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ABSTRACT 

 

Many signals involved in pathophysiology are controlled by hypoxia-inducible factors (HIFs), 

transcription factors that induce expression of hypoxia-responsive genes. HIFs are highly 

conserved master regulators of O2 homeostasis. These factors are post-translationally regulated 

by a family of O2-dependent HIF hydroxylases, whose members include four prolyl 4-

hydroxylases (PHD1-4) and an asparaginyl hydroxylase (FIH-1). All HIF hydroxylases require 

molecular O2, Fe2+, ascorbate, and 2-oxoglutarate as cofactors. We hypothesized that alterations 

in subcellular localization may provide an additional point of regulation for the HIF pathway in 

response to hypoxia. Most of these enzymes are abundant in resting liver, an organ which is itself 

unique due to its physiologic O2 gradient, and they can exist in both nuclear and cytoplasmic 

pools. In this study, we analyzed the localization of endogenous HIFs and their regulatory 

hydroxylases in primary rat hepatocytes cultured under hypoxia-reoxygenation conditions. We 

observed an absence of nuclear HIF-1α activation in hypoxic hepatocytes, even though several 

known HIF target genes were upregulated, suggesting that HIF-2α and HIF-3α are the 

predominant isoforms in liver. We show that in hepatocytes, hypoxia-reoxygenation targets HIF-

1α to the peroxisome rather than the nucleus, where it co-localizes with the von Hippel Lindau 

protein (VHL) and the HIF hydroxylases. Confocal immunofluorescence microscopy 

demonstrated that the HIF hydroxylases can translocate from the nucleus to the cytoplasm in 

response to hypoxia, with increased accumulation in peroxisomes upon reoxygenation. These 

results were confirmed via immuno-transmission electron microscopy and Western blotting. 

Surprisingly, in resting liver tissue, peri-venous localization of the HIF hydroxylases was 

detected, consistent with areas of low pO2. This was in contrast to nuclear HIF-1α, which was 
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undetectable in a number of liver injury models. In conclusion, these studies establish the 

peroxisome as a highly relevant site of subcellular localization and function for the endogenous 

HIF pathway in hepatocytes. 
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1.0  INTRODUCTION 

1.1 THE HIF PATHWAY 

Oxygen homeostasis is a highly conserved mechanism required for the survival of all organisms 

from bacteria to humans. In most settings, O2 delivery and consumption increase with metabolic 

demand; however, extreme shifts in tissue oxygenation can be detrimental. Multicellular 

organisms exploit evolutionary machinery that senses and adapts to fluctuations in the pO2 of 

their microenvironment. This O2-responsive system is ubiquitous among metazoans, and it 

involves an intracellular balance between hypoxia-inducible factors (HIFs) and the hydroxylases 

by which they are regulated. Due to its physiologic O2 gradient, the liver is a unique organ where 

maintainence of O2 homeostasis is critical for its specialized functions. In this chapter, we will 

first describe the mechanisms of the HIF pathway in detail, and then examine its relevance to the 

liver in health and disease. 

1.1.1 Hypoxia-inducible factors 

With a few notable exceptions, HIFs are transcription factors that upregulate the expression of 

hypoxia-dependent genes when cellular O2 is limiting (hypoxia). When O2 is abundant 

(normoxia), HIFs undergo a series of post-translational hydroxylations, which render them 

transcriptionally inactive and target them for proteosomal degradation. The key players in this 

HIF regulatory pathway include HIF prolyl 4-hydroxylases (PHDs), HIF asparaginyl 

hydroxylase (FIH-1), and the von Hippel-Lindau tumor suppressor protein (pVHL), each of 

which will be described in turn. Hypoxia liberates HIFs from this inhibitory cycle, allowing them 

to stabilize and translocate to the nucleus where HIF-dependent transcription is initiated.  
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1.1.1.1 Discovery of HIF 

As befitting with its role in O2 homeostasis, the initial identification of HIF arose from 

pioneering studies involving the regulation of erythropoietin (EPO), a glycoprotein hormone 

secreted by the fetal liver and adult kidneys that is essential for erythropoiesis and maintenance 

of erythroid progenitor cells (1, 2). It is well known that local O2 tension is a major determinant 

of EPO production, which in turn facilitates systemic O2 delivery. Since O2 consumption rises 

with metabolic demand, the O2-carrying capacity of the blood increases over time as more 

erythrocytes are produced to fulfill tissue oxygenation requirements. 

Interestingly, the best characterized model for studying the regulation of Epo gene 

expression is the Hep3B human hepatoma cell line, which was shown by Goldberg in 1987 to 

upregulate Epo mRNA in response to hypoxia (1% O2) or cobalt chloride (CoCl2); however, at 

that time the prevailing view was that this Epo transcription depended on an as yet undiscovered 

“O2-sensing heme protein”  (3, 4).  In 1991, Gregg Semenza and colleagues published the first of 

several definitive works that provided a molecular basis for the increase in Epo in response to 

hypoxia. Using mice expressing a hypoxia-inducible human Epo transgene, they identified cis-

acting DNA sequences that were cell-type specific:  sequences within the immediate 3' flanking 

region of the human Epo gene directed expression specifically in hepatocytes, but not in the renal 

cortex; therefore, human Epo transcription initiation sites were differentially utilized in liver and 

kidney (5). Semenza et al. (6) next demonstrated via DNase I footprint analyses and 

electrophoretic mobility shift assays (EMSAs/gel shifts) that at least two “hypoxia-inducible 

nuclear factors” found in anemic mouse liver nuclear extracts could bind to a 3’ enhancer 

element of the human Epo gene. Semenza and Wang (7) then cloned the minimal 50-nt 3’ 

enhancer element into chloramphenicol acetyltransferase (CAT) reporter vectors, which were 

transiently transfected into Hep3B cells for in vitro experiments. Mutational analyses and 

EMSAs revealed the first evidence that the binding of a “hypoxia-induced nuclear factor” and a 

“constitutive factor” at this hypoxia-response element (HRE) was required for transcriptional 

activation of the human Epo gene; furthermore, the hypoxia-induced DNA binding was sensitive 

to cyclohexamide treatment, indicating that this nuclear factor was induced via de novo protein 

synthesis (7). This DNA-binding activity was also inhibited by treatment with either the protein 

kinase inhibitor 2-aminopurine or calf intestinal alkaline phosphatase, suggesting a requirement 

for protein phosphorylation (8).  
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The race to unveil the identity of this mysterious nuclear factor was now gaining 

momentum. Semenza’s group (8) proposed the existence of a putative “hypoxia-inducible factor-

1” (HIF-1). Although the still unidentified HIF-1 protein(s) could not be studied directly, the 

laboratory used EMSAs to further characterize the kinetics of its DNA-binding activity in 

response to hypoxia, which were noted to be extremely rapid (t1/2 < 1 min. for either association 

or dissociation) (8). These results were further corroborated using the same methods in a number 

of EPO- and non-EPO-producing mammalian (human and rodent) cell lines (9). Since HIF-1 was 

induced by a common mechanism in all cells examined, this suggested a general role for HIF-1 

in the transcriptional response to hypoxia. 

In 1995, Wang and Semenza finally reported the biochemical purification and 

characterization of HIF-1 protein from both EPO-producing Hep3B and non-EPO-producing 

HeLa S3 cells, treated with either hypoxia or CoCl2 (10). In solution, HIF-1 existed 

predominantly as a heterodimer consisting of two subunits:  a 120-kD HIF-1α and a 90-94-kD 

HIF-1β. Both subunits contacted DNA directly in the major groove (8, 10). After cloning, 

screening, and antibody production, Semenza’s group (11). revealed later that HIF-1 was not a 

heme-containing protein at all. HIF-1α was closely related to the Drosophila single-minded 

(Sim) protein, while HIF-1β was identical to the mammalian aryl hydrocarbon receptor nuclear 

translocator (ARNT) of the dioxin-responsive pathway. All of these proteins contained a basic 

helix-loop-helix (bHLH) and a Per-ARNT-Sim (PAS) domain, both of which were necessary for 

protein dimerization and DNA binding at a 5’-RCGTG-3’ consensus sequence (12-14). HIF-1 

was thus unequivocally defined as a bHLH-PAS heterodimeric transcription factor which not 

only mediated the transcriptional response to hypoxia but also was itself regulated by cellular O2 

tension. 

1.1.1.2 Members of the HIF family 

Although HIF-1 is considered the master regulator of hypoxic gene expression, numerous studies 

have reported the existence of other HIFs as well. Recognized members of the HIF family of 

transcription factors are summarized in Table 1. These include three hypoxia-inducible HIF-α 

subunits (HIF-1α, HIF-2α/EPAS1, HIF-3α/IPAS) and three constitutively-expressed HIF-β 

subunits (HIF-1β/ARNT1, HIF-2β/ARNT2, and HIF-3β/ARNT3). Any HIF-α can dimerize with 
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any HIF-β; however, HIF-α subunits dimerize exclusively with HIF-β subunits, (15-17). In 

contrast, HIF-β subunits can also dimerize with aryl hydrocarbon receptors (AhRs) and Sim 

proteins, providing cross-talk with xenobiotic metabolism and central nervous system 

development, respectively (18, 19). 
Table 1:  Biochemical comparison of human HIF family members. 
HIF-α subunits are hypoxia-induced while HIF-β subunits are constitutive. Any HIF-α can dimerize with any 
HIF-β; however, HIF-α subunits dimerize exclusively with HIF-β subunits. Note that HIF-3β has only been 
identified in M. musculus. The polarity index is the predicted percentage of amino acid hydropathy. This 
compilation is based on information retrieved from UniProt (20).  

 
Primary 

Name 
Alternate 

Nomenclature 
# 

aa 

Predicted 
Molecular 
Mass (Da) 

Predicted 
Isoelectric 
Point (pI) 

 
Predicted 
Polarity 

Index 
(%) 

Human 
Gene 

Location 

UniProt 
Accession 

# 

HIF-1α 

• Member of PAS 
Protein 1 
  (MOP1) 
• ARNT-Interacting 
Protein 

826 92,670 5.45 54.36 14q23 Q16665 

HIF-2α 

• Member of PAS 
Protein 2 (MOP2) 
• Endothelial PAS 
Domain Protein 1 
(EPAS2) 
• HIF-1α-Like 
Factor (HLF) 
• HIF-Related Factor 
(HRF) 

870 96,459 6.55 49.77 2p21 Q99814 

HIF-3α 
•  Inhibitory PAS 
domain 
  protein (IPAS) 

669 72,461 6.36 46.19 19q13 Q66K72 

HIF-1β 

• Aryl Hydrocarbon 
Receptor Nuclear 
Translocator 1 
 (ARNT1), 2 
isoforms 

789 
774 

86,636 
84,948 

6.82 
7.00 

52.34 
51.81 1q21 

P27540 
(2 

splicing 
variants) 

HIF-2β 

• Aryl Hydrocarbon 
Receptor Nuclear 
Translocator 2 
  (ARNT2) 

706 77,612 7.08 50.71 15q25 Q9HBZ2 

HIF-3β 
 

(based on 
data from 
M. 
musculus) 

• Aryl Hydrocarbon 
Receptor Nuclear 
Translocator 3 
  (ARNT3), 5 
isoforms 
• Brain and muscle 
ARNT-like 1 
(BMAL1) 
• Aryl hydrocarbon 
receptor Nuclear 
translocator-like 
protein 1 (ARNTL) 

742 
625 
613 
626 
222 

79,949 
68,614 
67,200 
68,684 
25,060 

7.15 
7.14 
7.44 
7.14 
9.70 

48.65 
49.28 
48.61 
49.20 
55.41 

N/A 

Q9WTL8 
(5 

splicing 
variants) 
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With regard to HIF-α subunits, a closer inspection of their primary structure offers 

valuable clues about their functional role in the cell. Comparison of cDNAs encoding human, 

mouse, and rat HIF-1α reveals >90% homology of amino acids (11, 21-24). The organization of  

HIF-1α and HIF-2α polypeptides is also very similar. As depicted in Figure 1, the 

aforementioned bHLH and PAS domains are located at the N-terminus, while the C-terminus 

consists of a number of important regulatory domains. There are two transactivation domains 

 

 
Figure 1:  Structures of human HIF proteins. 
All members contain an N-terminal basic helix-loop-helix (bHLH) domain and two Per-ARNT-Sim (PAS A 
and B) sub-domains, which are necessary for protein dimerization and DNA binding. The regulatory regions 
of HIF-1α and HIF-2α are comprised of two transactivation domains (NTAD and CTAD) within the C-
terminus, separated by an inhibitory domain (ID). FIH-1 hydroxylates Asn-803 in the HIF-1α CTAD. Lys-
532 in the HIF-1α O2-dependent degradation domain (ODDD) is acetylated by ARD1/NATH. PHDs 
hydroxylate Pro-402 and Pro-564 in the ODDD, leading to HIF-α degradation. The constitutive HIF-1β lacks 
these regulatory sequences. A novel variant of the bipartite-type nuclear localization signal (NLS) has also 
been identified in the C-terminus of the human HIF-α subunits (25).  [Figure based on (17)] 

  

(NTAD and CTAD) within the C-terminus, separated by an inhibitory domain (ID) (26). These 

regulatory domains are not present in the constitutive HIF-1β. The transactivation domains bind 

to transcriptional co-activators in hypoxia. Specifically, binding of CTAD to the 

cysteine/histidine rich CH-1 domain of the transcriptional co-activator p300 leads to enhanced 

HIF transcriptional activity (27-29). This interaction is blocked in normoxia when a key 
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asparagine residue in the CTAD (Asn-803 of human HIF-1α, Asn-851 of human HIF-2α) is  β-

hydroxylated by the O2-dependent asparaginyl hydroxylase, FIH-1 (30-32). In accordance with 

this, deletion of the ID results in increased HIF transcriptional activity in the presence O2 (26).  

In addition to controlling transcriptional activity, the central portions of the HIF-1α and 

HIF-2α C-termini (aa residues ~400-600) also contain regulatory sequences essential for protein 

stability. In general, 31% of all HIF-1α residues are proline, glutamic acid, serine, or threonine 

(PEST) residues, which are common to many proteins targeted for rapid intracellular degradation 

(11, 33). Most importantly, two proline residues (Pro-402 and Pro-564) in the O2-dependent 

degradation domain (ODDD) are critical in directing turnover of HIF-α subunits (34). Each of 

these prolines is located within conserved Leu-X-X-Leu-Ala-Pro motifs (LXXLAP, where X is 

any amino acid), which act as substrates for O2-dependent HIF PHDs (35, 36). In normoxia, the 

presence of hydroxyproline at positions 402 and/or 564 leads to HIF-α degradation, whereas 

inhibition of prolyl hydroxylation results in stabilization of HIF-α subunits in hypoxic 

conditions. 

Although the ODDD is predominantly regulated by hydroxylation, other O2-dependent 

post-translational modifications may also exist. The ODDD contains a specific lysine (Lys-532 

in HIF-1α) which is a target of the arrest defective 1 protein (ARD1, not to be confused with an 

earlier ARD1 = ADP-ribosylation factor domain protein 1) (37, 38). ARD1 forms a complex 

with the  human N-acetyltransferase 1 protein (NATH), which together can directly transfer an 

acetyl group from acetyl-CoA to Lys-532 in normoxia (39). This novel mechanism enhances the 

interaction of pVHL with HIF-1α or HIF-2α, leading to maximal degradation. Additional 

modulation of HIF by cellular metabolites will be addressed in later chapters.  

In contrast to the other HIFs, less is known about HIF-3α. As seen in Figure 1, the HIF-

3α polypeptide is much shorter. Although HIF-3α contains an ODDD which is modified by 

prolyl hydroxylation, it does not possess a lysine for acetylation (40). Moreover, it appears to be 

regulated predominantly by alternative splicing. At least six splice variants of human HIF-3α 

have been identified (41). Most striking is the production of a 307-aa “decoy” known as 

inhibitory PAS protein (IPAS), which is composed of bHLH and PAS domains, but lacks nearly 

all of the C-terminal regulatory sequences needed for transactivation (42). This splicing variant 

of the HIF-3α locus may act as a dominant-negative regulator by heterodimerizing preferentially 
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with other HIFs and forming a transcriptionally inactive complex (43). In certain tissues, this 

alternative splicing is hypoxia-induced, suggesting a  mechanism to counter-regulate excessive 

HIF-1α activity (43). 

1.1.1.3 Current model of HIF regulation 

In general, HIF-α stability and activity are directly related to the primary structure described 

above. This involves the functional association and dissociation of HIF-α with various regulatory 

proteins, most of which are influenced by cellular O2 levels and energy status. Before elaborating 

on these precise interactions, an overview of the current model of HIF induction is helpful. Since 

HIF-1α was the first to be identified (9), it serves as the prototype for studying cellular 

mechanisms of O2-sensing. Figure 2 illustrates the canonical series of events which regulate HIF-

1α activity. 

Under normoxic conditions, cytosolic HIF-1α proteins are constitutively expressed but 

rapidly degraded due to post-translational hydroxylations. The 120-kD HIF-1α subunit consists 

of both the asparagine-containing CTAD and the proline-rich ODDD (26, 35). These domains, 

which are essential for HIF function, are enzymatically modified by recently identified non-heme 

HIF hydroxylases (FIH-1 and PHDs, respectively), members of a dioxygenase superfamily 

whose activity requires 2-oxogluterate (2-OG), Fe(II), ascorbate, and most importantly molecular 

O2. As seen in Figure 2, when O2 is abundant, hydroxylation of two prolines in the ODDD by 

PHDs allows the pVHL to recognize HIF-1α (36). Specifically, the largely hydrophobic β-

domain of pVHL contains two critical hydrophilic residues (His-115 and Ser-111), which must 

hydrogen bond with either hydroxyproline or H2O molecules (44, 45). As the substrate 

recognition unit of the E3 ubiquitin ligase multiprotein complex (elongins B and C, cullin2, 

Ring-box 1), pVHL tags HIF-1α for polyubiquitination and degradation by the 26s proteosome 

(36, 46). Recognition of HIF-1α is unlike that of any other ubiquitinated proteins, which instead 

rely on phosphorylation (47). This continuous turnover results in the short half-life of HIF-1α in 

room air (11). Furthermore, normoxia inhibits HIF-1α transcriptional activity via FIH-1, which 

hydroxylates an asparagine in the CTAD, providing yet another brake in the system (31). 

Due to their requirement for molecular O2, the HIF hydroxylases can be considered 

principal O2 sensors within the cell, preventing aberrant HIF-dependent transcription in the 
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presence of O2. Accordingly when cells undergo hypoxic stress (Figure 2), the hydroxylation and 

subsequent degradation of HIF-1α is inhibited, and this step is the chief O2 “sensing” mechanism 

(48, 49). Consequently, HIF-1α stabilizes, accumulates in the cytoplasm, and translocates to the 

nucleus, where it forms a heterodimer with its constitutively expressed, 94-kD nuclear binding 

partner, HIF-1β (50). The recruitment of the transcriptional co-activators CREB-binding protein 

(CBP) and p300 to the CTAD  (transactivation) enables the bHLH-PAS domains of the HIF-1 

heterodimer to bind to HRE core consensus sequences (5’-RCGTG-3’) in the promoter or 

enhancer regions of target genes (6, 29, 51). This initiates hypoxia-induced transcription. 

Interestingly, hypoxia-independent nuclear induction of HIFs can also be achieved in 

vitro by chemical mimetics and certain growth factors (Figure 2) (52-54).  Potent chemical 

 
Figure 2:  Canonical model of HIF-1α induction. 
HIF-1α protein subunits are rapidly degraded in normoxia, but stabilize and translocate to the nucleus in 
hypoxia. Hydroxylation reactions may occur in the nucleus or the cytoplasm. HIF-1α also accumulates in 
response to inhibitors of PHDs (DMOG) or proteosomes (MG-132). Hypoxia-independent nuclear induction 
of HIF-1α can be achieved with chemical mimetics (DFO, CoCl2) or via phosphorylation downstream of 
certain growth factors/receptor tyrosine kinases (RTKs). 
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inducers of HIF-1α in vitro include the addition of Fe2+ chelators such as desferrioxamine 

(DFO), or transition metals such as Co2+, Ni2+, and Mn2+, to normoxic cell cultures, and this is 

thought to interfere with pVHL-dependent degradation by inhibiting HIF hydroxylase activity 

(55). Additional feedback loops will be discussed in the next section. 

1.1.2 HIF regulatory hydroxylases 

Prior to the discovery of HIF hydroxylases, various theories were proposed regarding how cells 

“sense” O2 and regulate HIF. The simplest model, proposed by Semenza himself (56), involved 

hemoproteins, in which sensing is determined by the presence or absence of bound O2. For 

example, the bacterium R. meliloti utilizes a two-component O2 signaling system consisting of 

FixL, a hemoprotein kinase that is active in the deoxygenated state, and FixJ, a transcription 

factor that is active when phosphorylated by FixL (57). Although HIF-1α itself was not found to 

contain heme, the model O2 sensor for mammalian cells was proposed to involve one or more 

hemoproteins as well. What emerged in the years that followed was instead an exquisitely 

sensitive and complex mechanism of HIF regulation, much more so than anticipated by the 

experts in the field.  

1.1.2.1 Discovery of HIF prolyl hydroxylases 

Unlike Semenza’s characterization of HIF-1α, the very recent discovery of the HIF regulatory 

hydroxylases involved a combined effort of several teams, whose findings were published almost 

simultaneously. Preliminary reports in 2001 suggested that the O2-dependent hydroxylation of 

two conserved proline residues (Pro-402 and -564) in the ODDD of human HIF-1α triggered 

pVHL-binding and proteosomal targeting (46, 48). Within months of these initial findings, the 

enzymes catalyzing these hydroxylations were identified, and an evolutionarily conserved 

mechanism of HIF regulation was revealed (36, 58). 

Epstein et al. (58) first demonstrated the existence of a HIF-α homolog (CeHIF-1) in C. 

elegans. Similar to mammals, the regulation of this homolog in roundworms is dependent on a 

conserved mechanism of prolyl hydroxylation followed by targeting to a VHL homolog, VHL-1. 
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Mutant worms lacking vhl-1 constitutively express CeHIF-1, similar to the RCC4 cells derived 

from patients with VHL syndrome. Furthermore, in vitro-translated CeHIF-1 did not bind to 

VHL-1 unless it was incubated with worm extract, and mutation of Pro-621 in CeHIF-1 

eliminated interaction with VHL, suggesting a requirement for prolyl hydroxylase activity. 

Addition of known competitive inhibitors of collagen prolyl 4-hydroxylase (C-P4H) led to HIF-1 

stabilization in vitro and in vivo, These findings were similar to those found in mammalian cells, 

exposing an evolutionarily conserved mechanism of proline hydroxylation. 

Since worms containing inactivating mutations in each of two C-P4H isoforms showed 

normal CeHIF-1 regulation, Epstein et al. (58) then predicted that the putative CeHIF-1 prolyl 

hydroxylase would belong to the 2-OG-dependent dioxygenase superfamily, which shares a 

common β-barrel jelly roll motif. This criteria led to them to the egl-9 (egg-laying defect-9) 

gene, which encoded a protein product of previously unknown function; although in 1983, egl-9 

mutant worms were shown to be unable to lay eggs, but produced normal offspring which 

violently burst from the parental worm following gestation (59). The egl-9 gene product in 

worms was found to be a 2-OG-dependent dioxygenase, thus defining a novel class of prolyl 

hydroxylase. 

Using the egl-9 sequence, Epstein et al. (58) then identified three ubiquitously expressed 

mammalian EGL-9 homologs, designated prolyl hydroxylase domain-containing proteins 

(PHD1, PHD2, PHD3), each of which hydroxylated human HIF-1α at Pro-564. The proline 

residues modified in both worm and mammalian HIF-1α proteins are contained in a conserved 

core LXXLAP motif. In mammalian cells, the PHD isoforms acted differentially on prolyl 

hydroxylation sites within HIF-1α, and recombinant enzyme activity was directly modulated by 

O2 tension, providing the first substantiated mechanism for O2-sensing within the HIF pathway. 

1.1.2.2 HIF hydroxylase family members 

Until the aforementioned reports, the only mammalian protein know to contain hydroxyproline 

was collagen; however, the HIF PHDs differ from the well-characterized C-P4H in many 

respects. For instance, the substrate composition for C-P4H is the tripeptide X-pro-gly, which is 

much shorter than the minimal ~19-mer HIF-derived peptide necessary for optimal PHD activity 

(60). Furthermore, recombinant C-P4H isoforms showed no activity against the HIF-1α peptide 
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in vitro (46). Finally, the collagen-modifying C-P4H resides in the endoplasmic reticulum, an 

unlikely site for prolyl hydroxylation of HIF-1α (36).  

As shown in Table 2, new members of the HIF hydroxylase family have since been 

described. Oehme et al. (61) were the only group to describe a putative fourth HIF prolyl 

hydroxylase, PHD4 (PH-4). Like PHD1-3, PHD4 over-expressed in cellular reporter assays 

suppressed HIF-1α activity, and this was dependent on consensus proline residues in the ODDD. 

The authors concluded that PHD4 might be related to cellular O2 sensing; however, no further 

studies have been published on this enzyme. 

 In contrast to PHD4, the most unusual addition to the HIF regulatory hydroxylase family 

is factor inhibiting HIF-1 (FIH-1), the HIF asparaginyl hydroxylase, which was identified shortly 

after the PHDs. Lando et al. (31) reported that transactivation of HIF-2α at the CTAD was 

independent but closely similar to PHD O2-sensing, since similar effects were observed with the 

same enzyme co-factors and inhibitors. β-hydroxylation of Asn-851 on human HIF-2α 

correlated with that of Asn-803 of HIF-1α (30), and this activity was soon demonstrated to result 

from FIH-1 (31, 62).  

Although FIH-1 requires similar co-factors as the O2-dependent PHDs, some key differences 

have also been noted. To date, crystal structures have only been solved for FIH-1 (63, 64) and 

the FIH-1/HIF-1α peptide complex (65). Examination of these structures reveals that FIH-1 

contains a double-stranded β-barrel jelly roll core motif similar to other 2-OG dioxygenases, and 

it must form a homodimer for productive substrate-binding and catalysis (66). Sequence analysis 

further identified FIH-1 not only as a 2-OG dioxygenase, but also as a member of the Jumonji 

(JmjC) family of putative transcription factors. A significant number of JmJC proteins may 

actually be hydroxylases involved in signaling (65). 

Interestingly, FIH-1 is not the only enzyme known to catalyze hydroxylation of 

asparagine. There also exists a human EGF aspartyl/asparaginyl β-hydroxylase (EGFH), which 

can hydroxylate both Asp and Asn residues in EGF domains of proteins such as the coagulation 

factors VII, IX, and X (67). The physiologic role of EGF hydroxylation is still unclear; however, 

it has been proposed to be involved both in the Notch pathway and as a tumor suppressor (68). 
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Table 2:  Biochemical comparison of human HIF hydroxylases. 
This family includes four HIF prolyl 4-hydroxylases (PHDs) and one HIF asparaginyl hydroxylase (FIH-1). 
EGL stands for “egg-laying defect” in Drosophila nomenclature. The polarity index is the predicted 
percentage of amino acid hydropathy. This compilation is based on information retrieved from UniProt (20). 

 
Primary 

Name Alternate Nomenclature 
# 

aa 

Predicted 
Molecular 
Mass (Da) 

Predicted 
Isoelectric 
Point (pI) 

 
Predicted 
Polarity 

Index (%) 

Human 
Gene 

Location 

UniProt 
Accession 

# 

PHD1 

• EGL nine homolog 2 
(EGLN2) 
• HIF prolyl hydroxylase 3 
  (HPH3) 
• Estrogen-induced tag 6 
(EIT6) 
• Falkor (in M. musculus) 

407 42,650 8.08 40.29 19q13 Q96KS0 

PHD2 

• EGL nine homolog 1 
(EGLN1) 
• HIF prolyl hydroxylase 2 
  (HPH2) 

426 46,021 8.67 44.60 1q42 Q9GZT9 

PHD3 

• EGL nine homolog 3 
(EGLN3) 
• HIF prolyl hydroxylase 1 
  (HPH1) 
• SM-20 (in R. norvegicus) 

239 27,261 7.85 42.26 14q13 Q9H6Z9 

PHD4 
• Putative HIF prolyl 
hydroxylase 
  4 (PH-4), 3 isoforms 

502 
423 
563 

56,661 
47,210 
63,112 

6.32 
6.73 
6.36 

46.22 
44.44 
44.58 

N/A 
Q9NXG6 
(3 splicing 
variants) 

FIH-1 

• Hypoxia-inducible factor 1 
alpha 
  inhibitor (HIF1AN) 
• Hypoxia-inducible factor 
  asparagine hydroxylase 

349 40,285 5.71 45.85 10q24 Q9NWT6 

 

1.1.2.3 HIF hydroxylase reactions 

The generalized reaction scheme for PHDs and FIH-1 is given in Figure 3. Within the cell, 

PHD2 in particular is believed to be the key O2-sensing mechanism which regulates HIF-1α 

activity (49). Normoxic degradation of HIF-1α is initiated via hydroxylation of Pro-402 and Pro-

564 in the presence of O2. In contrast, hypoxia and/or Fe(II) depletion prevents this 

hydroxylation from occurring. Since these enzymes are dioxygenases, for every proline that is 

hydroxylated, 2-OG (α-KG) must also be hydroxylated. The intermediate product of the 2-OG 

hydroxylation is immediately decarboxylated to give succinate. 
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Interestingly, this reaction has been exploited using traditional biochemical methods to 

measure the activity of human PHD enzymes (60).  In these assays, a 19-residue peptide 

substrate was synthesized with an identical sequence as the C-terminal hydroxylation site of 

human HIF-1α. The assay involved measuring the radioactivity of 14CO2 formed during the 

hydroxylation-coupled decarboxylation of 2-oxo[1-14C]gluterate to succinate in a closed vessel. 

The reaction mixture also contained FeSO4, ascorbate, and extracts from transfected cells which 

expressed recombinant PHDs. 

Based on these experiments and further mutational analysis, PHD1, PHD2, and PHD3 

were all found to hydroxylate human HIF-1α at Pro-564 (60). In contrast, only PHD1 and PHD2  

 

 
Figure 3:  Modification of the HIF-1α polypeptide by the HIF prolyl and asparaginyl hydroxylases. 
PHD/EGLN/HPH hydroxylates human HIF-1α at Pro-402 and Pro-564 (A) while FIH-1 hydroxylates Asn-
803 (B). The active sites contain Fe(II) coordinated by a His-XAsp...His triad. The enzymes bind 2- (2-OG, α-
KG), the HIF polypeptide substrate, and O2, acting as dioxygenases to hydroxylate both HIF-1α and 2-. In the 
course of the reaction, molecular O2 is consumed and the hydroxylated 2- undergoes decarboxylation to give 
succinate and CO2. The HIF hydroxylases are considered non-equilibrium enzymes, since they cannot 
directly catalyze the reverse reaction, at least not by a process involving reformation of dioxygen. Figure 
adapted from (69). 

 

could hydroxylate Pro-402, the second site of prolyl hydroxylation and VHL binding (58). 

Moreover, Michaelis-Menten enzyme kinetic assays revealed that PHD1-3 have a relatively high 

Km for O2 (pO2 of 230-250 μM) when compared to the C-P4H (~40 μM) (60). This high Km is 
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slightly above atmospheric pO2, implicating that the PHDs’ sensitivity to physiologic changes in 

pO2 is rate-limiting for their activity (60). Consequently, changes in cellular O2 concentration are 

directly transduced into changes in the rate at which HIF-1α is hydroxylated, ubiquitinated, and 

degraded. 

This is not completely true for FIH-1, whose Km (~90 μM) was found to be less than half 

that of the PHDs (70). Moreover, its catalytic properties in response to the required substrates of 

HIF hydroxylases are also distinct. As a result, FIH-1 has been shown to reduce HIF-1α 

transcriptional activity even at low O2 tensions (31, 71). This suggests that a hypoxic “window” 

may exist in which HIF-1α subunits could accumulate (due to lack of prolyl hydroxylation) yet 

still undergo asparaginyl hydroxylation. 

