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STATISTICAL ISSUES IN FAMILY-BASED GENETIC ASSOCIATION

STUDIES WITH APPLICATION TO CONGENITAL HEART DEFECTS IN

DOWN SYNDROME

Yan Lin, PhD

University of Pittsburgh, 2007

This dissertation is motivated by data generated from a genetic association study of con-

genital heart defects in Down syndrome (DS). Congenital heart defects are among the most

common abnormalities seen at birth. The genetic basis for most congenital heart defects is

unknown. One severe form of congenital heart defect, atrioventricular septal defect (AVSD),

is highly associated with DS. This makes the DS population a useful tool for discovering

of genes that are associated with this specific form of congenital heart defect. Discovering

genes that influence risk of AVSD will lead to a better understanding of heart development

and of the etiology of these defects. This in turn can lead eventually to improved public

health through better screening, prevention, and treatment strategies.

Family trios were collected for the Down syndrome heart study. This dissertation dis-

cusses statistical issues raised in genetic association studies using family trio data, including

the genotype calling problem (i.e. how to generate genotype data from the raw data pro-

duced by high-throughput SNP arrays) and analysis strategies. Although the motivating

dataset involves trisomic individuals, we developed statistical methods both for disomic and

trisomic data.

For the genotype-calling problem, we generated two genotype calling methods specifically

for disomic family trio data. The first method is an ad-hoc modification of the K-means

clustering algorithm that incorporates family information. The second is a likelihood-based

method that combines the mixture model approach with a pedigree likelihood. These two
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methods out-performed existing methods, which ignore the family information, both in sim-

ulation studies and a real data analysis. We also extended these two methods to trisomic

trio data.

With regard to analysis strategies, we discussed alternative analysis methods for trio

designs, particularly for the combination of case trios and control trios that we have in the

Down syndrome data. We derived likelihood models that help explain the differences among

some published methods. We also proposed an extension of a combined likelihood-based

method proposed by Epstein and others for analysis of case trios plus independent controls

to our design of case and control trios.
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1.0 INTRODUCTION

1.1 GENETIC ASSOCIATION STUDIES

There are two major approaches for mapping genes that are associated with human disease,

linkage analysis and association analysis. Allelic association refers to the increase or decrease

of a specific marker allele frequency in individuals with a disease trait. There are two

types of association studies: (1) population-based case-control studies and (2) family-based

association studies. Case-control studies compare allelic frequencies in cases and controls.

The control population needs to be matched to case population with respect to all factors

(such as ethnicity, age and sex) that might have an effect with the outcome. An unique

problem of the case-control genetic association studies is that spurious association may occur

because of population stratification. Population stratification refers to the situation in which

multiple population subtypes are hidden in a population that appears to be homogeneous.

Family-based association studies use the parents’ (or other family members’) genotypes as

surrogate controls. Therefore, they are robust to the population stratification. The classic

family-based association design is the trio design. A trio is a nuclear family with one offspring.

The transmission disequilibrium test (TDT) is designed for analysis of trio designs (see

Chapter 4 for a detailed description of the TDT test). My dissertation deals with problems

raised in the family-based association studies, with application to a study of congenital heart

defects (CHD) in Down syndrome (DS).
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1.2 DOWN SYNDROME AND CONGENITAL HEART DEFECTS

A normal human cell has 46 chromosomes. That is, it has two copies of each chromosome

(disomic). However, occasionally, there is a mishap, called nondisjunction, in which the

members of a pair of homologous chromosomes do not move apart properly during meiosis

I, or in which sister chromatids fail to separate during meiosis II. In these cases, one of the

gametes then receives two copies of that chromosome instead of one (Figure 1.1).

If this gamete unites with a normal one at fertilization, the offspring will have an extra copy

of that chromosome. This offspring then becomes trisomic for that chromosome. Over 95%

of the DS cases are caused by trisomy 21 (i.e., the presence of an extra copy of chromosome

21). In addition to mental retardation, 44% of all DS individuals also have some form of

CHD (Freeman et al., 1998). The most severe form of CHD observed is atrioventricular

septal defect (AVSD). There are two forms of AVSD, complete and partial. The complete

form of AVSD is most often associated with DS. To further understand the etiology of CHD,

and gain insights into aspects of human heart development, an association study of CHD

in DS population is being conducted by our collaborators at Emory University in Atlanta.

The cases are defined as trisomy 21 individuals with confirmed cases of complete AVSD.

The controls are trisomy 21 individuals with no major associated heart defect. The cases

and controls for this study were ascertained from two primary sources. The majority were

selected from the larger study of live births with trisomy born and ascertained in the five

county metropolitan area of Atlanta, Georgia (Freeman et al., 1998). Others were ascertained

from individuals who attended the DS clinic at Kennedy Krieger in Baltimore, MD. Blood

samples were collected from the mother, the father and the DS offspring. Currently, we

have data available for 136 case trios (nuclear families with one offspring) and 126 control

trios. Genotype data generated using the Sequenom platform are available for 25 single

nucleotide polymorphisms (SNPs). We also have received genotype data of approximately

400 SNPs generated by the Illumina platform. This dissertation contains statistical methods

we developed to address several problems raised in this study. We also discuss practical

strategies for analysis of family trio designs.
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Normal Meiosis Non-disjunction in Meiosis I Non-disjunction in Meiosis IINormal Meiosis Non-disjunction in Meiosis I Non-disjunction in Meiosis II

Figure 1.1: Schematic Drawing of Meiosis
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1.3 A MODEL FOR TRISOMIC TRIOS

Xu and others proposed a basic model for genotype data of trisomic trios (Xu et al., 2004).

We base our likelihood-based methods for trisomic data, including the model-based genotype

calling methods (see Chapter 3) and the two-marker trisomic TDT test(see Chapter 5), on

this model. The following is a brief description of the model.

Assume a SNP marker with two alleles marked A and B. There are nine possible mating

types (i.e., different combinations of parental genotypes) as shown in Table 3.1 in Chapter

3. The nondisjoining parent (NDJP) is the parent that contributes two copies of the chro-

mosomes and the correctly dsijoining parent (CDJP) is the parent that contributes only one

copy of the chromosome. Because only a small portion of the trisomic conceptuses survive to

term, we can only observe the disease status of these trisomic individuals. Hence it is impos-

sible to separate the two events, survival to term and affected with the disease. Therefore,

the association parameters in the model are defined as the following,

w0 = probability of survival and affectedness of a conceptus with genotype AAA,

w1 = probability of survival and affectedness of a conceptus with genotype AAB,

w2 = probability of survival and affectedness of a conceptus with genotype ABB,

w3 = probability of survival and affectedness of a conceptus with genotype BBB.

The map parameter used in this model is h, which is defined as the probability that the

two chromosomes contributed by the NDJP are reduced to homozygosity (duplicates of the

same parental chromosome). Given the parental data, the probability of a living diseased

trisomic offspring’s genotype depends only on the h and the w’s. For example, for mating

type AB (NDJP) × AA (CDJP), the CDJP must contribute an A. If h=0, i.e., the two

chromosomes are not reduced to homozygosity, then the NDJP contribute AB; if h = 1,

i.e., the two chromosomes are reduced to homozygosity, then NDJP contributes either AA

4



or BB, with half of a chance each. Therefore, given the parental genotypes shown above,

Pr(the diseased child is AAA—NDJP is AB and CDJP is AA)

= Pr(NDJP contributes AA)× Pr(the child survives to term and is diseased|the child is AAA)

=
h

2
× w0.

Similarly,

Pr(the diseased child is AAB—NDJP is AB and CDJP is AA)

= Pr(NDJP contributes AB)× Pr(the child survives to term and is diseased|the child is AAB)

=
1− h

2
× w1,

and

Pr(the diseased child is ABB—NDJP is AB and CDJP is AA)

= Pr(NDJP contributes BB)× Pr(the child survives to term and is diseased|the child is ABB)

=
h

2
× w2.

These probabilities are normalized so that they add up to 1 for each mating type, and listed

in the 5th column of Table 3.1. This example is the fourth mating type shown in Table 3.1.

1.4 OVERVIEW OF PROBLEMS CONSIDERED IN THIS DISSERTATION.

As described above, the motivating dataset for this dissertation is the combined sample of

case and control trios generated from the CHD study. The current goal of this study is to

test the association of AVSD with candidate genes in these trisomic trios using SNP markers.

The offspring in our dataset are trisomy 21 individuals. However, this dissertation addresses

the problems for both disomic and trisomic family trio data.

After the data are collected, the following steps are followed in the analysis of family-

based association studies.

5



1. Genotype calling, i.e. to generate genotype data from the SNP array raw data. This

is usually done by using a clustering method. Here we have not only compared several

different commonly-used genotype-calling methods but also developed two family-based

genotype calling methods for both disomic and trisomic trio data. These results are

presented in Chapters 2 and 3.

2. Test for association. Several questions arise related to the analysis of the family-based

association studies.

a. What are the choices that we have for the analysis of our family trio design?

b. What questions do we have about how the methods compare?

c. What new methods need to be developed?

We discuss these questions in Chapters 4 and 5.

1.4.1 Genotype calling methods for family trio data

In Chapter 2, we develop two new family-based genotype calling methods for SNP array data

of disomic trios. Furthermore, we discuss the impacts of certain features of the genotype

calling problem on the performance as compared to the methods. Our family-based methods

showed much improved performances than other methods that ignore the family information.

In Chapter 3, we extend these methods to the trisomic trios.

1.4.2 Alternative analysis of family trio designs

In Chapters 4 and 5 we discuss the available methods for analysis of trio designs. We focus

on the combined designs in which both case trios and controls (either independent controls or

control trios) are available. We compare different analysis strategies under each trio design.

We also discuss the question of whether it is sensible to collect trios at all any more.

6



2.0 SMARTER CLUSTERING METHODS FOR HIGH-THROUGHPUT

SNP GENOTYPE CALLING

Manuscript submitted to Biostatistics.
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Fax: (412)624-3020

7



2.1 ABSTRACT

Many high-throughput genotyping technologies for single nucleotide polymorphism (SNP)

markers have been developed. Most use clustering methods to ”call” the SNP genotypes, but

standard clustering methods are not optimal in distinguishing the genotype clusters of a SNP

because they do not take advantage of a number of specific features of the genotype calling

problem. In particular, when family data are available, pedigree information is ignored.

Furthermore, prior information about the distribution of the measurements for each cluster

can be used to choose an appropriate model-based clustering method and can significantly

improve the genotype calls. In this paper, we discuss the impact of incorporating external

information into clustering algorithms to call the genotypes. We also propose two new

methods to call genotypes using family data. The first method is a modification of the

K-means method which uses the family information by updating all members of a family

together. The second method is a likelihood-based method that combines the Gaussian

or beta mixture model with pedigree information. We compare the performance of these

two methods and some other existing methods using simulation studies. We also compare

the performance of these methods on a real dataset generated by the Illumina platform

(www.illumina.com).

2.2 INTRODUCTION

Single nucleotide polymorphisms (SNPs) are DNA sequence variations that occur when a

single nucleotide (A, T, C, or G) in the genome sequence is altered. They are becoming the

most popular type of marker used in genome-wide linkage and association studies to discover

genes relevant to disease. The vast majority of SNPs are biallelic. Consider a SNP marker

with two alleles A and B. There are three possible genotypes for a disomic individual, AA,

AB and BB. Many high-throughput technologies have been developed to genotype the SNPs

efficiently, including the GeneChip Human Mapping Array from Affymetrix, the Illumina

platform, the Sequenom platform, and the Invader assay. Each platform uses a different

8



technology, and they give somewhat different forms of data. In general, they all give certain

quantitative measures of allelic abundance for the two alleles, yA and yB. The abundance

measures can either be scalars or vectors. Individuals with genotype AA are expected to

have high yA value and low yB value. The opposite is expected for individuals with genotype

BB. Those with genotype AB are expected to have similar yA and yB values. Figure 2.1A

gives an example of data generated for a SNP marker using the Illumina platform. Each

dot on the plot represents one individual. In SNP genotyping, we seek to identify genotype

clusters based on these measurements and ”call” each person’s genotype by assigning them

to a cluster. Normally we expect to find 3 clusters, but if one allele is rare in the population,

a particular dataset might only have 2 clusters (genotypes).

Different platforms generate data of different dimension. For example, the Affymetrix

SNP array generates raw data of very high dimension. Each SNP is assessed by 20 probe

pairs. The Illumina platform generates data of 2 dimensions. For data generated by the

platforms which produce high dimensional data, dimension reduction is typically done before

the genotype calling procedure, usually reducing the data to 2 dimensions, as shown in Figure

2.1A, or 1 dimension, as shown in Figure 2.1B. The method used for dimension reduction

is platform specific. We use the transformation (Intensity of allele B)/(Intensity of allele

A+Intensity of allele B) to achieve a 1-dimensional summary from the 2-dimensional data

generated by the Illumina platform. The second dimension (distance from the origin) mostly

contains information on data quality. It is common to exclude points very close to the origin

before clustering.

Genotypes are typically assigned (”called”) from raw data using clustering methods. But

most of the commonly-used clustering methods, such as the K-means clustering method, do

not incorporate any special information about the genotyping problem. However, there are

several features of genotyping problem that could potentially facilitate the process. First of

all, the number of clusters is limited (1, 2, or 3 for standard disomic data). Second, there is

typically known prior knowledge of the distribution of the data points from previous use of the

technology. These distributions are platform-specific, however, in general, the heterozygote

cluster almost always has higher variation than the homozygote clusters and the homozygote

clusters are sometimes highly skewed (Figure 2.1). Finally, when working with family data,
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prior information or constraints about the genotypes are also available. Transmission of

alleles from the parents to the offspring must follow Mendelian rules. Proper use of these

various types of prior knowledge can greatly increase the accuracy of the genotype calls.

Both supervised and unsupervised methods have been used for genotype calling. When

training datasets are available, supervised clustering algorithms can be used. This is the

case for the modified partitioning around the medoid (MPAM) algorithm developed for the

GeneChip Human Mapping 10K array by Affymetrix (Liu et al., 2003) and the robust linear

model with the Mahalanobis distance classifier (RLMM) developed by Rabbee and Speed

(Rabbee and Speed 2005). In most cases, appropriate training datasets are not available. An

unsupervised clustering algorithm is then needed in genotype calling. Many platforms use

the K-means clustering algorithm to call the genotypes. When the clusters are reasonably

separated, the K-means clustering algorithm can give satisfactory results. However, the

K-means method is not always effective, especially when the variances for each group differ

(Fujisawa et al., 2004). The dynamic model-based algorithm (DM) is an ad-hoc method

developed by Affymetrix for their 100k array (Di et al., 2005). DM is generally accurate,

but exhibits higher error rates for heterozygous bases than for homozygous bases (Rabbee

and Speed 2005). Fujisawa et al. proposed a Gaussian-mixture model for data generated

with the Invader assay (Fujisawa et al., 2004). Unlike the K-means clustering algorithm,

which requires knowing the number of clusters beforehand, the use of a penalized likelihood

in their method performs well in selecting the number of clusters. More importantly, the

K-means algorithm is equivalent to maximizing the classification likelihood under a mixture

of Gaussian models with equal variances for all clusters (Celeux and Govaert, 1992). The

Gaussian-mixture model estimates variances for each cluster separately, which should be

better for genotyping, since different genotype clusters usually have dramatically different

variances.

All the methods described above are designed for independent samples. When family data

are available, the prior constraints on the genotype can play an important role in genotype

calling. Sabatti and Lange developed a method for family data collected for linkage studies

(Sabatti and Lange, 2005). They combined a Gaussian-mixture penetrance model with the

pedigree likelihood. The empirical Bayesian method was used so that information across all
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SNPs could be borrowed in parameter estimation. The general idea of this method could be

applied to any platform. However, they developed this method for the high-dimensional data

of the Affymetrix GeneChip Human Mapping Array. In addition, this method is designed

for data collected from linkage studies, and makes assumptions about allele and genotype

frequencies (e.g. Hardy-Weinberg Equilibrium (HWE) ) that may not be appropriate for all

applications.

In this paper, we illustrate the improvement that can be made by taking better advantage

of the special features of the genotype calling problem, such as prior information about cluster

distributions and family genotype constraints. We apply our methods to both simulated and

real data. The real data are genotypes on 262 trios (parents and a child). The data were

generated by the Illumina platform (www.illumina.com). Subjects were recruited from the

Atlanta, Georgia metropolitan area and from the Down syndrome clinic at Kennedy Kreiger

in Baltimore, MD as described in detail by Kerstann et al.(2004). Additional families were

recruited from the Sibley Heart Center, Cardiology, Children’s Healthcare of Atlanta.

