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Bulk acoustic wave (BAW) resonator as one of the simplest acoustic device, has been 

proven a most powerful tool for sensor applications with the advantage of precise frequency 

counting in electronic measurement. Meanwhile, with the improvement of device fabrication and 

material growth techniques, the resonator can be made with very small size, especially thin film 

bulk acoustic wave resonators (FBARs) based on ZnO and AlN have been attracted much 

interest for sensor application due to their high sensitivity  induced by high resonance frequency. 

In this thesis, research focus is on the modeling and experimental study of bulk acoustic wave 

resonator sensor. 

Quartz thickness shear mode (TSM) resonator is adopted to characterize the viscoelastic 

properties of polymer nanocomposite thin films deposited on the resonators surface. The input 

electric admittance of multilayer loaded TSM acoustic wave resonator is firstly derived using 

transfer matrix method by taking into account the acoustic wave impedance of the polymeric 

layer. Nanocomposite thin films of multi-wall carbon nanotubes (MWCNTs) in copolymers of 

polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) are deposited on TSM resonators 

through spin-on coating processing. The electric impedance spectra of the unloaded and loaded 

acoustic wave resonators are measured experimentally, and a data fitting approach is applied to 

extract the properties of the polymer nanocomposites films. It has been found that the thickness 

of the polymer layer plays a very important role in the extraction of the viscoelastic properties of 
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the films through data fitting, and the reinforcement of the elastic shear modulus of polymer 

nanocomposite films is not significant.  

Quartz TSM resonator is also investigated for in-situ and real time detection of liquid 

flow rate. A 5MHz TSM quartz resonator is edge-bonded to the sensor mounting port of a 

special flow chamber with one side exposed to the flowing liquid and other side exposed to air. 

The fundamental, 3rd, 5th, 7th, and 9th resonant frequency shift due to flow pressure is found to be 

around 920 (Hz), 3572 (Hz), 5947 (Hz), 8228 (Hz) and 10300 (Hz) for flow rate variation from 0 

to 3000 ml/min, which has a corresponding Reynolds number change from 0 to 822. Both 

theoretical and experimental investigation shows the resonant frequency shifts of different modes 

are quadratic with flow rate. The results indicate that quartz TSM resonators can be used for flow 

sensors with characteristics of simplicity, fast response, and good repeatability. 

FBARs based on c-axis tilted ZnO and AlN thin films have been theoretically analyzed. 

Material properties including elastic, dielectric and piezoelectric coefficients, bulk wave 

properties including acoustic velocity and electromechanical coupling coefficient, and 

impedance of FBARs are calculated and show strong dependence on the tilt angle of c-axis. 

Besides 900, pure thickness shear mode occurs at 430 for ZnO and 46.10 for AlN, besides 00, pure 

thickness longitudinal mode occurs at 65.40 for ZnO and 67.10 for AlN. The electromechanical 

coupling coefficient of shear mode has a maximum value 13.1% at θ=33.30 for ZnO, and 6.5% at 

θ=34.50 for AlN; the maximum electromechanical coupling coefficient of longitudinal mode 

occurs at θ=00 with a value of 8.5% for ZnO, and 6% for AlN. The simulation results show that 

c-axis tilted ZnO and AlN thin films can provide more options for filter design and sensor 

application. 
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1.0  INTRODUCTION 

With the development of acoustic wave technology including bulk acoustic (BAW) and surface 

acoustic (SAW), advent of novel piezoelectric materials and improvement of fabrication, in the 

past years acoustic devices have been widely used for frequency stand and filters, underwater 

sonar, piezoelectric motors and actuators, energy harvesting and vibration reduction, sensor 

applications and so on. Acoustic wave device are so named because their mechanism is based on 

mechanical, or acoustic wave.  For example, in an acoustic wave sensor, an acoustic wave is 

excited and propagates through or on the surface of the device; any changes to the characteristics 

of the wave propagation path affect the velocity and/or amplitude of the wave. Changes in 

velocity can be monitored by measuring the frequency or phase characteristics of the sensor and 

can then be correlated to the corresponding physical quantity being measured. 

Especially, as one of the simplest acoustic device, BAW resonator is proven to a most 

powerful tool for sensor application, and has been regarded as the most sensitive sensor 

platforms that take the advantage of precise frequency counting in electronic measurement. 

Commonly, a bulk acoustic resonator consists of one thin piezoelectric layer with two metal 

electrodes deposited on both sides. For sensor application, usually a sensitive layer is coated on 

the top electrode. When an AC voltage is applied between two electrodes, acoustic waves are 

generated due to piezoelectricity and travel back and forth in normal direction through the 

coating layer. Amplitude and phase of the acoustic wave is determined by a set of parameters 



 2 

including the thickness, density and complex shear modulus of the coating layer and the intrinsic 

properties of uncoated resonator. The electrical impedance of resonator is affected by the 

superposition of the wave reflected off the boundary to the coating layers and the wave 

transmitted into the piezoelectric layer through this interface. Resonators become pressure/ force 

detectors under an applied stress that changes the dynamics of the propagating medium. When 

specific chemical/physical molecules are adsorbed on the surface of coating layer, they become 

mass sensors. If the coating layer adsorbs/ reacts with specific biological chemicals in liquids, 

the resonator becomes a biosensor. Also the resonator can be used to measure materials 

properties of thin film, when they are coated on the resonator surface. 

Of all the acoustic wave sensor configurations, quartz BAW resonator is preferable in 

many sensor applications due to its high sensitivity, simple structure, and easy interconnection 

with electronic measurement systems. Quartz resonator originally was used to monitor thin film 

thickness in the vacuum system or air, where the resonance frequency of resonator is 

proportional to thin film thickness. With the advent of oscillator circuit, the thickness shear mode 

(TSM) resonator could be operated in liquid, and widely used as chemical/bio sensor now. 

Meanwhile, thin film BAW resonators (FBARs) have attracted a great attention due to 

the potential applications in the RF and microwave frequency control and signal processing 

fields. As its name, FBAR has one very thin piezoelectric layer with thickness ranging from 

several micrometres down to tenth of micrometres, which makes the resonance frequency of 

FBAR roughly 100 MHz to 10 GHz or even more. PZT, AlN and ZnO thin films are the most 

popular piezoelectric materials for FBARs designs and applications due to their excellent 

piezoelectric and mechanical material propertie. Especially AlN thin films with high acoustic 

velocity and low insertion loss are perfect materials for high frequency resonators and bandpass 
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filters. An important application of FBAR is radio frequency (RF) filter for use in cell phones 

and other wireless communication system. The filters can be made of FBARs in half-ladder, full-

ladder, lattice or stacked topologies and are designed to remove unwanted frequencies signal. 

FBARs also can be used by microwave oscillators and sensor applications. 

In this dissertation, we did two parts of work. The first part was experimentally 

investigation of quartz BAW resonator for new sensor applications, and the second part was 

theoretical analysis of FBARs based on ZnO and AlN. In this chapter, background information 

on these two topics will be briefly introduced. 

1.1 PIEZOELECTRICITY 

Piezoelectricity is one property of some materials, where an electric potential is generated 

through an onset of electrical polarization when it is subject to mechanical stress, and a 

deformation (strain) is produced when an electrical filed is applied. The first case is termed the 

direct piezoelectric effect, and the second is termed inverse piezoelectric effect. Piezoelectricity 

is intimately attributed to the crystal structure of materials. For the materials without a center of 

inversion symmetry, the distribution of the charge on the atoms and bonds in the crystal due to 

the applied stress/strain will be changed, thus a net electrical polarization is induced. When it is 

applied an electrical field, the crystal is strained to keep the balance between the coulomb forces 

and the elastic restoring forces. 

 



 4 

The relations between electrical and mechanical variables need to be addressed for 

operation and design of piezoelectric sensors.  For this sake, the piezoelectric constitutive 

equations have been well developed and they can be written as follow [1]:  
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where the matrixes with superscript “T” is transpose of these matrixes, T is the stress tensor, S is 

the strain tensor, D is the electrical displacement tensor, and E is the electric-field intensity 

tensor. Dc and Ec  are the stiffness coefficient tensors under the condition of a constant electric 

displacement and electric-field intensity, respectively; Ds and Es  are compliance coefficient 

tensors under the condition of a constant electrical displacement and electric-field intensity, 

respectively; h is the piezoelectric charge coefficient tensor; d is the piezoelectric strain 

coefficient tensor; g is the piezoelectric voltage coefficient tensor; e is the piezoelectric stress 

coefficient tensor; Tε and Sε  are permittivity tensors under the condition of a constant stress and 

strain respectively; and Tβ  and Sβ  are permittivity tensors under the condition of a constant 

stress and strain respectively. These parameters are related by 
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1.2 ACOUSTIC WAVE IN ELASTIC MEDIA 

Since acoustic wave device is based on the transduction mechanism between electrical and 

acoustic energies, it is necessary to understand the acoustic wave propagation in the device, 

which commonly has both piezoelectric and non-piezoelectric materials. Based on the Newton’s 

second law of motion and the elastic constitutive equation, the wave equation for a non-

piezoelectric solid can be derived as follow [2]: 

. ..

,, k li jijkl k li ijkl mC u u uη ρ+ =                                                               (1.2) 

where ijklC and ijklη are the fourth-rank elastic coefficient tensor and the fourth-rank viscoelastic 

coefficient tensor. 

For piezoelectric materials, the wave equation becomes 

. ..

,, , k li jijk ki ijkl k li ijkl me C u u uϕ η ρ+ + =                                                   (1.3) 

where ijke is the third-rank piezoelectric stress coefficient tensor. 

From the equation (1.2) and (1.3) we can see that the wave propagation is affected by the 

material properties including the density, elastic coefficient and viscosity. The material 

properties can be changed by many factors such as temperature, external force and the adsorption 

of external material, which make the acoustic wave sensor capable to measure a lot of input. 

Generally these equations combined with boundary conditions are used to solve the wave 

propagation in the acoustic wave sensor and model the sensor performance. However it is not 

easy to solve, especially when the material is anisotropic and the propagation is in an arbitrary 

direction. Thus, in the sensor design, the size of sensor structure is commonly designed to reduce 

the problem in low dimensions and the sensor materials are chosen to make the wave 
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propagation in a certain direction. For example, for AT-quartz TSM resonators, the ratio between 

the lateral dimensions and the thickness is so high that the physical properties can be assumed to 

constant along the lateral directions of the resonator. Thus, it can be simplified to a one-

dimension problem: the generated acoustic wave can be thought to just have one mode (shear 

wave), and it propagates along the thickness direction. 

1.3 QUARTZ TSM RESONATOR 

 

 

Figure 1.1. A quartz plate is cut with an angle of 35.10 degrees with respect to the optical z-axis. (A) 

Circular TSM quartz resonator of thickness dq coated with electrodes of radius R (B) [3] 

Due to the piezoelectricity, when a voltage is applied on a piece of quartz crystal, a stress is 

produced, and if the voltage is alternating with a certain frequency, the crystal will begin 

vibrating and produce a steady signal. The mode of vibration depends upon the way the crystal 
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was cut, i.e., an X cut exhibits an extensional vibration mode. For the AT-cut which is cut at 

35.10 degrees off the optical z-axis (Figure 1.1 A), the application of a voltage between the two 

electrodes produces a shear deformation in plane with the crystal surface (Figure 1.1 B), which 

shows the common structure of a quartz TSM resonator: one layer AT-cut quartz with two thin 

electrodes; and for the alternative voltage, shear waves of opposite polarity are generated at the 

either side of the crystal. It is well known that mechanical resonance is the tendency of a 

mechanical system to absorb more energy when the frequency of its oscillations matches the 

system's natural frequency of vibration (resonance frequency or resonant frequency) than it does 

at other frequencies. The resonant condition for the TSM resonator can be determined by tracing 

the path of one propagating shear wave, which may be thought to start at the top electrode, 

propagate through the thickness of the quartz thickness, reflect at the bottom surface with phase 

shift of π, and then return to their origin where it reflects again with phase shift of π. Therefore, 

the resonant frequency is expressed as [2]: 

 / 2N s qf Nv d=                                                                   (1.4) 

2/1)/( qqsv ρµ=                                                                 (1.5) 

where N : odd integers, qd : thickness of resonator, qµ : shear stiffness and qρ : mass density of 

resonator. The profile of shear wave is shown in Figure 1.2 [4].The maximum values of the 

displacement occurs at the crystal surface, which makes the device sensitive to surface 

perturbations. When a rigid and thin film is coated on the quartz TSM resonator, the resonant 

frequency shift ( sf∆ ) due to the deposited mass can be precisely described by Sauerbrey 

equation [5]: 

22 N
N

q q

ff m
NA ρ µ

∆ = ∆                                                         (1.6) 
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where m∆ is mass change; and A is area between two electrodes. This equation is the principle 

base of quartz TSM resonator for mass sensor application, which has been widely used in 

vacuum and air. However, Sauerbrey’s equation only applies to systems where the following 

three conditions are satisfied: the deposited mass must be very rigid, the deposited mass must be 

distributed evenly and the frequency change should be less than 0.05. 

