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NON-CONVEXITY OF THE OPTIMAL EXERCISE BOUNDARY FOR AN

AMERICAN PUT OPTION ON A DIVIDEND-PAYING ASSET

Huibin Cheng, PhD

University of Pittsburgh, 2011

In this thesis, we prove that the optimal exercise boundary of the American put option is not

convex when the dividend rate of the underlying asset which follows a geometric Brownian

motion, is slightly larger than the risk-free interest rate. We show that the non-convex region

occurs very near the expiry time. Numerical evidence is also provided which suggests that the

convexity of the optimal exercise boundary is restored when the dividend rate is sufficiently

larger than the interest rate. In addition we provide the near-expiry and far-from-expiry

behavior of the boundary. To complete the rigorous proofs, we also show that the optimal

exercise boundary has C∞ regularity.
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1.0 INTRODUCTION

Options are traded both on exchanges and in the over-the-counter market. The options

and derivatives market is significantly larger than the equity and bond markets combined.

Moreover, the diversity and complexity of these financial instruments makes them difficult

to accurately price and hedge. In this thesis we study some mathematical and numerical

problems associated with pricing American put options with a geometric Brownian underlier.

This is the prototypical example for studying option with early exercise capability.

An American put option is one exercise right of selling a share of underlying security

(stock) at a fixed price called the strike, E, any time up to expiry, T . Black and Scholes theory

can be used to derive the price (c.f. [42]) of the option, based on the following assumptions:

(i) the stock price, St, is a log-normal process, i.e.,

dSt = µt St dt+ σ StdWt,

where σ is a positive constant, {Wt} is the standard Brownian motion (Wiener process) and

{µt} is an adapted process; (ii) for the time period [t, t+ dt), the stock pays DStdt dividend

at time t+dt, where D > 0 is the constant dividend rate; (iii) there is a risk–free asset whose

return rate is a constant, r. The price of the option at time t 6 T with observed stock price

St is P (St, t) where P (·, ·) is the solution of the obstacle problem (variational inequality)
max{L∗P, (E − S)+ − P} = 0 in (0,∞)× (−∞, T ),

P (S, T ) = (E − S)+ := max{E − S, 0} on (0,∞)× {T};
(1.1)

here L∗ is the Black-Scholes operator defined by

L∗P =
∂P

∂t
+
σ2

2
S2∂

2P

∂S2
+ (r −D)S

∂P

∂S
− rP.
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The option holder must decide on a strategy for the optimal time to exercise the position

during the lifetime of the contract:

T ∗ = min{t ∈ [0, T ] | St 6 B(t)},

(c.f. Figure 1) i.e., the first time when the stock price drops to B(t), where, the early

0 t T ∗

T

B(t)

St

Figure 1: Optimal time to exercise and optimal exercise boundary

(optimal) exercise boundary B(t) is defined in terms of the solution of (1.1) as

B(t) := inf{S > 0 | P (S, t) > (E − S)+} ∀ t 6 T. (1.2)

The precise location of this boundary is of great importance to option traders. Using inac-

curate estimates for the early exercise boundary could lead to large losses.

The American put option problem was first stated mathematically by McKean [37] and

then studied by Moerbeke [39]. Since then it has been intensively studied in the mathematics

and finance communities, see [2–7,9–13,15–18,23,27,30–34,36,40–42] and references therein.

In contrast with European style options, that only allow exercise at expiry, the American

options of interest here do not have closed form solutions, requiring numerical or analytic

approximations for the price and the early exercise boundary.
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This thesis will focus on some mathematical open problems associated with the early

exercise boundary. In particular, we will provide new rigorous results in three areas:

(i) the convexity and non-convexity of the early exercise boundary,

(ii) the C∞ regularity of the early exercise boundary, and

(iii) the behavior of the early exercise boundary near and far from expiry.

An integral part of this analytic and numerical study will be the derivation and use of several

nonlinear integral equations for the free boundary.

The convexity of the early exercise boundary B(t) becomes important for its global ap-

proximation and interpolation which is very useful for practioners. Recently, Chen, Chadam,

Jiang and Zheng [17] provided a rigorous proof that the boundary B(t) for the American

put is convex when the dividend rate D was zero; an independent proof was obtained by

Ekstrom [18]. Since then, a great deal of effort has been made to show the convexity of

the boundary for D > 0. However, numerical experiments suggest that the early exercise

boundary loses convexity when D is slightly larger than r and that convexity is maintained

when D ≤ r and when D is sufficiently larger than r.

We believe that this phenomenon is due to the following change of behavior of the early

exercise boundary, S = B(t), very near expiry, T , as D increases past r. At expiry, the early

exercise boundary approaches its expiry value with infinite velocity [39], leading to difficulties

in the accurate approximation of numerical simulation and pricing in this extremely volatile

period. Therefore, asymptotic expansions of the boundary near expiry had been studied

earlier (see [3,5,10,15,16,32,40,42] and references therein). As t↗ T , if r > D, B(t) follows

ln
B(t)

E
= σ

√
−(T − t) ln[8π(r −D)2(T − t)]. (1.3)

In the above expression, the correct constant was first found in [40], then is proven with

mathematical rigor in [15]. If r = D, the B(t) follows a similar behavior,

ln
B(t)

E
= σ

√
−(T − t) ln[4πr2(T − t)]. (1.4)

As D increases past r, the near expiry behavior of the boundary becomes quite different

[13,32], becoming

ln
B(t)

E
= ln

r

D
− A0

σ√
2

√
T − t, (1.5)
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where the constant A0 = 0.90344 . . . . Therefore, for D > r we have for

B′(t) ∝ 1√
T − t

, t ≃ T

and the probability density of the associated Brownian motion, [2πσ2(T−t)]−1/2e−[B−B(T )]2/[2σ2(T−t)]

is proportional to B′(t) in this regime. On the other hand, for 0 6 D 6 r, the dominating

near-expiry behavior is

B′(t) ∝
√
| ln(T − t)|√
T − t

,

and the probability density is almost a positive constant. As a result, when 0 < D− r ≪ 1,

we can find times t1 < T , for the first behavior and, t2 < t1, for the second behavior, such

that B(T−) = ∞ > B′(t2) > B′(t1) > 0, thereby demonstrating that the free boundary is

not convex. When D − r is not small, it seems the second behavior is either suppressed or

occurs too early so that the free boundary remains convex. Motivated by the above changing

behaviors of B(t) and the numerical results, we show that the convexity of B(t) is lost when

0 < D − r ≪ 1 and the non-convex region occurs near expiry through careful estimates

obtained from a pair of integro-differential equations for the optimal exercise boundary.

Since these integral equations involve the derivative of the boundary, complete rigor

relies on a proof of its regularity. Also the validity of the formulation (1.1) and (1.2) for the

American put option relies on the following regularity of the solution of (1.1):

1. PS := ∂P/∂S is continuous,

2. B is continuous, P (S, t) > (E − S)+ when S > B(t), and P (S, t) = (E − S)+ when

S 6 B(t).

Chen and Chadam [15] established the existence and uniqueness for the put option problem

when the dividend payment is zero. The regularity of the early exercise boundary was

recently investigated for more general underliers. Bayraktar and Xing [6] and Yang, Jiang

and Bian [41] proved that the boundary is C∞ (except at maturity) when the stock price

follows a jump-diffusion process and Lamberton and Mikow [33] showed its continuity for

exponential Lévy process. Laurence and Salsa [35] proved C∞ regularity of the free boundary

for an American option on several assets with convex payoff. These proofs are necessarily

4



quite technical. In this thesis, we provide a self-contained short proof in the present log

normal context that the optimal exercise boundary S = B(t) of the American put option

with dividend payment is C∞.

We anticipate the changing behaviors of B(t) from our numerical results for general

D > 0 will require sharp estimates on the far-from-expiry (i.e., the scaled time-to-expiry

s := σ2

2
(T − t) → ∞) behavior of the boundary (B(t) = Eeb(s); see section (2.2)). It is

well known that (p, b) := (P/E, ln(B/E)) approaches its Merton solution (p∗, s∗) for the

infinite horizon problem [38]. Recently Ahn, Choe and Lee [1] showed the following long

time asymptotic behavior when D = 0:

b(s) = b∗ + o(1) e−(k+1)2s/4, (1.6)

∥p(·, s)− p∗(·)∥L∞(R) = O(1)

 s−1/2e−ks if 0 < k < 1,

e−(k+1)2s/4 if k > 1,
(1.7)

where k = 2rσ−2. In [15] Chen and Chadam provided the outline of the proof of a stronger

result:

b(s) = b∗ + [m+ o(1)]s−3/2e−(k+1)2s/4 as s→ ∞,

where m is a positive constant that can be easily determined numerically. In this thesis

we follow the steps outlined in [15] to provide a proof of our sharper result in the more

general setting of a dividend-paying asset (i.e., for all dividend rates D > 0). We also

provide generalizations of (1.7) for arbitrary D > 0. The precise statements of these results

are given in chapter 8. The proofs capture the changes in the estimates arising from the

variation in D. Moreover, our proofs do not require the convexity of the free boundary in

contrast with the results in [1] where it plays a crucial role. This observation is especially

significant since the early exercise boundary is not convex when 0 < D − r ≪ 1.

The thesis is organized as followed, in chapter 2, we begin by writing the American put

option problem in a non-dimensional form. The connection between put and call options

is also provided. In Chapter 3, we prove the regularity of b(s). The integral equations

required for the main result are derived in chapter 4 and in chapter 5, the non-convexity of

the optimal exercise boundary is proven when 0 < D−r ≪ 1. In chapter 7 and 8 we provide
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the near-expiry and far-from expiry behaviors of b(s) respectively. Finally, we conclude the

thesis in chapter 9 with further research suggested by these results.
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2.0 PROBLEM FORMULATION

In this chapter, we derive the connection between American put and call options, then we

reformulate our problem in non-dimensional form.

2.1 PUT-CALL SYMMETRY

The American put option problem is related to a corresponding problem for a American call

option (see [32]). Define new variables

S̃ =
E2

S
, C(S̃, t) =

E

S
P (S, t), (2.1)

and constants r̃ = D, D̃ = r. Then inequality P (S, t) > max{E − S, 0} is equivalently to

EC̃(S̃, t)

S̃
> max{E − E2

S̃
}, i.e., C̃(S̃, t) > max{S̃ − E, 0}.

Direct computation yields

∂C

∂t
(S̃, t) =

K

S

∂P

∂t
(S, t);

∂C

∂S̃
(S̃, t) =

1

E
(
∂P

∂S
S − P ),

∂2C

∂S̃2
(S̃, t) = − 1

E

∂2P

∂S2
S3.

(2.2)

Substituting (2.1) and (2.2) into (1.1), one obtains the obstacle problem,


max{Ct +

1
2
σ2S̃2CS̃S̃ + (r̃ − D̃)S̃CS̃ − r̃C, (S̃ − E)+ − C} = 0 in (0,∞)× (−∞, T ),

C(S̃, T ) = (S̃ − E)+ := max{S̃ − E, 0} on (0,∞)× {T};
(2.3)
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which is the variational inequality for the American call option with C(S̃, t) being its option

price when its underlying stock price is S̃ at time t. Similar to the American put option

problem, we can define the optimal exercise boundary B̃(t) as

B̃(t) := sup{S̃ > 0 | C̃(S̃, t) > (S̃ − E)+} ∀ t 6 T. (2.4)

Thus the put option is transformed into the call through the identity,

C(
E2

S
, t;D, r, σ, E, T ) =

S

E
P (S, t; r,D, σ,E, T ), B̃(t; r,D) =

E2

B(t;D, r)
(2.5)

and hence it suffices to study the American put option.

2.2 THE CHANGE OF VARIABLES

It is mathematically convenient to use the dimensionless quantities:

x := ln
S

E
, s :=

σ2

2
(T − t), k :=

2r

σ2
, ℓ :=

2D

σ2
, α := k − ℓ− 1,

P (S, t) = E p(x, s) = E p
(
ln
S

E
,
σ2

2
(T − t)

)
, B(t) = Eeb(s).

In a typical financial situation we might have σ = 20% (year−1/2), T − t = 0.5 (year),

with St fluctuating in (40%E, 250%E). The resulting range of interest for the dimensionless

variable (x, s) would be x ∈ (−1, 1), s ∈ [0, 0.01].

With

p0(x) := max{1− ex, 0}, Lp := pxx + α px − kp,

The variational form (1.1) for (B,P ) is transformed to

max{Lp− ps, p0 − p} = 0 in R× (0,∞), p(·, 0) = p0. (2.6)

From the solution, we define

b(s) := inf{x | p(x, s) > p0(x)} ∀ s > 0, b(0) := lim
s↘0

b(s). (2.7)

We shall call x = b(s) the free boundary and use the default extension b(0) := lims↘0 b(s)

and define b0 := min{0, ln(k/l)} (when l = 0, b0 = 0).

8



3.0 WELL-POSEDNESS AND REGULARITY

Using a penalty method, Chen and Chadam [15] showed that the problem (2.6) has a unique

solution for l = 0 (i.e., D = 0) p ∈ Cβ,β/2(R× [0,∞)) ∩W 2,1
γ,loc(R× [0,∞) \ [b0, 0]× {0}) for

every γ > 1 and β ∈ (0, 1). Moreover, b(s) is a strictly decreasing continuous function on

(0,∞) and (p, b) solves the problem (3.3). For l > 0, the proof is quite similar and omitted

here. In this chapter we only consider the regularity of the free boundary and shall show

that b(s) ∈ C∞(0,∞) ∩ C[0,∞).