1.1.2.4 Regulation of HIF hydroxylases 

Just as the HIF hydroxylases function in regulating HIF, novel mechanisms are also emerging for 

the regulation of these enzymes. For example, PHD2 and PHD3 mRNA expression is also 

enhanced by HIF (72-74), providing a negative feedback mechanism that limits accumulation of 

HIF-1α in long-term hypoxia and accelerates its degradation upon reoxygenation (75). In 

contrast, hypoxia can also induce the accumulation of the ring finger proteins Siah1 and Siah2, 

which polyubiquitinate PHD1 and PHD3 for proteosomal degradation (76). Even more puzzling 

is the finding by Erez et al. (77) in HCT116 cells that human PHD1 mRNA expression is down-

regulated in hypoxia due to binding of HIF-1β (ARNT) to the PHD1 promoter. These feedback 

loops allow cells to rapidly accommodate to both acute and chronic changes in O2 availability. 

Differences in the regulation of PHDs are still being investigated. For instance, PHD2 but 

not the others has been shown to contain an N-terminal MYND-type zinc finger domain, which 

inhibits its catalytic activity (78). Novel interactions of PHDs with other proteins are also 

emerging, such as with MORG-1 (79) and OS-9 (80). Mitochondria have been linked to the 

metabolic regulation of PHDs, and will be discussed in more detail in later chapters. 
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1.2 DOWNSTREAM EFFECTS OF THE HIF PATHWAY 

1.2.1 Expression and localization 

As a master regulator of cellular O2 homeostasis, the HIF pathway is considered a ubiquitous 

evolutionary adaptation to life in an aerobic world. However, upon closer inspection, tissue- and 

cell-type-specific patterns do exist regarding the expression and distribution of HIF components  

1.2.1.1 Expression and distribution of HIFs 

In contrast to the rather ubiquitous distribution of HIF-1β (81), distinct expression patterns have 

been described for the HIF-α isoforms, and these differences imply non-redundant functions. 

Due to the rapid turnover of HIF-α subunits, there are only limited reports of protein localization 

in normal tissues. Talks et al. (82) analyzed a wide range of normal human tissues using novel 

monoclonal antibodies they generated against HIF-1α and HIF-2α. They found very little to no 

expression of either protein in any normal tissue, with the exception of bone marrow cells 

expressing HIF-2α (82). These cells were identified as macrophages, and closer inspection 

revealed HIF-2α-positive macrophages in lung, lymph node, spleen, brain, and liver (Kupffer 

cells) (82). These findings were contradicted by Stroka et al., (83), who were able to localize 

HIF-1α protein in mouse brain, kidney, liver, and heart using their own novel chicken (IgY) anti-

HIF-1α polyclonal antibody.  

Studies analyzing HIF mRNA expression in various tissues are more abundant, but offer 

less functional insight. Expression of HIF-1α mRNA is highest in the kidney and heart, while 

that of HIF-2α is highest in placenta, lung, heart, and liver (21, 84). HIF-2α may play a 

significant role in lung development, since elevated levels of HIF-2α have been noted in this 

tissue compared to HIF-1α (84). Interestingly, HIF-1α mRNA is constitutively expressed in 

placental development, whereas HIF-2α expression increases with gestational age (85). The 

latter coincides with the increases in vascularization, since endothelial cells are known to highly 

express HIF-2α. Furthermore, in tissues where both HIF-1α and HIF-2α are co-expressed, each 

is localized to a distinct cell population. For example, in the brain, HIF-1α is specific to neuronal 

cells, while HIF-2α is limited to non-parenchymal cells (86). 
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These differences have also been observed in various types of cancer cells. In breast 

cancer cell lines, HIF-1α was required for the hypoxic induction of many target genes, and when 

HIF-1α was inactivated, this induction could not be recapitulated by HIF-2α rescue (87). In 

contrast, HIF-2α was identified as the major HIF-α isoform in RCC cells (87). 

Recently, a differential pattern was also described in embryonic stem (ES) cells, which 

were not found to exhibit HIF-2α transcriptional activity, suggesting possible inhibition by a 

HIF-2α-specific transcriptional repressor (88). Similarly, in immortalized mouse embryonic 

fibroblasts (MEFs), hypoxia-induced gene expression occurred solely through the action of HIF-

1α, while endogenous HIF-2α remained inactive due to cytoplasmic trapping (89). Furthermore, 

Covello et al. (90) found that in primary murine ES cells, targeted replacement of HIF-1α by a 

HIF-2α “knock-in” (KI) allele promoted tumor growth, increased microvessel density, and 

increased VEGF, TGF-α, and cyclin D1. These KI embryos also showed expanded expression of 

HIF-2α-specific target genes, especially Oct-4, a transcription factor essential for maintaining 

stem cell pluripotency, survival, and maintenance (91). These and other studies suggest the non-

redundant role of HIFs in development. 

Much less is known about the expression and function of HIF-3α. HIF-3α mRNA was 

localized to adult skeletal muscle, thymus, lung, brain, heart, and kidney (92). At least six 

alternatively spliced isoforms of HIF-3α are thought to exist. One such isoform, IPAS, 

functioned as a negative regulator (“decoy”) of HIF target gene expression in cerebellar Purkinje 

cells and in the corneal epithelium of the eye under hypoxic conditions, formed heterodimers 

with other HIF-α subunits, and prevented their binding to HREs (42, 43). This inhibitory role of 

IPAS may be important for maintaining avascularity in the otherwise hypoxic microenvironment 

of the cornea.  

1.2.1.2 Expression and distribution of HIF hydroxylases 

Due to their more recent discovery, studies on the expression patterns of HIF hydroxylases are 

more limited. Lieb et al. (93) reported on their distribution in mouse tissues. PHD1 protein was 

detected in testis, heart, brain, liver, kidney, and lung, but not in skeletal muscle. In contrast, 

PHD2 protein was localized in heart, brain, liver, skeletal muscle, kidney, and lung, but not in 

testis. Its abundance has also been noted in adipose tissue (94). PHD3 is unique in that it has a rat 
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ortholog, SM20, whose expression was previously documented in vascular smooth muscle cells 

and rat sympathetic neurons (95-97). SM20 is expressed in rat brain, skeletal muscle, kidney, and 

lung, but not in testis, liver, or spleen (95). Although similar findings were observed for PHD3 in 

mice, it was also found to be particularly abundant in liver (93). Regarding FIH-1, Soilleux et al. 

(98) generated novel monoclonal antibodies and localized FIH-1 in a wide range of human 

epithelial tissues, including esophagus, stomach, intestine, liver, gall bladder, salivary glands, 

pancreas, renal tubules, breast, and ovary.  

1.2.2 Insights from knock-out models 

Due to the embryonic lethality associated with most knock-outs, conditional knock-outs and 

silencing experiments have allowed further investigation into the differential functions of HIF 

components. 

1.2.2.1 Knock-out models of HIFs 

Homozygous knock-outs for HIF-1α, HIF-2α, and HIF-1β are embryonic lethal; however, the 

underlying causes of this non-viability appear surprisingly different. In wild-type embryos, HIF-

1α expression increases between E8.5 and E9.5; although, the HIF-1α+/+ and HIF-1α-/- embryos 

are indistinguishable at E8.5-E8.75 (99). Complete loss of HIF-1α results in developmental 

arrest and death by E11, due to major malformations of the heart and vasculature (99-101). A 

reduced number of somites and neural fold defects are also observed (102). Surprisingly, the 

vascular defects were correlated with mesenchymal cell death, since elevated VEGF expression 

was detected in HIF-1α-/- embryos (101). In contrast, HIF-2α-/- embryos develop normal 

systemic vasculature, but do not survive beyond E16.5 due to impaired fetal lung maturation and 

catecholamine insufficiency (103, 104). Pathologic findings were also observed in the eye, 

skeletal muscle, liver, testis, and bone marrow (hematopoiesis) of these knock-outs, and these 

were associated with mitochondrial abnormalities in sites of high energy demand (105, 106). 

Although several investigators are actively pursuing tissue-specific HIF conditional 

knock-outs, there are very few published reports on these models (107, 108). Interestingly, a 

recent report by Helton et al. (109) demonstrated that a brain-specific knock-out of HIF-1α 
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reduces rather than increases hypoxic-ischemic damage, consistent with a pro-apoptotic role of 

HIF-1α. This suggests that HIF-1α loss-of-function may be protective in some tissues. 

1.2.2.2 Knock-out models of HIF hydroxylases 

Currently, there are no published reports on knock-out models for any of the HIF hydroxylases. 

The only related studies rely heavily on siRNA to silence PHD1, PHD2, and PHD3 in various 

human cell lines, resulting in isoform-specific patterns for PHDs (49, 110). Berra et al. (49) 

reported that PHD2 silencing was sufficient to stabilize and activate HIF-1α in normoxia in all of 

the human cell lines investigated, while silencing of PHD1 or PHD3 had no effect on HIF-1α 

stability either in normoxia or hypoxia-reoxygenation. Based on these results, they concluded 

that PHD2 is the key O2 sensor of the cell, by setting low steady-state levels of HIF-1α in 

normoxia (49). 

Appelhoff et al. (110) further demonstrated that each PHD could regulate HIF-1α and 

HIF-2α subunits in a non-redundant manner in various cell lines, and that the contribution of 

each PHD was strongly dependent on enzyme abundance. Specifically, PHD2 was more active at 

hydroxylating HIF-1α over HIF-2α, while PHD3 exerted the opposite effect. In addition to this 

selectivity, each enzyme also exhibited specificity in hydroxylating one or both of the conserved 

proline residues within each HIF-α isoform. Although these silencing experiments may be 

limited in scope, they do provide some clues into the differential functions of HIF hydroxylases 

in vivo. 

1.2.3 Direct targets of HIF 

It is estimated that 1-2% of all human genes are regulated by hypoxia (111). Many such genes 

may be hypoxia-induced but lack HREs, implying cooperative effects with other non-HIF 

transcription factors (112). There are currently over 70 bona fide target genes of HIF-1, and these 

are involved in diverse cellular functions, including angiogenesis, energy metabolism, motility, 

and survival (Figure 4). Although the HIF-1α and HIF-2α subunits are structurally similar in 
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Figure 4:  Summary of known HIF target genes.  
Compilation of Gene ID’s is based on lists published in (113-115). The abbreviated gene ID’s encode the 
following proteins:  ADM, adrenomedullin; ADRA1B, α1 β-adrenergic receptor; ALD, aldolase A and C; 
ANGPT, angiopoietin 1 and 2; CA9, carbonic anhydrase IX; CALCRL, calcitonin receptor-like receptor; 
CITED2, CREB-binding protein (CBP)/p300-interacting transactivator (p35srj); C-MET, met proto-
oncogene (HGF receptor); COL5A1, collagen V α1-subunit; CP, ceruloplasmin; CTGF, connective tissue 
growth factor; CTSD, cathepsin D; CXCR, chemokine receptor-4; DEC, differentiated embryo chondrocyte 
expressed 1 and 2; EDN, endothelin-1; EGLN, egg-laying defect nine-1 and 3 (HIF PHD2 and PHD3); ENG, 
endoglin; ENO, enolase-1; EPO, erythropoietin; ETS1, erythroblastosis virus transforming sequence; FN, 
fibronectin-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT, glucose transporter 1 and 3; 
GPI, glucose phosphate isomerase; HITF, human intestinal trefoil factor; HK, hexokinase 1 and 2; HMOX, 
heme oxygenase; IGF, insulin-like growth factor-2; IGFBP, insulin-like growth factor binding protein-1; 
KRT, keratin 14, 18, and 19; LDHA, lactate dehydrogenase A; LEP, leptin; MDR1, multi-drug resistance P-
glycoprotein; MMP2, matrix metalloproteinase; NIP3, BCL2/adenovirus E1B 19-kDa-interacting protein; 
NIX, NIP3-like; NPPA, atrial natriuretic peptide; NOS. nitric oxide synthase (iNOS and eNOS); P4HA1, 
collagen prolyl-4-hydroxylase α1-subunit; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3; 
PFKL, phosphofructokinase L; PGF, placental growth factor; PGK, phosphoglycerate kinase-1; PLAUR, 
urokinase-type plasminogen activator receptor (uPAR); PROK, prokineticin (endocrine gland-derived 
VEGF); RTP801, DNA-damage-inducible transcript 4 (DDIT4, REDD1); SERPIN1, plasminogen activator 
inhibitor-1; STC, stanniocalcin; TF, transferrin; TFRC, transferrin receptor; TGF, transforming growth 
factor-α and -β3; TPI, triose phosphate isomerase; VEGF, vascular endothelial growth factor; VEGFR, 
VEGF receptor-2/flk-1 and VEGF receptor-1/flt-1; VIM, vimentin; WT-1, Wilms’ tumor suppressor. 
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their DNA-binding and dimerization domains, they differ in their transactivation domains, 

implying they may have unique target genes and require distinct transcriptional co-factors. For 

instance, the hypoxic induction of glycolytic enzymes is regulated by HIF-1α but not HIF-2α 

(116, 117). In contrast, TGF-α appears to be a preferred HIF-2α target (90). These findings are 

not surprising, given the considerable differences observed in the HIF-null mice. 

1.2.4 Role of HIF pathway in therapeutic applications 

1.2.4.1 Repression of HIF activity 

Perhaps the most direct line of evidence between HIF-1α and tumor progression resides in the 

VHL cancer syndrome. Aside from this rare disease, the global effects of HIF-1α have been 

well-established in the tumor literature, and entire conferences have been devoted to tumor 

hypoxia and angiogenesis. As depicted in Figure 5, when tumors outgrow their (abnormal) blood 

supply, hypoxia represents a positive stimulus for invasion. Clinically, tumor hypoxia tends to 

indicate a poor outcome and increased risk of distant metastases. When compared to normal 

adjacent tissue, HIF-1α is overexpressed in a majority human cancers and their metastases (118). 

The increased malignancy of hypoxic tumors can be attributed to the selection of apoptosis-

resistant cells and induction of angiogenic factors. In aggressive cancers, even over-expression 

and nuclear translocation of PHD2, the chief O2 sensor, are associated with less-differentiated 

and highly proliferative tumors, suggesting that PHD-activating agents would not be sufficient to 

down-regulate HIF-1α in some tumors (119). In contrast, loss of HIF-1α or HIF-1β results in 

reduced tumor growth, decreased angiogenesis, and increased radio-sensitivity (118, 120). 

Currently, several pharmacological inhibitors of HIF-1α are in all phases of development and 

clinical trials [reviewed in (89)]. Similar agents which exploit the hypoxic microenvironment are 

also being investigated as potential anti-inflammatory agents and as hypoxia-specific cytotoxins. 
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Figure 5:  Tumor “invasive switch”.   
As tumors outgrow their (abnormal) blood supply, hypoxia represents a positive stimulus for invasion. 
Clinically, tumor hypoxia tends to indicate a poor outcome and increased risk of distant metastases. When 
compared to normal adjacent tissue, HIF-1α is over-expressed in 70% of human cancers and their 
metastases. The increased malignancy of hypoxic tumors can be attributed to the selection of apoptosis-
resistant cells and induction of angiogenic factors. Figure reproduced from (121) with permission from 
Macmillan Publishers Ltd. 
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1.2.4.2 Activation of HIF activity 

In recent years, constitutive activation of HIF-1α has been gaining attention as a means of 

inducing therapeutic angiogenesis, mainly since preliminary studies of VEGF delivery alone 

stimulated an increase in abnormal blood vessels that were dilated, tortuous, and edematous 

(122). Phase II clinical trials are in progress for delivery of a constitutively active adenoviral 

construct (Ad2/HIF-1α/VP16) to treat patients with peripheral vascular disease and advanced 

coronary artery disease (123). The results of these trials have yet to be reported. 

It is interesting to note that, very recently, a family with erythrocytosis was found to carry 

a hereditary loss-of-function mutation in PHD2 (124). This link has heightened the awareness for 

another potential application that harnesses HIF-1α activity, namely the stimulation of 

erythopoiesis in patients suffering from anemia of chronic disease, such as in renal failure. 

Clinical trials are currently under way for orally active, small molecule inhibitors of PHD 

enzymes for patients with chronic kidney disease. These agents would act to induce endogenous 

EPO expression along with the mobilization and utilization of iron stores.  Since the life-span of 

an erythrocyte is 120 days, of growing concern is whether or not long-term use of these agents 

for HIF-mediated erythropoiesis would also carry tumorigenic potential.  

1.3  RELEVANCE OF THE HIF PATHWAY IN THE LIVER 

1.3.1 Organization of the liver 

Much of the liver's organization is governed by its central role in removing toxins from the blood 

and in maintaining normal blood composition and homeostasis. Figure 6 illustrates the basic 

histo-architecture of the liver. The liver is organized into lobules which take the shape of 

polygonal prisms. Each lobule is generally hexagonal in cross-section and is centered around a 

central vein (branch of the hepatic vein), with portal triads at each corner. Within each lobule, 

hepatocytes are arranged into cords separated by adjacent sinusoids. The fenestrated endothelium 

lining the sinusoids lies immediately adjacent to the cords, with no basement membrane and a  
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Figure 6:  Normal liver architecture.   
For orientation purposes, the histo-architecture of liver can be defined in terms of classic lobules, portal, 
lobules, or liver acini. 

 

small amount of connective tissue (primarily collagen type III and glycosaminoglycans), so that 

each hepatocyte is bathed on two faces by blood plasma. Within the hepatic cords lies a network 

of bile canaliculi, allowing passage of bile through inter-cellular channels which drain into the 

nearest branch of the bile duct. This specialized hepatic architecture optimizes the liver's parallel 

functions as an exocrine gland, endocrine gland, as well as a blood filter. 

1.3.1.1 The hepatic microenvironment 

Most of the pioneering work on HIF-1α was done in hepatoma cell lines (8, 11); however, much 

less is known about its function in normal liver. Due to the liver’s zonated architecture (Figure 

7), a physiologic O2 gradient exists between peri-portal (high O2) and peri-venous (low O2) 

regions. Consequently, the liver provides an ideal setting for the study of hypoxia-regulated 

genes and O2-depedendent zonation of hepatocyte and NPC functions. Unlike other organs, the 

liver’s blood supply originates from two sources:  the hepatic artery (25%) and the hepatic portal 
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vein (75%). As a result, the pO2 of peri-portal blood is 60-65 mm Hg (~8% O2), which is much 

lower than the systemic arterial pO2 of ~100 mm Hg. Peri-portal hepatocyte functions include 

oxidative metabolism, gluconeogenesis, ureagenesis, and bile formation (125). In contrast, peri-

venous blood has a pO2 of 30-35 mm Hg (~4% O2), and hepatocytes in this zone are more 

capable of glycolysis, liponeogenesis, and xenobiotic metabolism (125). 

Clearly, the liver’s functional zonation has been extensively mapped out. Surprisingly 

very few studies exist detailing the function and localization of the HIF pathway in liver. These 

published reports will be discussed in further detail in the context of Chapter 5.  

1.3.1.2 Subcellular O2 sinks in liver 

To say that the liver is a highly metabolic organ is an understatement. It receives over 25% of the 

total resting cardiac output and is expends over 20% of the body's resting O2 consumption (126). 

In hepatocytes, the chief sites of O2 consumption are mitochondria, smooth ER, and peroxisomes 

(126). Although all three organelles can be considered subcellular O2 sinks in the liver, only the 

mitochondrial respiratory chain is coupled to oxidative-phosphorylation and ATP synthesis. 

Of particular interest to the liver’s specialized function are peroxisomes. Unlike 

mitochondria, the peroxisomal respiratory chain is not coupled to ox-phos and energy 

production. Peroxisomes consume 10-30% of total cellular O2 consumption in the liver, but the 

number of peroxisomes is 10-15 times less than that of mitochondria (~1% of a hepatocyte’s 

total cell volume) (126). Therefore, on a per unit basis, peroxisomes may consume a significant 

amount of O2 as compared to mitochondria, especially in less-oxygenated peri-venous 

hepatocytes. The subcellular distribution of O2 within and between the aforementioned 

organelles are illustrated in Figure 8, and these interactions will be discussed in more detail in 

later chapters. 
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Figure 7:  Physiologic O2 gradient in the liver. 
Hypoxyprobe immunohistochemisty for pimanidazole adducts demonstrates the O2 zonation in resting rat 
liver. As blood enters the sinusoid, it undergoes a ~50% drop in oxygenation from peri-portal to peri-venous 
hepatocytes. Hepatic gradients of O2 and nutrients result in a functional zonation of hepatocytes. 
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Figure 8:  Subcellular O2 sinks in the liver. 
O2 is consumed in various metabolic reactions in different cellular compartments. In the liver, mitochondria, 
smooth ER, and peroxisomes are the major sites. Unlike mitochondria, the peroxisomal respiratory chain is 
not coupled to ox-phos and energy production. Peroxisomes consume 10-30% of total cellular O2  
consumption in the liver, but the number of peroxisomes is 10-15 times less than that of mitochondria (~1% 
of a hepatocyte’s total cell volume). Therefore, on a per unit basis, peroxisomes may consume a significant 
amount of O2 as compared to mitochondria, especially in less-oxygenated peri-venous hepatocytes. Figure is 
based on (126). 
 

 



 

- 27 - 

2.0  RATIONALE AND HYPOTHESIS 

2.1 HIF AND LIVER 

Although the liver’s unique oxygenation, functional zonation, and metabolic requirements have 

been extensively studied, little is known about what role the HIF pathway plays in this 

specialized microenvironment. If such a role does exist in the liver, it is unclear whether the HIF 

pathway is regulated in the same manner as in other organs. Moreover, very limited and often 

contradictory information exists regarding HIF activity in liver diseases and injury models (127-

130). Understanding these mechanisms at the molecular level may help advance our knowledge 

of liver disease and treatment. 

2.2 GENERAL HYPOTHESIS 

Based on the liver’s physiologic O2 gradient, alterations in the zonal distribution and subcellular 

localization of members of the HIF pathway may provide a novel means of HIF regulation in 

hepatocytes. 



 

- 28 - 

2.3 SPECIFIC AIMS 

2.3.1 Specific Aim 1 

To investigate the hypoxia-dependent and –independent induction and transcriptional activiation 

of HIF-1α in primary rat hepatocyte cultures. This is addressed in Chapters 4 and 5. 

2.3.2 Specific Aim 2 

To investigate the subcellular localization of HIFs and HIF regulatory hydroxylases in rat liver 

and in primary rat hepatocyte cultures. This is addressed in Chapter 4. 

2.3.3 Specific Aim 3 

To determine the spatio-temporal expression and localization of HIF-1α in regenerating rat liver. 

This is addressed in Chapter 5. 
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3.0  MATERIALS AND METHODS 

3.1 ANTIBODIES AND REAGENTS 

All chemicals were from Sigma (St. Louis, MO) and Fisher Scientific (Pittsburgh, PA), 

unless otherwise noted. Antibody sources and conditons are outlined in Table 4. 

3.2 ANIMAL MODELS AND CELL CULTURE 

3.2.1 Isolation and culture of primary rat hepatocytes 

Animals were treated according to the guidelines of the Institutional Animal Care and Use 

Committee of the University of Pittsburgh. Rat hepatocytes were isolated from male Fisher 344 

rats (Harlan, Indianapolis, IN) using a modified two-step collagenase perfusion (131, 132). 

Freshly isolated hepatocytes of >90% viability, as assessed by Trypan blue exclusion, were 

added to plating media (MEM containing 50 μg/mL bovine insulin and 0.1% gentamycin). 

Hepatocytes were plated on rat-tail collagen I-coated cultureware at a density of 3-4 x106 

cells/100-mm plastic dish or 1-2 x105 cells/22-mm glass coverslip (BD Biocoat, Bedford, MA), 

incubated at 37oC (5% CO2), and checked for adherence of monolayers after 2–4 hr. Once 

adhered, the media was changed to serum-free basal Hepatocyte Growth Media (HGM, without 

ITS, dexamethasone, or growth factors) (133). The next day, normoxic cells were cultured for 6 
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hr. at 37oC in a standard 5% CO2 humidified incubator (Heraeus, Ashville, NC), while hypoxic 

cells were cultured for 6 hr. at 37oC in a 1% O2 ProOxC system balanced with 5% CO2/95% N2 

(Biospherix, Redfield, NY). This degree of hypoxia was chosen based on established protocols 

for HIF-induced transcription (134). Duplicate hypoxic cultures were also returned for 

reoxygenation overnight (18 hr.) in the normoxic incubator. Hypoxic culture was evaluated using 

Hypoxyprobe-1 Plus (Chemicon, Temecula, CA) detection of pimanidazole adducts (135). Cell 

survival was confirmed by both 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) viability and lactate dehydrogenase (LDH) cytotoxicity assays (Biovision, Mountain 

View, CA) (136, 137). At the indicated time point, hepatocytes were harvested immediately on 

ice for protein or RNA, or fixed in 2% paraformaldehyde for imaging (described below).  

3.2.2 Growth factor experiments 

For investigation of hypoxia-independent induction of HIF-1α by growth factors, primary 

rat hepatocytes were isolated and plated as described above. The next day, cells were cultured for 

6-16 hr. in HGM supplemented with one of the growth factors listed in Table 3. Control culture 

medium consisted of HGM without added ITS, dexamethasone, or growth factors. 
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Table 3:  Growth factor supplementation used in normoxic HIF-1α induction experiments for primary rat 
hepatocytes. 
The control medium was basal Hepatocyte Growth Medium (without Dex, ITS, HGF, or EGF). Hepatocyes 
were cultured for 6-16 hr. under these conditions. Growth factors were from R&D Systems (Minneapolis, 
MN). 

 

Growth Factor or 

Supplement Final Concentration 

HGF 4 x 10-5 g/L 

EGF 2 x 10-5 g/L 

ITS 1 g/L 

TGFα 2 x 10-5 g/L 

TGF-β1 5 x 10-6 g/L 

AR 4 x 10-5 g/L 

Dex 1 x 10-7 M 

PGE2 1 x 10-5 M 

CoCl2 5-10 x 10-5 M 

DFO 5-10 x 10-5 M 

DMSO 2% (v/v) 

 

3.2.3 Hepatoma cell line culture, transplantation, and in vivo tumor formation 

Previously frozen stocks of JM1 Fisher 344 rat hepatoma cells (138) were grown in T-75 flasks 

containing DMEM supplemented with 2 mM glucose, 2 mM L-glutamine, 10% fetal bovine 

serum, and 0.1% gentamycin. Once confluent, JM1 cells were trypsinized and washed in Hank’s 

balanced salt solution (HBSS). Three million cells were transplanted into each liver of 8-10 wk 

old, 180-200g, male Fisher 344 rats via surgical injection with a 26-G needle into the superior 

mesenteric vein. Negative control rats were injected with cell-free HBSS. After 2 and 4 wk. of 

syngeneic engraftment, rats were injected i.p. with 100mg/kg dose of Hypoxyprobe 

(pimonidazole hydrochloride) hypoxia marker 1 hr. before sacrificing, then tumors were 

harvested, snap-frozen, and/or processed for histology. Formalin-fixed tissues were embedded in 
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paraffin blocks. A total of two series were performed, each consisting of three rats:  control 

(vehicle alone), 2 wk. hepatoma, and 4 wk. hepatoma. The generation of JM1 liver tumors is 

chronicled in Figure 9. 

 
Figure 9:  Generation of JM1 rat hepatomas. 
A. Morphologic comparison of primary rat hepatocytes and the syngeneic JM1 rat hepatoma cell line. B. 
Gross morphology normal rat liver compared to 4 wk. JM1 hepatomas. Normal adjacent host liver is 
compressed between multiple tumor nodules. C. Hematoxylin and eosin (H & E) stain shows JM1 tumor 
progression over time. 
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3.2.4 70% Partial hepatectomy (PHx) model 

Animals were treated according to the guidelines of the Institutional Animal Care and Use 

Committee of the University of Pittsburgh. Male Fisher 344 rats (10-12 wk old, 180-200 g) were 

anesthetized with isofluorane inhalant and 70% PHx (Figure 10) was performed as described by 

Higgins and Anderson (139). For sham operations, only the xyphoid process was removed. A 

total of four PHx series were performed, using the following time-points of regeneration after 

70% PHx:  0, 1, 3, 6, and 12 hr.; 1, 2, 3, 4, 5, 6, and 7 days. 

 

 
Figure 10:  Rat liver regeneration following 70% partial hepatectomy (PHx). 
Liver of a normal rat at operation (the excised lobes are outlined) and at 1 to 4 wk. after PHx. The liver mass 
is restored by compensatory hyperplasia of the remnant lobes. Figure from (139). 
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Table 4:  Antibodies and conditions used in this study. 

Epitope 

Primary Antibody 
Dilution (Source) 

Fluorescence 
Secondary 
Antibody 
Dilution 
(Source) 

Gold-Conjugated 
Secondary 

Antibody for 
Immunoelectron 

Microscopy 
Dilution (Source) 

HRP 
Conjugated 
Secondary 

Antibody for 
Western 
Blotting 
Dilution 
(Source) 

Biotinylated 
Secondary 

Antibody for 
Immuno-

histochemistry 
Dilution (Source) 

HIF-1α 

1:500 WB NB100-

105 

1:1000 IHC NB100-

131 

1:100 IF NB100-123 

All Ms mAb (NO) 

Gt anti-Ms Cy3 

1:1000 (JA) 
N/A 

Dky anti-Ms IgG  

1:75,000 (JA) 

Anti-Ms 

ImmPRESS 

reagent (VE) 

HIF-2α 
NB100-132 Ms mAb 

1:100 IF 

Gt anti-Ms Cy3 

1:1000 (JA) 
N/A N/A N/A 

HIF-3α 
601-401-435 Rbt pAb 

1:100 IF (RO) 

Gt anti-Rbt IgG 

Alexa 488 

1:500 (MO) 

N/A N/A N/A 

HIF-1β 
NB100-110 Rbt pAB 

1:100 IF (NO)  

Gt anti-Rbt IgG 

Alexa 488 

1:500 (MO) 

N/A N/A N/A 

PHD1 

NB100-310 Rbt pAb 

1:1000 WB, IHC 

1:100 IF 

1:50 TEM  (NO) 

PHD2 

NB100-138 Rbt pAb 

1:1000 WB, IHC 

1:200 IF 

1:50 TEM (NO) 

PHD3 

NB100-139 Rbt pAb 

1:1000 WB, IHC 

1:100 IF 

1:50 TEM (NO) 

PHD4 

NB100-295 Rbt pAb 

1:100 WB, IF 

1:1000 IHC 

1:50 TEM (NO) 

FIH-1 

NB100-428 Rbt pAb 

1:100 WB 

1:1000 IHC 

1:200 IF 

1:50 TEM (NO) 

Gt anti-Rbt IgG 

Alexa 488 

1:500 (MO) 

Gt anti-Rbt IgG 

10-nm gold  

1:25 (AM) 

Dky anti-Rbt IgG  

1:75,000 (JA) 

Gt anti-Rbt IgG  

1:500 (CH) 
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Table 4: Antibodies and conditions used in this study: Continued 

Epitope 

Primary Antibody 
Dilution (Source) 

Fluorescence 
Secondary 
Antibody 
Dilution 
(Source) 

Gold-Conjugated 
Secondary 

Antibody for 
Immunoelectron 

Microscopy 
Dilution (Source) 

HRP 
Conjugated 
Secondary 

Antibody for 
Western 
Blotting 
Dilution 
(Source) 

Biotinylated 
Secondary 

Antibody for 
Immuno-

histochemistry 
Dilution (Source) 

VHL 
SC1535-R20 Gt pAb 

1:100 IF 

Dky anti-Gt IgG 

Alexa 488 

1:500 (MO) 

N/A N/A N/A 

Ms mAb 

1:50 TEM (SI) 
N/A 

Gt anti-Ms 

5-nm gold  

1:25 (AM) 

N/A 
N/A 

 
Catalase 

(peroxisomes) 
W90080C Shp pAb 

1:1000 WB 

1:200 IF (BI) 

Dky anti-Shp IgG 

Cy3 

1:200 (JA) 

N/A 
Dky anti-Shp IgG 

1:20,000 (JA) 
N/A 

PMP70 
(peroxisomes) 

ALX210205C100 Rbt 

pAb 

1:500 WB (AL) 

N/A N/A 
Dky anti-Rbt IgG  

1:75,000 (JA) 
N/A 

Pan-Actin 
(loading 
control) 

MAB1501 Ms mAb 

1:2000 WB (CH) 
N/A N/A 

Dky anti-Ms IgG  

1:75,000 (JA) 
N/A 

 

Methods Abbreviations:  Dky = donkey, Gt = goat, IF = immunofluorescence, IHC = immunohistochemistry, mAb = monoclonal antibody, Ms = 

mouse, pAb = polyclonal antibody, Rbt = rabbit, Shp = sheep, TEM = immuno-transmission electron microscopy, WB = Western blotting. 

