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LUZIN TYPE APPROXIMATION OF FUNCTIONS OF BOUNDED

VARIATION

Gregory P. Francos, PhD

University of Pittsburgh, 2011

This paper is divided into two sections:

(I) Consider the function space

BV m = {u ∈ Wm−1,1 : Dαu is a measure for |α| = m}.

Such functions are called mth order functions of bounded variation. We will show that a

given function u ∈ BV m(Rn) possesses the so-called Cm-Luzin property; that is, u coincides

with a Cm(Rn) function outside a set of arbitrarily small Lebesgue measure.

(II) Consider a set of Lebesgue measurable functions fα : RN → R indexed by the

multi-indices in RN of order |α| = m. We will prove that for any such collection, there is

g ∈ Cm−1(RN) which is m times differentiable almost everywhere, and such that

Dαg(x) = fα(x) a.e. for all |α| = m.

Keywords: Functions of Bounded Variation, Calculus of Variations, Luzin Property, Whit-

ney Extension Theorem, Real Analysis, Distributions .
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1.0 INTRODUCTION

As a starting point for this thesis, recall a well-known result of Luzin:

Let f : Rn → R be Lebesgue measurable. For each ε > 0, there exists a closed set C such

that |Rn\C| < ε and f |C is continuous.

Federer ([8], p. 442) proved that if f : Rn → R is differentiable almost everywhere, then

f coincides with a C1 function outside a set of arbitrarily small measure. The proof utilized

a result of Whitney [25], which provided a characterization of functions that are restrictions

of Cm functions to closed subsets of Rn. Federer showed that an almost everywhere differen-

tiable functions satisfies the assumptions of Whitney’s result for m = 1 on closed sets whose

complement has arbitrarily small measure.

Following a similar idea, namely a version of Whitney’s result for Lp functions, Calderón

and Zygmund [6] proved that a function in the Sobolev space Wm,p(Rn) coincides with a Cm

function outside an open set of arbitrarily small measure. Recall that Wm,p is the space of

functions whose weak derivatives of orders less than or equal to m are Lp functions.

More precise variations of Calderón and Zygmund’s results for Wm,p functions have been

the subject of [16], [20], [27], [28], [13], and [24]. For instance, Liu [16] showed that in

addition to coinciding with a Cm function outside a set of small measure, one could also

estimate the error in terms of the Sobolev norm. Michael and Ziemer [28] showed that the

approximation can be made to coincide outside a set of small Bessel capacity. Bojarski,

Haj lasz, and Strzelecki [12] fine-tuned these results by replacing the Whitney Extension

theorem with Whitney Smoothing to obtain improved results in norm and capacity.

Our aim is to generalize the result to the function space BV m. These functions’ weak

derivatives of orders less that m are L1 functions and the mth order distributional derivatives
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are Radon measures of finite total variation. Our main result is that a function in BV m

coincides with a Cm function outside a set of arbitrarily small measure.

It is well known that the space BV m is strictly larger than the space Wm,1. As an

important example, convex functions are BV 2
loc, and our result shows that a convex function

coincides with a C2 function outside a set of arbitrarily small measure. Alberti provided a

sketch of a proof of this result in [3]. However, our proof is based on a different method.

We utilize pointwise estimates for BV m functions similar to those developed in [12], [13] to

show that our function satisfies the conditions of Whitney’s result on a large closed set.

BV (Rn) functions (m = 1) are known to possess the C1-Luzin property [9], i.e. for any

ε > 0 the function coincides with some C1(Rn) function outside a set of measure ε. The

ideas used in the proof do not generalize to higher order derivatives, so a different technique

must be utilized.

In the thesis we also discuss another independent, but related result based on another

theorem of Luzin from 1917 [23]:

Let f : R → R be Lebesgue measurable. Then there exists g ∈ C(R) which is differentiable

almost everywhere and for which g′(x) = f(x) almost everywhere.

This result can be looked at two ways. On one hand, Lebesgue measurable functions on

R possess enough structure to be derivatives of continuous functions outside a set of measure

zero. On the other hand, one can view this result as saying that classical derivatives have a

certain lack of structure.

Recently Moonens and Pfeffer [19] generalized Luzin’s result to vector fields on RN ; any

measurable vector field is a gradient of an a.e. differentiable continuous function. This is

interesting because it allows us to find a.e. solutions to non-integrable systems:

∂f

∂xi
= pi,

∂pi
∂xj
6= ∂pj
∂xi

.

A construction of this kind was used by Balogh [5] to construct surfaces in the Heisenberg

group with large characteristic sets, while the horizontal distribution in the Heisenberg group

is not integrable.

Our second main result is the following generalization of Moonens and Pfeffer’s result:

2



Theorem 1. Let U be open in Rn and let f = {fα}|α|=m be a Lebesgue measurable function

defined on U . Then for any σ > 0, there is u ∈ Cm−1(Rn) which is m-times differentiable

almost everywhere and such that

Dmu(x) = f(x) for a.e. x ∈ U.

‖Dγu‖∞ ≤ σ for each |γ| < m.

3



2.0 BACKGROUND

2.1 VECTOR-VALUED MEASURES

Our goal is to study functions of bounded variation on Rn. The distributional derivative of

a function of bounded variation is a vector-valued measure. Therefore, we begin with some

basic results on this topic. The results here generally follow from those in ([22], Chapter 6)

involving complex measures. We denote by B the Borel σ-algebra on Rn. A vector-valued

Radon measure on Rn is any set function µ : B → Rm whose components are signed Radon

measures, i.e. for each i = 1, ...,m, µi is countably additive, µi(∅) = 0, and for any compact

subset K ⊂ Rn, |µi|(K) is finite.

The total variation of the measure µ defined by

|µ|(E) := sup

{
∞∑
i=0

|µ(Ei)| : Ei ∈ B are pairwise disjoint, E =
∞⋃
i=0

Ei

}

is a positive Radon measure on B. One can easily show that |µ|(E) is finite if and only if

|µi|(E) < ∞ for each i = 1, ... , n. If µ is a signed measure and f ∈ L1
loc(µ), we will denote

by fµ the measure given by

(fµ)(A) :=

∫
A

f dµ.