2.3 METHODS

2.3.1 K-means methods for trio data

The K-means clustering method (Hartigan and Wong 1979) is one of the popular methods

used in genotype calling. It is fast, straightforward, and fairly effective. Here we propose

to modify the K-means algorithm so that family information can be used to improve the

accuracy of the genotypes called in trios. Our method could be extended to nuclear families,

but would probably not work well for large pedigrees. We refer to this modified K-means

method as ”trio K-means” in this paper. The method uses the following iterative procedure,

Step 1: Start with a set of initial centroids.

The initial centroids are {C(0)
AA, C

(0)
AB, C

(0)
BB}.

Step 2: At the k+1 step, update all three observations in a family as described

in the following.
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Assume we have two alleles, A and B. For disomic family trios, there are 15 possible

genotype combinations that agree with Mendelian segregation rules (Table 2.1).

Let g1, g2 and g3 be the possible genotypes for parent 1, parent 2 and their child. For

all combinations of g1, g2 and g3 shown in Table 2.1, we calculate Dg1,g2,g3 = d(x1, C
(k)
g1 ) +

d(x2, C
(k)
g2 ) + d(x3, C

(k)
g3 ), where C

(k)
g ’s are the estimated group centers from the kth step and

d(xi, C
(k)
j ) is the squared Euclidean distance between the observed value xi and the center

for jth genotype group, C
(k)
j . Family members are then assigned to the genotypes g̃1, g̃2 and

g̃3 that minimize Dg1,g2,g3 .

Step 3: Iterate until convergence.

Note that our trio K-means procedure assumes that all the family information is cor-

rect, and no Mendelian errors are acceptable (e.g. no sample switches or non-paternity

or mutations). We discuss this assumption further in the discussion section of this paper.

The trio K-means procedure is straightforward and does not make any assumption about the

distribution of each genotype cluster, which makes it more robust to outliers than the model-

based methods (see discussion). On the other hand, the trio K-means method does not use

the information on the shape of the clusters. This makes it less efficient than the model-

based methods. In the next section, we introduce a model-based method that integrates the

pedigree information and the distribution information together to call the genotypes.

2.3.2 Model-based methods for trio data

In order to incorporate the pedigree information into the model-based clustering methods, we

propose a genotype calling method that combines the pedigree likelihood and a parametric

mixture model approach. This method is easily applicable to pedigrees of almost any size

and configuration. Our likelihood is similar to that of Sabatti and Lange, but we do not

use it in a Bayesian context, so we do not make any assumptions about allele or genotype

frequencies. Moreover, we work only with 1-dimensional data, so our likelihood is applicable

to data from any platform.
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2.3.2.1 Likelihood Let y be the observed 1-dimensional value for an individual. We

assume the following parametric penetrance model.

y|g = λ ∼ f(y, ξλ) (2.3.1)

where

λ ∈ Λ = {AA,AB, BB},

and ξλ is the parameter vector for genotype λ. f(ξλ) could be any parametric model that

fits the data well. In this paper, we illustrate the use of the Gaussian-mixture model and the

beta-mixture model. We will refer these two methods as the trio Gaussian-mixture model

and the trio beta-mixture model respectively.

Let Yi = (yfi, ymi, yki) be the observed data for the father, the mother, and the child

of the ith trio. Let Gi = (gfi, gmi, gki) be the corresponding genotype vector. First, let us

assume that we can observe the genotype vector Gi. Then the likelihood for the ith trio is:

Li(Yi, Gi, θ)

= Pr(gfi)Pr(gmi)Pr(gki|gfi, gmi)Pr(yfi|gfi)Pr(ymi|gmi)Pr(yki|gki) (2.3.2)

=
∏

λ∈Λ

p
1{gfi=λ}
λ p

1{gmi=λ}
λ Pr(gki|gfi, gmi)f(yfi, ξλ)

1{gfi=λ}f(ymi, ξλ)
1{gmi=λ}f(yki, ξλ)

1{gki=λ},

where

λ ∈ Λ = {AA,AB, BB},

and

θ = (pλ’s, ξλ’s)
T . (2.3.3)

If we have a total of n trios, the full likelihood is

L(Y, θ) =
n∏

i=1

Li(Yi, Gi, θ). (2.3.4)
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If the parameters are known, then we can determine the genotypes of all three members of

a family using Bayes’ rule. The posterior probability of the family genotype vector G =

(gf , gm, gk) given the observed values Y = (yf , ym, yk) is

p(G|Y ) =
pλ=gf

pλ=gmPr(gk|gf , gm)f(yf , ξλ=gf
)f(ym, ξλ=gm)f(yk, ξλ=gk

)∑
j=1:15 pλ=gfj

pλ=gmj
Pr(gkj|gfj, gmj)f(yf , ξλ=gfj

)f(ym, ξλ=gmj
)f(yk, ξλ=gkj

)
(2.3.5)

where gfj, gmj and gkj are the genotypes of the father, the mother and the child for the jth

family type listed in Table 2.1.

2.3.2.2 Estimation method If the Gaussian-mixture model is assumed for the pene-

trance term of the model, f(y|g = λ), a convenient EM algorithm can be constructed to

estimate the parameters. Here the parameter vector is

θλ = (pλ’s, µλ’s, σ
2
λ’s)

T .

The update algorithm is:

p
(t+1)
λ =

E(S1,λ|Y, θ(t))

2n

µ
(t+1)
λ =

E(S2,λ|Y, θ(t))

E(S1,λ|Y, θ(t)) + E(S4,λ|Y, θ(t))

σ
2(t+1)
λ =

E(S3,λ|Y, θ(t))

E(S1,λ|Y, θ(t)) + E(S4,λ|Y, θ(t))
−

(
µ

(t+1)
λ

)2

where

S1,λ =
n∑

i=1

(1{gfi = λ}+ 1{gmi = λ}),

S2,λ =
n∑

i=1

[1{gfi = λ}yfi + 1{gmi = λ}ymi + 1{gki = λ}yki] ,

S3,λ =
n∑

i=1

[
1{gfi = λ}y2

fi + 1{gmi = λ}y2
mi + 1{gki = λ}y2

ki

]
,

and

S4,λ =
n∑

i=1

1{gki = λ}.
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If we assume a beta-mixture model for the penetrance term, the parameter vector becomes

θλ = (pλ’s, αλ’s, βλ’s)
T .

We can still use the same update algorithm for pλ. For the estimation of αλ’s and βλ’s, we

use the nlm package in R to maximize the E(log(L(Y, θ))) at the M-step. The nlm algorithm

converges fairly fast. Details on the estimation methods are shown in Appendix A.

2.3.2.3 Determination of the cluster number Fujisawa et al. proposed a mixture

Gaussian approach in combination with the penalized likelihood, which performs well in

selecting the number of clusters (Fujisawa et al., 2004). Here we took advantage of the fact

that the number of the clusters is limited, and there are a limited number of configurations

for missing clusters (e.g. we do not expect to have a missing middle cluster). We modified

the EM algorithm so that when p
(t)
λ is smaller than a preset small number x, then we consider

the cluster empty from step t and up.

2.4 RESULTS

2.4.1 Simulation studies

We performed two simulation studies to compare the performance of different clustering

algorithms. For each simulation study, we simulated 1000 datasets. Each dataset consisted

of 150 trios. A beta distribution was used in simulating the observations in different genotype

groups because we observed that the distribution of the homozygote clusters is highly skewed

in most of the platforms with which we have experience. We applied six different clustering

methods to these datasets. Three methods treat each individual independently: the K-

means clustering method, the Gaussian-mixture model for independent data (we will refer

to this method as the Gaussian-mixture model throughout the rest of this chapter) and the

beta-mixture model for independent data (we will refer to this method as the beta-mixture

model throughout the rest of this chapter). Three corresponding methods treat the family
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as a group: the trio K-means method, the trio Gaussian-mixture model and the trio beta-

mixture model.

The datasets we simulated in the first simulation study represent ”good” data, because

the genotype clusters are reasonably well separated. The distributions of the AA and the

BB genotype clusters are highly skewed and the distribution of the AB genotype cluster is

relatively more symmetric following our experience with SNP array data in general. Figure

2.2A is a plot of one of the ”good” datasets simulated. We then simulated datasets that

represent ”bad” data. The genotype clusters are less well defined and the distributions of

each cluster are wider compared to the ”good” data. Figure 2.2B is an example of the ”bad”

datasets simulated.

The results for simulation study 1 are summarized in Table 2.2 and Figure 2.3. In general,

when the three clusters are well separated, all six methods give reasonably good results. As

expected, the methods that incorporate the family information consistently perform better

than their counterpart methods that ignore the family information. On average, we made

20%− 50% fewer mistakes when we utilized the family information in our genotype calling

process. In general, we would expect model-based methods to perform better than the k-

means related methods, since they allow different variances to be estimated for each genotype

cluster. However, the Gaussian models seem to perform worse than corresponding K-means

method in simulation study 1. This is because in the good data, the distribution of the

homozygote cluster is extremely skewed (Figure 2.2A). The Gaussian-mixture model simply

does not fit the data well. The beta-mixture model seems to fit the data well, and performs

the best.

Table 2.3 and Figure 2.4 summarize the results for simulation study 2. When the data

quality is not good, external information can improve the genotype calls significantly. On

average, 1/3 to 1/2 of the mistakes were avoided when using the family information. In this

simulation study, the clusters are less well separated, and the homozygote clusters are less

skewed. The Gaussian-mixture models perform better than the K-means methods on the

bad data. Again, the trio beta-mixture model performs the best among the six methods

compared. It may in some sense seem obvious that the beta model would perform better

since our data were generated using the beta distribution. However, the beta model has not
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previously been used for clustering of genotype data to our knowledge, despite the fact that

most genotyping technologies produce a skewed intensity distribution for the homozygote

clusters.

It is also worth noticing that in both simulation studies, the K-means and the trio K-

means methods have a higher error rate in heterozygote individuals than in homozygote

individuals. That is, they tend to call a true heterozygote individual as a homozygote. The

opposite is true for the Gaussian-mixture models. The beta-mixture models, on the other

hand, have similar error rates in both heterozygous and homozygous individuals (Tables 2.2

and 2.3). We also saw a similar pattern in the analysis of a real dataset generated by the

Illumina platform (see below).

2.4.2 Real data example

We applied all of the methods described above to our real dataset. The subjects were

genotyped using the BeadStation from Illumina Inc. (www.illumina.com). The dataset

includes a total of 178 trios.

The clustering was done with one-dimensional data. The clustered data are restored

into 2-dimensional data and shown in Figure 2.5. The data shown here are for one SNP

that represents typical ”good” data. Therefore, all six methods agree on the calls for most

of the data points. However, we still observed improvements due to our methods. As we

can see from Figure 2.5, the variances for the heterozygote clusters are much bigger than

those for the homozygote clusters. As a result, the K-means clustering method tends to

mistakenly assign some of the heterozygous individuals to the homozygous genotype cluster,

as seen in Figure 2.5A. The presumed misclassified heterozygous individuals are circled.

Two of these individuals’ genotypes do not follow Mendelian rules, and were corrected by

the trio K-means method. They are circled in Figure 2.5D. The homozygote clusters are

highly skewed. The Gaussian-mixture model did not fit the homozygote clusters well, and

tends to misclassify some of the homozygote individuals as heterozygote individuals (Figure

2.5B circled points). Since these seemingly misclassified individuals still follow Mendelian

rules, the trio Gaussian-mixture model failed to correct these mistakes (Figure 2.5E). The
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beta-mixture model and the trio beta-mixture model gave identical genotype calls for this

SNP. The results of these two methods seem to be more reasonable than those of the other

four methods. This suggests that the beta-mixture model is a better fit than the Gaussian-

mixture model. Although we do not see a difference between the calls of the beta-mixture

model and the trio beta-mixture model, we would expect a better performance of the trio

beta-mixture model for data with poorer quality.

We also compared the calls made by the trio beta-mixture model to the calls made by

Illumina’s software (Shen et al., 2005). They are almost identical except for one individual,

which is marked as 5 in Figure 2.6A. This data point is at the margin of the genotype

clusters. It is not called by the company’s software. We know that it most likely should be

a heterozygous AB individual, since the genotypes of the parents of this child are AA and

BB.

2.5 DISCUSSION

The goal of this paper is to show that we can use some specific features of the genotyping

problem to improve clustering methods for making genotype calls from SNP array data.

The specific features we discussed in this paper include: a) differences of variance structures

and shapes of the distributions for different genotype clusters; b) constraints on genotype

calls based on family structure; and c) limited number of clusters. We also proposed two

new genotype calling methods for family data (demonstrated for trios). We studied the

performance of the various methods by simulation. We also compared the results of these

methods on a real dataset. We found that, when the quality of the data is good, all methods

compared can give satisfactory results, though improvement is still possible. However, when

the data quality is low, those methods that use additional information improved the genotype

calls significantly. The trio beta-mixture model can be easily extended to incorporate larger

pedigrees or individuals not in families. However, the trio K-means method, though very

simple and straightforward, cannot be extended to handle larger family data.

Our results suggest that when calling genotypes for data of reasonably good quality, we

18



might want to choose the K-means clustering method (or trio K-means clustering method

when family data is available) for simplicity of calculation. When the data quality is not

good, it will be worth the effort to choose a model-based method that fits the data as well as

possible. Our results suggest that the beta-mixture model fits the Illumina data better than

the Gaussian-mixture model, since the homozygote clusters are very skewed. The Gaussian-

mixture model tends to assign some of the homozygous individuals heterozygous genotypes.

This might not necessarily be true for other platforms. Figure 2.7 shows two examples of

datasets generated from other platforms and datasets. The data in Figure 2.7A and 2.7B

look very similar to our Illumina data. However, the data in Figure 2.7C and 2.7D are

quite different. In addition to the different platform, DNA preparation is another important

factor that affects the quality and shape of the data. The dataset shown in 7C and 7D was

prepared using whole-genome amplification. The quality of the data is much worse, and the

distributions of all three genotype clusters are much more flat and symmetric as compared to

our Illumina dataset. The Gaussian-mixture model seems to be a better fit for this dataset

(results not shown).

One important issue in the family-based methods is that they force all genotypes to follow

Mendelian inheritance rules within each family. But genetic studies often have a few errors

in reported family structure, most often due to sample swaps, non-paternity, or unreported

adoption. If the genotypes are called using a family-based method without first finding these

family structure errors, there will be two problems. The most obvious problem is that some

genotypes will be mis-called. The other problem, however, is that there will be outliers in the

clusters, which may distort all of the estimation. For example, suppose a true AB is called as

AA in order to enforce Mendelian rules. Then the AA cluster will include a point that may

be far beyond its natural boundaries, which will affect both mean and variance estimates for

that cluster and thus potentially affect other genotype calls. We recommend that genotype

calling be done first with non-family-based methods in order to identify families with an

excess of non-Mendelian calls. Then the family-based methods can be applied after the

reasons for the non-Mendelian calls have been identified. Another way to deal with this

problem (for the model-based methods only) is to examine the posterior probabilities of the

genotype calls and set up a no-call cutoff value. This solution should also help maintain the
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stability of the genotype calls if there are true technical outliers (e.g. a true AA point that

falls in the AB cluster because of pure technical aberration). As a final note, we would like

to suggest (see also Sabatti and Lange 2005) that using posterior probabilities of genotypes

rather than absolute genotype calls might improve almost all statistical genetic analyses.

The model-based methods that we have proposed here are of course easily adaptable to

generate such probabilistic data.
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Table 2.1: Fifteen Family Types of a SNP Marker for a Nuclear Family with One Disomic

Offspring

Family Type Parent 1 Parent 2 Child

1 AA AA AA

2 AA AB AA

3 AB

4 AA BB AB

5 AB AA AA

6 AB

7 AB AB AA

8 AB

9 BB

10 AB BB AB

11 BB

12 BB AA AB

13 BB AB AB

14 BB

15 BB BB BB
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Table 2.2: Simulation Study 1.

Methods K-means Gaussian- beta- trio K-means trio Gaussian- trio beta-
mixture model mixture model mixture model mixture model

Average number of mistakes
Total 0.253 0.699 0.037 0.127 0.549 0.024
Misscalled
heterozygotes 0.25 0 0.019 0.125 0 0.011
Misscalled
homozygotes 0.003 0.699 0.018 0.002 0.549 0.013
Number of simulations with
0 miscall 775 514 964 883 589 976
1 miscalls 200 320 35 107 295 24
2 miscalls 22 122 1 10 94 0
3 miscalls 3 41 0 0 22 0
4 miscalls 0 3 0 0 0 0

A total of 1000 datasets were simulated. Each dataset consisted 150 disomic trios. Population

genotype frequencies were set at pAA = 0.2, pAB = 0.35 and pBB = 0.45. The beta parameters

used in the simulations for the three genotype clusters were αAA = 1, βAA = 40, αAB = 20,

βAB = 20, αBB = 40, βBB = 1.
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Table 2.3: Simulation Study 2.

