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This research addresses analyzing and responding to uncertainty in projects with stochastic task 

durations. First we examine the effect of contractor flexibility (or agility) on project completion 

times. We find that this impact can be significant depending on the size and the structure of the 

project network. 

Next we study a stochastic time-cost trade-off problem with penalties for exceeding a project 

deadline. In considering this problem, we take a contingency approach to decision making where 

crashing decisions are made dynamically throughout project execution. For serial projects we 

develop a dynamic programming algorithm as well as a variety of heuristic methods. Extending 

and modifying these methods for general projects allows us to deal with more complex network 

structures. Specifically, we propose hybrid dynamic programming/linear programming 

algorithms and simulation-based algorithms. We perform computational studies to assess the 

performance of each method and to compare the contingency approach with a static approach 

(where all crashing decisions are made before the project start time).  

Finally, we study the case with penalties, incentives, and overhead costs. We find that when the 

project cost function is not convex, the dynamic programming solution may become non-

monotonic, which requires further modification of the methods. We show that the performance 

of our algorithms does not deteriorate with inclusion of additional parameters. In fact, the gaps 
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between the case with perfect information and the methods presented herein seem to be smaller 

than in the penalty only case. 
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1.0  CHAPTER ONE: INTRODUCTION 

1.1 OVERVIEW 

A simple definition of a project is a temporary and unique endeavor consisting of tasks that, 

when completed, yields a deliverable of some sort, whether it is a finished information system, a 

building, a bridge, or a dissertation. A project has a definite beginning and a definite end, but in 

order to get to this “end” successfully we need to manage the project effectively. The Project 

Management Institute (PMI) defines project management as “the application of knowledge, 

skills, tools and techniques to a broad range of activities in order to meet the requirements of a 

particular project.” So how do we measure project success? While there are many metrics by 

which to measure project success, such as the quality of the work or customer satisfaction; the 

scope this dissertation will focus on two factors that we can clearly measure: time and cost.  

In order to estimate a project’s completion time, we need to develop a schedule. A project 

schedule is a plan of what needs to be done in order to complete all the work. Project managers 

define tasks to be completed and precedence relationships or dependencies (which tasks follow 

other tasks). We can also visualize a project as a network diagram that indicates what tasks need 

to be done (represented by nodes) and in what order. Directed arcs among project nodes 

correspond to precedence relationships. The length of the project is defined as the length of the 

longest path in the network from start to finish; also known as the critical path. In this 
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dissertation we will use an activity on node (AON) network diagram to represent various 

projects. In an AON diagram nodes correspond to project activities and arcs represent 

precedence relationships. 

It is common knowledge that projects are often late. There are multiple reasons for this 

phenomenon and many of those have their roots in uncertainty. Uncertainty in projects can be 

present in many forms: uncertainty in what resources will be available, uncertainty in when they 

will be available, uncertainty in the exact scope of the work, uncertainty in the precedence 

relationships, and uncertainty in the duration of the tasks. Nevertheless, project managers are 

usually forced to make estimates regarding project completion times and final costs before any 

uncertainty is resolved. These estimates often become a basis for bidding on project contracts – 

setting project target date (planned project completion date), start times for project tasks, as well 

as relevant charges such as contractor revenues, penalties for exceeding the target date, overhead 

costs; but also incentives for completing the project early. Therefore late projects can lead to 

higher costs and thus decreased profits for both contractors and clients. 

In this dissertation we focus on analyzing uncertainty in task durations and project 

crashing in the presence of this uncertainty. Project crashing refers to shortening the duration of 

the project by allocating additional resources (money) to some of the tasks. This leads to a time-

cost trade-off – by spending more resources on the project now, we can avoid or lessen the 

consequences of completing the project late. This can result in cost savings because we can 

reduce the total amount of penalties (or avoid them altogether) and even take advantage of 

incentives if there are provisions for such. 
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1.2 PROBLEM STATEMENT 

The first problem considered in this thesis relates to the flexibility of contractors and its effects 

on project duration. We refer to this flexibility as forward agility and define it as the ability to 

start a task before its scheduled start time if its predecessors finish sooner than planned. If an 

activity can take advantage of the early completion of its predecessors, we call it forward agile. 

Otherwise, the activity is considered not forward agile, which is equivalent to imposing a “start-

no-earlier-than” constraint on that task. 

The second problem can be described as a stochastic time-cost trade-off where we have 

options to speed up (crash) some or all of the activities for a given cost, which we refer to as the 

crash cost. The problem can be stated as follows: Given a set of activities, their precedence 

relationships, probability distributions of their durations, crash costs and maximum speed-up 

associated with each task, project target date, per period penalty for exceeding the target date, as 

well as any other relevant costs (incentives and/or overhead), find a crashing policy that will 

minimize total project cost. In this thesis we assume that the duration of each task follows a 

triangular probability distribution with parameters given by the optimistic (O), the most likely 

(ML), and the pessimistic (P) durations. Traditionally, project managers have used PERT 

(Program Evaluation and Review Technique) to deal with such a problem. PERT was developed 

between 1956 and 1958 for the U.S. Navy’s Special Project Office (Klastorin, 2004). Despite its 

wide adoption in industry, PERT suffers from two critical shortcomings: (1) it replaces 

uncertainty with point estimates (averages) for task durations and (2) it does not allow for 

dynamic decisions. In this dissertation we will describe methods that address these two issues 

resulting in better crashing policies. Furthermore, we consider two types of uncertainty in task 

durations: internal uncertainty and external uncertainty (Elmaghraby, 2005). Internal uncertainty 
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stems from the difficulty in estimating work content of the tasks, that is, we do not exactly know 

how much effort each activity will require. External uncertainty is related to external events such 

as weather changes, catastrophic events (earthquakes, tornadoes), etc. As we will show in later 

chapters, external uncertainty often results in linear crash costs while internal uncertainty results 

in nonlinear crash costs. 

1.3 PROJECT REPRESENTATION 

We visualize projects using a standard activity-on-node (AON) representation. That is, a project 

network is a direct acyclic graph with nodes representing activities and arcs corresponding to 

precedence relationships among project tasks, with two dummy activities denoting the start and 

the finish of the project respectively. Furthermore, in this research we classify project network 

topology (or structure) using two measures – order strength (OS) and serial-parallel (SP) index.  

The idea of order strength was developed by Mastor (1970) and further described by 

Demeulemeester et al. (2003). The OS uses the concept of transitive and non-transitive arcs. We 

call an arc between two nodes, i and j, transitive if there exist i, j and k such that there is a path 

from i to k and a path from k to j.  In other words, transitive arcs represent redundant precedence 

relationships. The OS is defined as the total number of precedence relationships in the network, 

including transitive but excluding dummy relationships, divided by the theoretical maximum 

number of precedence relationships. This latter number is equal to n(n-1)/2 where n equals the 

number of activities in the project excluding the two dummy nodes. Therefore, it measures the 

“density” of the project with respect to precedence relationships. On the other hand, the serial-

parallel index (Tavares et al, 1999) measures the “length” of the longest path in the project and is 
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equal to (m-1)/(n-1) where m is the length of the longest path in terms of the number of activities 

and n is the total number of activities. Unlike the OS, the SP index does not indicate how many 

precedence relationships exist in among the activities. We provide a more thorough discussion 

about these measures in Chapter 2 (SP index) and Chapter 4 (OS).  

In this thesis we often consider two special project network structures – a completely 

serial project, where there exists only one path and a completely parallel project where the 

number of paths is equal to the number of activities and no precedence relationships exist except 

for the dummy ones.  

1.4 PURPOSE, SCOPE, AND OBJECTIVES OF THE RESEARCH 

There are two goals of this research. First, we analyze the effects of forward agility on the 

project duration and the probability of a late completion. Surprisingly, this topic has been 

neglected in prior research on project management. We analyze its impact and show that the lack 

of forward agility can significantly affect the probability of the project finishing late. This 

dissertation also addresses the subject of conditional decision making in projects with stochastic 

task durations. There exists a moderate amount of work that deals with the development of static 

crashing policies for projects with uncertain durations; however, the literature on dynamic 

policies is scant. One reason for this is that it is difficult to develop exact dynamic algorithms for 

such a problem – the sheer number of possible scenarios makes the solution space so large that it 

prohibits enumeration of all solutions. There is, however, one class of problems for which we 

can calculate optimal dynamic policies – serial projects. For serial project networks we can also 

develop efficient heuristics, which we will show get very close to the optimum. We then extend 
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those heuristics to the general network (i.e., not serial) case and test them on a variety of project 

network topologies. We also calculate the value of perfect information for both serial and general 

projects and show that the gap between the cost with perfect information and the cost of optimal 

crashing policy with uncertainty for serial networks is comparable to the gap between perfect 

information cost and best performing heuristics for general networks.  

A contribution of this research is to develop efficient algorithms for dynamic crashing 

policies in projects with stochastic task durations. In addition, we will show how our methods 

extend to cases with nonlinear crash costs as well as cases when there are incentives (negative 

costs) for completing the project early. For all computational tests we used a 3.2 GHz Intel 

Pentium 4 PC with 1GB RAM, running Windows XP operating system. For the methods 

requiring an LP/IP solver we used the Common Optimization Interface for Operations Research 

open source solvers (Lougee-Heimer, 2003). All algorithms presented herein were implemented 

in C++ using Microsoft Visual Studio .NET development environment. 

1.5 CONTRIBUTIONS OF THIS RESEARCH 

In this thesis, we consider a previously neglected issue of contractor flexibility, which we refer to 

as the forward agility, and its impact on project delays. We show how this effect varies with 

respect to the project structure and the due date. Our results can serve as a guideline for project 

managers negotiating contracts with subcontractors and setting project target completion dates. 

In addition, we show that forward agility can have an impact even in projects with multiple 

parallel paths but this effect depends on the project due date. We also study how to make 

dynamic crashing decisions in the presence of uncertain task durations and derive additional 



 7 

insights by studying serial projects. We examine the applicability of dynamic programming for 

serial project networks and develop other efficient algorithms for more general networks. These 

methods can help managers make speed-up decisions that depend on the state of the project. We 

compare such dynamic policies with static speed-up decisions. Algorithms that use simple rules 

of thumb as well as more sophisticated methods that combine dynamic programming with linear 

programming are discussed. In the end, we find that simple methods usually work well and that 

one should avoid focusing too much on the critical path in making speed-up decisions. Finally, 

we extend our algorithms to projects with incentives, penalties, and overhead cost and discuss 

additional difficulties in solving such problems, such as having non-convex cost functions or 

non-monotonic dynamic programming solutions. 

1.6 OUTLINE OF THE DISSERTATION 

In Chapter 2 we consider effects of the forward agility of contractors on project completion time. 

Chapter 3 looks at a special case of serial projects with linear crash costs and a penalty for 

exceeding the target date. We discuss why serial projects are important and present a network 

generator for creating random serial test problems with certain characteristics. Four algorithms 

are discussed, including a dynamic programming method yielding optimal policies, and results 

on random test problems are presented. Chapter 4 considers extensions from serial projects to a 

more general case. We present another network generator for creating test problems with 

different topologies (from a completely parallel project to a serial project) and introduce five 

robust heuristics for solving these problems. We present and compare the results as well as 

discuss advantages and disadvantages of each method. Chapter 5 looks at extensions to the 
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problem with penalties by introducing incentives and overhead costs. We show that the project 

cost function may become non-convex in which case we have to make major changes to the 

algorithms. Nevertheless, our methods are capable of handling this case as well for both serial 

and general networks.  
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2.0  CHAPTER TWO: IMPACT OF AGILITY 

2.1 INTRODUCTION 

Projects are naturally prone to late completions in that a delay in one activity can delay the start 

of its successors – especially on a critical path. We refer to this ability to start tasks later than 

planned as backward agility. Unfortunately, projects are often not forward agile. That is, if a 

predecessor takes less time than estimated, then its successor often starts at its normally 

scheduled time (failing to capture the benefits of starting early). This phenomenon was noted by 

Goldratt (1997) in his book Critical Chain (see page 112): “A delay in one step is passed, in full, 

to the next step. An advance in one step is usually wasted.” While we could find no study 

addressing this phenomenon in practice, a recent survey by Assaf and Hehhi (2006) examining 

the causes for delays in large construction projects identifies “inflexibility of contractors” as a 

major factor. Surprisingly, from our review of the literature, forward agility has not been studied. 

Thus this chapter will consider the impact of agility in projects. 

The chapter proceeds as follows. Section 2.2 gives the basic definitions and assumptions. 

Section 2.3 considers serial projects and analyzes the impact of agility in terms of project size 

(number of tasks). The impact of agility in projects with parallel paths is considered in section 

2.4 by examining a special class of projects, called strongly parallel projects. Section 2.5 

considers agility in general projects using a serial-parallel index to characterize project structure. 
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Finally, section 2.6 concludes with a summary of the results on the impact of agility in projects. 

It also gives some observations on identifying and characterizing tasks having a high agility 

impact in a project. 

2.2 DEFINITIONS AND ASSUMPTIONS 

If all activities in a project had deterministic durations, we could easily calculate the project 

completion date using the Critical Path Method (CPM) analysis. Even though in reality there are 

uncertainties with respect to activity durations, project managers often reduce a stochastic project 

to its deterministic counterpart using best-guess estimates. Often those estimates are the expected 

or most likely durations of the activities. The project completion date and schedule are also 

calculated using the CPM, which gives planned start times for all activities as well as planned 

project completion date, which we refer to as Target. 

 However, if activity durations are probabilistic, each activity can take less or more time 

than estimated. When an activity finishes before the planned start time of its successor, the 

successor may or may not be able to take advantage of this opportunity by starting early. If an 

activity can reschedule its start time to take advantage of an earlier finish of its predecessor(s), 

then we say that it is forward agile. In this research we study the impact of such agility. 

Specifically, we examine two cases – projects in which all activities are forward agile (100% 

forward agility) and projects in which no tasks are forward agile (0% forward agility); and we 

consider the impact of agility on projects with various network topologies. The effects of 

network topology on project delays were first discussed by Schonberger (1981). The most 

notable finding was that the difference between the true and estimated durations varies, based on 
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the project network structure and individual activity duration variance – the “fatter” or more 

parallel the project, the later the project completion and the higher the variance.  

In order to focus attention solely on the effects of agility under different network 

topologies, we assume independent and identical probability distributions of the durations of all 

activities. Furthermore, for simplicity in the computational comparisons, we assume that this 

distribution is triangular. Below is a summary of the notation used herein. 

• Target – project target date set using the CPM method. 

• n – total number of activities in a project 

• sigma – standard deviation of the project assuming 100% forward agility. Computed 

using simulation. 

• σ2
activity – variance of activity duration 

• c – fraction of the standard deviation of the project above Target. 

• O – optimistic activity duration. 

• ML – most likely activity duration. 

• P – pessimistic activity duration. 

2.3 THE SERIAL PROJECT CASE 

We first examine projects with one path (serial projects). The impact of the agility on durations 

of serial projects is important to study because the effect of having multiple paths is removed. 

Therefore, we can observe pure effects of agility, not confounded by other factors. In practice, 

serial projects effectively exist when there is one dominant path. Interestingly, some applications 

in scheduling trains, busses, and planes naturally correspond to serial projects. 
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For simplicity, in most cases we assume that the duration of each activity is given by the 

triangular distribution with O=5, ML=10, and P=15. However, when we examine the impact of 

agility with respect to the standard deviation of activity durations, we still use symmetric 

triangular distributions (where P-ML = ML-O) but we vary the distribution span, or the 

difference between the pessimistic and optimistic values, between 0 and 10. The Target of each 

project is set using the CPM and assuming expected activity durations. In addition, when 

examining varying distribution spans we set the project size to 20 activities. Figure 2-1 shows 

probability density functions of the five different triangular distributions examined herein 

(described by their O, ML, and P parameters) as well as variances of activity durations 

corresponding to these spans. 

 
Figure 2-1: Various symmetric triangular distributions 

We calculate the average measures presented herein (mean duration and probabilities) by 

simulating each project N times where N is equal to the number of activities in that project 

multiplied by a constant (100).  

First we examine the impact of agility on the likelihood of finishing the project before 

some date specified with respect to project size. Since we know that, even with full agility and 

only one path, using the CPM method will, on average, underestimate project duration 50% of 

σ2
activity = 0.0023 

σ2
activity = 0.6667 

σ2
activity = 1.4999 

σ2
activity = 2.6664 

σ2
activity = 4.1665 
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the time (assuming symmetric distributions), we examine probabilities of completing the project 

before +Target c sigma× where c can take on values 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, and 3. The 

results are presented in Figures 2-2 through 2-10. In addition, we also present the 95% 

confidence intervals for the differences between probabilities using a method described by 

Marascuilo and McSweeney (1977). It is important to note that the lack of monotonicity in some 

of the curves presented in this section and section 2.4 is related to the number of simulation 

replications performed. With a larger number of replications these curves become monotonic. 

  
Figure 2-2: P(Duration>Target) by size - serial projects 

  
Figure 2-3: P(Duration>Target+0.25sigma) by size - serial projects 
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Figure 2-4: P(Duration>Target+0.5sigma) by size - serial projects 

  
Figure 2-5: P(Duration>Target+0.75sigma) by size - serial projects 

  
Figure 2-6: P(Duration>Target+sigma) by size - serial projects 

  
Figure 2-7: P(Duration>Target+1.5sigma) by size - serial projects 
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Figure 2-8: P(Duration>Target+2sigma) by size - serial projects 

  
Figure 2-9: P(Duration>Target+2.5sigma) by size - serial projects 

  
Figure 2-10: P(Duration>Target+3sigma) by size - serial projects 

 

The probability that a fully forward agile project will exceed a specified due date (derived 

based on the number of activities) remains the same regardless of the project size. In fact, that 

probability can be easily calculated for agile projects, for instance, when probability distributions 

of activity durations are Tri(5,10,15), P(Duration>Target) = 0.5, P(Duration>Target+0.5sigma) 

= 0.3167, and P(Duration>Target+sigma) = 0.175 for projects with one activity. This is 
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calculated by taking the integral of the triangular probability density 

fucntion: 2( )
( )( )x

P x dx
P O M O

∞ −
− −∫ . In projects with a larger number of activities, we can approximate 

the distribution of the project duration as normal and calculate the probabilities as 

P(Duration>Target) = 0.5, P(Duration>Target+0.5sigma) = 0.3085, and 

P(Duration>Target+sigma) = 0.1587 from the standard normal table. In the non-agile case 

however, the number of activities (n) clearly makes a difference, which is not surprising given 

our analysis for the mean. The P(Duration>Target) in the non-agile case seems to approach 1 as 

the number of activities increases (therefore the difference between the non-agile and agile 

probabilities approach 0.5). Similar patterns are observable for different values of c. It is 

interesting to note that, even when we increase the due date by a full standard deviation, the 

impact of the lack of forward agility is still significant at a 95% confidence level. However, as c 

increases, the impact of agility becomes less visible. 

Next we look at the impact of agility on the mean duration of a project. Figure 2-11 

presents the average project duration for the agile and non-agile cases as well as the difference 

between the two with respect to the project size. Figure 2-12 shows the same measure with 

respect to the distribution span. 

  
Figure 2-11: Mean comparison by size- serial projects 
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Figure 2-12: Mean comparison by activity variance - serial projects 

 
Not surprisingly, as the number of activities in the project increases, so does the effect of 

the agility on the average duration. When there is only one activity in the project, the actual start 

time is always the same as the planned start time of that activity. The greater the difference 

between the minimum possible start time of the activity, the greater the impact of the lack of 

forward agility. For the ith activity, the minimum possible start time is 
1

1

i

l
l

O
−

=
∑ and the planned start 

time is 
1

1

i

l
l

ML
−

=
∑ ; therefore, the greater the number of terms in the summation or the greater the 

difference between the most likely and the optimistic durations, the more severe the 

consequences of not having forward agility. Note that, even though the absolute difference in the 

mean durations with respect to size increases with the number of activities, the average 

percentage difference seems to decrease slightly. In projects studied (Figure 2-11), for two or 

three activities, that difference is about 5% and decreases to about 2% for projects with 50 tasks. 

However, the percentage difference (as well as the absolute difference) with respect to the 

distribution span increases with the span increase. 
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2.4 STRONGLY PARALLEL PROJECTS 

We now turn our attention to projects with multiple paths. In addition to the notation specified in 

Section 2.2, we define p as the number of parallel paths in the project and a as the number of 

activities on each path. Specifically, consider a project having p paths with p ≥ 2. We say that 

such a project is strongly parallel if each activity (excluding the dummy start and finish 

activities) is on exactly one path and if each path contains the same number of activities. Figure 

2-13 illustrates a project with p = 4 and a = 3. In this section we examine the impact of project 

structure on agility by considering strongly parallel projects. Specifically, we examine the agility 

impact in terms of the number of paths p as well as the number of activities on each path. In a 

subsequent section we consider more general network structures. 

 
Figure 2-13: Strongly parallel project with p=4 and a=3 

As before we perform computational tests assuming, for simplicity, that the duration of 

each activity is given by a triangular distribution (with O=5, ML=10, P=15, with an exception of 

examining the impact of standard deviations of the activity durations). 
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2.4.1 Projects with two strongly parallel paths 

We first consider projects with p = 2 and varying values of a. We perform similar analyses as in 

the serial case, that is, we examine differences in probabilities of completing the project before 

some specified due date as well as differences in mean project durations. 

 

  
Figure 2-14: P(Duration>Target) by size - 2 paths 

  
Figure 2-15: P(Duration>Target+0.25sigma) by size - 2 paths 

  
Figure 2-16: P(Duration>Target+0.5sigma) by size - 2 paths 
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Figure 2-17: P(Duration>Target+0.75sigma) by size - 2 paths 

  
Figure 2-18: P(Duration>Target+sigma) by size - 2 paths 

  
Figure 2-19: P(Duration>Target+1.5sigma) by size - 2 paths 

  
Figure 2-20: P(Duration>Target+2sigma) by size - 2 paths 



 21 

  
Figure 2-21: P(Duration>Target+2.5sigma) by size - 2 paths 

  
Figure 2-22: P(Duration>Target+3sigma) by size - 2 paths 

As before, the probability of completing the project on time remains constant for agile 

projects regardless of the number of activities on each path. We can show that these probabilities 

are equal to 1 – P(All paths complete before due date). Therefore, for two paths 

P(Duration>Target) = 1-0.52 = 0.75, P(Duration>Target+0.5sigma) = 1-(1-0.3085)2 = 0.5219, 

and P(Duration>Target+sigma) = 1-(1-0.1587)2 = 0.2921, calculated similarly as in section 2.3. 

The differences in the probabilities between the agile and the non-agile cases seem to increase 

for small project sizes and then level off for a greater number of activities. This is caused by the 

fact that the agile case probabilities remain constant while the non-agile probabilities increase 

until they reach their upper bound of one. At that point the differences stay at the same level. 

Examining the difference in expected project durations (Figures 2-23 and 2-24), we 

notice similar patterns to those we observed in the serial case; however, they are not as 

pronounced, that is, the differences between the agile and non-agile cases are slightly smaller. 
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This is due to the fact that, in addition of having effects of the agility, we also experience impact 

of multiple paths in the project. This is even more visible when we examine projects with five 

strongly parallel paths in Section 2.4.2. 

  
Figure 2-23: Mean comparison by size - 2 paths 

  
 

Figure 2-24: Mean comparison by activity variance - 2 paths 

2.4.2 Projects with five strongly parallel paths 

In order to examine the impact of agility when the number of parallel paths increases, we also 

looked at the case with five strongly parallel paths. The results are presented in the next set of 

figures (2-25 through 2-35). 
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Figure 2-25: P(Duration>Target) by size - 5 paths 

  
Figure 2-26: P(Duration>Target+0.25sigma) by size - 5 paths 

  
Figure 2-27: P(Duration>Target+0.5sigma) by size - 5 paths 

  
Figure 2-28: P(Duration>Target+0.75sigma) by size - 5 paths 
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Figure 2-29: P(Duration>Target+sigma) by size - 5 paths 

  
Figure 2-30: P(Duration>Target+1.5sigma) by size - 5 paths 

  
Figure 2-31: P(Duration>Target+2sigma) by size - 5 paths 

  
Figure 2-32: P(Duration>Target+2.5sigma) by size - 5 paths 
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Figure 2-33: P(Duration>Target+3sigma) by size - 5 paths 

  
Figure 2-34: Mean comparison by size - 5 paths 

  
Figure 2-35: Mean comparison by activity variance - 5 paths 

There are several notable results here. First, the differences between the agile and the 

non-agile cases are smaller as compared to the serial case or the case with two strongly parallel 

paths for small values of c (up to 0.75). This again is due to the structure of the project network – 

the “fatter” the project, the greater the delay so we do not detect such severe impact of the agility 

as before. This is particularly visible when examining the probabilities of finishing the project 

before a specified due date. As the number of parallel paths increases, this probability 
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approaches 1 even for the agile case. Therefore, the differences between the agile and non-agile 

projects are small. As before we can calculate the exact probabilities for the agile case; 

specifically, we note that those probabilities are P(Duration>Target) = 1-0.5p, 

P(Duration>Target+0.5sigma) = 1-(1-0.3085)p, and P(Duration>Target+sigma) = 1-(1-0.1587)p, 

where p is the number of strongly parallel paths. 

