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Much focus has been recently placed on improving the energy efficiency of buildings through improved 

insulation in order to lower both energy consumption and carbon emissions worldwide. A new type of 

building insulation, smart insulation, shows great potential for lowering the heating and cooling energy 

usage of buildings by turning off the insulation whenever certain outside environmental conditions exist 

where it would be beneficial to remove the insulation. The specific type of smart insulation proposed is a 

thermal semiconductor that can be actuated to switch between a thermal conductor and a thermal insulator 

depending on the temperature gradient across the insulation. After careful examination of many different 

potential concepts thermal semiconductors, two main concepts involving contacting/non-contacting 

aluminum fins which allow or break a thermal conduction path and an inflatable honeycomb-like 

structure were chosen for fabrication and testing. Within these two main concepts, several different 

designs were developed and tested using an insulation test chamber constructed to reproduce the 

conditions the smart insulation prototypes would encounter in an real-world building setting. Once the 

experiment testing was completed, the different smart insulation devices were compared against each 

other and to a benchmark insulation test piece composed of conventional building insulation to evaluate 

their performance. Finally, a theoretical, finite element model was formulated for the testing of one of 

simplest smart insulation prototypes to better understand the results of the experimental testing and to 

examine other designs for smart insulation that were not experimentally tested. 
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1.0 INTRODUCTION AND LITERATURE REVIEW 
 
 
 
 

Improving the energy efficiency of buildings has been one of the main focuses in recent years toward 

lowering energy consumption and carbon emissions in both the United States and worldwide. As shown 

in Figure 1, in the United States, buildings account for nearly 40% of overall energy consumption. Within 

building energy consumption, heating and cooling loads account for 42% and 29% of residential and 

commercial building energy consumption respectively, resulting in much effort placed toward 

improvements in the implementation of conventional insulation materials.  

 
 

 

 
Figure 1: Overall U.S. Energy Consumption and Building Consumption Breakdown [1].
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The main purpose of conventional insulation is to passively prevent heat transfer in either direction 

between the building interior and the cold outside environment, to maintain a desired temperature 

gradient over the insulation at all times. For example, during a cold winter night, conventional insulation 

helps to maintain the temperature difference between the warm building interior and the cold outside 

environment, helping to reduce the load on the building's heating system. Most conventional insulation 

materials today make use of the fact that static air is a poor conductor of heat, so their volumes are made 

primarily of air to eliminate conduction. Because convection currents in air can greatly increase the total 

heat transfer, insulators divide the air into many small volumes to practically eliminate convection. In 

general, the only existing ways to improve the energy efficiency of conventional insulation are through 

either developing higher R-value insulation or insulating to the maximum amount that can be cost-

justified [2]. The main focus of this thesis is to look to the field of smart materials and structures to begin 

the development of a new type of insulation materials, smart insulation, to lower building heating and 

cooling loads. 

The basic idea behind smart insulation is that certain temperature gradients occur for buildings where 

it would be beneficial to remove the insulation and allow some heat transfer to flow between the interior 

of the building and the outside walls or ambient environment. By acting as an active component instead of 

passive conventional building insulation, smart insulation is able to switch between low and high heat 

transfer states to take advantage of these cases. Two main cases that illustrate times where little or no 

building insulation would be advantageous would be the sunny winter day and cool summer evening 

cases.  

During the winter in most areas of the United States, it would usually be beneficial to have building 

insulation with a very low thermal conductivity to maintain the interior building space at temperatures 

much warmer than the cold outside environment. In the afternoon of a sunny winter day, however, 

thermal radiation can cause heat to build up on the building walls and in the attic to temperatures much 

higher than the interior building space. If the building insulation could be "turned off" to allow heat to 

flow across it, the thermal radiation could be used to help heat the building interior, lowering building 
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energy consumption. Figure 2 shows a comparison between conventional and smart building insulation 

for the sunny winter day case. Conventional insulation blocks the flow of the thermal radiation from the 

walls and attic to the interior of the building, resulting in any beneficial heating from the thermal radiation 

being lost. On the other hand, smart insulation is able to "turn off" the insulator state allowing the thermal 

radiation to transfer heat to the building interior and lower heating costs. 

 
 

 

 
 
 

Figure 2: Comparison between Conventional and Smart Insulation for Sunny Winter Day Case. 

 

For the second case during the summer in most areas of the United States, it would also be beneficial 

most of the time to have very low thermal conductivity insulation to maintain the interior building space 

at temperatures cooler than the hot outside environment. In the evening or at night on a clear summer day, 

however, the outside temperature can drop rapidly to a cooler, comfortable temperature. Sometimes, 

homeowners try to take advantage of this effect by opening windows or using whole-house fans to allow 

Building with 
Conventional 
Insulation 

Building with 
Smart  
Insulation 

Twall > Tinside 
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air to transfer heat from the building interior to the cooler outside environment, but often homeowners 

will continue to use their centralized air conditioning system instead of taking advantage of the cool 

outside environment. If the building insulation could be "turned off" to allow heat to transfer from the 

building interior to the outside environment, it would have a similar effect to opening windows except on 

a much larger level, since it would be like "taking the attic off" or "taking the walls off" of the building. 

Unlike opening windows, however, smart insulation would only transfer heat and not air between the 

building interior and outside environment, which would allow the comfortable humidity level of the 

conditioned air inside of many buildings to be maintained, while preventing very humid or very dry air 

from transferring from the outside environment into the building as with windows. Figure 3 shows a 

comparison between conventional and smart building insulation for the cool summer evening case. 

Conventional insulation blocks heat from flowing from the interior of the building to the cooler outside 

environment, resulting in any beneficial cooling being lost. On the other hand, smart insulation is able to 

"turn off" the insulator state allowing the heat to transfer from the building interior to the outside 

environment, lowering cooling costs. 

 
 
 

 

 
 

Figure 3: Comparison between Conventional and Smart Insulation for Clear Summer Evening Case. 
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Insulation 

Building with Smart  
Insulation 

 Tinside > Toutside 
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1.1 THE POTENTIAL OF SMART INSULATION 

 
 
Smart insulation that can change from an insulator to a conductor when a beneficial temperature gradient 

exists between the building interior and outside environment would help to greatly lower heating and 

cooling loads for both residential and commercial buildings. From studies conducted by Neeper and 

McFarland for the U.S. Department of Energy, it was found that the potential exists for solar energy to 

supply almost all space heating needs in the continental United States [3]. For both of their studies, an 

example small rectangular building with 1200 ft2 (111.48 m2) of floor and projected horizontal roof area 

and 8 ft. (2.44 m) high walls, a heating load of 7200 Btu/DD (degree-day), R-20 ft2 F-hr/Btu (3.52 m2 

K/W) building insulation, and double-glazed windows were utilized. [4]. Using the example building with 

a worst-case heating scenario of the month of January for very cold or cloudy locations, Neeper found 

that the insolation on the roof alone exceeded 80% of the building's heating load, and the insolation on the 

south wall alone exceeded 50% of the building's heating load at all locations [4]. Even in the coldest 

month in severe climates of the continental U.S., the insolation on the roof and walls of the example 

building far exceeded the heating requirements. If smart insulation can switch to its conductor state at 

times to take advantage of this insolation, it is easy to see how buildings' heating costs and energy 

consumption can be significantly reduced. In addition, although the environmental cooling resource 

would not be able to completely supply all of the cooling needs of buildings in the continental U.S., 

Neeper and McFarland did conclude that the environment provides sufficient resources to potentially 

supply half of all cooling loads in the continental U.S. [4]. Therefore, smart insulation that can take 

advantage of the environmental cooling resource would be able to significantly reduce building' cooling 

costs and loads. Now that the potential benefits of smart insulation have been illustrated, the following 

sections will examine several of the ideas, concepts, and devices that have been previously developed 

involving smart or variable insulation. 
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1.2 THERMAL SEMICONDUCTOR 
 
 

In developing a type of smart insulation that could switch between low and high heat transfer states, 

conduction was chosen as the main method of heat transfer. Smart insulation must be able to switch 

between a low and high thermal conductivity state whenever it is necessary to inhibit or allow heat 

transfer by the application by an external trigger. This makes smart insulation analogous to the thermal 

equivalent of an electric semiconductor in that it must be able to switch between low and high 

conductivity states upon stimulation by an external trigger, such as a current or voltage. The concepts that 

were developed in this thesis were thus classified as thermal semiconductors because of their similarity to 

electrical semiconductors. In extension of the concept of a thermal semiconductor, previous concepts for 

variable insulation developed that are able to switch between low and high heat transfer states as well 

using other methods of heat transfer were classified as thermal semiradiators and thermal semiconvectors, 

since for them convection and radiation heat transfer can be inhibited or allowed by application of an 

external trigger as well.  

 
 

1.3 EXISTING VARIABLE INSULATION DEVICES AND CONCEPTS 
 
 

Many different concepts have been previously proposed for variable insulation devices, but only a few of 

the concepts have advanced to the next phase of actual fabrication and experimentation. The concepts are 

divided into three different types of variable insulation systems according to whether their primary mode 

of heat transfer is conduction, radiation, or convection: thermal semiconductors, thermal semiradiators, 

and thermal semiconvectors. 
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1.3.1 Thermal Semiconductors 
 
 
Thermal semiconductor devices that can switch between an insulator state and a conductor state have 

many possible applications, including use as smart building insulation. Potter and Tuluca provided an 

example of how a variable conductance insulation might be applied to the roof of a building, for situations 

such as the sunny winter day case, as shown in Figure 4 [2]. Transparent convection suppression is used 

to ensure that any solar heating captured by the absorbed/radiator surface is transferred to the interior of 

the building and not convected back out to the likely colder outside environment [2]. A very efficient 

absorber/radiator surface is necessary to make sure as much of the thermal radiation imparted on the roof 

is captured as possible [2]. Finally, a thermal storage medium is included in the design so that solar heat 

captured can be stored and utilized at later times [2]. When it is not beneficial for high heat transfer across 

the insulation, the variable conductance insulation can be switched to its insulator state. The following 

sections present a survey of the different types of thermal semiconductor concepts previously developed 

[2]. 
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Figure 4: Conceptual Sketch of a Variable Conductance Roof Panel [2]. 

 
 
Vacuum Insulation with Variable Gaseous Conduction 

 
Many different devices have been previously proposed for thermal semiconductors, but most of them fall 

into three or four general concepts. The first concept involves an insulation space that can change 

between containing a near vacuum, which would have a very low thermal conductivity, to containing a 

much higher thermal conductivity gas. The first person to file a patent for this idea was Bovenkerk in 

1965 [5]. His proposed device, which is shown in Figure 5, consists of a metal hydride filled appendage 

given by items 15-17 in Figure 5, connected to an evacuated insulation panel given by items 10-14 [5].  
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Figure 5: Invention Patented by Bovenkerk for a Variable Thermal Conduction Device using a metal 

hydride [5]. 
 

 
 

As the metal hydride is heated in the device by a heating element, a chemical reaction causes 

hydrogen gas to be released into the near vacuum of the insulation panel. Hydrogen gas was utilized 

because its thermal conductivity is much greater than other known gases, and hydrides are able to absorb 

and release large amounts of hydrogen to vary thermal conductivity over a large range [5]. As the metal 

hydride temperature increases, the amount of hydrogen gas released to the insulation panel also increases, 

which in turn causes the thermal conductivity of the insulation panel to increase as given in Figures 6 and 

7 from the patent [5]. When the metal hydride's temperature is decreased, the metal hydride reabsorbs the 

hydrogen gas in the insulation panel, causes the gas pressure in the panel to decrease, reducing the 

thermal conductivity of the panel. Hence, by controlling the temperature of the metal hydride, the thermal 

conductivity and heat transfer of the insulation panel can be controlled [5]. 
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Figure 6: Hydrogen Gas Released vs. Hydride Temperature for Patent [5]. 
 

 
 

 
 
 

Figure 7: Thermal Conductivity vs. Hydrogen Gas Pressure Measured for Patent [5]. 
 
 

 
Another patent by Xenophou in 1976 uses an even simpler method for a variable thermal gaseous 

conduction system by varying the degree of vacuum between the inner and outer walls of buildings using 

a vacuum pump [6]. The system involves a cellular structure of stiffening members made up of 
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interconnecting strips extending between the panels that will hold their spacing when placed under 

vacuum conditions to prevent structural collapse [6]. Air can be pumped in and out of the cellular 

structure using holes within the structure and a vacuum pump [6]. Two diagrams of the variable insulation 

system proposed are shown in Figure 8 where items 7-9 in the diagram make up the vacuum pump [6]. 

Within the system, whenever heat transfer needs to be inhibited between the building interior and outside 

environment, the vacuum pump will be used to decrease the air pressure of the space between the walls to 

a very low level so that the thermal conductivity of the space will be very low [6].  When heat transfer is 

desired between the building interior and the outside environment, the air pressure of the space between 

the walls will increase toward normal pressure conditions, increasing the thermal conductivity of the 

space [6]. 

 
 

 
 
 

Figure 8: Invention Patented by Xenophou for a Variable Thermal Conduction Device using a 
Vacuum Pump [6]. 

 
 

 
By the mid-1990s variable conductance insulation involving the metal hydride concept was being 

developed for implementation in several different types of devices outside the field of building insulation. 

A joint study in 1995 between the National Renewable Energy Laboratory and the Chrysler Corporation 

focused on the use of variable conductance insulation (VCI) based on the metal hydride concept for the 

thermal management of an automotive catalytic converter [7]. In an effort to lower United States vehicle 
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emissions, VCI was utilized to solve the problem of cold-start emissions, which occur when a vehicle is 

first started, and the catalyst of the catalytic converter is at temperatures below its maximum effectiveness 

[7]. Similarly to the patent proposed beforehand, when the engine of the vehicle is running, the metal 

hydride is electrically heated to allow hydrogen gas to be released into the vacuum insulation to increase 

the thermal conductivity of the VCI [7]. The excess heat from the exhaust gases can then be rejected from 

the catalytic converter, preventing its overheating [7]. Later on, when the engine is turned off, the metal 

hydride decreases in temperature, which allows hydrogen gas to be reabsorbed from the vacuum 

insulation, lowering the thermal conductivity. This allows the catalytic converter to retain heat from when 

the engine is in operation to prevent cold-start emissions when the engine is first restarted [7]. To evaluate 

the reduction in emissions from use of a VCI, the authors of the study constructed several prototypes. The 

TA-CC3 prototype of a catalytic converter utilizing VCI shown in Figure 9 was installed in a Dodge 

Neon for FTP emissions testing [7].  

 
 

 
 
 

Figure 9: Sectional View of TA-CC3 Prototype [7]. 

 

First, a cooldown test was conducted in the study to evaluate the heat retention ability of the TA-CC3 

prototype with the results given in Figure 10 [7].  
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Figure 10: Measured Converter Cooldown of TA-CC3 Prototype [7]. 

 

When the insulation of the catalytic converter prototype has a high conductivity in its heat-reject 

mode, the prototype cools off very quickly like the baseline catalytic converter without varying thermal 

conductivity insulation [7]. When the insulation of the prototype has a low conductivity in its heat-

retention mode, the catalyst is able to stay above its temperature for full effectiveness, its lightoff 

temperature, for up to 17 hours [7]. Emissions testing later showed that FTP-cycle cold-start CO and HC 

vehicle emissions were decreased by 52% and 29% following a 23-hour cold-soak at 27 OC [7].  

Yet another automotive application for a VCI device involving a metal hydride was also pursued by 

Burch, Parish, and Keyser for the National Renewable Energy Laboratory for the thermal management of 

electric-vehicle batteries [8]. To achieve their optimum performance and durability, most electric-vehicle 

batteries require some thermal control to regulate heat transfer to their surroundings [8]. When the 

batteries are in normal operation or rapid recharge, high heat rejection from the battery is needed to 

prevent overheating, and when the batteries are not in operation or are in slow charges, high heat retention 

is necessary to prevent the stored energy from escaping [8]. By using the same type of VCI mentioned 

before in several patents and studies consisting of a metal hydride and a vacuum space, the thermal 

conductivity of the batteries' insulation can be varied by more than 100:1 between very low and very high 
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conductivity states [8]. For the study two full-scale prototypes of a VCI enclosure for batteries were 

designed and tested by the National Renewable Energy Laboratory to analyze its thermal management 

performance [8]. One of the two prototypes developed can be seen below in Figure 11 [8]. 

 
 

 
 
 

Figure 11: Side-View Drawing of FSTA VCI Enclosure Prototype [8]. 

 
 

The thermal conductivity of the VCI of the prototypes was shown to be able to vary from 0.12 

W/m2K to 13 W/m2K from the results of experimental testing [8]. This shows that the batteries' insulation 

can be varied from a very low thermal conductivity when high heat retention is needed to a very high 

thermal conductivity when high heat rejection is needed [8].  

Another variation on the concept of varying thermal conductivity by changing the pressure of a gas 

was given in a patent by for a variable thermal resistor system in 2008 by Eickhoff and Zhange [9]. Their 

variable conductance system is designed to be a passive system to maintain a device at a constant desired 

temperature [9]. Instead of using hydrogen gas in conjunction with a metal hydride to insulate their 

system, the vapor of a low pressure solid or liquid is utilized in a few mm-size gap between the device 

itself and a hermetically sealed shell surrounding the device [9]. The interior surface of the gap is coated 
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with either a low vapor pressure solid or liquid substance [9]. As the temperature of the device increases, 

the vapor pressure of the "low vapor pressure material" will increase, which will also increase the thermal 

conductivity of the gap due to gaseous conduction [9]. As shown below in Figures 12 and 13, over a 

temperature range of -40 OC to 85 OC, the gap's thermal conductivity can vary by up to five orders of 

magnitude [9]. 

 

 
 
 

Figure 12: Thermal Conductivity vs. Gas Pressure for Invention Patented by Honeywell International, 
Inc. [9]. 
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Figure 13: Vapor Pressure vs. Temperature for Invention Patented by Honeywell International, Inc. [9]. 
 
 
 
Bimetallic Switch Thermal Semiconductors 

 
The second concept found in several patents for a thermal semiconductor involved the use a temperature-

responsive bimetallic element. A bimetallic element consists of two metals with different thermal 

coefficients of expansion fused together. As the temperature of the bimetallic element increases, one of 

the metals will expand faster than the other one, causing the bimetallic element to bend to the side with 

the lower thermal coefficient of expansion.  From the research, it appears that the second concept never 

evolved past the patent stage to actual fabrication and experimentation. In 1965, Riordan was the first to 

patent this idea with several different devices of this type designed to control the operating temperature of 

electronic component packages by controlling the heat transfer between the package and an attached heat 

sink [10]. The first device found in the patent uses a temperature-responsive bimetallic element attached 

to the heat sink and placed in a gap containing a gas or liquid between the heat sink and the electronic 

component package as shown in Figure 14 [10]. The device is designed so that as the temperature of the 

heat sink increases, the bimetallic element will bend toward the electronic component package to decrease 

the width of the gap, which will increase the heat transfer by conduction across the gap [10]. Later when 
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the temperature of the heat sink decreases, the bimetallic element will bend back to its original position to 

decrease the width of the gap and consequently the conductive heat transfer [10]. 

 

 
 
 

Figure 14: First Invention Patented by Riordan for a Variable Thermal Conduction Device Using a 
Temperature-Responsive Bimetallic Element [10]. 

 
 

 
 The second device proposed in the patent also involves a temperature-responsive bimetallic element, 

but in this device the effective contact area between the bimetallic element and the electronic component 

package is varied instead of gap width [10]. When the heat sink of the device it at low temperatures ,the 

effective contact area between the heat sink and the package will be very low, resulting in very low 

conductive heat transfer as shown in Figure 15 [10]. Then, as the temperature of the heat sink increases, 

the bimetallic element will bend toward the electronic component package, causing more of the bimetallic 

element to come into contact with the package, increasing the effective contact area and conductive heat 

transfer [10].  

 



 

18 
 

 
 
 

Figure 15: Second Invention Patented by Riordan for a Variable Thermal Conduction Device Using a 
Temperature-Responsive Bimetallic Element [10]. 

 
 
 
 The third and final device proposed in the patent involved an expandable bellows containing a 

thermally expansive material that is connected to a heat sink by a thermally conductive material on one 

end as shown in Figure 16 [10]. On the other end of the bellows is a gap containing a low conductivity 

material between the electronic component package and the bellows itself [10]. As the temperature of the 

heat sink increases, the thermally expansive material will cause the bellows to expand toward the 

package, decreasing the width of the gap, which will increase the conductive heat transfer of the device 

[10]. When the temperature of the heat sink decreases, the bellows will contract, increasing the width of 

the gap and decreasing the conductive heat transfer [10]. 

 
 

 
 
 

Figure 16: Third Invention Patented by Riordan for a Variable Thermal Conduction Device Using a 
Thermally Expansive Medium [10]. 
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 Another much more recent patent by Potter in 1998 offers several different ideas for variable 

insulation devices that switch between low and high heat transfer states, including a device shown below 

in Figure 17 that utilizes both the temperature-responsive bimetallic element concept and the metal 

hydride with vacuum insulation concept [11]. In the device bimetallic laminate switches that are 

outwardly convex in shape are used inside of a vacuum insulation panel to create thermal short circuits 

for very high conductive heat transfer when desired [11]. When the bimetallic switches are at low 

temperatures, they will remain separated from the other sidewall, resulting in an insulator state for the 

variable insulation panel. As the temperature of the bimetallic switches increases either passively by the 

wall or environmental temperature increasing or actively through the use of a heating element near the 

switch in or on the sidewall, the bimetallic switch will reach a point where it will "snap" from being 

convex in shape to concave in shape [11]. Once this happens, a metal-to-metal contact between the 

sidewalls will be created resulting in a thermal short circuit with very high conductive heat transfer [11].  
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Figure 17: Invention Patented by Potter for a Variably Insulating Portable Heater/Cooler [11]. 
 
 
 

 In addition to the bimetallic laminate switches, the device patented by Potter also incorporates the 

metal hydride ideas described previously [11]. Between the two sidewalls of the device, glass-like spacers 

are used to maintain a vacuum without allowing the insulation panel to structurally collapse [11]. The 

main advantage of the metal hydride/vacuum insulation system patented by Potter over the ones 

mentioned previously is that for an active control system it only requires heating or power to change the 

device from an insulator to a conductor and vice versa, without any power being required to maintain the 
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variable insulation panel in either of the two states [11]. This is done by using a permeable hydrogen gate 

in conjunction with the metal hydride [11]. To change the insulation panel from an insulator to a 

conductor, the metal hydride and the hydrogen gate are both heated to allow hydrogen gas to be released 

from the metal hydride and pass through the gate to the insulation panel [11]. Once enough gas has been 

released to obtain the desired thermal conductivity, the heating of the metal hydride and gate is stopped. 

For the other devices mentioned before, as the temperature of the metal hydride cooled, the hydrogen gas 

would be reabsorbed, causing the thermal conductivity of the insulation panel to decrease [11]. With the 

invention by Potter, however, the hydrogen gate feature is not permeable at low temperatures, so the 

hydrogen gas cannot pass through the gate to the metal hydride to be reabsorbed [11]. Thus, the hydrogen 

gate feature keeps the hydrogen gas pressure in the insulation panel at a high level, allowing the insulation 

panel to remain in its conductor state without requiring constant heating or power [11]. 

 
Inflatable Insulation 

 
Next, the third type of VCI found in the literature was inflatable insulation type devices. The first one to 

patent the concept was Laing with his idea for a building insulation panel with controllable heat insulation 

[12]. The panel consists mainly of two walls with inflatable honeycomb-like ducts between them [12]. 

One wall is designed to be fixed and face the building interior, while the other wall of the panel is 

moveable facing either the building exterior or a heat storage element [12]. When high thermal 

conductivity is desired for the insulation panel, the ducts are left deflated, resulting in very small 

separation distance and air present between the walls [12]. Later on, when low thermal conductivity is 

necessary for the insulation panel, the ducts are inflated with air or a gas, increasing the separation 

distance between the walls of the panel and decreasing the conductive heat transfer [12]. Normally, 

convection of the air in the ducts would cause high convective heat transfer, but the honeycomb structure 

of tiny air pockets of the flexible ducts inhibits convection [12]. A schematic of the invention found in the 

patent by Laing is shown below in Figure 18. 
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Figure 18: Invention Patented by Laing for an Inflatable Insulation Device [12]. 

 
 
 A few years after the patent by Laing, another group at IBM in the 1970s also came up with an idea 

for an inflatable VCI device found in an IBM technical disclosure bulletin from 1979 [13]. Their device 

also consisted of a collapsible and inflatable honeycomb structure that could go from very high to very 

low thermal conductivity and vice versa by inflating and deflating the structure [13]. By using a 

honeycomb structure, convection was also prevented by trapping air in tiny pockets where it cannot 

circulate [13]. 

 
Other Types of Thermal Semiconductors 

 
The final thermal semiconductor concept in a paper by Al-Nimr, Asfar, and Abbadi was very recent and 

unique. The basic idea of their smart insulation system involves two storage tanks of fluids both 

connected to a slab wall containing both fluids separated by a movable partition [14]. One of the fluids is 

a high conductivity fluid, such as water, while the other fluid is a low conductivity fluid, such as an inert 

gas like argon [14]. When conditions require that the system be in its insulator state, low conductivity 

fluid would be pumped from its storage tank into the slab wall, moving the partition and resulting in the 
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slab wall consisting of most or all low conductivity fluid [14]. The same procedure would occur except 

with the high conductivity fluid and its tank if the system needed to be in its conductor state [14]. The 

authors of this paper calculate the ratio of heat transfer for the system's conducting state compared to its 

insulating state was 200:1 [14].  

 The authors of the paper developed both active and passive designs for their smart thermal insulation 

system [14]. The active system consisted of pumps and valves to control the flow of the two fluids to and 

from their tanks with sensors and a differential temperature controller to control the heat transfer over the 

slab wall [14]. Their second design involved a piston-type device that made use of a saturated liquid's 

transition between vapor and liquid to pump the fluids between the slab walls and tanks in accordance 

with temperature changes in the environment to regulate heat transfer [14]. A schematic of their active 

system design proposed in its insulating and conducting states can be seen below in Figures 19 and 20.  

 
 

 
 
 

Figure 19: Insulator State of Smart Thermal Insulation System by Al-Nimr, Asfar, and Abbadi [14]. 
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Figure 20: Conductor State of Smart Thermal Insulation System by Al-Nimr, Asfar, and Abbadi [14]. 
 
 

1.3.2 Thermal Semiradiators 

 
Not only conduction has been used as the method of heat transfer for smart insulation devices that have 

been developed previously. Several smart insulation devices that can switch between high radiation or 

convection heat transfer and an insulator state have also been designed. Only a few types of thermal 

semiradiator devices have been proposed compared to variable conductance systems, and they will be 

described in the following sections. 

 
Variable Emissivity Thermal Semiradiators 

 
The first type of thermal semiradiator device relies on a variable emissivity material coating on the 

external surfaces of a device that varies with either the surface temperature or with an applied electric 

potential. The authors of a 2002 paper in the Japanese Journal of Applied Physics proposed a Smart 
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Radiation Device (SRD) that uses a variable infrared emissivity material on the external surfaces of 

spacecrafts to control the heat transfer between the spacecrafts and the exterior space environment [15]. 

The material, La1-xSrxMnO3, utilized for the SRD has an emissivity that can vary substantially at the 

metal-insulator transition temperature to change the material from a low emissivity metal at low 

temperatures to a high emissivity material at high temperatures [15]. By bonding the material in the form 

of thin and light ceramic tiles to the outside surfaces of spacecraft, the material effectively serves as smart 

insulation for the spacecraft that can switch between an insulator state and a high radiation heat transfer 

state when necessary to regulate the temperature of the spacecraft [15]. 

 Another author who proposed using a variable emissivity material as variable insulation in a device 

was Potter, who included the idea in his patent in addition to his metal hydride and bimetallic switch 

concepts [11]. In his system the variable emissivity material coating would be applied to one of the 

sidewalls in the insulation panel shown in Figure 17 [11]. Either thermochromic or electrochromic 

materials would be used for the variable emissivity coating [11]. Thermochromic materials work like the 

variable infrared emissivity materials in that their emissivities change with temperature. As the 

temperature of the material increases either passively or actively through the use of a heating element, the 

emissivity of the material will increase, giving high radiation heat transfer across the insulation panel 

designed by Potter [11]. On the other hand, electrochromic materials' emissivity changes in response to an 

applied electric potential [11]. By applying an electric potential through an active smart insulation system 

to the material, its emissivity will increase proportionally to the length of time the potential is applied, 

while changing the direction of the electric potential applied to the material will decrease its emissivity 

[11]. Electrochromic materials show great promise for use as thermal semiradiators in smart insulation 

systems. 

 
Other Types of Thermal Semiradiators 
 
 
Another type of smart insulation developed involving radiation heat transfer is the unique VARES 

(VARiable Effective Surface Radiator) technology developed by the National Aerospace Laboratory of 
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the Netherlands as a lightweight alternative for conventional thermal switches and pumped loops used on 

Mars rovers for temperature control [16]. Unlike the previous thermal semiradiator devices that varied 

material emissivity to control radiation heat transfer, the VARES technology relies on varying the 

radiator's effective radiation surface area to control the radiation heat transfer between the Mars rover and 

the outside environment of the Martian surface [16]. An illustration showing how the VARES technology 

is used to vary the effective surface area of the radiator and thus radiation heat transfer is shown below in 

Figure 21 [16]. 

 

 
 
 

Figure 21: Principle of the VARES Radiator [16]. 

 

 The VARES system can switch between two different heat transfer states: radiating and insulating 

[16]. During periods of time when the electronics inside the Mars rovers are operating and causing high 

temperatures at the center of the spacecraft and radiator, high radiation heat transfer is needed to reject the 

spacecraft's excess heat to the cold exterior environment [16]. An oscillating heat pipe (OHP) system, 

consisting of small diameter tubing containing both the working fluid and its own vapor is used to transfer 

heat when the system is in radiating mode, from the center of the radiator near the spacecraft's electronics 

outward over the entire radiator surface area [16]. The fluid oscillations of the OHP system are caused by 

the evaporation and condensation of the working fluid as it moves from the hot center of the spacecraft 

outward to the colder regions of the radiator surface [16]. Through the fluid oscillations at high 

temperatures, heat is transferred over the entire radiator surface area using the tubing, which increases the 



 

27 
 

effective surface area of the radiator and thus the radiation heat transfer [16]. Figure 22 below shows the 

OHP system of the VARES technology in its radiating and insulating states [16]. 

 

 
 
 

Figure 22: OHP System of the VARES Technology [16]. 

 

 The switching mechanism of the VARES technology used to switch the system between radiating and 

insulating states is dependent on the feature of an OHP not oscillating below a certain temperature for 

different working fluids [16]. For colder temperatures below that switching temperature, the VARES 

system will operate in its insulating mode because the fluid oscillations in the OHP will not be able to 

transfer the heat of the electronics at the center of the spacecraft out over the radiator surface [16]. This 

will then decrease the effective surface area of the radiator and thus severely limit the radiation heat 

transfer of the system [16]. No power is needed in the VARES smart insulation system to keep the system 

in either of its two different states or to switch between the states [16]. Figure 23 shows the prototype 

model built by the National Aerospace Laboratory of the Netherlands to prove the VARES technology 

concept [16].  



 

28 
 

 
 
 

Figure 23: VARES Technology Demonstrator Model (TDM): VARES Radiator Connected to Copper 
Electronics Simulator [16]. 

 
 

 
 Another very original concept for a variable radiation system is the smart greenhouse developed 

jointly by the Cleveland Botanical Garden and Kent State University's Liquid Crystal Institute [17-18]. 

Liquid crystal panels, consisting of liquid crystals dispersed as droplets in a polymer resin between two 

layers of glass, are used in the walls and ceiling of the greenhouse [17-18]. In addition, each panel is 

wired so that a very low current can pass through the liquid crystal matrix [17-18]. By varying the voltage 

applied to the panels, the transparency of the panels of the greenhouse can be varied because increasing 

the voltage causes the liquid crystal molecules to line up more and more in parallel, which allows light to 

pass through the panel without being scattered, increasing transparency [17-18]. Decreasing the applied 

voltage toward zero consequently causes the liquid crystal particles to become more randomly oriented, 

which causes light to be randomly reflected and scattered in the panel, resulting in a reduction in 

transparency [17-18]. Figure 24 shows how the basic concept of the smart greenhouse liquid crystal 

panels works [17-18]. 
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Figure 24: How Liquid Crystal Panels of Smart Greenhouse Work [17]. 

 

 The main objective of the smart greenhouse research is to reduce the heating and cooling costs 

currently required to control the temperature of the greenhouse by controlling the thermal radiation 

passing through the panels [17-18]. By controlling the amount of light passing through the panels by 

changes in the voltage applied, the thermal radiation heat transfer from the exterior wall of the panels to 

the interior of the greenhouse can be controlled. Then, the smart greenhouse will be able to take 

advantage of cases such as the sunny winter day case by increasing the transparency of the panels to 

reduce heating costs, while still preventing overheating during times such as a sunny summer day by 

decreasing the transparency of the panels to reduce cooling costs [17-18].  

 
1.3.3 Thermal Semiconvectors 

 
The final class of existing smart insulation devices deal with the third and final mode of heat transfer, 

convection. Only three examples of thermal semiconvectors were found in the literature. The first type of 

variable convection insulation is a novel type of variable building insulation patented by Laing and Laing 

in 1974 [19]. The device consists of a building insulation panel containing two walls with fins to increase 
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the convective heat transfer with a chamber of air between them to stop any conduction from taking place 

over the panel and a moveable reflector sheet within the air space to decrease any radiation heat transfer 

through the panel [19]. The moveable reflector sheet in the device has many circular holes throughout the 

sheet for air to flow through for convection [19]. A diagram of the invention can be seen in Figure 25 

shown below. 

 

 
 
 

Figure 25: Invention Patented by Ingeborg and Nickolaus Laing  
for a Variable Convection Insulation [19]. 