Methods K-means Gaussian- beta- trio K-means trio Gaussian- trio beta-
mixture model mixture model mixture model mixture model

Average number of mistakes
Total 14.62 6.65 5.31 7.13 4.42 3.47
Misscalled
heterozygotes 14.46 1.38 2.89 6.93 1.09 1.90
Misscalled
homozygotes 0.16 5.27 2.42 0.20 3.33 1.57
Number of simulations with
0 miscalls 0 1 3 3 15 35
1-5 miscalls 8 349 572 285 705 819
6-10 miscalls 158 574 394 599 274 145
10-15 miscalls 449 73 31 108 6 1
>15 miscalls 385 3 0 5 0 0

A total of 1000 datasets were simulated. Each dataset consisted 150 disomic trios. Population

genotype frequencies were set at pAA = 0.2, pAB = 0.35 and pBB = 0.45. The beta parameters

used in the simulations for the three genotype clusters were αAA = 5, βAA = 40, αAB = 10,

βAB = 10, αBB = 40, βBB = 5.
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Figure 2.1: Plots of 2-dimensional (2.1A) and transformed 1-dimensional (2.1B) Illumina

data.
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Figure 2.2: Histograms of examples of simulated data.2.2A: ”Good” data; 2.2B: ”Bad” data.
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Figure 2.3: Boxplots for the results of simulation study 1.

26



0
5

10
15

20
25

30

K-means Trio
K-means

Gaussian-
mixture
model

Trio
Gaussian-
mixture
model

beta--
mixture
model

Trio
Beta-
mixture
model

N
um

be
r 

of
 m

is
ca

lls
0

5
10

15
20

25
30

K-means Trio
K-means

Gaussian-
mixture
model

Trio
Gaussian-
mixture
model

beta--
mixture
model

Trio
Beta-
mixture
model

N
um

be
r 

of
 m

is
ca

lls

Figure 2.4: Boxplots for the results of disomic simulation study 2.

27



2
2

2

2

3

2

3

2

3

2

3

2

3

2

3
3
33

1

3

1

3
3
3

2

3

2

222

3

22

3

3
3

3

3

3

3
3

3

3

2
2

1

2

1

2

1

2

3

2

3

3

2

3

3

33

3

3

3

1

2

2

3

2

2

3

3
3

3
2

3

3

33
3

3

2

2

2

3

2

3

2

2
3

2

3

33
2

2

1

2

2

1

3

33

3

2

3

3

3
3

1 11

3

3

2

3

33 2

2

3

2

3

2
2

1

2

2

22

2

2

3

3

2

3

2

1

3
3

3

2

3

3

2

3

3

2

3
3

2 2

3

2

3

3

3

2
3

2

1 1

2

1

2

2

3

2

3

33

2

2

1

3

33

2

2

1

3

2

3

1

3

2

3

2

1

22

3

22

3

1

2

2

1

3

2
2

3

3

2
2

3

1

2

2
2

3

2

3

222

3

3

22

3

2

3

2

3

2

3

1

2

2

2

3

2

3

2

1

22

2

1

2

1

2

3

3

23

1

3

1 1 11
1

2

2

2

2

2

2

1

2

2
2

2

22

2

3

1

222
2

1

3
2

2

3
3
3

3

3
33

3

3

2

3

3

2
2

3

2

22

2
2

2
2

2

2

33

22

3

3
3

2

3

2

1 1

2

3
33

2

3

2

3

33

2
2

3333
3

2

3

2

3

1

3

2

2

2

22

2

3

2

1 1

2

3

33

11 1 1

2 2

1 1

22

3

2

33

3

1

2

1

2
2

23
2

3

2

3

2

11 1

2

2

1 1

22

3

33
333

2
22

3

3

3 22

2

1

2
2

2

2

3
2
2

3

22
2

3

2
2

333
3
33

2

3

2

2

1

33

2

2

3

2

3

2

3

2

1

2

1

33
3

2

2

3

3

3

23

3
33

2

3

2

3

2

11 1

3
2

3

1 11

3

3

3

2
22

1

2

1

3
33

2

22

33

2

2

2

1

2

2

3

3

22

33

2

2

3

2

3

2

2

2
2

1

3

3
3

3

3
3

2

3

1 1

22

2
2

3

3

2

3

2
2

11

2

1

22
2

33

2

3

2
22 2

3

3

3

3

1

2

1

2

3

1

33
3

22

2

11

2

0 5000 10000 15000 20000 25000 30000

0
10

00
0

20
00

0
30

00
0

40
00

0

Intensity of A Allele

In
te

ns
ity

 o
f B

 A
lle

le

2.5A: K-means
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2.5B: Gaussian-mixture Model
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2.5C: Beta-mixture Model
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2.5F: Trio Beta-mixture Model
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2.5E: Trio Gaussian-mixture Model
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2.5D: Trio K-means

2
2

2

2

3

2

3

2

3

2

3

2

3

2

3
3
33

1

3

1

3
3
3

2

3

2

222

3

22

3

3
3

3

3

3

3
3

3

3

2
2

1

2

1

2

1

2

3

2

3

3

2

3

3

33

3

3

3

1

2

2

3

2

2

3

3
3

3
2

3

3

33
3

3

2

2

2

3

2

3

2

2
3

2

3

33
2

2

1

2

2

1

3

33

3

2

3

3

3
3

1 11

3

3

2

3

33 2

2

3

2

3

2
2

1

2

2

22

2

2

3

3

2

3

2

1

3
3

3

2

3

3

2

3

3

2

3
3

2 2

3

2

3

3

3

2
3

2

1 1

2

1

2

2

3

2

3

33

2

2

1

3

33

2

2

1

3

2

3

1

3

2

3

2

1

22

3

22

3

1

2

2

1

3

2
2

3

3

2
2

3

1

2

2
2

3

2

3

222

3

3

22

3

2

3

2

3

2

3

1

2

2

2

3

2

3

2

1

22

2

1

2

1

2

3

3

23

1

3

1 1 11
1

2

2

2

2

2

2

1

2

2
2

2

22

2

3

1

222
2

1

3
2

2

3
3
3

3

3
33

3

3

2

3

3

2
2

3

2

22

2
2

2
2

2

2

33

22

3

3
3

2

3

2

1 1

2

3
33

2

3

2

3

33

2
2

3333
3

2

3

2

3

1

3

2

2

2

22

2

3

2

1 1

2

3

33

11 1 1

2 2

1 1

22

3

2

33

3

1

2

1

2
2

23
2

3

2

3

2

11 1

2

2

1 1

22

3

33
333

2
22

3

3

3 22

2

1

2
2

2

2

3
2
2

3

22
2

3

2
2

333
3
33

2

3

2

2

1

33

2

2

3

2

3

2

3

2

1

2

1

33
3

2

2

3

3

3

23

3
33

2

3

2

3

2

11 1

3
2

3

1 11

3

3

3

2
22

1

2

1

3
33

2

22

33

2

2

2

1

2

2

3

3

22

33

2

2

3

2

3

2

2

2
2

1

3

3
3

3

3
3

2

3

1 1

22

2
2

3

3

2

3

2
2

11

2

1

22
2

33

2

3

2
22 2

3

3

3

3

1

2

1

2

3

1

33
3

22

2

11

2

0 5000 10000 15000 20000 25000 30000

0
10

00
0

20
00

0
30

00
0

40
00

0

Intensity of A Allele

In
te

ns
ity

 o
f B

 A
lle

le

2.5A: K-means
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2.5A: K-means
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2.5B: Gaussian-mixture Model
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2.5B: Gaussian-mixture Model
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2.5C: Beta-mixture Model
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2.5C: Beta-mixture Model
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2.5F: Trio Beta-mixture Model

2
2

2

2

3

2

3

2

3

2

3

2

3

2

3
3
33

1

2

1

3
3
3

2

3

2

222

3

22

3

3
3

3

3

3

3
3

3

2

2
2

1

2

1

2

1

2

3

2

3

3

2

3

3

33

3

3

3

1

2

2

3

2

2

3

3
3

3
2

3

3

33
3

3

2

2

2

3

2

3

2

2
3

2

3

33
2

2

1

2

2

1

3

33

3

2

3

3

3
3

1 11

3

3

2

3

33 2

2

3

2

3

2
2

1

2

2

22

2

2

3

3

2

3

2

1

3
3

3

2

3

3

2

3

3

2

3
3

2 2

3

2

3

3

3

2
3

2

1 1

2

1

2

2

3

2

3

33

2

2

1

3

33

2

2

1

3

2

3

1

3

2

3

2

1

22

3

22

3

1

2

2

1

3

2
2

2
2

2

3

2

3

2

3

2

3

2

3

2

3
3
33

1

2

1

3
3
3

2

3

2

222

3

22

3

3
3

3

3

3

3
3

3

2

2
2

1

2

1

2

1

2

3

2

3

3

2

3

3

33

3

3

3

1

2

2

3

2

2

3

3
3

3
2

3

3

33
3

3

2

2

2

3

2

3

2

2
3

2

3

33
2

2

1

2

2

1

3

33

3

2

3

3

3
3

1 11

3

3

2

3

33 2

2

3

2

3

2
2

1

2

2

22

2

2

3

3

2

3

2

1

3
3

3

2

3

3

2

3

3

2

3
3

2 2

3

2

3

3

3

2
3

2

1 1

2

1

2

2

3

2

3

33

2

2

1

3

33

2

2

1

3

2

3

1

3

2

3

2

1

22

3

22

3

1

2

2

1

3

2
2

3

3

2
2

3

1

2

2
2

3

2

3

222

3

3

22

3

2

3

2

3

2

3

1

2

2

2

3

2

3

2

1

22

2

1

2

1

2

3

3

22

1

3

1 1 11
1

2

2

2

2

2

2

1

2

2
2

2

22

2

3

1

222
2

1

3
2

2

3
3
3

3

3
33

3

3

2

3

3

2
2

3

2

22

2
2

2
2

2
2

33

22

3

3
3

2

3

2

1 1

2

3
33

2

3

2

3

33

2
2

3333
3

2

3

2

3

1

3

2

2

2

22

2

3

2

1 1

2

3

33

11 1 1

2 2

1 1

22

3

2

33

3

1

2

1

2
2

23
2

3

2

3

2

11 1

2

2

1 1

22

3

33
333

2
22

3

3

3 2

2

3

3

2
2

3

1

2

2
2

3

2

3

222

3

3

22

3

2

3

2

3

2

3

1

2

2

2

3

2

3

2

1

22

2

1

2

1

2

3

3

22

1

3

1 1 11
1

2

2

2

2

2

2

1

2

2
2

2

22

2

3

1

222
2

1

3
2

2

3
3
3

3

3
33

3

3

2

3

3

2
2

3

2

22

2
2

2
2

2
2

33

22

3

3
3

2

3

2

1 1

2

3
33

2

3

2

3

33

2
2

3333
3

2

3

2

3

1

3

2

2

2

22

2

3

2

1 1

2

3

33

11 1 1

2 2

1 1

22

3

2

33

3

1

2

1

2
2

23
2

3

2

3

2

11 1

2

2

1 1

22

3

33
333

2
22

3

3

3 22

2

1

2
2

2

2

3
2
2

3

22
2

3

2
2

333
3
33

2

3

2

2

1

33

2

2

3

2

3

2

3

2

1

2

1

33
3

2

2

3

3

3

23

3
33

2

3

2

3

2

11 1

3
2

3

1 11

3

3

3

2
22

1

2

1

3
33

2

22

33

2

2

2

1

2

2

3

3

22

33

2

2

3

2

3

2

2

2
2

1

3

3
3

3

3
3

2

3

1 1

22

2
2

3

3

2

3

2
2

11

2

1

22
2

33

2

2

2
22 2

3

3

3

3

1

2

1

2

3

1

33
3

22

2

11

2

0 5000 10000 15000 20000 25000 30000

0
10

00
0

20
00

0
30

00
0

40
00

0

Intensity of A Allele

In
te

ns
ity

 o
f B

 A
lle

le

2.5F: Trio Beta-mixture Model
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2.5E: Trio Gaussian-mixture Model
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2.5E: Trio Gaussian-mixture Model
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2.5D: Trio K-means
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Figure 2.5: Restored clustering results for the real dataset.
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Figure 2.6: Comparison of Illumina calls (2.6A) and trio beta-mixture model calls (2.6B).

Genotype cluster 1=AA genotype group, genotype cluster 2=AB genotype group, genotype

cluster 3=BB genotype group, and 5=no call. The circled points are the ”problematic” calls.
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3.1 ABSTRACT

Genotyping of trisomic individuals has never been addressed formally to date. It is not

clear which, if any, standard genotyping methods have the ability to distinguish the two

heterozygous genotype clusters. In this paper we showed that when carefully conducted, the

trisomic individuals could be successfully genotyped by existing techniques. We also extended

two family-based methods developed by our previous paper to trisomic trios. We compared

the performance of these two methods and related clustering methods by both simulation

study and the analysis of a real dataset. Our results suggested that the family-based methods

perform significantly better than the methods that ignore the family information.

3.2 INTRODUCTION

Single nucleotide polymorphysms (SNPs) are the most common type of genetic variants in the

human population. It has been estimated that there are about 10 million SNPs with minor

allele frequency > 1% in the human genome (The International HapMap Consortium, 2003).

SNPs are a popular choice of genetic markers for genome-wide linkage and association studies

to discover genes relevant to disease. In addition to the fact that they have high density

throughout the genome, it is also relatively cheaper to genotype SNPs than other type of

genetic markers. Many high-throughput SNP genotyping techonologies have been developed

by different companies, for example the GeneChip Human Mapping Array from Affymetrix

(www.affymetrix.com), the BeadStation from Illumina (www.illumina.com), and the iPLEX

assay from Sequenom (www.sequenom.com).

The vast majority of the SNPs are biallelic. If we denote the two alleles of a SNP marker

A and B, a disomic individual then will have three possible genotypes for the marker, AA,

AB and BB. Different platforms produce data of different forms and dimensions. In general,

they all give quantitative measures for each of the two alleles of a single SNP. It is common

to represent the genotyping data in a two-dimensional space, as illustrated in Figure 3.1A

with the horizontal axis for the observed intensity of one allele and the vertical axis for the
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other allele. It is an example of the raw data for a single SNP generated by the Illumina

platform. Each point in the figure represents an individual. The genotype calling procedure

generates genotype data from the raw data produced by these high-throughput technologies,

using a clustering algorithm. Each individual is assigned to one of the genotype clusters, AA,

AB and BB, based on his/her quantitative measurements of A and B alleles. In practice,

often the two-dimensional data are reduced to one-dimension before genotype calling. The

transformation that was used in this paper is y =(intensity of B allele)/(intensity of A

allele+intensity of B allele). Therefore, for individuals with AA genotype, the observed

values of y are expected to be close to 0. For those with BB genotype, the observed values

of y are expected to be close to 1. The heterozygous individuals will have y values close to

0.5.

Both supervised (Rabbee and Speed 2005, Liu et al., 2003) and unsupervised (Sabatti

and Lange, 2005, Di et al., 2005, Fujisawa et al., 2004) clustering methods have been used

in genotype calling for SNP array data from disomic individuals. Mostly training data

are not available in practice, and an unsupervised clustering method is then required to

call the genotypes for the study subjects. In a previous paper, we developed two family-

based clustering methods that incorporate the family information for genotype calling of

family trio data (Lin et al., 2007). We compared the performance of these two methods

and several popular unsupervising clustering methods on genotype calling of SNP data for

disomic cases. We found that better use of prior knowledge of distribution and pedigree

structure can significantly improve the genotype calls.

