from solution on FA, <1 % Cu and

< 15 % Zn released by subsequent leaching with H2O,

higher % released in acid , acetate buffer.

2

4.6

Hjelmar

1990

Lysimeter 10-18 t Rain/snow 7 yr Na and K  leached initially; Ca dominates long term

leachate.  Concentration decreases with increased L/S
Column 8-16 kg SP 17-145

mm/d

>11

Serial

Batch

H2O L/S =

2.5, 5 .8

5 d

Karapanagiota &

Atalay

1996

Batch 10 g H2SO4 20 - 1900

mL

1 AM D metals adsorbed by alkaline CCB when pH=4. 

Metals released at pH=1.Buffer capacity related to Ca in

ash.  4

Kim & Kazonich

2001

Column 1 kg H2SO4 ~130

mL/d to 

230  mL/d

1.2 from 15

d to > 6

mo

Solubility not a function of concentration in solid;

solubility influenced by pH, <50 % of metal extracted.
H2O 6

Acetic Acid 2.88

SGW 6.7

SP 4.2

FeCl3 1.95

NaCO3 12.1

Nathan et al

1997

Batch 1 kg H2O 2, 10, 20 >10 18, 24 hr  Release of heavy metals related to source of coal more 

than to pH of leachate
Acetic Acid 20 >4 18 hr
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Nugteren et al

1999

NEN 7343  H2O L/S =

10:1

4 3 wk Washing FA with buffers reduced Cr, Mo, Sb, Se, and

V  leached from residues  

Paul et al

1994

Batch HAc

H2O

L/S = 20 18 hr Some elements adsorbed from groundwater by CCB. 

AST M was considered superior to TCLP . 

Column Ground

water

<100

mL/d

6±.2 ~1 yr

Pritts et al

1999

TCLP Concentration of RCRA metals in the leachate of  50/50

mixtures of hazardous waste and CCB was below the

detection limit

Querol et al

2001

Column 2 g H2O 50 mL/hr Water soluble major and trace elements more solub le in

open system due to loss of alkalinity.   Dissolution of

small particles or coatings on particle surfaces.Batch DI H 2O 50 mL/g 24 hr

Rice et al

1999

Batch 10 g H2O 200 mL 18 hr

Batch H2O L/S =

20/1

< 1 hr pH of leachate is controlling factor, soluble aluminum

potassium sulfate (APS) coating adsorbed on glassy

particles; Cd, Co, Cu, Mn, Ni, Pb, and  Zn are  acid

leachable, As, Mo, and V soluble in alkaline leachatesColumn H2O 0.75:1 -

15:1

64 d

Roy & Griffin

1984

Batch 1700 g DI H 2O 17 L Varied 140 d Anhydrite controlled release of Ca; Al in equilibrium

with mullite and insoluble hydroxide

Seidel et al

1999

Batch Varies H2SO4 300 mL 24 hr Calcium sulfate precipitation on particles inhibit the

solubility of Al

Seidel &

Zimmels

1998

Batch H2SO4 300 mL 12 d 30 % of the Al and Fe in the ash leached, formation of

porous layer of calcium sulfate inhibits solubility.  90 %

of the Ca, As, Cd, Cr, Cu, Hg, Pb and Zn were extracted

at a pH < 1

Shabtai &

Mukmenev

Batch 70 kg H2O & H2SO4 230 L 0.9 2 hr <25% of al, ti, Fe and Si was leached from the ash

.>70% of As, Cd, Cr, Cu, Hg, Pb and Zn leached at very

low pH
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Steenari et al

1997

 Batch H2O

H2SO4

L/S = 16 10 x 24 80 % of Ca soluble in acid, less than 20 % of K was

leached from the fly ash samples

Stewart et al

1996

1997

Column SP 2.5 cm

/4 d

4.6 4 yr Coal ash buffered acid formation from coal refuse. 

Alkalinity from CCB limits oxidation of pyrite in the

coal refuse; metal release at low pH 
Column Varies SP 2.54

cm/wk

3 yr

Talbot et al

1978

Batch 1 g H2O L/S =

1000

~ 6

months

Fe, Al, Si - acid soluble; Ca, Mg, Na solubility not pH

dependent below 10

Batch H2O 1<>12 1 wk

Teixeira et al

1992

EPTOX H2O, HAc 16/1 5 24 hr Ca & M g acid and alkaline soluble; Na & K more

soluble in alkaline solution.  Mn, Ni, Co, and  Cu soluble

in acid; Mo, Cr, and V alkaline soluble.  Trace element

solubility < 20 %

INSA 100 g H2O 3 x 1 L >9 3 x 24 hr

Column 100 g H2O 20 L >9 546 hr

Theis & W irth

1977

Sequential NH4Oxalate

Hydroxylamine

Hydrochloride

H2O

200 g/L Varied 24 hr

Mullite, hematite and magnetite on the surface of

amorphous particles controlled the release of trace

elements.

Except As, elements acid soluble.

Wang et al Column 20 g HNO3 120 mL 2.0

4.0

6.5

60 h Sr, Zn, Pb, Ni, and As - leaching intensity increases

with decreased pH.  

Yaman &

Kucubayrak

1977

Batch

@

200°C

H2O 200 mL 1 hr Alkaline fly ash extract neutralized  the sulfuric acid

produced in the  oxydesulfurization of T urkish lignite
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Chapter 5

Materials and Methods

The objective of this study was to determine the factors that control the release of heavy

metals from fly ash.  The samples were to be a random population from several states.  A

column method using 1 kg samples and several leachant solutions was designed to simulate

exposure to natural fluids.

Sample Acquisition

The samples were obtained through contacts with local (western Pennsylvania, West

Virginia) utilities and by requesting samples from ash managers and ash marketeers at CCB

conferences or through referrals.  The request was simply to ship two 20 L (5-gal) buckets of fly

ash or other CCB to the researcher at the U.S Bureau of  Mines (later to the U.S. Department of

Energy).  In order to obtain a sample representative of what would be utilized or disposed, there

were no pre-selection criteria.   

In addition to fly ash from PC boilers, there were several fly ash samples from FBC

units, a bottom ash sample, a weathered ash from a disposal pond, and steel slag fines.  CCB are

inherently variable, based on the composition of the coal and the combustion conditions.  To

limit the number of extraneous parameters, the samples included here are class F fly ashes from

PC boilers.

The samples are identified in Table 13.  In subsequent sections the samples are identified

by sample number, which was determined by the order in which the samples were obtained and

used in the leaching experiment.  Missing numbers in the sequence were other types of CCB

samples that are  not included in this discussion.  The station  or power plant is listed in the
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second column.  The generator or operating company is in the third column and the state in

which the station is located is in the fourth column.  The last column gives any additional

information on the source of the sample.  A generating company may operate more than one

power plant, and a power plant may include more than one boiler, usually designated as a unit. 

As an example, Samples 4 and 5 came from different power plants owned by the same company;

samples 6 and 7 came from different boilers at the same power plant.  How the fly ash is handled

also varies.  In some cases, all the fly ash generated may go to a storage facility (silo) until it is

full, then a second silo will be used.  In other cases, all the fly ash from a unit will go to a

particular silo.  A few samples were identified as coming from a particular control device, a

mechanical precipitator,  ESP or baghouse. 

All of the samples were obtained directly from a collection device or storage facility. 

None of the samples included in this discussion were taken from surface impoundments or

landfills.   Most utilities take fly ash samples directly from the stack with an in-line sampler (10

g) and handle it in truck load (ton) quantities.  Obtaining a sample of approximately 50 kg is

outside their normal operation, and we appreciated their cooperation. 

Leaching System

A column leaching system was chosen for this test because, at low flow rates, the release

of metals from a solid matrix can be determined as a function of volume, pH changes, and time.

The system is designed to simulate  the reaction of materials during exposure to natural fluids,

such as acid rain or acid mine drainage, and is appropriate for unconsolidated materials with a

particle diameter of less than 0.5 cm.  Because CCB are not a homogeneous material, each

column was made large enough to hold a representative 1 kg sample.    
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The columns are constructed of 1 meter sections of 5 cm ID acrylic pipe with an

approximate  volume of  2 L.  Threaded PVC pipe caps close each end; 0.635 cm fittings are

tapped into the ends for leachant inflow and leachate outflow.  Ten g of glass wool is placed in

the bottom of the column, then the sample, usually 1 kg, is poured into the column.  Another 10

g of glass wool is placed on top of the sample; a cap seals the  column and it is hung on a

distillation rack (Figure 9).  In all, seven groups of four samples are assembled, simultaneously

leaching  4 samples with 7 leaching solutions (Figure 10).  

The leaching solutions, listed in Table 14, were selected as standards or as surrogates for

naturally occurring liquids and to cover a broad pH range.  Deionized (DI) water is the primary

standard; acetic acid is a weak acid and an indicator of leaching during co-disposal in a MSW

landfill.  It also allows comparison to TCLP leaching results.    Sodium carbonate is a high pH

solution for elements that are caustic soluble, and synthetic groundwater (Hassett,1992) is used

to determine if other naturally occurring ions affect solubility.   Synthetic precipitation is the

leachant used in EPA’s SPLP protocol; it mimics the effect of acid rain on bulk fills.  The ferric

chloride solution is an oxidizing solution and ferric ions are the primary cations in AMD. 

Sulfuric acid is a strong acid and is also a component of AMD. 

Each solution is placed in a 20 L reservoir.  A peristaltic pump delivers the leachant

solution to individual delivery lines for each of the four columns.  The flow rate is approximately

130 mL/d. The leaching system originally used a gravity feed system to distribute leachants to

the leaching columns.  Each reservoir of solution was situated 7 meters above the columns with a

distribution system and flow regulators connecting it to 4 columns containing different CCB

samples.  Normal flow rates went from 250 milliliters per day per column with the gravity

system. When this system was replaced with peristaltic pumps, the flow rate averaged  200
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mL/day/column.  Actual flow rates varied between plus or minus 100% for the gravity system to

plus or minus 15% for the pumps.  Simultaneous tests utilizing both gravity and pumps showed

no differences in leaching results except that the pump tests took longer to achieve acidification

because of the lower acid feed rate.  

 Leachate is collected in 1 L volumetric cylinders; samples are generally collected at 2 to

3 day intervals; the pH and the volume are determined when the samples are taken.    The

leachate is then split, and half is used for the determination of  acidity and/or alkalinity.  The

other portion of the sample is acidified with 2 N HCl and sent to a contract analytical laboratory 

for analysis by ICP-AES.  All samples were analyzed for ferrous iron, total iron, aluminum,

manganese, magnesium, calcium, sodium, potassium, sulfate and the heavy metals arsenic,

barium, beryllium, cadmium, cobalt, chromium, copper, nickel, lead, antimony and zinc.  Each

fly ash sample was leached until acidified with the pH 2.9 acetic acid solution (typically from 30

to 90 days for Class F fly ash samples).
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Table 13.  CCB sample ID and sources.  

Sample # Station Generator State Other

4 HF AGH1 PA Unit # 3

5 FM AGH1 WV

6 CNM GPA1 PA Unit 1

7 CNM GPA1 PA Unit 2

8 FM AGH1 WV

11 CNM GPA1 PA Silo 1A

12 CNM GPA1 PA Silo 1B

13 CNM GPA1 PA Silo 2B

14 BI PA

15 MNTR PPA2 PA Unit # 1

16 MNTR PPA2 PA Unit # 2

17 ELR DO1 PA Unit #2

18 ELR DO1 PA Unit #1

19 NEM AGH1 PA Truck Silo

20 MNTR PPA2 PA Unit #1

21 CSWK DO1 PA Silo

24 JAM AWV1 Silo#2

25 NEM AGH1 PA ESP

26 ELR DO1 PA Unit #4

27 MNR APA2 WV

28 KWA APA2 WV Truck Silo

30 PTM PMD1 MD

31 BR TTN1 TN

33 FM AGH1 WV

36 LLD MML2 FL

38 HF AGH1 WV

39 CRV APA2 WV

40 M APA2 WV

41 RPT APA2 WV

44 GLN APA1 VA

46 ELR DO1 PA Baghouse

49 ELR DO1 PA ESP
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Table 14.  Leachant solutions used in column leaching test

Leachant Solution ID pH

Sulfuric Acid H2SO4 1.2

Ferric Chloride FeCL3 2.0

Acetic Acid HAc 2.9

Synthetic Precipitation SP  4.2

Synthetic Ground Water SGW  6.7

Deionized Water H2O 6

Sodium Carbonate Na2CO3 11.1
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Figure 9.  Group of four 1 m by 5 cm acrylic columns holding 1 kg fly ash samples
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Figure 10.  Seven groups of four columns constitute one leaching test.
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Chapter 6

Results and Discussion

Sample Composition

The samples used in this project were Class F fly ashes obtained from PC electric power

plants; the majority were located in Pennsylvania and West Virginia, but samples were also

obtained from plants in Florida, Maryland and Tennessee.  Because of the significant differences

in chemical and mineral composition, other types of samples, used in the project, were not

included in this dissertation. 

The major chemical constituents are shown in Figure 11. The concentrations of  major

and minor elements as oxides are given in Table 15, and Table 16 lists the concentration of trace

elements in ppm..  The non-silicate concentrations of the major and minor elements, in ppm, are

in Table 17 and the trace elements in Table 18, and the ratio of non-silicate to silicate

concentrations are listed in Table19 and Table 20.  
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Table 15.  Major and minor element concentration of PC-FA samples, wt % as oxide.

FA# FeO CaO MgO Al203 Na2O MnO K2O SiO 2 PO5

4 14.39 5.52 1.02 23.65 0.75 0.04 1.73 50.11 0.35

5 13.44 4.95 0.90 24.46 0.49 0.03 1.92 51.44 0.47

6 13.86 1.82 0.68 25.35 0.31 0.03 2.05 46.81 0.74

7 14.95 1.67 0.69 25.12 0.30 0.03 2.09 45.89 0.68

8 13.19 5.17 0.92 25.02 0.51 0.03 1.89 51.80 0.56

11 15.05 2.02 0.68 25.55 0.29 0.03 1.87 45.43 0.62

12 13.76 2.02 0.68 25.98 0.30 0.03 1.91 45.63 0.64

13 13.77 1.93 0.68 25.54 0.30 0.03 1.88 45.12 0.60

14 13.22 2.72 0.71 23.32 0.47 0.03 1.62 46.55 0.58

15 12.45 1.23 0.76 27.06 0.17 0.03 2.30 48.48 0.32

16 13.07 1.69 0.78 26.20 0.14 0.03 2.41 50.09 0.30

17 9.13 1.78 0.74 20.08 0.59 0.03 2.06 48.92 0.22

18 13.08 2.14 0.87 21.61 0.59 0.04 2.09 52.08 0.16

19 13.23 3.80 0.88 22.63 0.52 0.04 2.00 49.96 0.30

20 13.28 3.58 0.77 25.03 0.17 0.03 2.16 46.86 0.33

21 11.52 2.83 0.79 24.58 0.53 0.04 1.80 48.14 0.24

24 2.90 0.61 0.80 29.17 0.24 0.02 2.64 57.41 0.11

25 13.69 4.41 0.95 23.49 0.69 0.03 2.02 50.88 0.38

26 31.35 2.52 0.62 18.52 0.35 0.06 1.18 41.13 0.10

27 3.38 0.95 0.84 31.12 0.28 0.02 2.61 59.05 0.10

28 3.54 0.65 0.72 29.14 0.20 0.02 2.37 55.92 0.12

30 15.65 1.44 0.57 26.34 0.45 0.02 1.70 45.82 0.42

31 11.74 1.57 0.94 28.13 0.60 0.03 2.39 49.62 0.24

33 12.94 4.86 0.87 24.26 0.74 0.03 1.75 49.69 0.45

36 10.24 2.12 0.91 23.88 0.63 0.06 2.34 46.93 0.36

38 14.23 4.85 0.95 23.64 0.84 0.04 1.52 48.00 0.39

39 8.26 5.53 1.75 25.07 0.42 0.06 2.37 50.73 0.26

40 5.03 0.64 0.70 28.92 0.19 0.03 2.11 55.98 0.06

41 5.48 15.71 3.88 22.95 1.09 0.03 1.14 44.45 0.73

44 6.93 0.86 0.90 25.96 0.40 0.04 2.56 57.07 0.23

46 27.36 3.01 0.76 21.77 0.39 0.05 1.59 44.16 0.22

49 39.18 3.51 0.68 17.98 0.34 0.05 1.23 37.03 0.17
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Table 16.  Trace element concentration of PC-FA samples, ppm.

Sample # As Ba Be Cd Co Cr Cu Ni Pb Se Zn

4 <100 121 <5 <25 <50 <50 <25 <50 <50 5 16

5 <100 155 <5 <25 <50 <50 <25 <50 <50 4 23

6 171 1140 11 <10 41 175 114 107 90 5 201

7 166 1090 10 <10 39 170 105 107 64 5 191

8 67 855 8 <10 31 171 74 1040 59 3 135

11 <200 859 <10 10 <100 173 115 <100 113 11 202

12 <200 893 <10 <10 <100 165 119 <100 112 10 207

13 <200 866 <10 <10 <100 164 112 <100 109 12 188

14 <100 456 12 15 40 184 93 124 71 8 175

15 229 844 14 15 42 185 158 106 124 9 235

16 301 1160 13 15 42 170 139 109 121 8 204

17 <100 471 <5 <15 <25 132 72 71 81 18 204

18 77 529 2 <1 11 97 76 85 <1 1 124

19 125 511 6 <1 16 111 76 92 <1 2 155

20 277 1380 10 <1 44 110 155 135 <1 2 197

21 148 849 12 <1 31 92 122 125 <1 2 128

24 53 789 14 <1 59 176 152 120 134 2 113

25 143 699 4 <1 23 136 74 84 116 4 136

26 44 469 6 1 33 114 53 124 12 1 34

27 28 765 18 <5 86 176 156 137 65 9 112

28 69 703 19 <5 79 211 176 131 99 8 121

30 90 781 11 <.1 50 205 117 119 24 13 139

31 175 951 27 <.1 73 193 255 171 109 20 252

33 91 892 9 <.1 42 181 79 101 77 9 140

36 144 1070 19 2 21 174 1610 482 173 19 609

38 60 888 8 <.2 24 150 90 84 45 6 122

39 128 1540 11 0 45 167 178 91 83 26 168

40 8 693 13 0 47 155 79 102 16 0 45

41 25 4170 9 1 36 105 184 87 48 27 111

44 113 1400 18 2 55 157 140 103 53 22 80

46 70 620 7 <10 30 144 62 71 66 4 37

49 60 496 5 <10 38 122 65 82 45 5 26
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Table 17.  Concentration of major and minor elements in non-silicate portion of fly ash, mg/kg,

Sample # Fe Ca M g Al Na M n K Si P

4 54800 27833 3207 28400 1748 115 2345 196 1237

6 48350 8564 1543 20900 1342 72 2990 161 1597

7 44300 7822 1463 16833 1153 65 2598 141 1398

8 46333 24500 2177 21333 760 90 1760 218 1448

11 53517 9513 1457 19667 870 68 2387 186 1493

12 NO SAMPLE

13 NO SAMPLE

14 44600 12583 1377 16633 847 67 1727 396 889

15 33233 3443 895 16500 284 41 2218 225 604

16 33700 6743 865 14633 267 44 2123 148 514

17 31033 8320 1205 15200 865 92 1970 279 636

18 44067 8783 1095 10580 559 114 1353 530 456

19 46733 16867 1650 19267 781 115 2153 485 816

20 35433 22000 1042 12400 225 41 1640 317 648

21 39683 12067 1552 18900 768 110 1773 435 617

24 19617 217 978 42833 1450 51 14033 229000 638

25 102033 21800 3110 71267 4773 166 13667 187000 1800

26 56207 11133 962 7765 386 103 510 382 167

27 6497 2757 725 13333 290 36 1768 170 185

28 9413 2087 869 19367 303 42 2488 165 209

30 50867 5140 615 11833 242 50 1057 251 919

31 26367 5160 1117 18167 508 38 2615 175 532

32 44633 28167 1440 18500 1380 197 2455 510 417

33 34000 23233 1977 18667 620 79 1493 1015 1482

36 23100 8638 1033 9975 985 205 1708 241 832

38 35567 22200 2312 18783 1197 84 1367 1024 1080

39 NO SAMPLE

40 NO SAMPLE

41 23167 82467 15767 60467 3875 105 3027 22 1607

44 12467 1648 619 8410 313 53 1473 94 337

46 69167 12700 1138 7460 365 122 706 301 323

49 31367 38789 7102 20431 1624 63 682 108 1786
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Table 18.  Non-silicate concentration of trace elements, mg/kg,

Sample # As Ba Be Cd Co Cr Cu Ni Pb Sb Se Zn

4 94 279 3 3 16 67 36 40 17 <IDL 6 111

5 NO SAMPLE

6 135 441 3 3 20 46 81 93 27 5 15 228

7 133 403 3 2 18 32 90 81 24 4 13 182

8 47 331 3 2 18 68 65 86 14 3 6 146

11 140 395 3 3 21 51 45 49 27 4 14 134

12 NO SAMPLE

13 NO SAMPLE

14 74 161 4 2 18 55 29 47 15 5 6 66

15 177 321 4 2 17 44 53 37 29 7 7 110

16 254 500 3 2 16 41 46 37 26 8 7 85

17 63 106 1 1 10 43 19 26 9 4 15 88

18 29 84 1 2 10 29 14 23 5 4 9 39

19 81 123 1 2 12 60 19 27 11 2 11 60

20 219 636 1 1 14 35 40 34 18 4 10 66

21 87 255 3 2 15 53 36 37 17 <IDL 10 57

24 41 68 12 14 63 149 138 109 53 8 8 74

25 96 470 5 13 39 119 56 75 44 5 16 125

26 18 77 1 2 11 18 7 29 2 <IDL 10 14

27 21 142 3 1 17 45 36 26 23 <IDL 16 39

28 39 176 4 1 23 57 49 33 26 <IDL 13 44

30 51 272 2 2 20 34 30 37 10 3 10 58

31 123 247 6 2 20 51 76 43 32 6 13 85

32 48 267 3 6 11 102 25 37 32 9 13 295

33 47 296 2 2 14 61 21 28 11 <IDL 8 55

36 123 232 4 2 13 28 157 97 54 13 12 200

38 57 243 2 2 9 52 24 22 12 <IDL 7 52

39 NO SAMPLE

40 NO SAMPLE

41 22 2855 6 3 25 63 114 47 20 <IDL 15 72

44 73 378 3 1 12 29 28 18 12 2 14 25

46 18 126 1 2 11 26 11 24 3 <IDL 11 26

49 9 1549 1 2 9 22 28 20 5 <IDL 7 43
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Table 19.  Mass fraction of elements in non-silicate phases to total amount in fly ash: Major and minor elements.