 
 
 

 Normally, the building insulation panel will be in its insulator state with very little convection heat 

transfer taking place [19]. When high heat transfer is needed across the panel, the moveable reflector 

sheet will be moved by electromagnetic vibrators energized by an alternating current of subsonic 

frequency, such that the holes in the sheet will act as nozzles, to cause eddy currents of air in the space 

between the walls of the panel [19]. The eddy currents will then cause high convection heat transfer 

through the building insulation panel when the temperature gradient across the panel is beneficial for high 

heat transfer [19]. The main problem of the invention is that power is needed the entire time to maintain 
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the device in its high heat transfer state, since the reflector sheet must be constantly vibrating for high 

convection heat transfer [19]. 

 The second variable convection building insulation device patented by Davis and Strohlein in 1981 

involved a series of inflatable tubes suspended under the roof of a structure in rows sides-by-side, 

stretching the length of a building [20]. The upper end of the tubes was tied shut, while the lower ends 

were split open at both ends to permit a pipe to pass through all of the tubes horizontally at their ends 

[20]. The remaining ends of the tubes are then wrapped and tied around the pipe [20]. A fan or blower is 

also attached to one end of the pipe to inflate or deflate the tubes using low pressure air through small 

holes in the pipe going through the tubes [20]. A schematic of the set-up for this smart convection 

building insulation system is given in Figure 26. 

 

 
 
 

Figure 26: Invention Patented by Davis and Strohlein for an Inflatable Heat Barrier [20]. 

 

 The smart insulation system was able to switch from a high convection heat transfer state when the 

tubes are deflated to a low convection heat transfer state when the tubes are inflated [20]. During times 

when the tubes are deflated, they will hang loosely from the ceiling with large amounts of space between 
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them for air to flow between the tubes upward from the building interior to the attic space and roof, 

causing high convection heat transfer between the rooms of the building and the outside environment 

[20]. To change the smart insulation back into a good insulator, the tubes would be inflated by the low 

pressure fan or blower until they are in contact with each other to form a barrier to the path of any air 

trying to flow from the building interior to the roof or attic space [20]. By impeding the flow of air, the 

tubes will greatly reduce convection heat transfer and instead act as a very good insulator [20].  

 The final type of smart building insulation that will be described is a bi-directional thermodiode 

system developed by Chun and Chen in several papers in recent years [21]. The bi-directional 

thermodiode examined in the paper consists of several vertically stacked closed loops that are filled with a 

fluid and rectangular in shape [21]. The horizontal segments of the plates are connected on each side to 

two plates with the outside-facing collector plate fixed and the inside-facing radiator plate able to move 

vertically to control the inclination angle of the tubing [21]. The two vertical plates are the hot and cold 

ends of the thermodiode and can be easily interchanged by pulling down or pushing up the movable plate 

[21]. A schematic of the thermodiode employed in the experimental study of the paper can be seen below 

in Figure 27.  

 

 
 
 

Figure 27: Diagram of the Thermodiode Employed in the Experimental Study [22]. 
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Controlling the angle between the stacked closed loops and the horizontal is the key to the bi-directional 

thermodiode [21]. When the loops are at an angle and the lower ends of the loop is the hot side being 

heated, natural convection in the fluid inside of the loops will cause heat transfer to occur from one wall 

of the bi-directional thermodiode to the other [21]. In the paper, this is called the forward-biased operation 

mode where heat transfer is allowed to take place [21]. If the angle of the stacked closed loops and the 

horizontal is changed, however, so that the upper end of the stacked loops is being heated instead, no 

natural convection will take place in the fluid in the loops to transfer heat from the hot upper end to the 

cold lower end [21]. In the paper, this is called the reverse-biased operation mode where heat transfer is 

inhibited across the bi-directional thermodiode [21]. Figure 28 shown below illustrates how varying the 

inclination angle of the rectangular loops in the bi-directional thermodiode will change the favorable 

direction of heat flow [22].  

 The bi-directional thermodiode type of smart insulation could possibly be utilized to take advantage 

of solar heating in the winter in the United States and night or evening cooling in the summer. During the 

winter the inclination angle of the fluid loops could be set so that heat is allowed to transfer through 

convection from the outside wall of the building receiving thermal radiation to the building interior, while 

preventing any heat loss at other times occurring across the insulation module from the interior to the 

ambient environment. In the summer the inclination angle of the fluid loops could be reversed to allow 

convection heat transfer for cooling in the evening or at night from the building interior to the outside 

environment, while preventing heat from being able to transfer from the environment to the interior 

during the hot summer days.  

 The authors of the paper proposing the bi-directional thermodiode concept built and tested a 

prototype from the design given in the diagram of Figure 27. The results of their experimental testing of 

the prototype are shown below in Figures 29 and 30.  
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Figure 28: How Changing the Inclination Angle of the Fluid Loops Changes the Direction of Effective 
Heat Flow [22]. 
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Figure 29: Indoor Test Results for a Radiation Flux of 800 W/m2:  

a) Heating Phase; (b) Cooling Phase [21]. 
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Figure 30: Temperature Variations of the Thermodiode Module under Reverse-Biased for a Radiation 
Flux of 800 W/m2 [21]. 

 
 
 

 Figure 29 shows the results of the experimental testing for heating and cooling when the inclination 

angle of the fluid tubing permits heat transfer to occur. For both of the plots, and especially for the 

cooling plot in b) of Figure 29, the temperatures of the two different walls of the bi-directional 

thermodiode, the collector plate facing the outside environment and the radiator plate facing the building 

interior, closely match each other. This shows that the heat transfer across the thermodiode is very high in 

the forward-biased configuration. In Figure 30, the inclination angle of the fluid tubing is altered to inhibit 

heat transfer. The resulting plot shows a significantly larger temperature difference between the collector 

plate and the radiator surface than before, over 50 OC, showing that the heat transfer across the 

thermodiode tested is very low in the reverse-biased configuration.  

 Now that all of the existing variable insulation devices and concepts have been examined, the next 

step is to look into possible energy and cost savings of implementing smart insulation in buildings along 

with possible locations where smart insulation would be most beneficial. 
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1.4 POTENTIAL ENERGY CONSERVATION OF SMART INSULATION 
 
 

A simulation study conducted by the Department of Energy of the potential for energy conservation of 

smart or active insulation systems will be described in the following section [23]. The results of the 

simulations in the study will be presented involving the possible yearly energy and costs savings of smart 

insulation implemented in buildings along with several problems that were found with the study and 

possible ways to further increase the benefits of smart insulation. Finally, several high-value building 

applications will be examined where smart insulation would have the maximum benefit to energy and 

cost savings. 

 
1.4.1 Department of Energy Simulation of Smart or Active Insulation Systems 
 
 
The study, "Assessment of the Energy Conservation Potential of Active (Variable Thermal Resistance 

and Switchable Absorptance) Building Thermal Insulation Systems," conducted by Fine and McElroy in 

1990, focused on using simulations to calculate the potential energy conservation of smart or active 

insulation systems with variable thermal resistance values and variable surface properties [23]. Many 

different passive and active insulation systems were analyzed in the study, including active insulation 

systems with variable attic, wall, and/or floor thermal resistance, variable roof and/or wall absorptance, 

and variable window transmittance [23]. For all of the simulations of the study, annual heating-plus-

cooling loads were calculated for a hypothetical 1600 ft2 (148.64 m2) one-floor structure with a crawl 

space, a single heating/cooling room, and an attic or cathedral ceiling [23].  

 Predictions for the heating and cooling loads for the test structure with different passive insulation 

systems were made using the Electric Power Research Institute (EPRI) Simplified Program for 

Residential Energy (ESPRE) [23]. A simple-to-use tool for estimating seasonal, daily, and hourly average 

energy use, the ESPRE simulation program processes calculations at hourly increments based on thermal 

and moisture balances for average transfer rates for the increments (Quasi-Steady-State) [23]. Information 
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needed to be inputted into the program by the user consists of information about the structure, the 

structure's location, and Typical Meteorological Year (TMY) weather data for each hourly increment, 

which includes the dry-bulb temperature, wind velocity, humidity ratio, and the solar insolation rate [23]. 

Using the user inputs for each hour, the ESPRE program then calculates hourly heating and cooling loads 

for the structure [23]. Results of the ESPRE simulations for different passive insulation systems were 

analyzed with a database management program to determine the heating and cooling loads for the 

hypothetical structure implemented with active insulation systems [23]. Figure 31 shows a flow chart of 

the ESPRE simulation process for structures with passive and active insulation systems. 

 

 
 
 

Figure 31: Flow Chart of Simulation Process for Passive and Active Insulation System Structures [23]. 
 

 
 
 To analyze the potential for energy savings from active insulation in different climates, simulations 

were conducted using ESPRE for three actual locations of Minneapolis, MN, Lexington, KY, and 

Phoenix, AZ, representing a cold climate, a moderate climate, and a hot climate [23]. Different 

combinations of the three locations and the three different attic, floor, and wall insulation levels (R-value 
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= 38, 19, or 0.5 ft2 F-hr/Btu  (6.7, 3.4, or 0.1 m2 K/W)) were examined for a total of 81 passive insulation 

cases [23]. For each of the 81 passive cases, hourly heating-plus-cooling loads were calculated using 

ESPRE for each hour of every day of the year [23]. To lessen the computational effort in the simulation, 

monthly average heating-plus-cooling loads were calculated for each of the 24 hours of the day using the 

hourly heating and cooling data calculated earlier [23]. Using the results of the passive simulations, the 

heating and cooling loads for the hypothetical structure with active systems were determined [23]. For 

hours 1-24 for each month of the year for the building, the thermal resistance was allowed to "switch" 

hourly to the levels for the passive system that achieved the lowest monthly average hourly heating-plus-

cooling load for that hour [23].Once the optimal insulation level was determined for each of the hours 1-

24 in the month, the monthly average hourly heating-plus-cooling load for those insulation levels was 

also determined [23]. For the active system cases the R-values for the active elements of the building of 

the floor, walls, and attic were allowed to switch between either 38 or 19 ft2 F-hr/Btu (6.7 or 3.4 m2 K/W), 

19 or 0.5 ft2 F-hr/Btu (3.4 or 0.1 m2 K/W), or 38 or 0.5 ft2 F-hr/Btu (6.7 or 0.1 m2 K/W) [23].  

 After analyzing the results of the simulations for the 81 passive insulation system cases, the authors of 

the study concluded that the passive case that gave the best results was the super-insulating case with R-

values for the attic, floors, and walls of 38, 38, and 38 ft2 F-hr/Btu (6.7, 6.7, and 6.7 m2 K/W) [23]. When 

calculating the annual energy savings for the different passive and active insulation cases for all three 

locations, all of the cases were compared to a reference case with R-values of 38, 19, and 19 ft2 F-hr/Btu 

(6.7, 3.4, and 3.4 m2 K/W) for the attic, floors, and walls, representing the recommended insulation values 

for new construction in Lexington and Minneapolis as determined from the DOE Insulation Fact Sheet 

[23]. The results of the energy savings of the best passive insulation system for the three locations 

compared to the reference case is given in Table 1. It can be seen from the results that super-insulating the 

structure does offer significant energy savings over the normal insulation levels for the hypothetical 

structure. 
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Table 1: Energy Savings for Best Passive Insulation Case over Reference Case [23]. 

 
 Reference Case: 

R-values of  
38/19/19 ft2 F-hr/Btu 

Super-Insulated Case 
R-values of  

38/38/38 ft2 F-hr/Btu 

Savings for Super-Insulating 

Location Annual Heating-Plus-
Cooling Load 

Annual Heating-Plus-
Cooling Load 

Energy Savings 

Lexington, 
KY 

62.3 MBtu/yr (2.08 kW) 54.7 MBtu/yr (1.83 kW) 7.6 MBtu/yr (0.25 kW) (12.2%) 

Minneapolis, 
MN 

90.2 MBtu/yr (3.02 kW) 77.9 MBtu/yr (2.60 kW) 12.3 MBtu/yr (0.41 kW) (13.6%) 

Phoenix, AZ 56.6 MBtu/yr (1.89 kW) 51.4 MBtu/yr (1.72 kW) 5.2 MBtu/yr (0.17 kW) (9.2%) 
  
 

Once the 81 passive insulation case simulations were examined, the next step was to analyze the 

results of the active insulation simulations [23]. The study’s simulations calculated that the variable 

thermal resistance system with the greatest potential for energy conservation was the active insulation 

system with active attic, floor, and wall insulations that can switch between high or low levels of 38 or 

0.5 ft2 F-hr/Btu (6.7 or 0.1 m2 K/W) [23]. Table 2 gives the results for best-performing active insulation 

system when compared to the reference and super-insulating cases.  

 

Table 2: Energy Savings for Best Active Insulation Case [23]. 
 
 

Location Annual Heating-Plus-
Cooling Load 

Savings over Reference 
Case 

Savings over Super-Insulated 
Case 

Lexington, 
KY 

51.2 MBtu/yr (1.71 kW) 11.2 MBtu/yr (0.37 kW) 
(18.0%) 

3.6 MBtu/yr (0.12 kW) (6.58%) 

Minneapolis, 
MN 

75.4 MBtu/yr (2.52 kW) 14.8 MBtu/yr (0.49 kW) 
(16.4%) 

2.5 MBtu/yr (0.08 kW) (3.20%) 

Phoenix, AZ 50.5 MBtu/yr (1.69 kW) 6.1 MBtu/yr (0.20 kW) 
(10.8%) 

0.9 MBtu/yr (0.03 kW) (1.75%) 

 
 When initially looking at the results of the best active insulation case the energy savings over the 

reference case are very large, up to nearly 20% for Lexington, KY [23]. After a closer examination, 

however, most of the energy savings for the active insulation system comes from using a high R-value of 

38 ft2 F-hr/Btu (6.7 m2 K/W) for the walls and floor of the active insulation instead of a R-value of 19 ft2 
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F-hr/Btu (3.4 m2 K/W ) as with the reference case [23]. From Tables 1 and 2 it can be seen that the energy 

savings of super-insulating the structure with very high R-value insulation passively are much greater 

than the energy savings of using an active insulation system instead of the reference case [23].  

 After evaluating the energy savings of the optimal active insulation system, the next step in the DOE 

study was to calculate the annual monetary savings of using the best performing active insulation system 

over the typical reference case. Any monetary savings calculated for the best-case active insulation 

system in 1990 would be slightly lower today, since the average electricity cost in the United States has 

stayed about the same after adjustment for inflation, while the efficiency of heat pumps has improved 

greatly over the past 20 years. The yearly cost savings calculated in the 1990 study by making the attic, 

walls, and floor of the structure active between R-values of 0.5 and 38 ft2 F-hr/Btu (0.1 and 6.7 m2 K/W) 

can be found in Table 3. 

 
 

Table 3: Yearly Cost Savings in 1990 using Best-Case Active Insulation System in Structure 
 (Yearly Cost Savings not adjusted for inflation) [23]. 

 
 

Location Cost Savings over Reference Case  Cost Savings over Super-Insulated Case  
Lexington, KY $123/yr $39/yr 

Minneapolis, MN $163/yr $26/yr 
Phoenix, AZ $67/yr $8.50/yr 

 
 
 

 After conducting their energy and cost savings analysis, the authors of the Department of Energy 

study made several final conclusions. As stated before, the examination of the passive and active 

insulation systems indicated that the majority of the savings resulted from simply increasing the level of 

insulation [23]. From that they also conclude that active insulation systems have a very small potential for 

energy conservation, but they do suggest that an analysis should be conducted in the future of variable 

thermal resistance systems which are more closely correlated to the climate with smaller increments for 

the high-low settings [23]. Although the conclusions by the authors in the Department of Energy study 
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showed marginal promise for variable thermal resistance insulation, the next section will show why smart 

insulation with varying thermal resistance should still be pursued further [23]. 

 
1.4.2 Why Further Study of Variable Thermal Resistance Insulation is Needed 
 

Now that two decades have passed since the simulation study by the Department of Energy on active 

insulation systems was conducted, it is time to reassess the study to examine if a new simulation of smart 

insulation should be pursued and to see if smart insulation development can still possibly lead to 

significant energy and cost savings. In many ways the world has changed since 1990 in terms of buildings 

and computational abilities. For example, home sizes in the United States have increased greatly from the 

1600 ft2 (148.64 m2) hypothetical structure used in the study over the past twenty years, leading to 

increased energy usage for homeowners. If a typical home size today were used in the active insulation 

simulation, it would likely lead to increased annual energy and cost savings that might make smart 

insulation worth the investment for many homeowners. Also, even though the annual cost savings found 

from the study might seem small to the individual building occupants, the overall energy savings across 

the United States from implementation of smart insulation in many structures would be significant. This 

would make smart insulation development attractive in helping to solve the major problems today of 

trying to lower the country's energy consumption and carbon emissions. In addition, building energy 

simulation software has improved greatly since 1990. The ESPRE program was almost out of date in 

1990, and much improved software, such as DOE-2 and EnergyPlus, have been developed by the 

Department of Energy since that time. A new study is clearly needed using newer more up-to-date 

building energy simulation software to analyze the benefits of smart insulation in buildings. 

 Furthermore, a new simulation study with several different features from the simulation by Fine and 

McElroy could result in much improved results for smart insulation systems as suggested by Potter and 

Tuluca's 1992 paper that also examined the Department of Energy study [2]. For example, in the 1990 

study all of the different surfaces of the building, such as each of the walls, the floor, and the attic, had to 

have the same insulation R-value level of low or high at any given time. It is easy to see how this could 
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cause problems. In the sunny winter day case mentioned earlier significant thermal radiation might be 

impacting one wall of a building so that it would be beneficial for the insulation of that wall to be "turned 

off," while the opposing wall would also have to be "turned off" as well in the simulation even if it was in 

the shade. This would result in any heat gains to the building interior from the sunny wall being canceled 

out by heat losses through the now "turned off" insulation of the wall in the shade. A new simulation 

where only those surfaces with a beneficial temperature gradient for heating or cooling the building 

interior would have their insulation switched off at any time could show that smart insulation systems 

could have much larger energy and cost savings than found by the experimental study. 

 Several other possible changes to the 1990 study that could be incorporated in a new simulation study 

are given by Potter and Tuluca to further analyze active insulation systems [2]. One idea was to focus 

more on the area of roof cooling by conducting a cooling-load analysis of possible energy savings from 

radiative roof cooling [2]. Another change could be to target commercial buildings instead of the 

residential buildings of the Department of Energy study to see if they would more greatly benefit from the 

implementation of active insulation [2]. It was also suggested to use air exchange rates of 0.7 or less as a 

user input to the ESPRE simulation compared to the 1.0 used by Fine and McElroy [2]. 

 Finally, the last major reason why a new simulation study is needed and why smart insulation 

development should still be pursued is the existence of a separate DOE study conducted by Caskey that 

suggests that large energy savings could indeed result from the implementation of smart insulation in 

buildings [29]. In the study, reflective aluminum foil was installed in the rafters of a pitched-roof single-

family dwelling in Albuquerque, NM, in order to prevent high heat losses through the roof during the 

winter from high radiative heat transfer to the outside environment [29]. Experimental results in the study 

eventually showed a 25% decrease in roof heat losses during the winter nights, which were approximately 

12 hours in length [29]. Unfortunately for the authors of the study, the reflective aluminum foil also 

caused a 40% decrease in roof heat gain from solar heating during the sunny winter day periods, which 

were approximately 8 hours in length, canceling out the decrease in heat losses during the winter nights 
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[29]. This led to the reflective aluminum foil having a zero net total effect on the heat losses through the 

roof of the building during the winter [29].   

 Although the reflective aluminum foil did not produce good results for the study by Caskey, it shows 

that if smart insulation were implemented in the roof of the building tested instead of the aluminum foil, 

large energy savings could result. During the winter nights the smart insulation could serve as a good 

insulator, as with the reflective aluminum foil, to prevent high heat losses through the roof. Later, during 

the winter days, unlike the aluminum foil, the smart insulation could change to a high heat transfer state to 

take advantage of the roof heat gain from solar heating. Thus, the smart insulation would be able to have 

the large decrease in roof heat losses during the winter nights and also still maintain the roof heat gain 

from solar heating during the winter days, resulting in a large net decrease in heating loads needed for the 

building over the winter and large heating cost savings.  

 
1.4.3 High-Value Smart Insulation Building Applications 
 
 
The final component of the review of the literature involving smart insulation systems is the identification 

of five building types where active insulation would be very beneficial: light manufacturing, strip 

shopping, shopping centers, and office buildings [2]. First, for structures for light manufacturing, 

machines involved in the manufacturing process give off large amounts of heat when in operation during 

the day even during the winter, requiring cooling for the building [2]. At night when the machines are 

turned off during colder times of year, heating of the building is needed [2]. Especially in the winter, if 

the smart insulation could have a low R-value during the day, cooling loads could be greatly reduced, 

while keeping the smart insulation at a high R-value during the night [2]. Next, for strip shopping centers 

containing a mix of retail stores, similar problems are encountered with cooling of the structures needed 

during operation during the day over much of the year due to process heat loads and excess heat resulting 

from the use of incandescent lamps for display lighting [2]. If smart insulation were implemented, it could 

switch from a low R-value during times when the temperature gradient between the store's interior and 

the outside environment is beneficial for cooling to a high R-value at other times [2].  
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 Another high-value smart insulation building application would be shopping centers, where the 

cooling load on the upper floors can be high for much of the year due to multistory open spaces that allow 

significant convection heat transfer through air flowing upward from the lower floors [2]. In addition, if 

the roof insulation of the shopping centers could be "turned off" at times, it would allow some of that 

excess heat to be able to transfer from the upper floors to the ambient environment [2]. Smart insulation 

could be implemented in the roofs of shopping centers that would have a low R-value when outside air 

temperatures are lower than the building upper floors' interior temperature in temperate climates, while 

switching to a high R-value in times when the outside environment is either too hot for cooling or during 

the winter when heating of the building is required [2]. Finally, the overheating caused by heat generated 

by lighting and office equipment that often occurs in office buildings would make the use of smart 

insulation attractive to lower cooling loads and improve temperature comfort to increase worker 

productivity [2]. Smart insulation in office buildings could be switched from a low R-value when the 

outside ambient temperature is cooler than the interior office temperature, while switching to a high R-

value when necessary [2]. Office applications where smart insulation would be most beneficial would be 

for locations in mild climates, such as Southern California and coastal locations, where cooling from the 

outside environment could be best taken advantage of, or for office buildings in any type of climate with 

especially high internal loads, such as desktop publishing or data processing [2].  
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2.0 SMART INSULATION CONCEPT DEVELOPMENT AND FABRICATION 
 
 
 
 

Following the review of the previous literature on existing variable insulation concepts and devices, 

several new concepts and ideas for smart insulation devices were developed. The new concepts developed 

were compared against one another in terms of their feasibility, effectiveness, cost, and their potential for 

implementation in buildings in the near-term so that one or two basic concepts could be chosen for further 

fabrication and testing. After careful consideration, two main concepts were determined to be the most 

promising. The first concept involved the breaking and connecting of a thermal conduction path in the 

insulation through the use of aluminum metal fins that could be actuated to shift from a position in which 

they are in contact with one another to a non-contacting position. The second major concept used an 

inflatable honeycomb-like structure with small chambers of air that could go from a deflated conductor 

state to an inflated insulator state, which inhibited conduction through the use of air and convection by 

trapping air in the small volumes. 

 
 
 

2.1 SMART INSULATION PROTOTYPE COMMON FEATURES 
 

 
When designing the prototypes for the different smart insulation concepts to be tested, many of the 

same dimensions were used for all of the different prototypes in order to maintain consistency during 

testing and to allow for easy comparison between the different smart insulation devices to evaluate which 

had the best performance. First, it was determined that a roughly one square foot (0.3 m) size piece of 

smart insulation would be the optimal size for the area of all of the smart insulation concepts to be tested. 

One square foot (0.3 m) was chosen for the area of the devices because it would be large enough to 
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sufficiently provide "proof-of-concept" for thermal semiconductors; it could easily be scaled up for 

application in an actual building; and it was largest size that we would be able to experimentally test in 

our laboratories using the space and resources available. Eventually, as the design process continued for 

the smart insulation devices, dimensions of one of the smart insulation prototypes, the shifting fins 

device, required that the length and width of its design had to be enlarged slightly from 12 in. (0.3 m) to 

final length and width values of 13.25 in. (0.337 m). To again maintain consistency for all of the smart 

insulation devices, each of the smart insulation prototypes developed was given common length and 

width dimensions of 13.25 in. (0.337 m).  Finally, the thickness of insulating state of the smart insulation 

prototypes was chosen to be 2.25 in. (5.715 cm) for easy implementation of the smart insulation in the 

walls and/or roof of existing or new buildings in place of or even on top of conventional insulation. Once 

the smart insulation devices were actuated into their conducting configuration, some of them would 

maintain the same thickness of 2.25 in. (5.715 cm), such as the shifting fins thermal semiconductor, while 

others, such as the inflatable thermal semiconductor, would have significantly decreased thickness in their 

conducting state. 

 
 

 
2.2 SHIFTING ALUMINUM FINS THERMAL SEMICONDUCTOR DEVELOPMENT 

 
2.2.1 Shifting Aluminum Fins Thermal Semiconductor Concept 

 
One of the simplest ideas in the literature for smart insulation involved the connecting and breaking of a 

thermal conduction path to regulate the heat transfer over a device. Two patents mentioned previously by 

Riordan and Potter utilize this principle through the use of bimetallic switch elements that will bend or 

buckle following a change in temperature. Unlike the bimetallic switch patent designs, the first smart 

insulation concept developed for this thesis is a novel system consisting of aluminum metal fins that can 

be shifted by using a motor so that they are in either a contacting or non-contacting state. When the 

aluminum fins are in a contacting state, a thermal conduction path will exist between the fins so that high 
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heat transfer by conduction will be able to take place. Later on, once the fins have been actuated to a new 

position where they are not contacting, the thermal conduction path will be eliminated, vastly reducing 

the conduction heat transfer of the device. Figure 32 illustrates the shifting aluminum fins thermal 

semiconductor concept in both its low and high thermal conductivity states.  

 

 
 
 

Figure 32: Contacting/Non-contacting Aluminum Fins Thermal Semiconductor Concept. 

 

The basic design of the aluminum fin thermal semiconductor concept consists of many aluminum fins 

facing each other mounted to two thin aluminum plates. When high heat transfer between the two metal 

plates is desired, the fins on the top plate can be shifted horizontally so that they are in good thermal 

contact with the fins mounted to the bottom aluminum plate to create a thermal conduction path. Later on, 

if low heat transfer between the two plates is needed, the fins can be shifted to the low thermal 

conductivity state position as shown in Figure 32 where the top and bottom fins are offset from one 

another to eliminate the thermal conduction path. In order to keep the two plates separated when the 

system is in its low thermal conductivity state, spacers are added on either end of the device, which are 

b) Low Thermal Conductivity State 

a) High Thermal Conductivity State Plates Fins 

Thermal Conduction Path 

Small air spaces to 
limit convection 

Foam Insulation spacers 

Fins can shift horizontally 
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made of very low thermal conductivity foam insulation to prevent heat transfer between the plates 

through the spacers. Air is used in the spaces between the fins in the thermal semiconductor because of its 

very low thermal conductivity. To eliminate the effects of natural convection heat transfer of the air, in 

the final design the air spaces between the fins were kept very small in volume, since natural convection 

can be significantly limited by reducing the volume where the gas can flow. In addition, for the low 

conductivity state of the device, the volumes of air between the fins are divided in half vertically when the 

fins are shifted to the insulating state, which will help to reduce convection heat transfer in the device's 

insulating configuration compared to its conducting configuration. The next section describes the features 

and specifications of the actual smart insulation device that was designed for this concept. 

 
2.2.2 Shifting Aluminum Fins Thermal Semiconductor Design 

 
In order to turn the conceptual ideas for the shifting fins thermal semiconductor into an actual smart 

insulation device, several design decisions had to be made, such as what material to use, how to mount 

the fins to the plates of the device, how to actuate the fins between conducting and non-conducting 

configurations, and what dimensions were necessary for the first prototype device. An early decision that 

was made in the design process was to postpone the design and fabrication of the actual actuation 

mechanism that would change the smart insulation device between low and high conduction states for all 

of the smart insulation concepts developed until a later stage of the project. Instead, for all prototypes of 

the shifting fins thermal semiconductor, two devices would be built: one device with the fins shown in 

their conducting configuration in Figure 32 and a second device with the fins shown in their insulating 

configuration in Figure 32. The contacting/non-contacting aluminum fins concept could then be 

experimentally tested and modeled in its low and high heat transfer states to examine the amount of 

change in thermal conductivity the device can attain if implemented in an actual building setting. This 

will also allow for a comparison of the performance of the different smart insulation devices developed by 

examining the amount of change in thermal conductivity for different devices from their insulating state 

to their conducting state.  
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 Pure aluminum was initially chosen for the metal fins and plates of the device because of its high 

thermal conductivity and relatively low cost when compared to other high thermal conductivity metals, 

such as copper and silver, which are prohibitively expensive for use as smart insulation materials. To 

obtain the 2.25 in. (5.715 cm) thickness of the overall design, the height of the fins mounted to the plates 

was selected to be 1 in. (2.54 cm), while the thickness of the aluminum plates themselves was chosen to 

be 1/8 inch (0.3175 cm) thick. Making the plates very thin was beneficial because in cases such as when 

the bottom plate is being heated, the bottom plate can heat up more quickly due to its smaller mass to 

transfer heat to the bottom fins when high heat transfer is needed, and the heat can spread out more evenly 

over thinner plates for a more even heat distribution. 

 Another important design consideration for the shifting aluminum fins device was how the fins were 

going to be mounted to the top and bottom aluminum plates. Screws were chosen as the best way to 

fasten the fins to the plates because of their simplicity, low-cost, and the ability to easily change fin 

configurations by removing some or all of the fins by unscrewing the fins from the plates. Figure 33 

shows how screws were utilized to fasten the fins to the plates of the thermal semiconductor device by 

using threaded screw holes drilled into the fins and plates.  

 

 

 

 
 

Figure 33: Schematic Showing How Screws are Used to Join Aluminum Fins and Plates. 

 

Fins Screws Plates Air spaces 
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 Once the overall dimensions of the shifting fins thermal semiconductor design were chosen, the 

dimensions of the individual fins needed to be calculated along with the spacing between the fins. The 

goal was to pack as many fins into the smart insulation prototype as possible for two main reasons. First, 

the more fins were contained in the 13.25 x 13.25 in. (0.337 x 0.337 m) area of the device, the more 

contact area would exist between fins for higher conduction heat transfer. Second, by increasing the 

number of fins in the device, the distances between fins will be decreased, resulting in smaller volumes of 

air between the fins and lower natural convection heat transfer. In the final design, thirty fins were 

utilized with fifteen fins attached to both the bottom and top aluminum plates with all of the fins going the 

entire length of the device. The width of the fins was chosen to be 1/4 in. (0.635 cm), because that was the 

smallest possible fin dimension that we could use and still be able to drill the threaded screw holes into 

the aluminum fins to fasten them to the plates. Also, a center-to-center distance between the fins of 3/4 in. 

(1.905 cm) was chosen to separate the fins so that when the top fins were shifted and offset into their non-

contacting arrangement similar to what is shown in the insulating state of Figure 32, a horizontal gap of 

1/8 in. (0.318 cm) is still present between the top and bottom fins. After determining all of the dimensions 

of the shifting fins design, a 3-D mechanical CAD (computer-aided design) program was used to develop 

a 3-D model of the first prototype design to ensure that everything would fit together correctly when 

assembled during actual fabrication. Two multi-view drawings of the shifting fins device in its insulating 

and conducting states can be seen in Figures 34 and 35 with the final dimensions used in the actual 

fabrication of the device.  
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Figure 34: CAD Drawing of Shifting Fins Thermal Semiconductor Prototype in its Insulating 
Configuration. 

 
 
 

 One major benefit of the final design of the shifting fins prototype is that it actually only requires one 

prototype instead of the two mentioned previously to experimentally test both the conducting and 

insulating states of the device (while still leaving out the device's fin actuating mechanism for the time 

being). The final design gets around this problem by positioning the first and last fins specific distances 

from the left and right edges of the plate (19/16 in. and 25/16 in. (3.02 cm and 3.97 cm), respectively), as 

shown in Figure 34 when the device is in its conducting configuration. By using these exact fin positions 

on the bottom and top plates and rotating the top plate 180o while leaving the bottom plate stationary, the 
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resulting arrangement of the fins of the bottom and top plates exactly matches the insulating configuration 

of the shifting fins thermal semiconductor device.  

 

 
 
 

Figure 35: CAD Drawing of Shifting Fins Thermal Semiconductor Prototype in its Conducting 
Configuration. 

 
 

2.2.3 Shifting Aluminum Fins Thermal Semiconductor Fabrication 

 
During the fabrication of the shifting fins prototype, nearly all of the fabrication of the device was done 

by the author in the University of Pittsburgh's student machine shop. The first major decision in the 

fabrication process, which was made early on, was to use an aluminum alloy, Al 6061, instead of pure 
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aluminum as the material for the aluminum fins and plates. Although pure aluminum has a higher thermal 

conductivity of 222 W/m K when compared to the thermal conductivity of Al 6061 of 167 W/m K, pure 

aluminum is much softer and weaker than Al 6061, making it impractical for the machining needed for 

fabrication of the prototype [24-25]. Aluminum alloy 6061 was chosen over other aluminum alloys 

because it is the easiest to machine, while still being relatively inexpensive.  

