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Longitudinal censoring is a common artifact when evaluating biomarkers and an obstacle to 

overcome when jointly investigating the longitudinal nature of the data and the impact on the 

survival prognoses of a study population. To fully appreciate the complexity of this scenario one 

has to devise a modeling strategy that can simultaneously account for (i) longitudinal censoring, 

(ii) outcome dependent dropout, and potentially (iii) correlated biomarkers. In this thesis we 

propose a novel joint modeling approach to account for the aforementioned issues by linking 

together a univariate or multivariate Tobit mixed effects model to a suitable parametric event 

time distribution. This method is significant to public health research since it enables researchers 

to evaluate the evolution of the disease process in the presence of complex biomarker data where 

there may be censoring, correlation, and outcome dependent dropout.  This approach allows for 

the analysis of data  in a single unified framework. The performance of the proposed Joint Tobit 

model will be compared to the commonly used "fill-in" methods for censored longitudinal data 

in a joint modeling framework. Furthermore, we will show that the implementation of our 

proposed model is fairly straightforward in commercially available software, thus avoiding the 

complexity and problem specific nature of the expectation maximization (EM) algorithm. 
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1.0  INTRODUCTION 

“A characteristic that is objectively measured and evaluated as an indicator of normal biologic 

processes, pathologic processes, or pharmacological responses to a therapeutic intervention”, is 

the current NIH (National Institutes of Health) definition for a biomarker. Biomarkers are 

frequently used in biomedical studies as standalone predictors or to augment current prediction 

models. Their precise measurement is then of utmost importance regarding their appropriateness 

for use as clinical predictors of disease.  However due to the sensitivity of the measuring 

instruments it is common to measure biomarkers subject to a detection limit (DL). This infers 

that, at best, our precision is limited to an interval above or below such detection limits and is 

commonly referred to as left or right censoring.  Alternatively it may be that the values we seek 

to use were generated by a biological model and results in impossible or implausible values. In 

circumstances such as the latter, censoring occurs artificially as investigators typically use their 

subject matter knowledge of the process to replace these values by a lower or upper limit 

respectively.  For example, censoring, is an issue in all scientific disciplines from the assessment 

of HIV1 RNA levels or Viral load (Hughes et al, 1999)[1], quantitative measurements of 

environmental factors (Lubin et al, 2004) [2], to linkage analysis of censored trait data (Epstein 

et al, 2003) [3].  

We encountered data produced by both censoring mechanisms from two different studies. 

Censoring due to measurement precision was encountered in the Genetic and inflammatory 

markers of sepsis (GenIMS) study (Kellum et al, 2007) [4]. This was a cohort study investigating 

the association between severe sepsis, brought on by community acquired pneumonia, and 
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consequent risk of death. The investigators collected data on plasma necrosis (TNF) levels, IL6 

(interleukin6), and IL10 (interleukin10) levels daily for the first week and weekly thereafter with 

90 day survival as the primary endpoint. Left and right censored measurements on IL6 and IL10 

accounted for 27% and 70% of the data respectively.  

Censoring due to modeling was encountered in the HEMO study [5], which was a large 

randomized clinical trial of dialysis dose and membrane flux carried out at 15 clinical centers 

between 1995 and 2001. The clearance values were derived from kinetic models and frequently 

produced negative values and clearances outside of normal biological limits.  Oftentimes the 

impossible / implausible values are replaced by an arbitrary constant or even discarded resulting 

in biased analyses.  

A typical hypothesis relevant to both scenarios is whether these censored longitudinal 

values are associated, either singly or jointly, with survival.  Thus the analytical framework 

utilized must be able to account for (a) outcome dependent dropout, (b) longitudinal censoring, 

and potentially correlated biomarkers in one unified model. This thesis will therefore outline the 

use of a joint model to account for the aforementioned issues but can also be looked at as a novel 

way to incorporate longitudinally censored covariate(s) into a survival model. 

To our knowledge no one has, as yet, accounted for a doubly censored covariate in a 

survival analysis by joint modeling. Also since Tobit regression models have long been used to 

model censored data, this thesis will discuss the current methods for survival and longitudinal 

data analysis and ultimately investigate the feasibility of jointly analyzing survival and doubly 

censored longitudinal data using a Joint Tobit model. We will also discuss current joint modeling 

methodology and the implementation of this model in commercially available software. 
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Specifically, the joint Tobit model we propose will be composed of separate sub-models. 

The longitudinal sub-model will consist of a univariate or multivariate linear mixed effects Tobit 

model and is intended to account for the longitudinal censoring. The time to event sub-model can 

be any parametric form but for ease of exposition will be considered to be an exponential model.  

We can envisage the issues in a more precise manner by looking at what the separate sub-models 

were designed to do. The longitudinal sub-model is used to capture all of the information in a 

longitudinal fashion but assumes MCAR (missing completely at random) or MAR (missing at 

random) but yields biased results in the presence of outcome dependent dropout. This is where 

the reason for missing data is due to some feature of the outcome process. The limitation of the 

survival model is that it is typically designed for a single and fixed covariate value. Time 

dependent covariates can be handled via a time dependent Cox model but this method 

unfortunately does not account for longitudinal censoring. Thus better methods can be developed 

by taking the best of what both of the sub-models have to offer. The question then becomes how 

we combine these disparate models.  We intend to combine or “link” the two models by 

assuming that the hazard is a function of the longitudinal trajectory and as such share the same 

set of random effects. These shared random effects and their respective parameters will capture 

the association between the two sub-models due to the inclusion of a random intercept, slope, 

and fitted trajectory at the event time. An optional orthogonal frailty can be added to introduce 

heterogeneity in survival sub-model. The estimation will be done by maximization of the 

proposed joint Tobit likelihood in SAS PROC NLMIXED which is one of the strengths of this 

proposal in that we aim to avoid the complexities of programming a problem specific EM 

algorithm for parameter estimation and turn to a more flexible and commercially available 

alternative. 
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2.0  REVIEW OF CLASSICAL MODELS 

2.1 SURVIVAL ANALYSIS 

2.1.1 Notation 

Survival data for the ith individual can be conveniently represented by ( ), , , 1i i iT x i nδ =  . Here 

iδ  is a censoring indicator ( iδ =0 if the ith individual is censored: iδ =1 if the ith individual 

failed), iT  is the corresponding event or failure time, and ( )'
1 2,,

i i i inx x x x=   is a vector of 

baseline covariates associated with the ith individual.   

2.1.2 Likelihood for Right Censored Data 

Given that ( )'
1 2,,

i i i inx x x x=  and the pairs ( ), , 1i iT i nδ =  , are independent, the likelihood of 

the data ( ), , , 1i i iT x i nδ =  , conditional on ( )'
1 2,,

i i i inx x x x=   can be expressed as: 

( ) ( ) ( )1
1

, ,i i
n

i i
i

L f t S tδ δ−

=

∝∏ i iθ θ,x θ,x
.
 2.1 

The contribution to the likelihood is the probability density function ( ), ,i if t xθ for a failure and 

survival distribution ( ), ,i iS t xθ  for censored time.  
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The contribution for an individual censored at it  is ( )Pr : ,i i iT t x θ> . It is often convenient to 

express the likelihood in terms of the hazard. Using basic survival quantities, the likelihood 

above can be expressed in terms of the hazard as: 

( ) ( ) ( )
1 0

, exp
i

i

tn

i
i

L h t h u duδ

=

 
∝ −  

 
∏ ∫iθ θ,x  2.2 

2.1.3 Common Parametric Survival Distributions 

If one is willing to accept a distributional form for the generated data, then the only requirement 

is that the survival distribution be bounded between 0 ( )( )0S ∞ =   and 1 ( )( )0 1S = . Some, of 

the more frequently used, common survival distributions are given below (see Klein and 

Moeschberger for a more extensive list) [6]. 

 

Distribution Hazard Rate Survival Function Density Function 

Exponential λ  exp( )tλ−  exp( )tλ λ−  

Weibull 1tααλ −  exp( )tαλ−  1 exp( )t tα ααλ λ− −  

Figure 1. Common Parametric Survival Distributions 
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2.1.4 Proportional Hazards Models 

Developed by D.R. Cox in 1972 the proportional hazards model is the most widely used analytic 

tool for survival analysis but is oftentimes misused and / or misunderstood. For example, given a 

simple treatment and control group, the ratio of their hazards ( )
( )

Trt

Ctrl

h t
h t

Ψ = is assumed to be 

constant over time but this assumption is too often ignored or even checked prior to analysis. The 

class of accelerated failure time models is an alternative when the proportionality assumption 

does not hold and diagnostic tests have been developed to assess this assumption [6][8]. Since 

this ratio is non-negative, it is current convention to modelΨ , using covariates, as 

( ) ( )0 expih t h= '
iβ x

.
 2.3 

In this formulation the baseline hazard corresponds to the control group when 0ix =  and to the 

treatment group when 1ix = . The form of the hazard can be fully parametric, or left unspecified 

[8]. In order to estimate the parameter vector β, Cox avoided the need to specify the baseline 

hazard and maximized his now famous partial likelihood (2.4) 

( ) ( )
( )

'

'
1

exp

exp
j

D
i

j j
j R

L

ε
=

=∏ ∑
β x

β
β x  2.4 

which is now a function only of the covariates and their corresponding regression parameters. 

The partial likelihood (2.4) above can be extended to include time dependent covariates and 

reformulated as 
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( )
( )( )
( )( )

'

'
1

exp

exp
j

D i j

j j j
j R

t
L

t
ε

=

=∏ ∑
β x

β
β x , 2.5  

which can be maximized by iterative techniques, such as the Newton Raphson algorithm. This 

would imply complete knowledge of the covariate at each unique event time. This assumption is 

an issue when one would wish to include a covariate measured longitudinally over time and 

examine its effect on mortality. This issue will be revisited in the section on joint modeling.  

2.1.5 Frailty Models 

Duchateau et al [8] mention that the term ‘frailty’ was first used in gerontology and indicates that 

the more frail individuals have a greater risk of morbidity and death. Frailty is also defined as an 

individual level effect but is often used to describe an effect that is particular to a specific cluster, 

such as hospitals within a multicenter trial for example.  Frailty can also be thought of as a 

random effect which describes the underlying heterogeneity in the population of interest.  Klein 

et al [6] define frailty s being an “unobservable random effect shared by subjects within a 

subgroup” and that the most common model is one where the common random effect acts 

multiplicatively on the hazard rates of the members of the subgroup. This would imply that 

members with large frailty values experience the event earlier than those with smaller values.   

Klein et al [6] refer to the common use of the aptly named “shared frailty model”, which is an 

extension of the proportional hazards model. They assume that the hazard for the jth subject in 

the ith subgroup, given the frailty, is defined by: 

( ) ( ) ( )'
0 exp , 1 , 1ij i ij ih t h t w i G j nσ= + = =β Z    ,     2.6 
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where ( )0h t is an arbitrary baseline is hazard rate, ijZ is a vector of covariates, β  the vector of 

coefficients, and 1 Gw w  the frailties. They assume that the frailties are from some distribution 

with mean zero and variance 1 and 2.6 reduces to the proportional hazards model when 0σ = .  

         An-alternative form for 2.6 is  ( ) ( ) ( )'
0 exp , 1 , 1ij i ij ih t h t w i G j n= = =β Z    . In this form 

it is clearly seen that when 1iw > individuals within a given group tend to fail quicker than those 

with 1iw < , under the assumed independence model 1iw = . Since the iw ’s are unobserved the 

joint distribution of the individuals within a group is found by taking the expectation of 

( )
1

exp
in

ij
j

H t
=

 
− 
 
∑  and is given by:  

( ) ( ) ( ) ( )1 1 1 0
1

exp
i

i i i

n

i in i i in in ij
j

S x x P X x X x LP H x
=

 
= > > =  

 
∑ '

ijβ Z   , 2.7 

where LP is the Laplace transform of the frailty. Some common distributional forms for the 

frailty are the one parameter gamma distribution, the inverse Gaussian distribution, and the log-

normal distribution. Estimation of parameters in the semi-parametric model uses an EM 

algorithm as opposed to maximum likelihood estimation in the parametric models and is very 

computer intensive in either case. [6] 
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2.2 LONGITUDINAL MIXED EFFECTS MODELS 

Laird and Ware [9] comment that the “defining feature of longitudinal studies is that 

measurements on the same individual are taken repeatedly through time”.  They also state that 

the primary goal of any longitudinal analyses is to capture the change in a response over time. 

Since repeated measurements are taken on an individual we can also capture the within subject 

change but this requires any modeling technique to be able to account for the correlation between 

the measurements.  The sampling unit does not necessarily have to be the individual and there 

may be many levels of clustering. For example we may take measurements on siblings within a 

family, hospital wards within a hospital, and students within classrooms within schools. In any 

case we expect that measurements within a cluster are more closely related than measurements 

between clusters. For the remainder of this discussion we will assume that the sampling unit is 

the individual and we are interested in average changes, as well as, individual changes over time. 

2.2.1 Notation 

Let ijY  be the response for the ith individual ( )1i N=   at the jth measurement occasion

( )1 ij n=  . The in measurements can be arranged within a 1in x  vector

1

2

i

i
i

in

Y

Y
Y

Y

 
 
 =  
 
  


 and denoted 

by
1

''
2ii i inY Y Y Y =   for convenience. Each response is associated with a 1px vector of 
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covariates

1

2 1 ; 1

ij

ij
ij i

ijp

X

x
X i N j n

Y

 
 
 = = = 
 
  

 


 at each occasion ijY  and these can be grouped into a 

in xp covariate matrix 

11 12 11

21 22 22

1 2

1

i i ii

T
i i i pi

T
i i i pi

i

T
in in in pin

X X XX
X X XX

X i N

X X XX

 
 
 = = = 
  
 






   



.Since our main interest is 

in how the mean response changes over time and how these changes depend on covariates, the 

individual level mean response is denoted by ij ijE Yµ  =   . This notation will suffice until 

expanded upon in subsequent sections. (See Laird and Ware [9] for a more detailed description) 

2.2.2 Marginal Models 

Marginal models, or population averaged models, are marginal in that the mean response 

depends only on the covariates of interest and not on any random effects. This differs from 

mixed effects models where the dependence is on the covariates plus a vector of random effects. 

Marginal models are widely used in the biomedical sciences and are very flexible in that they 

require no distributional assumption for the vector of responses, only a model for the mean 

response. Avoiding distributional assumptions for the response leads to the estimation methods, 

proposed by Liang and Zeger in 1986, called Generalized Estimating equations (GEE) [10].   

They extended the quasi-likelihood score equation: 

( ) ( )1

1
0 1

k
i

k i i i
i k

S v y k pδµβ µ
δβ

−

=

= − = =∑  , 2.8 

to longitudinal data via the multivariate extension of 2.8: 
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( )( )( )
1

/
k

i
i

i

δ φ
δ=

− =∑ 1/2 1/2
i i i i

k

μ A R α A y μ 0
β . 2.9 

Here ( )iR α is a i in xn  fully specified “working correlation” matrix with sx1 vector of parameters

α , ( )( )/iV φ= 1/2 1/2
i i iA R α A is the “working covariance matrix for iy  , iA is a i in xn diagonal 

matrix consisting of a function of the mean ( )ijg µ  along the main diagonal, and φ  is a scaling 

factor. The term “working” is used to imply that the model assumes that the form of the 

covariance may not be correctly specified. [10] 

 Even though 2.9 is a function of , , andα β φ , it can be expressed as a function of β alone 

by inserting consistent estimates of andα φ into 2.9. In the limit rβ


is the consistent estimate of 

the solution to 2.10 via iteratively weighted least squares (see McCullagh and Neder 1983) [11] 

( )( )( )
1

/
k

i
i

i

δ φ
δ=

− =∑ 1/2 1/2
i i i i

k

μ A R α A y μ 0
β


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The strength of the GEE method is that it is robust to the choice of the “working” correlation 

structure and only requires that the mean response be correctly specified. This robustness 

property holds if there is a decreasing number of missing data or if the data is missing at random. 

[12] 

 

2.2.3 Generalized Linear Mixed Effects Models 

In section 2.2.2 we introduced the marginal model, via GEE, to account for within subject 

correlation. It was shown that the marginal model was robust to misspecification of the “working 
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correlation” structure as the models for the mean and covariance are modeled separately. 

Another way to account for the within subject correlation is to introduce subject specific random 

effects. Even though the GEE and random effect approaches both account for the within subject 

correlation, the interpretation of the estimated coefficients are entirely different.  [9] The random 

effects can be thought of as reflecting heterogeneity in a study population due to unmeasured 

factors and typically come from a multivariate distribution. Conditional on these “random 

effects”, the repeated measurements within an individual are assumed to be independent 

observations from a distribution belonging to the exponential family. This is referred to as the 

“conditional Independence assumption”. 