The notion of absolute continuity for vector measures is as follows: Let µ be a positive Radon

measure and let ν be a vector-valued Radon measure. We say ν is absolutely continuous with

respect to µ, and write ν << µ, if for any Borel set B,

µ(B) = 0⇒ |ν|(B) = 0.
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For any Borel set E ⊂ Rn, we say the measure µ is concentrated on E if µ(B) = µ(B∩E)

for each Borel set B. We say ν is singular with respect to µ if there exist Borel sets Xν , Xµ

such that

Xν ∪Xµ = Rn, Xν ∩Xµ = ∅,

|ν| is concentrated on Xν , and |µ| is concentrated on Xµ.

We present some fundamental results for vector-valued measures:

Theorem 2 (Radon-Nikodym). Let µ be a positive Radon measure and let ν be a vector-

valued Radon measure on Rn. Assume ν << µ. Then there exists a unique function f ∈

L1
loc(Rn,Rm) such that ν = fµ, i.e. for all µ-measurable sets A,

ν(A) =

∫
A

f dµ

The function f is called the density of ν with respect to µ.

Indeed, this follows from ([22],Theorem 6.10) applied to the components of ν.

Every complex measure has a polar decomposition, i.e. given a complex measure µ,

there exists a complex function σ such that µ = σ |µ|. The same holds true for vector-valued

measures:

Theorem 3. Let µ be a vector-valued measure on Rn. Then there exists a unique function

f ∈ L1
loc(Rn,Rm) such that µ = f |µ|. Also |f(x)| = 1 for µ− almost every x ∈ Rn.

Proof. Existence of a density f follows trivially from Theorem 2 since µ << |µ|. It remains

to show that |f | = 1 µ−a.e. Fix r < 1, and consider the set Ar = {|f | < r}. Then if {Ej}∞j=1

is a partition of Ar,

∞∑
j=1

|µ(Ej)| =
∞∑
j=1

∣∣∣ ∫
Ej

f d|µ|
∣∣∣ ≤ r

∞∑
j=1

|µ|(Ej) = r|µ|(Ar)

which implies |µ|(Ar) ≤ r|µ|(Ar), so |µ|(Ar) = 0. Thus |f | ≥ 1 µ-almost everywhere.

On the other hand, for any measurable set E with |µ|(E) > 0, define

fE =
1

|µ|(E)

∫
E

f d|µ|
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and note that

|fE| =
∣∣∣ 1

|µ|(E)

∫
E

f d|µ|
∣∣∣ =
|µ(E)|
|µ|(E)

≤ 1.

Let B(a, r) ⊂ {|x| > 1} be arbitrary, and let A = f−1(B(a, r)). Note that for x ∈ A,

|f(x)− a| < r. Suppose that |µ|(A) > 0. Then since |fA| ≤ 1,

r < |fA − a| ≤
1

|µ|(A)

∫
A

|f − a| d|µ| ≤ r,

which is a contradiction, so |µ|(A) = 0. Since {|f | > 1} is the countable union of such sets,

|f | ≤ 1 µ-a.e.

For an Rm-valued vector measure µ and a µ-measurable ϕ : Rn → Rm, define the integral∫
ϕ · dµ =

∫
ϕ1 dµ

1 + ...+

∫
ϕm dµ

m.

We derive the following useful formula for the total variation of an open set from Theorem 3.

Theorem 4. Let µ be an Rm-valued Radon measure on Rn. Then for every open set Ω ⊂ Rn,

|µ|(Ω) = sup{
∫

Ω

ϕ · dµ : ϕ ∈ Cc(Ω,Rm), ‖ϕ‖∞ ≤ 1}

Remark: In the above theorem, Cc(Ω;Rm) can be replaced with Ck
c (Ω;Rn), for any k ∈

N ∪ {∞}.

Proof. Let µ = σ|µ|, where |σ(x)| = 1 µ-almost everywhere. Assume first that |µ|(Ω) is

finite. Then ∫
Ω

ϕ · dµ =
m∑
i=1

∫
Ω

ϕi σi d|µ| =
∫

Ω

ϕ · σ d|µ| ≤ ‖ϕ‖∞|µ|(Ω).

then taking the supremum over all ϕ ∈ Cc(Ω,Rm) with ‖ϕ‖∞ ≤ 1 yields the inequality

|µ|(Ω) ≥ sup{
∫

Ω

ϕ · dµ : ϕ ∈ Cc(Ω,Rm), |ϕ| ≤ 1}

By density of compactly supported functions in L1, for each i = 1, ...,m, we can select a

sequence {ϕij}∞j=1 ⊂ Cc(Ω,R) such that

‖ϕij − σi‖L1(Ω,|µ|) → 0
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For j ∈ N, let ϕj =
(
ϕ1
j , ..., ϕ

m
j

)
. We can assume that ‖ϕj‖∞ ≤ 1.

Since |µ|(Ω) <∞, we can apply the dominated convergence theorem.

lim
j→∞

∫
Ω

ϕj · dµ = lim
j→∞

∫
Ω

ϕj · σ d|µ| =
∫

Ω

|σ|2 d|µ| = |µ|(Ω).

If |µ|(Ω) =∞, let Un = B(0, n) ∩ Ω. There exists ϕn ∈ Cc(Un) such that

∫
Un

ϕn · dµ > |µ|(Un)− 1.

Since |µ|(Un)→∞ ∫
Un

ϕn · dµ =

∫
Ω

ϕn · dµ→∞.

For positive Radon measures µ, ν on Rn, define

Dµν(x) =

 lim
r→0

ν(B(x, r))

µ(B(x, r))
if µ(B(x, r)) > 0 for all r > 0.

0 if µ(B(x, r)) = 0 for some r > 0.

The following non-trivial result requires the Besicovitch Covering Theorem ([9], p. 40).