 Using the bandsaw and the milling machine of the machine shop, the thirty aluminum fins and two 

aluminum plates were fabricated first. A very important consideration during the machining of the fins 

was for all thirty of them to be extremely close to the same height. If only one or two fins were off by 

even a small amount from the other fins, it could have caused a problem when the device was in its 

conducting configuration. Since the fins connected to the top plate essentially lay on top of the fins 

connected to the bottom plate, if even one fin is a different height by a small amount from the other fins, 

it will cause small air gaps where the other fins contact one another. This will result in a much greater 

thermal contact resistance between the fins and consequently, lower thermal conductivity and conduction 

heat transfer when the device is in its conducting configuration. Figure 36 shows how having fins with 

slightly different heights can result in air gaps and poor thermal contact between some of the fins. To 

avoid this problem, the fins were milled down in several batches together slowly and very carefully to 

ensure that the fins' height values were all within a few thousandths of an inch of each other, which is the 

maximum accuracy possible given the equipment of the student machine shop. 
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Figure 36: Schematic that Illustrates How Small Air Gaps can Result from Different Fin Heights during 
Fabrication.  

 
 
 

 After the aluminum fins and plates had been fabricated, the next step was to drill and tap holes into 

the plates and fins for the screws that would be used to fasten the fins to the plates. The screws were 6/32 

x 1/2 in. (0.476 x 1.27 cm) long, Philips-head, countersunk, brass machine screws. Even though ideally 

the screws would have been made of the same aluminum alloy 6061 as the fins and plates for consistency, 

brass was chosen as the screw material because aluminum alloy 6061 machine screws were not available 

due to the lack of strength of aluminum. 2024 aluminum alloy screws were available, but they did not 

match the screw dimensions needed for the prototype's design, and they would have had almost exactly 

the same thermal conductivity as the brass screws. Brass's thermal conductivity of 109 W/m K is close to 

the thermal conductivity of aluminum alloy 6061 of 167 W/m K, which should result in a uniform 

thermal conduction distribution throughout the entire shifting fins prototype including the screws [24]. 

Three screws were used to mount each fin to the plates with one screw at the fin center and the other two 

screws one inch from the ends of the fin. Figure 37 gives the final CAD model of the shifting fins smart 
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insulation device prototype design with the location of the screw holes clearly visible for the top plate and 

fins. 

 

 
 
 

Figure 37: CAD Model of Shifting Fins Prototype with Screw Holes Added. 

 

A photograph of the final fabricated bottom piece of the prototype consisting of the bottom fins 

mounted to the bottom plate can be seen in Figure 38. The top piece made up of the top fins mounted to 

the top plate is an exact replica of the bottom piece. Figures 39-40 show give the pieces of the shifting 

fins thermal semiconductor device prototype assembled in their conducting and non-conducting states  
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Figure 38: Bottom Piece of Shifting Fins Smart Insulation Device Prototype. 
 
 
 

 
 
 

Figure 39: Shifting Fins Thermal Semiconductor Prototype Conducting Configuration. 
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Figure 40: Shifting Fins Thermal Semiconductor Prototype Insulating Configuration. 
 
 
 
 

2.3 VARIATIONS OF THE SHIFTING FINS THERMAL SEMICONDUCTOR 
 
 

After testing the original conducting and insulating configurations of the shifting fins thermal 

semiconductor prototype, several modifications were made to the prototype to test other cases slightly 

different from the original shifting fins concept. Some of the variations of the shifting fins device 

involved using foam insulation instead of air between the fins, using silver-and silicone-based thermal 

greases between the fins where they contact, and placing the aluminum plates back-to-back with the fins 

facing outward for several tests. Additionally, during the modeling phase of the project, several other 

concept with the fins were also examined that differed greatly from the shifting fins prototype to evaluate 

if different arrangements of the fins could offer improved performance over the shifting fins devices. 

Designs where the fins fold out to make contact with each other instead of shifting horizontally and shift 

horizontally making thermal contact at their sides instead of at the top/bottom interface were modeled 

using ANSYS finite element analysis software. The different variations of the shifting fins thermal 

semiconductor concept will be discussed in the following sections.  

 
2.3.1 Using Foam Insulation in Spaces between the Fins instead of Air 
 
 
Although most of the convection heat transfer of the air in the spaces between the fins of the shifting fins 

thermal semiconductor prototype was eliminated by having very tight spacing between the fins, some 
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convection heat transfer occurred, causing higher overall heat transfer than desired when the shifting fins 

prototype was in its insulating state. To eliminate all of the natural convection of the air between the fins, 

the spaces between the fins in the top and bottom pieces of the prototype were filled with pieces of 

polyisocyanurate foam building insulation, which can be easily cut into small rectangular pieces. The 

polyisocyanurate foam insulation also has a very low thermal conductivity of only 0.02163 W/m K, 

which is approximately that of air, resulting in very little conduction through the foam insulation between 

the plates. Even once the foam insulation was placed between the fins, the fins were still able to shift 

horizontally to change from a contacting, conducting state to a non-contacting, insulating state because 

the foam insulation will shift left and right in conjunction with the fins. Figure 41 shows how the 

polyisocyanurate foam insulation was used in the air spaces between the fins in the bottom plate piece, 

while Figure 42 shows the shifting fins prototype in its insulating state once the foam insulation has been 

placed between the fins. 

 

 
 
 

Figure 41: Bottom Piece of Shifting Fins Thermal Semiconductor Prototype with Foam Insulation 
between Fins. 
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Figure 42: Shifting Fins Thermal Semiconductor Prototype with Foam Insulation between Fins in its 
Insulating State. 

 
 

 
2.3.2 Using Silver-and Silicone-based Thermal Grease to Improve Thermal Conduction 
 
 
While adding foam building insulation to the air spaces between the fins helped to improve the insulating 

state of the shifting fins device by reducing natural convection, silver- and silicone-based thermal greases 

were utilized to improve the conducting state of the thermal semiconductor by reducing the thermal 

contact resistance where the fins touch each other. The problem of thermal contact resistance arises from 

the fact that no surface is perfectly smooth but has some level of surface roughness [26]. Due to surface 

roughness of two surfaces that are in contact, some areas of the two surfaces do not contact each other 

directly because of air that is trapped in tiny pockets in the surface roughness between the two materials 

[26].  A schematic that illustrates the effect of a small air gaps in the interface between two materials on 

thermal conduction is given in Figure 44, where the thermal contact resistance in given by RC and the 

thermal contact conductance is given by hC [27]. The thermal contact conductance is a property used to 

describe the amount of conduction between two material surfaces in contact and is dependent on the 

surface type, surface roughness, surface temperatures, and the amount of pressure between the two 

surfaces in contact [26]. If two surfaces had a perfect thermal contact with each other, both surfaces 

would have the same temperature, but as Figure 43 shows for real surfaces a temperature drop will occur 

in the direction of heat flow over the interface between the surfaces due to thermal contact resistance [27]. 



 

61 
 

 
 
 

Figure 43: Schematic Diagram of the Effects of Thermal Contact Resistance at the Interface between Two 
Surfaces [27]. 

 
 
 

The largest amount of thermal contact resistance in the shifting fins prototype takes place at the 

interface where the top fins come into contact with the bottom fins to form a thermal conduction path. 

This location has the highest thermal contact resistance because the fins are not joined together and 

because very little pressure is applied at the point of contact, only the weight of the top plate and fins 

pushing down on the bottom fins. Some thermal contact resistance is also present at the interfaces where 

the bottom fins are mounted to the bottom plate and the top fins are mounted to the top plate due to 

surface roughness of the plates and fins. The amount of thermal contact resistance between the plates and 

fins is lower; however, than between the top and bottom fins, since the plates and fins are actually 

physically joined by screws instead of the top fins only lying on top of the bottom fins. To lessen the 

problem of thermal contact resistance at the interface between the top and bottom fins for some of the 

tests, two types of thermal greases were applied to the top and bottom fins in a very thin layer to enhance 

the conduction heat transfer at the interface between the fins. Since thermal contact resistance posed less 

of a problem at the interfaces between the fins and the two plates, thermal greases were not utilized at 

those two locations. A photo of the silver-based thermal grease being applied to the bottom fins is shown 

in Figure 44.  
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Figure 44: Application of Silver-Based Thermal Grease to the Bottom Fins of the Shifting Fins Prototype. 

 

Thermal greases essentially work by spreading out to fill up the small, low conductivity air pockets 

with a much more highly conductive material at the interface between the fins. First, silver-based thermal 

grease was applied to the fins, which consists of silver particles suspended in a liquid and has a thermal 

conductivity of 8.652 W/m K, which is much lower than the thermal conductivity of the aluminum alloy 

6061 being used for the fins, but still much higher than that of the air causing the thermal contact 

resistance. After conducting a few tests and discovering that the silver grease was extremely thick and 

difficult to apply in a very thin layer, silicone-based thermal grease was also tried. Typically, silicone-

based greases consist of beryllium oxide, aluminum oxide, or aluminum nitride particles suspended in a 

liquid with an overall thermal conductivity between 0.7 and 3 W/m K. Although the silicone-based 

thermal grease had a lower thermal conductivity than the silver-based thermal grease, it ended up being 

much easier to apply in a thin layer during testing. 

 
2.3.3 Back-to-Back Aluminum Plates with Fins Concept 
 
 
Another variation on the shifting fins smart insulation concept involved flipping the bottom and top 

pieces over so that the aluminum plates were back-to-back, and the fins were sticking outward, as shown 

in Figure 45. The rationale behind this design was to use the fins' large amount of surface area to capture 
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heat to quicken the heating of the bottom plate for cases such as the sunny winter day case. The top plate 

was then placed directly on top of the bottom plate so that the two plates were in direct thermal contact 

for the conducting configuration. Finally, the top fins were positioned sticking upward to act as a heat 

sink with a large amount of surface area to dissipate heat quickly when the device is in conducting mode 

to the area on the other side of the smart insulation device. 

 
 

 

 
 
 

Figure 45: Back-to-Back Aluminum Plates with Fins Device in its Conducting Configuration. 

 

 For the back-to-back plate device the previous method of actuation between conducting and 

insulating states of horizontally shifting the fins was no longer feasible so a different type of actuation 

was necessary. To change the back-to-back plates concept to an insulator state, it was decided that the two 

plates would move vertically apart until a two inch (5.08 cm) air gap was present between the plates. 

Although natural convection heat transfer now played a much larger role when the device was in its 

insulating state due to the much larger air space than before, conductive heat transfer was now nearly 

eliminated. Figure 46 gives an image of the back-to-back plates device when it has been changed to its 

insulator state, where two low conductivity pieces of polyisocyanurate foam insulation spacers have been 

placed between the plates so that heat transfer by conduction is still prevented through the spacers. 

 

Top and Bottom Fins facing outward Bottom and Top Plates are Back-to-Back 
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Figure 46: Back-to-Back Aluminum Plates with Fins Device in its Insulating Configuration. 

 
 
2.3.4 Variations of Shifting Aluminum Fins Thermal Semiconductor Modeled in ANSYS 
 
 
In addition to testing several different types of related thermal semiconductor systems using the original 

shifting aluminum fins smart insulation concept, three other related ideas were also modeled and analyzed 

in ANSYS without ever being built or tested. After the original shifting fins thermal semiconductor 

device was experimentally tested, a mathematical model of the heat transfer through the original device 

was constructed for the design’s conducting and insulating configurations using ANSYS finite element 

analysis software and some of the experimental data. Once a model was obtained for the original shifting 

fins smart insulation concept, it could then be extended and applied to other similar concepts. The first of 

the three concepts modeled in ANSYS also used the idea of shifting fins between contacting and non-

contacting positions to connect or break a thermal conduction path as in the previous device, but now the 

bottom and top fins contact at the sides instead of vertically. As a result, the fins had to be lengthened as 

shown in Figure 47 which shows schematics of the system modeled in ANSYS in both its insulating and 

conducting states. Besides changing the length of the fins and slightly changing the fin positioning, the 

device has the same basic design and dimensions as the original shifting fins thermal semiconductor.  

Foam Insulation Spacers 

Two inch (5.08 cm) Air Gap 
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Figure 47: Insulating and Conducting States of Fins Shifting with Side Contact ANSYS Model. 

 

 Next, the second invention modeled using ANSYS also used fins that would contact vertically when 

the device was in it conducting state, but the second device had the fins fold in from a horizontal position 

to a vertical position to vertically contact the fins on the opposite plate by rotating 90o from their original 

positions. In this design a 1 ½ in. (3.81 cm) air gap is present between the fins on opposite plates when 

the fins are in their folded down position, which eliminates almost all conduction between the top and 

bottom plates, but also allows for more natural convection heat transfer of the air. This device had almost 

all of the same specifications as the original shifting fins thermal semiconductor, except that it had only 

twenty-two fins instead of thirty fins with different positioning of the fins. Due to the feature of the fins 

folding out to a horizontal position, greater spacing was needed between the fins in the new design 

requiring the number of fins to be reduced. Schematics of the ANSYS model of the folding fin device, in 

both its insulating and conducting states is shown in Figure 48. 
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Figure 48: Insulating and Conducting States of Fins Fold in with Vertical Contact ANSYS Model. 

 

 Finally, the last variation of the shifting fins thermal semiconductor modeled in ANSYS combined 

the two previous ideas by having the fins fold in and make side contact. As with the earlier folding fins 

model, the number of fins had to be reduced because of the space needed between the fins when they are 

in their horizontal, stowed position. To accommodate for the additional fin length needed for side contact; 

however, the space between the fins in the design must be even larger. Thus, the amount of fin reduction 

needed for the fins fold in with side contact device is much larger than before with the number of overall 

fins reduced from thirty originally to only fourteen. The insulating state of the folding fins with side 

contact device looks almost exactly the same as the fins fold in with vertical contact device's insulating 

configuration as shown in Figure 48. The conducting configuration of this device modeled, as modeled in 

ANSYS, is illustrated in Figure 49.  
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Figure 49: Conducting State of Fins Fold in with Side Contact ANSYS Model. 

 
 
 

2.4 INFLATABLE HONEYCOMB-LIKE STRUCTURE THERMAL 
SEMICONDUCTOR DEVELOPMENT 

 
 

2.4.1 Inflatable Honeycomb-like Structure Thermal Semiconductor Concept 
 
 
The second major smart insulation concept chosen for fabrication and testing was an inflatable 

honeycomb-like structure. The basic principles for the inflatable honeycomb-like smart insulation idea are 

similar to those of Laing [12].The general concept for the second thermal semiconductor device called for 

an inflatable structure made of up a very thin material, such as plastic, filled with a low conductivity gas, 

such as air, that can be inflated and deflated with an air pump to change the device between its conducting 

and insulating states. When the smart insulation device needs to have low thermal conductivity, the 

inflatable structure will be deflated by suctioning the air outside of the structure. Without the air 

expanding the inflatable device, the deflated thermal semiconductor will become extremely thin, since it 

will consist of only a very thin layer of the material used to contain the air. From Equation 2.1 for the 

thermal resistance to conduction for a plane wall material with a specified thermal conductivity, 

thickness, and cross-sectional area, the thermal conduction resistance will decrease when either the 

thermal conductivity, k, is increased or the thickness of the material, Δx, is decreased [26].  

 
                                                                                𝑅𝑅𝑡𝑡ℎ ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 = ∆𝑥𝑥

𝑘𝑘𝑘𝑘
                             (2.1) 

First, top fins rotate 90o into position 

After top fins have rotated, bottom fins rotate until they are in contact with top fins 
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In the deflated case, the thickness of the device is decreased greatly, while the thermal conductivity of the 

device had also been increased, since the device is now only made up of a very thin solid material instead 

of primarily air, resulting in much less thermal conduction resistance and a conducting state for the 

honeycomb-like structure.  

 In order to switch the inflatable thermal semiconductor to its insulating state, an air pump would be 

used as the actuation mechanism, which would require some amount of energy, but no energy will would 

needed to keep the device in its insulating or conducting states. By inflating the honeycomb-like structure 

with air, the thickness of the structure will then increase, while the thermal conductivity of the structure 

will decrease significantly. This will result in much higher thermal conduction resistance, giving it an 

insulating state. Figure 50 illustrates the inflatable honeycomb-like thermal semiconductor concept in 

both its conducting and insulating states. 

 

 
 
 

Figure 50: Inflatable honeycomb-like Structure Thermal Semiconductor Concept. 

 

Even though simply inflating and deflating the structure would allow the smart insulation device to 

function as a thermal semiconductor by allowing and inhibiting the conduction of heat, the problem of 

natural convection of the air within the structure during its insulating state posed a problem. To solve the 

problem of natural convection, the inflatable thermal semiconductor structure is arranged in a honeycomb 

pattern. Since high levels of natural convection will occur in larger volumes of air, the interior space of 

the device was divided into many small chambers of air similar to honeycombs in a beehive. By breaking 

the air up into many tiny volumes, the air will not be able to circulate through the total volume of the 

Insulating State Conducting State 
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device for natural convection, resulting in much less convective heat transfer across the inflatable thermal 

semiconductor. One additional feature that the inflatable honeycomb-like device had that differs from a 

honeycomb is the need for small holes in the small air chamber to allow air to flow from chamber to 

chamber during the inflation and deflation of the thermal semiconductor. The holes must be designed so 

that they are large enough to allow for easy inflation and deflation of the entire structure, while still being 

small enough to keep the levels of natural convection in the air chambers very low.  

 

 

 

 
 

Figure 51: 2-D Side-View Schematic of Inflatable Honeycomb-like Structure for Thermal Semiconductor 
Concept. 

 
 

 
A two-dimensional diagram of the inflatable honeycomb-like structure given in Figure 51 shows how the 

structure is arranged with small "honeycombs" of air with small holes in the air chambers to allow air to 

flow throughout the device for inflation and deflation. 

 Although the inflatable honeycomb-like thermal semiconductor device may have been based on the 

same general concepts from a previous patent, our inflatable honeycomb-like smart insulation device is 
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the first ever actually fabricated and tested from the those general concepts. Moreover, the actual design, 

materials, and fabrication of our invention discussed in the following sections were very different from 

previous devices proposed, resulting in a novel smart insulation device. In the next section the general 

design of the inflatable smart insulation devices built and tested in our laboratories will be described.  

 
2.4.2 Inflatable Honeycomb-like Structure Thermal Semiconductor Design 
 
 
As with the shifting fins thermal semiconductor device discussed earlier, the first major design decision 

was to postpone the design and fabrication of the actual actuation mechanism that would be used to 

switch the inflatable honeycomb device between its insulating and conducting states. Instead, the main 

focus of the design would be to develop an inflatable honeycomb-like device that could be tested in its 

insulating and conducting states separately to evaluate the device's performance in terms of its change in 

thermal conductivity between the two states. Each of the different designs for the inflatable honeycomb-

like thermal semiconductor concept would eventually have two prototypes separately built to represent 

the design's deflated, conducting state and inflated, insulating state. For consistency in testing many of the 

dimensions of the inflatable honeycomb-like structure were set to match those of the first concept, the 

shifting fins thermal semiconductor.   

 One of the major difficulties encountered during the design of the inflatable honeycomb-like thermal 

semiconductor was trying to either find a honeycomb-like material available commercially that could be 

modified to be inflated or deflated or to construct a honeycomb-like device that could be inflated or 

deflated in our own laboratories. After determining that it was not feasible to develop this type of material 

in the laboratory at this time, much effort was placed into obtaining a suitable material from an outside 

company. All of the materials found to be available for use in the inflatable honeycomb smart insulation 

design were very thin, much thinner than the 2.25 in. (5.715 cm) desired, but the materials did serve the 

main purposes of the design of trapping air into small chambers and being able to be tested in both 

inflated and deflated states. In order to reach the total thickness needed for the inflated state of the thermal 

semiconductor, thin pieces of Bubble Wrap-like material were layered on top on each other.  
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 Although layering thin pieces of honeycomb-like material together does not truly produce an 

inflatable thermal semiconductor device that could actually be used at this time, it does allow for "proof-

of-concept" testing of an inflatable honeycomb-like smart insulation device that could significantly 

change its thermal conductivity when actuated. In addition, the performance of the conducting state of the 

inflated thermal semiconductor could also be determined by deflating all of the layers collectively and 

testing to see whether or not high thermal conduction can be achieved through the now deflated, 

extremely thin structure. After completing the basic design, two very similar types of inflated 

honeycomb-like thermal semiconductors using two different types of materials were fabricated for 

testing. 

 
2.4.3 Reflectix Inflatable Thermal Semiconductor  

 
Two materials were found commercially that were utilized to fabricate two inflated honeycomb-like 

thermal semiconductor devices. Both of the materials were very similar in construction and appearance to 

Bubble Wrap, which is a clear plastic material often used in packaging. The first type of inflated smart 

insulation device was constructed using Reflectix bubble wrap building insulation. The primary 

application of Reflectix is as a radiant barrier in an attic space to greatly reduce the radiation heat transfer 

between the attic space and the outside roof or exterior environment. The insulation has also been 

designed for a secondary application as thermal insulation to stop conduction and convection heat transfer 

that can be used in many areas of the home on top of conventional building insulation with R-values 

ranging from 3.0 to 18 ft2 F-hr/Btu (0.5 to 3.2 m2 K/W) depending on the application.  Reflectix insulation 

is composed of two layers of 96% reflective metalized aluminum foil separated by two horizontal rows 

containing many small, ellipsoid-shaped air spaces. The honeycomb-like air spaces in Reflectix building 

insulation are about 1/4 in. (0.635 cm) in thickness with a diameter of about 3/8 in. (0.953 cm). A side-

view of one layer of the Reflectix building insulation composition is given in Figure 52, while a top view 

is given in Figure 53. 
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Figure 52: Side-View of One Layer of Reflectix Building Insulation. 

 

 
 
 

Figure 53: Top-View of One Layer of Reflectix Building Insulation. 

 

By trapping air into tiny chambers between the two aluminum foil sheets, the Reflectix insulation is able 

to provide the honeycomb-like structure needed for the inflatable thermal semiconductor design.  

 When purchased Reflectix building insulation is sold as a coil containing a very long continuous sheet 

of insulation. Since the air spaces in the insulation were not joined at any points vertically or horizontally 

to each other, the Reflectix insulation could be cut into 13.25 x 13.25 in. (0.337 x 0.337 m) pieces to be 

layered as shown in Figure 53 earlier. Nine pieces of Reflectix insulation were layered on top of one other 

to obtain approximately the 2.25 in. (5.715 cm) total thickness for the inflatable honeycomb-like thermal 
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semiconductor design. Some very thin air spaces between the Reflectix building insulation pieces did 

occur in the final prototype after layering, but they did not pose a problem because they were only a very 

small fraction of the thickness of than the actual layers of Reflectix insulation. A photo of the completed 

Reflectix inflatable honeycomb-like thermal semiconductor in its inflated, insulating configuration can be 

seen below in Figure 54. A close-up side-view of the completed Reflectix inflatable thermal 

semiconductor is also given in Figure 55 to show how the nine pieces were layered together.  

 

 
 
 

Figure 54: Reflectix Inflatable Thermal Semiconductor Prototype in its Insulating Configuration. 

 

 
 

 
 
 

Figure 55: Close-Up View of Reflectix Inflatable Thermal Semiconductor in its Insulating State. 
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 In order to develop a second Reflectix inflatable thermal semiconductor prototype in a deflated, 

conducting state, nine additional pieces of Reflectix building insulation were cut to the same dimensions 

specified beforehand. Then, each of the nine layers of insulation was deflated by popping the Bubble-

Wrap-like air spaces in each individual layer to allow the air to escape. Figure 56 gives an image of the 

fabricated Reflectix inflatable thermal semiconductor prototype in its deflated, conducting state, while a 

close-up side-view of the Reflectix thermal semiconductor in its conducting state is also given in Figure 

57. Although as much air as possible was removed from the deflated layers of Reflectix insulation as 

possible, some air did remain trapped due to the difficulty in removing the air from the many small 

individual air spaces between the two aluminum sheets. The final deflated Reflectix smart insulation 

prototype completed had a total thickness of 1.125 in. (2.858 cm), which was half of the original 

thickness of the inflated Reflectix smart insulation device. The reduction in thickness from deflating the 

Reflectix thermal semiconductor was not as large as expected due to the thickness of the sheets of 

aluminum foil, the amount of plastic left over after deflating the air spaces, and some leftover air that 

could not be removed from the insulation layers. If the Reflectix smart insulation prototype was actually 

implemented in the walls and/or roof of a building, a vacuum pump would likely be utilized to inflate and 

deflate the insulation when needed instead of manually deflating the honeycomb-like spaces in each layer 

to produce a deflated prototype. With a vacuum pump, the air inside of the Reflectix smart insulation 

would be much more effectively suctioned out of the insulation, leaving little leftover air in the device 

and producing a greater reduction in thickness of the Reflectix thermal semiconductor. In Figure 58, the 

inflated and deflated Reflectix thermal semiconductor prototypes are shown side-by-side for comparison 

to demonstrate the change in thickness that could be obtained if the honeycomb-like structure of the 

Reflectix building insulation could be inflated and deflated to switch between conducting and insulating 

states. 
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Figure 56: Reflectix Inflatable Thermal Semiconductor Prototype in its Conducting Configuration. 

 

 
 
 

Figure 57: Close-Up View of Reflectix Inflatable Thermal Semiconductor in its Conducting State. 

 

 

 
 
 

Figure 58: Side-by-Side Comparison of Reflectix Inflatable Thermal Semiconductor Inflated and Deflated 
Prototypes. 
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2.4.4 NOVUS Inflatable Thermal Semiconductor  

 
One of the main problems of the Reflectix inflatable thermal semiconductor device was the lack of 

change in thickness when the device is deflated. Ideally, an inflatable smart insulation device would be 

able to be deflated from the 2.25 in. (5.715 cm) thickness to an extremely small thickness. The main focus 

then in the fabrication of the second inflatable honeycomb-like thermal semiconductor was to find a 

material that functioned in a similar manner to the Reflectix insulation material, while being able to 

demonstrate a much larger change in thickness between states and thus, a much larger change in thermal 

conductivity between states. Eventually, a suitable material was found in the NOVUS inflatable bubble-

wrap-like packaging material.  

From the several different types of NOVUS inflatable packaging systems available, the type named 

“quilt, air-smooth” was chosen because it had the smallest air spaces needed for the honeycomb-like 

structure of the thermal semiconductor. The NOVUS inflatable packaging system utilizes a machine that 

prints out bubble packaging material in thin sheets by inserting a very thin polyethylene film material 

with a thermal conductivity of 0.33 W/m-K into the machine and inflating rows of circular air spaces in 

one direction connected by small passageways. In the opposite direction, the circular air spaces are not 

joined together at any point. Also, unlike the Reflectix building insulation used earlier, only one row of 

Bubble-Wrap-like air spaces make up the material instead of two rows stacked on top of one another. 

After inflating small pieces of packaging that were slightly larger in dimension than the 13.25 x 13.25 in. 

(0.337 x 0.337 m) size used in the prototypes beforehand, the machine would seal the air spaces at the end 

of the piece of packaging and start inflating the air spaces of the next piece. This resulted in a very long 

continuous coil of packing that was about 13.25 in. (0.337 m) wide, consisting of many smaller pieces 

with long rows of circular air spaces that were each slightly larger than 13.25 in. (0.337 m) in length. 

Depending on how much packaging is needed for shipping a certain good, the smaller pieces of the 

packaging could be easily torn from the long continuous coil. Many companies purchase NOVUS 

inflatable packaging machines so they can produce their packaging on-site when needed. The only 
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packaging material that needs to be continually purchased with the NOVUS system is the thin 

polyethylene film, which is much easier to store and transport when deflated than other types of 

packaging that has already been inflated with air. Whenever a company needs packaging, their NOVUS 

packaging system can inflate whatever amount is needed, and the packaging will be at maximum 

effectiveness, since it was just inflated.  

Several individual pieces of the NOVUS packaging material were torn from the thirty-foot long coil 

and were cut to the desired dimensions of 13.25 x 13.25 in. (0.337 x 0.337 m). The individual circular air 

spaces of the pieces, which had the appearance of large Bubble-Wrap, were ½ in. (1.27 cm) in diameter 

and 0.45 in. (1.143 cm) in thickness. The total thickness of the 13.25 x 13.25 in. (0.337 x 0.337 m) pieces 

overall was taken to be 0.45 in. (1.143 cm) because the thickness of the thin plastic material of the 

packaging was negligible when compared to the thickness of the air spaces. A top-view of one layer of 

the NOVUS packaging thermal semiconductor in its inflated state is given in Figure 59. 
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Figure 59: Top-View of One Layer of NOVUS Packaging Material. 

 

As seen in Figure 59, the NOVUS packaging material is closer than the Reflectix building insulation 

material to the inflatable honeycomb-like structure eventually desired for an inflatable thermal 

semiconductor in that it does feature the small holes between air spaces to allow air to flow from space to 

space for inflation or deflation, albeit in only one of the eventually three desired dimensions.   

 To produce an inflated NOVUS thermal semiconductor prototype with the consistent overall 

thickness of 2.25 in. (5.715 cm) used for all of the previous prototypes, layering of the NOVUS 

packaging material was utilized again. Fewer layers were required; however, than for the Reflectix 

building insulation, since the inflated NOVUS packaging material is much thicker than the Reflectix 

material. Eventually, five layers of NOVUS packaging material were used. A photo of the completed 
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NOVUS inflatable honeycomb-like thermal semiconductor in its inflated, insulating configuration can be 

seen below in Figure 60. A close-up side-view of the completed NOVUS inflatable thermal 

semiconductor is also given in Figure 61 to show how the five pieces were layered together.  

 

 
 
 

Figure 60: NOVUS Inflatable Thermal Semiconductor Prototype in its Insulating Configuration. 

 

 
 
 

Figure 61: Close-Up View of NOVUS Inflatable Thermal Semiconductor in its Insulating State. 

 

 After the first prototype of the NOVUS smart insulation device was fabricated in its inflated 

configuration, a second prototype was also built for the deflated configuration. Again for fabrication, five 

layers of NOVUS packaging material of the same dimensions were cut and layered on top of one another. 

Before layering the five layers were deflated by inserting a needle into each row of air bubbles to make 

one tiny hole in one of the bubbles. Once a tiny hole was made in one of the bubbles, the entire row of air 
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spaces was able to be deflated, since all of the bubbles were interconnected. Figure 62 gives an image of 

the fabricated NOVUS inflatable thermal semiconductor prototype in its deflated, conducting state, while 

a close-up side-view of the NOVUS thermal semiconductor in its conducting state is also given in Figure 

63. Unlike the Reflectix smart insulation the NOVUS thermal semiconductor did exhibit a very large 

change in thickness once deflated, with a final deflated thickness of between 1/4-3/8 in. (0.635-0.953 cm) 

compared to the initial thickness of 2.25 in. (5.715 cm) depending on how amount of air was present 

between the layers of packaging.  

 

 
 
 

Figure 62: NOVUS Inflatable Thermal Semiconductor Prototype in its Conducting Configuration. 

 

 
 
 

Figure 63: Close-Up View of NOVUS Inflatable Thermal Semiconductor in its Conducting State. 

 

In Figure 64 the inflated and deflated NOVUS thermal semiconductor prototypes are shown side-by-side 

for comparison to demonstrate the change in thickness that could be obtained if the honeycomb-like 
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structure of the NOVUS smart insulation could be inflated and deflated to switch between conducting and 

insulating states. 

 
 

 
 
 

Figure 64: Side-by-Side Comparison of NOVUS Inflatable Thermal Semiconductor Inflated and Deflated 
Prototypes. 

 

 
While the NOVUS inflatable thermal semiconductor had a major advantage over the Reflectix 

inflatable thermal semiconductor because of its ability to drastically change its thickness and thus, 

thermal conductivity between its conducting and insulating states, it does also have a major drawback. 

The honeycomb-like air spaces of the NOVUS smart insulation device are much larger than those of the 

Reflectix inflated prototype, which will result in much greater natural convection within the air spaces 

and a higher heat transfer overall for the NOVUS inflated prototype. This means that the even though the 

NOVUS thermal semiconductor will have a much higher thermal conductivity in its conducting state 

since it is much thinner than the Reflectix thermal semiconductor, it will also not function as well as an 

insulator due to the higher levels of natural convection.  

 
2.4.5 Variations of the Inflatable Thermal Semiconductor  
 
 
 During the experimental testing of the NOVUS inflatable thermal semiconductor prototypes, the 

thermal conductivities for the device in its deflated, conducting state were found to be lower than 

expected. The reason behind this result was determined to be the small air spaces that were present 

between the layers of the thermal semiconductor prototypes. The air spaces in the NOVUS deflated 
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prototype in particular proved to be a problem because the air spaces between the layers were larger than 

the actual layers of deflated NOVUS packaging.  To solve the problem of the small air spaces between 

layers in a real-world building setting, a vacuum pump would be used to more effectively suction the air 

out of the NOVUS smart insulation device during deflation, which would also result in the layers of  

plastic containing the air spaces in the NOVUS packaging to be compressed together. In order to easily 

compress the NOVUS packaging layers in the laboratory setting of the experimental testing, pressure was 

applied using two 1/8 in. (0.318 cm) aluminum alloy 6061 plates fabricated with the same thickness as the 

top and bottom plates of the shifting fins thermal semiconductor prototype. The two plates were then 

placed above and below the layers of NOVUS smart insulation to compress them to reduce the air spaces 

between layers.  Figures 65 and 66 give images of the NOVUS inflatable thermal semiconductor with 

aluminum plates in both its insulating and conducting configurations. 

 

 
 
 

Figure 65: NOVUS Inflatable Thermal Semiconductor Prototype with Aluminum Plates for Compression 
in its Insulating State. 

 
 
 

 
 
 

Figure 66: NOVUS Inflatable Thermal Semiconductor Prototype with Aluminum Plates for Compression 
in its Conducting State.
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3.0 INSULATION TEST CHAMBER FABRICATION AND EXPERIMENTAL SET-UP 

 
 
 
 
To evaluate the performance of the smart insulation prototypes, many experiments were conducted to 

analyze the heat transfer and thermal conductivity across the devices in both their conducting and 

insulating configurations. The main focus used in the design of the experimental testing set-up was to 

design a set-up that would reproduce the conditions the smart insulation devices would be under if 

implemented in a real-world building setting. During the course of the development of the smart 

insulation prototype testing procedure, it was also determined that the experimental test set-up should 

focus primarily on representing the roof area of buildings, while in the experiments themselves both 

constant temperature and constant heat flux conditions would be applied to the smart insulation 

prototypes to simulate real-world temperature gradients across the insulation.  

