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Using the Flowing Afterglow as a Chemical Reaction Mass Spectrometer 
 

Mark W Morris, PhD 

University of Pittsburgh, 2007

 The flowing afterglow was used to study the formation and reaction of protonated 

hexamethyldisiloxane, protonated trimethylsilanol, and the trimethylsilyl cation with a variety of 

neutrals.  The neutrals were selected based on their importance in volatile organic compound 

(VOC) monitoring and/or their type (i.e. amines, ketones, etc.).  The reagent ions contain the 

trimethylsilyl group, which has been referred as a “large proton”.  The hydronium ion is used in 

VOC analysis; this ion clusters with water and only provides molecular weight information.  

Various products were identified such as proton transfer, trimethylsilyl transfer, hydride ion 

transfer, etc.  Secondary products were also identified, which formed because of the presence of 

excess neutrals.  These secondary products are unimportant if the reagent ions listed above are 

used for trace gas analysis. 

The flowing afterglow was used as a chemical reaction mass spectrometer to measure 

Henry’s law constants.  The Henry’s law constant for acetonitrile was measured to be 49 ± 7, 

while the average value in the literature is 52 ± 3 mol/kg bar; the constant for acetone was 

measured to be 27 ± 3 and the literature value is 28 ± 3 mol/kg bar.   

The chemical reaction mass spectrometer was also used to detect VOCs from thermal 

decomposition of phenolic resin coated on a graphitic board.  A custom SS vessel was used to 

decompose the resin.  Phenol, ammonia, methyl and dimethyl phenol, and other VOCs were 

detected and quantified.  Concentrations ranged from 0.1 to 10 ppm for a 50.5 mg piece of 

graphitic board. 
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1.0  INTRODUCTION 

The flowing afterglow is a device that was originally used to study ion/molecule reactions 

occurring in space.  Norton and coworkers published a paper using the flowing afterglow to 

investigate ion/molecule reactions originating in the Martian ionosphere.1  Since that time, the 

uses of the flowing afterglow have been modified to study organic reactions in the absence of 

solvent in addition to trace gas detection.2,3 

     The use of the flowing afterglow for trace detection of volatile organic compounds (VOCs) 

has occurred in the last 10 years.  The technique utilizes known ion/molecule reaction products 

along with quantitative data (i.e. rate coefficients, branching ratios).  Quantitation of VOCs in a 

sample can occur without any external or internal standards once the fundamental ion chemistry 

is known.   

     The first attempt of quantifying VOCs was published by Lindinger and coworkers.4  They 

used the radical cation of xenon to detect benzene.  The fragmentation products from the 

ion/molecule reaction with benzene did not allow for any meaningful interpretation.  Lindinger 

and coworkers published the use of the hydronium ion as the reactant ion placed in a uniform 

electric field (PTR-MS).5  The hydronium ion usually transfers a proton to a neutral whose 

proton affinity (PA) is larger than that of water, which allows for less fragmentation than by 

other methods.  Lagg and coworkers have used the PTR-MS for a variety of applications, such as 

detecting the VOCs emitted from strawberries to detect spoilage.2 

1 



Smith and coworkers have used the selected ion flow tube (SIFT) to detect and quantify 

VOCs.  One advantage in using the SIFT over the flowing afterglow is that one ion can be 

selected out of many, which simplifies the interpretation of the ion chemistry.  The fundamental 

ion chemistry of the hydronium ion (H3O+), the radical cation of oxygen (O2
+•), and NO+ have 

been investigated with a variety of compounds such as amines,6 ketones,7 aromatics,8 and 

alcohols.9  The products of the ion/molecule reaction are identified along with the determination 

of the branching ratio (if needed) and the rate coefficient.  The SIFT has been used to determine 

the amount of isoprene in breath, which has been linked to the amount of cholesterol present in 

blood.10  Another experiment using the SIFT was to determine the concentration of ammonia and 

amines in urine headspace.11  Amines found in urine have been linked to renal failure. 

     Other groups have utilized the ability of the SIFT to detect VOCs.  Wilson and 

coworkers have used the SIFT to determine the concentration of ethanol present in blood using 

Henry’s law by sampling the headspace.12  Custer and coworkers have used the negative ion 

complement to the hydronium ion, the hydroxide anion (OH-), to detect VOCs present from leaf 

wounding and specifically the formation of HCN.13

     The elucidation of isobaric species present in VOC analysis is a challenge since the 

mass spectrometer only returns an m/z value.  Smith and coworkers have suggested to use H3O+, 

O2
+•, and NO+ concurrently to detect VOCs.14  The ions react with the same neutral differently, 

which would then lend insight to the VOC’s identification.  Another means of identifying 

isobaric VOCs has been the use of gas chromatography to separate compounds and then to allow 

them to elute from the column into a PTR-MS.15  Lindinger alluded to the varying of the electric 

field strength in the drift tube to determine isobaric species.2  Each technique has its drawbacks 

and benefits.  For example, the gas chromatograph can be used to separate isobaric compounds if 

 2 



their retention times are different.  The drawback of this technique is that the real time analysis 

of VOCs is limited to the chromatographic run time.  Varying the electric field of the drift tube 

or using various reagent ions allow positive identification of the VOCs present in the sample, but 

does not allow for “online and real-time” VOC analysis.    

    The hydronium is a commonly used reagent ion for VOC analysis.  One problem with 

its use is that it transfers a proton to most VOCs, only allowing tentative identification of VOCs.  

Smith and coworkers have used O2
+• and NO+ in addition to H3O+ to facilitate identification.14  

While NO+ can be used in conjunction with the hydronium ion to facilitate identification, O2
+• 

usually generates a myriad of product ions especially if more than one neutral is introduced.14   

1.1 CONCLUSIONS 

The experimental methodology of the flowing afterglow is discussed in chapter 2.  The 

ion/molecule chemistry of protonated hexamethyldisiloxane (Ch 3), protonated trimethylsilanol 

(Ch 4), and the trimethylsilyl cation (Ch 5) are discussed in this manuscript as candidates to 

replace the hydronium ion for VOC analysis.  Control experiments involving Henry’s law and 

the exponentional flask technique in the quantitation of VOCs are discussed in chapter 6.  The 

VOCs emitted from phenolic resin placed on a graphitic board are discussed in chapter 7.   
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2.0    EXPERIMENTAL METHODOLOGY  

2.1 EXPERIMENTAL PROTOCOL 

A schematic of the flowing afterglow is shown in Figure 2.1.  The flowing afterglow 

consists of three regions:  ion generation, reaction, and detection.  An electrical current is passed 

through a tungsten filament to create high energy electrons, which upon reaction with the added 

neutral, ultimately lead to the formation of the reagent ions.  If other reagents are added to 

generate the reagent ion of choice, the second reagent is first added 36.3 cm from the nose cone 

(inlet B).  Enough reagent is added to ensure that all reactant ions have been quenched.  The 

defined flow of the neutral added at inlet B is relocated to inlet C (~100 cm from the nose cone).  

The sample, which is to be analyzed by the reaction with the reactant ion, is added at a fixed 

distance from the nose cone, depending on the experiment performed.  The ions are extracted 

from the flow tube into the detection end through an orifice plate and a series of lenses, mass-

separated by a quadrupole and directed to an electron multiplier for detection and collection by a 

Merlin Automation System (Extrel CMS) or by a custom-built data collection system. 

 Qualitative product, rate coefficient, and branching ratio determinations were performed 

to fully characterize the ion/molecule chemistry.  This includes two qualitative experiments  

conducted on separate experimental days.  An experimental day is 

 5 



6 
 

conversion
dynode

electron 
multiplier

quadrupole
mass analyzer

nose cone and
sampling orifice

653 l s-1

Roots
pump

ion source

sample introduction
or

neutral gas inlets

ion generation ion reaction

PHe=0.3 Torr

He reagent gas

auxiliary reagent gas
Inlet C

Inlet A

Inlet B

ion analyzer

2·10-5 1·10-6

700  l s-1

diff.
pump

280  l s-1

diff.
pump

 

Figure 2.1  A schematic diagram of the University of Pittsburgh's FA apparatus illustrating its major sections.  The pressures 

indicated are uncalibrated ion gauge readings for a typical experiment at a flow tube pressure of 0.3 Torr of helium (capacitance 

manometer measurement).  The pumping speeds listed are for diffusion pumps and reflect values for air. 
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defined as the complete startup and shutdown of the instrument.  Qualitative experiments 

determine the m/z values of an ion/molecule reaction.  Changing the concentration of the neutral 

in the flow tube provides insight as to the formation of products, whether they be primary or 

secondary.   

In addition, the rate coefficient of the ion/molecule reaction is measured.  Since, the 

measurement of a rate coefficient is a standard and well-known experiment;1,2  only unique 

details of such measurements will be discussed.  To ensure accuracy, the rate coefficient is 

measured a minimum of five times over two experimental days and the average of these 

independent measurements is reported.  The error attached to a reported rate coefficient is the 

precision in these measurements.  The accuracy of a measured rate coefficient is estimated as 

20%; the primary contributor to the uncertainty are all flow measurements.  The efficiency of 

reaction reported is defined as the ratio between the measured rate coefficient and the collisional 

rate coefficient.  The calculation of the collisional rate coefficient is well established.3  

The final experiment used to characterize an ion/molecule reaction is the measurement of 

the branching ratio (i.e., the absolute yield of competiting products).  In this work, the method of 

measuring the branching ratio used is that is described by Anderson and coworkers.4  In this 

technique, the intensities of the reactant ion and product ions are recorded as the flow of the 

neutral is varied at a fixed distance (i.e., in effect, changing the extent of reaction).  A plot of 

relative intensity of the product ions versus the extent of loss of the reagent ion is then generated.  

The slope of the lines of each product ion at 0% conversion is its respective branching ratio.  The 

error in the slope is used as error in the branching ratio.  If a curvature of product ion intensities 

is observed, then a secondary reaction must be occurring, and which either removes or adds to 

7 



that product ion.  These branching ratio plots are then used to construct chemical reaction 

schemes. 

 In a VOC analysis experiment, the desired reagent ion is generated, and the sample is 

introduced at a fixed distance from the nosecone.  Volatile organic compounds can be identified 

by using the following technique.  The identities of the neutrals are inferred by the knowledge of 

the chemistry occurring in the sample and by previous fundamental ion/molecule chemistry.  The 

VOCs can be quantitated, as described in the next section. 

2.2 DERIVATION OF QUANTITATION OF THE CRMS 

An example of a bimolecular ion/molecule reaction is H3O+ reacting with acetone to 

produce protonated acetone and water, having a bimolecular rate coefficient kII (eq 2.1).  A first  

H3C
C

CH3

O

H3C
C

CH3

O
H

H3O+ +
kII

(2.1) 

 

order integrated equation assuming that the hydronium ion concentration is much larger than the 

concentration of acetone can be written (eq 2.2), where [Acetone]t is the concentration of acetone 

[Acetone]t = [Acetone]0 e
-kII [H3O+]0 t

 
                       (2.2) 

at time t, [Acetone]0 and [H3O+]0 are the concentration of acetone and the hydronium at time t=0, 

respectively, and t is the reaction time. 

     Since a neutral species cannot be directly detected in our CRMS, we need to write the 

concentration of acetone at time t in terms of observable ion signals (eq 2.3).  Eq 2.3 is a 
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[Acetone]t = [Acetone]0 - [Acetone-H+]t             (2.3) 

mass-balanced description of the limiting reagent acetone.  Substituting eq 2.3 into eq 2.2 and 

solving for the initial concentration of acetone leads to eq 2.4.  

 

-kII [H3O+]0  t
[Acetone]0 =

1 - e

[Acetone-H+]t

)
 

(2.4)

     When the experimental conditions are correctly chosen such that kII t [H3O+]0 <<1, 

then 1-e-kII[H3O+]0t simplifies to kII [H3O+]0t and eq 2.4 can be rewritten as eq 2.5.  It must be noted 

that in eq 2.5, the concentrations of ions cannot be measured directly.  However, the count rates 

of the ions can be.  The relation of the concentration of protonated acetone and the 

hydronium ion to their count rates is expressed in eq 2.6, where C is an unknown conversion 

factor assumed to be constant across the entire observed mass range, t is the reaction time, and 

[H3O+]0 is the concentration of the hydronium ion at time t=0.   

kII [H3O+]0 t
[Acetone]0 =

[Acetone-H+]t (2.5)

[Acetone-H+]t

[H3O+]0
=

C {Acetone-H+}

C {H3O+}0

(2.6)

Using eq 2.7, the number density of a particular VOC in the flow tube can be determined.  

Relating the number density of the VOC to the number density of the bulk sample containing 

that VOC yields the mixing fraction of that VOC. 

[A]ppm =
[A]0

[Sample]
106            (2.7)

 

9



     It should be noted here that because the bulk sample is diluted 1000-10,000 fold when 

it is introduced into the helium buffer gas, the detected mixing fraction in the flow tube is 

considerably smaller than in the bulk sample.  

2.3 EVALUATING ASSUMPTIONS 

One of the assumptions mentioned in section 2.2 is that as kII[H3O+]t in (1-e(-kII[H3O+]t)) 

approaches 0, (1-e(-kII[H3O+]t)) can be approximated by kII [H3O+] t.  The assumption that (1-e(-

kII[H3O+]t)) is effectively kII[H3O+]t under the conditions we employ to determine quantities can be 

evaluated by examining these two expressions using typical experimental variables.  Eq 2.8 

shows how reaction time is related to the experimental variables.  The list of commonly used 

experimental conditions is shown in Table 2.1, having r, α, and R set to be 3.65 cm, 1.6, and 

62365.6 cm3 Torr/mol K respectively.  R is the gas constant, α is a correction factor,5 and r is the 

radius of the flow tube.  Evaluating eq 2.8 using the data from Table 2.1, gives a reaction time of 

6.1 ms.  Evaluation of (1-e(-kII[H3O+]t)) t = 6.1 ms and the kII and [H3O+] values noted in table 2.1  

t =
z  PHe  π  r2

α FHe  R  T
(2.8)
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Table 2-1  Common  Experimental Conditions used for VOC analysis 

Experimental 

Variable 

Magnitude 

      [H3O+]            3 X 106 counts/s 

         kII 3.9 X 10-9 cm3 molecule-1 s-1

         T  298.3 K 

       PHe 0.310 Torr 

        z 76.7 cm 

      FHe 5.9 X 10-3 mol/s 

 

a value of  7.02 X 10-5.  Evaluation of  (kII[H3O+]t) yields a value of 7.02 X 10-5.  In other words, 

under the conditions discussed in table 2.1, (1-e(-kII[H3O+]t)) = (kII[H3O+]t.   

The final assumption made is that the concentration of the reagent ion is much larger than 

the concentration of the VOC (e.g.. [H3O+]>>[Acetone]).  This assumption will be validated in 

Chapter 5. 

2.4 PROPAGATION OF ERRORS 

The expression used with readily known variables that determines the number density of a VOC 

is shown in eq 2.9.  Table 2.2 lists all of the errors associated with one measurement of a VOC 

and their sources.  The errors mentioned in table 2.2 regarding the hydronium ion and [HA+] are  
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Table 2-2  Errors in accuracy from various measurement sources  

Variable Error (± %) Source 

kII          20 Adams, N.G.; Church, M.J.; Smith, D.  J Phys D 1975, 8, 1409-1422. 

       Pft         0.08 MKS Calibration 

Fhe         2.10 Wet test meter calibration by Morris on 10/21/2005. 

       T           2 Thermometer 

       r           1 Measurement by Morris on 4/3/07 

[H3O+]           1 See text for explanation 

[HA+]           5 See text for explanation 

       z 6.8 Alge, E.; Adams, N. G.; Smith, D. J. Phys. B 1983, 16, 1433-1444. 

Fsample          2.13 See text for description 

       α            3 Adams, N. G.; Church, M. J.; Smith, D. J. Phys. D 1975, 8, 1409. 

assumed numbers and are taken as a best case scenario for counting statistics.  The user should 

report their own errors in counting statistics. 

 
 

kII {H3O+} z PHe A
[A]0=

{HA+}t α FHe R  T

 
(2.9)

A general propagation of errors is shown in that includes covariances (eq 2.10).  The 

following is an analysis of the variances and covariances that exist in the error analysis.  The 

bimolecular rate coefficient (kII) can be dependent on temperature and pressure.  If the  

  

(2.10)
Sx

2 = Su
2 δx

δu

2

+ Sv
2 δx

δv

2

+ 2Suv
δx

δu

δx

δu
+  ...

rate coefficient of the ion/molecule reaction of interest is dependent on pressure, that is 

insignificant since the experiment is ran at a fixed pressure and temperature .  Therefore, no 
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covariance exists with kII.  In the proposed experiment, the following are held or are constant and 

therefore no covariances exist amongst them:  temperature, the reaction distance, the flow of 

sample, the flow of helium, and the pressure in the flow tube.  Since we assume that 

[H3O+]>>[HA+], there are no covariances amongst these two variables either.  Therefore, there 

are no covariances present in this experiment and the error analysis can be treated without 

including covariances. 

     The flow of a sample is determined by measuring the pressure change over time as a 

calibrated volume (eq 2.11).  The delta pressure term is determined by the reading of two 

separate pressures along with one time measurement.   