Al Ca Fe K Mg Mn Na P Si

FA4-1 0.31 0.93 0.85 0.21 0.75 0.55 0.34 0.86 0.00

FA6-1 0.24 0.97 0.85 0.22 0.70 0.44 0.42 0.54 0.00

FA7-1 0.20 0.89 0.77 0.20 0.66 0.38 0.37 0.59 0.00

FA8-1 0.24 0.84 0.93 0.14 0.68 0.48 0.20 0.68 0.00

FA11-1 0.14 0.64 0.74 0.14 0.32 0.35 0.26 0.60 0.00

FA18-1 0.13 0.76 0.85 0.09 0.30 0.55 0.14 0.78 0.00

FA19-1 0.21 0.76 0.84 0.15 0.40 0.50 0.22 0.82 0.00

FA20-1 0.14 0.94 0.66 0.11 0.38 0.28 0.17 0.52 0.00

FA21-1 0.20 0.78 0.85 0.14 0.47 0.52 0.21 0.53 0.00

FA24-1 0.32 7.08 0.28 0.16 0.75 0.56 0.20 0.30 0.00

FA25-1 0.22 0.93 0.42 0.14 0.65 0.52 0.19 0.55 0.00

FA 26-1 0.11 0.79 0.69 0.07 0.39 0.62 0.15 0.39 0.00

FA27-1 0.15 1.20 0.40 0.10 0.27 0.39 0.16 0.32 0.00

FA 28-1 0.23 1.77 0.54 0.15 0.38 0.44 0.21 0.62 0.00

FA31-1 0.19 0.71 0.56 0.19 0.29 0.33 0.28 0.82 0.00

FA 33-1 0.18 0.82 0.55 0.11 0.44 0.47 0.18 0.81 0.01

 FA 36-1 0.12 0.81 0.49 0.12 0.30 0.64 0.24 0.72 0.00

FA 38-1 0.27 0.76 0.58 0.15 0.71 0.45 0.20 0.81 0.00

FA 39-1 0.31 0.87 0.48 0.18 0.53 0.53 0.26 0.70 0.00

FA 44-1 0.12 0.54 0.49 0.12 0.22 0.43 0.19 0.80 0.00

FA46-1 0.10 4.13 2.72 0.06 0.41 0.98 0.22 0.77 0.00

FA49-1 0.10 0.33 3.98 0.03 0.22 1.02 0.16 1.53 0.00
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Table 20. Mass fraction of elements in non-silicate phases to total amount in fly ash: Trace elements

As Ba Be Cd Co Cr Cu Ni Pb Sb Se Zn

FA4-1 0.94 0.44 0.56 0.22 0.40 0.56 0.44 0.46 0.35 0.00 1.43 0.95

FA6-1 0.89 0.56 0.40 0.20 0.37 0.29 0.90 0.93 0.45 1.22 1.15 1.47

FA7-1 0.94 0.53 0.36 0.18 0.36 0.22 1.13 0.84 0.44 1.68 1.20 1.29

FA8-1 0.86 0.46 0.42 0.19 0.35 0.48 1.11 0.92 0.36 0.00 1.74 1.16

FA11-1 0.97 0.43 0.39 0.21 0.38 0.28 0.46 0.49 0.43 0.74 1.81 0.69

FA18-1 0.83 0.21 0.33 0.15 0.33 0.34 0.32 0.37 0.23 0.50 1.05 0.42

FA19-1 0.95 0.30 0.22 0.18 0.32 0.48 0.42 0.38 0.28 0.35 1.28 0.55

FA20-1 0.98 0.65 0.12 0.12 0.37 0.26 0.33 0.29 0.29 0.48 1.02 0.44

FA21-1 0.92 0.40 0.27 0.16 0.32 0.40 0.43 0.37 0.36 0.00 1.07 0.57

FA24-1 0.67 2.37 0.24 0.07 0.23 0.27 0.27 0.23 0.30 0.40 0.94 0.51

FA25-1 0.82 0.37 0.39 0.19 0.29 0.28 0.41 0.34 0.21 0.00 0.78 0.41

FA 26-1 0.78 0.23 0.29 0.17 0.42 0.24 0.49 0.49 0.30 0.00 0.56 0.57

FA27-1 0.65 0.45 0.24 0.07 0.22 0.28 0.29 0.23 0.38 0.00 0.67 0.46

FA 28-1 0.73 0.80 0.30 0.08 0.28 0.30 0.33 0.29 0.36 0.00 0.61 0.47

FA31-1 1.18 0.41 0.41 0.20 0.38 0.46 0.51 0.41 0.50 0.29 0.99 0.52

FA 33-1 0.97 0.41 0.44 0.16 0.32 0.44 0.42 0.35 0.31 0.00 0.73 0.45

FA 36-1 1.05 0.31 0.31 0.15 0.27 0.56 0.52 0.31 0.36 0.74 0.75 0.58

FA 38-1 0.93 0.44 0.42 0.15 0.27 0.49 0.43 0.32 0.33 0.00 0.57 0.52

FA 39-1 0.93 0.57 0.57 0.16 0.34 0.53 0.49 0.38 0.40 0.00 0.78 0.66

FA 44-1 0.91 0.46 0.28 0.08 0.26 0.26 0.35 0.28 0.36 0.24 0.81 0.46

FA46-1 0.22 0.15 0.11 0.25 0.24 0.24 0.14 0.37 0.10 0.00 0.65 0.47

FA49-1 0.23 0.21 0.37 0.37 0.67 0.19 0.25 1.05 0.10 0.00 0.77 0.62
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Figure 11.  Relative concentration of major elements in fly ash samples.
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(9)

Cation Solubility

Because CCB are a mixed material, containing a variety of cations in different matrices,

the solubility of the metals is not a simple function of the concentration in the solid.  Some

elements may be more or less soluble than others and the solubility of a given element is not the

same in all leachant solutions.  The solubility of each cation was determined, assuming that each

leach test had reached completion, by calculating the total amount of each element leached for

each fly ash sample.  The cumulative amount leached ML is equal to the sum of the

concentrations measured in each leachate sample times the volume of leachate divided by the

weight of the sample. 

where ML = cumulative amount leached , mg/kg

C = the concentration in the leachate, mg/L

V = volume of individual leachate samples, L

S = sample weight, kg.

The mass ratio of a cation leached during the experiment was calculated by dividing the

cumulative amount leached by the total concentration of that element in the solid.

(10)

where ML/T = mass leached relative to the total concentration in the solid

ML = Cumulative amount leached , mg/kg

MT = Total concentration of an element in the solid sample, mg/kg.
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The calculation was performed for all major, minor and trace elements in four leachant solutions: 

water (H2O), sodium carbonate (Na2CO3), acetic acid (HAc) and sulfuric acid (H2SO4).  A

frequency distribution of the ML/T values for the set of 31 Class F fly ash samples was

determined for each element in the four selected leachant solutions.  Four  solubility ranges were

defined as < .02, 0.02<> 0.20 , 0.20<>0.65 and >.65.  As an example, a frequency distribution

for the relative amount of Mn leached is shown in Table 21.  In column labeled # under H2O, 

the mass ratio of Mn leached was less than .02 for 11 of the 31 samples.  The value of ML/T was

greater than .65 for 27 of the 31 samples in sulfuric acid.  

From these data, a relative frequency distribution was calculated, as shown in the

columns labeled % in Table 21.  Based on a population of 31 samples, ML/T was < 0.2 for Mn in 

water for 35 % of the samples.  But ML/Twas greater than 0.65 for 87% of the samples when

sulfuric acid was the leachant solution.  

Solubility was defined according to ML/T, the relative amount of an element leached.  If

ML/T was equal to or less than 0.02 more than 50 % of the samples, the  element was defined as

insoluble (I) in that leaching solution.  If ML/T was between 0.02 and 0.20 for more than 50 % of

the samples the cation was slightly soluble(SS).  If the relative amount leached was between 0.20

and 0.65 for the majority of samples, that element was considered moderately soluble (MS).  If

ML/T was greater than 0.65 for at least 50 % of the samples, that element was very soluble (VS)

in that leachant solution.   If less than 50% of ML/T values fell within all categories, the solubility

was assigned as that category that had the maximum number of values.  Solubility categories for

each element in the four leachant solutions are shown in Table 22.

 Based on this sample set of Class F PC fly ashes, Fe, Mg, Ba, Pb, and Sb are insoluble in

all types of leachant.  Several  elements that are acid soluble (Ca, Mn, Be, Cr, Cu and Zn) have
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similar solubilities in both acid solutions, but the Al, Cd, Co and Ni are slightly soluble in

sulfuric acid but insoluble in the weaker acetic acid.   Only Ca, Mn, K, and Na are soluble in

H2O, and As is the only element that is soluble in the basic Na2CO3 leachant.  The variation in 

solubility of an element in different leachants indicates that the elements are present in different

chemical compounds or mineral  forms.  

The solubility classification of an element is assigned based on the range in which the

majority of values fall.  The distribution of the soluble concentrations are shown in box plots

(Figures 12 to 17) for the  major, minor and trace elements in H2O and H2SO4.  In the figures, the

box represents the soluble concentrations between the 10th and 90th percentile; the bars are the 5th

and 95 percentiles. Points above and below the boxes are outlier values.  The median is

represented as a solid line, and the mean is a dashed line.  
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Table 21.  Frequency distribution of the mass ratios of Mn leached from Class F fly ash (#) and
relative frequency distribution (%). 

ML/T
H2O Na2CO3 HAc H2SO4

# % # % # % # %

<0.2 11 35 12 39 1 3 2 6

0.2<>0.20 9 29 11 35 1 3 1 3

0.20<>0.65 10 32 8 26 6 19 1 3

>0.65 1 3 0 0 23 74 27 87
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Table 22.  Solubility of various elements in Class F fly ash samples. 

Element H2O Na2CO3 HAc H2SO4

Fe I I I I

Ca SS SS MS MS

Al I I I SS

K SS SS SS SS

Mg I I I I

Mn MS SS VS VS

Na SS X SS SS

As I MS I I

Ba I I I I

Be I I SS SS

Cd I I I SS

Co I I I SS

Cr I I SS SS

Cu I I SS SS

Ni I I I SS

Pb I I I I

Sb I I I I

Se I I/SS I I

Zn I I SS SS

I: Insoluble
SS: Slightly Soluble
MS: Moderately Soluble
VS: Very Soluble
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Figure 12.  Box plot showing distribution  of soluble concentration values for major elements in H2O. 
Solid line is median; dotted line is mean soluble concentration (g/kg).  
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Figure 13.  Box plot of distribution of soluble concentrations of major elements in H2SO4.  Solid line is
median value; dotted line is mean soluble concentration (g/kg).
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Figure 14.  Box plot of distribution of solubilities of minor elements in H2O.  Solid line is the median
value; dotted line is the mean (mg/kg). 
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Figure 15.  Box plot of distribution of solubilities of minor elements in H2SO4.  Solid line is the median
soluble concentration; dotted line is the mean value (mg/kg).
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Figure 16.  Bos plot of distribution of soluble concentrations for trace elements in H2O.  For elements
without boxes, 95 % of the concentration values are below the detection limit.
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Figure 17.  Box plot of distribution of soluble concentrations (mg/kg) of trace elements in H2SO4.  For
elements without a box, 95 % of the soluble concentrations are below the detection limit.
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Solubility of Cations in CCB as a Function of the Alkalinity of the Ash

Many CCB are alkaline materials, including Class F fly ashes, FGD materials, and some

Class F fly ashes.  Alkalinity is assumed to control the release of acid soluble metals from CCB

by controlling the pH of the leachate.  Most metals are believed to be insoluble until the

alkalinity of the CCB is reduced (Kazonich and Kim, 2001).  If the alkalinity can be estimated as

a simple function of composition, the extent to which the release of most cations will be delayed

can be estimated.  

For this set of Class F PC fly ash samples, the alkalinity was estimated by a variation of

Method # 2310 (APHA, 1996).  Each ash sample was digested in a set amount of acid, then

titrated with NaOH.  The difference between the amount of hydroxide required to raise the pH of

the fly ash solution to 8.3 and the initial acid addition was the alkalinity of the sample in meq of

NaOH.  These alkalinity values are listed in Table 23.  The concentrations of Ca and other

alkaline elements are also included.

Alkalinity is usually a function of the concentration of ions of strong bases, Ca, Mg, Na

and K.  Plotting the alkalinity versus the concentration of calcium yields a straight line with a

correlation coefficient R2 = 0.81 (Figure 18).  A plot of alkalinity versus the sum of alkaline

cations also yields a straight line with a correlation coefficient R2 = 0.77.  While the

concentrations of Na and K vary, the sum of the these minor elements is relatively constant (0.50

to 0.70 eq/kg).  This shifts the alkalinity/concentration line to the right without any improvement

in correlation.  Plotting alkalinity versus non-silicate concentration (as determined by EPA

Method 3051) also yields a straight line with a correlation coefficient R2 = 0.84 (Figure 19).

Since the non-silicate concentration is usually over 90 % of the total Ca concentration, this result

is not unexpected. When the alkalinity is plotted versus the sum of the concentration of alkaline
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cations, the line shifts to the right and the correlation coefficient is R2 = 0.70.  The alkalinity is

most closely related to the non-silicate calcium concentration.  The sum of the Na+ and K+ does

not appear to influence the alkalinity, indicating that these elements are not present in the ash as

soluble hydroxides.  

The alkalinity is positively correlated  with the non-silicate Ca concentration.  Although

the initial pH in H2O is more variable, it is also positively correlated with the non-silicate Ca

concentration (Figure 20).  The change in pH of the leachate corresponds to the change in the

slope of the cumulative leached Ca concentration (ML), as seen in Figure 21.  When the pH

decreases, approximately 50 % of the non-silicate Ca has been leached from the sample. 

Comparing the initial pH in H2O, HAc, and H2SO4, indicates that some of the samples

have significant buffer capacity (Figure 22).  Using the difference between the pH in H2O and

acids, the samples were divided into alkaline and acid fly ashes (Table 24).  The fly ash samples

that had an initially high pH in the acid leachant solutions generally had a constant pH until a

neutralization point was reached.  Then the pH dropped rapidly with a small addition of acid,

similar to a titration curve (Figure 23.).  The volume of acid needed to neutralize the fly ash

sample was calculated as the cumulative volume at the last measured pH greater than 6.5 plus

the interpolated volume from the measured values greater and less than pH 6.5.  For some acidic

samples, the first addition of acid lowered the pH below 6.5.  The neutralization volumes for the

acidic samples were less than one L of 0.1 N acid, and the values for HAc and H2SO4  generally

agreed.  The acid volumes (HAc and H2SO4) agreed for the majority of alkaline samples.

There seems to be little correlation between the empirically determined  alkalinity and

the neutralization volume for either HAc or H2SO4, but here is an apparent relationship between

the neutralization volume and the non-silicate Ca concentration.  The acid samples all have non-



84

silicate Ca concentrations of 10 g/kg or less. The non-silicate Ca concentration is higher than 10

g/kg for 67 % of the alkaline samples. Of the samples with lower concentrations of non-silicate

Ca, the majority were neutralized with less than one L of one of the acid leachants.

The ratio of soluble concentration (ML/S) in H2SO4 to that in HAc was determined for acid

soluble elements (Table 25).  For alkaline samples, the median of this ratio is between 1.1 and

2.0, except for Cr which is apparently more soluble in HAc.  These acid soluble elements are

approximately  two times as soluble in H2SO4 as in HAc.   For  the acid samples, the ratios are

tend to be  higher, and fewer samples are more soluble in HAc.   The higher solubility of

elements in H2SO4 may be related to the higher activity of the strong acid. The higher HAc

solubility may indicate that the elements exist in multiple species which control relative

solubility. 
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Table 23.  Alkalinity of PC fly ash samples, eq/kg as NaOH,  and concentration of alkaline
elements, eq/kg

FA# Alkalinity Na+ K+ Ca++ ECA,Na,K ENa,K

4 296.2 0.24 0.37 1.97 2.58 .61

5 NS 0.16 0.41 1.77 2.33 .57

6 225.7 0.10 0.44 0.65 1.18 .54

7 214.9 0.10 0.44 0.60 1.14 .54

8 288.7 0.16 0.40 1.84 2.41 .56

11 222 0.09 0.40 0.72 1.21 .49

12 NS 0.10 0.41 0.72 1.22 .51

13 NS 0.10 0.40 0.69 1.18 .50

14 242.5 0.15 0.34 0.97 1.47 .49

15 NS 0.05 0.49 0.44 0.98 .54

16 218.5 0.05 0.51 0.60 1.16 .56

17 224.5 0.19 0.44 0.63 1.26 .63

18 239.6 0.19 0.44 0.76 1.40 .63

19 260.3 0.17 0.42 1.36 1.95 .59

20 NS 0.05 0.46 1.28 1.79 .51

21 296.6 0.17 0.38 1.01 1.56 .55

24 210.7 0.08 0.56 0.22 0.86 .64

25 277.5 0.22 0.43 1.57 2.22 .65

26 246.9 0.11 0.25 0.90 1.26 .36

27 200.5 0.09 0.55 0.34 0.98 .64

28 199.1 0.06 0.50 0.23 0.80 .56

30 218.3 0.15 0.36 0.51 1.02 .51

31 208.3 0.19 0.51 0.56 1.26 .70

33 296.4 0.24 0.37 1.73 2.34 .61

36 234 0.20 0.50 0.76 1.46 .70

38 290.1 0.27 0.32 1.73 2.32 .59

39 315.3 0.14 0.50 1.97 2.61 .64

40 254.4 0.06 0.45 0.23 0.74 .51

41 NA 0.35 0.24 5.60 6.20 .59

44 207.8 0.13 0.54 0.31 0.98 .67

46 256.6 0.13 0.34 1.07 1.54 .47

49 NA 0.11 0.26 1.25 1.62 .37

     NA Not Analyzed
     NS No Sample
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Table 24.  Alkalinity, volume of acid added to pH = 6.5, Cans, non-silicate calcium
concentration, g/kg, and Cans relative to total Ca, %