 The first step in developing the experimental testing set-up for the smart insulation prototypes was to 

design an insulation test chamber that could produce the desired testing conditions for the thermal 

semiconductor devices on the inside, while isolating the thermal semiconductor prototypes from the 

outside ambient conditions of the laboratory. Next, equipment and computer software was chosen and 

obtained for the collection of the experimental data measured during the testing to complete the basic 

experimental set-up. In order to prove that the insulation test chamber sufficiently isolated the interior 

smart insulation devices from the exterior environment, several tests were conducted with a heat source 

placed inside an empty test chamber to measure the amount of heat that was escaping from the chamber 

over a long period of time. Once it was shown that the performance of the insulation test chamber was 

satisfactory, each of the different smart insulation prototypes was tested in both its conducting and 

insulating states for both constant temperature and constant heat flux conditions. To allow the smart 
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insulation prototypes to be compared more easily to conventional insulation and to each other, an 

additional test piece composed of a conventional type of building insulation was also constructed and 

tested.  

 
 
 

3.1 SMART INSULATION TEST CHAMBER DEVELOPMENT 
 

 
3.1.1 Insulation Test Chamber Interior Design 
 
 
The first step of the design of the smart insulation test chamber was to decide on the dimensions required 

for the inner chamber and the overall configuration of the inner chamber needed to reproduce the 

conditions the smart insulation prototype would be under if implemented in an actual building setting. 

Two dimensions of the inner chamber, the length and the width, were already constrained to closely 

match the dimensions of the smart insulation prototypes for a tight fit between the devices and the inner 

chamber walls. To achieve a tight fit, a value of 13 1/2 in. (0.343 m) was utilized for the length and width 

of the inner chamber to give a small spacing of 1/8 in. (0.318 cm) between the 13.25 x 13.25 in. (0.337 x 

0.337 m) smart insulation prototypes and the insulation chamber walls. The location of actual buildings 

that the smart insulation test chamber would most closely recreate for testing was chosen to be the attic, 

since it was the easiest to test and was determined to be the building location where smart insulation 

would likely be easiest to implement with the greatest short-term payback. In order to test cases 

mentioned before where smart insulation would be very beneficial, such as the sunny winter day and cool 

summer evening cases, two air spaces would be included in the inner test chamber design above and 

below the smart insulation prototypes. The bottom air space would represent the hot side of the smart 

insulation devices and contain a heat source, while the top air space would represent the cold side of the 

devices.  

 The bottom air space of the smart insulation test chamber consisted of a heat source, a thin layer of 

cork, and a 1.5 in. (3.81 cm) air gap between the heat source and the bottom of the thermal semiconductor 
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device being tested. The main purpose of the bottom air space and heat source was to reproduce the hot 

side of the device for all possible cases. For example, in the sunny winter day case, the bottom air space 

would reproduce the heating caused by thermal radiation on the roof of a building by having the heat 

source provide a constant heat flux to the hot side of the smart insulation prototype. For the cloudy winter 

day case, however, the bottom air space would switch roles to instead represent the warm building interior 

compared to the cold exterior roof by having the heat source maintain a constant warm temperature for 

the hot side of the smart insulation prototype. Similarly, the conditions of the hot side of the two summer 

cases of a cool summer evening and hot summer day could also be reproduced by the bottom air space. In 

the cool summer evening case the bottom air space would represent the hot interior building environment 

by maintaining a constant hot temperature compared to the cool outside environment, and in the hot 

summer day case the bottom air space would switch roles again to mimic the hot outside environment 

compared to the much cooler, likely air-conditioned, rooms of the building.  The heat source chosen for 

the insulation test chamber was a Kapton (Polyimide film) Insulated Flexible Heater, consisting of an 

etched foil element of 0.0005 or 0.0001 in. (0.0127  or 0.00254 mm) thickness that is sealed between two 

layers of 0.002 in. (0.0528 cm) polyimide film and 0.001 in. (0.0254 cm) FEP adhesive. Among the 

different Kapton heaters available, the specific model of Kapton heater chosen was the 1212, which is a 

rectangular heater with a resistance of 9.2 Ω and a power density of 10 W/in2, which results in a 

maximum power output of 1440 W for an input voltage and current of 115 V AC and 12.52 A 

respectively. The 1212 Kapton Insulated Flexible Heater was chosen as the heat source because it would 

be able to provide the amount of heating necessary for the testing, it was extremely thin since it was only 

0.010 in. (0.254 cm) thick, it was relatively low cost, and it was the largest size heater available. Below 

the heat source a 12 x 12 in. (0.3 x 0.3 m) cross-sectional area, thin (1/2 in. (1.27 cm)) layer of semi-rigid 

cork insulation was used for safety purposes to help prevent the material of the insulation test chamber 

itself underneath the heater from melting or overheating if something caused the Kapton heater to 

overheat. Cork was chosen as the material to place underneath the heating element because of its 

remarkably high tolerance to heat [28]. To enable high heat transfer between the Kapton heat source and 
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the hot side of the smart insulation prototype, the bottom air space thickness had a small height of 1 1/2 

in. (3.81 cm) thick. Adding in the 1/2 in. (1.27 cm) thickness of the cork insulation layer to the bottom air 

space thickness resulted in a final height of two inches (5.08 cm) needed below the smart insulation 

prototype. In order to elevate the thermal semiconductor prototypes above the Kapton heater, a shelf 

composed of a very low thermal conductivity polyisocyanurate foam building insulation was constructed 

by cutting large sheets of the foam insulation. A low thermal conductivity material was necessary for the 

shelf to prevent conduction heat transfer from occurring between the heat source and the high temperature 

side of the smart insulation devices, since only convection heating would be utilized. The thickness of the 

polyisocyanurate building insulation was 0.75 in. (1.91 cm), which allowed the shelf to fit exactly around 

the 12 x 12 in. (0.3 x 0.3 m) Kapton heater in the 13.5 x 13.5 in. (0.343 x 0.343 m) test chamber interior. 

Figure 67 gives an image of the bottom air space in the final fabrication of the insulation test chamber.  

 

 

 
Figure 67: Bottom Air Space of the Smart Insulation Test Chamber with Kapton Heater Heat Source. 

 

 While the hot side of the thermal semiconductor devices will be sitting on top of the shelf facing the 

bottom air space below, the top cold side of the devices will be facing another much larger top air space. 

The major reason the bottom air space had to be kept very small was to expedite the heating of the 
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bottom, hot side of the smart insulation devices by the heat source, but no such requirement existed for 

the top air space, since it represented the cold side of the smart insulation prototypes. The height of the 

top air space was set to a value of 6 in. (15.24 cm), giving a total height of the test chamber interior of 

10.25 in. (26.04 cm) once the heights of the shelf, smart insulation prototype devices, and top air space 

have been added. During the course of the experimental testing, however, the top air space height 

sometimes had to be increased or decreased in accordance with changes in the thickness of the thermal 

semiconductor devices. For example, when the NOVUS inflatable thermal semiconductor device was 

deflated the thickness was decreased to much less than the 2.25 in. (5.715 cm) thickness of its inflated 

configuration, which meant that the top air space height increased due to  the decrease in the thickness of 

the smart insulation prototype. As with the rest of the test chamber interior, the top air space had a square 

cross-sectional area of 13.5 x 13.5 in. (0.343 x 0.343 m). An image of the entire smart insulation test 

chamber interior with a thermal semiconductor prototype inserted can be seen below in Figure 68. 

 

 
 
 

Figure 68: Insulation Test Chamber Interior with Smart Insulation Prototype Inserted. 
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 The basic goal of all of the experimental tests that were run using the various smart insulation devices 

developed was to measure the level of heat transfer across the devices from the hot side to the cold side in 

order to compare between the prototypes' conducting and insulating states and between the prototypes 

themselves.  

 
3.1.2 Insulation Test Chamber Overall Design and Fabrication 
 

 
After the interior of the insulation test chamber had been designed and dimensioned, the next step was to 

design and fabricate the outer pieces of the insulation test chamber. The test chamber would be composed 

of many pieces of a very high R-value foam building insulation adhered together to form the structure. 

The first major decision of the design was to make the conventional foam building insulation around the 

interior test chamber at least five inches (12.70 cm) thick in all directions with a total R-value of at least 

20 ft2 F-hr/Btu (3.52  m2 K/W) . This was estimated to be enough insulation to sufficiently prevent any of 

the heat emitting from the heat source from leaking out of the test chamber to the laboratory environment 

instead of heating up the bottom air space and hot side of the smart insulation devices as desired. 

Eventually, a suitable foam building insulation was found in Dow Building Solutions Super TUFF-R 

polyisocyanurate foam insulation, which consists of a closed-cell polyisocyanurate foam core sandwiched 

between an aluminum foil spacer and a Super Tri-Plex facer, which is a three-ply laminate of durable 

polyester, kraft, and reinforced aluminum foil. The main reasons why the Super TUFF-R building 

insulation was chosen over other types of foam insulation are its low cost and a very high R-value of 5 ft2 

F-hr/Btu (0.9 m2 K/W) for each 0.75 in. (1.27 cm) layer. Fiberglass insulation was also considered as a 

building material for the insulation test chamber, but it was determined that it would be much more 

difficult to work with than the foam types of building insulation.  

Similarly to the Bubble-Wrap-like smart insulation devices fabricated earlier that were layered to 

achieve the desired thickness, the Super TUFF-R building insulation was also layered to achieve the 

desired insulation thickness of the test chamber of at least five inches. To join the layers of the Super 

TUFF-R foam building insulation together, Loctite PowerGrab Foamboard Construction Adhesive was 
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utilized because it is designed specifically as an adhesive for materials such as foam building insulation, 

giving a very solid attachment between layers without destroying the foam insulation as with other types 

of adhesives. Before layering was done each of the different layers were cut with a utility knife to the 

necessary dimensions from very large sheets of polyisocyanurate building insulation. Since each of the 

polyisocyanurate foam insulation layers was 0.75 in. (1.91 cm) thick, seven layers were required to obtain 

the minimum five inch (12.70 cm) overall thickness. After adding together the individual layers’ R-values 

of 5 ft2 F-hr/Btu (0.9 m2 K/W) , a total R-value of 35 ft2 F-hr/Btu (6.2 m2 K/W) for a final layered foam 

insulation thickness of 5.25 in. (13.34 cm) was calculated; this was nearly double the original desired R-

value of 20 ft2 F-hr/Btu (3.52  m2 K/W) , showing that the polyisocyanurate foam insulation allows the 

test chamber design to greatly exceed expectations. Figure 69 shown illustrates how seven layers were 

used to fabricate the front piece of the insulation test chamber. 

To fabricate the final insulation test chamber six layered components were utilized: the bottom wall, 

the front wall, the back wall, the top wall, and two side walls. Each of the six walls was constructed by 

cutting out sections of the polyisocyanurate foam insulation to the necessary dimensions and layering 

them together. Much care was taken to achieve as close to the correct dimensions as possible to ensure 

that the six walls would fit tightly together in the final fabrication of the test chamber without gaps. In 

order to be able to open and close the insulation test chamber to allow the different smart insulation 

 

 
 
 

Figure 69: Front Wall of Insulation Test Chamber showing Seven Layers Bonded Together. 
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prototypes to be switched in and out, the front wall of the chamber was designed to be removable. In 

addition, the top wall of the chamber was also designed to be removable as well so that the smart 

insulation devices could be examined from a top-view during testing if the test chamber was left open. 

The other four wall of the final insulation test chamber constructed would be adhered to each other 

permanently using the Loctite PowerGrab Foamboard Construction Adhesive that was also used to layer 

together the polyisocyanurate foam to build the six walls. Figures 70 and 71 give a side-view and a front-

view of the final insulation test chamber to show how the six walls of the final test chamber design fit 

together.  

 Whenever the insulation test chamber needed to be sealed shut, four ratcheting straps were utilized 

that would compress the front and top removable walls so that the two walls were joined together very 

tightly with the rest of the test chamber. In addition, front and top polyisocyanurate foam frames were cut 

out and glued with the construction adhesive to the other four walls of the insulation test chamber already 

constructed. The main purpose of the two frames was to provide a very smooth surface for the front and 

top removable walls to be compressed with, which would result in a very airtight seal between the walls 

when the chamber is closed, reducing heat losses from the test chamber to the environment. Although the 

top removable wall of the insulation test chamber would just lie on top of the top frame, the front 

removable wall also had an additional small foam section added to it that would fit very tightly in  
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Figure 70: Side-View of Final Insulation Test Chamber Fabricated showing How Individual Walls  
Fit Together.  

 
 
 

 
 
 

Figure 71: Front-View of Final Insulation Test Chamber Fabricated showing How Individual Walls 
Fit Together. 
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the front frame opening to provide an even better seal when the test chamber was closed. One problem 

that did arise with the ratcheting straps early on was their compressing of the corners of the foam 

chamber, which was causing damage to the foam layers of the chamber. To solve this problem L-shaped 

angle brackets were used at the corners of the test chamber where the ratcheting straps were compressing 

the structure to keep the foam itself from being damaged. Figure 72 shows how the L-shaped angle 

brackets were glued with the construction adhesive to the corners of the foam of the insulation test 

chamber. An image is also given in Figure 73 that shows how the front removable wall fits together with 

the front frame of the test chamber, while another image shown in Figure 74 illustrates how the top 

removable wall fits together with the top frame of the chamber. 

 

 
 
 

Figure 72: L-shaped Metal Angle Bracket Applied to Corner of Front Removable Wall. 

 

 One final feature of the insulation test chamber was the addition of two one inch (2.54 cm) diameter 

holes in the front and top removable walls. The two purposes of these two holes was to allow the many 

thermocouples used during the testing for acquiring temperature data to pass outside of the chamber to the 

data acquisition equipment and to allow the power cables for the Kapton heater to pass outside of the 
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chamber to the power supply. To lower the amount of heat leaking out of the two holes from the chamber 

interior, two small 1/2 in. (1.27 cm) diameter foam plugs were constructed by layering small circular 

pieces of polyisocyanurate foam with construction adhesive to fill up any empty air space present in the 

front and top holes in the chamber. Figure 75 shows both the front and top thermocouple holes cut out of 

the front and top removable walls, and the final fabricated insulation test chamber with the front and top 

walls closed shut is also given in Figure 76. The final dimensions of the entire insulation test chamber 

when it was sealed shut were 2.125 x 2 x 1.75 ft. (0.648 x 0.610 x 0.533 m). 

 

 
 
 

Figure 73: Process of How Front Removable Wallis used to Open and Close Test Chamber. 
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Figure 74: Process of How Top Removable Wall is used to Open and Close Test Chamber. 

 

 

 

a) b) 
 
 
Figure 75: Locations of Thermocouple Holes: a) Front Thermocouple Hole; b) Top Thermocouple Hole. 
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Figure 76: Final Fabricated Insulation Test Chamber with Front and Top Removable Walls Closed. 

 
 
 

3.2 EXPERIMENTAL DATA ACQUISITION AND TESTING SET-UP 

 
3.2.1 Temperature Measurement  
 

 
The main goal of the testing of the smart insulation prototypes was to measure the temperatures of the hot 

and cold sides of the devices, as shown in Figure 68, so that the temperature difference, ΔT, over the 

smart insulation devices could be calculated. Once the temperature differences over the thermal 

semiconductor devices was calculated for the devices' insulating and conducting configurations, the 

changes in thermal conductivity of the different devices would be analyzed and compared with one 

another to determine which smart insulation concepts had the best performance. In order to measure the 

temperature differences across the thermal semiconductor devices, the temperatures of the devices' hot 

and cold sides would need to be measured. 24 gauge Type K chromel/alumel thermocouples with 

2.125 ft. (0.648 m) 

1.75 ft. (0.533 m) 

2 ft. (0.610 m) 
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fiberglass insulation were chosen as the temperature measurement sensor because they are considered the 

most general purpose type of thermocouple and because of their low cost. The range of type K 

thermocouples is from -200 °C to +1200 °C, which makes them very suitable for the smart insulation 

testing, since the experiments will only involve temperatures in the much narrower range from roughly 20 

°C to 50 °C. The Type K thermocouples used in the thermal semiconductor experiments were constructed 

in the laboratory from Type K thermocouple wire using a thermocouple arc-welder. A total of sixteen 

thermocouples were fabricated for use in the experimental testing.  

 
3.2.2 Thermocouple Placement 
 
 
All of the smart insulation experimental tests utilized the same general locations for the Type K 

thermocouples for the temperature measurements. Within the 1 1/2 in. (3.81 cm) hot side air space below 

the smart insulation devices, two thermocouples would be used with one of the thermocouples placed as 

close as possible to the Kapton Insulated Flexible Heater surface without touching it in order to measure 

the heater temperature during the testing. For the second thermocouple a 13.5 in. (0.343 m) piece of wire 

was placed at the center of the hot side air space both horizontally and vertically by inserting each end of 

the wire into the corresponding shelf on each side for support. The shelf was then able to support wire in 

mid-air, allowing the second thermocouple to be wrapped around the wire and suspended in mid-air at the 

midpoint of the hot side air space horizontally and vertically as well. The main purpose of the second 

thermocouple was to measure the air temperature of the hot side air space, which would also be used as 

the temperature to be kept constant for all of the constant temperature testing. A picture of the hot side air 

space with the locations of its two thermocouples can be seen below in Figure 77.  
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Figure 77: Hot Side Air Space Thermocouple Placement. 

 

 In a similar manner to the hot side air space, the cold side air space above the thermal semiconductor 

prototypes in the insulation test chamber would also utilize two thermocouples for temperature 

measurement. One of the thermocouples was always placed at the center of the cold side air space 

halfway between the top of the chamber interior and the cold side of the smart insulation prototypes to 

measure the cold side air space temperature during the testing. The thermocouple at the center of the cold 

side air space did not need to actually be mounted. Since the thermocouple was inserted through the top 

thermocouple hole downward into the chamber and the wire was fairly rigid, the thermocouple was able 

to stay hanging in place during the test once it was positioned where needed.  The other thermocouple 

was mounted using a small piece of electrical tape onto the bottom of the top removable wall facing the 

chamber interior near the center of the chamber to measure the temperature at that location. Figure 78 

shown provides an image of locations of the two thermocouples in the cold side air space of the test 

chamber.  
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Figure 78: Cold Side Air Space Thermocouple Placement. 

 

 The majority of the thermocouples used during the experimental testing of the smart insulation 

prototypes were mounted to the hot and cold sides of the prototypes so that the temperature difference 

across the smart insulation devices could be quantified. Generally, for all of the different smart insulation 

prototypes, five thermocouples were mounted to each of the two sides of the devices with one 

thermocouple mounted near the center and the other four thermocouples mounted near the four corners. 

The exact placement of the thermocouples on each side of the smart insulation devices for each of the 

different prototypes will be discussed in later sections of this thesis. In order to mount the thermocouples 

to the plates of the shifting fins thermal semiconductor devices, Omega CC high temperature cement was 

used by applying high temperatures to bond the thermocouples with the cement to the plates of the 

devices. Later, for the inflatable thermal semiconductor prototypes, the Omega CC high temperature 

cement would prove to not be feasible for mounting the thermocouples to the hot and cold sides of the 

prototypes because the high temperatures needed to mount the thermocouples using the cement would 

have melted the plastic Bubble-Wrap material the prototypes. Instead, electrical tape was utilized to bond 

the thermocouples to the inflatable smart insulation devices. Additional testing of the shifting fins thermal 

semiconductor prototypes using electrical tape mounted thermocouples instead of cement mounting 

thermocouples showed no differences in the temperatures that were measured during testing. Thus, it was 

assumed that electrical tape was a sufficient method of mounting thermocouples to the smart insulation 
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devices and it was utilized for all subsequent testing. The general placement of the thermocouples on the 

hot and cold sides of the thermal semiconductor devices can be seen using the Reflectix inflatable thermal 

semiconductor prototype shown in Figure 79.  

 

 
 
 

Figure 79: Reflectix Inflatable Smart Insulation Prototype Showing the General Thermocouple Placement 
on the Hot and Cold Sides of the Smart Insulation Devices. 

 
 
 

The two final Type K thermocouples made were mounted using electrical tape on the exterior of the 

insulation test chamber near the front and top thermocouple holes during all of the experimental tests 

conducted to help measure any heat escaping from the chamber through the two small openings.  

 
3.2.3 Temperature Measurement Data Acquisition 
 
 
Once the sixteen thermocouples for the experimental testing were made and mounted in the chosen 

locations of the insulation test chamber, four National Instruments 9211A data acquisition modules were 

utilized in conjunction with the National Instruments (NI) Labview 8.0 software to collect the 

thermocouple data being measured and convert it from the actual voltage values being measured to the 
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corresponding temperature values. Each NI 9211A module was designed specifically for thermocouple 

data acquisition with USB connectivity and featured four channels for thermocouples, so the four NI 

9211A modules together were able to collect data for the sixteen thermocouples mounted at various 

locations in the testing set-up. In addition, sensors are also included in the NI 9211A for internal cold-

junction compensation, eliminating the need for any type of outside cold-junction measurements, such as 

an ice water bath. After the thermocouple data was read into the device through the four channels, a signal 

conditioning circuit and analog-to-digital converter (ADC) were used to convert the analog voltages being 

measured directly by the thermocouples into digital voltage values that could be used by the Labview 8.0 

software.  

 Within the Labview program written for the insulation test chamber thermocouple measurement 

collection, the sample rate of the NI 9211A data acquisition was set to 0.1 minutes or 0.6 Hz. At first 

glance this seems to be a very slow sample rate, but for the up to six hour length of the smart insulation 

tests, the 0.6 Hz sample rate was sufficient. Sample rates higher than 0.6 Hz also resulted in 

overwhelming large data files being saved when the tests were completed, which was another reason why 

the sample rate was kept fairly low. Once the Labview smart insulation program was finished, the main 

features of the front panel were numerical displays for the instantaneous temperature values being 

measured for the insulation test chamber rig and graphical displays so that the change in the temperature 

values of the thermocouples over the entire length of the test being run could be examined. After each of 

the smart insulation tests, the temperature data collected from the thermocouples was outputted to a data 

file for later examination. 

 
3.2.4 Kapton Heater Equipment and Temperature Control of Bottom Air Space 
 
 
Several pieces of equipment were needed in the experimental test set-up to provide the correct levels of 

heating and power to the Kapton Insulated Flexible heater. First, a Kepco JQE 55-10 M DC power supply 

capable of providing up to 55 V and 10 A of current was acquired for powering the heater. Initially, the 

dials on the power supply for setting the voltage and current levels were used to record the voltage and 
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current running through the heater during the testing, but the voltage and current levels given on the 

power supply itself proved to not be very accurate. Thus, two multimeters were added to the test set-up to 

provide more accurate heater current and voltage measurements: a TENMA True RMS 72-410A digital 

multimeter for measuring the output voltage of the power supply and a Triplett 9010 handheld ammeter 

for measuring the current outputted by the power supply. Using the two multimeters, the voltage and 

power levels for each of the different smart insulation prototype tests was closely monitored and recorded 

by hand at several different times during the testing.  

 The last major concern involving the experimental testing set-up was how to control the hot side air 

temperature for the constant temperature tests that would be run. Many of the real-world cases mentioned 

before to be tested in the insulation test chamber involved the bottom air space on the hot side of the 

smart insulation prototypes having a constant temperature value during the testing. For example, in the 

clear summer evening case the warm building interior would be represented by the bottom, hot side air 

space at a constant hot temperature, while the outside cool night environment would be represented by the 

top, cold side air space of the test chamber. For the constant temperature tests the thermocouple placed at 

the center of the hot side air space suspended in mid-air on a wire was chosen as the temperature to be 

controlled. During all of the constant temperature thermal semiconductor tests, the hot side air space 

thermocouple would be controlled to be a constant temperature value of 100 OF (37.78 OC) using bang-

band control with the Labview 8.0 software and a MaxxTronic MXA017 four-channel relay card. Within 

the Labview software the temperature measured by the hot side air space thermocouple would constantly 

be compared to the required constant temperature value of 100 OF (37.78 OC)  to keep the thermocouple at 

that temperature once it was reached after the initially heating up of the test chamber. If the hot side air 

space temperature was below 100 OF (37.78 OC), Labview would produce a “true” digital output via a NI 

6008 DAQ device to be sent to the MaxxTronic MXA017 relay card to open the relay and allow the 

current from the DC power supply to pass through the relay into the Kapton heater so the hot side air 

space could continue to be heated to 100 OF (37.78 OC). Eventually, once the hot side air space 

thermocouple was heated to a value greater than 100 OF (37.78 OC), Labview would then produce a 
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“false” digital output via the NI 6008 DAQ device to be sent to the relay card to close the relay and stop 

the current from the power supply from passing through the relay into the Kapton heater to cool down the 

bottom air space. This process would then continue during the entire length of the constant temperature 

test being run to maintain the hot side air space temperature at 100 OF (37.78 OC). One final piece of 

equipment that had to be added to the experimental test set-up was a small 15 V variable DC power 

supply that was set to a value of twelve volts needed to power the MaxxTronic MXA017 four-channel 

relay card.  

 
3.2.5 Final Experimental Set-up 
 
 
A top view of the electronic equipment used in the smart insulation prototype testing is given in Figure 

80. In addition, in Figure 81 an image of the entire overall insulation test chamber experimental set-up is 

shown. Finally, Table 4 lists all of the different electronic equipment used in the final insulation test 

chamber experimental set-up. 
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Figure 80: Top View of the Experimental Set-up Electronic Equipment. 
 
 
 

 
 
 

Figure 81: View of the Overall Experimental Set-up for the Insulation Test Chamber. 
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Table 4: Smart Insulation Prototype Testing Experimental Set-up Electronic Equipment. 
 
 

Smart Insulation Prototype Testing Experimental Set-up Electronic Equipment 
Item Quantity Vendor Model Number 

Thermocouple Data Acquisition Module 4 NI 9211A 
Multifunction Data Acquisition Device 1 NI 6008 

DC Power Supply 1 Kepco JQE 55-10 M 
Digital Multimeter 1 TENMA 72-410A 

Handheld Multimeter 1 Triplett 9010 
4-Channel Relay Card 1 MaxxTronic MXA017 

DC Power Supply 1 - - 
Breadboard 1 - - 

 
 
 
 

3.3 INSULATION TEST CHAMBER PERFORMANCE TEST 

 
Before experiments could begin on the different thermal semiconductor prototypes discussed earlier in the 

insulation test chamber, an insulation test chamber thermal efficiency test was conducted to examine 

whether or not the level of insulation used in the test chamber was large enough to sufficiently stop heat 

losses between the chamber interior and the ambient laboratory environment. To prepare for the chamber 

thermal efficiency test, first, eight thermocouples were placed at various locations throughout the inside 

of the test chamber from very near the Kapton heater surface at the bottom to the top of the chamber 

interior. One of the eight thermocouples, which was placed as close to the heater surface as possible, was 

chosen to be the thermocouple whose temperature would be controlled at a constant temperature of 48 OC 

for the duration of the test. The reason 48 OC was chosen as the constant temperature for the thermal 

efficiency test was that any higher temperatures could have caused the heater to overheat and melt the 

foam insulation building material of the test chamber itself. By placing the controlled thermocouple as 

close to the heater as possible, its temperature will be very close to that of the Kapton heater, so the 

Kapton heater's temperature will also be controlled to values not much greater than 48 OC. In addition, an 

effort was also made to heat the chamber interior to the highest temperatures possible for the test chamber 

thermal efficiency test, since the highest temperatures will result in the greatest heat escaping through the 
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insulation of the chamber or through small cracks or gaps between the pieces of insulation to the ambient 

environment.  

 After eight of the thermocouples were placed inside of the test chamber, the remaining eight 

thermocouples were placed at different locations on the outside of the foam insulation test chamber to 

measure the amount of heat escaping from the inside of the chamber to the laboratory environment. First, 

two of the thermocouples were placed near the front and top thermocouple holes, since these appeared to 

be areas where the greatest heat could likely leak out of the chamber. Next, the rest of the six 

thermocouples were placed at locations where the front and top removable walls made contact with the 

rest of the test chamber when it was closed. Since the top and front walls of the chamber are not adhered 

to the rest of the test chamber with construction adhesive, such as the other foam chamber walls, and are 

simply closed using the ratcheting straps, one of the most likely locations for heat losses from the test 

chamber is through the small air gaps at the interfaces between the two removable walls and the rest of 

the chamber. The largest air gap at the two interfaces occurred between the front removable wall and the 

front frame of the test chamber. Since this gap appeared to be larger than the rest, three thermocouples 

were placed at various locations in the gap to quantify any heat escaping through it. An image of this gap 

is shown in Figure 82. The final three thermocouples were placed at the interfaces between the two 

removable walls and the two frames. Two of them were placed on the outside of the chamber where the 

top removable wall lies on top of the top frame with one of the two at the interface on the left side of the 

insulation test chamber and the other one at the interface on the back side of the test chamber. The final 

thermocouple was placed at the interface between the front removable wall and the front frame near the 

top of the insulation test chamber.  

 During the insulation test chamber thermal efficiency test approximately 10 W of power (1 A at 10V) 

was supplied for the duration of the test to the heat source. The lab ambient temperature at the beginning 

of the test was measured to be 23.5 OC. The thermocouple temperatures measured in the test appeared to 

reach near steady-state conditions after about thirty minutes, but the thermal efficiency test was continued 
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for a total duration of two hours to ensure that steady-state conditions were reached. Figure 83 gives a 

plot of the thermocouple temperatures measured for the thermal efficiency test.  

 

 
 
 

Figure 82: Largest Gap in Insulation Test Chamber between Front Removable Wall and Front Frame for 
Potential Greatest Heat Losses. 

 
 
 

 
 
 

Figure 83: Chamber Thermal Efficiency Test Results. 
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 From the review of the results of the chamber thermal efficiency test, the least heat was found to have 

escaped from the chamber through the front thermocouple hole, since its temperature only increased by 

0.358 OC over the course of the test. The rest of the thermocouples placed at locations on the exterior of 

the insulation test chamber increased by between 1.42 to 2.16 OC over the two hour long test, which did 

prove that a small amount of the heat inside of the chamber did escape during the test. Overall, however, 

the chamber thermal efficiency test proved that the insulation test chamber has satisfactory performance 

in that it was able to retain the vast majority of the heat provided by the Kapton heater during the test. The 

final temperatures of the thermocouples inside of the test chamber were in the range of 39-42 OC, which 

was much higher than the final temperatures on the outside of the test chamber, which were all less than   

26.3 OC even at the end of the test. 

 
 
 

3.4 EXPERIMENTAL TESTING PARAMETERS 

 
Before testing of the fabricated smart insulation prototypes could begin, several testing parameters, such 

as the type of tests to be run, the level of voltage and current to be supplied to the heater, and the time 

duration of the tests had to be determined. As mentioned earlier both constant temperature and constant 

heat flux boundary conditions would be tested for the hot side of the thermal semiconductor devices with 

a temperature of 100 OF (37.78 OC) being used for the constant temperature cases. For both the 

conducting and insulating states for each of the different smart insulation devices both a constant 

temperature test and a constant heat flux test was run. During the constant temperature testing 

approximately 20 V at 2 A for a total power of 40 W was initially supplied to the Kapton heater to enable 

the hot side air space to quickly reach the desired constant temperature of 100 OF (37.78 OC) (in 5-10 

minutes). Once the hot side air space thermocouple reached 100 OF (37.78 OC), the amount of power 

supplied to the Kapton heater was decreased to approximately 10 W at 10 V and 1 A for rest of the 

constant temperature test. Later during the testing, the level of power was determined to actually be 13.28 
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W at 11.35 V and 1.17 A once a multimeter was utilized to measure the voltage outputted by the power 

supply instead of simply trusting the dials on the DC power supply to be correct.  

 The main reason the power was decreased from 40 W to 10 W after a temperature of 100 OF (37.78 

OC) was obtained was to lessen the fairly large oscillations that were occurring in all of the thermocouples 

placed in the hot side air space, due to the relatively slow sample rate of the bang-bang control method. 

After the temperature level of 100 OF (37.78 OC) was reached for the hot side air space the heater was 

repeatedly turned on and off as the temperature of the hot side air space fell below and exceeded the 

desired temperature of 100 OF (37.78 OC) to maintain a hot side air space temperature of approximately 

100 OF (37.78 OC) at all times. Each time the heater was turned back on, the high level of power at 40 W 

would cause a large overshoot of the desired 100 OF (37.78 OC) temperature to occur before the heater 

was turned back off again to decrease the temperature back to 100 OF (37.78 OC) causing the appearance 

of oscillations. The simplest solution found to solve this problem was to decrease the heater power level 

to 10 W once the constant temperature level was initially reached, which proved to greatly mitigate the 

temperature overshoot and oscillations to the point where they were negligible during the testing. 

 During the constant heat flux testing a constant power level was applied to the heat source in the hot 

side air space for the entire duration of the tests. As shown in Equation 3.1 the heat flux emanating from 

the heat source was simply the heater thermal efficiency times the electrical power supplied to the heater 

divided by the cross-sectional area.  

 
                                                                      𝑞𝑞 = 𝜂𝜂ℎ𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒
𝑘𝑘

                                                    (3.1) 
 

Since the electrical power supplied to the heater was constant for the constant heat flux tests and the 

cross-sectional area of both the heater and the bottom air space was constant, from Equation 3.1 the 

insulation test chamber experimental set-up was able to provide the constant heat flux boundary condition 

for the hot side of the smart insulation prototypes. The constant power level used for the heater in the 

constant heat flux tests was designed to be approximately 5.85 W (0.78 A at 7.5 V), although later when a 
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multimeter was used to measure the voltage and current outputs of the power supply, they were 

determined to be actually set at 7.61 V and 0.78 A. Since a constant power level was being provided for 

the constant heat flux tests over the entire length of the tests, the temperatures of the heater and hot side 

air space kept increasing during the test to levels greater than 100 OF (37.78 OC). In order to keep the 

heater temperature from reaching dangerous levels that could have melted or damaged the foam insulation 

of the test chamber itself, the power level supplied to the heater was decreased from the constant 

temperature tests. In addition, if the hot side air space temperature ever exceeded a level of 110 OF (43.33 

OC) during the constant heat flux tests, the hot side air space temperature would be controlled for the rest 

of that test to be a constant value of 110 OF (43.33 OC) to both prevent overheating and temperatures of 

the hot side air space in a similar range as the constant temperature tests.  