 

Figure 1.2. Shear displacement profiles across the Quartz TSM resonator thickness for the fundamental 

(N=1) and the third harmonic (N=3) resonances [4] 

Since it only extracts the mass information from Sauerbrey equation, in order to fully 

exploit the capability of TSM resonator, it is necessary to look at conversion between the 

mechanical and electric parameters, considering the mechanical resonances are electrically 

excited. So far, two types of models are used to describe the resonators: the distributed or 

transmission line model, and the lumped-element model. 
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Figure 1.3. The Transmission line presentation. (a) The three-port equivalent circuit of the uncoated quartz 

crystal. (b) The two-port transmission line of a non-piezoelectric layer. Within the transmission line mode the 

number of such layers is not restricted (c) [6] 

A transmission line model (TLM) is based on a one-dimensional electromechanical 

model of acoustic wave generation and propagation in piezoelectric and non-piezoelectric layers 

[6]: A piezoelectric material is described by a three-port element, one electric port and two 

acoustic ports. KLM model [7] is one of representations of TLM, which is presented in Figure 

1.3(a) for quartz resonator: 

2

0

1 sinKjX
j C

α
ω α

=                                                         (1.7a) 

2
2

2
0

1 1 4 1 sin
2cq

K
N C Z

α
ω α

=                                                (1.7b) 

2
0

1 1
AB CDZ jX Z

j C Nω
= + +                                               (1.7c) 

2
2 q

q q

e
K

cε
=                                                                         (1.7d) 

/q q qh cα ω ρ=                                                                (1.7e) 

q q qZ cρ=                                                                        (1.7f) 
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0 q
q

AC
h

ε=                                                                         (1.7g) 

 26qe e≡                                                                            (1.7h) 

22qε ε≡                                                                             (1.7i) 

2
26

66
22

 q q
ec c jωη
ε

≡ + +                                                        (1.7j) 

where 2K  is the electromechanical coupling coefficient of quartz, α  is the acoustic phase shift 

in the quartz crystal and qZ  is the characteristic acoustic impedance of the quartz crystal, ABZ  is 

the impedance at port A and B, CDZ  is the acoustic signal at port CD. 0C  is the static quartz 

crystal capacitance. 66c , 26e  and 22ε  are the components of the material property tensors for 

mechanical stiffness, piezoelectric constant and permittivity, respectively, qη  is the quartz 

viscosity, and the index has been replaced by q to denote material properties of the quartz crystal. 

For a common case (shown in Figure 1.3(c)), the resonator is loaded on one side, one 

acoustic port is considered as a short circuit and the other acoustic port is loaded with acoustic 

impedance EFZ . After some calculation, the input electric impedance of resonator can be 

obtained as 

2

0

2 tan
21 1

1 cot

L

q
AB

L

q

Zj
ZKZ Z Zj C j

Z

α

ω α α

 − 
 = = −
 − 
 

                                (1.8a) 

L EFZ Z=                                                                                   (1.8b) 

According to TLM mode, the acoustic impedance transformation performed with layer i 

can be written as follows: 
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ci i iZ Gρ=                                                                            (1.9b) 

where iρ  is the density, iG  is the shear modulus and ciZ  is the characteristic impedance of layer 

i. iG  is a complex value in the case of a coating with viscoelastic properties: ' ''
i i iG G G= + , 

where '
iG  is the so-called shear storage modulus accounting for acoustic energy storage and ''

iG  

is the shear loss modulus accounting for acoustic energy dissipation. The overall acoustic 

impedance LZ  or EFZ  is equal to ( )1iZ i = . 

The electrical impedance can be separated into a parallel circuit consisting of the static 

capacitance Co and motional impedance mZ . According to equation (1.8), the motional 

impedance mZ can be written as follows: 

L
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2
tan2

1

α

α
ωα

α

ω
        (1.10) 

0
mZ  and L

mZ  represent the unloaded quartz and the load respectively. By taking the 

approximation of 2 2tan 4 / (( ) )
2

Nα α π α≈ − , the unloaded quartz near the resonant frequency is 

expressed as  

0 1
m q q

q

Z j L R
j C

ω
ω

= + +                                                    (1.11a) 



 12 

2

22
00

2

8 1
81

q
q

q q

Ae
C

Kh cπ
π

=
−

                                                      (1.11b) 

3

28
q q

q
q

h
L

Ae
ρ

=                                                                       (1.11c) 

2

2
0 0 08

q
q

q

R
C K c
η π

=                                                               (1.11d) 

where 0qc  and 2
0K  is the form of qc  and 2K  ignoring loss. For small loads ( 2 tan

2
L

q

Z
Z

α
<< ), 

L
mZ simplifies to  

2
0

1
4

L L
m

q

ZZ
C K Z

α
ω

=                                                         (1.12) 

Therefore, for resonators with small loadings, TLM can be transformed into the 

equivalent circuit with lumped elements near the resonance frequency, which is called 

Butterworth-Van-Dyke (BVD) circuit (Figure 1.4). For the real application, the parasitic 

capacitor ( exC ) due to the test fixture should be considered. Thus, we use *
0 0 exC C C= +  instead 

of 0C . 
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Figure 1.4. BVD equivalent circuit of unperturbed TSM resonator near the series resonant frequency (A); 

Modified BVD circuit of TSM resonators with small loadings (B) 

Resonance frequency is an important parameter for sensor application. The quartz 

resonator has two important resonance frequencies: The series resonant frequency sf  and the 

parallel resonance frequency pf ; sf  is defined as the frequency at which the motional reactance 

is zero, and pf is defined as the frequency at which the total reactance is zero.  

For an unperturbed resonator, sf and pf  are given  

1/2

1
2 ( )s

q q

f
L Cπ

=                                                               (1.13a) 

1/2

0

1 1 1 1( )
2 *p

q q

f
L C Cπ
 

= + 
  

                                              (1.13b) 

For the real measurement, the series resonance frequency is obtained by measuring 

maximum of the in-phase electrical admittance of the resonator, while the parallel resonance 

frequency is the characteristic frequency obtained by using the active oscillator. 

Equation (1.8) shows the relationship between the input electrical impedance of the 

resonator and the surface mechanical impedance of the loadings. As shown in Table 1.1, 

different surface perturbations have different surface mechanical impedance ( LZ ). On the other 
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hand, using equation (1.8) and the expression of LZ , we can extract the acoustic properties of 

coating systems such as mass of rigid thin film, viscosity of liquid or viscoelastic properties of 

polymer thin films 

Table 1.1. Surface mechanical impedance ( LZ ) for different surface perturbations 

Surface perturbation Surface mechanical impedance ( LZ ) 

Unperturbed 0 

Ideal mass layer sjωρ  

semi-infinite 

Newtonian liquid 
)1()2/( 2/1 jLL +ηωρ  

Rigid mass + semi-

infinite Newtonian liquid 
)1()2/( 2/1 jj LLs ++ ηωρωρ  

semi-infinite 

viscoelastic layer 
2/1)( fGρ

 

Finite viscoelastic 

layer 
)tanh()( 2/1

fl hG γρ
 

1.4 THIN FILM BULK ACOUSTIC WAVE RESONATOR (FBAR) 

1.4.1 Basic concept of FBAR 

The concept of FBAR was firstly proposed by Lakin and Wang in 1981[8]. FBAR is very simple, 

in the form of a sandwich structure which has a piezoelectric material for the dielectric layer and 

suitable top and bottom metal electrodes [9], shown in Figure 1.5(a). The two surfaces of FBAR 

are exposed to air. It makes the excited wave to be reflected at the surfaces, and the main energy 

is trapped in the piezo layer, which is helpful to maintain high quality factor Q of resonator. The 
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theory of acoustic wave resonator is still applicable to FBAR. However, to use equation (1.4) for 

determination of the resonance frequency should be more careful because the thickness of the 

piezoelectric film is only a few microns, the effect of the electrodes and support layers are 

considerable increased in the performance of the resonator [10]. 

The BVD equivalent circuit of FBAR (shown in Figure. 1.5(b)), is same with the 

unperturbed quartz resonator. 0C  is the geometric capacitance of the structure, mR , mL  and mC  

is called the "motional arm," which counts for the motional loss, the inertia and the elasticity 

respectively. The piezoelectric layer for FBAR is usually made of ALN, ZnO or PZT. Especially 

AlN is the preferred material for FBAR due to its electro-mechanical and piezoelectric properties, 

and the compatibility with CMOS. In addition, wurtzite GaN recently also has been investigated 

for FBAR fabrication as a new exciting piezoelectric material [11]. 

 

Figure 1.5. FBAR (a) the configuration of FBAR [9]; (b) the BVD equivalent circuit of FBAR 
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1.4.2 Application of FBAR 

An important application of FBAR is radio frequency (RF) filter for use in cell phones and other 

wireless communication system, including ladder filters, lattice filters, stacked crystal filters 

(SCF), and coupled resonator filters (CRF). These filters are designed to remove unwanted 

frequencies signal, while allowing other specific frequencies to be received and transmitted.  For 

example, the ladder filters (Figure 1.6(a)) consist of multiple stages, and each stage is composed 

of one series resonator and one shunt resonator. Figure 1.6(b) shows the working principle of the 

ladder filters. fdetune is the parallel resonance frequency difference between series resonator and 

shunt resonator. In the center of the pass band, the impedance of the series resonator is small 

which allow the RF signal to pass by. On the other hand, the shunt resonator has large impedance 

which will prevent the signal passing by. 

FBARs also have been developed for sensor applications. Gabl et al. [13] presented a 

biosensor system based on 2GHz longitudinal-mode ZnO FBARs for DNA and protein 

molecules detection, shown in Figure 1.7; these sensors showed much higher sensitivity and 

resolution comparable to quartz crystal microbalances. It should be pointed out that it is a little 

different with FBAR structure (Figure 1.5); here acoustic mirror made of several layers with 

alternating values of high and low acoustic impedance and a thickness equivalent to quarter 

wavelength at the main resonance, is designed to reflect the acoustic wave into piezo layer, 

which can achieve similar performance with air structure while simplifying the fabrication 

process. This kind of resonators is usually namely solidly mounted resonators (SMRs). 
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(a) 

 
(b) 

Figure 1.6. (a) Topology of a ladder filter; (b) Working principle of a ladder filter [12] 
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Figure 1.7. schematic of ZnO FBAR [13] 

 

Figure 1.8. (a) frontside photograph ZnO FBAR; (b) backside photograph of ZnO FBAR; (C) schematic 

setup of FBAR testing [14] 
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Figure 1.9. (a) Cross structure of AlN FBAR; (b) SEM photograph of the etched Si and membrane [15] 

Zhang [14] et al. investigated the effects of liquid nature and conductivity on ZnO 

FBARs, and TiO2 coated ZnO FBARs with high mass sensitivity were fabricated for metal ion 

Hg+ detection in liquid environment (shown in Figure 1.8). Benetti et al. [15] reported a 

chemical sensor based on AlN FBAR (shown in Figure 1.9) with resonance frequency around 1.6 

GHz, which was used to detect low concentrations of H2, CO and ethanol with a fast and 

repeatable response. 
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Figure 1.10. (a) Impedance magnitude vs. frequency for an AlN shear mode FBAR operated in air. Clearly 

seen are the resonances of the shear mode at 1.25 GHz and the longitudinal mode at 2.15 GHz; (b) Impedance 

magnitude vs. frequency for an AlN shear mode FBAR operated with one side in contact with water. Clearly seen 

are the resonances of the shear mode at 1.25 GHz and the almost totally damped longitudinal mode at 2.15 GHz. (c) 

Schematic illustration of a shear mode FBAR resonator together with a microfluidic transport system [21] 

However, FBARs mentioned above are operated on longitudinal mode. For liquid 

application, shear mode FBAR is better, because acoustic wave energy is radiated into liquid 

through compressional motion for longitudinal resonator, while shear wave shear acoustic waves 

do not produce compressional motion. Fortunately, it has been shown that shear mode can be 

excited through tilting c-axis of AlN and ZnO thin films. For example, Foster et al. [16] analyzed 

the excitation of longitudinal and shear wave in ZnO transducer, and they found the shear-wave 

excitation greatly exceeded the longitudinal wave excitation when the c-axis was inclined at 
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angles near 400. Link et al. [17] fabricated SMRs based on 18° c-axis inclined ZnO thin films, 

and these SMRs have quality factors of 192 in water, making these devices attractive for sensing 

applications in liquids. Bjurström and Wingqvist et al. developed FBARs based on c-axis tilted 

AlN films, examined the variation of the electromechanical coupling coefficient and the quality 

factors of the resonators with tilt angle, and investigated the device performance in liquid [18-21]. 

From Figure 1.10, we can clearly see the promising potential of shear mode AlN FBAR in liquid 

application. 
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2.0  RESEARCH OBJECTIVE 

As discussed in chapter 1, acoustic wave device has been proven as a powerful tool for sensor 

applications in wide area with a characteristic of high sensitivity, simple structure, and easy 

interconnection with electronic measurement systems, hence, considering its advantage, one 

objective of this thesis is to experimentally investigate quartz TSM resonator for new 

applications in the area we are interested in. On the other hand, FBARs has been demonstrated 

for sensor application with super high sensitivity, and it has been shown that when c-axis of ZnO 

and AlN is tilted, shear acoustic wave can be excited, which allows FBARs to be operated in 

liquid for sensor application, however, the theoretical analysis of FBAR base on c-axis tilted 

ZnO and AlN is less. Therefore, the overall objective of thesis is on the modeling and 

experimental study of bulk acoustic wave resonator sensor, which has three specific aims: 

 To apply quartz TSM resonator for extracting viscoelastic properties of polymer 

nanocomposite thin films deposited on the resonators surface. 

 To investigate quartz TSM resonator to monitor flow rate in liquid. 

 To theoretically analyze FBARs based on c-axis tilted ZnO and AlN  
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3.0  CHARACTERIZATION OF POLYMER NANOCOMPOSITE FILMS USING 

QUARTZ TSM ACOUSTIC WAVE RESONATOR 

3.1 INTRODUCTION 

Characterization of thin film materials properties is very important for micro device design and 

fabrication as well as for many other engineering applications that use the thin films as the 

structural or functional layers [22]. Up to now, many techniques have been developed to measure 

the mechanical properties of thin films. However, for the mechanical properties measurement of 

thin films, small load and high sensitivity of displacement are required, which can’t be satisfied 

by the traditional characterization techniques. Nano-indentation systems can accomplish small 

load to pico-Newton and measure sub-micro displacement, but they are only suitable for local 

characterization of thin films. In additional, some other recently developed techniques typically 

measure the load after imposing a fixed displacement by a nano-position motor [23-26], these 

techniques may lead to transient load, which can cause failure under displacement control. Hence, 

Techniques or methods which can be used to characterize thin film are highly desirable. 