FA# Alkalinity,

eq/kg as

NaOH

HAc, L H2SO4, L Ca++

ns,

g/kg

Cans/CaT,

%

Alkaline samples

4 296.2 7.08 NA 28 93

5 ND 6.20 6.18 ND

8 288.7 3.80 8.14 25 84

14 242.5 3.14 3.84 13 96

16 218.5 1.20 0.49 7 97

17 224.5 1.90 2.03 8 99

18 239.6 3.02 2.81 9 76

19 260.3 4.11 4.51 17 76

20 ND 9.72 >3.56 22 94

21 296.6 3.27 3.82 12 78

25 277.5 5.70 7.20 20 93

26 246.9 3.21 2.97 11 79

30 218.3 0.85 4.68 5 74

33 296.4 5.83 10.18 23 82

36 234 3.35 <1.09 9 81

38 290.1 6.72 8.83 22 76

39 315.3 10.25 >7.25 29 87

41 613.4 5.47 >12.8 ND

46 256.6 4.47 5.05 13 79

49 ND 5.48 5.47 17 87

Acid Samples

6 225.7 <0.53 <0.68 9 97

7 214.9 <0.55 <0.60 8 89

11 222 <0.86 0.76 10 64

12 ND 0.44 0.89 ND

13 ND <0.38 <0.48 ND

15 ND <0.46 <0.25 3 98

27 200.5 <0.14 0.46 3 120

28 199.1 <0.06 <0.10 2 100

31 208.3 0.33 0.37 5 71

40 254.4 <0.75 <0.85 0.3 9

44 207.8 <0.64 <0.76 2 54

ND Not determined
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Table 25.  Ratio of soluble concentration in H2SO4 and HAc

Mn Na K Cr Be Zn Cu
Alkaline Samples
FA4-1 NA NA NA NA NA NA NA
FA5-1 1.20 1.32 2.35 0.47 2.62 2.22 3.37
FA8-1 1.97 3.40 0.00 0.00 0.00 0.00 0.00
FA14-1 1.61 0.89 1.74 0.99 2.42 2.12 3.66
FA16-1 2.63 1.06 1.85 0.88 2.59 10.51 1.06
FA17-1 1.34 1.01 1.71 0.51 2.76 1.57 1.63
FA18-1 1.73 1.45 2.12 1.30 2.75 0.84 0.00
FA19-1 1.33 0.20 2.17 0.42 1.75 2.92 4.71
FA20-1 0.00 0.70 1.12 0.01 0.00 0.07 0.00
FA21-1 1.37 0.25 1.76 0.33 1.75 1.58 3.42
FA24-1 2.43 12.16 3.25 1.34 3.41 4.42 1.77
FA25-1 1.39 29.97 1.85 0.15 1.32 1.67 0.41
FA 26-1 0.85 2.73 1.31 0.06 0.00 0.44 1.13
FA30-1 1.73 0.86 4.68 2.86 6.39 3.05 2.88
FA 33-1 1.67 1.08 1.52 0.77 2.21 1.93 1.35
 36-1 0.24 34.29 1.57 0.59 0.00 0.04 0.05
FA 38-1 3.37 1.68 3.64 10.17 9.26 3.03 7.53
FA 39-1 1.36 0.65 1.86 0.49 1.17 2.15 1.80
FA 41-1 1.87 0.91 2.94 4.67 3.27 1.67 1.34
FA46-1 3.00  1.70 3.84 3.33 3.39 2.65 2.53
FA49-1 1.94 1.22 1.90 3.16 2.16 1.98 20.25
Acid Samples
FA6-1 6.50 3.90 12.67 5.20 7.40 6.93 3.01
FA7-1 7.62 4.03 13.27 6.43 6.71 5.79 2.35
FA11-1 2.68 2.78 3.50 5.00 4.98 1.87 1.87
FA12-1 1.80 0.79 1.81 3.60 3.85 1.67 1.78
FA13-1 3.22 3.32 5.65 4.86 5.43 2.36 2.28
FA15-1 1.92 0.61 1.40 0.43 2.02 2.85 0.71
FA27-1 1.72 3.11 1.78 0.88 2.10 2.04 1.41
FA 28-1 1.76 3.94 1.51 0.91 2.05 1.55 1.31
FA31-1 1.73 0.86 4.68 2.86 6.39 3.05 2.88
FA 40-1 1.00 1.16 1.80 0.06 0.00 0.05 0.44
FA 44-1 19.32 2.37 3.94 21.28 0.38 1.23 2.22
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Figure 18.  Correlation of alkalinity with Ca concentration and with sum of alkaline cations.
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Figure 19.  Correlation of alkalinity with non-silicate Ca concentration and non-silicate alkaline cations.
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Figure 20.  Correlation of initial pH in H2O and alkalinity with non-silicate Ca concentration.
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Figure 21.  Cumulative Ca leached (ML, (g/kg) and pH as a function of leachant volume.
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Figure 22.  Initial pH of samples in H2O, HAc H2SO4 to distinguish acid and alkaline samples.
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Figure 23.  Change in pH as a function of acid addition.
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Solubility as a Function of Non-silicate Concentration

During the course of a leaching experiment, a finite amount of each cation is released

from the fly ash sample.  The soluble mass (ML) of most elements is a relatively small

proportion of the amount present in the ash.  As shown in Figures 12 through 17 less than 10 g of

the major elements, less than 1 g of the minor elements, and less than .01 g of the trace elements

per kg of sample is released during leaching.  If the slope (first derivative) of the cumulative

concentration curve approaches zero, the leaching of that element from a given sample is

considered complete.  Considered over all leaching solutions and all samples, the percentage of

elements that were completely leached during the experiment varied from 20 to 100 (Kim &

Kazonich, 2000) in the different leaching solutions.  Even if leaching is not complete, the release

of an element occurs at a relatively low rate, and the soluble concentration will not increase

significantly in a short period of time.  

The total concentration of cations in the sample has been determined by microwave

digestion with hydrofluoric acid and ICP analysis.  Elements in a non-silicate matrix were

determined by microwave digestion in concentrated nitric acid.  The difference between the two

methods is assumed to be the silicate portion of the fly ash, either as quartz, alumino-silicates or

amorphous particles.  The non-silicates would be other minerals, such as  oxides, or coatings on

amorphous particles.  The proportion of the elements in non-silicate compounds for each sample

is listed in Table 26.  The  proportion of soluble elements, like Ca, is generally higher in the non-

silicate fraction, but insoluble elements, like Fe, also occur as non-silicates. 

Plotting the non-silicate concentration of an element versus the total concentration

indicates how constant is the distribution between the silicate and non-silicate phases.   In Figure

24, the non-silicate concentrations of Al, CA and Fe are plotted versus the total concentrations of
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those elements.  The slope of the line is the mass fraction of the non-silicate to total

concentrations.  For example, the slope of the Fe line is 0.69, indicating that 69% of the total

iron is in the non-silicate portion of the fly ash.  The correlation coefficient of 0.81 indicates that

his relationship holds for the majority of samples.  The relationship for Ca is similar.  The  slope

of the line for Al is 0.20, indicating that 20 % of the Al is in the non-silicate portion of the ash:

the correlation coefficient is approximately 0.15.  Not only is the concentration of Al much

lower in the non-silicate phase, but the distribution of Al between the two phases is much more

random.   The median ratio of  non-silicate concentration to total concentration for each element

is shown in Figure 25.  The correlation coefficient for this ratio is also shown.  For elements with

high correlation coefficients (>0.8), the ratio of non-silicate to total concentration is relatively

constant for all the fly ash samples. 

The total amount of each element leached from a sample, the soluble mass - ML, has been

calculated for all samples in four of the leachant solutions (H2O, Na2CO3, HAc and H2SO4).  The

relative solubility (ML/T) was  determined  by dividing the maximum amount of an element

leached, irrespective of the leaching solution, by the total amount of that element in the sample.

The same calculation was made with respect to the non-silicate concentration.  The medians  of

the cumulative amount leached (ML), the relative solubility (ML/S) with respect to the total

concentration, the non-silicate concentration, and the silicate concentration are given  in Table

27.  When the proportion of an element in the non-silicate fraction is high, the relative solubility

with respect to non-silicate concentration and total concentration is relatively close (Figure 26).

The cumulative leached amount (ML) was correlated to the silicate, non-silicate, and total

concentrations of each cation.  The solubility was most strongly correlated to the non-silicate

concentration for most elements.  Only Se had a positive correlation with the silicate
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concentration in the fly ash.  For Co, Ni, Pb, and Zn, the highest correlation was to the total

concentration, indicating that at least some of the element is extracted from the both silicate and

non-silicate fractions.  The differences in solubility indicate that the speciation, probably in

silicate and non-silicate minerals influences the release of metals from fly ash.
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Table 26. Mass ratio of cations in non-silicate portion to total solid concentration.

Al As Ba Be Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Sb Se Zn

4 avg. 0.31 0.94 0.44 0.56 0.93 0.22 0.40 0.56 0.44 0.85 0.21 0.75 0.55 0.34 0.46 0.35 1.43 0.95

6 avg. 0.24 0.89 0.56 0.40 0.97 0.20 0.37 0.29 0.90 0.85 0.22 0.70 0.44 0.42 0.93 0.45 1.22 1.15 1.47

7 avg. 0.20 0.94 0.53 0.36 0.89 0.18 0.36 0.22 1.13 0.77 0.20 0.66 0.38 0.37 0.84 0.44 1.68 1.20 1.29

8 avg. 0.24 0.86 0.46 0.42 0.84 0.19 0.35 0.48 1.11 0.93 0.14 0.68 0.48 0.20 0.92 0.36 1.74 1.16

11 avg. 0.14 0.97 0.43 0.39 0.64 0.21 0.38 0.28 0.46 0.74 0.14 0.32 0.35 0.26 0.49 0.43 0.74 1.81 0.69

18 avg. 0.13 0.83 0.21 0.33 0.76 0.15 0.33 0.34 0.32 0.85 0.09 0.30 0.55 0.14 0.37 0.23 0.50 1.05 0.42

19 avg. 0.21 0.95 0.30 0.22 0.76 0.18 0.32 0.48 0.42 0.84 0.15 0.40 0.50 0.22 0.38 0.28 0.35 1.28 0.55

20 avg. 0.14 0.98 0.65 0.12 0.94 0.12 0.37 0.26 0.33 0.66 0.11 0.38 0.28 0.17 0.29 0.29 0.48 1.02 0.44

21 avg. 0.20 0.92 0.40 0.27 0.78 0.16 0.32 0.40 0.43 0.85 0.14 0.47 0.52 0.21 0.37 0.36 0.00 1.07 0.57

24 avg. 0.32 0.67 2.37 0.24 7.08 0.07 0.23 0.27 0.27 0.28 0.16 0.75 0.56 0.20 0.23 0.30 0.40 0.94 0.51

25 avg. 0.22 0.82 0.37 0.39 0.93 0.19 0.29 0.28 0.41 0.42 0.14 0.65 0.52 0.19 0.34 0.21 0.00 0.78 0.41

26 avg. 0.11 0.78 0.23 0.29 0.79 0.17 0.42 0.24 0.49 0.69 0.07 0.39 0.62 0.15 0.49 0.30 0.00 0.56 0.57

27 avg. 0.15 0.65 0.45 0.24 1.20 0.07 0.22 0.28 0.29 0.40 0.10 0.27 0.39 0.16 0.23 0.38 0.00 0.67 0.46

28 avg. 0.23 0.73 0.80 0.30 1.77 0.08 0.28 0.30 0.33 0.54 0.15 0.38 0.44 0.21 0.29 0.36 0.00 0.61 0.47

30 avg. 0.11 0.85 0.45 0.28 0.74 0.15 0.36 0.22 0.35 0.65 0.07 0.23 0.37 0.14 0.38 0.32 0.15 0.55 0.51

31 avg. 0.19 1.18 0.41 0.41 0.71 0.20 0.38 0.46 0.51 0.56 0.19 0.29 0.33 0.28 0.41 0.50 0.29 0.99 0.52

33 avg. 0.18 0.97 0.41 0.44 0.82 0.16 0.32 0.44 0.42 0.55 0.11 0.44 0.47 0.18 0.35 0.31 0.00 0.73 0.45

36 avg. 0.12 1.05 0.31 0.31 0.81 0.15 0.27 0.56 0.52 0.49 0.12 0.30 0.64 0.24 0.31 0.36 0.74 0.75 0.58

38 avg. 0.27 0.93 0.44 0.42 0.76 0.15 0.27 0.49 0.43 0.58 0.15 0.71 0.45 0.20 0.32 0.33 0.00 0.57 0.52

39 avg. 0.31 0.93 0.57 0.57 0.87 0.16 0.34 0.53 0.49 0.48 0.18 0.53 0.53 0.26 0.38 0.40 0.00 0.78 0.66

40 avg. 0.01 0.19 0.03 0.02 0.09 0.02 0.04 0.04 0.13 0.12 0.01 0.03 0.12 0.07 0.08 0.13 0.00 0.00 0.31

44 avg. 0.12 0.91 0.46 0.28 0.54 0.08 0.26 0.26 0.35 0.49 0.12 0.22 0.43 0.19 0.28 0.36 0.24 0.81 0.46

46 avg. 0.10 0.22 0.15 0.11 4.13 0.25 0.24 0.24 0.14 2.72 0.06 0.41 0.98 0.22 0.37 0.10 0.00 0.65 0.47

49 avg. 0.10 0.23 0.21 0.37 0.33 0.37 0.67 0.19 0.25 3.98 0.03 0.22 1.02 0.16 1.05 0.10 0.00 0.77 0.62
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Table 27.  Median values of the cumulative leached amount, ML, the leached amount relative to the total, non-silicate and silicate
concentrations in the fly ash, and the ratio of non-silicate to total concentration

Element ML, mg/kg ML/MT ML/Mns ML/MSi Mns/MT

Al 3537 0.04 0.22 0.05 0.20

As 27 0.44 0.50 4.80 0.93

Ba 10 0.02 0.04 0.03 0.44

Be 1 0.12 0.33 0.26 0.34

Ca 6135 0.65 0.74 2.98 0.86

Cd 0.21 0.02 0.10 0.02 0.17

Co 2 0.04 0.12 0.06 0.35

Cr 6 0.06 0.16 0.08 0.33

Cu 10 0.10 0.19 0.30 0.43

Fe 367 0.01 0.01 0.03 0.68

K 535 0.05 0.35 0.05 0.14

Mg 416 0.20 0.46 0.27 0.46

Mn 20 0.17 0.35 0.22 0.51

Na 393 0.18 0.84 0.22 0.21

Ni 5 0.05 0.11 0.10 0.38

Pb 0.04 0.01 0.03 0.00 0.36

Sb 0.11 0.07 0.10 0.03 0.38

Se 1 0.18 0.28 4.42 0.78

Zn 16 0.18 0.25 0.45 0.57
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Figure 24.  Relationship between non-silicate concentration and total concentration in fly ash samples.
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Figure 25.  Ratio of non-silicate (non-silicate) concentration to total concentration and correlation coefficient of non-silicate
to total concentration.
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Figure 26.  Correlation coefficients for cumulative leached element (ML) versus non-silicate concentration, silicate
concentration, and total concentration in the fly ash sample.
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The relationship of solubility to mineral composition

The fly ash samples were sent to a commercial laboratory for mineral determination by

XRD.  The composition was calculated by summing the peak intensities and dividing the

strongest peal for a given mineral by that total.  This is not a standard method, and it effectively

normalized the concentration to the amount of crystalline material rather than to the whole

sample.  The data, Table28, are considered qualitative.  A few of the samples were analyzed at

NETL, and the concentration was calculated versus a standard.  These values, Table 29, give the

concentration in the whole sample.  The second line for each sample gives the normalized

concentration, which agrees fairly well with the values from the commercial laboratory. 

Quartz is the dominant mineral in this set of fly ash samples (Figure 27).  Mullite, a high

temperature clay is the second most abundant mineral.  Both hematite and magnetite are

identified in over 75 % of the samples, and either hematite or magnetite is identified in another

10 %.  Hematite or magnetite, an oxide that could have formed at high temperature from the

dissociation of pyrite.  Gypsum or anhydrite is identified in 1/3 of the samples, which could  be

the reaction products of calcium from CaCO3 and sulfur from the dissociation of pyrite.  

The solubility of a mineral is defined by the solubility product constant (Ksp), which is

the product of the single ion activities of the cation and anion.  In dilute solutions, the molar

concentrations, rather than the activities, can be used.  

(11)

Ksp values are for some of the minerals in the fly ash samples are listed in Table 30.  Equilibrium

constants and solubilities are also used to denote mineral solubility.  The Ksp values actually
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define whether a solution is over- or under-saturated with respect to a given compound, and if in

a solution of a given composition a compound will precipitate.  They give a general indication of

which compounds are more soluble than others.  They do not give any information about the rate

at which a mineral will dissolve, nor does the Ksp value give any information about chemical

reactions other than with H2O.

For the major minerals in the fly ash samples, the solubility constants are used to

evaluate the leaching results in terms of possible mineral solubility.  This approach is limited,

because solubility data are not available for all compounds, particularly alumino-silicates.  Also,

this approach cannot be applied to minor and trace elements which are not identified as

particular minerals.

The iron minerals,  hematite and magnetite, have very low Ksp values, which is reflected

in the low solubility of Fe from fly ash samples in this study.  Based on ionic radii (Table 31),

Ni, Mg and Zn are the elements most likely to be substituted for Fe in the iron oxide lattice.  

Assuming that the ion substitution is constant in all Fe oxide particles, the molar ratio of Fe to X

should be constant.  Then it is also assumed that the substitute ion and Fe would be dissolved by

the leachant solution in the same proportion.  In other words, if a Ni ion is substituted for 1 out

of 1000 Fe ions, the molar ratio of Fe to Ni would be 1000.  If the leachant dissolving the

mineral is non-selective, the proportion of moles of Fe ions to moles of Ni ions in solution

should also be close to 1000.  However, their solubility patterns are not similar (Table 32).  Also,

the ratio of Fe to other ions is not constant in the different leachant solutions.   The ratios of

solubility in the two acids and in H2SO4 to H2O are significantly different.  Based on this type of

evaluation, Ni, Mg and Zn in the fly ash samples cannot be identified as  substitutes for Fe in

hematite or magnetite. 
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Calcium sulfate, either as anhydrite of gypsum, is the primary form of Ca identified in

the fly ash samples.  These minerals are slightly soluble (Table 30), and in this test, 10% is the

average solubility of Ca in H2O (Figure 28).  As much as 25% of the Ca appears to be soluble in

H2SO4 and 50% in HAc.  The Ksp values are constants, a fixed product of the cation and anion

concentrations.  As the concentration of SO4 ions in solution increase due to the ionization of a

strong acid, the concentration of Ca would decrease.  This common ion effect may account for

the  lower solubility of Ca in H2SO4. 

Minerals containing the elements Na and K are not identified in the samples by XRD. 

However, feldspars have been identified in coal, and these would probably contain both K and

Na. Other than Ca, these are the only elements that are consistently soluble in H2O (Table 33). 

Although K has a higher concentration in the samples, Na is apparently more soluble.  Both K

and Na can be dissolved from feldspar to convert it to kaolinite. The relative solubility of the two

ions is consistent with the Ksp values given in Table30.  

The mineralogical information obtained from XRD analysis of the fly ash samples is too

limited to explain the apparent differences in solubility for the various cations. It provides

limited support for the solubility of the major ions.  There are insufficient data to speculate about

the possible distribution of trace elements in mineral lattices.
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Table 28.  Qualitative mineral analysis of PC class F fly ash samples, %.

Sample # Quartz Mullite Hem atite Magnetite Gypsum Anhydrite Portlandite

SiO 2 Al2SiO 5 Fe2O3 Fe3O4 CaSO2

.H2O CaSO4 Ca(OH)2

 4 43 19 15 10 0 7 5

 6 40 32 12 7 9 0 0

 7 44 33 10 8 5 0 0

 8 43 21 20 7 0 8 0

11 38 34 13 10 5 0 0

14 44 29 14 6 trace 6 0

15 36 40 12 11 0 0 0

16 43 38 12 7 0 0 0

17 58 24 12 6 0 0 0

18 64 18 11 6 0 0 0

19 56 18 12 9 0 5 0

20 35 35 15 5 trace trace 5

21 51 30 10 8 0 0 0

24 41 11 0 0 0 0 0

25 55 19 13 7 0 5 0

26 53 25 15 6 0 0 0

27 52 39 9 0 0 0 0

28 48 41 10 trace 0 trace 0

30 35 38 12 15 0 0 0

31 41 39 13 7 0 0 0

33 46 26 11 9 0 7 0

36 57 28 8 6 0 0 0

38 44 26 19 10 0 0 0

39 60 29 trace 10 0 0 0

40 33 53 13 trace 0 0 0

41 67 17 trace trace 0 15 0

44 66 21 9 4 0 0 0

46 54 19 14 13 0 trace 0

49
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Table 29.  Mineral composition of class F fly ash samples determined at NETL, %, NETL values normalized and compared to those
from commercial laboratory (ALCA) 

Sample  Source Quartz Mullite Hematite Magnetite Gypsum Anhydrite Illite Sillmanite
FA15 NETL 15 10 5 3 5

normalized 45 30 15 9 0 0 0 15
ALCA 36 40 12 11 0 0

FA16 NETL 12 12 5 trace 5
normalized 41 41 0 17 0 0 17
ALCA 43 38 12 7 0 0

FA17 NETL 15 10 2 5
normalized 56 37 0 7 0 0 0 19
ALCA 58 24 12 6 0 0

FA18 NETL 15 5 5 3 3 4
normalized 48 16 16 10 0 10 0 13
ALCA 64 18 11 60 0

FA24 NETL 15 15 3 trace 5
normalized 45 45 9 0 0 0 15
ALCA 41 11 0 0 0 0

FA25 NETL 10 10 5 3 3
normalized 32 32 16 10 0 10 0 0
ALCA 55 19 13 7 0 0
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Table 30.  Solubility product constant (Ksp) of minerals in water.