 Finally, the last major testing parameter to be determined was the overall length of the tests. A time 

duration of 6 hours was utilized for all of the constant temperature tests for the thermal semiconductor 

prototypes, while a time duration of 3.5 hours was utilized for all of the constant heat flux tests. A 

problem that arose early on with the constant temperature tests was that the temperature values measured 

during the test were taking a very long time to reach steady-state conditions. In the end a testing duration 

of six hours was settled upon because after that time the insulation test chamber temperatures were 

beginning to approach steady-state values, and six hours was still a short enough time period to keep the 

test length from becoming prohibitively long for the larger number of experimental tests to be run. Since 

steady-state conditions did not need to be reached for the constant heat flux tests, a shorter time duration 

of 3.5 hours was chosen. In addition, during the course of the testing it was found that within the test 

length of 3.5 hours some of the tests did reach the maximum temperature of 110 OF (43.33 OC), so any 

longer testing duration would likely not have been beneficial for the constant heat flux tests.  
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3.5 POLYISOCYANURATE FOAM INSULATION TEST PIECE 

 
Although the performance of the different smart insulation concepts could partly be evaluated simply by 

comparing the experimental results of the smart insulation prototypes to each other, it was decided that 

another insulation test piece needed to be constructed to serve as a benchmark case for the different smart 

insulation device results. The benchmark insulation test piece would basically represent conventional 

building insulation already implemented in buildings, and it would be tested in the same manner as the 

smart insulation prototypes to quantify the temperature difference, ΔT, across the insulation from the hot 

side to the cold side. Ideally, when the smart insulation devices are tested in their insulating state they will 

have a ΔT value measured that is very close to that of the benchmark conventional insulation test piece to 

show that the smart insulation prototypes can have very low thermal conductivities and be good 

insulators. Conversely, when the smart insulation devices are tested in their conducting state, the goal 

would be for them to have a ΔT value that is much lower than the benchmark insulation test piece to show 

that the smart insulation prototypes can have very high thermal conductivities and be good conductors.  

 In order to fabricate a benchmark insulation test piece, the polyisocyanurate foam building insulation 

material used to build the insulation test chamber was utilized again. Three layers of the polyisocyanurate 

foam were cut into pieces and layered together with the Loctite FoamBoard PowerGrab construction 

adhesive to form a conventional insulation test piece with dimensions that matched the thermal 

semiconductor prototypes constructed earlier with a 13.25 x 13.25 in. (0.337 x 0.337 m) size top surface 

area and a thickness of 2.25 in. (5.715 cm). The total R-value of the foam test piece ended up being 15 ft2 

F-hr/Btu (2.6 m2 K/W), which is close to the R- value of typical building wall insulation of 19 ft2 F-hr/Btu 

(3.3 m2 K/W), so the final benchmark insulation test piece was able to closely represent conventional 

building insulation. Figure 84 provides an image of the final fabrication of the benchmark insulation test 

piece.  
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 During the testing of the benchmark smart insulation test piece, only a constant temperature test was 

run with a time duration of six hours to match all of the smart insulation prototype constant temperature  

 

 
 
 

Figure 84: Final Fabricated Benchmark Insulation Test Piece. 

 

tests. A constant heat flux test was not done for the conventional insulation test piece because the hot side 

air space underneath of the test piece in the insulation test chamber would have overheated very early into 

the test due to very little heat being transferred out of the hot side air space through the insulation test 

piece into the cold side air space. In addition, the same power values to be supplied to the heater for the 

constant temperature smart insulation prototype tests were also applied during the benchmark insulation 

test. On both the hot and cold sides of the insulation test piece five thermocouples were mounted with 

electrical tape. Two were placed at the center location of each side, while the other eight were placed two 

inches in both directions inward from the four outer corners on both sides. A plot that shows the results of 

the benchmark insulation test piece constant temperature test can be seen in Figure 85.  
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Figure 85: Plot of Benchmark Insulation Test Piece Constant Temperature Test. 

 

 From the plot of the benchmark insulation test piece test, the thermocouples mounted on the hot side 

of the insulation test piece reach steady-state values of around 36 OC by the one-hour point of the six-hour 

test. It takes a little longer time period of about three hours for thermocouples mounted on the cold side of 

the insulation test piece to reach steady-state because of the delay that occurs as some of the heat that 

builds up on the hot side of the test piece dissipates through the foam insulation to the cold side. The final 

ΔT value measured across the conventional insulation test piece was 9.3 OC at the conclusion of the six-

hour test, and it can also be assumed to be the steady-state ΔT value for this test, since all of the 

temperatures being measured appear to have reached steady-state by the end of the test from the plot.
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4.0 SMART INSULATION EXPERIMENTAL RESULTS AND DISCUSSION 
 
 
 
 
During the smart insulation experiments, both constant temperature and constant heat flux tests were run 

for each of the different prototypes in the devices' insulating and conducting configurations. First, the 

experiments were conducted for the different variations of the shifting fins thermal semiconductor, 

including the basic shifting fins smart insulation device, the shifting fins prototype with insulation 

between the fins, the shifting fins prototype using thermal greases, and the back-to-back aluminum plates 

with fins thermal semiconductor. Once those tests were completed, experiments were next conducted for 

the two types of inflatable thermal semiconductors constructed: the Reflectix Bubble-Wrap-like building 

insulation and the NOVUS Bubble-Wrap-like packaging. The final experimental results for the smart 

insulation testing were then compared to one another and the benchmark foam insulation test piece results 

to examine which smart insulation prototypes had the best overall performance by demonstrating the 

greatest change in ΔT measured from the hot side to the cold side of the devices between the prototypes' 

insulating and conducting states. The thermal semiconductor prototypes with the greatest changes in ΔT 

would then consequently have the greatest changes in thermal conductivity and R-value between the 

devices' low and high heat transfer states and thus the best performance. The experimental results of the 

different smart insulation prototypes will now be presented. 
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4.1 SHIFTING FINS THERMAL SEMICONDUCTOR EXPERIMENTAL RESULTS 
 
 

4.1.1 Basic Shifting Fins Thermal Semiconductor Testing Results 
 
 

The first thermal semiconductor to be tested was the basic shifting aluminum fins smart insulation 

prototype with air between the fins. First, a 6 hour constant temperature test was conducted with a 

constant temperature boundary condition of 100 OF (37.78 OC) being applied to the bottom air space of 

the insulation test chamber facing the hot side of the basic shifting fins device for the entire duration of 

the test. Later on, a second 3.5 hour constant heat flux test was conducted with a constant power of 5.87 

W applied to the heater in the test chamber for a constant heat flux boundary condition. Figure 86 shows 

the basic shifting fins prototype placed in the insulation test chamber in both its insulating and conducting 

configurations. 

 

 

 

 
Figure 86: Basic Shifting Fins Smart Insulation Prototype in Test Chamber. 

 

 Sixteen thermocouples were used to collect temperature data during the tests with the thermocouple 

placement matching the locations mentioned earlier during the discussion of the experimental set-up. 

Also, in the placement of the eight corner thermocouples on the hot and cold sides of the shifting fins 

Insulating Configuration Conducting Configuration 

Hot Side Hot Side 

Cold Side Cold Side 
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device, two thermocouples on the cold side were mounted to the plate directly above the outer most fins 

of the device, while two additional thermocouples were mounted to the plate on the hot side directly 

below those same two fins. The other four corner thermocouples were mounted to the top and bottom 

plates at locations where the fins were not screwed into the plates. This was done in order to examine 

whether or not the heat transfer through the contacting fins of the shifting fins prototype in its conducting 

configuration would cause the cold side plate temperatures to be higher at the locations where the fins 

were in contact with the plates. The last two center thermocouples mounted on the top and bottom plates 

of the device were placed at the center of the plates at locations between where two of fins were mounted.  

Figure 87 gives the thermocouple placement on the top and bottom plates of the shifting fins device. 

 

 
 
 

Figure 87: Shifting Fins Smart Insulation Prototype Plates’ Thermocouple Placement. 

 

 The thermocouple measurement results of the constant temperature basic shifting fins prototype tests 

are given in the plots of Figures 88 and 89, where Figure 88 shows the results of the prototype in its 

conducting configuration and Figure 89 shows the results of the prototype in its insulating configuration. 

Then, the constant heat flux test results for the basic shifting fins thermal semiconductor are next 

Two corner 
thermocouples 
mounted above fins 

Two corner 
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displayed in Figures 90 and 91 for the device’s conducting and insulating states respectively. Finally, the 

average hot and cold plate temperatures and the ΔT values for the basic shifting fins prototype at the 

quarter-point, halfway-point and end of the tests can be seen in Table 5. In addition, in Table 5 the final 

ΔT values at the end of the device’s constant temperature tests are expressed as a percentage of the 

benchmark foam insulation test piece’s ΔT value measured during its constant temperature test for 

comparison. Since the benchmark foam insulation test piece was standard foam building insulation and 

not a smart insulation device, it serves as the ideal insulator for the different smart insulation devices to be 

compared against. Both the conducting and insulating states’ ΔT values were compared to the ΔT values 

from the benchmark insulation test piece. Ideally, the ΔT value for the conducting states of the smart 

insulation devices would be 0% of the benchmark insulation test piece value, while the ΔT value for the 

insulating states of the smart insulation device would be ≥100% of the benchmark insulation test piece 

value. Equation 4.1 shows how the percentage of the benchmark insulation test piece’s ΔT value is 

calculated. 

 
         % 𝑐𝑐𝑜𝑜 𝐵𝐵𝑒𝑒𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘 𝐼𝐼𝑐𝑐𝐼𝐼𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇𝑒𝑒𝐼𝐼𝑡𝑡 𝑃𝑃𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒 ∆𝑇𝑇 𝑉𝑉𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒 =  ∆𝑇𝑇𝑆𝑆𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡  𝐼𝐼𝑐𝑐𝐼𝐼𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

∆𝑇𝑇𝐵𝐵𝑒𝑒𝑐𝑐𝑐𝑐 ℎ𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘  𝐼𝐼𝑐𝑐𝐼𝐼𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  𝑇𝑇𝑒𝑒𝐼𝐼𝑡𝑡  𝑃𝑃𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒
𝑥𝑥 100%  (4.1)     
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Figure 88: Basic Shifting Fins Thermal Semiconductor Prototype 
 Conducting State, Constant Temperature Test. 

 
 
 

 
 
 

Figure 89: Basic Shifting Fins Thermal Semiconductor Prototype. 
Insulating State, Constant Temperature Test. 
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Figure 90: Basic Shifting Fins Thermal Semiconductor Prototype 
Conducting State, Constant Heat Flux Test. 

 
 
 

 
 
 

Figure 91: Basic Shifting Fins Thermal Semiconductor Prototype 
Insulating State, Constant Heat Flux Test. 
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Table 5: Basic Shifting Fins Thermal Semiconductor Prototype Experimental Results. 
 
 

Constant Temperature Tests (Standard Deviations of All Measurements < 0.21 OC) 
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Plate 

Average  
29.0  Bottom Plate 

Average  30.5 
 

Top Plate Average  27.6  Top Plate Average  26.9  
ΔT 1.3 14.1 ΔT 3.6 37.3 

3 hours into the test 3 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Plate 

Average  
30.8  Bottom Plate 

Average  31.7 
 

Top Plate Average  29.8  Top Plate Average  28.9  
ΔT 1.0 11.1 ΔT 2.9 31.5 

At the end of the 6 hour test At the end of the 6 hour test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Plate 

Average  
32.4  Bottom Plate 

Average  32.8 
 

Top Plate Average  31.6  Top Plate Average  30.4  
Bottom Air Space  37.8  Bottom Air Space  37.8  

Top Air Space 30.4  Top Air Space 28.9  
ΔT 0.8 9.4 ΔT 2.4 27.2 

Constant Heat Flux Tests (Standard Deviations of All Measurements < 0.34 OC) 
Conducting Configuration Insulating Configuration 

1.75 hours into the test 1.75 hours into the test 
Measurement T (OC) Measurement T (OC) 
Bottom Plate 

Average  26.1 
Bottom Plate 

Average  27.1 
Top Plate Average  24.6 Top Plate Average  23.2 

ΔT 1.5 ΔT 3.8 
At the end of the 3.5 hour test At the end of the 3.5 hour test 

Measurement T (OC) Measurement T (OC) 
Bottom Plate 

Average  29.7 
Bottom Plate 

Average  30.8 
Top Plate Average  28.1 Top Plate Average  26.6 
Bottom Air Space  37.4 Bottom Air Space  39.6 

Top Air Space 26.8 Top Air Space 25.4 
ΔT 1.7 ΔT 4.2 
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 A direct comparison between the insulating and conducting configurations' average hot side 

temperature, average cold side temperature, and ΔT for the constant temperature tests for the basic 

shifting fins prototype is illustrated in the plot of Figure 92. Moreover, a similar comparison between the 

prototype's insulating and conducting states for the constant heat flux tests is found in Figure 93.  

 

 
 
 

Figure 92: Comparison between Basic Shifting Fins Prototype Conducting and Insulating States  
for Constant Temperature Tests. 

 

ΔTInsulating = 2.4 OC 
ΔTConducting = 0.8 OC 
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Figure 93: Comparison between Basic Shifting Fins Prototype Conducting and Insulating States 
 for Constant Heat Flux Tests. 

 
 

 From the constant temperature experimental results of Table 5, a significant change in ΔT across the 

basic shifting fins device from 0.8 to 2.4 OC can be seen as the device switches states from its conducting 

configuration to its insulating configuration. This sufficiently provides proof-of-concept for smart 

insulation devices by showing that shifting the fins in the prototype to break the heat conduction path will 

cause the device to change its thermal conductivity. In addition, an even larger change in ΔT was 

measured when the device switched between its conducting and insulating states for the constant heat flux 

tests, showing that greater variation in thermal conductivity is possible for the basic shifting fins 

prototype when a constant heat flux boundary condition is applied compared to a constant temperature 

boundary condition.  

 In terms of the temperature distribution on the top and bottom plates of the prototype, the five bottom 

plate thermocouples all had approximately the same temperature values at the conclusion of the tests 

regardless of location, so it can be assumed that the temperature distribution on the bottom plate was 

uniform for all of the shifting fins prototype tests. The five top plate thermocouples did, however, have 

ΔTInsulating = 1.7 OC 
ΔTConducting = 4.2 OC 



 

122 
 

some slight variation dependent on their location on the top plate with the thermocouples mounted 

directly on top of fins being roughly 0.3 OC warmer than the thermocouples not mounted above fins. This 

shows that when the top and bottom fins of the device are in thermal contact, the heat flowing from the 

bottom fins to the top fins caused the areas of the top plate where fins were mounted to be slightly warmer 

than other areas of the top plate. In addition, the temperature of the center thermocouple of the top plate, 

which was not mounted above a fin, was always slightly higher than the temperatures of the top plate 

corner thermocouples not mounted directly above a fin in the amount of less than 0.1 OC, while still being 

slightly cooler than the corner thermocouples that were mounted above a fin.  

 When comparing the basic shifting fins prototype to the benchmark insulation test piece, the shifting 

fins thermal semiconductor performed well in its conducting state, as the final ΔT value measured across 

the prototype was only 9.4% of the final ΔT value measured across the benchmark insulation test piece. 

This essentially means that the basic shifting fins prototype had only 9.4% of the insulating capability of 

the foam building insulation test piece of the same dimensions, which shows that it can function as a good 

conductor. Unfortunately, the basic shifting fins device did not function as a very good insulator in its 

insulating configuration. The final ΔT value measured across the device in its insulating state was only 

27.2% of the final ΔT value measured across the benchmark insulation test piece. Consequently, the basic 

shifting prototype was only one-quarter as effective an insulator as the benchmark polyisocyanurate foam 

building insulation test piece. To try and improve the insulating state of the shifting fins device, foam 

polyisocyanurate insulation was placed in between of the fins in the device to inhibit convection heat 

transfer of the air between the fins. The results of the shifting fins thermal semiconductor with insulation 

between the fins will be presented in the next section. 

 
4.1.2 Shifting Fins Thermal Semiconductor with Insulation between Fins Testing Results 

 
 

Once polyisocyanurate foam insulation pieces were inserted between the fins of the shifting aluminum 

fins device, two constant temperature boundary condition tests and two constant heat flux boundary 
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condition tests were conducted for the new thermal semiconductor set-up's insulating and conducting 

states. The same testing procedures that were used for the basic shifting fins thermal semiconductor were 

also utilized for the shifting fins device with insulation between the fins, including the same amount of 

power supplied to the heater in the test chamber. Likewise, the same thermocouple placement used for the 

original shifting fins thermal semiconductor's top and bottom aluminum plates was also utilized for the 

new shifting fins prototype with insulation between the fins. An image of the new shifting fins device 

with foam insulation between the fins placed in the insulation test chamber for experimentation is shown 

in Figure 94.  

 

 

 
 
 

Figure 94: Shifting Fins Smart Insulation Prototype with Foam Insulation between Fins in Test Chamber. 
 
 
 

 Plots for the constant temperature tests of the shifting fins prototype with insulation between the fins 

are given in Figure 95 for the prototype's conducting state and Figure 96 for the prototype's insulating 

state. Additionally, for the second shifting fins prototype's constant heat flux tests, plot of the temperature 

measurements for the prototype's conducting and insulating arrangements can be found in Figures 97 and 

98 respectively. Finally, the average hot and cold plate temperatures and the ΔT values for the shifting 

fins prototype with foam insulation between the fins at the quarter-point, halfway-point and end of the 

tests can be seen in Table 6. 

Insulating Configuration Conducting Configuration 
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Figure 95: Shifting Fins Thermal Semiconductor Prototype with Insulation between the Fins 
 Conducting State, Constant Temperature Test. 

 
 
 

 
 
 

Figure 96: Shifting Fins Thermal Semiconductor Prototype with Insulation between the Fins 
 Insulating State, Constant Temperature Test. 
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Figure 97: Shifting Fins Thermal Semiconductor Prototype with Insulation between the Fins 
 Conducting State, Constant Heat Flux Test 

 
 

 
 

Figure 98: Shifting Fins Thermal Semiconductor Prototype with Insulation between the Fins 
 Insulating State, Constant Heat Flux Test. 
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Table 6: Shifting Fins Prototype with Insulation between the Fins Experimental Results. 
 
 

Constant Temperature Tests (Standard Deviations of All Measurements < 0.29 OC) 
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Plate Average  29.2  Bottom Plate Average  29.0  

Top Plate Average  26.7  Top Plate Average  23.8  
ΔT 2.5 25.7 ΔT 5.2 54.6 

3 hours into the test 3 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Plate Average  31.1  Bottom Plate Average  31.3  

Top Plate Average  29.5  Top Plate Average  26.9  
ΔT 1.7 18.2 ΔT 4.5 49.1 

At the end of the 6 hour test At the end of the 6 hour test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Plate Average  32.8  Bottom Plate Average  33.1  

Top Plate Average  31.6  Top Plate Average  29.9  
Bottom Air Space  37.8  Bottom Air Space  37.8  

Top Air Space 30.1  Top Air Space 28.6  
ΔT 1.3 14.2 ΔT 3.3 36.7 

Constant Heat Flux Tests (Standard Deviations of All Measurements < 0.28 OC) 
Conducting Configuration Insulating Configuration 

1.75 hours into the test 1.75 hours into the test 
Measurement T (OC) Measurement T (OC) 

Bottom Plate Average  25.5 Bottom Plate Average  26.6 
Top Plate Average  23.9 Top Plate Average  22.5 

ΔT 1.7 ΔT 4.1 
At the end of the 3.5 hour test At the end of the 3.5 hour test 

Measurement T (OC) Measurement T (OC) 
Bottom Plate Average  29.4 Bottom Plate Average  30.3 

Top Plate Average  27.5 Top Plate Average  25.8 
Bottom Air Space  37.3 Bottom Air Space  39.6 

Top Air Space 26.4 Top Air Space 25.0 
ΔT 2.0 ΔT 4.5 

 
  

In order to more easily compare changes in the hot side temperature, cold side temperature, and ΔT 

for the shifting fins prototype with insulation between the fins as it changed from its conducting state to 

its insulating state, two plots were produced. Figure 99 displays a plot of the average hot and cold side 

temperatures for the insulating and conducting states of the shifting fins prototype with foam insulation 
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between the fins constant temperatures tests, while Figure 100 provides a plot for the corresponding two 

constant heat flux tests. 

 

 

 
Figure 99: Comparison between Shifting Fins Thermal Semiconductor with Insulation between the Fins 

Conducting and Insulating States for Constant Temperature Tests. 
 
 
 
 
 
 
 
 

ΔTConducting = 1.3 OC 

ΔTInsulating = 3.3 OC 
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Figure 100: Comparison between Shifting Fins Thermal Semiconductor with Insulation between the Fins 
Conducting and Insulating States for Constant Heat Flux Tests. 

 
 
 

 By inserting pieces of foam polyisocyanurate insulation into the air spaces between the fins of the 

shifting fins thermal semiconductor prototype, the performance of the insulator state of the device was 

significantly improved for both the constant temperature and constant heat flux tests as shown in Table 6. 

At the end of the constant temperature test for the insulating configuration of the prototype with insulation 

between the fins, the ΔT value measured across the device had increased by 34.8% from the original basic 

shifting device’s ΔT value of 2.4 OC to a value of 3.3 OC. This shows that for the basic shifting fins 

prototype convection of the air between the fins was causing high convective heat transfer between the 

hot and cold side plates even when the prototype was in its insulating configuration. Once foam insulation 

was added to fill up the air spaces between the fins, convective heat transfer in the shifting fins thermal 

semiconductor was essentially eliminated, causing the increase in the ΔT value.  

 Unfortunately, although the insulator state of the modified thermal semiconductor was improved by 

adding insulation between the fins, the performance of the high heat transfer state of the thermal 

ΔTConducting = 2.0 OC 

ΔTInsulating = 4.5 OC 
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semiconductor was also decreased. For the shifting fins device with insulation between the fins, the 

conducting state's ΔT value measured at the end of the constant temperature test also increased by 51.4% 

from the original basic shifting fins device’s ΔT value of 0.8 OC to a value of 1.3 OC. Similar changes 

occurred in the ΔT values for the constant heat flux tests for the modified shifting fins prototype, resulting 

in the shifting fins device with insulation between the fins having about the same level of performance as 

a smart insulation device as the basic shifting fins prototype with air between the fins. Two plots 

comparing the average hot side temperatures, average cold side temperatures, and ΔT values of the basic 

shifting fins device and the shifting fins device with insulation between the fins are shown in Figures 101 

and 102 for the constant temperature tests' conducting and insulating configurations. Using the final ΔT 

values measured for the constant temperature tests for the shifting fins prototype with insulation between 

the fins, the ΔT values were able to change from 14.2% to 36.7% of the ΔT values of the benchmark 

insulation test piece when the prototype was switched between its conducting and insulating state, which 

was similar to the range of change in ΔT for the basic shifting fins prototype. 

 

 
 
 

Figure 101: Conducting State Comparison between Shifting Fins Thermal Semiconductors with Air or 
Foam Insulation between the Fins. 
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Figure 102: Insulating State Comparison between Shifting Fins Thermal Semiconductors with Air or 
Foam Insulation between the Fins. 

 
 
 

4.1.3 Shifting Fins Thermal Semiconductor with Thermal Greases Testing Results 
 
 

In order to improve the thermal conduction path between the lower and upper aluminum fins of the basic 

shifting fins thermal semiconductor when the device was in its conducting configuration, two types of 

thermal greases were applied to the lower and upper fins to reduce the thermal contact resistance. First, 

silver-based thermal grease was applied to the fins, and later on, silicone-based thermal grease was also 

tried. Both constant temperature and constant heat flux tests were run for each type of thermal grease with 

the same testing parameters and thermocouple placement as for the tests of the basic shifting fins device 

and the shifting fins prototype with insulation between the fins. For the testing of the shifting fins thermal 

semiconductor with thermal greases, air was used in the spaces between the fins of the device instead of 

the foam polyisocyanurate insulation pieces.  

 Once the results of the shifting fins device with thermal greases were reviewed, it was clear any 

improvements the thermal greases provided to the conducting state of the prototype were negligible. In 

fact, the silver-based thermal grease actually caused the ΔT values measured across the shifting fins 
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device’s conducting configuration to increase slightly by 0.0245 OC at the end of the 6 hour constant 

temperature test over the ΔT value measured for the basic shifting fins prototype without thermal grease. 

At first this increase in ΔT for the shifting fins prototype was attributed to the silver-based thermal grease 

being extremely thick and hence, very difficult to spread out evenly over the surface of the fins to 

effectively reduce contact resistance. After the testing of a much thinner and easy-to-spread silicone-

based thermal grease also produced only very slight changes in the ΔT value measured across the 

prototype,, it was determined that neither of the thermal greases had improved the original shifting fins 

thermal semiconductor.  

 Although thermal greases typically significantly improve the conduction heat transfer between two 

surfaces in contact, several possible reasons exist for why no improvement occurred for the shifting fins 

thermal semiconductor prototype. First, as a result of the aluminum fins of the devices being very 

accurately milled in the machine shop to nearly the same dimensions within several thousandths of an 

inch, the top and bottom fins of the thermal semiconductor prototype had a very good contact with one 

another with minimal contact resistance caused by the small air gaps at the interface between the surfaces. 

By applying thermal greases in a thin layer to the fins of the device, the grease would have served to fill 

any small air gaps from thermal contact resistance at the interface between the two surfaces, helping to 

improve the conduction heat transfer at those locations. At locations where the top and bottom fins were 

already in direct contact with one another, however, the thin layer of thermal grease would have actually 

increased the thermal resistance due to the thermal greases having a much lower thermal conductivity 

between 0.7 -8.65 W/m-K compared to the thermal conductivity of the 6061 aluminum alloy fins of 167 

W/m- K [24]. If the thermal greases improved the thermal conduction at some locations where the fins 

were not in good contact, while decreasing the thermal conduction at other locations where the fins were 

in very good thermal contact with one another, the effects of the thermal greases at the different locations 

could have canceled each other out. This would have resulted in roughly the same ΔT value measured 

across the device's conducting configuration during the testing whether or not the thermal greases were 

applied to the fins.  
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 In addition, the ΔT value measured across the original basic shifting fins prototype's conducting state 

was only a very low value 0.8 OC, which showed that good conduction heat transfer was already taking 

place through the contacting fins across the smart insulation device. Even with thermal greases applied to 

the surfaces of the contacting fins, it might be very difficult to achieve a lower ΔT value measured 

between the hot and cold sides of the thermal semiconductor prototype due to some thermal contact 

resistance always being present. In a different situation such as the case of a device that needs to transfer a 

large amount of heat via conduction from a very hot component on the order of hundreds of degrees 

Celsius to a heat sink and the ambient environment, thermal greases can significantly improve the 

conductive heat transfer, but in the case of the shifting fins thermal semiconductor, the ΔT is already 

small enough that the thermal greases do not have much effect.  

 
4.1.4 Back-to-Back Aluminum Plates Thermal Semiconductor Testing Results 

 
 

The next type of smart insulation device tested was the back-to-back plates with outward facing fins 

prototype. Figure 103 provides an image of the back-to-back plates with fins prototype inserted into the 

insulation test chamber in both its insulating and conducting configurations. 

 

 

 

 
Figure 103: Back-to-Back Plates with Fins Smart Insulation Prototype in Test Chamber. 

Insulating Configuration Conducting Configuration 
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 Since the back-to-back plates with fins thermal semiconductor operated much differently than the first 

few shifting fins prototypes, a new arrangement for the thermocouple placement was necessary. In the 

back-to-back plates with fins prototype, the top and bottom fins in addition to the top and bottom plates 

make up the hot and cold sides of the device facing the bottom and top air spaces in the chamber 

respectively.  Before, with the shifting fins thermal semiconductor, the hot and cold sides of the device 

only consisted of the two plates, so the five thermocouples mounted to the hot and cold sides of the 

device were all mounted directly to the plates. For the back-to-back plates with fins prototype, however, 

some of the thermocouples used to calculate the ΔT across the device would need to be mounted on the 

top and bottom fins themselves, since they make up a significant portion of the hot and cold sides of the 

device.  

 As with the shifting fins devices earlier, four thermocouples were placed in the corners of both the top 

and bottom pieces of the device facing the top and bottom air spaces. In two of the corners the 

thermocouples were mounted to the plates, while in the other two corners the thermocouples were 

mounted on top of the fins. In addition, two more thermocouples were also placed in the center of both 

the top and bottom pieces with again one thermocouple mounted to the plate and a second thermocouple 

mounted to the center-most fin. Eventually, twelve thermocouples were mounted to the hot and cold sides 

of the back-to-back plates with fins device, which was two more than for the shifting fins devices. The 

data acquisition equipment used in the experimental set-up to acquire the temperature measurement data 

from the thermocouples could only handle up to sixteen thermocouples, so the two thermocouples placed 

near the insulation test chamber's two thermocouple holes used to monitor any heat leakage were instead 

moved to the hot and cold sides of the prototype. Figure 104 gives an image of the thermocouple 

placement on the top and bottom pieces of the back-to-back plates with fins device. 
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Figure 104: Back-to-Back Plates with Fins Smart Insulation Prototype Plates’ Thermocouple Placement. 

 

 The major reason for mounting some of the thermocouples directly to the top and bottom fins was to 

examine whether or not the outward facing fins were assisting in smart insulation device's capture of heat 

from the hot air space and dissipation of heat to the cold air space. The thermocouples mounted to the 

bottom facing fins of the device should, in theory, heat up quicker than the thermocouples mounted to the 

bottom plate, since they are closer to the heat source and more heat is transferred across the fin’s large 

surface area. Likewise, the thermocouples mounted to the top facing fins should be cooler than the ones 

mounted to the top plate, since the top fins' large surface area will be much more effective at dissipating 

heat to the top air space than the top plate. Plots of the constant temperature tests for the back-to-back 

plates with fins device can be seen in Figures 105 and 106 for the device's conducting and insulating 

arrangements respectively. The results of the device's constant heat flux tests are also given for its 

conducting configuration in Figure 107 and for its insulating configuration in Figure 108. In addition, 

important temperature measurement data and the ΔT values calculated for the back-to-back plates with 

Two corner TCs mounted to plate 
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Center TC mounted to plate 
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fins prototype is shown in Table 7. Finally, to easily analyze the changes in the average hot side 

temperature, average cold side temperature, and ΔT as the device changes from its conducting state to its 

insulating state, an additional plot was produced that is shown in Figure 109 for the constant temperature 

tests. 

 

 

 
Figure 105: Back-to-Back Plates with Fins Thermal Semiconductor Prototype  

 Conducting State, Constant Temperature Test. 
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Figure 106: Back-to-Back Plates with Fins Thermal Semiconductor Prototype  

 Insulating State, Constant Temperature Test. 
 
 
 

 
 
 

Figure 107: Back-to-Back Plates with Fins Thermal Semiconductor Prototype  
Conducting State, Constant Heat Flux Test. 

 

ΔT = 4.9 oC 

Bottom Air Space Heater 

Top Plate 
Top Air Space 

Bottom Plate 

ΔT = 0.9 oC 
Bottom Plate 

Top Plate 

Top Air Space 

Top of Chamber 
Interior 



 

137 
 

 

 
Figure 108: Back-to-Back Plates with Fins Thermal Semiconductor Prototype  

Insulating State, Constant Heat Flux Test. 
 
 
 

 
 
 

Figure 109: Comparison between Back-to-Back Plates with Fins Conducting and Insulating States. 
for Constant Temperature Tests.  
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Table 7:  Back-to-Back Plates with Outward Facing Fins Thermal Semiconductor Experimental Results. 
 
 

Constant Temperature Tests (Standard Deviations of All Measurements < 0.34 OC) 
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Piece Average  32.4  Bottom Piece Average  34.6  

Top Piece Average  30.9  Top Piece Average  26.8  
ΔT 1.5 15.5 ΔT 9.3 98.0 

3 hours into the test 3 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Piece Average  33.8  Bottom Piece Average  35.0  

Top Piece Average  33.1  Top Piece Average  29.4  
ΔT 0.8 8.3 ΔT 6.7 73.6 

At the end of the 6 hour test At the end of the 6 hour test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Piece Average  35.1  Bottom Piece Average  35.4  

Top Piece Average  34.4  Top Piece Average  31.3  
Bottom Air Space  37.8  Bottom Air Space  37.8  

Top Air Space 32.9  Top Air Space 29.9  
ΔT 0.7 7.8 ΔT 4.9 54.6 

Constant Heat Flux Tests (Standard Deviations of All Measurements < 0.45 OC) 
Conducting Configuration Insulating Configuration 

1.75 hours into the test 1.75 hours into the test 
Measurement T (OC) Measurement T (OC) 

Bottom Piece Average  28.0 Bottom Piece Average  34.5 
Top Piece Average  27.1 Top Plate Average  28.8 

ΔT 0.9 ΔT 5.7 
At the end of the 3.5 hour test At the end of the 3.5 hour test 

Measurement T (OC) Measurement T (OC) 
Bottom Piece Average  31.6 Bottom Piece Average  37.8 

Top Piece Average  30.7 Top Piece Average  31.0 
Bottom Air Space  37.8 Bottom Air Space  42.2 

Top Air Space 29.3 Top Air Space 30.1 
ΔT 0.9 ΔT 6.8 

 
  

From the experimental results of Table 7, the back-to-back plates with outward facing fins prototype 

had much better performance than the earlier shifting fins devices in that a much greater change in ΔT 

was obtained as the device was changed from its conducting configuration to its insulating configuration. 