Meanwhile, as mention in chapter 1, acoustic wave devices are used for many sensor 

applications, and polymer thin films, as sensitive coating materials are widely used in acoustic 

wave resonator sensors for chemical and biological applications. The responses of acoustic wave 

sensors are commonly regarded as the result of mass change. However, it has been found that 
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acoustic wave sensors are also subjected to non-gravimetric effects introduced by changes of 

viscoelastic properties of the coated thin film materials. Even when a solid film is coated on the 

resonator surface, the classic Sauerbrey equation that linearly relates the frequency shift verse the 

film thickness or mass is only valid when the film is very thin and rigid [27, 28]. For example, 

when the Sauerbrey equation is adopted, and the viscoelastic properties of the coating materials 

are ignored, errors as big as 50% can be caused. Therefore, the frequency response of acoustic 

wave resonator sensor contains the overall effect of the coating material, not just mass or 

thickness. Based on the one-dimensional transmission line model of acoustic wave resonator [29] 

the overall effect of the coating materials can be described by acoustic impedance, which include 

the thickness, mass density, and elastic or viscoelastic modulus of the coating materials. 

Therefore, for a better understanding of the acoustic wave sensor response, the acoustic wave 

impedance of the coating materials under various application circumstances should be examined. 

On the other hand, by using the relation between sensor response and the properties of the 

coating materials, acoustic wave resonator sensor may represents an effective and precise 

measurement technique in probing the properties of the coating materials [28, 30, 31]. 

Two methods have been used to identify the relationship between the measurable 

electrical response of resonators and the mechanical properties of coating layers. As discussed in 

chapter1, one is TLM, which treats the sensor structure as a combination of a uniform 

piezoelectric layer and one or more isotropic, homogeneous nonpiezoelectric layers, and assumes 

that lateral dimensions have no effect on the wave propagation [32]. TLM is the most accurate 

representation to date for a piezoelectric bulk acoustic wave resonator. The other is LEM, which 

represents the mechanical effect of coating layers by their equivalent electrical circuit element. 

LEM is the approximation of TLM and is only valid when surface load impedance is small 
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enough compared to the shear mechanical impedance of the quartz and the resonator must work 

near the mechanical resonance [33]  

PVDF or PVDF-TrFE has been studied extensively because of high piezoelectricity, 

which makes it an exceptional material for a variety of transducer applications [34-36]. 

Characterization of the materials properties including elastic shear modulus is important for 

device design and actuator applications. MWCNTs are important fillers to polymer, which could 

be dispersed in polymer to significantly affect the matrix’s behaviors and properties. So far, 

many composites of MWCNTs in polymeric matrix have attracted considerable attention due to 

their unique mechanical and electrical properties [37-40]. 

In this study quartz TSM resonator is used to characterize the viscoelastic properties of 

nanocomposites thin films of multi-wall carbon nanotubes (MWCNTs) in copolymers of 

polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE). Polymer-based carbon nanotube 

composites are becoming an attractive set of organic-inorganic materials due to their 

multifunctionality and many potential applications. The combination of superb mechanical, 

electrical and thermal properties of carbon nanotubes integrated with the lightweight, flexibility, 

and manufacturability of polymers provides the route for multifunctional materials. While many 

studies so far on polymer-CNT composites are focused on the mechanical property 

reinforcement by improving the interfacial property of CNT with the polymer matrix, there is no 

report on the viscoelastic property measurement of the polymer-CNT composites. It is expected 

that an accurate characterization of the complex shear modulus of polymer-CNT composites can 

be achieved by using quartz resonator sensors. 
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3.2 INPUT ELECTRIC ADMITTANCE OF A FOUR-LAYER TSM RESONATOR 

 

Figure 3.1. A schematic four-layer TSM resonator 

 

Figure 3.2. Transfer matrix model of TLM for TSM resonator 

Figure 3.1 shows the schematic four-layer TSM resonator. The piezoelectric layer is a thin quartz 

disc, which can be treated a three-port device with one electric port and two acoustic ports. The 

two electrodes and coating layer are non-piezoelectric layers with two acoustic ports. The 

transfer matrix technique of the transmission line mode is adopted to calculate the input electric 

admittance of four-layer TSM resonator (Figure 3.2). Each layer’s transformation matrix is 

shown below. 
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F , v , CZ and γ  are are the stress, displacement velocity, characteristic impedance and phase 
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where LZ  has the following form, 
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The transfer matrix of the piezoelectric layer is given by 
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0C  is the static capacitance and S  is the cross-section area of the quartz. 66c , 26e , qρ , 22ε  and 

qη  are the components of the material property tensors for mechanical stiffness, piezoelectric 

constant, density , permittivity and viscosity of quartz. Using Eqs. (3.1)-(3.10), the input electric 
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impedance of four-layer resonator can be obtained as 
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where 
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cε
= is the electromechanical coupling coefficient of quartz. Both two electrodes 

are acoustically thin layers, their effect is very small. For simplicity, their effect will be taken 

into account in the effective parameters of resonators. Thus we have 
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From Eqs. (3.11)-(3.12), the input electric impedance of four-layer resonator can be simplified to 
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The electrical impedance in Eq. (3.13) can be represented as a static capacitance 0C  in parallel 

with motional branch mZ , which can be expressed as: 
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It is  more convinent to analyze the input admittance of a resonator  instead  of impedance. From 

Eqs. (3.13) and (3.14), the admittance is given by: 
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where exCCC += 0
*
0 , with exC  an added parasitic capacitance accounting for 

packaing ,connecting, etc. 

3.3 MATERIALS AND METHOD 

3.3.1 Materials preparation and experimental setup 

 

Figure 3.3. Schematic of PVDF-TrFE/MWCNTs nanocomposite thin film coating process and 

experimental setup 

Figure 3.3 shows the experimental setup and coating process for the PVDF-TrFE/MWCNTs 

nanocomposite thin films on TSM resonators. PVDF-TrFE was dissolved in solvent N, N-

Dimethylformamide (DMF) with weight ratio 1:1.9 to form a homogeneous solution. MWCNTs 

were then added into PVDF-TrFE/DMF with weight ratios (MWCNTS/PVDF-TrFE) of 0%, 1% 

and 2%. A rigorous sonication is conducted to form homogeneous nanotube suspension in the 

solution. Two steps of spin coating process were employed in the deposition: the first run was 

500 rpm for 10sec and the second run was a high speed for 40 sec according to the desired 
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thickness of films. Before measurement, films were annealed in oven at 65 oC and 100 oC each 

for one hour, and 165 oC over night. 

The admittances of uncoated 10-MHZ TSM resonators were first measured by an Agilent 

4294A Precision Impedance Analyzer (Agilent Technologies, Palo Alto, CA), which were 

recorded for the extraction of effective parameters of resonators. After spin-coating and thermal 

process, the thicknesses of films were determined by a profilometer (Dektak3 ST surface profiler, 

Veeco Instruments Inc., Woodbury, NY) and the admittances of the coated resonators were 

recorded. The effective parameters of uncoated resonators, the thickness of films and the 

admittance spectra of coating resonators were used in the extraction of the complex viscoelastic 

modulus of the nanocomposites films. 

3.3.2 Characterization of uncoated TSM resonator sensor  

As mentioned, before extracting the complex viscoelastic modulus of nanocomposite thin films, 

a calibration process is carried out to calculate the effective resonator’s parameters. The effective 

parameters include the quartz’s thickness ( qh ), viscosity ( qη ), static capacitance ( 0C ) and 

external capacitance ( *
0C ). The fitting algorithm is based on a approach developed recently [41], 

which significantly reduces  the computation time while keeping high resolution in comparison 

with other typical fitting algorithms. The effective parameters obtained with the calibration in the 

ambient condition with 0LZ = . Then Eq. (3.14) can be simplified as 
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The calibration process is as follows:  

(a) The admittance spectrum )( iY ω  of the uncoated resonator is measured and acquired through 

by using the impedance analyzer (where i=1 to M with M the number of frequency points). 

*
0C  is measured at two times of fundamental resonant frequency [41]. i

mZ  is obtained from 

Eq. (3.15). 

(b) In a reasonable range qη  is discretized into j
qη  (where j=1 to n with n is the number of qη ). 

At first, high range is tried. Then it can be reduced to a lower range for precision requirement 

after several tries. 

(c) For each i
mZ  and j

qη  , the thickness j
qh  is obtained through canceling the imaginary part of 

Eq.(3.16). A Regula-Falsi based algorithm is applied for getting the values of qh . 

(d) For each ( iω , j
qη , j

qh ), the corresponding values of jC0 are obtained from Eq.(3.16). 

(e) The solution of parameters ( sol
qη , sol

qh , solC0 ) is obtained as the one that make the smallest 

admittance spectrum error between theoretical and experimental values. The error function is 

defined as follow:  
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The conductance ( ) |TLM
i jG ω  and the susceptance ( ) |TLM

i jB ω are calculated from Eq. (3.15), 

where j is the jth parameter solution; ( ) |i EXPG ω  and ( ) |i EXPB ω  are the experimental values of 

the conductance and susceptance respectively. M is the number of frequency points; 

(f) According to solsol
ex CCC 0

*
0 −= , the external parallel capacitance sol

exC is obtained. 
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3.3.3 Extraction of the complex viscoelastic modulus 

The extraction of the shear storage and loss modulus is similar with the sensor calibration 

procedure and the fitting algorithm is also based on the approach [41]. From Eq. (3.7), we can 

get  

( ) [ln( ) ( 2 )]
2

L L
s L L

G
m d r j k

j
ρ

ω ρ θ π
ω

= = − + +                                   (3.18) 

where  
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with -π θ π≤ ≤ , ' ''LG G G= +  and 0, 1, 2,...k = ± ± . The detail of derivation can be found in 

literature [41], but there is a little change that in our case 2 0Z = (where 2Z  is the acoustic load 

impedance of the air) and 0k = . The extraction process includes the following steps. 

(a) )( iY ω , the admittance spectrum of the coated resonator, is recorded by impedance 

analyzer. *
0C  is measured at two times of fundamental resonant frequency [41]. EXPi

i
LZ )|(ω  is 

obtained according to Eqs. (3.14)  and (3.15) (where i=1 to M with M the number of 

frequency points). 

(b) In a reasonable range ''G  is discretized into ''
jG  (where j=1 to n with n is the number of ''

jG ). 

At first, high range is tried. Then it can be reduced to a lower range for precision requirement 

after several tries.  

(c) For each iω  and ''
jG , '

kG  is obtained through canceling the function of ''( , )s i jm Gω . A Regula-
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Falsi based algorithm is applied and the effective parameters from sensor calibration were 

used to get the values of '
kG . Then k

Ld  is determined according to Eq.(3.18) with the density 

from the literature.  

(d) The solutions of parameters with the value of Eq. (3.17) over 0.1% are ignored. 

(e) The solution of parameters is obtained as the one that makes the smallest error between the 

extracted and the measured thickness. 

3.4 RESULTS AND DISCUSSION 

 

Figure 3.4. (A) Rel (Y) of uncoated TSM resonator; (B) Img (Y) of uncoated TSM resonator 

Figure 3.4 shows the fitting result of the typical uncoated 10M-Hz TSM resonator. The average 

error of one point is 0.002% according to error function, Eq. (3.17), the points of admittance 

spectrum for calculation is 801, which indicates that the adopted algorithm is efficient and has 

high resolution. 
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Figure 3.5. Rel (Y) of coated TSM resonator; (B) Img (Y) of coated TSM resonator 

Figure 3.5 shows the typical fitting result of the coated TSM resonator, which also 

indicates the efficiency and reliability of data fitting. The coating film is made of PVDF-TrFE 

with the thickness of 1.6μm. The admittance spectrum for data fitting has 801 points. The 

average error of one point is less 0.03%. The main reason is that only one parameter is 

discredited, and the other one parameter can be obtained through Regula-Falsi algorithm, which 

assures that only the solutions that satisfy with the physical criterion are selected. 

Density -32651q Kg mρ = ⋅ , permittivity 2210657.9 −− ⋅⋅×= msAqε , piezoelectric 

coefficient 31421110982.3 −−− ⋅⋅⋅×= mkgSAe and piezoelectric stiffened shear modulus 

10 -2
66 =2.947 10 N mc × ⋅  are adopted in sensor calibration and shear modulus extraction. 

Table 3.1 lists the extracted effective parameters for an uncoated TSM resonator. It is 

found that the thickness is a little larger than the actual value (165μm), and the viscosity of the 

resonator is also larger than the reported value (3.5*10-4 Pa•S) from literature [7]. This is due to 

that the measured admittance spectrum includes the effect of the two electrode layers and other 

damping effects, which are neglected in the theoretical equations used for the parameter 



 36 

extraction. The effective parameters, which accommodate the effect of electrodes and 

experimental set-up, for the uncoated resonators will then be used in the characterization of the 

viscoelastic properties of the nanocomposite thin films that are subsequently coated on the 

resonators.  

Table 3.1 The effective parameters of quartz thickness shear mode resonator 

0C (pf) qh (μm) qη (Pa·S) exC (pf) 

4.47 166.48 0.0043 1.58 

  

It has been found in our experimental studies that in the gravimetric regime (films with 

very thin thickness), the TSM resonator is not sensitive to the viscoelastic properties of coating 

layers, and even a small error in the thickness will cause a large error in the extracted viscoelastic 

properties. Thus it is important to extract the parameters in nongravimetric regime, where the 

viscoelastic contribution is substantial and the error due to thickness change can be greatly 

reduced [41]. However, the bandwidth of admittance spectrum increases with the thickness and 

the shear modulus may also be influenced by the frequency, which can lead to errors since it is 

assumed that the shear modulus is constant during data fitting. The selection of an appropriate 

thickness range allows the accurate characterization of the viscoelastic properties of the 

nanocomposite films by using acoustic wave resonator sensors. In our experiments, thickness 

from 15 to 20 um is found to be the desirable range, which is in the nongravimetric regime and 

assures a fitting error less than 0.1%. 

In our previous study [42], the extracted parameters are those that allow the best curve 

fitting between the theoretical and experimental admittance spectrum. However, the thickness 

thus determined is found to be much different with the actual measurement value, which 
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indicates the extracted materials properties for the nanocomposite films can’t meet with physical 

criterion. So a new criterion for parameter selection is added, i.e., the extracted complex shear 

modulus for the nanocomposite film is the one that make the error function [Eq. (3.17)] less than 

0.1% while the extracted film thickness is closest to the measured value.  