However, we also notice that in projects with 5 paths the differences in probabilities 

between the non-agile and agile projects initially increase as c increases but then start to fall. In 

projects with two strongly parallel paths we also observe an initial increase with c although the 

magnitude of this increase is smaller. This is in contrast to the serial projects where the 

differences in probabilities decrease monotonically as c increases. This phenomenon is illustrated 

in Figures 2-36 and 2-37 which show differences in probabilities with respect to c for projects 

with 20 and 50 activities per path respectively. 

 
Figure 2-36: Differences in probabilities by c -- projects with 20 activities per path 

 
Figure 2-37: Differences in probabilities by c -- projects with 50 activities per path 
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This result suggests that even in projects with many parallel paths, forward agility can 

have an effect depending on the due date. In the case of 5 strongly parallel paths, the initial 

probability (c = 0) of exceeding the Target is so large that the effect of agility is overpowered by 

the effect of multiple parallel paths. However, as the due date increases, the effect of agility 

becomes more apparent until the due date gets so large that having agility does not make any 

significant difference.  

2.5 SERIAL-PARALLEL INDEX 

In section 2.3 and 2.4 we examined projects with special and very well defined structures. 

However, in practice few project networks will have such well behaved topology; therefore 

herein we consider more general structures. We generated a large number of project networks 

based on a serial-parallel (SP) index described in Tavares et al. (1999). An extension of this work 

was presented in Tavares et al (2004) where the authors introduced the surrogate indicator which 

served as a predictor of the impact factor. The surrogate index was built using a regression model 

for which independent variables included the morphological indicators of the project network 

and randomness of the activity durations. The results showed that the serial-parallel index is the 

most important of the morphological factors in predicting the distribution of project duration; 

therefore it is a measure we use to classify structures of general project networks. 

The SP index of a project is equal to (m-1)/(n-1) where m is the number of sequential 

stages in the network (or the length of the longest path in terms of the number of activities) and n 

is the total number of activities. Therefore, a completely parallel project, i.e., each activity is in a 

path by itself, has a SP index of (1-1)/(n-1) = 0 and a completely serial project has an SP index of 
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(n-1)/(n-1) = 1. Essentially, the SP index measures the length of the longest path, in terms of the 

number of activities, with respect to the total number of activities in the project. Unfortunately, it 

does not indicate how many parallel paths or how many precedence relationships exist in the 

project. Figure 2-38 shows a number of different topologies (non-exhaustive) that can be 

achieved for a 6 activity project with the SP index of 0.4 and the relationship of the SP index to 

the order strength. 

 
Figure 2-38: Examples of projects with SP index = 0.4 

Nevertheless, from our computational experiments, the SP index was a better predictor of 

project delay than the order strength and it is the measure of topology we use throughout this 

section.  

We generated random problem instances using RanGen2 (Vanhoucke et al. 2004) varying 

the SP index (between 0 and 1 in 0.1 increments) and the number of activities in the project 

(between 5 and 50 in increments of 5). Since for a given SP index value, except 0 and 1, there 

are multiple possible structures, we generated 20 problem instances for each set of parameters, 

for example, we created 20 projects with 30 activities and an SP index of 0.5. As before, we set 
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the Target date equal to the longest path where activity durations are set to their expected values. 

Each project was then simulated N times with and without agility. The results are presented in 

Figures 2-39 through 2-48 and show the average probabilities of the 20 instances for each set of 

parameters. The x-axis represents the SP index, the y-axis shows the probability that the project 

will exceed its Target date, and the lines show the number of activities in the project. 

 
Figure 2-39: P(Duration>Target) by SP index 

 
Figure 2-40: P(Duration>Target) - difference by SP index  

 

  
Figure 2-41: P(Duration>Target+0.25sigma) by SP index 
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Figure 2-42: P(Duration>Target+0.25sigma) - difference by SP index 

 

  
Figure 2-43: P(Duration>Target+0.5sigma) by SP index 

 

 
Figure 2-44: P(Duration>Target+0.5sigma) - difference by SP index 
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Figure 2-45: P(Duration>Target+0.75sigma) by SP index 

 
Figure 2-46: P(Duration>Target+0.75sigma) - difference by SP index 

 

  
Figure 2-47: P(Duration>Target+sigma) by SP index 

 
Figure 2-48: P(Duration>Target+sigma) - difference by SP index 
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In the agile case, as the SP index increases (thus, the number of activities on the longest 

path increases) and the projects become more serial the probability of delays decreases for all 

values of c, which is consistent with our intuition. Examining the difference in probabilities, the 

effect of the lack of agility is 0 for completely parallel projects (SP index = 0) and increases as 

the SP index increases. In addition, the difference between the non-agile and the agile case is 

larger for projects with larger number of activities. This pattern is especially visible in case of 

c=0 or P(duration>Target) and for completely serial projects (SP index = 1), which confirms the 

results obtained in section 2.3.  

The differences between the agile and the non-agile projects seem to diminish with 

increasing due dates. This suggests, not surprisingly, that as we increase the due date for the 

project, agility becomes less significant. In fact, the lack of agility would cease to have any effect 

if the due date is sufficiently large. 

2.6 CONCLUSIONS AND FUTURE WORK 

In this chapter we looked at the impact of agility on project delays based on the topology of the 

project network. We examined serial projects, projects with a special (strongly parallel) 

topological structure, as well as general projects categorized by the serial-parallel index. We 

concluded that agility can have a significant effect on the duration of a project; however this 

effect varies based on the topology of the project network as well as the due date of the project. 

The more parallel the project, the smaller the impact of the lack of agility. On the other hand, the 

more serial the project, the greater is the effect of agility. In addition, we notice that for projects 

with multiple parallel paths, the impact of agility gradually increases with the increase in the due 
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date until it reaches some maximum after which it starts to fall. This is in contrast to serial 

projects where the impact of forward agility decreases monotonically with the increase in the due 

date. 

One of the future research avenues to pursue is to examine when having agility of an 

activity is most valuable. This is an important problem to consider from the project’s owner’s 

perspective, especially when negotiating with contractors. Our intuition is that agility should be 

more valuable in the later tasks as well as in projects with a higher duration variance. Future 

research will address measuring the value of agility and characterizing structures where agility of 

activities is most significant. 
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3.0  CHAPTER THREE: SERIAL PROJECTS 

 

3.1 INTRODUCTION 

A serial project consists of a series of tasks that have to be performed sequentially. Serial 

projects are of interest for two main reasons: (1) a reasonable number of real projects can be 

modeled as serial networks either because of the nature of the work to be executed, or the 

presence of one dominant path, and (2) results obtained for serial projects can help us understand 

the nature and complexity of a more general problem.  

In this chapter we consider a stochastic time-cost trade-off problem. Given a set of 

activities, probability distributions of task durations, a target date for project completion and the 

penalty for exceeding that target, as well as crashing options for some or all of the activities, our 

goal is to find the best crashing policy that will minimize total expected project cost. Herein we 

focus on uncertainty in task durations and examine both linear and nonlinear crashing. 

We make several assumptions regarding the problem: (1) activity durations follow 

triangular distributions (This assumption however, is for convenience only. The methods we 

present in this chapter do not require that this assumption is satisfied); (2) crashing an activity 

reduces its duration by a discrete value and durations of all tasks are also discrete; (3) there are 
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no lead times and all activities start as soon as possible; (4) we incur a constant penalty for each 

time period the project is past due; (5) there are no incentives for finishing early; (6) activities 

cannot be performed in parallel; and (7) there are no resource constraints. Example 3.1 illustrates 

a possible project with linear crash costs meeting all of those criteria: 

 Consider a serial project with three tasks as follows: 
 

Table 3-1: Illustrative Example 3.1 – Serial project with linear crashing 
Crash Cost Crash days

Optimistic Most Likely Pessimistic $ per day Maximum
A None 2 3 4 15 1
B A 3 5 8 20 2
C B 4 8 12 18 2

Days durationTask Predecessor

 

 
Suppose that we have a target of 16 days for finishing the project and a penalty cost of $100 per 

day for each day that the target date is exceeded. 

The AON network representation of this project is shown in Figure 3-1 where O = optimistic 

duration, ML = most likely duration and P = pessimistic duration: 

O ML P O ML P O ML P
Start 2 3 4 3 5 8 4 8 12 End

15 20 18
1 2 2

C

Crash cost
Crash up to

Crash cost
Crash up to

B

Crash cost
Crash up to

A

 
Figure 3-1: Illustrative Example #3.1 -- serial project with linear crashing 

 When uncertainty is related to the work content of a task (internal), crash costs and times 

are no longer linear. Example 3.2 shows a case with internal uncertainty. Note that in deriving 

crash cost we use an artificial number which we refer to as a “regular cost” per day. This value is 

not included in determining the total project cost but is needed to calculate crash costs for each 

option. In addition, the number of days an activity will be crashed by depends both on the option 

chosen as well as on the normal duration of the activity. 
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Table 3-2: Illustrative Example 3.2 – Serial project with nonlinear crashing 
Regular cost

Optimistic Most Likely Pessimistic $ per day
A None 2 3 4 15
B A 3 5 8 20
C B 4 8 12 18

Task Predecessor Days duration

 

Table 3-3 presents some crashing options for Example 3-2. 

Table 3-3: Crashing options (nonlinear case) 
A

Duration days crashed Crash Cost days crashed Crash Cost days crashed Crash Cost
2 0 -$                  1 6.00$                1 10.00$              
3 0 -$                  1 9.00$                2 15.00$              
4 0 -$                  1 12.00$              2 20.00$              

B
Duration days crashed Crash Cost days crashed Crash Cost days crashed Crash Cost

3 0 -$                  1 24.00$              2 40.00$              
4 0 -$                  1 32.00$              2 53.33$              
5 0 -$                  1 40.00$              3 66.67$              
6 0 -$                  2 48.00$              3 80.00$              
7 0 -$                  2 56.00$              4 93.33$              
8 0 -$                  2 64.00$              4 106.67$            

C
Duration days crashed Crash Cost days crashed Crash Cost days crashed Crash Cost

4 0 -$                  1 28.80$              2 48.00$              
5 0 -$                  1 36.00$              3 60.00$              
6 0 -$                  2 43.20$              3 72.00$              
7 0 -$                  2 50.40$              4 84.00$              
8 0 -$                  2 57.60$              4 96.00$              
9 0 -$                  2 64.80$              5 108.00$            

10 0 -$                  3 72.00$              5 120.00$            
11 0 -$                  3 79.20$              6 132.00$            
12 0 -$                  3 86.40$              6 144.00$            

Option 0 (0% reduction) Option 1 (25% reduction) Option 2 (50% reduction)

Option 0 (0% reduction) Option 1 (25% reduction) Option 2 (50% reduction)

Option 0 (0% reduction) Option 1 (25% reduction) Option 2 (50% reduction)

 

Unlike in the linear case, we do not have a constant crash cost per day or a constant 

number of days we can shorten each activity. Instead we have options to shorten duration of an 

activity by a certain percentage. In the example above, there are three options available for each 

task – no crashing (or 0% reduction), 25% reduction, and 50% reduction. The number of days 

each activity is shortened by depends on the normal duration realized and is simply equal to that 

duration multiplied by the percentage reduction and rounded to the nearest integer. The crash 

costs are calculated according to the following formula: 
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1
Regular cost Normal duration Reduction

Reduction
×  ×

+
 where Reduction is the percentage reduction 

expressed in decimals and Normal duration Reduction × is simply the number of days we would 

crash the activity by, given the reduction and the normal duration. 

To illustrate the process of calculating crash durations and crash costs, consider activity 

A in Table 3-2 and 3-3. Possible durations are 2, 3, or 4 days and the regular cost is $15 per day. 

Consider option 2 (50% reduction). First we calculate the crash duration (Table 3-4). 

Table 3-4: Days crashed – calculations (nonlinear case) 
Normal duration Days Crashed 

2 2 0.5 1× =  
3 3 0.5 1.5 2× = ≈  
4 4 0.5 2× =  

 

The crash cost calculations are presented in Table 3-5 below. 

Table 3-5: Crash cost calculations (nonlinear case) 
Normal duration Crash cost 

2 
15 2 0.5 $10

1.5
× ×

=  

3 
15 3 0.5 $15

1.5
× ×

=  

4 
15 4 0.5 $20

1.5
× ×

=  

 

The difficulty in the problem considered in this chapter comes from uncertain task 

durations. When task durations are deterministic, the problem becomes trivial – we simply crash 

the cheapest activities until we achieve duration equal to the Target date. However, in the 

presence of stochastic durations the solution is not so obvious. There are at least two approaches 

that we can take: making all decisions at once without revising them at a later time vs. making 

decisions dependent on the state of the project. These can be described respectively as 

containment and contingency strategies.  
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Since the contingency approach provides us with managerial flexibility (Elmaghraby, 

2005) and thus results in better solutions, in this chapter we focus on contingency planning. The 

rest of this chapter is organized as follows: in section 3.2 we describe previous related research, 

section 3.3 states the research problem, section 3.4 describes algorithms for the linear case. In 3.5 

we present computational results for the linear case, section 3.6 discusses algorithms and 

computational results for the nonlinear case, and we present our conclusions in section 3.7. 

3.2 PREVIOUS RESEARCH 

A solution to the serial network problem using decision theory was previously proposed by Lowe 

and Wendell (2002). They considered a serial project with binomial distributions of the task 

durations, that is, each task could have either short or long duration. In addition, crashing options 

existed for each activity. Crashing a task would change the distribution of its duration and would 

incur a one-time cost; however, the type of the distribution would remain the same. Moreover, 

the project under consideration would have a predetermined target date. Exceeding the target 

date would result in a per day penalty. The objective was to devise a policy that would lead to the 

completion of the project with minimum cost. Two types of problems were investigated – one 

without lead times for speed-up decisions and one where the lead times existed. The proposed 

solution method involved constructing a decision tree in order to find a policy that would yield 

the minimum expected cost. However, while the method works well for small problem instances, 

the size and the complexity of the decision tree grows very quickly as the number of activities 

increases. Moreover, the proposed method is impractical for problems with multiple decision 

options or with tasks with more complex probability distributions. 
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In this chapter, we investigate other approaches for dealing with the serial network 

problem, such as dynamic programming and various heuristic methods. Dynamic programming 

(DP) is a technique developed by Bellman (1957) for solving sequential, multi-stage decision 

problems by decomposing them into subproblems which are easier to solve. DP can be applied to 

deterministic as well as to stochastic problems where either the payoff or the next state are 

uncertain, that is, we can only describe them as some probability function. DP can solve our 

problem with multiple decisions and multiple discrete events for each task quite efficiently. It 

can be viewed as a classic use of DP in a stochastic environment where the next state is uncertain 

as described in Bellman (1958). In the absence of decision lead times, the stages and states of the 

problem are very well defined. A decision regarding a particular activity takes place only right 

before that activity begins and each state is fully defined by two variables – time elapsed since 

the beginning of the project and the current task.  

3.3 STATEMENT OF THE RESEARCH PROBLEM 

The research problem considered in this chapter is a stochastic time-cost trade-off problem for 

serial projects where uncertainty comes only from activity durations and can be either external or 

internal. Given the set of activities A={1,…,n} where n is the total number of activities 

excluding dummy start and end tasks, a serial topology of the project, discrete triangular 

probability distributions of task durations where Oi = optimistic duration of activity i, MLi = most 

likely duration of activity i, and Pi = pessimistic duration of activity i, target date (Target), and a 

per day penalty for exceeding the target date (Penalty), find a crashing policy that will minimize 

total expected project cost. Total expected cost includes total crash cost plus total expected 
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penalty. It is important to note that approaches presented in this chapter are applicable to any 

probability distributions; however, for convenience, we limit our discussion to triangular 

distributions. In the linear case, we also know the maximum number of time periods to crash 

each activity (di) and per day crash cost for each activity (ci) that remains constant regardless of 

the number of days we crash that activity. In the nonlinear case, we consider percentage 

reductions in the duration of each activity. Therefore, the number of days we end up crashing 

each activity as well as the total crash cost depend on this activity’s normal duration as shown in 

Tables 3-4 and 3-5. 

Furthermore, we assume that the duration of a task is discrete and becomes known only 

after that task is fully completed. Crashing is also discrete (integer); that is, we can reduce the 

duration of an activity by a multiple of a full time period only. Additionally, we make crashing 

decisions dynamically throughout the execution of the project; a new decision making stage 

occurs before the start of each activity. Because we are looking at serial projects only, at each 

decision stage we have full information about durations of all preceding activities. 

There is one important difference between linear and non-linear cases. Since we are 

looking at serial projects, crashing any activity by one day in the linear case simply shifts the 

probability distribution of project duration without changing its shape (only the mean changes). 

In the non-linear case however, the shape of the distribution changes due to the calculation of 

days crashed as illustrated in Table 3-4. Figures 3-2 and 3-3 show the probability distributions of 

projects in Examples 3.1 and 3.2 respectively, before and after crashing activity B to its 

maximum. 
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Figure 3-2: Distribution of project duration (linear case) 

 

 
Figure 3-3: Distribution of project duration (nonlinear case) 

3.4 ALGORITHMS – LINEAR CASE 

In this chapter we present a number of algorithms. We start our discussion with the exact method 

– dynamic programming, which guarantees optimal solutions. Next we discuss several heuristic 
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methods and compare their performance to the optimum as well as to the case with perfect 

information. Those heuristics include the Biggest Bang with simulation, the Biggest Bang with 

normal approximation, and the Simple Minded method. To illustrate how each of these methods 

work, we use our project from Example 3.1. 

3.4.1 Dynamic Programming 

In DP, a problem is divided into stages and each stage has a number of states associated with it. 

In deterministic DP, a decision in one stage transforms the problem into a state in the next stage. 

In stochastic DP with uncertain states, such a transformation occurs after both a decision and a 

realization of a random variable associated with the current state. Based on the principle of 

optimality (Bellman, 1958), the optimal decision for each stage/state combination does not 

depend on previous states or decisions. In addition, the terminal state has to be solvable by itself 

and there must exist a recursive relationship that identifies the optimal decision for stage i, given 

that stage i+1 has already been solved (we solve the problem in reverse order, so that decisions at 

stage i+1 are determined before stage i is considered).  

We can easily show that the problem considered in this section satisfies all conditions for 

stochastic dynamic programming. The stages in the problem correspond to sequential activities 

in the project. Each stage has a number of states, or in our case, activity starting times, and the 

decisions are whether to crash an activity and by how much. The payoff function is associated 

with decisions (crash costs) and final completion time of the project (penalty). The stochastic 

nature of the problem stems from uncertain activity durations, or in the DP framework, uncertain 

states. Probability distributions of task durations can be modeled as transition probabilities from 

one stage to a state in the next stage. Those probabilities do not depend on actions (decisions) 
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chosen. The terminal stage (or the dummy end activity) is solvable by itself since we can easily 

calculate the value of the payoff function at that point – it is simply a function of the project 

completion time (or the start time of the dummy activity). Finally, at each stage we should be 

able to identify the optimal decision, given a state that the project is in, by calculating the “cost-

to-go function”. Cost-to-go is simply the value of the payoff function which includes only costs 

and expected costs incurred from the current stage to the terminal stage. We will use backward 

recursion for our DP models presented in this and in future chapters. 

To illustrate how DP finds the optimal crashing policy consider the project in Example 

3.1. Since DP makes decisions at discrete points in time, we need to convert continuous 

probability distributions of task durations into their discrete counterparts. The new, discrete 

probability distributions are shown in table below: 

Table 3-6: Discrete probability distributions 

Activity Duration Probability
A 2 0.1250

3 0.7500
4 0.1250

B 3 0.0250
4 0.2000
5 0.3583
6 0.2667
7 0.1333
8 0.0167

C 4 0.0078
5 0.0625
6 0.1250
7 0.1875
8 0.2344
9 0.1875
10 0.1250
11 0.0625
12 0.0078  

Next we need to identify all possible states for each stage or equivalently, all possible 

start times for each activity. Activity A can only start at time 0 since it does not make sense to 

postpone the start time of the project. Start time of activity B obviously depends on the duration 
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of A as well as the crashing decision we made for A. The minimum start time for B is day 1 – the 

minimum duration of A (2 days) minus A’s maximum possible crashing (1 day). The maximum 

start for B is equal to the maximum duration of A with no crashing or day 4. Therefore, the range 

of start times (states) for activity B is 1 through 4. We perform similar analysis for activity C. 

The minimum start time of C is equal to the minimum start time of B plus minimum duration of 

B minus B’s maximum crashing or 1+3-2 = 2. The maximum start time of C is equal to the 

maximum start time of B plus maximum duration of B, or 4+8 = 12. Finally, for the dummy End 

node, the range of start times is 2+4-2 = 4 through 12+12 = 24. 

We are now ready to start the recursive procedure. We start with the terminal stage (or 

the dummy End node). For each possible state we calculate the payoff function. The Target date 

is 16, therefore, we incur penalty only if the duration of the project exceeds 16 days. The cost-to-

go function is therefore 

*( , ) max{0, ( )}END ENDCost END t t Target Penalty= − ×  

where: 

 Cost* – optimal cost to go, 

 i – stage of the problem (denotes the activity about to start), 

 ti – start time of activity i, 

 Target – the target date for the project, 

 Penalty – penalty per day for exceeding the Target. 

 
In other words, the cost-to-go at stage END is 0 if tEND ≤ Target and ( )ENDt Target Penalty− × if 

tEND  > Target. Now we move on to the previous stage, that is, activity C. Again we need to 

calculate the cost to go for each stage and each decision. Because C has uncertain durations, we 
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need to use transition probabilities in our calculations. At tC = 2, and no crashing, the cost-to-go 

is calculated as follows: 

( , 2, 0) ( *( , 0)) 0C
C C k C C

k
Cost C t z p Cost END t k c= = = + − + ×∑  

where: 

 iz  – number of time periods to crash activity i (in this case, 0Cz = ) 

ic – cost of crashing activity i by one day (in this case, 18Cc = ) 
i
kp – probability that normal duration of activity i will be k days 

We need to calculate the cost-to-go for each possible decision and pick a crashing decision that 

minimizes expected cost-to-go (repeat for each state).  Therefore, the optimal cost-to-go for 

activity C is expressed as: 

*( , ) min{ ( *( , )) }
C

C
C k C C C Cz k

Cost C t p Cost END t k z c z= + − + ×∑  

When we perform calculations for all possible start times of activity C, we get the following: 

Table 3-7: Expected cost-to-go for activity C 

Crash by Optimal 
Start time 0 1 2 Cost-to-go 

2 0 18 36 0 
3 0 18 36 0 
4 0 18 36 0 
5 0.78125 18 36 0.78125 
6 7.8125 18.78125 36 7.8125 
7 27.34375 25.8125 36.78125 25.8125 
8 65.625 45.34375 43.8125 43.8125 
9 127.3438 83.625 63.34375 63.34375 
10 207.8125 145.3438 101.625 101.625 
11 300.7813 225.8125 163.3438 163.34375 
12 400 318.7813 243.8125 243.8125 

 

Similarly, for activity B, the optimal cost to go is: 

* *( , ) min{ ( ( , )) }
B

B
B k B B B Bz k

Cost B t p Cost C t k z c z= + − + ×∑  

and the exact expected costs are as follows: 
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Table 3-8: Expected cost-to-go for activity B 

Crash by Optimal 
Start time 0 1 2 Cost-to-go 

1 16.73645 26.53515 41.68021 16.73645 
2 32.65442 36.73645 46.53515 32.65442 
3 54.22133 52.65442 56.73645 52.65442 
4 85.04866 74.22133 72.65442 72.65442 

 

 Finally, for activity A we get the following: 

* *( , ) min{ ( ( , )) }
A

A
A k A A A Az k

Cost A t p Cost B t k z c z= + − + ×∑  

Table 3-9: Expected cost-to-go for activity A 

Crash by Optimal 
Start time 0 1 Cost-to-go 

0 52.65442 48.16467 48.1646699
 

Therefore, the optimal crashing policy for this project is to crash A by 1 day, crash B by 1 

day if B starts at time 3, or crash B by 2 days if B starts at time > 3, and crash C by 1 day if C 

starts at time 7 or crash C by 2 days if it starts at time > 7.  

 The most general DP formulation, for an arbitrary number of activities is presented in 

Exhibit 3.1. 
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State representation: 
( , )ix i t=  where 

i ={1,..,END} – current activity 
N = number of non-dummy activities 
ti – starting time of activity i 
 

iz  – number of time periods to crash activity i 

ic – cost of crashing activity i 
Cost*(x) – the optimal cost-to-go for state x 

i
kp -- probability that normal duration of activity i will be k days  

Target – target date for project completion  
Penalty – cost per day for exceeding Target 
 
For the terminal dummy activity ( END ): 
For all tEND compute: 

*( , ) max{( ),0}END ENDCost END t t Target Penalty= − ×  

For all activities , wherei i N   ≤ : 
For all ti do: 

* *( , ) min{ ( ( 1, )) }
i

i
i k i i i iz k

Cost i t p Cost i t k z c z= + + − + ×∑  

 
Exhibit 3-1: Dynamic programming formulation 

Dynamic programming provides an elegant formulation and an optimal solution method 

for serial projects with linear crashing. However, one of the reasons for considering serial 

projects is to develop methods that can be later modified to solve more general cases (i.e., non-

serial projects). We also know that more general cases can become too complex for dynamic 

programming to handle; therefore we consider several heuristic methods in this chapter. To 

maintain consistency with DP method, we also use discrete probability distributions of task 

durations (therefore, making all durations integer). 
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3.4.2 Biggest Bang 

Biggest Bang (BB) is an iterative algorithm that, at each stage, calculates a probability that the 

project will finish late, and uses that probability to make crashing decisions. Although exact 

probability calculations are possible (a probability distribution of project duration is the sum of 

individual activity durations), the computational overhead required is too expensive to utilize this 

approach on large problems. Instead, we estimate the probability of completing the project late 

by either using simulation or normal approximation. In this section, we first give the general 

description of the algorithm without regard as to how the probabilities were obtained. We later 

show the implementation of the algorithm with simulation and with normal approximation. 