 

Company Abbreviations (in parentheses):  AL = Alexis Corp., San Diego, CA; AM = Amersham, Uppsala, Sweden; BI = Biodesign International, 

Saco, ME; CH = Chemicon, Temecula, CA; NO = Novus Biologicals, Littleton, CO.; JA = Jackson Immunoresearch Labs, West Grove, PA; MO = 

Molecular Probes, Eugene, OR; RO = Rockland Immunochemicals, Gilbertsville, PA; VE = Vector Laboratories, Burlingame, CA; SA = Santa Cruz 

Biotechnologies, Santa Cruz, CA; SI = Sigma, St. Louis, MO. 
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3.3 HISTOLOGIC METHODS 

3.3.1 Immunohistochemistry 

Serial sections of formalin-fixed or zinc-fixed liver tissue were cut at 5-μm thickness onto 

Superfrost Plus glass slides (Fisher Scientific, Pittsburgh, PA) and heat-fixed 1 hr. at 65oC. With 

the exception of Hypoxyprobe, HIF-1α, and HIF-2α, all immunohistochemistry was performed 

using the Vectastain Elite ABC kit according to manufacturer’s protocol (Vector Laboratories, 

Burlingame, CA). Briefly, after deparaffinization and rehydration of sections, endogenous 

peroxidase activity was quenched 20 min. in methanol containing 3% H2O2, and 10 min. of 

antigen retrieval was performed in boiling 10 mM citrate buffer (pH 6.0) with slow cooling. 

Sections were blocked 30 min. at room temperature (RT) with Blueblock (Thermo Electron, 

Pittsburgh. PA), then incubated with primary antibodies overnight at 4oC. Primary-deleted 

negative controls for background were treated with the antibody diluent alone. After incubation 

for 30 min. at RT with affinity-purified biotinylated secondary antibodies, sections were treated 

with ABC reagent followed by DAB chromagen (Vector). All sections were counterstained in 

hematoxylin, dehydrated, and coverslipped with Cytoseal (Richard-Allan Scientific, Kalamazoo, 

MI). 

 

3.3.2 Hypoxyprobe™ immunohistochemistry 

Hypoxia-dependent activation of nitroheterocyclic drugs such as pimonidazole by cellular 

nitroreductases leads to the formation of intracellular adducts between the drugs and cellular 

macromolecules (140). Because this covalent binding is maximal in the absence of oxygen, 

detection of bound adducts by monoclonal antibodies provides an assay for estimating the degree 

of cellular hypoxia within tissues or cells (140). Hypoxyprobe staining for pimonidazole adducts 
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was performed according to manufacturer’s protocol (Chemicon). Sections were deparrafinized, 

rehydrated, quenched, and subjected to antigen retrieval as described above. After a TBST wash, 

sections were blocked 30 min. at RT with 1% BSA in TBST, then incubated 30 min. at RT with 

1:50 Hypoxyprobe-1 Mab1 FITC-conjugated mouse monoclonal IgG1 primary antibody. 

Primary-deleted negative controls for background were treated with the antibody diluent (1% 

BSA in TBST) alone. Sections were washed twice in TBST, then incubated 30 min. at RT with 

1:50 mouse anti-FITC HRP-conjugated secondary antibody. After two TBST washes, DAB 

chromagen was applied for 10 min. at RT. The brown color reaction was stopped by a brief 

ddH2O wash, then sections were counterstained in Harris’ hematoxylin, blued in TBST, 

dehydrated, cleared, and coverslipped with Cytoseal. 

3.3.3 HIF-1α and HIF-2α immunohistochemistry 

Mouse ImmPRESS reagent kit was used according to manufacturer’s protocol (Vector). Sections 

were deparaffinized, rehydrated, quenched, and subjected to antigen retrieval as described above. 

After a PBS wash, sections were blocked 30 min at RT with 2.5% normal horse serum, then 

incubated 1 hr at RT with 1:1000 mouse monoclonal anti-HIF-1α or anti-HIF-2α primary 

antibodies. Primary-deleted negative controls for background were treated with the antibody 

diluent (1% BSA in PBS) alone. Sections were washed twice in PBS, then incubated 30 min at 

RT with pre-diluted ImmPRESS anti-mouse IgG HRP-conjugated secondary antibody. After two 

PBS washes, DAB chromagen was applied for 10 min at RT. The brown color reaction was 

stopped by a brief ddH2O wash, then sections were counterstained in Harris’ hematoxylin, blued 

in PBS, dehydrated, cleared, and coverslipped with Cytoseal.  
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3.4 HIGH RESOLUTION IMAGING 

3.4.1 Scanning laser confocal immunofluorescence microscopy 

Primary rat hepatocytes cultured on coverslips were placed on ice and rapidly washed in cold 

PBS containing 1:200 dilution of protease and phosphatase inhibitor cocktails (Sigma), then 

fixed in 2% paraformaldehyde in PBS for 15 min, and processed as described (141). Briefly, 

cells were rinsed 3 times in PBS, rinsed 3 times in PBS with BSA and glycine (PBG), 

permeabilized with 0.1% Triton X-100 in PBG for 20 min, and then blocked in 2% BSA in PBG 

for 30 min at RT. Primary antibodies in PBG were added to cells for 1 hr at RT. Samples were 

washed 5 times in PBG, and then secondary antibodies in PBG were added for 1 hr at RT. 

Samples were washed 3 times in PBG, 3 times in PBS, counterstained with Hoechst dye, and 

then coverslipped using Gelvatol. Primary-deleted negative controls for background were treated 

with the antibody diluent alone. HIF-1α and HIF-2α immunofluorescence staining was 

performed using a modification of the method recommended by the manufacturer (Novus 

Biologicals, Littleton, CO). Briefly, cells were permeabilized and blocked overnight at 4oC with 

2% BSA/0.1% Triton-X 100 in PBS. Subsequent labeling was performed in 0.5% BSA in PBS. 

All fluorescence labeling was imaged on a Fluoview 1000 confocal scanning microscope 

(Olympus, Melville, NY). Imaging conditions were maintained at identical settings within each 

antibody labeling experiment. 

3.4.2 Immuno-transmission electron microscopy (Immuno-TEM) 

Rat livers were perfused-fixed and cultured primary rat hepatocytes were fixed in 2% 

paraformaldehyde in PBS (1 hr. for cells, overnight for tissues), processed, and analyzed as 

described (141). Sections were observed on a JEM 1210 electron microscope (JEOL, Peabody, 

MA). 
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3.5 ANALYSIS OF CELLULAR PROTEINS 

3.5.1 Preparation of nuclear extracts 

For HIF Western analysis, nuclear proteins from both snap-frozen rat liver tissue and primary 

hepatocytes cultured on 5 x 100-mm collagen-coated plates were extracted as described by 

Runge et al.; however, no milk was included in the hypotonic buffer (142). 

 

3.5.2 Preparation of membrane-enriched fractions 

Hepatocytes cultured on 5 x 100-mm plates were washed and scraped into 10 mL of ice-cold 

isotonic isolation buffer [0.1 mM EDTA, 250 mM sucrose, 4% PEG-6000, 5 μM MES  (pH 7.4), 

plus fresh 1:100 protease/phosphatase inhibitor cocktails (Sigma)], resuspended in 2 mL of 

isolation buffer, and lysed by nitrogen cavitation (Parr Bomb, 600 psi/15 min.) on ice (141). The 

resulting cell lysate (CL) was centrifugated for 10 min. at 10,000xg to separate a nuclear fraction 

(NF, pellet) and a cytosolic/membrane fraction (CMF, supernatant). Following 

ultracentrifugation (10 min. at 100,000xg, Beckman Airfuge, A-100 rotor) of the CMF, intact 

peroxisomes were obtained in the organelle-enriched membrane fraction (MF, heavy pellet) and 

cytoplasmic proteins remained in the cytosolic fraction (CF, final supernatant). The MF was 

solubilized in 1% SDS. All fractions were stored at -80oC until use. Isolation of intact 

peroxisomes in the MF was confirmed via Western blotting for PMP70, a peroxisomal 

membrane protein. A schematic of the isolation can be seen in Figure 11. 

3.5.3 Western blotting 

Protein concentrations were determined by BCA assay (Pierce, Rockford, IL), then 20-50 μg of 

protein were heated to 65oC in 2x Laemmli buffer, slowly cooled, and separated on 10% or 12% 

SDS-PAGE gels (143). After electrotransfer onto Immobilon PVDF membranes (Millipore, 

Bedford, MA), protein bands were reversibly stained with Ponceau S to confirm complete 
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transfer. Membranes were blocked 1 hr. in tris-buffered saline with Tween-20 (TBST) containing 

5% non-fat dry milk (NFDM), then incubated overnight at 4oC with primary antibodies diluted in 

1% or 5% NFDM/TBST. Membranes were washed and incubated 1.5 hr. at RT with HRP-

conjugated secondary antibodies diluted in 1% NFDM/TBST. After several TBST washes, 

membranes were incubated with Supersignal West Pico enhanced chemiluminescence (ECL) and 

exposed to CL-Xposure film (Pierce, Rockford, IL). For Western blots designed for maximum 

sensitivity, three mouse anti-HIF-1α monoclonal antibodies (NB100-131, NB100-123, NB100-

105; Novus) were combined and used at 1:500 on Western  blots containing 50-100 μg of 

nuclear extracts.  

3.5.4 Enzyme-linked immunosorbent assay (ELISA) for HIF-1α DNA-binding activity 

To ensure that the samples’ salt and detergent concentrations were compatible with this ELISA-

based transcription factor assay, nuclear extracts were prepared using buffers accompanying the 

kit, and the Trans-AM ELISA for HIF-1α DNA-binding was used according to manufacturer’s 

protocol (Active Motif, Carlsbad, CA) (144). 
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Figure 11:  Schematic of subcellular fractionation protocol. 
A. Subcellular fractionation of primary rat hepatocytes in an isotonic buffer [0.1 mM EDTA, 250 mM 
sucrose, 4% PEG-6000, 5 μM MES (pH 7.4), plus fresh protease/phosphatase inhibitor cocktails (Sigma)] was 
used to obtain intact peroxisomes in the membrane-enriched fraction (MF). B. PMP-70 western blot confirms 
isolation of intact peroxisomes in MF. 
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3.6 ANALYSIS OF RNA 

3.6.1 Isolation of RNA 

Cells were lysed in RNAzol B (Iso-Tex, Friendswood, TX) and total RNA was purified using the 

RNeasy kit with DNase treatment (QIAGEN, Valencia, CA). 

3.6.2 Reverse-transcription polymerase chain reaction 

Total RNA (500 ng) was reverse-transcribed and the resulting cDNA template was amplified 

with hot-start PCR using Jumpstart ReadyMix Taq polymerase according to manufacturer’s 

recommendations (Sigma, St. Louis, MO). Primer pairs are outlined in Table 5. PCR products 

were visualized on 1.2% agarose-TBE gels, stained with ethidium bromide, and imaged with 

AlphaImager software (Alpha Innotech, San Leandro, CA). 

3.6.3 Affymetrix gene array analysis 

At the indicated time-points, primary rat hepatocytes cultured in triplicate 10-cm plates were 

pooled, lysed in Trizol (Invitrogen, Carlsbad, CA) and processed as described (145) for gene 

expression analysis using rat U34A arrays (Affymetrix, Santa Clara, CA), in collaboration with 

Dr. Jianhua Luo (University of Pittsburgh, Microarray Center). Data analysis was performed 

using a fully-functional demo version of GeneSifter software (downloadable at 

http://www.genesifter.net/web/trial.html; VizX Labs, Seattle, WA). 

http://www.genesifter.net/web/trial.html
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Table 5:  RT-PCR primer pairs used in this study. 

Gene Target 
Accession Number

(all are rat) 

Forward Primer (FP) 

Reverse Primer (RP) 
Size 

(bp) 

HIF-1α AF057308 
5’-TGCTTGGTGCTGATTTGTGA-3’ 

5’-GGTCAGATGATCAGAGTCCA-3’ 
209 

HIF-2α RNO277828 
5’-TGACTTCACTCATCCTTGCGACCA-3’ 

5’-ATTCATAGGCAGAGCGGCCAAGTA-3’ 
443 

HIF-3α RNO277827 
5’-AAGAAGGGTATCCCAGGCAACAGT-3’ 

5’-TGTACGGAGCCAACATCTCCAAGT-3’ 
361 

HIF-1β U61184 
5’-TGCACCAACACCAACGTGAAGAAC-3’ 

5’-TGGTTGTGCTGATGTTGGCTGAAC-3’ 
915 

PHD1 NM_001004083 
5’-AGCAACAGCACTACCCATAGCAGT-3’ 

5’-TGTGACACGGGTACTTGAACACCT-3’ 
755 

PHD2 NM_178344 
5’-AAGATCACCTGGATCGAGGGCAAA-3’ 

5’-TCGCTCGTCTGCATCGAAATACCA-3’ 
426 

PHD3 NM_019371 
5’-AGAGGCACCCTTGAAACCCTAACA-3’ 

5’- TTGCTTGGAAAGTCTGCATGGCTG-3’ 
897 

FIH-1 XM_219961 
5’-TGCAGCAAACACTCAATGACACCG-3’ 

5’-TCAAGAGGCAAGGGTGAGAAACCT-3’ 
821 

VEGF-A 
all isoforms 

NM_031836 
5’-CTCACCAAAGCCAGCACATA-3’ 

5’-AAATGCTTTCTCCGCTCTGA-3’ 
160 

PAI-1 NM_012620 
5’-GACAATGGAAGAGCAACATG-3’ 

5’-ACCTCGATCTTGACCTTTTG-3’ 
205 

ADM NM_012715 
5’-GGCAGCATTGAACAGTCG-3’ 

5’-AAGGCAGTGGCTCAGACC-3’ 
223 

GAPDH NM_017008 
5'-CTCACTGGCATGGCCTTCCG-3' 

5’-ACCACCCTGTTGCTGTAGCC-3’ 
200 

β-actin BC063166 
5’-GAGCTATGAGCTGCCTGACG-3’ 

5’-AGCACTTGCGGTCCACGATG’3’ 
361 
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4.1 INTRODUCTION 

Oxygen homeostasis relies on highly conserved mechanisms required for the survival of nearly 

all organisms. In most settings, O2 delivery and consumption increase with metabolic demand; 

however, extreme shifts in tissue oxygenation can be detrimental. Mammalian cells employ an 

O2-responsive pathway to sense and to adapt to fluctuations in their microenvironment. This 

ubiquitous system involves hypoxia-inducible factors (HIFs), transcription factors that 

upregulate the expression of hypoxia-responsive genes. HIFs are members of the basic helix-

loop-helix Per-ARNT-Sim (bHLH-PAS) family of transcription factors, which includes three 

HIF-α subunits (HIF-1α, HIF-2α/EPAS1, HIF-3α/IPAS) and three HIF-β subunits (HIF-

1β/ARNT1, HIF-2β/ARNT2, and HIF-3β/ARNT3). HIF-α subunits dimerize exclusively with 

HIF-β subunits. In contrast, HIF-β subunits can also dimerize with aryl hydrocarbon receptors 

(AHRs), providing cross-talk with xenobiotic metabolism (18). 
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HIF-1α was first identified by Wang and Semenza (9), and it serves as the prototype for 

studying cellular mechanisms of O2-sensing. Under normoxic conditions, cytosolic HIF-1α 

proteins are constitutively expressed but rapidly degraded due to post-translational 

hydroxylations. HIF-1α consists of both an asparagine-containing transactivation (CTAD) 

domain (26) and a proline-rich oxygen dependent degradation domain (ODDD) (35), both of 

which are essential for HIF function. These domains are enzymatically modified by recently 

identified non-heme HIF asparaginyl and prolyl hydroxylases, members of a dioxygenase 

superfamily whose activity requires 2-oxogluterate (2-OG), Fe(II), ascorbate, and most 

importantly molecular O2. When O2 is abundant, hydroxylation of key prolines in the ODDD by 

HIF prolyl 4-hydroxylases (PHDs)* allow the von Hippel-Lindau tumor suppressor protein 

(pVHL) to tag HIF-1α for polyubiquitination and subsequent proteasomal degradation (36, 46). 

This continuous turnover results in the very short half-life of HIF-1α in normoxic conditions 

(11). Furthermore, normoxia curtails HIF-1α transcriptional activity via the asparaginyl 

hydroxylase, factor-inhibiting HIF-1 (FIH-1), which acts on an asparagine residue in the CTAD 

(31), providing yet another brake in the system. 

Due to their requirement for molecular O2, the HIF hydroxylases can be considered 

principal O2 sensors within the cell, preventing aberrant HIF-dependent transcription in the 

presence of O2. Accordingly, when cells undergo hypoxic stress, the hydroxylation and 

degradation of HIF-1α is inhibited (48, 49). As a result, HIF-1α stabilizes, accumulates in the 

cytoplasm, and translocates to the nucleus, where it forms a heterodimer with its constitutively 

expressed nuclear binding partner, HIF-1β (50). Following transactivation (29, 51), HIF-1 

heterodimer binds to hypoxia-response elements (HREs), consensus sequences in the promoter 

or enhancer regions of target genes (6). To date, over seventy HIF-induced genes have been 

identified, encoding such adaptive proteins as EPO, VEGF-A, iNOS, PAI-1, c-MET, IGFBP-1, 

and all glycolytic enzymes [reviewed in (113, 114)].  

                                                 
*The HIF prolyl 4-hydroxylases were termed PHDs, EGLNs, or HPHs by various groups. In this 

paper we refer to the PHD nomenclature. PHD1/PHD2/ PHD3 are equivalent to 

HPH3/HPH2/HPH1 or EGLN2/EGLN1/EGLN3, respectively. 
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Due to its physiologic O2 gradient, the liver is a unique organ where maintainence of O2 

homeostasis is critical for its specialized function. Despite much of the pioneering work on HIF 

originating in hepatoma cell lines (6), little is known about its regulation in the liver itself. 

Unlike other organs, liver receives most of its blood supply from the portal vein, which carries 

venous blood with lower O2 tension. This gradient can further be disrupted by chronic liver 

disease or acute insults such as ischemia-reperfusion injury. O2 zonation is therefore an 

additional consideration when studying the HIF pathway in liver, and perivenous mRNA 

expression of all three HIF-α subunits has been described (146).  Although PHD1-3 are highly 

expressed in mouse liver (93), the significance of HIF hydroxylases in hepatic physiology and 

pathology is largely unexplored. To better understand how the endogenous HIF pathway is 

affected by hypoxia/reoxygenation, we investigated the subcellular distribution of HIFs and their 

regulatory hydroxylases in primary rat hepatocytes. We show that in hepatocytes, HIF-1α targets 

to the peroxisome rather than the nucleus, where it co-localizes with VHL and the HIF 

hydroxylases. Peroxisomal sequestration may provide an additional point of regulation for HIF 

signaling in the liver. 

4.2 RESULTS 

4.2.1 Establishment of hypoxic cultures of primary rat hepatocytes 

To investigate the effects of hypoxia-reoxygenation on endogenous HIF proteins in hepatocytes, 

we first characterized our in vitro culture system. We isolated and plated primary rat hepatocytes, 

allowing them to adhere and equilibrate overnight (18 hr.). The following day, we cultured them 

under conditions of 6 hr. normoxia (control), 6 hr. hypoxia (1% O2), or 6 hr. hypoxia followed by 

overnight reoxygenation. To confirm initially that our hepatocytes were indeed hypoxic, we 

utilized the hypoxia marker pimanidazole (Figure 12A), a nitroheterocyclic drug whose hypoxia-

dependent activation by cellular nitroreductases leads to the formation of covalent intracellular 

adducts between cellular macromolecules and the drug itself  (135). As seen in Figure 12A and 

subsequent images, staining of nuclei (Hoechst) and F-actin (phalloidin) confirms that the cells 
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were viable. We also routinely assessed hepatocyte viability and found that hypoxic cultures had 

~73.7% viability (MTT assay) and ~20.6% cytotoxicity (LDH assay) compared to normoxic 

controls (Figure 12B). Analysis of gene expression by RT-PCR next confirmed the hypoxic 

induction of HIF target genes PAI-1, adrenomedullin, and VEGF-A, but not GAPDH (Figure 

12C). 

4.2.2 Hypoxia does not induce nuclear localization of HIF-1α in primary rat hepatocytes 

After our assessment of hypoxic culture conditions, we next sought to investigate the expression 

of endogenous HIFs in primary rat hepatocytes, beginning with HIF-1α. Interestingly, although 

we observed expression of HIF-1α via RT-PCR (Figure 13A), we were unable to detect by either 

imaging or Western blotting a nuclear induction of HIF-1α protein in hypoxic primary rat 

hepatocytes. We repeated out experiments using parallel cultures of primary rat hepatocytes and 

JM1 cells, a syngeneic rat hepatoma cell line derived from Fisher 344 rat 
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Figure 12: Establishment of hypoxic cultures. 
Primary rat hepatocytes were cultured for 6 hr. in normoxic (control) or hypoxic (1% O2) incubators. 
Parallel hypoxic cultures were returned to the normoxic incubator for overnight reoxygenation. A. Confocal 
immunofluorescence of pimanidazole adducts (green) in hepatocytes after 6 hr. of hypoxia confirms hypoxic 
incubation. B. Representative data from MTT and LDH viability assessments are shown as % of normoxic 
control. C. RT-PCR demonstrates upregulation of known HIF target genes, PAI-1, adrenomedullin, and 
VEGF-A, indicating hepatocytes are responding to hypoxia. 
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hepatocytes (138). Even when analyzed using identical experimental conditions, we could only 

detect nuclear HIF-1α in the JM1 cells and not the hepatocytes. As seen in Figure 13B-C, the 

absence of nuclear HIF-1α in hepatocytes can be observed in both confocal immunofluorescence 

and maximum sensitivity Western blots. An ELISA-based DNA-binding assay confirmed this 

lack of HIF-1α responsiveness in hepatocytes (Figure 13D). Furthermore, when JM1 cells were 

re-introduced into normal Fisher 344 rat livers, the resulting tumors contained numerous hypoxic 

regions (Figure 14A-C). The tumor cells highly expressed nuclear HIF-1α in these regions; 

however, the normal adjacent compressed liver contained only cytoplasmic HIF-1α staining 

(Figure 14D-E), indicating that such an excessive and chronic hypoxic insult to the liver was 

inadequate to induce nuclear HIF-1α in hepatocytes. Taken together, the results in Figures 12, 

Figure 13 and Figure 14 provide evidence that although hepatocytes do respond to hypoxia, the 

contribution of HIF-1α to this adaptation may be minor or transient at best. 

4.2.3 HIF-1α localizes to peroxisomes in primary rat hepatocytes 

As shown in Figure 13C, although HIF-1α does not translocate to the hepatocyte nucleus in 

hypoxia, there appears to be an increase HIF-1α in the cytoplasm. Given our unexpected 

findings, we decided to further dissect the punctate cytoplasmic labeling we observed for HIF-1α 

in hypoxic hepatocytes. Confocal immunofluorescence (Figure 15A) revealed that endogenous 

HIF-1α (green) co-localized (yellow) with the peroxisomal membrane protein PMP70 (red) in 

hepatocytes subjected to reoxygenation following hypoxia. Since HIF-1α was recently shown to 

play the least active role in primary rat hepatocytes co-transfected with HIF-α expression vectors 

and IGFBP-1 reporter gene constructs (147), we next decided to compare the distribution
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Figure 13:  Absence of nuclear HIF-1α induction in primary rat hepatocytes. 
Primary rat hepatocytes were cultured for 6 hr. in normoxic (control) or hypoxic (1% O2) incubators. 
Parallel hypoxic cultures were returned to the normoxic incubator for overnight reoxygenation.  A. RT-PCR 
shows expression of HIF-1α, HIF-2α, HIF-3α, and the constitutive HIF-1β in hepatocytes cultures. B. 
Maximum sensitivity Western blot of nuclear extracts reveals lack of HIF-1α induction in primary 
hepatocytes compared to tumor cells. A similar pattern is observed in normal rat liver (NRL) tissue vs. JM1 
tumor tissue. C. Scanning confocal immunofluorescence demonstrates nuclear localization of HIF-1α in 
syngeneic JM1 rat hepatoma cells, but not in primary rat hepatocytes. D. HIF-1α DNA-binding, as assessed 
by transcription factor ELISA, further confirms a lack of HIF-1α activation in hepatocyte nuclear extracts. 
Positive control was CoCl2-treated COS-7. The results in Figures 12 and 13 demonstrate that although 
hepatocytes do respond to hypoxia, the contribution of HIF-1α to this response may be minor or very 
transient. 
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Figure 14:  Comparison of hypoxic regions in syngeneic rat hepatomas. 
JM1 Fisher 344 rat hepatoma cells were transplanted into livers of same-strain rats. After 4 wk. of tumor 
formation, rats were injected i.p. with Hypoxyprobe marker. A. Low power view of hypoxic regions 
contained in tumor and compressed normal adjacent (host) liver. B. Hypoxic cells outline necrotic region of 
tumor. C. Hypoxic host liver is compressed by tumors extending bilaterally. D. HIF-1α-positive tumor cells 
surround necrotic center, corresponding to hypoxic regions in B. E. Absence of HIF-1α nuclear labeling in 
adjacent hepatocytes, despite being compressed in hypoxic regions (C). 
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patterns of other endogenous HIF transcription factors in response to hypoxia. In contrast to HIF-

1α, we did observe a nuclear induction of HIF-2α in hepatocytes, but this was only following 

reoxygenation experiments (Figure 15B). HIF-2α (green) co-localized (yellow) with HIF-1β 

(red), the constitutive nuclear binding partner of HIF-α. There was also an increase in 

cytoplasmic HIF-2α, but this was not co-localized to peroxisomes (data not shown). 

Interestingly, basal levels of HIF-3α (green) were observed in the nuclei of normoxic (control) 

hepatocytes, and this HIF-3α shifted out of the nucleus in hypoxia (Figure 15C). Unlike HIF-2α, 

HIF-3α did co-localize (yellow) with the peroxisomal enzyme catalase (red), suggesting a 

similar targeting as HIF-1α. 

4.2.4 HIF hydroxylases localize to peroxisomes in resting liver 

Since much less is known about the HIF regulatory hydroxylases in comparison to the HIF 

transcription factors, we decided to expand our study to include the subcellular distribution of 

HIF hydroxylases in intact rat and human liver. As seen in Figure 16A, there is a zonated 

distribution of PHD4 around the central veins, and this zonal pattern is similar for the other HIF 

hydroxylases examined. This was surprising, since the perivenous hepatocytes are exposed to the 

lowest pO2 along the liver’s physiologic O2 gradient, making this region less suited for HIF 

hydroxylase activity. At higher magnification, we found that in perivenous areas, HIF 

hydroxylases localized to some hepatocyte nuclei; however, there was also an intense punctate 

labeling in the cytoplasm (Figure 16B-C). These findings were intriguing given the paucity of 

prior reports on endogenous HIF hydroxylases in normal tissue and liver in particular. We next 

performed additional high-resolution studies to identify the subcellular localization of 

endogenous HIF hydroxylases in resting rat liver. The particulate pool of HIF hydroxylases in 

the hepatocyte cytoplasm was contained in specific organelles. PHD2 and PHD3 localized to 

mitochondria as well as peroxisomes (Figure 16D). As demonstrated by immuno-TEM in Figure 

16E, PHD2 co-localizes in peroxisomes, which are identified by both catalase and the 

recognizable urate oxidase crystalline core. Although localization of transiently transfected 

PHD3 (SM20) has been described previously in rat sympathetic neurons (97), peroxisomal 

localization has never been reported for any of the known HIF hydroxylases. Interestingly,
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Figure 15:  Subcellular localization of endogenous HIFs in primary rat hepatocytes. 
Primary rat hepatocytes were cultured for 6 hr. in normoxic (control) or hypoxic (1% O2) incubators. 
Parallel hypoxic cultures were returned to the normoxic incubator for overnight reoxygenation. A. Confocal 
scanning laser immunofluorescence microscopy demonstrates HIF-1α (green) co-localization (yellow) with 
the peroxisomal membrane marker PMP-70 (red) following reoxygenation. Note the “donut-like” red outline 
of the peroxisomes. Hepatocyte membranes are labeled with phalloidin (blue), and HIF-1α (green) is also co-
localized here (2000x mag, N = nucleus). B. Unlike HIF-1α, hypoxia-reoxygenation leads to nuclear induction 
of HIF-2α (green), which co-localizes (yellow) with the constitutive HIF-1β (red) (1000x mag). C. Nuclear 
HIF-3α (green) is observed in normoxic hepatocytes, and hypoxia-reoxygenation leads to co-localization with 
catalase (red) in peroxisomes (2000x mag, N = nucleus). 
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unlike the other HIF hydroxylases, PHD1 also localized to the bile canalicular membrane of 

hepatocytes (Figure 18). 

4.2.5 Expression of HIF hydroxylases in primary rat hepatocytes 

To investigate the effects of hypoxia-reoxygenation on HIF hydroxylases in hepatocytes, we 

once again utilized our in vitro culture system. We analyzed gene expression by RT-PCR of the 

HIF hydroxylases with available rat sequences, PHD1-3 and FIH-1, in our hepatocyte cultures 

and found an upregulation of PHD3 but not PHD2 by 6 hr of hypoxia (Figure 17A). This is in 

contrast to previous reports by others that PHD2 and PHD3 are both hypoxia-induced genes; 

however, those findings were based on longer hypoxic incubation times (18 hr.) (73).  

4.2.6 Hypoxia-reoxygenation induces nuclear-to-cytoplasmic translocation and 

peroxisomal sequestration of HIF hydroxylases in cultured hepatocytes 

We next employed our in vitro hypoxia-reoxygenation model to further characterize the dynamic 

relationship of subcellular localization and HIF hydroxylases in hepatocytes in culture. As seen 

in Figure 18, scanning laser confocal immunofluorescence microscopic analysis revealed that 

endogenous PHD1 (green) shifts from the nucleus to the cytoplasm in hypoxia, and this shuttling 

is reversed upon reoxygenation. As nuclear PHD1 decreases, more PHD1 is associated with the 

hepatocyte membrane, and there is an increase in PHD1 colocalization (yellow) with catalase 

(red) in peroxisomes. Although nuclear PHD1 is restored with reoxygenation, peroxisomes still 

appear to sequester a sizable fraction of PHD1. Figure 19A-D shows analogous findings for 

PHD2-4 and FIH-1; however, only PHD1 localizes to the bile canaliculi (Figure 18). The 

peroxisomal pool exists in normoxia, but increases with hypoxia-reoxygenation. This finding is 

observed even with PHD4 (Figure 19C), which is the least expressed of the HIF hydroxylases in 

these hepatocyte cultures, suggesting a common sequestration event among these family 

members. 
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Figure 16:  Subcellular localization of endogenous HIF hydroxylases in resting liver. 
Shown here are representative images of localization patterns observed. A-C. Perivenous (heavy arrows) 
gradient distribution of PHD4 in rat liver, with sparing of peri-portal regions (light arrow, 100x mag). 
Punctate labeling (arrows) is observed in perivenous hepatocytes for PHD3 (B) in rat liver and PHD2 (C) in 
human liver (600x mag, CV = central vein). D. Immuno-TEM showing PHD3 in peroxisomes (P) and in 
mitochondria (M) of rat liver. E. PHD2 in rat liver is labeled with 10-nm gold particles, and peroxisomes are 
identified by catalase (smaller 5-nm gold particles) and the urate oxidase crystalline core. 
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Figure 17:  Expression of HIF hydroxylases in hepatocyte cultures. 
Primary rat hepatocytes were cultured for 6 hr. in normoxic (control) or hypoxic (1% O2) incubators. 
Parallel hypoxic cultures were returned to the normoxic incubator for overnight reoxygenation. RT-PCR 
analysis of total RNA is shown for HIF hydroxylases. PHD3 expression is induced by hypoxia, consistent with 
published reports. Repeated analyses using human PHD4 primers were unsatisfactory, and at present the rat 
sequence for PHD4 is not available. 
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Figure 18:  Subcellular localization of endogenous PHD1 in hepatocytes. 
A. PHD1 is found in the bile canaliculi (BC) of resting human liver (1000x mag, CV = central vein). B. 
Immuno-TEM showing PHD1 localized to the BC of rat liver. C. PHD1 on the membranes of cultured 
primary rat hepatocytes (arrows, 1000x mag). D. Confocal immunofluorescence microscopy visualizing cells 
labeled with catalase (red) and PHD1 (green). As with the other HIF hydroxylases, hypoxia-reoxygenation 
results in a reversible nuclear-to-cytoplasmic translocation for PHD1. Increased peroxisomal co-localization 
(yellow, see insets) is also observed in response to these treatment conditions; however, unlike the other HIF 
hydroxylases, PHD1 also localizes to the hepatocyte membrane (arrows, N = nucleus, 2000x mag). 
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Figure 19:  Subcellular localization of endogenous HIF hydroxylases in cultured hepatocytes. 
Primary rat hepatocytes were cultured for 6 hr. in normoxic (control) or hypoxic (1% O2) incubators. 
Parallel hypoxic cultures were returned to the normoxic incubator for overnight reoxygenation. Confocal 
immunofluorescence microscopy was used to visualize cells labeled with catalase (red) and each of the HIF 
hydroxylases (green). In general, hypoxia-reoxygenation results in increased peroxisomal co-localization 
(yellow, see insets); however, each hydroxylase has distinct levels of expression. A. PHD2, B. PHD3. C. PHD4. 
D. FIH-1 (N = nucleus, magnification = 2000x). 
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4.2.7 Immuno-TEM and Western analysis confirm peroxisomal localization of HIF 

hydroxylases in cultured hepatocytes 

To verify our microscopic observations, we commenced additional studies on primary rat 

hepatocytes. Immuno-TEM of hypoxic hepatocytes in culture confirmed the presence of PHD2 

in peroxisomes, identified by catalase and the urate oxidase crystalline core (Figure 20A). This 

was also noted for the other HIF hydroxylases, with PHD4 showing the least amount of labeling. 