The linear mixed model can be thought of as an extension to a generalized linear model 

with fixed and random effects and requires a three part specification [9]. 

1. The conditional distribution of Yij ,given a qx1 vector of random effects bi, belongs to the 

exponential family, ( ) { }| |ij i ij iVar Y b v E Y b φ =   is a function of the conditional mean, 

and given bi the Yij
s are independent. 

2. The conditional mean depends on fixed covariates and random effects through the linear 

predictor: ' '
ij ij ij iX Z bη β= + with ( ){ } ' '|ij i ij ij ij ig E Y b X Z bη β= = +  for some link function,   

g (.).      

3. The random effects are assumed to have a distribution but are commonly assumed to be 

multivariate normal with zero mean and qxq covariance matrix G and independent of the 

covariates. 
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In vector notation the linear mixed model can be expressed as: 

i i i i iY X Z bβ ε= + +
, 2.11 

where the β’s are the regression coefficients for the fixed effects (same for all 

individuals), and the subject specific effects (random effects), bi, are the deviation from the 

overall population mean trajectory for an individual. A distinguishing feature of the mixed 

effects model is that it generates simple expressions for the conditional mean response (subject 

specific)  

[ ]|i i i i iE Y b X Z bβ= +  2.12 

and the marginal mean response (averaged over all individuals), 

[ ]i iE Y X β=
. 2.13 

The β’s therefore have marginal interpretations (population averaged) with respect to their 

relationship to covariates.  

The conditional covariance of the response given the random effects bi is assumed to be 

diagonal with: 

( ) ( ) 2|
ii i i i nCov Y b Cov e R Iσ= = =  2.14 

The marginal covariance of the response (the covariance of deviations from the ith individual’s 

response from the population mean 2.13) is given by: 

( ) ( ) ( )

2
i

i i i i

T
i i i

T
i i n

Cov Y Cov Z b Cov e

Z GZ R
Z GZ Iσ

= +

= +

= +
 2.15 
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This is not a diagonal matrix and illustrates how the introduction of random effects induces 

correlations, marginally amongst the Yi’s. This correlation can also be thought of as a natural 

consequence of “sharing” a set of underlying random effects. 

The betas in generalized linear mixed models have a different interpretation than in 

marginal models. Marginal models address changes in the mean response and how covariates 

affect these changes whereas the betas in conditional models address how a “specific” subject’s 

mean response changes and how covariates affect these “specific” changes. 

2.2.4 Estimation in Generalized Linear Models 

In contrast with marginal models the joint distribution of the vector of responses and the vector 

of random effects are fully specified so inference and estimation can be based on the likelihood 

function. The joint distribution of the response Yi and the random effects, bi can be written as 

( ) ( ) ( )|i i i i if Y b f Y b f b=  where ( ) ( ) ( ) ( )1 1 2 2| | | |
i ii i n nf Y b f Y b f Y b f Y b=   (conditional 

independence assumption). In addition, ( )|i if Y b  is assumed to be from the exponential family of 

distributions and ( )if b is assumed to have a multivariate distribution with zero mean and 

covariance matrix G. In practice the random effects are unobservable so inference about β and G 

is based on the marginal or integrated likelihood function: 

( ) ( ) ( )
1

, , |
N

i i i i
i

L G f Y b f b dbβ φ
=

=∏∫ , 2.16 

The likelihood in 2.16 is obtained by integrating out or averaging over, the unobserved 

random effects bi. This results in the marginal likelihood which does not depend on the 

unobserved bi’s but only on their covariance G and on β and φ. The maximum likelihood 
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estimates are simply the estimates of G, β and φ that maximize 2.16 but unlike the linear mixed 

model case has no closed form solution. The likelihood in 2.16 is approximated by a technique 

known as Gaussian Quadrature which replaces the integral in 2.16 by a weighted sum: 

( ) ( )
11

, , |
N K

i i i k
ki

L G f Y b v wβ φ
==

≈ =∑∏  2.17 

The quadrature points (weights, wk, and evaluation points wk, are chosen to give the 

desired accuracy but there is a tradeoff between accuracy and runtime which has to be taken into 

account. Increasing the number of quadrature points substantially increases the computational 

burden and this grows exponentially with the number of random effects in the model. In most 

cases the time expended collecting data far exceeds the computational time so it is recommended 

that the quadrature points be increased until there is little or no change in the parameter 

estimates. Since the random effects are subject specific effects they can be predicted via: 

| , , ,i i ib E b Y Gβ φ =  
   

 2.18 

This is known as the empirical best linear unbiased estimator or EBLUP with G, β, and φ, 

replaced by their respective maximum likelihood estimates , ,Gβ φ
  

. Since ib


 is a conditional 

mean it also means that there is no analytic solution and so numerical techniques must also be 

employed.  

For the family of generalized linear mixed models we assumed that the random effects bi 

follow a multivariate normal with zero mean and covariance matrix G. In practice however it is 

very difficult to assess this normality assumption from empirical data. It is known that the 

predicted random effects in 2.18 are heavily influenced by the normality assumption and 

therefore cannot be used to assess the normality assumption. On the other hand, the fixed effects 
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are very robust to misspecification of the random effects but are sensitive to violation of the 

independence between the random effects and the covariates X.  

2.3 TOBIT MODEL 

First formulated in 1958 by James Tobin [14], the Tobit model postulates a latent or 

unobservable variable y* which depends linearly on a set of covariates Xi by the parameter vector 

β.  The observed variable yi is equal to y* if y* > τL and τL otherwise.  τL can be any real number 

but in the traditional Tobit model it is usually set to zero.  Mathematically this is illustrated as 

follows: 

* *

*

 if   y 0
0    if   y 0

i
i

i

y
y

 >
= 

≤
 2.19 

The likelihood for the traditional Univariable Tobit model can be written in standard form as: 

1

1

1 1
i id dN

i

i

Y X XL β βφ
σ σ σ

−

=

 −      = −Φ          
∏

.
 2.20 

with the log likelihood function given by 

( )1
ln ln ln 1 ln 1N i i i

i ii

y X XL d dβ βσ φ
σ σ=

  −      = − + + − −Φ       
       

∑
 
2.21 

The first part of the likelihood (2.20) is the regular density function and picks up contributions 

from uncensored observations (di=1). The second part is the cumulative distribution function and 

picks up contributions from censored observations (di=0). 

The Tobit model formulation can be extended to arbitrary upper and lower censoring 

limits as follows: 
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* *

*

*

 if  y

if         y

if         y

L i U

i L i L

U i U

y y y

y y y

y y

  
 
 

 

 

With log likelihood function: 

 

     

1
ln ln ln ln 1

L i U i L i U

T T T

i i L i U i

i y y y i y y i y y

y X y X y X
L

  


         

  
    

          
          
          

  
.
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where   is the standard normal density and   is the cumulative standard normal distribution 

function. The first part of the likelihood in 2.22 represents the contributions from uncensored 

values while the second and third parts represent the contributions from the left and right 

censored values, respectively. Even though the Tobit model is commonly used in censored data 

scenarios the assumptions have to be adhered to.  If the error tem is non-normal or 

heteroscedastic, then the maximum likelihood estimates will be biased. It is also assumed that the 

underlying data generating process that generated the censored values is the same process that 

generated the outcome variable. 

 

2.3.1 Tobit Mixed Effects Model 

Extending the Tobit model to repeated measures is relatively straightforward.  If we assume a 

random effects regression model and notation as outlined in Lyles et al [15]: 
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      (   )   ij i i ij ijY a b t eα β= + + + +  

Yij is jth measurement ( )  1ij it j n=   on the ith individual ( )1i k=  . The deviations around the 

slope bi and the intercept ai are distributed as ( )2~ 0,i aa N σ and ( )2~ 0,i bb N σ  respectively. The 

covariance between ai and bi is defined as ( ),i i abCov a b σ=  and ai and bi are independent of the 

errors ( )2~ 0,ij eNε σ . If we assume an upper detection limit as d1 and a lower detection limit as 

d0 then our 1in xY  vector of observations can be thought to consist of nid detectable values, and

0idn +
1idn undetectable values. The likelihood for the parameter vector ( )2 2 2, , , , ,a b ab eθ α β σ σ σ σ=

can be written, conditioning on the random effects as ( ) ( )*

1

, ,
k

i
i

L Y f Yθ θ
=

=∏   where 

( ) ( ) ( ) ( )* **( ;  ) = , , | , ,i i i i i i i i i i i i i if Y f Y a b da db f Y a b f a b f b da dbθ
+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

=∫ ∫ ∫ ∫ . The asterisk 

denotes that the vector Y may contain detectable and non-detectable values. These are non-

detectable values falling below the lower detection limit d0, above the upper detection limit d1, or 

detectable values falling in between d0 and d1. The 
0idn values falling below the detection limit 

d0 contribute ( )0 |i i iF d a b  to the likelihood. The 
1idn Values falling above the detection limit d1 

contribute ( )11 |i i iF d a b− and the 
0idn values falling in between d0 and d1 contribute ( )|ij i if Y a b . 

If we assume that the first idn  are detectable, the next 
0idn are below the lower detection limit, 

and the last 
1idn are above the upper detection limit then the complete likelihood can be written 

as  
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( )

( ) ( ) ( ) ( )
0

0

1

0 1
1 1

( ;  ) = | ,

* | , 1 | , |

id

id i

id id

n

i ij i i
j

n n

i i i i i i i i i i i
j n j n

L Y f Y a b

F d a b F d a b f a b f b da db

θ
+∞ +∞

=−∞ −∞

= + = +

 
 
 

    −  
    

∏∫ ∫

∏ ∏
2.23 

As Lyle et al [15] point out, when expressed this way, the likelihood can be passed to a suitable 

numerical optimizer after approximating the integrals using adaptive or non-adaptive quadrature. 



20 

3.0  JOINT MODELS 

3.1 BACKGROUND 

The clinical literature is replete with studies that simultaneously measure a covariate 

longitudinally and investigate its effect on time to event. The separate analyses of longitudinal 

and survival data is well understood but what is often overlooked is that these models can 

sometimes be associated and can produce biased estimates of treatment efficacy if this 

association is not taken into account.  Historically joint modeling is a way of accounting for this 

association.  

Tsiatis and Davidian [16], in their overview, mention that, traditionally, the association 

between the survival and longitudinal data is usually through the proportional hazards model 

( ) ( ){ }
( ) ( ){ }

1

0

0

lim | , ,

exp

H
i i i i idu

T
ii

u du pr u T u du T u X u Z

u X u Z

λ

λ γ η

−

→
= ≤ < + ≥

= +
   

3.1 

We can visualize the ideal observed data for each subject 1i n=  as consisting of

( ){ }, , , 0i i iT Z X u u > where T is the event time; Z is a vector of baseline covariates and 

( ){ }, 0iX u u > is the longitudinal trajectory and ( ) ( )( ),0H
i iX u X t t u= ≤ < is the longitudinal 

covariate history up to time u.  X (u) can be thought of as a time dependent covariate and 

association is through the estimation of γ. The above formulation seems straightforward but 
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assumes that the covariate history is available at all times u and is measured without error. In 

practice the covariate (i) may be measured at times ij it T≤ , (ii) we don’t observe the true 

covariate value ( )i ijX t  but rather ( ) ( )i ij i ij ijW t X t ε= +  and (iii) the event times T are not 

observed for all subjects. Also making inference on the longitudinal process is hampered by the 

time-to-event causing informative dropout. With these complications in mind it’s apparent that 

any statistical procedure must take into account the potential relationship between the survival 

and longitudinal processes. If our interest was on time to event and ( )iX u  was available for all

iu T≤ , then as Tsiatis et al [16] point out, “the main difficulty would be accounting for the 

censoring “and Inference, in the presence of censoring, can be achieved by turning to the Cox 

partial likelihood: 

( ){ }
( ){ } ( )1

1

exp

exp

i

Tn
i i i

n
Ti

i i i j i
j

X V Z

X V Z I V V

γ η

γ η

∆

=

=

 
 +
 
 + ≥ 
 

∏
∑

3.2 

Here iC is the censoring variable for subject I, ( )min ,i i iV T C= , and ( )i i iI T C∆ = ≤ . As was 

previously mentioned ( )iX u  is typically not available for all iu T≤ and so some authors turn to 

imputation. The last value carried forward (LVCF) is a popular, though naive, approach and 

replaces the covariate at the event time by its last available value but Prentice [17] showed that 

this leads to biased estimates. Other variations on the LVCF are nearest observed value (NV), 

Linear Interpolation, (LI) [18] and Last Value Auto Regressed (LVAR) [19].  

As Liu and Craig point out [19] the current methods in the literature include jointly modeling the 

survival and longitudinal components and this is usually done by assuming that the longitudinal 
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model follows a linear mixed effects model and that the survival model depends on the random 

effects from this process. Inference is then based on the integrated conditional joint likelihood 

where the random effects usually follow a multivariate normal distribution.  

The other variations on this joint modeling approach try to avoid specifying a distribution 

for the survival and/or longitudinal process or differ in the estimation process. Faucett and 

Thomas [20] use a linear mixed model and Bayesian methods for the parameter estimation. 

Henderson et al [21] use the EM (Expectation Maximization) algorithm, Xu and Zeger [22] use a 

latent variable approach and implement a Markov Chain Monte Carlo Algortihm for the 

estimation, and Tsiatis and Davidian [23] derived their conditional score estimator which 

requires no distributional assumptions on the random effects. De Gruttola and Tu [24] implement 

a fully parametric joint model by assuming that the survival and longitudinal processes follow a 

multivariate normal distribution or a 1:1 transformation of a multivariate normal distribution and 

estimation is via the EM algorithm. Brown et al [25] proposed a flexible B-Spline model when 

the longitudinal measures could not be well approximated by a multivariate normal distribution 

and linked the models through the proportional hazards model. Other, perhaps simpler, methods 

use the two stage approach where the true value of the covariate at the event time is estimated by 

a linear mixed effects model in the first stage and the best linear unbiased predictors (EBLUP’s) 

are then substituted into the hazards model in the second stage.  

From the above examples it is apparent that most of the methods for joint modeling are 

similar to each other, but differ in the parametric assumptions on the longitudinal models, 

survival models, or both, and in the estimation methods proposed. Irrespective of the methods 

employed what is clear is that ignoring the association produces biased estimation of the 

parameters involved and these methods, though arguably very complex and computationally 
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intensive, are used to obtain a better estimate of the possible treatment effects in the presence of 

this association. 

3.2 NOTATION 

The notation to follow will follow the excellent review of joint modeling outlined by Tsiatis and 

Davidian [16]. For subject , 1i i n=  , let Ti and Ci denote the event and censoring times 

respectively. Let Zi be q-dimensional vector of baseline covariates and let ( )iX u be the 

longitudinal process at time 0u ≥ . In practice we do not observe Ti but only min( , )i i iV T C= and 

( )i i iI T C∆ = ≤  and Xi(u) is measured at intermittent times , 1ij i it V j m≤ =   for each subject. 

The observed longitudinal data is, of course, subject to random error and so what we actually 

observe is ( ) ( ){ }1 i

T

i i i i imW W t W t=  which may not equal the true ( )i ijX t .  

A joint model is made up of two linked sub-models, one for the hypothesized “true” longitudinal 

process ( )i ijX t  and one for the failure time Ti. With the necessary specifications and 

assumptions, this allows a full representation of the joint distribution of the observed data 

{ }, , ,i i i i iO V W t= ∆ where { }1, ii i imt t t=   where the Oi’s are assumed to be independent.  It is 

usual to characterize the longitudinal model in terms of a vector of random effects αi. The true 

longitudinal model is often represented as follows: 

( ) ( )0 1 0 1, , T
i i i i i iX u uα α α α α= + =

. 3.3 
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where 0iα and 1iα are the intercept and slope, respectively. It is not necessary to restrict 

the trajectory to be linear and, in fact, the trajectory can be a flexible polynomial function such as

( ) 2
0 1 2

p
i i i i piX u u u uα α α α= + + + + . This can be written more generally as ( ) ( )Ti iX u f u α=

where ( )Tf u can be any function of time u. The random effects are usually assumed to be 

normally distributed to reflect inter-subject perturbations around the true longitudinal trajectory. 

For the event time process a proportional hazards model is posited as in 3.1 where 

dependence is on ( )iX u  and hence on the random effects ( )0 1, T
i i iα α α= . This then would imply 

that, given the longitudinal history and any covariates, that the hazard is associated with an 

assumed constant smooth trend. Since we don’t know the true “trend” we assume the observed 

data are as follows: 

( ) ( ) ( )i ij i ij i ijW t X t tε= +
.
 3.4 

Where ( ) ( )2~ 0,i ijt Nε σ are independent of the random effects iα and are interpreted as 

random fluctuations due to measurement error. As Tsiatis and Davidian [16] point out, 3.4, along 

with 3.3, specify a standard linear mixed model (see Laird and Ware 1982) [27]. 