3.1 BASIC PROPERTIES OF THE SOLUTION

In the next section we shall show that b ∈ C∞((0,∞)), from which one can derive the

following: for each s > 0,

p(b(s), s) = 1− eb(s), (3.1a)

px(b(s), s) = −eb(s), (3.1b)

ps(b(s), s) = 0, (3.1c)

pxx(b(s)±, s) = −eb(s) + (1
2
± 1

2
)(k − ℓeb(s)), (3.1d)

psx(b(s)±, s) = (1
2
± 1

2
)ḃ(s)(ℓeb(s) − k), (3.1e)

where ± denotes limits from the right and left. The first and second equations are a direct

consequence of p(x, s) = p0(x) = 1−ex for x 6 b(s). Differentiating the equation p(b(s), s) =

1− eb(s) with respect to s leads

ps(b(s), s) + px(b(s), s)ḃ(s) = −eb(s)ḃ(s)

9



which implies that ps(b(s), s) = 0. From ps(x, s) = Lp for x > b(s), one obtains that

pxx(b(s)+, s) = ps(b(s), s)− αpx(b(s), s) + kp(b(s), s) = −eb(s) + (k − ℓeb(s)).

The fact p(x, s) = 1− ex for x ≤ b(s) implies that pxx(b(s)−, s) = −eb(s). Therefore

pxx(b(s)±, s) = −eb(s) + (1
2
± 1

2
)(k − ℓeb(s)).

Similarly, differentiating px(b(s)±, s) = p0x(b(s)) we obtain the expression for psx(b(s)±, s).

3.2 REGULARITY

Theorem 3.1. Problem (2.6) admits a unique solution, p. In addition, both px and pt are

continuous in R × (0,∞) and the function b defined in (2.7) is in C∞((0,∞)) ∩ C([0,∞)).

Furthermore,

b(0) = b0, p(x, s) > p0(x) ∀x > b(s), p(x, s) = p0(x) ∀x 6 b(s). (3.2)

As a result, (p, b) is the solution of the free boundary problem



Lp− ps = 0 > p0 − p in Qb := {(x, t) | t > 0, x > b(t)},

p0 − p = 0 > Lp− ps in {(x, t) | t > 0, x < b(t)},

limx↘b(t) p(x, t) = p0(b(t)) ∀ t > 0,

limx↘b(t) px(x, t) = p0x(b(t)) ∀ t > 0,

p(·, 0) = p0(·) on R× {0}.

(3.3)

10



The problem of finding the price of the American put option is often described in terms

of the free boundary problem (3.3) without the two inequalities above. Nevertheless, the

inequalities above are necessary for the variational formulation (2.6). Indeed, it is the reason

why b(0) = b0. To see this, recall that

Lp0(x) = δ(x) + k[ex−b0 − 1]H(−x)

where H is the Heaviside function, H(z) = 1 for z > 0 and H(z) = 0 for z < 0, and

δ(x) = H ′(x) is the Delta function. It is critical here that Lp0 changes sign only once:

Lp0 > 0 in [b0,∞), Lp0 < 0 in (−∞, b0); b0 := min{0, ln(k/ℓ)}.

This property implies that the free boundary in (2.6) is well-defined. Indeed, for each s > 0,

p(x, s) > p0(x) ∀x > b(s), p(x, s) = p0(x) ∀x 6 b(s).

Furthermore, the continuity and the first two sets of inequalities in (3.3) imply that b(0) = b0.

Proof of Theorem 3.1

1. Idea of the Proof

Chen and Chadam [15] showed that the problem (2.6) has a unique solution for the case

l = 0 (i.e., D = 0) by using a penalty method [19]. Here we consider the general case by

using the technique introduced in [17].

In [17], the analysis is carried out in terms of the function q := ps. Formally one can

derive that (q, b) is a solution of the following free boundary problem:



qs(x, s) = Lq(x, s) ∀x > b(s), s > 0,

q(x, s) = 0 ∀x 6 b(s), s > 0,

q(x, 0) = max{Lp0(x), 0} ∀x ∈ R, s = 0,

Π(b(s)) =
∫ s

0
qx(b(t), t)dt ∀ s > 0,

(3.4)

11



where

Π(z) =

∫ z

∞
min{Lp0(x), 0}dx =


0 if z > b0,∫ z

b0
(ℓex − k)dx if z < b0.

Here the last equation in (3.4) is a weak formulation of the free boundary condition

b(0) = b0, ḃ(s)[ℓeb(s) − k] = qx(b(s), s), b(s) 6 b0 ∀ s > 0. (3.5)

The problem (3.4) is a Stefan type free boundary problem which has been well-studied

(see, for example, [21, 26]). The existence of a smooth classical solution would be standard

if the free boundary condition were not degenerate; i.e., the coefficient (ℓeb−k) of ḃ at s = 0

in (3.5) is not zero. We shall treat this degeneracy by using the initial value b(0) = b0 − ϵ

for positive ϵ and then sending ϵ ↘ 0. Thus, we shall study the approximation problem for

(qϵ, bϵ): 

qϵs(x, s) = Lqϵ(x, s) ∀x > bϵ(s), s > 0,

qϵ(x, s) = 0 ∀x 6 bϵ(s), s > 0,

qϵ(x, 0) = max{Lp0(x), 0} ∀x ∈ R, s = 0,

Π̃(bϵ(s)) = Π̃(b0 − ϵ) +
∫ s

0
qx(b(t), t)dt ∀ s > 0.

(3.6)

where Π̃ = Π if α = (k − ℓ− 1) 6 0 and

Π̃(z) =


Π(z) if z > b∗,

Π(b∗) +
∫ z

b0
(ℓex − k)eα(b

∗−x)/2 dx if z < b∗

if α > 0. Here b∗ = ln(λ/1 + λ) and λ := (α+
√
α2 + 4k)/2. In the end, we shall show that

b > b∗ so that Π(b) = Π̃(b).

2. Existence of the approximation problem

12



Lemma 3.1. For each ϵ > 0, the approximation problem (3.6) admits a solution (qϵ, bϵ)

satisfying qϵ ∈ ∩2β,β
0<β<1(R× (0,∞) and bϵ ∈ C1([0,∞)). In addition, for any positive constant

η > −b0,

0 6 eαb
ϵ(s)/2[ℓeb

ϵ(s) − k]ḃϵ(s) 6M(η)e−[k+α2/4]s if bϵ(s) 6 −η. (3.7)

where M(·) is defined by

M(η) := max
{
M0, sup

t>0

q̃0(−η/2, t)
η/2

}
, (3.8)

with

q̃0(x, s) =
e−x2/(4s)

√
4πs

+

∫ 0

b0

e−(x−y)2/(4s)

√
4πs

eαy/2(ℓey − k)dy

M0 := max
x∈[b0,0]

∣∣∣d[eαx/2(ℓex − k)]

dx

∣∣∣. (3.9)

Proof. The one space dimensional Stefan problem can be solved as follows. We establish the

existence of a solution in a time interval [0, h] for an arbitrary large h. For this we define a

function space

B =
{
b ∈ C1([0, h])

∣∣∣ b(0) = b0 − ϵ; 0 6 eαb/2[ℓeb − k]ḃ 6M(ϵ− b0) in [0, h]
}

where M(·) is defined in (3.8). Clearly, B is a closed subset of C1([0, h]).

For each b ∈ B, we let q be the solution of the following initial boundary value problem

qs = Lq in Qb := {(x, s) | s > 0, x > b(s)},

q(b(s), s) = 0 ∀ s > 0,

q(x, 0) = max{Lp0(x), 0} ∀x > b0 − ϵ.

This problem admits a unique classical solution q [20]. As the lateral boundary of Qb is C
1,

we see that q ∈ ∩0<β<1C
2β,β(Qb\([b0, 0]×{0})) which implies qx(b(·), ·) ∈ ∩0<β<1/2C

β([0, h]).

For each b ∈ B, using the solution q, we define b̃ = T[b] by solving the ode

eαb̂(s)/2[ℓeb̃(s) − k]
db̃(s)

ds
= qx(b(s), s)e

αb(s)/2, ∀ s ∈ (0, h] b̃(0) = b0 − ϵ, (3.10)

where b̂(s) = b̃(s) if α 6 0 and b̂(s) = max{b∗, b̃(s)} if α > 0.
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Here the special modification of replacing eαb̃ by eαb̂ (when α > 0) ensures that ODE

problem (3.10) has a global solution since such choice of b̂(s) can prevent b̃(s) from being

unbounded from below before h. Since q > 0 in Qb, we have qx(b(s), s) > 0. Hence, b̃ is

well-defined and b̃(s) 6 b0 − ϵ for all s ∈ [0, h].

A fixed point of T is a solution of (3.6). To show that T has a fixed point in B, we first

show that T maps B to itself. For this, we need an upper bound for b̃. Let q0 be the solution

of

q0s = Lq0 on R× (0,∞), q0(·, 0) = max{Lp0, 0}.

Then by the maximum principle q0 > 0 on R × (0,∞), and by comparison q 6 q0 on

R× [0,∞).

Define q̃0 := q0(x, s)e
αx/2+(k+α2/4)s. Then q̃0 satisfies q̃0s = q̃0xx on R × (0,∞) with

initial data δ(x) + eαx/2(ℓex − k)H(−x)H(x − b0). Hence, q̃0 is given by (3.9). Note that

∥q̃0(x, ·)∥L∞([0,∞)) is finite for every x ̸= 0. Let η be any positive constant such that η > −b0.

Define M(η) as in (3.8) and for each b ∈ B, define

bη(s) := min{−η, b(s)},

q1(x, s) :=M(η) (x− bη(s))e−αx/2−(k+α2/4)s.
(3.11)

Since ḃ 6 0, bη is a continuous decreasing function. Notice that

q1s − Lq1 = −M(η)[x− bη(s)]ḃη(s)e−αx/2−(k+α2/4)s > 0 ∀x > bη(s), s > 0.

Now we compare q1 with q on Q where Q = {(x, s) | b(s) < x < −η/2, s > 0}. Since q 6 q0

on R × (0,∞) and q = 0 when x 6 b(s), our choice of M(η) implies that q1 > q on the

parabolic boundary of Q, so q < q1 in Q.

Suppose b(s) 6 −η. Then q(b(s), s) = q1(b(s), s) = 0 and q(x, s) < q1(x, s) for x ∈

(b(s),−η/2]. Hence,

0 6 qx(b(s), s) 6 q1x(b(s), s) =M(η)e−αb(s)/2−(k+α2/4)s if b(s) 6 −η.
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It then follows from (3.10) that

0 6 eαb̂/2[ℓeb̃ − k] ˙̃b 6M(η)e−(k+α2/4)s.

In particular, letting η = ϵ− b0 in the above inequality, one obtains

0 6 eαb̂/2[ℓeb̃ − k] ˙̃b 6M(ϵ− b0)e
−αb(s)/2−(k+α2/4)s.

Finally, since eαb̃/2 6 eαb̂/2, we have

0 6 eαb̃/2[ℓeb̃ − k] ˙̃b 6M(ϵ− b0)e
−αb(s)/2−(k+α2/4)s. (3.12)

Thus, T maps B to itself. In addition {T[b] | b ∈ B} is a bounded set in C1+1/4([0, h]) which

is a compact subset of C1([0, h]). Hence, by the Schauder’s fixed point theorem, T admits

a fixed point, bϵ, in B. Moreover since M(ϵ− b0) does not depend on h, one can let h→ ∞

to obtain bϵ ∈ C1([0,∞)). Extend the corresponding q by zero for x < bϵ and denote it by

qϵ. We see that (qϵ, bϵ) is a classical solution of (3.6).

3. Limits of the approximation sequence

Lemma 3.2. Let (qϵ, bϵ) be the solution of the problem (3.6). Then the sequence (qϵ, bϵ) is

monotonic, i.e., if 0 < ϵ1 < ϵ2, then b
ϵ2 < bϵ1 and qϵ1 < qϵ2. Consequently, there exist q and

b such that

q = lim
ϵ↘0

qϵ, b = lim
ϵ↘0

bϵ

15



Proof. Since bϵ(0) = b0 − ϵ, clearly, bϵ2(0) < bϵ1(0) if 0 < ϵ1 < ϵ2. We claim that bϵ2 < bϵ1 on

[0,∞). Suppose this is not true. Then t∗ := sup{t > 0 | bϵ2 < bϵ1 in [0, t]} is finite and we

have bϵ2 < bϵ1 in [0, t∗) and bϵ2(t∗) = bϵ1(t∗).

Now by comparison on D = {(x, t) | x > bϵ1(s), s ∈ [0, t∗]} we see that qϵ2 > qϵ1

on D. Since bϵ1 is C1, we obtain from Hopf’s lemma [22, see Theorem 2.8 in p78] that

qϵ2x (bϵ1(t∗), t∗) > qϵ1x (bϵ1(t∗), t∗). Consequently, since bϵ1(t∗) = bϵ2(t∗) and then b̂ϵ1(t∗) =

b̂ϵ2(t∗), we find from the boundary condition that

−ḃϵ2(t∗) = qϵ2x (bϵ1(t∗), t∗)eα(b
ϵ2−b̂ϵ2 )/2

k − eb
ϵ1 (t∗)

>
qϵ1x (bϵ1(t∗), t∗)eα(b

ϵ1−b̂ϵ1 )/2

k − eb
ϵ1 (t∗)

= −ḃϵ1(t∗).

That is (bϵ2 − bϵ1)′|s=t∗ < 0. But this implies bϵ2(s) − bϵ1(s) > 0 when 0 < t∗ − s ≪ 1,

contradicting the definition of t∗. Hence, we must have bϵ2 < bϵ1 on [0,∞). Consequently,

by comparison, we have qϵ1 < qϵ2 in Qbε1 . Therefore, the sequence (qϵ, bϵ) is convergent.

4. Regularity of b

Lemma 3.3. Let (q, b) be defined as in lemma 3.2. Then (q, b) is a solution of problem (3.4)

and b ∈ C∞((0,∞)) ∩ C([0,∞)).