 

 

 

(2.11)FA = -
Δ P (Torr)
Δ t (s) T(K) Constant

An entire experiment would then comprise of eight pressure measurements along with four time 

measurements and one temperature measurement.  The error in one time measurement using a 

digital stopwatch that is accurate to 0.01s is 2%.  The stated error in the 1000 Torr Baratron used 

for pressure measurements is 0.08%.  Therefore, if one uses eq 2.10, the propagated error of FA 

incorporating eq 2.11 is 2.13%. 

    The next correction to the VOC quantitation is an end correction.  An end correction is 

a correction to the reaction distance.  An end correction is needed since the distance is not varied 

in this experiment.  Alge and coworkers have estimated the end correction for a ring inlet (the 

type on our instrument) to be 1-2 cm.5  The error associated with the reaction distance is 6.8%. 

     If one uses the errors listed in table 2.3, 6.8% for the reaction distance error, 2.13% for 

the sample flow error, and eq 2.10, the entire propagated error in a VOC measurement is 22% if 

all of the errors stated above are included.  There is no covariance analysis needed in this error 

analysis. 
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3.0  FACILE TRIMETHYLSILYL TRANSFER INVOLVING ION/MOLECULE 

REACTIONS OF PROTONATED HEXAMETHYLDISILOXANE 

3.1 INTRODUCTION 

The Selected Ion Flow Tube (SIFT)1 and Proton Transfer-Mass Spectrometer (PTR-MS) have 

been used to identify and quantify volatile organic compounds (VOCs).2  This technique utilizes 

known branching ratios, rate coefficients, and products from ion/molecule reactions reported in 

the literature.  This method has advantages over other techniques such that no conventional 

“calibration” methods are needed for quantitation, and analysis of VOCs can occur on-line in 

real-time.  Readily accessible experimental variables such as the intensity of the product and 

reactant ions and the value of the rate coefficient are needed for quantitation.3

       Three reagent ions that have been used in VOC analysis are H3O+, O2
+•, and NO+.4  While 

each of these ions has their advantages, they all suffer from some limitations.  The hydronium 

readily clusters with water; these cluster ions can also react with the VOCs, complicating 

spectral interpretation.5  When O2
+• is allowed to react with VOCs, dissociative charge transfer 

products are formed.6  NO+ can form products through hydride ion transfer, clustering, and/or 

charge transfer.6  These limitations suggest that the development of novel reagent ions, which do 

not complicate spectra interpretation, would be useful.  If one considers the CRMS approach in 

general and the reagent ion in detail, it can be argued that the ideal reagent ion possesses the 
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following attributes: (1) only one ion is produced during the reagent ion preparation, (2) the 

reagent ion and product ions corresponding to the VOCs being investigated are unreactive with 

the major components of air and breath (e.g. O2, N2, CO2, H2O), (3) the reaction between the 

reagent ion and the trace VOCs ideally has an efficiency of 1, and (4) the m/z values observed 

are readily traceable back to the VOCs identity.  The hydronium ion performs well for criterion 

1.  Smith and others have reported the ability to generate ~100 Kcps of the hydronium ion using 

a selected ion flow tube.7  The hydronium ion and its product ions do cluster with water, but do 

not react with other major components of air and breath since their proton affinities are less than 

water.  The hydronium ion partially fails criterion 3 since the cluster ions are unreactive with the 

major components of air and breath but are reactive with water.  The radical cation of oxygen 

fulfills criteria 1, 2, and 5.  The radical cation of oxygen does cluster with water, but not as 

efficiently as the hydronium ion  (c.f. kIII = 2.9  vs. 6.65 X 10-28 molecule-2 cm6 s-1, 

respectively).8,9   O2
+• forms multiple dissociative charge transfer products with various neutrals 

such as ethers and therefore fails criterion 4.6,10  NO+ performs well in criteria 1, 2, and 4.  NO+ 

can produce any of three products, which could allow for differentiation of the neutrals 

identity.10  Most reaction efficiencies are less than 1, and therefore NO+ fails at criterion 5.  An 

alterative reagent ion could be useful for VOC analysis.               

     Fleming has referred to the trimethylsilyl group as a “large proton”.11   One could envision 

replacing the “protons” on the hydronium ion sequentially with a trimethylsilyl moiety.  That ion 

should then be evaluated against the criteria stated above in hopes of finding a candidate 

precursor ion suitable for VOC analysis.  Chen and Stone have studied the ion chemistry of the 

trimethylsilyl cation with various amines and ammonia using a flowing afterglow.12  They 
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postulated trimethylsilyl transfer from protonated trimethylsilanol to ammonia (eq 3.1).  

Wojtyniak and Stone have observed trimethylsilyl transfer using a high pressure mass 

 

 (3.1)
Me3SiOH2   +   NH3 +     H2OMe3Si NH3

 

spectrometer and determined relative trimethylsilyl cation affinities.13  Trenerry and coworkers, 

using an ion cyclotron resonance spectrometer, also have determined relative trimethylsilyl 

cation affinities within certain classes of compounds (i.e. alcohol, esters).14

     Trimethylsilyl transfer chemistry can be used in competiton with proton transfer to probe a 

neutral’s identity.  This chapter focuses on the formation and reaction of protonated 

hexamethyldisiloxane ((Me3Si)2OH+).  Tobita and coworkers have studied the mass ionized 

kinetic energy (MIKE) studies of m/z 147, an electron ionized fragment of 

hexamethyldisiloxane.15  Li and Stone have determined the proton affinity of 

hexamethyldisiloxane, but no group yet has studied reactions of protonated 

hexamethyldisiloxane with a variety of neutrals.16  The thrust of this chapter is to understand the 

fundamental ion chemistry of protonated hexamethyldisiloxane and to discuss the possibility of 

its use as a reagent ion that can be used to detect and identify VOCs on the breath of  

individuals17. 

3.2 EXPERIMENTAL 

Our flowing afterglow has been previously described in detail;18 only details unique to this work 

are described here.  Helium (99.997%, Valley National Gas, Wheeling, WV) is used as the 
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carrier gas and is further purified by passage through a trap filled with a uniform mixture of 3A, 

4Å and 13X molecular sieves and immersed in liquid nitrogen.  Pressures in the flow tube were 

selected to be in the range from 0.250 – 0.500 Torr and flow rates of helium ranged from 120 – 

180 STP cm3/s.   

     Qualitative experiments, which determine the m/z of the products made from an ion-molecule 

reaction, were performed at least twice over two experimental days in order to ensure 

reproducibility.  An experimental day is defined as the complete startup and shutdown of the 

instrument.  Pseudo-first order conditions were used for all experiments with the ion being the 

limiting reagent.   

     Rate coefficients were measured by monitoring the change in reactant ion intensity as the 

concentration of the neutral was changed.  Rate coefficients were measured at least five times 

over two experimental days, and the error reported for each rate coefficient is the precision.  The 

accuracy of a measured rate coefficient is ± 20% or better, and is primarily limited by errors in 

the absolute pressure measurements and flow measurements.19  The listed error in accuracy is a 

propagation of all of the errors of the experimental variables.  The efficiency of reaction reported 

is the ratio of the measured rate coefficient to the collisional rate coefficient.  The collisional rate 

coefficient was calculated using the variational collision complex theory as described by Su and 

coworkers.20  Polarizabilities and dipole moments, obtained from suitable sources, were used to 

calculate the collisional rate coefficient.21  The polarizability of trimethylphosphate was 

calculated to be 1.60 X 10-23 cm3 using the group additivity method of Miller and coworkers 

since no polarizability has been reported in the literature.22  For the cases where no discernable 

reaction occurred, an upper limit of the rate coefficient was determined.   

     The reported branching ratios are measured twice over two experimental days using the 
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method described by Anderson and coworkers.23  The reported branching ratios are averaged 

over separate experiments conducted on different experimental days.  The branching ratio plots 

also can determine secondary products, which are defined as the reaction of a primary product 

ion with a second equivalent of the neutral in the reaction being investigated.  The importance of 

a secondary product is revealed by the appearance of a curvature in the data points of the 

branching ratio plots at longer reaction times. 

     The following reagents were obtained from the following sources and used without 

further purification:  acetone, acetonitrile, triethylamine, furan (99% Fisher Scientific, 

Pittsburgh, PA), ethyl acetate, benzene (99.9% HPLC Grade Fisher Scientific),  

hexamethyldisiloxane (98% Sigma-Aldrich), deuterium oxide (99.9% D MDS Isotopes),  2-

methylbutane (99.7%, Fisher Scientific), cyclopentene (96% Sigma-Aldrich), methyl butyrate (≥ 

98%, Sigma-Aldrich),  naphthalene (99+% Scintillation Grade, Sigma-Aldrich), methane (Grade 

4.0 Valley National Gas), isoprene (99% Acros Organics), ammonia (semi-conductor grade, 

Matheson), ethanol (100%, Aaper Alcohol and Chemical Company), acetic acid (glacial, Fisher 

Scientific), trimethylphosphate, dimethylsulfide, pyridine (99+%, Sigma-Aldrich), methyl 

mercaptan (Matheson Gas Products), diethyl ether (99.7%, JT Baker), dimethylformamide 

(99+%, Fisher Scientific), and diethylamine (98+%, Avocado Research Lab).  Tert-butyl 

chloride (99% Sigma-Aldrich) was placed in a flask containing 4Å molecular sieves (Fischer 

Chemical) to hinder the formation of tert-butyl alcohol via a hydrolysis reaction.  All liquid 

reagents were subject to several freeze-pump-thaw cycles each experimental day to ensure 

contaminants other than the neutral of interest were removed.  Deionized water was also 

deoxygenated by pumping at room temperature.  A sweeper, a piece of glassware that facilitates 
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volatilization of compounds, was used for trimethylphosphate and naphthalene in qualitative and 

branching ratio determinations.   

3.3 RESULTS 

3.3.1 Formation of protonated hexamethyldisiloxane 

      Three reagent ions: protonated methane, the hydronium ion, and the tert-butyl cation 

were selected to see which would be a suitable candidate to form protonated 

hexamethyldisiloxane.  These three ions were selected because of their capability of transferring 

a proton to hexamethyldisiloxane (HMDSO) in addition to the exothermicity of the proton 

transfer reaction (see Table 3.1).   

Table 3-1  Summary of the reactions of AH+ with hexamethyldisiloxane 

AH+ kII (Eff)a ΔHrxn (kcal/mol)c

CH5
+

2.83b 

(1.000) 
-72.4 

H3O+
2.64 ± 0.20   

(0.983) 
-39.7 

tBu+
1.16 ± 0.09 

 (0.680) 
-10.6 

 
a—Units of 10-9 cm3 molecule-1 s-1.  Eff = kobs/kcoll.  kcoll is calculated via the VTST theory of Su 
and Bowers.20

b—Assumption that kcoll = kobs
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c—Linstrom, P.J. (Ed.) NIST Chemistry Webbook (http://webbook.nist.gov, accessed 20 March 

2007).   
 

     The first ion/molecule reaction explored was the reaction of CH5
+ with HMDSO.  When 

methane is ionized in the flowing afterglow, C2H5
+ is also formed.24  When these ions are 

allowed to react with HMDSO, two m/z values are observed, 163 and 191 (Scheme 3.1).  These 

m/z values are assigned as protonated hexamethyldisiloxane and C2H5(O(SiMe3)2)+, respectively.  

This route of forming protonated hexamethyldisiloxane was dismissed because of the following 

observations.  When protonated hexamethyldisiloxane was allowed to react with acetone, the 

following products were observed:  m/z 131, 221, and 117 (also shown in Scheme 3.1).  m/z 131 

is assigned as the trimethylsilyl transfer product of acetone, m/z 221 is the proton-bound dimer of 

HMDSO and acetone, and m/z 117 was at first assigned as the proton-bound dimer of acetone.  

This assignment was changed when protonated hexamethyldisiloxane was allowed to react with 

d6-acetone.  An unexpected mass shift of 6 Da occurred instead of the expected 12 Da.  Another 

suitable route for the formation of protonated hexamethyldisiloxane was then explored. 

     The next attempt to form protonated hexamethyldisiloxane was to allow the hydronium ion to 

react with HMDSO.  The products formed from this reaction are protonated 

hexamethyldisiloxane and the proton-bound dimer of water and HMDSO (eq 3.2a and b).  The  

 

 (3.2a)

 (3.2b)

H3O     +     (Me3Si)2O (Me3Si)2OH     +     H2O

H3O(H2O)n     +     (Me3Si)2O (Me3Si)2OH(H2O)     +    n-1 H2O
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Scheme 3-1  Formation and reaction of protonated hexamethyldisiloxane via proton transfer with 

acetone.  Note the isomeric m/z 117 formed due to the excess exothermicity of the reaction. 

 

proton-bound dimer of water and HMDSO is formed via a solvent switching reaction with 

H3O(H2O)n
+ (n=1-3) to (Me3Si)2OH(H2O)+).  H3O+(H2O)n is formed in the flow tube due to the 

reaction of the hydronium ion with excess water.  Bierbaum and coworkers have characterized 

this clustering reaction.8  Since two products are formed via this reaction, a final attempt was 

made to form a “clean” spectrum of protonated hexamethyldisiloxane. 
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      The final attempt to form protonated hexamethyldisiloxane was to ionize tert-butyl 

chloride.  The tert-butyl cation (m/z 57) and C8H17
+ at m/z 113 are formed from this process (eq  

 

 

+      HClMe C
Me

Me
Cl+Me C

Me

Me
Me C

Me

Me
CH2 C

Me

Me
(3.3)

3.3). When these complements of ions are allowed to react with HMDSO, a cleaner spectrum of 

protonated hexamethyldisiloxane is obtained then through the other routes of formation via the 

reaction stated in eq 3.4.  This fulfills one of the criteria as mentioned in the introduction.   

          +      (Me3Si)2O (Me3Si)2OH             +
H3C

C
H3C

CH2

CH3
CH3C

CH3  
          (3.4)

When (Me3Si)2OH+, formed via proton transfer from the tert-butyl cation, is allowed to react 

with acetone, an expected secondary product ion at m/z 117 is formed.  d6-Acetone experiments 

show a shift of 12 Da, which indicates that the ion at m/z 117 is the proton-bound dimer of 

acetone.  Since the tert-butyl cation generates the cleanest spectrum of protonated 

hexamethyldisiloxane, it was used to generate (Me3Si)2OH+ for reactions with neutrals since its 

ion chemistry involving acetone is well defined.   

3.3.2 Reaction of protonated hexamethyldisiloxane with neutrals 

A summary of the data obtained from the reaction of protonated hexamethyldisiloxane with 

selected neutrals is summarized in Table 3.2.  When (Me3Si)2OH+ is allowed to react with 2-

methylbutane, cyclopentene, benzene, methyl mercaptan, furan, isoprene, and naphthalene, no 

products are formed under our experimental constraints; for these reactions, an upper limit of the 

rate coefficient could be determined.         
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     Cluster ions were observed when water, ethanol, and acetic acid were allowed to react with 

(Me3Si)2OH+.  Plots of kobs vs. pressure of helium do not exhibit any pressure dependence over 

0.250 – 0.500 Torr for ethanol and acetic acid.   

     Acetonitrile, acetone, diethyl ether, and dimethylsulfide form both cluster and trimethylsilyl 

transfer products.  The measured branching ratios and rate coefficients are shown in Table 3.2.  

Acetone forms a secondary product, which is identified by a curvature of the branching ratio (see 

experimental section), that is assigned as the proton-bound dimer of acetone.  When the 

concentration of acetonitrile, diethyl ether, and dimethylsulfide were increased, no secondary 

products were observed. 

     When protonated hexamethyldisiloxane is allowed to react with ammonia and 

dimethylformamide, the secondary products observed are the proton-bound dimer of the base.  

This product is formed by a reaction of a protonated base with another equivalent of base in the 

presence of helium.  Secondary and tertiary products formed when protonated 

dimethylformamide is allowed to react with one or two equivalents of dimethylformamide are 

the proton-bound dimer and trimer, respectively.  No secondary or tertiary products are observed 

when trimethylphosphate is allowed to react with protonated hexamethyldisiloxane under our 

experimental constraints.  

     When pyridine is allowed to react with protonated hexamethyldisiloxane, the primary 

products formed are protonated pyridine and the trimethylsilyl transfer product of pyridine.  