Let δ denote the parameters in the multivariate normal distribution ( ),| ;i ip Zα δ  then the 

usual form of the joint likelihood for the full set of parameters ( )( )2
0 . , , , ,λ γ η σ δΩ = given Zi is 

( ) ( ){ } ( ) ( ){ }

( ) ( ){ }
( )

0 0
1 0

2

/22 2
1

exp exp exp

1* exp | ;
(2 ) 2

i i

i

i

Vn
T T

i i i i i i
i

m
i ij i ij

i i im
j

V X V Z u X u Z du

W t X t
p Z d

λ γ η λ γ η

α δ α
πσ σ

∆

=

=

 
 + − +     

 − − 
  

∏∫ ∫

∑
3.5 

and is the basis for statistical inference (see [16] for details and derivation). 
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4.0  ACCOUNTING FOR A DOUBLY CENSORED LONGITUDINAL COVARIATE 

IN SURVIVAL ANALYSIS VIA JOINT MODELING. 

4.1 INTRODUCTION 

Joint modeling is becoming increasingly popular in the literature particularly when the 

hypotheses of interest are in (a) accounting for a time dependent covariate in a survival model 

that is measured with error, (b) adjusting longitudinal inferences in the presence of outcome- 

dependent dropout, or (c) understanding the association between a longitudinal and time to event 

outcome [27]. The naïve imputation  methods that were popular prior to Prentice’s exposition 

[17], showing that joint modeling reduces the bias in the estimates, have taken a back seat and 

emphasis is on making current joint modeling methods more accessible and applicable to a 

myriad of real life data analysis scenarios. 

The basic idea behind joint modeling is to assume that the “true” longitudinal trajectory 

follows a linear mixed model [27] with random intercept and slope and that the observed data is 

then modeled as a function of these random effects plus measurement error. The longitudinal and 

survival processes are then “linked” by assuming that the hazard is a function of this “true” 

longitudinal trajectory [16]. 
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Carlin et al, in their 2004 paper [26] outline the method proposed by Henderson et al [21] 

who developed a joint model flexible enough to include fixed effects, random effects, serial 

correlation, measurement error, and, in the absence of association, returns the same estimates as 

if separate models were run. Their main idea is to “link” the survival and longitudinal processes 

via a latent bivariate Gaussian process and to assume that the survival and longitudinal models 

were independent given this process and available covariates. 

Another issue which can further complicate the use of joint modeling methodology is 

when the longitudinal outcome is subject to censoring. This censoring can be due to natural or 

somewhat unnatural detection limits. Natural detection limits arise due to the operating 

characteristics of a measurement instrument whereas unnatural detection limits can arise due to 

an investigator arbitrarily imposing restrictions on a measurement due to a perceived biological 

implausibility. The resulting data is then referred to as being right or left censored. This means 

that data above or below the detection limits are replaced by these lower and upper limits 

respectively. 

Two popular methods of accounting for censoring are the so called “fill in” [2] and Tobit 

methods [14]. The “fill in” method replaces the censored data by a function of the respective 

detection limits and then employs regular regression, whereas the Tobit method accounts for the 

censoring by constructing the appropriate likelihood. This likelihood is a product of a 

distribution for the censored and uncensored observations respectively. The resulting maximum 

likelihood estimators are then less biased [2] than when ignoring the censoring as in the “fill in” 

methods. 
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Carlin et al (2004) [26] implemented a variation on Henderson et al’s joint modeling 

approach in SAS NLMIXED and WINBUGS. This paper seeks to modify Carlin et al’s approach 

in SAS NLMIXED to account for left and right censoring in the longitudinal model. The 

censoring will be accounted for by assuming a linear mixed Tobit model for the longitudinal 

process, and, for ease of exposition, an exponential distribution will be assumed for the event 

time process. To compare the Tobit based joint model to the “plug in” joint model methods, 

simulation studies will be conducted with levels of censoring varying from 20-60% and with 

sample sizes of 100, 250, 500, and 1000.  

4.2 NOTATION 

The following notation will follow that of Carlin et al [26]. Assume a set of m subjects are 

followed over an interval [0, τ] who possibly contribute partially missing data { }, 1ij iy j n=  at 

times { }, 1ij is j n=  and a censored survival time ti. The longitudinal data will be assumed to 

follow the popular linear mixed model 

( ) ( )1ij ij ij i ij ijy s W sµ ε= + +
.
 4.1 

( ) ( )1 1
T

ij ij is X sµ β=  is the mean response, ( ) ( )1 1
T

i ij i iW s d s U= , are subject specific random 

effects, and ( )2~ 0,ij eNε σ  are measurement errors. In this model ( )1i ijW s is assumed to be the 

true trajectory, ( )1 1
T
iX s β are available covariates which may or may not be time varying, and β 

are the corresponding coefficients. The Ui’s are a set of random effects which are typically a 

subset of ( )1
T
iX s , and are assumed to be ( )0,N Σ iid random variables. This assumption will not 
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be investigated in this paper since Rizopoulos et al [29] discovered that misspecification of the 

random effects distribution has little to no effect on parameter estimates and standard errors. 

The survival model is typically assumed to be either non parametric or parametric but 

since Hsieh, Tseng, and Wang [28] discovered that leaving the baseline hazard completely 

unspecified results in underestimated standard errors of the estimates, in this paper we will 

assume an exponential distribution such that the hazard, conditional on a set of covariates plus a 

frailty, can be written as: 

( ) ( ) ( )( )2 2 2exp T
i i it X t W tλ λ β= +

,
 4.2 

where ( )2iX t denotes the available covariates and their regression coefficients, respectively and 

( )2iW t is a frailty and similar in form to 1iW .  

The joint model can be constructed by assuming that there is dependence between the 

variables ( ) ( )1 2,i iW t W t thus linking the longitudinal and survival processes. When association 

exists, the estimators should be more efficient and less biased. Carlin et al link the survival and 

longitudinal models as follows: 

( )

( ) ( )

1 1 2

2 1 1 2 2 3 1 2 3

i i i

i i i i i i

W s U U s
and
W t U U U U t Uγ γ γ

= +

= + + + +
.

4.3 

( )1iW s  can be recognized as the usual Laird and Ware formulation of a random intercept and 

slope model. The parameters { }1 2 3, ,γ γ γ capture the association between the two models by the 

random intercepts, slopes, and fitted longitudinal value at the event time. The random variables
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{ }1 2, T
i iU U are assumed to be zero mean bivariate Gaussian ( )0,N Σ , while 3iU are frailty terms 

orthogonal to{ }1 2, T
i iU U and are iid ( )2

30,N σ . 

4.3 JOINT TOBIT LIKELIHOOD 

Let θ be the unknown parameter vector, and Y* and N the longitudinal and event time 

distributions respectively where Y*indicates that the nix1 vector yi
*contains censored and 

uncensored values. The likelihood L=L (θ, Y*, N) can be constructed by assuming that ( )2iW t is 

proportional to ( )1iW t and that the survival and longitudinal models are independent given ( )2iW t

.  Then the joint likelihood L (θ, Y*, N) can be obtained by factoring the conditional likelihood 

L|W2 as follows: 

( ) ( ) ( ) ( ) ( ) ( )
2 2

* * *
2 2 2 2 2 2 2; ; ; ;, , , | | |

w w

L Y N L Y N W L W dw L Y W L N W L W dwθ θ θ θθ = =∫ ∫
  
4.4 

( ) ( )* *
22; | ;| i i

j
p y wL Y W θ θ=∏  4.5 

Hence the contribution of the ith subject to the joint log-likelihood can be expressed as: 

 ( ) ( ) ( ) ( )
2

* *
2 2 2 2log | ; ; ;, , |i i

jw

p y wL Y N L N W L W dwθ θ θθ
 

=  
 
∏∫

             
4.6 

The Tobit likelihood ( )*
2| ;i i

j
p y w θ∏ can be written in a linear mixed model form as: 

( ) ( ) ( )
0

0

2 2 0 2 1 2
1 1 1

( | ;  ) = | | 1 |
idid i

id id

nn n

i i i i i i i i
j j n j n

L Y W f Y W F d W F d Wθ
= = + = +

     −   
     

∏ ∏ ∏
   

4.7 
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The first part of the likelihood in 4.7picks up contributions from the nid uncensored values, and 

the second and third part pick up contributions from nid0 and nid1 values censored from below and 

above respectively. The exponential survival likelihood ( )2;|L N W θ  can be written as a product 

of the hazard and the cumulative hazard as follows: 

 ( ) ( )( )2 1 1 2 2 3 1 2 32; exp| T
i i i i iX U U U U s UL N W θ λ β γ γ γ= + + + + +   

4.8 

and ( )2;L W θ is the multivariate normal density for the random effects. 

4.4 SIMULATION OUTLINE 

This simulation study will compare the Tobit and “Fill-In” joint models to account for a doubly 

censored covariate in a survival model as in Henderson et al [21]. For the longitudinal and 

survival sub-models we will focus on the random effects γ1*u1+γ2*u2 + u3 as γ3*(u1+u2*t) is 

the fitted longitudinal value at the event time and thus implies knowledge of the survival times a 

priori.  

The longitudinal model was taken to be: 

 11 12 13 1 2t tY t X U U tβ β β ε= + + + + +  

X~N (0, 1) and n=6 measurements at t=0, 0.5, 1, 1.5, 2, and 3 units. The true parameter values 

for the longitudinal data generation were { }11 12 130.25, 0, 1, 1ε β β β= = = = with covariance matrix

0.5 0 0
0 1 0
0 0 0.25

U

 
 Σ =  
  

. The event times were generated from the model: 

( ) ( )0 21 1 1 2 2 3( ) expt t X U U Uα α β γ γ= + + +  
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The exponential baseline hazard ( )0 tα was λ=0.8 and exponential censoring hazard was λ=0.2, 

as this gave approximately 40% drop out by time 1, and 70% drop out by time 3. The true 

parameter values for the survival data generation were{ }21 1 21, 1.5, 1.0β γ γ= = − = − .  

Each simulation was run N=1000 times with sample sizes {100, 250, 500, 1000) with censoring 

percentages {20%, 40%, 60%}. The estimates for the joint models were obtained from SAS 

PROC NLMIXED with options ABSGCONV=1E-05 TECH= TRUREG and QPOINTS=3. 

Simulations were initially run with a single quadrature point but then increased to three for better 

parameter estimates and coverage probabilities. 

4.5 SIMULATION RESULTS 

The Tables, 4.1-4.3, below are a representative sample of the simulations that cover the 

censoring range of 20-60%. In all cases the joint Tobit model is relatively unbiased, has smaller 

variance, and exhibits better coverage probabilities than the fill in methods regardless of the 

censoring proportion. In all cases it appears that the fill in methods exhibit poorer coverage 

probabilities, larger variances, and biases, as the proportion of censoring increases. The good 

performance of the Tobit joint model may be attributed to the fact that we generated data 

conforming to the assumptions for the Tobit model. These assumptions are (i) the data come 

from a normal distribution and (ii) that the error variances are homogenous. How the Tobit 

model would perform if these assumptions are violated is to be considered subsequently. 
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Table 4.1. Simulation results (20% Censoring, N=1000, n=250) 
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Table 4.2: Simulation Results (40% Censoring, N=1000, n=250) 
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Table 4.3: Simulation Results (60% Censoring, N=1000, n=250) 
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4.6 SENSITIVITY 

As was mentioned earlier the simulation results show that the joint Tobit linear mixed model 

seemed to perform better than the “fill-in” methods irrespective of the proportion of censoring. 

The results to follow investigate how robust the Tobit model is to the assumptions of normality 

and homogenous variance. For the normality assumption we generated from a mixture of 

multivariate normal distributions and a multivariate T distribution.  For the normal mixture 

distribution a Bernoulli (0, 1) random variable was generated with probability p. The data from 

the true distribution of the response variable was polluted with p% from a secondary multivariate 

normal distribution (MVN) with mean β+c and common covariance ∑.  

We also generated data from a multivariate T distribution with degrees of freedom 

ranging from 1-5, with the same mean, and covariance matrix as the true distribution of Y. This 

was to see what would happen to our estimates if we assumed a normal distribution with some 

mean and covariance when the data actually came from a T distribution with those same 

parameters. The assumption of non-constant variance was assessed by adding a small constant to 

one or more of the diagonal elements of the true covariance matrix, ∑, then fitting a model which 

assumes homogenous variances.   

Tables 4.4 and 4.5 below show that with 20% pollution, and a mean deviation of β+0.5 

from the truth does not impact the estimates or the coverage probabilities to any serious extent. 

However in tables 4.6 and 4.7 we can notice that as the proportion of pollution increases the bias 

tends to increase and coverage probabilities decrease. 
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Table 4.4. Mixture of Normal’s with 20% pollution, 20% Censoring and c=0.5 

 
 
 

Table 4.5. Mixture of Normal’s with 20% pollution, 60% Censoring and c=0.5 

 

 

 

 

 

                                           Mean 
                                          Joi nt                      bi as       Tobi t  
          Obs    par amet er      t r ue       Tobi t     VARJNTTOBI T      Tobi t      Cover age 
 
            1       bL0        0. 00     0. 03901      0. 003185     0. 039007      89. 73 
            2       bL1        1. 00      1. 0668      0. 019042     0. 066819      93. 96 
            3       bL2        1. 00      1. 0461      0. 003568     0. 046059      87. 71 
            4       bs0        0. 80      0. 8109      0. 013609     0. 010861      94. 96 
            5       bs1        1. 00      0. 9937      0. 018782     0. 006269      95. 77 
            6       r 1        - 1. 50     - 1. 5064      0. 062573     0. 006377      95. 17 
            7       r 2        - 1. 00     - 0. 9653      0. 031469     0. 034702      96. 68 
            8       s11        0. 50      0. 5053      0. 005954     0. 005259      95. 57 
            9       s22        1. 00      0. 9617      0. 045584     0. 038278      96. 58 
           10       s33        0. 25      0. 2982      0. 033595     0. 048226      96. 29 
           11       se         0. 25      0. 2545      0. 001407     0. 004548      94. 76 

                                           Mean 
                                          Joi nt                      bi as      Tobi t  
          Obs    par amet er      t r ue       Tobi t     VARJNTTOBI T     Tobi t      Cover age 
 
            1       bL0        0. 00     0. 03029      0. 004786     0. 03029      92. 35 
            2       bL1        1. 00      1. 1033      0. 024561     0. 10325      92. 25 
            3       bL2        1. 00      1. 0487      0. 006116     0. 04868      92. 15 
            4       bs0        0. 80      0. 8130      0. 013224     0. 01302      95. 47 
            5       bs1        1. 00      0. 9999      0. 022231     0. 00006      94. 36 
            6       r 1        - 1. 50     - 1. 5665      0. 091605     0. 06649      97. 08 
            7       r 2        - 1. 00     - 0. 9597      0. 067260     0. 04026      96. 58 
            8       s11        0. 50      0. 4862      0. 010270     0. 01380      97. 38 
            9       s22        1. 00      0. 8941      0. 097054     0. 10586      93. 25 
           10       s33        0. 25      0. 3038      0. 035798     0. 05378      97. 26 
           11       se         0. 25      0. 2726      0. 002952     0. 02264      94. 86 
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Table 4.6. Mixture of Normal’s with 40% pollution, 20% Censoring and c=0.5 

 

 

Table 4.7. Mixture of Normal’s with 40% pollution, 60% Censoring and c=0.5 

 

 

 

 

 

 
                                             Mean 
                                            Joi nt                      bi as      Tobi t  
            Obs    par amet er      t r ue       Tobi t     VARJNTTOBI T     Tobi t      Cover age 
 
              1       bL0        0. 00      0. 1664      0. 00621      0. 16639      43. 27 
              2       bL1        1. 00      1. 2500      0. 04255      0. 24998      79. 18 
              3       bL2        1. 00      1. 1823      0. 01047      0. 18225      57. 14 
              4       bs0        0. 80      0. 8070      0. 01119      0. 00697      96. 73 
              5       bs1        1. 00      0. 9679      0. 02213      0. 03212      93. 06 
              6       r 1        - 1. 50     - 1. 3837      0. 11705      0. 11630      90. 20 
              7       r 2        - 1. 00     - 0. 8589      0. 26812      0. 14106      93. 47 
              8       s11        0. 50      0. 5369      0. 01676      0. 03688      95. 92 
              9       s22        1. 00      0. 9076      0. 15627      0. 09244      93. 06 
             10       s33        0. 25      0. 4263      0. 04473      0. 17626      89. 87 
             11       se         0. 25      0. 2975      0. 00467      0. 04748      92. 65 

 
                                           Mean 
                                          Joi nt                      bi as      Tobi t  
          Obs    par amet er      t r ue       Tobi t     VARJNTTOBI T     Tobi t      Cover age 
 
            1       bL0        0. 00      0. 1912      0. 003171     0. 19115      10. 25 
            2       bL1        1. 00      1. 2358      0. 026971     0. 23583      68. 44 
            3       bL2        1. 00      1. 2145      0. 004641     0. 21451       8. 20 
            4       bs0        0. 80      0. 8130      0. 014545     0. 01298      94. 67 
            5       bs1        1. 00      0. 9790      0. 022521     0. 02097      93. 03 
            6       r 1        - 1. 50     - 1. 2144      0. 045389     0. 28564      69. 67 
            7       r 2        - 1. 00     - 0. 8912      0. 047475     0. 10876      93. 03 
            8       s11        0. 50      0. 6240      0. 007852     0. 12403      68. 03 
            9       s22        1. 00      1. 0337      0. 056073     0. 03368      94. 67 
           10       s33        0. 25      0. 5162      0. 056427     0. 26622      75. 00 
           11       se         0. 25      0. 2576      0. 001497     0. 00763      93. 85 
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Tables 4.8 and 4.9 below are a sample of the results from when we generated data from a 

T distribution with varying degrees of freedom and longitudinal censoring with an assumed 

normal model. We tended to see most of the distortion in parameter estimates, biases, and 

coverage probabilities when the degrees of freedom were low but as the degrees of freedom 

increased these estimates tended to move towards the true values and nominal coverage. This is 

to be expected since as the degrees of freedom increase the T distribution tends towards a normal 

distribution and we should see results similar to our main proposed model simulations. 