For example, at the end of the back-to-back plates with fins constant temperature tests, ΔT had a range 
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from 0.7 OC for the device's conducting configuration to 4.9 OC for the device's insulating configuration, 

which was much better than the basic shifting fins thermal semiconductor's ΔT range from 0.8 to 2.4 OC. 

Compared to the basic shifting fins device, the back-to-back plates with outward facing fins prototype had 

slightly better performance in its conducting state and much better performance in its insulating state. In 

addition, when the % of the benchmark foam insulation test piece’s ΔT value is used to evaluate the 

device's performance, the back-to-back fins with plates device continues to exhibit a large range of 

thermal conductivity. The ΔT value of the back-to-back plates with fins device was able to vary at the end 

of the constant temperature tests from 7.8% to 54.6% of the benchmark foam insulation test piece, 

proving that the device is a very good conductor when necessary since its ΔT value is less than 1/10 of the 

insulation test piece, while also being a decent insulator when necessary but still not near as good an 

insulator as standard foam building insulation.  

One possible way to improve the insulating configuration of the back-to-back plates with fins concept 

would be to have the outward facing fins of the device fold inward to a horizontal, stowed position when 

the device is actuated from its conducting state to its insulating state. Since the main purpose of the fins in 

the back-to-back plates concept was to use the large surface area of the fins to speed up the heat transfer 

through the device in only its conducting state, the fins are not needed in the device for its insulating state. 

In fact, the fins actually decreased the performance of the device in its insulating state by increasing the 

heat transfer of the device in that state as well. By folding the fins to a horizontal, stowed position in the 

device’s insulating state, the surface area of the hot and cold sides of the device will be greatly decreased, 

lowering the level of heat transfer through the device in its insulating state.  

 The results of the constant heat flux tests in Table 7 also show that the back-to-back plates with fins 

prototype continues has increased performance over the shifting fins devices. At the end of the constant 

heat flux tests, the ΔT value measured is able to vary over the range from 0.9 OC for the device's 

conducting state to 6.8 OC for the device's insulating state. As with the constant temperature testing the 

range of ΔT and thus thermal conductivity obtained for the constant heat flux tests of the back-to-back 

plates with outward facing fins device was much larger than that of the basic shifting fins prototype for 
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which ΔT varied over a range of 1.7 - 4.2 OC as the device was actuated from its conducting state to its 

insulating state.  

 The final consideration in the back-to-back plates with fins testing was whether there were any 

differences between the temperatures measured for thermocouples mounted on the fins compared to the 

thermocouples mounted directly on the plates on the hot and cold sides of the device. On the cold side of 

the device the thermocouples mounted on top of the fins were found to be 0.1-0.2 OC cooler than the 

thermocouples mounted directly to the top plate during the testing. Meanwhile, on the hot side of the 

device, the thermocouples mounted directly to the bottom plate were found to be between 0.3-0.7 OC 

warmer than the thermocouples mounted on top of the fins during the testing. This shows that using 

outward facing fins instead of only the plates is more effective for both capturing the heat of the bottom 

air space and dissipating heat to the top air space. 

 
4.1.5 Folding Fins with Vertical Contact Testing Results 

 
 

 Although a folding fins with vertical contact thermal semiconductor prototype was never actually 

constructed in the laboratory, a few tests were run in order to get a good idea of the possible performance 

of such a device. Since in the folding fins concept the conducting state of the device had essentially the 

same features as the basic shifting fins prototype except for greater spacing between the fins and twenty-

two fins overall instead of thirty, it was assumed that for the folding fin device's conducting configuration 

the ΔT values would be very close to the ΔT values experimentally measured for the basic shifting fins 

prototype. In order to calculate some evaluation of the overall performance of a possible folding fins 

device, a ΔT value for the insulating state of the device also had to be obtained; however, additional 

experimental tests had to be run because the insulating configuration of the folding fins concept was much 

different than any of the tests already conducted.  

 To measure the ΔT value for the insulating, stowed fins position of the device, a simple smart 

insulation device consisting of two aluminum plates of the same dimensions of the plates of the original 

basic shifting fins prototype separated by a two inch (5.08 cm) air space and two foam insulation spacers 
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was constructed. Even though the set-up for this device does not completely represent the actual folding 

fins device later modeled in ANSYS, since it does not have any fins in their stowed position, it does 

provide an adequate representation to give a good idea of a possible range of ΔT values for a folding fins 

with vertical contact device. In addition, the experimental results obtained from the folding fins device's 

insulating configuration tests can also later on be used to calculate the natural convection coefficient as a 

function of temperature for the convective heat transfer across the air gap from the hot side to the cold 

side of the device for the ANSYS modeling of the folding fins with vertical contact device. The folding 

fins insulating state device developed can be seen in the insulation test chamber in Figure 110.  

 
 

 

 
Figure 110: Folding Fins with Vertical Contact Insulating State Device in Insulation Test Chamber. 

 

 Both a constant temperature test and a constant heat flux test were conducted for the prototype 

fabricated for the insulating state of the folding fins device. The thermocouple placement on the hot and 

cold sides of the device consisted of one thermocouple mounted at the center each of the two plates and 

four thermocouples mounted at the corners of each plate at locations two inches (5.08 cm) inward in both 

directions from the plate corners. Plots of the results over time of the two tests ran for the device are given 
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in Figure 111 for the constant temperature test and Figure 112 for the constant heat flux test, while 

important temperature data for the two tests along with the ΔT values calculated are also given in Table 8. 

Finally, Figure 113 gives a plot that shows a comparison between the insulating and conducting states of 

a possible folding fins prototype using the basic shifting fins device's conducting configuration test results 

to represent the conducting state of the folding fins prototype. In Figure 113 the insulating and conducting 

states of the constant temperature tests for the folding fins device are compared by plotting the average 

hot side temperatures and average cold side temperatures for both heat transfer states. 

 

 

 
Figure 111: Folding Fins Thermal Semiconductor Insulating Configuration, Constant Temperature Test. 
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Figure 112: Folding Fins Thermal Semiconductor Insulating Configuration, Constant Heat Flux Test. 

 
 

Table 8:  Folding Fins Thermal Semiconductor Experimental Results. 
 
 

Insulating Configuration 
Constant Temperature Test (Standard Deviations of 

All Measurements < 0.14 OC) 
Constant Heat Flux Test (Standard Deviations of 

All Measurements < 0.36 OC) 
1.5 hours into the test 1.75 hours into the test 

Measurement T (OC) % of 
Benchmark 

Measurement T (OC) 

Bottom Piece Average  32.4  Bottom Piece Average  34.2 
Top Piece Average  26.6  Top Piece Average  26.4 

ΔT 5.9 61.7 ΔT 7.8 
3 hours into the test At the end of the 3.75 hour test 

Measurement T (OC) % of 
Benchmark 

Measurement T (OC) 

Bottom Piece Average  33.5  Bottom Plate Average  37.2 
Top Piece Average  28.5  Top Plate Average  30.4 

ΔT 5.0 54.8 Bottom Air Space 43.2 
At the end of the 6 hour test Top Air Space 30.2 

Measurement T (OC) % of 
Benchmark 

ΔT 6.8 
  

Bottom Plate Average  33.9    
Top Plate Average  29.5    
Bottom Air Space  37.8    

Top Air Space 28.0    
ΔT 4.4 48.4   
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Top Plate 
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Figure 113: Comparison between the Conducting and Insulating States of the Folding Fins Thermal 
Semiconductor for the Constant Temperature Tests. 

 
 
 

 The experimental results of the insulating configuration of the folding fins with vertical contact 

device measured a ΔT value across the device of 4.4 OC at the end of the constant temperature test, which 

was 48.5% of the benchmark foam insulation test piece's ΔT value. This shows that the insulator state of 

the folding fins prototype functioned about half as good an insulator as conventional building insulation 

and that the device functioned as a slightly better insulator than the back-to-back-plates with fins device, 

which had a final ΔT value for its constant temperature test that was 45.7% of the benchmark insulation 

test piece. In addition, the insulating configuration of the folding fins device performed much better than 

the insulating configuration of the original basic shifting fins thermal semiconductor, which had a final 

ΔT value for its constant temperature test that was 27.2% of the ΔT value of the benchmark insulation test 

piece. 

 In order to evaluate the overall performance of the folding fins with vertical contact device as a 

thermal semiconductor, the experimental test results obtained from the conducting state of the earlier 
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basic shifting fins device were used again for the folding fins device's conducting state, which was not 

actually constructed, since the conducting configurations of the two thermal semiconductor devices were 

very similar to one another. Although this will not give the exact same results as the actual conducting 

configuration of the folding fins with vertical contact device, the conducting states of the two devices are 

similar enough that the experimental results of the basic shifting fins prototype should at least give a good 

idea of the possible performance of the folding fins thermal semiconductor. For the constant temperature 

tests the folding fins device was able to vary between ΔT values at the end of the test of 4.4 OC for the 

device's insulating state to 0.8 OC for the device's conducting state. This means that the ΔT value at the 

end of the constant temperature tests for the folding fins with vertical contact device was able to vary 

from 9.4% of the benchmark insulation test piece in its conducting state to 48.5% of the benchmark 

insulation test piece in its insulating state. Consequently, the folding fins with vertical contact device was 

able to have much larger variations in thermal conductivity when actuated between conducting and 

insulating states than the basic shifting fins thermal semiconductor, which itself only varied between 9.4 -

27.2% of the benchmark foam insulation test piece when actuated between its conducting and insulating 

states. When comparing the performance of the back-to-back plates with fins thermal semiconductor and 

the folding fins with vertical contact thermal semiconductor, both devices had about the same range of 

thermal conductivity between their low and high heat transfer states with the back-to-back plates with 

outward facing fins device functioning as a slightly better conductor when needed and the folding fins 

device functioning as a slightly better insulator when needed. 

 
 
 

4.2 EMPTY CHAMBER CONSTANT TEMPERATURE TEST  
 
 

As the different shifting fins thermal semiconductors were tested to evaluate their performance, most of 

the temperatures measured were taking very long to reach steady-state values during the constant 

temperature tests and did not ever reach steady-state values during the test. In order to better understand 

the transient effects of the insulation test chamber experimental set-up, one additional test was run with 



 

146 
 

the test chamber empty without any smart insulation devices to determine the amount of time it took for 

the entire test chamber to reach a uniform temperature of 100 OF (37.78 oC). In a similar manner to the 

previous experiments conducted, a thermocouple mounted in the same location as the bottom air space 

thermocouple, 0.75 in. (1.91 cm) above the heat source, was controlled to be a constant temperature of 

100 OF (37.78 oC) during the test. In addition, the same voltage and current levels were applied to the 

heater for the empty chamber test as for the smart insulation prototype constant temperature tests to 

maintain consistency between the results. Finally, the same test length of six hours was utilized for the 

empty chamber constant temperature test. Two additional thermocouples were again also utilized to 

monitor the temperatures of the front and top thermocouple holes to monitor any heat leaking out of the 

test chamber to the ambient laboratory environment. The rest of the sixteen thermocouples were mounted 

at various locations throughout the test chamber interior in order to accurately determine the time required 

for the entire empty chamber to reach steady-state temperature values. A plot of the results of the empty 

chamber test was produced and is shown in Figure 114. 

 

 
 
 

Figure 114: Empty Insulation Test Chamber Constant Temperature Test. 
 

TC Holes 

Test chamber interior reaches uniform 
temperature in about 40 minutes 

Heater 



 

147 
 

 From the results of Figure 114 the interior of the empty insulation test chamber reaches a steady-state, 

uniform temperature of 100 OF (37.78 oC) very quickly, in about forty minutes, with all of the 

thermocouples mounted at various locations in the test chamber having a temperature of approximately 

100 OF (37.78 oC) after that time. The only thermocouple to not have a value of 100 OF (37.78 oC) was a 

thermocouple placed very close to the heater surface in order to monitor to heater’s temperature. Its 

temperature was roughly 1 OC warmer than the uniform 100 OF (37.78 OC) temperature of the rest of the 

test chamber because it was much closer to the heat source than the bottom air space thermocouple, which 

was controlled to be 100 OF (37.78 oC). The heater thermocouple also reaches a steady-state value of 102 

OF (38.89 oC) about forty minutes into the test. The results of the empty test chamber constant 

temperature test show that steady-state conditions can be reached very quickly when the test chamber is 

filled with only air compared to the smart insulation tests where steady-state temperature measurements 

are not obtained even after a testing duration of six hours.  

 
 
 

4.3 INFLATABLE THERMAL SEMICONDUCTOR EXPERIMENTAL RESULTS 
 
 

4.3.1 Reflectix Inflatable Thermal Semiconductor Testing Results 
 

The first inflatable device that was tested was the Reflectix inflatable thermal semiconductor prototype. 

During the testing of the Reflectix device, the same general thermocouple placement was used on the hot 

and cold sides of the device with four thermocouples mounted in the corners of the device and one 

thermocouple placed at the center of the device on each side. The exact placement of the four corner 

thermocouples was 1.5 in. (3.81 cm) from the outer edges of the device in either direction. Figure 115 

gives an image of the Reflectix inflatable thermal semiconductor inserted in the insulation test chamber in 

both its conducting and insulating arrangements.  
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Figure 115: Reflectix Inflatable Smart Insulation Prototype in Chamber. 

 

 Plots of the thermocouple measurement data for the Reflectix device's constant temperature tests are 

shown in Figures 116 and 117 for the device's conducting and insulating states respectively, while two 

corresponding plots are given in Figures 118 and 119 for the constant heat flux tests of the Reflectix 

device. In addition to the plots, the average hot and cold side temperatures, the calculated ΔT values 

across the device, and the device's ΔT values computed as a percentage of the benchmark foam insulation 

test piece's ΔT value at several different points during the tests are given in Table 8. Finally, a direct 

comparison between the insulating and conducting configurations' average hot side temperature, average 

cold side temperature, and ΔT for the constant temperature tests for the Reflectix inflatable prototype is 

illustrated in the plot of Figure 120. A similar comparison between the prototype's insulating and 

conducting states for the constant heat flux tests is also given in Figure 121. 

Insulating Configuration Conducting Configuration 
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Figure 116: Reflectix Inflatable Thermal Semiconductor Prototype 

 Conducting State, Constant Temperature Test. 
 
 
 

 
 
 

Figure 117: Reflectix Inflatable Thermal Semiconductor Prototype 
Insulating State, Constant Temperature Test. 
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Figure 118: Reflectix Inflatable Thermal Semiconductor Prototype 

Conducting State, Constant Heat Flux Test. 
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Table 9:  Reflectix Inflatable Thermal Semiconductor Experimental Results. 
 
 

Constant Temperature Tests  (Standard Deviations of All Measurements < 0.50 OC) 
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  34.5  Bottom Side Average  33.6  

Top Side Average  28.4  Top Side Average  26.0  
ΔT 6.1 63.4 ΔT 7.6 79.8 

3 hours into the test 3 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  34.8  Bottom Side Average  33.9  

Top Side Average  29.1  Top Side Average  27.1  
ΔT 5.6 61.9 ΔT 6.8 74.7 

At the end of the 6 hour test At the end of the 6 hour test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  35.0  Bottom Side Average  34.3  

Top Side Average  29.5  Top Side Average  27.9  
Bottom Side Air Space  37.8  Bottom Side Air Space  37.8  

Top Side Air Space 28.7  Top Side Air Space 27.4  
ΔT 5.5 62.1 ΔT 6.4 72.0 

Constant Heat Flux Tests (Standard Deviations of All Measurements < 0.80 OC) 
Conducting Configuration Insulating Configuration 

1.75 hours into the test 1.75 hours into the test 
Measurement T (OC) Measurement T (OC) 

Bottom Side Average  36.9 Bottom Side Average  37.1 
Top Side Average  28.7 Top Side Average  26.8 

ΔT 8.2 ΔT 10.3 
At the end of the 3.5 hour test At the end of the 3.5 hour test 

Measurement T (OC) Measurement T (OC) 
Bottom Side Average  37.7 Bottom Side Average  37.9 

Top Side Average  30.2 Top Side Average  28.7 
Bottom Side Air Space  43.3 Bottom Side Air Space  43.4 

Top Side Air Space 29.3 Top Side Air Space 28.0 
ΔT 7.5 ΔT 9.2 
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Figure 119: Reflectix Inflatable Thermal Semiconductor Prototype 
Insulating State, Constant Heat Flux Test. 

 
 
 

 
 
 

Figure 120: Comparison between Reflectix Inflatable Prototype Conducting and Insulating States  
for Constant Temperature Tests. 
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Figure 121: Comparison between Reflectix Inflatable Prototype Conducting and Insulating States  
for Constant Heat Flux Tests. 

 
 
 

 From the experimental results of both the constant temperature and constant heat flux tests, the 

Reflectix inflatable thermal semiconductor prototype performed poorly as a smart insulation device with 

little variation in ΔT when the device changed between insulating and conducting states, and thus little 

variation was observed in the device's thermal conductivity. For example in the constant temperature 

tests, the measured ΔT only changed from 5.5 OC in the conducting state to 6.4 OC  in the insulating state, 

which is a change in ΔT of less than 1 OC. When examining the prototype's performance with respect to 

the benchmark insulation test piece, the ΔT value at the end of the constant temperature tests is able to 

only change from 62.1% of the benchmark foam insulation test piece's ΔT value when the device is in its 

conducting state to 72.0% after inflating the device into its insulating state. Consequently, the device 

never functions as a very good insulator or a very good conductor but instead always functions 

somewhere between the two desired heat transfer states. The major reason behind the poor performance 
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of the Reflectix smart insulation device was the still significant thickness of the inflatable device after it 

had been deflated into its conducting state. Ideally, the Reflectix device would be extremely thin in its 

deflated, conducting state compared to its inflated, insulating state, but the first Reflectix prototype had a 

deflated thickness that was still about half of the thickness of the device during its inflated state. To 

eliminate this problem for future Reflectix prototypes and testing, a vacuum pump could be added to the 

Reflectix inflatable thermal semiconductor to much more effectively deflate the small air chambers of the 

Reflectix device.  

 During the constant heat flux tests for the Reflectix prototype, the hot side air space did quickly reach 

the maximum allowable temperature of 110 OF (43.33 OC) very early during the test with the maximum 

temperature being reached in about 50 minutes when the device was in its conducting state and about 45 

minutes when the device was in its insulating state. After that temperature was reached, for the duration 

of the test the hot side air space was maintained at a constant temperature of 110 OF (43.33 OC). The main 

reason the maximum hot side air space temperature was reached during the 3.5 hour constant heat flux 

test for the Reflectix device and but not for any of the shifting fins prototypes is the much smaller thermal 

mass of the Reflectix inflatable prototype compared to the shifting fins devices. In order to determine how 

quickly a thermal system will increase in temperature due to convective heat transfer, the important 

parameter to calculate is the thermal time constant, τ, which is dependent on four properties of the system: 

the device's density, the device's specific heat capacity, the convection coefficient of the system, and the 

device's surface area. Equation 4.2 gives the expression used for calculating the thermal time constant 

[26].  

 
            𝜏𝜏 = 𝑐𝑐𝑝𝑝𝜌𝜌𝑉𝑉

ℎ𝑘𝑘𝐼𝐼
                                                              (4.2) 

 
 

From Equation 4.2 the only variables that change when the inflatable thermal semiconductors are 

heated in the test chamber instead of the shifting fins thermal semiconductors are the specific heat 

capacity and density of the material of the smart insulation prototype. The convection coefficient, volume, 
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and surface area in the insulation test chamber set-up did not change for the different prototypes because 

all of the prototypes were designed with the same dimensions and heating set-up in the insulation test 

chamber. In the design of the shifting fins thermal semiconductors, the prototypes were constructed out of 

6061 aluminum alloy, which has a specific heat capacity of 896 J/kg-K and a density of 2713 kg/m3 [30]. 

Conversely, in the design of the inflatable thermal semiconductors, the vast majority of the material of the 

prototypes was simply the air within the chambers of the honeycomb structure, so it can be assumed that 

the overall specific heat capacity and density of the inflatable semiconductors were approximately that of 

air, which has a specific heat capacity of 1005 J/kg-K and a density of 1.166 kg/m3 [31]. Since the density 

of the shifting fins devices was significantly higher than the density of the inflatable smart insulation 

devices, a much longer time constant resulted from Equation 4.2 for the convective heating of the shifting 

fins devices compared to the inflatable prototypes. The much shorter time constant during the constant 

heat flux tests for the inflatable devices caused the devices to be heated to their maximum possible 

temperatures in a much lower time period than the shifting fins prototypes for the same level of heat flux 

applied to both types of thermal semiconductors.  

 
4.3.2 NOVUS Inflatable Thermal Semiconductor Testing Results 

 
The second inflatable smart insulation device that was tested in the insulation test chamber was the 

NOVUS Bubble-Wrap-like packaging inflatable thermal semiconductor. To maintain consistency with 

the other inflatable smart insulation devices, the same thermocouple placement on the hot and cold sides 

of the devices used to calculate the ΔT values for the Reflectix inflatable prototype was also used for the 

NOVUS inflatable thermal semiconductor. Two photos that show the NOVUS inflatable prototype in its 

insulating and conducting states inserted into the insulation test chamber are given in Figure 122.  
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Figure 122: NOVUS Inflatable Smart Insulation Prototype in Chamber. 

 

 Plots of the NOVUS device's constant temperature tests are given in Figures 123 and 124 for the 

conducting and insulating states, while two additional plots are given in Figures 125 and 126 for the 

device's constant heat flux tests. In addition to the plots, the average hot and cold side temperatures, the 

calculated ΔT values across the device, and the device's ΔT values expressed as a percentage of the 

benchmark insulation test piece's ΔT value at several points during the tests are given in Table 10. 

Finally, a direct comparison between the insulating and conducting states of the NOVUS prototype is 

provided in Figure 127 for the device's constant temperature test. 

 

 

Insulating Configuration Conducting Configuration 
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Figure 123: NOVUS Inflatable Thermal Semiconductor Prototype 
 Conducting State, Constant Temperature Test. 

 
 
 

 
 
 

Figure 124: NOVUS Inflatable Thermal Semiconductor Prototype 
 Insulating State, Constant Temperature Test. 
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Figure 125: NOVUS Inflatable Thermal Semiconductor Prototype 
 Conducting State, Constant Heat Flux Test. 
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Table 10:  NOVUS Inflatable Thermal Semiconductor Experimental Results. 

 
 

Constant Temperature Tests (Standard Deviations of All Measurements < 0.45 OC) 
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  34.7  Bottom Side Average  34.3  

Top Side Average  32.8  Top Side Average  30.7  
ΔT 1.9 19.8 ΔT 3.6 37.6 

3 hours into the test 3 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  35.3  Bottom Side Average  34.9  

Top Side Average  33.6  Top Side Average  32.1  
ΔT 1.7 18.4 ΔT 2.8 30.8 

At the end of the 6 hour test At the end of the 6 hour test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  35.5  Bottom Side Average  35.3  

Top Side Average  34.0  Top Side Average  32.7  
Bottom Side Air Space  37.8  Bottom Side Air Space  37.8  

Top Side Air Space 33.3  Top Side Air Space 32.2  
ΔT 1.5 17.2 ΔT 2.6 28.8 

Constant Heat Flux Tests (Standard Deviations of All Measurements < 1.16 OC) 
Conducting Configuration Insulating Configuration 

1.75 hours into the test 1.75 hours into the test 
Measurement T (OC) Measurement T (OC) 

Bottom Side Average  39.0 Bottom Side Average  37.8 
Top Side Average  35.8 Top Side Average  32.5 

ΔT 3.2 ΔT 5.3 
At the end of the 3.5 hour test At the end of the 3.5 hour test 

Measurement T (OC) Measurement T (OC) 
Bottom Side Average  404 Bottom Side Average  38.7 

Top Side Average  37.5 Top Side Average  34.3 
Bottom Side Air Space  43.4 Bottom Side Air Space  43.3 

Top Side Air Space 36.4 Top Side Air Space 33.8 
ΔT 2.9 ΔT 4.4 

 
 
 
 
 
 
 
 
 



 

160 
 

 
 

 
 
 

Figure 126: NOVUS Inflatable Thermal Semiconductor Prototype 
Insulating State, Constant Heat Flux Test. 

 
 
 

 
 
 

Figure 127: Comparison between NOVUS Inflatable Prototype Conducting and Insulating States  
for Constant Temperature Tests. 
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 The performance of the device as smart insulation was slightly better than that of the Reflectix 

inflatable prototype, since it had a slightly larger range of ΔT values between its insulating and 

conducting configurations. At the end of its constant temperature tests, for example, the ΔT value 

measured across the NOVUS device was able to vary between a value of 1.5 OC for its conducting state to 

a value of 2.6 OC for its insulating state, which is a change in ΔT of slightly more than 1 OC compared to 

the change in ΔT of about 0.9 OC for the Reflectix prototype testing. Although the NOVUS and Reflectix 

inflatable prototypes had about the same level of overall performance, the NOVUS device functioned 

much better in its conducting state, while the Reflectix device functioned much better in its insulating 

state. When examining the NOVUS thermal semiconductor's ΔT value at the end of its constant 

temperature test as a percentage of the benchmark insulation test piece's ΔT value, the NOVUS device 

had less than 1/5 of the insulating capability of standard building insulation for its conducting state, which 

shows that the NOVUS device can serve as a good conductor when needed. For its insulating state, 

however, the NOVUS device performs very poorly with a measured ΔT value that was only 28.8% of the 

benchmark insulation test piece's ΔT value.  

To improve the performance of the NOVUS inflatable thermal semiconductor in its insulating state, a 

new type of honeycomb-like material could be fabricated with much smaller chambers of air than the 

NOVUS packaging material, which has fairly large Bubble-Wrap-like air spaces. By using smaller 

chambers of air in the device’s inflated state, natural convection of the air will significantly decrease, 

which will greatly improve the insulating state of the device. In addition, the performance of the device in 

its conducting state will not be affected because the device is essentially the same in its deflated 

configuration regardless of the size of the chambers of air in the device. 

 Similarly to the Reflectix inflatable prototype constant heat flux tests, the NOVUS inflatable thermal 

semiconductor also reached its maximum allowable temperature very quickly due to its small thermal 

mass and thermal time constant. The NOVUS device's conducting configuration reached the maximum 
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allowable hot side air space temperature in approximately 87 minutes, while the device's insulating 

configuration reached the maximum temperature of 110 OF (43.33 oC) in approximately 95 minutes.  

 
4.3.3 NOVUS Inflatable Thermal Semiconductor with Aluminum Plates Testing Results 
 
 
In order to further improve the conduction state of the NOVUS inflatable smart insulation device, two 

aluminum plates were added to the original prototype on its hot and cold sides to compress any remaining 

air out of the deflated NOVUS prototype. By eliminating any leftover air in the smart insulation 

prototype, the thickness of the deflated device will be reduced, giving a higher thermal conductivity than 

before through the very thin layers of plastic packaging material. In practice, a vacuum pump would 

actually be used to much more effectively inflate and deflate the NOVUS inflatable device, but for the 

purpose of testing the two heat transfer states of the device without an actual actuation mechanism, using 

the two aluminum plates to better deflate the NOVUS prototype was a very simple, but effective solution.  

In Figure 128 an image is provided of the NOVUS inflatable prototype placed in the insulation test 

chamber in both its conducting and insulating state. 

 

 

 

 
Figure 128: NOVUS Inflatable Prototype with Aluminum Plates in Chamber Experimental Set-up. 
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 In Figures 129 and 130 constant temperature test plots are given for the conducting and insulating 

states of the NOVUS inflatable device with aluminum plates, while for the device's constant heat flux 

tests, two additional plots are given in Figures 131 and 132. In addition to the plots, the average hot and 

cold side temperatures, the calculated ΔT values across the device, and the device's ΔT values expressed 

as a percentage of the benchmark insulation test piece's ΔT value are given in Table 11. Finally, a direct 

comparison between the insulating and conducting states of the NOVUS prototype with two aluminum 

plates is provided in Figure 133 for the device's constant temperature test and Figure 134 for the device's 

constant heat flux test. 

 
 

 
 
 

Figure 129: NOVUS Inflatable Thermal Semiconductor with Aluminum Plates Prototype 
Conducting State, Constant Temperature Test. 

 

ΔT = 1.0 oC 

Bottom Side Air Space 

Bottom Side 

Top Side 
Top Side Air Space 



 

164 
 

 
 
 

Figure 130: NOVUS Inflatable Thermal Semiconductor with Aluminum Plates Prototype 
Insulating State, Constant Temperature Test. 

 
 
 

 
 
 

Figure 131: NOVUS Inflatable Thermal Semiconductor with Aluminum Plates Prototype 
Conducting State, Constant Heat Flux Test. 
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Figure 132: NOVUS Inflatable Thermal Semiconductor with Aluminum Plates Prototype 
Insulating State, Constant Heat Flux Test. 

 
 

 

 
 
 

Figure 133: Comparison between NOVUS Inflatable Prototype with Aluminum Plates 
Conducting and Insulating States for Constant Temperature Tests. 
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Figure 134: Comparison between NOVUS Inflatable Prototype with Aluminum Plates 
 Conducting and Insulating States for Constant Heat Flux Tests.  
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Table 11:  NOVUS Inflatable Thermal Semiconductor with Aluminum Plates Experimental Results. 

 
 

Constant Temperature Tests (Standard Deviations of All Measurements < 0.21 OC) 
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  32.0  Bottom Side Average  34.5  

Top Side Average  30.7  Top Side Average  27.5  
ΔT 1.2 12.8 ΔT 6.9 72.6 

3 hours into the test 3 hours into the test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  33.4  Bottom Side Average  35.0  

Top Side Average  32.2  Top Side Average  28.7  
ΔT 1.2 12.8 ΔT 6.3 68.8 

At the end of the 6 hour test At the end of the 6 hour test 
Measurement T (OC) % of 

Benchmark 
Measurement T (OC) % of 

Benchmark 
Bottom Side Average  33.8  Bottom Side Average  34.8  

Top Side Average  32.8  Top Side Average  29.4  
Bottom Side Air Space  37.8  Bottom Side Air Space  37.8  

Top Side Air Space 30.4  Top Side Air Space 28.2  
ΔT 1.0 11.3 ΔT 5.4 60.8 

Constant Heat Flux Tests (Standard Deviations of All Measurements < 0.25 OC) 
Conducting Configuration Insulating Configuration 

1.75 hours into the test 1.75 hours into the test 
Measurement T (OC) Measurement T (OC) 

Bottom Side Average  32.3 Bottom Side Average  36.7 
Top Side Average  30.1 Top Side Average  26.7 

ΔT 2.1 ΔT 10.0 
At the end of the 3.5 hour test At the end of the 3.5 hour test 

Measurement T (OC) Measurement T (OC) 
Bottom Side Average  36.7 Bottom Side Average  38.6 

Top Side Average  34.8 Top Side Average  30.6 
Bottom Side Air Space  43.1 Bottom Side Air Space  43.1 

Top Side Air Space 31.7 Top Side Air Space 29.2 
ΔT 1.8 ΔT 8.0 

 
  

Adding the two aluminum plates to compress and deflate the original NOVUS thermal semiconductor 

greatly improved its performance as a thermal semiconductor from the experimental results. At the end of 

the device's constant temperature test for its conducting configuration, the ΔT value was reduced by 
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34.4% from a value of 1.53 OC for the original NOVUS prototype to a new value of 1.0 OC for the 

modified NOVUS device. This shows that applying the plates to the original device did help to much 

more effectively deflate the inflatable structure by removing any leftover air within the NOVUS 

packaging layers, which improved the smart insulation device's performance as a conductor when 

necessary. Also, unexpectedly, using the aluminum plates on the hot and cold sides of the NOVUS device 

significantly improved the new prototype's performance as an insulator compared to the original NOVUS 

thermal semiconductor by more than doubling the original NOVUS prototype's ΔT value at the end of its 

insulating state, constant temperature test from 2.6 OC to 5.4 OC. The modified NOVUS prototype’s large 

improvement in its performance as an insulator most likely was caused by the added thermal mass of the 

two aluminum plates due to aluminum’s very high density compared to the original NOVUS device.  

 When evaluating the NOVUS inflatable device with aluminum plates compared to the benchmark 

insulation test piece's constant temperature test ΔT values, the modified NOVUS device continued to 

show marked improvement over the original NOVUS prototype. The range of ΔT at the end of the 

constant temperature tests for the new NOVUS device varied from 11.3-60.8% of the benchmark 

insulation test piece's ΔT value, showing that the NOVUS device with aluminum plates could perform as 

both an excellent conductor and still reasonable insulator when necessary with possible variation in ΔT of 

over 49% from the device's conducting state to its insulating state. This is a much larger change in ΔT for 

the actuation of the device from its conducting configuration to its insulating configuration than was 

achieved for the original NOVUS inflatable device, which only had a change in ΔT from 17.2% to 28.8% 

of the benchmark insulation values. Similar improvements in the NOVUS device with aluminum plates' 

performance as both a conductor and an insulator were also found for the modified prototype's constant 

heat flux tests. Two plots comparing the hot side temperatures, cold side temperatures, and ΔT values of 

the original NOVUS inflatable device and the NOVUS inflatable device with aluminum plates are shown 

in Figures 135 and 136 for the constant temperature tests' conducting and insulating configurations. 
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Figure 135: Conducting State Comparison between NOVUS Inflatable Thermal Semiconductors  

with or without Aluminum Plates. 
 
 
 

 
 
 

Figure 136: Conducting State Comparison between NOVUS Inflatable Thermal Semiconductors  
with or without Aluminum Plates. 
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 Although utilizing the two aluminum plates to more effectively deflate the NOVUS prototype 

substantially improved the device’s conducting state, it is speculated that even better conductor 

performance would be possible if the NOVUS prototype could be deflated and compressed very well by 

using a vacuum pump instead of the two plates. By adding the two plates to the original NOVUS device, 

the conduction heat transfer through the device is increased due to the decreased thickness of the original 

NOVUS insulation; however, the aluminum plates themselves also served to decrease the heat transfer 

simply by their added thickness. In the end the benefits the plates contributed by better deflating the smart 

insulation outweighed the costs of the additional thickness of the two plates, leading to improved 

performance overall for the NOVUS device.  