Proof. Define t̂ = sup{t > 0 | b > b∗ in [0, t]}. Later, in the next section we shall provide an

independent proof that t̂ = ∞. So, in this section, we assume that t̂ = ∞. As the limit of a

sequence of decreasing functions, b is also decreasing.

We claim that b(s) < b0 for every s > 0. Indeed, if this is not true, then we have b(s) = b0

for all s ∈ [0, δ] for some δ > 0. Note that for the ϵ problem, integrating qϵs = Lqϵ over Qbϵ ,

we have the following identity, for t2 > t1 > 0,∫
R
qϵ(x, t2)dx−

∫
R
qϵ(x, t1)dx+ k

∫ t2

t1

∫
R
qϵ(x, t) dxdt

= −
∫ t2

t1

qϵx(b
ϵ(t), t)dt = Π̃(bϵ(t1))− Π̃(bϵ(t2).

Sending ϵ↘ 0 and using Lebesgue’s dominated theorem we obtain∫
R
q(x, t2)−

∫
R
q(x, t1)dx+ k

∫ t2

t1

∫
R
q(x, t)dxdt = Π̃(b(t1)− Π̃(b(t2)) ∀ t2 > t1 > 0.
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Now if b ≡ b0 on [0, δ], we can integrate qs = Lq over (0, tϵ0)× (δ/2, δ) to derive∫ δ

δ/2

qx(b0, t)dt = Π̃(b(δ)− Π̃(b(δ/2)) = 0,

which is impossible since Hopf’s maximum principle implies that qx(b0, s) > 0 for each

s ∈ (0, δ). In conclusion, b(s) < b0 for every s > 0.

Now let η > −b0 be any small positive constant and M(η) be defined as in (3.8). For

each ϵ > 0, let (qϵ, bϵ) be the solution of (3.6). By (3.12), one has

0 6 qϵx(b(s), s) 6M(η)e−αbϵ(s)/2−(k+α2/4)s if bϵ(s) 6 −η.

It then follows from the last equation in (3.6) that

0 6 eαb̂
ϵ(s)/2[ℓeb

ϵ(s) − k]ḃϵ(s) 6M(η)e−[k+α2/4]s if bϵ(s) 6 −η. (3.13)

Sending ϵ↘ 0, we then obtain

0 6 eαb̂(s)/2[ℓeb(s) − k]ḃ(s) 6M(η)e−[k+α2/4]s if b(s) 6 −η. (3.14)

This implies that b is Lipschitz continuous on [δ,∞), where δ := inf{s > 0 | b(s) < −η}.

Now we can use (qε, bϵ) → (q, b) to conclude that q(b(s), s) = 0 and qx(b(s), s) = ḃ[ℓeb(s)−

k] for all s ∈ (δ,∞). Next we claim that that b ∈ C∞((δ,∞)) by the following bootstrap

argument. Notice that b ∈ Cβ/2((0,∞)) for some β > 1 which is not an integer. Then

by standard local regularity theory, e.g. potential theory [20, see chapter 5], the solution

of qs = Lq in Qb with zero boundary value on x = b(s) has the regularity q ∈ Cβ,β/2(D)

and qx ∈ Cβ−1,(β−1)/2(D) where D := {(x, s)|x > b(s), s > δ}. Consequently, qx(b(·), ·) ∈

C(β−1)/2((δ,∞)). Since ℓeb(s) − k < 0 for all s > 0, the last equation in (3.4) can be

differentiated to give ḃ[ℓeb − k] = qx(b, s), from which we conclude that b ∈ C(β+1)/2((δ,∞)).

Thus, by induction, b ∈ C∞((δ,∞)).

Sending η ↘ −b0, we must have δ → 0 since b(s) < b0 for each s > 0. Thus, b ∈

C∞((0,∞)) and (q, s) is a solution of (3.4).

Finally, we show that b is continuous at s = 0. Let δϵ := inf{s > 0 | bϵ(s) > b0−2ϵ}. Then

δϵ ∈ (0,∞] and b(s) > bϵ > b0 − 2ϵ for all s ∈ (0, δϵ). Hence, lims↘0 b(s) > b0 − 2ϵ. Sending
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ϵ↘ 0 we find lims↘0 b(s) > b0. As b(s) < b0 for s > 0, we conclude that lims→0 b(s) = b0, so

b ∈ C([0,∞).

5. Recovering p from q

Lemma 3.4. Let (q, b) be the classical solution of (3.4) as in lemma 3.3. Define

p(x, s) := p0(x) +

∫ s

0

q(x, t)dt ∀x ∈ R, s > 0,

(p, b) solves the problem (3.3), p solves problem (2.6), and b satisfies (2.7).

Proof. Since q(x, t) = 0 for x 6 b(t) and since ḃ < 0, we see that q = 0 on (−∞, b(s)]× [0, s]

for each t̂ > s > 0. Hence, p(x, s) ≡ p0(x) when x 6 b(s) and px(b(s), s) = p0x(b(s)) for each

t̂ > s > 0. Also, ps = q on R× (0,∞). In addition, when x > b0,

Lp(x, s) = Lp0(x) +
∫ s

0

Lq(x, t)dt = Lp0 +
∫ s

0

qt(x, t)dt = q(x, s) = ps,

since q(·, 0) = max{Lp0, 0} = Lp0 when x > b0.

When x ∈ (b(s), b0), write s = ŝ(x) the inverse of x = b(s). Then

p(x, t) = p0(x) +

∫ s

ŝ(x)

q(x, t)dt.

Consequently,

Lp(x, s) = Lp0(x)− ŝ′(x)qx(x, ŝ(x)) +

∫ s

ŝ(x)

Lq(x, t)dt

= Lp0(x)−
1

ḃ(ŝ(x))
qx(x, ŝ(x)) + q(x, s) = q(x, s) = ps.

Thus, (p, b) is a solution of the variational inequality (2.6) in R× [0, t̂).

Now we claim t̂ = ∞. Let (p∗(·), b∗) ∈ C1(R)× R be the well-known Merton solution of

p∗ = p0 on (−∞, b∗], p∗′′ + αp∗′ − kp∗ = 0 in (b∗,∞), p∗(∞) = 0. (3.15)

The solution p∗ is given by

p∗(x) := max
{
1− ex,

e−λ(x−b∗)

1 + λ

}
,
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and b∗ is the same as the defined in (3.6). Following the proof of Theorem 2.3 in [15], one

can show that p 6 p∗, b∗ 6 b by the comparison theorem. It then follows that t̂ = ∞.

Finally, p0 = q > 0 in Qb, so p > p0 in Qb. Also when x < b(s), p = p0 and Lp − ps =

Lp0 = k[ex−b0 − 1] < 0. Thus, p is a solution of (3.3) and also a solution of the obstacle

problem (2.6).

Since the solution of the variational inequality (2.6) is unique (see [20] chapter 1 and [15]),

the assertion of Theorem 3.1 thus follows.

Remark 3.1. Let pϵ := p0 +
∫ t

0
qϵ(x, t)dt. Then (pϵ, bϵ) does not solve the original problem;

one finds that pϵs − Lpϵ = −Lp0(x) in (b0 − ϵ, b0) × (0,∞). Indeed, as ϵ ↘ 0, pϵ ↘ p and

bϵ ↗ b.
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4.0 INTEGRAL EQUATIONS

In addition to the variational formulation of the American put problem (2.6)-(2.7), it is useful

to use an approach based on integral equation for the free boundary. In this chapter we

develop several integral equations which are useful for our analysis and numerical simulation

in the later chapters.

Let p(x, s) be defined in R×(0,∞) from problem (2.6)-(2.7), then ϕ(x, s) := p(x, s)−p0(x)

satisfies

ϕs − Lϕ(x, s) = H(x− b(s))Lp0(x) on R× (0,∞),

ϕ(·, 0) = 0 on R× {0}.
(4.1)

Where H is the heaviside function. Using Green’s formula, one can write the solution of

(4.1) as

ϕ(x, s) =

∫ s

0

∫ ∞

b(s−t)

Γ(x− y, t)Lp0(y)dydt, ∀ (x, s) ∈ R× [0,∞), (4.2)

where Γ is the fundamental solution given by

Γ(x, s) := K(x+ αs, s)e−ks, K(z, t) :=
1√
4πt

e−z2/4t.

Noting that

Lp0(x) = δ(x) + (lex − k)H(−x),

one can rewrite (4.2) as

ϕ(x, s) =

∫ s

0

Γ(x, t)dt+

∫ s

0

∫ 0

b(s−t)

[ℓey − k]Γ(x− y, t)dydt, (4.3)
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Differentiating the above equation with respect to the variables x, s yields, for every (x, s) ∈

R× (0,∞),

ϕx(x, s) =

∫ s

0

Γx(x, t)dt+

∫ s

0

∫ 0

b(s−t)

[ℓey − k]Γx(x− y, t)dydt, (4.4)

and

ϕs(x, s) = Γ(x, s) +

∫ 0

b(0)

[ℓey − k]Γ(x− y, s)dy

−
∫ s

0

ḃ(s− t)[ℓeb(s−t) − k]Γ(x− b(s− t), t) dt

= Γ(x, s) +

∫ 0

b0

[ℓey − k]Γ(x− y, s)dy

−
∫ s

0

ḃ(t)[ℓeb(t) − k]Γ(x− b(t), s− t) dt.

(4.5)

Moreover, for every s > 0 and x ̸= b(s),

ϕsx(x, s) =Γx(x, s) +

∫ 0

b0

[ℓey − k]Γx(x− y, s)dy

−
∫ s

0

ḃ(t)[ℓeb(t) − k]Γx(x− b(t), s− t) dt.

(4.6)

Evaluating these expressions at x = b(s) one then obtains the following theorem.

Theorem 4.1. Let (p, b) be the solution of the variational inequality (2.6)-(2.7). Then b

satisfies the following integral identities:

0 =

∫ s

0

Γ(b(s), t) dt+

∫ s

0

∫ 0

b(s−t)

[ℓey − k]Γ(b(s)− y, t)dydt, (4.7)

0 =

∫ s

0

Γx(b(s), t)dt+

∫ s

0

∫ 0

b(s−t)

[ℓey − k]Γx(b(s)− y, t)dydt, (4.8)

0 = Γ(b(s), s) +

∫ 0

b0

[ℓey − k]Γ(b(s)− y, s)dy (4.9)

−
∫ s

0

ḃ(t)[ℓeb(t) − k]Γ(b(s)− b(t), s− t) dt,

ḃ(s)[ℓeb(s) − k] = 2Γx(b(s), s) + 2

∫ 0

b0

[ℓey − k]Γx(b(s)− y, s)dy (4.10)

−2

∫ t

0

ḃ(t)[ℓeb(t) − k]Γx(b(s)− b(t), s− t) dt.
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Also, for any θ ∈ R,

ḃ(s)[ℓeb(s) − k] =
(
θ − b(s)

s

)
Γ(b(s), s)

+

∫ 0

b0

[ℓey − k]
(
θ − b(s)− y

s

)
Γ(b(s)− y, s)dy

−
∫ s

0

ḃ(t)[ℓeb(t) − k]
(
θ − b(s)− b(t)

s− t

)
Γ(b(s)− b(t), s− t) dt.

(4.11)

Proof. Let (p, b) be the solution of the problem (2.6), then the identities (4.3)-(4.5) must

hold. From the boundary values (3.1), one obtains

ϕ(b(s), s) = ϕx(b(s), s) = ϕs(b(s), s) = 0

which imply (4.8)-(4.10) directly. Since from (3.1e) psx(b(s)+, s) = ḃ(s)(ℓeb(s) − k),

ϕsx(b(s)+, s) = ḃ(s)(ℓeb(s) − k).

Applying this in (4.5) and taking into account the jump discontinuity of Γ, one obtains

ḃ(s)(ℓeb(s) − k) = lim
x→b(s)

[
Γx(x, s) +

∫ 0

b0

[ℓey − k]Γx(x− y, s)dy

−
∫ s

0

ḃ(t)[ℓeb(t) − k]Γx(x− b(t), s− t) dt
]

=Γx(b(s), s) +

∫ 0

b0

[ℓey − k]Γx(b(s)− y, s)dy

−
∫ t

0

ḃ(t)[ℓeb(t) − k]Γx(b(s)− b(t), s− t) dt+
ḃ(s)(ℓeb(s) − k)

2
,

which leads to (4.10).

Using the fact

Γx(x, s) =
1

2

(x
s
+ α

)
Γ(x, s),

the above identity becomes

ḃ(s)(ℓeb(s) − k) =
(b(s)

s
+ α

)
Γ(b(s), s)

+

∫ 0

b0

[ℓey − k]
(b(s)− y

s
+ α

)
Γ(b(s)− y, s)dy

−
∫ t

0

ḃ(t)[ℓeb(t) − k]
(b(s)− b(t)

s− t
+ α

)
Γ(b(s)− b(t), s− t) dt.

(4.12)

For any θ ∈ R, s ∈ R, multiplying (4.10) by θ + α and subtracting it from (4.12), one has

the integro-differential equation (4.11)
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We shall use (4.11) with particular choices of θ for our analysis and numerical simulation.
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5.0 NUMERICAL SIMULATION

In this chapter, we provide an accurate and fast numerical scheme to solve the integro-

differential equation of the free boundary (see equation (4.11))

ḃ(s)[ℓeb(s) − k] =
(
θ − b(s)

s

)
Γ(b(s), s)

+

∫ 0

b0

[ℓey − k]
(
θ − b(s)− y

s

)
Γ(b(s)− y, s)dy

−
∫ s

0

ḃ(t)[ℓeb(t) − k]
(
θ − b(s)− b(t)

s− t

)
Γ(b(s)− b(t), s− t) dt.