Table 4.8. T Distribution with 1df, 20%Censoring, and c=0.5 

 

 

 

 

 

 

 

 

 
                                        Mean 
                                       Joi nt  
       Obs    par amet er      t r ue       Tobi t     bi ast obi t     VARJNTTOBI T    t obi t cover age 
 
         1       bL0        0. 00     0. 05937     0. 05937       0. 01243          93. 06 
         2       bL1        1. 00      0. 9961     0. 00394       0. 05805          93. 98 
         3       bL2        1. 00      0. 9783     0. 02170       0. 01147          94. 30 
         4       bs0        0. 80      0. 8102     0. 01024       0. 01381          94. 81 
         5       bs1        1. 00      1. 0027     0. 00271       0. 02198          93. 69 
         6       r 1        - 1. 50     - 1. 4429     0. 05707       0. 56272          76. 62 
         7       r 2        - 1. 00     - 0. 8925     0. 10746       0. 15958          93. 26 
         8       s11        0. 50      0. 6881     0. 18809       0. 17316          77. 70 
         9       s22        1. 00      1. 0497     0. 04967       0. 17007          93. 68 
        10       s33        0. 25      0. 3823     0. 13228       0. 05877          91. 90 
        11       se         0. 25      2. 4657     2. 21571       0. 48795            .  
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Table 4.9. T Distribution with 15df, 20%Censoring, and c=0.5 

 

 

Tables 4.10 and 4.11 below are results from simulations in which we generated data from a 

model with a diagonal covariance matrix but perturbed the [1, 1], [3, 1], and [6, 6] elements by 

adding a constant C. This was done to violate the homogenous variance assumption. 

We can see that when 3 elements of the covariance matrix differ from the truth by 0.1 

(40%) the standard error estimate increases by about 20% and its coverage drops to ~75%. Most 

other estimates seemed stable except the s33 component which measures the variance of the 

orthogonal frailty. This seems to follow the general pattern of the proposed model simulation as 

this component tended to be estimated well when the sample size was large.  We see similar 

results to those already discussed when we longitudinally censor the data at 60% (Table 4.11). 

 

 

 

                                             Mean 
                                            Joi nt                      bi as      Tobi t  
            Obs    par amet er      t r ue       Tobi t     VARJNTTOBI T     Tobi t      Cover age 
              1       bL0        0. 00    - 0. 00586      0. 00459      0. 00586      96. 00 
              2       bL1        1. 00      1. 0705      0. 02662      0. 07047      93. 56 
              3       bL2        1. 00      1. 0080      0. 00641      0. 00800      95. 11 
              4       bs0        0. 80      0. 8053      0. 01108      0. 00533      96. 44 
              5       bs1        1. 00      1. 0257      0. 02285      0. 02574      94. 44 
              6       r 1        - 1. 50     - 1. 6079      0. 10583      0. 10790      95. 78 
              7       r 2        - 1. 00     - 0. 9705      0. 07850      0. 02948      98. 22 
              8       s11        0. 50      0. 4787      0. 01190      0. 02128      95. 33 
              9       s22        1. 00      0. 8847      0. 09311      0. 11533      94. 00 
             10       s33        0. 25      0. 2898      0. 03256      0. 03977      97. 33 
             11       se         0. 25      0. 3044      0. 00423      0. 05444      86. 00 
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Table 4.10. Normal Distribution with unequal variances, and C=0.1. 

 

 

Table 4.11. Normal Distribution with unequal variances, C=0.1 and 60% censoring 

 

 

 

 

 

 

                                    Mean 
                                    Joi nt                      Bi as      Tobi t  
    Obs    par amet er      t r ue       Tobi t     VARJNTTOBI T      Tobi t      Cover age 

             1       bL0        0. 00    - 0. 00297      0. 003514     0. 002970      94. 78 
             2       bL1        1. 00      1. 0275      0. 016382     0. 027525      97. 59 
             3       bL2        1. 00      1. 0068      0. 003766     0. 006842      95. 18 
             4       bs0        0. 80      0. 8181      0. 012841     0. 018141      93. 17 
             5       bs1        1. 00      0. 9941      0. 018938     0. 005897      93. 57 
             6       r 1        - 1. 50     - 1. 4182      0. 060804     0. 081841      91. 16 
             7       r 2        - 1. 00     - 0. 9735      0. 029858     0. 026527      96. 79 
             8       s11        0. 50      0. 5345      0. 007594     0. 034495      91. 97 
             9       s22        1. 00      0. 9364      0. 036332     0. 063636      95. 98 
            10       s33        0. 25      0. 2904      0. 032689     0. 040412      97. 37 
            11       se         0. 25      0. 3012      0. 001735     0. 051150      75. 10 

                                             Mean 
                                            Joi nt                      bi as      Tobi t  
            Obs    par amet er      t r ue       Tobi t     VARJNTTOBI T     Tobi t      Cover age 
 
              1       bL0        0. 00    - 0. 01178      0. 00550      0. 01178      93. 95 
              2       bL1        1. 00      1. 0698      0. 03184      0. 06983      92. 34 
              3       bL2        1. 00      1. 0055      0. 00724      0. 00546      94. 76 
              4       bs0        0. 80      0. 8000      0. 01228      0. 00005      95. 97 
              5       bs1        1. 00      1. 0069      0. 02173      0. 00693      93. 95 
              6       r 1        - 1. 50     - 1. 4787      0. 08709      0. 02135      94. 76 
              7       r 2        - 1. 00     - 0. 9768      0. 10763      0. 02319      95. 16 
              8       s11        0. 50      0. 5144      0. 01136      0. 01435      98. 39 
              9       s22        1. 00      0. 8855      0. 09200      0. 11455      95. 56 
             10       s33        0. 25      0. 3030      0. 04217      0. 05301      96. 09 
             11       se         0. 25      0. 3251      0. 00445      0. 07509      77. 02 
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4.7 ILLUSTRATIVE EXAMPLE 

The HEMO study [5] was a 2x2 factorial randomized trial performed to assess the relationship 

between dialysis dose and flux with mortality and morbidity in patients undergoing thrice weekly 

maintenance dialysis. The study enrolled 1846 subjects, aged 18 to 80, currently undergoing 

thrice weekly dialysis and randomized them to high or low flux dialyzers along with standard or 

high dose dialysis. The primary outcome was all-cause mortality. Secondary outcomes included 

hospitalization rates (not related to vascular access) and cause specific mortality rates.  

The data presented here include 1815 subjects with either bimonthly clearance 

measurements for subjects assigned to high flux dialyzers or six-monthly measurements for 

subjects assigned to the low flux group. Clearances less than 5 were censored at 5 and clearances 

greater than 60 were censored at 60. In this population of 1815 subjects, with a total of 19065 

measurements, 3908 had clearances below 5 (20.05%), 945 had clearances above 60, (4.96%) 

and 855 died over the course of the study (47.13%). The aim of this analysis is to: (1) examine 

the effect of doubly censored longitudinal beta2 clearance values on all-cause mortality adjusting 

for informative dropout, and (2) examine the consequences of ignoring the censoring. 

The joint models considered here will include the basic demographic variables, age, sex, 

and race, along with the study interventions flux and dialysis dose assignment. In figure 4.12  we 

can see a tendency to underestimate the parameters in the fill-in method and that ignoring the 

censoring results in a non-significant association parameter estimate of -0.24, with 95% CI (-

0.55, 0.08), and p-value=0.14. This would indicate no apparent association between the 

longitudinally measured clearance values and all-cause mortality. When we account for the 

censoring we see a statistically significant association estimate of -0.31, with 95% CI (-0.55, -

0.08) and p-value=0.01. Since beta2 clearances were log transformed this would suggest that 
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increasing clearances lead to better survival. Also since clearance is a function of the dialyzer 

this suggests improvements in survival may be realized by the use of high flux dialyzers.
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Table 4.12.  Joint Tobit versus Joint “Fill-in” Models: Effect of Beta2-Clearance on Survival 

 

       

Parameter Estimate 95%CI Pvalue Estimate 95% CI Pvalue Estimate 95%CI Pvalue Estimate 95% CI Pvalue
Intercept 1.83 (1.75,  1.90) <0.001 2.80 (2.48, 3.11) <0.001 1.4 (1.30, 1.51) <0.001 2.80 (2.49,3.12 <0.001

Age -4.00E-05 (-1E-3,1E-3) 0.94 -0.02 (-0.03,  -0.02) <0.001 5.20E-04 (-1E-3,2E-3) 0.51 -0.02 (-0.03, - <0.001
Sex 0.01 (-0.02, 0.04) 0.57 -0.01 (-0.12,0.10) 0.82 0.02 ( -0.02,0.06) 0.39 -0.01 (-0.12 0.83

Race 0.03 (-0.01, 0.06) 0.13 0.24 ( 0.13, 0.35) <0.001 0.03 (-0.02,0.07) 0.24 0.24 (0.13, <0.001
Flux Grp 1.48 ( 1.45, 1.51) <0.001 0.06 (-0.05,0.17) 0.27 1.87 (1.83,1.92) <0.001 0.06 (-0.05, 0.28

Ktv -0.01 (-0.03 0.001) 0.07 0.03 (-0.02, 0.08)
 0.26 -0.02 (-0.04 ,0.003) 0.10 0.03 (-0.02, 0.25
Time 0.02 (-0.02,0.08) <0.001 * * * 0.02 (0.01, 0.03)
 <0.001 * * *
Σ11 0.17 (0.15,0.19) <0.001 * * * 0.32 ( 0.28,0.36)
 <0.001 * * *
Σ12 -0.02 (-0.03,-0.02) <0.001 * * * -0.05 (-0.06,-0.04)
 <0.001 * * *
Σ22 0.01 (0.00,0.01) <0.001 * * * 0.01 (0.009,0.001) <0.001 * * *
se 0.23 (0.23,0.24) <0.001 * * * 0.35 (0.34, 0.36) <0.001 * * *

Model Association * * * -0.24 (-0.55,0.08) 0.14 * * * -0.31 -0.55, -0.08) 0.01

Survival Sub-Model

Joint Tobit Model (accounting for censoring)

        

Longitudinal Sub Model Survival Sub-Model

Joint Fill-In Model (Ignoring Censoring)

Longitudinal Sub Model
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4.8 DISCUSSION 

Censoring is a common artifact in all biomedical disciplines where measurements are truncated 

due to the natural limitations of a measuring instrument. Censoring also occur, somewhat 

unnaturally, when truncated measurements are the result of an investigator imposing restrictions 

due to some perceived biological implausibility. If one is unable to avoid collecting data that is 

censored it is clear that appropriate statistical methods be applied to account for such data. 

Doubly censored data is fairly common in the modeling of biomarkers but less so in the Renal 

literature. Double censoring was the result of kinetic models producing implausible 

measurements in the HEMO study and was the motivation for this paper. It is common practice 

to only use complete data or ignore the censoring by imputing the censored measurement by the 

limit of detection.  

The proposed joint Tobit method is a way of assessing the impact of a longitudinally 

measured doubly censored covariate on the survival prognoses of a study population. The 

strength of this approach is that it avoids the complexities of problem specific EM algorithms by 

turning to commercially available software for the maximization of the joint likelihood.  

The likelihood is user defined so this Tobit method can be applied to other parametric 

distributions for the longitudinal and survival components to reflect the problem at hand.  

The simulation studies presented indicate an improvement over the standard replacement 

strategy and the example show how misleading inferences and estimation are dependent on the 

method used. This method will be extended in a future paper to the multivariate setting where the 

interest is in the joint effect of doubly censored covariates on survival. 
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One of the major criticisms of joint modeling is the inherent numerical complexity but 

with the ever increasing power of personal computers and more efficient maximization 

algorithms this is rapidly becoming less of an issue. Another common criticism is the 

interpretation of the linking or association parameters can become muddied when the 

longitudinal outcome is distributed other than normally. In most instances the linking parameters 

are interpreted as an association with the event time rather than actual magnitudes of risk. 

The “User beware” is a useful adage to describe this authors experience with NLMIXED. 

We noticed that even though the procedure appears to run and converges, the user still needs to 

look in the log to see if there were any issues. We noticed that with sample sizes ranging from 

100-1000 convergence issues arose in approximately 1-2% of Tobit runs and 3-15% with the fill-

in method. We also found that not including starting values for the procedure dramatically affect 

the stability of the procedure. In some cases the procedure won’t even begin to iterate. We found 

that including reasonable starting values dramatically improves stability and reduces run-time. 

Since there is no automatic method for choosing starting values we recommend the following 

procedure. (a) run Proc Mixed with random intercept and slope model and output longitudinal 

parameter estimates (b) run Proc Lifereg and output event time parameter estimates (c) combine 

the estimates into a single file (c) use these model based estimates as starting values in Proc 

NLMIXED.  

Joint modeling has long been known to reduce bias and improve precision. The proposed 

joint Tobit model discussed herein was shown to handle large censoring proportions compared to 

the fill-in method. We would therefore recommend the use of the joint Tobit method when the 

interest is in accounting for a censored longitudinally measured covariate and its association with 

survival where the collection of censored longitudinal data is unavoidable. 
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5.0  BIVARIATE JOINT MODELING OF CENSORED LONGITUDINAL AND 

EVENT TIME DATA 

5.1 INTRODUCTION 

Longitudinally censored data is unfortunately a common occurrence in biomedical studies, 

especially when one is interested in the prognostic use and evaluation of biomarkers. In a 

previous paper by Pike and Weissfeld [32] we constructed a joint model which coupled a linear 

mixed effects Tobit model and an exponential event time distribution. We showed that this ‘Joint 

Tobit model” outperformed a joint model comprised of the more naïve ‘fill-in [3] methods which 

does not model the censoring but replaces data beyond detection limits by a constant function of 

the detection limits (DL) such as DL, DL/2 or DL/SQRT(2). We found that this was an effective 

method to account for a doubly censored longitudinal covariate and its effect on survival. 

The GENIMS [4] study was no exception to the issues of longitudinal censoring as it was 

designed to investigate the association between genetic and inflammatory markers and 

consequent development of community acquired pneumonia and mortality. The assays used to 

measure these biomarkers were not sensitive enough and resulted in a vast amount of left and 

some right censored measurements. The study collected data on 2320 subjects from 28 different 

centers all across the United States. Biomarker data were collected daily for the first seven days 

and weekly thereafter. Since one hypothesis of interest was whether higher levels of these 
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biomarkers were associated with higher risk of death it is of utmost importance to account for the 

heavy censoring in the analysis and outcome dependent dropout. IL10 is a pleiotropic cytokine 

which is hypothesized to have important anti-inflammatory properties and represses pro-

inflammatory cytokines such as TNF-ALPHA (Tumor Necrosis Factor-Alpha), IL6 (Interleukin-

6), and IL-1 (Interleukin-1). Since there is a biological connection between these cytokines it 

would appear that they affect the immune system in a complementary manner and therefore it 

makes sense to model their effects on the disease process and survival in a multivariate or joint 

manner. Any analyses must therefore be able to account for (i) correlated biomarkers, (ii) 

outcome dependent dropout, and (iii) longitudinal censoring. 