Theorem 5 (Besicovitch). Dµν(x) exists and is finite for µ-almost every x ∈ Rn. In addition

if ν << µ, then Dµν is the density of ν with respect to µ, i.e. for each Borel set A ⊂ Rn,

ν(A) =

∫
A

Dµν dµ

Theorem 6 (Lebesgue Decomposition Theorem). Let µ, ν be (positive) Radon measures on

Rn. Then there exists a unique pair of Radon measures νs, νac such that

ν = νs + νac, νac << µ, νs ⊥ µ (2.1)

Moreover Dµν is the density of νac with respect to µ and

Dµνs = 0 µ-a.e. (2.2)

7



Proof. The proof of (2.1) can be found in ([22], Theorem 6.10). For (2.2), let µ be concen-

trated on the set C, νs(C) = 0. Fix α > 0, and let

D = {x : lim sup
r→0

νs(B(x, r))

µ(B(x, r))
> α}.

Let E = C ∩D, and let U be any open set containing E. Then the collection of closed balls

F = {B(x, r) ⊂ U : x ∈ E, r < 1, νs(B(x, r)) > αµ(B(x, r))}

is a fine Besicovitch covering for E. By the Besicovitch covering theorem, there exists a

disjoint countable subfamily of closed balls B(xi, ri) ∈ F such that

µ(E\
∞⋃
i=1

B(xi, ri)) = 0.

Then

αµ(E) ≤ α
∞∑
i=1

µ(B(xi, ri)) ≤
∞∑
i=1

νs(B(xi, ri)) ≤ νs(U).

Taking inf over all such U ,

αµ(D) = αµ(E) ≤ νs(E) ≤ νs(C) = 0.

So Dµνs = 0 µ-a.e. The equality Dµνac = Dµν µ-a.e. follows immediately from the equation

ν = νac + νs and hence Dµν is the density of νac by Theorem 5.

Remark: We can analogously define Dµν when ν is any vector-valued Radon measure.

Note that the above result continues to hold if we replace ν by any signed (Radon) measure

by separating ν into its positive and negative parts, and also to the case where ν is a vector-

valued measure on Rn.

Corollary 1. Let µ be a positive Radon measure and ν a vector-valued Radon measure on

Rn. For any Borel set A ⊂ Rn,

ν(A) =

∫
A

Dµν dµ+ νs(A).

Recall that C0(Rn) is the space of continuous functions on Rn such that lim
|x|→∞

|f(x)| = 0.

The following important result states that [C0(Rn,Rm)]∗ is isometrically isomorphic to the

space of Rm-valued Radon measures of finite total variation on Rn.
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Theorem 7 (Riesz Representation Theorem). Let L : C0(Rn;Rm)→ R be a bounded linear

functional. Then there exist a unique finite positive measure µ and a function σ : Rn → Rm

such that |σ(x)| = 1 µ-a.e. and

L(ϕ) =

∫
Rn
ϕ · σ dµ for every ϕ ∈ C0(Rn;Rm).

In addition, |µ|(Rn) = ‖L‖[C0(Rm;Rn)]∗ .

Proof. Let L satisfy the assumptions of the above theorem, and define for i = 1, ...,m the

functional

Li : C0(Rn;R)→ R by Li(ψ) = L(ψ ei).

Then ‖Li‖ ≤ ‖L‖, so by the Riesz Representation Theorem for complex measures ([22],

Theorem 6.19), there exists a signed measure µi of finite total variation on Rn such that

Li(ψ) =

∫
Rn
ψ dµi for each ψ ∈ Cc(Rn,R).

Let ~µ = {µ1, ..., µm}. Then

L(ϕ) = L(ϕ1 e1 + ...+ ϕm em)

= L1(ϕ1) + ...+ Lm(ϕm)

=

∫
Rn
ϕ1dµ

1 + ...+

∫
Rn
ϕmdµ

m =

∫
Rm

ϕ · d~µ.

It follows immediately from Theorem 3 that we have the polar decomposition ~µ = σ µ where

µ is the total variation of ~µ. Moreover, Theorem 4 immediately implies the last statement

of the theorem.

The following result ([22], Theorem 6.12) relates a finite measure with density g to its

total variation.

Theorem 8. Let µ be a finite positive measure and g ∈ L1(µ) be a vector valued function

on Rn. Let λ = gµ. Then |λ| = |g|µ.

9



2.2 SOBOLEV SPACES

Let Ω ⊂ Rn be an open set, p ∈ [1,∞], and m be any positive integer. The Sobolev Space

Wm,p(Ω) consists of functions f ∈ Lp(Ω) such that for all multi-indices α, 0 ≤ |α| ≤ m, the

distributional derivatives are represented by functions vα ∈ Lp(Ω). That is, there exists a

function vα ∈ Lp(Ω) such that for every φ ∈ C∞c (Ω),

∫
Ω

f(x)Dαφ(x)dx = (−1)|α|
∫

Ω

vα(x)φ(x)dx.

The functions vα are called weak derivatives of f . Whenever weak derivatives exist, it is

natural (and common practice) to denote weak derivative vα more simply by Dαf . However,

one must note that in the context of Sobolev spaces this is not the classical derivative.

The space of functions with locally p-integrable weak derivatives of orders less than or

equal to m is denoted Wm,p
loc (Rn). A Sobolev function is a function in the space W 1,1

loc (Ω).

C1(Ω) ⊂ W 1,p
loc (Ω), since if f ∈ C1(Ω) then integration by parts is valid, and continuity

of f and ∇f guarantees local integrability. Also, it is easy to see that the weak and classical

derivatives of f coincide.

Wm,p(Ω) is a Banach space ([10], Chap. 6) with the norm

‖f‖m,p =
∑
|α|≤m

‖Dαf‖p.

Note: Where unambiguous we will drop the dependence on Ω in ‖ · ‖Lp(Ω) and simply write

‖ · ‖p. Similarly ‖ · ‖Wm,p(Ω) will be replaced with ‖ · ‖m,p.

Clearly a sequence fk → f in Wm,p(Ω) if and only if

‖Dαfk −Dαf‖Lp(Ω) → 0 as k →∞ for each |α| ≤ m.