Considering that the concentration of CNTs in each nanocomposite film is quite low, it is 

assumed that all the nanocomposite films have the same density value ( -31780Kg m⋅ ). Figure 3.6 

shows the effect of CNTs on the complex shear modulus of PVDF-TrFE nanocomposite thin 

films. It is found that both storage modulus and loss modulus don’t change much with the 

amount of CNTs, and the storage modulus actually decreases slightly with the CNTs 

concentration. However, no viscoelastic property enhancement by using carbon nanotubes is 

observed for the nanocomposite films. The decrease of the shear modulus of the nanocomposites 

could be due to the waviness of the nanotubes in the polymer matrix. A recent study on the 

effects of nanotube waviness on the modulus of nanotube-reinforced polymers has indicated that 

the nanotube curvature significantly reduces the effective reinforcement when compared to 

straight nanotubes [43, 44]. The sonication process used in the preparation of a homogenous 

carbon nanotube suspension in the polymer solution may cause substantial waviness of the 

carbon nanotubes. 
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Figure 3.6. (a) Storage modulus of PVDF-TrFE/MWCNTs nanocomposite thin films; (b) Loss modulus of 

PVDF-TrFE/MWCNTs nanocomposite thin films 

In addition, it has been found that the addition of carbon nanotubes can cause some non-

uniformity such as surface roughness of nanocomposite thin films during deposition process.  

This non-uniformity is not included in modeling for the acoustic wave resonator [6]. For a better 

theoretical modeling, the surface roughness should be taken into account. A possible way to 

include the surface roughness in the theoretical derivation of the electrical impedance/admittance 

of the acoustic wave resonator is to model the thin film as two layers: one rough layer and one 

uniform layer [41]. In addition, appropriate surface modification of carbon nanotubes may lead 

to an improved uniformity of the nanocomposites in the fabrication processing. 

3.5 CONCLUSION 

The input electrical impedance/admittance of a four-layer acoustic wave resonator sensor is 

derived using the transfer matrix approach by taking into account the acoustic wave impedance 

of the polymeric layer. Based on the electrical impedance equation, the complex shear modulus 
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of PVDF-TrFE/MWCNT composite thin films has been extracted through fitting the theoretical 

curves to the experimental value. The fitting results show that the data fitting process is reliable 

and accurate in the characterization of complex shear modulus of the coating layer. It has been 

found that the storage modulus of the nanocomposites decreases slightly with the carbon 

nanotube concentration, while no significant variation is found for the loss modulus. 
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4.0  FLOW SENSOR BASED ON QUARTZ TSM RESONATOR 

4.1 INTRODUCTION 

A flow sensor is a device for sensing the rate of fluid flow. It is a critical component for system 

operation monitoring and control in many industrial and laboratory applications. Typically a 

flow sensor is the sensing element used in a flow meter or flow logger, to record the flow of 

fluids. There are various kinds of flow sensors and flow meters: traditional mechanical devices 

[45], such as variable area flow meters, pitot tubes and turbine meters, are simple and do not 

require power supply, however, they are limited by their physical size and mechanical 

characteristics, especially for many applications that require high integration and feasibility of 

electronic control. Some invasive methods such as ultrasonic flowmeters [46] and laser doppler 

anemometers [47], are nonintrusive and high flow rate sensitive, however, they are high-cost and 

require complex auxiliary electronic parts. Additionally, the wildly used thermal anemometers 

such as hot -wire anemometer, can measures the flow in a precise location and has extremely 

high frequency-response, however, for sensor design and practice application, there exist a lot 

issues include breakage of filament stability, calibration and auxiliary electronics[48]. 

Acoustic wave devices have been extensively studied for many physical and chemical 

sensing applications [2]. Also, acoustic wave resonators have been investigated for flow rate 

measurement, and flow sensors based on SAW resonators have been demonstrated with 
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attractive features of high sensitivity, wide dynamic range and direct digital output [49, 50]. This 

kind of SAW flow sensor is based on thermal convection: SAW device with heater is placed in 

the flow path. When the fluid flow passes over the sensor surface, it carries heat and changes the 

temperature of sensor substrate. Thus the frequency of SAW device changes due to its 

frequency-temperature dependence. Although the theoretical aspect of this kind sensor is simple 

and well established, the necessity of a heater for sensor operation may impose practical 

difficulties in which large power consumption is usually not desirable for compact sensor 

operation. In addition, the variation of ambient temperature and heater power supply may cause 

instability of frequency output; to minimize these effects, an additional SAW device that is not 

exposed to the fluid flow is needed as a reference, which increases system cost and complexity. 

On the other hand BAW resonators have not been investigated for flow sensors, although 

BAW resonators, particularly quartz TSM resonators are often preferable in many sensor 

applications [51-53].As we have already shown in chapter 1 and 3, a resonator commonly 

consists of one thin layer of piezoelectric material with two electrodes on both sides. For sensor 

applications, an external chemical or physical sensitive thin film is usually coated on the top of 

the resonator. When AC electric field is applied across the resonator electrodes, acoustic waves 

are generated and propagate in the device due to the piezoelectric property. Variations in coating 

thin film parameters, including the thickness, density and complex shear modulus and interfacial 

interactions, affect the amplitude and phase of the acoustic wave propagation in the device, 

which change the electrical properties of the resonator. Therefore, the measured quantity can be 

precisely extracted by the resonance characteristics and the electrical spectrum of the resonator. 

However, the electrical properties of the resonator, such as resonant frequency shift and 

mechanical damping not only depend on the mechanical properties of the coating layer and the 
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surface interactions, but also on mechanical or electrical loading conditions since the materials 

properties of quartz resonators are subjected to changes under electrical or mechanical fields. For 

example, A. D. Ballato et al. revealed that resonant frequency shift of singly-rotated Y-cut quartz 

resonator due to the applied force on the rim, is dependant on the force magnitude, crystal cut 

angle, azimuth angle and the vibration mode [54]. A. Ballato et al. investigated the force-

frequency effect of double rotated quartz resonators [55]. Ratajski introduced the force-

frequency coefficient for quantifying the force-frequency effect, and he derived an empirical 

chart based on the normalized experimental results, which can be used to determine the force-

frequency behavior of any crystal cut in the singly rotated Y-cut group [56].In papers of Lee et 

al., two dimensional governing equations were derived for theoretical analysis of force- 

frequency effect; the initial stress distribution was computed to study the plate vibration; formula 

for predicting the resonant frequency shift was developed and compared with experimental 

results[57, 58]. Numerical methods including finite element method (FEM) were also used to 

investigate the force-frequency effect of quartz resonators [59, 60]. Thus, it is often desirable to 

minimize force-frequency effect when the resonators are used for frequency control and signal 

processing applications. On the other hand, through the force-frequency effect quartz acoustic 

wave resonators have also found applications as force sensors, pressure sensors, or 

accelerometers [61-63]. Therefore, it is possible to apply resonator for flow measurement if the 

mechanical load due to the flow can significantly change the frequency response of acoustic 

wave resonators due to linear or nonlinear response of the device by choosing appropriate flow 

path and mechanical boundary conditions. 

In this study, quartz acoustic wave resonator is investigated as flow sensor for in-situ and 

real time detection of fluid (water) flow rate at room temperature. Considering the structural 
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simplicity and high mechanical quality factor, quartz TSM resonator is particularly chosen as the 

sensing element. For flow rate measurement, the quartz resonator is edge-bonded at the sensor 

mounting port in a specially designed flow chamber. At first the relation of resonant frequency 

shift with flow rate is theoretically discussed based on the nonlinear response of the resonator. 

The resonant frequency shifts of fundamental thickness shear mode and overtones are then 

monitored as the sensor responses to different flow rates.  The sensitivity and repeatability of the 

acoustic wave flow sensor are experimentally studied. Finally a brief discussion is given on the 

flow sensor optimization and potential applications. 

4.2 MATERIAL AND METHOD 

 

(a) 
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(b) 

Figure 4.1. Schematic of flow chamber: (a) Top and bottom plate, (b) Cross section 

 

Figure 4.2. The experiment setup for flow rate measurement 

5MHz At-cut quartz TSM resonator (Stanford Research Systems, Inc., Sunnyvale, CA) 

with 25.4 mm diameter was used in this study as a flow sensor. A flow chamber was designed 

according to the method proposed by Chuang et al. [64]. Figure 4.1 shows the schematic of the 

chamber, which is composed of two parallel acrylic plates, in which a rectangular flow channel,  

inlet and outlet reservoir, one sensor mounting port, one inlet port and outlet port are formed. 

These two plates were hold together through bolts and an O-ring between them to prevent the 

liquid leakage. The top plate was machined to form a sensor mounting port, and the quartz 

resonator was edge-bonded at the port using epoxy of ECCOBOND® 45 Clear (Ellsworth 

Adhesives, Germantown, WI) such that one surface of the resonator is exposed to the flowing 
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liquid and the other surface is exposed to the air. Two fine Cu wires were bonded to the 

resonator electrodes through silver paste, which provides electrical connection for resonator 

impedance measurement. The rectangular flow channel, inlet reservoir, outlet reservoir, inlet port 

and outlet port were formed in the bottom plate. During flow measurement, fluid entered inlet 

reservoir through inlet port, passed through rectangular flow channel, flowed into outlet reservoir 

and exited through the outlet port. Plastic pipes were connected to inlet and outlet port for flow 

delivery. The dimension of flow channel is 165.10mm×69.85mm×0.51mm ( hwL ×× ), and 

dimension for these two reservoirs is 19.05mm×76.0mm×15.24mm. 

Figure 4.2 shows the measurement setup, which is made of water pool, Manostat Preston 

pump (Barrinton, IL), pulse dampener (Cole-Parmer Instrument Company, Vernon Hills, 

Illinois), flow chamber, Agilent 4294A Precision Impedance (Agilent Technologies, Palo Alto, 

CA), Hi-Speed GPIB Controller (NI, Austin, Texas) and computer. The pool was used to store 

the fluid: deionized (DI) water, which was driven by the pump. The pulse dampener was adopted 

to smooth the flow considering the unstable flow due to the pulse pump. The resonator 

admittance impedance spectra near the resonant frequencies were recorded by the impedance 

analyzer. Through data fitting the admittance impedance spectra, the resonant frequencies were 

precisely extracted. 1st (fundamental), 3rd, 5th, 7th and 9th series resonant frequencies as the sensor 

response were monitored and recorded during flow measurement. Water flow rates up to 

3000ml/min were used in this study, all of which are limited to laminar flow; corresponding 

Reynolds numbers were 0 to 822. 
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4.3 METHOD OF FLOW MEASUREMENT 

 

(a) yz plane 

 

 

(b) xz plane 

Figure 4.3. Cross sections of the flow channel: (a) yz plane, (b) xz plane 

Figure 4.3 shows cross sections of the rectangular flow channel and a rectangular Cartesian 

coordinate system (x, y, z) built for further flow discussion. The top and bottom plate is located 

at / 2y h= and / 2y h= − . The lateral walls are located at 2/wz ±= . In the rectangular flow 

channel, the relation of pressure p  and volumetric flow rate Q  is given by Eq. (4.1) [64, 65]: 
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where µ , L , w  and h  are the viscosity of fluid, the length, width and height of the flow 

channel. Shear stress τ at the wall ( 2/hy ±= ) is given by Eq. (4.2) [64]: 
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From Eq. (4.1) we can get: 
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We know that the resonator is located at (0, 2/h , 0). Thus, when Q  is constant, the normal 

pressure difference P∆  on resonator two sides can be obtained: 
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The first term in Eq. (4.4) represents the pressure drop from the resonator position to the outlet 

port, and the second term is the expression of the pipe pressure drop from the outlet port to back 

side of resonator. Also, we can get shear stress rτ on the resonator surface through substituting 

the resonator position into Eq. (4.2): 
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Figure 4.4. The normal pressure difference and wall shear stress versus volumetric flow rate 

Figure 4.4 plots the results of P∆  and rτ  calculated through Eqs. (4.4) and (4.5), which 

show that both P∆  and rτ are proportional to the flow rate. When the flow is applied, the 

resonator will be deformed due to P∆  and rτ . In Figure 4.5(a) the dotted line indicates the 

middle plane, which has a flexure w . During the deformation, the quartz disc is subjected to 

either compression or tension on the 2 sides of middle plane. According to the first-order 

perturbation integral [66], this anti-symmetrical deformation has no effect on the resonant 

frequencies. However, the stretch of middle plane and the contraction of thickness cause a 

second-order (or nonlinear) frequency shift [67]. 

 

(a) Lateral view 
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(b) Top view 

Figure 4.5. Deflection of a quartz resonator disk subjected to normal pressure caused by fluid flow: (a) 

Lateral view, (b) Top view 

It is found that the resonant frequencies are affected by zero-order strains through the 

second and third order elastic stiffness coefficient, and also by first order strain gradients through 

the third-order elastic stiffness [58]. In other words, resonant frequency shift will be induced by 

the mechanical strain or stress. For a given flow rate in the flow path of the flow chamber, finite 

element analysis (FEA) was performed using ANSYS, it is found that the magnitude of P∆  is 

significantly (around 3500 times) higher than rτ , and compared with P∆  the strain or stress  

induced by rτ can be ignored. Thus P∆  could be the primary factor for resonant frequency shift 

of the quartz resonator, and the effect of rτ  on frequency change is then ignored in the later 

analysis. 

In the theoretical analysis of force-frequency relationship for quartz resonators, the 

isotropic assumption is often made for the calculation of the stress distribution, and the results 

were found to be very consistent with the experimental results [58, 68]. For the determination of 

the mechanical deflection of quartz resonators subjected a steady fluid flow rate, we assume that 
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the quartz resonator is isotropic plate with Poisson’s ratioυ , Young’s modulus E  and thickness 

rh . Thus, for an isotropic plate with clamped edge, the deflection w  due to the uniform normal 

load P∆ on the surface can be achieved by [69]:  
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The resonant frequency shift can be determined by the force-induced strain distribution 

[58], and the main terms for fundamental resonant frequency are given [67]: 
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where the coefficients 1A , 2A  and 3A  are determined by the second-order and third-order elastic 

constants.  o
1ε , o

2ε  and  o
3ε  are initial strains of middle plain due to the pressure. Here, for 

estimation, the average strains are used [67], and the expression can be easily found for o
1ε  and 
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Since the normal stress along the thickness direction is approximately zero for a very thin 

plate, according to strain and stress relations, 0
2ε  can be given: ε2
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where ijC  is the quartz stiffness. 