Laird and Ware [9] mixed effects models are effective in modeling the longitudinal 

nature of biomarker data and are a common tool for this type of data as they can account for all 

available information. Carlin et al [26] effectively coupled a Laird and Ware model to a 

parametric survival distribution by assuming that the hazard was a function of random effects 

common to both longitudinal and survival sub-models [21]. They then showed that the resulting 

joint likelihood could be easily maximized in SAS’ Proc NLMIXED [33] thus avoiding the 

complexity and problem specific nature of the expectation maximization (EM) algorithm [8].  

In this paper we extended Carlin’s approach in NLMIXED to the bivariate case with 

censored longitudinal data in both outcomes by assuming that the hazard is a function of both 

longitudinal trajectories. We linked a bivariate linear mixed effects Tobit [14] model to an 

exponential survival model by a set of shared random effects whose covariance matrix accounts 

for correlations within and between outcomes. In section 2 we will present the notation and 

methods for the presentation of the bivariate joint Tobit model. In section 3 we discuss the 
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simulation studies and results. We give an example based on data collected as part of the 

GENIMS study described previously in section 4 and close our discussion in section 5. 

5.2 NOTATION AND METHODS 

5.2.1 Longitudinal Model 

The general notation for a bivariate linear mixed model, excluding covariates, which includes a 

random intercept, slope, and independent error, is as follows from Thiebaut et al [10]: 

Let 1 2 T

i i iY Y Y =   be the response vector for subject i=1...N, with k
iY the k

in vector of repeated 

measurements on the outcome k (k=1, 2) with 1 2
i i in n n= =  where the number of measurements 

may be different between markers and within subjects. 

i i i i iY X Zβ γ ε= + +  with ( )
( )

~ 0,
~ 0,

i i

i

N
N G

ε
γ

Σ

 ,

 

and  

1 1 1 11

2 2 2 22

0 0
, , , ,

0 0
i i i i

i i i i
i i i i

X Z
X Z

X Z
γ εβ

β γ ε
γ εβ

        
= = = = =        
         

. 

k
iX  is an ni x pk design matrix of covariates for maker k, kβ is a pk-vector of fixed effects, k

iZ  is 

an ni x qk design matrix and is usually a subset of k
iX , k

iγ  is a qk-vector of subject specific 

random effects with qk≤ pk. The covariance matrix of measurement errors is a diagonal matrix 

containing 1
2
ε

σ  and 2
2εσ  denoted by iΣ  and represents the measurement error for each marker.  
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The covariance matrix of random effects is the matrix
1 12

21 2

G G
G

G G
 

=  
 

. The elements of G are 

G1, the covariance matrix of random effects for the first marker, G2, the covariance matrix of 

random effects for the second marker, and G21=G12, the matrix of covariance’s between the 

random effects from each marker. It is through G where the correlation between the two markers 

is accounted for. If G21=G12=0 then the two markers are assumed to be independent.  

5.2.2 Event Time Distribution 

In order to link the longitudinal and survival sub-models we assume the hazard to be a function 

of both of the individual longitudinal trajectories and as such share the same set of random 

effects. For the bivariate case the hazard can be written as

( ) ( )( )1 1 2 2
0 2 2 1 2 3 4exp T

i i i i i it X t r a r b r a r bλ λ β= + + + +  where 
k

k i
i k

i

a
b

γ
 

=  
 

 k=1, 2, are random 

intercepts and slopes for the individual biomarkers and ( ) 2
T
iX t β  are possibly time dependent 

covariates and their respective regression coefficients. The baseline hazard can be any parametric 

form but for simplicity, in this paper, we assume the baseline hazard to be exponential. The 

random effects need not be linear and should ideally be chosen to suit the problem at hand In 

Henderson’s and Carlin’s papers [5][6] they created a univariate joint model and chose to link 

the univariate longitudinal and event time sub models by random intercepts, slopes, fitted 

longitudinal value at the death time, and an added frailty orthogonal to the random effects (a, b) 

as ( ) ( ) ( )( )2 2 1 2 3exp T
i i i it X t r a r b r a bt uλ λ β= + + + + + .  
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We extended Carlin’s methodology to the longitudinally censored bivariate case in 

NLMIXED by including parameters in the hazard that capture the association due to adding 

random intercepts, slopes, and fitted longitudinal trajectory at the event time, from both outcome 

trajectories.  The full complex hazard linking the sub-models can be written as:

( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 2
2 2 1 2 3 4 5 6exp T

i i i i i i i i i i i i it X t r a r b r a r b r a b t r a b t uλ λ β= + + + + + + + + +  

The joint likelihood L=L (Y, N; θ) can be constructed by assuming that the longitudinal and 

event time sub-distributions are independent given a set of shared random effects iγ . The joint 

likelihood can then be factored into a product of conditionally independent distributions as 

follows: 

( ) ( ) ( ) ( )
2

1 1

| ; ; ;, ; |
i

N

ik i i i i
i k

L YL Y N L N L d
γ

γ θ θ γ θθ γ γ
= =

=∏ ∏∫  .  (5.1) 

The first components of (5.1) are the conditional distributions of the longitudinal data, the 

survival data, and the random effects respectively.  We can envisage the vector Y to contain 

censored and uncensored data respectively and denote this by Y* and then rewrite the 

longitudinal component in the joint likelihood in (1) as: 

( ) ( ) ( )( )
0 1

2
2 * *

1

| , 1
d d d

ijk e ijk ijk
k j n j n j n

f y y yσ
= ∈ ∈ ∈

   Φ −Φ      
∏ ∏ ∏ ∏iu

,   (5.2)
 

where the contributions to the likelihood are from left, right, and uncensored values respectively. 

The components of the likelihood in (5.2) accounts for, left censoring by use of the cumulative 

distribution (CDF), right censoring by use of 1-CDF, and uncensored values from the probability 

distribution function (pdf).  
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The Survival component of (5.1) is denoted by: 

( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

1 1 2 2 1 1 2 2
0 0 2 2 1 2 3 4 5 6

1 1 2 2 1 1 2 2
0 2 2 1 2 3 4 5 6

0

, | , , , exp

*exp exp

i

i

T
i i i i i i i i i i i i i i i i

t
T
i i i i i i i i i i i i i

f t a b t X t r a r b r a r b r a b t r a b t u

X t r a r b r a r b r a b t r a b t u dt

λ β λ β

λ β

∆
 ∆ = + + + + + + + + + 

 
− + + + + + + + + + 
  
∫

i

 . (5.3) 

where ( )0 itλ  is the baseline hazard, ai and bi are random effects linking the two distributions, 

and ( )T
iX t β  are possibly time dependent covariates and their respective regression coefficients. 

The distribution of the random effects is MVN(0,G) and can be denoted by: 

( ) ( ) ( ) ( ){ }1/2 1| 2 | | exp / 2T
if γ π − −= − − −i iγ,G G γ μ G γ μ  .   (5.4) 

In this paper we will focus on a bivariate joint model with longitudinal sub-models conditional 

on the random effects as: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

| ,

| ,

ij i i i i ij

ij i i i i ij

E Y a b a b t

E Y a b a b t

α β

α β

 = + + +


= + + +
 ,         (5.5) 

and sub hazard: 

( ) ( )( )1 1 2 2
1 2 3 4exp T

i i i i i it X t r a r b r a r bλ λ= + + + + .
         (5.6) 

The components of the sub-hazard (r1, r2, r3, r4) in (5.6) account for association between the 

longitudinal and survival models due to inclusion of random intercepts and slopes in both 

outcome trajectories. When association exists between the sub-models the use of a joint model 

allows one to obtain less biased estimates and more efficient inferences. The joint likelihood in 

(5.1) can be passed to a suitable non-linear optimizer but we chose to turn to SAS PROC 

NLMIXED as it afforded a great deal of flexibility and cutting edge optimization algorithms with 

a plethora of fine tuning options to aid in convergence.  
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5.3 SIMULATION OUTLINE 

As mentioned previously we generated data from a longitudinal sub-model with random and 

fixed intercept (ai , α), random and fixed slope (bi, β) , and covariance matrix of random effects 

G .The survival data was generated from an exponential survival distribution as in (5.6).  

In order to use NLMIXED, and simplify the coding, the dataset needs to be created in 

such a way as to stack the outcome vectorsY1 and Y2 into a single outcome vector Y. The basic 

idea is to distinguish between the two outcomes via an indicator variable in the dataset. We also 

need to create a longitudinal censoring indicator which distinguishes between outcomes censored 

from, below, above, and uncensored values. This indicator is not to be confused with the survival 

censoring indicator. The specifics for creating the dataset can be found in [34]. 

The longitudinal data will be generated from: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

| , : 1

| , : 2

ij i i i i ij

ij i i i i ij

E Y a b a b t L

E Y a b a b t L

α β

α β

 = + + +


= + + +
  

With true values: 

1 2

2
11 33 11 4411 22 11

2
22 33 22 4422 11 221 12

2
12 2 33 11 33 22 33 33 44

2
44 11 44 22 44 33 44

6 23
,

0.3 0.01

~ 0, 0,i

G G
MVN MVN

G G

β β

ρσ σ ρσ σσ ρσ σ
ρσ σ ρσ σρσ σ σ

γ
ρσ σ ρσ σ σ ρσ σ
ρσ σ ρσ σ ρσ σ σ

   
= =   − −   

    
   

     =                

( ) ( )

2
11

12
22

22
33
2
44

0.7
0.03 0.7

, 0, 0.1, 0.3 , , ~ 0,2
1.3 1.1
0.3

ij

ki

i

and t UNIF

σ
εσ

ρ
εσ

σ

 
 
 
 
 
  

   
          = = − − =            
    
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The event time data will be generated from the hazard: 

( ) ( )( )1 1 2 2
2 1 2 3 4exp T

i i i i i it X t r a r b r a r bλ λ β= + + + +       

With true values: 

2 0

1 0.6
2 2.5

0.05, 0.8, 0.4
3 1.7
4 0.9

c

r
r

and
r
r

β λ λ

−   
   −   = − = = =
   −
   −   

 

We ran a series of simulations to determine the models adequacy and stability. We first 

determined if the model returned the true values when the two outcomes were independent. This 

meant generating data after setting the covariance ρ to zero. We then added longitudinal 

censoring at 20% and 60% and reported the results in Table 5.1.  In the next series of simulations 

we generated data with ρ set to -0.1 and -0.3 which induces correlation within and between the 

two markers. We then added longitudinal censoring at 20% and 60% and reported the results in 

Table 5.2 and Table 5.3. 

5.4 SIMULATION RESULTS  

The results in Table 5.1 are from generating independent bivariate data by setting ρ=0. This 

creates a covariance matrix G of random effects with diagonal sub-matrices 1

0.7 0
0 0.03

G  
=  
 

,

2

1.3 0
0 0.3

G  
=  
 

, and 12

0 0
0 0

G  
=  
 

. It is the G12 matrix which accounts for the correlated 

outcomes so setting all elements to zero implies independence. The independence model returns 

unbiased estimates with small variance and nominal coverage regardless of the proportion of 
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censoring. This is consistent with previous results in the univariate Tobit joint model by Pike and 

Weissfeld (2011) [32]. The large variance for r2 was due to a single extreme positive estimate 

but since the gradient was small enough to indicate a stationary point it was left in the final 

dataset.  This is interesting since we noticed that the impact of such outliers seems to worsen as 

the percentage of censoring and degree of correlation increases. Since this behavior is due to an 

outlying estimate in one or more generated datasets leads us to question whether it’s due to some 

anomaly in the generated datasets or inaccuracies in the estimation procedure due to the Laplace 

approximation. This behavior may be an avenue for future research to see how such models 

behave in the presence of extreme outliers with varying number of quadrature points. 

The results in Tables 5.2 and 5.3 are from setting ρ= -0.1 and -0.3 respectively. This 

induces mild and moderate negative correlation within and between the random effects. When 

we induced correlations with and between random effects we see that, on the whole, the 

estimates are still unbiased but the coverage’s are inflated for isolated estimates. This may be due 

in part to fitting the models with a Laplace approximation for purposes of efficiency. In the case 

of ρ=-0.3 and 60 percent censoring we were only to get approximately 37% of the runs to 

converge which may be the reason for the inflated coverage’s and slight bias in some of the 

estimates. 
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Table 5.1. Bivariate simulations with ρ=0 and variable censoring rates 

 

 

 

 

Parameter TRUE Mean Variance Bias 95% 
Coverage

Mean Variance Bias 95% 
Coverage

Mean Variance Bias 95% 
Coverage

βL01 6 6.002 0.003 0.002 94.38 6.003 0.003 0.003 94.80 6.003 0.004 0.003 96.40
βL02 23 22.999 0.006 0.001 95.18 22.998 0.006 0.002 96.40 22.994 0.007 0.006 93.60
βL11 -0.3 -0.301 0.000 0.001 97.19 -0.301 0.000 0.001 96.40 -0.301 0.000 0.001 96.00
βL12 -0.1 -0.099 0.001 0.001 94.38 -0.098 0.001 0.002 96.00 -0.101 0.001 0.001 94.80
λ0 0.8 0.838 0.090 0.038 93.57 0.837 0.090 0.037 94.00 0.833 0.093 0.033 94.40
β21 -0.05 -0.051 0.000 0.001 95.18 -0.051 0.000 0.001 95.20 -0.051 0.000 0.001 95.60
r1 -0.6 -0.619 0.040 0.019 94.38 -0.610 0.042 0.010 94.40 -0.605 0.058 0.005 92.40
r2 -2.5 -2.444 1.725 0.056 94.38 -2.566 2.123 0.066 93.20 -2.574 20.233 0.074 94.80
r3 -1.7 -1.763 0.022 0.063 95.18 -1.766 0.023 0.066 96.00 -1.808 0.045 0.108 94.40
r4 -0.9 -0.870 0.046 0.030 95.58 -0.862 0.047 0.038 96.80 -1.043 0.060 0.143 90.40

g11 0.7 0.704 0.006 0.004 93.98 0.706 0.007 0.006 96.40 0.700 0.012 0.000 92.00
g22 0.03 0.030 0.000 0.000 93.98 0.029 0.000 0.001 94.00 0.028 0.000 0.002 92.00
g33 1.3 1.269 0.026 0.031 93.17 1.266 0.027 0.034 94.40 1.168 0.051 0.132 85.20
g44 0.3 0.300 0.001 0.000 95.58 0.299 0.001 0.001 94.40 0.321 0.003 0.021 95.20
se1 0.7 0.701 0.001 0.001 95.18 0.702 0.001 0.002 96.40 0.707 0.002 0.007 96.00
se2 1.1 1.103 0.002 0.003 95.98 1.104 0.002 0.004 96.00 1.105 0.005 0.005 96.00

Bivariate Joint Tobit and Event Time Model Simulation Results 
Independent Outcomes

250 Iterations and sample size 500
20 % Longitudinal Censoring 60 % Longitudinal CensoringNo Longitudinal Censoring
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Table 5.2. Bivariate simulations with ρ= -0.1 and variable censoring rates 

 

 

 

 

Parameter TRUE Mean Variance Bias 95% 
Coverage

Mean Variance Bias 95% 
Coverage

Mean Variance Bias 95% 
Coverage

βL01 6 6.001 0.003 0.001 95.14 6.002 0.003 0.002 95.95 6.002 0.004 0.002 97.02
βL02 23 23.001 0.005 0.001 95.14 23.002 0.006 0.002 95.14 22.999 0.007 0.001 94.02
βL11 -0.3 -0.301 0.000 0.001 97.17 -0.301 0.000 0.001 96.76 -0.301 0.000 0.001 95.28
βL12 -0.1 -0.099 0.001 0.001 94.74 -0.100 0.001 0.000 95.14 -0.102 0.001 0.002 95.71
λ0 0.8 0.835 0.091 0.035 95.55 0.834 0.091 0.034 95.55 0.831 0.100 0.031 94.85
β21 -0.05 -0.051 0.000 0.001 94.98 -0.051 0.000 0.001 95.36 -0.051 0.000 0.001 95.35
r1 -0.6 -0.632 0.107 0.032 96.77 -0.634 0.135 0.034 97.98 -0.626 0.178 0.026 99.57
r2 -2.5 -2.594 6.992 0.094 93.95 -2.589 7.424 0.089 95.56 -2.934 12.411 0.434 97.88
r3 -1.7 -1.792 0.028 0.092 95.14 -1.804 0.032 0.104 95.95 -1.881 0.047 0.181 96.14
r4 -0.9 -0.861 0.079 0.039 96.76 -0.850 0.102 0.050 97.58 -0.917 0.195 0.017 94.92

g11 0.7 0.708 0.014 0.008 93.12 0.700 0.016 0.000 94.33 0.666 0.025 0.034 93.13
g21 -0.014 -0.016 0.001 0.002 94.26 0.299 0.001 0.001 94.76 -0.007 0.001 0.007 93.42
g22 0.03 0.030 0.000 0.000 93.42 -0.014 0.001 0.001 93.42 0.028 0.000 0.002 94.71
g31 -0.095 -0.105 0.010 0.010 95.55 0.029 0.000 0.001 94.71 -0.102 0.012 0.007 96.57
g32 -0.020 -0.018 0.001 0.001 97.13 -0.107 0.010 0.011 96.34 -0.016 0.001 0.004 96.89
g33 1.3 1.285 0.035 0.015 94.33 -0.018 0.001 0.002 96.30 1.171 0.054 0.129 88.94
g41 -0.046 -0.043 0.002 0.002 94.74 1.268 0.040 0.032 92.31 -0.048 0.003 0.003 93.56
g42 -0.009 -0.009 0.000 0.001 95.44 -0.043 0.002 0.003 92.71 -0.010 0.000 0.000 96.04
g43 -0.062 -0.068 0.003 0.005 95.14 -0.009 0.000 0.000 95.49 -0.041 0.005 0.022 93.13
g44 0.3 0.301 0.001 0.001 94.76 -0.060 0.004 0.002 94.33 0.306 0.003 0.006 93.59
se1 0.7 0.700 0.001 0.000 95.16 0.703 0.001 0.003 95.97 0.711 0.002 0.011 95.34
se2 1.1 1.101 0.002 0.001 98.38 1.104 0.002 0.004 98.38 1.109 0.005 0.009 96.17