Upon examination of the branching ratio plot, protonated pyridine (m/z 80) appears to react away 

to form the trimethylsilyl transfer product (m/z 152) in addition to forming the proton-bound 

dimer (m/z 159) as the concentration of pyridine is increased (Figure 3.1).  In a separate  
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Table 3-2  Reactions of protonated hexamethyldisiloxane with neutrals 

Neutral k obs  (Eff)a

BRc ΔHrxn
d,e BRc ΔHrxn

d,f

≤ 0.0009g   

(≤0.001)
≤ 0.0009g   

(≤0.001)
+ 19.1

C6H6
≤ 0.0002g   

(≤0.001)
+20 + 23.0

H2O
≤ 0.002g       

(≤0.001)
+ 14 + 37.3

D2O
0.0238 ± 0.0018   

(0.077)       

MeSH ≤ 0.0003g     

(≤0.001)
+ 17.5

≤ 0.0002g   

(≤0.001)
+ 4.8

≤ 0.008g      

(≤0.007)
+ 10.3

EtOH 0.290 ± 0.032h     

(0.175)
+2 +16.7

EtOEt 0.46 ± 0.01h 

(0.346)
92 ± 1 % 0 + 4.3

Me2S 0.012 ± 0.010h   

(0.009)
97 ± 1 % + 3.7

MeCOMe 1.37 ± 0.10h 

(0.603)
62 ± 1 % -1 + 8

NH3
1.15 ± 0.17 

(0.551) 85 ± 2 % -4 15 ± 5 % -1.7

HCONMe2
1.88 ± 0.18       

(0.705) 91 ± 4 % 9 ± 4 % -14.7

1.68 ± 0.47 
(0.931) 60 ± 1 % 40 ± 1 % -19.7

MeCN 0.25 ± 0.07h  

(0.077)
9 ± 1 % + 16.1

MeCO2H 0.27 ± 0.06h  

(0.180)
+ 15.0

MeCO2CH2Me 1.19 ± 0.01 
(0.804) 100% -5 + 2.6

(MeO)3PO        i 0.53 ± 0.06       
(0.254) 98 ± 1 % 2 ± 1 % -9.7

(Et)2NH 0.73 ± 0.02 
(0.581) 6 ± 1% 94 ± 1 % -25.3

Et3N
0.45 ± 0.06 

(0.352) 100% -32.4

No Reaction

No Reaction

No Reaction

100% Cluster

91 ± 1 % Cluster

3 ± 1 % Cluster

No Reaction

Otherc

8 ± 1 % Cluster

No Reaction

No Reaction

PTbTMS Tb

100% Cluster

No Reaction

38 ± 1 % Cluster

100% Cluster

H/D Exhange/Cluster

N

O

 

a—Units of 10-9 cm3 molecule-1s-1.  Eff = kobs/kcoll.  kcoll is calculated via the VTST theory of Su 
and Bowers. 

b—TMST = trimethylsilyl transfer  PT = proton transfer 

c—Branching Ratios (BR) measured at 0.3 Torr flow tube pressure. 

d—trimethylsilyl affinity of trimethylsilanol estimated by appearance or non-appearance of 
trimethylsilyl transfer product. 
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e—Linstrom, P.J. (Ed.) NIST Chemistry Webbook.   

f—Upper limit of reactivity estimated by using highest flow of neutral introduced during 
qualitative reactions 

g—Rates measured at 0.3-0.5 Torr flow tube pressure. 

h—Polarizability of neutral estimated using the method obtained from Miller and coworkers 

 
qualitative study, protonated pyridine (formed via proton transfer from the tert-butyl cation) 

forms the trimethylsilyl transfer product when allowed to react with HMDSO. 

     The primary products that are formed when diethylamine is allowed to react with 

protonated hexamethyldisiloxane are protonated diethylamine and the trimethylsilyl transfer 

product as shown in Figure 3.2.  A downward curvature is observed in the proton transfer 

product, while an upward curvature is observed with the trimethylsilyl product.  An upward 

curvature is observed in the proton-bound dimer of diethylamine.  This suggests that both the 

trimethylsilyl transfer product and the proton-bound dimer are secondary products arising from 

the reaction of protonated diethylamine with an equivalent of a neutral.  No curvatures are 

observed in the trimethylsilyl transfer product when protonated hexamethyldisiloxane is allowed 

to react with the other neutrals (data not shown). 
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Figure 3.1  A branching ratio plot of the reaction of protonated hexamethyldisiloxane with pyridine.  

Note the disappearance of protonated pyridine (m/z 80, x) and formation of the trimethylsilyl transfer 

product (m/z 152, ■) and the proton-bound dimer of pyridine (m/z 159, ♦).   

 

     Only primary products are observed when protonated hexamethyldisiloxane is allowed to 

react with deuterium oxide, triethylamine, and ethyl acetate.  (Me3Si)2OH+ performs H-D 

exchange with deuterium oxide along with clustering.  (Me3Si)2OH+  reacts with triethylamine to 

form a proton transfer product.   
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Figure 3.2  A branching ratio plot of the reaction of protonated hexamethyldisiloxane with 

diethylamine.  Note the disappearance of protonated diethylamine (m/z 74, ×), and formation of the 

trimethylsilyl transfer product (m/z 146, ■) and the proton-bound dimer of diethylamine (m/z 147, ♦).   

3.3.3 Terpenoids 

When pinene, 1,8—cineole, and linalool were allowed to react with protonated 

hexamethyldisiloxane, proton transfer, water loss, and/or a loss of an R group are observed.  

When pinene is allowed to react with protonated hexamethyldisiloxane, protonated pinene is 

observed.  The rate coefficient for the reaction was measured, but no collisional rate coefficient 

should be calculated since the data needed could not be found in the literature.  When 1,8—

cineole is allowed to react with protonated hexamethyldisiloxane, protonated cineole and a water 
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loss product is observed.  The rate coefficient was measured and the collisional rate coefficient 

was calculated.  When linalool was allowed to react with protonated hexamethyldisiloxane, 

protonated linalool, a water loss product, and an R loss is observed.  No rate coefficient was 

measured for the reaction of protonated hexamethyldisiloxane due to the inability of achieving a 

suitable decrease of reactant ion. 

Table 3-3  Reaction of protonated hexamethyldisiloxane with selected terpenes 

3.4 DISCUSSION 

     When protonated hexamethyldisiloxane, formed via proton transfer from CH5
+, is allowed to 

 When 

B
k obs           

Eff M+H+ M-H2O
+ m/z  81

k obs           

Eff M+H+ M-H2O
+ m/z  81

Pinene 0.16 ± 0.02 
X.XX 1.00 α 0.62a     

β 0.57 0.00a α  0.38a    

β 0.43

Cineole 1.26 ± 0.15 
0.90 0.94 ± 0.03 0.06 ± 0.03 2.6b        

0.87 0.07b 0.91b

Linalool 0.05 ± 0.01 0.89 ± 0.01 0.06 ± 0.01 3.0b        

0.94 0.04b,c 0.56b,c 0.30b,c

a--Wang, T.; Spanel, P.; Smith, D. Int J Mass Spectrom  2003, 228, 117-126.  BR range due to reaction with either α or  β pinene
b--Amelynck, A.; Schoon, N.; Kuppens, T.; Bultinck, P.; Arijs, E. Int. J. Mass Spectrom.  2005, 247, 1-9.
c--Other products detected <0.1

(Me3Si)2OH+ H3O
+

O

1,8 cineole

OH
linalool

pinene

 

react with acetone, a trimethylsilyl transfer product and a product at m/z 117 is observed 

(Scheme 3.1).  This product was initially assigned as the proton-bound dimer of acetone. 

d6-acetone was allowed to react with protonated hexamethyldisiloxane, an unexpected 6 Da shift 
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occurred instead of the expected 12 Da shift.  When hexamethyldisiloxane, formed via proton 

transfer from the tert-butyl cation, was allowed to react with d6-acetone, an expected 12 Da mass 

shift occurs.  The discrepancy amongst the two results can be explained if protonated 

hexamethyldisiloxane isomerizes (eq 3.5).  The proton transfer reaction between CH5
+ and  

 (3.5)Me3Si O SiMe3

H
Me3Si O SiMe2H

Me

HMDSO is 72 kcal/mol exothermic, while the proton transfer reaction between the tert-butyl 

cation and HMDSO is only 10 kcal/mol exothermic (see Table 3.1).  This extra energy supplied 

to the ion would allow for this isomerization to take place.  Isomerization of silicon containing 

ions in the gas-phase is not unprecedented.  Ignatyev and Sundius have studied the isomerization 

of Me3Si+ using the B2YLP 6-31G** level of theory.25  They concluded that a methyl group 

transfer followed by a hydrogen atom transfer takes ~70 kcal/mol of energy to occur, which is 

consistent with our observations.  Tabita and coworkers studied the unimolecular decomposition 

of m/z 147 (Me3SiOSiMe2
+•) using mass analyzed ion kinetic energy (MIKE) spectrometry.26  

The methyl groups present on m/z 147 scrambled before any unimolecular decomposition 

occurred, which was confirmed using half-deuteriated m/z 147.  This information suggests that 

isomerization of protonated hexamethyldisiloxane can occur, given the correct amount of excess 

energy.  

 Calculating the enthalpy of trimethylsilyl transfer from protonated hexamethyldisiloxane to a 

base B at first seemed to be trivial.  Initial calculations used the heat of formation of HMDSO 

obtained from the literature (-186 ± 1 kcal/mol).27,28  When this value was used to calculate the 

enthalpy of reaction, the observed trimethylsilyl transfer channels were endothermic.  The 

trimethylsilyl transfer channels are observed, however, and therefore the enthalpies of reaction 

should be, at a maximum, thermoneutral.  Using a correlation between known trimethylsilyl 
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affinities obtained from Stone and our observations (see Table 3.2), we can estimate the heat of 

formation of HMDSO and the trimethylsilyl affinity of trimethylsilanol.29  Since it is observed 

that trimethylsilyl transfer occurs with acetone but not with benzene, an estimate to the heat of 

formation of HMDSO, assuming that the enthalpy of reaction of all trimethylsilyl transfers are at 

least thermoneutral, is ≥ - 167 kcal/mol.  Using the known trimethylsilyl cation affinities of 

diethylether and ethanol, we can estimate the trimethylsilyl affinity of trimethylsilanol to be 44 ± 

3 kcal/mol.   

     The reaction of protonated hexamethyldisiloxane with a base B is shown in Scheme 3.2.  The 

two interact to form an ion neutral complex at a rate k1.  If no reaction is observed, as in the case 

of 2-methylbutane, benzene, cyclopentene, etc. then the complex returns to reactants through k-1.  

It is then assumed that k-1>k1 in that particular case.  Once the initial complex is formed, it may 

be stabilized by a third body (i.e. helium) to form a cluster product through k2 (e.g. ethanol).  The 

initial complex may also transfer a trimethylsilyl group to the base B and form the trimethylsilyl 

product through k3 (e.g. ethyl acetate).  The initial ion neutral complex has a third route in which 

a proton is transferred to B to form B-H+ through k5 and k6.  An example is the reaction of 

protonated hexamethyldisiloxane and triethylamine.  A base may also go through a combination 

of pathways.  For example, when protonated hexamethyldisiloxane is allowed to react with 

ammonia, pathways k5, k6, and k3, k4 are favored, but not k2.   

      The same scheme also addresses the observation of secondary products.  A proton-bound 

dimer of a base B can be formed by solvent switching with a cluster ion formed via pathway k2 

or by further clustering of the protonated base formed via pathway k6.  The unusual formation of 

a secondary trimethylsilyl transfer product is discussed below. 
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     Inspection of the branching ratio plots for the reaction of protonated hexamethyldisiloxane 

with pyridine (Figure 3.2) or diethylamine (Figure 3.3) reveals an apparent anolomaly.  The 

primary products for the reaction are clearly these from proton transfer (m/z 80) and from 

trimethylsilyl transfer (m/z 152).  At longer reaction times, protonated pyridine reacts away to 

form both the proton-bound dimer of pyridine (m/z 159) and additional trimethylsilyated pyridine 

(Scheme 3.3).  This later product must be coming from the reaction of the primary product, 

protonated pyridine, with excess hexamethyldisiloxane (present in the flow tube from the 

reaction used to form protonated hexamethyldisiloxane).  Thus this latter “secondary” reaction is 

not a classic secondary reaction (i.e., it is not formed from the reagent ion and two sequential 

reactions with the neutral of interest).  Confirmation of the m/z 152 forming reaction in Scheme 

3.3 was obtained by an independent experiment in which protonated pyridine (formed from the 

reaction of the tert-butyl cation with pyridine) was allowed to react with hexamethyldisiloxane to 

produce the trimethylsilyl transfer product.  The exchange of a proton for a trimethylsilyl group 

in an ion/molecule encounter has previously been noted by Hendewerk and coworkers and serves 

to further establish the similarity of these two groups.30  This dual transfer reaction starts with a 

endothermic proton transfer reaction followed by an exothermic trimethylsilyl transfer reaction.  

This hypothesis can only be true if the overall enthalpy of reaction is thermoneutral or 

exothermic.  A similar “secondary” product is observed when protonated hexamethyldisiloxane 

is allowed to react with diethylamine.  This “secondary” product was confirmed in a separate 

experiment when the reaction of protonated diethylamine (formed via proton transfer from the 

tert-butyl cation) with hexamethyldisiloxane.   

     The proton transfer products react with neutrals to form proton-bound dimers in the case of 

acetone, diethylamine, ammonia, and pyridine.  The formation of a proton-bound dimer of  
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Scheme 3-2 Reaction of protonated hexamethyldisiloxane with a base B.  The primary products formed are proton transfer, trimethylsilyl 

transfer, and/or cluster ion formation.  A secondary product of a proton-bound dimer can be formed from either the protonated neutral or the cluster 

ion.   
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Scheme 3-3  The reaction of protonated hexamethyldisiloxane with pyridine forming the primary 

product

has been reported in the literature and is thermodynamically 

of the 
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s of protonated pyridine and the trimethylsilyl transfer product.  An unconventional secondary 

product of protonated pyridine reacting with an equivalent of hexamethyldisiloxane is formed in addition to 

the proton-bound dimer of pyridine. 

 acetone, pyridine, and ammonia 

accessible.31-33  Diethylamine and ammonia form proton-bound trimers (a proposed tertiary 

product).  The other neutrals do not form tertiary products within experimental constraints.   

     Trimethyl phosphate, dimethylformamide, pyridine, diethylamine, and ammonia form 

trimethylsilyl and proton transfer products.  When triethylamine is allowed to react with 

(Me3Si)2OH+, a proton transfer product is formed.  It is interesting to note that efficiency 

measured rate coefficient decreases as the yield of the proton transfer product increases.  The 
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proton transfer reaction also becomes increasingly exothermic.  It is well known that if the 

proton transfer reaction is exothermic, the kinetics are near the collisional limit;34 however, 

are known exceptions.  Stone and Chen have observed that the efficiency of reaction decreases 

when protonated trimethylsilanol is allowed to react with ammonia and triethylamine (c.f. 0.75 

and 0.51, respectively).  

there 

ll 

lities of 

 

osed 

   

35  The explanation offered is that the different polarizabilities of 

ammonia and triethylamine will produce different collision cross sections and therefore wi

affect the efficiency of reaction.  The polarizabilities of ammonia, diethylamine, and 

triethylamine are 2.81, 10.2, and 13.2 X 10-24 cm3, respectively.  The larger polarizabi

diethylamine and triethylamine, when compared to ammonia, would account for our 

observations and also concur with the hypothesis of Stone and Chen.35  An alternative

explanation is that the reaction produces elimination products (eq 6) instead of the prop

proton transfer reaction.  Since a mass spectrometer can only detect ionic species, this 

(3.6)
 

ossibility should be explored.  The enthalpies of elimination reactions involving triethylamine 

um oxide performs a H-D exchange reaction with (Me3Si)2OH+ as well as clustering 

ev

 of the 

me 

(Me3Si)2OH      +    B BH      +    Me3SiOH     +     Me2SiCH2

p

and diethylamine are +30 and +36 kcal/mol, respectively.  The endothermic reactions elucidate 

this possibility, leaving the former hypothesis as an explanation of the decrease in reaction 

efficiency.  

     Deuteri

en though the deuteron transfer reaction is 37 kcal/mol endothermic.  Slight H-D exchange 

with an endoergic proton (deuteron) transfer reaction has been observed by Smith and 

coworkers.36  Using a selected ion flow tube, Smith and coworkers studied the reaction

ammonium ion with deuterium oxide.  They observed slight scrambling and measured a rate 

coefficient of ~3 X 10-12 cm3 molecule-1 s-1.  Smith and coworkers’ hypothesis is that the lifeti
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of the intermediate is sufficiently long for H-D exchange to occur.  Our results can be 

rationalized using the same hypothesis since the measured rate coefficient is 2 X 10-11 cm3 

luated against the five criteria outlined in the 

in

on 

 ion to 

duct 

siloxane is allowed to react with the selected terpenoids, 

le  fra  

3.5 CONCLUSIONS 

     The formation of protonated hexamethyldisiloxane has been investigated with protonated 

methane, the hydronium ion, and the tert-butyl cation.  Protonated methane and C2H5
+ are 

molecule-1 s-1 and we observe H-D exchange.   

   Protonated hexamethyldisiloxane can be eva

troduction.  Protonated hexamethyldisiloxane can be formed in high yield (~ 106 cps) that 

fulfills criterion 1, and since only one ion is formed on a linear scale that should fulfill criteri

2.  Protonated hexamethyldisiloxane is unreactive with water, but no studies have been 

conducted on its reactivity with N2, CO2, etc. (criterion 3).  The unique capability of this

be unreactive with some compounds, while also generating unique product ions could ease 

identification of compounds (criterion 4).  The hydronium ion only gives insight into the 

compounds’ mass and not its identity, and the oxygen radical cation produces multiple pro

ions for each compound, which complicates interpretation of spectra.  Only NO+ allows some 

insight into a neutral’s identity.  Protonated hexamethyldisiloxane fails in criterion 5 since most 

reactions are less than unit efficiency. 