From Eq. (4.1) to (4.10), finally the relation between the fundamental resonant frequency 

shift and flow rate is found as: 
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(4.11) 

It can be seen from Eq. (4.4) that the normal pressure difference is proportional to the 

flow rate; And Eqs. (4.8)- (4.10) show that the resonant frequency shift of the resonator has a 

quadratic relation with normal pressure difference. Thus, as shown in Eq. (4.11), the resonant 

frequency shift of quartz resonator caused by fluid flow is in a quadratic relation with the flow 

rate. For sensor design and application, it is often desirable that linear or first-order transduction 

relation between the measure and the output electrical signal can be established. With frequency 

as the output signal, nonlinear relationship is still quite convenient for sensor applications. 



 52 

4.4 RESULTS AND DISCUSSION 

 

Figure 4.6. Admittance (Y=G+jB) spectrum near fundamental resonant frequency in the air and water: (a) 

Conductance G; (b) Susceptance B 

The electrical admittance spectra of TSM quartz resonator are first measured in the air 

and de-ionized (DI) water with zero flow rate. Figure 4.6 shows the admittance-frequency 

spectra of the resonator near the fundamental resonant frequency. G is conductance, the real part 

of admittance (Y), and B is susceptance, the imaginary part of admittance. It can be seen that 

resonant frequency is decreased due to the liquid load, and the spectrum is widened and the peak 

is greatly decreased due to increased viscous damping. The increased damping is reflected from 

the change of motional resistance (R) and mechanical Q of the resonator. The motional 

resistance and Q factor of the resonator are found to be 29Ω and 39477 in the air, and 362Ω and 

3077 in the water. The 1st resonance frequency shift due to water load is around 645 Hz, which is 

very close to the theoretical value 669Hz calculated according to the Kanazawa equation [6, 70]. 
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where 0f , Lρ , Lη , qρ  and qµ  are 1st resonant frequency in the air, density of liquid, viscosity of 

liquid, density of quartz and piezoelectric stiffened shear modulus. Lρ =1000 (Kgm-3), 

Lη =8.7048×10-4(Pa•s), qρ =2651(Kgm-3) and qµ =2.947×1010 (Nm−2) were used for the 

calculation. The resonant frequency of resonator in the DI water with zero flow rate is used as 

the baseline for the frequency shift of device under different flow rates. 

It is found that the flow variation due to the pulse pump makes the resonator admittance 

spectrum unstable under a certain flow rate, which induces some errors in extracting resonant 

frequencies. Even when a pulse damper is adopted, the effect of flow variation can still be seen 

in the admittance spectrum, as shown in Figure 4.7(A). To reduce the measurement noise, 5-

times average values are taken for each data point in the electrical admittance-frequency 

spectrum, which is an average measurement algorithm provided by the Precision Impedance 

Analyzer. From Figure 4.7(B) it can be seen the admittance spectrum after average becomes 

stable and smooth, which improves the precision of extracting resonant frequency. 

 

Figure 4.7. Typical electrical admittance (Y=G+jB) spectra of quartz resonator flow sensor: (a) Without 

average; (b) After 5 time average 
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(a) 1st mode 

 

 

(b) 3rd mode 
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(c) 5th mode 

 

(d) 7th mode 
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(e) 9th mode 

Figure 4.8. Frequency shift of quartz resonator conductance spectrum under different flow rates (a) 1st 

mode; (b) 3rd mode; (c) 5th mode; (d) 7th mode; (e) 9th mode. Along the arrow direction, the flow rate  increases from 

0 to 3000 ml/min, and the conductance spectrum moves from left to right accordingly. 

For flow measurement, nine different flow rates (0, 375, 750, 1125, 1500, 1875, 2250, 

2625 and 3000 ml/min) were chosen in the acoustic wave flow sensor test by justifying the 

pumping speed in the water circulation setup. Figure 4.8 shows the frequency shifts for 

fundamental shear mode and higher order resonances of the quartz acoustic wave resonator 

under these flow rates. It can be seen that resonant frequency increases with flow rate. In 

addition, the peak value of conductance-frequency spectrum (G - f) has different trend to flow 

rate for different mode. For the fundamental mode, the peak decreases for the first 8 flow rates, 

and increase at the 9th   flow rate. For 3rd, 5th and 7th modes, it seems that the G peak has not clear 

trend with flow rate. For 9th mode, the peak increases with the flow rate. Compared with 

conductance peak value, it is clear that the frequency shift is an indication of flow rate thus can 

be used as the sensor output for the acoustic wave flow sensor. 
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Figure 4.9.  Resonant frequency shifts of fundamental mode and overtones versus flow rate (a) absolute 

frequency shift; (b) fractional frequency shift 

Figure 4.9 plots the results of different mode resonant frequency shifts versus flow rate. It 

is found that the resonant frequency shift has a nearly perfect quadratic relation with flow rate 

(shown in Figure 4.9 (a)), agreeing very well the prediction of Eq. (4.11). It is also found that the 

resonant frequency shifts of all the overtones are basically the same for a certain flow rate when 

compared in terms of fractional frequency shift (
f
f∆ ), shown in Figure 4.9 (b), and the 

fundamental resonant frequency shift is a little lower than the overtones. For example, the 

fractional frequency shifts of fundamental and overtones (3rd, 5th, 7th and 9th) for a flow rate 2250 

ml/min are found to be 118 ppm, 127.6 ppm, 127.7 ppm, 127.6 ppm and127.2 ppm. 
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Figure 4.10. Repeatability of fundamental resonant frequency change under nine different flow rate levels 

The repeatability of the resonator was also investigated. Nine flow rate levels were 

subsequently applied from 0 up to 3000 ml/min and from 3000 back to 0 ml/min. For each flow 

rate, the duration time is 1 minute, and the resonant frequencies were real- time monitored 

through a Labview program. Figure 4.10 plots the result of the fundamental shear mode resonant 

frequency shift with time. It can be seen that the resonator has an excellent repeatability for 

different flow rates. Variations of the frequency shift with time are also observed, particularly 

under 5th and 6th flow rate levels, which may reduce the output resolution of the acoustic wave 

flow sensor. This variation is mainly attributed to the flow rate instability in the flow path of the 

flow chamber. Another possible reason for this variation is the decrease of Q due to liquid load, 

which broadens the admittance spectrum and makes it more difficult in identifying the peak 

frequency of spectrum since the resonant frequency is extracted through searching the peak of 

conductance spectrum. 

The experimental results indicate some attractive features of the TSM quartz acoustic 

wave flow sensor. One is its structural simplicity; no coating layer or other auxiliary sensing 

component is needed in the construction of the flow sensor cell. Another feature is that the 

operation of acoustic wave flow sensor is very simple: the frequency shift of the quartz resonator 
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is a convenient output that can be easily read by a simple oscillator circuit and frequency counter. 

In addition, a wide range of flow rates can be measured by using the quartz acoustic wave flow 

sensor. Moreover, for many industrial applications, one is interested, not in the resolution of flow 

rate, but in the threshold of flow rate or pressure for monitoring the operational parameters of 

electromechanical or energy systems. Thus, compared with the conventional expensive and 

complex flow sensing devices, the acoustic wave flow sensor studied in this paper may provides 

an alternative method for flow rate monitoring with substantially simple sensor cell structure and 

low operation cost. 

It should be noticed that before the practical implementation of this acoustic wave flow 

sensor, some issues need to be considered. Firstly, due to the unique of flow chamber geometry 

and the well-defined relation between the flow pressure and flow rate, the flow rate can be 

extracted by the measurement of pressure at one point using one quartz resonator. However, as 

shown in Eq. (4.4), the flow rate measurement is related to the outlet pressure (second term in Eq. 

(4.4)), which is unpredictable in real application. Thus, In order to get rid of the outlet pressure, 

the resonator side facing to the air before needs to connect with the outlet port, and Eq. (4.11) 

will be changed to  
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Now f∆  is only dependant on Q and can be used for flow measurement when the flow chamber 

is plugged into the measured flow path.  

Another option is to adopt two resonators configuration: If two same resonators are 

installed in the flow chamber with one side contacting liquid and another side exposed to air. 
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Assuming they are located at ( 1x , 2/h , 0) and ( 2x , 2/h , 0), then, according to Eq. (4.1) and 

(4.11) we can get: 
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where )( ixP , iP∆  and 
i

i

f
f∆

 are pressure at ixx =  in the flow channel, pressure difference on 

resonator two sides and fractional frequency shift of the resonator. It is easy to find: 

1212 )()( PPxPxP ∆−∆=−                                                                    (4.15) 

Combining Eq. (4.14) and (4.15), we obtain: 

( ) 2

6

2
22

2321
31

1

1

2

2

.....5,3,1
55

12

3

6720
 

2
tanh11921

)(12
  

D
RA

C
CC

AA

f
f

f
f

h
wn

nw
h

xx
whQ

n
















 +
−+










 ∆
−

∆















−

−
−= ∑

∞

=

π
πµ

(4.16) 

From Eq. (4.16), we can see that flow measurement is independent on outlet pressure and Q can 

be read out by the frequency shift of two resonators. 

Secondly, the sensitivity of the TSM quartz acoustic wave flow sensor seems not as high 

as the flow sensors based on SAW device, which has a frequency shift greater than 142 kHz 

(1900 ppm) for gas flow rate in the range from 0 to 1000 ml/min [49]. The experimental results 
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in this work show for 1000 ml/min flow rate a frequency shift less 190 Hz (40 ppm) for the 

fundamental shear mode resonance and 2000 Hz (43 ppm) for the 9th mode. This is due to that a 

nonlinear (second-order effect) frequency shift of quartz resonator is used for the signal 

transduction, which is usually much smaller than linear effect. The 9th overtone has a frequency 

shift 10,300 Hz (228 ppm) for 3,000 ml/min flow rate, which is equal to 0.076 ppm/(ml/min). If 

we assume that the resonators have a temperature effect of 1ppm on the frequency shift, the 

calculated resolution is 13 ml/min. In addition, considering the effect of the liquid 

viscosity/density that may vary in a practical sense, the 13 ml/min resolution is generous.  

Thirdly, since this acoustic wave flow sensor is based on the second order pressure-

frequency effect, theoretically it is applicable to the flow rate measurement for any type of fluid 

such as air, oil and others; and other conduit materials and geometry such as round metal pipes, 

as long as the fluid pressure is not so high that the sensor is broken.  

In addition, considering that the resonant behavior can be affected by the chemical 

reactions or physical adsorption occurring on the resonator electrode, the electrode facing the 

fluid needs to be protected, particularly when it is exposed to reactive or abrasive fluid. For this 

purpose, in the measurement of abrasive fluids the electrode material should be anti-abrasive or a 

protective thin film needs to be coated on the electrode of the resonator sensor. Further study is 

also needed to investigate the resonator behavior under higher pressure and determine the 

maximum pressure that the resonator can endure, since the highest pressure in the experiment 

study is about 6×104 Pa, which is not enough for some real applications where it can be up to a 

few or even tens of atmospheric pressure. Furthermore, it is well known that the flow is laminar 

and the velocity profile is parabolic for low Reynolds numbers (generally under 2,000), and the 

flow becomes turbulent for Reynolds numbers over 4,000. The Reynolds numbers of the current 
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experiments spanned from 0 to 822, therefore, experiments at high Reynolds numbers are still 

needed to investigate the influence of the turbulent flow profile on the resonator response. 

4.5 CONCLUSION 

This study has demonstrated that quartz TSM resonator sensor can be used for laminar 

flow rate measurement with structural simplicity, fast response, and good repeatability. Both 

theoretical and experimental studies have indicated that the frequency shift of quartz resonator 

caused by fluid flow can be attributed to the nonlinear (quadratic) frequency response of device 

due to the normal pressure imposing on the sensor disk through the fluid flow. The resonant 

frequencies of different modes can be adopted as the sensor output for flow rate monitoring, and 

the fundamental, 3rd, 5th, 7th, and 9th resonant frequency shift was found to be around 920 (Hz), 

3572 (Hz), 5947 (Hz), 8228 (Hz) and 10300 (Hz) for flow rate variation from 0 to 3000 ml/min 

or Reynolds number change from 0 to 822. For practical applications, the resonator side facing to 

the air needs to connect with the outlet port, or an extra resonator is installed, so that the flow 

rate measurement is not limited by the outlet pressure.  In addition, considering that the resonant 

behavior can be affected by the chemical reactions or physical adsorption occurring on the 

resonator electrode, the electrode facing the fluid may need to be protected, particularly when it 

is exposed to reactive or abrasive fluids. Further experiment studies under higher pressure and 

high Reynolds numbers are needed to determine the pressure limit and the flow profile influence 

on resonator response. 
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5.0  ANALYTICAL STUDY OF DUAL MODE RESONATORS BASED ON ZNO AND 

ALN FILMS WITH TILTED C-AXIS ORIENTATION 

5.1 INTRODUCTION 

Recently, in the RF and microwave frequency control and signal processing field FBARs have 

received great attention due to their small size, low insertion loss and power consumption [71-

75]. Especially, filters based on AlN FBARs which can be operated in low and medium GHZ 

range, have been fabricated for signal processing and communication devices [76-78]. Also, 

FBARs show good promising in sensor application. In the case of mass sensor application as the 

quartz micro-balance (QCM), it is well known that the resonant frequency will change due to 

surface mass change, and the absolute frequency is proportional to the square of the operating 

frequency. Therefore, using FBAR structures, whose operation frequency can be high to tens of 

GHz, can greatly improve the sensor sensitivity. For example, ZnO and AlN FBARs have shown 

much higher sensitivity and resolution comparable to QCM as biosensors for DNA and protein 

molecules detection [13], chemical sensors for ion detection such as K+ [14], and gas sensors for 

low concentration detection of H2, CO and ethanol [15].  

FBARs mentioned above are usually operated in longitudinal mode. For sensor 

application in liquid, the performance of thickness longitudinal mode FBARs will be adversely 

affected because the acoustic wave energy is radiated into liquid through compressional motion, 
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resulting in excessive damping of resonator [79]. On the other hand, shear acoustic waves do not 

produce compressional motion and thus are relatively undamped by liquid. Therefore, shear 

mode is a preferred choice for liquid operation of FBAR, just as the operation of QCM [2]. Now 

the question becomes what kind of AlN or ZnO thin films can excite the shear mode. 