No Longitudinal Censoring 20 % Longitudinal Censoring 60 % Longitudinal Censoring

Bivariate Joint Tobit and Event Time Model Simulation Results 
Correlated  Outcomes ρ= -0.10
250 Iterations, sample size 500,
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Table 5.3. Bivariate simulation with ρ= -0.3 and variable censoring rates 
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Table 5.4.  Bivariate simulation with ρ= 0.5 and variable censoring rates 

Parameter TRUE Mean Variance Bias 95% 
Coverage

Mean Variance Bias 95% 
Coverage

Mean Variance Bias 95% 
Coverage

βL01 6 6.001 0.003 0.001 94.55 6.003 0.003 0.003 96.33 6.005 0.004 0.005 95.38
βL02 23 23.000 0.006 0.000 95.45 22.997 0.006 0.003 97.24 22.993 0.007 0.007 96.53
βL11 -0.3 -0.301 0.000 0.001 94.55 -0.302 0.000 0.002 95.37 -0.302 0.000 0.002 97.06
βL12 -0.1 -0.101 0.001 0.001 93.18 -0.101 0.001 0.001 93.98 -0.097 0.001 0.003 95.88
λ0 0.8 0.865 0.092 0.065 95.45 0.853 0.090 0.053 94.01 0.863 0.099 0.063 95.38
β21 -0.05 -0.052 0.000 0.002 95.90 -0.051 0.000 0.001 94.65 -0.051 0.000 0.001 96.69
r1 -0.6 -0.664 0.351 0.064 95.02 -0.646 0.515 0.046 96.80 -0.623 0.459 0.023 98.27
r2 -2.5 -2.290 12.614 0.210 98.20 -2.397 15.169 0.103 99.09 -2.553 14.869 0.053 98.84
r3 -1.7 -1.801 0.079 0.101 96.36 -1.801 0.099 0.101 97.70 -1.831 0.142 0.131 98.26
r4 -0.9 -0.776 0.226 0.124 97.29 -0.740 0.273 0.160 98.17 -0.844 0.402 0.056 96.53

g11 0.7 0.726 0.011 0.026 96.79 0.728 0.014 0.028 96.63 0.722 0.025 0.022 97.62
g21 0.072 0.063 0.000 0.009 95.52 0.063 0.001 0.009 95.90 0.058 0.001 0.014 96.82
g22 0.03 0.033 0.000 0.003 94.21 0.032 0.000 0.002 95.43 0.034 0.000 0.004 97.22
g31 0.477 0.467 0.010 0.010 97.24 0.467 0.011 0.010 96.17 0.434 0.014 0.043 92.26
g32 0.099 0.099 0.001 0.000 93.97 0.099 0.001 0.000 95.96 0.094 0.001 0.005 95.57
g33 1.3 1.296 0.038 0.004 93.67 1.302 0.043 0.002 96.23 1.210 0.062 0.090 92.40
g41 0.229 0.235 0.002 0.005 94.34 0.234 0.002 0.005 95.15 0.242 0.003 0.013 96.47
g42 0.047 0.048 0.000 0.000 96.43 0.047 0.000 0.000 98.42 0.050 0.000 0.003 94.08
g43 0.312 0.304 0.003 0.008 94.88 0.303 0.003 0.009 96.14 0.296 0.005 0.016 94.67
g44 0.3 0.304 0.001 0.004 95.77 0.304 0.001 0.004 96.63 0.333 0.004 0.033 90.59
se1 0.7 0.696 0.001 0.004 95.02 0.698 0.001 0.002 96.35 0.700 0.002 0.000 97.11
se2 1.1 1.098 0.002 0.002 97.27 1.096 0.002 0.004 96.33 1.090 0.005 0.010 91.91

Bivariate Joint Tobit and Event Time Model Simulation Results 
Correlated  Outcomes ρ= 0.5

250 Iterations, sample size 500,
No Longitudinal Censoring 20 % Longitudinal Censoring 60 % Longitudinal Censoring
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5.5 ILLUSTRATIVE EXAMPLE 

The GENIMS study was perceived to investigate the relationship between genetic and 

inflammatory markers on sepsis after a diagnosis of community acquired pneumonia. The study 

collected data on 2320 subjects from 28 US based centers. Measurements on several cytokines 

were taken daily for the first week then every subsequent week thereafter. One of the hypotheses 

was whether higher values of cytokines lead to an increased risk of death. The data considered 

herein consists of 8245 measurements on anti-inflammatory and pro-inflammatory markers 

Interleukin-6 (IL6) and Interleukin-10 (IL10), Age, Sex and  Charlson co-morbidity index which 

gives a patient a score to reflect whether they had preexisting co-morbid conditions prior to 

hospitalization.  The cytokines were measured using a chemiluminescent immunoassay using an 

automated analyzer. The lower limit of detection for this analyzer was 2 and 5 for IL6 and 5 for 

IL10.  In this longitudinal dataset there were 2224 (27.2 percent) and 5837 (70.79 percent) 

measurements below the detectable limit of 2 and 5 for IL6 and IL10 respectively. The censoring 

tended to increase over the study period from 12 percent to 35percent for IL-6 and from 46 

percent to 76 percent for IL-10. Within this dataset 211 (11.6 percent) died within 90days and 87 

people died with both IL6 and IL10 measurements above the lower limit of detection (LOD). 
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The following analysis was run to investigate whether the bivariate longitudinal IL-6 and 

IL-10 measurements are associated with survival. One of the hypotheses of interest was whether 

high initial levels of both of these biomarkers that tend to increase over time are associated with 

a poorer survival prognosis. To test this hypothesis we constructed a bivariate joint Tobit model 

by linking a bivariate linear mixed effects Tobit model to a Weibull survival distribution. This 

linkage was accomplished by assuming that the longitudinal trajectories and Weibull hazard 

were both functions of the same set of random effects. In this particular case we assumed that the 

Weibull hazard was a function of the random intercepts and slopes from both of the longitudinal 

trajectories. The choice of the Weibull distribution is arbitrary but was chosen because of the 

flexible form of the hazard. If we look at figure 5.5 (table 4) we can see all of the association 

parameters r1, r2, r3, and r4 are statistically significant and negative which implies that, on 

average, patients with high initial values of both markers that tend to increase over time are 

associated with an increased hazard of death. One question worth noting is what is to be gained 

from fitting a bivariate model. This can be answered by focusing our attention on the parameters 

of the random effects covariance matrix 2 2 2 2

2 2 2 2

1 12

21 2
x x

x x

G G
G

G G

 
=  
  

.We can see that the elements of 
2 2

21
x

G

are all significantly different from zero which implies that modeling these biomarkers jointly, 

with correlation, was justified.
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Table 5.5. Bivariate Joint Tobit Model of IL6 and IL10 and association with 90 day Survival 

Parameter Estimate SE t Value Pr > |t| Parameter Estimate SE t Value Pr > |t|

βInt 3.278 0.164 19.988 <0.001 βInt 2.187 0.055 39.498 <0.001
βTime -0.453 0.014 -31.583 <0.001 βTime -0.097 0.005 -20.747 <0.001
βAge 0.009 0.002 4.222 <0.001 βAge 0.001 0.001 0.866 0.387

βCharlson -0.179 0.083 -2.160 0.031 βCharlson -0.030 0.027 -1.111 0.267
βSex 0.308 0.072 4.275 <0.001 βSex 0.022 0.023 0.931 0.352
se1 0.642 0.016 40.806 <0.001 se2 0.169 0.003 50.359 <0.001

βInt 26.303 1.795 14.653 <0.001 Σ11 4.124 0.182 22.670 <0.001
βAge -0.148 0.019 -7.977 <0.001 Σ21 -0.636 0.040 -15.864 <0.001

βCharlson -1.788 0.573 -3.123 0.002 Σ22 0.202 0.012 16.472 <0.001
βSex -1.106 0.417 -2.656 0.008 Σ31 0.792 0.055 14.417 <0.001

gamma 0.362 0.023 15.463 <0.001 Σ32 -0.158 0.014 -11.623 <0.001
Σ33 0.739 0.031 23.729 <0.001

r1 -1.405 0.169 -8.300 <0.001 Σ41 -0.158 0.011 -13.836 <0.001
r2 -9.273 1.555 -5.961 <0.001 Σ42 0.042 0.003 14.043 <0.001
r3 -1.649 0.534 -3.088 0.002 Σ43 -0.113 0.006 -18.963 <0.001
r4 -7.386 5.449 -1.356 0.018 Σ44 0.023 0.001 16.458 <0.001

Random Effects Covariance Estimates

Association Parameters

 
Bivariate Joint Tobit abd Event Time Model

IL6 IL10 and 90 Day Survival

IL6 IL10

Survival Model
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5.6 DISCUSSION 

Censoring is unfortunately a common artifact when one is interested in the evaluation of a 

biomarker. The analytical scenario in which biomarkers are evaluated can become quite complex 

and may include issues such as (a) longitudinal censoring, due to the sensitivity of the assay 

used, (b) outcome dependent dropout, and (c) correlation between biomarkers. Therefore it is 

readily apparent that the chosen analytical procedure must have the potential to simultaneously 

account for all of the aforementioned issues depending upon the complexity of the scenario 

encountered. 

All of the aforementioned issues were encountered in the GENIMS study [4] and was the 

primary motivation for this paper. It is common practice to discard all censored data (complete 

case analyses) or impute the censored values via some function of the detection limit (DL, DL/2. 

DL /√2). The proposed bivariate joint Tobit method is a way of assessing the joint impact of two 

correlated and longitudinally censored biomarkers on the survival prognoses of a study 

population. The beauty and strength of this analytical framework is that censoring, outcome 

dependent dropout, and correlation is handled in one unified model and is easily implemented in 

commercially available software.  

Even though, in this paper, we have discussed the bivariate case the proposed method is 

of course readily extendable to the multivariate case in which there are multiple biomarker 

trajectories. We evaluated the bivariate case which leads to four random effects and thus a 4x4 

covariance matrix of random effects with ten parameters to be estimated. We can see that as 

more and more markers are added these models quickly become unwieldy and the number of 
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parameters to be estimated increases almost exponentially. We would therefore recommend 

restricting the use of these models to the bivariate case until the case of n>2 biomarkers are 

thoroughly evaluated. The proposed bivariate joint Tobit likelihood is user defined so this 

method can be applied to other parametric distributions for the longitudinal and survival 

components to reflect the problem at hand. An interesting sub-model would be where the 

survival time was unavailable. In this scenario one would merely replace the survival distribution 

by a logistic distribution and link the logistic distribution to the longitudinal sub-model by a set 

of shared random effects as follows: 

0 1 1 1log 1
i

ij i i ij
i

t a b tπ β βπ
  = + + + − 

, (7) 

where the probability of death π is modeled.  A question worth noting here is whether 

information with respect to time is ever really absent.  Even though we don’t have the event time 

we do know that the event happened after the last longitudinal measurement.  So can we gain 

efficiency by including what we know about time rather than exclude it altogether? This is an 

interesting question and will be pursued by the authors in a subsequent paper. 

The simulation studies presented indicate that in general these models perform 

adequately with 4 random effects. It is also interesting to note that as the percentage of censoring 

increases the more impact outlying values have on the estimation of the variance of the 

parameters. This is not unexpected since the imputation of a large number of values with a fixed 

constant will underestimate the variance so even a single outlying value can have dramatic 

effects. We also noticed that when the covariance was increased to ρ= -0.3 with 60 percent 

censoring we were only able to get 37% of the simulations to converge. What needs to be taken 

into account is that we are maximizing over a multidimensional surface and no procedure can 

guarantee convergence to a stationary point. We must also be mindful that the complexity of 
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these maximization problems require the starting values to be chosen wisely. What this means  is 

that simulation in general is difficult as these models need to be massaged in order to get a single 

model to run. In a real world scenario this is not an issue because we are only dealing with a 

single optimization and we can try different maximization algorithms, different starting values, 

and convergence tolerances etc. This type of experimentation cannot be performed in a 

simulation environment but is a necessary part of any complete and thorough analysis. 

One of the major criticisms of joint modeling is the inherent numerical complexity and 

more so when the joint model is extended to the proposed multivariate setting. The authors feel 

that with the ever increasing power of personal computers and more efficient maximization 

algorithms this is rapidly becoming less of an issue.  Even so, at present, the proposed bivariate 

model can have excessive run times depending on the size of the dataset, the number of 

quadrature points fitted, and the complexity of the model chosen. We would therefore 

recommend balancing accuracy with runtime and feel that in most cases using five quadrature 

points is an effective compromise. One has to keep in mind though that the time taken to 

undertake the analyses is of little consequence compared to the time and resources expended in 

collecting the data. another viewpoint is to keep increasing the number of quadrature points until 

the desired level of accuracy is achieved   Another issue worth noting is that the interpretation of 

linking or association parameters can become muddied when the longitudinal outcome is 

distributed other than normally. In most instances the linking parameters are interpreted as an 

association with the event time rather than actual magnitudes of risk. 

In a previous paper by Pike and Weissfeld [32] we discussed some of the pitfalls and 

issues to be kept in mind when utilizing NLMIXED in the univariate joint modeling case. We 

feel that these issues are worth reiterating here due to the complexity of the proposed 
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multivariate joint Tobit model. We noticed that even though the procedure appears to run and 

converges, the user still needs to look in the log to see if there were any issues. We need to keep 

in mind that no procedure can guarantee convergence to a global maximum. This is immaterial in 

simulation since we know the true values of the parameters. In practice what needs to be done is 

to choose varied sets of starting parameters and ensure they converge to the same estimates by 

checking that the gradient is sufficiently small so as to indicate a stationary point. But the major 

question is how to choose effective starting values since NLMIXED has no automatic way to 

assign them. What the authors found effective was the following. Run a random effects model in 

PROC MIXED, ignoring the censoring, and output the parameter estimates. Run an accelerated 

failure time model in PROC LIFEREG and output these results. Take both sets of estimates and 

combine them into a single file and then use these as starting values for the bivariate joint Tobit 

model. 

Joint modeling has long been known to reduce bias and improve precision. The proposed 

bivariate joint Tobit model discussed herein was shown to handle censoring proportions in 

excess of twenty percent with correlation. We would therefore recommend the use of the 

bivariate joint Tobit method when the interest is in accounting for the joint effect of censored 

longitudinally measured covariates and their combined association with survival where the 

collection of correlated censored longitudinal data is unavoidable. 
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6.0  CONCLUDING DISCUSSION 

From the discussion presented herein it is apparent that longitudinal censoring is an unfortunate 

artifact of data gathering particularly when one is interested in the development of biomarkers 

and their subsequent effect on survival. We showed how to account for a longitudinally censored 

covariate in a survival model via the formation of a Joint Tobit Model. We have shown the 

limitations of the separate longitudinal and survival sub-models that made up the proposed Joint 

Tobit Model and discussed how to extract the best of what these sub-models have to offer. 

Explicitly we “glued” or “linked” these disparate models together by assuming that the hazard 

and the longitudinal trajectories were a function of the same set or shared random effects. These 

shared random effects are typically a random intercept and slope and when part of the hazard 

they capture association between the two sub-models. When no association exists these 

parameters are excluded from the model and there is nothing to be gained from the inclusion of a 

longitudinally measured covariate in a survival model. However when association does exist 

joint modeling tends to produce estimates with less bias, more precision etc. 