 When protonated hexamethyldi

ss gmentation occurs than when the hydronium ion is used.  This is attributed to the fact that

the proton affinity of hexamethyldisiloxane is greater than water.  This would then suggest that 

protonated hexamethyldisiloxane is a better candidate for the determination of terpenoids.  
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formed via ionization of methane, a es thyldisiloxane (HMDSO) to form 

(Me3Si)2OH+ and (Me3Si)2OEt+.  It is hypothesized that (Me3Si)2OH+ isomerizes as confirmed 

by f 

n is 

) 

 

e 

ster 

 additional trimethylsilyl transfer product.  A dual transfer reaction 

of

 VOC 

e 

nd th e react with hexame

 d6-acetone experiments. The hydronium ion is used to form (Me3Si)2OH+, but two products o

(Me3Si)2OH+ and (Me3Si)2OH+(H2O) are formed; therefore, the criterion of one reactant io

not fulfilled due to the fact that other ions such as H3O+(H2O) are present.  Proton transfer from 

the tert-butyl cation was selected since it created the cleanest spectrum of (Me3Si)2OH+.  When 

protonated hexamethyldisiloxane was allowed to react with the selected neutrals, the following 

outcome(s) were observed:  1) proton transfer, 2) trimethylsilyl transfer, 3) cluster ion, and/or 4

no reaction within experimental constraints.  No proton transfer was observed if the reaction was

endothermic.  As the proton transfer reaction becomes more exothermic, the rate slows due to th

increase in the polarizabilities of the neutrals.  The observation of trimethylsilyl transfer is 

supported by the observations in the literature and by the inferred trimethylsilyl affinity of 

trimethylsilanol.  H-D exchange is observed when (Me3Si)2OH+  is allowed to react with 

deuterium oxide.  The small reaction efficiency (0.07) is due to the endothermic proton transfer 

between D2O and HMDSO.   

    The secondary reactions observed were the formation of proton-bound dimers from clu

ions or protonated ions of acetone, ammonia, dimethylformamide, and diethylamine.  A 

secondary product is also observed from the reaction of protonated pyridine and diethylamine 

with excess HMDSO, forming

 a proton and a trimethylsilyl group is hypothesized to account for this observation.  It is 

important to note all of the secondary and tertiary reactions observed are not important to

analysis, since the concentration of sample added is much lower than the ion concentration.  Th

ability of this ion to form different products with varying branching ratios could serve as a 
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fingerprint in VOC detection.  It also seems to be a good candidate for terpenoids detection due 

to its high proton affinity. 
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4.0  PROTONATED TRIMETHYLSILANOL:  ITS CAPACITY AS A 

TRIFUNCTIONAL REAGENT ION 

4.1 INTRODUCTION 

 

     The selected ion flow tube (SIFT) and proton transfer mass spectrometer (PTR-MS) 

have been widely used for volatile organic compound (VOC) identification and quantification.1,2  

These techniques commonly use the hydronium ion as the chemical ionization reagent ion.  The 

hydronium ion transfers a proton to VOCs having a proton affinity (PA) larger than water 

forming the protonated neutral (M+H+).  Since only the mass of the neutral is inferred to the 

user, the assignment of the neutrals’ identity is not straightforward.  Prior knowledge of the 

chemistry occurring in the sample is needed to hypothesize the compounds identity.  A study 

might only focus on one particular VOC to simplify the identification process.3  Attempts to 

circumvent this limitation have been made using other reagent ions such as O2
+• and NO+ in 

conjunction with the hydronium ion in hopes that the ion complement will provide insight into 

the neutrals’ identity.4    

     Other attempts employed gas chromatograms coupled to the PTR-MS.  This technique 

allows one to identify neutrals by retention time and by m/z.  A drawback of this technique is that 

the quantitation must be corrected since there is sample loss through the gas chromatograph.  

This correction goes against the unique aspects of this technique that no conventional calibration 

is needed other than experimental variables.  A final example of identifying neutrals’ identity are 

to vary the electric field on the drift tube on the PTR-MS to measure the ions’ drift velocity.  
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This has been demonstrated by Lindinger and coworkers to differentiate and identify isoprene.2  

The search for a reagent ion that provides definite identification of the neutrals is needed. 

     This study investigates the chemistry of protonated trimethylsilanol.  Orlando and 

coworkers5 and Clemens and Munson6 have investigated the chemistry of protonated 

trimethylsilanol using a gas chromatograph coupled with a mass spectrometric chemical 

ionization source.  Clemens and Munson found that when acetone or tetrahydrofuran were 

introduced into an ion source containing water, tetramethylsilane, and methane that proton 

transfer and trimethylsilyl transfer occurred.6  They hypothesized that trimethylsilyl transfer and 

proton transfer occurred via reaction with protonated trimethylsilanol (Me3SiOH2
+).  Wojtyniak 

and Stone, using a high pressure ionization source, determined that trimethylsilyl transfer 

occurred when protonated trimethylsilanol was allowed to react with methanol.7     

     This study uses the flowing afterglow to investigate various ways to generate the 

trimethylsilyl cation and to form protonated trimethylsilanol.  Once protonated trimethylsilanol is 

generated, this ion is allowed to react with VOCs postulated to be present in “normal” human 

breath.8  In addition to this list, other neutrals having various functionalities are added to explore 

this ion’s reactivity.  The primary and secondary products of the reactions are discussed, along 

with the rationale behind using this ion for the purpose of VOC analysis. 

4.2 EXPERIMENTAL 

   The flowing afterglow apparatus has been previously described;9 only details relevant 

to this work will be described.  Helium 99.997% (Valley National Gas, Wheeling, WV) was used 

as the carrier gas.  The helium gas was further purified by immersing a uniform mixture of 3A, 

4A, and 13X molecular sieves in liquid nitrogen.  Flow tube pressures were selected between 0.3 

– 0.5 Torr and helium flows ranged from 100-180 STP cm3/s.  The neutral of interest was 
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ionized in our ion source and allowed to react with a neutral downstream.  If more than one 

neutral was added downstream of the ion source, control experiments were employed to ensure 

that all previous reactions have been quenched before exploring the reaction of interest. 

     All experiments were conducted under pseudo-first-order conditions in which the ion 

was the limiting reactant.  Three types of experiments were performed in this study:  qualitative, 

kinetic, and branching ratio measurements.  Qualitative experiments detect the products from ion 

molecule reactions.  Two qualitative experiments were conducted for the same ion molecule 

reaction over two experimental days.  An experimental day is defined as the complete startup and 

shutdown of the flowing afterglow.  Kinetic experiments determine the rate coefficient of an 

ion/molecule reaction.  At least five experiments over two experimental days were performed for 

each ion/molecule reaction studied.  If a cluster ion was observed in the qualitative experiment, a 

plot of observed rate coefficient verses pressure was constructed.  The reported error is the 

precision in measurements.  The accuracy of each rate was around 20%.  The collisional rate 

coefficient was calculated using the variational collision complex theory as described by Su and 

coworkers.10   Polarizabilities and dipole moments if known were obtained from suitable 

sources.11  The polarizability of trimethylphosphate was calculated using the group additivity of 

Miller and coworkers.12  Branching ratio experiments were conducted twice over two 

experimental days using the method described by Anderson et al.13  A curvature in the branching 

ratio plot can indicate the formation of secondary products.  A secondary product is the product 

from the reaction of a primary product ion with a neutral.  An isotopic correction was applied to 

the branching ratio data analysis of the reaction of protonated trimethylsilanol with deuterium 

oxide.  The H/D exchange product is isobaric to the 29Si isotope of protonated trimethylsilanol 

(8.5 percent normalized to m/z 91).   

     The following reagents were obtained from the following sources and used without any 

further purification:  acetone, acetonitrile, triethylamine, furan (99% Fisher Scientific, 

Pittsburgh, PA), ethyl acetate, benzene (99.9% HPLC Grade Fisher Scientific),  tetramethylsilane 

(99.9+% Sigma-Aldrich), trimethylsilyl chloride (98% Sigma-Aldrich),  hexamethydisilane 
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(98% Sigma-Aldrich), deuterium oxide (99.9% D MDS Isotopes),  2-methylbutane (99.7%, 

Fisher Scientific), cyclopentene (96% Sigma-Aldrich),  naphthalene (99+% Scintillation Grade, 

Sigma-Aldrich), isoprene (99% Acros Organics), ammonia (semi-conductor grade, Matheson), 

ethanol (100%, Aaper Alcohol and Chemical Company), acetic acid (glacial, Fisher Scientific), 

trimethylphosphate, dimethylsulfide, pyridine (99+%, Sigma-Aldrich), diethyl ether (99.7%, JT 

Baker), dimethylformamide (99+%, Fisher Scientific), oxygen (99.9% Valley National Gas, 

Wheeling, WV), diethylamine (98+%, Avocado Research Lab), α-pinene (≥99%, Sigma-

Aldrich), 1,8-cineole (99%, Sigma-Aldrich), and linalool (97%, Sigma-Aldrich).     Deionized 

water was obtained in house.  All liquid reagents were subject to several freeze-pump-thaw 

cycles each experimental day to ensure contaminants were removed.  A sweeper, which aides 

volatilization of neutrals, was used for trimethylphosphate, naphthalene, linalool, pinene, and 

1,8-cineole for qualitative and branching ratio experiments using helium as the sweeper gas.   

4.3 RESULTS 

4.3.1 Reaction of protonated trimethylsilanol with neutrals 

     The first step in exploring the reactions of protonated trimethylsilanol with various 

neutrals was to form a clean spectrum of protonated trimethylsilanol.  Electron and chemical 

ionization of trimethylsilyl containing neutrals was explored to see if this would produce an ideal 

protonated trimethylsilanol and/or the trimethylsilyl cation spectrum.   

     When tetramethylsilane, trimethylsilyl chloride, and hexamethyldisilane were ionized, 

the trimethylsilyl cation is formed in addition to other ions depending on the neutral ionized (eq 

4.1).  When the trimethylsilyl cation is allowed to react with tetramethylsilane, methylated  
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(4.1)

 

 

(4.2)

R SiMe3
e i

p i
Me3Si

R

R = Me, Cl, SiMe3

H2O

He
Me3SiOH2

Me3Si     +     Me4Si Me3Si SiMe3

ΔHrxn = 

-13 kcal/mol

Me

hexamethyldisilane is formed (eq 4.2).  When trimethylsilyl chloride is ionized, an ion 

containing the trimethylsilyl cation and trimethylsilyl chloride is formed in addition to the other 

ions described above (eq 4.3).  The radical cation of hexamethyldisilane is observed in addition  

                   (4.3) C3H9Si     +     C3H9SiCl C3H9Si(C3H9SiCl)
He

to the ions mentioned above when hexamethyldisilane is ionized.  This route of forming 

protonated trimethylsilanol was discarded.  Chemical ionization was investigated next since less 

neutral is introduced in our apparatus downstream than at the ion source. 

     Various attempts were made to form the trimethylsilyl cation via chemical ionization.  The 

tert butyl cation, generated via ionization of tert butyl chloride, was allowed to react with 

tetramethylsilane in an attempt to form the trimethylsilyl cation (Table 4.1).  No products were 

observed within experimental constraints. 

 
Table 4-1  Summary of the reactions of M+ to form the trimethylsilyl cation 

M+ k II  (Eff)a ΔHRxn (kcal/mol) with Me3SiClb ΔHRxn (kcal/mol) with Me6Si2
b

H3O
+ -17.87 -38.81

tBu+ ≤ 0.008c +38.75 +17.81

O2
+• 2.14 ± 0.33     

(0.926)d -10.82 -42.61

a--Rate coefficient of the reaction of M+ with tetramethylsilane.  Units of 10-9 cm3 molecule-1 s-1.  Eff = k obs /k coll .  k coll  is calculated via the   

b—Linstrom, P.J. (Ed.) NIST Chemistry Webbook.  
c--Upper limit measured using highest flow of neutral introduced.
d--Polarizability calculated using Lorenz-Lorentz Equation (index of refraction = 1.3591, density = 0.648 g/cc)

VTST theory of Su and Bowers. 

+26.42

-39.05

ΔHRxn (kcal/mol) with Me4Sib

-0.09
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     The hydronium ion was then explored as another candidate to ultimately form 

protonated trimethylsilanol.  Water was ionized to form the hydronium ion and its hydrates (i.e. 

H3O+(H2O)n n=0-3).  When trimethylsilyl chloride was allowed to react with the hydronium ion 

and its hydrates, protonated trimethylsilanol and its cluster ion was observed in addition to 

protonated hexamethyldisiloxane (Eq 4.4a and b).   

 

 

 (4.4a) 

 

 (4.4b) 

C3H9SiOH2+     C3H9SiClH3O +  HCl
ΔHrxn = 

-17 kcal/mol

(C3H9Si)OH2+     C3H9SiClC3H9SiOH2 +  HCl
ΔHrxn = 

-3 kcal/mol

     The radical cation of oxygen was used as the next possible candidate to react with 

trimethylsilyl chloride; it is known that this ion can form dissociative charge transfer products 

with other neutrals.14  When trimethylsilyl chloride was allowed to react with the radical cation 

of oxygen, protonated trimethylsilanol, Me2SiCl+ (m/z 93), and the cluster ion of the 

trimethylsilyl cation with trimethylsilyl chloride were formed (eq 4.5a-b). 

 

 (4.5a)

 

 

(4.5b)

Me2SiCl+     Me3SiClO2 +   Me  +  O2

ΔHrxn = 

-28 kcal/mol

Me3Si +   Cl  +  O2

ΔHrxn = 

-12 kcal/mol

     The next neutral explored was hexamethyldisilane.  When the hydronium ion was 

allowed to react with hexamethyldisilane, the trimethylsilyl cation, protonated trimethylsilanol, 

m/z 147, and protonated hexamethyldisiloxane were observed (eq 4.6a-b).  The reaction of the 

oxygen radical cation with hexamethyldisilane formed m/z 146, 131, and 73, which is the radical 

 

(4.6a)
ΔHrxn = 

-13 kcal
Me3Si +   Me3SiH  +  H2O

/mol
H3O +   Me3SiSiMe3
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(4.6b)Me3SiOH2 +   Me3SiH  +  H2O
ΔHrxn = 

-6 kcal/mol
O(H2O) +   Me3SiSiMe3H3

cation of hexamethyldisilane, the methyl radical loss of m/z 146, and the trimethylsilyl cation, 

respectively (eq 4.7a-c). 

 (4.7a)

 
(4.7c)

A final attempt to form the trim ming the 

radical cation of oxygen.  The oxygen radical wed to react

tetramethylsilane to form the trimethylsilyl cation.  Protonated trimethylsilanol was also 

observed as a product due to the presence of adventitious water (Scheme 4.1).  As the 

concentration of tetramethylsilane was increased, m/z 161 was observed.  Water was then 

introduced further downstream to quench the trimethylsilyl cation.  m/z 109 was observed and 

the intensity of m/z 161 decreased when water was added to the flow tube.  A typical spectrum of 

protonated trimethylsilanol is shown in Figure 4.1.  This method of forming the trimethylsilyl 

cation was the preferred method and is used to probe the reactions of protonated trimethylsilanol 

with the selected neutrals. 

trimeth

ΔHrxn = 

-88 kcal/mol
O2 +   Me3SiSiMe3 Me3SiSiMe3 +  O2

Me3SiSiMe2 +   Me
ΔHrxn = 

-57 kcal/mol
   +  O2 (4.7b)

Me3Si +  Me3Si   +  O2

ΔHrxn = 

-52 kcal/mol

ethylsilyl cation was to electron ionize oxygen, for

cation then was allo  with 

     The results of the reaction of protonated trimethylsilanol with neutrals is shown in 

Table 4.2.  When benzene was allowed to react with protonated trimethylsilanol, the 

ylsilyl transfer product and the proton bound dimer of benzene and trimethylsilanol were 

observed.  Experimental conditions were optimized to discern whether the trimethylsilyl transfer 

product came from protonated trimethylsilanol or from m/z 161 (Me3Si(Me)SiMe3
+).  Excess 
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Scheme 4-1  P on with excess 

water present in the flow

water w

product was still observed.  

er, dimethylsulfide, ethyl acetate, dimethylformamide, and  

     

O2

H
O

Me3Si
H

Me4Si

ΔHrxn = -25

kII = 2.14 ± 0.33
Eff = 1.10

CH3

Me3Si

H2O

H
O

Me3Si
H OH2

ΔHrxn = -30

ΔHrxn = -20

He
H2O

He

Me4Si

He

Me3Si SiMe3

Me

73

32

91 109

161

referred Formation of protonated trimethylsilanol and subsequent reacti

 tube.  Enthalpies of reaction are in units of kcal/mol. 

as added to the flow tube to form a larger than “normal” m/z 109 (Me3SiOH2
+(H2O)) 

signal so that the m/z 161 was minimized.  The trimethylsilyl transfer 

In a separate experiment, m/z 109 was minimized and the cluster ion was still observed.  

Therefore, the cluster ion and trimethylsilyl transfer products are formed by reaction with 

protonated trimethylsilanol.   

     Secondary products were observed in some of the branching ratios.  When the 

branching ratios of diethyl eth

 

 48



 

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150 170 190 210 230 250

m/z

In
te

ns
ity

 (%
)

Me3SiOH2
+

Me3SiOH2(H2O)+

(Me3Si)2Me+

[Me3SiOH2]+

[Me3SiOH2(H2O)]+

[(Me3Si)2Me]+

Figure 4.1  A representative spectrum of protonated trimethylsilanol.  The spectrum is normalized to 

the intensity of protonated trimethylsilanol 

 

d base (primary product) decreases in intensity and the 

imethylsilated base’s intensity increases as the concentration of the base increases (i.e. 

pyridine were measured, the protonate

tr

secondary products were observed).  A typical example of this observed curvature is shown in 

Figure 4.2 of the reaction of protonated trimethylsilanol being allowed to react with  

dimethylformamide or pyridine.  The protonated base and the trimethylsilyl transfer products are 

observed as primary products.  The proton bound dimer and trimethylsilyl transfer product 
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Table 4-2  Reactions of protonated trimethylsilanol with neutrals.  Shaded areas indicate where no rate 

coefficients were measured due to their previous measurements in the literature. 