To show how effectively deflating the NOVUS insulation without the use of the plates could lead to a 

reduced ΔT value for the device’s conducting state, one final constant temperature test was conducted 

utilizing a device consisting of only two aluminum plates back-to-back with none of the NOVUS 

insulation  between them. In theory, the ΔT value for a well-deflated NOVUS prototype without any 

plates would be equal to the difference between the ΔT value for the well-deflated NOVUS device with 

two added plates and the ΔT value for a device consisting of only two back-to-back aluminum plates. A 

plot of the constant temperature test of the two back-to-back aluminum plates is given in Figure 137. 

 

 



 

171 
 

 
 

Figure 137: Back-to-Back Aluminum Plates Constant Temperature Test.  

 

 From the experimental results of Figure 137, the ΔT value at the conclusion of the back-to-back 

aluminum plates’ constant temperature test was calculated to be 0.6 OC, which shows that once the 

NOVUS insulation is well-deflated through the use of the two aluminum plates in the earlier test, most of 

the remaining thermal resistance is from the two plates themselves. Using the results of both the NOVUS 

inflatable device with aluminum plates test and the back-to-back aluminum plates test, it was determined 

that in the former test the two aluminum plates contributed 0.6 OC of the total 1.0 OC overall ΔT value 

measured across the device, while the well-deflated NOVUS insulation contributed only 0.36 OC of the 

total ΔT value. Consequently, if a vacuum pump were utilized to very effectively deflate the original 

NOVUS prototype, it is estimated that the ΔT value for the end of the device’s constant temperature test 

for its conducting state would be only about 0.4 OC compared to the original value of 1.5 OC, resulting in 

a much better conducting state for the original thermal semiconductor with a ΔT value decreased by 

69.5%. This would result in much better performance for the conducting state of the original NOVUS 

inflatable device with possible variation in ΔT from 5.3% of the benchmark insulation test piece’s ΔT 

value for the device’s conducting state to 28.8% of the benchmark insulation test piece’s ΔT value for the 

device’s insulating state. By using a vacuum pump for effective deflation, however, the insulating 
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configuration of the original NOVUS device will not improve such as for the case with the added 

aluminum plates which provided additional thermal mass to the overall device. 

 
 

4.4 DISCUSSION OF SMART INSULATION EXPERIMENTAL RESULTS 

 
In order to compare the performance of the different fins-related smart insulation devices to the 

benchmark insulation test piece and to each other, a bar graph was created, which is shown in Figure 138. 

Within Figure 138, the ranges of the ΔT values’ measured from the devices’ conducting states to their 

insulating states as a percentage of the benchmark insulation test piece’s ΔT values are given for each of 

the three main fins-related smart insulation prototypes. In addition, in Figure 138 the ideal smart 

insulation case with ΔT values ranging from 0 to 100% of the benchmark insulation test piece is also 

given for comparison 

 
 

 
 
 

Figure 138: Comparison of Fins-Related Prototype ΔT Values to Ideal Smart Insulation Case. 
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As seen in Figure 138, the fins-related prototype that performed the best as smart insulation was the back-

to-back plates with outward facing fins device. The back-to-back plates with fins thermal semiconductor’s 

ΔT value was able to vary from 7.8% to 54.6% of the benchmark insulation test piece’s ΔT value. On the 

basis of these experimental results, the back-to-back plates with outward facing fins concept should be 

pursued further over the other shifting fins concepts by possibly implementing and testing it in an actual 

building setting.  

 Next, in order to compare the performance of the different inflatable honeycomb-structure smart 

insulation devices to the benchmark insulation test piece and to each other, a second bar graph was also 

created, which is given in Figure 139. Within Figure 139, for each of the three main inflatable thermal 

semiconductor devices, the ranges of the ΔT values’ measured from the devices’ conducting states to their 

insulating states are given as a percentage of the benchmark insulation test piece’s ΔT values. Similarly to 

Figure 138, the ideal smart insulation case is also given for comparison in Figure 139 with ΔT values 

ranging from 0 to 100% of the benchmark insulation test piece. 

 
 

 
 
 

Figure 139: Comparison of Inflatable Prototype ΔT Values to Ideal Smart Insulation Case. 
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As illustrated in Figure 139, the inflatable thermal semiconductor device that had the best performance by 

far was the NOVUS inflatable device with two aluminum plates, which was able to vary its final constant 

temperature test ΔT value when changing heat transfer states from 11.29% to 60.76% of the benchmark 

insulation test piece’s ΔT value. This large range of ΔT values reached by the NOVUS inflatable device 

with two plates was much larger than the range of ΔT values obtained by the Reflectix inflatable 

prototype or the original NOVUS inflatable prototype, which will also give it the largest possible change 

in thermal conductivity when it is actuated between its conducting and insulating states. In addition, when 

comparing the NOVUS device with two aluminum plates to the best fins-related prototype, it continues to 

have the best performance. This makes the NOVUS inflatable prototype with two plates the best smart 

insulation candidate to be pursued for further implementation and testing in real-world building settings 

among not only the inflatable thermal semiconductors but also among any of the different smart 

insulation devices experimentally tested.  

 Although all of the different smart insulation prototypes exhibited some change in their ΔT values 

and thermal conductivities when changed between their conducting and insulating states, many of the 

devices had poor performance in their insulator states, and none of the devices’ ΔT values were able to 

attain the level of the benchmark conventional insulation test piece. For smart insulation to obtain energy 

and cost savings over conventional building insulation, any smart insulation prototypes developed will 

need their insulating states to have performance close to or even greater than conventional building 

insulation. One method that could be used to improve the insulating configurations of the mart insulation 

devices tested would be to add an additional layer of conventional building insulation to the original smart 

insulation devices to increase their ΔT values until their insulator performance attains that of the 

conventional building insulation. While this will also result in decreased performance for the conducting 

configurations of the smart insulation prototypes, overall, the amount of change in the ΔT values between 

the devices’ insulating and conducting states should remain the same. 
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5.0 MODELING OF THE SHIFTING FINS THERMAL SEMICONDUCTOR WITH 
INSULATION BETWEEN THE FINS 

 
 

 
 

In order to gain a deeper understanding of the experimental results of the smart insulation prototype 

testing, an analytical model was developed for one of the simplest prototypes, the shifting fins thermal 

semiconductor with insulation between the fins. A major decision in the modeling of the shifting fins 

prototype was to only model the constant temperature tests of the device and to postpone the modeling of 

the constant heat flux tests of the device. Once an analytical model of the constant temperature tests for 

the shifting fins device is produced that adequately helps to explain the experimental results, it should not 

be difficult to then extend and modify that model for the constant heat flux tests as well.  

At first, a simple one-dimensional, steady-state model of both the insulating and conducting 

configurations of the shifting fins device in the test chamber set-up was constructed using the thermal 

resistor approach in Matlab to calculate the theoretical steady-state ΔT values across the device for its two 

heat transfer states. After comparing the Matlab model's calculated theoretical ΔT values for the shifting 

fins device to the ΔT values at the conclusion of the constant temperature tests for the experimental 

testing, a large discrepancy was present between the experimental and theoretical ΔT values. For the 

insulating state of the shifting fins prototype, the Matlab model’s theoretical ΔT values were much larger 

than the ΔT values measured from the experimental testing. Conversely, for the conducting state of the 

shifting fins prototype, the Matlab model’s theoretical ΔT values were much smaller than the ΔT values 

measured from the experimental testing. Thus, the Matlab 1-D, steady-state, thermal resistor model was 

determined to be insufficient to adequately describe the shifting fins prototype, requiring the development 

of a more in-depth model.  
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When developing the second and final model of the shifting fins device, several shortcomings of the 

original Matlab model were addressed. First, the new model would be two-dimensional instead of one-

dimensional to allow heat to transfer both vertically and horizontally within the shifting fins prototype.  

Even though a more detailed 3-D model could have been developed for the shifting fins device, a 2-D 

model was determined to be sufficient, since the geometry and characteristics of the device and test 

chamber set-up did not change in the third direction. Next, the new model would be transient in nature 

instead of steady-state because during constant temperature tests being modeled, the temperature 

measurements did not reach their steady-state values, which could have caused the discrepancy in the ΔT 

values between the simple Matlab model results and the experimental results for the shifting fins 

prototype. To meet these requirements for the new model, ANSYS finite element software was utilized in 

the development of the second improved mathematical model because it allowed for both 2-D and 

transient thermal modeling. As a result of using FEA (Finite Element Analysis), the final model of the 

shifting fins prototype was primarily a numerical model instead of an analytical one. The formulation and 

results of the 2-D, transient finite element shifting fins device model are discussed in the following 

sections.  

 
 

5.1 DEVELOPMENT OF THE SHIFTING FINS PROTOTYPE TRANSIENT  
FINITE ELEMENT MODEL 

 

5.1.1 Modeling of Shifting Fins Prototype with Thermal Contact Resistance Added 

 
 The first step in building the thermal finite element model of the shifting fins device was to construct 

the insulating and conducting configurations of the 2-D shifting fins prototype in the software to match 

the geometry and dimensions of the actual fabricated device. Except for the differences in the fin 

arrangement of the insulating and conducting models of the shifting fins device, all other features of the 

numerical model were the same for both the insulating and conducting states of the device. Figures 140 
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and 141 show the conducting and insulating configurations of the shifting fins prototype constructed in 

the finite element model. One issue that was never accounted for in the original Matlab model of the 

shifting fins device was the problem of the thermal contact resistance at the interfaces where the fins and 

plates contact each other and where the lower and upper fins contact each other during the conduction 

case. Thermal contact resistance between two surfaces occurs from the roughness of the two surfaces 

causing small air gaps to be present at the interface between the surfaces.  To incorporate thermal contact 

resistance into the 2-D model, small air spaces were added into the conducting configuration model at the 

locations where the fins contact each other and at the interfaces between the fins and the aluminum plates. 

From examining the actual shifting fins prototype in its conducting arrangement, the air gap thickness 

between contacting surfaces in the device was estimated to be roughly 0.5 mm (1/48 in.), so this value 

was used in the thermal finite element analysis. To maintain consistency between the conducting and 

insulating states of the shifting fins prototype, the same small air spaces were also added to the insulating 

configuration finite element model of the device.  

 

 

 
Figure 140: Conducting State of Shifting Fins Prototype Constructed in FEA Software. 
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Figure 141: Insulating State of Shifting Fins Prototype Constructed in FEA Software. 

 

A close-up view of the small air spaces at the interface between the lower and upper fins in the device's 

conducting state is also given in Figure 142. 

 

 

 
Figure 142: Close-Up View of Air Spaces Added at Interface between Contacting Fins. 
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 Three different materials were utilized to construct the shifting fins prototype with insulation between 

fins in the finite element model: aluminum alloy 6061, the foam polyisocyanurate building insulation, and 

air. The material properties used in the thermal finite element analysis are listed in Table 12. The 

properties of air used in the FEA were for air at a temperature of 30 OC [31]. 30 OC was chosen because it 

was about the average temperature of the air within the test chamber, which varied between 20 - 40 OC 

during the constant temperature testing. 

 

Table 12: Material Properties used in Finite Element Analysis of Shifting Fins Device. 

 
Material Properties used in FEA 

6061 Aluminum Alloy Polyisocyanurate Foam Insulation Air  
Property Value Property Value Property Value 
ρ (kg/m3) 2712.6  ρ (kg/m3) 32 ρ (kg/m3) 1.166 

cp (J/kg-K) 896 cp (J/kg-K) 1400 cp (J/kg-K) 1005 
k (W/m-K) 167 k (W/m-K) 0.02163 k (W/m-K) 0.0264 

 
  
 
5.1.2 Meshing of Shifting Fins Prototype with Insulation between Fins 

 
 After the shifting fins prototype had been constructed in the FEA software, the next step was to 

determine the type and size of the elements to be used in the mesh of the device. For all of the 2-D 

elements of the thermal finite element model, PLANE55 elements were utilized in the ANSYS 11.0 

software, which are 2-D thermal conduction elements that can be used in a transient thermal analysis. 

Each PLANE55 element consists of four nodes with a single degree of freedom, temperature, at each 

node. When determining the desired size of the PLANE55 elements, the size of the elements was 

dependent on the minimum time step size in the transient thermal analysis [32]. In general for a transient 

thermal finite element analysis, using a finer mesh for the same time step size will result in improved 

results, while using smaller time steps for the same size mesh will give worse results [32]. In this transient 

analysis a very small minimum time step of 1.5 s is desired, so a very fine mesh will be needed. To solve 

for the maximum possible element size for accurate results for the minimum time step size of 1.5 s, 
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Equation 5.1 was utilized where Δ is the maximum possible conducting length of an element and α is the 

thermal diffusivity of an element, which is also given in Equation 5.2. 

 
                                                                                 𝛼𝛼 =  𝑘𝑘

𝜌𝜌𝑐𝑐𝑝𝑝
                (5.1) 

 
 

                                                   𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚 𝑇𝑇𝑐𝑐𝑚𝑚𝑒𝑒 𝑆𝑆𝑡𝑡𝑒𝑒𝑝𝑝 𝑆𝑆𝑐𝑐𝑆𝑆𝑒𝑒 =  ∆
2

4𝛼𝛼
                                           (5.2)                                                    

 
 

 Since three different materials were used in the mesh for the shifting fins prototype, the maximum 

possible element edge length was calculated using Equation 5.1 for each of the three different materials' 

thermal diffusivities, and the smallest maximum possible edge length of the three materials was utilized 

as the edge length for all of the elements in the shifting fins prototype mesh. Using Equation 5.1 the 

maximum possible conducting lengths for the aluminum alloy, air, and the polyisiocyanurate foam 

insulation were calculated to be 2.03 cm, 1.16 cm, and 0.17 cm respectively, so 0.05292 cm (1/48 in.) was 

chosen as the edge length for the PLANE55 elements. 0.05292 cm (1/48 in.) was chosen instead of lowest 

value of 0.17 cm mainly because it could be evenly divided into both the total height of the shifting fins 

device of 2.25 in. (5.715 cm) and the total width of the shifting fins device of 13.25 in. (0.337 m). The 

mesh of the shifting fins device's insulating state near the interface between the upper fins and upper plate 

is shown in Figure 143. 
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Figure 143: Shifting Fins Prototype Mesh at Interface between Upper Fins and Top Plate of Device. 

 
 
5.1.3 Modeling of Hot Side Air Space in Insulation Test Chamber 

 
In the modeling of the hot side air space used in the test chamber to heat the bottom plate of the shifting 

prototype, both convection and conduction heat transfer of the air from the heater to hot side place were 

considered. To model conduction in the hot side air space, LINK32 conductive bar elements were utilized 

that consisted of two nodes able to conduct heat to each other in the uniaxial direction between them with 

each node having a single degree of freedom, temperature. To model convection in the hot side air space, 

LINK34 convection elements were utilized that consisted of two nodes able to convect heat between them 

with the convective heat transfer coefficient, h, inputted by the user as a material property for the element. 

In addition, the length of the LINK34 in the model is arbitrary, since unlike conduction, the length of the 

element has no effect on the amount of convection heat transfer.  

 In the thermal FEA model of the shifting fins device in the test chamber, the hot side air space is 

inserted into the overall model by connecting one node of the LINK32 conduction and LINK34 

convection elements directly to the bottom nodes of the bottom aluminum plate of the shifting fins device 

facing the hot side air space. Starting from left to right for each node of the bottom, hot side plate, the 

LINK32 and LINK34 1-D elements will alternate so that every other node of the hot side plate will be 

connected to a LINK32 element with all of the other nodes being connected to a LINK34 element. The 

Small Air Gaps 

Mesh of 1/48 in.  
(0.05292 cm) PLANE55 
elements 

Cold Side Plate 

Upper Fin 

Foam insulation 
between fins 
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node at the other side of all of the LINK32 and LINK34 elements will be set to a constant temperature of 

100 OF (37.78 oC) to represent the constant temperature boundary condition of the midpoint of the hot 

side air space. Additionally, on either side of the hot side plate where it rests on top of the foam insulation 

shelf, an insulated (zero heat flux) boundary condition was applied to bottom of the hot side plate.  

 When attaching the LINK34 1-D elements to the nodes of the hot side plate, each line attached to the 

hot side plate represented one LINK34 element for convection. Conversely, for the LINK32 elements 

each line attached the hot side plate represented many LINK32 conduction elements. For both types of 1-

D elements, the length of each line attached to the hot side plate was set to a value of 0.75 in. (1.91 cm) to 

match the distance between the midpoint of the hot side air space and the hot side plate of the device, 

while the edge length of the individual LINK32 elements was kept at the same value of 1/48 in. (0.05292 

cm), used for the PLANE55 elements beforehand for consistency. Figure 144 demonstrates how the 

LINK32 and LINK34 elements were attached to the hot side plate of the shifting fins device to model the 

hot side air space. Two final values needed in the model were the cross-sectional area that each LINK32 

element acts over and the surface area that each LINK34 element acts over, which are essentially the 

same values since the area of the hot side plate serves as both the cross-sectional area for conduction and 

the surface area for convection. The value used for the two areas was 1/24 in. (0.106 cm), which was the 

distance between adjacent LINK32 elements and the distance between adjacent LINK34 elements, since 

the other component of the area in the 2-D model was unity. Essentially, each LINK32 or LINK34 

element attached to a node of the hot side plate acts over the area of the two PLANE 55 elements on 

either side of that hot side plate node. A schematic that illustrates the areas over which the LINK32 and 

LINK34 elements act is given in Figure 145. 
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Figure 144: Schematic of How Hot Side Air Space Heating is applied to Shifting Fins Device. 

 
 

 
An image that shows all of the LINK34 and LINK32 elements attached to the bottom of the hot side plate 

is given in Figure 146.  

 
 

 
 
 

Figure 145: Areas of Hot Side Plate over which 1-D Link Elements Act. 

Each 1-D link element is attached to one of the nodes of a hot side plate element. 
 

The opposite node of each 1-D link 
element is given a constant temperature 
boundary condition of 100 OF (37.78 oC). 
 

At left and right sides 
of hot side plate where 
it contacts the shelf, an 
insulated boundary 
condition is applied. 

qw = 0 

T = 100 OF (37.78 oC) 
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elements 

LINK32 
elements 

Each LINK32 element conducts 
heat over the area of the hot side 
plate from its node to the adjacent 
nodes on either side. 

Each LINK34 element 
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Figure 146: Hot Side Air Space and Shelf Conditions Applied to Hot Side Plate in FEA Model. 

 

 In order to calculate the convection coefficient for the LINK34 elements of the hot side air space, the 

equations for natural convection in an enclosure were utilized [26]. During almost the entire length of the 

constant temperature tests for the shifting fins prototype, a constant temperature boundary condition of 

100 oF (37.78 oC) was applied to the midpoint of the hot side air space, while on the other side of the hot 

side air space, the hot side plate very slowly increased in temperature during the test. To calculate the 

convection coefficient for the constant temperature boundary condition period of the testing, equations for 

the Rayleigh number and the Nusselt number for natural convection in an enclosure between two 

horizontal plates of constant temperature were used where the Rayleigh number is simply the Grashof 

number multiplied by the Prandtl number as shown in Equation 5.3 [26].  

 
                                                                                   𝑅𝑅𝑒𝑒 = 𝐺𝐺𝑒𝑒𝛿𝛿𝑃𝑃𝑒𝑒                                                      (5.3) 

 
Since the temperature of the bottom plate was not actually constant but increased during the testing, 

several convection coefficients were calculated for different bottom plate temperatures, resulting in a hot 

side air space convection coefficient that was a function of the temperature of the hot side plate. To input 

the convection coefficient as a function of temperature into the FEA software, the convection coefficient 

was inputted in a tabular format.  
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 The first step in calculating the convection coefficients for the constant temperature boundary 

condition for the hot side air space was to calculate several Rayleigh numbers for different hot side plate 

temperatures using Equation 5.4 where δ is the distance between the two horizontal constant temperature 

surfaces and β is given by the expression found in Equation 5.5 [26]. For the case of the hot side air space 

of the test chamber, a value of 0.75 in. (1.91 cm) was utilized for δ because it was the distance between 

the hot side plate and the constant temperature boundary condition of 37.78 oC (100 oF) at the midpoint of 

the chamber.  

 

                                                           𝑅𝑅𝑒𝑒 =  𝑔𝑔𝑔𝑔 (37.78−𝑇𝑇𝐻𝐻𝑐𝑐𝑡𝑡  𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 )𝛿𝛿3

𝜈𝜈𝑘𝑘𝑐𝑐𝑒𝑒 𝛼𝛼𝑘𝑘𝑐𝑐𝑒𝑒
                                        (5.4) 

 
 
                                                                    𝑔𝑔 = 1

𝑇𝑇𝐻𝐻𝑐𝑐𝑡𝑡  𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 +37.78
2 +273.15

                                          (5.5) 

 
 
Once the Rayleigh number was calculated as a function of the hot side plate temperature, the next step 

was to calculate the Nusselt numbers for the hot side air space for the different Rayleigh numbers. The 

general form for the Nusselt number for natural convection between two horizontal surfaces in an 

enclosure is given in Equation 5.6 where the constants C, n, and m will vary depending on the Rayleigh 

number determined earlier [26].  

 
                                                                           𝑁𝑁𝑐𝑐𝛿𝛿 = 𝐶𝐶(𝑅𝑅𝑒𝑒)𝑐𝑐(𝐿𝐿

𝛿𝛿
)𝑚𝑚                                                  (5.6) 

 
 
 The calculated Rayleigh numbers varied from around 3300 to 10,600, requiring the use of two 

different empirical relations for the Nusselt number based on the general form of Equation 5.6 that are 

shown in Equations 5.7 and 5.8 with the Rayleigh number range for which each is applicable [26].  

 
                                                   1700 <  𝑅𝑅𝑒𝑒 < 7000               𝑁𝑁𝑐𝑐𝛿𝛿 = 0.059(𝑅𝑅𝑒𝑒)0.4                     (5.7) 
 
 
                                                   7000 <  𝑅𝑅𝑒𝑒 < 3.2 𝑥𝑥 105        𝑁𝑁𝑐𝑐𝛿𝛿 = 0.212(𝑅𝑅𝑒𝑒)1/4                    (5.8) 
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Finally, using the calculated Nusselt numbers the convection coefficients for the hot side air space when 

the midpoint of the air space is at a constant temperature were determined using Equation 5.9 [26]. 

 
                                                                                  ℎ = 𝑁𝑁𝑐𝑐𝛿𝛿

𝑘𝑘𝑘𝑘𝑐𝑐𝑒𝑒
𝛿𝛿

                                                      (5.9) 
 
 
The convection coefficient as a function of the hot side plate temperature is given in Table 13 for the 

period of the testing when the hot side air space is at a constant temperature.  

 

Table 13: Hot Side Air Space Convection Coefficients for Constant Temperature Boundary Condition. 
 
 

THot Side Plate
 (oC) hHot Side Air Space (W/m2-K) 

21.6 2.98 
22.4 2.94 
23.3 2.90 
24.2 2.84 
25.1 2.80 
26.0 2.75 
26.9 2.69 
27.8 2.74 
28.7 2.64 
29.6 2.53 
30.5 2.41 
31.4 2.30 
32.3 2.16 
32.8 2.08 

 
 
 

 Although the hot side air space was at a constant temperature for the vast majority of the constant 

temperature tests, for the first 13 minutes of the test the heater applied a constant heat flux to the hot side 

air space to increase its temperature from the ambient laboratory temperature to 100 oF (37.78 oC). As a 

result of this different boundary condition for the hot side air space early in the test, different convection 

coefficients had to be calculated for the beginning of the test for the FEA model. In calculating the 

convection coefficients for the constant heat flux boundary condition, the first step was to calculate new 

Rayleigh numbers as a function of the bottom plate temperature ranging from 21.6 oC to 23.3 oC at the 
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very beginning of the testing. To calculate the Rayleigh numbers Equation 5.10 for free convection from 

inclined surfaces under constant heat flux conditions was utilized with qw being calculated from Equation 

5.11 where V is the voltage applied to the Kapton heater, I is the current applied to the Kapton heater, and 

A is the cross-sectional area of the hot side area space [26].  

 

                                                                        𝑅𝑅𝑒𝑒 =  𝑔𝑔𝑔𝑔𝑞𝑞𝑤𝑤𝛿𝛿4

𝑘𝑘𝑘𝑘𝑐𝑐𝑒𝑒 𝛼𝛼𝑘𝑘𝑐𝑐 𝑒𝑒𝜈𝜈𝑘𝑘𝑐𝑐𝑒𝑒
                                                      (5.10) 

 
 
                                                                        𝑞𝑞𝑤𝑤 = 𝑉𝑉𝐻𝐻𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒 𝐼𝐼𝐻𝐻𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒

𝑘𝑘𝑐𝑐𝑒𝑒𝑐𝑐𝐼𝐼𝐼𝐼 −𝐼𝐼𝑒𝑒𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒
                                                   (5.11) 

 
 

Once the Rayleigh numbers were calculated, the next step was to calculate the new Nusselt numbers 

for the constant heat flux case using Equations 5.12 and 5.13. In Equation 5.12 the characteristic length 

dimension, L, for horizontal flat surfaces, such as the constant temperature horizontal surface of the hot 

side air space can be calculated using Equation 5.14.  

 

                                            𝑁𝑁𝑐𝑐𝛿𝛿 = 0.42(𝑅𝑅𝑒𝑒)
1
4𝑃𝑃𝑒𝑒0.012 �𝐿𝐿

𝛿𝛿
�
−0.30

        𝑞𝑞𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑡𝑡𝑒𝑒𝑐𝑐𝑡𝑡                  (5.12)                                                 
                                                                                     104 < 𝑅𝑅𝑒𝑒 < 107  

                                                                                                                      10 < 𝐿𝐿
𝛿𝛿

< 40  

 
                                                      𝑁𝑁𝑐𝑐𝛿𝛿 = 0.46(𝑅𝑅𝑒𝑒)1/3                        𝑞𝑞𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑡𝑡𝑒𝑒𝑐𝑐𝑡𝑡                   (5.13)                                                 

                                                                                     106 < 𝑅𝑅𝑒𝑒 < 109  
                                                                                                                        1 < 𝐿𝐿

𝛿𝛿
< 40  

 
                                                                         𝐿𝐿 = 𝑘𝑘𝑐𝑐𝑒𝑒𝑐𝑐𝐼𝐼𝐼𝐼 −𝐼𝐼𝑒𝑒𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒

𝑃𝑃𝑒𝑒𝑒𝑒𝑐𝑐𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒
                                                     (5.14) 

 
 
Individually, neither Equation 5.12 nor 5.13 completely described the case of the natural convection in the 

hot side air space. The Rayleigh numbers obtained were in the range of 104-105, which was the range of 

Rayleigh numbers supported by only the Equation 5.12 but not Equation 5.13, while the ratio of L/δ for 

the hot side air space was 4, which only fits in the range of acceptable L/δ values for Equation 5.13. Since 

each of the two equations for the Nusselt number only partially described the free convection of the hot 
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side air space, the averages of the two Nusselt numbers calculated from both Equation 5.12 and 5.13 were 

utilized to calculate the convection coefficients for the hot side air space. Finally, similarly to the constant 

temperature boundary condition period of the testing, Equation 5.9 was used to calculate the convection 

coefficients for the constant heat flux boundary condition time period of the testing using the new Nusselt 

numbers calculated from Equations 5.12 and 5.13. 

 At the beginning of the constant temperature tests of the shifting fins prototype in the test chamber, 

46.64 W (21.2 V, 2.2 A) of power was applied to the heat source at first to allow the hot side air space to 

heat up very quickly to the desired constant temperature of 100 oF (37.78 oC). Once the hot side air space 

temperature began to approach 100 oF (37.78 oC), the power level applied to the heater was reduced to 

13.27 W (11.34 V, 1.17 A) to prevent a large overshoot of the desired temperature of 100 oF (37.78 oC). 

To account for the constant heat flux conditions for the hot side air space under 46.64 W of power, the 

convection coefficient at the beginning of the testing corresponding to 21.6 oC in Table 13 was 

recalculated for the constant heat flux case using voltage and current levels of 21.2 V and 2.2 A to 

calculate qw. Later on, to account for the constant heat flux conditions when the power level had been 

reduced to 13.27 W, the convection coefficient early on in the testing corresponding to 23.3 oC in Table 

13 was recalculated for the constant heat flux case using voltage and current levels of 11.34 V and 1.17 A 

to calculate qw. Finally, for the second temperature value of 23.3 oC in Table 13, a convection coefficient 

value halfway between the convection coefficients for the two different power levels was utilized to 

represent the reduction of power during the testing from 46.64 W to 13.27 W. The three convection 

coefficients as a function of temperature used for the constant heat flux portion of the FEA model for the 

hot side air space are given in Table 14.  
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Table 14: Hot Side Convection Coefficients for Constant Heat Flux Boundary Condition. 
 
 

THot Side Plate (oC) hHot Side Air Space (W/m2-K) 

21.6 24.0 
22.4 20.0 
23.3 15.9 

 
  

After examining the convection coefficients for both the constant heat flux and constant temperature 

hot side air space heating conditions, the constant heat flux convection coefficients at the beginning of the 

test were much higher, roughly an order or magnitude, than the constant temperature convection 

coefficients. To prevent a very abrupt transition in convection coefficients between the two heating 

conditions, an assumption was made that the convection coefficients will gradually decrease from the 

constant heat flux values in Table 14 at the beginning of the test until the 1/3 point (120 minutes) of the 

constant temperature test. After that point for the last 2/3 (240 minutes) of the constant temperature test, 

the convection coefficients will correspond to those of the constant temperature heating condition in 

Table 13. During the transitional period, once the constant heat flux case for the hot side air space ends, 

the convection coefficients will decrease at a very steep linear rate at first, then decrease at a more gradual 

linear rate as a function of the hot side plate temperature until the 1/3 point of the testing. The final 

convection coefficients for the hot side air space used in the FEA as a function of the hot side plate 

temperature for both the conducting and insulating configurations of the shifting fins prototype are shown 

in Table 15.  
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Table 15: Convection Coefficients used for Hot Side Air Space in FEA of Shifting Fins Device. 
 
 

THot Side Plate 
(oC) 

hHot Side Air Space 
(W/m2-K) 

21.6 24.00 
22.4 20.00 
23.3 15.90 
24.2 11.40 
25.1 6.90 
26.0 6.15 
26.9 5.40 
27.8 4.65 
28.7 3.90 
29.6 3.15 
30.5 2.41 
31.4 2.30 
32.3 2.16 
32.8 2.08 

 
 
 
5.1.4 Modeling of Cold Side Air Space in Insulation Test Chamber 

 
Similarly to the hot side air space, LINK32 and LINK34 elements were used in the thermal FEA of the 

shifting fins prototype with insulation between fins to model the conduction and convection heat transfer 

from the cold side plate into the cold side air space and into the top of the test chamber interior. In the 

same manner as for the hot side plate, the nodes of the bottom side of the LINK32 and LINK34 1-D heat 

transfer elements were alternately attached one-by-one left to right to the nodes of the PLANE55 

elements across the entire section of cold side plate facing the cold side air space. On the opposite end of 

the LINK32 and LINK34 elements, the top nodes of the elements were connected to the nodes of an 

additional area composed of foam insulation modeled to represent the top removable wall of the test 

chamber. By using the LINK34 elements in the cold side air space, convection heat transfer will be able 

to occur in the thermal FEA between the cold side plate and the removable top wall of the test chamber, 

while using the LINK32 elements will enable conduction heat transfer to occur from the cold side plate 

through the air to the top wall of the chamber.  
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 One major benefit of using the LINK34 1-D convection elements to model the convection heat 

transfer in the cold side air space is that both of the nodes of the elements are allowed to "float" with 

respect to the overall model of the shifting fins prototype in the test chamber without a user-specified 

temperature. Typically, when modeling convection in a thermal FEA the bulk temperature of the fluid 

causing the natural convection must be set to a constant value, but in this case using the LINK34 

elements, the temperatures of the cold side plate and the top of the chamber interior on either end of the 

elements are determined by the overall model of the shifting fins prototype in the test chamber. As with 

LINK32 elements in the hot side air space, the corresponding LINK32 elements in the cold side air space 

were each given the same length values of 1/48 in. (0.05292 cm), while the overall length of the lines 

representing the LINK32 and LINK34 elements were given values of 6 in. (15.24 cm) to match the height 

of the cold side air space. In the top removable wall area modeled in the thermal FEA, PLANE55 

elements were again used with the same element edge length of 1/48 in. (0.05292 cm) as for the elements 

in the shifting fins prototype. An image that illustrates how the LINK32 and LINK34 elements were used 

to represent the cold side air space by connecting them to the cold side plate and the removable top wall 

of the chamber is shown in Figure 147. An additional image that shows all of the LINK34 and LINK32 

elements attached to the top of the cold side plate is also shown in Figure 148.  

 In order to calculate the convection coefficients for the cold side air space of the test chamber, the 

same equations were used as for the hot side air space for natural convection in an enclosure. Since the 

two sides of the cold side air space, the top of the cold side plate and the bottom of the top wall of the 

chamber never had a constant heat flux condition, such as for the hot side air space, only the equations for 

natural convection between two horizontal surfaces of constant temperature were utilized for the cold side 

air space. Also, as a result of the temperatures of the two sides of the cold side air space changing during 

the test, the convection coefficients again had to be calculated as a function of average temperature for the 

cold side air space, which was assumed to be the average temperature between the cold side plate of the 

prototype and the temperature of the top of the chamber interior. Similarly to the hot side air space, the 



 

192 
 

first step in calculating the convection coefficients for the cold side air space was to calculate the 

Rayleigh numbers for the range of cold air space temperatures that occurred during the testing of the  

 

 

 
Figure 147: How LINK32 and LINK34 elements represent Cold Side Air Space in FEA Model. 