Genotyping trisomic individuals, those with an extra copy of one of the chromosomes,

has not been discussed by any published literature to date. Trisomic individuals have four

possible genotypes for a biallelic marker, AAA, AAB, ABB and BBB. This makes the

genotype calling procedure more difficult since the two heterozygous groups are close together

(Figure 3.1B). It is not clear which, if any, standard genotyping methods have the ability

to distingish the two heterozygous genotype clusters. The object of this paper is to show

that with proper statistical methods, we can successfully call the genotypes of the trisomic

individuals. As discussed later in a real data example, the unique family structure for

trisomic data makes family-based methods particularly suitable here.
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The genotype calling problem in trisomic individuals is some times confused with the

copy number variation (CNV) problem. In the genotype-calling problem we know there are 3

alleles (4 genotype clusters) and we want to look at one marker at a time and determine what

alleles it has. In the CNV problem, we are looking at markers over a whole genomic region

at a time, and looking at the total intensity of all alleles. We try to classify individuals in

terms of their total intensity (copy number) on average over lots of markers. The differences

are single marker versus multiple markers, and using a different dimension of the dataset

(Komura et al., 2007).

In this chapter, we extend the two family-based methods that were proposed in the

previous chapter to trisomic trios. We compare the performance of these two methods and

other popular clustering methods for genotype calling on both simulated trisomic trio data

and on a real dataset. The motivating dataset for this paper is from an association study

of atrioventricular septal defects (AVSD) in a Down syndrome (DS) population. It is known

that over 95% of the DS cases are caused by trisomy 21. These individuals have three copies of

chromosome 21. In addition to mental retardation, 44% of all DS individuals also have some

form of congenital heart defects (CHD, Freeman et al., 1998), and the severe form of CHD

is AVSD. One hundred and sixty family trios were collected. A trio is a nuclear family with

one child. In our case, the child is a trisomy 21 child. Typically we know which parent is the

source of the extra chromosome, and whether that parent passed two different (not reduced

to homozygosity) or identical (reduced to homozygosity) chromosomes to the child (Xu et

al., 2004). This parent is denoted as the non-disjoining parent (NDJP). The other parent,

who contributes only one copy of chromosome 21, is denoted as the correctly disjoining

parent (CDJP). The parents are disomic. In these families, there are more constraints on

the genotypes of the children than in disomic case. For example, if the genotype of the NDJP

is AA and the genotype of the CDJP is AB, then we know that child’s genotype can only

be either AAA or AAB but not ABB or BBB. Individual’s genotyping data were acquired

by the Illumina platform.
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3.3 METHODS

3.3.1 Trio beta-mixture model for trisomic data

Previously, we developed a model-based clustering method that incorporates the pedigree

likelihood and a beta-mixture model for disomic trios (Lin et al., 2007). Here this trio

beta-mixture model was extended to the trisomic family data.

3.3.1.1 Likelihood for complete data Let Yi = (yNi, yCi, yKi) denotes the observed

one-dimensional data for the NDJP, CDJP and the child of the ithtrio; Gi = (gNi, gCi, gKi)

the corresponding genotype vector, where Gi is unknown. The contribution to the complete-

data likelihood function from the ith trio is:

Li(θ, Yi, Gi, hi)

= {Pr(gNi)Pr(gCi)Pr(gKi|gNi, gCi)} {Pr(yNi|gNi)Pr(yCi|gCi)Pr(yKi|gKi)} ,(3.3.1)

where the first component, Pr(gNi)Pr(gCi)Pr(gKi|gNi, gCi), is the pedigree likelihood; the

second component, Pr(yNi|gNi)Pr(yCi|gCi)Pr(yKi|gKi), is the penetrance term. hi is the

probability that the two alleles contributed by the NDJP are reduced to homozygousity (see

Chapter 1 section 1.3).

3.3.1.2 A beta-mixture model We assume a beta-mixture model for the penetrance

term. In a trisomic trio, the parents are disomic and the child is trisomic. Therefore, we

need to set up two mixture models for the data, one for the parents, and one for the children.

Let y be the obseved value for an individual, we assume the following beta mixture-model

for the parents

y ∼
∑

λ1∈Λ1

νλ1f(y, αλ1, βλ1), (3.3.2)

where νλ1 is the probability of a person having genotype λ1 ∈ Λ1 = {AA,AB,BB}, and

f(y, α, β) =
1

B(α, β)
yα−1(1− y)β−1

=
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1, α, β > 0.
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For the childeren, we assume

y ∼
∑

λ2∈Λ2

νλ2f(y, αλ2, βλ2), (3.3.3)

where νλ2 is the probability of a person having genotype λ2 ∈ Λ2 = {AAA,AAB, ABB, BBB},

f(y, α, β) =
1

B(α, β)
xα−1(1− x)β−1

=
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < y < 1, α, β > 0.

νλ2’s are functions of population genotype frequencies and the probability that the two alleles

contributed by the NDJP are reduced to homozygousity (hi’s).

3.3.1.3 Pedigree likelihood We follow the model proposed by Xu et al., 2004, as dis-

cussed in Chapter 1.

Let us define h as the probability that the two chromosomes contributed by the NDJP

are reduced to homozygosity, that is they are replicates of the same allele from the NDJP

parent. In our real data example, this probability is estimated based on the microsatelite

marker map already established on this dataset (Feingold, et al. 2000). h = 1 when we are

sure that the two alleles from the NDJP are reduced to homozygosity, and h = 0 when we are

sure that the two alleles from the NDJP are not reduced to homozygosity. For the purpose

of genotype calling, all w’s are set to 1. The conditional probabilities for each outcome given

the parental genotype are listed in the fifth column of Table 3.1. They are functions of h. The

marginal probabilities for each mating type are listed in the last column of Table 3.1. The

products of the corrsponding values from these two columns are the marginal probabilities

for each family type.
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3.3.1.4 Estimation The expectation-maximization (EM) algorithm was applied to es-

timate the model parameters, θ = (νλ1’s, αλ1’s, βλ1’s, αλ2’s, βλ2’s)
T . Assuming that θ(t) is the

current estimate, the E-step is

ν
(t+1)
λ1 =

E(S1,λ1|Y, θ(t))

2n
(3.3.4)

where

S1,λ1 =
n∑

i=1

[1{gNi = λ1 + 1{gCi = λ1}], λ1 ∈ Λ1 = {AA,AB, BB},

and n is the number of family trios. In order to estimate the α’s and β’s for each genotype

cluster, we used nlm function included in R to maximize the conditional expectation of the

log complete-data likelihood in the M-step. Details for estimation are given in Appendix B.

3.3.1.5 Genotype prediction using Bayes rule Once the parameters are estimated,

we can use the Bayes rule to determine the genotypes of the family members. The posterior

probability of the family genotype vector G = (gN , gC , gK) given the observed values Y =

(yN , yC , yK) is

p(G|Y )

=
νλ1=gN

νλ1=gC
Pr(gK |gN , gC)f(yN , ξλ1=gN

)f(yC , ξλ1=gC
)f(yK , ξλ2=gK

)∑
j=1:18 νλ1=gNj

νλ1=gC
Pr(gKj|gNj, gCj)f(yNj, ξλ1=gNj

)f(yCj, ξλ1=gCj
)f(yKj, ξλ2=gKj

)
.(3.3.5)

Here the ξλ = (αλ, βλ)
T are the parameters for the beta distribution of genotype cluster λ.

3.3.2 Trio K-means algorithm for trisomic data

In a previous paper, we proposed an ad-hoc modification of the K-means algorithm, the trio

K-means algorithm, that incoporates the family information for disomic family trio data

(Lin et al., 2007). It is fairly straightforward to extend it to trisomic trios. The iterative

procedure is described as the following:

Step1: Start with a set of initials

The initial centroids are {C(0)
AA, C

(0)
AB, C

(0)
BB, C

(0)
AAA, C

(0)
AAB, C

(0)
ABB, C

(0)
BBB}. Note that in a

trisomic trio, the parents are disomic and the child is trisomic. Therefore, we have to

consider 3 genotype clusters for the parents and 4 genotype clusters for the children.
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Step2: At the k+1 step, update the genotype of family members as described in

the following

For a biallelic marker with alleles A and B, there are 18 possible genotype combinations

that agree with Mendelian segregation rules (Table 3.1). Let yN , yC , and yK be the observed

one-dimensional values for the NDJP, the CDJP and the child in a family. Let us denote

gNj, gCj and gKj the genotypes for the NDJP, the CDJP and the child in the jth family type

in Table 3.1. For all j, we calculate DgNj ,gCj ,gKj
= d(yN , C

(k)
gNj)

2 +d(yC , C
(k)
gCj)

2 +d(yK , C
(k)
gKj)

2,

where C
(k)
g ’s are the estimated group centers from the kth step and d(y, C

(k)
g ) is the Euclidiean

distance between the observed value y and the centroid for genotype cluster C
(k)
g . ˜gNj, ˜gCj

and ˜gKj that minimize DgNj ,gCj ,gKj
then will be assigned to the NDJP, the CDJP and the

child of the family.

Step3: Iterate until convergence

3.4 RESULTS

3.4.1 Simulation study

We compared the performance of the regular K-means clustering algorithm, the regular

beta-mixture model, the trio K-means clustering method and the trio beta-mixture model

on genotype calling of simulated trisomic trio data. In order to apply the K-means clustering

method and the beta-mixture model to trisomic trio data, we need to separate the dataset

into two datasets. One contains disomic individuals (parents), and the other one contains tri-

somic individuals (offspring). We then applied the above two methods to these two datasets

separately. A total of 1000 datasets were simulated and 150 family trios were simulated

in each dataset. We used a beta distribution to simulate the observed values because we

observed that the distributions of the homozygote genotype clusters are quite skewed in real

datasets. Figure 3.2 is an example of the simulated dataset, which looks similar to the real

dataset (Figure 3.1). We applied the four methods mentioned above to these datasets and

compared the number of mistakes made in each dataset by these methods. The results of
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the simulation study is summarized in Table 3.2 and Figure 3.3. The improvements to the

genotype calls after the incorporation of the family information and controlling for variance

structure are apparent, consistent with what we observed in the disomic case (Lin et al.

2007). However, the family information seems to make a bigger contribution in the trisomic

genotype calling procedure than does the control of variance structure. This is especially

obvious when comparing the results between the regular beta-mixture model and the trio

beta-mixture model. On average, 2/3 of the miscalls were avoided when applying the trio

beta-mixture model instead of the regular beta-mixture model to the data. The trio K-

means algorithm made 1/3 fewer mistakes then the regular K-means algorithm. It is worth

noticing that the performance of the regular beta-mixture model approach is quite unstable.

Although on average it performs better than the K-means method, there are quite a few

cases in which the beta-mixture model makes more miscalls than then K-means method.

The trio beta-mixture model, on the other hand, is much more stable (Figure 3.3).

3.4.2 Real data analysis

We applied the regular K-means clustering algorithm, the regular beta-mixture model, and

their corresponding family-based methods, the trio K-means algorithm and the trio beta-

mixture model to a real dataset generated by the AVSD study. The reconstructed two-

dimensional results for the parents were shown in Figure 3.4, and those for the children were

shown in Figure 3.5. As expected, the K-means method seemed to have misclassified some

heterozygous individuals as homozygous (Figures 3.4A and 3.5A, the circled individuals).

The trio K-means method corrected some but not all of these ”miscalls” (Figures 3.4C and

3.5C). The regular beta-mixture model also seems to have misclassified some individuals

(Figures 3.4B and 3.5B), with seemingly homozygous individuals misclassified as heterozy-

gous. To our surprise, the trio beta-mixture model seem to produce the ”worst” results,

with many obviously misclassified trisomic individuals (Figure 3.5D). We then realized that

there are some mixup for a small portion of the family data, i.e., who is the NJDP and the

h estimates. Table 3.3 gives out an example of how wrong family information can ”force”

genotype called for the trisomic individual to the wrong cluster. As shown in Table 3.3, either
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the wrong identity of the NJDP or the wrong h can cause trouble in the process. However,

if we set h = 0.5, i.e. assume non-informative microsatelite marker data, the genotype of the

child will be correctly called. This is because that both genotypes ABB and BBB become

possible but the observed value for the child is very close to the center of the BBB cluster.

Before we can straighten out the family data with the investigators, we set h for all families

to 0.5. The corresponding results for this are shown in Figure 3.6. We believe that if correct

family information is used, the trio beta-mixture model should produces the best results.

This is also an example of how the family-based methods can be misled by the wrong family

information.

3.5 DISCUSSION

Genotype calling of trisomic individuals is more complicated than that for the disomic indi-

viduals. There are four genotype clusters, the two heterozygous genotype clusters are close

to each other. In this paper, we have shown that with caution, standard clustering methods

could be used for genotype calling in trisomic individuals. We also extended two family-

based genotype calling methods we previously developed for disomic trios to trisomic trios.

The simulation results are similar to those presented for disomic trios. The family-based

methods perform significantly better than the corresponding methods that ignore the family

information. As in the disomic case, the model-based methods perform better than the K-

means methods. This is because that the K-means methods assume equal variances for all

clusters, but the mixture-model approach allows different variances for each genotype clus-

ter. In our case, the heterozygous genotype clusters have a quite different variance structure

than the homozygous genotype cluster. On the other hand, the performance of the regular

beta-mixture model is quite unstable as compared to the other methods. After incorporating

the family information, the results of the model-based methods look stable.

The fact that the family-based methods performed better in both the simulation study

and the real data analysis suggests that family information can improve genotype calls sig-

nificantly. However, we are surprised to see how well the trio beta-mixture model performed
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when all h’s were set to 0.5 in the real data example. That is, we assumed that all the

microsatelite markers were uninformative. This suggests that the model fitting is mostly

driven by the observed genotyping data and the basic family structure, i.e. which parent is

the NJDP. We plan to evaluate the impact of h values in the future by simulation study.

To simplify calculation, we also assume all w’s to be 1 for the trio beta-mixture model.

As mentioned above, we suspect that the model fitting is mostly driven by the observed geno-

typing data and the basic family structure. The difference of the w’s in cases and controls

may not affect the clustering results dramatically. We also plan to evaluate this hypothesis

in the future.
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Table 3.1: Eighteen Family Types of a SNP Marker for a Nuclear Family with One Trisomic

Offspring

Family Type NDJP CDJP Child Probability
p q

1 AA AA AAA 1 p2
aa

2 AA AB AAA ( w0
w0+w1

) paapab

3 AAB ( w1
w0+w1

) paapab

4 AA BB AAB 1 paapbb

5 AB AA AAA ( w0h
w0h+2w1(1−h)+w2h ) pabpaa

6 AAB ( 2w1(1−h)
w0h+2w1(1−h)+w2h ) pabpaa

7 ABB ( w2h
w0h+2w1(1−h)+w2h ) pabpaa

8 AB AB AAA ( w0h
w0h+(w1+w2)(2−h)+w3h ) pabpab

9 AAB ( w1(2−h)
w0h+(w1+w2)(2−h)+w3h ) pabpab

10 ABB ( w2(2−h)
w0h+(w1+w2)(2−h)+w3h ) pabpab

11 BBB ( w3h
w0h+(w1+w2)(2−h)+w3h ) pabpab

12 AB BB AAB ( w1h
w1h+2w2(1−h)+w3h ) pabpbb

13 ABB ( 2w2(1−h)
w1h+2w2(1−h)+w3h ) pabpbb

14 BBB ( w3h
w1h+2w2(1−h)+w3h ) pabpbb

15 BB AA ABB 1 pbbpaa

16 BB AB ABB ( w2
w2+w3

) pbbpab

17 BBB ( w3
w2+w3

) pbbpab

18 BB BB BBB 1 p2
bb

p=conditional probability of the child’s genotype given the parents’ genotype. q=marginal

probability of the family type.
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Table 3.2: Simulation Study Results

Methods K-means beta- trio K-means trio beta-

mixture model mixture model

Average number of mistakes

4.41 4.18 3.23 1.44

Number of simulations with

0 miscalls 14 32 35 233

1-5 miscalls 714 762 825 761

6-10 miscalls 265 162 138 6

10-15 miscalls 7 27 2 0

>15 miscalls 0 15 0 0

Table 3.3: Example of Wrong Family Data

Mother Father Child

(CDJP) (NDJP)

True Genotypes AB BB BBB

Observed Values 0.6 0.95 0.98

Observed h = 0

Genotype called by trio beta-mixture model assuming father is the NDJP

AB BB BBB

Genotype called by trio beta-mixture model assuming mother is the NDJP

AB BB ABB

Genotype called by trio beta-mixture model assuming mother is the NDJP & h = 0.5

AB BB BBB

An example of potential impact of wrong family structure. In this example, the true NDJP

is the father.
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Figure 3.1: Plots of a example Illumina data.
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3.2A 3.2B3.2A 3.2B

Figure 3.2: Histograms of an example of simulated disomic (3.2A) and trisomic (3.2B) data.
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Figure 3.3: Boxplots for the results of simulation study.
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3.4B:Beta-mixture Model
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3.4D: Trio Beta-mixture Model
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3.4C: Trio Kmeans
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3.4C: Trio Kmeans
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3.4D: Trio Beta-mixture Model
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Figure 3.4: Restored clustering results for the disomic individuals (the parents) in the real

dataset.
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Figure 3.5: Restored clustering results for the trisomic individuals (the children) in the real

dataset.
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Figure 3.6: Restored clustering results for the second analysis using the trio beta-mixture

model.
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4.1 ABSTRACT

In this chapter, we discussed and compared the available methods on the analysis of trio

designs under the factorizations of one unified conditional likelihood. We also discussed the

problem of whether it is sensible to collect trio data any more.