(5.1)

with θ chosen to remove the singularity in the last integral.

5.1 NUMERICAL SCHEME

There is a singularity in the last integral of equation (5.1) when s is close to zero. From the

analysis to be provided in chapter 7, the asymptotic expansion gives, for l > k,

b(s) ∼ b0 − A0

√
s, ḃ(s) ∼ − A0

2
√
s
, as s↘ 0

where A0 = 0.90344659 . . . . Hence when 0 < s≪ 1

lim
t→s−

b(s)− b(t)

s− t
= ḃ(s) ∼ − A0

2
√
s
∼ b(s)− b0

2s
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Therefore, taking θ = (b(s)− b0)/2s in (5.1) removes the singularity in a natural way. Then

one has

ḃ(s)[ℓeb(s) − k] = −
(b(s) + b0

2s

)
Γ(b(s), s)

+
1

s

∫ 0

b0

[ℓey − k]
(
y − b(s) + b0

2

)
Γ(b(s)− y, s)dy

−
∫ s

0

ḃ(t)[ℓeb(t) − k]
(b(s)− b0

2s
− b(s)− b(t)

s− t

)
Γ(b(s)− b(t), s− t) dt .

(5.2)

In order to avoid the difficulties at s = 0 in the numerical simulation, our scheme to

compute b(s) starts at time s = δ which is taken small enough to capture the critical

behavior of b(s). In practice, δ = 10−12. For notational simplicity, we denote

v(s) = leb(s) − kb(s); z(s) = b0 − b(s), and y(t) = b0 − b(t).

The equation (5.2) can be rewritten as

dv(s)

ds
= f(b(s), s) + g(b(s), s) + h(z(s), y(t), s, t) (5.3)

where

f(x, s) := −
(x+ b0

2s

)
Γ(x, s)

g(x, s) :=
1

s

∫ 0

b0

g1(x, s, y) dy,

g1(x, s, y) := [ℓey − k]
(
y − x+ b0

2

)
Γ(x− y, s)

h(z(s), y(t), s, t) :=

∫ s

0

h1(z(s), y(t), s, t) v̇(t) dt

h1(z(s), y(t), s, t) :=
(z(s)

2s
− z(s)− y(t)

s− t

)
Γ(y(t)− z(s), s− t)

The following iterative scheme is employed to solve the equation (5.3), for iterative index

n > 1

dv(n)

ds
= f(b(n)(s), s) + g(b(n)(s), s) + h(z(n−1)(s), y(n−1)(t), s, t);

b(n)(δ) = bδ, h(z(0)(s), y(0)(t), s, t) ≡ 0.

(5.4)

Notice that for each n, the equation (5.4) in fact is an ODE which can be solved numerically

by standard schemes such as the Euler method or the more accurate Runge-Kutta (RK)
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method, etc. In the nth iteration, the function h(z(n−1)(s), y(n−1)(t), s, t) can be regarded

as a known forcing function whose values at all s are already computed in the previous

(n − 1)th iteration. The left (right) rectangular rule, trapezoid rule or quadrature rule are

used to approximate the integrations of g and h. More details of the scheme are as follows.

1. Generating mesh points.

To better capture the behavior of b(s) in the region of small s, a strict monotonic function

s(G) = 100s+ln s is used to generate mesh points which are concentrated near 0 and suitable

for our scheme. Let s
(G)
min = s

(G)
1 , s

(G)
2 , . . . , s

(G)
M+1 = s

(G)
max, M ∈ N be evenly-spaced points of

[s
(G)
min, s

(G)
max], then s1 = δ, s2, . . . , sM+1 are the grid points for our scheme, where

s
(G)
i = 100si + ln si, i = 1, 2, . . . ,M + 1

2. Scheme for (5.4).

Denote ∆si = si+1 − si and let v
(n)
i , b

(n)
i , z

(n)
i , y

(n)
i , F (b

(n)
i , si), G(b

(n)
i , si), H

(n)
i be the ap-

proximations of v(n)(si), b
(n)(si), z

(n)(si), y
(n)(si), f(b

(n)
i , si), g(b

(n)
i , si), h(b

(n)
i , b(n)(t), si, t) re-

spectively, then the Scheme for (5.4) is

a) Euler

v
(n)
i+1 = v

(n)
i + [F (b

(n)
i , si) +G(b

(n)
i , si) +H

(n−1)
i ]∆si, i = 1, . . .M, n > 1;

v
(n)
1 = vδ := lebδ − kbδ, H

(0)
i ≡ 0.

(5.5)

where F (b
(n)
i , si) = f(b

(n)
i , si) and G(b

(n)
i , si), H

(n−1)
i are defined later.

b) Runge-Kutta: to apply the RK method, to generate refined mesh points of s denoted

by s1, s1+ 1
2
, s2, . . . , sM , sM+ 1

2
, sM+1. Then b

(n)

i+ 1
2

is the approximation of b(si+ 1
2
) and H

(n)

i+ 1
2

the

approximation of h(b
(n)

i+ 1
2

, b(n)(t), si+ 1
2
, t). Denote ∆si+ 1

2
= si+ 1

2
− si. The RK scheme is

v
(n)
i+1 = v

(n)
i +

∆si
6

(
K

(n)
1i + 2K

(n)
2i + 2K

(n)
3i +K

(n)
4i

)
, i = 1, . . .M, n > 1;

v
(n)
1 = vδ := lebδ − kbδ, H

(0)
i ≡ 0,

K
(n)
1i = F (b

(n)
i , si) +G(b

(n)
i , si) +H

(n−1)
i ;

K
(n)
2i = F (b

(n)
i +K

(n)
1i ∆si+ 1

2
, si+ 1

2
) +G(b

(n)
i +K

(n)
1i ∆si+ 1

2
, si+ 1

2
) +H

(n−1)

i+ 1
2

;

K
(n)
3i = F (b

(n)
i +K

(n)
2i ∆si+ 1

2
, si+ 1

2
) +G(b

(n)
i +K

(n)
2i ∆si+ 1

2
, si+ 1

2
) +H

(n−1)

i+ 1
2

;

K
(n)
4i = F (b

(n)
i +K

(n)
3i ∆si, si+1) +G(b

(n)
i +K

(n)
3i ∆si, si+1) +H

(n−1)
i+1 ;

(5.6)
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3. Scheme for the integrals G,H.

In the rhs of the equation (5.3), the two integrations are different. The first one, g, is a

space integral on [b0, 0] while the second, h, is a time integral on (0, s).

a) Approximation of g.

Let y1 = b0, y2, . . . , yN = 0, N ∈ N be the evenly-spaced points of [b0, 0] and ∆y =

(−b0)/M0, then

g(b
(n)
i , si) =

1

si

∫ 0

b0

g1(b
(n)
i , si, y) dy

≈ 1

si

N∑
j=0

wjg1(b
(n)
i , si, sj)∆y := G(b

(n)
i , si)

(5.7)

where wj are weights for a specific quadrature rule; for example, w0 = 1/2, wj = 1, 0 < j <

N,wN = 1/2 for the trapezoidal rule as described earlier.

b) Approximation of h.

After we have v
(n)
i , b

(n)
i , 1 6 i 6 M + 1 for all points, we can approximate h at si for

1 6 i 6M ,

h(z
(n)
i , y(n)(t), si, t) =

∫ s

0

h1(z
(n)
i , y(n)(t), s, t) v̇(n)(t) dt

≈
i∑

j=1

wijh1(z
(n)
i , z

(n)
j , si, sj)(v

(n)
j+1 − v

(n)
j )

:= H
(n)
i ,

(5.8)

where wij are weights which, for example for the trapezoidal rule, are defined by

i = 1 : wij = 1;

i > 1 : wi1 = wii =
1

2
, wij = 1, for 1 < j < i.

Then H
(n)
i+1/2 for 1 ≤ i ≤M can be obtained by interpolating H

(n)
i on the refined mesh points.

4. Obtaining b from v

After obtaining v
(n)
i by using (5.4) in the nth iteration, b

(n)
i has to be recovered from

v
(n)
i for the (n+ 1)th iteration. Recall that the function lex − kx is strictly monotonic when

x 6 b0. Therefore, for each v
(n)
i there exists a unique b

(n)
i (6 b0) such that

v
(n)
i = leb

(n)
i − kb

(n)
i
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The bisection method is used to obtain b
(n)
i from v

(n)
i . The values b0 and b∗ are used for the

initial guess of the root for the bisection method, and the error tolerance is set as 10−14.

5.2 NUMERICAL RESULTS

In what follows, we consider the following set of parameters: strike price E = 1, expiration

time T = 1, volatility σ = 0.25, and interest rate r = 0.05, while letting the dividend rate D

vary. The iterative tolerance for |b(n+1) − b(n)| is set as 10−8.

The iteration is rapidly convergent. In general for D ≤ r, 7 iterations provide a solution

of error less than 10−8 and for D > r 12 iterations are sufficient. One solution of B(t) =

Eeb(s) costs less than 2 minutes of computing time on a PC with C2D cpu. Figure 1 shows

the optimal exercise boundary B(t) in the original S, t variables. Numerical accuracy is

demonstrated by the overlap of the curves produced from 400, 800 and 1600 mesh points.

Afterwords, the numerical results are produced using 800 mesh points.

0.97 0.98 0.99 1

0.87

0.89

0.91

t

B
(t

)

400 mesh pts.

800 mesh pts.

1600 mesh pts.

r=.05, d=0.055, E=1, T=1,σ=0.25

Figure 2: Optimal exercise boundary B(t)
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Figure clearly indicates that the optimal exercise boundary is not convex when D is

slightly larger than r. Recall that s = σ2(T − t)/2 and b(s) = ln(B(t)/E) so that

B′′(t) = E
eb(s)σ2

4

[
b̈(s) + (ḃ(s))2

]
(5.9)

provides the connection between convexity in the two coordinates. In particular (5.9) says

that if B is not convex (B′′ < 0) in some region (as in Figure 2), then b̈ < 0 is not convex

in some s-region. On the other hand, if b̈ > 0 is convex in some s-region, then B must be

convex in the corresponded t-region.

0
0.1

0.2
0.3

0.4

−0.2
0

0.2

0

2

4

6
x 10

−3

zε=log(D/r)

s=
(T

−
t)

σ2
/2

Figure 3: Loss of convexity as ε := ln(D/r) crosses zero.

Figure 3 shows the variation of the free boundary as ε = ln(l/k) = ln(D/r) increases.

Here z = b(0) − b(t). For ε < 0, all free boundaries b(s) are convex and so are the original

optimal exercise boundaries B(t) due to the connection (5.9). For ε positive and small, the

free boundary b(s) loses its convexity near s = 0, i.e., near expiry. Moreover for ε positive

and increasing, equivalently as D is slightly larger than r and increasing, the non-convex

region becomes flatter and spreads out. When ε or D is large enough, the convexity of b(s)

is apparently restored (so is that of B(t)).
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start time

end time

ε2/8ln|ε|

Figure 4: Interval for which the free boundary is not convex

In Figure 4 we plot the location of the onset and termination of the region of non-

convexity for B(t). We obtain a teardrop region which confirms that convexity is lost when

D − r > 0 but is not very large, and that convexity returns when D becomes sufficiently

large (e.g., D > e0.4r ∼= 1.5r when r = 0.05 and the volatility σ = 0.25).

Figure 5 shows a plot of the location of the onset and termination of the region of non-

convexity of original B(t) (solid lines) when ε is very small. The red dashed curve is the

analytic estimate for the location of the non-convexity from chapter 6.

30



0 0.2 0.4 0.6 0.8 1
x 10

−3

0

0.5

1

1.5

2

2.5x 10
−8

ε=log(D/r)

s=
(T

−
t)

σ2
/2

ε2/8|lnε|
start time
end time

k=1.6

Figure 5: Interval for which the free boundary is not convex
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6.0 NON-CONVEXITY

The numerical evidence in the previous chapter suggests that the free boundary B(t) loses

convexity when the dividend rate D is larger than the interest rate r but not very large. In

this chapter we provide a rigorous proof that B(t) is not convex when 0 < D − r ≪ 1, i.e.,

Theorem 6.1. When 0 < D − r ≪ 1, the optimal exercise boundary is not convex. More

precisely, when ε := ln(D/r) = ln(ℓ/k) is positive and sufficiently small, neither S = B(t)

nor x = b(s) is convex. In particular, there exist a t̂ for which B′′(t̂) < 0 and hence b̈(ŝ) < 0,

where

0 < ŝ 6 ε2

6| ln ε|
and t̂ = T − 2ŝ

σ2
.

In this chapter we assume that ℓ > k.

It is convenient to visualize graphs in the first quadrant, hence consider z(s) = b0− b(s).

Also, by the asymptotic analysis in chapter 7, ḃ(s) =↗ ∞ when s ↘ 0 which motivates us

to study the inverse function of z(s). Since ḃ(s) < 0 for s > 0, ż(s) > 0 for s > 0. Hence for

all s > 0, there exists an inverse function denoted by s = s(z).

Lemma 6.1. Let s = s(z) be defined as above. If ez ds
dz

is not an increasing function, then the

original optimal exercise boundary B(t) is not convex. Furthermore, if B(t) is not convex,

neither is s(z).

Proof. Recall that

B(t) = Eeb(s) = Eeb0−z(s).
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It follows from that

d2B(t)

dt2
=
d2(eb0−z(s))

ds2

=
σ4e−b0

4E

d2(e−z(s))

ds2

= −σ
4e−b0

4E

d

ds

(
e−z(s)dz

ds

)
= −σ

4e−b0

4E

d

dz

(
[ez
ds

dz
]−1

)dz
ds

=
σ4e−b0

4E

(
ez
ds

dz

)−2 d

dz

(
ez
ds

dz

)dz
ds

=
σ4e−b0

4E
ez(

dz

ds
)3
d

dz

(
ez
ds

dz

)
Hence, if ez ds

dz
is not an increasing function, i.e., d

dz
(ez ds

dz
) < 0, then B(t) is not convex.