As shown for PHD3 (Figure 20B), there is a striking lack of it in the nucleus compared to the 

peroxisome in these cells. We next performed subcellular fractionation of hepatocytes in an 

isotonic buffer in order to obtain a “heavy pellet” containing an organelle-enriched membrane 

fraction (MF). Immunoblotting of the MFs isolated from cultured rat hepatocytes further 

confirmed the presence of PHD1-3 and FIH-1 in the peroxisome-containing fractions (Figure 

20C). Hypoxia-reoxygenation also altered the size of some HIF hydroxylases, suggesting either 

post-translational modifications or the existence of other isoforms. For instance, we observed a 

decrease in the faster-migrating species of the nuclear PHD1 doublet, which has also been 

described by others (110, 148).  

4.2.8 Hypoxia-reoxygenation leads to peroxisomal localization of VHL 

Having identified the presence of HIF-1α and PHDs in peroxisomes, we next investigated 

whether VHL, known to be associated with the transport of HIF-1α, also resided here. As the 

substrate recognition unit of the E3 ubiquitin ligase multiprotein complex (elongins B and C, 

cullin2, Ring-box 1), pVHL tags hydroxylated HIF-1α for polyubiquitination and degradation by 

the 26s proteosome (36, 46). As seen in Figure 21, VHL does co-localize in peroxisomes with 

HIF-1α and catalase. These findings may suggest a potential link between HIF-1α shuttling to 

the peroxisomes and HIF hydroxylation. 
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Figure 20:  Peroxisomal localization of endogenous HIF hydroxylases in hepatocytes. 
A-B. Immuno-TEM of hypoxic primary rat hepatocytes. PHD2 (A) and PHD3 (B) are labeled with large gold 
particles, while peroxisomes are identified by catalase (5 nm gold particles) and the urate oxidase crystalline 
core (N = nucleus). C. Subcellular fractionation in an isotonic buffer was used to obtain both a nuclear 
fraction (NF) and intact peroxisomes in the organelle-enriched membrane fraction (MF). Western blots 
showing localization of HIF hydroxylases in the MF and NF of primary rat hepatocytes. PHD4 was 
undetectatable in either fraction via Western blot. COS-7 cell nuclear extract was used as positive control. 
PMP-70 western blot confirms isolation of intact peroxisomes in MF. 
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Figure 21:  Peroxisomal localization of VHL. 
Primary rat hepatocytes were cultured for 6 hr. in normoxic (control) or hypoxic (1% O2) incubators. 
Parallel hypoxic cultures were returned to the normoxic incubator for overnight reoxygenation. Confocal 
scanning laser immunofluorescence microscopy demonstrates the peroxisomal colocalization of HIF-1α 
(blue), catalase (green), and VHL (red) in hepatocytes subjected to hypoxia-reoxygenation (2000x mag). 
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4.3 DISCUSSION 

The subcellular localization patterns of endogenous HIFs and HIF regulatory 

hydroxylases in our primary rat hepatocyte cultures are summarized in Table 6. Interestingly, 

although we observed both expression of HIF-1α via RT-PCR (Figure 13A) and an upregulation 

of HIF target genes (Figure 12C), we were unable to detect by either imaging, Western blot, or 

ELISA a nuclear induction of HIF-1α protein in hypoxic primary rat hepatocytes (Figure 13). 

This may be due to the predominance of other HIF-α species in hepatocytes, since HIF-2α did 

translocate to the nucleus following hypoxia-reoxygenation. In addition, the role of nuclear HIF-

3α in normoxic hepatocytes is less clear, since several splice variants are known to exist, 

including those that may act as “decoys” (e.g., IPAS) which negatively regulate the other HIF-α 

subunits (43). It was recently demonstrated that HIF-2α and HIF-3α were the predominant 

activators of hypoxia-induced IGFBP-1 transcription in transfected primary rat hepatocytes 

(147). The minor role of HIF-1α in hepatocytes may be due to its translocation to peroxisomes 

rather than to the nucleus in hypoxia. This peroxisomal import is accompanied (or perhaps 

facilitated) by the HIF regulatory hydroxylases and VHL in hypoxia-reoxygenation. 

Our observations of VHL in hepatocytes are intriguing given that Groulx and Lee (149) found in 

HeLa cells that VHL engages in a constitutive nuclear-cytoplasmic shuttle unaffected by pO2 or 

levels of nuclear HIF-α substrate. The peroxisomal targeting sequences PTS1 and PTS2 are 

consensus sequences which are involved in peroxisomal import, and they are recognized by the 

peroxisomal import receptors Pex5 and Pex7, respectively [reviewed in (150)]. Upon closer 

examination of the primary sequence of VHL, we identified a potential 100% canonical PTS2 

import sequence in the N-terminal side of the middle of the molecule, making this PTS site the 

most potentially active among the protein sequences we compared. Furthermore, even if a 

protein’s sequence is not 100% identical to the canonical PTS sites, other enzymes have been 

described that target to the peroxisome with similar, but non-conventional PTS sequences; these 

include acetoacetyl-CoA thiolase (151), alanine:glyoxylate aminotransferase (152), isopentenyl 

diphosphate dimethylallyl diphosphate isomerase (153), and iNOS (141, 154). In fact, very large 

protein oligomers lacking PTS motifs have been shown to “piggy-back” onto other conventional 

peroxisomal proteins and gain entry into the peroxisomal matrix in their native configuration  
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Table 6:  Summary of confocal immunolocalization for endogenous members of the HIF pathway in primary 
rat hepatocytes. 

 

Treatment Condition 

Protein Normoxia Hypoxia Reoxygenation Comments on Localization

HIF-1α Membrane Membrane Cytoplasm 

• Peroxisomal in 

reoxygenation 

• Not in nucleus 

HIF-2α Cytoplasm Cytoplasm 
Nucleus 

Cytoplasm 
• Not in peroxisomes 

HIF-3α 
Nucleus 

Cytoplasm 
Cytoplasm 

Nucleus 

Cytoplasm 

• Peroxisiomal 

• Leaves nucleus in 

hypoxia 

HIF-1β Nucleus Nucleus Nucleus • Constitutive 

PHD1 Nucleus 
Cytoplasm 

Membrane 

Nucleus 

Cytoplasm 

Membrane 

• Peroxisomal 

• Bile canaliculi 

PHD2 
Nucleus 

Cytoplasm 
Cytoplasm 

Nucleus 

Cytoplasm 

• Peroxisomal in hypoxia 

• Some mitochondrial 

PHD3 
Nucleus 

Cytoplasm 

Nucleus 

Cytoplasm 

Nucleus 

Cytoplasm 

• Peroxisomal 

• Some mitochondrial 

PHD4 
Nucleus 

Cytoplasm 

Nucleus 

Cytoplasm 

Nucleus 

Cytoplasm 

• Peroxisomal 

• Lowest abundance 

• Very novel enzyme 

FIH-1 
Nucleus 

Cytoplasm 

Nucleus 

Cytoplasm 

Nucleus 

Cytoplasm 
• Peroxisomal 

VHL Cytoplasm Cytoplasm Cytoplasm 
• Peroxisomal 

• Not in nucleus 
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(155). Specifically, the largely hydrophobic β-domain of VHL contains two critical hydrophilic 

residues (His-115 and Ser-111), which must hydrogen bond with either hydroxyproline or H2O 

molecules (44, 45). Theoretically, VHL could gain entry into the peroxisome while complexed 

with HIF-1α and its associated HIF hydroxylase(s), and hydroxylated HIF-1α may serve as an 

intermediate between them. Since achieving highly efficient transfection of primary hepatocyte 

cultures can be a challenge, additional experiments in liver-specific VHL-null cells (156) would 

provide further clues about the peroxisomal import of these proteins. 

The significance of our findings can be further extrapolated to the liver’s 

microenvironment, where hepatocytes and neighboring cells are exposed to a physiologic 

gradient of O2 and other nutrients from the portal circulation. Not only does the portal vein 

contribute significantly to the liver’s blood supply, there is a ~50% drop in pO2 along the course 

of the sinusoid toward the central vein, from 60-65 mm Hg (afferent) to 30-35 mm Hg (efferent) 

(157).  Since basal HIF-1α is constitutively expressed but rapidly degraded, there must exist a 

mechanism to poise the cell for swift responses to hypoxic insult, while at the same time keeping 

nuclear levels of HIF-1α in check when not needed. Nuclear HIF hydroxylases are thought to 

participate in the regulation of HIF-1α turnover and activity, since the degradation of HIF-1α 

can occur with the same half-life in both the nucleus and the cytoplasm (158). This indicates that, 

unlike p53 which must exit the nucleus prior to its degradation, both nuclear and cytoplasmic 

proteasomes are fully competent to degrade HIF-1α in an O2-dependent manner, thereby 

preventing even ongoing HIF transcriptional activity. Moreover, in vitro enzyme kinetics assays 

have found that PHD2 and PHD3 possess the highest relative prolyl hydroxylation activities 

(159), suggesting that the robust expression of these enzymes in resting liver would counter-act 

much of the HIF-1α activity one would have expected to find in peri-venous hepatocytes. This 

lack of HIF-1α activity is in contrast to organs such as the adult kidney, which acts as an 

important physiologic O2 sensor and rapidly adapts to systemic hypoxia by increasing EPO 

production [reviewed in (160)]. 

In general, the PHDs can shuttle from the hepatocyte nucleus to the cytoplasm in 

response to hypoxia. Upon reoxygenation, there exists a substantial pool of endogenous HIF 

hydroxylases sequestered in peroxisomes, which is a novel finding. In contrast to the HIFs, 

subcellular localization of HIF hydroxylases has only been published for cell lines transfected to 

over-express each respective enzyme. Mitochondrial localization has been shown for the PHD3 
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homolog, SM20 (97), and we observed some mitochondrial localization in hepatocytes as well 

(Figure 16D). In U2OS cells expressing transiently transfected human HIF hydroxylase-GFP 

fusion proteins, the localization of PHD1 was completely nuclear, PHD2 and FIH-1 were mostly 

cytoplasmic, and PHD3 was homogenously distributed between the nucleus and the cytoplasm 

(161). In contrast, transfection of COS-1 cells revealed both nuclear and cytoplasmic distribution 

for PHD1-3 and FIH-1 (98). When FLAG-tagged PHD4 was transiently transfected in COS-7 

cells, it excluded the nucleus and localized to the endoplasmic reticulum; although, no consensus 

ER retention signal was identified in its peptide sequence (94). These pioneering experiments 

may be useful in predicting the diverse functions of HIF hydroxylases in different cell types; 

however, they only add to the complexity of how and where these O2-dependent hydroxylases 

are shuttled in response to hypoxia.  To date, a detailed analysis of the subcellular localization of 

endogenous HIF hydroxylases in primary cells has not been published.  

In this study, we identify dynamic changes in subcellular localization of HIF-1α, VHL,  

and the HIF regulatory hydroxylases, all of which co-localize to peroxisomes in hepatocytes. The 

question remains as to whether these enzymes are actively hydroxylating key proline residues 

while sequestered. Prior to the discovery of HIF regulation, collagen was the only known 

hydroxyproline-containing protein. Unlike the collagen prolyl 4-hydroxylase, which acts on the 

tripeptide X-pro-gly, the HIF PHDs require a much longer (~19mer) minimal HIF-derived 

peptide for optimal activity (60). Furthermore, each PHD may preferentially hydroxylate one or 

both of the two proline residues in the HIF-1α ODDD, suggesting specialized roles for acute and 

chronic adaptation (60). Interestingly, a short but growing list is emerging for O2-dependent 

hydroxylation of non-HIF proteins by PHDs and FIH-1, such as the large subunit (Rbp1) of RNA 

polymerase II (162). Even though the PHDs are highly conserved and ubiquitously expressed, 

there is also evidence of alternative splicing, with some variants no longer capable of 

hydroxylating HIF-α (60). In general, numerous hydroxylases exist in peroxisomes as well as in 

the bile canaliculi, where PHD1 also co-localized. Although we observed a peroxisomal pool of 

HIF-1α in hepatocytes, we are uncertain if any of the HIF hydroxylases sequestered in 

peroxisomes still retain their activity, and if so, what their potential substrates may be. In the 

case of iNOS, a non-conventional peroxisomal enzyme in hepatocytes, the fraction of iNOS 

sequestered in peroxisomes is an inactive monomer, perhaps protecting the cell from 

incompetent enzyme (154). On the other hand, phytanoyl Co-A hydroxylase is a classic PTS2-
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containing enzyme which leads to Refsum’s disease if defective (163). Not only is phytanoyl Co-

A hydroxylase active in peroxisomes, it is actually a member of the same O2-, Fe2+-, and 2-

oxogluterate-dependent oxygenase family as the HIF hydroxylases; therefore, within the 

peroxisomes there may exist a medium containing the co-factors necessary for PHD and FIH-1 

activity (164). Modification of existing biochemical techniques for measuring hydroxylated HIF 

peptides in vitro could provide an alternative method for testing enzymatic activity of HIF 

hydroxylases in intact peroxisomes. 

The in vitro hypoxia-reoxygenation model alters the O2 availability necessary for HIF 

hydroxylase function. A potential mechanism for targeting HIF hydroxylases to other organelles 

may involve the oxygen-redirection hypothesis [reviewed in (165)], which states that inhibition 

of mitochondrial respiration may lead to subcellular redirection of O2 from mitochondria to non-

respiratory O2-dependent compartments. In hepatocytes, the peroxisome represents one such 

compartment, constituting ~1% of total cell volume, yet consuming up to 30% of the O2 in 

resting liver (166). Inhibitors of mitochondrial respiration such as NO have been shown to 

increase PHD activity and decrease nuclear HIF-1α in hypoxia, due to subcellular O2 redirection 

from mitochondria to PHDs (167, 168). A very recent study by Papandreou et al. (169) in cell 

lines has shown that HIF-1 can actively down-regulate mitochondrial O2 consumption by 

repressing the TCA cycle. This results in adaptation to hypoxia, since mitochondrial O2 

redistribution leads to a relative increase in intracellular O2 concentration and availablity. The 

effects of HIF-1 on mitochondria were found to be functional, not structural, and decreased cell 

death was observed in chronic hypoxia. Other groups have also linked the TCA cycle as a 

“metabolic switch” for cellular adaptation to hypoxia, due to its production of intermediates such 

as the PHD co-factor 2-OG (170, 171). 

In summary, we have identified an unexpected subcellular distribution pathway in 

hepatocytes in response to hypoxia, where both HIF-1α and the O2-sensing hydroxylases which 

regulate it are all shuttled to the peroxisome, such that nuclear induction of HIF-1α is 

undetectable. It would be interesting to elucidate the molecular mechanisms of this sequestration 

in more detail, and to determine precisely how VHL or other carrier proteins might be 

functioning in hepatocytes. Further consideration should also be given to the effects of required 

HIF hydroxylase co-factors (Fe2+, 2-OG, ascorbate), as well to glucose itself, since like O2 the 

latter is also distributed across a gradient in the liver. Finally, in vivo correlations with ischemia-
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reperfusion models may provide new insights on how HIF regulatory hydroxylases are altered in 

liver injury. In conclusion, our results suggest a novel site for the regulation of the O2-dependent 

HIF pathway in hepatocytes, and they expand upon the role of peroxisomes as an O2 sink in the 

redox microenvironment of the liver. 
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5.0  ABSENCE OF NUCLEAR INDUCTION OF HIF-1α IN RAT LIVER:  IN VIVO 

AND IN VITRO STUDIES. 

(Portions of 5.1.  Introduction were reproduced from Appendix A: Michalopoulos, G.K., 

and Z. Khan. (2005) Liver regeneration, growth factors, and amphiregulin. Gastroenterology 

128:503-506.) 

5.1 INTRODUCTION 

5.1.1 Liver regeneration as a model for angiogenesis 

The set of events triggering liver regeneration after acute loss of hepatic mass has been the 

subject of much investigation over the last twenty years (reviewed in (172)). Following normal 

resection, as in 70% partial hepatectomy (PHx) in the rat, the liver will restore 100% of its lost 

mass within six days after surgery (139). Despite this amazing regenerative capacity, there is still 

much to be learned about the molecular interactions of distinct liver cell types in normal liver 

growth and repair, as well as how these signals are altered in disease states. 

 Due to the predictable nature of revascularization and controlled tissue growth following 

PHx, the study of liver regeneration using the rat PHx model provides an ideal and efficient 

setting for investigating the spatiotemporal mechanisms of angiogenesis at the molecular level. 

Liver regeneration involves a series of highly coordinated processes involving the restoration of 

parenchymal cells (hepatocytes and biliary epithelium), non-parenchymal cells (NPCs), and 

hepatic microarchitecture, while simultaneously maintaining normal liver function. Specifically, 

hepatocytes are the first cells to proliferate after PHx, initially forming avascular islands of 10-12  
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Figure 22:  Liver revasculariztion following 70% PHx.  
A. The timing and stages of angiogenic events during liver regeneration. Figure A reproduced from (174) 
with permission from John Wiley & Sons, Inc., Hoboken, NJ. B. Proliferation of liver cell compartments after 
70% PHx. Parenchymal cells divide first, followed by non-parenchymal cells. Figure B reproduced from 
(172) with permission from AAAS, Washington, DC. C.  Restoration of sinusoidal architecture following 70% 
PHx. D. Avascular hepatocyte islands in regenerating rat liver. Figures C-D reproduced from (175) with 
permission from Elsevier, Inc., Philadelphia, PA. 
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cells, and it is not until days 4-8 after PHx that neighboring sinusoidal endothelial cells (SECs) 

are recruited to migrate, proliferate, and repopulate these islands (Figure 22) (173, 174). Thus 

angiogenesis is considered a later event in liver regeneration, presumably in response to hypoxic 

“hot spots” with avascular hepatocyte islands. 
 Hypoxia-induced signals are essential for both normal and pathologic angiogenesis. In regenerating 
rat liver, the spatiotemporal expression of angiogenic growth factors and receptors has been described ( 
 
Table 7). By day three post-PHx, the critical time-point before revascularization of avascular 

hepatocyte islands, peak vascular endothelial growth factor (VEGF) expression is observed in 

hepatocytes (periportal > pericentral), with the VEGF188 isoform predominating (176-178). This 

is followed by expression of angiopoietin-1 (Ang-1), which peaks at day four post-PHx and is 

needed for vessel stabilization and pericyte recruitment (175). Angiopoietin-2 (Ang-2), which is 

important for vascular remodeling, gradually increases to peak at day seven post-PHx (175). 

Beginning three days after PHx, the following receptors are upregulated on SECs: VEGFR-1/flt-

1 (also on hepatocytes; role is less clear), VEGFR-2/flk-1 (main VEGF receptor), Tie-1 (orphan 

receptor), Tie-2 (main Ang receptor), PDGF-Rβ, and EGF-R (174). 

 In the past, these signals were considered necessary for SEC proliferation and survival, 

but in fact, recent in vitro co-culture experiments suggest they may also promote hepatocyte-SEC 

interactions important for both cell types. For instance, a comprehensive investigation in mice 

showed that VEGF could stimulate hepatocyte proliferation in vivo, but it could do so in vitro 

only if co-cultured with SECs (179). In co-cultures, hepatocyte-produced VEGF stimulated SEC 

proliferation via VEGFR-2/flk-1; however, VEGFR-1/flt-1 activation in SECs was not 

associated with cell proliferation; instead, it caused production of HGF, which in turn induced 

proliferation of hepatocytes.  

 A more complex example involves the in vitro characterization of long-term hepatic 

organoid cultures originating mostly from isolated primary rat hepatocytes (145). In these “roller 

bottle” co-cultures, the corticosteroid dexamethasone (Dex) suppressed growth and induced 

hepatocytic (HNF4+) maturation, while HGF and EGF were needed for development of non-

epithelial elements. When cultures were treated with Dex alone, there was a suppression of gene 

expression for HIF-1α, along with the angiogenic factors VEGF, VEGFR-2/flk-1, and neuroplin-

1, and these cultures contained neither connective tissue nor biliary epithelium. These findings 

support a link between the HIF-1α/VEGF axis and liver vascularization, which may mimic 
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paracrine and juxtacrine interactions between hepatocytes and NPCs in the liver 

microenvironment. 
 
 
Table 7:  Angiogenic growth factor receptors in liver regeneration. 
This table was modified from (174). 

Receptor 

Time of Receptor 
Up-regulation on 
Endothelial Cell 
Membrane by 
Western Blot 

Cellular Location of 
Receptor Up-regulation 

Flt-1 
(VEGF-R1) 

4 -10 days 

Up-regulation on SECs, larger  amounts in 

arterioles than seen in veins. Also seen on 

hepatocytes in resting and proliferating liver. 

Flk-1/KDR 
(VEGF-R2) 

3 - 8 days 
Predominantly on large vessels, small amounts 

observed on SECs. 

Tie-1 2-14 days SECs surrounding avascular islands 

Tie-2 
(tek) 

2-14 days Large vessels and SECs 

PDGF-Rβ 3-12 days Large vessels and SECs, stellate cells 

EGF-R 
Constitutive 

3-14 days 

Sinusoids, small amount on large vessels during 

regeneration 

c-Met 
Constitutive 

no change 

Small amounts on large vessels, higher expression 

on hepatocyte canaliculi, bile ductules 

FGF-R1 
(Flg) 

ND Hepatocytes 

FGF-R2 
(Bek) 

ND ND 

 

5.1.2 Hepatocyte growth factor (HGF) in liver regeneration 

All of the aforementioned factors may contribute to a precisely-timed mechanism of controlled 

angiogenesis in response to hypoxia; however, regeneration of the hepatic parenchyma is 
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governed by other factors as well. Rapid changes in gene expression and activation of growth 

factors, receptors and transcription factors begin immediately after PHx (180-183). These stimuli 

have been shown to have effects on liver and on hepatocytes in culture. The effects of growth 

factors are mediated through their respective receptors. Two receptor-ligand, growth factor-

signaling systems appear to be mainly involved in liver regeneration:  hepatocyte growth factor 

(HGF) and its receptor (met), and epidermal growth factor (EGF) and its relatively large family 

of ligands and co-receptors. HGF/met signaling has been extensively studied and its role in liver 

regeneration will only be briefly summarized here, as follows: 

 

a. HGF levels in liver and circulating blood rise soon after PHx 

(184). The source for this early rise is HGF released by remodeling of 

the liver extracellular matrix (ECM) initiated by urokinase. HGF is 

known to be bound to liver ECM in large amounts (185). 

b. New HGF is synthesized in liver from 3-48 hr. post-PHx (186). 

c. HGF receptor (met) is tyrosine-phosphorylated within five min. 

post-PHx (182). 

d. Infusion of HGF into normal livers initiates hepatocyte DNA 

synthesis and is associated with dramatic increase in hepatic mass 

(187). 

e. Elimination of the HGF receptor (met) specifically in the liver 

eliminates the capacity of the liver to regenerate following 70% PHx 

(188, 189). 

f. Genetic deletion of either HGF or its receptor is associated 

with embryonic lethality with abnormalities primarily in placenta and 

secondarily in the liver (190). 

g. Generation of a mouse expressing a conditional knockout of 

the HGF gene in liver demonstrated impaired liver regeneration (191). 

5.1.2.1 Crosstalk between hypoxia and HGF pathways: 

Interestingly, a number of studies have suggested a role for the HGF/met pathway in hypoxia 

signaling; however, the majority of these studies focus on cancer biology. In a series of elegant 
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experiments, Pennacchietti et al. (192) demonstrated that hypoxia promotes invasive growth of 

tumors by transcriptional activation of the met proto-oncogene. This over-expression of met was 

in direct response to HIF-1α induction, thereby providing a mechanism for sensitizing tumor 

cells to HGF stimulation. Subsequent reports have also confirmed hypoxia-induced met up-

regulation in human salivary gland cancer cell lines (193) and papillary carcinoma of the thyroid 

(194). 

 There are conflicting reports in the hypoxia literature regarding HGF itself. In HepG2 

cells, HGF stimulation was found to increase HIF-1α transcription and translation in an NF-κB-

dependent mechanism (195). Increased PAI-1 and uPA expression was also observed in HGF-

treated HepG2 cells (196), and this was dependent on HIF-1α activation downstream of 

PI3K/JNK (197). Studies of HGF in hypoxic non-cancer cells are minimal. In vascular smooth 

muscle cells and in endothelial cells, hypoxia decreased HGF at both mRNA and protein levels 

(198). The hypoxia mimetic CoCl2 was shown to down-regulate HGF mRNA in cultured rat 

cardiac myocytes (199). When exposed to anoxic culture, a dramatic decrease was observed for 

HGF in myofibroblastic hepatic stellate cells and for met in primary rat hepatocytes (129). 

Furthermore, addition of HGF to cultured aortic endothelial cells (200) and primary hepatocytes 

(201) rescued them from hypoxia-induced apoptosis. These studies, though ambiguous, tend to 

support a cytoprotective and anti-apoptotic role for HGF in hypoxic conditions.  

5.1.3 Epidermal growth factor (EGF) in liver regeneration 

Compared to the simplicity of the HGF-met (single ligand-single receptor) system, the 

relationship of the EGF receptor (EGFR) and its ligands is quite complicated. EGFR was the first 

receptor demonstrated to play a role in liver regeneration. A seminal report by Rubin et al. (202) 

showed that EGFR was phosphorylated and down-regulated following PHx. In reality, there are 

four EGFR family members: ErbB (HER), ErbB-2 (HER-2, NEU), ErbB-3 (HER-3), and ErbB-4 

(HER-4) (203, 204). Of these, HER-4 does not appear to be expressed in adult or embryonic 

liver (205).Aside from EGF, there are many ligands for EGFR, including transforming growth 

factor alpha (TGFα), amphiregulin (AR), heparin-binding EGF (HB-EGF), cripto, epiregulin  

and betacellulin (206, 207). 
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5.1.3.1 Crosstalk between hypoxia and EGF pathways: 

Involvement of the EGF/EGFR pathway in hypoxia signaling is less clear. Hypoxia has been 

shown to increase expression of AR (208) and HB-EGF (209). Hypoxia and EGF can 

synergistically enhance VEGF expression and angiogenesis in a number of cancer types (210, 

211); however, some studies report that this mechanism involves hypoxia-independent 

stabilization of HIF-1α protein via phosphorylation (54, 212, 213). As with HGF, EGF  has also 

been shown to rescue cells from hypoxia-induced apoptosis (214-216). In addition, studies of 

HB-EGF demonstrated cytoprotective effects on intestinal epithelial cells exposed to hypoxia 

(217, 218). These findings may point to a role for EGF in cell survival during hypoxic stress. 

5.1.4 Purpose of the experiments conducted in this chapter 

Classic experiments in muscle, correlating mean capillary density to increased metabolic demand 

(219), have shown that angiogenesis can be regulated specifically by O2 availability. Due to the 

significant role of hypoxia in this process, it is not surprising that HIF-1α can induce multiple 

genes involved in induction, sprouting, and maintenance of blood vessels. Liver 

revascularization is a well-characterized process in which a number of known HIF target genes 

are up-regulated, yet as can be inferred from the HIF literature, very little is known about the 

regulatory role of HIF-1α in this normal angiogenic response. Most of the pioneering work on 

HIF-1α was done in tumor cell lines (8, 10); however, its functional role in liver, if any, is still 

unclear. Due to the liver’s zonated architecture, a physiologic O2 gradient exists between peri-

portal (high O2) and peri-venous (low O2) regions. Consequently, the liver may provide an ideal 

setting for the study of hypoxia-induced genes and O2-dependent zonation of hepatic functions. 

 In the experiments we are about to describe, we investigated the role of HIF-1α in 

regenerating rat liver following PHx. We further attempted to identify potential mechanisms of 

HIF-1α regulation in primary rat hepatocyte cultures. These in vitro studies were initially 

designed to examine hypoxia-dependent induction of HIF-1α in hepatocytes, which could then 

activate VEGF transcription and support SEC proliferation. Due to the extensive repertoire of 

growth factors that peak during liver regeneration, we expanded our in vitro exploration to 

include hypoxia-independent induction of HIF-1α by growth factors. Finally, we performed 
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microarray gene expression analysis to identify hypoxia-induced genes in primary rat 

hepatocytes. In this chapter, we provide further evidence that HIF-1α is not a key regulator of 

liver revascularization, nor does it play any discernable major role in the response of hepatocytes 

to hypoxia. 

5.2 RESULTS 

5.2.1 HIF-1α is undetectable in regenerating rat liver. 

In order to study HIF-1α induction in liver regeneration, we isolated nuclear extracts from frozen 

rat liver tissues harvested at the following time-points after 70% PHx:  0, 1, 3, 6, and 12 hr.; 1, 2, 

3, 4, 5, 6, and 7 days. HIF-1α western blots were performed repeatedly using 20-50 μg of 

nuclear extracts and 1:100 dilution of various primary antibodies (using those in Table 4 of 3.2  

Methods chapter, as well as several rabbit polyclonals); however, no HIF-1α was ever detected 

in the Western blots of these samples. To further identify any presence of HIF-1α in regenerating 

rat liver, we performed immunohistochemistry on paraffin sections (formalin-fixed or zinc-fixed) 

and immunofluorescence staining on frozen sections (snap-frozen or perfusion-fixed). After 

repeated experiments, we could not conclusively detect nuclear HIF-1α in these samples. 

5.2.2 Absence of nuclear HIF-1α induction in primary rat hepatocyte cultures. 

In hypoxic cultures of rat hepatocytes, we were unable to detect nuclear localization of HIF-1α 

protein via immunofluorescence, immunocytochemistry, or Western blots of 50-100 μg of 

nuclear proteins (as described in the previous chapter). We also obtained negative results even 

when hepatocytes were cultured and harvested over time in a sealed Hypoxic Culture System, 

fitted with an airlock transfer chamber and an O2-controlled glove box (Coy Lab Products, Grass 

lake, MI; courtesy of Billiar lab). Ideally, this system provided us with several advantages for 

studying HIF-1α. First, culture plates were transferred in and out of the incubator, so that a 
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number of time-points could be analyzed in a single experiment. Second, the transfer chamber 

allowed equilibration of all buffers and media to 1% O2 in <3 min., and solutions were bubbled 

with this gas to further deoxygenate them. Third, the sealed glove box, also maintained at 1% O2 

and 37oC, allowed for media changes, harvesting, and other manipulations without exposing the 

cultures to room air. All of these features provided us with a prudent but efficient system for 

studying HIF-1α in vitro, since it has been shown that reoxygenation of anoxic culture medium 

can occur within two minutes of exposure to room air (220). Despite these painstaking efforts, 

we still could not detect HIF-1α nuclear protein using this custom-built Hypoxic Culture System; 

although, we were consistently able to detect expression HIF-1α mRNA at the time-points 

analyzed (Figure 23). This discrepancy may be due to the rapid kinetics of HIF-1α degradation 

and its post-translational regulation by the more abundant PHDs. 