We then went on to extend the univariate Joint Tobit Model to the multivariate case 

where it is of primary interest to account for more than one longitudinally censored trajectory 

and their combined or joint effect on the survival experiences of a study population. In this case 

we developed a multivariate Joint Tobit Model to account for longitudinal censoring in several 
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trajectories and linked these trajectories to the survival distribution by assuming that the hazard 

is a function of more than one single longitudinal trajectory. 

In the “illustrative examples” we implemented the univariate and multivariate Joint Tobit 

Models with data from the GENIMS and HEMO studies. In the HEMO study example we 

discussed the impact of ignoring the censoring whilst in the GENIMS study we were primarily 

interested in the association between the survival and multiple longitudinal sub-models when the 

longitudinally measured biomarkers were censored and correlated. In both instances we 

implemented the proposed models conveniently in SAS PROC NLMIXED thus avoiding the 

inherent programming complexity and problem specific nature of the expectation maximization 

algorithm (EM) and discussed some of the strengths and weaknesses of the implementation. 

We would therefore recommend the proposed Joint Tobit model in its univariate or 

multivariate forms to (i) account for correlated or independent longitudinally censored covariates 

in a survival model or (ii) investigate the patterns of association between longitudinally censored, 

correlated or independent biomarkers and survival. 
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6.1 FUTURE WORK 

6.1.1 Motivation 

Joint modeling is an increasingly popular topic in the biomedical literature and extensions on the 

basic principles fall into one of two categories. (1) Complicate the longitudinal sub-model or (2) 

complicate the survival sub-model. One possible extension to the work presented herein is to 

account for competing risks in the survival component (2). Oftentimes it is of interest to focus on 

a particular event time whilst accounting for other “competing” event times. In particular we 

propose to investigate extending the joint models proposed herein by including a parametric 

form for the competing risk model and to link the longitudinal and competing risk sub-models by 

a set of common random effects. The resulting joint model may then be maximized conveniently 

in SAS PROC NLMIXED.  

Even though it is agreed that joint modeling is a useful tool in certain scenarios we feel 

that one of the biggest issues is the reluctance to implement these models because of the inherent 

numerical and programming complexity. What we feel is lacking is a basic tutorial on how to 

implement the common types of joint models in a user friendly environment. Therefore the 

author is at present working on a tutorial which will basically instruct the reader how to fit the 

common parametric joint models in SAS Proc NLMIXED to account for longitudinal censoring.  

We intend to present the reader with all the required SAS code to implement the proposed 

univariate and bivariate Joint Tobit models presented herein with most of the common 

parametric forms the user is likely to encounter. 
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APPENDIX: UNIVARIATE JOINT MODEL SIMULATION RESULTS  

The tables to follow are results for all of the univariate simulations we ran but not included in the 

main paper. The longitudinal censoring ranged from 20-60 percent with sample sizes ranging 

from 100 – 1000. In the material presented previously herein we chose to include a 

representative sample of the simulation results to convey the main results. 
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(Quadrature Points=3, n=1000, 60% Censoring, N=1000) Time:  400+ hrs 

                       Mean                                  
                       Joi nt                                  Mean 
Obs par amet er   t r ue    Tobi t  VARJNTTOBI T   Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
   1    bL0     0. 00 0. 001672   0. 001108  0. 001672   94. 35    0. 6692  0. 02176 0. 66924      .  
   2    bL1     1. 00   1. 0037   0. 003344  0. 003713   93. 15    0. 4522  0. 00189 0. 54776      .  
   3    bL2     1. 00   1. 0009   0. 001224  0. 000871   94. 46    0. 4749  0. 00056 0. 52506      .  
   4    bs0     0. 80   0. 7977   0. 002979  0. 002297   95. 16    0. 8022  0. 00297 0. 00220    94. 79 
   5    bs1     1. 00   1. 0051   0. 004470  0. 005066   94. 25    0. 9649  0. 00593 0. 03510    89. 15 
   6    r 1     - 1. 50  - 1. 5420   0. 016183  0. 041967   94. 46   - 2. 9432  0. 33226 1. 44317      .  
   7    r 2     - 1. 00  - 1. 0132   0. 005165  0. 013177   94. 25   - 1. 2694  0. 92040 0. 26937    22. 55 
   8    s11     0. 50   0. 4850   0. 001954  0. 015008   94. 46    0. 1789  0. 00166 0. 32108      .  
   9    s22     1. 00   0. 9969   0. 013929  0. 003053   89. 11    0. 1024  0. 00062 0. 89761      .  
  10    s33     0. 25   0. 2031   0. 010198  0. 046866   98. 99    0. 4104  0. 01091 0. 16040    64. 57 
  11    se      0. 25   0. 2562   0. 000371  0. 006218   93. 65    0. 1715  0. 00007 0. 07850      .  
 
                                                    Mean 
       Mean                                        Joi nt                    bi as 
 Obs Joi nt DL2  VARJNTDL2  bi asDL2  DL2Cover age   DLSQRT2  VARJNTDLSQRT2  DLSQRT2  DLSQRT2Cover age 
 
   1   0. 6086    0. 0194   0. 60862       .          0. 6374     0. 01970     0. 63737         .  
   2   0. 2223    0. 0016   0. 77767       .          0. 3188     0. 00188     0. 68115         .  
   3   0. 3288    0. 0005   0. 67123       .          0. 3997     0. 00063     0. 60028         .  
   4   0. 8055    0. 0030   0. 00550     95. 70       0. 8047     0. 00306     0. 00473       95. 02 
   5   0. 9556    0. 0078   0. 04438     86. 25       0. 9340     0. 00799     0. 06604       77. 88 
   6  - 4. 6374    0. 6009   3. 13738      0. 10      - 3. 7027     0. 42586     2. 20267         .  
   7   0. 9074   11. 7444   1. 90743     69. 05      - 0. 5494     5. 10460     0. 45062       18. 28 
   8  0. 08874    0. 0007   0. 41126       .          0. 1279     0. 00114     0. 37214         .  
   9  0. 03401    0. 0001   0. 96599       .         0. 05394     0. 00027     0. 94606         .  
  10   0. 3421    0. 0211   0. 09209     79. 68       0. 3827     0. 01407     0. 13272       73. 00 
  11   0. 1953    0. 0013   0. 05474      2. 41       0. 1590     0. 00024     0. 09101         .  
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(Quadrature Points=3, n=1000, 40% Censoring, N=1000) Time: 377 hrs 

                         Mean 
                        Joi nt                bi as    Tobi t        Mean 
 Obs par amet er   t r ue    Tobi t  VARJNTTOBI T   Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
   1    bL0     0. 00 0. 002448   0. 000937  0. 002448   94. 25    0. 2848  0. 00122 0. 28480      .  
   2    bL1     1. 00   1. 0334   0. 004849  0. 033436   94. 55    0. 7544  0. 00370 0. 24564     1. 09 
   3    bL2     1. 00   1. 0024   0. 001059  0. 002379   95. 26    0. 6747  0. 00064 0. 32529      .  
   4    bs0     0. 80   0. 7994   0. 003285  0. 000559   95. 16    0. 8029  0. 00323 0. 00293    95. 19 
   5    bs1     1. 00   1. 0039   0. 004777  0. 003940   95. 66    1. 0173  0. 00564 0. 01728    93. 66 
   6    r 1     - 1. 50  - 1. 5562   0. 019408  0. 056213   94. 95   - 2. 7249  0. 05398 1. 22493      .  
   7    r 2     - 1. 00  - 0. 9752   0. 007769  0. 024844   95. 16   - 0. 6484  0. 22743 0. 35157    91. 48 
   8    s11     0. 50   0. 4864   0. 001900  0. 013617   94. 35    0. 2322  0. 00071 0. 26782      .  
   9    s22     1. 00   0. 9327   0. 015838  0. 067305   91. 42    0. 1778  0. 00096 0. 82216      .  
  10    s33     0. 25   0. 2772   0. 010958  0. 027164   96. 37    0. 3926  0. 01463 0. 14265    78. 69 
  11    se      0. 25   0. 2588   0. 000446  0. 008819   94. 45    0. 2714  0. 00034 0. 02135    62. 19 
 
                                                    Mean 
       Mean                                        Joi nt                    bi as 
 Obs Joi nt DL2  VARJNTDL2  bi asDL2  DL2Cover age   DLSQRT2  VARJNTDLSQRT2  DLSQRT2  DLSQRT2Cover age 
 
   1   0. 3647   0. 00120   0. 36467       .          0. 3312     0. 00119     0. 33122         .  
   2   0. 5158   0. 00140   0. 48421       .          0. 6233     0. 00242     0. 37666         .  
   3   0. 4975   0. 00047   0. 50248       .          0. 5733     0. 00051     0. 42666         .  
   4   0. 8125   0. 00339   0. 01251     94. 28       0. 8088     0. 00333     0. 00883       94. 40 
   5   1. 0318   0. 00550   0. 03184     92. 75       1. 0177     0. 00555     0. 01770       94. 76 
   6  - 3. 9752   3. 35546   2. 47521       .         - 3. 3745     0. 07910     1. 87448         .  
   7   2. 5288   0. 43307   3. 52877      3. 78       0. 7882     0. 71039     1. 78823       46. 60 
   8   0. 1080   0. 00025   0. 39204       .          0. 1581     0. 00042     0. 34186         .  
   9  0. 05866   0. 00014   0. 94134       .         0. 08586     0. 00030     0. 91414         .  
  10   0. 1504   0. 00788   0. 09955     99. 90       0. 3557     0. 00939     0. 10569       92. 25 
  11   0. 2931   0. 00045   0. 04308     17. 98       0. 2621     0. 00034     0. 01214       73. 06 
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(Quadrature Points=3, n=1000, 20% Censoring,N=1000) Time: 407 hrs 

                        Mean 
                       Joi nt                bi as    Tobi t        Mean 
Obs par amet er   t r ue    Tobi t  VARJNTTOBI T   Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
  1    bL0     0. 00 - 0. 00164   0. 000756  0. 001640   95. 97    0. 1349 0. 000835 0. 13490     0. 21 
  2    bL1     1. 00   1. 0287   0. 004649  0. 028681   93. 35    0. 9749 0. 004448 0. 02514    89. 68 
  3    bL2     1. 00   1. 0008   0. 000814  0. 000831   95. 57    0. 8567 0. 000702 0. 14329     0. 10 
  4    bs0     0. 80   0. 8000   0. 003243  0. 000048   94. 66    0. 7996 0. 003257 0. 00038    94. 12 
  5    bs1     1. 00   1. 0000   0. 004664  0. 000029   95. 87    1. 0216 0. 005109 0. 02164    93. 91 
  6    r 1     - 1. 50  - 1. 5262   0. 015154  0. 026168   94. 86   - 2. 1155 0. 029539 0. 61550     2. 37 
  7    r 2     - 1. 00  - 0. 9736   0. 006368  0. 026404   95. 27   - 0. 9092 0. 036525 0. 09083    96. 90 
  8    s11     0. 50   0. 4940   0. 001569  0. 006009   95. 27    0. 3516 0. 001086 0. 14841     0. 52 
  9    s22     1. 00   0. 9568   0. 011299  0. 043197   94. 86    0. 4071 0. 003203 0. 59291      .  
 10    s33     0. 25   0. 2708   0. 010153  0. 020849   96. 68    0. 2972 0. 014916 0. 04716    93. 09 
 11    se      0. 25   0. 2531   0. 000323  0. 003109   95. 57    0. 3250 0. 000368 0. 07501     1. 03 
 
                                               Mean 
      Mean                                    Joi nt                  bi as 
Obs Joi nt DL2 VARJNTDL2 bi asDL2 DL2Cover age  DLSQRT2 VARJNTDLSQRT2 DLSQRT2 DLSQRT2Cover age 
 
  1   0. 2641  0. 00091  0. 26407      .         0. 2084    0. 00084    0. 20839        .  
  2   0. 8216  0. 00319  0. 17841     8. 94      0. 8926    0. 00392    0. 10744      52. 25 
  3   0. 7137  0. 00061  0. 28626      .         0. 7749    0. 00063    0. 22508        .  
  4   0. 8108  0. 00334  0. 01075    94. 74      0. 8058    0. 00321    0. 00584      94. 67 
  5   1. 0260  0. 00549  0. 02601    94. 12      1. 0205    0. 00536    0. 02052      94. 19 
  6  - 3. 1248  0. 04868  1. 62478      .        - 2. 6530    0. 03917    1. 15297        .  
  7   0. 1037  0. 23745  1. 10367    39. 53     - 0. 5023    0. 14503    0. 49770      78. 44 
  8   0. 2036  0. 00060  0. 29644     0. 12      0. 2657    0. 00073    0. 23431        .  
  9   0. 1828  0. 00101  0. 81724      .         0. 2402    0. 00164    0. 75979        .  
 10   0. 2759  0. 00669  0. 02589    99. 27      0. 2917    0. 01116    0. 04170      97. 04 
 11   0. 4879  0. 00104  0. 23791      .         0. 3878    0. 00054    0. 13776        .  
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(Quadrature Points=3, n=500, 60% Censoring, N=1000) Time: 382+hrs 
 
                         Mean 
                        Joi nt                bi as   Tobi t        Mean 
 Obs par amet er   t r ue    Tobi t  VARJNTTOBI T  Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
   1    bL0     0. 00 - 0. 00289   0. 002228  0. 00289   95. 66    0. 4221  0. 00399 0. 42210      .  
   2    bL1     1. 00   1. 0539   0. 012406  0. 05390   93. 64    0. 5067  0. 00448 0. 49330      .  
   3    bL2     1. 00   1. 0033   0. 003247  0. 00335   94. 14    0. 4603  0. 00091 0. 53971      .  
   4    bs0     0. 80   0. 8059   0. 005968  0. 00595   94. 95    0. 8121  0. 00581 0. 01205    95. 24 
   5    bs1     1. 00   1. 0023   0. 010341  0. 00229   95. 25    1. 0124  0. 01151 0. 01236    94. 08 
   6    r 1     - 1. 50  - 1. 6064   0. 047617  0. 10637   95. 76   - 3. 7699  0. 43019 2. 26994     0. 23 
   7    r 2     - 1. 00  - 0. 9836   0. 022923  0. 01637   95. 86   0. 06729  2. 63450 1. 06729    81. 53 
   8    s11     0. 50   0. 4693   0. 004529  0. 03074   97. 27    0. 1171  0. 00049 0. 38292     0. 12 
   9    s22     1. 00   0. 8801   0. 040528  0. 11993   92. 63   0. 06419  0. 00038 0. 93581      .  
  10    s33     0. 25   0. 2696   0. 021872  0. 01955   97. 52    0. 4292  0. 02251 0. 17917    86. 33 
  11    se      0. 25   0. 2738   0. 001500  0. 02380   92. 83    0. 1694  0. 00033 0. 08060     0. 35 
 
                                                    Mean 
       Mean                                        Joi nt                    bi as 
 Obs Joi nt DL2  VARJNTDL2  bi asDL2  DL2Cover age   DLSQRT2  VARJNTDLSQRT2  DLSQRT2  DLSQRT2Cover age 
 
   1   0. 3826   0. 00293   0. 38257       .          0. 3978     0. 00341     0. 39777         .  
   2   0. 2849   0. 00125   0. 71510       .          0. 3836     0. 00229     0. 61644         .  
   3   0. 3020   0. 00058   0. 69796       .          0. 3704     0. 00065     0. 62956         .  
   4   0. 8133   0. 00574   0. 01335     95. 36       0. 8167     0. 00596     0. 01672       94. 34 
   5   1. 0241   0. 01141   0. 02413     94. 28       1. 0156     0. 01181     0. 01562       93. 53 
   6  - 5. 5178   2. 91239   4. 01780      1. 41      - 4. 6382     0. 60498     3. 13816        0. 23 
   7   6. 4622   3. 96951   7. 46219      6. 70       3. 0712     5. 45014     4. 07117       43. 58 
   8  0. 04833   0. 00013   0. 45167      0. 11      0. 07416     0. 00025     0. 42584        0. 12 
   9  0. 01571   0. 00003   0. 98429       .         0. 02734     0. 00009     0. 97266         .  
  10   0. 1981   0. 01237   0. 05189     98. 90       0. 3297     0. 02372     0. 07971       95. 76 
  11   0. 1398   0. 00037   0. 11023       .          0. 1369     0. 00028     0. 11307         .  
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(Quadrature Points=3, n=500, 40% Censoring, N=1000) Time: 380+ hrs 
 