At each stage we calculate the Biggest Bang index (BBI) for each activity, which is 

simply equal to the expected cost savings from crashing an activity by one time period. BBI is 

calculated as follows: 

( )i iBBI P project duration Target Penalty c=  > × −  

 Since the BB indices give us cost savings from crashing only one activity at a time by 

only one time period at a time, we repeat these calculations multiple times at each stage. We stop 

when we either crashed all activities to maximum or when all BB indices are negative. It is 

important to note that BB is a dynamic algorithm; therefore, we only crash the activity that is 

starting immediately and repeat the procedure at each stage of the project. 

3.4.2.1 Simulation 

As we mentioned before, one of the two efficient ways for obtaining probability 

distribution of project duration is simulation. We simulate the project N times and record the 
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resulting probability distribution. Using our project from Example 3.1, we obtain the following 

before the project begins: 

Table 3-10: BB indices (simulation) -- decision stage 1 

Iteration 1 Iteration 2 Iteration 3 
Activity Prob = .4667 Prob = .2867 Prob = .1467 

A 31.67 13.67 -0.33 
B 26.67 8.67 -5.33 
C 28.67 10.67 -3.33 

 

At the first iteration (first column), we assume that nothing has been crashed. Simulating 

the project results in a probability of 0.4667 that the project will be late. The values in the table 

represent the Big Bang indices for each activity respectively. For example, we calculate the BB 

index for activity A as 0.4667 100 15 31.67ABBI = × − = . We want to select activities with large 

BB indices for crashing; therefore, at iteration 1 we reduce the duration of activity A. We 

continue the process and at the second iteration activity A again has the highest index; however, 

we already reduced A by its allowed maximum so we select activity C (with the second largest 

BBI). Finally, at iteration 3, all BBIs are negative and we terminate the procedure. The final 

crashing policy before the project begins is to crash A by 1 day and postpone all other decisions 

until we have more information. 

Assume that the normal duration for activity A turned out to be 4 days so the actual 

duration of A was 4-1 = 3 (we crashed A by 1 day). The start time for activity B is 3 and we 

enter the new decision stage of the problem. We simulate the project (setting actual duration of A 

to 3) and we get the following indices: 
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Table 3-11: BB (simulation) -- decision stage 2 

Iteration 1 Iteration 2 Iteration 3 
Activity Prob = .455 Prob = .25 Prob = .11 

A N/A N/A N/A 
B 25.5 5 -9 
C 27.5 7 -7 

 

At this stage the policy is to reduce C by 2 days; however, we are going to postpone (and 

possibly revise) this decision until we know the true duration of activity B. 

 If the normal (and actual) duration of B turned out to be 5 days, we would start the final 

decision stage of the project at time 8. We obtain values shown in Table 3.12, We therefore crash 

C by one day and terminate the procedure. 

Table 3-12: BB (simulation) -- decision stage 3 

Iteration 1 Iteration 2 
Activity Prob = .38 Prob = .17 

A N/A N/A 
B N/A N/A 
C 20 -1 

 

3.4.2.2 Normal approximation  

Another way to estimate the distribution of project duration is to use normal 

approximation. We can apply the central limit theorem if the number of activities in a project is 

large enough. Of course, the project from Example 3.1 that we use to illustrate the algorithms has 

only three activities so the normal approximation in this case may be questionable; however, we 

assume that it is sufficient for demonstration purposes.  

Using PERT methodology, we calculate the mean duration of the project by summing the 

expected durations of individual activities. The standard deviation of the project is calculated as 
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a square root of the sum of activity variances. The mean and the variance of a triangular 

distribution are calculated as follows: 

Mean = 
3

O ML P+ +  

Variance = 
2 2 2 ( ) ( ) ( )

18
O ML P O ML O P ML P+ + − − −  

Table 3.13 shows these values for all three activities: 

Table 3-13: Mean and variance of activities 

Task Expected Variance 
Duration 

A 3 0.17 
B 5.33 1.06 
C 8 2.67 

 
 We therefore, approximate the distribution of the project duration as 

~ ( 16.33, 1.97)N μ σ= = . At this point we can use the standard normal table to find the 

probability that the project will be late, which is equal to 0.5671. Tables 3-14 through 3-16 show 

BB calculated indices and activities selected for reduction for all three decision stages assuming 

normal durations of activities A and B are the same as in the case with simulation (4 and 5 

respectively): 

Table 3-14:  BB (normal) -- decision stage 1 

Iteration 1 Iteration 2 Iteration 3 
Activity Prob = .5671 Prob = .3677 Prob = .199 

A 41.71 21.77 4.90 
B 36.71 16.77 -0.10 
C 38.71 18.77 1.90 
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Table 3-15: BB (normal) -- decision stage 2 

Iteration 1 Iteration 2 Iteration 3 
Activity Prob = .5686 Prob = .3648 Prob = .1938 

A N/A N/A N/A 
B 36.86 16.48 -0.62 
C 38.86 18.48 1.38 

 

Table 3-16: BB (normal) -- decision stage 3 

Iteration 1 Iteration 2 Iteration 3 
Activity Prob = .5 Prob = .2701 Prob = .1103 

A N/A N/A N/A 
B N/A N/A N/A 
C 32.00 9.01 -6.97 

 

At the beginning of the project, we would crash A by 1 day (as in the simulated case) and 

postpone all other decisions. There are no differences between the two algorithms at stage 2 

either; however, at stage 3, BB with normal approximation suggests to crash activity C by 2 days 

as opposed to 1 day in the simulated case. 

3.4.3 Simple-Minded Method 

The last algorithm considered in this chapter is the Simple-Minded (SM) method. It is a greedy 

procedure that iteratively crashes the cheapest activity until expected project duration is less than 

or equal to Target. As with the BB, we perform the SM at each stage of the project, the main 

difference is that the SM only looks at one point estimate (the mean) of the project duration and 

does not take into account the size of Penalty. We developed this heuristic because (1) this is the 

simplest procedure that many project managers might be tempted to use, (2) it has certain 

similarities to the PERT method (crashing cheapest activities until we reach a certain expected 
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project duration), and (3) we expect it to perform worse than other methods, thus giving us the 

worst performance benchmark. 

The procedure consists of the following: at each decision stage of the project (1) calculate 

project expected duration, (2) as long as the expected duration is greater than Target, crash the 

cheapest activities. Stop when expected duration ≤ Target. To illustrate how the method works, 

we again use the project from Example 3.1. 

At the beginning, the expected duration of the project is equal to 16.33 (3+5.33+8), 

which is greater than the target of 16 days. Therefore we crash the cheapest activity by one day 

because the difference between the expected duration and Target is less than or equal to 1. 

Therefore, we crash A, which is the cheapest activity and terminate the procedure at this decision 

stage. If we again assume the same activity durations as in the description of previous 

algorithms, at the next decision stage (after A finishes) the expected duration is again 16.33 (the 

true duration of A after crashing is 4-1=3, the expected duration of B is 5.33 and the expected 

duration of C is 8). Using the same steps, we select C for reduction by 1 day but do not act on 

that decision yet. After we know the duration of activity B, we will have an opportunity to revise 

the decision about activity C. If B’s normal duration turns out to be 5 (as before), the expected 

duration at stage 3 is 16 and since it is equal to Target, we do not crash C. 

3.5 COMPUTATIONAL TESTS – LINEAR CASE 

We constructed several sets of test problems in order to evaluate the effectiveness of each of the 

presented algorithm. We looked at networks with different sizes (number of activities), different 

distribution spans (average difference between pessimistic and optimistic durations), and 
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different magnitude of crash costs. In order to generate distributions, crash costs, as well as 

Target and Penalty, we followed the procedure presented in Gutjahr et al. (1998). We set the 

target date equal to the expected duration of the project (calculated by summing the expected 

durations of all activities) and the penalty for exceeding the target to a constant $100 per day. 

Next, we simulate the project, assuming no crashing, N times where N is equal to the number of 

activities in the project multiplied by a constant (20 in our case). The procedure consists of the 

following steps: 

(1) Determine the size of the project. We tested problems with 5, 10, 25, 50, and 75 

activities. 

(2) Set distribution span. We looked at average distribution spans of 8, 12, 16, 20, and 24 

days. 

(3) For each activity generate optimistic, most likely, and pessimistic times. ML and P times 

are derived from a geometric distribution with the mean equal to the span. Optimistic 

duration is also derived from a geometric distribution; however, we decided to fix the 

mean at 8 regardless of the span. We wanted to modify only the width of the project 

duration distribution without shifting it to the right at the same time. 

(4)  Determine the maximum number of days by which each activity can be crashed (di) – 

generated from a discrete uniform distribution from [0, Oi-1] interval. 

(5) Generate crash cost per day for each activity 

a. Estimate expected penalty cost E(Penalty) of the project with no compression 

using Monte Carlo simulation.  
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b. Assign a fraction of E(Penalty) as the total cost for maximum crashing (TCMC) of 

all activities (total cost if we crash all activities to maximum). We refer to this 

fraction as a cost structure and tested values of 0.5 and 1. 

c. Calculate an adjustment value for each activity (Ai) 

{1,..., }
max{ }

i
i

kk

dA k n
d

=    ∀ ∈  

d. For each activity, generate a random number ~U[0, 1) and multiply it by Ai. We 

refer to this value as a cost distribution index (CDI). 

e. Calculate a normalized cost distribution index (NCDI) for each activity: 

1

i
i n

k
k

CDINCDI
CDI

=

=

∑
 

f.  Calculate cost of maximum crashing for each activity: 

cost of maximum crashingi iTCMC NCDI= ×  

g. Calculate crash cost per day for each activity: 

cost of maximum crashingi
i

i

c
d

=  

3.5.1 Results 

Since we have three parameters that vary in our test problems (size, span, and cost structure), we 

present the results in three sections. The first problem set consists of project with the average 

activity distribution span of 16 days, and the cost structure of 1. Next we discuss results for the 

set with varying spans, fixing size at 25 activities and cost structure at 1. Finally, the last set 

consists of projects with varying cost structures but with constant size (25 activities) and average 

span (16 days). In addition to the four algorithms discussed in in this chapter, for each problem 
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instance we calculate the expected cost assuming we have full knowledge of activity durations 

that will be realized in the future. That is, we make all activity durations known to the algorithm 

a priori, thus reducing the problem to its deterministic counterpart. We refer to the method as the 

“Perfect Information.” 

 

Set 1: Cost structure = 1, Span = 16, varying sizes 

 Tables 3-17 and 3-18 show average expected costs and average running times by project 

size and heuristic. The same information is also presented in Figures 3-4 and 3-5. 

Table 3-17: Expected cost by project size 

Size DP 
BB 

Simulated 
BB 

Normal SM 
Perfect 

Information 
5 156.79 158.75 160.99 197.42 112.19 
10 116.13 121.06 122.82 162.22 56.13 
25 155.02 164.81 165.46 329.54 84.08 
50 47.30 60.30 62.02 172.34 25.65 
75 59.18 75.03 76.75 271.32 30.70 

      *Averaged over 20 instances of each problem type 

Table 3-18: Average running time (in seconds) by project size 

Size DP 
BB 

Simulated 
BB 

Normal SM 
5 0.00200 0.00088 0.00002 0.00001 
10 0.01744 0.00843 0.00004 0.00002 
25 0.34711 0.27725 0.00038 0.00021 
50 3.12492 3.28732 0.00218 0.00117 
75 11.18753 15.01350 0.00611 0.00332 

    *Averaged over 20 instances of each problem type 
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Figure 3-4: Average cost by size 

0

2

4

6

8

10

12

14

16

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Ru
nn

in
g 
ti
m
e 
(s
ec
)

Project size

Average running time by size

DP BB Simulated BB Normal SM
 

Figure 3-5: Average running time by size 

Set 2: Cost structure = 1, Size = 25, varying spans 

The next group of tables and figures shows expected costs and average running time by 

the average project span and heuristic. 
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Table 3-19: Expected cost by project span 

Span DP 
BB 

Simulated 
BB 

Normal SM 
Perfect 

Information 
8 35.85 40.72 41.40 101.43 18.99 
12 46.86 52.42 53.14 135.82 20.12 
16 155.02 164.81 165.46 329.54 84.08 
20 189.21 203.07 204.39 380.46 106.25 
24 220.66 231.99 233.65 586.57 108.31 

      *Averaged over 20 instances of each problem type 

 

Table 3-20: Average running time (in seconds) by project span 

Span DP 
BB 

Simulated 
BB 

Normal SM 
8 0.04250 0.15261 0.00020 0.00011 
12 0.14356 0.21554 0.00028 0.00016 
16 0.34711 0.27725 0.00038 0.00021 
20 0.86207 0.35410 0.00053 0.00030 
24 1.99832 0.47142 0.00064 0.00031 

    *Averaged over 20 instances of each problem type 
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Figure 3-6: Expected cost by project span (linear case) 
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Figure 3-7: Average running time by project span (linear case) 

 

Set 3: Size = 25, span = 16, varying cost structures 

 Finally, we present the results for the final set where we vary only the cost structure, 

keeping size fixed at 25 activities and average span at 16 days. 

 
Table 3-21: Expected cost by project cost structure 

Cost 
Structure DP 

BB 
Simulated 

BB 
Normal SM 

Perfect 
Information 

0.5 92.70 95.40 95.50 246.84 44.57 
1 155.02 164.81 165.46 329.54 84.08 

 

Table 3-22: Average running times by project cost structure 

Cost 
Structure DP 

BB 
Simulated 

BB 
Normal SM 

0.5 0.35338 0.33142 0.00048 0.00020 
1 0.34711 0.27725 0.00038 0.00021 
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Figure 3-8: Expected cost by project cost structure (linear case) 
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Figure 3-9: Average running times by project cost structure (linear case) 

 

The relative performance of the methods is the same across all problem sets. Not 

surprisingly, the DP algorithm is superior; however, the expected costs of the Biggest Bang (both 

simulated and with normal approximation) are very close to those obtained by DP. As expected, 

the SM is by far the worst performer. It is due to the fact that this method does not take into 
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account the magnitude of Penalty. It would provide the same crashing policy whether the penalty 

for exceeding Target is $1 or $1 million.  

In the first problem set, it appears that, as the number of activities increases, the cost gap 

between DP and BB heuristics increases as well. For 5 activity projects the gap is around 1.25% 

whereas for projects with 75 activities, that gap is 26.8%. Similarly, the gap between DP and cost 

with perfect information increases as the projects get larger (from 39.8% for 5 activities to 

92.75% for projects with 75 activities), which is consistent with our intuition – the larger the 

number of decision stages in a problem, the higher the value of information. The trend in average 

running times is also what we would expect. As the number of activities increases, the times 

required to perform each algorithm also increase but they do it at different rates. The running 

times for the simulation based BB and the DP increase faster than those of the BB with normal 

approximation or the SM because the complexities of both the DP and the Simulated BB much 

more strongly depend on the size of the project. However, even at 75 activities, the running times 

for BB Simulated and DP are 15 and 11 seconds respectively, which suggests that these methods 

are viable even for large projects. If we only require good solutions (as opposed to the optimal) 

we can also use the BB with normal approximation and, that way, achieve significant time 

savings while sacrificing very little in terms of cost performance (since it is comparable to the 

BB with simulation). 

In problem set 2, we looked at differences in methods by the average distribution span. 

An interesting point to note here is that, as the spans get larger, the gap between DP and BB 

methods gets smaller. For projects with the average span of activity distributions, the gap is 

around 13.6% and goes down to 5.14% for the average span of 24. There is no obvious pattern in 

the variation of the gap between DP and the case with perfect information. The gap varies from 
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78.08% for the span of 20 to 132.87% for the span of 12 but the variations seem to be random 

rather than attributable to any other cause. The average running times tend to increase as the span 

increases, especially for DP. Spans seem to have a much smaller effect on the running times of 

the other methods. This is due to the fact that DP explicitly looks at all possible start times and 

all possible durations of each activity, and those two values are directly tied to the distribution 

span. The same is not true for the remaining methods. The number of simulation runs in BB 

Simulated depends only on the number of activities so the rest of the methods are affected only 

in the calculations of the mean and the variance of each activity. 

Finally, in problem set 3, we examine varying cost structures. We only looked at two 

values of cost structure because, when performing numerical experiments we noticed that 

projects with cost structure < 0.5 were not very realistic as the crash costs were so low that an 

algorithm which always crashes all activities to their maxima would actually have a reasonable 

performance. An opposite is true for cost structures > 1 – the crash costs are large enough that an 

algorithm that never crashes anything would perform well. Not surprisingly, larger crash costs 

result in a higher total expected cost; however, running times for the cost structure of 1 seem to 

be lower than those for cost structure of 0.5, especially for the BB heuristics. Our intuition here 

is that larger crash costs results in crashing by fewer time periods therefore, each decision stage 

of the BB methods will terminate sooner. 

Because the BB methods perform so well as compared to the DP, we investigated 

whether there are any special cases for which the BB will give optimal solutions. One that comes 

immediately to mind is having decreasing crash costs – that is, the crash costs for early activities 

in the project are high and get lower the further an activity is in the project network. Our 

intuition was that it is generally preferable to make crashing decisions later in the project because 
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more information is available. Since the BB is a greedy method where it picks the cheapest 

activity to crash, having decreasing crash costs would force it to postpone all decisions as late as 

possible. To illustrate consider Example 3-3 (Table 3-23): 

Table 3-23: Serial project -- decreasing crash costs 

  O ML P 
Days to
Crash 

Crash 
Cost/day 

A 2 3 6 1 $34.00 
B 3 4 9 2 $27.00 
C 1 3 4 0 -- 

 

Assume the target date is 10 days and the penalty for exceeding that date is $100/day. 

The only decisions need to be made about activities A and B since we cannot crash C at all, so in 

a sense this reduces to a project with two activities. The dynamic programming solution to this 

problem is presented in Table 3-24. 

Table 3-24: DP solution to Example 3-1 
Activity Start time Crash by

A 0 1
B 1 0

2 1
3+ 2

C N/A N/A  

When we perform the BB method (using exact probability calculations for illustrative 

purposes), we get the probability distribution of project duration as shown in Table 3-25. The 

probability of the project exceeding the target equals 0.7322 and is calculated by summing up the 

probabilities of all durations greater than Target. 
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Table 3-25: Probability distribution of project duration 

Duration Probability
6 0.000109
7 0.002329
8 0.019293
9 0.078125

10 0.167947
11 0.217838
12 0.206163
13 0.154167
14 0.093251
15 0.043186
16 0.014301
17 0.002951
18 0.000326
19 1.4E-05

P(late) 0.7322

Nothing Crashed

 

The BBIs are as follows: BBIA = 39.22, BBIB = 46.22, BBIC = N/A, therefore we reduce 

B by one day and recalculate the BBIs. At the next step, the BBI indices are: BBIA = 17.44, BBIB 

= 24.44, BBIC = N/A and again we reduce B by another day. Repeating the procedure, we get the 

new probability of exceeding the Target of 0.3082. Notice that B has now been reduced to its 

maximum so we only need to calculate the BB index for A, which is BBIA = -3.18. Since the 

index of the only activity eligible for crashing is negative, we terminate the procedure. The final 

policy before the project starts is to not crash A and reduce B by 2 days (again, the decision 

about B will be postponed until A finishes). This is clearly a different solution than the DP, 

which required us to crash A by 1 day at the beginning of the project. 

We also want to examine the differences between a static (containment) and a dynamic 

(contingency) algorithm. In this work we present dynamic methods for crashing stochastic 

projects; however, most of the prior literature discusses static algorithms, therefore we want to 

assess how much improvement we can gain by making contingent decisions. Figure 3-10 shows 

dynamic vs. static performance by the size of a project for the BB with simulation. Results are 

shown for cost structure of 1 and span of 16. 
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Figure 3-10: Static vs. Dynamic (BB Simulated) by size (linear case) 

 

 We would expect the difference between static and dynamic versions to get larger as the 

project size increases. For projects with one activity only, the results of static and dynamic 

versions should be identical and the more activities there are in the project (more decision stages) 

the more opportunities we have to revise our decisions in the dynamic version. Therefore, we 

would expect the gap between the static and dynamic versions to increase with project size. 

Nonetheless, the absolute difference between static and dynamic versions in the BB case seems 

to be relatively constant. However, when we calculate percentage differences, the pattern does 

emerge although it is not very strong. The percent difference ranges from 22.7 to 69.19. 

 The next figure (3-11) presents static vs. dynamic versions by average distribution span 

for the BB with simulation.  
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Figure 3-11: Static vs. Dynamic (BB Simulated) by span (linear case) 

 

By increasing distribution spans, we also increase the variance of the project; therefore, 

we expect to see the gap grow as the span increases, which is the case here. 

3.6 ALGORITHMS & COMPUTATIONAL TESTS – NONLINEAR CASE 

In addition to looking at external uncertainty or the linear case, we also considered the case with 

internal uncertainty (nonlinear). Here, the algorithms presented for the linear case need to be 

slightly modified.  

3.6.1 Dynamic Programming 

Recall the DP formulation from section 3.4.1. For the last (dummy) activity we calculated 

the cost to go as:  

*( , ) max{0, ( )}END ENDCost END t t Target Penalty= − ×  
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where: 

 Cost* – optimal cost to go, 

 i – stage of the problem (denotes the activity about to start), 

 ti – start time of activity i, 

 Target – the target date for the project, 

 Penalty – penalty per day for exceeding the Target. 

 

The formulation for the terminal activity is still applicable to the nonlinear case. The differences 

are in the calculations for the remaining activities. Recall that for activity C we had the 

following: 

*( , ) min{ ( *( , )) }
C

C
C k C C C Cz k

Cost C t p Cost END t k z c z= + − + ×∑  

where: 

 iz  – number of time periods to crash activity i  

ic – cost of crashing activity i by one day 
i
kp – probability that normal duration of activity i will be k days 

However, now both Cz  and Cc  depend on the option chosen and the normal duration of the 

activity. We define ,
C
l kz  as the number of days we will shorten activity C using crash option l if 

C’s normal duration turns out to be k, and ,
C
l kc   as the crash cost of shortening activity C by ,

C
l kz  . 

For instance, using Example 3.2, we get 1, 2Cz  7 = , 1, $50.40Cc  7 = , 2, 5Cz  10 = , 2, $120.00Cc  10 = . The 

cost to go for activity C is therefore calculated as: 

* *
, , ,( , ) min{ ( ( , ) )}C C C C

C k C l k l k l kl k

Cost C t p Cost END t k z c z= + − + ×∑  

The general formulation for any non-terminal activity is 

* *
, , ,( , ) min{ ( ( 1, ) )}i i i i

i k i l k l k l kl k

Cost i t p Cost i t k z c z= + + − + ×∑  
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3.6.2 Biggest Bang 

For the Biggest Bang algorithm, we only considered the simulated case. This is because in the 

nonlinear crashing, the probability distribution of project duration changes shape and not simply 

shifts as illustrated in Figure 3-3. In such circumstances, assuming that the project duration will 

follow normal distribution may be unreasonable.  

Recall that in the linear case we simulated the project to find the probability that the 

project’s duration will exceed the target date. Then, the BB indices were simply calculated as 

( )i iBBI P project duration Target Penalty c=  > × −  where ci is the crash cost of activity i. 

However, this formulation assumes that we always crash the project in one time period 

increments and that the per day crash cost for each activity is constant. Those assumptions are 

now violated in the nonlinear case. The only way to get reasonably good estimates of cost 

savings from crashing a particular activity is to simulate the project with that option chosen. For 

instance, using Example 3-2, the BB steps are as follows: 

(1) Simulate the project with no crashing. Record the total expected cost, denoted 

NCCost . 

(2) Simulate the project assuming Option 1 for activity A. Record the total expected cost 

( 1
ACost ) 

(3) Simulate the project assuming Option 2 for activity A. Record the total expected cost 

( 2
ACost ). 

(4) Continue in this manner until all options for all activities are explored. 

(5) Choose the activity/option combination that resulted in the lowest expected cost. 

(6) Repeat steps (2) through (4) assuming the option from step (5) is also executed. 
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(7) Repeat steps (5) and (6) until we have options chosen for all activities. 

(8) Act on the solution that yields the lowest expected cost. Again, we only execute 

decisions for those activities that are starting immediately, postponing other decisions 

until we have to make them. 