 

 
Figure 23:  RT-PCR for HIF-1α expression over time. 
Primary rat hepatocytes cultured in hypoxic conditions (1% O2) in a sealed Hypoxic Culture System show an 
increase in HIF-1α mRNA expression over time, which diminishes by 24 hr. in culture. Despite the 
continuous expression of HIF-1α at the RNA level, we were unable to detect HIF-1α nuclear protein. 

 

Regarding hypoxia-independent induction of HIF-1α, we decided to incorporate this in 

our in vitro experiments, due to the massive upregulation of growth factors and their receptors in 

regenerating liver, which may act preferentially or synergistically with hypoxia. In total, we 

tested the following factors in culture:  HGF, EGF, Dex, ITS, TGF-α, TGF-β1, AR, PGE2, and 

VEGF-A (details listed in Table 3 of 3.2.2. Methods chapter). After screening for all of these 

growth factors via repeated Western blotting and immunofluorescence microscopy, no 

reproducible change in HIF-1α was seen despite some early encouraging results. 

Since our HIF-1α experiments repeatedly gave inconsistent results, an additional concern 

was the possibility that in the short-term, hepatocyte cultures were de-differentiating as soon as 

the first day after perfusion and isolation. To maintain hepatocytes in a differentiated state over 

seven days, we supplemented our serum-free HGM with Dex, ITS, and 2% DMSO (221). Based 
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on hepatocyte morphology, presence of bile canaliculi, and albumin expression (Figure 24), we 

selected day two cultures to be a well-differentiated phenotype for future experiments. Using 

confocal immunofluorescence microscopy, we still could not detect HIF-1α in these well-

differentiated cultures; although, nuclear HIF-1β was constitutive. Furthermore, the HIF 

regulatory hydroxylases, which are more highly expressed in hepatocytes, were also 

undetectable. Closer examination revealed abnormal mitochondria in these cells, which was also 

noted in the original paper by Isom et al. (221). Since we are now more familiar with the crucial 

role of mitochondria in O2-sensing and redirection (169, 171), it is possible that the DMSO 

supplementation in some way disrupted essential components of the HIF pathway. 
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Figure 24:  Hepatocyte cultures maintained in DMSO. 
Primary rat hepatocytes were cultured for one week in serum-free HGM supplemented with Dex, ITS, and 
2% DMSO to prevent de-differentiation. A. Western blot showing that rat albumin expression was 
maintained over time.  B. Hepatocyte morphology appeared well-differentiated on days two and three, and 
bile canaliculi are readily observed in these cultures. 
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5.2.3 Analysis of hepatocyte gene expression in response to hypoxia 

To further investigate the hypoxia-responsive gene expression profile in primary rat hepatocytes, 

we performed Affymetrix microarray analysis on total RNA isolated from 4 hr. hypoxic cultures 

and normoxic controls. A total of 15923 rat genes were probed, including ESTs. As shown in 

Figure 25, only 2% of these genes were up-regulated by hypoxia, while 12% of the total were 

down-regulated. Interestingly, 88% of the genes showed no significant changes in 4 hr. hypoxic 

cultures of primary rat hepatocytes. The eleven highest and lowest expressed genes are listed in 

Table 8 and Table 9, respectively (the complete data tables have been included in Appendices B 

and C). Most of the up-regulated genes were unexpected, but some known HIF targets were also 

increased. However, since we did not detect HIF-1α protein in our hypoxic cultures, these 

instead may be induced by primarily by the other HIF-α isoforms which exist in hepatocytes 

(147). 

 

 
Figure 25:  Overview of hypoxic gene expression data. 
Primary rat hepatocytes were cultured for 4 hr. in hypoxic and normoxic (control) conditions, and total RNA 
was subjected to Affymetrix analysis using Rat U34A arrays. Data was further analyzed using a fully-
functioning demo version of GeneSifter software (http://www.genesifter.net/web/trial.html). 
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Table 8:  Genes up-regulated by 4 hr. hypoxia in primary rat hepatocytes. 
This list represents the eleven most induced rat genes, showing increased expression of four-fold or higher, as 
identified by Affymetrix analysis and GeneSifter software. Several of the genes listed are involved the 
immune response. ADM and IGFBP-1 are known HIF target genes. Ratio = hypoxic/normoxic signals. 
Cellular function was obtained from UniProt database. (Complete data set is in Appendix B). 

# Gene Name 

Gene 

Identifier Ratio p-value 

Cellular Function 

(UniProt) 

Reference 

(if HIF 

target) 

1 

Pineal specific PG25 

protein 

(PG25, ESM1) 

NM_0226

04 
7.78 4.52E-02 

Endothelial cell-specific 

molecule 1 precursor; 

Secreted protein; Potent 

lung endothelial cell-

leukocyte interactions; 

Pineal gland specific; 

Contains IGFBP domain. 

N/A 

2 

Macrophage 

inflammatory protein-

1 alpha receptor gene 

(CCR1, LOC57301) 

NM_0205

42 
6.82 7.18E-03 

Integral membrane protein 

of G-protein coupled 

receptor 1 family; 

Angiotensin II receptor 

activity; Rhodopsin-like 

receptor activity; Receptor 

for CCL3 chemokine [both 

contribute to HCC 

progression (222)]. 

N/A 

3 

Granulocyte-

macrophage colony 

stimulating factor 

(GM-CSF, CSF2) 

U00620 6.55 3.46E-02 

Secreted cytokine; 

Stimulates growth and 

differentiation of 

hematopoietic precursors 

from various lineages, 

including 

granulocytes/Mφ/eos/RBC. 

N/A 

4 
Adrenomedullin 

(ADM). 

NM_0127

15 
5.26 8.96E-07 

HIF-induced in 

cardiomyocytes; Potent 

hypotensive and vaso-dilator 

peptide; Expressed in 

adrenal glands, lung, 

kidney, heart, spleen, 

duodenum and 

submandibular glands. 

(223) 

(224) 

(225) 
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Table 8: Genes up-regulated by 4 hr. hypoxia in primary rat hepatocytes. Continued 

# Gene Name 

Gene 

Identifier Ratio p-value 

Cellular Function 

(UniProt) 

Reference 

(if HIF 

target) 

5 

Chemokine orphan 

receptor-1 

(RDC1, CMKOR1) 

NM_0533

52 
5.26 4.47E-03 

Up-regulated by hypoxia in 

adult rat lung (226); Multi-

pass membrane protein of 

G-protein coupled receptor 1 

family; Orphan receptor; 

Putative calcitonin gene-

related peptide (CGRP1) 

receptor. 

N/A 

6 

Stearoyl-Coenzyme A 

desaturase-2 

(SCD2) 

NM_0318

41 
4.90 3.00E-03 

aka Acyl-CoA desaturase-2, 

Fatty acid desaturase-2, Δ9-

desaturase-2; ER membrane 

protein; Metal-binding; 

Terminal component of liver 

microsomal stearyl-CoA 

desaturase system; utilizes 

O2 and e- from reduced 

cytochrome b5 to catalyze 

insertion of a double bond 

into fatty acyl-CoA 

substrates, such as 

palmitoyl-CoA and stearoyl-

CoA. 

N/A 

7 

IgG Fc receptor III, 

low affinity 

(FCGR3) 

NM_0538

43 
4.53 6.12E-03 

Membrane protein forms 

multi-subunit complexes; 

Surface receptor for Fc 

region of complexed IgG; 

Expressed on NK cells and 

Mφ. 

N/A 

8 

Glutaredoxin-1 

(thioltransferase) 

(GLRX1) 

NM_0222

78 
4.34 7.84E-05 

Cytoplasmic; Has 

glutathione-disulfide 

oxidoreductase activity in 

the presence of NADPH and 

glutathione reductase; 

Reduces LMW disulfides and 

proteins. 

N/A 
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Table 8: Genes up-regulated by 4 hr. hypoxia in primary rat hepatocytes. Continued 

# Gene Name 

Gene 

Identifier Ratio p-value 

Cellular Function 

(UniProt) 

Reference 

(if HIF 

target) 

9 

Insulin-like growth 

factor binding 

protein-1 

(IGFBP1) 

NM_0131

44 
4.11 1.81E-03 

HIF-induced in hepatocytes; 

Secreted protein binds 

equally well to IGF1 and 

IGF2 to prolong their half-

life; Can inhibit or stimulate 

growth-promoting effects of 

IGFs in cell culture; Alter 

interaction of IGFs with their 

cell surface receptors. 

(147) 

(227) 

(228) 

10 
Cathepsin K 

(CTSK) 

NM_0315

60 
4.09 8.04E-03 

Secreted member of 

peptidase C1 family; Broad 

proteolytic activity; Involved 

in osteoclastic bone 

resorption and may 

participate partially in the 

disorder of bone 

remodeling; Displays potent 

endoprotease activity 

against fibrinogen at acidic 

pH; May function in ECM 

degradation. 

N/A 

11 

Activating 

transcription factor-3 

(ATF3, LRF-1) 

NM_0129

12 
4.03 5.92E-04 

aka Liver Regeneration 

Factor; cAMP-dependent 

transcription factor binds to 

CRE consensus sequences; 

Rapidly and highly induced 

in regenerating liver and 

mitogen-stimulated cells; 

Also found in 

skeletal/smooth muscle and 

some tumor cells. 

N/A 
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Table 9:  Genes down-regulated by 4 hr. hypoxia in primary rat hepatocytes. 
This list represents the eleven most suppressed rat genes, showing decreased expression of four-fold or 
higher, as identified by Affymetrix analysis and GeneSifter software. These genes have no published 
associations with hypoxia. Ratio = hypoxic/normoxic signals. Cellular function was obtained from UniProt 
database. (Complete data set is in Appendix C). 
 

# Gene Name 

 Gene 

Identifier Ratio p-value Cellular Function (UniProt) 

1 

Cyclin D 

(CCND1) 
 X75207 -8.28 

1.09E-

02 

G1/S-specific cyclin-D1; Essential for 

control of cell cycle; Interacts with CDK4 

and CDK6 protein kinases. 

2 

Novel kinesin-

related protein 

(KIF1D, KIF1C) 
 BF417285 -5.99 

8.72E-

03 

Probable molecular motor protein; 

Belonging to the kinesin-like motor 

family; involved in Golgi-ER vesicular 

transport; Regulates podosome dynamics 

in Mφ. 

3 

Cytochrome c 

oxidase subunit VIa 

polypeptide 2, 

heart 

(COX6A2) 
 

NM_012812 -5.39 

4.95E-

02 

Heart/muscle isoform of Cytochrome c 

oxidase subunit VIa; Mitochondrial inner 

membrane protein; One of the nuclear-

coded polypeptide chains of Cytochrome 

c oxidase, the terminal oxidase in 

mitochondrial electron transport. 

4 

Insulin-like 6 

(INSL6)  

NM_022583 -4.92 

7.25E-

03 

Secreted insulin-like peptide precursor; 

Member of insulin family; Specific to 

testis and prostate; Possible role in 

sperm development and fertilization. 

5 

Recoverin 

(RCVRN) 

 

NM_080901 -4.80 

3.03E-

05 

Ca++-binding protein in photoreceptor; 

Controls phosphorylation of the visual 

receptor rhodopsin by inhibiting 

rhodopsin kinase (GRK-1); Functions in 

visual perception of the retina; Also a 

para-neoplastic antigen in cancer-

associated retinopathy. 

6 

Pepsinogen F 

protein 

(PEPF, PGA5) 
 

NM_021753 -4.61 

2.52E-

03 

Zymogen of gastric mucosa; For 

proteolysis and peptidolysis; Member of 

peptidase A1 family. 

7 

Bcl-2 modifying 

factor 

(BMF) 
 

NM_139258 -4.55 

1.44E-

02 

Bcl-2 family member; Positive regulator 

of apoptosis; Interacts with MCL1, BCL2, 

BCL2L1/BCL-Xl and BCL2L2/BCL-w; 

Interacts with the myosin V actin motor 

complex through its binding to DLC2; 

Involved in oligodendroglial 

differentiation. 
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Table 9: Genes down-regulated by 4 hr. hypoxia in primary rat hepatocytes. Continued 

# Gene Name 

 Gene 

Identifier Ratio p-value Cellular Function (UniProt) 

8 

Tektin 1 

(TEKT1) 
 

NM_053508 -4.46 

3.64E-

02 

Filament-forming protein co-assembled 

with tubulins to form ciliary and flagellar 

microtubules; Specific to testes; Found in 

spermatocytes/spermatids (possible role 

in spermatogenesis) 

9 

Calcium-

calmodulin-

dependent protein 

kinase phosphatase 

(PPM1F)  AB023634 -4.28 

3.08E-

05 

Dephosphorylates concomitantly de-

activates the critical autophosphorylation 

site of CaMKII; Partner of PIX2; Found in 

brain; Promotes apoptosis. 

10 

G protein-coupled 

receptor kinase 6, 

splice variant C 

(GRK6, GPRK6)  AF040750 -4.13 

1.29E-

02 

Membrane-bound member of Ser/Thr 

protein kinase family; Specifically 

phosphorylates the activated forms of G 

protein-coupled receptors; Expressed in 

brain. 

11 

Phosphatidylinositol 

3-kinase p45 

subunit 

(PIK3R1)  D64048 -4.08 

3.89E-

02 

Regulatory subunit for PI3K; Structurally 

similar to p55PIK; Generated by 

alternative splicing of the p85alpha gene. 

 

5.3 DISCUSSION 

Certain organs, such as the kidney (229) and spleen (230) have the limited ability to regenerate 

after injury; however, the most profound regenerative capacity is observed in the liver. 

Remarkably, normal liver function is maintained throughout the regenerative process, even as 

liver mass and structure are restored. Since revascularization is a major component of 

regeneration, we attempted to investigate the role, if any, of HIF-1α in the regulation of this 

normal angiogenic response. Although we attempted repeated experiments with several 

modifications, we were unable to detect HIF-1α in regenerating rat liver. Furthermore, as 

illustrated in this and the previous chapter, we did not observe a strong or consistent nuclear 
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induction of endogenous HIF-1α in primary rat hepatocyte cultures, despite the up-regulation of 

several HIF target genes by hypoxia. 

Our results differ from some previous studies of endogenous HIF-1α in rat liver. For 

example, Kietzmann et al. (146) examined the mRNA and protein localization of HIF-1α, -2α, 

and -3α in resting rat liver, and found some conflicting results.  Increased mRNAs of all three 

HIFs were located predominantly in the peri-venous hepatocytes. In contrast, nuclear localization 

of all three HIF proteins was the highest in both peri-portal and peri-venous hepatocytes, which 

contradicts the well-known physiologic O2 gradient pattern previously characterized by this 

group in liver [reviewed in (125, 231)]. A significant cytoplasmic accumulation of all three HIF 

proteins was localized in the distal peri-venous zone as well, but there was also a basal 

cytoplasmic HIF-1α evenly distributed in all hepatocytes. Interestingly, the endothelial cells 

lining the central vein also expressed the mRNAs and proteins of all three HIFs. It should be 

noted that the immunolocalization was performed with rabbit polyclonal anti-HIF antibodies 

generated by their own lab, which are not commercially available. In summary, the authors 

demonstrated a peri-venous distribution of HIF-α mRNAs, but not proteins. Their explanation 

for this discrepancy was that peri-portal hepatocytes may be able to manage on the baseline 

expression and stabilization of cytoplasmic HIF-α protein subunits via post-translational 

mechanisms, while peri-venous hepatocytes must also rely on transcriptional upregulation of 

HIFs in order to function. 

It should be noted that all in vitro HIF studies published by Kietzmann have utilized HIF-

1α over-expression vectors in primary rat hepatocytes, transfected using the method of calcium 

phosphate precipitation (146, 147, 232-234). None of their published findings are based on 

endogenous HIF-1α expression in hepatocytes. They have also recently demonstrated that HIF-

2α and HIF-3α, but not HIF-1α, were the predominant activators of hypoxia-induced IGFBP-1 

transcription in primary rat hepatocytes co-transfected with each HIF-α expression vector and an 

IGFBP-1 reporter gene construct (147). Although these latter experiments rely heavily on the 

extreme case of HIF over-expression in primary cells, they do support our findings indirectly, 

since we also could not identify a major role for HIF-1α in hepatocytes.  

With regard to the function of HIF in liver regeneration, one published report from 

Maeno et al. (235) claims to have found a significant HIF-1α expression in regenerating rat liver, 
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showing a peak in HIF-1α nuclear protein and mRNA at 24 hr. after PHx. They conclude that 

this “may be related to sinusoidal endothelial reconstruction,” since it precedes both a transient 

decrease in liver blood flow and an increase in VEGF and flt-1 expressions. 

There are numerous experiemental flaws in this paper. First, much of the 

revascularization data they presented was already published in a previous paper (175). Second, 

although their PHx series consisted of five rats per time-point, no shams were performed in their 

experiments. Sham operations are necessary controls when monitoring changes in the first 24 hr. 

of liver regeneration, and their studies included 6, 12, and 24-hr. time-points, When studying 

HIF-1α in particular, sham operations are essential at every time-point studied, since 

anesthetizing and/or killing the animal can itself be a cause of respiratory depression and tissue 

ischemia. Third, the authors use β-actin as a housekeeping (loading) control during 

normalization, even though the β-actin clearly changes during liver regeneration. Fourth, the 

HIF-1α immunohistochemisty data is presented at low-power. Only the 24-hr time-point shows 

the peri-portal region at higher magnification, which is then compared to all of the other time-

points shown at lower magnification. Although Maeno et al.’s histologic observations are 

difficult to interpret, they report that the peak in nuclear HIF-1α was observed only in peri-portal 

hepatocytes, while the less-oxygenated peri-venous hepatocytes expressed neither nuclear nor 

cytoplasmic HIF-1α. These results are contradictory to those of Kietzmann et al. (146). 

When analyzed in the context of other published reports, our data fit well with the theory 

that compared to other organs, liver is different in both its response and adaptation to hypoxia. 

Unlike other organs, the liver receives most of its blood supply from the portal vein, which 

carries venous blood with lower O2 tension. The pO2 of peri-portal blood is 60-65 mm Hg, 

compared to 100 mm Hg for systemic arterial blood (125). Furthermore, there is a ~50% drop in 

oxygenation along the sinusoid, such that the pO2 of  peri-venous blood is 30-35 mm Hg (125). 

As a result, certain regions of the liver are exposed to a mild but chronic hypoxia. The 

hepatocytes residing in this microenvironment must somehow adapt to this physiologic hypoxia 

and prevent aberrant HIF-1α activation when it is not necessary. Consequently, one would 

expect HIF-1α induction only in extreme cases of hepatic injury, and not in the relatively benign 

setting of liver regeneration following PHx. 

In light of this possibility, we also performed some additional experiments in more severe 

liver injury models. It should be noted however, that neither we nor other independent 
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investigators could detect nuclear HIF-1α even in cirrhotic livers (data not shown), which are 

known to contain hypoxic regions with increased VEGF expression, fibrogenesis, and abnormal 

regenerative capacity (130). Even when we compared post-transplant rat livers versus kidneys, 

both of which had undergone ischemia-reperfusion injury, we were able to demonstrate nuclear 

HIF-1α induction only in the kidney but not in the liver (data not shown). The kidney’s 

responsiveness to HIF-1α activation is not surprising, given its O2-sensing function in 

erythropoiesis, when a rapid adaptation to systemic hypoxia causes increased EPO production 

and red cell mass [reviewed in (160)]. 

In support of our findings, a very recent study by Bianciardi et al. (236) investigated 

levels of HIF-1α and apoptosis in the organs of rats exposed to chronic in vivo hypoxia (10% O2 

for 2 wk.). Interestingly, while HIF-1α was markedly increased in brain, gastrocnemius muscle, 

and the renal cortex, it was undetectable in heart and liver. In the renal medulla, HIF-1α protein 

was high in both normoxia and hypoxia. In contrast, apoptosis was significantly increased only 

in heart; it was undetectable in other organs. Based on these observations, the authors concluded 

that the response of HIF-1α in chronic hypoxia can be a sustained phenomenon, but not in all 

organs. Since each organ has its own O2 requirement, blood supply, and O2 consumption (237), it 

is most likely that each responds differently as well. It should be noted that Bianciardi’s data is in 

contrast to that of Stroka et al. (83), who found that in mice exposed to short-term hypoxia (6% 

O2 for 12 hr.), there was widespread nuclear labeling of HIF-1α in hepatocytes (but not 

endothelial cells), with no pattern of zonal distribution; however, Stroka’s experiments relied on 

the generation of a novel chicken (IgY) polyconal anti-HIF-1α antibody that is not commercially 

available. 

In conclusion, despite our extensive attempts to localize HIF-1α in rat liver, we must 

conclude that it plays little if any role in the hepatic response to hypoxia. The other possibility is 

that the highly unstable nature of HIF-1α protein results in a rapid and transient response; 

however, our experiments using the sealed Hypoxic Culture System make this highly unlikely, 

since this incubator has several modifications specifically designed to maintain hypoxic 

conditions throughout the HIF experiments. Furthermore, we have observed nuclear localization 

of HIF-2α and HIF-3α in the previous chapter, suggesting that these HIFs may be the more 

active isoforms in the liver. 
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Due to the liver’s unique relatively low-O2 blood supply and zonated O2 gradient, the 

absence of HIF-1α activation may provide a reasonable adaptation to the chronic physiologic 

hypoxia for hepatocytes in the liver microenvironment. If hepatocytes were dependent on 

regulating the anoxia pathways in the same manner as other cell types, hepatocytes would 

respond as though they were continually in a hypoxic state. Our results suggest that hepatocytes 

have instead adapted to a chronic hypoxic environment by “dampening” the conventional HIF-

1α-dependent responses seen in other cells; moreover, hepatocytes have transferred the 

regulation of HIF-1α from nucleus/cytoplasm to peroxisomes. The latter are most likely the sites 

within peri-venous hepatocytes with the highest O2 tension. This renders them as perhaps the 

only sites in which the relatively “hypoxic” hepatocytes can still find enough O2 to allow the 

PHD enzymes to function and to regulate HIFs as though the rest of the cell was in a standard 

normoxic environment. Potential mechanisms on this  theory of “O2 redirection” will be 

addressed further in Chapter 6. 
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6.0   DISCUSSION 

6.1 SUMMARY 

In this study, we analyzed the localization of endogenous HIFs and their regulatory hydroxylases 

in primary rat hepatocytes cultured under hypoxia-reoxygenation conditions. We observed an 

absence of nuclear HIF-1α activation in hypoxic hepatocytes, even though several known HIF 

target genes were upregulated, suggesting that HIF-2α and HIF-3α may be the predominant 

active transcriptional isoforms in these cells. We show that in hepatocytes, hypoxia-

reoxygenation targets HIF-1α to the peroxisome rather than the nucleus, where it co-localizes 

with VHL and the HIF hydroxylases. We further demonstrated that the HIF hydroxylases can 

translocate from the nucleus to the cytoplasm in response to hypoxia, with increased 

accumulation in peroxisomes upon reoxygenation. Surprisingly, in resting liver tissue, peri-

venous localization of the HIF hydroxylases was detected, consistent with areas of low pO2. This 

was in contrast to nuclear HIF-1α, which was undetectable in resting liver, regenerating liver, 

and even in liver injury models. Alterations in subcellular localization may provide an additional 

point of regulation for the HIF pathway in response to hypoxia  These data establish the 

peroxisome as a highly relevant site of subcellular localization and function for the endogenous 

HIF pathway in hepatocytes. 
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6.2 POTENTIAL MECHANISMS OF PEROXISOMAL LOCALIZATION 

6.2.1 The peroxisome as a site of PHD activity 

We have identified dynamic changes in subcellular localization of both hypoxia-inducible factors 

and the HIF regulatory hydroxylases utilizing hypoxic cultures of primary rat hepatocytes. 

Specifically, we observed peroxisomal localization of HIF-1α and HIF-3α in our hypoxia-

reoxygenation experiments, and this can now be viewed in parallel with the peroxisomal 

localization of HIF hydroxylases under identical conditions. The absence of hypoxic nuclear 

induction of HIF-1α in primary rat hepatocytes may be attributed to its rapid post-translational 

degradation pathway, which involves the highly abundant PHDs. The question still remains as to 

whether these enzymes are actively hydroxylating key proline residues in peroxisomes.  

 Prior to the discovery of PHD enzymes, collagen was the only known hydroxyproline-

containing protein. Unlike the collagen prolyl 4-hydroxylase (P4H), a HIF-induced enzyme 

which acts on the tripeptide X-pro-gly, the HIF PHDs require a much longer (~19mer) minimal 

HIF-derived peptide for optimal activity (60). Furthermore, each PHD may preferentially 

hydroxylate one or both of the two proline residues in the HIF-1α ODDD, suggesting specialized 

roles for acute and chronic adaptation (60). The actions of PHDs on HIFs are also not equivalent. 

PHD2 was found to selectively hydroxylate HIF-1α more than HIF-2α, while PHD3 had the 

exact opposite effect (110). There is currently a short but growing list emerging for O2-

dependent hydroxylation of non-HIF proteins by PHDs and FIH-1, such as the large subunit 

(Rbp1) of RNA polymerase II (162). Even though the PHDs are highly conserved and 

ubiquitously expressed, there is also evidence of alternative splicing, with some splice variants 

no longer capable of hydroxylating HIF-α (60). 

 Numerous hydroxylases exist in peroxisomes as well as in the bile canaliculi, where 

PHD1 also co-localized. In very preliminary experiments, we did note a peroxisomal pool of 

hydroxylated HIF-1α in hypoxic hepatocytes (data not shown) using a rabbit polyclonal antibody 

(gift of Dr. Ya-Min Tian, Oxford University) which detects hydroxylated HIF-1α over un-

hydroxylated forms in a ratio of 9:1 (238); however, further confirmatory studies are necessary. 

Although this may be promising, we are uncertain if any of the HIF hydroxylases sequestered in 
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peroxisomes still retain their activity, and if so, what their potential substrates may be for 

hydroxylation. In the case of the non-conventional peroxisomal enzyme iNOS, the fraction of 

iNOS sequestered in peroxisomes is an inactive monomer, perhaps functioning to protect 

hepatocytes from incompetent enzyme (154). This scenario may also apply to the HIF 

hydroxylases. PHDs are non-equilibrium enzymes, since they do not catalyze the reverse 

reaction (110). Consequently, the control of enzyme abundance, as in sequestratation, would be a 

major determinant of substrate hydroxylation and ultimately HIF regulation. 

 On the other hand, phytanoyl Co-A hydroxylase is a classic PTS2-containing enzyme 

which leads to Refsum’s disease if defective (163). Not only is phytanoyl Co-A hydroxylase 

active in peroxisomes, it is actually a member of the same O2-, Fe2+-, and 2-oxogluterate-

dependent oxygenase family as the HIF hydroxylases; therefore, within the peroxisomal milieu 

there does exist the co-factors required for PHD and FIH-1 activity (164). 

 Unfortunately, standard hydroxyproline assays cannot be used to monitor PHD activity, 

since they may be influenced by other confounding proteins such as collagen. Furthermore, since 

hydroxylated HIF-1α is an intermediate for degradation, the results of such assays may be 

unreliable due to protein instability and rapid turnover. Although rabbit polyclonal antibodies 

have been generated by several labs to hydroxylated HIF-1α at either hydroxyproline positions   

-402 or -564 (238-241), these are still not commercially available. Biochemical techniques for 

measuring hydroxylated HIF peptides in vitro have provided an alternate method for studying the 

activity of recombinant PHDs over-expressed in cell culture (60); however, this can be 

technically challenging for testing enzymatic activity of endogenous HIF hydroxylases in intact 

peroxisomes, especially when working with primary cells. Until a more efficient method is 

developed and standardized, the potential enzymatic activity of peroxisomal HIF hydroxylases 

will remain unresolved. 

6.2.2 O2 zonation in the liver (i.e., “How is liver different?”) 

The significance of our subcellular localization findings can be further extrapolated to the liver’s 

microenvironment, where hepatocytes and neighboring cells are exposed to a physiologic 

gradient of O2 and other nutrients from the portal circulation. Not only does the portal vein 

contribute significantly to the liver’s blood supply, there is a ~50% drop in pO2 along the course 
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of the sinusoid toward the central vein, from 60-65 mm Hg (afferent) to 30-35 mm Hg (efferent) 

(157).  Since basal HIF-1α is constitutively expressed but rapidly degraded, there must exist a 

mechanism to poise the cell for swift responses to hypoxic insult, while at the same time keeping 

nuclear levels of HIF-1α in check when not needed. 

 In most cells including transfected primary rat hepatocytes, PHD2 functions as the 

“chief” O2 sensor, maintaining low levels of HIF-1α in normoxic and mildly hypoxic conditions 

(49, 147). Nuclear HIF hydroxylases are thought to participate in the regulation of HIF-1α 

turnover and activity, since the degradation of HIF-1α can occur with the same half-life in both 

the nucleus and the cytoplasm (158). This indicates that, unlike p53 which must exit the nucleus 

prior to its degradation, both nuclear and cytoplasmic proteasomes are fully competent to 

degrade HIF-1α in an O2-dependent manner, thereby preventing even ongoing HIF 

transcriptional activity. Moreover, in vitro enzyme kinetics assays have found that PHD2 and 

PHD3 possess the highest relative prolyl hydroxylation activities (159), suggesting that the 

robust expression of these enzymes in resting liver would counter-act much of the HIF-1α 

activity one would have expected to find in peri-venous hepatocytes. This would explain some of 

the paradoxical findings reported by Maeno et al. (235) and Kietzmann et al. (146) in rat liver. 

6.2.3 O2-redirection hypothesis 

The in vitro hypoxia-reoxygenation model utilized in our experiments alters key parameters 

necessary for HIF hydroxylase function. A potential mechanism for HIF hydroxylases targeting 

to the peroxisome may involve the O2-redirection hypothesis [reviewed in (165)]. Inhibition of 

mitochondrial respiration may lead to subcellular redirection of O2 from mitochondria to non-

respiratory O2-dependent compartments (Figure 26). A very recent study by Papandreou et al. 

(169) in cell lines has shown that HIF-1 can actively down-regulate mitochondrial O2 

consumption by repressing the tricarboxylic acid (TCA/Citric Acid/Kreb’s) cycle. This results in 

adaptation to hypoxia, since mitochondrial O2 redistribution leads to a relative increase in 

intracellular O2 concentration and availablity. The effects of HIF-1 on mitochondria were found 

to be functional, not structural, and decreased cell death was observed in chronic hypoxia.   
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 Furthermore, since HIF-1 induces the expression of glycolytic genes, increased glycolysis 

would be necessary to produce energy when low O2 could not support oxidative phosphorylation 

within the mitochondria. 

 Other groups have also linked the TCA cycle as a “metabolic switch” for cellular 

adaptation to hypoxia (170, 171, 242). Selak et al. (170) identified a mitochondria-to-cytosol 

signaling pathway that links mitochondrial dysfunction to oncogenic events. In this case 

succinate, which accumulates as a result of succinate dehydrogenase (SDH) inhibition/mutations 

in tumor cells, inhibits the PHDs in the cytosol, since increased succinate results in decreased 

activity of TCA cycle enzymes via negative feedback. This results in less production of the 

intermediate 2-OG (α-KG). The shortage of 2-OG, a required co-factor for HIF hydroxylases, 

inhibits PHD activity and leads to stabilization and activation of HIF-1α. HIF overexpression has 

also been reported with biallelic loss of fumarate hydratase in hereditary RCC, where excess 

fumarate acts as a competitive inhibitor of PHDs (243). 

 In hepatocytes, the three major subcellular sites of O2 consumption are mitochondria, 

peroxisomes, and smooth ER; however, only mitochondria are coupled to oxidative-

phosphorylation and ATP synthesis. Although they are present in all eukaryotic cells except 

mature erythrocytes, peroxisomes are particularly abundant in hepatocytes, constituting ~1% of 

the total cell volume and consuming 10-30% of O2 in resting liver (166). Since peri-venous 

hepatocytes are exposed to low O2 and glucose concentrations, their capacity for oxidative-

phosphorylation is reduced. Subcellular O2 could be shunted to peroxisomes, and this would 

account for the increased peri-venous localization of HIF hydroxylases in resting liver. 