We present some key results in the theory of Sobolev spaces.
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Theorem 9 (Density of Smooth Functions). ([9], p. 125) Let Ω ⊂ Rn be any open set. Let

f ∈ Wm,p(Ω), p ∈ [1,∞). Then there exists a sequence of functions {fk} in Wm,p(Ω)∩C∞(Ω)

such that fk → f in Wm,p(Ω).

In particular, Wm,p(Ω) is the closure of C∞(Ω) in the space (Wm,p(Ω), ‖ · ‖m,p).

We say that a bounded open set Ω is a Lipschitz domain if its boundary is locally the

graph of a Lipschitz function. If Ω is a Lipschitz domain, then C1(Ω) is dense in W 1,p(Ω)

for 1 ≤ p <∞.

Theorem 10 (Traces). ([9], p. 133) Let p ∈ [1,∞) and let Ω be a bounded Lipschitz domain.

Then there exists a bounded linear ‘trace’ operator

T : W 1,p(Ω)→ Lp(∂Ω, dσ)

such that for every function u ∈ C1(Ω), Tu = u|∂Ω. Moreover for every φ ∈ C1(Rn;Rn) and

f ∈ W 1,p(Ω),

∫
Ω

f div φ dx = −
∫

Ω

φ ·Df dx+

∫
∂Ω

(φ · ν) Tf dσ.

Tf is called a trace of f on ∂Ω and provides a well-defined notion of “boundary values”

of f . Here Df = {Dαf}|α|=1 is the weak gradient of f . The existence of a trace allows us

to integrate by parts against smooth functions which do not vanish on ∂Ω. It also makes

Sobolev functions excellent candidates for weak solutions of PDE with given boundary data.

Theorem 11 (Extensions). ([1], p.91) Let p ∈ [1,∞], and assume Ω is a bounded Lipschitz

domain. Let V be any open set with Ω ⊂⊂ V . Then there exists a bounded linear extension

operator

E : Wm,p(Ω)→ Wm,p(Rn)

such that supp(Ef) ⊂ V for every f ∈ Wm,p(Ω).

11



By an extension operator we mean that Ef |Ω = f , and by boundedness we mean exis-

tence of a constant C such that

‖Ef‖Wm,p(Rn) ≤ C‖f‖Wm,p(Ω) for every f ∈ Wm,p(Ω).

Sobolev functions f ∈ W 1,p
loc (Ω) have certain smoothness properties. If p = ∞, the

function has a locally Lipschitz representative. If p > n, the function has a representative

which is Holder continuous with exponent 1− n
p
. In both these cases, the function is almost

everywhere differentiable in the classical sense (for n < p < ∞ this is an extension of the

classical Rademacher Theorem).

For p ≤ n we still have some regularity. Indeed, every Sobolev function is absolutely

continuous on almost all lines parallel to the coordinate axes. This excludes the charac-

teristic functions of a large class of sets from being Sobolev functions. In addition, the

set of ’measure-theoretically significant’ discontinuities of a Sobolev function has Hausdorff

dimension less than n− 1.

2.3 FUNCTIONS OF BOUNDED VARIATION

Let Ω ⊂ Rn be open. We say that a function f has bounded variation in Ω, or f ∈ BV (Ω), if

f ∈ L1(Ω) and the first order distributional derivatives of f are Radon measures of finite total

variation in Ω. That is, there exist Radon measures µi, i = 1, ...,m such that |µi|(Ω) < ∞

and for each ϕ ∈ C1
c (Ω),

∫
Ω

f ∂iϕ dx = −
∫

Ω

ϕ dµi.

The derivative of f is the vector-valued measure Df := {µi}mi=1. The total variation of Df

is a finite positive measure and is denoted ‖Df‖.

Similarly we define BVloc(Ω) as the space of locally integrable functions whose distribu-

tional derivatives are (not necessarily finite) Radon measures.
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Functions of bounded variation are a natural generalization of Sobolev functions. A

larger space than W 1,1(Rn), the set of ’measure theoretically significant’ discontinuities of

BV (Rn) functions may have positive n − 1-dimensional Hausdorff dimension, although the

Hausdorff dimension of this set may not exceed n− 1. A fundamental and surprising result

is that for Hn−1-a.e. point at which there is a jump, the jump is across a hyperplane (see

[9], p. 213).

BV (Ω) is a Banach space with the norm:

‖f‖BV (Ω) = ‖f‖L1(Ω) + ‖Df‖(Ω).

For the proof, see Corollary 16.

A simple example illustrates the vast difference between BV spaces and Sobolev spaces.

Consider the function f = χ(0,1) on (−1, 1). This is not a Sobolev function, since a Sobolev

function on R must be equal almost everywhere to an absolutely continuous function, and

f has an unremovable jump discontinuity at 0. However, f is in BV (−1, 1). Indeed, for any

ϕ ∈ C∞c (−1, 1), ∫ 1

−1

fϕ′dx = −ϕ(0) = −
∫ 1

−1

ϕ dδ0,

where δ0 is the Dirac measure on R concentrated at 0. So the distributional derivative of f

is the measure δ0. One can easily see that total variation ‖Df‖(−1, 1) = 1.

In fact, we have the following result for any nonempty open set Ω ⊂ Rn:

Theorem 12. W 1,1(Ω) ( BV (Ω). In addition W 1,1(Ω) is a closed isometrically embedded

subspace of BV (Ω).

Proof. If f ∈ W 1,1(Ω) then the distributional derivative is the measure (∇f)Ln, which by

Theorem 8 has total variation |∇f |Ln, so f ∈ BV (Ω) and

‖f‖BV (Ω) = ‖f‖L1(Ω) + ‖Df‖(Ω) = ‖f‖L1(Ω) + ‖∇f‖L1(Ω) = ‖f‖W 1,1(Ω).

Since W 1,1(Ω) is complete, it is a closed subspace of BV (Ω).
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If B ⊂⊂ Ω is an open ball, then

∫
Ω

χB divϕ dx =

∫
B

divϕ dx = −
∫
∂B

ϕ · ν dHn−1,

from which it easily follows that ‖DχB‖(Ω) = Hn−1(∂B) < ∞, so χB ∈ BV (Ω). However,

the function χB is discontinuous on each line passing through the interior of B, so it is not

in W 1,1(Ω).