3.6.3 Simple Minded method 

As before, the SM uses the expected project duration to make decisions. It iteratively crashes the 

cheapest activity until expected project duration is less than or equal to Target. The only 

difference is in identifying the cheapest activity to crash. Since the crash costs vary based on the 

normal duration as well as the option chosen, the SM calculates the expected crash cost per day. 

Using Example 3-2, we calculate the expected crash costs/day for activity A are as follows: 

(1) Discretize the probability distribution of A’s duration. we get P(duration=2) = 0.125, 

P(duration=3) = 0.75, and P(duration=4)=0.125.  

(2) Calculate expected crash cost per day for Option 1: 

Table 3-26: Activity A, Option 1 

Option 1 (25% reduction) 

Duration Probability
days 

crashed 
Crash 
Cost 

Crash Cost 
per day 

2 0.125 1 6 6 
3 0.75 1 9 9 
4 0.125 1 12 12 

 

E(crash cost/day) for option 1 = 0.125 6 0.75 9 0.125 12 9× + × + × =  

(3) Calculate expected crash cost per day for Option 2: 
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Table 3-27: Activity A, Option 2 

Option 2 (50% reduction) 

Duration Probability
days 

crashed 
Crash 
Cost 

Crash Cost 
per day 

2 0.125 1 10 10 
3 0.75 2 15 7.5 
4 0.125 2 20 10 

 

E(crash cost/day) for option 2 = 0.125 10 0.75 7.5 0.125 10 8.125× + × + × =  

We perform similar calculations for all other activities in the project. The rest of the 

algorithm proceeds in the same manner as in the linear case (see Section 3.4.3). 

3.6.4 Generating problem instances 

Recall the problem generator described in Section 3.5. Herein we follow the same steps with an 

exception of step 4 (“Determine the maximum number of days by which each activity can be 

crashed (di)”), step 5c (“Calculate adjustment value for each activity”), and step 5f (“Calculate 

crash cost per day for each activity”) which are not needed as well as step 5d (“For each activity, 

generate a random number ~U[0, 1) and multiply it by Ai. We refer to this value as a cost 

distribution index (CDI)”) and step 5e (“Calculate cost of maximum crashing for each activity”) 

which are slightly modified. The complete procedure is outlined below: 

(1) Determine the size of the project. We tested problems with 5, 10, 25, 50, and 75 

activities. 

(2) Set distribution span. For simplicity and convenience, we only looked at a span of 16. 

(3) For each activity generate optimistic, most likely, and pessimistic times. ML and P times 

are derived from a geometric distribution with the mean equal to the span. Optimistic 



 71 

duration is also derived from a geometric distribution; however, we decided to fix the 

mean at 8 regardless of the span. We wanted to modify only the width of the project 

duration distribution without shifting it to the right at the same time. 

(4) Generate crash cost per day for each activity 

a. Estimate expected penalty cost E(Penalty) of the project with no compression 

using Monte Carlo simulation.  

b. Assign a fraction of E(Penalty) as the total cost for maximum crashing (TCMC) of 

all activities (total cost if we crash all activities to maximum). We refer to this 

fraction as a cost structure and, unlike in the linear case we the cost structure of 1 

only. 

c. For each activity, generate a random number ~U[0, 1). We refer to this value as a 

cost distribution index (CDI). 

d. Calculate a normalized cost distribution index (NCDI) for each activity: 

1

i
i n

k
k

CDINCDI
CDI

=

=

∑
 

e.  Calculate regular cost for each activity: 

regular cost i iTCMC NCDI= ×  

f. Calculate crash options for each activity. In this research we investigated six 

duration reduction options: 0%, 10%, 20%, 30%, 40%, and 50%. The crash 

durations and crash costs are calculated as described in Section 3.1. 
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3.6.5 Computational results 

For convenience, in case of nonlinear crashing we only examined problems with the span of 16 

and the cost structure of 1. Table 3-28 and Figure 3-12 show the expected project cost by size. 

The average running times are presented in Table 3-29 and Figure 3-13. 

Table 3-28: Expected cost (nonlinear case) 

Size DP 
BB 

Simulated SM 
5 9.55 43.12 223.82 
10 9.00 67.89 454.32 
25 5.73 85.16 564.64 
50 1.56 47.92 1053.97 
75 6.46 30.17 1477.92 

 

Table 3-29: Average running time (nonlinear case) 

Size DP 
BB 

Simulated SM 
5 0.3514 0.1474 0.0043 
10 3.8471 1.2990 0.0771 
25 22.0861 6.6343 0.2216 
50 100.5802 22.8508 1.0065 
75 173.9868 38.2013 3.4804 
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Figure 3-12: Expected cost by project size (nonlinear case) 

 

 
Figure 3-13: Average running times in seconds (nonlinear case) 

As in the linear case, the SM method performs poorly; however, the differences between 

the SM and the optimal solutions (DP) are even more pronounced. The BB algorithm appears to 

be doing well but gaps are again higher than in the linear case. Not surprisingly, the running 

times of all the methods are much higher than in the linear case. This and the fact that the 
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expected costs of the heuristics are, on average, further away from the optimal solution, suggests 

that problems with nonlinear crashing are harder to solve. 

3.7 CHAPTER SUMMARY 

In this chapter we studied a special case of project networks where all activities need to be 

performed sequentially (in a series). We developed three methods finding a crashing policy when 

task durations are stochastic. We considered both linear as well as nonlinear crash costs. 

We showed that the dynamic programming can solve large problem instances to 

optimality; therefore it should be the method of choice when dealing with serial projects or 

projects with one dominant path. In addition, we showed that a greedy, simple minded method 

performs very poorly and should be avoided whenever possible. Finally, we also showed that the 

Biggest Bang method, which calculates expected savings from each decision, performs very well 

when crash costs are linear and gives reasonable solutions for projects with nonlinear crash costs. 

In the linear case we presented two methods of obtaining expected savings for the BB: (1) a 

simulation method and (2) normal approximation. Even though both methods perform well, we 

feel that the BB with simulation is a better choice. When the number of activities in the project is 

small, the normal approximation may not be reasonable. Furthermore, the BB approximates 

combined probability distributions of those activities that are not yet completed. Therefore, the 

further we are in the project execution, the less reasonable the normality assumption. 
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4.0  CHAPTER FOUR: GENERAL PROJECTS 

4.1 INTRODUCTION 

Effective project management requires making decisions under conditions of high uncertainty. 

Project managers are under significant pressure to complete projects on time and within budget, 

otherwise they may face large penalties for late completion. While there can be many aspects of 

such uncertainty, herein we focus on the uncertainty of task durations. In contrast to serial 

projects considered in Chapter 3, we now consider general projects - that is, projects with 

multiple paths. While some general projects can be reduced to a serial project due to the presence 

of one dominant path (as discussed in Chapter 3), it is often not possible to do so.  Thus, a 

general project is a common situation in practice. Herein, we focus on the stochastic time-cost 

trade-off problem for a general project – similar to what we did for serial projects in Chapter 3. 

As in Chapter 3, we again have a given target date, a per period penalty for exceeding 

that target date, linear crash costs, maximum allowed compression, and a given probability 

distribution of duration for each activity. In this research we assume that duration of each activity 

follows a triangular distribution; however, methods derived herein are applicable to any 

probability distribution. Further, we are assuming that crashing decisions require no lead time 

and all activities start as soon as possible. In addition we have no resource constraints. Below is a 

simple example of such a problem. 
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Example 4.1 

Consider a project with five tasks as follows: 
 

Table 4-1: Illustrative Example #1 

          
Days 

Duration    
Crash 
cost 

Crash 
days   

  Task  Predecessor  Optimistic  Most Likely  Pessimistic $ per day  Maximum  
  A  none  2  3  4  15  1   
  B  none  3  5  8  20  2   
  C  B  2  3  5  18  1   
  D  C  2  3  6  22  2   
  E  A, B  4  8  12  17  2   
 

 
Suppose that we have a target of 12 days for finishing the project and a penalty cost of $100 per 

day for each day that the target date is exceeded. A network representation for this problem is 

given below.   

 

O ML P O ML P
2 3 4 4 8 12

15 17
1 2

Start End

O ML P O ML P O ML P
3 5 8 2 3 5 2 3 6

20 18 22
2 1 2

Target = 12 days Penalty per day = 100

D

Crash cost
Crash up to

Crash cost
Crash up to

E

Crash cost
Crash up to

C

Crash cost
Crash up to

A

Crash cost
Crash up to

B

 

Figure 4-1: Illustrative Example #4.1 
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It is important to note that a decision on crashing an activity in such problems depends 

not only on its cost, the penalty cost and the elapsed time of the project, but it also depends on 

the status of activities on other paths in the network. As an illustration, consider activity D in 

Example 1. Suppose that 12 days have already elapsed in the project. If all other activities except 

D are finished, then we would clearly want to speed up D. If, however, activity E had just started 

then it is not obvious whether or not we should speed up D. Herein we consider such a 

contingency approach to making crashing decisions (we refer to these as conditional decisions) 

in which the status of all other activities at the time of a decision is considered. This is in contrast 

to deriving one static crashing policy at the beginning of the project.  

As we have shown in Chapter 3, dynamic programming (Bellman, 1957) is a viable 

solution method for deriving optimal decisions in serial projects. The reason for this is that in the 

serial case the state of a project can be fully described by current time t and the activity being 

considered for crashing. Unfortunately, for a general project the state is not that simple to 

describe. In addition to knowing the current time t and the activity under consideration for 

crashing, we also need to know what is happening with the other paths in the project. Thus, for a 

general project, dynamic programming quickly becomes intractable as the number of activities 

and as the complexity of the network increase.  As noted by Elmaghraby (2005), “any approach 

that aspires to confront uncertainty [in general project planning] head on is computationally 

overwhelming.” 

Since we know that getting an exact (optimal) solution to the stochastic time-cost trade-

off problem for general projects is impossible in most cases, herein we propose and evaluate a 

variety of heuristic procedures for obtaining good solutions. These include the Bang for the 

Buck, the Biggest Bang, Basic Linear Programming, Linear Programming with Dynamic 
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Programming, and Protect the Critical Path. The rest of this chapter is organized as follows. 

Section 4.2 reviews previous research on this problem, section 4.3 describes the algorithms 

developed herein, section 4.4 outlines a procedure for randomly generating projects to use in 

evaluating the heuristics, section 4.5 presents our findings, and finally section 4.6 reviews our 

conclusions. 

4.2 PREVIOUS RESEARCH 

PERT is one well known method for dealing with uncertainty in projects. This approach, 

however, has a lot of shortcomings which are described in more detail in Klastorin (2004) and 

Johnson and Schou (1990). A significant problem with PERT is that it assumes one unique 

critical path. However, in reality, other paths may become critical since the duration of each task 

is stochastic. Van Slyke (1963) introduced Monte Carlo simulation method for estimating the 

probability that an activity will be on the critical path – a so called criticality index. Several 

improvements to the original method of Van Slyke have been proposed by Herbert (1979), 

Kulkarni and Adlakha (1986), and Ioannou and Martinez (1998). These methods, however, do 

not address problems in which we have options of speeding up some or all of the activities. 

Nonetheless, simulation can be useful in evaluating different crashing policies. Johnson and 

Schou (1990) applied simulation to test three crashing rules and found one of those (Rule 3), 

which is dependent on the crash cost and on the criticality of a task, to be most appropriate under 

most general conditions since it is a combination of the other two rules. While, Johnson and 

Schou considered projects with stochastic durations and linear crashing, they did not consider 

any penalty for project completion beyond the target date. Haga and O’Keefe (2001) and Haga 
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(1998) investigated another crashing method in which they tested each activity in the network 

that has not yet been maximally compressed to determine which crashing decision would reduce 

the mean expected total cost (including crash cost and penalty for exceeding the target date) the 

most. 

Gutjahr, Strauss, and Toth (2000) showed that the deterministic discrete time-cost 

problem (that is, a project with known task durations, speed-up options, and a penalty function 

for exceeding the target date) is NP-hard. It follows, of course that, the stochastic discrete time-

cost problem is also NP-hard since it is a generalization of its deterministic counterpart. The 

authors also proposed a hybrid algorithm based on simulated annealing and importance sampling 

(a rare event simulation procedure) to solve the stochastic problem. Simulated annealing was 

used to generate a new policy, which was then evaluated by simulating the project and estimating 

the value of the objective function (crash cost plus penalty cost for exceeding the target date). 

Gutjahr, Strauss, and Wagner (2000) developed a stochastic branch-and-bound algorithm for 

crashing tasks in projects, which uses importance sampling as a method for estimating the value 

of the objective function. 

Mitchell (2005) examined a slightly different problem where the source of uncertainty is 

not linked to task durations but rather to an occurrence of some disruptive event. If a disruptive 

event does occur, all the work on the project has to stop. The objective is to develop a crashing 

policy that would minimize total expected cost (crash cost plus overhead cost). The time before 

the disruptive event as well as the duration of the disruptive event are random variables with 

known probability distributions. The author investigated cases with and without a due date – in 

the case where the due date is specified, a penalty cost is incurred if the total project duration 

exceeds that date.  
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The above mentioned papers present viable methods for selecting speed-up options in 

general, stochastic networks; however they do not consider conditional decisions, that is 

decisions dependent on the current state of a project. One attempt to incorporate contingency 

planning into crashing policy selection was made by Wollmer (1985) who investigated the use of 

stochastic programming to solve a stochastic time-cost trade-off problem with discrete 

probability distributions of task durations. Another one is a lesser known influence diagram 

approach by Jenzarli (1995); however, beyond the work of Wollmer and Jenzarli there are not 

any published efforts that address conditional decisions in such problems. This research aims to 

fill this gap by providing a contingency planning approach to speeding-up projects under 

uncertainty. 

4.3 STATEMENT OF THE RESEARCH PROBLEM 

The research problem considered in this chapter is a stochastic time-cost trade-off problem for 

general networks where uncertainty comes only from activity durations. Given the set of 

activities A={1,…,n} where n is the total number of activities excluding dummy start and end 

tasks, a set of precedence relationships Π (where Πi is a set of immediate predecessors of activity 

i), discrete triangular probability distributions of task durations where Oi = optimistic duration of 

activity i, MLi = most likely duration of activity i, and Pi = pessimistic duration of activity i, 

maximum number of time periods to crash each activity (di), per day crash cost for each activity 

(ci), a project target date (Target), and a per day penalty for exceeding the target date (Penalty); 

find a crashing policy that minimizes total expected project cost. Approaches discussed in this 
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chapter are applicable to any probability distributions; however, for convenience, we limit our 

discussion to triangular distributions. 

Furthermore, we assume that duration of a task is discrete and becomes known only after 

that task is fully completed. Crashing is also discrete (integer), that is, we can reduce the duration 

of an activity by a multiple of a full time period only. As in the serial case, we make crashing 

decisions dynamically throughout the execution of the project; a new decision-making stage 

occurs before the start of each activity. However, unlike the serial case, we may not have full 

information about previously started activities. It is likely that, at the time of a crashing decision, 

there will be some activities that are already completed (we have full information about their 

durations), some activities that have not yet started (we have no information beyond their 

probability distributions), and some tasks in progress (we have partial information about their 

durations). Therefore, we need to update the probability distributions of in-progress activities 

accordingly. Consider a project with 3 activities (Example 4.2) as illustrated in Figure 4-2: 

1 2 3 2 3 4
0.3 0.4 0.3 0.3 0.4 0.3

Start End

2 3 4
0.5 0.1 0.4

A C

B

 
 

Figure 4-2: Illustrative Example #4.2 

 
Activity A has the following possible durations: 1, 2, or 3 with probabilities 0.3, 0.4, and 

0.3 respectively. Crashing information is omitted because it is not relevant to this problem. 

Activities A and B start at the same time (t=0). Assume that two days have elapsed and suppose 

that activity A is finished while B is still in progress. If we wanted to make crashing decisions 

about C at this point, we need to be able to calculate the expected duration of B. Originally, that 
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value was 2(0.5) 3(0.1) 4(0.4) 2.9 3+ + = ≈ ; however, now we know that B is going to take more 

than 2 days. Therefore, using Bayesian probability update, the probability distribution of activity 

B becomes 3 with probability of 0.10.1 (0.5) 0.2
0.1 0.4

+ =
+

  and 4 with the probability of 

0.40.4 (0.5) 0.8
0.1 0.4

+ =
+

. The new expected duration is therefore 3(0.2) 4(0.8) 3.8 4+ = ≈ .  

It is also important to note that we use the expected cost criterion to evaluate algorithms 

presented herein. This criterion is most commonly used when evaluating uncertainty and 

considers the average behavior of a method, or average case. Other criteria (not discussed here) 

one could use include optimizing best case, worst case, or variance.  

4.4 ALGORITHMS 

In this section, we present a number of algorithms: Biggest Bang, Bang for the Buck, Basic LP, 

Linear Programming with Dynamic Programming, and Protect the Critical Path. These 

algorithms can be divided into three groups: methods that: (1) focus on uncertainty, (2) focus on 

path interdependencies, and (3) hybrid methods that focus on both uncertainty and path 

interdependencies. Bang for the Buck (BFB) and the Biggest Bang (BB), known already from 

the serial project chapter, are in group (1). The Basic LP (LP) algorithm is in group (2), and 

finally, Linear Programming with Dynamic Programming (LPDP) and Protect the Critical Path 

(PCP) are in group (3). To illustrate how each method works, we will use the simple project 

presented in Figure 4.1. 
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4.4.1 Biggest Bang 

The Biggest Bang (BB) utilizes a concept of a criticality index of a task, which is simply the 

probability that the task is critical. Since our objective is to minimize total expected cost 

(including any penalty cost), we are more interested in a probability that crashing an activity will 

result in a lower penalty cost. Therefore, we developed a concept of the Penalty Target 

Criticality Index (PTCI), which we calculate using simulation. At each simulation replication, an 

activity is considered Penalty Target Critical if and only if such an activity lies on the longest 

path in the project network and the duration of the longest path is strictly greater than Target 

date. The PTCI of an activity is therefore equal to the fraction of the time the activity was 

Penalty Target Critical. The BB index (BBI) for each activity can be calculated as: 

i i iBBI PTCI Penalty c= × −  

As time progresses in a project, at the beginning of each task we must make a speedup 

decision. For a given task, the decision on how much, if at all, to speed it up depends not only on 

its cost but also on the expected benefits (expected savings in penalty costs). Also, the decision 

must be weighed against the costs and possibilities of speeding up subsequent tasks in the 

project. The BB method uses a greedy approach to make such a decision, that is, at each decision 

stage it iteratively chooses to crash the activity which provides the highest expected savings.  

The decision stage occurs whenever an activity (or activities) is about to start. 

The BB algorithm consists of the following steps: 

(1) At decision stage i, simulate the project N times. At each simulation replication identify 

those activities which are Penalty Target Critical. 
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(2) For each activity calculate the Penalty Target Criticality Index, namely the number of 

times the activity was Penalty Target Critical divided by N. 

(3) Calculate the BB index for each activity. 

(4) Select the activity with the highest BB index and reduce it by one time period (since BBI 

calculates expected savings from crashing an activity, we want to reduce tasks with high 

BB indices).  

(5) Repeat steps (1) through (4) until we either reduced all activities to their maximum or 

until the BB indices of those activities still eligible for crashing are negative. 

(6) Make crashing decisions, according to the policy derived, for those activities that are 

starting immediately. Postpone all other decisions until later. 

(7) Repeat steps (1) through (6) at decision stage i+1 until we reach the end of the project. 

To illustrate how the BB algorithm works, consider the project from Figure 4.1. After 

simulating the project N times, we obtain the following BB indices: 

Table 4-2: BB indices -- iteration 1 

Activity PTCI BBI
A 0.017 -13.300
B 0.752 55.200
C 0.242 6.200
D 0.242 2.200
E 0.594 42.400  

         

Because activity B has the highest BB index, we would select it for reduction by one day and 

recalculate BB indices. The next 3 iterations are presented in Table 4.3. 
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Table 4-3: BB indices -- iterations 2-4 

Activity PTCI BBI PTCI BBI PTCI BBI
A 0.059 -9.100 0.119 -3.100 0.045 -10.500
B 0.535 33.500 0.313 11.300 0.202 0.200
C 0.155 -2.500 0.065 -11.500 0.082 -9.800
D 0.155 -6.500 0.065 -15.500 0.082 -13.800
E 0.437 26.700 0.319 14.900 0.161 -0.900

Iteration 2 Iteration 3 Iteration 4

 

At iteration 2, activity B again had the highest BB index so we reduce it by another day. 

Notice that task B has now reached its maximum compression. At iteration 3, we select E for 

reduction by one day since it has the highest BB index. At iteration 4, all activities eligible for 

crashing have negative expected savings therefore we terminate the procedure. The final static 

policy before the project starts would be to crash B by 2 days and E by 1 day. However, since 

BB is a dynamic algorithm, we only need to crash those activities that are starting immediately, 

that is activity B. We will postpone decisions about tasks C, D, and E until later. The decision at 

the start of the project is therefore to crash B by 2 days and to not crash A. We will repeat this 

procedure once we are able to start additional activities (in this case only after B ends). 

Observe that the BB algorithm handles uncertainty by using criticality indices; however, 

it does not really consider path interdependencies. We do not know what impact crashing an 

activity will have on other activities until we recalculate the PTCIs. It is a myopic method in a 

sense that, in determining the best policy, it greedily picks an activity with the highest index to 

crash.  
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4.4.2 Bang for the Buck 

Bang for the Buck (BFB) is a slight modification of the BB algorithm. Instead of calculating 

expected savings, we calculate expected savings per dollar spent. The BFB also uses the concept 

of the Penalty Target Criticality Indices and the BFB index (BFBI) for each activity can be 

calculated as: 

1i i i
i

i i

PTCI Penalty c PTCIBFBI Penalty
c c

× −
= = × −  

 BFBI gives the expected cost savings per dollar spent. Therefore, the larger the expected 

savings, the higher the BFBI; the larger the crash cost, the lower the BFBI. Therefore, to 

maximize impact per dollar spent we want to crash an activity with the highest BFBI. 

 Using the project in Figure 4.1 we get the following indices: 
 

Table 4-4: BFB indices -- iteration 1 

Activity PTCI BFBI
A 0.018 -0.880
B 0.768 2.840
C 0.236 0.311
D 0.236 0.073
E 0.616 2.624  

 
 

Since activity B has the highest BFB index, we would reduce it by one time period (a day 

in this case). Because PTCIs might have changed due to shortening activity B by one day, we 

need to recalculate the BFBIs. The next 3 iterations are presented in Table 4.5. 
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Table 4-5: BFB indices -- iterations 2-4 

Activity PTCI BFBI PTCI BFBI PTCI BFBI
A 0.065 -0.567 0.133 -0.113 0.053 -0.647
B 0.538 1.690 0.296 0.480 0.193 -0.035
C 0.161 -0.106 0.065 -0.639 0.067 -0.628
D 0.161 -0.268 0.065 -0.705 0.067 -0.695
E 0.441 1.594 0.335 0.971 0.165 -0.029

Iteration 2 Iteration 3 Iteration 4

 
 
 

  The final static policy before the project starts would be to crash B by 2 days and E by 1 

day. However, like the BB, the BFB is a dynamic algorithms and we disregard any decisions that 

do not have to be made right away. Thus, we crash B by 2 days and hold off on making any 

further decisions until more information is available. In the example shown, the starting policies 

for BBF and BB are the same. The differences among the PTC indices in Tables 4-2, 4-3 and 4-

4, 4-5 arise from the fact that we use simulation to approximate the true probability of realizing 

cost savings due to lower penalties. However, the BB and BFB algorithms can, of course, yield 

different decisions.  Consider a simple project in Figure 4-3. Assume that activity A has a 

Penalty Target Criticality Index of 0.4 and activity B has an index of 0.6. The per day crash costs 

are $10 and $20 for activities A and B respectively. 

 
Figure 4-3: Illustrative Example #4.3 

 
 

Assuming a per day penalty of $100, we get the following indices: 
0.4 100 100.4 100 10 30 3

10
0.6 100 200.6 100 20 40 2

20

A A

B B

BBI BFBI

BBI BFBI

× −
= × − =        = =

× −
= × − =       = =
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Therefore, using the BB algorithm, we would crash activity B (index of 40), while using 

the BFB algorithm results in crashing activity A (index = 3).  

One of the possible future directions for this work is to include budget constraints. Since 

the BFB effectively considers the expected cost savings per dollar spent, it may be more 

beneficial for such problems. The BFB is also a modification of (and indeed an extension of) 

Rule 3 due to Johnson and Schou (1990). Recall that, Johnson and Schou’s method was 

applicable to a stochastic time-cost trade-off problem with linear crash costs but no target date 

and no penalty for exceeding that date. We generalized this rule so that it can also be applied to 

our problem. Johnson and Schou’s Rule 3 crashes an activity with the lowest expected marginal 

crash cost per time period. 

Marginal crash cost per time period = 
}{ [ ] [ ]

Crash Normal

Normal Crash

Cost Cost
CI E dur E dur

−
−

 

 where: NormalCost = total (expected) cost of performing a task under its normal duration 

  CrashCost = total (expected) cost of performing a task under its crash duration 
  CI = criticality index of a task 
  [ ]NormalE dur  = expected normal task duration 

  [ ]CrashE dur  = expected crash task duration 

In our case, Crash NormalCost Cost−  reduces to the crash cost per time period ( ic ) since we have 

linear crash costs, and [ ] [ ]Normal CrashE dur E dur−  reduces to one since we consider crashing a task 

by one time period at a time. Thus, we want to crash an activity with the lowest marginal crash 

cost per time period ( i

i

c
CI

), which is equivalent to crashing an activity with the largest i

i

CI
c

.  