Mineral Ksp Solubility, mg/L

Quartz 1.0x10-4 12

Amorphous Silica 1.82x10-3 120

Hematite 10-42.7

Magnetite

Anhydrite 1.2x10-6 2100

Gypsum 10-4.62 2410

Portlandite 10-5.19 1830

Albite 6Kaolinite 10-0.68

K-feldspar 6 Kaolinite 10-3.54

Sources: Evangelou, V.P.  1998.  Environmental Soil and Water Chemistry.  John Wiley
and Sons, pp.  58-60.

Freeze , R.A. and Cherry, J.A.  Groundwater.  Prentice Hall, p. 106.

Morel, F.M.M. and Hering, J.G.  1993.  Principles and Applications of Aquatic
Chemistry.  John Wiley & Sons, pp.243-246.

Handbook of Chemistry and Physics.  1972.  52nd Ed., pp.  B-77 - B-79.
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Table 31.  Comparison of elements based on ionic radii.

Element Atomic W eight Valence   Ionic radius, D

Be 9.01 2 0.35

Si 28.09 4 0.42

Se 78.96 4 0.50

Al 26.98 3 0.51

As 74.92 3 0.58

Co 58.94 2 0.63

Cr 52.01 3 0.63

Mg 24.31 2 0.66

Ni 58.71 2 0.69

Fe 55.85 3 0.74

Zn 65.38 2 0.74

Sb 121.76 3 0.76

Mn 54.94 2 0.80

Cu 63.55 1 0.96

Na 22.99 1 0.97

Cd 112.41 2 0.97

Ca 40.08 2 0.99

Pb 207.21 2 1.20

K 39.10 1 1.33

Ba 137.36 2 1.34

O 16.00 2 1.40
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Table 32.  Comparison of molar solubility of ions of similar in size to Fe.

H2O Na2CO3 HAc H2SO4 H2SO4/HAc H2SO4/H2O

Fe mm ol/kg 0.11 0.10 2.22 13.87 6.25 129.41

Mg mm ol/kg 0.04 0.02 1.01 0.95 0.94 23.59

Fe/Mg 2.65 4.35 2.19 14.55

Zn mm ol/kg 0.02 0.01 0.13 0.31 2.34 18.21

Fe/Zn 6.25 8.22 16.64 44.46

Ni mm ol/kg 0.01 0.01 0.04 0.10 2.72 12.79

Fe/Ni 13.90 8.97 61.17 140.61
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Table 33.  Solubility of K and Na in H2O

Sample # K Na K Na K Na

Solid concentration Leached concentration Relative Solubility

mm ol/kg mm ol/kg mm ol/kg mm ol/kg % %

4 367 242 3.55 5.53 0.97 2.28

5 408 158 1.22 1.60 0.30 1.01

6 435 100 1.05 1.32 0.24 1.32

8 444 97 0.54 1.69 0.12 1.75

11 401 165 1.25 2.15 0.31 1.31

12 397 94 2.65 2.90 0.67 3.10

13 405 97 4.17 5.33 1.03 5.50

1 399 97 1.04 0.85 0.26 0.88

4 344 152 5.41 10.61 1.57 6.99

15 488 55 9.75 4.53 2.00 8.25

16 512 45 7.40 3.62 1.45 8.00

17 437 190 5.21 13.43 1.19 7.05

18 444 190 5.13 12.24 1.16 6.43

19 425 168 5.38 10.44 1.27 6.22

20 459 55 9.56 4.63 2.09 8.44

21 382 171 5.23 13.93 1.37 8.14

24 560 77 6.21 6.48 1.11 8.36

25 429 223 9.02 16.25 2.10 7.30

26 251 113 2.55 8.18 1.02 7.24

27 554 90 3.21 5.77 0.58 6.38

28 503 65 4.86 7.70 0.97 11.93

30 361 145 1.22 6.26 0.34 4.31

31 507 194 9.73 10.16 1.92 5.25

32 372 239 5.43 12.06 1.46 5.05

33 497 203 10.60 21.65 2.13 10.65

36 323 271 4.57 23.25 1.42 8.58

38 503 136 6.52 9.52 1.30 7.03

39 448 61 0.19 5.52 0.04 9.01

40 242 352 1.11 8.88 0.46 2.52

41 543 129 3.86 7.40 0.71 5.73

44 338 126 5.07 10.90 1.50 8.66

49 261 110 0.00 11.41 0.00 10.40
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Figure 27.  Major minerals in fly ash samples as determined by XRD.  Distribution normalized to % of total minerals.
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Figure 28.  Comparison of solubility of Ca for all samples in H2O, HAc, and H2SO4.
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Volumetric Leaching Function

In this column study, the release of cations from the fly ash particles was not primarily a

function of time.  It is a function of the volumetric flow rate, and the volume of leachant is the

independent variable against which the cumulative mass leached from the sample is measured. 

The volumetric leaching function is a complex function of the alkalinity of the ash, the

distribution of elements in various chemical compounds or minerals, and characteristics of the

leachant solution, particularly its pH.  Discrete leaching processes have different volumetric

leaching functions.  During the first leaching interval, the alkalinity of the ash is neutralized, and

the release of metal ions, except for Ca, is relatively low.   At some point, the release  metal ion

increases by one or more orders of magnitude, and remains constant until the readily soluble ions

are released.  Then the release of an element decreases, again by one or more orders of

magnitude.  Theoretically, the release of metal ions from the fly ash can continue until all of the

soluble element is dissolved.  

An example of the change in cumulative mass leached as a function of leachant volume

is plotted in Figure 29.  The cumulative mass of an element leached  is calculated as: 

(12)

where ML = cumulative leached mass, mg/kg

Ct    = measured concentration in a leachate sample at time t, mg/L

Vt   = the volume of leachant solution for one leachant collection cycle, L

S    = sample mass, kg 
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The first derivative of the cumulative concentration curve is the mass leached  as a

function of the change in volume.  This is the slope of the cumulative curve and is defined as the

volumetric leaching function for each leaching phase.

 (13)

As shown in Figure 29, there are three distinct leaching functions, comparable to neutralization,

rapid leaching and the terminal phase when leaching occurs for a prolonged period.

Neutralization Leaching Function

Rapid Leaching Function

Terminal Leaching Function

Calculating the second derivative of the cumulative leached mass curve shows the inflection

points where the volumetric leaching functions change.  

(15)
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If the rapid leaching function rate is greater than the neutralization function, the first inflection

point is a maximum, and if the terminal leaching function is less than the rapid leaching

function, the second point is a minimum.  Using the “match” and “index” functions in an excel

spreadsheet, the cumulative mass and the cumulative volume at each inflection point are

determined.  These values are used to calculate the volumetric leaching function for each phase.  

If there is no neutralization phase, the cumulative leaching curve has 2 rates, and

different inflection points (Figure 30).   Although the occurrence of the maximum first and the

minimum later is considered “normal,” the spreadsheet can be adjusted to determine the

appropriate leaching functions for other configurations.  

Three leaching function values were determined for each element in each sample.  To

compare the leaching functions for different elements, they  were converted from mg/kg/L to

units of meq/kg/L.  The median leaching functions for the alkaline samples are listed in Table 34

(H2O), Table 35 (HAc), and Table 36 (H2SO4).    Leaching functions for acid samples are given

in Table 37 (H2O), Table38 (HAc), and Table 39 (H2SO4).

The mean volumetric leaching function is:

(16)

The mean volumetric leaching function can also be calculated as  the maximum cumulative

concentration divided by the final leachant volume; it is not the average of the three functions. 
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The median volume for the neutralization and leaching  phases are determined from the

experimental values. The terminal volume is calculated as:

(17)

where VT = volume of leachant to dissolve the mass of an element remaining in the non-

silicate portion of the fly ash after neutralization and rapid leaching

CNS = non-silicate concentration, meq/kg

The solubility of an element is defined by the three rates and the median volumes.  The

NLF  is the initial leaching until samples is neutralized (dMN/dVN, meq/L).  The RLF is the

average slope of cumulative curve between inflection points (dML/dVL, meq/L), and the T LF is

the average  slope of cumulative curve after 2nd inflection point (dMT/dVT, meq/L). In a natural

setting, if the infiltration rate is known (L/d), the time dependent release of the elements can be

estimated.   Since one  kg samples were used in this study, the volumes are equal to the liquid to

solid ratio (L/S).  A L/S of1 has been assumed to be equivalent to leaching for approximately 10

yr, L/S over 10 are considered equivalent to leaching for 100 years (van der Sloot, 1998).  From

the VT values in the tables, complete leaching of some elements from fly ash could take more

than 1000 yr.

 



117

Table 34.  Median elemental volumetric leaching functions (meq/kg/L) and leachate volumes for
alkaline samples in water.

Element NLF VN, L RLF VR, L TLF Mean VFL VT, L

IRON 0.0028 2 0.0000 3 0.0024 0.0043 1000075

CALCIUM 26.3014 1 24.2614 2 6.4759 11.7019 72

MAGNESIUM 0.0058 2 0.0012 3 0.0074 0.0134 12098

ALUMINUM 0.3535 4 0.3570 6 0.4016 0.5078 4199

SODIUM 1.4991 2 0.2332 1 0.2173 0.9943 138

MANGANESE 0.0000 3 0.0000 4 0.0001 0.0007 40786

POTASSIUM 0.9128 1 0.1846 1 0.1613 0.5696 271

ARSENIC 0.0000 0 0.0000 0 0.0000 0.0000 0

BARIUM 0.0030 1 0.0028 3 0.0020 0.0027 1313

BERYLLIUM 0.0000 0 0.0000 0 0.0000 0.0000 0

CADMIUM 0.0000 0 0.0000 0 0.0000 0.0000 13658

COBALT 0.0000 0 0.0000 0 0.0000 0.0001 0

CHROMIUM 0.0043 4 0.0000 4 0.0042 0.0070 559

COPPER 0.0003 1 0.0000 2 0.0002 0.0003 5376

NICKEL 0.0000 1 0.0000 2 0.0001 0.0004 10057

LEAD 0.0000 0 0.0000 0 0.0000 0.0000 0

ANTIMONY 0.0000 0 0.0000 0 0.0000 0.0000 0

SELENIUM 0.0000 0 0.0000 0 0.0000 0.0000 0

ZINC 0.0006 3 0.0002 3 0.0006 0.0006 3514
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Table 35.  Median elemental volumetric leaching functions (meq/kg/L) and leachate volumes for
alkaline samples in acetic acid.

Element NLF VN, L  RLF VR, L TLF Mean VFL VT, L

Iron 0.0032 3 0.0040 3 0.0038 0.0048 628819
Calcium 4.8993 1 0.5723 1 1.0465 2.5848 525
Magnesium 0.0111 4 0.0179 5 0.0288 0.0394 3123
Aluminum 0.1573 2 6.2514 4 4.1247 4.5805 404
Sodium 91.2018 4 95.3162 6 92.7179 92.7655 0
Manganese 0.0000 1 0.0000 1 0.0001 0.0006 39450
Potassium 0.2386 1 0.0723 1 0.1757 0.8641 255
Arsenic 0.0000 1 0.1324 2 0.1262 0.1251 14
Barium 0.0006 1 0.0002 3 0.0002 0.0004 14974
Beryllium 0.0000 0 0.0000 1 0.0001 0.0002 4687
Cadmium 0.0000 0 0.0000 0 0.0000 0.0000 0
Cobalt 0.0000 0 0.0000 0 0.0000 0.0001 0
Chromium 0.0093 1 0.0073 2 0.0046 0.0114 508
Copper 0.0001 3 0.0000 3 0.0002 0.0003 5752
Nickel 0.0001 3 0.0000 3 0.0002 0.0003 5746
Lead 0.0000 0 0.0000 0 0.0000 0.0000 0
Antimony 0.0000 0 0.0000 1 0.0000 0.0001 23618
Selenium 0.0000 0 0.0000 0 0.0000 0.0000 0
Zinc 0.0006 3 0.0003 4 0.0004 0.0006 4536
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Table 36.  Median elemental volumetric leaching functions (meq/kg/L) and leachate volumes for
alkaline samples in sulfuric acid.

Element NLF VN, L  RLF VL, L TFLF Mean VFL VT, L

Iron 0.0155 4 1.7669 5 2.8107 1.2880 839

Calcium 31.7717 2 34.5494 7 26.6964 30.6963 9

Magnesium 0.8780 3 13.7657 5 5.2223 6.8613 3

Aluminum 0.5651 5 55.1203 8 69.8950 26.6895 18

Sodium 1.8602 5 0.6971 5 1.3193 1.8984 16

Manganese 0.0087 3 0.2720 5 0.1424 0.1058 14

Potassium 1.9547 3 1.4033 6 1.1977 1.4383 26

Arsenic 0.0000 1 0.0000 1 0.0014 0.0004 1440

Barium 0.0021 1 0.0021 4 0.0014 0.0019 1921

Beryllium 0.0000 4 0.0237 5 0.0217 0.0126 15

Cadmium 0.0000 2 0.0004 4 0.0003 0.0002 103

Cobalt 0.0002 5 0.0157 6 0.0088 0.0051 78

Chromium 0.0069 4 0.0461 6 0.0408 0.0227 51

Copper 0.0005 4 0.0165 5 0.0271 0.0051 31

Nickel 0.0003 4 0.0283 6 0.0268 0.0128 41

Lead 0.0000 0 0.0000 0 0.0000 0.0000 0

Antimony 0.0000 0 0.0000 0 0.0000 0.0000 0

Selenium 0.0000 0 0.0000 0 0.0000 0.0000 0

Zinc 0.0017 4 0.0546 5 0.0686 0.0408 25
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Table 37.  Median elemental volumetric leaching functions (meq/kg/L) and leachate volumes for
acid samples in water.

Element NLF VN, L RLF VR, L TLF Mean R VT, L

Iron 0.0000 3 0.0000 4 0.0000 0.0000 503196

Calcium 9.0000 2 0.0000 3 3.0000 8.0000 53

Magnesium 0.0000 2 0.0000 1 0.0000 1.0000 1322

Aluminum 0.0000 3 0.0000 4 0.0000 0.0000 43878

Sodium 1.0000 4 0.0000 4 0.0000 1.0000 91

Manganese 0.0000 2 0.0000 2 0.0000 0.0000 2101

Potassium 1.0000 3 0.0000 1 0.0000 1.0000 1178

Arsenic 0.0000 3 0.0000 4 0.0000 0.0000 57

Barium 0.0000 2 0.0000 5 0.0000 0.0000 9351

Beryllium 0.0000 0 0.0000 1 0.0000 0.0000 0

Cadmium 0.0000 1 0.0000 2 0.0000 0.0000 5896

Cobalt 0.0000 1 0.0000 1 0.0000 0.0000 8608

Chromium 0.0000 4 0.0000 4 0.0000 0.0000 3434

Copper 0.0000 4 0.0000 5 0.0000 0.0000 2847

Nickel 0.0000 4 0.0000 5 0.0000 0.0000 2337

Lead 0.0000 0 0.0000 1 0.0000 0.0000 0

Antimony 0.0000 0 0.0000 1 0.0000 0.0000 0

Selenium 0.0000 1 0.0000 1 0.0000 0.0000 249

Zinc 0.0000 2 0.0000 4 0.0000 0.0000 1812
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Table 38.  Median elemental volumetric leaching functions (meq/kg/L) and leachate volumes for
acid samples in acetic acid. 

Element NLF VN, L RLF VR, L TLF Mean VLF VT, L

Iron 0.0507 6 0.0518 6 0.1456 0.0000 0

Calcium 0.0000 2 -2.4075 2 4.4561 9.0000 39

Magnesium 0.3347 3 0.0788 3 0.6656 2.0000 109

Aluminum 0.0000 1 0.0000 1 0.0000 0.0000 0

Sodium 0.1701 1 0.0975 1 0.1397 1.0000 92

Manganese 0.0165 1 0.0051 1 0.0178 0.0000 82

Potassium 0.0660 1 0.0297 1 0.1688 1.0000 336

Arsenic 0.0175 4 0.0068 4 0.0043 0.0000 345

Barium 0.0027 6 0.0458 6 0.0413 0.0000 55

Beryllium 0.0038 4 0.0085 4 0.0060 0.0000 92

Cadmium 0.0006 3 0.0000 3 0.0001 0.0000 0

Cobalt 0.0092 2 0.0017 2 0.0024 0.0000 349

Chromium 0.0082 4 0.0063 4 0.0083 0.0000 215

Copper 0.0176 4 0.0219 0 0 0.0000 0

Nickel 0.0170 2 0.0040 2 0.0046 0.0000 236

Lead 0.0000 1 0.0000 1 0.0000 0.0000 0

Antimony 0.0000 1 0.0000 1 0.0000 0.0000 0

Selenium 0.0000 1 0.0000 1 0.0000 0.0000 0

Zinc 0.0708 2 0.0129 2 0.0170 0.0000 70
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Table 39.  Median elemental volumetric leaching functions (meq/kg/L) and leachate volumes
elemental leaching rates for acid samples in sulfuric acid.

Element NLF VN, L RLF VL, L TLF Mean VLF VT, L

Iron 3 4 3.4922 7 4.3969 3.5600 315

Calcium 24 3 21.1096 6 13.7386 14.6741 0

Magnesium 4 4 2.8772 6 2.6767 3.9334 15

Aluminum 59 4 69.7981 7 68.5028 65.1349 17

Sodium 1 4 0.6081 6 0.5883 0.7241 10

Manganese 0 3 0.0534 4 0.0548 0.0837 18

Potassium 2 4 1.4631 7 1.7231 1.7006 24

Arsenic 0 3 0.0000 5 0.0138 0.0174 114

Barium 0 4 0.0013 7 0.0014 0.0017 1805

Beryllium 0 4 0.0303 7 0.0248 0.0294 12

Cadmium 0 3 0.0002 6 0.0005 0.0006 48

Cobalt 0 4 0.0126 7 0.0163 0.0141 44

Chromium 0 4 0.0364 7 0.0268 0.0301 56

Copper 0 4 0.0411 7 0.0408 0.0629 22

Nickel 0 3 0.0170 4 0.0225 0.0244 44

Lead 0 1 0.0002 3 0.0006 0.0004 352

Antimony 0 0 0.0000 0 0.0000 0.0000 0

Selenium 0 0 0.0000 1 0.0000 0.0005 0

Zinc 0 3 0.0621 4 0.0741 0.0793 11
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Figure 29.  Cumulative leached mass curve with first and second derivatives, showing 3 leaching functions.
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Figure 30.  Cumulative amount of an element leached from fly ash with first and second derivatives  of leaching curve, indicating
two leaching functions.
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Chapter 7

Summary and Conclusions

Summary

Leaching System

The objective of this study was to develop data that are broadly applicable to the problem

of the release of metals from fly ash and to quantify the rate of release as a function of the

composition of the ash.  It was also intended to determine solubility of trace elements in coal fly

ash as a function of the natural alkalinity of the ash and as a function of the non-silicate

concentration.  Based on these leaching data,  quantitative rate function that describes the release

of trace elements from  ash in three phases (neutralization, primary leaching, secondary

leaching) has been developed.  It can be used to estimate potential release of metals from fly ash

as a function of  time and fluid infiltration rate. 

In this study, the sample population of Class F PC fly ashes was relatively large and

random in order to encompass the inherent variability of the material.  It represented a broad

range of chemical composition and included minerals commonly found in fly ash.   Both alkaline

and acidic samples were included in the sample set.  The number and variability of the samples

produced a large data set, but ensured that the conclusions were representative of Class F PC fly

ashes.