4.2 INTRODUCTION

There are two major approaches for mapping genes that are associated with human disease,

the linkage analysis and the association analysis. Recently, association studies have become

more and more important in the search for genes that contribute to complex disease suscep-

tibility. The simplest design for a genetic association with a binary trait is a case-control

study. In a case-control study, we compare the allele frequencies or genotype frequencies in

a group of independent cases and a set of controls. The controls can be either true controls

(i.e. disease-free individuals) or population controls.

One problem with association studies is that spurious association may occur as a result

of population stratification. Population stratification refers to the phenomenon in which

multiple population subtypes are hidden in a population that appear to be homogeneous. If

these subtypes are associated with different risks of the disease, the population composition

then becomes a confounder (Kleibaum et al., 1982). To perform an association test in the

presence of population stratification, subpopulation structure should be properly adjusted

for. To make the issue more complicated, the memberships in the subpopulations are of-

ten not observed. Genomic control (GC) and structured association (SA) are two popular

methods in dealing with the stratification problem in case-control genetic association studies

(Delvlin and Roder, 1999, Pritchard et al., 2000, Reich and Goldstein, 2001). GC and SA

have proven to be useful over the years, but they do have limitations. GC uses informa-

tion from extra ”null” markers that are not related to the disease of interest, and adjust

the chi-square statistic using the median of the null-marker statistics. This method adjusts

uniformly on all tested markers. However, different markers might have different population
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allele frequencies across ancestral populations. A uniform adjustment might not be appro-

priate for all the markers (Price et al., 2006). The SA method also uses information from

the genotypes of extra markers to estimate whether there are subpopulations in the study

population. Then it uses an association test that takes subgroup membership into account.

It is computationally intensive and not suitable for a whole genome scan. It also requires

the specification of the number of subgroups beforehand, which could be tricky.

The only foolproof solution for spurious association due to population stratification is a

family-based association study, in which the test is conditioned on parental genotypes. The

classic design for family-based association study is case trios. The data are then analyzed

using the transmission disequilibrium test (TDT). In order to perform a TDT test, at least

one of the parents must be heterozygous for the marker of interest. In a TDT test, we

test whether the transmission rates of the two alleles from the heterozygous parent to the

child are equal. Larger families, unrelated controls, or other variations can also be used in a

family-based association study. The disadvantage of family-based association studies is that

they have much lower power than case-control studies.

A few new methods have very recently emerged that can handle the stratification problem

in a case-control study more effectively than previous methods. Price and others proposed

a method called EIGENSTRAT that uses principal components analysis to infer continuous

axes of genetic variation (Price et al., 2006). Their method performs very well, but requires

a very large number of markers. Others have proposed to use a logistic regression to account

for the population stratification in case-control studies (Epstein et al., 2006, Setakis et al.,

2007). These methods appear to perform at least as well as the EIGENSTRAT, yet they

only require about 50 markers.

Because of these methods, we are more and more confident that the population strati-

fication problem in case-control studies can be handled well. However, many investigators

still have trio data around. If only case trios are available, the TDT test is the only analysis

option. However, when there are controls of some kind, various analysis options exist. The

purpose of this paper is to discuss alternative analyses of trio data, especially in designs

that include controls. We are oriented towards what to do with existing datasets. In the

discussion we return to the question of whether it is sensible to collect trios at all any more.
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4.3 FACTORIZATION OF THE LIKELIHOOD FOR FAMILY TRIOS

The first question that we are trying to answer is whether the parental genotypes add

any information on the inference of the parameters of interest, namely relative risks to

develop disease for different genotype groups. In most family trio designs, genotypes (but

not phenotypes) of the parents are collected along with the genotype and the disease status

of the child in a family trio. The study designs that we consider here are 1) case trios +

independent controls; 2) case trios + control trios. Let us denote Do the disease status of the

child, Do = 1 for cases, and Do = 0 for controls. Let Gp and Go be the observed genotypes of

the parents and the child respectively. In general the conditional likelihood of a trio (either

a case trio or a control trio) given the disease status of the offspring can be written as

L = Pr(Gp, Go|Do) (4.3.1)

=
Pr(Do|Gp, Go)Pr(Gp, Go)

Pr(Do)
(4.3.2)

If we assume that the child’s disease status is independent of the parents’ genotypes condi-

tional on his/her own genotype, then equation (4.2.2) becomes

Pr(Do|Go)Pr(Gp, Go)

Pr(Do)
. (4.3.3)

With simple algebra, we can rewrite it as

Pr(Go|Do)Pr(Gp|Go) (4.3.4)

= L1× L2. (4.3.5)

That is, the whole conditional likelihood Pr(Gp, Go|Do) (denoted as L), can be factored into

two independent parts, Pr(Go|Do) (denoted as L1) and Pr(Gp|Go) (denoted as L2).

Let us define the relative risk ψg as

ψg =
Pr(Do = 1|Go = g)

Pr(Do = 1|Go = g0)
,

where g0 is the baseline genotype group. Let pg be the population frequency for genotype

g. It is easy to show that L1 = f1(ψg’s, p) is a function of both the ψg’s and the pg’s, while

L2 is only determined by the pg’s and the Mendelian segregation rules. Therefore, only L1
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contains the parameters of interest, the ψg’s. In real life, the pg’s are sometimes known

(e.g. estimated from larger population sample). Under this situation, the parental genotype

distribution itself does not contribute anything to the inference of the ψg’s. If all we want

to do is the overall test of whether the genotype of the marker (gene) is associated with the

disease status, the most efficient test is the independent chi-square test using the children’s

genotype and phenotype data, i.e. the test based on L1 above.

When the pg’s need to be estimated from the current dataset, there are two ways that it

could be done. If the controls are population controls, the pg’s can be estimated using the

controls (for study design of case trios + independent controls) or the parents of the controls

(for study design of case trios + control trios) if the sample size is big enough. Even if the

controls are true controls, under the assumption of a rare disease, we can still estimate the

pg’s from the controls. The pg’s cannot be well estimated from the controls directly if the

sample size is small or if the disease is common and the controls are true controls. A joint

likelihood approach that combines the likelihoods of the case trios with the available controls

to estimate the pg’s and the ψg’s simultaneously can be used in these situations. A better

estimate of the pg’s can potentially improve the efficiency of the estimate of the ψg’s. We

will discuss this approach in detail for different study designs in later sections.

4.4 ALTERNATIVE FACTORIZATION OF THE LIKELIHOOD

An alternative factorization of the likelihood shown in equation (4.2.1) is

L = Pr(Gp, Go|Do)

= Pr(Go|Gp, Do)Pr(Gp|Do) (4.4.6)

= L3× L4. (4.4.7)

L3 contains transmission information, that is how different alleles of the heterozygous parents

are transmitted to the child. L4 contains founder information, namely the distribution of

the parental genotypes for cases or controls. It is easy to show that both parts are functions

of the ψg’s and the pg’s. Moreover, if we estimate the ψg’s using L3 and test the hypothesis
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of ψg = 0, it should be equivalent to the transmission tests (e.g. the TDT test). This

explains why the TDT test has low power to test for association between marker alleles and

disease status. It uses only part of the information that involves the ψg’s. A test based on

L4 should be equivalent to a case-control test (e.g. chi-square test) of the founders’ (the

parents) genotypes by the non-founders’ (the children’s) disease status.

Furthermore, this factorization of the likelihood suggests another analysis strategy for

designs that involve family trios – do both a stratification-proof test (e.g. the TDT test) and

a founder test (e.g. a chi-square test of the founders’ genotype). The PBAT is an example

of a quantitative-trait TDT that makes use of this factorization. They screen on the founder

test and then do a final test on the transmission test (VanSteen et al., 2005). The basic idea

of the PBAT is to increase the power of the analysis by reducing the number of the final

transmission tests. However, under severe population stratification, the list produced by the

founder test in the first stage is questionable. We will discuss this in detail in the discussion

section.

To simplify the presentation, we will continue our discussion under the assumption that

the controls are true controls (i.e. disease-free individuals). However, the basic principles

discussed in this paper can be applied to studies that use either kind of controls.

4.5 COMBINED ANALYSIS OF CASE TRIOS AND EXTERNAL

CONTROLS

In many studies, both trios and unrelated controls are collected. In some cases, the trios were

collected to confirm some association found by a previous case-control study. In other cases,

unrelated controls were collected to adjust for potential confounders (Epstein et al., 2005).

In such situations, a combined analysis that uses all the data is usually preferred. Several

methods have been developed to address this type of analysis (Epstein et al., 2005, Nagelkerke

et al., 2004, Whittemore et al., 2000). These likelihood-based approaches combined founder

information and the transmission information to increase the power of the association test.

Although these methods differ in the way the tests are constructed and whether they make
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some certain population assumptions (e.g. HWE), the overall conditional likelihood for the

trios is the same for all of them. Assuming a sample of I trios and J independent controls,

the whole conditional likelihood for both the case trios and the independent controls is then

L = Lcase trios × Lcontrol

=
I∏

i=1

Pr(Gpi, Goi|Doi = 1)×
J∏

j=1

Pr(Gj|Dj = 0). (4.5.8)

From equation (4.3.6), the likelihood of the trios can be separated into two parts, one contains

founder informations the other contains non-founder information:

L =
I∏

i=1

Pr(Goi|Doi = 1)Pr(Gpi|Goi)×
J∏

j=1

Pr(Gj|Dj = 0). (4.5.9)

As discussed above, when the pg estimates are available from external information or when

the sample size is large so that the pg’s can be estimated accurately from the controls, the only

parts of the likelihood that are involved in the estimation of the ψg’s are
∏I

i=1 Pr(Gpi, Goi|Doi =

1) and
∏J

j=1 Pr(Gj|Dj = 0), so an overall chi-square test for the children’s and the indepen-

dent controls’ genotypes and phenotypes should be the most efficient test. To avoid spurious

association results, the test statistics should be adjusted using one of the methods that ac-

count for the population stratification. It is only when we don’t have a good estimate of the

pg’s that, the combined likelihood methods are needed.

Epstein et al. demonstrated in their papers that their method is more powerful than

the traditional TDT test (Epstein et al., 2005) by simulation studies. This is also suggested

by the alternative factorization of the likelihood shown in equation (4.3.6). They did not

compare the power of their methods to the overall chi-square test of the cases and controls.

It will be interesting to see how much, if any, power can be gained by including the parents’

genotype data in the analysis.

One important issue in this type of analysis is whether the trios and the independent

controls should be combined. Both Epstein et al. and Nagelkerke et al. proposed tests

for testing whether the trios and the unrelated controls can be combined. Whittemore et

al. also developed a score statistic that decomposes nicely into two components, the NFS

(non-founder statistic) and the FS (founder statistic). The FS is related to L4 in equation
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(4.3.7). It compares the founder’s (the parents’) genotype distribution to that of the general

population to which they belong. It is not robust to population stratification or inappropriate

assumptions (e.g. random mating or HWE).The NFS tests for the deviation of the observed

and the expected marker alleles of the non-founders (the children), conditional on the founder

genotypes. The NFS is related to the TDT statistic, which uses information contained in L3

in equation (7), and thus is robust to population stratification. Therefore, we can use both

the FS and the NFS to test for the association and compare the results. At the presence

of population stratification, the NFS should be used in testing the association between the

marker genotype and the disease. The drawback of this method is that the transmission test

is still low in power to detect association between the marker and the disease of interests.

4.6 COMBINED ANALYSIS OF CASE TRIOS AND CONTROL TRIOS

In some cases, both case trios and control trios are available. This is particularly common

in studies of early developmental disease or birth defects. Assume that there are I case trios

and J control trios. The combined likelihood for the whole data now becomes

L = Lcase trios × Lcontrol trios

=
I∏

i=1

Pr(Gpi, Goi|Doi = 1)×
J∏

j=1

Pr(Gpj, Goj|Doj = 0)

=
I∏

i=1

Pr(Goi|Doi = 1)Pr(Gpi|Goi)×
J∏

j=1

Pr(Goj|Doj = 0)Pr(Gpj|Goj). (4.6.10)

As before, when the pg’s can be estimated independently, the portions of the likelihood that

contribute to the ψg’s are
∏I

i=1 Pr(Goi|Doi = 1) and
∏J

j=1 Pr(Goj|Doj = 0). Therefore, to

test the overall association of the marker genotype and the disease status, we just need to

do a chi-square test using the case children and the control children with proper adjustment

for population stratification. This test does not use parental information at all.

When the pg estimates cannot be obtained easily from the controls, a combined likelihood

approach might be more appropriate. The method proposed by Epstein and others can be
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easily extended to be applied to the data that contain case trios and control trios (Epstein

et al., 2005, Nagelkerke et al., 2004, Whittemore et al., 2000). Details of an example of the

extension of their method are given in the Appendix C. Again, case and control trios are

assumed to be from the same population. When this assumption is violated, we then should

use a transmission disequilibrium test, which has low power.

Another option is to use an add-hoc combination (e.g. a weighted average) of the TDT

statistics and the chi-square statistic of the parents’ genotype in case trios and control trios.

Similar idea worked well in QTL analysis of sib pairs (Forrest and Feingold, 2000). Recently,

Kazeem and Farall also presented a similar idea for combined analysis of independent case-

control and TDT studies (Kazeem and Farrall, 2005). However, it is hard to determine on

the optimal weights for the two types of statistics.

Alternatively, an overall chi-square tests can be applied to test the association of the

genotypes and phenotypes of the children with proper adjustment for subpopulation struc-

ture. This test should be much more powerful than the transmission disequilibrium test. It

accounts for the population stratification, yet it is straightforward to apply.

4.7 ANALYSIS OF TRISOMIC CASE TRIOS AND CONTROL TRIOS

4.7.1 TDT analysis

Our trisomic case-control data consists of trios, case trios plus control trios. One important

issue that is not considered in any of the TDT tests or the likelihood-based combined analysis

methods is transmission in controls. This is a more severe problem when dealing with trisomic

data. A good portion of trisomic fetuses do not survive to term. For example, only 20%

of the clinically recognized trisomy 21 conceptuses survived to term (Hassold and Jacobs,

1984). Therefore, the cases and the controls that we observe are not really random samples

from the population. They are from the subset of the population that survive to term. It is

very possible that we will observe segregation distortion in the case trios on a marker due

to gene-specific selection effects that have nothing to do with the disease (Xu et al., 2004,
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Kerstann et al., 2004). Xu and others proposed a TDT test for trisomic trios (Xu et al.,

2004). The TDT test can be applied to either the case trios or the control trios. A positive

test result in the control trios suggests that a locus near this marker is associated with the

survival of the trisomic embryo. A positive test result in the case trios can be explained by

confounded effect of the marker on selection and/or on the trait of interest. Some genes may

be associated with susceptibility to the trait only, but not survival. In that case, positive

results will only be observed in the case trios. Some genes might be involved in the survival

of the embryo only. If this is true, similar results will be seen in both case and control

trios. However, it is also possible that there are genes that are involved in both processes.

Therefore, to fully understand the genetic mechanism of the disease, it is recommanded that

the TDT should be applied separately to the case trios and the control trios.

4.7.2 Combined analysis

To do a combined analysis of the trisomic trio data (case trios + control trios), the strategies

mentioned in the last section are also applicable. To date, no combined likelihood method

has been developed for trisomic data, although most of the methods developed for dismic

trio data can be extended to deal with trisomic trios. The most efficient test for overall

association is still the chi-square test using the trisomic case children and control children.

However, this analysis will not yield details of whether the gene is associated with survival

of the embryos and/or disease status as the separate TDT analyzes do.

4.8 DISCUSSION

When case trio data with either independent controls or control trios are available, the

following strategies can be used to analyze the data.