Recall that we that BFB indices are calculated as 1i
i

i

PTCIBFBI Penalty
c

= × − . If we did not 

have a penalty or a target date, the two methods for choosing which activity to crash would be 
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equivalent; however, the algorithms themselves would still be different. Unlike Johnson and 

Schou method, which is a static policy (all decisions made at the beginning of a project), both 

BFB and BB are dynamic, that is, they adapt their policies to the current state of the project. 

Like the BB algorithm, the BFB does not consider path interdependencies. Similar to the 

BB, the BFB picks an activity with the highest index to crash in order to determine the best 

policy and does not consider the effects this action may have on other paths. Even in a 

deterministic case, crashing the cheapest activity on the critical path sequentially may not lead to 

the best solution. In the deterministic case, the best approach is to use optimization to find the 

best combination of activities to crash, which is a method used in the remaining algorithms 

presented in this chapter.  

4.4.3 Basic LP 

The basic LP method tries to address the main shortcoming of the BFB and BB algorithms, that 

is, not considering path interdependencies. Our formulation follows the standard LP approach for 

crashing AON networks, where expected durations of activities not completed are used instead 

of their deterministic values. The objective function is to minimize total cost, that is, total crash 

cost plus any penalty cost, subject to precedence relationships constraints (a task cannot start 

until all its predecessors are finished), maximum crash limit constraints, and a project finish time 

constraint, or Target. 

Variables: 
 it = starting time of activity i 
 iz = number of time periods to crash activity i 
 θ = number of time periods the project duration exceeds Target date (project lateness) 
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Constants: 
 ic = cost to crash activity i by one time period 
 id = upper limit on the number of time periods we are allowed to crash activity i 

 [ ]iE dur = expected duration of activity i (for triangular distribution, i i iO + ML + P
3

) 

 iΠ = set of immediate predecessors of activity i 

 Penalty = cost per day for exceeding target date 

 Target = target date for project completion 

 
Formulation: 

min

. . [ ,
not yet started

, ,

N

i i
i

i k k k i

i i

END

i i

c z Penalty

s t t t z E dur where k k i
z d i
t Target
z t

θ

θ
θ

        + ×

   − + ≥ ]    ∈Π    ∀  ∀

       ≤       ∀   
       − ≤

        ≥ 0

∑

 

Using the example project from Figure 4.1, we get the following formulation at time t = 0. 

(*)

(*)

(*)

min 15 20 18 22 17 100

. . 5 1

5 2
3 1

3

A B C D E

C B B A

E B B B

E A A C

D C C

c c c c c

s t t t z z

t t z z
t t z z

t t z z

θ        + + + + +

   − + ≥                  ≤

       − + ≥                  ≤
       − + ≥                     ≤

       − + ≥                 

(*)

(*)

2
8 2

4
12

 Rounded to the nearest integer

D

END E E E

END D D

END

t t z z

t t z
t θ

≤

       − + ≥                  ≤

       − + ≥
       − ≤

 

 
The solution to this LP is to reduce task E by 1 day at a total cost of 17. Since this is a dynamic 

algorithm, and at time t = 0 we cannot start E, the decision is to crash nothing and start activities 

A and B. We resolve this LP substituting known durations for [ iE dur ] , for all activities already 

completed or recalculating [ iE dur ]  for those activities in progress, and setting maximum crash 
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limit constraints to equalities for activities already started or completed (so at the next stage, after 

activity B finishes, we would set 0Az =  and 0Bz = ). 

 Even though the LP algorithm takes into considerations path interdependencies, it does 

not handle uncertainty very well since it replaces uncertainty with expected values (much like 

PERT). The following approach exploits the advantages of BFB/BB (uncertainty) and LP (path 

interdependencies) into a single algorithm. 

4.4.4 Linear Programming with Dynamic Programming 

Linear Programming with Dynamic Programming (LPDP) method uses the uncertainty handling 

ability of the dynamic programming algorithm while at the same time considering path 

dependencies through the use of LP. The motivation for using the DP algorithm came from the 

serial project case. We know that for serial projects or for projects with one dominant path, the 

DP algorithm guarantees optimal solutions. Exploiting this property, the LPDP algorithm 

performs DP on the PERT critical path and uses LP for the non-critical activities. 
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State representation: 
( , )ix i t=  where 

i ={1,..,END} – current activity 
N = number of non-dummy activities 
ti – starting time of activity i 
 

iz  – number of time periods to crash activity i 

ic – cost of crashing activity i 
Cost*(x) – the optimal cost-to-go for state x 

i
kp -- probability that normal duration of activity i will be k days  

Target – target date for project completion  
Penalty – cost per day for exceeding Target 
 
For the terminal dummy activity ( END ): 
For all tEND compute: 

*( , ) max{( ),0}END ENDCost END t t Target Penalty= − ×  

For all activities , wherei i N   ≤ : 
For all ti do: 

* *( , ) min{ ( ( 1, )) }
i

i
i k i i i iz k

Cost i t p Cost i t k z c z= + + − + ×∑  

 
Exhibit 4-1: Dynamic Programming formulation for serial projects 

 
 The LPDP algorithm consists of the following steps: (1) find a PERT critical path – this 

is done by calculating the longest path using expected durations for all activities, (2) perform DP 

on the PERT critical path using formulation from Chapter 3 (see Exhibit 4-1), (3) formulate and 

solve a mixed integer program to combine DP with LP (using expected durations), (4) from the 

solution consider only those activities that are starting immediately and postpone all other 

decisions, (5) repeat the procedure at each stage of the project (when we can start another 

activity) substituting known durations for the expected. 

We need to modify the basic LP model to account for the DP solution on the PERT 

critical path. To do this we introduce a new set of variables (zij) and a corresponding set of 

parameters (pij). Parameters pij correspond to the jth level of the DP solution for activity i and we 

refer to them as crossover points that indicate the last start time before the number of days to 
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crash an activity increases. Variables zij are set to 1 if the start time of an activity is less than or 

equal to the corresponding crossover point.  

Variables: 
 it = starting time of activity i 
 iz = number of time periods to crash activity i 
 θ = number of time periods the project duration exceeds Target date (project lateness) 
 ijz = binary variables to look up DP policy 
 
Constants: 
 ic = cost to crash activity i by one time period 
 id = upper limit on the number of time periods we are allowed to crash activity i 

 [ ]iE dur = expected duration of activity i (for triangular distribution, i i iO + ML + P
3

) 

 iΠ = set of immediate predecessors of activity i 
 Penalty = cost per day for exceeding target date 

 Target = target date for project completion 

ijp  = crossover point j for activity i (for DP policy lookup) – defined as the last start time 

before the number of days to crash an activity increases. 

 
Formulation: 

min

. . [ ,
not yet started

not yet started

N

i i
i

i k k k i

i i

i ij
j

i i

c z Penalty

s t t t z E dur where k k i
z d i

z z i

t p

θ        + ×

   − + ≥ ]    ∈Π    ∀  ∀
       ≤                             ∀   

       =                        ∀   

       −

∑

∑
M ,

( 1) 0 ,

, , ,

j ij

i ij ij

END

i i ij

z j i

t p z j i

t Target
z t z

θ
θ

≤             ∀  ∀

       − + ≥            ∀  ∀

       − ≤
        ≥ 0

 

Using our sample project from Figure 4.1, we get the following steps: 

(1) Find a PERT critical path 
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In order to find PERT critical path, we need to calculate expected durations for all task: 

[ AE dur ] = 3 , [ BE dur ] = 5.33 ≈ 5 , [ CE dur ] = 3.33 ≈ 3 , [ DE dur ] = 3.67 ≈ 4 , [ EE dur ] = 8 . The 

critical path is Start B E End as illustrated in Figure 4-4. 
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Critical path

 
Figure 4-4: Simple project -- PERT critical path 

 

(2) Perform DP on the critical path 

The DP policy for path Start B E End assuming Target date of 12 is presented in Table 4-6 

below. 

Table 4-6: DP policy for PERT critical path 

Task ti Crash by
B 0 2
E 1 0
E 2 0
E 3 1
E 4+ 2  

          

The crossover points are as follows: 1Bp = -2, 2Bp = -1, 1Ep = 2, 2Ep = 3. 

(3) Formulate and solve MIP 
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min15 20 18 22 17 100A B C D Ec c c c c θ        + + + + +  
(*)

(*)

(*)

. . 5 1

5 2
3 1

3 2
8

C B B A

E B B B

E A A C

D C C D

END E E

s t t t z z

t t z z
t t z z

t t z z
t t z z

   − + ≥                  ≤

       − + ≥                  ≤
       − + ≥                     ≤

       − + ≥                 ≤
       − + ≥                  

(*)

2

4
12

E

END D D

END

t t z
t θ

≤

       − + ≥
       − ≤

 

(*)  Rounded to the nearest integer  

1 1

2 2

1 1

2 2

( 2) 1,000 ( 2 1) 0
( 1) 1,000 ( 1 1) 0
2 1,000 (2 1) 0
3 1,000 (3 1) 0

B B B B

B B B B

E E E E

E E E E

B

t z t z
t z t z
t z t z
t z t z
z

       − − ≤          − − + ≥   
       − − ≤          − − + ≥  
       − ≤              − + ≥   
       − ≤              − + ≥   
       1 2

1 2

1 2 1 2, , ,

B B

E E E

B B E E

z z
z z z
z z z z binary

= +
       = +
          =   

 

 

Constraint 12 1,000E Et z− ≤ forces zE1 = 1 when tE ≥ 3 ( 1 13 2 1,000 1 1,000E Ez z− ≤ ⇒ ≤ ) and 

constraint 1(2 1) 0E Et z− + ≥ forces zE1 = 0 when tE < 3 (i.e., if tE = 2, we have 12 3 0Ez− ≥ ). 

Similarly, constraint 23 1,000E Et z− ≤ forces zE2=1 when tE ≥ 4 ( 2 24 3 1,000 1 1,000E Ez z− ≤ ⇒ ≤ ) 

and constraint 2(3 1) 0E Et z− + ≥ forces zE2 = 0 when tE < 4 (i.e., if tE = 3, we get 13 4 0Ez− ≥ ). 

 
When we solve the MIP, we get the following solution: 

tA tB tC tD tE tEND θ zB1 zB2 zE1 zE2 zA zB zC zD zE 
0 0 3 6 3 12 0 1 1 1 0 0 2 0 0 1 

 
 
(4) Consider solution for the activities starting immediately 

 We would crash B by 2 days, not crash A, and postpone all other decisions until future stages. 
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(5) Repeat at each stage of the project 

We would repeat this procedure, recalculating the critical path whenever we need to make a new 

decision, substituting known durations for the expected, and setting crash limit constraints to 

equalities for those activities we already made decisions about. 

4.4.5 Protect the Critical Path 

In the LPDP algorithm, the PERT critical path can change often during the course of the project. 

This may not be desirable from a managerial point of view; project managers often prefer to 

focus on one path that will remain critical throughout the execution of the project. This was the 

motivation for designing the Protect the Critical Path (PCP) algorithm. At the beginning of a 

project, the PCP finds a PERT critical path like the LPDP; however unlike the LPDP, it tries to 

prevent that path from becoming non-critical. In finding solutions, the PCP also combines 

dynamic programming with linear programming but the implementation and the formulation 

differ from those developed for the LPDP. In addition, the PCP uses a concept of buffers 

motivated by the work of Goldratt (1997). Goldratt’s idea was to build in buffers into the project 

to protect the critical chain (critical path in our case since we have no resource constraints) from 

any delays. We use buffers in a similar context to absorb any delays caused by those non-critical 

activities that link to the critical path. 

 The PCP consists of the following steps, some of which are the same as in the LPDP: (1) 

find a PERT critical path – this is done by calculating the longest path using expected durations 

for all activities, (2) perform DP on the PERT critical path using formulation from Chapter 3, (3) 

formulate and a solve mixed integer program that combines DP with LP to find critical path 

buffers, using optimistic durations for critical activities and pessimistic durations for non-critical 
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tasks effectively forcing the algorithm to try to prevent the critical path from changing at all cost, 

(4) formulate and solve an MIP (combining DP with LP) to find crashing values (using 

optimistic and pessimistic durations accordingly), (5) from the solution consider only those 

activities that are starting immediately and postpone all other decisions, (5) repeat the procedure 

at each stage of the project (when we can start another activity) substituting known durations for 

the optimistic/pessimistic durations. 

Variables: 
 it = starting time of activity i 
 iz = number of time periods to crash activity i 
 θ = number of time periods the project duration exceeds Target date (project lateness) 
 ijz = binary variables to look up DP policy 

iy = buffer (delay on the critical path) for activity i 
 
Constants: 
 ic = cost to crash activity i by one time period 
 id = upper limit on the number of time periods we are allowed to crash activity i 

 
optimistic duration of activity  if  is critical
pessimistic duration of activity  if  is non-criticali

i i
dur

i i
 ⎧

=  ⎨  ⎩
  

 iΠ = set of immediate predecessors of activity i 
 Penalty = cost per day for exceeding target date 

 Target = target date for project completion 

ijp  = crossover point j for activity i (for DP policy lookup)  

 

 
Formulation: 
 Model 1: find the minimum buffers (delay on the critical path) – find iy  
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Constraints i k k kt t z dur− + =  set ti variables for all critical pathi ∈ to minimum starting 

times in a serial project corresponding to the critical path. 

Model 2: minimize total project cost given the minimum buffers (fixing yi variables) 

min

. . ,
, critical path

not yet

N

i i
i

i i k k k k i

i k k k i

i i

c z Penalty

s t t y t y z dur where k k i
t t z dur where k k i
z d i

θ        + ×
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The objective of the PCP algorithm is to, first, prevent the critical path from changing 

and second, to minimize total project cost. In steps (3) and (4) above we are using optimistic 

durations for critical tasks and pessimistic durations for non-critical tasks to achieve critical path 

protection. This can be illustrated more clearly by working through the example shown in Figure 

4.1. 

(1) Find PERT critical path 

In order to find PERT critical path, we need to calculate expected durations for all task: 

[ AE dur ] = 3 , [ BE dur ] = 5.33 ≈ 5 , [ CE dur ] = 3.33 ≈ 3 , [ DE dur ] = 3.67 ≈ 4 , [ EE dur ] = 8 . The 

critical path is Start B E End as illustrated in Figure 4-5. 

PERT critical path
4 buffer 4

15 yE 17
1 2

buffer
Start yEnd End

buffer 3 5 6
yB 20 18 22

2 1 2
Crash cost
Crash up to

B
Optimistic

D

Crash cost
Crash up to

Pessimistic Pessimistic

E

Crash cost
Crash up to

C

Crash cost
Crash up to

Pessimistic Optimistic
A

Crash cost
Crash up to

 
Figure 4-5: Project network diagram with buffers 

 

(2) Perform DP on the critical path 

Since, at the beginning of the project, the critical path is the same as in the LPDP algorithm, the 

DP policy for path Start B E End is also the same (see Table 4.5). The crossover points are 

also 1Bp = -2, 2Bp = -1, 1Ep = 2, 2Ep = 3. 

(3) Formulate and solve MIP to find buffers 

min A B C D E ENDy y y y y y        + + + + +  
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The solution is 0, 0, 0, 0, 2, 8A B C D E ENDy y y y y y= = = = = =  

(4) Formulate and solve MIP to find crashing values 

min15 20 18 22 17 100A B C D Ec c c c c θ        + + + + +  
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tA tB tC tD tE tEND yE yEND θ zB1 zB2 zE1 zE2 zA zB zC zD zE 
0 0 1 6 1 4 2 8 0 1 1 1 0 1 2 0 0 1 

 

(5) Consider solution for the activities starting immediately 

 We would crash B by 2 days, crash A by 1 day, and postpone all other decisions until future 

stages. Notice the difference between the LPDP and the PCP crashing policies. The PCP crashes 

activity A by 1 day (to shorten non-critical (from PERT’s perspective) path giving the current 

critical path a greater chance of staying critical). 

(6) Repeat at each stage of the project 
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We would repeat this procedure, recalculating the critical path whenever we need to make a new 

decision, substituting known durations for the optimistic/pessimistic (updating probability 

distributions if necessary), and setting crash limit constraints to equalities for those activities we 

already made decisions about. 

4.5 COMPUTATIONAL TESTS 

In order to evaluate the effectiveness of each of the presented algorithms, we constructed a set of 

test problems. To differentiate among multiple network topologies (such as parallel network, 

serial network, and everything in between) we used the concept of order strength (Mastor, 1970, 

Demeulemeester et al., 2003) as a measure of network topology. This is in contrast to Chapter 2 

in which we used a serial-parallel (SP) index to differentiate among various topologies. Recall 

that, order strength (OS) can be defined as the total number of precedence relationships in the 

network (including transitive but excluding dummy relationships) divided by the theoretical 

maximum number of precedence relationships or n(n-1)/2 where n equals the number of 

activities in the project excluding dummy nodes (denoting a beginning and an end of the project). 

On the other hand, the serial-parallel index measures the length of the longest path and does not 

indicate how many precedence relationships exist in a project. Based on a preliminary analysis 

and due to the fact that performance of some of the methods discussed herein depends on the 

existence of a dominant path in the project, we decided to use the order strength instead of the SP 

index. 
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Figure 4.6 shows network topologies with a varying OS (the dashed arcs indicate implied 

(transitive) precedence relationships). Notice that a completely parallel network has an order 

strength of 0 whereas a completely serial network has an OS of 1. 

n = 5, number of precedence relationships = 0
OS = 0 / (5(4)/2) = 0

n = 5, number of precedence relationships = 3 + 2 transitive = 5
OS = 5 / (5(4)/2) = 0.5

n = 5, number of precedence relationships = 4 + 6 transitive = 10
OS = 10 / (5(4)/2) = 1

 
Figure 4-6: Project networks with various order strengths 
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Following Demeulemeester et al. (2003), we represent project networks using an upper 

triangular node incidence matrix. To differentiate between regular and transitive arcs, we denote 

each regular arc as a “1”, and each transitive arc as “-1”. Matrix representations of the three 

projects in Figure 4.6 are as follows: 

 

   OS = 0
2 3 4 5

1 0 0 0 0
2 -- 0 0 0
3 -- -- 0 0
4 -- -- -- 0  

   OS = 0.5
2 3 4 5

1 0 0 1 -1
2 -- 0 0 0
3 -- -- 1 -1
4 -- -- -- 1  

   OS = 1
2 3 4 5

1 1 -1 -1 -1
2 -- 1 -1 -1
3 -- -- 1 -1
4 -- -- -- 1  

4.5.1 Generating project topology 

In order to generate project networks with varying OS we use the RanGen procedure described 

in Demeulemeester et al. (2003). Starting with a serial network (OS = 1), we randomly remove 

existing arcs from the network until we get the particular OS we are interested in. 

To illustrate the procedure we generate a 5-activity network with an OS = 0.4: 

(1) Start with a completely connected, serial, network (OS = 1). 

 

(2) Randomly select a non-transitive arc for removal – e.g., select (1,2). When we remove arc 

(1,2), node 1 loses connection to activities 3, 4, and 5. In order to “restore this connection”, 

we convert one of the previously transitive arcs into a non-transitive (or regular) arc. The 

choice of an arc is made based on how many of the “lost” connections it “restores”. There is 

always one unique transitive arc (unless no connections have been lost) that will re-establish 
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all of the necessary connections. In our case, adding arc (1,3) into the project restores 

connection of activity 1 to 3, 4, and 5. After this step, we get the following network with an 

OS = 9 / (5(4)/2) = 0.9 

 

(3) Since current OS > desired OS, we continue with arc removal. Randomly select another non 

transitive arc – e.g., (4,5): 

 

(4) OS = 0.8  continue. Remove (3,4): 

 

(5) OS = 0.7  continue. Remove (3,5): 
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At this point we have no more transitive arcs. 

(6) OS = 0.6  continue. Remove (2,5): 

 

(7) OS = 0.5  Continue. Remove (1,5): 

 

At this point OS = 0.4, which is the desired OS therefore we terminate the procedure. 

We can also represent the above transformations using matrix notation: 
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   OS = 1
2 3 4 5

1 1 -1 -1 -1
2 -- 1 -1 -1
3 -- -- 1 -1
4 -- -- -- 1   

   OS = 0.9
2 3 4 5

1 0 1 -1 -1
2 -- 1 -1 -1
3 -- -- 1 -1
4 -- -- -- 1   

   OS = 0.8
2 3 4 5

1 0 1 -1 -1
2 -- 1 -1 -1
3 -- -- 1 1
4 -- -- -- 0     

   OS = 0.7
2 3 4 5

1 0 1 1 -1
2 -- 1 1 -1
3 -- -- 0 1
4 -- -- -- 0  

   OS = 0.6
2 3 4 5

1 0 1 1 1
2 -- 1 1 1
3 -- -- 0 0
4 -- -- -- 0    

   OS = 0.5
2 3 4 5

1 0 1 1 1
2 -- 1 1 0
3 -- -- 0 0
4 -- -- -- 0   

   OS = 0.4
2 3 4 5

1 0 1 1 0
2 -- 1 1 0
3 -- -- 0 0
4 -- -- -- 0  

In the matrices above, 1’s represent real arcs (immediate precedence relationships) and -

1’s represent transitive arcs. Bold numbers denote arcs selected for removal, and numbers in 

italics indicate a previously transitive arc that is added to the project network. 

Of course, there is a variety of topologies we can get with 5 nodes and an OS of 0.4. 

Figure 4-7 shows 4 different network structures, all with OS = 0.4. 

 
Figure 4-7: Project networks with OS = 0.4 
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4.5.2 Generating Target, Penalty, and Crash Costs 

Once the project network topology is set, we can generate cost information. As in the serial 

project case, we follow the procedure based on Gutjahr et al. (1998). We set the target date equal 

to the expected duration of the PERT critical path and the penalty for exceeding the target to a 

constant $100 per day. Next, we simulate the project assuming no crashing is used N times where 

N is equal to the number of activities in the project multiplies by a constant (20 in our case). The 

procedure consists of the following steps: 

(1) Determine the size of the project. We tested problems with 5, 10, 25, and 50 activities. 

(2) Set the distribution span. Since in the serial case we did not see any patterns in 

performance of the algorithms with respect to different distribution spans, herein we only 

examine problems with an average distribution span of 16 days. 

(3) For each activity generate an optimistic time, a most likely time, and a pessimistic time 

according to the span. 

(4) Calculate the Target date completion of the project. 

(5) Determine the maximum number of days by which each activity can be crashed (di) – 

generated from a discrete uniform distribution from [0, Oi-1] interval. 

(6) Generate crash cost per day for each activity 

a. Estimate expected penalty cost E(Penalty) of the project with no compression 

using Monte Carlo simulation.  

b. Assign a fraction of E(Penalty) as the total cost for maximum crashing (TCMC) of 

all activities (total cost if we crash all activities to maximum). We refer to this 

fraction as a cost structure and tested values of 0.5 and 1. 

c. Calculate adjustment value for each activity (Ai) 
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d. For each activity, generate a random number ~U[0, 1) and multiply it by Ai. We 

refer to this value as a cost distribution index (CDI). 

e. Calculate a normalized cost distribution index (NCDI) for each activity: 
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∑
 

f.  Calculate cost of maximum crashing for each activity: 

cost of maximum crashingi iTCMC NCDI= ×  

g. Calculate crash cost per day for each activity: 

cost of maximum crashingi
i

i

c
d

=  

4.5.3 Results 

We define a problem type as a specific class of problems (for example, projects with a particular 

OS, size, and cost structure) and a problem instance as an individual occurrence of a problem 

type. The results are presented in the following manner. First we discuss problem types with cost 

structure of 1 with different project sizes. For cost structure of 0.5, we limit our discussion to 

problem types with 25 activities for convenience. Finally, we illustrate differences between 

dynamic (contingent decisions) vs. static (all decisions made at the beginning of the project) 

algorithms. 

Since we do not have optimal solutions for general projects, in addition to the algorithms 

discussed in previous sections, for each problem instance we calculate the expected cost 

assuming we have full knowledge of activity durations that will be realized in the future. That is, 
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we make all simulated activity durations known to the algorithm a priori, thus reducing the 

problem to its deterministic counterpart, and solve using linear programming. We refer to the 

method as “Perfect Information.” 

 

Cost structure = 1, Size =5 

 Tables 4-7 and 4-8 show average expected costs and average running times by order 

strength and heuristic for five activity projects. The same information is also presented in Figures 

4-8 and 4-9. 