 
Neutral k obs  (Eff)a k obs  (Eff)a,b

BRd ΔHrxn
e BRd ΔHrxn

e

≤ 0.006f

H2O 0.425 ± 0.007g  

(0.18)
+ 24.0

D2O 0.735 ± 0.085g  

(0.34)

C6H6
0.051 ± 0.022g  

(0.03)
74 ± 1 % + 6 + 9.7

0.013 ± 0.005g  

(0.01)
82 ± 1 % + 5.8

EtOH 1.29 ± 0.18g     

(0.72)
97 ± 1 % -11.8 + 3.4

MeCN 3.64 ± 0.34     
(1.00) 100% + 2.8

MeCO2H 1.87 ± 0.01g     

(1.00)
87 ± 2 % + 1.7

39 ± 2 % 55 ± 3 % - 2.9

0.53 ± 0.09  
(0.45) 38 ± 2 % 62 ± 2 % - 3.0

MeCOMe 2.20 ± 0.37  
(0.88) 

1.78 ± 0.07     
(0.71) 86 ± 3 % -14.8 14 ± 3 % - 5.0

0.37 ± 0.07  
(0.31) 9 ± 1 % 91 ± 1 % - 8.5

EtOEt            1.05 ± 0.03  
(0.71) 68 ± 3 % 32 ± 3 % - 9.0

Me2S          1.07 ± 0.16  
(0.66) 5 ± 1 % 95 ± 1 % - 9.6

MeCO2CH2Me    1.79 ± 0.21 
(1.00) 20 ± 4 % -18.7 80 ± 3 % - 10.7

NH3               
1.56 ± 0.01     

(0.75) 21 ± 2 % -16.3 79 ± 2 % - 15.0

HCONMe2         
1.63 ± 0.15  

(0.55) 20 ± 3 % 80 ± 3 % - 23.1

(MeO)3PO       h 0.34 ± 0.09  
(0.15) 41 ± 3 % 59 ± 3 % - 23.9

1.35 ± 0.35  
(0.67) 31 ± 2 % 69 ± 3 % - 33.0

(Et)2NH 1.13 ± 0.17  
(0.81) 100% - 38.6

Et3N
0.75 ± 0.06     

(0.51) 100% - 45.1

a--Units of 10-9 cm3 molecule-1 s-1.  Eff = k obs /k coll .  k coll  is calculated via the VTST theory of Su and Bowers. NR = No reaction observed.
b--Rate coefficient measured by Chen, Q.-F.; Stone, J. A. Int. J. Mass Spectrom. Ion Proc.  1997, 165/166, 195-207. 8 trials
c--TMST = trimethylsilyl transfer.  PT = proton transfer.
d--branching ratios measured at 0.3 Torr

100% Cluster

55 ± 4 % H/D Exchange        
45 ± 4 % Cluster

26 ± 2 % Cluster

Otherd

13 ± 2 % Cluster

6 ± 1 % Cluster

TMS Tc

3 ± 1 % Cluster

No Reaction

PTc

18 ± 1 % Cluster

e--ΔΗRxn (units of kcal/mol).  Linstrom, P.J. (Ed.) NIST Chemistry Webbook.  
f--Upper limit of rate estimated from flow of neutral
g--Rate measured at pressures from 0.3 - 0.5 Torr.  No pressure dependence on overall rate found.
h--Polarizability calculated using the group additivty of Miller and coworkers

O

N
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Figure 4.2  Branching Ratio plots indicating the appearance of a secondary trimethylsilyl transfer 

product.  The reaction of protonated trimethylsilanol with either dimethylformamide (left) or pyridine (right) 

demonstrates the reaction of protonated base (x) to form the trimethylsilyl transfer product (■) and the 

proton-bound dimer (�).   

 

increase indicating that they are being formed as secondary products.  Protonated 

dimethylformamide or pyridine are decreasing in intensity indicating that it is reacting away to 

form secondary products.   

4.3.2 Protonated trimethylsilanol with terpenes 

When protonated trimethylsilanol was allowed to react with the selected terpenes, proton 

transfer, a neutral water loss, and/or an R group loss is observed (Table 4.3).  When protonated 

trimethylsilanol is allowed to react with pinene, only proton transfer is observed.  The 

experimental rate coefficient was able to be measured, but the collisional rate coefficient could 

not be calculated due to the fact that there is no known dipole moment for the compound.  When 

1,8—cineole is allowed to react with protonated trimethylsilanol, both protonated 

trimethylsilanol and a water loss product are observed (0.68 and 0.32, respectively).  Finally 
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when linalool is allowed to react with protonated trimethylsilanol, all three products are formed. 

No trimethylsilyl transfer products are observed.   

Table 4-3  Observations when protonated trimethylsilanol is allowed to react with selected terpenes.  

Known literature data are shown for comparison. 

4.4 DISCUSSION 

4.4.1 Non terpenoid compounds 

     The ionization of Me3SiCl, Me4Si, and Me3SiSiMe3 was determined to be an 

unsatis

B
k obs            

Eff M+H+ M-H2O
+ m/z  81

k obs           

Eff M+H+ M-H2O
+ m/z  81

Pinene 0.63 ± 0.17 
X.XX 1.00 α 0.62a     

β 0.57 0.00a α  0.38a    

β 0.43

Cineole 1.72 ± 0.18 
1.00 0.68 ± 0.03 0.32 ± 0.03 2.6b        

0.87 0.07b 0.91b

Linalool 0.01 ± 0.01 0.96 ± 0.01 0.03 ± 0.01 3.0b        

0.94 0.04b,c 0.56b,c 0.30b,c

a--Wang, T.; Spanel, P.; Smith, D. Int J Mass Spectrom  2003, 228, 117-126.  BR range due to reaction with either α or  β pinene
b--Amelynck, A.; Schoon, N.; Kuppens, T.; Bultinck, P.; Arijs, E. Int. J. Mass Spectrom.  2005, 247, 1-9.
c--Other products detected <0.1

Me3SiOH2
+ H3O

+

O

1,8 cineole

OH
linalool

pinene

factory method of producing the trimethylsilyl cation due to the fact that a larger amount 

of neutrals has to be added to produce a sufficient spectrum.  This excess then is allowed to react 

with the ions formed and produces unwanted ions.  When C4H9
+ and H3O+(H2O) (n=0-2) was 

allowed to react with Me3SiCl, Me4Si, and Me3SiSiMe3, no reaction and large amounts of 
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C H Si     +     Me Si C H

d 131 were observed.  Stone assigned m/z 161 as methylated hexamethyldisilane (eq 

4.1b).

3 9 4 3 9Si Si

CH3

CH3

+     C2H6

as used as the neutral to form the trimethylsilyl cation, m/z 

161 an

(4.8)

After the trimethylsilyl cation was formed (via dissociative charge transfer from O2  to 

tetrame

Me3SiOH2
+(H2O) were formed, respectively.  The best conditions and preferred method of 

forming protonated trimethylsilanol was to allow O2
+• to react with tetramethylsilane.  This ion 

completment was allowed to react with water.  The enthalpy of reaction to produce the 

trimethylsilyl cation is 29 kcal/mol exothermic for tetramethylsilane.  The proton-bound dimer of 

trimethylsilanol and water was not observed (m/z 109).  When trimethylsilyl chloride was used 

as the neutral, m/z 181 is observed, which is assigned as the cluster ion between trimethylsilyl 

cation and trimethylsilyl chloride.   

     When tetramethylsilane w

15  m/z 131 has been tentatively assigned in the literature, but it is certainly a product of the 

reaction of the trimethylsilyl cation with tetramethylsilane.  We assign m/z 131 as 

(C3H9)2SiSi(C3H9)2
+ (eq 4.8).  We have decided to use the chemical ionization reaction of the 

radical cation of oxygen with tetramethylsilane as the first step to form protonated 

trimethylsilanol.  Tetramethylsilane has been used as a neutral to form the trimethylsilyl cation 

by Clemens and Munson, Lin and coworkers, and Stone.5,16,17

  

+•

thylsilane), water was added to the flow tube to form protonated trimethylsilanol and to 

quench the trimethylsilyl cation.  The proton-bound dimer of protonated trimethylsilanol and 

water was also observed, but to a much lesser extent than when the hydronium ion was used 

(10% vs. 40% respectively, normalized to Me3Si+).  Stone has also observed this proton-bound 

dimer of trimethylsilanol and water.7  m/z 161 is still observed, but it is a minor reactant ion since 

the formation of m/z 161 was intercepted by the addition of water.  The trimethylsilyl affinity of 

water is larger than tetramethylsilane, which also accounts for the lower yield of  m/z 161.18
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Upon inspection of the absence and presence of proton transfer, a discrepancy was found 

in the reported proton affinity of trimethylsilanol.  Stone and coworkers reported the proton 

affinity (PA) to be 183.7 kcal/mol.19  Later reports from the same group stated the PA to be 192 

kcal/mol.20  Our observations of the absence or presence of PT places the PA of trimethylsilanol 

to be 191 ± 3 kcal/mol, which is in agreement with Stone.  Using this value and the enthalpy of 

formation of trimethylsilanol, one can determine the heat of formation of protonated 

trimethylsilanol.  Using this method, Stone found the heat of formation of protonated 

trimethylsilanol to be + 57 kcal/mol.18  Using this heat of formation to calculate the 

thermochemistry of the trimethylsilyl transfer reactions studied, all the trimethylsilyl transfer 

reactions would be exothermic with the exception of benzene.  An alternative method used by us 

was to calculate the heat of formation of protonated trimethylsilanol using eq 4.9.  The enthalpy 

of formation of water21 and the trimethylsilyl cation affinity of water are known.7  However, the   

 

 (4.9)C3H9SiOH2+     H2OC3H9Si

enthalpy of formation of the trimethylsilyl cation also has uncertainty.  Walsh has 

estimated the heat of formation to be 145 kcal/mol with an error of at least 5 kcal/mol.22  This 

uncertainty comes from differing values by other workers such as Szepes and Baer, which found 

the heat of formation of the trimethylsilyl cation to be 150 kcal/mol using the dissociation of 

hexamethyldisilane.23  Therefore, if the heat of formation of protonated trimethylsilanol is 

calculated using the later method outlined, the heat of formation is + 62 ± 5 kcal/mol.  The 

enthalpy of reaction of trimethylsilyl transfer of protonated trimethylsilanol with benzene is now 

only slightly endothermic within error (6 ± 5 kcal/mol endothermic).  The other enthalpies of 

trimethylsilyl transfer of protonated trimethylsilanol with the other neutrals remain exothermic 

(neutrals who have known trimethylsilyl cation affinities). 

     The reaction of protonated trimethylsilanol with a base B is shown in Scheme 4.2.  

The initial formed ion/molecule complex can revert to reactants through k-1 (e.g. 2-
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methylbutane).  The complex can alternatively be stabilized by a third body (He) to form the 

cluster ion (e.g. water, deuterium oxide).  A third option is that the initial complex can transfer a  
 

 

 

 

Scheme 4-2  Reaction of protonated trimethylsilanol with a base B 
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trimethylsilyl group to B (e.g. MeCN).  The fourth and final possibly pathway is that the initial 

ion/molecule complex can transfer a proton to B, forming (B+H+).     

This scheme also addresses the formation of secondary products.  The cluster ion formed 

via routes k1 and k5 can react with another equivalent of B to form B2H+ via solvent switching.  

 55



The protonated base formed via routes k2 and k4 can react with another equivalent of B to form 

the proton-bound dimer of B (B2H+).  Curvatures of the trimethylsilyl transfer product 

(B+SiMe3
+) were observed when the branching ratios of diethylether, ethyl acetate, 

dimethylformamide, trimethyl phosphate, and pyridine.  All of the branching ratios listed above 

follow the general trend of having the proton transfer product (B+H+) react away to form a 

secondary trimethylsilyl transfer product.  Stone has observed the reaction of protonated 

isopropanol with tetramethylsilane which forms the trimethylsilyl transfer product (eq 4.10).7  

Stone also observed the same type of products when the reactions of protonated methanol and 

ethanol with tetramethylsilane were investigated. 

iPrOH      +     Me Si C H Si O

H

2 4 3 9

iPr

+     CH4
 (4.10)

This observation can explain the curvatures in the plots.  The absence or presence of this 

secondary reaction can be explained for the all the neutrals investigated.  Up to naphthalene, no 

proton transfer products are observed, and the hypothesis described above agrees with neutrals 

up to acetic acid.  There is insufficient data to indicate whether the trimethylsilyl transfer product 

is a secondary product when protonated trimethylsilanol was allowed to react with acetone, 

ammonia, naphthalene, and furan.  Diethylamine and triethylamine do not form any secondary 

trimethylsilyl transfer products.  The reaction is inferred to be endothermic.  Further evidence 

that the reaction is endothermic is that the trimethylsilyl transfer between protonated tertbutyl 

amine and tetramethylsilane is 1 kcal/mol endothermic.21,24  Tertbutyl amine (223 kcal/mol) has 

around the same proton affinity as pyridine (222 kcal/mol).21  Therefore, since diethylamine and 

triethylamine have higher proton affinities, then the trimethylsilyl transfer reaction involving 

tetramethylsilane is endothermic and is inferred to not react. 

     When protonated trimethylsilanol is allowed to react with 2-methylbutane, no reaction 

was observed.  While the PA of this neutral is unknown, we can safely assume that the PA of this 

neutral is less than all of the other neutrals.  Therefore, a proton transfer product can be ruled out.  
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No known trimethylsilyl cation affinity (TMSA) exists for this neutral.  To date, no known 

reactions of alkanes with protonated trimethylsilanol have been reported in the literature. 

     Water and deuterium oxide form cluster ions with protonated trimethylsilanol.  H/D 

exchange also occurs with deuterium oxide.  This reaction indicates that there are two 

exchangeable hydrogens for m/z 91 (assigned as protonated trimethylsilanol), and four 

exchangeable hydrogens for m/z 109 (assigned as the hydrate of protonated trimethylsilanol).  

The rate of reaction with deuterium oxide is faster than water within error.  Deuterium oxide and 

protonated trimethylsilanol interact to form the ion/molecule complex (k1) as shown in Scheme 

4.1.  The complex is stabilized in this case by collisions with helium (k5) to form the cluster ion 

again in both cases.  The original ion-molecule complex also exchanges a deuterium from the 

deuterium oxide (k2), and returns to the reactant ion through k-2 and k-1.  Even though only 

clustering is observed when water is allowed to react with protonated trimethylsilanol, hydrogen 

exchange can occur and obviously would not be observed.  Since both neutrals appear to follow 

the same reaction pathways, the observed difference in rate coefficients must be attributed to a 

primary isotope effect (kD/kH = 2/1).  

     Trimethylsilyl transfer and proton transfer products are observed when furan, acetone, 

isoprene, diethyl ether, dimethylsulfide, ethyl acetate, ammonia, trimethylphosphate, and 

pyridine react with protonated trimethylsilanol.  The amount of trimethylsilyl and proton transfer 

product varies from neutral to neutral.  This is due to many factors such as the proton and 

trimethylsilyl affinity of the neutral.  The lowest known trimethylsilyl affinity of all neutrals 

studied is benzene which is:  23.9 kcal/mol.7  The highest known trimethylsilyl affinity of all 

neutrals studied is ethyl acetate (48.7 kcal/mol).7  The general trend of no reaction, cluster, 

trimethylsilyl transfer and cluster, proton transfer and trimethylsilyl transfer, and proton transfer 

follows the thermochemistry of trimethylsilyl affinity along with proton affinity of the neutrals. 

      Benzene has a low trimethylsilyl affinity7 in addition to a low proton affinity21 

compared to the proton affinity of trimethylsilanol.  The differences of rate are attributed to the 

trimethylsilyl affinities of the neutrals incorporated with their proton affinities.  If one ranks the 
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known trimethylsilyl affinities verses the efficiency of reaction, one sees that the increasing 

trimethylsilyl affinities correspond to an increase of efficiency.  No trimethylsilyl transfer is 

observed with diethylamine and triethylamine.  Diethylamine’s efficiency is unit efficient within 

error.  Stone and Chen have stated that the efficiency of the reaction of protonated 

trimethylsilanol with triethylamine is slower due to the polarizability of triethylamine.16  

Trimethylphosphate’s rate is slower than the other neutrals that have comparable proton affinities 

such as dimethylformamide and pyridine.  This trend is consistent with other trimethylsilyl 

containing ions investigated by this group such as protonated hexamethyldisiloxane.25  The 

rationale is that this trimethylphosphate’s calculated polarizability (1.29 X 10-23 cm3)12  is around 

the same as triethylamine’s (1.31 X 10-23 cm3).11  Protonated trimethylsilanol’s interaction with 

these neutrals are hindered compared to the other neutrals such as pyridine which has a 

polarizability of 9.5 X 10-24 cm3.11  An alternative explanation is that the E2 reaction could be 

thermochemically accessible (eq 4.11).  The thermochemistry indicates that the E2 reaction is 

 

 

 

(4.11)Me3SiOH2     +      B +     H2O     + Si

ΔHrxn B= Et3N        +15 kcal/mol
ΔHrxn B= (MeO)3PO       -206 kcal/mol

B+H

thermochemically assessable for trimethylphosphate, but not for triethylamine.   