1. Apply a TDT analysis of the case trios and control trios (when available). This is equiv-

alent to do the inference using L3 only. The TDT is robust for population stratification.

However, it has low power to detect association. On the other hand, this strategy pro-
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vides important additional information in the analysis of trisomic trio data.

2. Use a combined likelihood approach, which is currently available for disomic case trios

and controls. These methods can be easily extended to trisomic trio data. This approach

uses the complete likelihood L. When the assumptions are correct, i.e. the cases and

controls are from the same population so that the two type of data can be combined, this

should be the most powerful test. When this assumption is not right, the test is biased.

3. Use an ad-hoc statistic that takes the form of the weighted mean of a regular chi-square

statistic for the parents’ genotype and the TDT statistic. This method uses information

contains in both L3 and L4 simultaneously. This is an appealing approach except for

the fact that it is hard to define the optimal weight for each type of statistics.

4. Use a PBAT-type approach. This approach uses L3 and L4 separately in two different

stages of the analysis. PBAT increases the overall power of the analysis by reducing the

number of transmission tests in the final stage. However, it is questionable whether it is

appropriate to use a case-control statistic to select the list in the first stage. Under the

presence of severe population stratification, genes that make the list might be the ones

that distributed differently in different subpopulation, and has nothing to do with the

disease of interest.

5. Do an overall chi-square test on the cases and controls (ignoring parental information),

adjust for subpopulation structure using one of the newly developed methods that ac-

counts for stratification. This method uses information contained in L1 only. As dis-

cussed before, this is the most efficient test when the sample size is large enough. This ap-

proach requires genotyping of extra ”null” markers. With the advances of high through-

put genotyping technologies, this should not be a big problem for most the studies. We

believe that this is the best strategy for this type of analysis, even when the sample size

is small. Potentially we may lose some power due to less efficient estimates of the ψg’s.

We suspect the loss will be small though.

So, are trio designs obsolete? Probably, except in special situations, as for the trisomic

studies. The main cost of including the parental genotype data is recruiting. For studies

of the birth defects, the parents are often registered automatically. Hence it won’t be too

much more costly to collect their genotype data. For other studies that need more effort to
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recruit the parents, such as studies for late onset disease, it is probably not worth collecting

parents. It is more efficient to do a population case-control study and control for potential

population stratification using one of the methods disscussed earlier.

So far, we discuss the situation where only the parental genotypes but not phenotypes are

collected along with the genotypes and phenotypes of the children. If the parental phenotypes

are available, it is an entirely different situation. The likelihood for a trio becomes

L = Pr(Gp, Go|Do, Dp),

where Dp is the disease status of the parents. It is easily seen that the parents data will also

contribute to estimation of the ψg’s. That is, collecting parents only for their genotype data

is almost certainly wasteful, but if parental phenotype are also available and scientifically

relevant, then trios may indeed be useful.
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5.0 MULTIPOINT EXTENSION OF TRISOMIC TDT
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5.1 MOTIVATION

As explained earlier, the TDT statistic is robust to population stratification, assortive mat-

ing, and other factors that can distort the parental distribution. It has been the most popular

test used in family-based control studies. A trisomic TDT test was developed by Xu et al.

2004. It is a likelihood ratio test comparing the likelihood of the data under random segrega-

tion model to the likelihood of the data under a model that allows non-random segregation

(Xu et al. 2004). Assume Nk families are of the kth mating type. Mating types are defined

by different combinations of the parental genotypes of a family. Let n0k, n1k, n2k and n3k

denote the number of families with the offspring of genotype AAA, AAB, ABB and BBB

respectively. The multinomial likelihood is expressed as

L =
5∏

k=1

Nk!

n0k!n1k!n2k!n3k!
P n0k

0k P n1k
1k P n2k

2k P n3k
3k ,

where P0k, P1k, P2k and P3k are the probabilities of surviving to term with phenotype of

interest (CHD in our case) conditioning on the parents’ genotypes of the kth mating type

for the four offspring genotypes. Pik’s are functions of allelic association parameters (w’s, as

described in section 2.3.2), as well as genetic map parameters (h’s, as described in section

2.3.2). The map parameter, h, could estimated simultaneously with the w’s, but the test

could be adapted to use map parameters that are known from other sources.

The trisomic TDT test is applicable for transmission disequilibrium of the two alleles

for a single marker. When multiple markers exist, multiple comparison problems emerge.

The tests for different markers are not independent, since markers that are close together are

closely related to each other. Therefore, if we use traditional Bonferroni correction to correct

for multiple comparisons, the power of the test will be very low. We attempted to extend

the trisomic TDT to a multi-marker test by applying GEE to account for the correlation

across different markers. The general idea for a test for two markers is described in the next

section. However, this method turns out to be impractical, as discussed in section 4.2.2. We

will come up with more practical solutions for our data analysis.
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5.2 TWO MARKER TRISOMIC TDT TEST

Assume we have two biallelic markers. We adapted the notation from Xu et al. 2004. For

the marker locus g, we denote

hg = probability before selection of disomic homozygosity at locus g,

w0g = probability of survival with disease phenotype of genotype AAA at locus g,

w1g = probability of survival with disease phenotype of genotype AAB at locus g,

w2g = probability of survival with disease phenotype of genotype ABB at locus g,

w3g = probability of survival with disease phenotype of genotype BBB at locus g.

5.2.1 Set up of the test

Only the families with at least one heterozygous parent for the marker are informative for

TDT test. A single family may be informative for some markers but non-informative for

other markers. We consider three types of families in our two marker trisomic TDT test:

Type I family: informative for both markers. Assume that we have m such families.

Type II family: only 1st marker is informative. Assume that we have n1 such families.

Type III family: only 2nd marker is informative. Assume that we have n2 such families.

We want to construct a test for H0 : w1g = w2g = w3g = 1. There are 5 different mating

types for a informative marker. Our final marginal likelihood is a product of 5 multinomial

likelihoods. The mating types and their corresponding probability of each offspring genotype

conditioning on the mating type are listed in Table 3.1. The marginal likelihood for marker

g is

Lg =
5∏

k=1

Nkg

n0kg!n1kg!n2kg!n3kg!
P

n0kg

0kg P
n1kg

1kg P
n2kg

2kg P
n3kg

3kg .

For each family i, the two scores (derived from the marginal likelihood for each marker) are:

S1i =
∂f(xi, θ1)

∂θ1

and S2i =
∂f(xi, θ2)

∂θ2

where θ1 = (h1, w01, w11, w21, w31)
T and θ2 = (h2, w02, w12, w22, w32)

T
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For type I family, the contribution to the score is

T1 = (
m∑

i=1

ST
1i,

m∑
i=1

ST
2i)Σ

−1(
m∑

i=1

S1i,

m∑
i=1

S2i)
T

For type II family, the contribution to the score is

T2 = (
n1∑
i=1

ST
1i)Σ

−1
11 (

n1∑
i=1

S1i)
T

For type III family, the contribution to the score is

T3 = (
n2∑
i=1

ST
2i)Σ

−1
22 (

n2∑
i=1

S2i)
T

The final score statistic becomes

T = T1 + T2 + T3.

Here

Σ =


 Σ11 Σ12

Σ21 Σ22




where

Σ11 =

∑m+n1

i=1 {(S1(xi, θ10)− S̄1(xi, θ10)
) (

S1(xi, θ10)− S̄1(xi, θ10)
)T}

m + n1 − 1

Σ12 =

∑m
i=1{

(
S1(xi, θ10)− S̄1(xi, θ10)

) (
S2(xi, θ20)− S̄2(xi, θ20)

)T}
m− 1

Σ22 =

∑m+n2

i=1 {(S2(xi, θ20)− S̄2(xi, θ20)
) (

S2(xi, θ20)− S̄2(xi, θ20)
)T}

m + n2 − 1

and

S̄1 = sample mean of S1, S̄2 = sample mean of S2.

Under the null hypothesis that none of the markers is associated with the outcome,

H0 : θ10 = (ĥ1, 1, 1, 1, 1)T and θ20 = (ĥ2, 1, 1, 1, 1)T .

T ∼ χ2(6).

65



In addition, we can test association for each marker separately. To test whether marker1 is

associated with the outcome, the null hypothesis is,

H0 : θ10 = (ĥ1, 1, 1, 1, 1)T and θ20 = (ĥ2, 1, ŵ12, ŵ22, ŵ32)
T .

Under the null hypothesis,

T ∼ χ2(3).

Similarly, to test whether marker 2 is associated with the outcome, the null hypothesis is

H0 : θ10 = (ĥ1, 1, ŵ11, ŵ21, ŵ31)
T and θ20 = (ĥ2, 1, 1, 1, 1)T .

Under the null hypothesis,

T ∼ χ2(3).

The details for derivation of the score statistic and parameter estimation are listed in Ap-

pendix D.
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5.2.2 Practical issues for multi-marker trisomic TDT

The idea described above can be extended to deal with n markers, n > 2. However, it will not

work in practice. Here is why: for 2 markers, we have 3 types of families to deal with based

on the informativeness pattern of the markers. Therefore, the total score is the summation

of three independent scores. In general, for n markers, we will have C1
n + C2

n + ... + Cn
n

types of families. That is, for 3 markers, there will be 7 types of families, for 4 markers,

there will be 15 types of families... As we can see, the number of different types of families

increase exponentially with the number of markers. That is, we divide the families into so

many subgroups, even for decent sized data, there would be certain subgroups that are either

empty or have very few observations. Therefore, we cannot estimate the variance-covariance

matrix correctly.

Another issue is the h parameter. It is defined as the probability of homozygosity for a

marker. In practice, for a single marker, the h parameter would be different for MI cases

and MII cases, it would also be different for maternal and paternal non-disjoining events.

That is, for each marker, we should have to estimate 4 h’s. There would be 7 parameters

for each marker. In most cases, the nondisjoining event happened in maternal meiosis and

majority of the data we have are MI cases. We can chose to assume that there is only one h

for each marker. However, this could lead to biased estimates. Some time (like in our case),

the h parameter could be estimated by some external information. For the CHD study, the

h parameters are estimated by existing microsatalite maps. We can apply the test to the

data treating hs as known quantities.

As discussed above, it is hard in practice to apply the multi-marker trisomic TDT to real

data. We decided that we will not continue working on this topic further in the future.
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6.0 CONCLUSIONS AND DISCUSSION

Family-based genetic association studies have been proven important in studying gene as-

sociated with complex diseases. My dissertation is focused on statistical issues raised in

family-based genetic association studies. The motivating data for this dissertation are gen-

erated by the atrioventricular septal defect (AVSD) study of Down sydrome (DS). Family

trios were collected in this study. Therefore, my dissertation mainly dealt with analysis of

trio designs. The analysis of a family-based association study consists of two main steps,

genotype calling and testing for association. We have made progress in statistical issues

raised in each step, as concluded in the following sections.

6.1 IMPROVED GENOTYPE CALLING METHODS OF SNP ARRAY

DATA FOR FAMILY TRIOS

Many high throughput SNP genotyping technologies have been developed recently. In Chap-

ter 2, we discussed the question of how to better call the genotypes for disomic family trio

data. We felt that existing methods for genotype calling can be improved by better use of

some specific features of genotype calling problem. The specific features that we considered

in this chapter include:

1. Prior information about the distribution of the data, including the variance structures

and the shpaes of the genotype clusters.

2. Family constraints due to Mendelian rules.

3. Limited number of clusters (1, 2 or 3 for disomic data).
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We also developed two family-based genotype calling methods, namely the trio K-means

method, and the family-based mixture model approaches. We compared these two methods

with some other commonly used clustering methods for genotype calling using both simula-

tion studies and a real data analysis. Our results suggest that when the data quality is not

good, external information, including prior knowledge of the distribution of the data and

family structure, can improve the genotype calls for family trio data significantly.

In Chapter 3, we extended the two family-based methods to trisomic trio data. We saw

similar results as we did in the disomic case when we compared these two methods to other

genotype calling methods. The trio beta-mixture model performed the best among the four

methods compared.

One important issue in the family-based methods is how to deal with potential family

errors. The family-based methods force all genotypes to follow Mendelian inheritance rules

within each family. However, genetic studies often have a few errors in reported family infor-

mation. Genotypes called by the family-based method using the wrong family information

will cause some trouble not only for this family but also for the whole dataset. We discussed

this issue in the discussion of Chapter 2, and we also suggested some practical strategies of

dealing with such situation. Interestingly, when we applied the trio beta-mixture model to

a real dataset generated by the AVSD study, we encountered the problem of family data

mixup ourselves. The trio beta-mixture model assigned a few individuals to the obviously

wrong genotype clusters. This is a good example of how the family errors can affect the

results of family-based genotyping.

In Chapter 3, we used families with all three members to illustrate the application of our

family-based methods. Currently, the trio beta-mixture model deals with only families with

no missing memeber. However, the EM algorithm can be modified to accomondate missing

parents. We plan to fix the codes for the trio beta-mixture model so that it can deal with

families with missing parents in the near future.
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6.2 ALTERNATIVE ANALYSIS OF TRIO DESIGNS

In Chapter 4 we discussed and compared the available methods on the analysis of trio designs.

The two types of trio designs we focused on are case trios plus independent controls and case

trios plus control trios. We factorized the conditional likelihood for the trios in two different

ways (equations 4.2.4 and 4.3.6)and related different analysis strategies to the part(s) of the

likelihood they use. We believe that, when the sample size is large, the best strategy for

this type of analysis is an case-control test of the children’s genotypes and phenotypes. To

avoid spurious association due to population structure, the subpopulation structure should

be properly adjusted. We can use one of the several new methodologies developed recently,

which can handle the stratification fairly effectively, to accomplish this task.

Trisomic association studies are unique in that the samples are not really random samples

from the population. Since only a small portion of the triosmy fetuses (e.g. about 20% for

trisomy 21) survive to term, we are dealing with a subpopulation that survived. Therefore,

when a positive result turns up in a traditional TDT test in case trios, we don’t know whether

the marker is associated with the disease or survival of the fetus or both. When the TDT

test is applied to the case trios and the control trios separately, the combined results of these

two tests provides important details regarding where the positive result is coming from. We

discussed this in details in Chapter 4. Hence, for trisomic trio designs, although the more

powerful test is still the overall case-control test of the children’s genotypes and phenotypes,

separate TDT tests are still recommanded because they provides important details in the

analysis of trisomic trio data.

In the discussion of Chapter 4, we returned to the question of whether it is sensible to

collect trio data any more. We concluded that the trio designs that collect parents only

for their genotypes are probably obsolete now. Because armed with the recent development

of methodologies that deal with population stratification, we can taken into the account of

subpopulation structure in population-based association studies fairly efficiently. However

for special situations, such as in trisomic case, trio design is still useful.

There is still one important questions related to the analysis of trio designs that have

not been addressed in the literature or in this dissertation. The potential drawback of the
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overall case-control test is that by throwing out parents’ data, we lose part of the information

related to the pg’s. This can potentially cause some loss in the efficiency of the estimation of

the ψg’s in a likelihood frame work. Although we suspect that the loss is small, exactly how

much power might be lost has never been tested. A related question is how the combined-

likelihood methods compare to the overall case-control test of children in the analysis of a

trio design. None of the authors did the comparison between these two strategies. It will

be interesting to see how they compare to each other under different situations, maybe by

simulation studies.
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APPENDIX A

EM ALGORITHM FOR TRIO GAUSSIAN-MIXTURE MODEL AND TRIO

BETA-MIXTURE MODEL

Let Yi = (yfi, ymi, yki) be the observed data for the father, the mother, and the child of the

ith trio. Let Gi = (gfi, gmi, gki) be the corresponding genotype vector. First, let us assume

that we can observe the genotype vector Gi. Then the log likelihood for the ith trio is

li(Yi, Gi, θ) = log pλ=gfi
+ log pλ=gmi

+ log Pr(gki|gfi, gmi)

+ log f(yfi, ξλ=gfi
) + log f(ymi, ξλ=gmi

) + log f(yki, ξλ=gki
) (A.0.1)

where

f(y, ξλ) = φ(y, µλ, σ
2
λ)

for trio Gaussian-mixture model and

f(y, ξλ) = f(y, αλ, βλ)

=
1

B(α, β)
yα−1(1− y)β−1

for trio beta-mixture model. The parameter vector is

θ = (pλ’s, ξλ’s)
T (A.0.2)
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A.1 ESTIMATION OF Pλ’S.