The long term column leaching experiment simulated natural conditions.  The leachant

solutions were synthetic surrogates for naturally occurring fluids and covered a broad pH range. 

The use of multiple leachants allowed for the correlation of leaching data to differences in

leaching conditions.  The relatively large sample  (1 kg) eliminated bias due to the non-
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homogeneous material.  The large sample size combined with the low leachant flow rate

provided measurable concentrations of released ions at low L/S (volume to sample mass) ratios

and also allowed for the determination of long term rates at discrete intervals.  The determination

of sequential leaching rates was possible because of the design of the leaching system.   

Metal Solubility

Coal combustion by-products (CCB) are a mixed material, containing a variety of cations

in different matrices, and the solubility of the metals is not a simple function of the concentration

in the solid.  Some elements may be more or less soluble than others and the solubility of a given

element is not the same in all leachant solutions.  A frequency distribution of the ML/T values for

the set of 31 Class F fly ash samples was determined for each element.  Solubility ranges were

defined as < 2 % = insoluble, < 20 % = slightly soluble, moderately soluble< 65% and >65% =

very soluble, in which the percentage is the maximum amount of that element that was released

from the fly ash sample during the experiment.  Based on this sample set of Class F PC fly ashes,

Fe, Mg, Ba, Pb, and Sb are insoluble in all types of leachant.  Several  elements that are acid

soluble (Ca, Mn, Be, Cr, Cu and Zn) have similar solubilities in both acid solutions, but the Al,

Cd, Co and Ni are slightly soluble in sulfuric acid but insoluble in the weaker acetic acid.   Only

Ca, Mn, K, and Na are soluble in H2O, and As is the only element that is caustic soluble. 

Ash Alkalinity

Alkalinity is usually a function of the concentration of cations of strong bases, Ca, Mg,

Na and K.  In this set of samples, the alkalinity was found to correlate most strongly with the

concentration of non-silicate Ca (R2 = 0.84).  The concentrations  of Na+ and K+ did not appear to

influence the alkalinity, indicating that these elements are not present in the ash as soluble oxides

or hydroxides.  
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Comparing the maximum pH in H2O, HAc, and H2SO4 indicates that some of the samples

have significant buffer capacity.  On this basis, the samples were divided into groups of alkaline

and acid fly ashes .  The initial phase of leaching the alkaline samples is similar to an acid base

titration.  The volume of 0.1 N acid added to produce a leachate with a pH of 6.5 is a measure of

the buffer capacity of the fly ash.

Non-silicate Solubility

During the course of a leaching experiment, a finite amount of each cation is released

from the fly ash sample.  The soluble concentration of most elements is a relatively small

proportion of the amount present in the ash.  Less than 10 g of the major elements, less than 1 g

of the minor elements, and less than .01 g of the trace elements is released from a kg sample of

fly ash during the leaching experiment. 

The total concentration of metallic elements in the fly ash samples was determined by

microwave digestion with hydrofluoric acid (EPA Method 3052) and ICP analysis.  Elements in

a non-silicate matrix were determined by microwave digestion in concentrated nitric acid (EPA

Method 3051A).  The difference between the two methods is assumed to be the silicate portion

of the fly ash, either as quartz, alumino-silicates or amorphous particles.  The non-silicates

would be other minerals, such as  oxides, or coatings on amorphous particles.  For several

elements, (Ba, Be, Cr, K, Mg, Mn, and Sb) the amounts leached can be correlated with the non-

silicate concentration.  The higher correlation of the soluble concentration with the total

concentration for other  elements (Co, Na, Pb, Se and Zn) indicates that at least some of the

element is extracted from the silicates in the ash.  The differences in solubility indicate that the

speciation, probably in silicate and non-silicate minerals influences the release of metals from fly

ash particles.
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Mineral Solubility

The mineralogical information obtained from XRD analysis of the fly ash samples is too

limited to explain the apparent differences in solubility for the various cations.  It does not

identify minor minerals, it and gives no information on trace element distribution.  However, the

data can be used to support the solubility determinations for the major ions, Fe and Ca, and

inferences about a limited number of other ions.  The major mineral constituent in fly ash is

quartz.  Iron is present as hematite or magnetite, oxides that could have formed at high

temperature from the dissociation of pyrite.  Calcium is present as a sulfate, either anhydrite or

gypsum, which could  be the reaction products of calcium from CaCO3 and sulfur from the

dissociation of pyrite.  Based on their ionic radii, Ni, Mg and Zn are the elements most likely to

be substituted for Fe in the iron oxide lattice.   However, the ratio of Fe to the other ions is not

constant in the different leachant solutions.   The ratios of solubility in the two acids and in

H2SO4 to H2O are significantly different.  Based on these data, Ni, Mg and Zn in the fly ash

samples cannot be identified as  substitutes for Fe in hematite or magnetite. Barium could

substitute for Ca, but solubility patterns do not support this assumption.  The solubility of other

elements, such as aluminum, was too low to allow speculation about the solubility of alumino

silicates or the presence of Al oxides.  

Volumetric Solubility Functions

The rate at which metal ions are released from fly ash is a complex function of the flow

rate of the leachant, the alkalinity of the ash, the distribution of elements in various chemical

compounds or minerals, and characteristics of the leachant solution, particularly its pH.  Discrete

leaching processes occur at different rates.  In this experiment, the release of cations is defined

as a solubility function with respect to the volume of leachant solution.  During the first leaching
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interval, the ashes alkalinity is neutralized, and the release of metal ions, except for Ca, is

relatively low.   At some point, the release  of metal ions increases by one or more orders of

magnitude, and remains at that level, until the readily soluble ions are released.  Then the

elemental release decreases, again by one or more orders of magnitude. 

The solubility of an element is defined by the three volumetric functions and the median

volumes for those functions.  The N LF (neutralization leaching function) is describes the release

of cations until the sample is neutralized (dMN/dVN, meq/L).  The RLF (rapid leaching function)

rate is the average slope of cumulative curve between inflection points (dML/dVL, meq/L).  The

TLF  (terminal leaching function)  is the average  slope of cumulative curve after 2nd inflection

point (dMT/dVT, meq/L). In a natural setting, if the infiltration rate is known (L/d), the time

dependent release of the elements can be estimated.   Acid fly ash samples exhibit only two

functions; neutralization is usually complete with the first addition of an acid leachant.

Conclusions

Based on this population of Class F PC fly ashes, cations  in fly ash are only slightly

soluble, and elements other than arsenic tend to be most soluble in acid solutions.  The differing

solubilities with respect to concentration leached and the most effective leachant indicate that the

elements are present in the ash in different chemical compounds or mineral  forms. and that non-

silicates tend to be more soluble.  The elemental solubility of different metals in fly ash can be

considered independent variables.

 Mineral speciation may be a controlling factor in cation solubility, but XRD data are not

sufficient to determine the effect.  Solubility patterns for pairs of elements of similar ionic radii

and valence did not support speculation about elemental substitution in mineral lattices. 
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Solubility of most elements correlates more strongly to the non-silicate concentration than to the

total concentration.     

The average release of metal ions from fly ash can be differentiated into 2 or 3 rates

related to the alkalinity of the fly ash and the concentration of various elements in the non-

silicate fraction of the ash.  

The results of this study are in general agreement with the previous leaching studies

discussed earlier.  However, this project is the most comprehensive leaching study of CCB, both

in terms of the number of samples, the evaluation of the factors controlling solubility, and the

ability to differentiate distinct phases of cation solubility as a function of to controlling factors.

Additional work

The data from this experiment can be used to address other topics not included in this

dissertation.  This discussion was limited to the results of leaching Class F PC fly ashes.  A

similar analysis can be applied to different types of samples, Class C ashes and  FBC samples for

example.  

The x-ray diffraction data was not sensitive enough to relate solubility to mineral species

in the fly ash.  Determining elemental distributions and associations by SEM-EDX may provide

additional information to relate solubility to particular chemical compounds/minerals.  

Although the solubility of all the major, minor and trace cations was addressed, the

elemental solubility was averaged over all the samples in the sample set or subset.   More

detailed analysis of individual ions, such as As or Cr, may differentiate solubility due to different

valence states and determine maximum leachate concentrations.

Additional work is expected to determine the correlation between the neutralization rate

and the decrease in soluble Ca concentration in the samples.  The relationship between leaching
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rate and the change in the non-silicate concentration will provide additional information on the

leaching mechanisms.



APPENDICES
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Appendix A

Abbreviations, Acronyms  and Units
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Units of Measure

:g microgram

d day

g gram

kg kilogram

L liter

mg milligram

mL milliliter

meq milliequivalent

mt metric ton

st short ton

wk week
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Abbreviations

AA Atomic Absorption

AES Atomic Emission Spectroscopy

AMD Acid Mine Drainage

ASTM American society for Testing and Materials

CCB Coal Combustion By-products

CUB Coal Utilization By-products

Cdaf Carbon concentration, dry, ash free

CA WET California Waste Extraction Test

CCP Coal Combustion Product

daf Dry, ash free

DI Deionized

DOE U.S. Department of Energy

ECN Netherlands Energy Research Foundation

EPA Environmental portection Agency

EPRI Electric Power Research Institute

EPTOX Extraction Procedure Toxicity Test

ESP Electrostatic Precipitator

FBC Fluidized Bed Combustion

FFCW Fossil Fuel Combustion Wastes

FGD Flue Gas Desulfurization

GMW Gram Molecular Weight

H2O Water

H2O2 Hydrogen peroxide

H2SO4 Sulfuric acid

H3BO3 Boric acid

HAc Acetic acid
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HAPs Hazardous air pollutants 

HCl Hydrochloric acid

HF Hydrofluoric acid

HNO3 Nitric acid

ICP Inductively Coupled Plasma

ISO International Standards Organization

NAA Neutron Activation Analysis

LEP Leachate Extraction Procedure

L/S Liquid to solid (mass) ratio, L/kg or mL/g

M Molar = MW/L

MCL Maximum contaminant level

MEP Multiple Extraction Procedure

MgCl2 Magnesium Chloride

MMMF Moisture, mineral matter free

MSW Municipal Solid Waste

MW Gram molecular weight

N Normal  =  Equivalents/L

NETL National Energy Technology Laboratory

PC Pulverized Coal combustion

RO Reverse Osmosis

RCRA Resource Conservation and Recovery Act

SEM-EDX Scanning Electron Microscopy-Energy
Disbursive X-ray micro analysis

SGLP Synthetic Groundwater Leaching Procedure

SPLP Synthetic Precipitation Leaching Procedure

TCLP Toxicity Characteristic Leaching Procedure

XRD X-ray disbursive analysis
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Elements

Symbol Element Atomic Weight

Ag Silver 107.870

Al Aluminum 26.9815

As Arsenic 74.9216

B Boron 10.811

Ba Barium 137.34

Be Beryllium 9.0122

Cd Cadmium 112.40

Ca Calcium 40.08

C Carbon 12.011

Co Cobalt 58.9322

Cr Chromium 51.996

Cu Copper 63.54

Fe Iron 55.847

Hg Mercury 200.59

K Potassium 39.102

Mg Magnesium 24.312

Mn Manganese 54.9380

Mo Molybdenum 95.94

Na Sodium 22.9898

Ni Nickel 58.71

O Oxygen 15.9994

Pb Lead 207.19

S Sulfur 32.064

Sb Antimony

Se Selenium 78.96

Si Silicon 28.186

Zn Zinc 65.37
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Appendix B

Chemical and Mineral Composition of Coal Ash
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Elemental Distribution of Trace Elements

Although elemental composition may be reported as a percentage of the original coal,

analysis is usually performed on coal ash and then back calculated to a whole coal basis.  In a

comprehensive study of the Argonne Premium coal samples (Curtis and Klizas, 1998), 51

elements were determined by a variety of analytical techniques.  Only INAA was sufficiently

sensitive to quantify 29 elements in the coal samples.  For all other techniques it was necessary

to ash the samples at 525 °C.  For the ICP analysis major elements were determined in ash

samples sintered with sodium peroxide.   The ash matrix was dissolved with HCl, HNO3, HClO4

and HF for the determination of trace elements (Briggs, 1998).  The combination of techniques

identified the major elements in ash as silicon, aluminum, iron, magnesium, calcium, sodium,

potassium, titanium, phosphorous ans manganese.  Trace elements are lithium, beryllium, boron,

scandium, vanadium, chromium, cobalt, nickel, copper and zinc.

The elemental composition gives no information about the mineral compound actually

present in the coal or ash, although the solubility of the element, its response to coal cleaning

procedures, weathering and combustion are dependent on the mineral matrix in which it exists. 

Using a semi-quantitative leaching procedure, Curtis et al, (1998, 1999) inferred the modes of

occurrence for trace elements in 16 Appalachian coal samples.  They concluded that arsenic,

mercury and selenium are associated the pyrite, although mercury and selenium could be

associated with the organic portion of the coal.  Beryllium and chromium were associated

primarily associated with silicates, and zinc, antimony, nickel, manganese and uranium are also

associated with silicates.  Small percentages of arsenic, thorium and cobalt are also associated

with silicates, and over  50 % of the antimony, selenium, mercury, beryllium, chromium,

uranium, lead, thorium, cobalt and nickel is assumed to be in the organic fraction.   Manganese
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and calcium are in carbonates, although some manganese was detected in siderites.  Thorium and

uranium are believed to occur in phosphates.  Lead and zinc are believed to be in monosulfides,

although these elements may also be present in silicates and pyrite. 

Using a similar method, Huggins et al (2000) found that in bituminous coals

approximately 50 pct  of chromium is associated with the organic macerals as an amorphous

fine-particle oxyhydroxide.  Most of the remaining chromium is associated with the silicate

illite.  All of the chromium was present as the trivalent ion; detectable amounts of hexavalent

chromium were not found in the four coals tested.  Hower et al (1997) associated As and Pb with

pyrite in two Kentucky coals.  

In a study of one subbituminous and three bituminous and coals, Senior et al (2000b)

determined that  quartz, kaolinite, illite composed approximately 30 pct of the mineral fraction. 

Miscellaneous silicates constituted another 30 pct.  The concentration of pyrite varied from 1 to

30 pct.  Siderite, calcite and other carbonates made up from 1 to 6 pct of the minerals. 

Phosphates were present only in one bituminous sample and the subbituminous coal. 

Measurable quantities of K-feldspar and montmorilonite were detected only in the

subbituminous sample.  Iron is usually associated with pyrite, and other elements (Ni, As, Se,

Zn, Hg) form sulfides or are incorporated in the pyrite structure.  Like iron, these elements may

be present in silicates and associated with the organic matter.  However, although Fe was

associated with carbonates, oxides and sulfates, the trace elements were not detected in these

fractions.  Pyrite was associated with high density, larger particles.  Quartz and silicates tended

to be concentrated in smaller particles.  

Ten Carboniferous-Permian coal samples, a Tertiary brown coal and a Quaternary peat

sample were collected in China (Zhang et al, 1998).  There was significant enrichment of the
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alkali and alkaline earth elements.  The peat and brown coal also had higher concentrations of

As, Cr, and Co.  Although Ba and Sr concentrations were higher in the higher rank coals, there

was no apparent distribution with rank.

Minerals in Coal and Ash

In a study of 35 coal samples from 8 countries, Vassilev and Vassileva (1996) identified

approximately 100 minerals.  The minerals were characterized as major (> 1% by wt), minor

(.1><1% by wt), and trace (<0.1 % by wt).  On a semi-quantitative basis, the mineral groups in

decreasing order of importance are: silicates > carbonates > oxyhydroxides > sulfides > sulfates

> phosphates > others.  Quartz and kaolinite, illite, plagioclase, and  K-feldspar are the primary

silicates.  Calcite and dolomite are the primary carbonates, and pyrite and marcasite are the most

common sulfide minerals.  Gypsum and iron oxyhydroxides may also be found in coal.  Other

minerals are present in minor to trace amounts.  The pyrite and marcasite are believed to be

syngenetic minerals formed in the reducing environment of the coal swamp, although some

epigenetic sulfides may be precipitated from low-temperature hydrothermal solutions.  Silicate

and oxyhydroxide  minerals are primarily detrital minerals or weathering products of other

minerals in coal.   Quartz is the most common mineral in coal.  Gypsum is commonly associated

with pyrite and may be a weathering product of sulfide and carbonate minerals.  Alumino-

silicate volcanic glass, possibly deposited from volcanic ash during the peat forming process, is

the primary component of the amorphous mineral phase in coal.

In another study of 41 coals, Vassilev et al (1996) relate mineral assemblages to rank of

the coal.  The coals were divided according to rank, based on dry ash free carbon concentration

(Cdaf).  The lower rank coals are enriched in mineral matter, including calcium and magnesium

oxides.  The highest rank coals have increased contents of silica, aluminum, iron, potassium,
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sodium, and titanium.  Coals of intermediate rank have higher concentrations of silica and

sodium.  The formation of pyrite, gypsum and apatite may occur during diagenetic processes.  

Quartz constitutes about 27 % of the ash in low rank coals, 40 % of medium rank coals and

about 31% in high rank coals.  Several other minerals (kaolinite, plagioclase, K-feldspar)  have a

maximum concentration in medium rank coals, while other minerals (corundum, calcite, pyrite

and apatite) reach a minimum relative concentration in the medium rank coals.  The relative

concentrations of illite, montmorilonite biotite, hematite and zeolite are comparable in all three

rank groups, although the concentration of mineral matter in the coal samples is significantly

different.  The alkali, alkaline earth and weakly bound elements are easily mobile and may be

leached from the detrital silicates.  Other elements, particularly potassium, may be added to coal

sediments by percolating solutions.  Organically bound, ion exchanged and pore water elements

can crystallize to minerals during lithification.  

Analysis of the minerals in 40 samples of a Powder River Basin (PRB) coal, revealed

predominantly well crystalized kaolinite and quartz (Brownfield et al, 1999).  The quartz was

primarily detrital, but trace amounts of $-form quartz, with apatite and zircon, was attributed to

air-fall and reworked volcanic ash deposited in the peat swamp.  Dissolution and alteration of

pyroxenes, feldspars, and amphiboles, common in volcanic ash, may have contributed to the

authigenic kaolinite, anatase, and calcite.  The PRB coal contained higher amounts of Ba, Ca,

Mg, Na and Sr than eastern bituminous coals.  These elements are associated with hydrated

alumino-phosphates and clay minerals, as well as with calcite, barite , biotite and apatite.  The

Ca and Mg-rich mineral phases in the coal and resultant ash were attributed to volcanic minerals. 

In a study of Gulf Coast lignites, the concentration of As, Be, Cd, Cr, Co, Hg, Mn, Ni,

Pb, Sb, Se, and U was determined in 250 coal samples (Warwick et al, 1997).  Enrichment of
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some elements was attributed to proximity to igneous rocks or to deposition of volcanic ash. 

There was a high degree of lateral and vertical variability of elemental concentrations even

within a single bed.  

The original mineral composition of the coal seam can also be modified by post-

coalification circulation of geothermal fluids.  Pyrite from 14 samples from the lower

Pennsylvanian coals of northwestern Alabama were examined by ion microprobe/SEM (Kolker,

1999).  Epigenetic pyrite was found to be enriched with arsenic.  Arsenic rich coals are prevalent

in fault zones, and Kolker implies that post coalification hydrothermal fluids were limited to

fault zones.  Daniels et al (1990) collected 15 coal samples from the anthracite fields of

Pennsylvania; minerals within the coal matrix include NH4-illite and kaolinite, representing a

mixture of detritus and authigenic phases. Systematic cleat sets are well mineralized and contain

kaolinite and quartz, as well as tosudite (Na0.5(Al,Mg)6(Si,Al)8O18(OH)12C5H2O), sudoite

(Mg2(Al,Fe3+)3Si3AlO10(OH)8 ), rectorite ((Na,Ca)Al4(Si,Al)8O20(OH)4C2(H2O)) and pyrophyllite

(Al2Si4O10(OH)2).  These minerals were assumed to replace kaolinite at high temperatures, the

different minerals were attributed to differences in the composition of fluids during late stage

diagenesis.  

Based on their boiling points and the phase change temperature of their oxides, several

authors have described the partitioning of trace elements in CCB (Germani and Zoller, 1988,

Meij, 1989; Yokoyama et al, 1991).  The first group of elements, which  are concentrated in

bottom ash or equally distributed between bottom ash and fly ash, includes typically lithophile

elements:  Ba, Mg, Mn.  In a second group, trace elements, enriched in the fine particulate

fraction are usually chalcophile elements such  as As, Cd, Pb, Se, and Zn.  Group 3 includes
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volatile elements which remain in the vapor state, Hg, Br.  Several elements partition between

groups.