Furthermore one can obtain that

d2B(t)

dt2
=
σ4e−b0

4E

(
ez
ds

dz

)−2(
ez
ds

dz
+ ez

d2s

dz2

)dz
ds

=
σ4e−b0

4E
e−z

(dz
ds

)3

(
d2s

dz2
+
ds

dz

)
.

(6.1)

So if B(t) is not convex, neither is s(z) because s′ > 0.

In the following, we will show that when l > k and ε = ln l
k
≪ 1, then B(t) will lose

convexity near expiry. To show that B is not convex (B′′(t) > 0 not true), by lemma 6.1

we only need to show that ezds/dz is not an increasing function. For this, we compare the

values of ezds/dz at two points:

z1 := z(s1), s1 :=
ε2

[8 + ν] | ln ε|
, z2 := z(s2), s2 :=

ε2

[8− ν] | ln ε|
(6.2)

where ν can be any constant in (0, 8). For definiteness, we fix ν = 2. For convenience,we

denote the first non-convex position z∗ and the first non-convex time s∗, if they exist. If

they are infinite, then B(t) is convex in view of (6.1)

We can define

z∗ := sup{z > 0 | d
2s

dz2
+
ds

dz
≥ 0 in (0, z] }; s∗ := s(z∗). (6.3)
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To prove Theorem 6.1, several integral equations are required for our analysis. With the

particular choices of θ = 0 and θ = [b(s)− b0]/s in the equation (4.11), one has

ḃ(s)[ℓeb(s) − k] =
−b(s)Γ(b(s), s)

s

+
1

s

∫ 0

b0

[ℓey − k][y − b(s)]Γ(b(s)− y, s)dy

+

∫ s

0

ḃ(t)[eb(t)−b0 − 1]
b(s)− b(t)

s− t
Γ(b(s)− b(t), s− t) dt,

(6.4)

and

ḃ(s)[ℓeb(s) − k] =
−b0Γ(b(s), s)

s

+
1

s

∫ 0

b0

[ℓey − k][y − b0]Γ(b(s)− y, s)dy

−
∫ s

0

ḃ(t)[ℓeb(t) − k]
(b(s)− b0

s
− b(s)− b(t)

s− t

)
Γ(b(s)− b(t), s− t) dt.

(6.5)

Noting that ℓey − k = k[ey−b0 − 1], one can use the change of variable ỹ = y − b0 in the first

integral and the change of variable y = b0 − b(t) in the second integral of (6.4) and (6.5) to

obtain

[1− e−z]
dz

ds
= I1 + I2 − I3 = J1 + J2 + J3 (6.6)

where

I1 :=
(ε+ z)Γ(−ε− z, s)

k s
,

I2 :=
1

s

∫ ε

0

[ey − 1][z + y]Γ(−y − z, s)dy,

I3 :=

∫ z

0

[1− e−y]
( z − y

s(z)− s(y)

)
Γ(y − z, s(z)− s(y)) dy,

J1 :=
εΓ(−ε− z, s)

k s
,

J2 :=
1

s

∫ ε

0

y[ey − 1]Γ(−z − y, s)dy,

J3 :=

∫ z

0

[1− e−y]
( z

s(z)
− z − y

s(z)− s(y)

)
Γ(y − z, s(z)− s(y)) dy.
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Since it is better to consider the inverse function which is smooth on [0,∞), the equation

(6.6) can be rewritten as

ds

dz
=

1− e−z

I1 + I2 − I3
=

1− e−z

J1 + J2 + J3
. (6.7)

In the sequel, ε = ln(D/r) = ln(ℓ/k) is a small positive constant. We use the standard

notation o(1) to denote a generic small quantity that approaches zero as ε ↘ 0. We shall

utilize the first equation in (6.7) to estimate the positive lower bound of ds/dz. The key

here is that all terms I1, I2 and I3 are positive, so we have the basic estimate

(1− e−z)
dz

ds
6 I1 + I2,

ds

dz
> 1− e−z

I1 + I2
.

Proof. 1. Lower Bound of ds/dz

First we estimate I1. From (6.7), we have

I1 =
(ε+ z)Γ(−ε− z, s)

ks
=

ε+ z√
4πk2s3

e−(ε+z−αs)2/4s−ks

which implies that

∂I1
∂z

=
e−(ε+z−αs)2/4s

√
4πk2s3

{
1− (ε+ z − αs)(ε+ z)

2s

}
.

If s < ε2/2, since α = k − l − 1 < 0,

(ε+ z − αs)(ε+ z) ≥ (ε− αs)ε > ε2 > 2s.

Hence ∂I1
∂z

< 0 if s < ε2/2. Therefore

I1 ≤
εΓ(−ε, s)

ks
=
ε e−(ε+αs)2/4s−ks

√
4πk2s3

≤ εe−ε2/4s

√
4πk2s3

. (6.8)

To estimate I2, since α = k − l − 1 < −1 and z > 0, when 0 6 y 6 ε = −b0, one has

Γ(−y − z, s) =
1√
4πs

exp
[
− (y + z)2

4s
+

(y + z)α

2
− (k +

α2

4
)s
]

6 1√
4πs

exp
[
− (y + z)2

4s
− (y + z)

2
− (k +

α2

4
)s
]

6 1√
4πs

exp
[
− (y + z)2

4s
− y

2
− (k +

α2

4
)s
]
.
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It then follows, noting that for 0 ≤ y ≤ ε, 0 ≤ ey − 1 ≤ y ey ≤ (y + z)ey, that

I2 :=
1

s

∫ ε

0

[ey − 1][z + y]Γ(−y − z, s)dy

6 1√
4πs3

exp
[
− (k +

α2

4
)s+

ε

2

] ∫ ε

0

(y + z)2e−(y+z)2/(4s)dy

=
1√
4π

exp
[
− (k +

α2

4
)s+

ε

2

] ∫ (z+ε)/
√
s

z/
√
s

η2e−η2/4dη

6 1√
4π

exp
[
− (k +

α2

4
)s+

ε

2

] ∫ ∞

0

η2e−η2/4dη

=exp
[
− (k +

α2

4
)s
]
eε/2

6 eε/2 ∀ s > 0.

Combining these estimates, we then obtain

ds

dz
=

1− e−z

I1 + I2 − I3

> 1− e−z

I1 + I2

> z e−z

ε e−ε2/(4s)
√
4πk2s3

+ eε/2
∀ s ∈

[
0,
ε2

2

]
.

(6.9)

2. The Lower Bound of ds/dz on [0, s∗2], where s
∗
2 = min{s2, s∗}.

(1) First we consider s ∈ [0, s1] where s1 = ε2/(10| ln ε|), 0 < ε ≪ 1. When s ∈ [0, s1],

since e−ε2/(4s)/s3 is a increasing function, from (6.8) one has

I1 ≤
εe−ε2/4s

√
4πk2s3

≤ εe−ε2/4s1√
4πk2s31

= o(1). (6.10)

Obviously, z(s) is bounded when s > 0; say z 6 M , M > 0. When s ∈ (0, s1], from

(6.9), one has

ds

dz
> 1− e−z

o(1) + eε/2
> ze−z

o(1) + eε/2
> ze−z

o(1) + 1
> ze−M

o(1) + 1
. (6.11)

which implies that z2 6 2(o(1) + 1)eM s = o(ε2). Hence when s ∈ [0, s1], z(s) = o(ε).

In particular, z1 := z(s1) = o(ε). Also if ε is small, 0 < z < 1/2 < 1 which implies z > z2

and 1− z > z. Hence

ds

dz
> ze−z

o(1) + 1
, ∀ z ∈ [0, z1].
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which further implies that

s > z2e−z

o(1) + 1
∀ z ∈ [0, z1]

To extend the estimate beyond s1, we notice that s′′ + s′ > 0 implies that (ezs′)′ > 0 so

integrating it over [x, x+ h] ⊂ (0, z∗] one obtains

s′(x+ h) > e−hs′(x) if 0 < x < x+ h 6 z∗. (6.12)

(2) With z1 := z(s1), s
∗ := s(z∗), s∗2 := min{s2, s∗}, and z∗2 := z(s∗2), we claim that

z∗2 < 2z1. Suppose not. Then we take h = z1 and integrate (6.12) over [0, z1] to obtain

s(2z1)− s(z1) > e−z1s(z1),

hence

s(2z1) > [1 + e−z1 ]s(z1) = [2− o(ε)]s(z1).

However, since s2 =
5
3
s1, we obtain

s(2z1) > [2− o(ε)]s1 > s2 > s(z∗2),

contradicting the assumption z∗2 > 2z1. Hence, we must have z∗2 < 2z1.

(3) We now consider the lower bound of ds/dz in [s1, s
∗
2]. For any z ∈ [z1, z

∗
2 ] ⊂ [z1, 2z1],

letting h = z − z1 and x+ h = z in (6.12) and using (6.11) leads to

ds(z)

dz
> e−(z−z1)

ds(z1)

dz
> e−(z∗2−z1)

ds(z1)

dz

> e−z∗2
ds(z1)

dz
> e−z∗2z1e

−z1

o(1) + 1

=
e−z1−z∗2z1
[o(1) + 1]z

z > e−z1−z∗2

[o(1) + 1]

z

2

> z

4
.

In conclusion, when ε is positive and sufficiently small,

ds(z)

dz
> z

4
, for 0 6 z
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which implies that

s(z) > z2

8
, s(z)− s(y) > z2 − y2

8
, ∀ 0 6 y 6 z 6 z∗2 . (6.13)

3. Upper Bounds of ds/dz

The optimal exercise boundary is convex if and only if s∗ = ∞. In what follows, we shall

show that when ε is small positive, s∗ < s2. To do this, we show that the value ezds/dz at

z2 is much smaller than at z1, so it cannot be an increasing function and therefore the free

boundary cannot be convex. In (6.11), we already have a lower bound of ezds/dz at z1 if

s∗ > s1 (if s∗ < s1, the non-convexity is established). Here what we need is an upper bound

at z = z2. The basic idea is to use the second equation in (6.6).

Estimate of J3:

In case s′′ > 0, it is easy to show that J3 is positive. Under the weaker condition

s′′ + s′ > 0 in (0, s∗], we shall show that J3 is almost positive. For this purpose, we write

J3 =

∫ z

0

[1− e−y]R(z, y)Γ(y − z, s(z)− s(y)) dy

where

R(z, y) :=
z

s(z)
− z − y

s(z)− s(y)

=
ys(z)− zs(y)

s(z)[s(z)− s(y)]

=
zy

s(z)[s(z)− s(y)]

(s(z)
z

− s(y)

y

)
=

zy

s(z)[s(z)− s(y)]

∫ z

y

(s(x)
x

)′
dx

=
zy

s(z)[s(z)− s(y)]

∫ z

y

s′(x)x− s(x)

x2
dx

=
zy

s(z)[s(z)− s(y)]

∫ z

y

∫ x

0
x̂s′′(x̂)dx̂

x2
dx.
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Since s′′ + s′ > 0 in (0, z∗], when x̂ ∈ (0, z∗], we have s′′(x̂) > −s′(x̂). Also by (6.12),

s′(x̂) 6 ex−x̂s′(x) 6 ezs′(x) when 0 < x̂ 6 x 6 z 6 z∗. Hence s′′(x̂) > −s′(x̂) > −ezs′(x).

Thus, when 0 < y < z < z∗2 ,

R(z, y) > − zy

s(z)[s(z)− s(y)]

∫ z

y

∫ x

0
x̂ezs′(x)dx̂

x2
dx = − zyez

2 s(z)
.

Next using (6.13) we derive that

Γ(y − z, s(z)− s(y)) <

√
2√

4π[s(z)− s(y)]
6

√
2√

π[z2 − y2]
.

Hence,

J3 =

∫ z

0

[1− e−y]R(z, y)Γ(y − z, s(z)− s(y)) dy

> −
∫ z

0

y
zyez

2 s(z)

√
2√

π(z2 − y2)
dy

= −
√
πz3ez

4
√
2s(z)

> −z, ∀ z ∈ (0, z∗2 ].

Estimate of J2:

One can estimate the lower bound of J2 as follows:

J2 =
1

s

∫ ε

0

y[ey − 1]Γ(−z − y, s)dy

> eαz−(k+α2/4)s

√
4πs3

∫ ε

0

y2e−(z+y)2/(4s)dy

=
eαz−(k+α2/4)s

√
4π

∫ (z+ε)/
√
s

z/
√
s

e−η2/4dη.

In view of (6.13), we see that when s ∈ (0, s∗2], we have

J2 >
eo(ε)√
4π

∫ ε/
√
s

2

e−η2/4dη > 1

4

∫ 3

2

e−η2/4dη := c > 0.

It then follows that

J2 + J3 > c− z > 0 ∀ s ∈ (0, s∗2] ( ⇔ ∀ z ∈ (0, z∗2 ]).
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4. Completion of the Proof Now suppose z∗ > z2. Then z
∗
2 = z2 and s∗2 = s2. Hence we

can use the second equation in (6.6) to conclude that

1

z

ds(z)

dz

∣∣∣
z=z2

=
1− e−z

z

1

J1 + J2 + J3

∣∣∣
z=z2

6 1

J1

∣∣∣
z=z2

=
k

ε

√
4πs3e(ε+z(s)−αs)2/(4s)+ks

∣∣∣
s=s2=ε2/(−6 ln ε)

6 ε1/4.

In comparing with (6.13), we see that

ez2
ds(z2)

dz
− ez1

ds(z1)

dz
6 z2e

z2ε1/4 − 1

2
ez1z1

6 2z1e
2z1ε1/4 − ez1z1

2
< 0.