The sufficient statistic for pλ is

S1α =
n∑

i=1

[1{gfi = λ}+ 1{gmi = λ}] (A.1.3)

E-step

Pr(gfi = λ|Yi, θ
(t)) =

Pr(Yi|gfi = λ, θ(t))Pr(gfi = λ, θ(t))∑
λ∈Λ={AA,AB,BB} Pr(Yi|gfi = λ, θ(t))Pr(gfi = λ, θ(t))

=
pλf(yfi, ξλ)

∑
gmi

∑
gki

pλ=gmi
Pr(gki|gmi, gfi = λ, θ(t))

∏
γ∈{mi,ki} f(yγ, ξgγ )∑

gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))
∏

γ∈{fi,mi,ki} f(yγ, ξgγ )

Similarly

Pr(gmi = λ|Yi, θ
(t))

=
pλf(ymi, µλ)

∑
gfi

∑
gki

pλ=gfi
Pr(gki|gmi = λ, gfi, θ

(t))
∏

γ∈{fi,ki} f(yγ, µgγ )∑
gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))
∏

γ∈{fi,mi,ki} f(yγ, µgγ )

E(S1,λ|Y, θ(t))

=
n∑

i=1

[
Pr(gfi = λ|Yi, θ

(t)) + Pr(gmi = λ|Yi, θ
(t))

]
(A.1.4)

M-step

p
(t+1)
λ =

E(S1,λ|Y, θ(t))

2n
. (A.1.5)

73



A.2 ESTIMATION OF THE NORMAL COMPONENTS.

For the trio Gaussian-mixture model, the sufficient statistics for µλ and σ2
λ are:

S1,λ =
n∑

i=1

[1{gfi = λ}+ 1{gmi = λ}] , (A.2.6)

S2,λ =
n∑

i=1

[1{gfi = λ}yfi + 1{gmi = λ}ymi + 1{gki = λ}yki] , (A.2.7)

S3,λ =
n∑

i=1

[
1{gfi = λ}y2

fi + 1{gmi = λ}y2
mi + 1{gki = λ}y2

ki

]
, (A.2.8)

S4,λ =
n∑

i=1

1{gki = λ}. (A.2.9)

E-step

At E-step, we calculate E(S1,λ|Y, θ(t)), E(S2,λ|Y, θ(t)), E(S3,λ|Y, θ(t)), and E(S4,λ|Y, θ(t)) .

As shown above,

E(S1,λ|Y, θ(t))

=
n∑

i=1

[
pλφ(yfi, µλ, σ

2
λ)

∑
gmi

∑
gki

pλ=gmi
Pr(gki|gmi, gfi = λ, θ(t))

∏
γ∈{mi,ki} φ(yγ, µgγ , σ

2
gγ

)∑
gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))
∏

γ∈{fi,mi,ki} φ(yγ, µgγ , σ
2
gγ

)

]

+
n∑

i=1

[
pλφ(ymi, µλ, σ

2
λ)

∑
gfi

∑
gki

pλ=gfi
Pr(gki|gmi = λ, gfi, θ

(t))
∏

γ∈{fi,ki} φ(yγ, µgγ , σ
2
gγ

)∑
gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))
∏

γ∈{fi,mi,ki} φ(yγ, µgγ , σ
2
gγ

)

]
.

Similar to the derivation shown from last section,

Pr(gki = λ|Yi, θ
(t))

=
φ(yki, µλ, σ

2
λ)

∑
gfi

∑
gmi

pλ=gfi
pλ=gmi

Pr(gki = λ|gmi, gfi, θ
(t))

∏
γ∈fi,mi φ(yγ, µγ, σ

2
γ)∑

gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))}∏
γ∈{fi,mi,ki} φ(yγ, µgγ , σ

2
gγ

)
.

Hence

E(S4,λ|Y, θ(t)) =
n∑

i=1

Pr(gki = λ|Yi, θ
(t))

=
n∑

i=1

∑
gfi

∑
gmi

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ
(t))

∏
γ∈fi,mi φ(yγ, µγ, σ

2
γ)∑

gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))}∏
γ∈{fi,mi,ki} φ(yγ, µgγ , σ

2
gγ

)
,
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and

E(S2,λ|Y, θ(t))

=
n∑

i=1

[
Pr(gfi = λ|Yi, θ

(t))yfi + Pr(gmi = λ|Yi, θ
(t))ymi + Pr(gki = λ|Yi, θ

(t))yki

]
,

E(S3,λ|Y, θ(t))

=
n∑

i=1

[
Pr(gfi = λ|Yi, θ

(t))y2
fi + Pr(gmi = λ|Yi, θ

(t))y2
mi + Pr(gki = λ|Yi, θ

(t))y2
ki

]
.

M-step

µ
(t+1)
λ =

E(S2,λ|Y, θ(t))

E(S1,λ|Y, θ(t)) + E(S4,λ|Y, θ(t))
(A.2.10)

σ
2(t+1)
λ =

E(S3,λ|Y, θ(t))

E(S1,λ|Y, θ(t)) + E(S4,λ|Y, θ(t))
− (µ

(t+1)
λ )2 (A.2.11)

A.3 ESTIMATION OF THE BETA PARAMETERS.

The part of the log likelihood that involves alphaλ and βλ) is:

lλ =
n∑

i=1

[1{gfi = λ} log f(yfi, αλ, βλ) + 1{gmi = λ} log f(ymi, αλ, βλ)

+1{gki = λ} log f(yki, αλ, βλ)] (A.3.12)

E-step

At E-step, we calculate

E(lλ|Y, θ(t)) =
n∑

i=1

Pr(gfi = λ|Yi, θ
(t)) log f(yfi, αλ, βλ)

+
n∑

i=1

Pr(gmi = λ|Yi, θ
(t)) log f(ymi, αλ, βλ)

+
n∑

i=1

Pr(gki = λ|Yi, θ
(t)) log f(yki, αλ, βλ) (A.3.13)
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As shown above,

Pr(gfi = λ|Yi, θ
(t))

=
pλf(yfi, αλ, βλ)

∑
gmi

∑
gki

pλ=gmi
Pr(gki|gmi, gfi = λ, θ(t))

∏
γ∈{mi,ki} f(yγ, αgγ , βgγ )∑

gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))
∏

γ∈{fi,mi,ki} f(yγ, αgγ , βgγ )

Pr(gmi = λ|Yi, θ
(t))

=
pλf(ymi, αλ, βλ)

∑
gfi

∑
gki

pλ=gfi
Pr(gki|gmi = λ, gfi, θ

(t))
∏

γ∈{fi,ki} f(yγ, αgγ , βgγ )∑
gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))
∏

γ∈{fi,mi,ki} f(yγ, αgγ , βgγ )
.

Similar to the derivation shown from last section,

Pr(gki = λ|Yi, θ
(t))

=
f(yki, αλ, βλ)

∑
gfi

∑
gmi

pλ=gfi
pλ=gmi

Pr(gki = λ|gmi, gfi, θ
(t))

∏
γ∈fi,mi f(yγ, αγ, βγ)∑

gfi

∑
gmi

∑
gki

pλ=gfi
pλ=gmi

Pr(gki|gmi, gfi, θ(t))}∏
γ∈{fi,mi,ki} f(yγ, αgγ , βgγ )

.

M-step

In M-step, we maximize E(lλ|Y, θ(t))using the nlm procedure included in the R-package to

get α
(t+1)
λ and β

(t+1)
λ .
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APPENDIX B

ALGORITHM FOR PARAMETER ESTIMATION FOR TRISOMIC TRIO

BETA-MIXTURE MODEL

B.1 COMPLETE DATA LIKELIHOOD

Let Yi = (yNi, yCi, yKi) be the observed data for the NDJP, CDJP and the child of the

ithtrio. Let Gi = (gNi, gCi, gKi) be the corresponding genotype vector. The likelihood for

complete data of a trio is then:

Li(Yi, Gi, hi, θ) = Pr(gNi)Pr(gCi)Pr(gKi|gNi, gCi)Pr(yNi|gNi)Pr(yCi|gCiPr(yKi|gKi)

The parameter vector is

θ = (pλ1s, αλ1s, αλ2s, βλ1s, βλ2s)
T

where

λ1 ∈ Λ1 = {AA,AB,BB}, and λ2 ∈ Λ2 = {AAA,AAB, ABB, BBB}.

Therefore,

Li(Yi, Gi, hi, θ) = pλ1=gNi
pλ1=gCi

Pr(gKi|gNi, gCi)

f(yNi, αλ1=gNi
, βλ1=gNi

)f(yCi, αλ1=gCi
, βλ1=gCi

)f(yKi, αλ2=gKi
, βλ2=gKi

)
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and the log likelihood is

li(Yi, Gi, hi, θ) = log pλ1=gNi
+ log pλ1=gCi

+ log Pr(gKi|gNi, gCi)

+ log f(yNi, αλ1=gNi
, βλ1=gNi

)

+ log f(yCi, αλ1=gCi
, βλ1=gCi

)

+ log f(yKi, αλ2=gKi
, βλ2=gKi

) (B.1.1)

B.2 ESTIMATION OF νλ1’S.

The sufficient statistic for νλ1 is

S1,λ1 =
n∑

i=1

[1{gNi = λ1}+ 1{gCi = λ1}] (B.2.2)

E-step

At the E-step, we calculate E(S1,λ1|Y, θ(t)).

Pr(gNi = λ1|Yi, θ
(t)) =

Pr(Yi|gNi = λ1, θ(t))Pr(gNi = λ1, θ(t))∑
λ1∈Λ={AA,AB,BB} Pr(Yi|gNi = λ1, θ(t)Pr(gNi = λ1, θ(t))

=
νλ1f(yNi, αλ1, βλ1)

∑
gCi

∑
gKi

νgCi
Pr(gKi|gCi, gNi = λ1, θ(t))

∏
γ∈{Ci,Ki} f(yγ, αgγ , βgγ )∑

gNi

∑
gCi

∑
gKi

νgNi
νgCi

Pr(gKi|gCi, gNi, θ(t))}∏
γ∈{Ni,Ci,Ki} f(yγ, αgγ , βgγ )

Similarly

Pr(gCi = λ1|Yi, θ
(t))

=
νλ1f(yCi, αλ1, βλ1)

∑
gNi

∑
gKi

νgCi
Pr(gKi|gCi = λ1, gNi, θ

(t))
∏

γ∈{Ni,Ki} f(yγ, αgγ , βgγ )∑
gNi

∑
gCi

∑
gKi

νgNi
νgCi

Pr(gKi|gCi, gNi, θ(t))}∏
γ∈{Ni,Ci,Ki} f(yγ, αgγ , βgγ )

.
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Therefore,

E(S1,λ1|Y, θ(t))

=
n∑

i=1

[
Pr(gNi = λ1|Yi, θ

(t) + Pr(gCi = λ1|Yi, θ
(t))

]

=
n∑

i=1

νλ1f(yNi, αλ1, βλ1)
∑

gCi

∑
gKi

νgCi
Pr(gKi|gCi, gNi = λ1, θ(t))

∏
γ∈{Ci,Ki} f(yγ, αgγ , βgγ )∑

gNi

∑
gCi

∑
gKi

νgNi
νgCi

Pr(gKi|gCi, gNi, θ(t))}∏
γ∈{Ni,Ci,Ki} f(yγ, αgγ , βgγ )

+
n∑

i=1

νλ1f(yCi, αλ1, βλ1)
∑

gNi

∑
gKi

νgCi
Pr(gKi|gCi = λ1, gNi, θ

(t))
∏

γ∈{Ni,Ki} f(yγ, αgγ , βgγ )∑
gNi

∑
gCi

∑
gKi

νgNi
νgCi

Pr(gKi|gCi, gNi, θ(t))}∏
γ∈{Ni,Ci,Ki} f(yγ, αgγ , βgγ )

.

M-step

At the M-step, we update νλ1 using the following formula,

ν
(t+1)
λ1 =

E(S1λ|Y, θ(t))

2n
, (B.2.3)

where n is the number of family trios.
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APPENDIX C

LIKELIHOOD-BASED METHOD FOR ASSOCIATION ANALYSIS OF

CASE TRIOS AND CONTROL TRIOS

C.1 LIKELIHOOD DERIVATION

Let us denote the two alleles of the SNP of interest A and a. We code each genotype g, as

the number of A allele carried by the individual of interest. The combined association test

we consider are based on the likelihood proposed by Nagelkerke et al. (2004) and Epstein

et al. (2005) for combining data on parental genotypes Gp, offspring genotypes Go, and

the disease outcome for the offspring Do (1=affected, 0=unaffected). Assuming the dataset

includes I case trios and J control trios, the likelihood can be written as:

L =
I∏

i=1

P (Gpi, Goi|Doi = 1)×
J∏

j=1

P (Gpj, Goj|Doj = 0)

In order to construct L, P (Gp, Go|Do = 1) and P (Gp, Go|Do = 0) need to be specified. Let

us define

P0 = P (Do = 1|Go = 0), P1 = P (Do = 1|Go = 1), and P2 = P (Do = 1|Go = 2).

Accordingly, the relative risk (RR) for genotype group g then can be defined as

ψg =
Pg

P0

, g = 1, 2.
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• For case trios:

P (Gp, Go|Do = 1) = P (Go = g|Gp = gp, Do = 1)P (Gp = gp|Do = 1)

where

P (Go = g|Gp = gp, Do = 1) =
ψgP (Go = g|Gp = gp)∑

g∗ ψg∗P (Go = g∗|Gp = gp)
,

if we assume that the offspring disease risk is independent of parental genotype given

offspring genotype.

Similarly,

P (Gp = gp|Do = 1) =

∑
g ψgP (Go = g|Gp = gp)P (Gp = gp)∑

gp∗
∑

g∗ ψg∗P (Go = g∗|Gp = gp∗)P (Gp = gp∗)
.

• For control trios:

P (Gp, Go|Do = 0) = P (Go = g|Gp = gp, Do = 0)P (Gp = gp|Do = 0)

where

P (Go = g|Gp = gp, Do = 0) =
(1− ψgP0)P (Go = g|Gp = gp)∑

g∗(1− ψg∗P0)P (Go = g∗|Gp = gp)
,

Again, we assume that the offspring disease risk is independent of parental genotype

given offspring genotype, then

P (Gp = gp|Do = 0) =

∑
g(1− ψg)P (Go = g|Gp = gp)P (Gp = gp)∑

gp∗
∑

g∗(1− ψg∗)P (Go = g∗|Gp = gp∗)P (Gp = gp∗)
.

P (Go|Gp, Do = 1) values and P (Go|Gp, Do = 0) values for all possible triad genotype

combinations were listed in Table A1. Note that these values are different from the

ones listed in Table A1. of Epstein et al. 2005. They assume that when the marker

locus is not associated with the disease status (i.e. all ψg’s equal to 1), then there is no

segregation distortion. That is, the transmission rate of either allele to the offspring is

1/2. However, we can pick up segregation distortion that has nothing to do with the

trait. Apparent segregation distortion can be caused by other reasons (Xu et al., 2004).
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Here we generalize Epstein et al.’s likelihood by allowing segregation distortion when the

locus is not associated with diseased status. Let us define

tA1 = P (A allele is transmitted|Do = 1),

ta1 = P (a allele is transmitted|Do = 1),

tA0 = P (A allele is transmitted|Do = 0),

ta0 = P (a allele is transmitted|Do = 0).

where

tA1 + ta1 = 1, and tA0 + ta0 = 1

When there is no segregation distortion,

tA1 = ta1 = tA0 = ta0 = 1/2.

When there is segregation distortion, but the gene is not associated with the disease

status,

tA1 = tA0 and ta1 = ta0,

but they are not equal to 1/2. When there is segregation distortion, and the gene is

associated with the disease of interest,

tA1 6= tA0 and ta1 6= ta0.

We followed Epstein et al. and calculate P (Gp) using the parental genotype distribu-

tion described by Weinberg et al. (1998). For a SNP , there are 6 possible mating types,

{(2,2),(2,1), (2,0), (1,1), (1,0), (0,0)}. We define µl as the probability of the lth mating type

(l = 1, 2, ...6) in the population. µl’s are functions of tα’s, α ∈ (A1, A0, a1, a0), and ψg’s.

The µl’s may be any positive numbers that add up to 1.
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C.2 TESTING HYPOTHESIS

The L specified above can be used to estimate the ψg’s and the tα’s using standard maximum-

likelihood procedures. LR test can be constructed to test the null hypothesis of ψ1 = ψ2 = 1.