Davison et al (1974) studied the trace element partitioning of 25 elements in fly ash.  The

concentration of the elements, Pb, Sb, Cd, Se, As, Ni, Cr, and Zn increased with decreasing

particle size.  The concentration of the elements Fe, Mn, V, Si, Mg, C, Be, and Al was found to

increase with decreased particle size only for particles with a diameter less the 11 :m.  These

elements showed no size dependence for larger particles.  The concentrations of Bi, Sn, Cu, Ti,

Ca and K showed no dependence on particle size.  The size dependence was attributed to

volatilization of elements or compounds with lower boiling points during combustion, followed

by condensation or adsorption on entrained particles.  However, the model they propose

indicates that the surface adsorption or condensation is a direct function of the surface area and

inversely related to particle mass.  This would indicate that large, lower weight particles would

be favored as adsorption sites.  

Vaporization and condensation form an ultrafine aerosol during PC combustion (Senior

et al, 2000a).   Factors such as residence time, temperature history and level of turbulence

control the size and morphology of the aerosol particles.  Fly ash particles with aerodynamic

diameters less than 0.4 :m were attributed to condensation.  Non-volatile elements, such as Fe,

were found to concentrate in larger ash particles.  Between 10 and 30 pct of the volatile

elements, As, Sb, Se, and Zn, are in the condensed fly ash particles.  Arsenic and Sb are soluble

in silicate glass and may be retained by glassy particles that form by coalescence of minerals. 

Correlations between the concentrations of arsenic and calcium in fly ash are assumed to

indicate the formation of calcium arsenate.
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Chemical composition

EPRI (1987a) conducted a study of the composition of 39 fly ash samples and 40 bottom

ash samples, from power plants in the U.S.  Total elemental composition was determined by

energy disbursive x-ray fluorescence analysis (XRF).  The major element concentrations of fly

ash and bottom ash were very similar.  The trace element composition indicated that more

volatile elements (As, B, Cl, F, S and Se) were preferentially partitioned to the fly ash.  The trace

element concentration tended to be higher in fly ash derived from bituminous coal.  

EPRI (1987b,c) also conducted an extensive literature search on the inorganic and organic

constituents of fossil fuel combustion residues (EPRI, EPRI,.  They concluded that the inorganic

composition was highly variable.  Some non-volatile elements were evenly distributed between

fly ash and bottom ash, while volatile elements tended to be concentrated in fly ash.  They

concluded that data available at that time was insufficient to predict leachate composition.     

The Council of Industrial Boiler Owners (CIBO) conducted a survey of operators of FBC

units, requesting information on the physical and chemical characteristics of FBC fly ash.

Information was received from 39 facilities.  The major difference between ashes in the two

groups is that FBC ashes contain higher concentrations of Ca, due to the injection of limestone

as a sorbent to control SO2.  The major constituents in the ash are oxides of silicon, aluminum,

iron and calcium.   Trace elements were found to be concentrated in the smaller ash particles.  

The Pennsylvania Department of Environmental protection (PADEP) requires that

mining companies placing fly ash in surface mines apply for a modification of their mining

permit (Module 25 and Module 25A).  DOE personnel were allowed to copy the Module 25

applications and reports (Kim and Cardone, 1997).  The information from 37 operators included

analyses of 218 ash samples, of which 99 were clearly identified as fly ash.  In addition to Si, the
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major elements were Al, Ca and Fe.  Although values for Fe and Al were reported in

approximately 90 pct of the analyses, values for Ca were reported in only 10 pct of the analyses. 

The trace elements, As, Cr, Cu, and Ni were reported in about 80 pct of the analyses, while Sb,

Cd, and Ag values were given for 20 pct of the samples.   In this type of data, it is uncertain

whether missing values indicate values below the analytical detection limit or were not included

in the analysis.

Volatilization, melting, decomposition and the formation of new minerals, as well as

oxidation are the mechanisms that transform the minerals in coal.   There is a significant

difference between the minerals in coal and those in the ash produced from the same coals When

the coals studied by Vassilev and Vassileva (1996) were ashed at 815 °C, the minerals were

primarily oxyhydroxides and silicates with lesser amounts of sulfates, carbonates, and

phosphates.  They also note an increase in amorphous minerals. .  

Minerals in CCB are usually not considered particularly hazardous.  The inclusion of

heavy metals or hazardous air pollutants (HAPs)in the ash and their solubility are the primary

determinants of toxicity.  Concentration is not the only factor; volatility, toxicity and solubility

determine the potential for health and environmental effects.  All of these factors are functions of

speciation within the ash. The speciation of Cr, As, Se and Ni were investigated by Huggins et al

(1997).  They estimated that toxic Cr(VI) generally constituted less than 5 % of the chromium in

coal ash.  Arsenic is found almost entirely as As(V) in fly ash samples.  It is also found as As(V)

in most bottom ash samples, but some bottom ashes contain as much as 25% As(III), probably as

a result of high temperature and oxygen lean combustion conditions.  Although abundant Fe

interfered with the its precise determination,  Ni was present as Ni2+, with no evidence of nickel

sulfides in coal ash.  In two samples prepared under the same conditions, Se was present in
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different forms.  One sample contained elemental Se or a selenide while the other was

predominantly selenate.  

The transition of minerals in coal to those found in combustion by-products is related to

the high temperature oxidation and to the rate of cooling of the inorganic melt.  Thompson and

Argent assumed that at 2000°K, a completely molten slag was at equilibrium.  Above 1300°K,

mullite, iron oxides and silica are predicted to be formed.  Below 1300°K, sodium and potassium

sulfates separate from the melt. Variability in the cooling characteristics of the melt is believed

to contribute to variability in ash composition.  The removal of sulfur as sulfur dioxide during

combustion also contributes to the formation of iron oxides.  The authors conclude that ash

formation in combustion is a complex process and is affected by mineral content ans speciation.

Ashes from high sulfur, high iron coals have a variety of iron-bearing phases, including

magnetite, hematite, goethite (Hower et al, 1999).  Spinel, mullite and silicates may also contain

iron.  The iron bearing minerals were characterized in  class F fly ash that was sized and

magnetically separated.  The SiO2 concentration is higher in the non-magnetic fractions, but it

also constitutes a substantial portion of the magnetic fractions.  The inclusion of the non-

magnetic glass particles in the magnetic fractions may be sue to the presence of mixed particles

or to the presence of trace magnetic minerals on the larger glass particles.  Magnetite and

hematite are the iron oxide phases, enriched in the magnetic fractions.  Chromium and nickel

follow similar patterns, possibly due to substitution for iron in the spinel structure.  

A classification system for fly ash was proposed, based on the modal and normative

mineral phases (O’Connor, 1997).  It was developed to characterize preferential retention sites

for environmentally sensitive elements, assuming that different mineral species should

differentially incorporate ions of different sizes.  It was noted that some minerals are unchanged
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in the combustion system, showing little evidence of pyro-metamorphism.  These are primarily

quartz, K-feldspar and mica.  Fly ash grains are generally heated to temperatures at which the

minerals fuse.  Quick cooling may favor the simple end member ternary phases in silicate

glasses.  The bulk fly ash is a collection of mineral species, and impurities may be incorporated

in crystals or adsorbed on surfaces.

In a study of fly ash from high and low sulfur coals burned at the same power plant, the

concentration of As was 170 ppm in the high sulfur ash, as opposed to an average concentration

of 54 ppm in ash from low sulfur coal (Finkelman et al, 1997).  Microprobe analysis of

individual fly ash grains indicated that the arsenic concentration was generally near the limit of

detection.  Although the microprobe analysis showed no surface enrichment, selective leaching

indicated that the As occurred primarily as a condensate on ash particle surfaces.   Separation

studies indicated that Cr was enriched in the Fe-oxide phases, such as spinel.  The leaching

experiments showed 70 pct of Cr to be in the glassy silicate portion of the ash.  Similar results

were found for Ni and Co.  Both Sb ans Zn were also found to be present in more than one ash

phase.  
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Appendix C

Leaching Methods
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The most frequently referred to leaching procedures are those developed for

characterizing the toxicity of hazardous solid waste: Toxicity Characteristic Leaching Procedure

(TCLP), Extraction Procedure Toxicity Test (EPTOX), Synthetic Precipitation Leaching

Procedure (SPLP) and the American Society for Testing and Materials Standard Test Method for

Shake Extraction of Solid Waste with Water (ASTM-D3987).  These methods and similar tests

have also been applied to a variety of non-hazardous materials.

Batch Methods

Batch leaching methods can be approximately described as those in which a sample is

placed in a given volume of leachant solution for a period of set period of time.  Most of the

methods require some type of agitation to insure constant contact between the sample and the

leachant.  At the end of the leaching period, the liquid is removed and analyzed.

Toxicity Characteristic Leaching Procedure (TCLP)

The Toxicity Characteristic Leaching Procedure (TCLP) was developed to determine the

mobility of organic and inorganic species in liquid, solid and multi-phasic wastes placed in a

sanitary landfill.  It is used to characterize the soluble and volatile components of a waste

material.  The presence of any one of 40 toxic constituents, 8 of which are metals, in

concentrations equal to or greater than that specified under the Resource Conservation and

Recovery Act (RCRA), the material is considered hazardous based on toxicity.  

TCLP uses one of two leaching fluids based on the alkalinity of the sample.  If the pH of

the samples is less than 5, a sodium acetate buffer with a pH of 4.93 ± 0.05 is used.  For

materials with a pH greater than 5, an acetic acid solution with a pH of 2.88 ± 0.05 is the liquid

medium.  The diameter of the sample particles must be < 9.5 mm and the minimum sample size

is 100 g for materials that do not contain volatile compounds.  The method specifies that the
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weight of the leachant solution as 20 times the weight of the solid sample (20/1).  If it is assumed

that the density of the leachant solutions is approximately 1, this ratio is frequently given as 20

mL of leachant per gram of sample (20 mL/g).  The method specifies end over end rotation at 30

rpm for a period of 18 ± 2 hr.  Ambient temperature is to be maintained at 23 ±2° C during the

extraction procedure.  If , under these conditions, the concentration of a constituent exceeds the

regulatory limit, the sample is considered hazardous. 

Extraction Procedure Toxicity Test (EPTOX)

The extraction procedure, EPTOX, was also developed to determine characteristic

toxicity under sanitary landfill conditions.  EPTOX was in use prior to the adoption of TCLP. 

The sample particle size must be < 9.5 mm in diameter and sample size is 100 g.  The L/S is 16,

and  if the pH is >5, 0.5 N acetic acid is used to adjust the pH to 5.0 ± 0.2.  No more than 4 mL

of acid per g of sample should be added.  The pH should be monitored and adjusted during the

procedure. At the end of the extraction period, water is added to adjust the L/S to 20  The

mixture should be agitated for 24 hr at an ambient temperature between 20 and 40° C. Method

1310 A also included a procedure for determining the structural integrity of solid materials.

Synthetic Precipitation Leaching Procedure (SPLP)

Synthetic Precipitation Leaching Procedure (SPLP) is another EPA method originally

designed to evaluate the mobility of organic and inorganic constituents of liquids, soils and

wastes.  The leachant fluid is intended to mimic the acidity of acid rain; water is adjusted to an

appropriate pH with a 60/40 mixture by weight of sulfuric and nitric acids.  For soil samples

collected east of the Mississippi River , the pH is adjusted to 4.20  ±0.05; west of the Mississippi

River the pH is adjusted with the sulfuric acid/nitric acid mixture to 5.00  ± 0.05.  If the sample

is a waste, the leachant is the pH 4.2 solution.  The particle diameter should be < 9.5 mm; 100 g
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is the minimum sample size, and the L/S is 20.  The sample is placed in an extraction vessel for

end over end rotation at 30 rpm for 18  ± 2 hr.  Ambient temperature is to be maintained at 23  ±

2°C.  Except for the leachant fluid, the procedure is very similar to TCLP.

Standard Test Method for Shake Extraction of Solid Waste with Water ( ASTM-

D3987)

The American Society for Testing and Materials (ASTM) procedure is intended to

rapidly generate a leachate from solid waste.  It is not intended to simulate conditions in the

field.  Reagent water is the leaching fluid, and the method does not require particle size

reduction.  It calls for rotary agitation about a central axis at a rate of 29 rpm for 18 hours. The

sample size is 70 g, and L/S is defined a volume in milliliters that is 20 times the weight of the

sample in grams.  Ambient temperature should be between 18 and 27 ° C.  EPA’s methods were

developed assuming a co-disposal of 95 % municipal solid waste and 5 % industrial waste.  The

ASTM method was developed as a more appropriate alternative for monofill industrial waste

sites.  

California Waste Extraction Test (CA WET)

As a human health issue, the California Department of Health Services developed the

Waste Extraction Test (WET) to determine if  extractable constituents can be leached to

groundwater from material in a sanitary landfill (CCR, 1984).  WET uses a citrate buffer with a

pH of 5 to extract metallic and other constituents from waste.  If the waste is not capable of

generating acidic leachate, deionized water can be substituted for the citrate buffer.  The citrate

buffer is a 0.2 M sodium citrate, prepared by titrating citric acid in deionized water with 4.0 N

sodium hydroxide.  A fifty gram sample, with particles less than 2 mm, and 500 mL of the

extraction solution are placed in a flask.  To remove oxygen, the flask is flushed with nitrogen
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gas for 15 minutes.  The flask is sealed and vigorously agitated on a table shaker or other

apparatus for 48 hours.  Temperature should be maintained between 20 and 40 ° C.   The

extractant fluid is then filtered and acidified with nitric acid.   The procedure can be used to

extract all metals except hexavalent chromium.  The concentration of soluble  constituents are

reported as mg/L or as mg/ kg of solid waste.  

Availability Test for Granular Materials (NEN 7341) 

Van der Sloot et al (1994) have worked extensively on the development of Dutch

Standard Leaching Tests to characterize all type of granular waste.  The Availability Test (NEN

7341) assesses the fraction of an element that could become available under extreme

environmental conditions.  Particle size is less than 125 :m and L/S is 100 L/kg.  Samples are

leached at pH 4 and at pH 7, continuously agitated for 3 hrs.  The pH 4 extraction is assumed to

represent the lowest natural pH and the neutral pH 7 is assumed to release oxyanionic species.  

Synthetic Groundwater Leaching Procedure 

The Synthetic Groundwater Leaching Procedure developed by Hassett (2000) uses a

leaching solution that is intended to simulate leachate anticipated in field conditions.  The

procedure allows fro changes in leachability related to the formation of hydrated secondary

phases and new minerals over extended periods of time.  The solid sample and synthetic

groundwater solution are agitated for 60 days or more with sampling at regular intervals.  He

synthetic groundwater leaching solution is intended to mimic groundwater that could contact the

material.  If it is to be placed above the water table, and will be contacted only by rainwater, DI

water can be used as the leaching solution.  If the material will be in contact with highly

mineralized water, either the water itself or a synthetic mixture of similar composition and pH

should be used.  The procedure suggests that a 10 g sample and 220 mL of leaching solution be
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added to a series of 250 mL polysulfone bottles.  Samples are taken after 18 hr, at the end of one

week, one month and 2 months.  Longer sampling intervals can be added.  

Leachate Extraction Procedure (LEP)

The Leachate Extraction Procedure (LEP, 1985) was developed for use in Ontario,

Canada.  It was subsequently adopted accepted by the Canadian General Standards Board

(CGSB, 1987)to identify materials that posed a toxicity risk to the environment.  The LEP is

similar to EPTOX, specifying the same particle size,  L/S and leachant solution.  The primary

differences are that in the LEP the  sample size is 50 g and end over end rotation at the rate of 10

rpm for 24 hr is required.

Serial Batch Methods

In serial batch methods, a sample of waste is leached successively  with fresh aliquots of

the same leaching fluid.  This method is intended to eliminate the effect of concentration on

solubility and to simulate long-term exposure to the leachant solution.  

Multiple Extraction Procedure (MEP)

The Multiple Extraction Procedure (MEP)is designed to simulate repetitive leaching that

a waste could undergo in an improperly designed sanitary landfill.  It is intended to produce the

highest concentration of a constituent that can be extracted in a natural environment.  Samples

are leached according to the EPTOX method.  Then the solid sample is re-extracted nine times

according to the SPLP method.  Each leachate is analyzed separately.  If the concentration of a

regulated constituent increases in the 7th, 8th or 9th extraction, the procedure is repeated until the

concentration remains constant or decreases.  The initial and final pH of each fluid extract is 

recorded, and the concentration of the constituents in each extract is reported.
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Standard Test Method for Sequential Batch Extraction of Waste with Acidic

Extraction Fluid (ASTM D 5284)

The release of constituents from a waste containing at least 5% dry solids is estimated

with this procedure, although it is not intended to simulate the leachate under site leaching

conditions.  The pH of the leachant solution should reflect the actual pH of precipitation of the

geographic region in which the waste is to be disposed.  It is prepared by adding a 60/40 mixture

of sulfuric and nitric acids to DI water until the desired pH is obtained.  To a sample containing

100 g of waste on a dry weight basis, sufficient extraction fluid is added so that the final L/S is

1:20.  The sample is agitated continuously for 18 hr at 18 to 27 °C.  The waste/leachant solution

is then transferred to a pressure filtration vessel and filtered under pressure with nitrogen or other

inert gas.  The total dissolved solids of the filtrate is determined and then it is preserved for

analysis.  The solid sample, including the filter,  is transferred from the filter back to the original

extraction vessel.  Less than 500 g of leachant solution is used to transfer the sample and rinse

the filtration devise, including the amount used to rinse the filter as it is removed.  Leachant

solution is added to achieve the original L/S ratio.  This procedure is repeated for a total of ten

leaching cycles.  The leachate from each step is analyzed independently.  

Standard Test Method for Sequential Batch Extraction of Waste with Water

(ASTM D 4793)

This method has follows the same general procedure as ASTM D5824, except that Type

IV reagent water is the leaching solution.  The final pH of the leachates is intended to reflect the

interaction of the leachant with the buffering capacity of the waste, as when the waste controls

the final pH of the leachate.  As described above, the sample should contain 100 g of solids on a
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dry weight basis, the L/S ratio is 20, the agitation period is 18 hr and the procedure is repeated

10 times.

Column Tests

Column leaching tests are considered as simulating the flow of percolating groundwater

through a porous bed of granular material.  The flow of the leaching solution may be in either

down-flow or up-flow direction and continuous or intermittent.  The flow rate is generally

accelerated when compared to natural flow conditions.  However, it should be slow enough to

allow leaching reactions to occur.  A basis assumption in column leaching is that the distribution

of the leaching solution is uniform and that all particles are exposed equally to the leachant

solution.  Precipitation or sorption within the column may affect the results.

Standard Test Method for Leaching Solid Material in a Column Apparatus (ASTM

D-4874)

This test method is intended to generate aqueous leachate from solid materials in a

column apparatus.  It is intended to maximize the leaching of metallic species from a solid. The

aqueous fluid passes through particles of known mass in a saturated up-flow mode.  The column

is constructed of glass, 300 mm long with an inside diameter of 100 mm.  Stainless steel end

plates are attached with rods or any method that ensures a leakproof seal with a chemically inert

gasket.  A flow distribution disk of sintered stainless steel with a nominal pore diameter of 70

:m fits inside the bottom of the column.  The leaching fluid is contained in a pressurized

reservoir with pre-purified nitrogen or argon at a headspace pressure less than 275.8 kPa.   The

maximum particle size is 10 mm (1/10 of the inside diameter of the column) and the size

distribution is representative of that expected in field placement.    The column is completely

filled and the mass of sample determined.  The sample is saturated with water, then the leachant
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solution flow upward through the sample so that the equivalent of one void volume passes

through the sample in a 24 hr period.  At a minimum, Void volumes 1,2,4 and 8 are analyzed.    

Dutch Standard Column Test (NEN 7343)

This test is a regulatory test to simulate leaching from mineral waste that would occur in

less than 50 yr. The height of the column is 20 cm with a diameter of 5 cm; the diameter of the

waste particles must be less than 4 mm.  The leachant is demineralized water adjusted to pH 4

with nitric acid in an up-flow application.  Seven leachate fractions are collected within a period

of approximately 21 days; the L/S ratio is between 0.1 and 10.  

Nordtest Column Method (NORDTEST)

This method in use in the Nordic countries is similar to the Dutch Column test, except

that column dimensions are optional.  The minimum column diameter is 5 cm, and the minimum

height is 20 cm.  The flow rate is 0.03 to 0.1 L/S per 24 hours, and only four to five leachate

fractions are collected.

Gravity Flow Columns

The up-flow column procedures are designed to insure that the leachant solution is

equally distributed throughout the column, i.e., that all particles are equally exposed to the

leachant.  However, gravity flow columns can also be used to study  leaching of porous media. 