This implies that ezds(z)/dz is not an increasing function on [z1, z2]. Consequently, we must

have z∗ < z2. This completes the proof of Theorem 6.1.
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7.0 NEAR-EXPIRY BEHAVIOR

Near-expiry estimates for b(s) and B(t) = Eeb(s) have been obtained using asymptotic anal-

ysis for the entire range of the parameters D and r [32,42]. The leading order expansion can

be made rigorous. A rigorous proof for b(s) alone can be found in [34] and another for D = 0

appears in [15]. Here we are more interested in the estimate for b̈(s) which implies that very

near expiry, the optimal exercise boundary begins convex. The location of the non-convex

region occurs a little farther from expiry near t̂ given in Theorem 6.1. We show that

Theorem 7.1. Assume that D > r. Let A = 0.903446597884.... Then

b(s) = ln
r

D
− [A+ o(1)]

√
s, ḃ(s) = −A+ o(1)

2
√
s

, b̈(s) =
A+ o(1)

4s3/2
∀ s > 0

where lims↘0 o(1) = 0. Consequently, the inverse, s = s(z), of z = ln(D/r)− b(s) satisfies

s(z) =
z2

A2 + o(1)
, s′(z) =

2z

A2 + o(1)
, s′′(z) =

2

A2 + o(1)
∀ z > 0.

Proof. Instead of considering the premium ϕ = p− p0, we consider the rate, q = ps = ϕs, of

the premium change. We study the family {qL, bL}L>0 which magnifies the region of interest

near s = 0 and is defined by

qL(x, s) := L q(b0 + L−1x, L−2s), bL(s) = L [b(L−2s)− b0 ].

Information obtained from bL will be cycled back to b through the identity

b(sθ) = b0 +
√
s bL(θ)

∣∣∣
L=1/

√
s

∀ θ ∈
[1
2
, 2
]
, s > 0. (7.1)

We shall show that limL→∞ bL(θ) = A1

√
θ in C2([δ, h]) for any h > δ > 0.
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For each L > 0, by direct substitution into (3.4) and (3.5) (qL, bL) satisfies

qLs = qLxx + αL−1qLx − kL−2qL ∀x > bL(s), s > 0,

qL(x, s) = 0 ∀x 6 bL(s), s > 0,

kL[eL
−1bL(s) − 1]ḃL(s) = qLx (b

L(s), s) ∀ s > 0,

qL(x, 0) = δ(x− εL) + kmax{ ex/L−1
L

, 0} ∀x ∈ R.

From (3.12) we derive that

0 < bL(s) ḃL(s) 6 C, 0 > bL(s) > −
√
2Cs ∀ s > 0,

0 6 qL(x, s) = L q(b0 + xL−1, sL−2) 6 LC{b0 + xL−1 − b(L−2s)}

= C[x− bL(s)] 6 C[x+
√
2Cs] ∀ s > 0, x ∈ [bL(s), εL/2].

Since the bounds of the above estimates for qL and bL are independent of L, one can show

that {(qL, bL)}L>1 is locally compact and we can select a subsequence along which (qL, bL)

approaches a limit, (Ψ, ζ). The limit satisfies

Ψs = Ψxx ∀x > ζ(s), s > 0,

Ψ(x, s) = 0, ∀x 6 ζ(s), s > 0,

kζ(s)ζ̇(s) = Ψx(ζ(s), s) ∀ s > 0,

Ψ(x, 0) = kmax{0, x} ∀x ∈ R,

0 6 Ψ(x, s) 6 C[x− ζ(s)] ∀x > ζ(s), s > 0.

Since the solution is unbounded, the last condition imposes a constraint on the growth of

the solution.

This problem admits a unique solution and the solution is self-similar, given by

ζ(s) = A1

√
s ∀ s > 0,

Ψ(x, s) = k
(
x−

A1

√
s
∫∞
x/

√
s
(η − x√

s
)e−η2/4dη∫∞

A1
(η − A1)e−η2/4

)
∀x > ζ(s), s > 0,
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where A1 is the solution of the equation

1 +
A1

∫∞
A1
e−η2/4dη∫∞

A1
(η − A1)e−η2/4dη

=
A2

1

2
.

It is easy to verify that this equation is equivalent to that appearing in [42].

Once we know the uniqueness of the limit, we then know that the whole sequence (qL, bL)

converges. In addition, by compactness, limL→∞ bL = ζ in C2([1/2, 2]). Using (7.1) and its

differentiation with respect to θ, we obtain the assertion of Theorem 7.1. This completes the

proof.

In [42], the ideas were presented for obtaining a formal estimate for the leading order

behavior of b(s) in Theorem 7.1. Here we extend these ideas to a full expansion and provide

two alternative leading order expansions of b(s).

1. A Formal Expansion. Recall that ϕ := p−p0 satisfies ϕs−Lϕ = δ(x)+k[ex−b0−1]H(x−

b(t))H(−x), with zero initial value. When ε = −b0 = ln(ℓ/k) > 0, the Delta function will

not interfere much with the solution near (b0, 0). Hence, we expect the following expansion

ϕ(x, s) = Φ(ξ, s)
∣∣∣
ξ=

x−b(0)√
s

, Φ(ξ, s) ∼ s
∞∑
n=1

ϕn(ξ)s
n/2, b(s) ∼ b0 +

∞∑
n=1

Ans
n/2.

Note that Φ satisfies

Φs −
ξ

2s
Φξ −

1

s
Φξξ =

α√
s
Φξ − kΦ + k

∞∑
n=1

ξnsn/2

n!
∀ ξ ∈

(b(s) + ε√
s

,
ε√
s

)
, s > 0.

This leads to the following

Lnϕn =
k ξn

n!
+ αϕn−1 − kϕn−2 ∀ ξ ∈ (A1,∞)

where

Lnψ :=
(
1 +

n

2
− ξ

2

d

dξ
− d2

dξ2

)
ψ.

Here we have used the extension ϕ0 = ϕ−1 ≡ 0.
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The boundary conditions for ϕn and the unknown An will be derived from

0 = ϕ(b(s), s) = Φ(ξ(s), s), 0 = ϕx(b(s), s) = s−1/2Φξ(ξ(s), s),

ξ(s) = [b(s)− b0]s
−1/2 ∼ A1 +

∞∑
n=2

Ans
n−1/2.

Using the above asymptotic expansion, we have

0 ∼
∞∑
n=1

sn/2ϕn

(
A1 +

∞∑
m=2

Ams
(m−1)/2

)
∼

∞∑
n=1

sn/2
∞∑
i=0

ϕ
(i)
n (A1)

i!

( ∞∑
m=2

Ams
(m−1)/2

)i

∼ ϕ1(A1)s
1/2 + [ϕ2(A1) + ϕ′

1(A1)A2]s+
∞∑
n=3

[ϕn(A1) + ϕ′
1(A1)An + · · · ]sn/2

0 ∼
∞∑
n=1

sn/2ϕ′
n

(
A1 +

∞∑
m=2

Ams
(m−1)/2

)
∼ ϕ′

1(A1)s
1/2 + [ϕ′

2(A1) + ϕ′′
1(A1)A2]s+

∞∑
n=3

[ϕ′
n(A1) + ϕ′′

1(A1)An + · · · ]sn/2.

Hence, we obtain the boundary conditions and the free boundary conditions

ϕ1(A1) = 0, ϕ′
1(A1) = 0, ϕ1(ξ) = O(ξ) as ξ → ∞,

ϕ2(A1) = 0, ϕ′
2(A1) + ϕ′′

1(A1)A2 = 0, ϕ2(ξ) = O(ξ2) as ξ → ∞,

ϕn(A1) = an−1, ϕ′
n(A1) + ϕ′′

1(A1)An = bn−1, ϕn(ξ) = O(ξn) as ξ → ∞

where am, bm are constants depending only expansions of order up to m.

For the homogeneous equation Lnψ = 0, one can verify that the following are two linear

independent solutions:

ψn(ξ) =

∫ ∞

ξ

(η − ξ)n+2e−η2/4dη, ψ̃n(ξ) =

∫
R
(η − ξ)n+2e−η2/4dη.

Here ψ̃n is a polynomial of degree n+ 2. It is easy to verify that

ϕ1(ξ) = k
{
ξ − A1ψ1(ξ)

ψ1(A1)

}
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where A1 is the solution of the transcendental equation∫ ∞

A1

(η − A1)
2(η + 2A1)e

−η2/4dη = 0 ⇒ A1 = −0.9034465978843... (7.2)

2. An Alternative Formal Derivation We can also use the first or second equation

in (6.6) to derive the asymptotic behavior. Assume that 0 < s < ε3. Also assume that

z(s) = [A+O(
√
s)]

√
s. Then one finds

J1 6
−b0

k
√
4πs3/2

exp
[
− (−b0 − αs)2

4s
− ks

]
6 −b0
k
√
4πs3/2

exp
(
− b20

4s

)
6 O

(exp(−b20/ε3)
ε9/2

)
.

Hence J1 can be neglected in the expansion for small s. Also,

J2 =
1√
4π

∫ ∞

A

(A− η)2e−η2/4dη +O(z).

For J3, one uses the change of variable

η =
(z − y)√
s(z)− s(y)

≈ A

√
z − y

z + y
.

Then one derives that

J3 =
A2

√
4π

∫ A

0

(A2 − η2

A2 + η2

)2

e−η2/4dη +O(z).

Thus the differential equation (6.6) gives the following equation for A:

A2 =
1√
π

∫ ∞

A

(A− η)2e−η2/4dη +
A2

√
π

∫ A

0

(A2 − η2

A2 + ζ2

)2

e−η2/4dη

=⇒ A = 0.9034465978843....

Numerically it is evident that A = −A1 and is precisely the value obtained in [42].
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8.0 FAR-FROM EXPIRY BEHAVIOR

The numerical simulations in chapter 5 suggest that as the dividend rate D grows larger than

r, the non-convex region broadens (and flattens) and moves farther from expiry. Indeed, for

large enough D, the numerics suggest that convexity is restored. We anticipate that a

rigorous analysis of this phenomenon will require sharp estimates on the far-from-expiry

behavior of the American put option of the sort summarized in this chapter.

Let (p, b) be the solution of the variational problem (2.6) and (2.7). We are interested in

the behavior of b(s) and p(x, s) as s→ ∞. From chapter 3, we have

p(·, s) ↗ p∗(·), b(s) ↘ b∗ as s↗ ∞,

where (p∗, b∗) is the solution of the infinite horizon problem, given by

p∗(x) := max
{
1− ex,

e−λ(x−b∗)

1 + λ

}
, b∗ := ln

λ

1 + λ
, λ :=

α

2
+
√
β.

In this chapter, we prove the following,

Theorem 8.1. There exists a constant m > 0 such that for each s > 1,

b(s) = b∗ +
[
m+ O(1)s−

1
2

]
s−

3
2 e−βs, ḃ(s) = −

[
mβ + O(1)s−

1
2

]
s−

3
2 e−βs,

where O(1) is a generic function bounded uniformly in s ∈ [1,∞).
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Theorem 8.2 (Decay Rates). There exist positive constants c and C such that for each

s > 1,

cρ(s) 6 ∥p(·, s)− p∗(·)∥L∞(R) 6 Cρ(s), cρ(s) 6 ∥ps(·, s)∥L∞(R) 6 Cρ(s)

where

ρ(s) =


s−

3
2 e−βs if α > 0,

s−1 e−ks if α = 0,

s−
1
2 e−ks if α < 0.

Theorem 8.3 (Asymptotic Profiles). There exist constants c1 > 0 and c2 ∈ R that

depend only on k and ℓ such that for every x ∈ R and s > 2,

ps(x, s)

ρ(s)
=



e−ξ2
{
c1 + c2ξs

− 1
2 + O(1)(1 + ξ2)s−1

}
if α < 0,

z+e−[z+b(s)/
√
4s]2

{
c1 + O(1)

(
1 + z ln s

)
s−1/2

}
if α = 0,

[x− b(s)]+e−x2/(4s)−αx/2
{
c1 + O(1)(s−1/2 + |x|s−1 ln s)

}
if α > 0

where ξ := (x + αs)/
√
4s, z := (x − b(s))/

√
4s, z+ := max{0, z}, and O(1) is a func-

tion bounded uniformly in (x, s) ∈ R × [1,∞). Consequently, for some positive constant c

depending on k and ℓ,

lim
s→∞

∥∥∥∥p∗ − p

ρ(s)
−Ψ

∥∥∥∥
L∞(R)

= 0; Ψ(x, s) :=


c e−ξ2 if α < 0,

c z+e−z2 if α = 0,

c [x− b∗]+e−αx/2 if α > 0.
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Proof of Theorem 8.1. In the case ℓ = 0 (i.e. no dividend), Chen and Chadam already

provided an outline of the proof in [15]. Here we follow that outline and provide the full

details for the general case ℓ > 0.

Choosing θ = b(s)/s in identity (4.11) and dividing (4.9) and (4.11) by Γ(b(s), s) and

Γ(b(s), s)/s, respectively, one obtains the following integral identities that are valid for all

ℓ ≥ 0:

1 +

∫ 0

b0

A(s, y)dy =

∫ s

0

B(s, t)dt , (8.1)

ḃ(s)[ℓeb(s) − k]s

Γ(b(s), s)
=

∫ 0

b0

yA(s, y) dy +

∫ s

0

[t δ(s, t)− b(t)]B(s, t) dt (8.2)

where, for s > 0, y ∈ (b0, 0), t ∈ (0, s),

A(s, y) := [ℓey − k]
Γ(b(s)− y, s)

Γ(b(s), s)
= A∞(y) eδ1(s,y),

B(s, t) := ḃ(t)[ℓeb(t) − k]
Γ(b(s)− b(t), s− t)

Γ(b(s), s)
= ζ(t)

(
1− t

s

)−1/2
eδ2(s,t),

A∞(y) := [ℓey − k]eαy/2,

ζ(t) := ḃ(t)[ℓeb(t) − k]eβt+αb(t)/2,

δ(s, t) :=
b(s)− b(t)

s− t
,

δ1(s, y) :=
2b(s)y − y2

4s
,

δ2(s, t) :=
b2(s)

4s
− [b(s)− b(t)]2

4(s− t)
.