 The added stress conditions of hypoxia-reoxygenation on hepatocytes could exaggerate 

the redistribution of subcellular O2 to peroxisomes, and as the cell’s chief O2 sensors, PHDs 

would also shuttle by an unknown mechanism to the peroxisomal O2 sink. Inhibitors of 

mitochondrial respiration such as NO have been shown to increase PHD activity and decrease 

HIF-1α in hypoxia, due to subcellular O2 redirection from mitochondria (167, 168). 

Furthermore, H2O2 and O2
-• are the predominant ROS exported from mitochondria, but since the 

majority of O2
-• is dismutated to H2O2, a rather constant flow of H2O2 is generated by 

mitochondria, accounting for ~40% of the liver’s total H2O2 production (244). Due to its 

membrane permeability, H2O2 would require detoxification by peroxisomal catalase, leading to 

the formation of H2O and more molecular O2. 
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Figure 26:  Peroxisomes as a potential site of oxygen-redirection in hepatocytes. 
Potential interactions of the HIF pathway with peroxisomes are illustrated. When O2 is abundant, HIF 
hydroxylases reside in the nucleus, where they actively hydroxylate HIF-1α for subsequent degradation. 
Inhibition of mitochondrial respiration by hypoxia may lead to subcellular redirection of O2 from 
mitochondria to non-respiratory O2-dependent compartments, such as peroxisomes in liver. Hypoxia-
reoxygenation would lead to an increase in ROS, including H2O2, which would then be detoxified in 
peroxisomes by catalase. Since O2 is a product of this reaction, peroxisomes can be considered as a major site 
of both O2 production and consumption. Such an O2 sink could be “sensed” and targeted by the HIF 
hydroxylases. 
  

 All of this could contribute to the peroxisome functioning as an O2 sink even in resting 

hepatocytes. Since these organelles are not as abundant in other cell types, previous localization 

studies may have been unable discern the distinct peroxisomal localization of endogenous HIF 

hydroxylases that we have observed in hepatocytes. It should be noted however that several 

protective mechanisms must work in concert to defend the liver against hypoxic insult and 

maintain its remarkable regenerative capacity. For example, ischemia/reperfusion injury 
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experiments performed on rat liver have shown that although catalase activity was reduced, the 

activities of most other peroxisomal anti-oxidants actually increased or remained the same (245). 

Of course, any of these protective enzymes can be saturated by the over-production of free 

radicals, and a mounting debate still exists regarding the precise role of ROS in HIF regulation 

itself.  

6.3 FUTURE DIRECTIONS 

6.3.1 Examination of putative peroxisomal targeting sequences (PTS sites) 

To extrapolate on potential mechanisms for these proteins shuttling into peroxisomes, we 

analyzed the peptide sequences of these enzymes for putative peroxisomal targeting sequences 

(PTS1 or PTS2), consensus sequences which are involved in peroxisomal import [reviewed in 

(150)].  PTS1 is located at the extreme C-terminus of most known peroxisomal matrix proteins, 

and it contains a conserved tripeptide (Ser-Lys-Leu-COOH); although, a number of acceptable 

substitutions can exist. PTS2 is an alternate localization sequence found on the N-terminal half 

of some peroxisomal enzymes, and it consists of (Arg/Lys)-(Leu/Val/Ile)-X5-(His/Glu)-

(Leu/Ala). PTS1 and PTS2 are recognized by the peroxisomal import receptors (peroxins) Pex5 

and Pex7, respectively. We identified a number of putative PTS1 and PTS2 sites in the primary 

sequences of some of our proteins, as summarized in Table 10 and Table 11. Of those listed in 

Table 10, VHL has a 100% canonical PTS2 import sequence in the N-terminal side of the middle 

of the molecule, making this PTS site the most potentially active among the protein sequences 

we compared. It should be noted however that other proteins have been described that target to 

the peroxisome with similar, but non-conventional PTS sequences. In fact, very large protein 

oligomers lacking PTS motifs have been shown to “piggy-back” onto other conventional 

peroxisomal proteins and gain entry into the peroxisomal matrix in their native configuration 

(155). 
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Table 10:  Analysis of putative PTS1 sequences in members of the HIF pathway. 

PTS1 Sequence (Pex5) 
Canonical C-Terminus 

Accepted 
Sequence(s) 

 S, A, 
L, C 

K, H, R L, M 

Protein Species -
4 

-3 -2 -1 Accession 
Number Comments 

Urate 
Oxidase 

Rat P S R L NP_446220 303 AA Canonical PTS1  

Catalase Rat K A N L NP_036652.1 527 AA Non-canonical PTS1 

PHD1 

Rat S K D V AY228140 223 AA Extra AA at C-Terminus; 

Potential Terminal AA at –2 unlike 

substitution 

PHD2 Rat S K D V P59722 222 AA Extra AA at C-Terminus 

PHD3 
Rat L A K D Q62630 355 AA Terminal AA non-

conventional, unlike substitution 

Human R V E L Q9NXG6 502 AA No Consensus 
PHD4 

Mouse R V E L Q8BG58 503 AA No Consensus 

FIH-1 Rat G R Y N XP_219961 349 AA No Consensus 

HIF-1α 
Rat D Q V N NP_077335 823 AA No Consensus 

HIF-2α 
Rat D Q A T CAB96612 874 AA No Consensus 

HIF-3α Rat A Q T H Q9JHS2 662 AA No Consensus 

VHL Rat E G V H AAA86874.1 184 AA No Consensus 

 

Rat sequences are not available for PHD4 at this time. 

Other proteins that target to the peroxisome with similar, but non-canonical PTS1 signals: 

 

1. iNOS (-TRL): Barrosso et al., J Biol Chem 1999;274:36729-36733; Stolz et al., 

Hepatology 2002;36:81-93; Loughran et al., PNAS, 2005;102(39)13837-13842. 

2. Acetoacetyl-CoA thiolase (-QKL): Olivier et al, J Lipid Res. 2000; 41:19211935. 

3. Isopentenyl diphosphate dimethylallyl diphosphate isomerase (-HRM): Paton et al., J Biol 

 Chem 1997; 272:18945-18950.
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Table 11:   Analysis of putative PTS2 sequences in members of the HIF pathway. 
 

PTS2 Sequence (Pex7) Accepted 
Sequences 

Protein/Species 
R/K 
(S) L/V/I Xn H/Q 

L/A 
(V,E,F) 

Canonical (other active substitutes) 
Comments: 

Acetyl-CoA C-
acyltransferase 
A35725/Rat 

R L X5 H L 100% PTS2 Sequence 
N-Terminus of molecule 

Catalase 
NP_036652.1/Rat 

R I X5 H A 100% PTS2 Sequence 
N-Terminus of molecule 

R V X5 S V At C-Terminus, (2nd half of molecule) PHD1 
AY228140/Rat K I X5 K E At N-Terminus (1st half of molecule) 

R I X4 K A In C-Terminus, (2nd half of molecule) PHD2 
P59722/Rat K I X5 K E At N-Terminus (1st half of molecule) 

R L X5 C V At N-Terminus (1st half of molecule) 
R L X5 K E In middle of molecule 
R I X5 S F At C-Terminus (2nd half of molecule)  

C V X5 Q L In middle of molecule 
P L X5 Q A At N-Terminus (1st half of molecule) 
K V X4 W L At N-Terminus (1st half of molecule) 

PHD3 
Q62630/Rat 

K I X4 I V In middle of molecule 
R L X5 Q M In middle of molecule 
R L X5 L A In middle of molecule 

Q V X5 H F At N-Terminus (1st half of molecule) 

PHD4 
Q8BG58/Mouse 

V V X4 H F At N-Terminus (1st half of molecule) 
R L X5 R A At N-Terminus (1st half of molecule) 
K I X5 G F In middle of molecule 

FIH-1 
XP_219961/Rat 

K W X5 Q E At N-Terminus (1st half of molecule) 
S L X5 V L In middle of molecule 
R L X5 R V At N-Terminus (1st half of molecule) 
R V X5 D A At N-Terminus (1st half of the molecule) 
R V X5 K A In C-Terminus, not likely candidate 
R V X4 S E In C-Terminus, not likely candidate 
S I X4 H A 100% but 4 AA separation, middle of molecule 
R I X5 Y E In middle of molecule 
K L X4 D L At N-Terminus (1st half of molecule) 
K L X5 S L In middle of molecule 
K L X4 K L In middle of molecule 
K L X5 E A In middle of molecule 
K V X5 H I In middle of molecule 
R S X5 H A In middle of molecule 

HIF-1  
NP_077335/Rat 

S I X4 H A 100% but 4 AA separation, middle of molecule 
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Table 11:  Analysis of putative PTS2 sequences in members of the HIF pathway. Continued 

 

6.3.2 Pex mutants 

In yeast, the mechanism of peroxisomal import and biogenesis has been described in detail. 

Proteins targeted to the peroxisome are docked at the peroxisomal membrane after binding in the 

cytoplasm to Pex5 or Pex7. It is unclear whether peroxisomal shuttling of HIF components is 

facilitated by these receptors. Directly silencing PTS sequences and/or Pex genes may shed light 

on whether the HIF pathway localizes to peroxisomes via conventional mechanisms; however, 

transfection methods for primary rat hepatocytes are often inefficient and even cytotoxic, 

especially when compounded with the added stress of hypoxic culture. 

Although peroxisomes are particularly abundant in hepatocytes, these organelles are 

present in all eukaryotic cells except mature erythrocytes (166). The availability of human 

fibroblast cell lines which lack functional peroxisomes may provide us with basic insights 

regarding peroxisomal import. For example, a number of Pex-mutant skin fibroblasts are 

Accepted 
Sequences PTS2 Sequence (Pex7) 

Protein/Species 
R/K 
(S) L/V/I Xn H/Q 

L/A 
(V,E,F) 

Canonical (other active substitutes) 
Comments: 

S L X5 N F In C-Terminus, not likely candidate 
R L X5 F E In C-Terminus, not likely candidate 
R L X5 S E At N-Terminus (1st half of molecule) 
R L X5 E A In middle of molecule 
K L X5 Y E In C-Terminus, not likely candidate 
K V X5 Q V 100% Canonical but at N-Terminal half 
K I X5 L F In middle of molecule 

R S X5 H A In middle of molecule 
E V X5 H E At N-Terminus (1st half of molecule) 

HIF-2  
CAB96612/Rat 
 

K L X4 Q L In C-terminus, not likely candidate 
S L X5 R R In middle of molecule 
S L X5 H E 100% Canonical but at C Terminus, not likely 

candidate 
S V X5 S L In C-terminus, not likely candidate 
R V X5 V L In middle of molecule 
K V X5 H M In middle of molecule 
S E X4 H L At N-Terminus (1st half of molecule) 

T I X4 H F In C-terminus, not likely candidate 

HIF-3  
Q9JHS2/Rat 

R A X5 H E In C-terminus, not likely candidate 
R I X5 H L 100% canonical, middle of molecule vHL 

AAA86874.1/Rat R L X5 S L In middle of molecule 
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available, which have been immortalized from patients with Zellweger (Cerebro-Hepato-Renal) 

syndrome, a recessive peroxisomal disease with an incidence of 1 in 25,000 to 50,000 births 

(246, 247). Zellweger syndrome is the most severe form of peroxisomal disorders––it is apparent 

at birth and results in death within the first year of life. The Zellweger cell lines we have 

acquired include mutants which lack Pex5, Pex7, and Pex5/Pex7, so that both conventional and 

non-conventional import pathways can be considered. Non-human Pex-mutant cell lines have 

also been described (248). 

Even more relevant is the generation of a PEX5-/- knock-out mouse, whose biochemical, 

serological, and pathological parameters are similar to those found in Zellweger patients (247, 

249, 250). Functional peroxisomes are not detected in the livers of these mice, and instead the 

non-imported catalase is mislocalized to the cytoplasm and nucleus. Structural and functional 

alterations of mitochondria were also observed, leading to dysfunction of the respiratory chain 

enzymes and an over-production of ROS. The implications of these liver defects in subcellular 

localization of the HIF pathway have not been explored. 

6.3.3 Conditional knock-outs 

As mentioned earlier, VHL has a 100% canonical PTS2 import sequence in the N-terminal side 

of the middle of the molecule, making this PTS site the most potentially active among the protein 

sequences we examined. We observed an increase in peroxisomal VHL following hypoxia-

reoxygenation, which co-localized with HIF-1α. Our results for VHL in hepatocytes are 

intriguing given that Groulx and Lee (149) found in HeLa cells that VHL engages in a 

constitutive nuclear-cytoplasmic shuttle unaffected by pO2 or levels of nuclear HIF-α substrate. 

Theoretically, VHL could gain entry into the peroxisome while complexed with HIF-1α and its 

associated HIF hydroxylase(s), and hydroxylated HIF-1α may serve as an intermediate between 

them. 

Although homozygous disruption of VHL in mice results in embryonic lethality at E9-

E11, liver-specific conditional knock-outs have been generated using albumin-cre-loxP-mediated 

recombination (156). This results in hepatocyte-specific inactivation of VHL. In this model, 

heterozygous mice developed cavernous hemangiomas in their livers, with an increased 

incidence at older age (90% of mice at ages 12-17 mos.). Prior to age 12 mos., only 50% of the 
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mice developed vascular tumors. Over time, the lesions formed large blood-filled vascular 

cavities, hepatocellular steatosis, and foci of increased vascularization; however, no cancer was 

ever detected in these animals. In contrast, patients with VHL syndrome rarely develop 

cavernous hemangiomas of the liver, and renal cell carcinoma is the hallmark of this cancer 

syndrome. 

The VHL conditional knock-outs could be incorporated in future studies on peroxisomal 

import. In vivo investigation of the localization of HIFs, PHDs, and FIH-1 could be monitored 

over time as the cavernous hemangiomas develop. In addition, primary hepatocytes isolated from 

young and old mice could be subjected to hypoxia-reoxygenation experiments. These models 

would help clarify the role of VHL, if any, in the peroxisomal import process. Furthermore, since 

VHL inactivation directly affects HIF degradation (and so indirectly the enzyme activity of HIF 

hydroxylases), it would be a suitable, non-carcinogenic model for studying aberrant angiogenesis 

in liver pathology. 

6.3.4 Regulation of peroxisomal sequestration 

It should be noted that due to the limitations of our basic hypoxic chamber (Biospherix), we were 

only able to study single time-point cultures. By utilizing the more advanced hypoxic 

chamber/sealed glove box (Coy Labs), additional time course experiments could be performed 

that monitor the kinetics of peroxisomal import during specific hypoxia-reoxygenation 

treatments. This system can also be used to adjust the degree of hypoxia by gradually stepping 

up or down, so that the peroxisomal shuttling can be studied in relation to O2 concentration, in 

effect simulating the peri-portal/peri-venous O2 gradient of the liver (251-255). 

As previously mentioned, another aspect of regulation involves the cell’s energy status, 

since metabolic “switching” also effects the HIF pathway. This is especially significant for the 

liver, since like O2, key nutrients (e.g., glucose, lipids) and metabolites are also distributed across 

a gradient supplied by the hepatic portal vein. In our in vitro experiments, we have thus far only 

characterized the effects of one variable, that being O2. It would be interesting to compare these 

findings to changes in the required HIF hydroxylase co-factors (Fe2+, 2-OG, ascorbate), as well 

to glucose itself. These experiments would give us a better understanding of the complex 
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mechanisms governing peroxisomal sequestration in resting liver and in ischemia/reperfusion 

injury.  

6.4 CLINICAL SIGNIFICANCE TO PEROXISOME PROLIFERATION 

Understanding HIF regulation is of course necessary for studying liver pathobiology, such as the 

underlying causes of cold ischemia/warm reperfusion injury or tumor angiogenesis. Our 

unexpected findings on the peroxisomal localization of the HIF pathway may offer new insights 

in another mechanism of liver carcinogenesis, involving the peroxisome proliferator activated 

receptor (PPAR) pathway [reviewed in (256)].  The PPARs were identified in rodents as 

members of the soluble nuclear receptor superfamily, and they were originally named for their 

unique property of inducing peroxisome volume and density (peroxisome proliferation) in the 

liver (257). As shown in Figure 27, PPARs can be activated by natural fatty acids and the fibrate 

class of anti-hyperlipodemic drugs. PPARα was the first to be identified, followed by PPARβ/δ 

and PPARγ (258, 259) Although the latter two share significant sequence homology with 

PPARα, they are not involved in mediating peroxisome proliferation. 

PPARs are found in all mammalian species examined to date, and they have evolved as 

critical physiologic modulators, by responding to endogenous ligands and transcriptionally 

regulating genes involved in lipid and glucose metabolism and transport, and associated energy 

homeostasis. Despite these important functions, studies involving hypoxia and PPARs are 

surprisingly inadequate, and none of these reports have been published for the liver. Zhang et al. 

(260), found that hypoxia increased the mRNA and protein of both PPARα and HIF-1α in A549 

lung cancer cells; furthermore, this PPARα induction was decreased after treatment with HIF-1α 

anti-sense oligonucleotides. In contrast, hypoxia led to a decrease in PPARα expression in 

intestinal epithelial cells, which was directly correlated to increased HIF-1α binding to an HRE 

in the PPARα promoter and also reversed by HIF-1α anti-sense (261). This is one of the few 

reports of HIF-1α directly down-regulating a target gene. In cardiac myocytes, hypoxia was 

found to indirectly deactivate PPARα by decreasing RXRα levels, leading to an overall  

 



 

- 102 - 

 
Figure 27:  Peroxisome proliferator activated receptor (PPAR) pathway. 
In response to ligand binding, PPARs undergo a conformational change in  protein structure, allowing for 
dissociation of co-repressor proteins that inhibit transcription. They then heterodimerize with the nuclear 
receptor, retinoid-X receptor (RXR), to regulate transcription. Only PPARα is involved in mediating 
peroxisome proliferation. Clofibrate is a hypolipodemic agent. Thiazolidinedione (TZD) is an anti-diabetic 
agent. Note that the connection with COX2/prostoglandins is also important, since these interact with the HIF 
pathway. One of many pathway slides freely downloadable from Sigma for educational purposes. 
(http://www.sigmaaldrich.com/Area_of_Interest/Life_Science/Cell_Signaling/Scientific_Resources/Pathway_
Slides___Charts.html). 

 

reduction in PPARα/RXRα heterodimer DNA-binding activity (262). Chen et al. (263) reported 

that hypoxia was found to increase levels of HIF-1α but not PPARγ in 3T3-L1 adipocytes. 

Finally, the CBP/p300-interacting protein, CITED2, has been shown to act as a co-regulator of 

both PPARs and HIF-1α, since both of these share the same CBP/p300 trasncriptional co-

activators (264, 265). The significance of these findings to the liver’s physiology and zonated 

metabolic function are unknown.  
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The most classic finding of PPARα-induced toxicity is hepatocarcinogenesis, which may 

be species-specific [(266), reviewed in (267)]. Although the role of PPARα is well-established as 

a potent inducer of liver tumors in rodents, there is considerable controversy over whether 

ligands of PPARα cause liver cancer in humans. This is significant due to the use of clofibrate 

and other anti-hyperlipodemic agents, which have been prescribed to patients for over thirty 

years (268), yet there is no epidemiological evidence that these drugs increase the risk of liver 

cancer. A plausible explanation for this species-specific difference may be due to the 

significantly lower levels (10- to 20-fold) of PPARα in human versus rodent liver (269-271). 

Of particular concern since the early 1980’s is the use of polyvinyl chloride plastics in 

everyday household items. At least one-third of these plastics contain phthalate esters, liquid 

plasticizers used in the production of pliable plastic products such as footware, vinyl toys, 

hospital I.V. tubing, and blood bags (272). Once phthalates are metabolized to monoesters, they 

become weak agonists of PPARα (273, 274). Prolonged administration of phthalates, in doses 

comparable to those occurring in human exposures, appear to have a cumulative effect on the 

liver (272), but once again there are species-dependent differences in peroxisome proliferation 

and frank hepatocarcinogenesis (275, 276). Undoubtedly, the more we learn about the role of 

peroxisomes in liver pathology, more elusive it becomes. 

6.5 CONCLUSIONS 

In conclusion, we have identified an unexpected subcellular distribution pattern in hepatocytes in 

response to hypoxia, where both HIF-1α and the O2-sensing hydroxylases which regulate it are 

all shuttled to the peroxisome, such that nuclear induction of HIF-1α is undetectable. It would be 

interesting to elucidate the molecular mechanisms of this import in more detail, and to determine 

precisely how VHL or other carrier proteins might be involved in hepatocytes. Further 

consideration should also be given to the effects of metabolic “switching” on subcellular 

localization. Finally, in vivo correlations with ischemia-reperfusion injury and/or peroxisome 

proliferation models may provide new insights on how HIF regulatory hydroxylases are altered 

in liver pathobiology. In conclusion, our results suggest a novel site for the regulation of the O2-
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dependent HIF pathway in hepatocytes, and they expand upon the role of peroxisomes as an O2 

sink in the redox microenvironment of the liver. 
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APPENDIX A 

MICHALOPOULOS, G.K., AND Z. KHAN. (2005) LIVER REGENERATION, GROWTH 

FACTORS, AND AMPHIREGULIN. GASTROENTEROLOGY 128:503-506. 
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APPENDIX B 

GENES UP-REGULATED BY 4 HR. HYPOXIA IN PRIMARY RAT HEPATOCYTES 

(COMPLETE LISTING). 
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Table 12:  Genes up-regulated by 4 hr. hypoxia in primary rat hepatocytes (complete list). 
This list represents all 159 rat genes with increased expression, as identified by Affymetrix analysis and 
GeneSifter software. Ratio = hypoxic/normoxic signals. ESTs were filtered out. 

# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

1 
Pineal specific PG25 protein 

(Pg25) Esm1 

 

NM_022604 7.78 4.52E-02 

 

2 

Macrophage inflammatory 

protein-1 alpha receptor gene 

(LOC57301) Ccr1 

 

NM_020542 6.82 7.18E-03 

 

3 
Granulocyte-macrophage colony 

stimulating factor (GM-CSF) Csf2  U00620 6.55 3.46E-02 

 

4 Adrenomedullin (Adm). Adm 

 

NM_012715 5.26 8.96E-07 

(223-225) 

5 
Chemokine orphan receptor 1 

(Rdc1) Cmkor1 

 

NM_053352 5.26 4.47E-03 

 

6 
Stearoyl-Coenzyme A desaturase 

2 (Scd2) Scd2 

 

NM_031841 4.90 3.00E-03 

 

7 
Fc receptor, IgG, low affinity III 

(Fcgr3) Fcgr3 

 

NM_053843 4.53 6.12E-03 

 

8 
Glutaredoxin 1 (thioltransferase) 

(Glrx1) Glrx1 

 

NM_022278 4.34 7.84E-05 

 

9 
Insulin-like growth factor 

binding protein 1 (Igfbp1) Igfbp1 

 

NM_013144 4.11 1.81E-03 

(147, 227, 

228) 

10 Cathepsin K (Ctsk) Ctsk 

 

NM_031560 4.09 8.04E-03 

 

11 
Activating transcription factor 3 

(Atf3) Atf3 

 

NM_012912 4.03 5.92E-04 

 

12 Vimentin (Vim) Vim 

 

NM_031140 3.98 3.08E-02 

 

13 

Guanine nucleotide binding 

protein gamma subunit 11 

(Gng11) Gng11 

 

NM_022396 3.95 3.23E-03 

 

14 
Selenoprotein P, plasma, 1 

(Sepp1) Sepp1 

 

NM_019192 3.94 2.26E-02 
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# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

15 

Aldehyde reductase 1 (low Km 

aldose reductase) (5.8 kb PstI 

fragment, probably the 

functional gene) (Akr1b1) Aldr1 

 

NM_012498 3.92 3.28E-04 

 

16 Pyruvate kinase 3 (Pkm2) Pkm2 

 

NM_053297 3.85 1.55E-02 

(277) 

17 

Potassium inwardly-rectifying 

channel, subfamily J, member 12 

(Kcnj12) Kcnj12 

 

NM_053981 3.84 3.26E-02 

 

18 
Monocarboxylate transporter 

(Mct3) Slc16a3 

 

NM_030834 3.75 5.26E-04 

 

19 
Acyl-coenzyme A:cholesterol 

acyltransferase (Soat1) Soat1 

 

NM_031118 3.73 1.31E-02 

 

20 
Vanilloid receptor-like protein 1 

(Vrl1) Trpv2 

 

NM_017207 3.69 2.78E-02 

 

21 
Adipocyte lipid-binding protein 

(LOC84378) Fabp4 

 

NM_053365 3.60 1.46E-03 

 

22 

Lymphocyte cytosolic protein 2 

(SH2 domain-containing 

leukocyte protein of 76kD) 

(Lcp2) Lcp2 

 

NM_130421 3.50 1.83E-02 

 

23 
Fc receptor, IgG, low affinity III 

(Fcgr3) Fcgr3 

 

NM_053843 3.49 7.96E-03 

 

24 
Interleukin 1 receptor antagonist 

gene (Il1rn) Il1rn 

 

NM_022194 3.37 3.15E-04 

 

25 
Rat leukocyte common antigen 

(L-CA) Ptprc  M10072 3.37 2.58E-02 

 

26 
Matrix metalloproteinase 3 

(Mmp3) Mmp3 

 

NM_133523 3.30 4.67E-04 

(278) 

27 Chemokine receptor LCR1 Cxcr4  U54791 3.30 1.45E-03 
(279) 

28 

Brain-enriched membrane-

associated protein tyrosine 

phosphatase (BSM)-1 Ptpro  D45412 3.29 9.68E-05 

 



 

- 113 - 

# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

29 
Tyrosine protein kinase pp60-c-

src Src  BI282912 3.24 1.58E-02 

 

30 
Factor-responsive smooth 

muscle protein (SM-20) Egln3 

 

NM_019371 3.22 1.01E-02 

(73) 

31 

SH3 domain-containing adapter 

protein isoform SETA-1x23 

(SETA)  Sh3kbp1  AF230520 3.18 1.29E-02 

 

32 MRC OX-45 surface antigen. Cd48  X13016 3.17 1.01E-03  

33 
Plasminogen activator inhibitor 2 

type A (Pai2a) Serpinb2 

 

NM_021696 3.14 2.29E-02 

 

34 CXC chemokine receptor Cxcr4  AA945737 3.08 1.58E-02 (279) 

35 Heme oxygenase (Hmox1) Hmox1 

 

NM_012580 3.07 2.74E-04 

(280) 

36 
Adenosine A2a-receptor 

(Adora2a) Adora2a 

 

NM_053294 3.01 3.08E-04 

 

37 
Calcitonin receptor-like receptor 

(Calcrl) Calcrl 

 

NM_012717 2.98 2.78E-02 

(281) 

38 Pim-1 oncogene (Pim1), mRNA. Pim1 

 

NM_017034 2.96 1.67E-02 

(282) 

39 
Clone ndf04 neu differentiation 

factor Nrg1  U02315 2.91 7.90E-04 

 

40 

Serine (or cysteine) proteinase 

inhibitor, clade E (nexin, 

plasminogen activator inhibitor 

type 1), member 1 (PAI-1, 

Serpine1) Serpine1 

 

NM_012620 2.90 5.66E-04 

(233, 234, 

283) 

41 Cyclooxygenase 2 Ptgs2  U03389 2.85 3.24E-03 
 

42 
Matrix metalloproteinase 10 

(Mmp10) Mmp10 

 

NM_133514 2.84 5.27E-05 

 

43 Amelogenin (Amel) Amelx 

 

NM_019154 2.82 2.31E-02 

 

44 solute carrier family 1, member 3 Maf  BG376037 2.79 9.96E-03  

45 Matrix metalloproteinase 12 Mmp12  2.78 9.93E-03 
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# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

(Mmp12) NM_053963 

46 
Gamma-glutamyltransferase-like 

activity 1 (Ggtla1) Ggtla1 

 

NM_019235 2.78 2.33E-02 

 

47 
Brain glucose-transporter protein 

(GLUT-1) Slc2a1  BI284218 2.77 5.94E-05 

(284) 

48 Fc gamma receptor Fcgr2b  X73371 2.75 6.71E-05  

49 CXC chemokine receptor Cxcr4  AA945737 2.72 3.57E-03 (279) 

50 Collagenase (UMRCase) Mmp13  M60616 2.70 2.52E-03  

51 
Inducible prostaglandin E 

synthase (iPGES) Ptges  AB048730 2.70 5.64E-04 

 

52 
Tissue inhibitor of 

metalloproteinase 3 Timp3  AA893169 2.62 3.02E-02 

 

53 
Enzymatic glycosylation-

regulating gene (Gcnt1) Gcnt1 

 

NM_022276 2.61 3.96E-02 

 

54 

Matrix metalloproteinase 9 

(gelatinase B, 92-kDa type IV 

collagenase) (Mmp9) Mmp9 

 

NM_031055 2.61 2.03E-02 

 

55 
Growth response protein (CL-6) 

(LOC64194) Insig1 

 

NM_022392 2.60 3.86E-04 

 

56 
Golgi SNAP receptor complex 

member 1 (Gosr1). Gosr1 

 

NM_053584 2.57 2.80E-02 

 

57 
Epithelial membrane protein 1 

(Emp1). Emp1 

 

NM_012843 2.56 1.74E-03 

 

58 
CASP8 and FADD-like 

apoptosis regulator (Cflar) Cflar 

 

NM_057138 2.55 9.23E-03 

 

59 5S rRNA gene (clone pRA5S2). -  X83747 2.52 4.84E-03 
 

60 

Solute carrier family 21 (organic 

anion transporter), member 12 

(Slc21a12, OAT-PE) Slco4a1 

 

NM_133608 2.51 3.37E-02 

 

61 
Sodium/potassium-transporting 

ATPase gamma chain Fxyd2  AF129400 2.50 1.67E-02 

 

62 Arginase 1, liver (Arg1) Arg1  2.49 2.54E-03 
(285) 
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# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

NM_017134 

63 Embigin (Emb) Emb 

 

NM_053719 2.48 7.77E-03 

 

64 
N-methyl-D-aspartate receptor 

subunit (NMDAR2D-1). Grin2d  D13213 2.48 3.73E-03 

 

65 GABA transaminase (GABA-T) Abat  U29701 2.42 3.98E-03 
 

66 
Heat shock protein 70-1 

(Hspa1a) Hspa1a 

 

NM_031971 2.37 2.00E-02 

 

67 
Fatty acid binding protein 6 (bile 

acid-binding protein) (Fabp6) Fabp6 

 

NM_017098 2.35 5.07E-03 

 

68 
Interleukin 6 (interferon, beta 2) 

(Il6) Il6 

 

NM_012589 2.33 2.09E-03 

 

69 Synaptotagmin 10 Syt10  AF375463 2.29 4.51E-02 
 

70 Mink-related peptide 2 (Kcne3) Kcne3 

 

NM_022235 2.26 2.92E-03 

 

71 
Small inducible cytokine 

subfamily, member 2 (Scyb2) Cxcl2 

 

NM_053647 2.23 2.44E-03 

 

72 
Rat (diabetic BB) MHC class II 

alpha chain RT1.D alpha (u). RT1-Da  Y00480 2.23 7.02E-03 

 

73 
Myristoylated alanine rich C 

kinase substrate Marcks  M59859 2.22 1.27E-02 

 

74 
BCL2-related protein A1 

(Bcl2a1) Bcl2a1 

 

NM_133416 2.22 1.27E-03 

 

75 
Proteoglycan peptide core 

protein (Pgsg) Pgsg 

 

NM_020074 2.21 2.71E-03 

 

76 
NADPH oxidase beta subunit 

gp91-phox gene (Cybb) Cybb 

 

NM_023965 2.20 6.92E-03 

 

77 Ficolin A (Fcna) Fcna 

 

NM_031348 2.20 7.19E-03 

 

78 
Mitogen-activated protein kinase 

kinase kinase 8 (Map3k8) Map3k8 

 

NM_053847 2.19 2.25E-02 
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# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

79 

Basic helix-loop-helix domain 

containing, class B, 3 (Bhlhb3, 

DEC2) Bhlhb3 

 

NM_133303 2.10 8.33E-03 

(286) 

80 
Flavin-containing 

monooxygenase 3 (Fmo3) Fmo3 

 

NM_053433 2.08 2.62E-02 

 

81 
Glycoprotein (transmembrane) 

nmb (Gpnmb) Gpnmb 

 

NM_133298 2.07 1.05E-02 

 