Remark: As a consequence, the limit of any convergent sequence of smooth functions

in BV (Ω) must lie in W 1,1(Ω). Therefore we have no hope of approximating functions in

BV (Ω)\W 1,1(Ω) by smooth functions with respect convergence in BV norm. However, we

are guaranteed convergence of a slightly weaker type, see Theorem 17.

We now proceed to give an equivalent characterization of the space BV (Ω).

For f ∈ L1
loc(Ω), define

V (f,Ω) := sup

{∫
Ω

f divϕdx : ϕ ∈ Cc(Ω,Rm), ‖ϕ‖∞ ≤ 1

}
.

Theorem 13. f ∈ BV (Ω) if and only if f ∈ L1(Ω) and V (f,Ω) < ∞. In case either of

these holds, ‖Df‖(Ω) = V (f,Ω).

Proof. Let f ∈ BV (Ω). Recall that if ϕ ∈ C1
c (Ω,Rm), then

∫
Ω

ϕ · dDf = −
∫

Ω

f divϕ dx.

Then the fact that ‖Df‖(Ω) = V (f,Ω) is an immediate consequence of the fact that ‖Df‖

is a finite measure and Theorem 4.

For the other implication, fix f ∈ L1(Ω) and define the linear functional L on C1
c (Ω;Rm) by

L(ϕ) = −
∫

Ω

f divϕ dx.
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Assuming V (f,Ω) < ∞, L is a bounded linear functional on C1
c (Ω;Rm), so it extends

uniquely to a bounded linear functional (also denoted L) on Cc(Ω;Rm). By the Riesz Rep-

resentation Theorem, there exists a finite Radon measure µ on Ω and a unique σ : Ω→ Rm,

|σ| = 1 µ−a.e. such that

L(ϕ) =

∫
Ω

ϕ · σ dµ.

Let Df := σ µ. Measurability of σ implies that Df is a vector-valued Radon measure on Ω.

For each ϕ ∈ C1
c (Ω;Rn), ∫

Ω

f divϕ dx = −
∫

Ω

ϕ · d Df.

Therefore Df is the distributional derivate of f . Since V (f,Ω) <∞, Df has finite total

variation, and therefore f ∈ BV (Ω).

Theorem 7 easily implies that for f ∈ BVloc(Ω), its distributional derivative is a measure

Df defined on the Borel sets of Ω, i.e. a measure satisfying

∫
Ω

f divϕ dx = −
∫

Ω

ϕ · dDf for every ϕ ∈ C1
c (Ω)

However, for f ∈ BVloc(Ω) the variation V (f,Ω) is not, in general, finite.

Let’s make a brief note about BV functions of one variable. For an interval (a, b) ⊂ R,

define the variation of a function f : (a, b)→ R by

b∨
a

f =

{
k−1∑
i=0

|f(ti+1)− f(ti)| : t0 < t1 < ... < tk ∈ (a, b)

}
.

A function f ∈ L1(a, b) is in BV (a, b) if and only if it has a pointwise representative f ∗ such

that
b∨
a

f ∗ <∞.

See [4], Theorem 3.27.

As a further remark, functions of bounded variation on Ω ⊂ Rn are in BV (` ∩ Ω) for

Ln−1-a.e. line ` parallel to the coordinate axes, and in fact may be characterized in terms of

these one-dimensional variations (see [28], Theorem 5.3.4). The property of being absolutely

continuous on lines for Sobolev functions is analagous to the property of being of bounded
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variation on lines for BV functions. In fact, one can recover the measure Df from its

restrictions to almost all one dimensional slices, see ([4], Theorem 3.107).

Decomposition of the measure Df :

Let f ∈ BVloc(Ω). To each component µi of Df , apply the Lebesgue Decomposition Theorem

(Theorem 6). There exist Radon measures µis and µiac such that

µi = µis + µiac, µiac << Ln, µis ⊥ Ln.

By the Radon-Nikodym Theorem, µiac = (gi)Ln for some gi ∈ L1
loc(Rn). The vector field

∇f := {gi}ni=1 is called the density of the absolutely continuous part of the measure Df with

respect to the Lebesgue measure, and the measure Dfs = {µis}ni=1 is called the singular part

of the measure. Then

Df = Dfs +∇f Ln

and

‖Df‖ = ‖Df‖s + |∇f | Ln.

As an immediate consequence of the decomposition we have the following result:

Theorem 14. Let f ∈ BVloc(Ω). Then f ∈ W 1,1
loc (Ω) if and only if Dfs ≡ 0.

Remark: The main difficulty in the study of BV functions is accounting for the singular

part of the measure Df .

We now provide some fundamental results for BV functions (see [9], Chapter 5):

Theorem 15 (Weak Lowersemicontinuity). Let {fk} be a sequence in BV (Ω) such that

fk → f in L1
loc(Ω). Then ‖Df‖(Ω) ≤ lim inf

k→∞
‖Dfk‖(Ω).

Proof. Fix ϕ ∈ C1
c (Ω;Rn) with |ϕ| ≤ 1. Then∫

Ω

f divϕdx = lim
k→∞

∫
Ω

fk divϕdx = lim inf
k→∞

−
∫

Ω

ϕ · σ dDfk ≤ lim inf
k→∞

‖Dfk‖(Ω)

Now take the supremum over all such ϕ.
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As a corollary, we can now prove that (BV (Ω), ‖ · ‖BV ) is a Banach space:

Theorem 16. BV (Ω) is a Banach space with the norm

‖f‖BV = ‖f‖1 + ‖Df‖(Ω).

Proof. Let {fn} be a Cauchy sequence in BV (Ω). Then the sequence is Cauchy in L1(Ω),

so there exists f ∈ L1(Ω) with fn → f in L1(Ω). By the weak lowersemicontinuity (15),

‖Df‖(Ω) ≤ lim inf
k→∞

‖Dfk‖(Ω), so f ∈ BV (Ω). For any ε > 0, there exists n sufficiently large

such that

‖D(fn − f)‖(Ω) ≤ lim inf
m→∞

‖D(fn − fm)‖ < ε.