 
 
 

shifting fins device using Equation 5.15 where β is calculated from the expression shown in Equation 

5.16 [26]. For the case of the cold side air space of the test chamber, a value of 6 in. (15.24 cm) was 

utilized for δ because it was the distance between the cold side plate and removable top wall of the test 

chamber. Examining Equation 5.15 shows that the temperature differences across the cold side air space 
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were needed in order to calculate the Rayleigh numbers and consequently the convection coefficients for 

the cold side air space. To calculate the Rayleigh numbers the temperature differences from the 

experimental results of the constant temperature test of the conducting state of the shifting fins prototype 

for different average cold space temperatures were utilized.  

 

                                             𝑅𝑅𝑒𝑒 =  𝑔𝑔𝑔𝑔 (𝑇𝑇𝐶𝐶𝑐𝑐𝑒𝑒𝑐𝑐  𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒 𝑒𝑒𝑡𝑡𝑒𝑒 −𝑇𝑇𝑇𝑇𝑐𝑐𝑝𝑝  𝑐𝑐𝑜𝑜  𝐶𝐶ℎ𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑒𝑒  𝐼𝐼𝑐𝑐𝑡𝑡𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒 )𝛿𝛿3

𝜈𝜈𝑘𝑘𝑐𝑐𝑒𝑒 𝛼𝛼𝑘𝑘𝑐𝑐𝑒𝑒
                          (5.15) 

 
 

                                                    𝑔𝑔 = 1
𝑇𝑇  𝐶𝐶𝑐𝑐𝑒𝑒𝑐𝑐  𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 +𝑇𝑇𝑇𝑇𝑐𝑐𝑝𝑝  𝑐𝑐𝑜𝑜  𝐶𝐶ℎ𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑒𝑒  𝐼𝐼𝑐𝑐𝑡𝑡𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒

2 +273.15
                           (5.16) 

 
 
 
 
 
 

 
 
 

Figure 148: Cold Side Air Space Conditions Applied to Cold Side Plate in FEA Model. 

 

 After the Rayleigh numbers were calculated for the cold side air space as a function of temperature, 

the next step was to determine the different Nusselt numbers corresponding to each of the Rayleigh 

numbers. For the cold side air space the calculated Rayleigh numbers varied from around 53,000 to 
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700,000, requiring the use of two different empirical relations for the Nusselt number, Equation 5.8 and 

Equation 5.17 with the Rayleigh number range for which each is applicable [26].  

 
                                                3.2 𝑥𝑥 105   <  𝑅𝑅𝑒𝑒              𝑁𝑁𝑐𝑐𝛿𝛿 = 0.061(𝑅𝑅𝑒𝑒)1/3                            (5.17) 

 
 

Finally, using the calculated Nusselt numbers the convection coefficients for the cold side air space were 

determined using Equation 5.9 [26]. The convection coefficients for the cold side air space as a function 

of the average cold air space temperature are given in Table 16.  The same convection coefficients for the 

cold side air space were used for both the conducting and insulating configurations of the shifting fins 

prototype with insulation between the fins.  

 

Table 16: Cold Side Air Space Convection Coefficients. 
 
 

TCold Side Air Space, Average (oC) hCold Side Air Space (W/m2-K) 

21.60 0.558 
22.30 0.822 
23.00 0.726 
23.70 0.786 
24.40 0.836 
25.10 0.863 
25.80 0.886 
26.50 0.904 
27.20 0.916 
27.90 0.914 
28.60 0.915 
29.30 0.920 
30.00 0.920 
30.55 0.921 

 
 
 
5.1.5 Thermal Boundary Conditions of FEA Model of Shifting Fins Prototype. 

 
Some of the boundary conditions of the model of the shifting fins prototype in the test chamber have 

already been discussed. A constant temperature boundary condition of 100 oF (37.78 oC) was applied to 

the bottom of the hot side air space LINK32 and LINK34 elements, while an insulated constant heat flux 
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boundary condition of qw = 0 was applied to the hot side plate where it contacted the shelf in the test 

chamber. At the very top of the removable top wall section of the test chamber in the finite element 

model, a constant temperature boundary condition corresponding to a ambient laboratory temperature of 

21.6 oC at the beginning of the conducting state test or 20.4 oC at the beginning of the insulating state test 

was applied, since the top of the test chamber faced the outside laboratory environment. The two sides of 

the removable top wall section were given insulated constant heat flux boundary conditions of qw = 0. On 

the left and right sides of the shifting fins prototype, additional sections were added that represented the 

side foam polyisocyanurate walls of the test chamber contacting the shifting fins prototype on either side 

with the same PLANE55 elements and 1/48 in. (0.05292 cm) element edge length used in the mesh of the 

two side walls. For the thermal boundary conditions regarding the two side walls in the FEA model, the 

two surfaces of the side walls contacting the outside laboratory environment were given constant 

temperature boundary conditions corresponding to the measured laboratory ambient temperature at the 

beginning of the testing, while all of the other surfaces of the side walls were given insulated constant 

heat flux boundary conditions of qw = 0. An image of the final completed thermal finite element model of 

the shifting fins prototype with insulation between the fins in its conducting state in the test chamber set-

up is shown in Figure 149.  
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Figure 149: Final Thermal FEA Model of Shifting Fins Prototype with Insulation between Fins  
in Test Chamber Set-up. 

 
 
 

5.2 RESULTS OF THE TRANSIENT FINITE ELEMENT MODELING OF THE 
SHIFTING FINS PROTOTYPE  

 
 

Using the transient, thermal finite element model developed for the shifting fins prototype with insulation 

between the fins, theoretical temperature results for both the device’s insulating and conducting states 

were obtained for the same 6 hour time duration and thermal boundary conditions as for the experimental 

testing of the device. Two additional parameters that needed to be set in the finite element model for the 

transient analysis that would not be required for a steady-state analysis were the initial temperature 

distribution of the model and the time step. First, the initial temperature distribution of the model was set 

equal to the constant value of the average test chamber temperature from the experimental results at the 
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beginning of either the conducting state test or the insulating state test, which was approximately equal to 

the ambient laboratory temperature. Thus, in the model the initial temperature distribution for the 

conducting configuration of the prototype was 21.6 oC, while the initial temperature distribution for the 

insulating configuration of the prototype was 20.4 oC.  

 Within the FEA software for the model of the shifting fins prototype, automatic time stepping was 

utilized, which allowed the program to modify the length of each time step during the 6 hour time 

duration depending on the number of iterations it took the model to reach convergence for the previous 

time step. To ensure accurate results for the transient shifting fins model, a small minimum time step 

value of 1.5 s was chosen, while the maximum time step value of 5 minutes (300 s) was also selected, 

which was still only 1/72 of the total time duration.  

Once the theoretical temperature results for the insulating and conducting states of the shifting fins 

prototype were calculated, the theoretical results were directly compared to the results of the experimental 

testing of the shifting fins prototype with insulation between the fins. Earlier, during the experimental 

testing, the temperature values measured that were of most importance were the average hot side plate 

temperature, the average cold side plate temperature, and the ΔT value across the device over time. These 

same values were also obtained from the finite element model results by tracking the temperature of 

nodes in the model at the center of the hot and cold side plates facing the two air spaces over the 6 hour 

time duration. In addition, the temperature of the top of the chamber interior was also tracked over time 

for the finite element model for comparison with the experimental results for the top of the chamber 

interior to examine whether or not the model accurately describes the heat transfer of the shifting fins 

device to the cold side air space. Figure 150 gives a plot of the hot side temperature, cold side 

temperature, and top of the chamber interior temperature over the 6 hour time duration of the constant 

temperature test for the conducting state of the shifting fins prototype with insulation between fins. 

Likewise, Figure 151 gives a plot of the hot side temperature, cold side temperature, and top of the 

chamber interior temperature over the 6 hour time duration of the constant temperature test for the 

insulating state of the shifting fins prototype with insulation between fins.  
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Figure 150: Comparison of Theoretical and Experimental Results for Conducting State of Shifting Fins 
Prototype with Insulation between Fins. 

 

ΔTTheoretical = 1.2 OC 

ΔTExperimental = 1.3 OC 
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Figure 151: Comparison of Theoretical and Experimental Results for Insulating State of Shifting Fins 
Prototype with Insulation between Fins. 

 
 

 
Finally, the hot side temperature, the cold side temperature, the top of the chamber interior temperature, 

and the ΔT value across the device are given at several points during the six hour time duration for the 

theoretical finite element model with the corresponding experimental temperatures values in Table 17. 
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Table 17: Shifting Fins Prototype with Insulation between the Fins Theoretical Results. 
 
 

Constant Temperature Tests  
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement Theoretical 

T (OC) 
Experimental 

T (OC) 
Measurement Theoretical 

T (OC) 
Experimental 

T (OC) 
Hot Side Average  29.4 29.2 Hot Side Average  29.8 29.0 
Cold Side Average  26.2 26.7 Cold Side Average  23.4 23.8 
Top of Chamber 

Interior 24.6 24.9 
Top of Chamber 

Interior 22.2 22.8 
ΔT 3.2 2.5 ΔT 6.4 5.2 

3 hours into the test 3 hours into the test 
Measurement Theoretical 

T (OC) 
Experimental 

T (OC) 
Measurement Theoretical 

T (OC) 
Experimental 

T (OC) 
Hot Side Average  31.2 31.1 Hot Side Average  31.2 31.3 
Cold Side Average  29.2 29.5 Cold Side Average  26.5 26.9 
Top of Chamber 

Interior 27.4 
 

27.5 
Top of Chamber 

Interior 24.9 25.4 
ΔT 2.0 1.7 ΔT 4.8 4.5 

At the end of the 6 hour test At the end of the 6 hour test 
Measurement Theoretical 

T (OC) 
Experimental 

T (OC) 
Measurement Theoretical 

T (OC) 
Experimental 

T (OC) 
Hot Side Average  33.6 32.8 Hot Side Average  33.3 33.1 
Cold Side Average  32.4 31.6 Cold Side Average  30.3 29.9 
Top of Chamber 

Interior 
30.6 29.5 Top of Chamber 

Interior 
28.5 28.2 

ΔT 1.2 1.3 ΔT 3.0 3.3 
 

  

From both Figures 150 and 151 for the conducting and insulating configurations of the shifting fins 

prototype, the theoretical temperature results and ΔT values from the transient finite element model 

closely matched the experimental results over the entire length of the constant temperature tests. As a 

result of the close agreement between the theoretical and experimental results, it can be assumed that the 

transient finite element model sufficiently describes the conditions of the experimental testing of the 

shifting fins prototype. In addition, the theoretical results help to confirm that the experimental results for 

the insulating and conducting states of the shifting fins prototype were correct and that the test chamber 

set-up was not resulting in temperature measurement values that were unrealistic from a theoretical 

perspective. 
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5.3 OTHER VARIATIONS OF THE SHIFTING FINS PROTOTYPE MODELED 
 

  
Once a theoretical model was developed that adequately described the experimental results for both the 

insulating and conducting states of the shifting fins thermal semiconductor with insulation between the 

fins, the same general model was used to analyze the performance of several other fins-related smart 

insulation concepts that were not experimentally tested. The three additional cases modeled consisted of a 

device that had the lower and upper fins contact at their sides instead of vertically, another device that had 

the fins fold inward from a stowed, horizontal position to contact vertically, and a final device that used 

lower and upper fins that both folded and contacted at their sides. For the theoretical modeling of all three 

variations of the original shifting fins prototype, the same thermal boundary conditions, hot side air space 

convection coefficients, cold side air space convection coefficients, meshing characteristics, time step 

size, and six-hour time duration were used as for the original model of the shifting fins prototype. The 

initial condition for the three additional cases was given a value of 21.6 oC, which was the initial 

temperature condition for the conducting state of the original shifting fins prototype model. The only 

differences between the models of the three additional fins-related devices and the original shifting fins 

prototype model were the changes in the geometry and fin arrangement for the different devices.  

 
5.3.1 Shifting Fins with Side Contact Device Theoretical Model 
 
 
The first additional fins-related concept that was modeled was the shifting fins with side contact device. 

The main advantage the new modified device had over the original shifting fins prototype was the 

additional contact surface area in the device’s conducting state between the lower and upper fins of the 

device when the fins contacted at their sides instead of vertically. Within the original shifting fins 

prototype, the lower and upper fins of the device only contacted vertically over their ¼ in. (0.635 cm) 

widths, but for the new shifting fins with side contact design, the lower and upper fins of the device 

contact over much larger heights at their sides of 1 in. (2.54 cm), increasing the contacting surface area 
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between the lower and upper fins by a factor of four. By increasing the contact surface area between the 

lower and upper fins in the modified device’s conducting state, the conduction heat transfer over the new 

design should greatly improve. Figures 152 and 153 show the conducting and insulating configurations of 

the shifting fins with side contact device constructed in the FEA software.  

 
 
 
 

 
 

 
 
 

Figure 152: Conducting State of Shifting Fins with Side Contact Device Constructed in FEA Software. 

 
 
 
 

 
 

 
 

Figure 153: Insulating State of Shifting Fins with Side Contact Device Constructed in FEA Software. 

 
 

As shown in Figures 152 and 153, a few changes were made in the design of the shifting fins with 

side contact model compared to the original shifting fins prototype besides having the fins contact at their 
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sides instead of vertically. First, the height of the fins was increased from an original value of 1 in. (2.54 

cm) to a value of 1.5 in. (3.81 cm) for the shifting fins with side contact device in order to achieve a new 

contact surface area with dimensions of 1 x 13.25 in. (2.54 x 33.66 cm). Second, small air spaces of 0.5 

mm were added into the model between the lower and upper fins contacting at their sides to simulate 

thermal contact resistance at the interfaces between the contacting fins. Finally, for the shifting fins with 

side contact device air was utilized as the material between the fins instead of the foam polyisocyanurate 

building insulation material, but convection heat transfer of the air between the fins of the device between 

the device’s hot and cold sides was not considered in the model for simplification.  

 Plots of the theoretical temperature results calculated using the model of the shifting fins with side 

contact device are shown in Figures 154 and 155 for the device’s conducting and insulating states 

respectively, while Table 18 gives the results of the shifting fins with side contact device at several 

different time intervals during the six-hour time duration.  

 

 

 
Figure 154: Shifting Fins with Side Contact Device Theoretical Results for Conducting State. 
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Figure 155: Shifting Fins with Side Contact Device Theoretical Results for Insulating State. 
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Table 18: Shifting Fins with Side Contact Device Theoretical Results. 
 
 

Constant Temperature Tests  
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement Theoretical 

T (OC) 
% of 

Benchmark 
Measurement Theoretical 

T (OC) 
% of 

Benchmark 
Hot Side Average  28.6  Hot Side Average  28.8  
Cold Side Average  26.0  Cold Side Average  25.5  
Top of Chamber 

Interior 24.5 
 Top of Chamber 

Interior 24.1 
 

ΔT 2.6 27.3 ΔT 3.3 34.6 
3 hours into the test 3 hours into the test 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Hot Side Average  30.3  Hot Side Average  30.3  
Cold Side Average  28.6  Cold Side Average  28.1  
Top of Chamber 

Interior 27.0 
 Top of Chamber 

Interior 26.6 
 

ΔT 1.7 18.7 ΔT 2.2 24.1 
At the end of the 6 hour test At the end of the 6 hour test 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Hot Side Average  32.6  Hot Side Average  32.5  
Cold Side Average  31.5  Cold Side Average  31.2  
Top of Chamber 

Interior 
29.8  Top of Chamber 

Interior 
29.5  

ΔT 1.0 11.3 ΔT 1.3 14.6 
 

 
 Comparing the results of Table 18 to the results for the shifting fins thermal semiconductor with 

insulation between the fins, the shifting fins with side contact device did not perform well as a smart 

insulation device. Increasing the contact surface area between the lower and upper fins only slightly 

improved the performance of the shifting fins device with the ΔT value for its conducting state decreasing 

from 13.4% of the ΔT value for the benchmark insulation test piece for the shifting fins prototype with 

insulation between the fins to 11.3% of the ΔT value for the benchmark insulation test piece for the 

shifting fins with side contact device. Although the shifting fins with side contact device’s conducting 

state had slightly improved performance, the new device’s insulating state had significantly decreased 

performance compared to the shifting fins prototype with insulation between fins. The ΔT value 
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simulated at the end of the constant temperature test for the shifting fins with side contact device was only 

14.6% of the benchmark insulation test piece’s ΔT value, which was less than half the 34.5% of the 

benchmark insulation test piece’s ΔT value simulated for the shifting fins device with insulation between 

fins.  

 
5.3.2 Folding Fins with Vertical Contact Device Theoretical Model 

 
 

After the modeling of the shifting fins with side contact device had been completed, the next fins-related 

design modeled was the folding fins with vertical contact device. In this device the conducting 

configuration of the design was very similar to the conducting arrangement of the basic shifting fins 

thermal semiconductor. The insulating state of the folding fins with vertical contact device, however, is 

much different from that of the basic shifting fins prototype in that it consists of lower and upper fins in a 

horizontal, folded in, stowed position with a 1.5 in. (3.81 cm) air gap between the lower and upper fins to 

nearly eliminate any conduction heat transfer. Figures 156 and 157 show the conducting and insulating 

configurations of the folding fins with vertical contact device constructed in the FEA software.  

 
 

 

 

 

Figure 156: Conducting State of Folding Fins with Vertical Contact Device Constructed in FEA Software. 
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Figure 157: Insulating State of Folding Fins with Vertical Contact Device Constructed in FEA Software. 

 
 

As shown in Figure 156, in the design of the folding fins with vertical contact device, the spacing 

between the fins in the device’s conducting state had to be increased from an original center-to-center 

distance of 0.75 in. (1.91 cm) to 1 in. (2.54 cm) to allow enough space for the fins to fold to their stowed 

positions for the device’s insulating state. As a result of the increased fin spacing, the overall number of 

fins in the folding fins with vertical contact device had to be decreased to 22 from 30 fins for the original 

shifting fins device. Also, as for the shifting fins with side contact device, air was utilized as the material 

between the fins for the folding fins with vertical contact device, but convection heat transfer of the air 

between the fins of the device between the device’s hot and cold sides was again not considered in the 

model for simplification.  

During the modeling of the insulating state of the folding fins with vertical contact device, alternating 

LINK34 and LINK32 1-D convective elements were again utilized to model the both convection and 

conduction heat transfer across the 1.5 in. (2.54 cm) air gap between the hot and cold sides of the device. 

An image that illustrates how the LINK32 and LINK34 elements were used to model the convection and 

conduction across the air gap from the hot side to the cold side by connecting them to the horizontal, 

stowed lower and upper fins on each side of the air gap is shown in Figure 158. In order to calculate the 
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convection coefficients for the convection across the air gap as a function of temperature, the same type 

of procedure that was followed for the shifting fins prototype earlier was used.  

 

 
Figure 158: How LINK32 and LINK34 elements Modeled Conduction and Convection across Air Gap. 

 
 

First, Rayleigh numbers were calculated for the 1.5 in. (2.54 cm) air gap using the equations for 

natural convection between two constant temperature surfaces in an enclosure used beforehand for the 

calculation of hot and cold side air space convection coefficients [26]. As a result of the temperatures of 

the two sides of the air gap in the folding fins with vertical contact device changing during the test, the 

Rayleigh numbers had to be calculated as a function of the average temperature for the air gap, which was 

assumed to be the average temperature between the cold and hot side plates of the device. Using Equation 

5.18 the Rayleigh numbers were calculated for the air gap between the hot and cold sides of the device 
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with β determined in Equation 5.18 from the expression found in Equation 5.19. A value of 1.5 in. (3.81 

cm) was utilized for δ in Equation 5.18 because it was the distance across the air gap between the hot and 

cold sides of the device. Examining Equation 5.18 shows that the temperature differences across the 1.5 

in. (2.54 cm) air gap were needed in order to calculate the Rayleigh numbers and consequently the 

convection coefficients for the air gap in the folding fins with vertical contact device. To calculate the 

Rayleigh numbers the temperature differences from the experimental results of the constant temperature 

test that consisted simply of two 13.25 x 13.25 in. (0.337 x 0.337 m) aluminum alloy 6061 plates with 1/8  

(0.318 cm) thickness with a 2 in. air gap in between them for different average air gap temperatures were 

utilized.  

 

                                             𝑅𝑅𝑒𝑒 =  𝑔𝑔𝑔𝑔 (𝑇𝑇𝐻𝐻𝑐𝑐𝑡𝑡  𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 −𝑇𝑇𝐶𝐶𝑐𝑐𝑒𝑒𝑐𝑐  𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 )𝛿𝛿3

𝜈𝜈𝑘𝑘𝑐𝑐𝑒𝑒 𝛼𝛼𝑘𝑘𝑐𝑐𝑒𝑒
                                       (5.18) 

 
 

                                                    𝑔𝑔 = 1
𝑇𝑇  𝐶𝐶𝑐𝑐𝑒𝑒𝑐𝑐  𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 +𝑇𝑇𝐻𝐻𝑐𝑐𝑡𝑡  𝑆𝑆𝑐𝑐 𝑐𝑐𝑒𝑒  𝑃𝑃𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒

2 +273.15
                                        (5.19) 

 
 

Once the Rayleigh numbers were calculated for the air gap of the folding fins with vertical contact 

device as a function of temperature, the next step was to determine the different Nusselt numbers 

corresponding to each of the Rayleigh numbers. For the air gap between the hot and cold sides of the 

device, the calculated Rayleigh numbers varied from near 0 to around 37,600, requiring the use of two 

different empirical relations for the Nusselt number, Equation 5.7 and Equation 5.8 with the Rayleigh 

number range for which each is applicable [26]. Finally, using the calculated Nusselt numbers the 

convection coefficients for the air gap of the folding fins with vertical contact device were determined 

using Equation 5.9 [26]. The convection coefficients for the 1.5 in. (2.54 cm) air gap of the folding fins 

with vertical contact device as a function of the average air gap temperature are given in Table 19.   
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Table 19: Convection Coefficients for Air Gap in Folding Fins with Vertical Contact Device. 

 
 

TAir Gap, Average (oC) hAir Gap(W/m2-K) 

21.3 0.01 
22.1 1.41 
22.9 1.66 
23.7 1.82 
24.5 1.92 
25.3 1.98 
26.1 2.02 
26.9 2.04 
27.7 2.02 
28.5 2.00 
29.3 1.97 
30.1 1.91 
30.9 1.87 
31.7 1.80 

 
 

Plots of the theoretical temperature results calculated using the model of the folding fins with vertical 

contact device are shown in Figures 159 and 160 for the device’s conducting and insulating states 

respectively, while Table 20 gives the results of the folding fins with vertical contact device at several 

different time intervals during the six-hour time duration.  
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Figure 159: Folding Fins with Vertical Contact Device Theoretical Results for Conducting State. 

 

  

 
Figure 160: Folding Fins with Vertical Contact Device Theoretical Results for Insulating State. 
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Table 20: Folding Fins with Vertical Contact Device Theoretical Results. 
 
 

Constant Temperature Tests  
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement Theoretical 

T (OC) 
% of 

Benchmark 
Measurement Theoretical 

T (OC) 
% of 

Benchmark 
Hot Side Average  29.9  Hot Side Average  30.8  
Cold Side Average  26.0  Cold Side Average  24.6  
Top of Chamber 

Interior 24.5 
 Top of Chamber 

Interior 23.5 
 

ΔT 3.9 40.9 ΔT 6.3 66.1 
3 hours into the test 3 hours into the test 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Hot Side Average  31.9  Hot Side Average  32.5  
Cold Side Average  29.5  Cold Side Average  27.3  
Top of Chamber 

Interior 27.7 
 Top of Chamber 

Interior 25.9 
 

ΔT 2.4 26.3 ΔT 5.2 57.0 
At the end of the 6 hour test At the end of the 6 hour test 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Hot Side Average  34.2  Hot Side Average  34.4  
Cold Side Average  32.7  Cold Side Average  30.8  
Top of Chamber 

Interior 
30.8  Top of Chamber 

Interior 
29.1  

ΔT 1.5 16.9 ΔT 3.6 40.5 
 

 
 From the results of Table 20, the modeling of the folding fins with vertical contact device predicts 

that a folding fins with vertical contact prototype will have slightly better performance than the shifting 

fins thermal semiconductor with insulation between the fins, since a slightly larger change in the ΔT 

value occurs for the folding fins with vertical contact device when the device is actuated from its 

conducting state to its insulating state. As the folding fins with vertical contact device was changed 

between low and high heat transfer states, its ΔT value at the end of the constant temperature tests was 

able to vary from 16.9 – 40.5% of the benchmark insulation test piece’s ΔT value compared to a range of 

ΔT between 13.4 – 34.5% of the benchmark insulation test piece’s ΔT value for the shifting fins device 

with insulation between fins. Furthermore, an actual folding fins with vertical contact device would likely 
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have even greater performance in its conducting state than predicted by the model from the convection 

occurring in the air between the fins across the prototype from its hot side to its cold side. Due to the 

complexity of the convection of the air between the fins of the device, the convection was not 

incorporated into the folding fins with vertical contact device’s conducting state during the modeling, but 

convection was included for the modeling of the insulating state of the device, since it involved the much 

simpler convection case of an air gap between two constant temperature surfaces. During the testing of 

the original shifting fins prototype, using air between the fins of the device instead of insulation reduced 

the ΔT value from 13.4% to 8.8% of the benchmark insulation test piece’s ΔT value from the convection 

of the air between the fins. Similar improvement in the conducting state of the folding fins with vertical 

contact device from the convection of the air between fins across the device would result in a folding fins 

with vertical contact device with significantly improved performance over the shifting fins device with 

insulation between fins. 

 
5.3.3 Folding Fins with Side Contact Device Theoretical Model 
 
 
The final fins-related case modeled using the FEA software was the folding fins with side contact device, 

which essentially combined the two previous concepts modeled by having a smart insulation prototype 

with greater contact surface area as a result of the fins contacting at their sides instead of vertically and 

with folding fins to create a 1.5 in. (2.54 cm) air gap to inhibit conduction heat transfer in the device’s 

insulating state. Figure 161 shows the conducting configuration of the folding fins with side contact 

device constructed in the FEA software. For the insulating state of the folding fins with side contact 

device, the results of the modeling of the folding fins with vertical contact device were utilized, since the 

insulating configurations of both devices with the fins in a stowed, horizontal position have the same 

basic geometry and fin arrangement. 
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Figure 161: Conducting State of Folding Fins with Side Contact Device Constructed in FEA Software. 

 
 

Figure 161 shows that the conducting state of the folding fins with side contact device is very similar 

to the conducting state of the shifting fins with side contact device modeled earlier. The only difference 

between the two types of smart insulation devices is the much greater fin spacing that was needed for the 

folding fins with side contact device to allow the fins to fold into their stowed, horizontal configuration 

for the device’s insulating state. In the design of the folding fins with side contact device, the spacing 

between the fins in the device’s conducting state had to be increased from an original center-to-center 

distance of 0.75 in. (1.91 cm) to 1.5 in. (3.81 cm), which resulted in the overall number of fins in the 

folding fins with side contact device being decreased to 14 from 30 fins for the shifting fins with side 

contact device. In Figure 162, a plot is given of the theoretical temperature results calculated using the 

model of the conducting state of folding fins with side contact device, while Table 21 gives the results of 

the folding fins with side contact device at several different time intervals during the six-hour time 

duration.  
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Figure 162: Folding Fins with Side Contact Device Theoretical Results for Conducting State. 
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Table 21: Folding Fins with Side Contact Device Theoretical Results. 
 
 

Constant Temperature Tests  
Conducting Configuration Insulating Configuration 

1.5 hours into the test 1.5 hours into the test 
Measurement Theoretical 

T (OC) 
% of 

Benchmark 
Measurement Theoretical 

T (OC) 
% of 

Benchmark 
Hot Side Average  30.0  Hot Side Average  30.8  
Cold Side Average  26.2  Cold Side Average  24.6  
Top of Chamber 

Interior 24.6 
 Top of Chamber 

Interior 23.5 
 

ΔT 3.8 39.8 ΔT 6.3 66.1 
3 hours into the test 3 hours into the test 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Hot Side Average  31.8  Hot Side Average  32.5  
Cold Side Average  29.3  Cold Side Average  27.3  
Top of Chamber 

Interior 27.5 
 Top of Chamber 

Interior 25.9 
 

ΔT 2.5 27.4 ΔT 5.2 57.0 
At the end of the 6 hour test At the end of the 6 hour test 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Measurement Theoretical 
T (OC) 

% of 
Benchmark 

Hot Side Average  34.2  Hot Side Average  34.4  
Cold Side Average  32.7  Cold Side Average  30.8  
Top of Chamber 

Interior 
30.8  Top of Chamber 

Interior 
29.1  

ΔT 1.5 16.9 ΔT 3.6 40.5 
 

 
The folding fins with side contact device had almost exactly the same performance as the folding fins 

with vertical contact device after reviewing the results of Table 21 with both devices having the same 

possible variation of ΔT between their conducting and insulating states. Among the three additional fins-

related cases that were analyzed using the original theoretical, finite element model developed from the 

shifting fins prototype with insulation between fins, both of the folding fins devices were predicted to 

have much better performance than the shifting fins with side contact device modeled and slightly better 

performance than any of the previous shifting fins devices that were experimentally tested. Overall, 

however, for all of the different fins-related devices that were tested or modeled, the back-to-back plates 
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with fins prototype had the best performance as a smart insulation device and remains the best candidate 

to further pursue in the future. 
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6.0 CONCLUSION AND FUTURE WORK 
 

 
 
 

6.1 CONCLUSION 
 
 

Many different concepts for variable insulation devices were considered for use as smart insulation in 

buildings, and the two best ideas were chosen for actual fabrication and experimental testing after a 

careful examination of which concepts had the best combination of low-cost, easy implementation, 

feasibility, and short-term payoff. One of the ideas revolved around a thermal semiconductor using 

contacting/non-contacting fins to make or break a thermal conduction path, while the other idea focused 

on an inflatable thermal semiconductor with a honeycomb-like structure filled with air to inhibit 

conduction and convection when inflated. After the smart insulation concepts had been selected, several 

different variations of the shifting fins and inflatable smart insulation devices were designed and 

fabricated in the laboratory, and an insulation test chamber was constructed for running experiments on 

the smart insulation devices under testing conditions similar to what the insulation would encounter in a 

real-world building setting. Each of different smart insulation prototypes was tested under both constant 

heat flux and constant temperature conditions so that the devices could be compared to each other to 

determine which had the best performance as a smart insulation device.  

From the experimental testing proof-of-concept was achieved for smart insulation devices, since a 

change in thermal conductivity was measured for all of the different thermal semiconductors when they 

were switched between their conducting and insulating states. Once testing was completed the best two 

smart insulation designs were found to be the back-to-back with outward facing fins device and the 

NOVUS inflatable thermal semiconductor with aluminum plates. Both of these designs show the best 
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ability to change from a very low conductance state to a very high conductance state and vice versa. To 

further improve the insulator state of the back-to-back plates with fins device, the fins should be designed 

so that they can be folded inward to a horizontal, stowed position in the device’s insulator state, which 

will decrease the heat transfer through the device in that state by reducing the effective surface area of the 

fins, while not decreasing the performance of the device in its conductor state. Likewise, for the insulator 

states of the NOVUS inflatable thermal semiconductors, reducing the volume of the device’s chambers of 

air will also decrease the heat transfer through the devices in their insulating configurations, while having 

no effect on the devices’ performance in their conducting configurations. Finally, to enable the device’s 

insulator state to achieve or exceed the performance of the benchmark conventional insulation test piece, 

an additional layer of conventional insulation could be added on top of the smart insulation that would be 

present for both the smart insulation’s conducting and insulating states. Although this will decrease the 

performance of the conducting states of the smart insulation devices, it will also allow the smart 

insulation devices to function as well as conventional building insulation in their insulating states, while 

still allowing the smart insulation devices to function as much better conductors than conventional 

insulation in their conducting states.  

To confirm the validity of the results of the experimental testing, a theoretical model was developed 

of the shifting fins prototype with insulation between the fins. Using finite element analysis software, a 

transient, thermal model of the insulating and conducting configurations of the shifting fins prototype 

with insulation between the fins was formulated with the shifting fins device in the model under the same 

type of conditions imposed in the insulation test chamber experimental set-up. Reviewing the results of 

the theoretical finite element model showed very close agreement between the calculated theoretical 

temperature results of the model and the actual measured experimental temperature results for the device. 

As a result of this close agreement, using the transient finite element model other types of smart insulation 

devices not originally experimentally tested were also examined to evaluate their performance and to 

determine if any other smart insulation concepts should be fabricated for additional testing.  
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6.1 FUTURE WORK 
 

 
To continue to advance the development of smart insulation technologies, one of the first steps will need 

to be a new detailed simulation study involving the use of variable insulation in buildings to calculate the 

possible energy and cost savings of smart insulation. While a previous simulation study by the 

Department of Energy conducted in 1990 does exist on this topic, building energy simulation software 

has improved greatly in the past twenty years with the development of software, such as EnergyPlus, and 

several shortcoming of the original study could be addressed in a new building insulation simulation. 

Using the results of the new simulation study and the experimental testing of the smart insulation 

prototypes, a cost-benefit analysis of the smart insulation concepts compared to conventional building 

insulation, such as fiberglass, will also need to be conducted in order to examine the amount of energy 

and cost savings weighed against any additional costs of implementing the smart insulation concepts. 

 Also, the practicality of the smart insulation concepts fabricated and tested in an actual building 

setting should be examined further. In particular, a more detailed examination of how to implement smart 

insulation in the roofs of buildings should be pursued, since the roof area was earlier determined to be the 

best location for smart insulation. Once this analysis is completed, an additional analysis involving the 

placement of the smart insulation concepts in the exterior walls for an entire building can be added on top 

of the roof smart insulation implementation analysis done earlier. Finally, through larger scale 

experimental testing or more detailed finite element modeling, the actual conditions the smart insulation 

concepts will encounter if implemented in a building for the different periods of a day, different seasons 

of a year, or cloudy vs. sunny conditions should be more accurately simulated.  
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