Table 4-7: Expected cost -- 5 activity projects 

OS BB BFB LP LPDP PCP Perfect
Information

0 160.48 160.47 202.26 160.37 184.17 117.42
0.1 148.65 148.82 194.90 152.45 168.39 108.04
0.2 168.61 168.97 206.56 179.59 236.42 112.28
0.3 192.45 192.65 228.58 192.55 264.01 148.49
0.4 173.25 173.76 221.33 174.80 248.52 125.15
0.5 190.19 190.03 235.82 190.29 207.66 141.30
0.6 161.39 161.38 202.59 160.55 175.80 113.85
0.7 197.89 197.81 238.93 197.96 244.49 149.75
0.8 193.78 193.08 265.17 195.65 243.15 131.71
0.9 124.08 124.09 155.42 123.84 131.67 77.82
1 169.33 169.32 200.98 166.10 166.10 117.70  

 *Averaged over 20 instances of each problem type 
 
 

Table 4-8: Average running time (sec) -- 5 activity projects 

OS BB BFB LP LPDP PCP
0 0.0005 0.0005 0.0016 0.0065 0.0160

0.1 0.0008 0.0007 0.0024 0.0110 0.0239
0.2 0.0007 0.0008 0.0021 0.0127 0.0290
0.3 0.0008 0.0008 0.0029 0.0147 0.0324
0.4 0.0010 0.0010 0.0028 0.0155 0.0336
0.5 0.0007 0.0007 0.0022 0.0118 0.0245
0.6 0.0010 0.0009 0.0023 0.0166 0.0316
0.7 0.0010 0.0011 0.0022 0.0192 0.0374
0.8 0.0011 0.0011 0.0018 0.0178 0.0333
0.9 0.0013 0.0014 0.0023 0.0284 0.0407
1 0.0016 0.0017 0.0042 0.0593 0.0667  

  *Averaged over 20 instances of each problem type 
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Figure 4-8: Expected cost -- 5 activity projects 

 

 
Figure 4-9: Average running time (sec) -- 5 activity projects 

 
In addition we applied Bonferroni correction (Bonferroni, 1936) to a multiple comparison 

procedure in order to measure differences among expected costs (means) of the heuristics for 

each order strength. Figure 4-10 shows 95% Bonferroni intervals with homogenous groups 

circled. 
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OS = 0.6  OS = 0.7

OS = 0.8  OS = 0.9

OS = 1

 
Figure 4-10: 5 activities -- 95% Bonferroni intervals 
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Cost structure = 1, Size =10 

 Tables 4-9 and 4-10 show average expected costs and average running times by order 

strength and heuristic for ten activity projects. The same information is also presented in Figures 

4-11 and 4-12. Figure 4-13 shows 95% Bonferroni confidence intervals. 

Table 4-9: Expected cost -- 10 activity projects 

OS BB BFB LP LPDP PCP Perfect 
Information 

0 166.64 166.56 266.15 187.39 175.62 123.67 
0.1 120.82 120.94 185.23 123.63 139.62 87.22 
0.2 214.13 214.12 281.17 216.26 278.92 153.91 
0.3 163.62 163.49 259.24 184.42 213.34 94.49 
0.4 268.55 268.73 373.35 290.36 369.69 191.13 
0.5 287.47 286.49 342.64 288.66 297.38 233.52 
0.6 192.37 192.30 282.00 193.37 290.84 107.73 
0.7 252.46 252.53 331.68 255.09 412.96 180.34 
0.8 165.04 164.29 269.53 166.73 299.21 88.11 
0.9 149.74 149.94 197.37 147.48 157.59 86.49 
1 274.92 274.71 320.56 268.92 268.92 143.15 

*Averaged over 20 instances of each problem type 

Table 4-10: Average running time (sec) -- 10 activity projects 

OS BB BFB LP LPDP PCP
0 0.0030 0.0031 0.0012 0.0078 0.0182

0.1 0.0039 0.0040 0.0021 0.0155 0.0341
0.2 0.0065 0.0065 0.0033 0.0300 0.0557
0.3 0.0092 0.0090 0.0033 0.0323 0.0640
0.4 0.0070 0.0068 0.0035 0.0330 0.0619
0.5 0.0078 0.0080 0.0035 0.0604 0.0840
0.6 0.0096 0.0094 0.0040 0.0527 0.0923
0.7 0.0113 0.0111 0.0045 0.0932 0.1247
0.8 0.0129 0.0129 0.0046 0.1197 0.1440
0.9 0.0145 0.0144 0.0052 0.2232 0.1997
1 0.0179 0.0179 0.0064 0.5501 0.4274  

*Averaged over 20 instances of each problem type 
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Figure 4-11: Expected cost -- 10 activity projects 

 

 
Figure 4-12: Average running time -- 10 activity projects 
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Figure 4-13: 10 activities -- 95% Bonferroni intervals 
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Cost structure = 1, Size = 25 

 Tables 4.11 and 4.12 show average expected costs and average running times by order 

strength and heuristic for projects with twenty five activities. The same information is also 

presented in Figures 4-14 and 4-15. Figure 4-16 shows 95% Bonferroni confidence intervals. 

Table 4-11: Expected cost -- 25 activity projects 

OS BB BFB LP LPDP PCP Perfect
Information

0 194.58 194.58 323.41 242.01 205.20 170.99
0.1 161.03 161.16 338.94 195.36 198.49 113.07
0.2 188.40 188.50 354.20 203.61 242.19 132.61
0.3 248.78 248.61 409.81 271.35 341.09 169.08
0.4 252.06 252.21 392.36 266.86 357.84 174.02
0.5 260.11 259.55 429.44 289.23 439.95 167.89
0.6 341.06 341.01 510.90 365.55 561.97 216.04
0.7 275.53 275.12 435.12 288.35 514.26 165.76
0.8 174.81 174.09 362.87 207.70 480.14 83.79
0.9 221.41 220.36 422.47 241.31 499.59 95.93
1 472.00 472.02 614.57 468.35 468.35 266.03  

*Averaged over 20 instances of each problem type 

 

Table 4-12: Average running time -- 25 activity projects 

OS BB BFB LP LPDP PCP
0 0.0213 0.0215 0.0024 0.0122 0.0310

0.1 0.0883 0.0889 0.0096 0.1033 0.2174
0.2 0.0976 0.0979 0.0131 0.2008 0.4071
0.3 0.1212 0.1214 0.0147 0.2335 0.4838
0.4 0.1580 0.1584 0.0210 0.3664 0.6444
0.5 0.2187 0.2210 0.0226 0.4039 0.8403
0.6 0.2244 0.2256 0.0250 1.0496 1.4710
0.7 0.2966 0.2990 0.0300 1.8514 2.0412
0.8 0.2792 0.2870 0.0295 2.2224 2.6154
0.9 0.3053 0.3110 0.0317 4.4180 4.5353
1 0.4882 0.4889 0.0562 23.9949 13.8437  

*Averaged over 20 instances of each problem type 
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Figure 4-14: Expected cost -- 25 activity projects 

 

 
Figure 4-15: Average running time -- 25 activity projects 
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Figure 4-16: 25 activities -- 95% Bonferroni intervals 
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The cost performance of the algorithms is similar across all problem sizes. Biggest Bang 

and Bang for the Buck lead the way followed closely by LPDP. Basic LP and PCP are the worst 

performers. We can observe some variations in expected costs as the order strength changes. 

However, except for cases where the OS is equal to 0 or 1, we have no reason to believe that they 

reflect anything other than random causes. Since for OS = 1 (serial project), dynamic 

programming gives optimal solutions, our intuition was that DP based algorithms, that is, the 

LPDP and the PCP, would perform better as the order strength increases. This is, however, not 

the case with the PCP. Especially for larger projects, the PCP performs poorly even at order 

strength of 0.9. The PCP attempts to protect the critical path by crashing, possibly unnecessarily, 

non-critical activities. The more non-critical activities there are in a project, the poorer the PCP 

will perform. When we generated 25 activity project networks with OS = 0.9, we noticed that, on 

average, there were twelve non-critical activities (vs. one and three for 5-activity and 10-activity 

projects). Thus, for larger projects, the PCP performs poorly even at large order strengths.  

Notice that, as the number of activities in a project increases, the Bonferroni confidence 

intervals shrink. This is because the number of simulation replication depends on the number of 

activities, that is the larger the project, the larger the sample size we obtain. Since confidence 

intervals are closely related to the measure of standard error, larger sample sizes result in smaller 

confidence intervals. Regardless of the project size, we notice that there are never any significant 

cost differences between the BFB and the BB. The LPDP belongs to the same homogenous 

group as the BFB and the BB in the majority of cases with 5 or 10 activities. Finally, for the OS 

of 1, there are no significant differences at the 95% confidence level between LPDP, PCP, BFB, 

and BB regardless of the project size. 
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Running times for all algorithms go up as the order strength and size increase; however, 

they do it at different rates. As the order strength increases, we have more decision stages in the 

project because the average length of a path increases as well. This is true for all the methods 

presented herein. However, running times for LPDP and PCP go up much more rapidly. This is 

due to the increased number of integer variables. As the order strength increases, the length of 

the PERT critical path increases as well, thus we need more DP lookup binary variables. The 

LPDP average running time of one simulation of one problem instance was about 24 seconds. 

Since we simulate each problem instance 20*n times (in this case, 20*25 = 500), and we have 20 

instances of each problem type, the length of time to run the LPDP on a problem set with 25 

activities and OS=1 was approximately 240,000 seconds or 66 hours and 40 minutes. We 

attempted to test the LPDP and the PCP on problem instances with 50 activities; however, the 

computational overhead was prohibitive. Therefore, we only tested the BB and the BFB on 50-

activity instances. 

 

Cost structure = 1, Size = 50 

Tables 4-13 and 4-14 show average expected costs and average running times by order 

strength and heuristic (BB, BFB, and Perfect Information only) for projects with fifty activities. 

The same information is also presented in Figures 4-17 and 4-18. 
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Table 4-13: Expected cost -- 50 activity projects 

OS BB BFB
Perfect

Information
0 181.93 181.86 158.00

0.1 127.06 126.97 85.05
0.2 94.94 94.71 62.69
0.3 101.27 100.69 67.91
0.4 185.72 185.69 135.92
0.5 123.40 123.06 65.57
0.6 149.15 149.34 78.56
0.7 131.23 130.40 59.78
0.8 181.71 181.63 84.45
0.9 239.19 237.69 127.16
1 142.25 142.23 55.53  

*Averaged over 20 instances of each problem type 
 

Table 4-14: Average running time -- 50 activity projects 

OS BB BFB
0 0.1889 0.1485

0.1 1.3107 1.1337
0.2 1.4366 1.2577
0.3 1.7456 1.5710
0.4 2.4611 2.1672
0.5 2.4788 2.1999
0.6 2.7310 2.4163
0.7 2.9478 2.6016
0.8 3.6488 3.1778
0.9 4.7484 4.1358
1 7.9854 6.3895  

*Averaged over 20 instances of each problem type 
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Figure 4-17: Expected cost -- 50 activity projects 

 

 
Figure 4-18: Average running time -- 50 activity projects 

 

As before we can observe some variations in the cost values but there are no clear 

patterns. The average running times went up drastically; for order strength of 1, running time of 
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BB is slightly below 8 seconds compared to approximately 0.5 seconds for the same order 

strength with 25 activities. However, the running times of the BB and the BFB on problems with 

50 activities are still lower than the running times of the LPDP and the PCP on 25-activity 

projects. 

As we noticed earlier in this section, the PCP was not performing well due to the fact that 

the method, on average, compresses the project more by crashing non-critical activities in hopes 

of preserving the current critical path. Therefore, we conjecture that, if the crash costs are lower, 

the relative performance of the PCP should improve. We generated test problems with 25 

activities and the cost structure of 0.5. Because now we are using half of the expected penalty 

with no crashing to generate crash costs, on average they should be 50% lower than those 

generated when cost structure was equal to 1. The results are presented below. 

 
Cost structure = 0.5, Size = 25 

Table 4-15 and Figure 4-19 show average expected costs by order strength and heuristic. 

 
Table 4-15: Expected cost -- 25 activities with 0.5 cost structure 

OS BB BFB LP LPDP PCP
Perfect

Information
0 173.65 173.51 303.20 222.24 194.52 154.77

0.1 242.40 242.48 403.68 285.69 262.08 210.56
0.2 86.66 86.63 266.83 126.73 126.30 64.87
0.3 148.64 148.22 370.76 201.20 186.35 100.24
0.4 70.97 70.70 266.16 89.16 124.95 41.50
0.5 98.60 97.81 284.10 122.76 165.17 59.63
0.6 154.56 154.08 401.62 192.34 239.19 91.79
0.7 190.73 190.60 372.05 204.57 303.68 128.32
0.8 105.82 105.23 334.34 141.84 281.81 38.78
0.9 117.77 117.27 311.52 122.88 265.16 43.29
1 172.01 171.77 295.18 163.28 163.28 73.06  
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Figure 4-19: Expected cost -- 25 activities with 0.5 cost structure 

 
 As we can see, the relative performance of the PCP improved; however, the BB, the 

BFB, and the LPDP are still preferable if total expected cost is the criterion we use for evaluating 

these methods. 

4.5.4 Impact of the order strength 

 As in the serial network case, we examine relative cost improvement of dynamic vs. 

static algorithms. Figures 4-20 and 4-21 present these results for the BB and the LPDP 

respectively. We tested problem instances with 25 activities and cost structure on 1. The results 

show expected costs averaged over 20 instances of each problem type. 
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Figure 4-20: Biggest Bang -- static vs. dynamic 

 

 
Figure 4-21: LPDP -- static vs. dynamic 

 

As the order strength increases, so does the performance gap between static and dynamic 

versions of the algorithm. Even though we presented only results for the BB and the LPDP, this 

pattern is visible in all other algorithms. When OS = 0, that is, we have a completely parallel 
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project, the performance of a dynamic algorithm is the same as the performance of a static 

algorithm because we have only one decision stage (beginning of the project). As the order 

strength increases, we have more opportunities in the dynamic version of an algorithm to revise 

our decisions, thus, the larger the number of decision stages, the larger the performance gap 

between static and dynamic algorithms. For the order strength of 1, the relative improvement of a 

dynamic algorithm over a static one is around 23% for the BB and over 36% for the LPDP. 

In addition, we notice that, as the OS increases, so does the gap between expected cost 

with perfect information and expected costs of our heuristics. This suggests, not surprisingly, 

that, as the projects become more serial (have more decision stages), the value of information 

increases. Table 4-16 shows the BB-Perfect Information gap by project size for OS of 0 and OS 

of 1 (for projects with cost structure = 1). 

Table 4-16: BB/Perfect Info gaps 

Gap 
Size OS=0 OS=1 Difference

5 36.66% 43.87% 7.20% 
10 34.75% 92.05% 57.30% 
25 13.80% 77.42% 63.63% 
50 15.15% 156.17% 141.02% 

 

 Notice that the difference between the gap for OS of 1 and the gap for OS of 0 increases 

as the project size increases, which is consistent with our intuition – since for serial projects 

(OS=1), the number of decision stages is equal to the number of activities, thus the larger the 

serial project, the greater should be the value of information. 
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4.6 CHAPTER SUMMARY 

In this chapter, we study an important problem faced by a large number of project managers: in 

presence of inevitable deadlines (and penalties for exceeding these deadlines) and given options 

to speed up some or all of project activities, which activities should we speed up and when 

should we make such speed-up decisions to minimize total project cost. We developed five 

algorithms to help managers make such decisions and analyzed their performance. The Biggest 

Bang and the Bang for the Buck use simulation and therefore handle uncertainty well; however, 

they are also myopic procedures in a sense that they do not explicitly take into consideration task 

interdependencies. The LP based methods were designed to deal with this shortcoming of the BB 

and the BFB. The Basic LP, Linear Programming with Dynamic Programming, and Protect the 

Critical Path, all take into consideration task interdependencies but they vary in their ability to 

handle uncertainty with Basic LP lagging behind. The LPDP and the PCP have an advantage of 

using dynamic programming on the PERT critical path thus, they should perform well for 

“almost” serial projects. The PCP method, while not having a stellar performance, can be 

attractive to those project managers who want to maximize the probability that current critical 

activities remain critical and therefore avoid constant reassignment of resources. In addition, the 

PCP should be adequate when crash costs are low compared to the penalty of exceeding the 

target date. 

We also showed that using a dynamic algorithm, that is, making decisions contingent on 

a current state of the project, is preferable to making all decisions before any work on the project 

begins as it can lead to significant cost savings. Finally, we showed that simple rules of thumb, 

such as calculating expected savings from crashing an activity (the BB and the BFB) give good 
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results in a relatively short amount of time. They are also simple to understand and can be 

implemented without relying on any external packages, such as LP solvers. 
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5.0  CHAPTER FIVE: PROJECTS WITH INCENTIVES & OVERHEAD 

5.1 INTRODUCTION 

In Chapters 3 and 4 we presented a stochastic time-cost trade-off problem with a penalty, or 

disincentive, for exceeding the target date. However, in many real world applications there are 

other costs associated with executing a project, such as an overhead cost, incurred throughout the 

duration of the project, as well as incentives (can be regarded as negative costs) for completing 

the project early. As before, the only uncertainty is in task durations and the goal is to find the 

best crashing policy at the minimum expected cost. In this chapter we assume that crash costs are 

linear and we discuss both serial and general projects. 

Incentive/disincentive (I/D) contracts are especially common in construction industry 

(Herten and Peeters, 1986) and are used primarily to achieve risk sharing or risk transfer. The 

main role of incentives is to motivate the contractor to embrace the client’s project objectives 

(Bower et al. 2002). To illustrate this, consider a project with a target date of 100 days and a 

penalty of $100 per day for exceeding that date. The contractor’s cost function is shown in 

Figure 5-1. 
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Figure 5-1: Contractor's cost (penalty only) 

 
 In this case, the contractor bears all the risk of the schedule overrun but receives no 

benefit if he completes the project early. Therefore, the optimal behavior from the contractor’s 

perspective is to complete the project right on the Target date.  However, it has been suggested 

by Herten and Peeters (1986) that incentives provided to contractors can reduce cost overruns.  

There are various types of incentive contracts that can be used. According to Herten and 

Peeters (1986) the following types of contracts are available: 

(1) Cost incentives – a target cost is agreed upon. Any overruns or underruns are shared 

according to some ratio. Both fixed price incentive (FPI) and cost plus incentive fee 

(CPIF) contracts fall under this category. The main difference between the two is that 

CPIF contract set the minimum fee the contractor will be paid regardless of the final 

project cost. 

(2) Schedule incentives – a premium is paid to the contractor if the project is completed 

before the target date. If the project is completed after that date, the contractor incurs a 

penalty. 
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(3) Performance incentives – based either on improvement of target performances, such as 

quality, or on client evaluation. These types of incentives are more subjective. 

 

 In this research we look at schedule incentives but treat them as cost incentives. That is, 

we assume that the total indirect cost of the project is influenced only by the project duration. 

Any additional cost incurred (such as cost of speeding up tasks) is a responsibility of the 

contractor and, as such, is not included in target cost calculations. To illustrate this assume that a 

project has a target duration of 100 days. If indirect (overhead) costs are $100 per day, the target 

cost is then $10,000. If the project is completed before the target date, we realize cost savings 

proportional to the difference between the target and the actual completion date (same is true 

when actual duration exceeds Target with negative cost savings).  

 Next we need to agree on the cost sharing ratios. In this chapter we consider multiple 

levels of cost sharing, that is, the cost share ratio can change according to the project duration. 

Consider a project with one level of cost sharing. Assume the project target duration of 100 days 

and an overhead cost of $100/day. The contractor always pays a fixed percentage of the cost 

regardless of project duration. The contractor’s cost function with the contractor : employer share 

ratio of 5 : 95 is presented in Figure 5-2. In this case, the contractor is responsible for 5% of the 

cost (or $5) on a daily basis, while the client absorbs the remaining 95%. 
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Figure 5-2: Constant share ratio 

 

In the Penalty only case, we have two levels of cost sharing, where the contractor 

participates in the cost over-run sharing (but not cost under-run). Such a case is presented in 

Figure 5-3. The contractor pays a fixed portion of the cost (in this case, 5%) until the project 

duration reaches the Target date. Beyond the Target, the contractor is responsible for a higher 

percentage (100% in Figure 5-3) of the cost. 
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Figure 5-3: Two levels of cost sharing (penalty only) 
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 Contracts with incentives and with no penalties can also have different levels of cost 

sharing. Consider the case where the contractor pays the fixed 5% of the overhead cost but he 

can also realize cost savings (incentives) if the project is completed before the due date. Figure 

5-4 illustrates a contract where the contractor is eligible to receive 25% of cost under-run. 
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Figure 5-4: Two levels of cost sharing (incentives only) 

Finally, there can also be contracts with both incentives and penalties as shown in Figure 

5-5. The contractor incurs a constant 5% of the overhead until the project reaches the Target date 

– beyond that point he is responsible for the entire cost over-run. He can also realize incentives 

of 25% of cost under-run if the project completes in less than 70 days. 
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Figure 5-5: Three levels of cost sharing -- penalties and incentives 

 

All the cost functions presented above are piecewise linear. Notice that the cost function 

is convex in case of penalty-only contracts and it is concave in the case of incentive-only 

contracts. However, if we consider both penalties and incentives, the cost function may not be 

well behaved as illustrated in Figure 5-5. Of course, the shape of the cost function depends on 

the cost share ratios chosen or agreed upon. Additionally, in this research we limit our discussion 

to at most three cost share levels (and refer to this as the basic incentive-penalty problem) 

although one could analyze a problem with more levels using the methods presented herein. 

The rest of this chapter is organized as follows: in section 5.2 we discuss previous 

research on using incentives in projects, section 5.3 states the research problem; we present our 

algorithms in section 5.4 and the computational results in section 5.5. We discuss possible 

extensions to more general piecewise cost curves in section 5.6. Finally, we close the chapter 

with our conclusions in section 5.7. 
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5.2 PREVIOUS RESEARCH 

A moderate amount of work has been done on analyzing incentive contracts in the construction 

industry; however, only a few studies exist that examine incentive/disincentive contracts in the 

project management framework. Ward and Chapman (1994) describe different types of 

contracts: (1) fixed price contract where the contractor bears all the risk associated with uncertain 

costs, (2) cost plus fixed fee contract where the client carries all the risk, and (3) incentive 

contracts with risks shared between the client and the contractor, which is the case considered in 

this Chapter. The authors talk about selecting the cost sharing rate and conclude that this choice 

should depend on the nature of the risk and whether it is controllable by the client or the 

contractor, or neither. According to the authors, incentive contracts are preferable because they 

provide a way to achieve risk sharing; however they are also difficult to negotiate, especially 

when project costs are uncertain. In addition, different payment arrangements should be adopted 

in different situations. The difficulty in setting the cost sharing rate was also discussed by Al-

Harbi (1998). The author suggests the use of the utility theory and negotiations to derive the rate 

the contractor and the client can agree upon. 

Jaraiedi et al. (1995) provide general guidelines for the use of incentives in highway 

construction projects. The main use of incentives is to reduce the overall project completion 

time. They advocate the use of incentives when the construction work has an adverse impact on 

local businesses, emergency services, safety of road users, or traffic. The authors also suggest 

that accelerated work schedules should be used to determine the amount of time that can be 

saved by using incentive contracts. Finally, incentive amounts should be set in a way that makes 

economic sense for the contractor to expedite the work. In another study examining highway 

construction projects, Shr and Chen (2003) looked at a deterministic time-cost trade-off problem 
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in presence of incentives and penalties. The research considered utilizing incentives to cover the 

cost of schedule compression. The authors did not look at crashing specific activities but 

assumed a constant cost (per time period) for project speed-up. They concluded that the 

possibility of receiving incentive payments should be taken into consideration as early as the 

bidding stage. 

 Bubshait (2003) studied perceptions of the clients and contractors about 

incentive/disincentive contracting. Some of the more notable findings were (1) most contractors 

are unaware of the reasons to include incentives in a contract whereas most clients indicated that 

the main reason for incentives is to achieve a rapid return on investment (due to shorter project 

durations), (2) most contractors add manpower to speed-up projects in order to receive bonus 

payments, (3) the amount of incentives and penalties should depend on the criticality of the 

project and the risk sharing, and (4) no consensus as to whether the amount of the incentive 

should be equal to, lower, or higher than the amount of the penalty.  

Broome and Perry (2002) give several examples of cost-plus-incentive-fee contracts (or 

what they call target cost contracts) and examine how sharing ratios are set in the construction 

industry. Finally, Herten and Peeters (1986) give a background and history of incentive 

contracting. They also observe that, the main industries that utilize incentives include military, 

space programs, construction, power plants, commercial airlines, and software development. 

5.3 STATEMENT OF THE RESEARCH PROBLEM 

The research problem considered in this chapter is a stochastic time-cost trade-off problem with 

penalties and incentives for general projects with stochastic activity durations. The goal is to find 



 137 

a crashing policy that will minimize total expected project cost. Recall the following project 

parameters described in Chapters 3 and 4: a set of activities A={1,…,n} (where n is the total 

number of activities), a set of precedence relationships Π (where Πi is a set of immediate 

predecessors of activity i), discrete triangular probability distributions of task durations where Oi 

= optimistic duration of activity i, MLi = most likely duration of activity i, and Pi = pessimistic 

duration of activity i, maximum number of time periods to crash each activity (di), and per day 

crash cost for each activity (ci). Furthermore, we need to specify additional parameters. In this 

chapter we consider the basic problem only (with three cost share ratios), which we denote r1, r2, 

and r3, (see Figure 5-6). More specifically, r1 denotes cost under-run share ratio (or incentives), 

r2 denotes and the portion of the overhead cost incurred by the contractor, and r3 specifies cost 

over-run share ratio (or penalties). In general we set the ratios so that r3 ≥ r1 ≥ r2, however 

different structures are possible. Additionally in practice problems with a larger number of cost 

share ratios are possible. We provide some examples of these and discuss extensions of the 

methods presented herein in Section 5.6. 
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Figure 5-6: Contractor's additional cost 
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We also set a project penalty target date (Penalty Target), incentive target date (Incentive 

Target) and a per day indirect cost to the client (Indirect). As before, we assume that duration of 

a task is discrete and becomes known with certainty only after that  task is fully completed 

(however, when the task is in progress we can update the probabilities of its duration according 

to the procedure presented in chapter 4 – see Figure 4-2). Crashing decisions are made 

dynamically throughout the execution of the project and are discrete (we can reduce the duration 

of an activity by a multiple of a full time period only). Figure 5-7 shows a project from Example 

4.1 modified to include incentives.  