We noted earlier that functions in BV (Ω)\W 1,1(Ω) cannot be approximated in BV norm by

smooth functions. However, we have the following weaker type approximation.

Theorem 17 (Approximation by of Smooth Functions). Let f ∈ BV (Ω). Then there exists

a sequence of functions {fk} in BV (Ω) ∩ C∞(Ω) such that

(i) fk → f in L1(Ω).

(ii) ‖Dfk‖(Ω)→ ‖Df‖(Ω).

In addition, we have the weak-* convergence

(iii) ‖Dfk‖
∗
⇀ ‖Df‖ in [Cc(Ω)]∗.

In fact, for any g ∈ C(Ω),∫
Ω

g d‖Dfk‖ →
∫

Ω

g d‖Df‖ as k →∞.

We will prove a more general result for BV m functions so we omit the proof here.

Theorem 18 (Traces). ([9],p. 177) Assume ∂Ω is Lipschitz and Ω is bounded. Then there

exists a bounded linear trace operator T : BV (Ω) → L1(∂Ω) such that for every function

u ∈ C1(Ω), Tu = u|∂Ω. Moreover for every φ ∈ C1(Rn;Rn) and f ∈ BV (Ω),∫
Ω

f div φ dx = −
∫

Ω

φ · dDf +

∫
∂Ω

φ · ν Tf dσ
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Remark: This trace operator and the trace defined for Sobolev functions agree on

W 1,1(Ω).

Theorem 19 (Extensions). ([9], p. 183) Assume Ω is a bounded Lipschitz domain. Let

f1 ∈ BV (Ω) and f2 ∈ BV (Rn\Ω). Then f ∈ BV (Rn), where

f(x) =

 f1(x) if x ∈ Ω

f2(x) if x ∈ Rn/Ω̄
(2.3)

Moreover,

‖Df‖(Rn) = ‖Df1‖(Ω) + ‖Df2‖(Rn\Ω) +

∫
∂Ω

|Tf1 − Tf2|dσ

It follows that if Ω is a bounded Lipschitz domain, then any function in BV (Ω) can be

extended to a function in BV (Rn) by setting the extension equal to 0 outside Ω.

Theorem 20 (Compactness). ([9], p. 176) Let Ω be a Lipschitz domain. Then the embedding

BV (Ω) ⊂⊂ L1(Ω) is compact, i.e. if {gk}∞k=1 ⊂ BV (Ω) is a sequence such that

sup
k
‖gk‖BV (Ω) <∞

then there is are a subsequence gk′ and a function f ∈ L1(Ω) such that

‖f − gk′‖L1(Ω) → 0

In addition, it follows from weak lowersemicontinuity that f ∈ BV (Ω).

Let f ∈ L1
loc(Rn;Rm). We say f is approximately differentiable at x if there is a linear

mapping

L : Rn → Rm

such that for each ε > 0,

lim
r→0

|B(x, r) ∩ {y : |f(x)−f(y)−L(y−x)|
|x−y| > ε}|

|B(x, r)|
= 0.

We denote

apDf(x) := L.

The following characterization of functions that are approximately differentiable almost

everywhere is due to Whitney [26].
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Theorem 21 (Whitney). Let E ⊂ Rn be measurable and let f : E → R be a measurable

function. The following are equivalent:

(i) f is approximately differentiable at almost every x ∈ E.

(ii) For every ε > 0, there is a closed set C ⊂ E and a locally Lipschitz function g : Rn → R

such that g|C = f |C and |E\C| < ε.

(iii) For every ε > 0, there is a closed set C ⊂ E and a function g ∈ C1(Rn) such that

g|C = f |C and |E\C| < ε.

Now the Luzin-type approximation of BV functions by C1 functions follows from ap-

proximate differentiability:

Theorem 22. Let f ∈ BVloc(Ω). Then for almost every x ∈ Ω, f is approximately differen-

tiable at x and apDf(x) = ∇f(x), where ∇f denotes the density of the absolutely continuous

part of the derivative of f.

Proof. For the proof we cite the following result from ([9],p. 228):

Lemma 1. Let f ∈ BV (Rn). Then for Ln-a.e. x ∈ Rn,

1

r

∫
B(x,r)

|f(y)− f(x)−∇f(x) · (y − x)| dy → 0 as r → 0.

Fix any such point x. We show that for any ε > 0,

lim
r→0

|B(x, r) ∩ {|f(y)− f(x)−∇f(x) · (y − x)| > ε|y − x|}|
|B(x, r)|

= 0.

Suppose not. Then there are ε > 0, γ > 0 and rj → 0 such that

|B(x, rj) ∩ {|f(y)− f(x)−∇f(x) · (y − x)| > ε|y − x|}|
|B(x, rj)|

> γ.

Hence there exists σ > 0 small such that,

|B(x, rj)\B(x, σrj) ∩ {|f(y)− f(x)−∇f(x) · (y − x)| > ε|y − x|}|
|B(x, rj)|

>
γ

2
.

Since in this annulus, |y − x| ≥ σrj, we have

|B(x, rj) ∩ {|f(y)− f(x)−∇f(x) · (y − x)| > εσrj}|
|B(x, rj)|

>
γ

2
,
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but the left hand side is less than or equal to

1

rj

∫
B(x,rj)

|f(y)− f(x)−∇f(x) · (y − x)|
εσ

→ 0 as j →∞,

which is a contradiction. Therefore at any such x, f is approximately differentiable and

apDf(x) = ∇f(x).

As an immediate consequence of Theorem 21 we obtain:

Corollary 2. Let f ∈ BV (Rn). Given ε > 0, there exists g ∈ C1(Rn) and C ⊂ Rn closed

such that f = g on C and |Rn\C| < ε.

We will now prove an easy corollary of the lemma:

Corollary 3. Let f ∈ BVloc(Ω) and suppose there exists a Borel set E ⊂ Ω and a function

g that is differentiable at almost every point of E. Suppose f = g on E. Then ∇f = ∇g

a.e. on E.