                         Mean 
                        Joi nt                bi as   Tobi t        Mean 
 Obs par amet er   t r ue    Tobi t  VARJNTTOBI T  Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
   1    bL0     0. 00 - 0. 00121    0. 0018   0. 00121   95. 17    0. 2839  0. 00250 0. 28391      .  
   2    bL1     1. 00   1. 0373    0. 0108   0. 03726   93. 96    0. 7542  0. 00748 0. 24580     9. 60 
   3    bL2     1. 00   1. 0021    0. 0020   0. 00207   95. 17    0. 6739  0. 00123 0. 32607      .  
   4    bs0     0. 80   1. 4730    0. 5262   0. 67304   50. 05    1. 4737  0. 52604 0. 67367    50. 51 
   5    bs1     1. 00   1. 0048    0. 0109   0. 00484   94. 36    1. 0198  0. 01192 0. 01982    92. 32 
   6    r 1     - 1. 50  - 1. 5533    0. 0351   0. 05331   95. 47   - 2. 6856  0. 09264 1. 18563     1. 13 
   7    r 2     - 1. 00  - 0. 9708    0. 0155   0. 02923   96. 07   - 0. 6697  0. 47114 0. 33031    93. 22 
   8    s11     0. 50   1. 5102    1. 2228   1. 01021   50. 55    0. 8766  0. 47260 0. 37658      .  
   9    s22     1. 00   3. 7860   12. 1999   2. 78601   49. 24    0. 7760  0. 41290 0. 22401      .  
  10    s33     0. 25   0. 9621    0. 6693   0. 71210   51. 30    1. 2004  1. 03194 0. 95039    47. 63 
  11    se      0. 25   0. 7479    0. 2698   0. 49786   49. 04    0. 7592  0. 27120 0. 50915    40. 11 
 
                                                    Mean 
       Mean                                        Joi nt                    bi as 
 Obs Joi nt DL2  VARJNTDL2  bi asDL2  DL2Cover age   DLSQRT2  VARJNTDLSQRT2  DLSQRT2  DLSQRT2Cover age 
 
   1   0. 3649     0. 002   0. 36489       .          0. 3290     0. 00234     0. 32901         .  
   2   0. 5175     0. 003   0. 48252       .          0. 6208     0. 00520     0. 37917         .  
   3   0. 4987     0. 001   0. 50133       .          0. 5736     0. 00100     0. 42635         .  
   4   1. 4863     0. 539   0. 68631     50. 80       1. 4774     0. 53951     0. 67740       51. 21 
   5   1. 0325     0. 012   0. 03253     92. 33       1. 0197     0. 01228     0. 01973       92. 38 
   6  - 3. 2181   263. 267   1. 71806      0. 11      - 3. 3250     0. 14156     1. 82505         .  
   7   2. 4949     1. 012   3. 49486     19. 81       0. 7265     1. 50620     1. 72655       66. 58 
   8   0. 6407     0. 324   0. 14067      0. 11       0. 7234     0. 37118     0. 22341         .  
   9   0. 5562     0. 285   0. 44382       .          0. 5975     0. 30730     0. 40253         .  
  10   0. 7816     0. 720   0. 53161     56. 50       1. 1213     0. 85583     0. 87129       51. 99 
  11   0. 7858     0. 276   0. 53583     18. 53       0. 7413     0. 27059     0. 49127       41. 55 
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(Quadrature Points=3, n=500, 20% Censoring, N=1000) Time:  203+ Hrs 
 
                         Mean 
                        Joi nt                bi as   Tobi t        Mean 
 Obs par amet er   t r ue    Tobi t  VARJNTTOBI T  Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
   1    bL0     0. 00 - 0. 00289   0. 002228  0. 00289   95. 66    0. 4221  0. 00399 0. 42210      .  
   2    bL1     1. 00   1. 0539   0. 012406  0. 05390   93. 64    0. 5067  0. 00448 0. 49330      .  
   3    bL2     1. 00   1. 0033   0. 003247  0. 00335   94. 14    0. 4603  0. 00091 0. 53971      .  
   4    bs0     0. 80   0. 8059   0. 005968  0. 00595   94. 95    0. 8121  0. 00581 0. 01205    95. 24 
   5    bs1     1. 00   1. 0023   0. 010341  0. 00229   95. 25    1. 0124  0. 01151 0. 01236    94. 08 
   6    r 1     - 1. 50  - 1. 6064   0. 047617  0. 10637   95. 76   - 3. 7699  0. 43019 2. 26994     0. 23 
   7    r 2     - 1. 00  - 0. 9836   0. 022923  0. 01637   95. 86   0. 06729  2. 63450 1. 06729    81. 53 
   8    s11     0. 50   0. 4693   0. 004529  0. 03074   97. 27    0. 1171  0. 00049 0. 38292     0. 12 
   9    s22     1. 00   0. 8801   0. 040528  0. 11993   92. 63   0. 06419  0. 00038 0. 93581      .  
  10    s33     0. 25   0. 2696   0. 021872  0. 01955   97. 52    0. 4292  0. 02251 0. 17917    86. 33 
  11    se      0. 25   0. 2738   0. 001500  0. 02380   92. 83    0. 1694  0. 00033 0. 08060     0. 35 
 
                                                    Mean 
       Mean                                        Joi nt                    bi as 
 Obs Joi nt DL2  VARJNTDL2  bi asDL2  DL2Cover age   DLSQRT2  VARJNTDLSQRT2  DLSQRT2  DLSQRT2Cover age 
 
   1   0. 3826   0. 00293   0. 38257       .          0. 3978     0. 00341     0. 39777         .  
   2   0. 2849   0. 00125   0. 71510       .          0. 3836     0. 00229     0. 61644         .  
   3   0. 3020   0. 00058   0. 69796       .          0. 3704     0. 00065     0. 62956         .  
   4   0. 8133   0. 00574   0. 01335     95. 36       0. 8167     0. 00596     0. 01672       94. 34 
   5   1. 0241   0. 01141   0. 02413     94. 28       1. 0156     0. 01181     0. 01562       93. 53 
   6  - 5. 5178   2. 91239   4. 01780      1. 41      - 4. 6382     0. 60498     3. 13816        0. 23 
   7   6. 4622   3. 96951   7. 46219      6. 70       3. 0712     5. 45014     4. 07117       43. 58 
   8  0. 04833   0. 00013   0. 45167      0. 11      0. 07416     0. 00025     0. 42584        0. 12 
   9  0. 01571   0. 00003   0. 98429       .         0. 02734     0. 00009     0. 97266         .  
  10   0. 1981   0. 01237   0. 05189     98. 90       0. 3297     0. 02372     0. 07971       95. 76 
  11   0. 1398   0. 00037   0. 11023       .          0. 1369     0. 00028     0. 11307         .  
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(Quadrature Points=3, n=100, 60% Censoring, N=1000) Time: 13+ Hrs 
 
                         Mean 
                        Joi nt                bi as   Tobi t        Mean 
 Obs par amet er   t r ue    Tobi t  VARJNTTOBI T  Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
   1    bL0     0. 00 - 0. 01413     0. 012   0. 01413   94. 77    0. 4196     0. 02 0. 41958     1. 25 
   2    bL1     1. 00   1. 1208     0. 075   0. 12082   91. 79    0. 5058     0. 02 0. 49422     2. 17 
   3    bL2     1. 00   1. 0196     0. 016   0. 01965   95. 08    0. 4600     0. 00 0. 54000      .  
   4    bs0     0. 80   0. 8262     0. 034   0. 02617   94. 15    0. 8321     0. 03 0. 03215    94. 30 
   5    bs1     1. 00   1. 0089     0. 051   0. 00890   96. 31    1. 0226     0. 06 0. 02261    94. 75 
   6    r 1     - 1. 50  - 1. 6277     0. 250   0. 12771   97. 03   - 3. 1321    83. 42 1. 63214    52. 23 
   7    r 2     - 1. 00  - 0. 4910   111. 769   0. 50898   93. 70    1. 8191  1606. 72 2. 81906    85. 35 
   8    s11     0. 50   0. 4813     0. 024   0. 01874   98. 05    0. 1250     0. 00 0. 37501      .  
   9    s22     1. 00   0. 8531     0. 232   0. 14694   95. 56   0. 06984     0. 00 0. 93016     2. 07 
  10    s33     0. 25   0. 3062     0. 055   0. 05617   99. 30    0. 3525     0. 05 0. 10247    98. 91 
  11    se      0. 25   0. 2726     0. 008   0. 02256   95. 79    0. 1640     0. 00 0. 08597    32. 95 
 
                                                Mean 
       Mean                                    Joi nt                  bi as 
 Obs Joi nt DL2 VARJNTDL2 bi asDL2 DL2Cover age  DLSQRT2 VARJNTDLSQRT2 DLSQRT2 DLSQRT2Cover age 
 
   1   0. 3775     0. 01  0. 37751     0. 59      0. 3954      0. 016    0. 39543       0. 69 
   2   0. 2883     0. 01  0. 71174      .         0. 3757      0. 011    0. 62434        .  
   3   0. 3029     0. 00  0. 69713      .         0. 3705      0. 003    0. 62951        .  
   4   0. 8364     0. 04  0. 03640    94. 13      0. 8339      0. 037    0. 03388      94. 81 
   5   1. 0239     0. 06  0. 02390    95. 67      1. 0149      0. 056    0. 01491      95. 74 
   6  - 0. 3580  3166. 39  1. 14204    56. 97     - 3. 8041     73. 605    2. 30413      51. 75 
   7   6. 3043    64. 24  7. 30430    69. 05      3. 2587    115. 072    4. 25868      77. 38 
   8  0. 05634     0. 00  0. 44366     1. 14     0. 08184      0. 001    0. 41816       0. 71 
   9  0. 02110     0. 00  0. 97890     5. 04     0. 03478      0. 001    0. 96522       3. 17 
  10   0. 3446     0. 09  0. 09457    98. 51      0. 3472      0. 142    0. 09715      98. 17 
  11   0. 1416     0. 00  0. 10841    12. 88      0. 1348      0. 001    0. 11522       8. 53 
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(Quadrature Points=3, n=100, 40% Censoring, N=1000) Time: 32+hrs 
 

                                               Mean 
                        Joi nt                bi as   Tobi t        Mean 
 Obs par amet er   t r ue    Tobi t  VARJNTTOBI T  Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
   1    bL0     0. 00 - 0. 00437    0. 0094   0. 00437   94. 83    0. 2809  0. 01243 0. 28089    10. 29 
   2    bL1     1. 00   1. 0935    0. 0608   0. 09354   90. 47    0. 7737  0. 03192 0. 22627    57. 96 
   3    bL2     1. 00   1. 0114    0. 0110   0. 01141   95. 13    0. 6749  0. 00608 0. 32509     1. 22 
   4    bs0     0. 80   0. 8237    0. 0329   0. 02374   95. 74    0. 8289  0. 03298 0. 02891    95. 69 
   5    bs1     1. 00   1. 0159    0. 0536   0. 01590   93. 61    1. 0237  0. 05932 0. 02371    93. 81 
   6    r 1     - 1. 50  - 1. 4615   14. 7587   0. 03846   95. 93   - 2. 6788  0. 49640 1. 17879    72. 39 
   7    r 2     - 1. 00  - 0. 8460    4. 6796   0. 15404   95. 74   - 0. 3457  4. 18342 0. 65435    89. 01 
   8    s11     0. 50   0. 4855    0. 0186   0. 01454   97. 56    0. 2341  0. 00624 0. 26588    22. 81 
   9    s22     1. 00   0. 9085    0. 1735   0. 09146   95. 13    0. 1828  0. 01042 0. 81724     4. 11 
  10    s33     0. 25   0. 3247    0. 0635   0. 07473   98. 03    0. 3477  0. 05808 0. 09770    99. 20 
  11    se      0. 25   0. 2632    0. 0054   0. 01318   94. 42    0. 2667  0. 00332 0. 01668    85. 07 
 
                                                Mean 
       Mean                                    Joi nt                  bi as 
 Obs Joi nt DL2 VARJNTDL2 bi asDL2 DL2Cover age  DLSQRT2 VARJNTDLSQRT2 DLSQRT2 DLSQRT2Cover age 
 
   1   0. 3585    0. 013  0. 35847     1. 58      0. 3246      0. 012    0. 32461       3. 64 
   2   0. 5143    0. 017  0. 48569     4. 51      0. 6185      0. 022    0. 38147      15. 60 
   3   0. 4954    0. 005  0. 50457      .         0. 5717      0. 005    0. 42826        .  
   4   0. 8373    0. 036  0. 03734    95. 60      0. 8360      0. 036    0. 03595      95. 56 
   5   1. 0352    0. 061  0. 03525    93. 80      1. 0286      0. 062    0. 02865      93. 85 
   6  - 1. 9283  412. 051  0. 42832    53. 03     - 3. 4559     87. 161    1. 95594      57. 19 
   7   2. 4011   10. 724  3. 40108    68. 37      1. 5147    431. 806    2. 51469      80. 78 
   8   0. 1148    0. 002  0. 38521     1. 96      0. 1641      0. 004    0. 33590       3. 56 
   9  0. 06753    0. 003  0. 93247     2. 99     0. 09611      0. 004    0. 90389       3. 11 
  10   0. 3044    0. 380  0. 05438    98. 94      0. 3500      0. 237    0. 10005      98. 50 
  11   0. 2961    0. 006  0. 04611    64. 49      0. 2596      0. 004    0. 00964      79. 95 
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(Quadrature Points=3, n=100, 20% Censoring, N=1000) Time:35+ Hrs 
 
                       Mean 
                       Joi nt                bi as    Tobi t        Mean 
Obs par amet er   t r ue    Tobi t  VARJNTTOBI T   Tobi t   Cover age  Joi nt DL VARJNTDL  bi asDL DLCover age 
 
  1    bL0     0. 00 - 0. 00077   0. 00751   0. 000768   96. 30    0. 1382  0. 00822 0. 13822    58. 29 
  2    bL1     1. 00   1. 0815   0. 04720   0. 081491   94. 14    1. 0081  0. 04340 0. 00806    89. 95 
  3    bL2     1. 00   1. 0039   0. 00938   0. 003945   93. 83    0. 8548  0. 00815 0. 14516    54. 76 
  4    bs0     0. 80   0. 8151   0. 03597   0. 015144   94. 14    0. 8170  0. 03600 0. 01697    93. 80 
  5    bs1     1. 00   1. 0215   0. 05109   0. 021463   95. 27    1. 0407  0. 05633 0. 04073    94. 97 
  6    r 1     - 1. 50  - 1. 5656   0. 40853   0. 065644   96. 30   - 2. 0811  2. 61390 0. 58109    88. 96 
  7    r 2     - 1. 00  - 0. 9467   0. 12437   0. 053319   97. 43   - 0. 8004  0. 66490 0. 19962    94. 11 
  8    s11     0. 50   0. 4821   0. 01490   0. 017933   97. 12    0. 3472  0. 01047 0. 15278    78. 56 
  9    s22     1. 00   0. 9252   0. 11690   0. 074794   96. 09    0. 4044  0. 02980 0. 59556    38. 54 
 10    s33     0. 25   0. 3073   0. 06265   0. 057294   97. 28    0. 3261  0. 05425 0. 07612    98. 39 
 11    se      0. 25   0. 2568   0. 00341   0. 006764   94. 35    0. 3177  0. 00383 0. 06767    68. 24 
 
                                               Mean 
      Mean                                    Joi nt                  bi as 
Obs Joi nt DL2 VARJNTDL2 bi asDL2 DL2Cover age  DLSQRT2 VARJNTDLSQRT2 DLSQRT2 DLSQRT2Cover age 
 
  1   0. 2648   0. 0097  0. 26478    14. 41      0. 2100    0. 00860    0. 21001      29. 39 
  2   0. 8194   0. 0283  0. 18055    75. 50      0. 9073    0. 03495    0. 09275      84. 80 
  3   0. 7142   0. 0069  0. 28578     7. 82      0. 7737    0. 00701    0. 22625      21. 73 
  4   0. 8278   0. 0372  0. 02778    94. 19      0. 8185    0. 03593    0. 01850      94. 26 
  5   1. 0418   0. 0583  0. 04177    94. 75      1. 0408    0. 05810    0. 04083      94. 71 
  6  - 2. 6840  67. 4879  1. 18401    61. 49     - 2. 6239    0. 41653    1. 12387      70. 99 
  7   0. 3208  13. 5554  1. 32080    83. 41     - 0. 3773    1. 74383    0. 62274      91. 89 
  8   0. 2070   0. 0060  0. 29298    30. 02      0. 2686    0. 00784    0. 23141      52. 31 
  9   0. 1902   0. 0114  0. 80978     5. 51      0. 2432    0. 01533    0. 75684      10. 37 
 10   0. 2578   0. 0512  0. 00776    98. 65      0. 2800    0. 04164    0. 03000      99. 09 
 11   0. 4976   0. 0121  0. 24763     6. 93      0. 3888    0. 00640    0. 13875      28. 04 
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