 

 

Figure 5-7: Illustrative Example 5.1 

 
Notice that this setup results in an incentive of $25 per day if the project is completed in 

less than 10 days, overhead cost of $5/day incurred through the duration of the project, and an 

additional penalty of $95/day if the duration of the project exceeds 12 days. Therefore, the 
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contractor incurs an overhead cost (Overhead) of $5 per day throughout the execution of the 

project, a penalty cost (Penalty) of $95 for every day the duration of the project exceeds 12, and 

can receive incentive (Incentive) of $25 per day if the final duration if the project is less than 10. 

In other words, speeding up the project by 1 day results in $100 ($95 + $5) savings if the 

duration of the project is greater than 12, $5 savings if the duration of the project is between 10 

and 12 days, and $30 ($25+$5) savings if the duration of the project is less than 10 days.  

An important thing to note is that the problem with incentives and penalties reduces to 

the penalty only case (described in chapters 3 and 4) if r1 and r2 are both 0. 

5.4 ALGORITHMS 

In this section we extend the algorithms for general projects, described in Chapter 4, to the case 

with incentives and penalties. Because two of the algorithms – the LPDP and the PCP – depend 

on dynamic programming formulation, we also present the DP algorithm for a serial case with 

incentives to illustrate some of the challenges brought on by the non-convex cost function. For 

simplicity, we assume that the problem is of a basic incentive-penalty type, that is we have three 

cost share ratios as illustrated in Figure 5-6. 

5.4.1 Dynamic Programming (serial case) 

Consider a simple serial project presented in Figure 5-8. Assume the Penalty Target of 128 days, 

Incentive Target of 115 days, Penalty of $95, Overhead of $5, and Incentive of $25. 
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Figure 5-8: Illustrative Example 5.2 -- serial project 

We have to modify slightly our standard dynamic programming formulation (with 

backward recursion). The difference is in the calculation of the cost for the last stage – in 

addition to accounting for the penalty cost, we also need to account for the overhead cost and the 

incentives. Therefore, the cost for the last stage becomes: 

*( , ) max{( ),0}
max{(  ),0}

END END END

END

Cost END t t Overhead t Penalty Target Penalty
Incentive Target t Incentive

= × + −  × −

           − ×
 

The complete DP formulation is presented in Exhibit 5-1. 
 
 

State representation: 
( , )ix i t=  where 

i = {1,..,END} – current activity 
n = number of non-dummy activities 
ti – starting time of activity i 
 

iz  – number of time periods to crash activity i 

ic – cost of crashing activity i 
Cost*(x) – the optimal cost-to-go for state x 

i
kp -- probability that normal duration of activity i will be k days  

Penalty Target – target date for project completion – if duration exceeds Penalty Target, a   
         penalty cost is incurred 
Incentive Target – target date for qualifying for incentives 
Penalty – cost per day for exceeding Penalty Target date 
Incentive – incentive per day for completing the project before Incentive Target 
 
For the terminal dummy activity (END): 
For all tEND compute: 

*( , ) max{( ),0}
max{( ),0}

END END END

END

Cost END t t Overhead t Penalty Target Penalty
IncentiveTarget t Incentive

= × + −  × −
           − ×

 

For all activities , wherei i n   ≤ : 
For all ti do: 

* *( , ) min{ ( ( 1, )) }
i

i
i k i i i iz k

Cost i t p Cost i t k z c z= + + − + ×∑  

   
Exhibit 5-1: Dynamic Programming formulation with overhead and incentives 
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Next we find a crashing policy for every possible state of the project at each stage. The 

final policy is presented in Table 5-1. Notice the lack of monotonicity in the dynamic 

programming policy. For example, we would crash activity E by 16 days if this activity starts 

between day 29 and day 79; however, if the start time of activity E is between day 80 and 88, we 

do not crash it at all. Then, as the start time increases, we start crashing E again.  

Table 5-1: DP Policy (incentive, overhead, and penalty) 

Activity Start time Crash by Activity Start time Crash by
E 29‐79 16 D 24‐63 10
E 80‐88 0 D 64 5
E 89 1 D 65 6
E 90 2 D 66 7
E 91 3 D 67 8
E 92 4 D 68 9
E 93 5 D 69+ 10
E 94 6 C 21‐48 5
E 95 7 C 49‐52 0
E 96 8 C 53 1
E 97 9 C 54 2
E 98 10 C 55 3
E 99 11 C 56 4
E 100 12 C 57+ 5
E 101 13 B 3 0
E 102 14 A 0 0
E 103 15
E 104+ 16  

This situation occurs because there is a part of the cost function where the benefit of 

shortening project duration is smaller than the cost of crashing an activity (between Incentive 

Target and Penalty Target). Therefore, the DP solution for the case with overhead cost and 

incentives may be non-monotonic. Figure 5-9 compares the DP solution to the penalty only case 

with the solution to a problem with incentives and overhead. 
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Figure 5-9: DP solutions – comparison 

We conjecture the following: 

(1) In the penalty only case, the dynamic programming solution is always monotonic: 

1k kl l k+≤    ∀  

(2) In the case with penalties, incentives and overhead: 

a. 1  max. crash for activity l i=  

b. 2 1l l≤  

c. 1 2k kl l k+≤    ∀ ≥  

5.4.2 Biggest Bang 

As before, the Biggest Bang (BB) utilizes a concept of the Penalty Target Criticality Index 

(PTCI), which is a probability that crashing an activity will result in a lower penalty cost; 

however, since we also need to account for incentives, we introduce the Incentive Target 

Criticality Index (ITCI). The ITCI is a probability that crashing an activity will result in higher 

total incentive earned. Finally, to account for the Overhead, we calculate simple criticality index 

(CI), which is a probability that crashing an activity will result in lower overall overhead cost (or 

equivalently, it is a probability that an activity is critical). The BB index (BBI) for each activity 

can be calculated as: 
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i i i i iBBI PTCI Penalty ITCI Incentive CI Overhead c= × + × + × −  

The decision on how much to speed up each task depends, as before, on the expected 

benefits (savings in penalty cost plus savings in overhead cost plus incentives earned) and on the 

cost of crashing this task as well as on possibilities of speeding up subsequent tasks in the 

project.  

Since BBI is a greedy approach, we want to crash an activity that would provide the 

highest expected savings, or equivalently the activity with the highest BB index. Using the 

project from Figure 5-7 we get the following: 

Table 5-2: BB indices – iteration 1 

Activity CI PTCI ITCI BBI
A 0.03 0 0 ‐14.85
B 1 0.77 0.03 58.9
C 0.41 0.28 0.03 11.4
D 0.41 0.28 0.03 7.4
E 0.75 0.6 0.01 44  

       

Because activity B has the highest BB index, we would reduce it by one day and recalculate BB 

indices. The next 5 iterations are presented in Table 5-3. 

Table 5-3: BB indices – iterations 2-6 

Activity CI PTCI ITCI BBI CI PTCI ITCI BBI CI PTCI ITCI BBI CI PTCI ITCI BBI CI PTCI ITCI BBI
A 0.14 0.06 0.01 ‐8.35 0.33 0.05 0.09 ‐6.35 0.35 0.04 0.13 ‐6.2 0.27 0.02 0.21 ‐6.5 0.49 0.01 0.41 ‐1.35
B 0.97 0.56 0.02 38.6 0.81 0.32 0.16 18.5 0.89 0.23 0.21 11.6 0.93 0.13 0.43 7.75 0.82 0.07 0.51 3.5
C 0.48 0.22 0.02 5.8 0.4 0.09 0.14 ‐3.95 0.55 0.08 0.17 ‐3.4 0.77 0.08 0.41 3.7 0.54 0.04 0.39 ‐1.75
D 0.48 0.22 0.02 1.8 0.4 0.09 0.14 ‐7.95 0.55 0.08 0.17 ‐7.4 0.77 0.08 0.41 ‐0.3 0.54 0.04 0.39 ‐5.75
E 0.72 0.44 0.01 28.7 0.73 0.29 0.11 17 0.59 0.18 0.14 6.55 0.44 0.05 0.23 ‐4.3 0.7 0.04 0.47 2.05

Iteration 6Iteration 2 Iteration 3 Iteration 4 Iteration 5

 

At iteration 2, activity B again had the highest BB index so we reduce it by another day. 

Notice that task B has now reached its maximum compression. At iteration 3 we reduce E by one 

day since it has the highest BB index. At iteration 4 we again reduce E by 1 day (E has now 
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reached its maximum). At iteration 5 activity C, which was previously not an attractive choice to 

crash becomes a viable option. Finally, at iteration 6, all activities eligible for crashing have 

negative expected savings therefore we terminate the procedure. The final static policy before 

the project starts would be to crash B by 2 days, C by 1 day, and E by 2 days. However, since BB 

is a dynamic algorithm, we only need to crash those activities that are starting immediately, that 

is activity B. We will postpone decisions about tasks C, D, and E until later. The decision at the 

start of the project is therefore to crash B by 2 days and to not crash A. We will repeat this 

procedure once we are able to start additional activities (in this case only after B ends). 

Notice the trade-off between the PTCIs and the ITCIs. As the project duration becomes 

shorter, the ITCIs increase whereas the PTCIs decrease. Therefore, at the beginning of the 

procedure, the PTCIs contribute more to the BBIs than the ITCIs (and the trend reverses later in 

the procedure).  

5.4.3 Bang for the Buck 

Recall that, the Bang for the Buck (BFB) is a slight modification of the BB algorithm. Instead of 

calculating expected savings, we calculate expected savings per dollar spent. The BFB also uses 

the concept of the Penalty Target Criticality Indices and the Incentive Target Criticality Indices. 

The BFB index (BFBI) for each activity can be calculated as: 

i i i i
i

i

PTCI Penalty ITCI Incentive CI Overhead cBFBI
c

× + × + × −
=  

The BFBI gives the expected cost savings per dollar spent, therefore, the larger the 

expected savings, the higher the BFBI and the larger the Crash Cost, the lower the BFBI. 

Therefore, we want to crash an activity with the highest BFBI. 
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 Using the project in Figure 5-7 we get the following indices: 
 

Table 5-4: BFB indices -- iteration 1 

Activity CI PTCI ITCI BBI
A 0.03 0 0 ‐0.99
B 1 0.77 0.03 2.95
C 0.41 0.28 0.03 0.63
D 0.41 0.28 0.03 0.34
E 0.75 0.6 0.01 2.59  

 
 

Since activity B has the highest BFB index, we would reduce it by one day. Because the 

criticality indices might have changed due to shortening activity B by one day, we need to 

recalculate the BFBIs. The next 5 iterations are presented in Table 5-5. 

Table 5-5: BFB indices -- iterations 2-6 

Activity CI PTCI ITCI BBI CI PTCI ITCI BBI CI PTCI ITCI BBI CI PTCI ITCI BBI CI PTCI ITCI BBI
A 0.18 0.06 0.02 ‐0.53 0.11 0.01 0.03 ‐0.85 0.39 0.09 0.13 ‐0.08 0.24 0.01 0.16 ‐0.59 0.35 0 0.26 ‐0.45
B 0.97 0.5 0.09 1.73 1 0.49 0.13 1.74 0.79 0.22 0.15 0.43 0.87 0.1 0.37 0.16 0.88 0.06 0.51 0.14
C 0.35 0.09 0.07 ‐0.33 0.69 0.27 0.12 0.78 0.48 0.06 0.12 ‐0.38 0.76 0.08 0.35 0.12 0.58 0 0.41 ‐0.27
D 0.35 0.09 0.07 ‐0.45 0.69 0.27 0.12 0.46 0.48 0.06 0.12 ‐0.5 0.76 0.08 0.35 ‐0.08 0.58 0 0.41 ‐0.4
E 0.77 0.47 0.04 1.91 0.53 0.27 0.05 0.74 0.64 0.22 0.15 0.64 0.39 0.03 0.19 ‐0.44 0.65 0.06 0.34 0.03

Iteration 6Iteration 2 Iteration 3 Iteration 4 Iteration 5

 
 
 

  The final policy is therefore to crash B by 2 days and postpone decisions about C, D, and 

E until more information is available. Recall, that even though the BB and BFB gave the same 

starting policies, it is possible for the algorithms to suggest different policies.  

5.4.4 Basic LP 

The basic LP method again follows the standard LP approach for crashing activity-on-node 

networks, where expected durations of activities not completed are used instead of their 

deterministic values. The objective function is to minimize total cost, that is, total crash cost plus 

any penalty cost, plus overhead cost minus incentives, subject to precedence relationships 
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constraints (a task cannot start until all its predecessors are finished), maximum crash limit 

constraints, and a project finish time constraint. The formulation however, requires a substantial 

modification because of the introduction of the incentive term. Recall the LP formulation from 

Chapter 4: 

Variables: 
 it = starting time of activity i 
 iz = number of time periods to crash activity i 
 θ = number of time periods the project duration exceeds Target date (project lateness) 
 
Constants: 
 ic = cost to crash activity i by one time period 
 id = upper limit on the number of time periods we are allowed to crash activity i 

 [ ]iE dur = expected duration of activity i (for triangular distribution, i i iO + ML + P
3

) 

 iΠ = set of immediate predecessors of activity i 

 Penalty = cost per day for exceeding target date 

 Target = target date for project completion 

 
Formulation: 

min

. . [ ,
not yet started

, , 0

N

i i
i

i k k k i

i i

END

i i

c z Penalty

s t t t z E dur where k k i
z d i
t Target
z t

θ

θ
θ

        + ×

   − + ≥ ]    ∈Π    ∀  ∀
       ≤       ∀   
       − ≤

       ≥

∑

 

 

First, we need to modify the objective function to reflect additional costs and incentives. We 

need to introduce two new variables: 

 Oθ = number of time periods the project duration exceeds the Penalty Target  

Uθ = number of time periods the project duration is less than the Incentive Target 
 
The objective function then becomes 
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min
N

i i O u END
i

c z Penalty Incentive Overhead tθ θ + × − × + ×∑  

The precedence relationship constraints remain the same but we need to bound Oθ  and 

Uθ .  The constraint for Oθ  is straight forward. Since large values of Oθ  increase the value of the 

objective function, constraint END Ot Penalty Targetθ− ≤  and the minimization function will 

ensure the bound on Oθ .We can write the constraint for Uθ  as END ut s Incentive Targetθ+ − =  , 

where s is the slack associated with Uθ constraint. However, there are two problems with this 

constraint: (1) we do not have an upper bound on θu and (2) we do not upper bound on s. We 

know that  

 0, 0END ut Incentive Target sθ≥  ⇒ =   ≥   and 0, 0END ut Incentive Target sθ<  ⇒ >   =   

We need to introduce a new binary variable (let us call it b). 

Mu bθ ≤   this constraint specifies that 0uθ >  if and only if b = 1, otherwise, 0uθ =  

We now have to make sure that if 0ENDt Incentive Target−  ≥  (or 0ENDIncentive Target t − ≤ ), b 

= 0. 

M (M 1) 0ENDIncentive Target t b − + − + ≥  so if 

0 0ENDIncentive Target t b − ≤   ⇒ =  and 

0 0 1ENDIncentive Target T b or b − >  ⇒ =   =  

Therefore, constraints M (M 1) 0ENDIncentive Target t b − + − + ≥  and Mu bθ ≤  ensure that 0uθ =  

if 0ENDt Incentive Target−  ≥  

There is still a problem with the upper bound for s. If we do not bound s and if tEND < 

Incentive Traget, the model would maximize θu setting s so that constraint 

END ut s Incentive Targetθ+ − =   is still satisfied. 
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So we have to ensure that: 

o If 0 0u sθ >   ⇒ =  

o If 0 0u sθ =   ⇒ ≥  

Recall the b variable. The above is equivalent to  

o If 1 0b s=   ⇒ =  

o If 0 0b s=   ⇒ ≥  

Now we can write a simple constraint: M(1 )s b≤ − . 

The complete formulation is as follows: 

min

. . [ ,
not yet started

N

i i O u END
i

i k k k i

i i

END O

END u

c z Penalty Incentive Overhead t

s t t t z E dur where k k i
z d i
t Penalty Target
t s Incentive Target

θ θ

θ
θ

        + × − × + ×

   − + ≥ ]    ∈Π    ∀  ∀

       ≤       ∀   

       − ≤  
       + − =  

∑

M (M 1) 0
M

M(1 )
, , , , 0

END

u

i i O u

Incentive Target t b
b

s b
z t s
b binary

θ

θ θ

        − + − + ≥
       ≤

       ≤ −
       ≥
       =

 

Using the example project from Figure 5-7, we get the following formulation at time t = 0. 
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(*)

(*)

(*)

min 15 20 18 22 17 95 30 5

. . 5 1

5 2
3 1

3

A B C D E O U END

C B B A

E B B B

E A A C

D C C

c c c c c t

s t t t z z

t t z z
t t z z

t t z

θ θ        + + + + + − +

   − + ≥                  ≤

       − + ≥                  ≤
       − + ≥                     ≤

       − + ≥       

(*)

(*)

2
8 2

4
12

10
10 1,000 1001 0

1,000
1,000(1 )

 Rounded to the neares

D

END E E E

END D D

END O

END u

END

u

z
t t z z

t t z
t
t s

t b
b

s b

θ
θ

θ

          ≤
       − + ≥                  ≤

       − + ≥
       − ≤

       + − =
       − + − ≥

       ≤
       ≤ −

t integer

 

 
The solution to this LP is to crash task E by 1 day at a total cost of 17. Since this is a dynamic 

algorithm, and at time t = 0 we cannot start E, the decision is to crash nothing and start activities 

A and B. We resolve this LP substituting known durations for [ iE dur ] , for all activities already 

completed or recalculating [ iE dur ]  for those activities in progress, and setting maximum crash 

limit constraints to equalities for activities already started or completed (so at the next stage, after 

activity B finishes, we would set 0Az =  and 0Bz = ). Notice that at the beginning of this project, 

the LP algorithm does not take advantage of incentives. It is because the algorithm replaces 

uncertainty with point estimates. Using expected durations, path B-E has a length of 13 and can 

be shortened by at most 4 days (2 days off of B and 2 off of E). In order to get the benefit of 

incentives, the duration of the project needs to be at most 9 days, which we can achieve by 

shortening path B-E by 4 days (the maximum allowed) but that would come at a cost of 2x$20 + 

2x$17 = $74. The benefit of doing that is a reduction in overhead cost by 4x$5 plus one day of 
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incentive payment of $25 for the total of $45 – clearly not a cost effective action from the 

algorithm’s point of view.  

5.4.5 Linear Programming with Dynamic Programming 

Recall that the Linear Programming with Dynamic Programming (LPDP) method uses the 

uncertainty handling ability of the dynamic programming algorithm while at the same time 

considering path dependencies through the use of LP.  

 The LPDP algorithm consists of the following steps: (1) find a PERT critical path – this 

is done by calculating the longest path using expected durations for all activities, (2) perform DP 

on the PERT critical path using the modified formulation from Section 5.4.1, (3) formulate and 

solve a mixed integer program (from section 5.4.4) to combine DP with LP (using expected 

durations), (4) from the solution consider only those activities that are starting immediately and 

postpone all other decisions, (5) repeat the procedure at each stage of the project (when we can 

start another activity) substituting known durations for the expected. 

Variables: 
 it = starting time of activity i 
 iz = number of time periods to crash activity i 
 Oθ = number of time periods the project duration exceeds the Penalty Target  

Uθ = number of time periods the project duration is less than the Incentive Target 
 ijz = binary variables to look up DP policy 
 s = slack variable in the Uθ  constraint 
 b = binary variable for bounding Uθ  and s 
 
Constants: 
 ic = cost to crash activity i by one time period 
 id = upper limit on the number of time periods we are allowed to crash activity i 

 [ ]iE dur = expected duration of activity i (for triangular distribution, i i iO + ML + P
3

) 
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 iΠ = set of immediate predecessors of activity i 
 Penalty Target = target date for project completion – if duration exceeds PenaltyTarget, a  

penalty cost is incurred 

Incentive Target = target date for qualifying for incentives 

Penalty = cost per day for exceeding PenaltyTarget 

Incentive = incentive per day for completing the project before IncentiveTarget 

ijp  = crossover point j for activity i (for DP policy lookup) – defined as the last start time 

before the number of days to crash an activity increases. 

 
Formulation: 

min

. . [ ,
not yet started
not yet started

N

i i O u END
i

i k k k i

i i

i ij
j

i ij

c z Penalty Incentive Overhead t

s t t t z E dur where k k i
z d i
z z i

t p

θ θ        + × − × + ×

   − + ≥ ]    ∈Π    ∀  ∀
       ≤              ∀   

       =         ∀   

       − ≤

∑

∑
M ,

( 1) 0 ,

M (M 1) 0
M

M(1 )
,

ij

i ij ij

END O

END u

END

u

i

z j i

t p z j i

t Penalty Target
t s Incentive Target
Incentive Target t b

b
s b
z z

θ
θ

θ

            ∀  ∀

       − + ≥            ∀  ∀

       − ≤  
       + − =  

        − + − + ≥
       ≤

       ≤ −
       , , , , , 0i j i O ut s

b binary

θ θ ≥

       =

 

 

Using our sample project from Figure 5-7, we get the following steps: 

(1) Find a PERT critical path 

In order to find PERT critical path, we need to calculate expected durations for all task: 

[ AE dur ] = 3 , [ BE dur ] = 5.33 ≈ 5 , [ CE dur ] = 3.33 ≈ 3 , [ DE dur ] = 3.67 ≈ 4 , [ EE dur ] = 8 . The 

critical path is Start B E End as illustrated in Figure 5-10. 
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Figure 5-10: Simple project -- PERT critical path 

 

(2) Perform DP on the critical path 

The DP policy for path Start B E End assuming Penalty Target date of 12 and Incentive 

Target of 10 is presented in Table 5-6 below. 

Table 5-6: DP policy for PERT critical path 

Task ti Crash by
B 0 2
E 1+ 2  

          

The crossover points are as follows: 1Bp = -2, 2Bp = -1, 1Ep = -1, 2Ep = 0. 

(3) Formulate and solve MIP 

min15 20 18 22 17 95 30 5A B C D E O U ENDc c c c c tθ θ + + + + + − +  



 153 

(*)

(*)

(*)
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u
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t
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(*)  Rounded to the nearest integer  

1 1

2 2

1 1
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( 2) 1,000 ( 2 1) 0
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B B B B

B B B B

E E E E

E E E E

B

t z t z
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t z t z
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z

       − − ≤          − − + ≥   
       − − ≤          − − + ≥  
       − − ≤          − − + ≥   
       − ≤              − + ≥   
       1 2

1 2

1 2 1 2, , ,

B B

E E E

B B E E

z z
z z z
z z z z binary

= +
       = +
          =   

 

 
When we solve the MIP, we get the following solution: 

t A t B t C t D t E t END θo θu z B1 z B2 z E1 z E2 z A z B z C z D z E

0 0 3 5 3 9 0 1 1 1 1 1 0 2 1 0 2  
 
(4) Consider solution for the activities starting immediately 

 We would crash B by 2 days, not crash A, and postpone all other decisions until future stages. 

(5) Repeat at each stage of the project 

We would repeat this procedure, recalculating the critical path whenever we need to make a new 

decision, substituting known durations for the expected, and setting crash limit constraints to 

equalities for those activities we already made decisions about. 
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5.4.6 Protect the Critical Path 

Recall that the PCP algorithm tries to prevent the original PERT cirtical path from becoming 

non-critical. Like the LPDP, it combines dynamic programming with linear (integer) 

programming. In addition, the PCP is a two step procedure: (1) find buffers to absorb any delays 

caused by the non-critical activities and (2) given those buffers find the minimum cost crashing 

policy.  

 The steps in the PCP algorithm are as follows: (1) find a PERT critical path – this is done 

by calculating the longest path using expected durations for all activities, (2) perform DP on the 

PERT critical path using formulation from section 5.4.1, (3) formulate and a solve mixed integer 

program that combines DP with LP to find critical path buffers, using optimistic durations for 

critical activities and pessimistic durations for non-critical tasks, (4) formulate and solve an MIP 

(combining DP with LP) to find crashing values (using optimistic and pessimistic durations 

accordingly), (5) from the solution consider only those activities that are starting immediately 

and postpone all other decisions, (5) repeat the procedure at each stage of the project (when we 

can start another activity) substituting known durations for the optimistic/pessimistic durations. 