82 CC chemokine ST38 precursor Ccl20  AF053312 2.07 1.59E-03  

83 Clone N27 mRNA Txnip  U30789 2.06 3.58E-02  

84 

Basic helix-loop-helix domain 

containing, class B2 (Bhlhb2, 

DEC1) Bhlhb2 

 

NM_053328 2.06 2.84E-04 

(286) 

85 
Lectin, galactose binding, 

soluble 3 (Lgals3) Lgals3 

 

NM_031832 2.05 1.64E-03 

 

86 
UDP-glucuronosyltransferase 

(Ugt2b12) - 

 

NM_031980 2.04 1.35E-02 

 

87 
Complement component 4 

binding protein, beta (C4bpb) C4bp-ps1 

 

NM_016995 2.04 4.23E-02 

 

88 
MHC class II antigen RT1.B-1 

beta-chain RT1-Bb  AI715202 2.02 8.55E-05 

 

89 
ATP-sensitive K+ channel 

subunit Kir6.1 Kcnj8  AB043636 2.01 1.95E-03 

 

90 Glutaredoxin Glrx1  AF319950 2.01 5.84E-03  

91 
Aldolase A, fructose-

bisphosphate (Aldoa) Aldoa 

 

NM_012495 2.00 6.18E-03 

(277, 287) 

92 H3 histone, family 3B -  AI177503 2.00 2.12E-04  

93 
Tissue inhibitor of 

metalloproteinase 3 Timp3  AI009159 1.99 2.16E-02 

 

94 

K-kininogen, differential 

splicing leads to HMW Kngk 

(Kngk) 

MGC10874

7 

 

NM_012741 1.98 2.05E-02 

 

95 UDP-glucuronosyltransferase Udpgt  M31109 1.97 5.00E-02 
 

96 Lactate dehydrogenase A (Ldha), Ldha  1.96 6.88E-04 (287-289) 
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# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

NM_017025 

97 

Serine proteinase inhibitor, clade 

H (heat shock protein 47), 

member 1 (Serpinh1) Serpinh1 

 

NM_017173 1.95 8.81E-03 

 

98 p21 (WAF1) Cdkn1a  U24174 1.93 8.13E-03  

99 Selenoprotein P, plasma, 1 -  AA799627 1.92 4.83E-02  

100 Cathepsin Y LOC252929  AA849399 1.91 1.11E-02  

101 
Soluble adenylyl cyclase 

(LOC59320) Sac 

 

NM_021684 1.89 3.56E-02 

 

102 
Pyruvate dehydrogenase kinase, 

isoenzyme 1 (Pdk1)) Pdk1 

 

NM_053826 1.88 1.29E-02 

(169) 

103 
Acyl-coenzyme A:cholesterol 

acyltransferase Soat1  AI548897 1.86 1.58E-02 

 

104 

Rat liver UDP-

glucuronosyltransferase, 

phenobarbital-inducible form Udpgtr2  M13506 1.86 4.08E-02 

 

105 CD14 antigen (Cd14) - 

 

NM_021744 1.86 3.95E-02 

 

106 
Superoxide dismutase 2, 

mitochondrial -  BG671549 1.85 3.31E-02 

 

107 Neuron-specific enolase (NSE) Eno2  AF019973 1.85 2.60E-02  

108 Brain hexokinase Hk1  J04526 1.84 9.34E-03  

109 

Cytochrome P450, subfamily IIC 

(mephenytoin 4-hydroxylase) 

(Cyp2c) Cyp2c 

 

NM_019184 1.84 4.02E-02 

 

110 
Rat sterol carrier protein-2 (SCP-

2) Scp2  M34728 1.83 3.91E-02 

 

111 GABA transporter (RNU28927). Slc6a12 

 

NM_017335 1.79 2.42E-02 

 

112 
Acid phosphatase 5, tartrate 

resistant (Acp5) Acp5 

 

NM_019144 1.79 4.73E-02 

 

113 
Low molecular weight (LMW) 

K-kininogen Kng1  M11884 1.78 2.41E-02 
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# Gene Name Gene ID 

Gene 

Identifier Ratio p-value 

Reference, if 

HIF target 

114 
Triosephosphate isomerase 1 

(Tpi1) Tpi1 

 

NM_022922 1.78 1.42E-02 

(290, 291) 

115 
Peroxisomal biogenesis factor 3 

(Pex3) Pex3 

 

NM_031350 1.77 8.23E-03 

 

116 Urinary protein 2 precursor -  AF198441 1.75 2.79E-02  

117 Apoptosis inhibitor 2 (Api2) Api2 

 

NM_021752 1.75 1.91E-02 

 

118 H3 histone, family 3B H3f3b  BG663226 1.74 1.56E-04  

119 
Glucose-6-phosphate 

dehydrogenase (G6pd) G6pdx 

 

NM_017006 1.74 4.68E-04 

(292) 

120 Cystatin beta Cstb  AI409867 1.73 1.59E-04  

121 
HIF-1 responsive RTP801 

(Rtp801) Ddit4 

 

NM_080906 1.72 1.39E-02 

(293) 

122 Aldose reductase-like protein Akr1b8  AI233740 1.72 4.22E-04  

123 Hypoxia induced gene 1 (Hig1) Hig1 

 

NM_080902 1.72 2.81E-03 

(294) 

124 

Cyclophilin D mRNA, nuclear 

gene encoding mitochondrial 

protein Ppif  U68544 1.71 1.65E-02 

 

125 
Myristoylated alanine-rich 

protein kinase C substrate Marcks  BE111604 1.70 4.56E-02 

 

126 
Pyridoxine 5-phosphate oxidase 

(U91561) - 

 

NM_022601 1.69 1.10E-02 

 

127 
Glutamate-cysteine ligase , 

modifier subunit (Gclm) Gclm 

 

NM_017305 1.68 3.02E-02 

 

128 

Sprague Dawley testosterone 6-

beta-hydroxylase, cytochrome 

P4506-beta-A, (CYP3A2) Cyp3a11  U09742 1.67 3.76E-02 

 

129 
ATPase, vacuolar, 14 kD 

(Atp6s14) Atp6v1f 

 

NM_053884 1.67 1.56E-04 

 

130 92-kDa type IV collagenase Mmp9  U36476 1.67 2.76E-02  

131 

Inhibitor of DNA binding 2, 

dominant negative helix-loop-

helix protein Id2  AI008792 1.67 8.82E-03 

(295) 
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HIF target 

132 
Contrapsin-like protease 

inhibitor related protein (CPi-23) Spin2a  D00752 1.66 4.26E-02 

 

133 
T-kininogen, see also D11Elh1 

and D11Mit8 (Kng) Kng1 

 

NM_012696 1.65 7.55E-03 

 

134 
Acid phosphatase 1, soluble 

(Acp1) Acp1 

 

NM_021262 1.64 1.72E-02 

 

135 Peripheral myelin protein Pmp22  AA943163 1.64 4.12E-02  

136 

F1-ATPase epsilon subunit, 

nuclear gene encoding 

mitochondrial protein Atp5e  AF010323 1.63 7.68E-03 

 

137 
Colony stimulating factor 3 

(granulocyte) (Csf3) Csf3 

 

NM_017104 1.62 1.01E-03 

 

138 Early growth response 2 (Egr2) Egr2 

 

NM_053633 1.62 3.40E-02 

 

139 
3 non-translated beta-F1-ATPase 

mRNA-binding protein -  AF368860 1.62 2.06E-02 

 

140 
Serum glucocorticoid regulated 

kinase (Sgk) Sgk 

 

NM_019232 1.61 3.01E-04 

 

141 

CD74 antigen (invariant 

polpypeptide of major 

histocompatibility class II 

antigen-associated) (Cd74) Cd74 

 

NM_013069 1.61 3.51E-03 

 

142 

endothelial differentiation 

sphingolipid G-protein-coupled 

receptor 1 Edg1  BI295971 1.61 4.39E-02 

 

143 Cathepsin L Ctsl  AI232474 1.60 3.13E-02  

144 
Serine protease inhibitor 

(Spin2b) Spin2b 

 

NM_012657 1.60 4.77E-02 

 

145 
Kidney-derived aspartic 

protease-like protein (Kdap) Napsa 

 

NM_031670 1.59 1.79E-02 

 

146 Espin (Espn) Espn 

 

NM_019622 1.59 1.21E-02 
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147 

Prostaglandin-endoperoxide 

synthase 1 (prostaglandin GH 

synthase and cyclooxygenase) 

(Ptgs1) Ptgs1 

 

NM_017043 1.57 3.83E-02 

 

148 
Metallothionein-2 and 

metallothionein-1 -  BM383531 1.55 1.21E-02 

 

149 
Rat insulin-like growth factor I 

(IGF-I) Igf1  M15481 1.53 1.23E-02 

 

150 
Rat homologue of Kex2 and 

furin proteins Pcsk1  M83745 1.53 3.06E-02 

 

151 Legumain Lgmn  AF154349 1.53 4.51E-03  

152 Hexokinase 1 (Hk1) Hk1 

 

NM_012734 1.52 5.12E-03 

 

153 
Polyubiquitin (four repetitive 

ubiquitins in tandem) Ubb  D16554 1.51 1.35E-03 

 

154 

Inhibitor of DNA binding 2, 

dominant negative helix-loop-

helix protein (Id2) Id2 

 

NM_013060 1.51 3.50E-02 

(295) 

155 Transaldolase 1 (Taldo1) Taldo1 

 

NM_031811 1.51 6.72E-03 

 

156 Thymus cell surface antigen -  BI285183 1.51 4.85E-02  

157 

ATPase, H+ transporting, 

lysosomal (vacuolar proton 

pump), beta 5658 kDa, isoform 2 

(Atp6b2) Atp6b2 

 

NM_057213 1.51 1.07E-02 

 

158 p47 protein (p47) p47 

 

NM_031981 1.50 4.43E-03 

 

159 Alpha-2micro-globulin LOC298109  AB039823 1.50 2.87E-02  
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APPENDIX C 

GENES DOWN-REGULATED BY 4 HR. HYPOXIA IN PRIMARY RAT 

HEPATOCYTES (COMPLETE LISTING).  
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Table 13:  Genes down-regulated by 4 hr. hypoxia in primary rat hepatocytes (complete list). 
This list represents all 468 rat genes with decreased expression, as identified by Affymetrix analysis and 
GeneSifter software. Ratio = hypoxic/normoxic signals. ESTs were filtered out. 

# Gene Name Gene ID 

 Gene 

Identifier Ratio p-value 

1 Cyclin D1 (CCND1) Ccnd1  X75207 -8.28 1.09E-02 

2 
Novel kinesin-related protein 

(KIF1D) Kif1c  BF417285 -5.99 8.72E-03 

3 

Cytochrome c oxidase subunit 

VIa polypeptide 2 (heart) 

(Cox6a2) Cox6a2  NM_012812 -5.39 4.95E-02 

4 Insulin-like 6 (Insl6) Insl6  NM_022583 -4.92 7.25E-03 

5 Recoverin (Rcvrn) Rcvrn  NM_080901 -4.80 3.03E-05 

6 Pepsinogen F protein (Pepf) Pga5  NM_021753 -4.61 2.52E-03 

7 Bcl-2 modifying factor (Bmf) Bmf  NM_139258 4.55 1.44E-02 

8 Tektin 1 (Tekt1) Tekt1  NM_053508 -4.46 3.64E-02 

9 
Calcium-calmodulin-dependent 

protein kinase phosphatase Ppm1f  AB023634 -4.28 3.08E-05 

10 
G protein-coupled receptor kinase 

6, splice variant C (GRK6) Gprk6  AF040750 -4.13 1.29E-02 

11 
Phosphatidylinositol 3-kinase p45 

subunit Pik3r1  D64048 -4.08 3.89E-02 

12 
G protein-coupled receptor kinase 

6 (Gprk6) Gprk6  NM_031657 -3.95 3.46E-02 

13 
Sarcosine dehydrogenase 

(SarDH) Sardh  AF067650 -3.81 1.16E-02 

14 Hepatocyte F2alpha receptor. Ptgfr  X83856 -3.70 1.16E-03 

15 Neurofibromatosis 2 Nf2  BF566236 -3.70 2.77E-02 

16 Leucine zipper protein 1 (Luzp1) -  NM_030830 -3.62 8.23E-03 

17 
Hairy and enhancer of split 2 

(Drosophila) (Hes2) Hes2  NM_019236 -3.61 2.16E-02 

18 Rat olfactory protein Olr1082  M64381 -3.58 1.95E-02 

19 
Glutamine glutamic acid-rich 

protein isoform Cb (GRP-Cb) Grpca  M58654 -3.58 2.62E-02 
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Identifier Ratio p-value 

20 
Fibroblast growth factor FGF-5 

(Fgf5) Fgf5  NM_022211 -3.42 1.34E-02 

21 Glucosidase 1 -  C06771 -3.31 6.48E-03 

22 
Branched chain aminotransferase 

2, mitochondrial (Bcat2) Bcat2  NM_022400 -3.30 1.22E-02 

23 
Synaptonemal complex protein 3 

(Sycp3) Sycp3  NM_013041 -3.24 3.11E-02 

24 
Leukocyte common antigen 

related protein Ptprf  M60103 -3.19 2.09E-04 

25 
Guanine nucleotide-binding 

regulatory protein alpha subunit Gnaz  J03773 -3.16 3.34E-02 

26 Serine protease gene -  L38482 -3.14 3.32E-02 

27 
Mitogen activated protein kinase 

kinase 5 (Map2k5) Map2k5  NM_017246 -3.10 1.78E-03 

28 CTD-binding SR-like (rA1) Sr-a1  NM_019384 -2.96 3.59E-02 

29 
Ischemia related factor NYW-1 

(Nyw1), mRNA. -  NM_021683 -2.89 3.54E-02 

30 
CCAAT enhancer binding, 

protein (CEBP) delta Cebpd  BF419200 -2.87 6.56E-03 

31  SPA-1 like protein p1294 Sipa1l1  AF026504 -2.87 3.90E-03 

32 
Transmembrane 4 superfamily 

member 4 (Tm4sf4) Tm4sf4  NM_053785 -2.86 3.23E-02 

33 LL5 protein (Ll5) -  NM_134397 -2.85 8.92E-04 

34 
Hydroxyindole-O-

methyltransferase Asmt  L78306 -2.78 1.83E-02 

35 

Secretory (zymogen) granule 

membrane glycoprotein GP2 

(Gp2) Gp2  NM_134418 -2.74 8.75E-03 

36 
Avian erythroblastosis oncogene 

B 3 (Erbb3) Erbb3  NM_017218 -2.73 5.38E-03 

37 

Three-PDZ containing protein 

similar to C. elegans PAR3 

(partitioning defect) (Par3) Par3  NM_031235 -2.73 6.57E-04 
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38 NAC-1 protein (Nac-1) Btbd14b  NM_134413 -2.73 1.71E-03 

39 

Calcium calmodulin-dependent 

protein kinase kinase 1, alpha 

(Camkk1) Camkk1  NM_031662 -2.72 6.25E-03 

40 
Somatostatin receptor subtype 2 

(Sstr2) Sstr2  NM_019348 -2.72 3.73E-03 

41 Tuberin-like protein 1 (Tulip1) -  NM_020083 -2.72 3.83E-03 

42 Activin beta E (Inhbe) Inhbe  NM_031815 -2.72 1.48E-03 

43 Dishevelled 1 (Dvl1) Dvl1  NM_031820 -2.71 2.74E-03 

44 
ArgAbl-interacting protein 

ArgBP2 (Argbp2) Argbp2  NM_053770 -2.70 6.38E-03 

45 
Sprague-Dawley (clone LRB2) 

RAB16 Rab3d  M83681 -2.70 3.85E-02 

46 

Calcium channel, voltage-

dependent, L type, alpha 1S 

subunit Cacna1s  AI454679 -2.68 3.29E-02 

47 
Potassium channel modulatory 

protein 2 (Kcnip2) Kcnip2  NM_020095 -2.68 1.22E-02 

48 Gastrin-releasing peptide (Grp) Grp  NM_133570 -2.63 2.96E-02 

49 

Peroxisome proliferative 

activated receptor, gamma, 

coactivator 1 (Ppargc1) Ppargc1a  NM_031347 -2.63 1.08E-02 

50 G alpha interacting protein (Gaip) Rgs19  NM_021661 -2.62 3.35E-04 

51 
Vacuolar protein sorting protein 

33a (Vps33a) Vps33a  NM_022961 -2.61 3.72E-05 

52 
Inositol polyphosphate 5-

phosphatase Cebpd  BF282728 -2.59 2.42E-02 

53 Actinin, alpha 1 (Actn1) Actn1  NM_031005 -2.58 1.11E-03 

54 
Synaptosomal-associated protein, 

29kD (Snap29) Snap29  NM_053810 -2.58 4.75E-03 

55 
Short stature homeobox 2 

(Shox2) Shox2  NM_013028 -2.57 2.34E-02 
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56 

Potassium voltage gated channel, 

shaker related subfamily, beta 

member 3 (Kcnab3) Kcnab3  NM_031652 -2.55 8.24E-03 

57 
Damage-specific DNA binding 

protein 1 (DDB1 gene) Ddb1  AJ277077 -2.54 2.67E-03 

58 AGR16 Edg5  AB016931 -2.54 9.14E-06 

59 
General transcription factor III C 

1 Gtf3c1  AI234022 -2.50 4.16E-03 

60 Ly-49.12 antigen Klra22  U56822 -2.50 2.24E-03 

61 
CUG triplet repeat, RNA-binding 

protein 2 Cugbp2  AW140475 -2.46 3.22E-02 

62 Osteoregulin (LOC79110) Mepe  NM_024142 -2.43 4.97E-02 

63 

Rab geranylgeranyl transferase 

component, subunit beta 

(Rabggtb) -  NM_013020 -2.41 2.96E-03 

64 

 Sprague-Dawley 

glycerolphosphate dehydrogenase 

(mGPD) Gpd2  U08027 -2.41 3.65E-02 

65 

Potassium voltage-gated channel, 

subfamily H (eag-related), 

member 2 (Kcnh2) Kcnh2  NM_053949 -2.41 9.27E-03 

66 Scaffolding protein SLIPR (Slipr) Slipr  NM_139084 -2.40 1.36E-03 

67 
Myosin, heavy polypeptide 9, 

non-muscle (Myh9) Myh9  NM_013194 -2.40 1.93E-03 

68 Synaptotagmin 7 Syt7  AI713274 -2.39 1.66E-02 

69 

Glutamate receptor, ionotropic, 

N-methyl D-aspartate 2A 

(Grin2a) -  NM_012573 -2.38 7.76E-03 

70 

Inhibitor of kappa light 

polypeptide enhancer in B-cells, 

kinase complex-associated 

protein (Ikbkap) Ikbkap  NM_080899 -2.38 1.96E-04 

71 3-phosphoglycerate Phgdh  NM_031620 -2.36 6.01E-03 
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dehydrogenase (Phgdh) 

72 
Follistatin-related protein 

precursor (Frp). Fstl1  NM_024369 -2.36 1.47E-02 

73 Sperm tail protein Spag5 Spag5  AF111111 -2.36 3.56E-02 

74 Smoothened (Smoh) Smo  NM_012807 -2.32 1.24E-02 

75 
Inwardly rectifying potassium 

channel (Kir2.4) -  AI717104 -2.30 3.02E-02 

76 
Erythrocyte protein band 4.1-like 

3 (Epb4.1l3) Epb4.1l3  NM_053927 -2.30 3.79E-02 

77 
MLS2s mRNA for melastatin like 

2 Trpm4  AB040807 -2.30 1.41E-04 

78 
Male germ cell-associated kinase 

(Mak) Mak  NM_013136 -2.28 1.24E-02 

79 RNA binding protein p45AUF1 -  BE097663 -2.28 3.56E-03 

80 
(clone erb62) thyroid (T3) 

hormone receptor Thrb  J03819 -2.27 3.51E-02 

81 
DNA polymerase delta, catalytic 

subunit (Pold1) Pold1  NM_021662 -2.27 1.38E-02 

82 
Sprague-Dawley glucose-6-

phosphatase G6pc  U07993 -2.26 3.59E-02 

83 Synuclein, alpha (Snca) Snca  NM_019169 -2.25 4.94E-02 

84 Neurochondrin (Ncdn) Ncdn  NM_053543 -2.25 2.12E-04 

85 
Guanine nucleotide binding 

protein, alpha (Gnaz) Gnaz  NM_013189 -2.24 4.45E-02 

86 
Vasopressin receptor V1a 

(Avpr1a) Avpr1a  NM_053019 -2.24 4.77E-02 

87 Chymotrypsin B (Ctrb1). Ctrb  NM_012536 -2.24 1.85E-02 

88 Testis-specific kinase 2 (Tesk2) Tesk2  NM_133396 -2.23 3.26E-02 

89 Contactin 1 (Cntn1) Cntn1  NM_057118 -2.22 1.89E-02 

90 

Activity and neurotransmitter-

induced early gene protein 4 

(ania-4) Ania4  NM_021584 -2.20 3.36E-02 
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91 Xylosyltransferase 2 (Xylt2) Xylt2  NM_022296 -2.19 3.11E-03 

92 Agrin Agrn  M64780 -2.19 5.36E-03 

93 
Mammary cancer associated 

protein RMT-1 Rmt1  AF308611 -2.19 1.76E-02 

94 

Inositol polyphosphate-4-

phosphatase, type II, 105kD 

(Inpp4b) Inpp4b  NM_053917 -2.19 3.41E-02 

95 

V-akt murine thymoma viral 

oncogene homolog 3 (protein 

kinase B gamma) (Akt3) Akt3  NM_031575 -2.18 4.29E-02 

96 
Multidrug resistance protein 1a 

(Pgy1) Abcb1a  AF257746 -2.16 4.39E-02 

97 MEGF6 (Egfl3) Egfl3  NM_022955 -2.16 3.78E-02 

98 
Na/K-ATPase beta 2 subunit 

(ATP1B2) Atp1b2  U45946 -2.16 3.16E-02 

99 
Sodium channel, voltage-gated, 

type V, alpha polypeptide (Scn5a) Scn5a  NM_013125 -2.15 2.26E-02 

100  Centaurin alpha Centa1  U51013 -2.13 3.66E-02 

101 
Apoptotic protease activating 

factor-1 Apaf1  AF218388 -2.13 2.09E-02 

102 Iron-regulatory protein 2 (Ireb2) Ireb2  NM_022863 -2.12 7.71E-03 

103 Attractin (Atrn) Atrn  AB038388 -2.12 3.92E-03 

104 

UDP-Gal:betaGlcNAc beta 1,3-

galactosyltransferase, polypeptide 

4 (B3galt4) B3galt4  NM_133553 -2.12 5.23E-03 

105 Spermatogenesis associated 2 Spata2  BM389931 -2.11 4.62E-04 

106 
Type 2X myosin heavy chain 

(MYHC) Myh1  BI277545 -2.10 1.91E-02 

107 
Kv1.6 voltage-gated potassium 

channel (kcna6). Kcna6  AJ276137 -2.10 4.88E-02 

108 
Apoptotic protease activating 

factor 1 (Apaf1) Apaf1  NM_023979 -2.10 2.88E-03 
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109 
Murine thymoma viral (v-akt) 

oncogene homolog 1 (Akt1) Akt1  NM_033230 -2.09 2.88E-03 

110 X transporter protein 3 (Xtrp3) Xtrp3  AI169634 -2.08 1.63E-02 

111 
SC65 synaptonemal complex 

protein (Sc65) Sc65  NM_021581 -2.08 3.50E-02 

112 Gene for BAF60b -  AB003505 -2.08 1.78E-02 

113 
O-GlcNAc transferase-interacting 

protein of 98 kDa Als2cr3  BG378620 -2.08 2.79E-04 

114 PKC lambda Pkcl  AB020615 -2.07 8.11E-04 

115 Met proto-oncogene (Met) Met  NM_031517 -2.06 2.30E-03 

116 
Metabotropic glutamate receptor 

subtype Grm6  D13963 -2.06 3.08E-02 

117 
Branched chain keto acid 

dehydrogenase kinase Bckdk  BI277527 -2.04 1.05E-03 

118 
Guanosine monophosphate 

reductase (Gmpr) Gmpr  NM_057188 -2.04 1.88E-02 

119 
Erythroid differentiation gene 1 

(Edag1). Hemgn  NM_133294 -2.04 4.42E-02 

120 Protein kinase inhibitor, alpha Pkia  AA996685 -2.03 4.18E-02 

121 Vps54-like protein Vps54  AJ010392 -2.03 9.42E-03 

122 
H-K-ATPase alpha 2b subunit 

(HKalpha2b) Atp12a  U94913 -2.03 4.10E-02 

123 Ajuba protein (ORF1) Jub  AJ306292 -2.02 4.90E-03 

124 
SH3ankyrin domain gene 3 

(Shank3) Shank3  NM_021676 -2.02 3.54E-02 

125 

Inhibitor of kappa light 

polypeptide gene enhancer in B-

cells, kinase beta (Ikbkb) Ikbkb  NM_053355 -2.02 5.63E-05 

126 Rat casein-alpha CSN1S1  J00710 -2.02 4.74E-02 

127 
CCAAT enhancer binding, 

protein (CEBP) delta (Cebpd) Cebpd  NM_013154 -2.02 2.17E-02 

128 Murine thymoma viral (v-akt) Akt2  AI105076 -2.02 2.05E-04 
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oncogene homolog 2 

129 
SH3-domain binding protein 4 

(Sh3bp4), mRNA. Sh3bp4  NM_022693 -2.02 4.11E-02 

130 
Bardet-Biedl syndrome 2 

(human) (Bbs2) Bbs2  NM_053618 -2.01 7.06E-03 

131 Lsc protein (Lsc) Arhgef1  NM_021694 -2.01 1.80E-03 

132 P2Y purinoceptor P2ry1  U22830 -2.01 1.09E-02 

133 Phospholamban Pln  BI290034 -2.01 2.85E-02 

134 LDL-receptor. Ldlr  X13722 -2.00 2.41E-03 

135 NTR2 receptor (Ntsr2) Ntsr2  NM_022695 -1.99 1.43E-03 

136 
Tyrosine protein kinase pp60-c-

src (Src) Src  NM_031977 -1.99 2.91E-02 

137 
Protein tyrosine phosphatase 2E 

(Ptp2E) Ptpn21  NM_133545 -1.98 1.35E-03 

138 

6-Phosphofructo-2-kinase 

fructose-2,6-bisphosphatase 1 

(liver and muscle) (Pfkfb1) Pfkfb1  NM_012621 -1.98 2.13E-02 

139 
Ventral anterior homeobox 2 

(Vax2) Vax2  NM_022637 -1.98 8.35E-03 

140 Adenosine receptor A3 (Adora3) Adora3  NM_012896 -1.97 2.45E-02 

141 Glucosidase 1 (Gcs1-pending) Gcs1  NM_031749 -1.97 1.37E-03 

142 
Organic anion transporter 

(LOC83500) Slc22a8  NM_031332 -1.96 1.07E-02 

143 
Diacylglycerol kinase, alpha 

(80kD) (Dgka) Dgka  NM_080787 -1.96 4.75E-03 

144 
A disintegrin and metalloprotease 

domain (ADAM) 22 Adam22  AI029994 -1.96 1.69E-02 

145 
Multiple PDZ domain protein 

(Mpdz) Mpdz  NM_019196 -1.96 3.12E-02 

146 
Putative pheromone receptor 

VN1 Vnr1  U36785 -1.95 2.65E-02 

147 LIM motif-containing protein Limk2  NM_024135 -1.95 1.85E-04 
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kinase 2 (Link2) 

148 
Opioid-binding proteincell 

adhesion molecule-like (Opcml. Opcml  NM_053848 -1.95 1.69E-02 

149 
Pulmonary surfactant protein D 

(Sftpd) Sftpd  NM_012878 -1.94 4.46E-06 

150 Adenylyl cyclase type VI Adcy6  L01115 -1.94 6.00E-04 

151 
 Leucocyte common antigen-

related protein Ptprf  X83505 -1.94 2.99E-03 

152 
Iron-responsive element-binding 

protein (Ratireb) Ratireb  NM_017321 -1.93 2.44E-02 

153 
Matrix metalloproteinase 24 

(membrane-inserted) (Mmp24) Mmp24  NM_031757 -1.93 2.24E-02 

154 
Spermatogenesis associated 2 

(Spata2) Spata2  NM_053675 -1.93 4.40E-04 

155 Telomerase catalytic subunit Tert  AF247818 -1.93 3.60E-02 

156 Adducin 1, alpha (Add1). Add1  NM_016990 -1.93 4.09E-03 

157 
NG,NG dimethylarginine 

dimethylaminohydrolase -  BI281103 -1.93 7.26E-04 

158 Mucin1 Muc1  BI274326 -1.92 2.51E-02 

159 
Insulin receptor-related receptor 

(Insrr) -  NM_022212 -1.92 2.72E-02 

160 Transgelin 3 (Tagln3) Tagln3  NM_031676 -1.92 4.48E-02 

161 Myomegalin (LOC64183) LOC64183  NM_022382 -1.92 4.74E-03 

162 
MAP microtubule affinity-

regulating kinase 3 (Mark3) Mark3  NM_130749 -1.92 1.48E-04 

163 
Exchange factor for ARF6 

(EFA6) Psd  NM_134370 -1.91 4.10E-02 

164 

Beta isoform of catalytic subunit 

of cAMP-dependent protein 

kinase -  D10770 -1.91 3.56E-03 

165 
Bruton agammaglobulinemia 

tyrosine kinase (Tyro3) Tyro3  NM_017092 -1.91 2.41E-02 
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166 
Phospholipase C, gamma 1 

(Plcg1) Plcg1  NM_013187 -1.90 4.95E-02 

167 
MHC class Ib M4 (RT1.M4) 

pseudogene -  AF024712 -1.90 4.14E-02 

168 Sulfhydryl oxidase (SOx) Qscn6  AB044285 -1.90 3.40E-02 

169 
Brain cytosolic acyl coenzyme A 

thioester hydrolase Bach  U49694 -1.90 1.28E-02 

170 
Ovalbumin upstream promoter 

gamma nuclear receptor rCOUPg Nr2f6  AA997437 -1.89 1.04E-02 

171 
Growth factor receptor bound 

protein 14 (Grb14) Grb14  NM_031623 -1.89 2.91E-02 

172 Procollagen C-proteinase 3 Bmp1  AB012139 -1.89 2.40E-04 

173 Farnesyltransferase beta subunit  Fntb  M69056 -1.89 2.44E-03 

174 Retinoid X receptor gamma Rxrg  BE118450 -1.89 8.69E-03 

175 Cortactin-binding protein 1 Shank2  AF060116 -1.88 2.89E-02 

176 
Strain F344N angiotensin-

converting enzyme (Ace) Ace  AF201331 -1.87 2.77E-02 

177 
Pro-protein convertase 5 isoform 

B (Pcsk5) Pcsk5  BI289394 -1.87 3.76E-02 

178 
Thyroid hormone receptor alpha 

(Thra1) Thra  NM_031134 -1.87 2.20E-02 

179 
Homer, neuronal immediate early 

gene, 3 Homer3  AW253366 -1.87 6.42E-04 

180 

ATP-binding cassette, sub-family 

B (MDRTAP), member 6 

(Abcb6) Abcb6  NM_080582 -1.86 1.48E-02 

181 
Adaptor-related protein complex 

3, mu 2 subunit (Ap3m2) Ap3m2  NM_133305 -1.86 2.48E-02 

182 
 Protein kinase, lysine deficient 1 

(Prkwnk1) Prkwnk1  NM_053794 -1.86 5.46E-03 

183 Zinc finger protein 22 (KOX 15) Znf22  AI232806 -1.86 1.80E-02 

184 
Nuclear pore membrane 

glycoprotein 210 (Pom210) Pom210  NM_053322 -1.85 1.95E-02 
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185 
Small nuclear ribonucleoparticle-

associated protein (snRNP) Snrpn  M29294 -1.85 3.35E-02 

186 
Drosophila polarity gene 

(frizzled) homologue Fzd1  AA944349 -1.85 2.05E-02 

187 
Platelet-derived growth factor, C 

polypeptide (Pdgfc) Pdgfc  NM_031317 -1.85 4.67E-03 

188 
Peptidyl-glycine alpha-amidating 

monooxygenase (rPAM-2) Pam  M25719 -1.85 4.93E-02 

189 
Insulin receptor-related receptor-

alpha subunit Insrr  M90661 -1.85 4.43E-02 

190 
Zona pellucida glycoprotein 1 

(Zp1) Zp1  NM_053509 -1.84 3.61E-02 

191 
Tumor-associated protein 1 

(TA1) Slc7a5  NM_017353 -1.84 4.07E-04 

192 Translin (Tsn) Tsn  NM_021762 -1.84 9.20E-04 

193 

MAD (mothers against 

decapentaplegic, Drosophila) 

homolog 7 Madh7  AW521447 -1.83 3.22E-02 

194 FSH-regulated protein -  L26293 -1.83 4.20E-02 

195 Asparagine synthetase Asns  U07202 -1.83 2.92E-03 

196 
Casein kinase 1 gamma 2 isoform 

(Csnk1g2) Csnk1g2  NM_023102 -1.82 4.23E-04 

197 
Ectonucleoside triphosphate 

diphosphohydrolase 6 (Entpd6) Entpd6  NM_053498 -1.82 1.85E-02 

198  Zinc finger protein HIT-4 Hit4  AF277900 -1.82 2.42E-02 

199 Alpha-tubulin -  AA956714 -1.82 3.76E-02 

200 Skn-1a Pou2f3  L23862 -1.81 1.62E-02 

201  Histone 2a (H2a) H2a  NM_021840 -1.81 3.94E-02 

202 

Transcription factor 1, hepatic; 