Column experiments more closely approximate the flow conditions, particle size distribution and

pore structure, leachant flow and solute transport found in the field (Zachara and Streile, 1990). 

Column experiments can be conducted in both saturated and unsaturated conditions. 

Unsaturated conditions are usually intended to mimic vadose zone placement.  Intermittent

addition of a given volume of leachant solution at the top of the column can provide uniform

distribution of the fluid and approximate a constant fluid front moving through the unsaturated
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column. Saturated columns are obtained by a constant fluid flux, and allowing the fluid to pond

at the top of the column.  Variables, such as leachate collection, sampling frequency, leachant

flow rate, and duration of the experiment, are determined by the experimental objectives.

Sequential Leaching Tests

Sequential leaching tests use a single sample that is leached by a series of different

leaching fluids.  The constituents extracted with a particular leachant are associated with a

particular mineral phase or chemical species.  Speciation is considered one of the controlling

factors in the potential release of cations to the environment.  

Palmer’s Sequential Leaching Method (USGS)

The USGS sequential leaching method was developed as a rapid indirect method of

determining the modes of occurrence of trace elements in coal (Palmer et al, 1999).  Duplicate 5

g samples (-60 mesh) are sequentially leached with 35 mL of a leachant solution at room

temperature for 18 hr.  The leachant solutions are 1 N ammonium acetate to remove

exchangeable cations, 3 N hydrochloric acid to extract cations associated with carbonates and

monosulfides.  Concentrated hydrofluoric acid dissolves silicates and 2 N nitric acid releases

cations in disulfides.  Residual elements are believed to be associated with the organic matrix. 

The sample and leachant fluid are placed in a 50 mL polypropylene tube and shaken in a

motorized wrist shaker.  

Short Sequential Procedure

A short sequential procedure uses two steps to assess the lability of heavy metals in soil particles

(Maiz et al, 2000).  Mobile elements are extracted by agitating the sample for 2 hr in 0.01 M

calcium chloride solution.  The  L/S is 10, and tests were conducted  at room temperature.  The

sample is centrifuged and the supernatant removed.  The residue is rinsed and then  leached with
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a solution of  0.005 M diethylenetriaminepentaacetic acid (DPTA), 0.01 M calcium chloride, and

0.1 M triethanolamine (TEA) at pH 7.3; L/S is 2.  Agitation for 4 hr at room temperature releases

mobilisable elements.  The mobile elements are those that are soluble under normal weathering

conditions.  The mobilisable  elements are the exchangeable and chelated fractions.

Tessier’s Sequential Leaching Method

Like the later USGS sequential extraction procedure, Tessier (1979) uses a series of

extractant fluids to dissolve metals associated with particular ligand phases in a complex sample. 

A sample (0.5 g) is weighed into an acid washed polycarbonate centrifuge tube.  After addition

of the appropriate reagent, the sample is shaken at room temperature to ensure continuous

suspension of the sample.  The supernatants were separated by centrifugation at 10,000 rpm for

approximately 25 min.  The residue was washed with 10 mL of DI water between steps.  The

reagents used in the Tessier procedure are summarized in Table C-1.
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Table C-1.  Summary of Tessier’s sequential extraction method.

Reagent Volume Concentration pH Reaction time Target

Magnesium
Chloride

8 mL 1 M 7 1 h extractable
metals

Acetic acid/
sodium acetate

8 mL 1 M 5 5 h carbonates

Hydroxlamine
hydrochloride in
acetic acid 

20 mL 0.04 M 2 6 H @ 96°C Fe & Mn oxides

Hydrogen
peroxide
ammonium
acetate
nitric acid

27%

3.2 M

20%

Organically
bound metals

HF/HNO3
1 Residual metals

1 A modified Tessier procedure uses aqua regia (4 M nitric acid and concentrated nitric acid) in
place of the hydrofluoric/nitric acid mixture (Raksasataya et al, 1996)
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BCR Sequential Leaching Method

A three step sequential extraction procedure was developed by the commission of the

European Communities Bureau of Reference (BCR).  In this procedure (Quevavller et al, 1994),

the first extractant is 0.11 M acetic acid, pH 3 to remove exchangeable metals and carbonates.

Hydroxylamine hydrochloride (0.1 M, pH 2) is used next to solubilize metals bound to Fe and

Mn oxides.  The third step A solution of 27 % hydrogen peroxide and 1 M ammonium acetate at

pH 2 oxidizes metals bound to organic species.  This method has also been modified

(Raksasataya et al, 1996) to include aqua regia digestion of the residual material. 

Monolithic Leaching Methods

Monolithic leaching methods are used to evaluate the release of elements from a material

that normally exists as a massive solid, cement for example.  Monolithic tests are frequently used

to characterize the release of pollutants from stabilized waste materials.  The release of an

element is a function of  the exposed surface area as opposed to the mass.  Flow around systems

relate solubility to the surface area of a particular volume.  Flow through systems also consider

the internal pore surface.  And some systems take into account the rate of diffusion of the

leachant solution into the pores.  

Static Tests

In static monolithic leaching, a particle of regular geometry and known surface area is

immersed in a volume of leachant solution.  The same  leachant solution is sampled at defined

intervals and replaced with fresh solution (Hoberg et al,2000).  According to van der Sloot et al

(1989), the elemental flux, J, in this type of test is described by the equation:
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(18)

where C is the concentration of the element in the leaching solution, A is the surface area and t is

the contact time, and n is the number of cycles.  

Flow Through Leaching Test

The flow through leaching test (Poon et al, 2000) is used to characterize leaching from a

waste that is more permeable than the surrounding material.  In the flow through leaching test,

the solid sample is placed in a flexible wall permeameter.  The leaching solution is DI water at a

mean flow rate of .0166 mL/min at a pressure of 400 kPa.  

Core Leaching System

In this system, a reactions cell, slightly larger that the diameter of the core, is constructed

of acrylic pipe (Paulsen and Kuhlman, 1989).  The sides of the core are coated with epoxy to

ensure that the core will not disintegrate during testing and that all leachant flows through the

core.  After the core is placed in the cell, o-ring caps form a seal at each end of the sample.  A

sulfuric acid solution is the leachant, introduced in the bottom of the cell at a pressure of 30 psi. 

Similar cells constructed of PVC pipe and stainless steel can be used to leach core samples at

substantially higher pressures.

Flow Around Leaching Tests

In a flow around leaching system, the external surface of a solid sample is in contact with

the leachant.
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Bulk Leaching

Bulk leaching generally refers to leaching large samples, either in a large column or in

heaps.  They are either industrial systems or used in a research setting to leach a non-

homogeneous sample with a large particle size.  Bulk leaching methods are not particularly

applicable to fly ash.  

Heap Leaching

Heap leaching is used in the hydro-metallurgical industry, particularly for the cyanide

leaching of gold and silver ores (Fleming, 1999).  The purpose is to obtain a “pregnant” solution

from which a metal can be recovered.  A large ore sample is placed on a constructed pad that

incorporates a leachate collection system.  The heap is constructed to maximize permeability and

minimize channeling.  Mechanical sprays are used to apply the leachant solution at a rate of less

than .01 L/s/m2. Fine particles  are unstable in heaps, and may passivate ore surfaces, reducing

the efficiency of the leaching system.  Heaps have also been used for the oxidative leaching of

pyrite from coal (Cathles and Breen, 1983).  In this case, the convection of air throughout the

heap is as important as the equal distribution of the liquid leachant.

Trickle Bed Reactor

A trickle bed reactor is a large column (>25 cm ID) containing more than 100 kg of solid

sample (Dalverny et al, 1996).  The leachant solution is sprayed on the top of the sample in order

to distribute it throughout the mass of the sample.  Plugging with fines and channeling are

problems in this type of leaching apparatus.  

Combined Methods

The International Ash Working Group (IAWG) has designed a leaching protocol to

quickly determine the total leachable elements in a material and to estimate metal release in a
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normal environmental setting (van der Sloot et al, 1994; van der Sloot, 1998). An availability

test is based on the extraction of fine-grained material at a L/S of 100 at a controlled pH of 4,

which is assumed to be a lower pH limit found in natural environments.  A second test at a pH of

8 is used  to determine leachability of oxyanionic species.   From the total acid consumption, the

acid neutralization capacity of the material is estimated.  Total elemental release  as a function of

time is estimated by leaching  at different L/S values in a serial batch test. The release of

contaminants is usually expressed in mg/kg leached against the L/S ratio. 

Comparison of Leaching Methods

Several studies have attempted to compare different leaching methods, either to correlate

data from disparate techniques or to determine optimum suitability for a given

material/conditions/objective.  Most comparisons were based on comparative release of

particular elements by 2 or more specific procedures.  They generally did not consider

differences in such factors as test objective, leachant volume, sample size, and test duration. 

DOE/LASL

In 1981, researchers at the Department of Energy/Los Alamos Scientific Laboratory

(DOE/LASL) compared EPTOX with a procedure used at the laboratory (Heaton, et al, 1981). 

The samples were coal preparation wastes.  The LASL static leach procedure was similar to

EPTOX except that it used a L/S of 5.  The release of RCRA elements was found to be

comparable with both procedures.  An evaluation of longer term tests noted that the differences

between one day and longer term tests were not large. 

EPRI (1986)

The Electric Power Research Institute (EPRI) sponsored a round robin evaluation of

TCLP and EPTOX (Mason and Carlile, 1986).  The study intended to evaluate the
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reproducibility of the TCLP and compare the results to those obtained with EPTOX.  Seven CCB

samples were sent to each of three laboratories which performed duplicate determinations with

both TCLP and EPTOX.  In the TCLP tests, four samples were leached with the sodium acetate

buffer and three with acetic acid.  For the individual procedures, most of the variability was

related to consistent differences in the results from one of the three laboratories.  When

comparing the methods, the TCLP and EPTOX concentrations of 14 elements were comparable

for approximately 60 pct of the determinations.  Eighty-three pct of the concentrations

determined with TCLP were equal to or greater then those determined with EPTOX.  

EPRI (1990)

In a report to EPRI (Zachara and Streile, 1990), Static (batch) and dynamic (column)

methods were compared.  Based on a review of the literature, batch systems were determined to

be suited to determining specific geochemical reactions in leaching and attenuation processes. 

Column studies could be used to identify the effect of physical factors, generally related to

porosity, and time-dependent leaching and attenuation.  Multi-solute systems, in which  major

ions and trace elements may react under different geochemical conditions, are better studied in

columns.  Batch methods tend to be inexpensive and simple; and they generate chemical data for

mechanistic applications.  Column methods are more expensive and more operationally

complex, but they generate results which reflect real systems subject to fluid flow and solute

transport.

ECN

The Netherlands Energy Research Foundation (ECN) compared regulatory test

procedures used in the US, Canada, Germany, France, Switzerland and the Netherlands (van der

Sloot et al, 1991).  They concluded that tests which report results as a leachate concentration
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(mg/L) were less descriptive of the potential for  long term release than leached quantity

(mg/kg).  The maximum leachability of different elements was fund to be a function of the L/S,

and a test conducted at one L/S was unlikely to predict the long term leachability of all elements. 

And although the effect of pH on release is established, the effects of changes in redox potential

and the concentration of complexing agents, as well as the effect of  temperature differences ,

have not been established. 

CEN/TC292

The European Commission on Normalization through its technical committees is

addressing the integration of leaching methods for various materials.  The committee on waste

materials (CEN/TC292) addresses issues related to disposal of wastes and also to by-products or

secondary raw materials intended for reuse (van der Sloot et al, 1997).  This committee

recognizes three types of leaching tests: basic characterization, compliance, and field

verification.  For both types of tests, a distinction is made between process control (percolation,

diffusion) and leaching mechanism (shake or column tests, monolithic tests).  Currently, the

group is working on a compliance test for granular materials, using DI water and L/S of 2 and

10.  A vacuum accelerated monolithic test is also being developed.  A basic characterization test

and a pH static leach test are to be developed.  All of the current tests apply only to inorganic

components.
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Appendix D

Previous Studies of the Release of Metals from CCB
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The results of laboratory experiments and field studies are briefly described.  A summary

of the results of regulatory leaching tests is also included.

Laboratory Studies

Batch and column leaching tests were also used to characterize the co-disposal of FBC

ash and coal slurry solids (Dreher et al, 1990). The combined material was to be used in place of

a soil cover over a reclaimed coal slurry impoundment.  The leaching experiments demonstrated

the oxidation of pyrite in the coal slurry solids in the alkaline solution generated by the FBC ash. 

Boron, Ni, Mo, Se and Sr were the trace elements reported in the leachate.  

Long term natural leaching of fly ash in field lysimeters was compared to batch

and column leaching tests (Hjelmar, 1990).  Soluble Na and K are initially leached from the ash

in the lysimeters; Ca and SO4 dominate the long term composition.  Only As, Cr, Mo, Se, and V

which form oxyanions are leached in the alkaline environment of the lysimeter.  In the column

tests, the concentration of Ca, SO4, K, Na, Mg, As, B, BA, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, V, Zn

decreased with increased L/S.  Similar results were found for the batch tests.  The cumulative

amount of an element leached versus the L/S ratio showed reasonable agreement for the

lysimeter and laboratory tests. 

In a comparison of acid and alkaline leaching, Teixeira et al (1992)found Ca and Mg to

be the most soluble major elements in both methods.  Although less soluble than Ca and Mg, Na

and K were slightly more soluble in the alkaline solutions.  They suggest that the major elements

were present as soluble oxides or sulfates.  The trace elements, Mn, Ni, Co, and Cu, were more

soluble in acid solution.  The elements forming oxyanions, Mo, Cr, and V, were more soluble in

alkaline leachates.  The solubility of all the trace elements measured was less than 20 %.  They
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associated the solubility of the trace elements with concentration on the surface of the fly ash

particle.

Paul et al (1994) compared the results of shake tests (TCLP and ASTM) with column

leaching to estimate the release of metals from CCB to be used as backfill in an abandoned

surface mine.  Three materials were tested: a type F fly ash from Illinois coal, an unoxidized

scrubber sludge; and an oxidized scrubber sludge.  The column leaching solution was natural

groundwater obtained from an upgradient well near the site.  They determined that the

concentration of Ag, As, and B and Cr were comparable in the shake tests and the column

leaching test.  More Mo was released in the column test than in the shake tests, and the

concentration of several elements in the leachate was less than that in the groundwater applied to

the column samples.  The shake tests were not well correlated with the column leaching results,

which was assumed to be more representative of field leaching conditions.  

The acid-leachable concentration of Cd, Cr, An, Pb, Hg and Ag from coal fly ash

was compared to that from MSW ash (Fleming et al, 1996).  For both materials, an increase in

the concentration of the metals was correlated to a decrease in the pH of the leachant.  The oxide

mineralogy of the ash, the spatial distribution of the oxides and the diffusion of hydrogen ions

into the ash, as well as the concentration of metals in the ash are believed to control the

concentration in the leachate.  

Metals in sulfuric acid solution at pH of 4 or 1 were equilibrated with samples of fly ash,

fluidized bed ash and hydrated fly ash (Karapanagioti and Atalay, 1996).  Metals normally

present in AMD (Fe, Mn, Zn, Al, and Mg) were preferentially adsorbed on the alkaline CCB

material while the pH of the solution was above 4.  Adsorption, which was attributed to

interaction with layer silicates and oxides of Fe , Al and Mn, was not significant when the
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solution pH was 1.  At low pH, adsorbed Fe was released into solution and other cations were

released into solution.  The buffering capacity  of PC fly ash and FBC ash was related to the

concentration of Ca in the ash.  The release of Na, Ni, Mg, Pb, Mn, Cu, Zn, Al, Fe, and Cr were

usually below detection levels until the buffering capacity of the sample was exceeded.  The

release of Ca wan not pH dependent, but was believed to be related to the concentration of Ca in

solution.  

A 4-year column study of coal ash blended with coal refuse determined the long term

effect of alkaline ash on acid formation (Stewart, 1996; Stewart et al, 1997).   The purpose of

blending the materials was to determine if the fly ash could buffer the acidity normally produced

from the coal refuse.  The pH of the leachate from the columns containing both materials was

between 6 and 8 for the duration of the trial.  In contrast the pH of the unamended refuse was

below 2 within 3 months.  The concentration of heavy metals in the leachate from the blended

sample was generally less than 10 % of that from the control.  In a similar study with a larger

column, Stewart (1995) related the effectiveness of the fly ash co-disposal with mine spoil to the

amount of ash needed to maintain an alkaline environment.  Sufficient alkalinity could limit the

oxidation of pyrite in the coal refuse.  Metal release was related to low pH leachate.

Fly ash collected at different points in the exhaust gas stream was designated as an

“upstream” and “downstream” sample (Fishman et al, 1997).  The upstream samples contained

more coarse material but had less sulfur that the downstream samples.  After 18 hr leaching tests,

the pH of the downstream leachate was lower, and the concentrations of Al, and K higher. The

downstream ash spheres were observed to have a thicker coating of soluble poorly crystalline

aluminum potassium sulfate (APS).  It was hypothesized that the increase in APS coatings was
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related to the decrease in temperature between the two sampling sites.  The lower temperature

allowed for a greater condensation of aerosols in the exhaust gas stream.  

Steenari et al (1997) studied fly ash samples from the combustion of 3 fuels in a

circulating fluidized bed (CFB). Quartz and minor amounts of feldspar were present in the ash. 

Ca was present as an oxide, sulfate and carbonate.  Hydration reactions may produce ettringite,

portlandite and calcite.  They found over 80 % of the Ca to be soluble in acid, but less Ca was

leached from ash that had been wetted prior to leaching, possibly due to the formation of

ettringite.  Less than 20 % of the K was leached from the fly ash samples, and it was slightly

more soluble in water than in acid.  The lower solubility of alkali metals was attributed to their

occurrence in clay minerals.  

Water soluble components from samples of Turkish lignite fly ashes were used to

improve the removal of sulfur from unburned lignites (Yaman & Kucukbayrak, 1997).  Five or

40 g samples of fly ash were extracted in an autoclave with 200 mL of distilled water.  The

extract was added to a 5 g lignite sample which was also heated in an autoclave.  The fly ash

extract increased the removal of sulfur from 41.8 % to 50.4 % of the total sulfur.  The alkaline

fly ash extract apparently neutralized the sulfuric acid normally produced in the

oxydesulfurization procedure.  

The mechanism and kinetics of aluminum and iron dissolution from fly ash were studied

by Seidel and Zimmels (1998).  The amount of soluble Al and Fe was related to the amount of

fly ash in the leaching solution, but the rate of dissolution decreased with time in a static

leaching system.  Less than 30 % of the Al and Fe in the ash was leached during the 12 day test,

and the amount leached decreases with increased amounts of fly ash in the solution. They

described the leaching of coal fly ash particles as a shrinking core model in which the formation
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of a porous layer of calcium sulfate inhibits solubility.  Diffusion through this layer becomes the

rate controlling step.  In acidic leaching of coal fly ash, the leached concentration of Al, Fe, Si,

and Ti reached a maximum within one hr.  Approximately 70 % of the Fe and Mg in the ash was

leached, but less than 30 % of the Al and Si was dissolved from the ash.  Over 90 % of the

calcium and the trace elements, As, Cd, Cr, Cu, Hg, Pb and Zn were extracted from the ash at a

pH of less than 1.  Less than 20 % of the trace elements were extracted during 3 months in water,

and the concentration of these elements was below detection limits during  extended leaching of

the residual acid leached ash.

The ability of FBC ashes and an FGD material to reduce the solubility of heavy metals in

hazardous waste was evaluated (Pritts et al, 1999).  The by-products contained a minimum of

10% unreacted lime.  Mixtures of ash, waste and water were prepared; the release of heavy

metals from the mixtures was evaluated with TCLP.  For almost all the 50/50 mixtures of waste

and CCB, the concentration of RCRA metals in the leachate was below the detection limit.  The

effectiveness of the stabilization was attributed to pH control, metal precipitation, micro-

encapsulation or surface passivation.

The leaching of trace elements from coal and CCB have been related to kinetically rapid

reactions such as hydrolysis of oxides, dissolution of surface coatings, and precipitation of

oxyhydroxides (Rice et al, 1999).  Slow reactions are dissolution of minerals, such as clays and

quartz.  The release of Ca and sulfate from coal was related to the presence of pyrite, sphalerite

and calcite.  Trace element leachability was attributed to their association with sulfide minerals. 