In recent studies, it has been shown that thickness shear mode resonance can be excited in 

piezoelectric thin films with tilted c-axis (polarization off-normal) orientations. Foster et al. 

theoretically and experimentally analyzed the excitation of longitudinal and shear wave in ZnO 

transducer, which showed the shear-wave excitation greatly exceeded the longitudinal wave 

excitation when the c-axis was inclined at angles near 400 [16]. Wittstruck et al. reported the 

fabrication of the MgxZn1-xO through metal organic chemical vapor deposition (MOCVD); the c-

axis of the MgxZn1-xO film was lying in the plane surface, providing a possibility for thickness 

shear wave sensing in a liquid environment [80]. Yanagitani et al. reported pure thickness shear 

mode FBARs made of (1010) and (11 2 0) textured ZnO films [81, 82]. Link et al fabricated 

SMRs using 18° c-axis inclined ZnO thin films; mechanical quality factors of 192 were 

determined in water, indicating these devices attractive for sensing applications in liquids 

[17].Wu et al. theoretically analyzed bulk acoustic wave properties of all crystalline plane 

oriented sputtered and epitaxial ZnO films using Christoffel equation; it showed that different 

crystalline plane oriented ZnO films formed different acoustic wave modes and properties [83]. 

In the case of AlN, Bjurström and Wingqvist et al. investigated a sputtering system to 

achieve c-axis tilted AlN films; the variation of the electromechanical coupling coefficient and 

the quality factor of FBARs based on these c-axis tilted AlN films were examined; combined 

with a micro-fluidic transport system these FBARs were investigated for liquid applications [18-

21]. Martin et al. presented solidly mounted FBARs based on c-axis tilted AlN films; the 
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resonant frequencies of resonators could be high to around 8GHz for longitudinal mode and 4 

GHz for shear mode [84, 85]. Chuang et al. fabricated SMRs using 00,150 and 300 c-axis tilted 

AlN films, and experimentally investigated the effect of mass loading on the resonators [86]. 

Chen et al. analyzed the input impedance of a dual mode AlN FBAR by ignoring the coupling of 

longitudinal and shear mode, which showed the coexistence of dual mode was dependent on the 

tilt angle [87]. 

In this study, we presented the theoretical analysis of thickness longitudinal and thickness 

shear dual-mode FBARs based on c-axis tilted ZnO and AlN films. Following a similar 

procedure [16], the equation for predicting electric impedance of FBARS was derived by the 

basic piezoelectric equations. The material properties including elastic, dielectric and 

piezoelectric constants were calculated with a tilt angle range from 00 to 1800, which were used 

to determine the bulk wave properties of films including acoustic velocity and electromechanical 

coupling coefficient. The response of dual mode resonator was compared with reported 

experiment results. And the mass sensitivity of FBARs was analyzed through the calculation of 

resonant frequency shift for small mass loading. 
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5.2 THEORY 

5.2.1 Dual mode FBARs 

 

Figure 5.1. The schematic of FBAR and coordinate systems. (a) Schematic of FBAR and 

' ' '
1 2 3( , , )x x x coordinate system; (b) 1 2 3( , , )x x x coordinate system; (c) the relation of ' ' '

1 2 3( , , )x x x  and 

1 2 3( , , )x x x  coordinate system 

Figure 5.1(a) shows the schematic of tilted c-axis ZnO or AlN FBARs, where the top and bottom 

electrode are ignored. A rectangular Cartesian coordinate system ( '
1x , '

2x , '
3x ) was chosen with 

top electrode on '
3x h=  and bottom electrode on '

3 0x = . The c-axis of ZnO or AlN films is tilted 

at an angle θ  to the '
3x  direction. Figure 5.1(b) shows the c-axis normal coordinate ( 1x , 2x , 3x ). 

Coordinate system ( '
1x , '

2x , '
3x ) can be treated as the result of rotation of ( 1x , 2x , 3x ) about 2x  

with an angle θ , as shown in Figure 5.1(c). 
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5.2.2 Material properties of ZnO and AlN films 

For the characterization of tilted c-axis ZnO or AlN FBARs, the material properties in ( '
1x , '

2x , '
3x ) 

need to be known. Assuming the dielectric permittivity, piezoelectric stress coefficient and 

elastic stiffness are ( 'ε , 'e , 'c ) for coordinate system ( '
1x , '

2x , '
3x ), and (ε , e , c ) for coordinate 

system ( 1x , 2x , 3x ), the material properties in new coordinate system can be computed through 

properties in original coordinate system with the aids of matrix algebra [88]: 

' ta aε ε=                                                                                                               (5.1) 

' te aeM=                                                                                                              (5.2) 

' tc McM=                                                                                                             (5.3) 
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where θ  is the tilt angle, ta  is the transpose of a , and tM  is the transpose of M . 

5.2.3 Impedance of FBARs 

According to the acoustic field equations and piezoelectric constitution equations [88, 89], we 

have: 
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where pT , qS , iD  and kE  are the components of stress, strain, electric displacement and electric 

field intensity, 'E
pqc  are the elastic stiffness constants under constant electric field intensity, '

kpe  

are the piezoelectric stress constants, 'S
ikε  are the permittivity constants under constant strain, and 

u i  is the displacement in the direction of '
ix ( , 1, 2, 3i k =  and , 1, 2, 3, 4, 5, 6p q = ). Since the 

thickness of the piezoelectric layer is much smaller than the lateral dimensions, the thickness 

vibration of the resonator can be treated as a one-dimensional problem; hence, we may have: 
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From (5.6) - (5.10), we can obtain: 
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x x x

∂∂ ∂
= + + −

∂ ∂ ∂
                                                   (5.14) 

 
2

5 1
' 2
3

T u
x t

ρ∂ ∂
=

∂ ∂
                                                                                          (5.15) 

' ' ' '3 1 2
3 33 35 34 33 3' ' '

3 3 3

E E Eu u uT c c c e E
x x x
∂ ∂ ∂

= + + −
∂ ∂ ∂

                                                   (5.16) 

2
3 3
' 2
3

T u
x t

ρ∂ ∂
=

∂ ∂
                                                                                         (5.17) 

' ' ' '31 2
3 35 34 33 33 3' ' '

3 3 3

Suu uD e e e E
x x x

ε∂∂ ∂
= + + +

∂ ∂ ∂
                                                  (5.18) 

For any tilt angle θ , it is found: 

' ' '
34 45 34 0E Ec c e= = =                                                                                 (5.19) 

From (12), (13) and (19), we can see that 2u  is uncoupled with 1u , 3u  and 3E ; hence 2u  needn’t 

to be considered and can be set to 0 in this one dimension problem. Substituting (5.14) into (5.15) 

and substituting (5.16) into (5.17), we have: 

22 2
' ' 31 1

55 35' 2 ' 2 2
3 3

E E uu uc c
x x t

ρ∂∂ ∂
+ =

∂ ∂ ∂
                                                                 (5.20) 

 
2 22

' '3 31
33 35' 2 ' 2 2

3 3

E Eu uuc c
x x t

ρ∂ ∂∂
+ =

∂ ∂ ∂
                                                                (5.21) 

where 
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( )2'
33' '

33 33 '
33

E E
S

e
c c

ε
= +                                                                             (5.22a) 

' '
' ' 33 35

35 35 '
33

E E
S

e ec c
ε

= +                                                                             (5.22b) 

( )2'
35' '

55 55 '
33

E E
S

e
c c

ε
= +                                                                            (5.22c) 

For a sinusoidal excitation, the solution to (5.20) and (5.21) is given by 

1

3

sin( ) cos( )
cos( ) sin( )

L

S

u u
u u

α α
α α

    
=    −    

                                                    (5.23a) 

' ( ) ' ( )
3 3( sin( / ) cos( / )L L jwt

L L Lu A x v B x v eω ω= +                               (5.23b) 

' ( ) ' ( )
3 3( sin( / ) cos( / ))S S jwt

S S Su A x v B x v eω ω= +                              (5.23c) 

where 

2w fπ=                                                                                          (5.24a) 

'
35

' '
33 55

21 arctan( )
2

E

E E

c
c c

α =
−

                                                                   (5.24b) 

1/2
2 2

' ' ' ' '
( ) 33 55 33 55 35

2 2

E E E E E
L c c c c cv

ρ ρ ρ

    + − = + +       
     

                                 (5.24c) 

1/2
2 2

' ' ' ' '
( ) 33 55 33 55 35

2 2

E E E E E
S c c c c cv

ρ ρ ρ

    + − = − +       
     

                                (5.24d) 

f is the excitation frequency, ( )Lv  and ( )Sv  are the acoustic velocities for longitudinal mode and 

shear mode respectively, and LA , LB , SA , SB  are the unknown amplitudes determined by the 
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boundary conditions. The stress can be solved through substituting (5.23), (5.24) into (5.14), 

(5.16), given by 

5

3

sin( ) cos( )
cos( ) sin( )

L

S

T T
TT

α α
α α

    
=    −    

                                                             (5.25a) 

' ( ) ' ( )
3 3 3'

33

( cos( / ) sin( / )) ( )L L jwt L
L L L L S

eT wZ A x v B x v e Dω ω
ε

= − −               (5.25b) 

' ( ) ' ( )
3 3 3'

33

( cos( / ) sin( / ))S S jwt S
S S S S S

eT wZ A x v B x v e Dω ω
ε

 
= − −  

 
             (5.25c) 

where 

( )L
LZ vρ=                                                                                               (5.26a) 

( )S
SZ vρ=                                                                                               (5.26b) 

' '
35 33sin( ) cos( )Le e eα α= +                                                                       (5.26c) 

' '
35 33cos( ) sin( )Se e eα α= −                                                                      (5.26d) 

 The voltage across the piezoelectric layer is found from (5.11), (5.18), (5.26c) and (5.26d) to be 

'
3 30

3
' ' '

33 33 33

 [ ( ) (0)] [ ( ) (0)]

h

SL
L L S SS S S

V E dx

e D he u h u u h u
ε ε ε

=

= − − − − +

∫
                                (5.27) 

where A is the area of the electrodes. The current I can be expressed by  

3
dQI = = jwAD
dt

                                                                                    (5.28) 

The traction force at the boundary ( '
3 0,x h= ) is zero, thus we have: 

5 5 3 3(0) ( ) (0) ( ) 0T T h T T h= = = =                                                             (5.29) 

Using (5.23), (5.25) and (5.29) we find that  
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3 ( )

'
33

2 tan( )
2( ) (0)

L l

L L S
L

he D
vu h u

wZ

ω

ε
− =                                                      (5.30a) 

3 ( )

'
33

2 tan( )
2( ) (0)

S S

S S S
S

he D
vu h u

wZ

ω

ε
− =                                                    (5.30b) 

Hence, substituting (5.30) into (5.27) and using (5.28) the impedance of FBAR is found that 

2 2

0

tan( / 2)tan( / 2)1 (1 )
/ 2 / 2

SL
L S

L S

VZ k k
I j C

γγ
ω γ γ

= = − −                           (5.31) 

where  

( )L L

h
v
ωγ =                                                                                       (5.32a) 

( )S S

h
v
ωγ =                                                                                      (5.32b) 

'
0 33 /SC A hε=                                                                               (5.32c) 

2
2

' ( ) 2
33

( )
( )
L

L S L

ek
vε ρ

=                                                                        (5.32d) 

2
2

' ( ) 2
33

( )
( )
S

S S S

ek
vε ρ

=                                                                        (5.32e) 

Here, Lk  and Sk  are respectively defined as the electromechanical coupling coefficient for the 

longitudinal and shear mode. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Dependence of ZnO and AlN material properties on the tilt angle θ 
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Figure 5.2. ZnO material properties and effective parameters in ' ' '
1 2 3( , , )x x x  coordinate system. (a) '

33
Ec , 

'
33
Ec , '

55
Ec  and '

55
Ec ; (b) '

35
Ec  and '

35
Ec ; (c) '

33
Sε ; (d) α ; (e) '

33e  and Le ; (f) '
35e  and Se  
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Figure 5.3. AlN material properties and effective parameters in ' ' '
1 2 3( , , )x x x  coordinate system. (a) '

33
Ec , 

'
33
Ec , '

55
Ec  and '

55
Ec ; (b) '

35
Ec  and '

35
Ec ; (c) '

33
Sε ; (d) α ; (e) '

33e  and Le ; (f) '
35e  and Se  
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The material properties of ZnO [90, 91] and AlN [92] in 1 2 3( , , )x x x  coordinate system are listed 

in Table 5.1.  

Table 5.1. Material properties of ZnO and AlN 

Property  AlN ZnO 

Density (Kg/cm3) ρ  3260 5700 

Elastic stiffness (Gpa) 

11 12 13

12 11 13

13 13 33

44

44

66

c   c   c     0     0    0
c   c   c     0     0    0
c   c   c     0     0    0
  0      0     0    c     0    0
  0      0     0      0   c    0
  0      0     0      0      0  c

Ec =




















 

 

11

12

13

33

44

66

E

E

E

E

E

E

c
c
c
c
c
c

 

345 

125 

120 

395 

118 

110 

210 

121 

105 

211 

43.0 

44.5 

Piezoelectric stress constant (C/m2) 

15

15

31 31 33

    0       0       0        0      e     0
    0       0       0       e      0      0 
   e      e      e      0       0      0

e=
 
 
 
  

 

31

33

15

e
e
e

 
-0.58 

1.55 

-0.48 

-0.57 

1.32 

-0.48 

Dielectric permittivity (10-11F/m) 

11

11

33

0 0
0 0
0 0

S

S S

S

ε
ε ε

ε

 
 
 
 
  

=  
11

33

S

S

ε
ε

 
8.0 

9.5 

7.61 

8.85 

 

Using (5.1)-(5.5), (5.22), (5.26c) and (5.26d), the material properties and effective parameters in 

' ' '
1 2 3( , , )x x x  coordinate system are calculated and shown in Figure 5.2 and Figure 5.3, which can 

clearly show that elastic stiffness, dielectric permittivity and piezoelectric coefficient are tilt 

angle dependent. According to (5.22), '
33
Ec  and '

55
Ec can be regarded as piezoelectrically stiffened 

'
33
Ec  and '

55
Ec , respectively; and have larger values as shown in Figure 5.2(a) and Figure 5.3(a). 

The value of '
35
Ec , as shown in Figure 5.2(b) and Figure 5.3(b), is much smaller compared with 
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'
33
Ec  and '

55
Ec , which induces the calculated angleα  through (5.24 b) very small, in a range of 0°-

5° shown in Figure 5 2(d) and Figure 5.3(d). The small value of α  makes the calculated Le  and 

Se  through (5.26) much close to '
33e  and '

55e , respectively, which can be clearly seen from Figure 

5.2(e), 5.2(f) and Figure 5.3(e), 5.3(f). The calculated '
33
Sε , as shown in Figure 5.2(c) and Figure 

5.3(c), varies from 7.61×10-11 to 8.85×10-11 F/m for ZnO and 8.00×10-11 to 9.50×10-11 F/m for 

AlN, respectively. 