Note that the terms
∫ 0

b0
Ady and

∫ 0

b0
yAdy do not appear when ℓ 6 k since b0 = 0.

In chapter 3 we showed that

b ∈ C∞((0,∞)), lim
s↘0

b(s) = b0 := min{0, ln(k/ℓ)}, ḃ(s) < 0, ℓeb(s) − k < 0 ∀ s > 0.

Noting that A > 0, B > 0, δ < 0, it then follows from (8.1) and (8.2) that for every s > 1,

0 <
ḃ(s)[ℓeb(s) − k]s

Γ(b(s), s)
6

∫ s

0

[tδ(s, t)− b(t)]B(s, t)dt 6
∫ s

0

[−b(t)]B(s, t)dt

6 |b(s)|
∫ s

0

B(s, t)dt = |b(s)|{1 +
∫ 0

b0

A(s, y)dy}

6 |b∗|{1 +
∫ 0

b0

[ley − k]eαy/2 e(2b(s)y−y2)/4s dy}

6 |b∗|{1 + |b0|(ℓ− k)e|b0α|/2+b0b∗/2} := |b∗|C1
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where C1 = 1 + |b0|(ℓ− k)e|b0α|/2+b0b∗/2. Hence, ḃ(s) = O(1)s−3/2e−βs for s > 1.

Once we have the upper bound of |ḃ|, we can study the asymptotic behavior of the

right-hand side of (8.2) as s→ ∞. First, for each s > 1, t ∈ [0, s], and y ∈ [b0, 0],

δ(s, t) = O(1)s−1, δ1(s, y) = O(1)s−1, δ2(s, t) = O(1)s−1.

Next note that

ζ(t) = O(1)ḃ(t)eβt = O(1)t−3/2 for t ∈ [1,∞)

and ζ(t) = O(1)ḃ(t) for t ∈ [0, 1]. Hence, for s > 1,∫ ∞

s

ζ(t)dt = O(1)

∫ ∞

s

t−3/2 dt = O(1)s−1/2, (8.3)∫ s

s/2

ζ(t)
(
1− t

s

)− 1
2
dt = O(1)

∫ s

s/2

t−3/2
√
s√

s− t
dt =

O(1)√
s

∫ 1

1/2

θ−3/2

√
1− θ

dθ =
O(1)√
s
, (8.4)∫ s/2

0

t

s
(1 +

t

s
ζ(t)dt =

O(1)

s

∫ 1/2

0

ḃ(t) dt+
O(1)

s

∫ s/2

1/2

t−1/2dt =
O(1)√
s

(8.5)∫ s/2

0

t+ 1

s
ζ(t)dt =

O(1)

s

∫ 1/2

0

ḃ(t) dt+ O(1)

∫ s/2

1/2

t

s
t−3/2(1 +

t

s
)dt =

O(1)√
s
. (8.6)

Thus, using (1− t/s)−1/2 = 1 + O(1) t/s for t ∈ [0, s/2] we obtain from (8.2) that

ḃ(s)[ℓeb(s) − k]s

Γ(b(s), s)
=

∫ 0

b0

yA∞(y)eδ1(s,y) dy +

∫ s

0

[tδ(s, t)− b(t)]ζ(t)(1− t

s
)−1/2eδ2(s,t) dt

=

∫ 0

b0

yA∞(y)(1 +
O(1)

s
) dy +

∫ s

0

[t(1 +
O(1)

s
)− b(t)]ζ(t)(1− t

s
)−1/2(1 +

O(1)

s
) dt

=

∫ 0

b0

yA∞(y) dy + (1 +
O(1)

s
)

∫ s

0

t

s
ζ(t)(1− t

s
)−1/2 dt

− (1 +
O(1)

s
)

∫ s

o

b(t)ζ(t)(1− t

s
)−1/2 dt+

O(1)

s

= (1 +
O(1)

s
)

∫ s

s/2

ζ(1− t/s)−1/2dt+ (1 +
O(1)

s
)

∫ s/2

0

t

s
ζ(t)(1 +

t

s
)dt+

O(1)

s

− (1 +
O(1)

s
)

∫ s

s/2

b(t)ζ(t)(1− t

s
)−1/2dt+ (1 +

O(1)

s
)

∫ s/2

0

b(t)ζ(t)dt+

∫ 0

b0

yA∞(y) dy

= (1 +
O(1)

s
)O(1)

∫ s/2

0

b(t)ζ(t)dt+

∫ 0

b0

yA∞(y) dy +
O(1)√
s

= −(1 +
O(1)

s
)

∫ ∞

0

b(t)ζ(t)dt− O(1)

∫ ∞

s/2

ζ(t)dt+
O(1)√
s
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which implies

ḃ(s)[ℓeb(s) − k]s

Γ(b(s), s)
=

∫ 0

b0

yA∞(y) dy −
∫ ∞

0

b(t)ζ(t) dt+
O(1)√
s

:= m1 +
O(1)√
s
.

Noting that b(s) = b∗ + O(1)e−βs, one obtains

ḃ(s) = −[m1 + O(1)s−1/2]
Γ(b(s), s)

[ℓeb(s) − k]s
= −[mβ + O(1)s−1/2]s−

3
2 e−βs

and after integration, b(s) = b∗ + [m+O(1)s−1/2]s−3/2e−βs, where m = m1e
−αb∗/2/(

√
4π[k −

ℓeb
∗
]β).

To see that m is positive, we let s→ ∞ in (8.1) to obtain the identity 1+
∫ 0

b0
A∞(y) dy−∫∞

0
ζ(t) dt = 0. Adding a multiple of −b0 of this identity to the defining equation of m1 we

find that

m1 = −b0 +
∫ 0

b0

[y − b0]A∞(y) dy +

∫ ∞

0

[b0 − b(t)]ζ(t) dt > 0.

This completes the proof of Theorem 8.1.

Proof of Theorem 8.2. Note that the function q(x, s) := ps(x, s)e
αx/2+βs satisfies

qs − qxx = 0 in Qb := {(x, s) | x > b(s), s > 0},

q(b(s), s) = 0 ∀ s > 0.
(8.7)

Since p > p0 implies q(·, 0) = ps(·, 0) > 0, so by the maximum principle and Hopf’s Lemma,

q > 0 in Qb (see chapter 3 for the details of a rigorous derivation). We shall construct

comparison functions to estimate the upper and lower bound of q.

Upper bound. Fix an arbitrary T > 0. Let q̄ be the solution of the problem

q̄s − q̄xx = 0 in [b(T ),∞)× (0, T ],

q̄ = 0, on {b(T )} × [0, T ],

q̄ = q, on [b(T ),∞)× {0}.

(8.8)

Then by comparison, q 6 q̄ on [b(T ),∞)× [0, T ]. In particular, for x > b(T ),

q(x, T ) 6 q̄(x, T ) =

∫ ∞

b(T )

e−(x−y)2/(4T ) − e−(x+y−2b(T ))2/(4T )

√
4πT

q(y, 0) dy. (8.9)
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Using e−a − e−b 6 e−a(b− a) for 0 6 a 6 b, one obtains

e−(x−y)2/(4T ) − e−(x+y−2b(T ))2/(4T )

=e−(x−y)2/4T
[
(x+ y − 2b(T ))2 − (x− y)2

]
/4T

=e−(x−y)2/4T (x− b(T ))(y − b(T ))/T.

Applying this in (8.9) and noting the fact q(x, 0) = δ(x) + eαx/2[ℓex − k]χ[b0,0](x), where δ is

the Dirac measure and χA is the characteristic function of the set A, one then obtains, for

x > b(T ),

q(x, T ) 6
∫ ∞

b(T )

[x− b(T )][y − b(T )]e−(x−y)2/(4T )

√
4πT 3

q(y, 0) dy

=
(x− b(T ))e−x2/(4T )

√
4πT 3

{
− b(T ) +

∫ 0

b0

(y − b(T ))(ℓey − k)e−y2/(4T )+αy/2+xy/(2T )dy
}

6 (x− b(T ))e−x2/(4T )|b(T )|√
4πT 3

{
1 + |b0| (ℓ− k)eb

∗b0/(2T )+|αb0|/2
}
.

For s > 1, replacing T by s yields

ps(x, s) = q(x, s)e−αx/2−βs

6 |b(s)|(x− b(s))e−x2/4s

s
√
4πs

{1 + |b0|(ℓ− k)e(b
∗+α)b0/2}

6 |b(s)| [x− b(s)]+s−1Γ(x, s)C1

where C1 = 1 + |b0|(ℓ− k)e(b
∗+α)b0/2. Consequently, noting that ps(x, s) = 0 for x < b(s),

∥ps(·, s)∥L∞(R) 6 C1|b∗| max
x>b∗

{
(x− b∗)s−1Γ(x, s)

}
6 C2ρ(s)

To compute max
x>b∗

{
(x− b∗)s−1Γ(x, s)

}
, for each s, define

f(x) := (x− b∗)s−1Γ(x, s) =
e−βs

√
4πs3

(x− b∗)e−x2/4s+αx/2, in x > b∗.

Then one has

f ′(x) =
e−βse−x2/4s+αx/2

√
4πs3

[2s− (x− b∗)(x− 2αs)

2s

]
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which implies that f(x) reach its maximum at its one critical point x0, where

x0 :=
(b∗ + 2αs) +

√
(b∗ − 2αs)2 + 8s

2
.

Therefore ∥ps(·, s)∥L∞(R) 6 C1|b∗|f(x0).

To estimate f(x0) = (x0 − b∗) exp(−x20/4s+αx0/2)e
−βs/

√
4πs3 as s↗ ∞, note that the

quantity (x0 − b∗) exp(−x20/4s+ αx0/2) is increasing as s increasing, hence

(x0 − b∗) exp
(
− x20

4s
+
αx0
2

)
≤ lim

s→∞
(x0 − b∗) exp

(
− x20

4s
+
αx0
2

)
.

When α < 0, as s↗ ∞

x0 =
8s(αb∗ − 1)

(b∗ + 2αs)−
√
(b∗ − 2αs)2 + 8s

→ −αb
∗ − 1

α
:= x∗0.

Hence C1|b∗|f(x0) 6 C2s
−3/2e−βs. When α = 0, x0/

√
s→

√
8 and f(x0) → s−1e−βs/e4

√
4π,

when α > 0, x0/s→ 2α and

f(x0) =
s−1e−βs

√
4π

(x0 − b∗)

s
e−

x0
4s

(x0−2αx0) =
s−1e−βs

√
4π

(x0 − b∗)

s
e
−x0

4s
2s

x0−b∗

which implies C1|b∗|f(x0) 6 C2s
−1/2e−βs. Notice that all constants depend only on k and ℓ.

In addition, for s > 1,

∥p(·, s)− p∗(·)∥L∞(R) 6
∫ ∞

s

∥ps(·, t)∥L∞(R)dt 6
∫ ∞

s

C2ρ(t)dt 6
C2ρ(s)

k
.

where the last inequality requires

∫ ∞

s

t−ne−βtdt 6 t−n

∫ ∞

s

e−βs dt =
s−ne−βs

β
.

Lower bound. Fix an arbitrary ε > 0. Let q be the solution of

qs − qxx = 0 in [0,∞)× (ε,∞), q = 0 on {0} × [ε,∞), q = q on [0,∞)× {ε}.
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Then by comparison, q > q on [0,∞)× (ε,∞). Thus, for s > 0 and x > 0,

q(x, s+ ε) > q(x, s+ ε) =

∫ ∞

0

e−(x−y)2/(4s) − e−(x+y)2/(4s)

√
4πs

q(y, ε) dy

=
e−x2/(4s)

√
4πs

∫ ∞

0

e−y2/(4s)
(
exy/(2s) − e−xy/(2s)

)
q(y, ε) dy.

Using ez − e−z > 2z for z > 0 we then obtain, when x > 0 and s > 1

q(x, s+ ε) > xe−x2/(4s)

√
4πs3

∫ ∞

0

yq(y, ε)e−y2dy.

Setting Cε =
∫∞
0
ye−y2ps(y, ε)e

αy/2dy we obtain for x > 0 and s > 1,

ps(x, s+ ε) = q(x, s+ ε)e−αx/2−β(s+ε) > xs−1Γ(x, s)Cε, (8.10)

which yields

p∗(x)− p(x, s+ ε) =

∫ ∞

s

ps(x, t+ ε) dt

>
∫ s+1

s

xt−1Γ(x, t) dtCε > xs−1Γ(x, s)

∫ 1

0

Cεe
−βt̂

√
8

dt̂.

Fixing ε = 1/2 and finding the maximum of xs−1Γ(x, s) for x ∈ (0,∞) we then obtain

∥ps(·, s)∥L∞(R) > C3ρ(s), ∥p(·, s)− p∗(·)∥L∞(R) > C3ρ(s)

where C3 is a positive constant depending only on k and ℓ. This completes the proof.

Proof of Theorem 8.3. From (4.5), one derives, for every x ∈ R and s > 0,

ps(x, s) = Γ(x, s)
{
1 + I1(x, s)− I2(x, s)

}
(8.11)

where

I1(x, s) :=

∫ 0

b0

[ℓey − k]
Γ(x− y, s)

Γ(x, s)
dy =

∫ 0

b0

[ℓey − k]eαy/2+xy/(2s)−y2/(4s),

I2(x, s) :=

∫ s

0

ḃ(t)[ℓeb(t) − k]
Γ(x− b(t), s− t)

Γ(x, s)
dt.