     The advantage of using Me3SiOH2
+ vs H3O+ is that this ion can differentiate amongst 

isobaric neutrals.  For example isoprene and cyclopentene are isobaric.  As shown in Table 4.2, 

the branching ratios of these compounds are different for isoprene and furan, even though they 

have the same products (trimethylsilyl transfer and proton transfer).  When cyclopentene is 

allowed to react with protonated trimethylsilanol, a cluster ion along with a trimethylsilyl 

transfer product is produced.  Therefore, one can discern between three isobaric neutrals having 

different functionality assuming that the sample only contains furan or isoprene. 
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4.4.2 Terpenoids 

As shown in table 4.3, it has been shown that protonated trimethylsilanol reacts with the three 

selected terpenes.  Less fragmentation occurs (i.e. water loss or R group loss) when protonated 

trimethylsilanol is used as the reagent ion than when the hydronium ion is used.  It is postulated 

that since the proton affinity of trimethylsilanol is greater than water, then less fragmentation 

would be observed, which is confirmed.  

4.5 CONCLUSIONS 

     Various methods of forming protonated trimethylsilanol have been investigated.  

Direct ionization of tetramethylsilane, trimethylsilyl chloride, or hexamethyldisilane was ruled 

out due to the large amount of secondary products formed due to an excess amount of neutral 

added.  Various chemical ionization techniques were employed.  Using the hydronium ion to 

form protonated trimethylsilanol was also ruled out due to the large formation of the proton 

bound dimer of water and trimethylsilanol due to large amount of water added to the ionization 

source.  The radical cation of oxygen being allowed to react with tetramethylsilane and further 

addition of water was found to be the cleanest method out of all investigated to form protonated 

trimethylsilanol.   

      When protonated trimethylsilanol was allowed to react with the representative 

neutrals, the following primary products were observed:  clustering, trimethylsilyl transfer, 

and/or proton transfer.  Trimethylsilyl transfer products were also observed as secondary 

products via reaction of the protonated base with tetramethylsilane.  Triethylamine and 

diethylamine do not form this product due to inferred thermochemistry using tert butyl amine.  
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Protonated trimethylsilanol can differentiate between isobaric species such as isoprene, furan, 

and cyclopentene without the need of any further modifications of the apparatus or the use of 

other reagent ions.  The reaction of protonated trimethylsilanol with isobaric neutrals should be 

investigated along with its capability of its use as a reagent ion for VOC analysis. 

It is interesting to note that protonated trimethylsilanol would be a better candidate for 

VOC analysis of terpenoids since less fragmentation is observed. 
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5.0  ION/MOLECULE REACTION STUDIES USING THE TRIMETHYLSILYL 

CATION 

5.1 INTRODUCTION 

The chemistry of the trimethylsilyl cation, which has been referred to as a “large proton”,1 has 

been explored with organic compounds.2,3  Various groups have studied the reactivity of the 

trimethylsilyl cation with neutrals.  For example, Bowie and Blair studied the reaction of the 

trimethylsilyl cation with ketones, carboxylic acids, ethers, and other neutrals using the ICR 

technique.4-6  Bowie and Blair determined that adducts are formed with the trimethylsilyl cation 

along with other products that lost an R group (e.g. methane).  Orlando and coworkers coupled 

gas chromatography with chemical ionization to study the reaction of the trimethylsilyl cation 

with alcohols and aliphatic ethers.7,8  Orlando and coworkers determined that adduct formation is 

observed when the trimethylsilyl cation is allowed to react with bases.  In addition, they 

suggested that trimethylsilyl transfer occurs if impurity ions are present such as protonated 

trimethylsilanol.  Presence of protonated trimethylsilanol could cause erroneous interpretation of 

results since its ion chemistry is different than the trimethylsilyl cation.  The trimethylsilyl cation 

was studied with various amines using the flowing afterglow9 and other neutrals using a high 

pressure mass spectrometer3 by Stone and coworkers.  When Chen and Stone studied the 

reactions of the trimethylsilyl cation with amines, they discovered that most amines produced 
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adducts, while more basic amines produced proton transfer and adducts.  Another interesting 

observation is that the magnitude of the rate coefficient decreased as the proton affinity of the 

base increased.9   

     The reactions of the trimethylsilyl cation with neutrals can also provide insight into 

trimethylsilyl group transfer reactions.3,10   Isoprene, acetone, etc. have been found to be in the 

breath of humans by Phillips and coworkers.11  Stone and coworkers have used trimethylsilyl 

group transfer reactions to find the relative trimethylsilyl cation affinities of neutrals.3  The goal 

of this chapter was to evaluate the chemistry of the trimethylsilyl cation with the neutrals studied 

with protonated hexamethyldisiloxane and protonated trimethylsilanol.  

5.2 EXPERIMENTAL 

   The flowing afterglow apparatus has been previously described;12 only details unique to 

this work will be described here.  Helium, 99.997% (Valley National Gas, Wheeling, WV), was 

used as the carrier gas.  Flow tube pressures were selected between 0.3 – 0.5 Torr with 

corresponding helium flows from 100-180 STP cm3/s.   

     Argon was ionized at the ion source.  Tetramethylsilane was added 36.3 or 76.7 cm 

from the nose cone depending on the experiment performed.  For example, if a qualitative 

reaction was to be performed, then the tetramethylsilane would be added 76.7 cm from the ion 

source to minimize formation of protonated trimethylsilanol.  Protonated trimethylsilanol is 

formed via reaction of the trimethylsilyl cation with adventitious water.  The amount of 

tetramethylsilane added was selected such that the argon radical cation was reacted  (i.e. when no 

or minimal m/z 40 signal was detected).  The same flow of tetramethylsilane was then added 100 
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cm from the nose.  Neutrals of interest were introduced 16.1 – 76.7 cm from the nose cone for 

kinetic experiments and 36.3 cm from the nose cone for qualitative and branching ratio 

experiments. 

     All experiments were conducted under pseudo-first-order conditions in which the ion 

was the limiting reactant.  Three types of experiments were performed in this study:  qualitative, 

kinetic, and branching ratio.  Qualitative experiments are carried out to determine the ionic 

products from ion/molecule reactions.  These qualitative experiments were repeated on two 

different experimental days.  An experimental day is defined as the complete startup and 

shutdown of the flowing afterglow.  Kinetic experiments are carried out to determine the rate of 

an ion/molecule reaction.  At least five experiments over two experimental days were performed 

for each ion/molecule reaction studied.  A plot of observed rate coefficient verses pressure was 

examined to determine if the reaction exhibited pressure dependence.  For kinetic experiments, 

the reported error is the precision of the measurements.  The accuracy of a rate coefficient 

measurement has previously been determined to be ± 20%.  The collisional rate coefficient, used 

to determine reaction efficiency, was calculated using variational collision complex theory as 

described by Su and coworkers.13   Polarizabilities and dipole moments were obtained from 

standard sources.14  Branching ratio experiments were conducted twice over two experimental 

days and analyzed using the method described by Anderson and coworkers.15  Branching ratio 

plots will reveal the formation of secondary products via curves in the yield vs. extent-of-

reaction lines.  A secondary product is that formed from the reaction of a primary product ion 

with the neutral being studied.                          

 Reagents were obtained from the following sources and used without further purification:  

acetone, acetonitrile, triethylamine, furan (99% Fisher Scientific, Pittsburgh, PA), ethyl acetate, 
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benzene (99.9% HPLC Grade Fisher Scientific),  tetramethylsilane (99.9+% Sigma-Aldrich), 

deuterium oxide (99.9% D MDS Isotopes),  2-methylbutane (99.7%, Fisher Scientific), 

cyclopentene (96% Sigma-Aldrich),  naphthalene (99+% Scintillation Grade, Sigma-Aldrich), 

isoprene (99% Acros Organics), ammonia (semi-conductor grade, Matheson), ethanol (100%, 

Aaper Alcohol and Chemical Company), acetic acid (glacial, Fisher Scientific), 

trimethylphosphate, dimethylsulfide, pyridine (99+%, Sigma-Aldrich), diethyl ether (99.7%, JT 

Baker), dimethylformamide (99+%, Fisher Scientific), argon (99.9% Valley National Gas, 

Wheeling, WV), and diethylamine (98+%, Avocado Research Lab).     Deionized water was 

obtained in-house.  All liquid reagents were subject to several freeze-pump-thaw cycles each 

experimental day.  A sweeper, which facilitates introduction of semi-volatile neutrals via a flow 

of helium, was used for trimethylphosphate and naphthalene for qualitative and branching ratio 

experiments.   

5.3 RESULTS 

A typical reactant ion spectrum of the trimethylsilyl cation is shown in Figure 5.1.  The products 

formed from this reaction are the trimethylsilyl cation (m/z 73), protonated trimethylsilanol (m/z 

91), methylated hexamethyldisilane (Me3Si(Me)SiMe3
+, m/z 161), and m/z 131 (Me3SiSiMe2

+).  

Protonated trimethylsilanol is formed via reaction of the trimethylsilyl cation with adventitious 

water.  The amount of protonated trimethylsilanol formed varied from day to day (20-50% 

relative to the trimethylsilyl cation). 
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When the trimethylsilyl cation was allowed to react with the neutrals as shown in Table 

5.1, the following reactions were observed:  hydride ion transfer, adduct formation, proton 

transfer, and/or the loss of methane or propane.  A majority of neutrals form the adduct only. 
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Figure 5.1  Typical spectrum of the trimethylsilyl cation formed from the reaction of Ar+ with Me4Si. 

 

Hydride ion transfer is observed when 2-methylbutane and cyclopentene are allowed to react 

with the trimethylsilyl cation.   

When the trimethylsilyl cation is allowed to react with diethylether, the adduct product is 

observed.  In addition to this observed product, we hypothesize that the hydride transfer product 

also occurs.  The hydride ion transfer product’s m/z value is the same as the reactant ion (m/z 73).  

One could use an analogous ether or use a deuteriated ether to provide proof for this hypothesis.  

The former option was chosen, and the qualitative reaction of the trimethylsilyl cation with 
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tetrahydrofuran was studied.  Hydride ion transfer and adduct formation was observed.  

Therefore, hydride ion transfer is assumed to occur with diethylether even though the product is 

isobaric with the reagent ion (i.e. Me3Si+).   

When the trimethylsilyl cation is allowed to react with acetic acid, adduct formation and 

methane loss products are observed (eq 5.1).  A product ion, which has lost propane, is  

  (5.1)Me3Si   +
O

OH

O

OH

SiMe3

O

O SiMe2
+   CH4

He

 

also observed with diethylamine.  In addition to propane being lost, proton transfer and adduct 

products are observed.   

Triethylamine or diethylamine form proton transfer and adduct products when they are 

allowed to react with the trimethylsilyl cation.  Since protonated trimethylsilanol is also present 

in the reactant spectrum, the issue arises whether the protonated triethylamine or diethylamine 

are formed via reaction with the trimethylsilyl cation or by protonated trimethylsilanol.3,9  

Protonated trimethylsilanol reacts with both diethylamine and triethylamine to form proton 

transfer products.  Does the presence of protonated trimethylsilanol contribute to erroneous 

branching ratios?  To address this concern, the branching ratio was corrected for the reaction of 

protonated trimethylsilanol with triethylamine by subtracting the amount that would have reacted 

with protonated trimethylsilanol at the correct reaction time.  There was no difference within 

error between the corrected branching and non-corrected branching ratios.  Since there was no 

significant change in the branching ratio when the contribution of protonated trimethylsilanol  
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Table 5-1  Summary of the reactions of the trimethylsilyl cation with various neutrals.  The dark shaded area 

is a rate coefficient not measured since it is present in the literature.   

 

Neutral k II  (Eff)a k lit  (Eff)a Alkane Loss
BR ΔHrxn

c,d BR ΔHrxn
c,d BR ΔHrxn

e

0.005 ± 0.003  
(0.004) 100 % + 6 ± 5 

H2O
0.99 ± 0.22  

(0.42) 100% -30.1 + 61.5

D2O
0.71 ± 0.08  

(0.32) 100%

C6H6
0.62 ± 0.12  

(0.51) 100% -23.9 + 47.2

0.67 ± 0.08  
(0.55) 93 ± 2 % + 43.3 7 ± 2 % + 2 ± 5 

EtOH 0.84 ± 0.12  
(0.50) 100% - 42.0 + 40.9

MeCN 1.85 ± 0.23  
(0.52) 100% + 40.3

MeCO2H
1.56 ± 0.11 

(0.91) 86 ± 4 % + 39.2 14 ± 4 %

100% + 34.6

0.82 ± 0.16  
(0.65) 100% + 34.5

MeCOMe 1.59 ± 0.08 
(0.61)

2.10 ± 0.05f 

(0.80)
100% -45.0 + 32.4

0.92 ± 0.05  
(0.72) 100% + 29.0

EtOEt            0.75 ± 0.1  
(0.50) X% -44.2 +28.5 Y%g - 4 ± 5 

Me2S
0.78 ± 0.17  

(0.45) 100% + 27.9

MeCO2CH2Me 1.35 ± 0.27  
(0.74) 100% -48.7 + 26.8

NH3
1.56 ± 0.78f    

(0.73)
100% -46.5 + 22.5

HCONMe2
1.80 ± 0.18  

(0.58) 100% + 14.4

(MeO)3PO       h 1.60 ± 0.22  
(0.63) 100% + 13.6

1.25 ± 0.28  
(0.59) 100% + 4.5

(Et)2NH 1.05 ± 0.33  
(0.73) 66 ± 4 % 33 ± 4 % - 1.1 1 ± 1 %

Et3N
0.90 ± 0.11 

(0.62)
0.72 ± 0.02f 

(0.46)
37 ± 3 % 63 ± 3 % - 8.2

b--PT = proton transfer
a--Units of 10-9 cm3 molecule-1 s-1.  Eff = k obs /k coll .  k coll  is calculated via the VTST theory of Su and Bowers. NR = No reaction observed.

h--Polarizability calculated using the group additivity method of Miller and coworkers
g--Assumed by reaction of the trimethylsilyl cation with tetrahydrofuran.  Branching ratio could not be measured due to interference with the trimethylsilyl cation.
f--Chen, Q.-F.; Stone, J. A. Int. J. Mass Spectrom. Ion Proc.  1997, 165/166, 195-207. (FA)
e--Lias, S.G. et al J Phys Chem Ref Data  1988, 17
c--ΔΗRxn (units of kcal/mol).  d—Linstrom, P.J. (Ed.) NIST Chemistry Webbook. 

Hydride Ion TransferAdduct PTb

O

N
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was removed, no corrections were applied to the branching ratio data for the trimethylsilyl cation 

with diethylamine reaction. 

5.4 DISCUSSION 

 While there are no reports in the literature of using the radical cation of argon to form the 

trimethylsilyl cation, it is known that the radical cations of noble gases such as xenon can form 

charge dissociative products with neutrals.16  The ionization energy of argon is 15.8 eV and the 

appearance energy of the trimethylsilyl cation is ~10.6 eV.17  The dissociative charge transfer 

reaction is exothermic by ~5 eV (~119 kcal/mol).  A scheme summarizing the principle ions 

observed when allowing Ar+• to react with Me4Si at 0.3 Torr of helium in a flowing afterglow 

(e.g. figure 5.1) is shown in scheme 5.1.   Methylated hexamethyldisilane and m/z 131 are 

observed from the reaction of the trimethylsilyl cation with excess tetramethylsilane.  Stone and 

coworkers also observed these ions.18  Protonated trimethylsilanol is a product from the reaction 

of the trimethylsilyl cation with adventitious water which also has been reported by Stone.9   

The optimized trimethylsilyl cation system was allowed to react with the neutrals listed in 

Table 5.1 and the observed reaction channels summarized in scheme 5.2.  The reaction 

efficiencies are all greater than 0.32, with the exception of 2-methylbutane.  The reason why the 

efficiency of cyclopentene (0.53) is ~100 times faster than 2-methylbutane (0.004) is because 

when the trimethylsilyl cation is allowed to react with cyclopentene both hydride ion transfer and 

adduct formation is observed.  Only hydride ion transfer is observed with 2-methylbutane. 
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Scheme 5-1 Formation of the trimethylsilyl cation and subsequent reaction with excess 

tetrame

ylsilyl 

cation:  150 kcal/mol, as measured by Szepes and Baer,19 and ~145 kcal/mol, as reported by 

Potzinger and Ritter.20  Both values are estimated, and neither include error bars.     

thylsilane.  All thermochemical data are in units of kcal/mol. 

 

The derived thermochemistry of the reaction of the trimethylsilyl cation with  

2-methyl butane indicates that the hydride ion transfer reaction is +6 ± 5 kcal/mol endothermic.  