Proof. Fix x ∈ E which is a density point of E such that g is differentiable at x. Define

H : Ω\{x} → R by

H(y) =
|f(x)− f(y)−∇g(x) · (y − x)|

|x− y|
.

Then fix ε > 0.

|B(x, r) ∩ {y : H(y) > ε}|
|B(x, r)|

=
|B(x, r) ∩ E ∩ {y : H(y) > ε}|

|B(x, r)|
+
|B(x, r) ∩ Ec ∩ {y : H(y) > ε}|

|B(x, r)|

≤ |B(x, r) ∩ {y : |g(x)− g(y)−∇g(x) · (y − x)| > ε|x− y|}|
|B(x, r)|

+
|B(x, r)\E|
|B(x, r)|

→ 0 as r → 0.

The convergence of the first term to zero is due to the differentiability of g at x and con-

vergence of the second term to 0 follows from the assumption that x is a density point of

E. Thus apDf(x) = ∇g(x). Since apDf(x) = ∇f(x) at almost every x in Ω, the result

follows.
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2.4 THE WHITNEY EXTENSION THEOREM

The Whitney Extension Theorem provides a necessary and sufficient condition for a family

{fα}|α|≤m of continuous functions defined on a compact set K ⊂ Rn to be the restrictions

Dαf |K of some function f ∈ Cm(Rn). It is easy to obtain a necessary condition on the

set {fα}|α|≤m by applying the Taylor formula to f ∈ Cm(Rn). Indeed, consider the Taylor

remainder

Rm
x f(y) := f(y)−

∑
|α|≤m

(y − x)α

α!
Dαf(x).

For each β, 0 ≤ |β| ≤ m, Dβf ∈ Cm−|β|(Rn). Therefore the Taylor formula implies

Rm−|β|
x Dβf(y) = Dβf(y)−

∑
|γ|≤m−|β|

(y − x)γ

γ!
Dβ+γf(x) = o(|x− y|m−|β|) (2.4)

uniformly as |x− y| → 0 on compact subsets of Rn.

Now fix a compact set K ⊂ Rn, and suppose fα := Dαf |K . Let F := {fα}|α|≤m. Define

for each |β| ≤ m,

(Rm
x F )β(y) := fβ(x)−

∑
|γ|≤m−|β|

(y − x)γ

γ!
fβ+γ(y).

Then necessarily

(Rm
x F )β(y)

|x− y|m−|β|
⇒ 0 uniformly as |x− y| → 0, x, y ∈ K. (2.5)

Indeed, since fα = Dαf |K , this is just a restatement of (2.4).

Now we let F := {fα}|α|≤m be an arbitrary collection of continuous functions on K. We

have just seen that in order for there to exist f ∈ Cm(Rn) such that fα = Dαf |K for each

|α| ≤ m, the condition (2.5) is necessary.

The surpising fact is that it is also sufficient. This is the celebrated theorem of Whit-

ney. Although proving necessity is straightforward, proving sufficiency requires an explicit

construction of the extension and this is quite a difficult task. However, having an explicit
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formula for an extension is useful in many applications. Here we only provide a sketch of

the proof. The interested reader can find complete details in [25], ([18], pp. 1 - 8).

Let’s set some notation. For a compact set K ⊂ Rn, define

Jm(K) = { {fα}|α|≤m
∣∣ fα : K → R are continuous},

the set of all jets of order m on K. For a fixed |β| ≤ m, we define an operator

Dβ : Jm(K)→ Jm−|β|(K) by {fα}|α|≤m 7−→ {fβ+α}|α|≤m−|β|.

We will write F = {fα}|α|≤m for a jet of order m. For each a ∈ K, define the operator

Tma : Jm(K)→ C∞(Rn) by {fα}|α|≤m 7−→
∑
|α|≤m

fα(a)
(· − a)α

α!
.

Tma F is a formal Taylor polynomial constructed from the jet F and centered at a.

Denote by Em(K) the space of all jets F in Jm(K) such that

(Rm
x F )α(y) = o(|x− y|m−|α|) as |x− y| → 0 for every x, y ∈ K and |α| ≤ m. (2.6)

Each F ∈ Em(K) is called a Whitney jet of class Cm on K. Now we state the theorem.

Theorem 23 (Whitney Extension Theorem). There exists a linear extension operator W : Em(K)→

Cm(Rn) such that for every F ∈ Em(K) and every x ∈ K, DαWF (x) = fα(x) for |α| ≤ m.

For a Whitney jet F , the construction of the extension WF relies on the well known

Whitney decomposition of the open set Rn\K. The main feature of the decomposition is

that it partitions this set into diadic cubes whose diameter is comparable to the distance

of the cube to the boundary of K. Here is a brief outline of the construction: First divide

Rn into diadic cubes S of side length 1. Collect all such cubes with d(S,K) >
√
n. Now

partition the remaining space into diadic cubes of side length 1/2, and collect all cubes with

d(S,K) >
√
n

2
. Continue with cubes of side length 1/4, 1/8, ... ad finitum. Let I be the

collection of all the cubes. This is a partition of Rn\K. For each S ∈ I, define S̃ := 3
2
S to

be the concentric cube of 3/2 side length. Let {φS}S∈I be a C∞(Rn) partition of unity with

(a) 0 ≤ φS ≤ 1
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(b) supp(φS) ⊂ int(S̃)

Then the following hold:

1. int(S) ∩ int(T) = ∅ whenever S, T ∈ I.

2. Adjacent cubes differ in size by at most a factor of 2 (linear dilation).

3. For each S ∈ I, #{T ∈ I : supp(φS) ∩ supp(φT ) 6= ∅} ≤ 4n.

4. S̃ ∩ T̃ 6= ∅ iff S is adjacent to T . Therefore the partition of unity is locally finite.

5. If S is not side length 1 and x ∈ S̃, the d(x,K) ≤ (17/4)diam(S).

6. There exists C(β, n) only such that |DβφS(x)| ≤ C(1 + 1
d(x,K)|β|

); |β| ≤ m, x ∈ Rn\K.