In addition, the null hypothesis tA1 = tA0 or tA1 = tA0 = 1/2 can also be tested. The later

one is equivalent to the regular TDT test.
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Table C1: Evaluation of P (Go|Gp, Do = 1) and P (Go|Gp, Do = 0)

Gp and Go P (Go|Gp, Do = 1) P (Go|Gp, Do = 0)
Gp = (2, 2)

Go = 2 1 1
Go = 1 0 0
Go = 0 0 0

Gp = (2, 1)
Go = 2 ψ2tA1

ψ1ta1+ψ2tA1

(1−ψ2P0)tA0
(1−ψ2P0)tA0+(1−ψ1P0)ta0

Go = 1 ψ1ta1
ψ1ta1+ψ2tA1

((1−ψ1P0)ta0
(1−ψ2P0)tA0+(1−ψ1P0)ta0

Go = 0 0 0
Gp = (2, 0)

Go = 2 0 0
Go = 1 1 1
Go = 0 0 0

Gp = (1, 1)
Go = 2 ψ2t2A1

ψ2t2A1+2ψ1tA1ta1+t2a1

(1−ψ2P0)t
2
A0

(1−ψ2P0)t2A0+2(1−ψ1P0)tA0ta0+(1−P0)t2a0

Go = 1 2ψ1tA1ta1
ψ2t2A1+2ψ1tA1ta1+t2a1

2(1−ψ1P0)tA0ta0
(1−ψ2P0)t2A0+2(1−ψ1P0)tA0ta0+(1−P0)t2a0

Go = 0 t2a1
ψ2t2A1+2ψ1tA1ta1+t2a1

(1−P0)t
2
a0

(1−ψ2P0)t2A0+2(1−ψ1P0)tA0ta0+(1−P0)t2a0

Gp = (1, 0)
Go = 2 0 0
Go = 1 ψ1tA1

ψ1tA1+ta1

(1−ψ1P0)tA0
(1−ψ1P0)tA0+(1−P0)ta0

Go = 0 ta1
ψ1tA1+ta1

(1−ψ1P0)tA0
(1−P0)ta0+(1−P0)ta0

Gp = (0, 0)
Go = 2 0 0
Go = 1 0 0
Go = 0 1 1
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APPENDIX D

SUPPLEMENT MATERIAL FOR TWO-MARKER TRISOMIC TDT

D.1 DERIVATION OF SCORE FUNCTIONS FOR THE FIVE MATING

TYPES

There are total of 5 possible mating types for the families that generate informative data for

trisomic TDT test. The mating types and corresponding probabilities of each offspring are

listed in Table D1.

Mating type I

Category 1: P01 = 1/2
1/2+w1/2

= 1
1+w1

.

Category 2: P11 = w1/2
1/2+w1/2

= w1

1+w1

For each family in category 1,

Si =
∂f(xi, θ)

∂θ
=




−∂log (1+w1)
∂w1

0

0

0




=




−1
1+w1

0

0

0




(D.1.1)
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Table D1: Fifteen Categories of a Informative SNP Marker for a Nuclear Family with One

Trisomic Offspring

Mating Type Category NDJP CDJP Child Probability

I 1 AA AB AAA w0

w0+w1

2 AAB w1

w0+w1

II 3 AB AA AAA h
h+2w1(1−h)+w2h

4 AAB 2w1(1−h)
h+2w1(1−h)+w2h

5 ABB w2h
h+2w1(1−h)+w2h

III 6 AB AB AAA h
h+(w1+w2)(2−h)+w3h

7 AAB w1(2−h)
h+(w1+w2)(2−h)+w3h

8 ABB w2(2−h)
h+(w1+w2)(2−h)+w3h

9 BBB w3h
h+(w1+w2)(2−h)+w3h

IV 10 AB BB AAB w1h
w1h+2w2(1−h)+w3h

11 ABB 2w2(1−h)
w1h+2w2(1−h)+w3h

13 BBB w3h
w1h+2w2(1−h)+w3h

V 14 BB AB ABB w2

w2+w3

15 BBB w3

w2+w3

86



and

∑
Si =




−n01

1+w1

0

0

0




(D.1.2)

For each family in category 2,

Si =
∂f(xi, θ)

∂θ
=




∂[log w1−log (1+w1)]
∂w1

0

0

0




=




1
w1
− 1

1+w1

0

0

0




and

∑
Si =




n11

w1
− n11

1+w1

0

0

0




Mating type II

Category 3: P02 = h
h+2w1(1−h)+w2h

Category 4: P12 = 2w1(1−h)
h+2w1(1−h)+w2h

Category 5: P22 = w2h
h+2w1(1−h)+w2h

For each family in category 3,

Si =
∂f(xi, θ)

∂θ
=




−∂log [h+2w1(1−h)+w2h]
∂w1

−∂log [h+2w1(1−h)+w2h]
∂w2

0

∂[log h−log (h+2w1(1−h)+w2h)]
∂h




=




2(1−h)
h+2w1(1−h)+w2h

h
h+2w1(1−h)+w2h

0

1
h
− 1−2w1+w2

h+2w1(1−h)+w2h




(D.1.3)
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and

∑
Si =




2(1−h)n02

h+2w1(1−h)+w2h

hn02

h+2w1(1−h)+w2h

0

n02

h
− (1−2w1+w2)n02

h+2w1(1−h)+w2h




(D.1.4)

For each family in category 4,

Si =
∂f(xi, θ)

∂θ
=




∂[log 2w1(1−h)−log (h+2w1(1−h)+w2h)]
∂w1

−∂log [h+2w1(1−h)+w2h]
∂w2

0

∂[log (2w1(1−h))−log (h+2w1(1−h)+w2h)]
∂h




=




1
w1
− 2(1−h)

h+2w1(1−h)+w2h

h
h+2w1(1−h)+w2h

0

−1
1−h

− 1−2w1+w2

h+2w1(1−h)+w2h




(D.1.5)

and

∑
Si =




n12

w1
− 2(1−h)n12

h+2w1(1−h)+w2h

hn12

h+2w1(1−h)+w2h

0

−n12

1−h
− (1−2w1+w2)n12

h+2w1(1−h)+w2h




(D.1.6)

For each family in category 5,

Si =
∂f(xi, θ)

∂θ
=




−∂log [h+2w1(1−h)+w2h]
∂w1

∂[log w2h−log (h+2w1(1−h)+w2h)]
∂w2

0

∂[log w2h−log (h+2w1(1−h)+w2h)]
∂h




=




−2(1−h)
h+2w1(1−h)+w2h

1
w2
− h

h+2w1(1−h)+w2h

0

1
h
− 1−2w1+w2

h+2w1(1−h)+w2h




(D.1.7)
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and

∑
Si =




−2(1−h)n22

h+2w1(1−h)+w2h

n22

w2
− hn22

h+2w1(1−h)+w2h

0

n22

h
− (1−2w1+w2)n22

h+2w1(1−h)+w2h




(D.1.8)

Mating type III

Category 6: P03 = h/4
h/4+w1(1/2−h/4)+w2(1/2−h/4)+w3(h/4)

= h
h+w1(2−h)+w2(2−h)+w3h

.

Category 7: P13 = w1(1/2−h/4)
h/4+w1(1/2−h/4)+w2(1/2−h/4)+w3(h/4)

= w1(2−h)
h+w1(2−h)+w2(2−h)+w3h

.

Category 8: P23 = w2(1/2−h/4)
h/4+w1(1/2−h/4)+w2(1/2−h/4)+w3(h/4)

= w2(2−h)
h+w1(2−h)+w2(2−h)+w3h

.

Category 9: P13 = w3(h/4)
h/4+w1(1/2−h/4)+w2(1/2−h/4)+w3(h/4)

= w3h
h+w1(2−h)+w2(2−h)+w3h

.

For each family in category 6,

Si =
∂f(xi, θ)

∂θ
=




−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w1

−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w2

−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w3

∂[log h−log (h+w1(2−h)+w2(2−h)+w3h)]
∂h




=




h−2
h+w1(2−h)+w2(2−h)+w3h

h−2
h+w1(2−h)+w2(2−h)+w3h

−h
h+w1(2−h)+w2(2−h)+w3h

1
h
− 1−w1−w2+w3

h+w1(2−h)+w2(2−h)+w3h




(D.1.9)

and

∑
Si =




(h−2)n03

h+w1(2−h)+w2(2−h)+w3h

(h−2)n03

h+w1(2−h)+w2(2−h)+w3h

−hn03

h+w1(2−h)+w2(2−h)+w3h

n03

h
− (1−w1−w2+w3)n03

h+w1(2−h)+w2(2−h)+w3h




(D.1.10)

For each family in category 7,
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Si =
∂f(xi, θ)

∂θ
=




∂[log w1(2−h)−log (h+w1(2−h)+w2(2−h)+w3h)]
∂w1

−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w2

−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w3

∂[log w1(2−h)−log (h+w1(2−h)+w2(2−h)+w3h)]
∂h




=




1
w1
− 2−h

h+w1(2−h)+w2(2−h)+w3h

h−2
h+w1(2−h)+w2(2−h)+w3h

−h
h+w1(2−h)+w2(2−h)+w3h

1
h−2

− 1−w1−w2+w3

h+w1(2−h)+w2(2−h)+w3h




(D.1.11)

and

∑
Si =




n13

w1
− (2−h)n13

h+w1(2−h)+w2(2−h)+w3h

(h−2)n13

h+w1(2−h)+w2(2−h)+w3h

−hn13

h+w1(2−h)+w2(2−h)+w3h

n13

h−2
− (1−w1−w2+w3)n13

h+w1(2−h)+w2(2−h)+w3h




(D.1.12)

For each family in category 8,

Si =
∂f(xi, θ)

∂θ
=




−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w1

∂[log w2(2−h)−log (h+w1(2−h)+w2(2−h)+w3h)]
∂w2

−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w3

∂[log w2(2−h)−log (h+w1(2−h)+w2(2−h)+w3h)]
∂h




=




h−2
h+w1(2−h)+w2(2−h)+w3h

1
w2
− 2−h

h+w1(2−h)+w2(2−h)+w3h

−h
h+w1(2−h)+w2(2−h)+w3h

1
h−2

− 1−w1−w2+w3

h+w1(2−h)+w2(2−h)+w3h




(D.1.13)

and

∑
Si =




(h−2)n23

h+w1(2−h)+w2(2−h)+w3h

n23

w2
− (2−h)n23

h+w1(2−h)+w2(2−h)+w3h

−hn23

h+w1(2−h)+w2(2−h)+w3h

n23

h−2
− (1−w1−w2+w3)n23

h+w1(2−h)+w2(2−h)+w3h




(D.1.14)
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For each family in category 9,

Si =
∂f(xi, θ)

∂θ
=




−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w1

−∂log [h+w1(2−h)+w2(2−h)+w3h]
∂w2

∂[logw3−log (h+w1(2−h)+w2(2−h)+w3h)]
∂w3

∂[log w3h−log (h+w1(2−h)+w2(2−h)+w3h)]
∂h




=




h−2
h+w1(2−h)+w2(2−h)+w3h

h−2
h+w1(2−h)+w2(2−h)+w3h

1
w3
− h

h+w1(2−h)+w2(2−h)+w3h

1
h
− 1−w1−w2+w3

h+w1(2−h)+w2(2−h)+w3h




(D.1.15)

and

∑
Si =




(h−2)n33

h+w1(2−h)+w2(2−h)+w3h

(h−2)n33

h+w1(2−h)+w2(2−h)+w3h

n33

w3
− hn33

h+w1(2−h)+w2(2−h)+w3h

n33

h
− (1−w1−w2+w3)n33

h+w1(2−h)+w2(2−h)+w3h




(D.1.16)

Mating type IV

Category 10: P14 = w1(h/2)
w1(h/2)+w2(1−h)+w3(h/2)

= w1h
w1h+2w2(1−h)+w3h

Category 11: P24 = w2(1−h)
w1(h/2)+w2(1−h)+w3(h/2)

= 2w2(1−h)
w1h+2w2(1−h)+w3h

Category 12: P34 = w3(h/2)
w1(h/2)+w2(1−h)+w3(h/2)

= w3h
w1h+2w2(1−h)+w3h

For each family in category 10,
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Si =
∂f(xi, θ)

∂θ
=




∂[log w1h−log (w1h+2w2(1−h)+w3h)]
∂w1

−∂log [w1h+2w2(1−h)+w3h]
∂w2

−∂log [w1h+2w2(1−h)+w3h]
∂w3

∂[log w1h−log (w1h+2w2(1−h)+w3h)]
∂h




=




1
w1
− h

w1h+2w2(1−h)+w3h

−2(1−h)
h+2w1(1−h)+w2h

−h
w1h+2w2(1−h)+w3h

1
h
− w1−2w2+w3

w1h+2w2(1−h)+w3h




(D.1.17)

and

∑
Si =




n14

w1
− hn14

w1h+2w2(1−h)+w3h

−2(1−h)n14

h+2w1(1−h)+w2h

−hn14

w1h+2w2(1−h)+w3h

n14

h
− (w1−2w2+w3)n14

w1h+2w2(1−h)+w3h




(D.1.18)

For each family in category 11,

Si =
∂f(xi, θ)

∂θ
=




−∂log [w1h+2w2(1−h)+w3h]
∂w1

∂[log w2(1−h)−log (w1h+2w2(1−h)+w3h)]
∂w2

−∂log [w1h+2w2(1−h)+w3h]
∂w3

∂[log w2(1−h)−log (w1h+2w2(1−h)+w3h)]
∂h




=




−h
w1h+2w2(1−h)+w3h

1
w2
− 2(1−h)

w1h+2w2(1−h)+w3h

−h
w1h+2w2(1−h)+w3h

1
h−1

− w1−2w2+w3

w1h+2w2(1−h)+w3h




(D.1.19)

and

∑
Si =




−hn24

w1h+2w2(1−h)+w3h

n24

w2
− 2(1−h)n24

w1h+2w2(1−h)+w3h

−hn24

w1h+2w2(1−h)+w3h

n24

h−1
− (w1−2w2+w3)n24

w1h+2w2(1−h)+w3h




(D.1.20)
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For each family in category 12,

Si =
∂f(xi, θ)

∂θ
=




−∂log [w1h+2w2(1−h)+w3h]
∂w1

−∂log [w1h+2w2(1−h)+w3h]
∂w2

∂[log w3h−log (w1h+2w2(1−h)+w3h)]
∂w3

∂[log w3h−log (w1h+2w2(1−h)+w3h)]
∂h




=




−h
w1h+2w2(1−h)+w3h

−2(1−h)
w1h+2w2(1−h)+w3h

1
w3
− h

w1h+2w2(1−h)+w3h

1
h
− w1−2w2+w3

w1h+2w2(1−h)+w3h




(D.1.21)

and

∑
Si =




−hn34

w1h+2w2(1−h)+w3h

−2(1−h)n34

w1h+2w2(1−h)+w3h

n34

w3
− hn34

w1h+2w2(1−h)+w3h

n34

h
− (w1−2w2+w3)n34

w1h+2w2(1−h)+w3h




(D.1.22)

Mating type V

Category 13: P25 = w2/2
w2/2+w3/2

= w2

w2+w3
.

Category 14: P35 = w3/2
w2/2+w3/2

= w3

w2+w3

For each family in category 13,

Si =
∂f(xi, θ)

∂θ
=




0

∂[log w2−log (w2+w3)]
∂w2

−∂ log (w2+w3)
∂w3

0




=




0

1
w2
− 1

w2+w3

−1
w2+w3

0




(D.1.23)
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and

∑
Si =




0

n25

w2
− n25

w2+w3

−n25

w2+w3

0




(D.1.24)

For each family in category 14,

Si =
∂f(xi, θ)

∂θ
=




0

−∂ log (w2+w3)
∂w2

∂[log w3−log (w2+w3)]
∂w3

0




=




0

−1
w2+w3

1
w3
− 1

w2+w3

0




(D.1.25)

and

∑
Si =




0

−n35

w2+w3

n35

w3
− n25

w2+w3

0




(D.1.26)

D.1.1 Estimation of The Parameters

For marker g:

1) Generate category index, t=1,2,...,14.

2) Sort data by sex and type of disjunction (MI/MII).

3) Count nFIt,nFIIt,nMIt, and nMIIt (a total of 14× 4 = 56 numbers).

4) Then we can calculate
∑

i Sig =
∑

i

∑
t Sigts from the scores shown in the previous section.

5) Solve
∑

i Sig = 0 to get estimates for θg by quasi-Newton method. Note that we have 7

parameters for each marker. θT = (w1g, w2g, w3g, hFIg, hFIIg, hMIg, hMIIg).
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