5.3.2 Bulk acoustic wave properties of ZnO and AlN 
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Figure 5.4. Bulk acoustic wave properties of ZnO. (a) acoustic  velocity ; (b) electromechanical coupling 

coefficient 
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Figure 5.5. Bulk acoustic wave properties of AlN. (a) acoustic velocity ; (b) electromechanical coupling 

coefficient 

It is necessary to know acoustic velocity and electromechanical coupling coefficient of ZnO and 

AlN films with different tilt angle, since they are two important bulk acoustic wave properties for 

FBAR design. Figure 5.4(a) and Figure 5.5(a) show the acoustic velocity of ZnO and AlN films 

for longitudinal and shear mode based on (5.24c) and (5.24d); Figure 5.4(b) and Figure 5.5(b) 

show electromechanical coupling coefficient of ZnO and AlN films for longitudinal and shear 

mode based on (5.32d) and (5.32e). The longitudinal and shear velocity of AlN are found in the 

range of 10287 m/s - 11354 m/s and 6016 m/s - 6368 m/s, respectively; and for ZnO the 

longitudinal and shear velocity are in the range of 5935 m/s - 6362 m/s and 2747 m/s - 3233 m/s, 

respectively. For most tilt angles the longitudinal electromechanical coefficient ( 2
Lk )of ZnO 

varying from 0% to 8.53% is higher than  that of AlN  varying from 0 to 6.0%, and  the shear 

electromechanical coefficient ( 2
Sk ) of ZnO varying from 0 to 13.1%  is higher than that of AlN 

varying from 0 to 6.5%. 
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Table 5.2. Bulk acoustic wave properties of ZnO 

Tilt angle (0) Mode Velocity (m/s) Electromechanical 

couplingcoefficient (%) 

Lv  Sv  2( )Lk  2( )Sk  

0.0 Pure longitudinal 6362 2747 8.5 0 

33.3 Quasi shear 

longitudinal 

5992 3216 1.1 13.1(max) 

43.0 Pure shear  5936 3213 0 10.4 

65.4 Pure longitudinal 6028 2916 1.2 0 

90.0 Pure shear 6070 2842 0 6.6 

 

Table 5.3. Bulk acoustic wave properties of AlN 

Tilt angle (0) 

 

Mode Velocity (m/s) Electromechanical 

coupling coefficient (%) 

Lv  Sv  2( )Lk  2( )Sk  

0 Pure longitudinal 11354 6016 6.0 0 

34.5 Quasi shear and 

longitudinal 

10749 6363 0.8 6.5 (max) 

46.1 Pure shear  10548 6325 0 4.6 

67.1 Pure longitudinal 10380 6104 0.6 0 

90 Pure shear 10287 6089 0 2.4 
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Based on the electric impedance expression (5.31), it can be found that the conditions for 

a single mode is 0Lk = (for pure shear mode) or 0Sk = (for pure longitudinal mode), which is 

corresponding to to 0Le =  or 0Se =  according to (5.32d) and (5.32e).  The tilt angle for pure 

mode are numerically solved and summarized in Table 5.2 and 5.3, which also include the 

special tilt angle where the maximum shear electromechanical coupling coefficient occurs. For 

ZnO, the pure longitudinal mode is excited at 00θ =  with 2 8.5%Lk =  and 065.4θ =  

with 2 1.2%Lk = ; the pure shear mode is excited at 043θ =  with 2 10.4%Sk = and 090θ =  with 

2 6.6%Sk = ; and the maximum of  electromechanical coupling coefficient for shear mode is 

13.1% at 033.3θ = . For AlN, the pure longitudinal mode is excited at 0θ =  with 2 6%Lk =  and 

067.1θ =  with 2 0.6%Lk = ; the pure shear mode is excited at 046.1θ =  with 2 4.6%Sk = and 

090θ =  with 2 2.4%Sk = ; and the maximum of electromechanical coupling coefficient for shear 

mode is 6.5% at 034.5θ = . 

The trends of modern mobile communication systems are increasing the need for filters 

with wider bandwidths, which requires higher electromechanical coupling coefficient of 

piezoelectric material for FBAR based filter. Hence, compared with the longitudinal 

electromechanical coupling coefficient ( 2
Lk ) up to 8.5% ( 00θ = ) for ZnO and 6.0% ( 00θ = ) for 

AlN, the higher value of shear electromechanical coupling coefficient ( 2
Sk ) up to 13.1% 

( 033.3θ = ) for ZnO and 6.5% ( 034.5θ = ) for AlN provides a better choice for the design of 

higher bandwidth filter. 
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5.3.3 Simulation of electric impedance spectra of FBARs based on c-axis tilted ZnO and 

AlN films 

It is well known that the mechanical quality factor (Q) of thin films vary with the thin film 

deposition processing conditions. The reported Q value of ZnO and AlN is around several 

hundreds [14, 17, 18, 20]. Here, for simplification, QL( mechanical quality factor of longitudinal 

mode) is assumed 350 for ZnO and 400 for AlN; QS ( mechanical quality factor of shear mode) 

assumed 350 for ZnO and 400 for AlN. Thus, the new acoustic velocity '
Lv  (longitudinal mode) 

and '
Sv  (shear mode) are adopted for impedance calculation when QS and QL are taken into 

consideration [10]: 

'

2
L

L L
L

vv v j
Q

= +                                                                                           (5.33a) 

'

2
S

S S
S

vv v j
Q

= +                                                                                           (5.33b) 

In addition, the thickness of ZnO or AlN films is assumed to be 2 μm and the electrode area is 

assumed to 9×10-8 m2. Due to the symmetry, tilt angle from 0 to 90 is adopted in the simulation. 

Figure 5.6 and 5.7 show the calculated impedance spectra of ZnO and AlN FBARs with different 

tilt angles, respectively, where the resonance frequencies of shear and longitudinal mode are 

fairly separated due to the difference of the acoustic velocities. For ZnO, the resonance 

frequencies of  thickness longitudinal and shear modes are found in the range of 1.4 GHz to 1.6 

GHz and 0.68 GHz to 0.81 GHz, respectively; the ratio of longitudinal and shear resonance 

frequency varies from 1.84 to 2.32. Link et al reported that the ratio of longitudinal and shear 

resonance frequency was around 2.0 for 18° c-axis inclined ZnO thin film [17], which is 

consistent with our theoretically calculated value 2.09 ( 018θ = ). For AlN, the resonance 
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frequencies of  thickness longitudinal and shear modes are found in the range of 2.57 GHz to2.84 

GHz and 1.50 GHz to 1.60 GHz respectively, and the ratio of longitudinal and shear resonance 

frequency varies from 1.66 to 1.89. For a specific tilt angle ( 028θ = ) of AlN, the theoretical 

value are found to 1.726, which agrees well with 1.72 calculated through the experiment result of 

Wingqvist et al. [21]. For another tilt angle ( 030θ = ) of AlN, the theoretical value are found to 

1.713, which are also close to 1.76 calculated by the experiment result of Chuang et al. [86]. 
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Figure 5.6. Impedance spectrum simulation of FBAR based on c-axis tilted ZnO film (S: Shear mode, L: 

Longitudinal Mode). (a) 0 0 0 00 ,15 ,33.3 , 43θ = ; (b) 0 0 0060 ,65.4 ,75 ,90θ =  
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Figure 5.7. Impedance spectrum simulation of FBAR based on c-axis tilted AlN film (S: Shear mode, L: 

Longitudinal Mode). (a) 
0 0 0 00 ,15 ,34.5 , 46.1θ = ; (b) 0 0 0 060 ,67,1 ,75 ,90θ =  

It also can be seen from Figure. 6 and 7 that resonance peaks of the spectra are different 

with the change of tilt angle. Interestingly, besides tilt angle 00 (i.e., normal polarization) a pure 

thickness longitudinal mode occurs at 65.40 for ZnO, and 67.10 for AlN, respectively, with 
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smaller electromechanical coefficient. In addition, besides tilt angle 900 (i.e., in-plane 

polarization) a pure thickness shear mode occurs at 430 for ZnO, and 46.10 for AlN, respectively, 

with higher electromechanical coefficient. The strongest resonance peak of thickness shear mode 

for ZnO occurs at 33.30, where the maximum shear mode electromechanical coupling coefficient 

is found to be 13.1%. For AlN, the strongest resonance peak of thickness shear mode occurs at 

34.50, where the maximum shear mode electromechanical coupling coefficient is found to be 

6.5%. From Figure 5.4(b) and Figure 5.5(b), it can also be found that two peaks for 2
Sk  exist at 

tilt angle 0 033.3 , 90θ = for ZnO, and 0 034.5 , 90θ = for AlN, respectively. It is noticed that low 

electromechanical coupling coefficient of shear mode will lead to deterioration of resonator 

operation in liquid [21]. Hence, tilt angle close to 33.30, 900 for ZnO films, and 34.50, 900 for 

AlN films are good options for sensor applications of FBARs in liquid environment. In fact, 

Wingqvist et al [21] presented AlN FBARs with a tilt angle around 300, which showed a strong 

shear resonance around 1.2 GHz with high QS around 150 in the water; and the viscous load 

experiments indicated the potential of FBARs for biosensor bioanalytical tools as well as for 

liquid sensing in general. 

5.3.4 Sensitivity of ZnO and AlN FBAR for mass sensor application 

 

Figure 5.8. The schematic of FBAR for mass sensor application 
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When bulk acoustic wave resonators are used for mass sensor application such as QCM, the 

resonant frequency will change due to surface mass change, and the absolute frequency is 

proportional to the square of the operating frequency. Hence, it is believed that sensor sensitivity 

will be greatly improved considering high operation frequency of FBARs. For analyzing sensor 

performance of FBAR, the impedance expression of FBAR with loading needs to be addressed. 

Usually the resonator is coated a sensitive layer (mass loading layer) for sensor application, as 

shown in Figure 5.8. Compared with mass loading layer, the acoustic impedance of electrodes is 

very small, for simplify the problem, we ignore the electrodes. For derivation of impedance 

expression, we still adopt equation (5.1)-(5.28), but the traction forces at the boundary ( '
3 0,x h= ) 

need change to: 

5 3(0) (0) 0T T= =                                                                             (5.34a) 

 
5 1

33

( ) 0 ( )
( )( ) 0

S
sl

L
sl

T h j Z u h
u hT h j Z

ω

ω

 −   
=     

−                                                     (5.34b) 

L
slZ  and S

slZ  are the longitudinal and shear acoustic impedance of the sensitive layer (mass 

loading layer), which can be expressed by 

tan( )L L L
sl sl sl slZ j vρ γ=                                                                    (5.34c) 

tan( )S S S
sl sl sl slZ j vρ γ=                                                                    (5.34d) 

33 55

, , ,
L S

L S L Ssl sl sl sl
sl sl sl sl

sl sl sl sl

c c v vv v
l l
ω ωγ γ

ρ ρ
= = = =                                (5.34e) 

where L
slv  and S

slv  are longitudinal and shear acoustic velocity of sensitive layer; L
slγ  and s

slγ  are 

longitudinal and shear phase delay in mass loading layer; slρ  and sll  are the density and 

thickness of mass loading layer; 33
slc  and 55

slc  are the elastic constants of mass loading layer. 
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According to the boundary condition (5.34) and equations (5.1)-(5.28), the impedance of coated 

FBAR can be solved: 

2 2

0

tan( / 2)tan( / 2)1 (1 ( ) ( ) )
/ 2 / 2

L L S S SL

L S

Z k p k p
j C

γγ
ω γ γ

= − −               (5.35a) 

Where 

 
'

33
0

S AC
h

ε
=                                                                                      (5.35b) 

2
2

' ( ) 2
33

( )( )
( )

L L
S L

ek
vε ρ

=                                                                          (5.35c) 

2
2

' ( ) 2
33

( )( )
( )

S S
S S

ek
vε ρ

=                                                                         (5.35d) 

( )L L

h
v
ωγ =                                                                                      (5.35e) 

( )S S

h
v
ωγ =                                                                                      (5.35f) 

2 2sin ( )( cos( ) sin( )) sin ( ) sin( )
2 2

1
cos( )cos( ) sin( )sin( )

cos( )sin( ) sin( ) cos( )

L S LL SLL S
s S Lsl sl sl sl

L S
L S L SL

L S
L S L Ssl sl

L S
L LL SS

L S L Ssl sl

L S

Z Z Z Ze j je
Z Z Z Z

p
Z Z
Z Z

e
Z Zj
Z Z

γ γγ γ γ

γ γ γ γ

γ γ γ γ

 
+ + 

 = +
 

− + 
 ×  
 +    

  (5.35g) 

2 2sin ( )( cos( ) sin( )) sin ( ) sin( )
2 2

1
cos( )cos( ) sin( )sin( )

cos( )sin( ) sin( ) cos( )

L S SS SLS L
L L Ssl sl sl sl

S L
L S S LS

L S
L S L Ssl sl

L S
S LL SS

L S L Ssl sl

L S

Z Z Z Ze j je
Z Z Z Z

p
Z Z
Z Z

e
Z Zj
Z Z

γ γγ γ γ

γ γ γ γ

γ γ γ γ

 
+ + 

 = +
 

− + 
 ×  
 +    

  (5.35h) 

2 2cos ( ) sin ( )LL L S
sl sl slZ Z Zα α= +                                                    (5.35i) 
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2 2cos ( ) sin ( )SS S L
sl sl slZ Z Zα α= +                                                    (5.35j) 

( )sin( ) cos( )SL S L
sl sl slZ Z Z α α= −                                                    (5.35k) 

Through analyzing (5.35), the condition for pure longitudinal mode is 0, 0Seα = = , 

which is equivalent to ' '
35 350, 0Ec e= = ; the condition for pure shear mode is 0, 0Leα = = , which 

is equivalent to ' '
35 330, 0Ec e= = . Hence, from Figure 5.2 and 5.3, we can conclude that the pure 

longitudinal mode for ZnO and AlN is excited at 00θ = , and for pure shear mode  it is 090θ = .In 

addition, α  is small due to the small value of '
35
Ec , then longitudinal mode is predominant when 

0Se =  and shear mode is predominant when 0Le = , therefore, at 065.4θ =  for ZnO and 

067.1θ =  for AlN, it can be approximate to pure longitudinal mode; at 043θ =  for ZnO and 

046.1θ =  for AlN, it can be approximate to pure shear mode. 
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Figure 5.9. Resonant frequency shift of FBAR based on c-axis tilted ZnO film vs thickness of mass loading. 