LF-B1, hepatic nuclear factor 

(HNF1): albumin proximal factor, 

also TCF1 (Tcf1) Tcf1  NM_012669 -1.81 4.29E-02 
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203 
Pancreas zinc finger protein, see 

also D1Bda10 (Znf146) Zfp260  NM_017364 -1.81 4.85E-03 

204 Striatin (Strn) Strn  NM_019148 -1.81 3.25E-02 

205 

Androgen receptor-related 

apoptosis-associated protein 

CBL27 Cbl27  AF275151 -1.81 2.53E-02 

206  Cortactin isoform C Cttn  AF054618 -1.81 6.99E-03 

207  Type II collagen Col2a1  AF305418 -1.81 4.99E-02 

208 
CLIP-associating protein 2 

(Clasp2) Clasp2  NM_053722 -1.81 2.58E-02 

209 Voltage-gated Ca channel Tpcn1  AB018253 -1.81 1.92E-05 

210 Prolactin-like protein H (PLP-H) PLP-I  AB019791 -1.80 5.39E-03 

211 
 Strain SHROla ADD1SREBP-1c 

(Srebf1) Srebf1  AF286470 -1.80 4.86E-02 

212 
Interleukin 23, alpha subunit p19 

(Il23a) Il23a  NM_130410 -1.80 9.32E-03 

213 
Solute carrier family 8 (Na/Ca 

exchanger), member 3 (Slc8a3) Slc8a3  NM_078620 -1.80 1.47E-02 

214 Ribosomal protein L30 -  AI170773 -1.80 5.51E-04 

215 Androgen binding protein (ABP) Hdc  M38759 -1.80 4.87E-02 

216 
 Leucocyte specific transcript 1 

(Lst1) Lst1  NM_022634 -1.80 2.38E-02 

217 

Aryl hydrocarbon receptor (AHR) 

mRNA, alternatively spliced 

shorter insertion variant Ahr  AF082125 -1.80 2.15E-03 

218 Rattus sp. mRNA for kinase -  AB020967 -1.79 5.21E-03 

219 Ion transporter protein (NRITP) Nritp  AF184921 -1.79 4.42E-02 

220 
Activity-dependent 

neuroprotective protein (Adnp) Adnp  NM_022681 -1.79 1.81E-03 

221 
SH2-B PH domain containing 

signaling mediator 1 (Sh2bpsm1) Sh2bpsm1  NM_134456 -1.79 9.47E-04 
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222 

Moloney murine sarcoma viral 

(v-mos) oncogene homolog 

(Mos) Mos  NM_020102 -1.79 2.23E-02 

223 
Selectin, endothelial cell, ligand 

(Selel) Glg1  NM_017211 -1.79 1.81E-02 

224 Histone deacetylase 2 Hdac2  AA892297 -1.78 1.76E-02 

225 MIC2 like 1 (Mic2l1) Mic2l1  NM_134459 -1.78 1.67E-02 

226 RP58 protein (Rp58) Rp58  NM_022678 -1.78 2.24E-04 

227 
Acetyl-coenzyme A carboxylase 

(EC 6.4.1.2.) Acaca  BI296153 -1.78 1.27E-03 

228 Kinesin light chain 1 Klc1  AI576961 -1.78 7.81E-04 

229 
Solute carrier family 13 (sodium 

sulphate symporters), member 1 Slc13a1  AI454619 -1.77 4.53E-02 

230 
Bladder cancer associated protein 

(Blcap) Blcap  NM_133582 -1.77 1.71E-03 

231 

Guanine nucleotide binding 

protein (G protein) alpha 12 

(Gna12) Gna12  NM_031034 -1.77 1.11E-02 

232 Casein kinase I delta Csnk1d  AA946432 -1.77 9.39E-04 

233 

Gamma-aminobutyric acid 

(GABA-A) receptor, subunit 

alpha 4 (Gabra4) Gabra4  NM_080587 -1.77 2.10E-02 

234 
 Nuclear receptor coactivator 2 

(Ncoa2) Ncoa2  NM_031822 -1.76 3.46E-02 

235 Enigma homolog (Enh) Enh  NM_053326 -1.76 7.64E-03 

236 Transcription factor E2a (Tcfe2a) Tcfe2a  NM_133524 -1.76 2.53E-02 

237 
A kinase (PRKA) anchor protein 

1 (Akap1) Akap1  NM_053665 -1.76 1.37E-03 

238 Neurofibromatosis type 1 (Nf1) Nf1  NM_012609 -1.76 4.60E-02 

239 Lamin B1 (Lmnb1) Lmnb1  NM_053905 -1.75 2.54E-02 

240 
LIM-domain containing, protein 

kinase (Limk1) Limk1  NM_031727 -1.75 4.82E-02 
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241 
Rho interacting protein 3 

(Rhoip3) Rhoip3  NM_053814 -1.75 1.02E-02 

242 
C-terminal binding protein 1 

(Ctbp1) Ctbp1  NM_019201 -1.75 6.69E-04 

243  TANK protein Tank  AW140505 -1.75 9.35E-04 

244 
Arachidonate 12-lipoxygenase 

(Alox12) Alox15  NM_031010 -1.75 1.01E-02 

245 

p75-like apoptosis-inducing death 

domain protein PLAIDD 

(LOC246143) 

LOC24614

3  NM_139259 -1.75 4.60E-02 

246 
bcl-2 associated death agonist 

beta (Bad-beta) Bad  AF279911 -1.74 1.72E-02 

247 

Solute carrier family 25 

(mitochondrial carrier; citrate 

transporter) member 1 (Slc25a1), 

nuclear gene encoding 

mitochondrial protein Slc25a1  NM_017307 -1.74 1.29E-03 

248  CTL target antigen (Cth) Cth  NM_017074 -1.74 1.88E-02 

249 
 Phytanoyl-CoA hydroxylase 

(Refsum disease) (Phyh). Phyh  NM_053674 -1.74 7.25E-03 

250 
p38 mitogen activated protein 

kinase (Mapk14) Mapk14  NM_031020 -1.74 5.07E-03 

251 
Putative pheromone receptor 

VN7 V1rb7  U36786 -1.74 2.12E-02 

252 
Activine receptor 2b 

(transmembrane serine kinase) Acvr2b  AI548799 -1.73 8.43E-03 

253 
Selenium binding protein 2 

(Selenbp2) Selenbp1  NM_080892 -1.73 4.31E-03 

254 RalBP1 Ralbp1  U28830 -1.73 1.93E-02 

255 

Guanine nucleotide binding 

protein, alpha inhibiting 1 

(Gnai1) Gnai1  NM_013145 -1.73 3.99E-03 

256 Putative protein phosphatase 1 Ppp1r10  NM_022951 -1.73 7.12E-04 
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nuclear targeting subunit 

(Ppp1r10) 

257  Cyclin D3 (Ccnd3) Ccnd3  NM_012766 -1.73 7.03E-04 

258 
Rattus sp. DNA binding protein 

(URE-B1) -  U08214 -1.73 3.31E-03 

259 Testis specific protein AF146738  AF146738 -1.72 2.84E-03 

260 
Phosphoribosyl pyrophosphate 

amidotransferase (Ppat). -  NM_057198 -1.72 2.47E-05 

261 

Low density lipoprotein receptor-

related protein associated protein 

1 -  AI008974 -1.72 2.67E-03 

262 
WW domain binding protein 2 

(Wbp2) Wbp2  NM_138975 -1.72 3.52E-02 

263 

Gamma-animobutyric acid 

(GABA) A receptor, alpha 3 

(Gabra3) Gabra3  NM_017069 -1.72 6.60E-03 

264 ATP-binding cassette protein B1b Abcb1  AY082609 -1.72 4.93E-02 

265 
Ras-related small GTP binding 

protein 4 Rab4a  BF281403 -1.72 2.83E-02 

266 
Glucocorticoid-induced leucine 

zipper (Gilz) Dsipi  NM_031345 -1.71 9.27E-04 

267 D1 dopamine receptor Drd1a  M35077 -1.71 7.05E-03 

268 Caspase-9 CTD isoform Casp9  AY008275 -1.71 1.41E-02 

269 F-spondin 

LOC17156

9  AA801238 -1.71 3.20E-02 

270 
Damage-specific DNA binding 

protein 1 Ddb1  BF284000 -1.71 3.10E-02 

271 Activin type I receptor (Acvr1) Acvr1  NM_024486 -1.71 1.26E-03 

272 
Cyclin-dependent kinase 4 

(Cdk4) Cdk4  NM_053593 -1.71 5.57E-04 

273 
HLA-B associated transcript 3 

(Bat3) Bat3  NM_053609 -1.71 7.56E-03 

274 RSS -  D89965 -1.70 2.97E-02 
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275 DNA polymerase beta (Polb) Polb  NM_017141 -1.70 2.50E-02 

276 RIN1 Rin1  U80076 -1.70 4.81E-02 

277 
Proline rich synapse associated 

protein 1 (ProSAP1) Shank2  NM_133440 -1.70 1.92E-03 

278  Insulin receptor (Insr) Insr  NM_017071 -1.70 1.69E-02 

279 Amino-terminal enhancer of split Aes  BI274118 -1.70 1.26E-02 

280 
LIC-2 dynein light intermediate 

chain 5355 (Dncli2) Dncli2  NM_031026 -1.70 9.22E-03 

281 

DNA fragmentation factor, 40 

kD, beta polypeptide (caspase-

activated DNase) (Dffb) Dffb  NM_053362 -1.70 2.57E-02 

282 Calpain 10 (Capn10). Capn10  NM_031673 -1.70 8.93E-03 

283  crp-ductin (Crpd) -  NM_022849 -1.69 2.26E-02 

284 Gustatory receptor 43 (Gust43) Gust43  NM_020106 -1.69 3.44E-02 

285 Hairless (hr) Hr  NM_024364 -1.69 5.67E-03 

286 Afadin (AF-6) Af6  NM_013217 -1.69 3.15E-03 

287 Adenylate kinase 3 (Ak3) Ak3  NM_013218 -1.69 2.09E-03 

288 
Guanylate-cyclase regulatory 

protein (GCRP) Rap2ip  AF288611 -1.69 1.32E-02 

289 NF1-B3 Nfib  AB012232 -1.69 3.39E-02 

290 
Ischemia responsive 94 kDa 

protein (irp94) Hspa4  AF077354 -1.69 1.32E-02 

291 
 N-type calcium channel pore-

forming subunit alpha 1B Cacna1b  AF389419 -1.69 2.38E-03 

292 

Tumor necrosis factor (ligand) 

superfamily, member 6 (apoptosis 

(APO-1) antigen ligand 1) (Fas 

antigen ligand) (Tnfsf6) Tnfsf6  NM_012908 -1.69 8.17E-03 

293 
Thymopoietin (lamina associated 

polypeptide 2) (Tmpo) Tmpo  NM_012887 -1.68 6.66E-03 

294 Rabin 3 (RABIN3) RABIN3  NM_017313 -1.68 5.21E-03 
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295 Maternal G10 transcript G10  AI599413 -1.68 2.23E-02 

296 

Potassium inwardly-rectifying, 

channel, subfamily J, member 6 

(Kcnj6) -  NM_013192 -1.68 4.51E-02 

297 
Putative protein serinethreonine 

phosphatase 4-associated protein Ppp4r1  BI285346 -1.68 4.73E-02 

298 

Proteinase-activated receptor-2, G 

protein-coupled receptor 11 

(F2rl1) F2rl1  NM_053897 -1.68 3.80E-02 

299 
G-protein-coupled receptor 

induced protein GIG2 Trib1  BM387324 -1.68 1.39E-03 

300 GABA-BR1a receptor Gabbr1  Y10369 -1.67 9.25E-04 

301 
Unknown Glu-Pro dipeptide 

repeat protein Rab10  AA945841 -1.67 2.94E-03 

302 
Gastric inhibitory peptide 

receptor (Gipr) Gipr  NM_012714 -1.67 4.17E-02 

303 
Phosphodiesterase 3B, cGMP-

inhibited (Pde3b) Pde3b  NM_017229 -1.67 1.45E-02 

304 Granuphilin B Sytl4  AF419342 -1.67 5.88E-03 

305 
Transforming growth factor beta 

stimulated clone 22 (Tgfb1i4) -  NM_013043 -1.67 1.04E-02 

306 
Putative zinc finger protein 

SERZ-1 (Serz-1) Zdhhc7  NM_133394 -1.67 7.73E-03 

307 

Myotonic dystrophy kinase-

related Cdc42-binding kinase 

MRCK-beta (MRCK-beta) Cdc42bpb  AF021936 -1.67 4.28E-02 

308 Growth supressor 1 (Gros1) Lepre1  NM_053667 -1.67 8.22E-03 

309 

Potassium inwardly-rectifying 

channel,subfamily J, member 13 

(Kcnj13) Kcnj13  NM_053608 -1.67 3.11E-02 

310 Prolyl endopeptidase (Prep) Prep  NM_031324 -1.67 2.48E-03 

311 Butyrylcholinesterase (Bche) Bche  NM_022942 -1.67 4.56E-02 

312 Crystallin, beta B3 (Crybb3) Crybb3  NM_031690 -1.67 2.17E-02 
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313 

Potassium voltage gated channel, 

shaker related subfamily, beta 

member 2 (Kcnab2) Kcnab2  NM_017304 -1.66 1.20E-02 

314 
Protein tyrosine phosphatase, 

non-receptor type 1 (Ptpn1) Ptpn1  NM_012637 -1.66 3.36E-02 

315 Junction plakoglobin (Jup) Jup  NM_031047 -1.66 2.55E-03 

316 
Peroxisomal multifunctional 

enzyme type II (Hsd17b4) Hsd17b4  NM_024392 -1.66 9.03E-03 

317 DNA polymerase gamma (Polg) Polg  NM_053528 -1.66 7.97E-05 

318 
Slit (Drosophila) homolog 3 

(Slit3) Slit3  NM_031321 -1.66 3.23E-02 

319 Chymotrypsin-like (Ctrl) Ctrl  NM_054009 -1.66 3.84E-02 

320 Ring finger protein 22 (Rnf22) Trim3  NM_031786 -1.65 5.38E-03 

321 

Gap junction membrane channel 

protein alpha 5 (connexin 40) 

(Gja5) Gja5  NM_019280 -1.65 2.91E-02 

322 Moesin (Msn) Msn  NM_030863 -1.65 4.08E-03 

323 GATA-binding protein 6 (Gata6) Gata6  NM_019185 -1.65 4.50E-02 

324 Zinc finger protein (pMLZ-4)  -  AF151710 -1.65 9.16E-04 

325 
Clone GB1B21a 

phosphodiesterase 1B (Pde1B)  Pde1b  AF327906 -1.65 4.10E-02 

326 
Ankyrin repeat-rich membrane-

spanning protein (ARMS) Kidins220  AF313464 -1.65 4.19E-02 

327 
Meningioma expressed antigen 5 

(hyaluronidase) (Mgea5) Mgea5  NM_131904 -1.65 3.69E-02 

328 
Sprague-Dawley (clone LRB6) 

RAB12 Rab12  M83676 -1.65 2.89E-02 

329 
Rat alternative brain Ca+ 2-

ATPase -  J04024 -1.65 6.96E-03 

330 Scaffolding protein SLIPR (Slipr) Slipr  AF255614 -1.64 2.77E-02 

331 
p53-activated gene 608 

(PAG608) Wig1  NM_022548 -1.64 6.63E-03 
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332 
Amino acid transporter system A 

(ATA2) Slc38a2  AF249673 -1.64 9.83E-03 

333 Nucleoporin 155kD (Nup155) Nup155  NM_053952 -1.64 5.60E-03 

334 
Protein serine/threonine kinase 

CPG16 (cpg16) Ania4  U78857 -1.64 1.52E-02 

335 Myosin IXb Myo9b  AI178160 -1.64 1.77E-04 

336 TEMO -  AI180458 -1.64 3.41E-02 

337 
Rat brain-specific identifier 

sequence (ID) clone p1B337. Eif5  K01677 -1.64 1.71E-02 

338 Myosin Ic (Myo1c) Myo1c  NM_012983 -1.64 7.77E-03 

339 
Diphosphoinositol polyphosphate 

phosphohydolase type II Nudt4  AI602300 -1.64 2.70E-02 

340 

Protein phosphatase 2 (formerly 

2A), catalytic subunit, beta 

isoform (Ppp2cb) Ppp2cb  NM_017040 -1.63 6.83E-04 

341 
Purinergic receptor P2X, ligand-

gated ion channel, 7 (P2rx7) P2rx7  NM_019256 -1.63 4.07E-03 

342 Myosin Vb (Myo5b) Myo5b  NM_017083 -1.63 9.10E-03 

343 
Nuclear receptor subfamily 2, 

group F, member 6 (Nr2f6) Nr2f6  NM_139113 -1.63 6.58E-04 

344 

Phosphatidylinositol 3-kinase, C2 

domain containing, gamma 

polypeptide (Pik3c2g) Pik3c2g  NM_053923 -1.63 4.67E-02 

345 TEMO (Temo) -  NM_023986 -1.63 8.58E-03 

346 
Tyrosine protein kinase pp60-c-

src Src  AI175966 -1.63 2.40E-02 

347 CTD-binding SR-like protein rA9 

LOC24592

5  U49057 -1.63 1.19E-02 

348 
RNA helicase with arginine-

serine-rich domain Ddx46  U25746 -1.62 1.57E-02 

349 
Unconventional myosin Myr2 I 

heavy chain (Myr2) Myr2  NM_023092 -1.62 2.94E-02 
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350 
SH2-containing inositol 

phosphatase 2 (Inppl1) Inppl1  NM_022944 -1.62 8.55E-03 

351 
Poly(ADP-ribose) glycohydrolase 

(Parg) Parg  AB019366 -1.62 3.69E-03 

352 
Activity and neurotransmitter-

induced early gene 3 (ania-3) Homer1  AF030088 -1.62 3.68E-02 

353  AKAP95 Akap8  U01914 -1.62 1.54E-03 

354  exo84  Exoc8  AF032669 -1.62 1.92E-02 

355 Erythropoietin receptor (Epor) Epor  NM_017002 -1.62 2.37E-02 

356 NonOp54nrb homolog Sfpq  AI599699 -1.61 4.00E-02 

357 

Endothelial differentiation, 

sphingolipid G-protein-coupled 

receptor, 5 (Edg5) Edg5  NM_017192 -1.61 7.13E-03 

358 
Multiple endocrine neoplasia 1 

(Men1) Men1  NM_019208 -1.61 4.95E-03 

359 
Upstream transcription factor 1 

(Usf1) Usf1  NM_031777 -1.61 1.50E-02 

360 
Murine thymoma viral (v-akt) 

oncogene homolog 2 (Akt2) Akt2  NM_017093 -1.61 2.15E-02 

361 Fertility related protein WMP1  Wmp1  AF094609 -1.61 7.16E-03 

362 Laminin, gamma 1 Lamc1  BI275624 -1.60 3.11E-03 

363 
Preoptic regulatory factor-2 

(PORF-2). PORF-2  X53232 -1.60 1.18E-02 

364 
Natriuretic peptide clearance 

receptor Npr3  X78595 -1.60 4.83E-02 

365 Mevalonate kinase (Mvk) Mvk  NM_031063 -1.60 2.40E-02 

366 
Nucleosome assembly protein 1-

like 1 Nap1l1  BM386384 -1.60 8.57E-03 

367 
v-crk avian sarcoma virus CT10 

oncogene homolog (Crk) Crk  NM_019302 -1.60 2.11E-02 

368 Beta II spectrin-short isoform Spnb2  AW920849 -1.60 4.04E-02 

369 RAP2B, member of RAS Rap2b  NM_133410 -1.60 1.67E-02 
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oncogene family (Rap2b) 

370 
UDP-glucose glycoprotein: 

glucosyltransferase UGGT (Uggt) Ugcgl1  NM_133596 -1.60 1.94E-02 

371 Beta adaptin Ap2b1  M34176 -1.59 2.22E-02 

372 
CDC37 (cell division cycle 37, S. 

cerevisiae, homolog) (Cdc37) Cdc37  NM_053743 -1.59 1.14E-03 

373 
Avian sarcoma virus 17 (v-jun) 

oncogene homolog (Jun) Jun  NM_021835 -1.59 7.39E-04 

374 
Neuroblastoma RAS viral (v-ras) 

oncogene homolog (Nras) Nras  NM_080766 -1.59 3.33E-02 

375 SPASIC protein Accn4  BM386997 -1.59 4.17E-02 

376 Tspan-2 protein (Tspan-2) Tspan2  NM_022589 -1.59 4.61E-02 

377 Syntaxin 1 a Stx1a  BI290256 -1.59 1.59E-02 

378 
Neural visinin-like protein 1 

(Vsnl1) Vsnl1  NM_012686 -1.59 4.18E-02 

379 
Dopamine receptor interacting 

protein (Drip78) Drip78  NM_053690 -1.59 2.67E-03 

380 
Ryk mRNA for tyrosine kinase-

related protein Ryk  AB073721 -1.58 7.92E-03 

381 
Acetylcholine receptor beta 

(Chrnb1) Chrnb1  NM_012528 -1.58 4.68E-02 

382 
Guanine nucleotide-binding 

protein beta 1 Gnb1  AI103622 -1.58 1.07E-02 

383 MafG-2 Mafg  AB050011 -1.58 4.68E-04 

384 s-Afadin Af6  U83231 -1.58 2.60E-02 

385 

ATP-binding cassette, sub-family 

C (CFTRMRP), member 2 

(Abcc2) Abcc2  NM_012833 -1.58 2.95E-03 

386 
Myelin oligodendrocyte 

glycoprotein Zfp57  BE103960 -1.58 2.92E-02 

387 
Sprague-Dawley N-methyl-D-

aspartate receptor NMDAR2C Grin2c  U08259 -1.58 4.57E-02 
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subunit 

388  Fos-related antigen (Fra) Rabep2  NM_030585 -1.58 1.92E-02 

389 Adenylyl cyclase 2 (Adcy2 Adcy2  NM_031007 -1.58 2.91E-02 

390 Rabaptin Rabep1  U70777 -1.57 1.43E-02 

391 
Discs, large homolog 3 

(Drosophila) Dlgh3  BI290059 -1.57 4.46E-02 

392 Calpain 8 (Capn8) Capn8  NM_133309 -1.57 4.20E-02 

393 
 SNRPN upstream reading frame 

(Snurf) Snrpn  NM_130738 -1.57 3.12E-03 

394 
2,3-oxidosqualene:lanosterol 

cyclase Lss  D45252 -1.57 4.80E-02 

395 
5-AMP-activated protein kinase, 

beta subunit (Prkab1) Prkab1  NM_031976 -1.57 1.87E-02 

396 Noerythroid alpha-spectrin 2 Spna2  BM387423 -1.56 3.57E-03 

397 Substance P receptor Tacr1  M31477 -1.56 4.40E-02 

398 
Pancreatitis associated protein III 

(PAPIII0) Reg3g  L20869 -1.56 4.97E-02 

399 
Nuclear pore membrane 

glycoprotein 121 kD (Pom121),  Pom121  NM_053622 -1.56 3.46E-03 

400 Cysteine desulfurase Nifs  AI410876 -1.56 5.15E-03 

401 

Transporter protein; system N1 

Na+ and H+-coupled glutamine 

transporter Hnrpu  AI177494 -1.56 3.35E-03 

402 Peptide histidine transporter Slc15a4  AB000280 -1.56 1.68E-03 

403 
Drosophila polarity gene 

(frizzled) homologue Fzd2  L02530 -1.56 1.11E-02 

404 Actinin, alpha 4 (Actn4) Actn4  NM_031675 -1.56 1.91E-02 

405 
Unconventional myosin Myr2 I 

heavy chain Myr2  AI012566 -1.56 4.13E-02 

406 
Matrix metalloproteinase 24 

(membrane-inserted) Mmp24  AI175506 -1.56 4.39E-02 
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407 Calmodulin III (Calm3) Calm3  AI411316 -1.56 5.72E-03 

408 
Metabotropic glutamate receptor 

8 (Grm8) Grm8  NM_022202 -1.55 4.87E-02 

409 Synaptotagmin 6 (Syt6) Syt6  NM_022191 -1.55 2.62E-02 

410 

Sialyltransferase (N-

acetyllacosaminide alpha 2,3-

sialyltransferase) (Siat6) Siat6  NM_031697 -1.55 3.53E-02 

411 Cytoplasmic linker 2 (Cyln2) Cyln2  NM_021997 -1.55 3.11E-02 

412 
Homolog of yeast nuclear protein 

localization 4 (Npl4) Npl4  NM_080577 -1.55 6.62E-03 

413 
Vesicle associated protein 

(VAP1) Sec31l1  NM_033021 -1.55 9.19E-04 

414 Spermidine synthase (Srm) Srm  NM_053464 -1.55 3.89E-03 

415 Cell division cycle 25A (Cdc25a) Cdc25a  NM_133571 -1.55 1.04E-02 

416 V1-type AVP membrane receptor Itgb5  AW520594 -1.55 2.85E-02 

417 Septin 2 (Sept2) 2-Sep  NM_057148 -1.55 1.53E-02 

418 presenilin-2 Psen2  AB004454 -1.55 2.38E-02 

419 
Rattus sp. pre-mtHSP70; nuclear 

gene for mitochondrial product. -  S75280 -1.55 2.63E-02 

420 
Zinc finger protein 22 (KOX 15) 

(Znf22) Znf22  NM_133579 -1.55 4.29E-04 

421 
Epithelial sodium channel alpha 

subunit (rEnaca) Scnn1a  U54699 -1.55 4.17E-02 

422 
Unknown Glu-Pro dipeptide 

repeat protein -  BI294751 -1.55 6.11E-03 

423 Rat metalloendopeptidase Thop1  M61142 -1.55 8.62E-03 

424  myosin IB (Myo1b) Myo1b  NM_053986 -1.55 2.80E-03 

425 
Gamma-glutamyl carboxylase 

(Ggcx) Ggcx  NM_031756 -1.55 3.04E-02 

426 
S-Adenosylmethionine 

decarboxylase 1 (Amd1) Amd1  NM_031011 -1.55 1.73E-03 

427 Glutamate dehydrogenase Glud1  BI284411 -1.54 6.23E-03 
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428 
Transforming growth factor, beta 

receptor III (Tgfbr3) Tgfbr3  NM_017256 -1.54 1.74E-02 

429 Malic enzyme 1, soluble (Me1) Me1  NM_012600 -1.54 5.94E-03 

430 Hsp70 binding protein HspBP Hspbp1  AF187860 -1.54 7.39E-03 

431 
Selective LIM binding factor, rat 

homolog (Slb) Slb  NM_053792 -1.54 4.49E-02 

432 

Castration Induced Prostatic 

Apoptosis Related protein-1 

(CIPAR-1) Cipar1  AI136555 -1.53 2.14E-02 

433 

Colony stimulating factor 2 

receptor, beta 1, low-affinity 

(granulocyte-macrophage) 

(Csf2rb1)- Csf2rb1  NM_133555 -1.53 3.95E-02 

434 
Clone 15 phosphodiesterase 1C 

(PDE1C) Pde1c  AF328800 -1.53 4.78E-02 

435 Protease, serine, 15 (Prss15) Prss15  NM_133404 -1.53 2.17E-02 

436 NM23-R7 (Nm23-R7) Nme7  AF202049 -1.53 8.71E-03 

437 

GPI-anchored metastasis-

associated protein homolog 

(C4.4a) C4.4a  NM_021759 -1.53 2.38E-02 

438 
Rat adult liver mRNA for S1-1 

protein Rbm10  D83948 -1.53 1.37E-02 

439 Fatty acid synthase (Fasn) Fasn  NM_017332 -1.53 3.36E-02 

440 
Galactosyltransferase associated 

kinase (GTA) Cdc2l1  L24388 -1.53 1.66E-02 

441 

Protein phosphatase type 1A 

(formely 2C), Mg-dependent, 

alpha isoform (Ppm1a) Ppm1a  NM_017038 -1.53 3.58E-03 

442 
Phosphatidylinositol 4-kinase 

(Pik4cb) Pik4cb  NM_031083 -1.52 9.20E-03 

443 Dipeptidylpeptidase III (Dpp3) Dpp3  NM_053748 -1.52 2.06E-02 

444 
Rapamycin and FKBP12 target-1 

protein (Frap1) Frap1  NM_019906 -1.52 1.41E-02 
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445 Limkain b1 (Lkap) Lkap  NM_133421 -1.52 4.87E-02 

446 
Alcohol dehydrogenase family 3, 

subfamily A2 (Aldh3a2) Aldh3a2  NM_031731 -1.52 6.86E-03 

447 Phospholipase D Pld1  AB000779 -1.52 1.45E-02 

448 ADP-ribosylation-like 2 (Arl2) Arl2  NM_031711 -1.52 1.53E-02 

449 Gamma-synergin Ap1gbp1  AF169549 -1.52 6.36E-03 

450 
Collagen type XVIII, alpha 1 

chain Col18a1  BI288582 -1.52 7.81E-03 

451 Acetyl-CoA transporter (Acatn) Slc33a1  NM_022252 -1.52 7.76E-04 

452 
Neurolysin (metallopeptidase M3 

family) (Nln) Nln  NM_053970 -1.51 1.29E-02 

453 Heat shock transcription factor 1 Hsf1  AI172496 -1.51 2.87E-05 

454 ATPase, Class II, type 9A Atp9a  BG380816 -1.51 2.44E-03 

455 
Prostaglandin transporter subtype 

2 (Pgt2) Slco3a1  AF239219 -1.51 3.37E-02 

456 CPG2 protein (CPG2) -  NM_019355 -1.51 1.46E-02 

457 Thymine-DNA glycosylase (Tdg) Tdg  NM_053729 -1.51 3.10E-02 

458 
Ryk mRNA for tyrosine kinase-

related protein Ryk  BE113287 -1.51 3.17E-02 

459 
UNC-119 homolog (C. elegans) 

(Unc119) Unc119  NM_017188 -1.51 3.64E-02 

460 
Endo-alpha-mannosidase 

(Enman) Enman  NM_080785 -1.50 4.59E-02 

461 
Hepatoma-derived growth factor 

(Hdgf) Hdgf  NM_053707 -1.50 7.84E-03 

462 
 Shank-interacting protein 

(Conneck1) Sharpin  NM_031153 -1.50 9.14E-03 

463 

A disintegrin and 

metalloproteinase domain 

(ADAM) 15 (metargidin) 

(Adam15) Adam15  NM_020308 -1.50 2.19E-02 

464 G protein-coupled receptor LGR4 Gpr48  BI300274 -1.50 2.57E-02 
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(LGR4) 

465 
Ectonucleotide pyrophosphatase 

phosphodiesterase 2 (Enpp2) Enpp2  NM_057104 -1.50 1.06E-02 

466 Xrcc5 Xrcc5  AA893188 -1.50 4.26E-03 

467 Chloride channel 7 (Clcn7) Clcn7  NM_031568 -1.50 7.07E-03 

468 
Cytochrome P450 Lanosterol 14 

alpha-demethylase (Cyp51) Cyp51  NM_012941 -1.50 2.09E-02 
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