The pH of the leachate was the controlling factor, as was the presence of a aluminum potassium

sulfate (APS) coating on some fly ash particles.  The coating is adsorbed on glassy particles and

is readily soluble.  Sulfuric acid, produced in flue gas from the reacion of SO2 and H2O, reacts
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with the surface of the glassy spheres to produce the APS.  The trace elements, Cd, Co, Cu, Mn,

Ni, Pb, and Zn were acid leachable, while As, Mo, and V were more soluble in leachates with a

more alkaline pH.  

In a kinetic experiment, (Seidel et al, 1999), the dissolution of Al from fly ash was shown

to be slower than the dissolution and precipitation of calcium sulfate.  Precipitation on the

surface and within the pores of the particle inhibit the solubility of Al; pre-leaching with HCl to

remove soluble Ca was found to increase the solubility of Al. 

Querol et al (2001)compared the extraction of water soluble major and trace elements in

open and closed systems for 6 fly ash samples from Spain.  They assumed that heavy metals

would be more mobile in open leaching systems than in closed leaching systems due to the loss

of alkalinity in open systems.  At equivalent volumes, the extraction yields appear to be similar

for both systems.  With continued leaching in the open system, the extraction yields increase for

most elements.  The results were considered consistent with the dissolution of small solid

particles or with coatings on particle surfaces rather than the dissolution of a homogeneous glass

phase.  

Leaching experiments were conducted on fly ash collected from an ESP and the results

compared to trace element concentrations in influent and effluent surface water at a coal-fired

power plant (Dreesen et al, 1977).  More than 30 pct of the As, B, Cd, F, Mo, and Se was

extracted in the strongly acid solutions.  From 10 to 30 pct of the Cr and V was extracted and

between 1 and 10 pct of the Be, Cu, and Zn in the acid solutions.  Only Mo was released at

greater than 10 pct in the basic solution.  The concentrations of As, B, F, Mo, SE, and V were

elevated in the ash pond effluent compared to the intake water.
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Theis and Wirth (1977) suggested that crystalline compounds, such as mullite, hematite

and magnetite, on the surface of amorphous ash particles controlled the release of trace metals. 

Ammonium oxalate was used to extract trace metals associated with amorphous oxides of iron,

aluminum and manganese from the fly ash particles.  Hydroxylamine hydrochloride at a pH of 3,

was selective for manganese oxides.  Based on the amount extracted with either of the leachant

solutions, As, Cr, Cd, and Zn were associated with the Fe oxides.  The ions Cd and Ni were

associated with manganese oxides and Pb was associated with both.  Since the leachants used

solubilize only surface metals, comparison with a HF/aqua regia digestion was used to

characterize the fraction of metals concentrated on the fly ash surface. On average, 93 pct of the

As was on the surface, but less than 50 pct of Cd, Cr, Cu, Pb, Ni and Zn were believed to sorbed

on the surface oxides.  In an experiment in which the ash samples were placed in water at

various pH values, all of the trace metals, except As, were more soluble in acid solutions.  

Samples of FA from an ESP and from an ash pond were leached for up to 6 months in

distilled water (Talbot et al, 1978).  The initial pH of all samples was between 10 and 12.  In an

open system it decreased to about 8.5 within 1 week and remained stable for the duration of the 

month experiment.  Under a nitrogen atmosphere to exclude CO2, the pH was above 11 for at

least one month.  The concentrations of dissolved Al, Si, Fe Cd, P, Ca, and Na were relatively

constant (10-3 M or less) for all samples for the duration of the experiment.  The concentration of

Mg increased by more than an order of magnitude at a constant rate, and the concentration of K

increased sharply toward the end of the experiment.  There was no apparent difference between

the ponded and fresh samples.  Most of the elements were assumed to be oxides or carbonates on

the surface of ash particles that dissolved  immediately, while MgO was relatively inert.  The

major elements, Fe, Al, and Si, were most soluble at low pH, although Al and Si showed
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increased solubility at high pH.  The solubility of Ca, Mg and Na showed little dependence on

pH below a value of 10.  At the isoelectric pH of ~7.55, hydrous oxides of Al and Fe, with the

aluminosilicate matrix control the surface characteristics of the FA particle.  The solubility of Ca

and Mg is believed to be controlled by carbonate and oxide phases.  Dissolved K and Na appear

to be controlled by a feldspar or mica-type solid phase.  The relationship with solid phases

formed on the surface of the ash particle under metastable equilibrium conditions controls the

dissolved components.  

In a long term leaching experiment, fly ash samples were placed in small cylinders and

continuously leached for up to two years (Dudas, 1981).  In the initial leaching period, maximum

concentrations of dissolved Ca, Na, SO4, and OH were observed at high pH. Levels of dissolved

Al, Mg and K were initially low.  The solubility profile of SO4 approximated that of Ca; levels of

OH, HCO3, and CO3 ions reflected the decrease in pH.  Ca, B, Sr, and V were found to be

preferentially leached from the fly ash.   The concentration of Fe, Cd, Co, Pb and Zn in the ash

showed relatively little change during the leaching experiment.  The initial release of ions was

attributed to the dissolution of simple inorganic salts, followed by the slow dissolution of the

glassy ash matrix.  

Fly ash samples derived from Illinois Basin coals were equilibrated with DI water to

simulate the conditions in ash pond environments (Roy and Griffin, 1984).   In both acid and

alkaline solutions, anhydrite solubility dominated the Ca concentration.  Aluminum was found to

be in equilibrium with both mullite and insoluble aluminum hydroxide phases.  Aqueous silica

concentrations were controlled by mullite and matrix silicates.  The pH of acidic FA solutions

was related to the formation and adsorption of sulfuric acid.  The pH of the alkaline ash solutions

was above 10 throughout the experiment due to the hydrolysis of matrix oxides.  
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In a review by Mattigod et al (1990), batch extractions with water were found to mobilize

< 10 pct of major elements except for Ca, Na and S.  The pH of the extracting fluid changed over

time, tending to a circum neutral pH at equilibrium.  Column studies of FA samples indicate that

Ca, Na, K and S (as sulfate) are released initially at high concentrations that decline rapidly to a

steady state value.  Other elements, like Al, may exhibit delayed leaching.  Negligible amounts

of Fe, Mg, Si and also Al, are released, even in acidic leachants.  However, the data are highly

variable and cannot be used to predict field leachate concentrations.

In a similar review of minor elements (Eary et al, 1990), found that these tended to be

more soluble in acid than in water.  They attributed this to the distribution of minor elements in

primary oxides which are more soluble in acids.  Elements predicted to exist as soluble oxides

and salts on particle surfaces (B, Cd, Cu, Mo, Se and Zn) appear to be more readily leached.  In

aqueous solutions, the pH, a function of the alkali and alkaline earth oxides in the ash, was the

master variable that controlled the leaching characteristics of the FA.  Many of the minor

elements may exist in more than one oxidation state, and both the oxidation state and the ligand

in a secondary solids were expected to affect the solubility of minor elements in FA. 

Field Tests

Power plant fly ashes were placed in mined out areas of the Wujek mine in Silesia

(Cempiel et al, 2000).  In static tests, stored ashes contained approximately 5 % soluble chlorides

and sulfates.  The weathered ash contains 10 times more soluble components than the original

ash, apparently adsorbed from the mine water.  Similar results were obtained when the ashes

were leached by a dynamic method.  The concentration of Zn, Pb, Ni and Cr in the leachate was

greatest on the first day of leaching.  Concentrations of Cd and Cu were below detection limits in

all leachate samples.  The concentration of these elements is higher in the unamended mine
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water.  When the mine water was used to leach the ash from the mine, the concentration of trace

elements in the leachate decreased, although the concentration of major cations and anions

increased.    

In Illinois, Colorado and Ohio, test cells were constructed to hold 700 to 1000 t of by-

products from Clean Coal Technology processes.  Relatively high precipitation and the porosity

of the CCB compared to the low permeability of surrounding soil facilitated leaching within the

cells.  There was no apparent change in the chemical composition of the ash with time, but

anhydrite was apparently converted to gypsum in a short period of time.  Over a 4 year period,

the amount of gypsum decreased and the amounts of thaumasite and ettringite increased.  The

concentration of Na, K, Cl, SO4 decreased with time in the cell pore water.  The Ca

concentration remained relatively constant.  The pH and K concentration increased

approximately 50 cm below the interface between the cell and the soil.  The concentration of all

the listed elements decreased with depth in the cell.  

To evaluate the effect of fly ash injection on AMD, water quality was monitored at three

reclaimed surface mines (Bognanni, Fran and Pierce) where a fly ash grout was injected into

subsurface areas believed to be zones of acid production (Ackman et al. 1996).  At these three

sites, when mining was completed, overburden spoil was covered with a variable thickness of

soil, then planted with grass.  However, water, either from precipitation or infiltrating

groundwater, apparently  reacted with buried pyrite to produce AMD.  The injection of the

alkaline fly ash grout was tried as a relatively simple method to neutralize existing acid and to

reduce the rate of acid formation.  The objective at all three sites was to determine if this method

was applicable as a single permanent treatment for AMD control.
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Water samples were collected at outflows, from boreholes within injection areas, and

from boreholes in ungrouted control areas for a year or more before the injection of the grout,

and for a year or more after grout injection.  In addition to the before and after comparison,

inflow and discharge samples were also compared, as were samples from the grout injection

areas and from ungrouted control areas.  

The Bognanni site is a 14.6 ha reclaimed strip mine in Greene County, PA (Kim &

Ackman 1994).  The depth of buried spoil ranges between 5 and 15 m, averaging about 10 m,

under 2 m or less of vegetated cover.  If it is assumed that the porosity of the material is 20 %,

the pore volume in the 10 m of spoil above the pit floor is estimated as 7,500 m3.  Terrain

conductivity (Ackman & Cohen 1994) indicted that  groundwater flow at the site was  from east

(the area of a buried highwall) to west through the reclaimed area to a seep approximately 70 m

south of the site boundary.  Thirty-four wells were used for injection, with the majority of these

located in a 1.2-ha central section of the reclaimed area.  Nine monitoring wells are located in

the grouted area and four wells are in spoil areas that were unaffected by grout injection. 

Additional monitoring points are the Inflow and the discharge point, labeled the Seep. The seep

is outside the target area and drains portions of the reclaimed mine that were unaffected by grout

injection. At the Bognanni site, the grout was prepared with water from the AMD treatment

system and AMD treatment sludge or lime waste (which consists of about 30 pct unused lime). 

Three fly ashes were used, two from conventional power plants and one FBC ash.  The amount

of fly ash injected into a single hole varied between 0.4 and 41 m3 with an average of 5.5 m3.  On

a volume basis, fly ash constituted less than 6 pct of the injected grout, and the 192 m3 of fly ash

is equivalent to less than 5 pct of the estimated pore volume in the 1.2 ha section.  The fly ash

grout was pumped to refusal at a maximum pressure of 3.5 kg/cm2.  The water entering the
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Bognanni site had an average pH of 7 and contained 2 ppm total iron, 1 ppm aluminum, 35 ppm

sulfate, less than 1 ppm barium, and approximately 0.1 ppm each cobalt, chromium, nickel,

antimony and zinc (Kim & Ackman, 1995).  The pH of the water decreased to 5 where it entered

the reclaimed area (Inflow), then decreased to almost 3 within the spoil. Prior to grouting, the

water at the seep had a pH of 3.2.  In 3 years after grouting, the pH of water at the seep increased

to 3.3, slightly higher than the pH in the ungrouted area.  The concentrations of ferrous and total

iron, calcium, magnesium, aluminum, sodium and manganese tended to be higher in the grouted

area than in the control area.  The increase in the concentrations of calcium, magnesium and

aluminum in the spoil area after grouting may be due to the presence of lime and AMD sludge in

the grout. In the grouted area, the average total iron concentration remained almost constant

before and after grouting, but the proportion of ferrous iron decreased.   At the seep, the

concentrations of ferrous and total iron decreased after grouting, but the proportion of ferrous

iron remained constant.  The concentrations of ferrous and total iron, magnesium, aluminum, and

manganese at the seep all decreased by approximately 35% after grouting. Trace element

analysis indicated that barium (Ba), present in the incoming water, was not detected at the seep .  

Only the concentrations of cobalt (Co), nickel (Ni), selemium (Se)and zinc (Zn) were greater

than 1 mg/L.  The difference in the concentrations in areas grouted with CCB or FBC fly ash

was less than 0.5 mg/L. At the seep, the concentration of these metals were less than average 

concentrations in the ungrouted control area.

The Fran site is a 15 ha reclaimed strip mine in Clinton County, northern Pennsylvania. 

Discrete piles of tipple refuse or pit cleanings are believed to be buried beneath spoil of pyritic

shale and sandstone (Schueck et al. 1996).  Geophysical techniques were used to estimate the

location of the buried refuse and the direction of water flow.  Infiltrating precipitation is believed
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to flow through the area and then leave the site either through a seep or through fractures in the

pit floor.  Forty-two monitoring wells were drilled on and adjacent to the site.  Water samples

were also collected at surface discharges 66 m south of the site.  For this site, values are averages

of all samples for the ungrouted area (Spoil), for the area where grout was placed (Injection), for

the area that would have been affected by water from the injection area (Downdip), and for the

seep (Discharge 1) and fractured area (Discharge 2).  At the Fran site, a grout of fluidized bed

combustion (FBC) ash and water (1 m3/800 L) was injected into pods of refuse in order to divert

water   from the acid-producing materials.  The same grout mixture, which formed a low-

strength cement, was used to cover the piles of buried coal refuse and to seal fractures in the pit

floor.  Grout was pumped to refusal in 650 holes, averaging 3 to 9 m in depth.  The total of 3440

m3 of injected grout is the equivalent to 4 % of the total volume of voids.  At the Fran site, water

samples were collected on a fairly regular basis before and after grouting.  These are grouped as

before (1990), immediately after (1992) and more recent (1994).  The pH increased in samples

from the injection area, the downdip areas, and from two discharge areas.  The pH of water in

the untreated spoil also increased immediately after injection, but then decreased.  The acidity

decreased in all areas, except in the untreated spoil.  The pH of the discharges at less than 3 and

acidity exceeding 2000 ppm indicate that the site continues to produce a significant amount of

AMD. In 1994, average concentrations of arsenic, cobalt, copper, nickel and zinc were higher  in

the injection area than in background areas.  However, the concentrations in downdip and

discharge samples were closer to those in the ungrouted spoil.  

The Pierce site is a 6 ha section of a 32 ha reclaimed surface mine in Upshur County,

West Virginia (Hawkins et al. 1991).  The spoil contained  part of the Lower Kittanning coal

seam, gray carbonaceous shale and a gray sandstone.  Within the injection area, 15 monitoring
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wells were drilled and cased with PVC pipe.  Water samples were also obtained at a discharge

point at the edge of the reclaimed area.  At this site, monitoring wells are grouped as Inflow,

Injection for the grouting area, Downdip for the area receiving water from the grouted area,

Spoil for the ungrouted area, and Seep for the discharge.  The values for each set are averaged

for:  1989, pre-grouting; 1990, immediate post-grouting; and 1995, later post grouting.  The

grout used at the Pierce site was a mixture of 375 g of cement and 750 g of fly ash per L of

water.  A total of 380 m3 of grout was injected through 62 cased wells, primarily in two areas

near the buried highwall.  The volume of injected grout is comparable to less than 1% of the

estimated void volume at the site.  At the Pierce site, water samples were obtained monthly prior

to grouting (1989) and immediately after grouting (1990).  During 1995, water samples were

collected at 3 month intervals.  The average pH of the water in the injection area decreased in the

year after injection, but had increased when the water was sampled five years later.   Similar

changes in average pH were observed in the samples from areas downdip of the injection area

and at the discharge point.   However, the water entering the site (inflow) and in the ungrouted

spoil area also had a higher average pH in 1995.  Acidity, measured as ppm of CaCO3, decreased

in the injection area, as well as in the inflow and discharge samples.  In the untreated spoil area,

acidity increased.  Although water quality improved at the discharge point, a pH less than 4 and

an acidity of approximately 100 ppm indicate continued release of AMD.  Trace element

concentrations, determined in 1995, were higher in the injection, downdip and discharge samples

than in inflow or ungrouted spoil samples.  Only the concentrations of cobalt, nickel and zinc

exceeded 0.2 mg/L; all values were less than freshwater aquatic life criteria.

The porewater from borehole samples of fly ash in the unsaturated zone of a disposal

mound was analyzed to investigate the long term natural weathering (Lee and Spears, 1997).  
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The concentration of Al, Na, Ca, SO4, B, Co, Cr, Li, Mo, Ni, Pb ans Sr increased with depth, a

result considered to be consistent with continued FA weathering.  The pH of the porewater was

between 7.88 and 8.94, but showed no consistent variation with depth.  The concentration of Ba

was almost constant and was thought to have achieved equilibrium with the a sulfate phase.  The

Ca and S in the FA was depleted near the surface.  The concentrations of Cu, Mn, Ni, Pb, and Zn

are lower near the surface.  No significant change was detected in the mineralogy of the samples. 
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Appendix E

Methods of Analysis
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Each fly ash sample in this experiment was sent to a commercial laboratory for total solid

analysis.  The fly ash samples were dissolved by triple acid digestion in HF, HNO3 and H3BO4. 

The laboratory indicated that the major and minor elements were determined according to

ASTM D3682, and trace elements were analyzed according to ASTM D 3683, except for Se

which was determined by ASTM 4606.   However, in these methods, the analysis is by AA; the

actual analysis was performed with ICP-AES. 

The leachate samples were sent to an on-site contractor laboratory for analysis.  Their

QA/QC Methods are essentially those in Standard Methods for the Examination of Water and

Waste Water, APHA.  For each set of 7 samples, 1 method blank,1 method standard, 1 duplicate

sample, 2 calibration standards ,and 1 known addition are run.  Values of standards must agree

within 2% of the known values.  

The samples were also analyzed at the NETL on-site laboratory.  They were digested

according to EPA 3051, microwave digestion in HNO3, and EPA 3052, microwave digestion in

HF, and analyzed by ICP-AES.  The 3052 analysis is considered the total concentration,

including silicate compounds, while the 3051 analysis give the non-silicate concentration.    

Microwave digestions were performed in triplicate, and the average of the three analytical values

is the concentration in the solid.  At the time the microwave digestions, some of the samples had

been consumed in previous tests.  Blank lines in these tables indicates that sufficient sample was

not available for the digestion and analysis.  Concentrations below the detection limit are

indicated as “<IDL”.  Limits of detection are listed in Table E-1

The fly ash samples were sent to a commercial laboratory for x-ray diffraction (XRD)

analysis.  According to their  data, the sum of the major mineral phases is approximately 100 %

for most samples.  This result seems odd for fly ash samples which are known to contain about
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40 - 60 % amorphous material that would not be detected by XRD.  The laboratory explained

that they quantified the mineral concentration by adding the intensities of the strongest peak for

each mineral and then calculating the mineral phase as the intensity of the peak for each mineral

divided by the total.  They effectively normalized the data to the percentage of the mineral phase

instead of the percentage of the sample.  This approach was confirmed when the laboratories

data was compared to raw and normalized data for several samples that had been analyzed at

NETL.    XRD of samples like fly ash is inherently imprecise because of the high amorphous

content.  It was known that XRD would not detect minerals that were present in concentrations

of less than 2 % , and that substitutions of trace elements in crystal lattices of major minerals

could not be detected.  This analysis is therefore considered a qualitative indication of the

presence of certain minerals.  

The samples were also analyzed for size distribution, specific gravity, and organic carbon

content. The average physical properties of the class F PC fly ash samples for this project are

summarized in Table E-2.
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Table E-1.  Limits of Detection

Element Solid, mg/kg
ASTM 3683

Leachate, mg/L
ICP-AES

As <50 <0.08

Ba <50 <0.015

Be <0.05 <0.002

Cd <1 <0.006

Co <10 <0.006

Cr <100 <0.006

Cu <50 <0.006

Ni <100 <0.010

Pb <1 <0.080

Sb NA <0.080

Se <1 <0.200

Zn <1 <0.018

NA: Not analyzed
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Table E-2.  Physical properties of class F PC fly ash samples used in this test.

Moisture SpGravity Organic C Particle Size Distribution D50

% % gravel, % sand, % silt, % clay, % :m

Mean 5.33 2.32 4.57 0.00 15.95 74.78 9.27 32.70

Median 0.31 2.32 3.34 0.00 11.95 76.45 7.15 22.80

Maximum 43.80 2.56 16.72 0.00 76.50 87.90 21.20 217.00

Minimum 0.00 2.01 0.00 0.00 3.40 21.50 0.30 13.70

Gravel: >2 mm
Sand >0.05 mm
Silt: >.0002 mm
Clay: <0.002 mm
D50 median particle size, determined for each sample
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