(a) 0 0 0 00 43 ,65.4 ,90,θ = ; (b) 0 015 30,θ =  
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Figure 5.10. Resonant frequency shift of FBAR based on c-axis tilted AlN film vs thickness of mass 

loading. (a) 0 0 00 46.1 ,67.1 ,900 ,θ = ; (b) 0 015 30,θ =  

Table 5.4. Parameters for calculation of ( )sLf θ and ( )sSf θ . 

Mass loading 

layer 

Density 

(kg/m3) 
Thickness (nm) 

Young's 

modulus (GPa) 

Poisson's 

ratio 
QL QS 

Al 2700 0-500 70 0.35 1000 1000 

Ag 10490 0-500 83 0.37 1000 1000 

 

To have an overall understanding of dual mode FBAR as mass sensor, we gradually 

increase the mass loading and investigate the change of the resonant frequency sf , which is 

corresponding to maximum conductance and usually adopted for sensor output. Here, 

( )sLf θ and ( )sSf θ  are used to express the longitudinal and shear resonant frequency of FBAR 
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based on AlN or ZnO with c-axis tilt angle θ . Figure 5.9 and 5.10 shows the change of 

( )sLf θ and ( )sSf θ  with the thickness of mass loading layer for some specific tilt angles. In the 

simulation, Al and Ag are the materials for mass loading layer, and Table 5.4 lists their 

parameters for calculation of ( )sLf θ and ( )sSf θ  using (5.35). As shown in Figure 5.9 and 5.10, for 

mass loading Al and Ag, both ( )sLf θ and ( )sSf θ  linearly decrease when the thickness of mass 

loading layer is small. For the same thickness of mass loading, the resonant frequency shift for 

Ag is higher than Al, because Ag has higher density than Al, inducing higher acoustic loading. 

Table 5.5. Mass sensitivity of FBAR based on c-axis tilted ZnO. 

tilt angle (0) ( )sLf θ (GHz) ( )sSf θ (GHz) 
( )LS θ (cm2/g) ( )SS θ (cm2/g) 

  Al               Ag    Al             Ag 

0 1.533439408     ____ -904 -904 ____ ____ 

15 1.520757366 0.709173538 -896 - 894 -896 -896 

30 1.496097496 0.751143640 -882 -879 -926 -919 

43        ____ 0.767714844 ____ ____ -911 -909 

65.4 1.499892844        ____ -881 -877 ____ ____ 

90        ____ 0.690955092 ____ ____ -896 -896 
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Table 5.6. Mass sensitivity of FBAR based on c-axis tilted AlN 

tilt angle (0) ( )sLf θ (GHz) ( )sSf θ (GHz) 
( )LS θ (cm2/g) ( )SS θ (cm2/g) 

Al            Ag Al            Ag 

0 2.767650148 ____ -1570 -1558 ____ ____ 

15 2.746620142 1.517122380 -1556 -1548 -1548 -1539 

30 2.695601826 1.541801144 -1541 -1531 -1570 -1560 

46.1 ____ 1.550894306 ____ ____ -1563 -1548 

67.1 2.588555566 ____ -1548 -1525 ____ ____ 

90 ____ 1.507487836 ____ ____ -1548 -1535 

 

The mass sensitivity of dual mode FBARs is defined as below: 

( ) / ( )( ) sL sL
L

f fS
m

θ θθ ∆
=

∆                                                                  (5.36a) 

( ) / ( )( ) sS sS
S

f fS
m

θ θθ ∆
=

∆                                                                 (5.36b) 

m mm tρ∆ =                                                                                      (5.36c) 

where ( )LS θ  is the mass sensitivity of longitudinal mode for FBAR based on AlN or ZnO with c-

axis tilt angle θ , and ( )SS θ  is the mass sensitivity of shear mode; ( )sLf θ∆  and ( )sSf θ∆  are 

resonant frequency shift due to mass loading m∆ ; mρ  and mt  are the density and thickness of 

mass loading layer. The mass sensitivity of FBARs in a linear range ( ( ) / ( ) 5%s sf fθ θ∆ ≤ ) is 

evaluated through measuring resonant frequency shift for 5nm Al or Ag mass loading. And the 

calculated mass sensitivity for some special angles according to (5.36), is listed in Table 5.5 and 

5.6. It can be seen from Table 5.5 and 5.6 that ( )LS θ  and ( )SS θ of ZnO are around -900(cm2/g), 
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and ( )LS θ  and ( )SS θ o f AlN are around -1550(cm2/g), which is greatly higher than -14(cm2/g), 

the mass sensitivity of a 6M QCM [93]. Due to the small value ofα or '
35
Ec  for all θ , the 

coupling between longitudinal and shear mode is weak, so the resonator can be approximate to a 

simple combination of two single mode. On the other hand, we know the mass sensitivity ( mS ) 

of single mode resonator is only dependant on the density ( pρ ) and thickness ( pd ) of the piezo 

layer [93]. 

1
m

p p

S
dρ
−

=                                                                                       (5.37) 

Hence, for ZnO or AlN FBAR, ( )LS θ  and ( )SS θ  have close value, and do not change much with 

tilt angel, which also can be seen in Table 5.5 and 5.6. 

It should be pointed out that in (5.35) the mass loading layer is assumed isotropic. When 

the mass loading layer is replaced with electrode material, (5.35) can be used to analyze the 

effect of electrode, which actually has been shown in mass sensitivity calculation. Moreover, 

through replacing the acoustic impedance of sensitive layer with acoustic impedance of 

multilayer, (5.35) can be used for analysis of multilayer loading, so long as the multilayer  is 

isotropic and non-piezo. 

5.4 CONCLUSION 

FBARs based on ZnO and AlN films have been theoretically studied. Due to the crystal 

orientation dependence of material properties including elastic constants, piezoelectric constants 

and dielectric constants, the acoustic velocity, electromechanical coefficient and impedance of 
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FBARs also depend on the crystal orientation. The equation for predicting impedance of FBAR 

has been derived through the basic piezoelectric equations, which shows the coexistence of 

longitudinal and shear mode when c-axis tilt angle changes. The simulation results show that the 

pure longitudinal mode occurs at 00 and 65.40, and the pure shear mode occurs at 430 and 900 for 

ZnO; the pure longitudinal mode occurs at 00 and 67.10, and the pure shear mode occurs at 46.10 

and 900 for AlN. Two peaks of shear electromechanical coefficient are found at 0 033.3 , 90θ = for 

ZnO and 0 034.5 , 90θ = for AlN. ZnO and AlN films with tilt angle around these two peaks are 

good options for FBAR application in liquid, considering their strong shear resonance with high 

electromechanical coefficients. Compared with QCM, the mass sensitivity of FBAR based ZnO 

and AlN are pretty high, which shows good promising in mass sensor application. 
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6.0  CONCLUSIONS AND FUTURE WORK 

6.1 MAJOR ACCOMPLISHMENTS 

The research in this dissertation is focused on experimental investigation and modeling of bulk 

acoustic wave resonator sensor. The following is a summary of our major accomplishments. 

(1) Apply Quartz TSM resonator for extracting viscoelastic properties of polymer 

nanocomposite thin films deposited on the resonators surface. 

 The input electric impedance/admittance of multilayer loaded Quartz TSM acoustic wave 

resonator was derived using transfer matrix method, which reveals the relation between 

the viscosity of coating layer and the electrical impedance/admittance of coated quartz 

TSM resonator. Based on this relation, we characterized viscoelastic properties of 

PVDF-TrFE/CNT nanocomposite thin films using Quartz TSM resonator. 

 The complex shear modulus of PVDF-TrFE/MWCNT composite thin films has been 

extracted through fitting the theoretical curves to the experimental admittance spectra of 

naonocomposite coated quartz TSM resonaotrs. It has been found that the storage 

modulus of the nanocomposites decreases slightly with the carbon nanotube 

concentration, while no significant variation is found for the loss modulus. 

(2) Investigate Quartz TSM resonator to monitor flow rate in liquid. 
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 A special flow chamber was fabricated to assist Quartz TSM resonator for flow 

measurement. The parallel plate flow region of the flow chamber  was designed to make 

liquid pressure linear with flow rate, so that resonance frequency shift of resonator due to 

pressure has a well-defined relation with flow rate. 

  A theoretical model of clamped Quartz TSM resonator to predict the resonant frequency 

shift due to normal pressure has been developed, which agrees well the experiment 

results. 

 Experimental study of Quartz TSM resonator for flow measurement has been performed, 

which shows a quadratic relation between the frequency shift and volumetric flow rate. 

Compared with the conventional expensive and complex flow-sensing devices, our 

acoustic wave flow sensor provides an alternative method for flow-rate monitoring with 

substantially concise structure, low cost and high operation convenience. 

 A dual resonator configuration was proposed for practical application, which works as 

differential pressure flowmeters for the separation of the flow pressure from the outlet 

pressure. 

(3) Theoretically analyze FBARs based on c-axis tilted ZnO and AlN 

 The analytical study of FBARs using ZnO and AlN films with a c-axis tilt angle (off-

normal) from 00 to 1800 has been performed. It was found that the tilted c-axis 

orientation induces normal plane and in-plane polarizations, which leads to the 

coexistence of the longitudinal mode and shear mode in the resonator. 

 The equation for predicting electric impedance of FBARs was derived from the basic 

piezoelectric constitutive equations. Material properties including elastic, dielectric and 

piezoelectric coefficients, bulk wave properties including acoustic velocity and 
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electromechanical coupling coefficient, and impedance of FBARs were calculated and 

showed strong dependence on the tilt angle. 

 It was found that for ZnO FBAR, pure thickness longitudinal modes occur at 00 and 65.40, 

and pure thickness shear modes occur at 430 and 900. For AlN FBAR, pure longitudinal 

modes occur at 00 and 67.10, and pure shear modes occur at 46.10 and 900.The 

electromechanical coupling coefficient of shear mode has a maximum value 13.1% at 

θ=33.30 for ZnO, and 6.5% at θ=34.50 for AlN; the maximum electromechanical 

coupling coefficient of longitudinal mode occurs at θ=00 with a value of 8.5% for ZnO, 

and 6% for AlN. The appearance of strong shear resonance makes ZnO or AlN FBARs 

possible for sensor application in liquid; the higher electromechanical coupling 

coefficient of shear mode provides more options for filter design; the simulation results 

showed that the mass sensitivity of FBAR based ZnO and AlN are pretty high compared with 

QCM, which shows good promising in mass sensor application. 

6.2 FUTURE WORK 

 

Figure 6.1. Schematic of a flow sensor based on SAW device 
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It has been shown that the Quartz bulk acoustic wave resonator can be used to monitor flow rate 

with high simplicity. However, the sensitivity of the TSM quartz acoustic wave flow sensor 

seems not high. On the other hand, SAW device usually has higher sensitivity for sensor 

application compared with BAW device. Hence, I propose to develop a flow sensor based on 

SAW device, as shown in Figure 6.1. The SAW device has a two-port structure: two IDTs are 

deposited on the piezo substrate as input and output transducer. When an AC voltage is applied 

on input transducer, a periodic electric field is imposed on the piezoelectric substrate. Due to the 

piezoelectricity, a periodic strain field is created in the substrate, which produces a standing 

surface acoustic wave. This acoustic wave is parallel to the surface and propagates in both 

directions away from the input transducer. When the wave is incident on output transducer, a 

potential is produced due to the piezoelectricity and a current is induced; the current can be 

optimized when the frequency of input signal equals to resonant frequency, which is determined 

by the geometry of transducers and the piezoelectric constants of substrate. For flow 

measurement, the central of SAW device exposed to fluid is on the way of acoustic wave 

propagation. When there is flow passing, due to flow pressure, the center of SAW will be 

deformed, and the induced strain changes the acoustic wave path. As a result, the electric 

properties of SAW device changes with the flow rate. For example, we may get the information 

of flow rate through measurement of acoustic transfer time between input and output transducer, 

since the distance between these two transducers change with flow rate. In addition, to prevent 

the liquid from affecting the IDTs, it is better to deposit the IDTs on the backside of substrate, 

which also simplify the connection for device measurement. 
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Figure 6.2. Schematic of ZnO/AlN FBAR for thin film characterization 

It also has been demonstrated that TSM resonator can be used to extract complex shear 

modulus of thin films; similarly the longitudinal mode resonator could be able to extract the 

corresponding elastic constants. On the other hand, our theoretical analysis has shown that ZnO 

or AlN resonator can excite longitudinal and shear mode at same time when c-axis of ZnO or 

AlN is tilted. Therefore, it is anticipated that using dual mode resonator can provide more 

mechanical properties of thin film compared with single mode resonator. In the future, we can 

investigate ZnO/AlN dual mode resonator for thin film characterization through the admittance/ 

impedance measurement, as shown in Figure 6.2. 
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