It should be noted that 150 ± 5 kcal/mol is used for the heat of formation of the trimethylsilyl 

cation since there are two different reported values for the heat of formation of the trimeth
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Me3Si

BH2

B

+  Me2SiCH2

He

+   Me3SiH
BH

+   CH4  (Acetic Acid)
     C3H8 (Diethylamine)

BHSiMe3

B-R SiMe2

Scheme ation 

thylbutane is +6 ± 

5 kcal/m -12 

cm3 molecule ng that the hydride 

ol and that there is no kinetic 
-10 to 5 X 10-14 

cm3 molecule-1 s-1, respectively.  These rates were calculated using the Arrhenius equation, using 

1 and + 6 kcal/mol as the activation energy and 298K as the temperature.  The collisional rate 

oefficient calculated using the theory as described in the experimental section was used as the 

preexpo

Lias studied the analogous reaction 

of the tert-butyl cation with 2-methylbutane and observed that hydride ion transfer occurred.22  

They r ous to our 

cyclopentene.  The rate of reaction is ~10 times faster than 2-methylbutane.  When the 

trimethylsilyl cation is allowed to react with ethanol, only the adduct product is formed.  The rate 

5-2  Generalized scheme for the reaction of a base B with the trimethylsilyl c

 

The hydride ion transfer reaction of the trimethylsilyl cation with 2-me

ol endothermic.  This slightly endothermic reaction and slow rate coefficient (5 X 10
-1 s-1), can be explained by using the Arrhenius relation.  Assumi

ion transfer product has an enthalpy of reaction of +1 to +6  kcal/m

barrier to reaction, then the minimal rate that this reaction could react at is 2 X 10

+

c

nential factor.  The polarizability of 2-methylbutane was calculated to be 9.98 X 10-24 

cm3 using the theory of Miller and Savchik.21  Ausloos and 

eported the efficiency of reaction to be 0.01.  The low efficiency is analog

observations of hydride ion transfer. 

    The other neutral that had an observable hydride ion transfer product was 

of reaction is 0.84 X 10-9, which is the same as cyclopentene (within error).   
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     When diethylether was allowed to react with the trimethylsilyl cation, the adduct 

product was observed.  It was hypothesized that the ether could have a hydride transfer product 

since these types of products have been observed in ethers.  Smith and coworkers reported a 

hydride ion transfer reaction when NO+ was allowed to react with diethylether.23  It is 

hypothesized that the reaction of the trimethylsilyl cation with diethylether produces a hydride 

ion transfer product that is isobaric with the reactant ion (i.e. m/z 73).  This is hypothesized 

because as the rate coefficient of this reaction was attempted to be measured, a suitable reaction 

of the dride ion 

transfer product occurs if the isotopic contribution to m/z 73 changes with the extent of reaction, 

since th

etween 0.3 – 0.5 Torr (using an error of ± 20%).  Munson 

and co

respectively.  Since 

reactant ion (i.e. Me3Si+) was not possible.   One could ascertain whether a hy

e 30Si isotope is more abundant than 18O.  However, protonated diethylether (m/z 75), 

observed from the reaction of protonated trimethylsilanol with diethyl ether precluded this 

approach.  Instead, the hypothesis of hydride ion transfer was tested using a cyclic ether 

comparable to diethylether (1), tetrahydrofuran (2).  When tetrahydrofuran was  

allowed to react with the trimethylsilyl cation, adduct and hydride ion transfer (less than 10%) 

products are observed from the qualitative experiments.   

     Our measured rate coefficient of the reaction of the trimethylsilyl cation with furan is 0.82 X 

10-9 molecule-1 cm3 s-1 (measured from 0.3 to 0.5 Torr).  Munson and coworkers found that this 

reaction to be pressure dependent.24   To determine whether a rate coefficient has a pressure 

dependence, a plot of observed rate vs. pressure is constructed, as shown in Figure 5.2.  No 

pressure dependence was observed b

O
O

1 2

workers extrapolated their measured rate coefficients to zero pressure, finding a y-

intercept of 1.8 X 10-11 (see figure 5.2).  This value was hypothesized to be the radiative rate 

constant.  Our value mentioned above correlates with Munson and coworker’s observations since 

their pressure used was lower than ours, 1-10 X 10-7 Torr vs. 0.3-0.5 Torr, 
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our rate

 product did not 

change, as excess tetramethylsilane was added, no evidence for a metastable trimethylsilyl cation 

was found.  The second experiment examined was the reaction of d3-acetic acid with the 

 coefficient is only 0.58 efficient, the value must lie between the minimum and maximum 

value.  If one would continuously increase the pressure, the rate coefficient would eventually 

reach the collisional limit. 

     Acetic acid forms a product that is termed by us as an “alkane loss.”  In addition to 

forming the adduct, acetic acid loses methane to form the structure 1 as described in Scheme 5.3.  

Blair and Bowie have hypothesized a loss of methane from this reaction, but did not report any 

transition states or structural information.4  It is hypothesized that a six center transition state 

leads to the methane loss channel (see scheme 5.3).  The methane loss for acetic acid was 

confirmed by two experiments.  The first experiment was designed to discount that this loss was 

due via a reaction with an excited (metastable) trimethylsilyl cation.  Excess tetramethylsilane 

was added while the concentration of argon and acetic acid was held constant.  This experiment 

should lead to the quenching at least some of any metastable Me3Si+ ions, if they existed, before 

they had a chance to react with acetic acid.  Since the intensity of the alkane loss

trimethylsilyl cation.  We observed a 3 amu increase in the adduct and methane-loss products as 

compared to reaction with CH3COOH. 

      When diethylamine is allowed to react with the trimethylsilyl cation, an adduct, a 

proton transfer, and another product which loses propane, is observed.  This “alkane loss” is not 

observed in the other reactions.   
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Figure 5.2  Plots of kobs vs pressure.  The data from 1 X 10-7 to 1 X 10-6 Torr was generated by 

Munson and coworkers.24 

The following factors should be considered to explain these “alkane losses”:  whether the 

neutral possesses an acidic proton, what types of electron donating or withdrawing groups are on 

the reactant neutral, and what heteroatom is bound to the silicon atom in the adduct (i.e. bond 

energy)

kcal/mol).14  More energy is expended if an alkane loss would 

occur with ethanol.  An alternative explanation is that the “alkane loss” reaction with ethanol is 

not thermodynamically allowed, but no thermochemical data exists to prove or disprove this 

ypothesis. 
 

.  Ethanol possesses an acidic proton, but this loss is not observed.  One reason why 

alkane loss is not observed in ethanol but is in diethylamine is that an N-Si bond (105 kcal/mol) 

is weaker than a O-Si bond (191 

h
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on with 

acetic ac

cid.  An electron withdrawing group on (RCO2H) allows the alkane loss to occur 

since it can withdraw electrons from the trimethylsilyl moiety making the adduct less stable.  

This methane loss with acetic acid has been observed by Blair and Bowie.4  They hypothesized 

that the trimethylsilyl cation attacks the –OH oxygen and goes through a four-centered 

1

Scheme 5-3  Hypothesized scheme of methane loss for the reaction of the trimethylsilyl cati

id 

           Other factors such as the type of groups attached to the heteroatom also affect the 

observance and yield of “alkane loss.”  Neutrals possessing electron donating groups (i.e. ethanol 

and diethylamine) stabilize adduct formation better than electron withdrawing groups since the 

trimethylsilyl cation is considered a hard acid.  The electron donating groups on the amine 

reduce the yield of the “alkane loss” verses the acidic acid product.  The formation of a less 

stable four centered transition state present with diethylamine also explains the small yield since 

a four-centered transition state is not as energetically favored as a six-centered transition state 

with acetic a
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intermediate.  We believe attack at the carbonyl oxygen allows for a six membered transition 

state.  The attack of the trimethylsilyl cation on the carbonyl oxygen is further stabilized via 

resonance.  We were unable to observe this product due to the presence of protonated 

trimethylsilanol and its isotopomers (i.e. m/z 92  C3H9
29SiOH2

+).   

     Blair and Bowie observed alkane loss when the trimethylsilyl cation was allowed to 

react with ethyl acetate.4   Wojtyniak and Stone did not observe the loss using ethyl acetate as the 

reactant neutral at 4.0 Torr.25  Our observations agree with Stone’s.  Ethyl acetate does not have 

an acidic proton, which agrees with our hypothesis. 

     Proton transfer and adduct products are observed when diethylamine and 

triethylamine are allowed to react with the trimethylsilyl cation.  The absence and presence of 

proton transfer agrees with the established proton affinity of 2-silaisobutene ((CH3)2SiCH2) 

which is 226.5 kcal/mol.17    

     Rate coefficients have been measured by Chen and Stone for the reactions of the 

trimeth 9

d triethylamine agree with Chen and Stone’s within estimated errors, there was no 

need then to measure the rate of the trimethylsilyl cation with ammonia.   

ylsilyl cation with ammonia, acetone, and triethylamine.   Since our rate coefficients for 

acetone an

5.5 CONCLUSIONS 

  When the trimethylsilyl cation is allowed to react with a variety of neutrals, adduct 

formation, proton transfer, hydride ion transfer, and/or an “alkane loss” are observed.  Even 

though it has been mentioned in the literature by Munson, we found no pressure dependence in 

the measured rate coefficient between the trimethylsilyl cation with furan.  We were unable to 

observe hydride ion transfer with diethylether, but we were able to observe it with 

tetrahydrofuran, an analogous ether.  Therefore we can state that is probable that hydride ion 
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transfer occurs when diethylethyl ether is allowed to react with the trimethylsilyl cation.  

Methane loss is observed as one product of the reaction of the trimethylsilyl cation with acetic 

acid.  The presence of a metastable reactant ion was ruled out.  In addition, d3-labeled acetic acid 

studies revealed that the methyl group of the acid is retained in the product ion.  Propane is lost 

when diethylamine is allowed to react with the trimethylsilyl cation.  The Arrhenius relation 

provides insight on how an endothermic reaction (i.e. the trimethylsilyl cation with 2-

methylbutane) can be observed, albeit having a rate of 5 X 10-12 cm3 molecule-1 s-1. 
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6.0  USING HENRY’S LAW AND THE EXPONENTIAL FLASK TO VALIDATE 

HE CRMS  

ule data 

) online and in realtime without 

any con ques such as gas chromatography mass spectrometry 

rnal or external 

calibrat  ensure the consistency of the measurement.  While there is no actual need to 

perform or the CRMS, this section involves control experiments that 

will giv e of the errors associated with VOC quantitation. 

 its 

(6.1)

 

iewed 

sts such as the NIST chemistry webbook.1  The use of Henry’s law to determine the liquid 

ith and coworkers by sampling the 

QUANTITATION OF T

6.1 INTRODUCTION 

  
The unique capability of the flowing afterglow is that the previously known ion/molec

allows the user to quantify volatile organic compounds (VOCs

ventional calibration.  Other techni

(GCMS) or liquid chromatography mass spectrometry (LCMS) rely on inte

ions to

 a calibration experiment f

e the researcher some sens

Henry’s law states that the headspace concentration of a VOC (CHS) is proportional to

concentration in solution, Csoln (eq 6.1).  The only assumption in this law is that the solute  

 

 

dissolved in the solvent must be dilute.  To know the concentrations in the headspace, one must

use an appropriate Henry’s law constant (kH).  Henry’s law constants are found in peer-rev

li

phase concentration of a substance has been explored by Sm

CHS  =
kH

Csoln
1
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headspace of urine.2  The method used by Smith and coworkers2 is used to detect known 

amounts of acetone and acetonitrile in  deionized water solutions of 5, 50, 500, and 5000 ppm.   

 Another technique used for comparing quantitative results from the CRMS and theory is 

using an exponential dilution flask.  A flask is constructed that contains a device to allow for 

maximum air circulation.  The flask’s volume is determined.  A known flow of inert gas is 

passed through the flask.  At a specified time, a known volume of gas is injected into the flask.  

This initial concentration and time is no l dilution flask follows the 

exponential decay shown in eq 6.2.  The concentration at time t, Ct, can be calculated if one  

 

3,4

6.2 EXPERIMENTAL 

.2.1 Henry’s Law 

ted.  The exponentia

t

 
(6.2)

 

knows C0, the initial concentration, the flow rate, F, and the volume of the flask, V.  Attempts to 

use to use this technique are shown later.  This equation has been modeled and used by Lovelock 

and Ritter and Adams.

Ct = C0   e
V

- F

6

     Standard solutions of 5, 50, 500, and 5000 ppm of acetone and acetonitrile were made 

in the following fashion.  All glassware except for the volumetric flasks and pipettes were baked 

overnight at 150°C.  A 500 μL aliquot of solute was placed into a 100mL grade A volumetric 

flask to make a 5000 ppm solution.  This 5000 ppm solution was serially diluted into a 500 ppm 
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solution by pipetting 10 mL (TD) aliquot of the 5000 ppm solution into another 100mL grade A 

volumetric flask.  The same procedure was used to make 50 and 5 ppm solutions.  Once these 

 

his was repeated 10 times for the 500 μL and 10 mL pipettes on two separate days.  The error 

in volume delivery for the volum termined by filling the flasks to the top with 

ark and removing the water down to the calibration mark.  This water 

Table 6-1  Errors associated with volume delivery involving the volumetric glassware       

99.1239
9.9859 99.0883
9.9881 99.1423

10.0068 0.4872 99.2967
9.9877
9.9725
9.9962
9.9706
9.9865

Avg 9.9874 0.4866 99.1713
Std dev 0.0134 0.0051 0.0819
% Std Dev
Error in Accu

5000 ppm: 2.7976
50
50
5 ppm: 3.1519

Volume of Water 
Dispensed (mL)

solutions were made, 20 mL of each standard in addition to duplicates of 5 ppm were placed into 

separate 250 mL RB flasks and sealed with a septum.   

     The error in volume delivery of the pipettes and flasks were determined.  Gravimetric 

analysis was used to determine the delivery error volume via the density relation.  To determine 

the error of volume delivery from the pipettes, the temperature of the water was measured.  A 

volume of water was pipetted into a clean 50 mL beaker and the mass of water was determined. 

T

etric flasks was de

water past the calibration m

was placed into a beaker and weighed.  The volume was then calculated using the density 

relation.  Errors are shown in Table 6.1 and are less than 3%. 

 

10mL Glass Pipette (TD) 0.5 mL glass pipette (TC) 100mL Grade A Volumetric Flask

10.0078 0.4949 99.2051
9.9717

 

0.1345 1.0555 0.0826
racy (%) 0.1262 2.6800 0.8300

Accuracy in Made Standard (%)

0 ppm: 2.9205
 ppm: 3.0384

2.67200.1262

0.486
0.4813
0.4838
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    The setup of the inlet to the flowing afterglow is shown in Figure 6.1.  A hypodermic syringe 

is cut near the handle with the plunger removed.  A Cajon connector and o-ring are connected at  

Figure 6.1  Setup of Headspace Collection using a 250 mL RB flask and sealed with a septum.  Notice 

the modi hypodermic syringe. 

the end.  This is placed at the inlet to an arm of the vacuum rack.  The port at 36.3 cm was 

opened and a flow of air into the flow tube is attained.  A background signal with lab air 

introduced into the CRMS is collected, and then the septum is pierced and the headspace is 

sampled.  The flask is removed and the lab air is collected.  The same procedure is performed all 

the other samples.  In some cases the experiment was repeated in the same day and in all cases 

the experiments were repeated for over two experimental days. 

 

fied 
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6.2.2 Exponential Dilution Flask 

A custom-made exponential dilution flask was constructed to allow ¼” cajon connectors to 

attach to either end of it, allow a stir bar with minimum clearance to fit inside the device, and to 

have a removable septum for introducing vapors.  This device is shown in figure 6.2.  The 

volume of the flask was determined by weighing the dried empty vessel and then weighing the 

vessel filled with water without any air bubbles.  The volume determined was 280.73 ± 0.82 mL,  

which was an average of five measurements.  Helium was used as the diluent gas.  The flow of 

helium was determined by attaching the metering valve to the vacuum rack and then 

disconnecting it to allow the connection to the vac rack for analysis.  Another metering valve 

was placed at the end of the flask rack to ensure the contents of the flask was not evacuated (see 

figure 6.2). 

 

Valve Valve
Metering

Valve
Metering

Valve
Stir bar

Screw top with septum

He FA (CRMS)To

 

Figure 6.2  Overview of the exponential dilution flask.  A known flow of helium gas is passed through 

the flask.  A known volume of vapor is injected into the flask via the septum. 
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6.3 RESULTS 

e 6.3  Plot of intensities of the hydronium ion (m/z 19) and protonated acetonitrile (m/z 42) vs. 

time as the septum is pierced and the flask removed for 50, 500, and 500 ppm acetonitrile solutions. 

6.3.1 Henry’s Law 

     A plot of intensity of protonated acetonitrile (m/z 42) vs time is shown in Figure 6.3.  

As indicated on the figure, the intensity of m/z 42 increased with time, after the septum 
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is pierced.  The intensity of the hydronium ion (m/z 19) and the total ion current (TIC) remains 

n e experiments.  This must be true for pseudo first order conditions to take 

place (see chapter 2).  A plot of the concentration of the headspace of acetonitrile vs. 

concen

 values  

acetonitrile.  

ent of the 

ental 

section). 

consta t throughout th

tration of acetonitrile in water (M) is constructed to determine the Henry’s Law constant 

for acetonitrile.  As shown in Figure 6.4, the data points fall within the range of reported
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Figure 6.4  Plot of headspace concentration (ppm) vs. concentration of the liquid (M) for 

The inset is an expansion showing data from  the 5, 50, and 500 ppm standards. 

in the literature.  The y error bars are the errors associated with the measurem

headspace. The x error bars are errors associated in constructing the standards (see experim
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, 500, and 5000 ppm MeCN solutions. 
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Figure 6.5  Graph of the intensity of protonated acetone (m/z 59) and the hydronium ion (m/z 19)  vs. 
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The same type of experiments were conducted for acetone and the results are shown in figures 

6.5 and 6.6. 