Variables: 
 it = starting time of activity i 
 iz = number of time periods to crash activity i 
 Oθ = number of time periods the project duration exceeds the Penalty Target  

Uθ = number of time periods the project duration is less than the Incentive Target 
 ijz = binary variables to look up DP policy 
 s = slack variable in the Uθ  constraint 
 b = binary variable for bounding Uθ  and s 

iy = buffer (delay on the critical path) for activity i 
 
Constants: 
 ic = cost to crash activity i by one time period 
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 id = upper limit on the number of time periods we are allowed to crash activity i 

 
optimistic duration of activity  if  is critical
pessimistic duration of activity  if  is non-criticali

i i
dur

i i
 ⎧

=  ⎨  ⎩
  

 iΠ = set of immediate predecessors of activity i 
 Penalty Target = target date for project completion – if duration exceeds PenaltyTarget, a  

penalty cost is incurred 

Incentive Target = target date for qualifying for incentives 

Penalty = cost per day for exceeding PenaltyTarget 

Incentive = incentive per day for completing the project before IncentiveTarget 

ijp  = crossover point j for activity i (for DP policy lookup)  

 
Formulation: 
 Model 1: find the minimum buffers (delay on the critical path) – find iy  

min

. . ,
, critical path
not yet started

i
i

i i k k k k i

i k k k i

i i

i

y

s t t y t y z dur where k k i
t t z dur k i where k
z d i
z z

        

   + − − + ≥     ∈Π    ∀  ∀

       − + =            ∀ ∈     ∈Π    

       ≤                             ∀   

       =

∑

not yet started

M ,

( 1) 0 ,

ij
j

i i ij ij

i i ij ij

END END O

END END u

i

t y p z j i

t y p z j i

t y PenaltyTarget
t y s IncentiveTarget

θ
θ

                       ∀   

       + − ≤             ∀  ∀

       + − + ≥            ∀  ∀

       + − ≤

       + + − =

    

∑

,

M (M 1) 0
M

M(1 )
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, , , , , 0

END END

u

i

i

i i j i O u

IncentiveTarget t y b
b

s b
y i
y i
z z t s
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θ

θ θ

   − − + − + ≥
       ≤

       ≤ −
       ≥    ∀ ∈  

       =    ∀ ∉  

       ≥

       =

 

Constraints i k k kt t z dur− + =  set ti variables for all critical pathi ∈ to minimum starting 

times in a serial project corresponding to the critical path. 
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Model 2: minimize total project cost given the minimum buffers (fixing yi variables) 

min ( )

. . ,
, critical path

N

i i O u END END
i

i i k k k k i

i k k k i

i i

c z Penalty Incentive Overhead t y
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z d
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Recall that the objective of the PCP algorithm is to first prevent the critical path from 

changing and second, to minimize total project cost. In steps (3) and (4) above we are using 

optimistic durations for critical tasks and pessimistic durations for non-critical tasks to achieve 

critical path protection. Using example from shown in Figure 5-7 we get: 

(1) Find PERT critical path 

In order to find PERT critical path, we need to calculate expected durations for all task: 

[ AE dur ] = 3 , [ BE dur ] = 5.33 ≈ 5 , [ CE dur ] = 3.33 ≈ 3 , [ DE dur ] = 3.67 ≈ 4 , [ EE dur ] = 8 . The 

critical path is Start B E End as illustrated in Figure 5-11. 
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Figure 5-11: Project network diagram with buffers 

(2) Perform DP on the critical path 

Since, at the beginning of the project, the critical path is the same as in the LPDP algorithm, the 

DP policy for path Start B E End is also the same (see Table 4.5). The crossover points are 

also 1Bp = -2, 2Bp = -1, 1Ep = -1, 2Ep = 0. 

(3) Formulate and solve MIP to find buffers 

min A B C D E ENDy y y y y y        + + + + +  
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(4) Formulate and solve MIP to find crashing values 
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(5) Consider solution for the activities starting immediately 

 We would crash B by 2 days, crash A by 1 day, and postpone all other decisions until future 

stages. Notice the difference between the LPDP and the PCP crashing policies. The PCP crashes 

activity A by 1 day to shorten non-critical (from PERT’s perspective) path giving the current 

critical path a greater chance of staying critical. 

(6) Repeat at each stage of the project 

We would repeat this procedure, recalculating the critical path whenever we need to make a new 

decision, substituting known durations for the optimistic/pessimistic (updating probability 

distributions if necessary), and setting crash limit constraints to equalities for those activities we 

already made decisions about. 

5.5 COMPUTATIONAL TESTS 

5.5.1 Generating Problem Instances 

We used the same method for generating project topologies as in Chapter 4 based on 

Demeulemeester et al. (2003). The procedure for generating relevant costs, presented in Chapters 
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3 and 4, was modified slightly to account for the presence of incentives. As before, we set the 

Penalty Target equal to the expected duration of the PERT critical path. The Incentive Target is 

set to 90% of the Penalty Target (rounded to the nearest integer). The values of Incentive, 

Overhead, and Penalty parameters depend on the cost sharing ratio, which we set to r1 = 30:70, 

r2 = 5:95, and r3 = 100:0 as well as on the value of the indirect cost (set to $100 per day). This is 

equivalent to a project with Penalty = $95, Overhead = $5, and Incentive = $25. It is important to 

note that different ratios or different Incentive Target could be used and, in fact, we ran 

preliminary experiments testing various values of those parameters. We found that the values we 

chose produced the most reasonable problem instances, that is, we rarely encountered projects 

with obvious solutions (such as always crash everything or never crash anything).  Next, we 

simulate the project assuming no crashing is used N times where N is equal to the number of 

activities in the project multiplies by a constant (20 in our case). The procedure consists of the 

following steps: 

(1) Determine the size of the project. We tested problems with 5, 10, 25, and 50 activities. 

(2) Set distribution span. As in the general case (Chapter 4), we only looked at an average 

distribution span of 16 days. 

(3) For each activity generate optimistic, most likely, and pessimistic times according to the 

span. 

(4) Calculate the Penalty Target date. 

(5) Calculate the Incentive Target date. 

(6) Determine the maximum number of days by which each activity can be crashed (di) – 

generated from a discrete uniform distribution from [0, Oi-1] interval. 

(7) Generate crash cost per day for each activity 
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a. Estimate expected total cost E(Cost) of the project with no compression using 

Monte Carlo simulation.  

b. Assign a fraction of E(Cost) as the total cost for maximum crashing (TCMC) of 

all activities (total cost if we crash all activities to maximum). We refer to this 

fraction as a cost structure. In this Chapter we only use cost structure of 1 for 

convenience. 

c. Calculate adjustment value for each activity (Ai) 

{1,..., }
max{ }

i
i

kk

dA k n
d

=    ∀ ∈  

d. For each activity, generate a random number ~U[0, 1) and multiply it by Ai. We 

refer to this value as a cost distribution index (CDI). 

e. Calculate a normalized cost distribution index (NCDI) for each activity: 

1

i
i n

k
k

CDINCDI
CDI

=

=

∑
 

f.  Calculate cost of maximum crashing for each activity: 

cost of maximum crashingi iTCMC NCDI= ×  

g. Calculate crash cost per day for each activity: 

cost of maximum crashingi
i

i

c
d

=  

5.5.2 Results 

The results are presented in the following manner. We first discuss problem types with different 

project sizes and next we illustrate differences between dynamic (contingent decisions) vs. static 

(all decisions made at the beginning of the project) algorithms. We also apply the perfect 
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information algorithm (described in Chapter 4) to all the problem instances for comparison 

purposes. Recall that this is achieved by making all activity durations known to the algorithm a 

priori, thus reducing the problem to its deterministic counterpart, and solve using linear 

programming. 

 

Size =5 

 Tables 5-7 and 5-8 show average expected costs and average running times by order 

strength and heuristic for five activity projects. The same information is also presented in Figures 

5-12 and 5-13. 

Table 5-7: Expected cost -- 5 activity projects 

OS BB BFB LP LPDP PCP 
Perfect 

Information 
0 214.67 214.64 246.21 224.31 264.86 172.87 

0.1 240.54 240.55 266.51 251.84 308.43 202.39 
0.2 343.66 343.73 364.65 346.60 480.30 289.38 
0.3 319.62 319.41 349.64 336.94 445.91 252.02 
0.4 378.95 378.80 405.73 381.62 543.71 331.92 
0.5 222.10 221.95 250.66 228.30 383.85 172.02 
0.6 419.65 419.64 450.40 425.58 593.30 370.03 
0.7 328.41 328.73 360.08 334.25 508.91 286.84 
0.8 318.54 318.62 344.44 327.30 491.43 271.91 
0.9 426.34 426.13 458.73 420.49 536.69 372.12 
1 500.70 500.74 529.19 498.84 498.84 448.00 

*Averaged over 20 instances of each problem type



 163 

 
Table 5-8: Average running time (sec) -- 5 activity projects 

OS BB BFB LP LPDP PCP 
0 0.00077 0.00075 0.00637 0.01036 0.01970 

0.1 0.00103 0.00080 0.00982 0.01812 0.03145 
0.2 0.00106 0.00121 0.01412 0.02617 0.04690 
0.3 0.00120 0.00116 0.01214 0.02453 0.04430 
0.4 0.00089 0.00090 0.01047 0.01695 0.03737 
0.5 0.00158 0.00148 0.01176 0.02575 0.05901 
0.6 0.00140 0.00146 0.01510 0.03523 0.06436 
0.7 0.00190 0.00207 0.01429 0.03289 0.07107 
0.8 0.00206 0.00220 0.01496 0.06419 0.10293 
0.9 0.00221 0.00224 0.01763 0.08200 0.11282 
1 0.00187 0.00189 0.02106 0.07285 0.10080 

  *Averaged over 20 instances of each problem type 
 

 
Figure 5-12: Expected cost -- 5 activity projects 
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Figure 5-13: Average running time (sec) -- 5 activity projects 

 
 

 

Size =10 

 Tables 5-9 and 5-10 show average expected costs and average running times by order 

strength and heuristic for ten activity projects. The same information is also presented in Figures 

5-14 and 5-15. 

Table 5-9: Expected cost -- 10 activity projects 

OS BB BFB LP LPDP PCP Perfect 
Information 

0 263.25 263.02 301.45 278.44 294.55 208.51 
0.1 284.45 284.44 309.34 296.52 378.00 235.92 
0.2 367.29 366.74 413.18 388.57 479.40 293.42 
0.3 479.61 479.56 515.22 487.85 688.91 417.00 
0.4 466.77 466.66 527.54 460.16 684.45 417.31 
0.5 463.05 463.37 500.09 477.92 685.92 374.76 
0.6 598.53 598.57 668.71 628.95 857.76 502.60 
0.7 592.62 592.11 626.90 614.92 821.12 510.57 
0.8 842.83 843.10 896.04 863.33 1072.49 737.49 
0.9 874.80 874.77 943.77 874.65 1028.46 782.79 
1 1068.80 1068.77 1128.12 1062.45 1062.45 955.73 

*Averaged over 20 instances of each problem type 
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Table 5-10: Average running time (sec) -- 10 activity projects 

OS BB BFB LP LPDP PCP
0 0.00406 0.00409 0.00701 0.01395 0.02630

0.1 0.00655 0.00654 0.01341 0.03939 0.06659
0.2 0.00960 0.00951 0.01729 0.04760 0.07940
0.3 0.00906 0.00903 0.02045 0.07127 0.12043
0.4 0.00938 0.00929 0.02291 0.10082 0.17146
0.5 0.01584 0.01583 0.02547 0.11137 0.19880
0.6 0.01498 0.01491 0.02539 0.10433 0.17584
0.7 0.01463 0.01456 0.02961 0.16011 0.26544
0.8 0.01603 0.01605 0.03313 0.25964 0.37144
0.9 0.01698 0.01699 0.03665 0.37354 0.45963
1 0.01736 0.01761 0.04541 0.56301 0.68367  

*Averaged over 20 instances of each problem type 

 

 
Figure 5-14: Expected cost -- 10 activity projects 
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Figure 5-15: Average running time -- 10 activity projects 

 

Size = 25 

 Tables 5-11 and 5-12 show average expected costs and average running times by order 

strength and heuristic for twenty five activity projects. The same information is also presented in 

Figures 5-16 and 5-17. 

Table 5-11: Expected cost -- 25 activity projects 

OS BB BFB LP LPDP PCP Perfect 
Information 

0 361.46 361.43 418.37 391.42 389.81 306.50 
0.1 319.41 319.51 373.83 353.24 385.50 231.15 
0.2 463.40 463.53 518.02 485.26 572.91 370.17 
0.3 484.29 484.27 541.20 516.40 616.66 382.61 
0.4 563.16 563.31 627.15 587.54 755.25 464.11 
0.5 562.44 562.62 607.72 592.17 816.76 480.62 
0.6 846.22 846.09 926.49 881.80 1155.44 735.23 
0.7 859.04 858.52 955.15 904.87 1302.93 720.38 
0.8 1098.09 1097.79 1277.49 1165.93 1582.63 934.50 
0.9 1463.51 1463.32 1630.15 1493.41 2151.65 1298.39 
1 1413.51 1413.63 1505.01 1399.98 1399.98 1251.69 

*Averaged over 20 instances of each problem type 
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Table 5-12: Average running time -- 25 activity projects 

OS BB BFB LP LPDP PCP 
0 0.03983 0.03995 0.01054 0.02974 0.05959 

0.1 0.16949 0.17045 0.04169 0.21702 0.46134 
0.2 0.20384 0.20501 0.05849 0.28838 0.91822 
0.3 0.24439 0.24650 0.06639 0.40159 1.26682 
0.4 0.25188 0.25372 0.07715 0.61382 1.79200 
0.5 0.22065 0.22211 0.07787 0.76095 2.53029 
0.6 0.33951 0.34190 0.09446 1.81201 5.13433 
0.7 0.45658 0.45992 0.10749 2.37395 5.39899 
0.8 0.33139 0.33417 0.11492 2.71358 6.22986 
0.9 0.38611 0.38801 0.12965 10.68737 24.25111 
1 0.54925 0.55074 0.17692 76.96781 62.36829 

*Averaged over 20 instances of each problem type 

 
Figure 5-16: Expected cost -- 25 activity projects 
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Figure 5-17: Average running time -- 25 activity projects 

 

The relative cost performance of the algorithms is similar to the findings from Chapter 4. 

Again the Biggest Bang and the Bang for the Buck the best performers; however, the gaps 

between the algorithms are much smaller than before. We notice that as the order strength 

increases so does the expected cost for all algorithms. We conjecture that this is due to the way 

the Incentive Target is generated. In the problem instances tested, the Incentive Target was set 

equal to 90% of the Penalty Target. Therefore, the larger Penalty Target, the larger the gap 

between the Penalty Target and the Incentive Target and the harder it is to reduce the project’s 

duration to the point where incentives can be earned. Since the Penalty Target depends on the 

length of the longest path calculated using expected activity duration estimates, the larger the 

OS, the more serial the project, and the larger the Penalty Target. As before for OS = 1 (serial 

project), dynamic programming gives optimal solutions, therefore the LPDP and the PCP have 

the lowest cost.  

We also suspected that the performance of the BB and the BFB may suffer because these 

two are myopic algorithms that look at cost savings from crashing one activity by one time 
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period at a time. If the difference between the Penalty Target and the Incentive Target is large, 

the BB indices (or the BFB indices) may indicate that nothing should be crashed once the 

maximum duration of the project becomes smaller than the Penalty Target (or if the probability 

of exceeding the Penalty Target is sufficiently small). Consider a simple (serial) project in 

Figure 5-18.  

O ML P O ML P O ML P
Start 8 9 10 8 9 10 8 9 10 End

$1 $1 $1
4 4 4

Cost sharing ratios 30 : 70 100 : 0

Project duration
Incentive Target = 23 Penalty Target = 30

Indirect cost = $100/day

C

Crash cost
Crash up to

0 : 100

Crash cost

A

Crash up to

B

Crash cost
Crash up to

 
Figure 5-18: BB/BFB illustration (serial project) 

The maximum project duration is equal to the sum of the pessimistic times, or 30 days 

which is less than or equal to the Penalty Target. Therefore, none of the activities will ever be 

Penalty Target Critical and all PTCIs are equal to 0. The minimum project duration is 24 days 

which is greater than the Incentive Target, thus all ITCIs are zero as well. Since this is a serial 

project, all regular Criticality Indices (CIs) are 1 but, because there is no Overhead, the BB 

indices and the BFB indices are equal to: 

, , 0 100 0 30 1 0 1 1A B CBBI PTCI Penalty ITCI Incentive CI Overhead c= × + × + × − = × + × + × − = −  

, ,
1 1

1A B C
i

PTCI Penalty ITCI Incentive CI Overhead cBFBI
c

× + × + × − −
= = = −  

Thus we would never crash any of the activities even though it is obvious that the optimal policy 

is to crash everything to the maximum. Nevertheless, the BB and the BFB give the best results, 

which suggest that the project generating procedure was able to avoid creating such problem 

instances, in the majority of cases. 
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Running times for all algorithms go up as the order strength and size increase and again, 

they increase at different rates. The LPDP and the PCP have an even greater number of integer 

variables than in Chapter 4, which slows down these algorithms even further. The LPDP average 

running time of one simulation of one problem instance with 25 activities and OS of 1 was about 

77 seconds. Since we simulate each problem instance 20*n times (in this case, 20*25 = 500), and 

we have 20 instances of each problem type, the length of time to run the LPDP on a problem set 

with 25 activities and OS=1 was approximately 770,000 seconds or 213 hours and 53 minutes. 

Again, the computational requirements to test the LPDP and the PCP on bigger problem 

instances were prohibitively large. 

5.5.3 Impact of the order strength 

As in Chapters 3 and 4, we examine relative cost improvement of dynamic vs. static algorithms. 

Figures 5-19 and 5-20 present differences in the expected costs of static and dynamic versions of 

the algorithms for the BB and the LPDP respectively on problem instances with 25 activities. 

The results show expected costs averaged over 20 instances of each problem type. 
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Figure 5-19: Biggest Bang -- static vs. dynamic 
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Figure 5-20: LPDP -- static vs. dynamic 

 

The results are not as dramatic as in Chapter 4; however there is a visible direct 

correlation of the order strength and the cost difference. In a completely parallel project (OS = 0) 

the performance of a dynamic algorithm should the same as the performance of a static algorithm 

because we have only one decision stage. As the number of decision stages increases, which 
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happens when we increase the OS, we have more opportunities in the dynamic version of an 

algorithm to revise our decisions, therefore the difference in performance of the dynamic and the 

static algorithms grows. For the order strength of 1, the relative improvement of a dynamic 

algorithm over a static one is around 8.4% for the BB and 20.3% for the LPDP. 

We also examined the gap between the perfect information case and our algorithms. 

Table 5-13 shows the BB-Perfect Information gap by project size for OS of 0 and OS of 1.  

Table 5-13: BB/Perfect Info % gaps 

%Gap 
Size OS=0 OS=1 Difference 

5 24.18% 11.76% -12.42% 
10 26.25% 11.83% -14.42% 
25 17.93% 12.93% -5.00% 

 

Unlike in Chapter 4, the percentage gap between the BB cost and the Perfect Information 

case seems to get smaller as projects become more serial. This is a surprising result until we take 

the change in the cost magnitude into consideration. In calculating the percentage gaps, we 

divide the absolute difference in costs by the cost of the Perfect Information case. The expected 

cost with Perfect Information for serial projects (OS=1) is about 4 times as large as for parallel 

projects, therefore the denominator in the serial case is much larger. Examining absolute 

differences in costs (presented in Table 5-14) we notice that the absolute gaps increase with the 

OS, which is the expected results. However, the differences are not as pronounced as in Chapter 

4, which may suggest that the problem instances generated were easier to solve. 

Table 5-14: BB/Perfect Info absolute gaps 

Absolute Gap 
Size OS=0 OS=1 Difference 

5 41.80 52.70 10.90 
10 54.73 113.07 58.33 
25 54.96 161.82 106.86 
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 Notice that both the percentage gaps and the absolute gaps increase as the project size 

increases, which is consistent with our intuition – since for serial projects (OS=1), the number of 

decision stages is equal to the number of activities, thus the larger the serial project, the greater 

should be the value of information. 

5.6 EXTENSIONS TO MORE COMPLEX COST STRUCTURES 

In this chapter we focused on the case with three levels of cost sharing – one level for cost under-

run (incentive), one for cost over-run (penalty), and one for constant overhead. However, as we 

mentioned before, project contracts can specify multiple levels of cost sharing. Figure 5-21 

illustrates the case with two penalty levels (over-run only) plus a constant overhead. When the 

project exceeds the target date of 100 days, the contractor pays a penalty of $30 per day until the 

duration reaches 120 days. Beyond that, the contractor is responsible for 100% of the overhead 

cost – therefore this is a case with increasing penalties. 
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Figure 5-21: Three levels of cost sharing (penalty only) 
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 As in the penalty only case, we can have multiple levels of sharing for the incentives as 

illustrated in Figure 5-22. In this case, the contractor pays fixed 5% of the cost overhead and 

receives incentives of 25% of cost under-run if the project is completed in under 70 days and 

15% of cost under-run if the project is completed in more than 70 days but before the Target date 

(thus it is a case with decreasing incentives). 
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Figure 5-22: Three levels of cost sharing (incentives only) 

As before, we can also have a case with both penalties and incentives. Figure 5-23 

illustrates the case with five levels of cost sharing: two levels of incentives (decreasing), one 

level of constant overhead, and two levels of penalties (decreasing). Decreasing penalties can 

occur in a situation where there is a cap on the amount of penalty that can be imposed on the 

contractor. The cost function in Figure 5-23 is non-convex with two inflection points – one at 

100 and the other at 130. 
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Figure 5-23: Five levels of cost sharing (incentives and penalties) 

The question now is whether the algorithms presented in this chapter are applicable, or at 

least easily extendable to the more general case (such as in Figure 5-23). For the BB and the 

BFB the extension should be straightforward. Recall that those two methods calculate different 

criticality indices for each ratio or line segment. We could follow a similar procedure but we 

would have a larger number of criticality indices, equal to the number of straight line segments 

in the cost function. However, the other methods, especially those based on the DP, would 

become more complex. When the cost function has multiple inflection points, the DP solution 

may have several increasing and decreasing segments as shown in Figure 5-24. This creates the 

need for an even greater number of binary variables in the LPDP and the PCP formulations. 

 
Figure 5-24: DP solution (multiple increasing/decreasing segments) 
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5.7 CHAPTER SUMMARY 

In this chapter we considered a stochastic time-cost trade-off problem for projects with penalties, 

incentives, and overhead with the goal of minimizing the contractor project cost in presence of 

cost-plus-incentive-fee contracts. In such contracts, the contractor and the owner of the project 

share the associated risk according to some agreed upon ratio, which can change according to the 

project duration. We examined a case with three cost share ratios where a fixed percentage of the 

project indirect overhead cost is always incurred by the contractor. In addition, the contractor can 

receive a portion of cost under-runs (if the project duration is shorter than some predetermined 

date, which we denote as the Incentive Target) and is also responsible for a portion of cost over-

runs (if the project duration exceeds the Penalty Target). 

We extended and applied the five algorithms presented in Chapter 4 to the problem 

discussed herein. We showed that, when the contractor’s cost function is non-convex, the 

dynamic programming solution loses its monotonicity, which forces the inclusion of additional 

binary variables in the LPDP and the PCP formulation. We were also concerned that the BB and 

the BFB would not perform well due to the myopic nature of those two methods. In theory it is 

possible for the BB and the BFB to stop prematurely, that is, if the difference between the 

Penalty Target and the Incentive Target is large and if the Overhead amount is sufficiently small, 

the algorithms will conclude that crashing should be terminated when, in reality, we can realize 

additional cost savings by reducing the project beyond the Incentive Target. However, the 

computational tests performed again pointed to the BB and the BFB as the best methods, which 

suggests that, using the described project generator, we avoided such problem instances. 

In addition, we noticed that the gaps between the expected costs of the algorithms and the 

case with perfect information are smaller than those observed in Chapter 4. In general, perfect 
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information is worth more when the project is more serial but this relationship is also not as 

strong as in Chapter 4. This may suggest that the problem instances we generated herein are, on 

average, easier to solve than those generated in Chapter 4. This could be due to the fact that even 

when over-crashing we can still get the benefits of incentives and decreased overhead cost. One 

of the possible future research avenues is therefore to investigate the impact of the cost share 

ratio values on the performance of the algorithms.  

Furthermore, one could examine whether different cost functions have an effect on how 

well the methods perform. Recall that in this chapter we used three levels of cost sharing. It 

would be interesting to study cost functions with a higher number of share levels. If the share 

ratios are monotonically increasing (as shown in Figure 5-21), the cost function is convex. If the 

share ratios are monotonically decreasing (Figure 5-22), the cost function is concave. In those 

instances extending our methods should be relatively straightforward. In addition, when the cost 

function is non-convex with multiple inflection points the BB and the BFB, which turned out to 

be reasonably good techniques, should be easily extendable as well. It is however not clear how 

to modify the LP, the LPDP, or the PCP to deal with more share levels. Our intuition is that the 

performance of the methods may deteriorate; however, to answer this question with any degree 

of confidence, more computational experiments are necessary. 
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