Note that when s > 1 and x > b∗, I2 is positive and

I1(x, s) 6 |b0|(ℓ− k)e(α+b∗)b0/2.
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Noting that ps(x, s) = 0 for x 6 b(s) and px(x, s) > 0 for x > b(s), by the maximum principle

from chapter 3, we hence have the bound

0 6 ps(x, s) 6 Γ(x, s)(1 + (ℓ− k)e(α+b∗)b0/2) := C1 Γ(x, s) ∀x ∈ R, s > 1.

The case α< 0. Define η := (x+ αs)/(2s). For s > 1,

I1(x, s) =

∫ 0

b0

[ℓey − k]e−y2/(4s)+ηy dy

= e−ŷ2/(4s)

∫ 0

b0

[ℓey − k]eηydy =
[
1 +

O(1)

s

]
ϕ1(η)

where ŷ ∈ [b0, 0] and ϕ1 ∈ C∞(R) is defined by

ϕ1(η) =

∫ 0

b0

[ℓey − k]eyηdy ∀ η ∈ R.

We write I2(x, s) =
∫ s

0
B0(s, t)e

wdt where

B0(s, t) := ζ(t)
(
1− t

s

)− 1
2
,

w := − tx2

4s(s− t)
+

xb(t)

2(s− t)
− b2(t)

4(s− t)
.

First consider the case |η| 6 |α|/4. Then

x

2s
= η − α

2
> −|α|

4
− α

2
> −|α|

2
,

which implies

w 6 − tx2

4s(s− t)
6 − tx

2

4s2
6 −α

2t

16
.

Define ŝ := min{ s
2
, 16
α2 ln s}, then for t > ŝ,

∫ s

ŝ

B0(s, t)e
wdt 6e−α2ŝ/16

∫ s

0

B0(s, t)dt

6O(1)

s

{∫ 1/2

0

ḃ(t) dt+

∫ s

s/2

(1− t

s
)−1/2 dt

}
=

O(1)

s
.
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When t ∈ [0, ŝ],

w =
{
− tx2

4s2
+
xb(t)

2s
− b2(t)

4s

}(
1− t

s

)−1

=
{(
η − α

2

)2

t+
(
η − α

2

)
b(t) +

O(1)

s

}(
1 +

t

s
+ . . .

)
=
(
η − α

2

)2

t+
(
η − α

2

)
b(t) + O(1)

t2 + 1

s
.

Thus,

I2(x, s) =

∫ s

0

B0(s, t)e
wdt =

∫ s

ŝ

B0(s, t)e
w dt+

∫ ŝ

0

B0(s, t)e
w dt

=
O(1)

s
+

∫ ŝ

0

ζ(t)
[
1 +

O(1)t

s

]
e−(η−α/2)2t+(η−α/2)b(t)

[
1 +

O(1)(t2 + 1)

s

]
dt

=

∫ ŝ

0

ζ(t)e−[η−α/2]2t+[η−α/2]b(t)dt+
O(1)

s
= ϕ2(η) +

O(1)

s

where ϕ2 is defined by

ϕ2(η) :=

∫ ∞

0

ḃ(t)[ℓeb(t) − k]e[β−(η−α/2)2]t+ηb(t)dt.

Since ḃ(t) = O(1)t−3/2e−βt for t > 1 and ḃ(t)dt = db(t) is a bounded measure on [0, 1] with

integrand being continuous in t and analytic in η, ϕ2 ∈ C(R) ∩C∞((−∞, α/2) ∪ (α/2,∞)).

In summary, setting ϕ(η) = 1 + ϕ1(η)− ϕ2(η) we have, when |η| 6 |α|/4 and s > 1,

ps(x, s)

Γ(x, s)
= 1 + I1 − I2 = ϕ(η) + O(1)s−1 = ϕ(0) + ϕ′(0)η + O(1)η2 + O(1)s−1.

Note that when |η| > |α|/4, both η and s−1 are O(1), so the last expansion is still valid since

it was established earlier that ps/Γ = O(1). The assertion of Theorem 8.3 for ps/ρ(s) with

α < 0 thus follows with c1 := ϕ(0)/
√
4π and c2 := ϕ′(0)/

√
4π. From the inequality (8.10),

one has

ϕ(η) + O(1) =
ps(x, s)

Γ(x, s)
> Cε

x

s

which implies that c1 > 0 since x = −αs > 0 when η = 0.
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The case α> 0. This implies that k > ℓ + 1 so b0 = 0. Using ps(b(s), s) = 0 we obtain

from (8.11) that

ps(x, s)

Γ(x, s)
=
ps(x, s)

Γ(x, s)
− ps(b(s), s)

Γ(b(s), s)
=

∫ s

0

B(s, t)
{
1− eu

}
dt

where B(s, t) is the same as before and

u =
x2 − b2(s)

4s
− [x− b(t)]2 − [b(s)− b(t)]2

4(s− t)

= (x− b(s))
{ b(t)

2(s− t)
− t[x+ b(s)]

4s(s− t)

}
Hence, u < 0, when x > −b(s) > b(s). From above equality, one has

u = −t[x− b(s)]2

4s(s− t)
+

[x− b(s)]

2s

{ b(t)

2(s− t)
− 2tb(s)]

2s(s− t)

}
= −t[x− b(s)]2

4s(s− t)
+

[x− b(s)]

2s

{
b(t)− t δ(s, t)

}
.

So if |x| < −b(s), noting δ(s, t) < 0 and δ(s, t) = O(1)/s, one has

u 6 [x− b(s)]

2s

{
b(t)− t δ(s, t)

}
6 [x− b(s)]

2s
t [−δ(s, t)]

6 [−2b(s)]

2s
t[−δ(s, t)] 6 |b(s)δ(s, t)| = O(1)

s

Hence, u 6 O(1)/s for all x > b(s).

Denoting z = [x− b(s)]/
√
4s, we can write

u = u1 + u2, u1 := − t z2

s− t
, u2 :=

z√
s
[b(t)− t δ(s, t)].

We first consider the case when z ∈ [0,
√
s], i.e., b(s) < x < b(s) + 2s. We write

ps(x, s)

Γ(x, s)
=

∫ s

0

{
[B −B0][1− eu] +B0[1− eu2 ]

+B0[1− eu1 ]−B0[1− eu2 ][1− eu1 ]
}
dt.

(8.12)

To estimate (8.12), We first claim that∫ s

0

B0[1− eu]dt = O(1)z/
√
s. (8.13)
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Recalling that δ(s, t) = O(1)s−1, we have

∫ s

0

B0(s, t)[1− eu2 ]dt =

∫ s

0

B0 [−u2 − u22 − . . . ]

=

∫ s

0

B0(s, t)
{
− z[b(t)− t δ(s, t)]√

s
+ O(1)

z2

s

}
dt

= − z√
s

∫ ∞

0

ζ(t)b(t)dt+ O(1)
z + z2

s

=
m1z√
s

+ O(1)
z + z2

s
,

where m1 = −
∫∞
0
b(t)ζ(t)dt and the third equality is obtained by using (8.3)–(8.5).

To evaluate
∫ s

0
B0(s, t)[1− eu1 ]dt, we use the expansion

ζ(t) = ḃ(t)[ℓeb(t) − k]eαb(t)/2+βt = m̂t−3/2 +O(t−2)

where m̂ = mβ[k−ℓeb∗ ]eαb∗/2 = m1/
√
4π. When ζ(t) is replaced by m̂t−3/2, the corresponding

integral can be evaluated by the substitution t̂ = −u1 = tz2/(s− t), giving

∫ s

0

m̂t−3/2[1− eu1 ]
(
1− t

s

)−1/2

dt =
2
√
πm̂z√
s

=
m1z√
s
. (8.14)

We estimate the error of replacing ζ by m̂t−3/2 as follows. Taking t1 = max{s/2, s/(1 +

z2)} and using ζ(t) = O(1)ḃ(t) for t ∈ (0, 1] and ζ(t) − m̂t−3/2 = O(1)t−2 for t ∈ [1, s] we

obtain, when s > 2,

∫ s

0

∣∣∣B0 − m̂t−3/2(1− t
s
)−1/2

∣∣∣(1− eu1)

<

∫ s

0

∣∣ζ − m̂t−3/2
∣∣min

{
1,

tz2

s− t

} √
s√

s− t
dt

= O(1)
{∫ 1

0

(t−3/2 + |ḃ|)tz
2

s
dt+

∫ s/2

1

z2

ts
dt

+

∫ t1

s/2

z2
√
s
√
(s− t)3

dt+

∫ s

t1

1

s3/2
√
s− t

dt
}

= O(1)
(z2
s

+
z2 ln s

s
+

z2√
s
√
s− t1

+

√
s− t1
s3/2

)
= O(1)

(z
s
+
z2 ln s

s

)
.
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Then, since |1− eu2 | = O(1)z/
√
s,∫ s

0

B0|[1− eu2 ]|[1− eu1 ]dt =
O(1)z√

s

∫ s

0

B0[1− eu1 ]dt = O(1)
z2

s
.

Finally, we have the claim (8.13),∫ s

0

B0[1− eu]dt

=

∫ s

0

B0[1− eu1 ] +B0[1− eu2 ]−B0[1− eu1 ][1− eu2 ] dt

=
O(1)z√

s

Using δ2(s, t) = O(1)/s, one obtains

B −B0 = B0[e
δ2(s,t) − 1] =

O(1)

s
B0.

Then noting that u 6 O(1)/s, we have for z > 0 and s > 1,∫ s

0

[B −B0][1− eu]ds =
O(1)

s

∫ s

0

B0|1− eu|dt = O(1)

s

z√
s
,

In summary, we obtain from (8.12) that when s > 2 and 0 6 z 6 √
s with z = (x −

b(s))/
√
4s,

ps(x, s)

Γ(x, s)
=

z√
s

{
2m1 +

O(1)√
s

(
1 + z ln s

)}
=
x− b(s)

s

{
m1 + O(1)(s−1/2 + |x|s−1 ln s)

}
.

(8.15)

Since ps(x, s)/Γ(x, s) = O(1), this expansion is also valid when z >
√
s. This implies

the assertion of Theorem 8.3 for ps/ρ(s) with c1 = m1/
√
π for the case α = 0 and c1 =

m1e
αb∗/2/

√
4π for the case α > 0.

Finally, the asymptotic behavior for p∗ − p follows by integrating ps over [s,∞). It first

requires observing that for n > 0 (n = 3/2 for α ≥ 0 and n = 1/2 for α < 0)

J :=

∫ ∞

s

t−ne−x2/(4t)−βt

=−
∫ ∞

s

t−nd(e
−x2/(4t)−βt)

β − x2/(4t2)
=
s−ne−x2/(4s)−βs

β − x2/(4s2)
− AJ,

(8.16)
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where

A :=
1

t̂

[ n

β − x2/(4t̂2)
+
x2

2t̂2
1

(β − x2/4t̂2)2

]
, t̂ ∈ [s,∞)

which implies that for a small number ε > 0,

J =
1

1 +O(1/s)

s−ne−x2/(4s)−βs

β − x2/(4s2)
if |x| < 2

√
β − ε s i.e., β − x2

4s2
> ε

(since 0 < A = O(1/s) for t̂ ≥ s, |x| < 2
√
β − ε s).

Using the above technique, we have, for α > 0 and x > b(s),

p∗ − p = e−αx/2t−3/2e−x2/4s−βs(x− b(s))
c1 + O(1)(s−1/2 + |x|s−1 ln s)

β − x2/4s2
− J0

where

J0 := e−αx/2

∫ ∞

s

e−x2/4t d
{
t−3/2(x− b(t))

c1 + O(1)(t−1/2 + |x|t−1 ln t)

β − x2/4s2

}
Using Theorem 8.1, one can show that the integral J0 tends to zero faster than ρ(s) and

hence can be assigned to the error terms. Hence defining c = c1β we can verify that

p∗ − p

ρ(s)
−Ψ → c(x− b∗)e−αx/2

Similarly, after integration and letting s→ ∞ for (p∗−p)/ρ(s)−Ψ, we have the assertion of

the theorem with c = c1/β for α < 0 and c = c1/k for α < 0. For α ≥ 0, the corresponding

integration by parts produces an extra integral involving ḃ(t). This completes the proof of

Theorem 8.3.
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9.0 CONCLUSIONS AND FUTURE WORK

This thesis addressed and provided rigorous results in three areas for the early exercise

boundary of the standard American put option:

(i). in the region 0 < D− r ≪ 1, the early exercise boundary is not convex near expiry. This

provides a rigorous negative answer to the widely accepted belief that the early exercise

boundary was always convex,

(ii). the C∞ regularity of the early exercise boundary, and

(iii). the behavior of the early exercise boundary near and far from expiry.

In the proof of the regularity of the boundary, we also used the Schauder theorem, regularity

theory for PDEs and a bootstrap argument. In our new proof of near and far from expiry

behavior of the free boundary, we provided new rigorous estimates for higher order derivatives

near expiry as well as the sharpest possible estimates for the boundary and the price function

far from expiry. The latter used integral equation estimates, while the former was based on

blow up arguments.

Some problems which continues to be under investigation include:

(i). a rigorous proof of convergence, as well as the rate of convergence, for the numerical

scheme used in the thesis,

(ii). a continuing investigation of the conjectured convexity of the early exercise boundary in

the region 0 < D ≤ r and in r∗ < D for some critical value of r∗, and

(iii). an estimation of the digression from convexity in the non-convex region as well as a

global analytic estimation for the location of the early exercise boundary when it is

convex, relying on the near and far from expiry estimates derived in the thesis.
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