M) for 

 

e and 

   

Figure 6.6  Plots of the headspace concentration (ppm) vs. the concentration of liquid (

acetone.  See text for description of error bars. 

 

6.3.2 Exponential Dilution Flask 

A plot monitoring the introduction of ethyl acetate vapor into the flask is shown in figure 6.7. 

The signal due to the hydronium ion (m/z 19) is constant, while there is a noticeable increas

then decrease of m/z 89 and 90 when ethyl acetate is injected.  The concentration of the CRMS is  
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Figure 6. ng injected 

into an exponentia l acetate, 

and 90 is an is

7  Semi logarithmic (top) and linear (bottom) graphs of ethyl acetate vapor bei

l dilution flask.  m/z 19 is the hydronium ion (reactant ion), 89 is protonated ethy

otopomer of protonated ethyl acetate. 
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Exponential Dilution Flask:  Inject 250 ppm EtOAc Vapor
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Figure 6.8  A graph comparing the concentration detected using the CRMS vs. the concentration 

predicted using the exponential dilution flask theory.  The inset includes the full range of CRMS data.  See 

the introduction for an explanation of exponential flask theory. 

 

measured from known experimental variables (ch 2).  The concentration decrease is modeled 

from eq 6.2 and other known variables such as volume of the vessel and flow rate.  As is shown, 

the theory does not model the measured CRMS concentration (figure 6.8).  The reason why there 

is a 10 ppm level of ethyl acetate present before any ethyl acetate is injected is because there was 

an experiment ran before that included ethyl acetate. There is no current explanation as to why 

this discrepancy exists. 
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6.4 DISCUSSION 

6.4.1 Henry’s Law 

The comparisons between the measured Henry’s law constant using the CRMS and the 

values reported in the literature are shown in Table 6.2.  The values measured using the flowing 

afterglow were ordered in an arbitrary manner from the lowest value to the highest value.  The 

differences between the measured Henry’s law constants using the CRMS and the values 

reported in the literature are 6 percent for both acetone and acetonitrile.  The values listed from 

the literature are either literature reviews or an original measurement of the value.1  The average 

measured value using the CRMS agrees with the value obtained from Arijs and Brasseur (48 

nry’s law 

g a flowing 

e 

 

 

 

 

 

mol/kg/bar).5   Smith and coworkers have stated the error associated in measuring a He

constant as 20%.2  The Henry’s law constant for acetone has not been measured usin

afterglow to date.  The values measured with the CRMS agree with the average literature valu

within ±20% error that Smith reported.2
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Table 6-2  Comparison of measured Henry’s Law constants and constants listed in the literature.  

The percent difference reported is the difference between the average value measured using the flowing 

afterglow and the average value reported in the literature. 

atch the 

RMS concentration.  The first idea was that the flows of helium and diluent gas were not equal, 

KH Measured using FA Other KH
a KH Measured using FA Other KH

a

31 30 40 53
27 27 46 48
25 27 52 54
24 32 57

35
26
25
25
28

Average 27 28 49 52
St Dev 3 3 7 3
% St Dev 12 12 15 6

% Difference 6 6

Acetone Acetonitrile

a--Lidstrom, P. J.; Mallard, W. G., Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; March 2003 
ed.; National Institute of Standards and Technology: Gaithersburg MD, 20899, 2003.

6.4.2 Exponential Dilution Flask 

Various ideas have been formed as to why the theoretical concentration does not m

C

causing erroneous results.  However, this was checked and this is not the cause of the problem.  

Other issues which have not been addressed to date which could cause errors are whether the 

vessel is getting adequate mixing and if a second metering valve is needed. 
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6 C  

e ants have been measured using the CRMS and have been compared to the 

values listed in the literature.  The values are within the range of values mentioned in the 

literatu

.5 ONCLUSIONS

The H nry’s law const

re.  These results allow the user of the CRMS to state the error associated with the CRMS. 

The exponential dilution flask method was used to attempt to validate quantitation using 

the CRMS.  While a increase and decrease was observed, the data did not match the theory and 

as the Henry’s Law approach was useful, this dilution flask approach was abandoned. 
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7.0  USING THE CRMS TO DETERMINE VOLATILE ORGANIC COMPOUNDS 

EMITTED FROM A GRAPHITIC BOARD COATED WITH PHENOLIC RESIN 

7.1 INTRODUCTION 

 
     The flowing afterglow has the capability of quantifying and identifying multiple 

VOCs online and in real time.  An example is using the flowing afterglow to ensure regulatory 

compliance.  Hydrogen LLC is developing a hydrogen fuel cell membrane consisting of a 

graphitic board coated with phenolic resin.  The process of curing the resin is to heat it from 

room temperature to 900°C.  The company traps the VOCs that are emitted from the resin into a 

water trap.  The goals of this project were to identify the VOCs emitted from heating the 

graphitic board and compare it to the VOCs emitted solely from the phenolic resin.  With this 

data, the company would then be able to make an informed decision as to the elimination of 

wastes. 

7.2 EXPERIMENTAL  

     A custom made SS chamber was used to heat the phenolic resin or graphitic board.  

An overview drawing of the apparatus is shown in Figure 7.1 (detailed blueprints may be found 
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in Appendix C).  The chamber was placed inside a cylindrical copper block.  The copper block 

has three cartridge heaters and a type J thermocouple to measure temperature.  All the electrical 

feeds are connected to a temperatur tro rolled via computer.  The outlet of 

the flange is connected to a port on the flowing afterglow that was 36.3 cm from the nose cone.  

A picture of the apparatus around 900°C along with one set of representative temperature ramps 

are sho

ere 

aphitic board was heated.  The hydronium 

Protonated hexamethyldisiloxane 

as generated using proton transfer from the tert butyl cation as described in chapter 3. 

 

 

Figure 7.1  An overview drawing of the SS heated cell.  Note that the drawing is not to scale.  For 

other drawings, see appendix C. 

e con ller that was cont

wn in Figure 7.2.   

     All mass spectral conditions along with necessary quantification information w

collected.  In each case, a blank was run before the gr

ion was generated by the ionization of water at the ion source.  

w
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7.3 RESULTS 

     When a 1.2360 g piece of graphitic board was heated from room temperature to 900°C over 

40 minutes, a number of ions were detected.  The top ten abundant product ions were identified:  

m/z 95, 113, 18, 35, 59, 102, 123, 52, 79, and 109 and the intensities of the ions vs. time are 

plotted in Figure 6.3, along with the blank.  Hypothesized molecular formulas and compounds 

are shown in Table 7.1.  As shown in the figure, an enormous amount of ammonia was detected.  

Because of that no quantitation was determined, since pseudo first order conditions must be 

maintained.  This experiment was repeated again, with similar results.  In a third experiment, a 

smaller piece of graphitic board (71.9 mg) was heated, and both meaningful quantification and 

identification were made.  Figure 7.4 shows the selected ion chromatograms and total ion 

chromatogram for the blank and run with the piece of graphitic board.  The “spikes” shown in 

the blank are from changes in the H2O+• ion.  H2O+• is isobaric with NH4
+, an ion which was 

observed when a sample of graphitic board was heated.  A real-time quantification is shown in 

Figure 7.5 along with the blank.  An 8.0 mg sample of the phenolic resin used to coat the 

graphitic board was heated in the SS cell and the same VOCs are eluted, albeit at a smaller 

concentration (see Figure 7.6).   

When protonated hexamethyldisiloxane was used at the reagent ion, the following 

product ions were observed:  m/z 18, 35, 90, 107, and 181.  The total ion chromatogram and 

selected ion chromatograms are shown in Figure 7.7.  Figure 7.8 plots the intensities of m/z 18     

and 90 at early elution. 

hexamethyldisiloxane with ammonia produces 15% of NH4
+ (m/z 18) and 85% of 

 It is known that the branching ratio of the reaction of protonated 
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Table 7-1  Hypothesized Identities of VOCs detected 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me3Si—NH3
+ (m/z 90) (see chapter 3 for details).  If one exa es the intensties of m/z 18 and 

90, the intensity of m/z 90 is greater than m/z 18, which is consistent with our observations 

reported in chapter 2. 

 

m/z Molecular 
Formula Suggested Compound Possible Structure

18, 35, 52 NH3 Ammonia

59 C3H6O Acetone

74 C4H11N Diethylamine

79 C6H6 Benzene

95 C6H6O Phenol

102 C6H15N Triethylamine

109 C7H8O Methyl substituted phenol

113 C7H12O Cyclohexadiene Diol

123 C8H10O Dimethyl substituted phenol

127 C8H14O Benzene Triol

203 C12H10O3 Hydroxy Phenyl Ether

H N
H

H

O

Et N
Et

H

OH

Et N
Et

Et

OH
Me

(OH) 2

OH
(Me)2

(HO) 3

O
OH

HO

min
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Figure 7 lected ion chromatograms for the sampling of the headspace of a graphitic board from RT-900°C.  The blank (left) and 71.5 mg 

sample (right) ar rma d to the total ion current.  The spikes observed on the blank are from the isobaric H2O+ ion (m/z 18). 
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Figure 7.5  Real-time quantification of the 71.5 mg piece of graphitic board as shown in Figure 7.4 and discussed in the text.  The blank (left) 

and 71.5 mg sample (right) are normalized to the total ion current. 
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Figure 7.6  Selected Ion Chromatograms for the sampling of the headspace of a 8.0 mg sample of pure phenolic resin heated from room 

temperature to 900°C.  The blank (left) and 8.0 mg sample (right) are normalized to the total ion current. 
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Figure 7.7  Selected ion chromatograms for the sampling of the headspace of a graphitic board from room temperature to 750 °C using 

protonated hexamethyldisiloxane (Me3Si)2OH+ as the reagent ion.  The blank (left) and 80.6 mg sample (right) are normalized to the total ion current. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 125 225 325 425 525 625 725

Temperature (°C)

N
or

m
al

iz
ed

 In
te

ns
ity

 (%
) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 125 225 325 425 525 625 725

Temperature (°C)

N
or

m
al

iz
ed

 In
te

ns
ity

 (%
) 

m/z 18
m/z 35
m/z 49

m/z 18m/z 52
m/z 35m/z 66
m/z 49m/z 90
m/z 52m/z 107
m/z 66m/z 181
m/z 90m/z 197
m/z 107
m/z 181

 

 

 

 

m/z 197

103 

 103



 

7.4 DISCUSSION 

     There is one publication involving thermal decomposition of phenolic resin.1  The 

neutrals hypothesized to be present in the phenolic resin correlates well to what has been 

reported in the literature.1  The m/z values observed at 109 and 123 are identified as methylated 

and dimethylated phenols which are decomposition products of the phenolic resin.  Bouajila and 

coworkers studied the thermal degradation of phenolic resins under an

atmosphere.1  The neutrals produced from the dedgradation were ind sampled by 

adsorption onto a canister containing absorbent. The adsorbed neutrals were then analyzed by 

GCMS.  The results obtained from the inert atmosphere will be used for comp on since the 

sample was heated under 0.3 Torr of vacuum.  Bouajila and coworkers observed phenol, 

dimethylated phenol, and monomethylated phenol in their experiments (e 1  In addition, 

they observed xylenes and toluene (eq 7.2).  The authors reason that these compounds are 

released by the breakup of various methylene bridges and other bridges in the phenolic resin. 

 

 

 

(7.1)

 inert and oxidizing 

irectly 

aris

q 7. ).1 

 OH

CH2

CH2

CH2

OH
CH2

Δ

OH

; ; CO  ;  CO2  CH4 ;   ;  H2O  ...
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Our results are consistent with the observations of Bouajula and coworkers.1

Iwakami and coworkers have studied the thermal decomposition o e ethylene 

tetramine (hexa).2 Hexa is an additive to the phenolic resin to facilitate hardening.  Iwakami and 

coworkers placed a sample of hexa into a glass ampoule that was sealed and heated to various 

temperatures.  Once the desired temperature was reached, the headspace was s led.  Iwakami 

and coworkers observed that if hexa is heated to 400°C, ammonia vapor is produced along with 

other VOCs as shown in Table 7.2.  Protonated trimethylamine and ethylene i e  observed 

when our phenolic resin is heated from RT to 900°C as shown in Figure 7.8.  The other 

compounds are not observed.  It should be noted that Iwakami and coworkers’ experiment was 

performed in the absence of other substances, where our experiment was performed in the 

presence of phenolic resin.  Iwakami and coworkers also studied the decomposition of hexa in 

the presence of activated carbon.  They observed the amines decompose into am

 

(7.2)

 OH

CH2

CH2

CH2

OH
CH2

Δ

OH

H3C

HO
CH2

+

H3C

CH3

OH

CH

CH3

2

H3C H3C

f h xam

amp

min  are

monia with the 
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Table 7-2  Neutrals detected by Iwakami and coworkers 

Trimethylamine Dimethylamine 

Methylamine Propionitrile 

Acetonitrile Ethylene imine 

Water Ammonia 

Methane Hydrogen 

Carbon Dioxide Nitrogen and Carbon Monoxide 

 

exception of trimethylamine.  Propionitrile was not observed in our experiments.  A possible 

explanation is that protonated propionitrile (m/z 56) is isobaric with one of the isotopes of the 

water clusters (i.e. H 17O(H O) +, m/z 55).  The other neutrals that were observed by Iwakai and 

coworkers were not observed (e.g. hydrogen, nitrogen, etc.) since their proton affinities are less 

than water, which makes the proton transfer reactions endothermic.     

3 2 2
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Figure 7.9  The detection of VOCs from a 5 mg sample of phenolic re ri an a blan left).   The VOCs detected fr u aly hich 

correlates with Bouajula and coworkers are phenol (m/z 95), methylated ol  ylated o z 123), xylenes z and 

toluene (m/z 93). 
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7.5 CONCLUSIONS 

The flowing afterglow has been used to detect the VOCs eluting from graphitic board coated 

with a phenolic resin when it was heated from RT to 900°C.  The VOCs observed agrees with 

what was reported in the literature.  Using protonated hexamethyldisiloxane and the hydronium 

ion both for this analysis allowed confirmation that ammonia was being produced by the 

decomposition of the phenolic resin.  Other VOCs were detected that were not discussed in the 

literature.  The power of the CRMS to quantify and identify VOCs was shown here since both 

identification and quantification occurred in a single experiment. 
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APPENDIX A 

DATA USED TO CALCULATE kc

       a—Unless otherwise noted, obtained from CRC Handbook 2000 1  Elec E
         b—Polarizability of neutral estimated using the method from Miller, K a k . J Amer Chem Soc 
1979, 101, 7206-7213. 

  z A h 8 1 10
         d—Beilstein Crossfire Database.  Search performed on 4/25/06. 

 

Neutral μD (Debye)a α (10-24 cm3)a d (g/cm3)a Index of Refractiona α (10-24 cm3 from α 3 from LL)c

0.13 .6201 1.3537 9.98 9.99

H2O 1.8546 1.45
D2O
C6H6 10.0

0.20 9.15

MeSH 1.52 .8665 1.5491d 4.71 6.99
MeCOH 2.750 4.6

EtOH 1.69 5.41
MeCN 3.92519 4.40

MeCO2H 1.70 5.1

16.5

0.66 .9514 1.4214 7.58 7.19

2.68 .837 1.4144 8.06 8.29

MeCOMe 2.88 6.33 6.46 6.4

0.25 9.99

EtOEt 1.15 10.2
Me2S 1.554 .8483 1.4438 6.54 7.69

MeCO2CH2Me 1.78 9.7
NH3 1.4718 2.81

(MeO)3PO        [3.18] 1.2144 1.3967 12.5 11
HCONMe2 3.82 7.81

2.22 9.5

(Et)2NH 0.92 10.2
Et3N 0.66 13.1

Me3SiOH 2.01 .8141d 1.3980d 10.6
(Me3Si)2O 0.73d .7638 1.3774 19.4

oll 

d 
.J.; S vchi , J.A

GA)b (10-24 cm

st

O

O

N

ys 1 80, 1nn P       c—Loren ,  L. , 70- 3. 
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APPENDIX B 

DERIVED AND RAW THERMOCHEMICAL DATA FROM THE LITERATURE 

Reactant Neutral: Reactant Neutral PA: ΔHRxn:
(kcal/mol) (kcal/mol)

Water 165 37.30
D2O 167 35.30

Benzene 179.3 23.00
Cyc

MeSH
lopentene 183.2 19.10

184.8 17.50
Ethanol 185.6 16.70

Acetonitrile 186.2 16.10
Acetic Acid 190.5 11.80

Naphthalene 191.9 10.40
Furan 10.30

Acetone 8.30
Isoprene 197.5 4.80

Diethylether 198 4.30
Dimethylsulfide 198.6 3.70
Ethyl Acetate 199.7 2.60

Ammonia 204.0 -1.70

Triethylamine 234.7 -32.40

192
194

DMF 212.1 -9.80
Trimethylphosphate 212.9 -10.60

Pyridine 222 -19.70
Dimethylamine 222.2 -19.90

Note:  Items highlighted in red are heats of reaction of formation found in the literature.  Items 
highlighted in yellow are derived heats of reaction from the reaction of protonated 
hexamethyldisiloxane with the neutrals listed above (PA 202.3 kcal/mol).  PA obtained from 
Lidstrom, P.J.; Mallard, W.G., Eds. NIST Chemistry Webbook, NIST Standard Reference 
Database Number 69; March 2003 ed.; National Institute of Standards and Technology: 
Gaithersburg, MD, 20899, 2003. 
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