Now we can give an explicit formula for the extension WF : For every S ∈ I, choose a

point aS in K that is nearest to supp(φS). Let f 0 = f .

WF (x) =


f 0(x) if x ∈ K,∑
S∈I

φS(x)TmaSF (x) if x ∈ Rn\K.
(2.7)

First note that this is a finite sum at each x since the partition of unity is locally finite.

To define the function outside K, we take a weighted sum (over all cubes in the partition)

of formal Taylor polynomials of the jet centered at nearest points on the boundary of K. As

x approaches K, the points at which the polynomials are centered become clustered near x.

This limiting behavior as x approaches K is the crucial part of the construction. A priori

we cannot differentiate the function at any point in K. To prove the extension is in fact a

Cm function, we define a jet {f̃α}|α|≤m and show inductively that the functions in this jet

are in fact classical derivatives of WF . Let

f̃α(x) =

 fα(x) if x ∈ K,

DαWF (x) if x ∈ Rn\K.
(2.8)

Now since TmaSF is C∞, it is immediate that the function WF is smooth on Rn\K. We

need to prove inductively that for each |α| < m, a ∈ K and x ∈ Rn,

f̃α(x)− fα(a)−∇f̃α(a) · (x− a) = o(|x− a|) (2.9)
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where ∇f̃α = {f̃α+ei}ni=1 is the formal gradient of f̃α consisting of functions in the jet.

Indeed, if (2.9) holds then implies that f̃α is differentiable at a and ∇f̃α coincides with the

classical gradient of f̃α. If a ∈ int (K), then (2.9) is satisfied for points x near a. This follows

immediately from (2.6). So WF is part Cm in the interior of K. Therefore the interesting

case is when a is a boundary point of K.

The key estimate is the following:

Let L be a cube with K ∈ int(L) and λ = supx∈L d(x,K). Then there exists C(m,n, λ)

such that for each β with |β| ≤ m, a ∈ K and x ∈ L,

∣∣∣f̃α(x)−DαTma F (x)
∣∣∣ ≤ Cω(|x− a|)|x− a|m−|α| (2.10)

where ω is a modulus of continuity whose existence is guaranteed by (2.6). This is the most

difficulty part of the proof and we will not include the details.

To finish the proof using (2.10), for |α| < m, add and subtract terms to get

|f̃α(x)− fα(a)−∇f̃α(a) · (x− a)|
|x− a|

≤

∣∣∣f̃α(x)−DαTma F (x)
∣∣∣

|x− a|
+

∑
1<|β|≤m−|α|

|x− a||β||Dα+βf(a)|
|x− a|

Letting |x− a| → 0, the first term converges to zero by (2.10) and the second since |β| > 1.

Inductively, this proves that WF has derivatives up to order m, and DαWF = f̃α. When

|α| = m, (2.10) reduces to

|f̃α(x)− f̃α(a)| ≤ Cω(|x− a|)

which proves continuity of the mth order derivatives, and completes the proof.

Corollary 4. Let C be a closed set on Rn and F = {fβ}|β|≤m ∈ Jm(C). Suppose the Taylor

remainder-type estimates (2.6) hold on each compact set K ⊂ C. Then there is a function

g ∈ Cm(Rn) such that for each x ∈ C, |β| ≤ m,

Dβg(x) = fβ(x).

Moreover the mapping F 7→ g is linear.
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Proof. If x in not in C, there exists a nearest point y ∈ C such that dist (x,C) = |x − y|.

Decompose Rn \C using the Whitney Decomposition. The same inequalities hold with K

replaced by C.

We define the extension by

g =

 f(x) if x ∈ C,∑
S∈I φS(x)TmaSF (x) if x ∈ Rn \C,

(2.11)

where aS ∈ C is such that dist (S,C) = dist (aS, C). g is clearly C∞ on Rn\C.

On each compact K ⊂ C we get that

sup
x,y∈K,|x−y|<ρ

|(Rm
x F )β(y)|

|x− y|m−|β|
→ 0 (2.12)

as ρ→ 0, which guarantees existence of a modulus of continuity ωK for the compact set K

([18], Thm 2.2.1).

Fix a ∈ C, and let K = B̄(0, 1) ∩ C. If a ∈ int(C), this is not a problem because

|Rm
a F (y)| → 0 uniformly in K.

For a ∈ ∂C, we get the estimate |(Rm
a F )β(y)| ≤ CωK(x − a)|x − a|m−|β|, which implies

as in the original proof that the function is Cm is a neighborhood of a.
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3.0 APPROXIMATION BY LIPSCHITZ FUNCTIONS

We proved, see Corollary 2, that f ∈ BV equals to a C1, and in particular, to a locally

Lipschitz function outside a set of arbitrarily small measure. We will provide two alternative

proofs of this result that will use certain pointwise estimates of f . The motivation stems

from the fact that in the following sections we will use a similar method to prove a higher

order analogue for BV m functions.

3.1 FIRST POINTWISE ESTIMATE FOR BV FUNCTIONS

Henceforth, we identify f ∈ BVloc(Ω) with a pointwise representative

f̃(x) := lim sup
r→0

∫
B(x,r)

fdy (3.1)

defined at every point of Ω.

For f ∈ L1(Rn) and a Radon measure µ ∈ B(Rn), we define the following maximal

functions :

(i) Mf(x) = sup
r>0

∫
B(x,r)

|f | dy, (ii) Mµ(x) = sup
r>0

|µ|(B(x, r))

|B(x, r)|
,

(iii) Mδµ(x) = sup
0<r<δ

|µ|(B(x, r))

|B(x, r)|
.

For Lipschitz functions, we want to utilize the following pointwise estimate:

Theorem 24. Let f ∈ BVloc(Rn). Then for each x, y ∈ Rn,

|f(x)− f(y)| ≤ C(n)|x− y|(M|x−y|‖Df‖(x) +M|x−y|‖Df‖(y)). (3.2)

26



This material in this section is devoted to proving the above estimate. We start with

some well-known weak-type estimates (see [27], Sec. 2.8).

Theorem 25. Let f ∈ L1(Rn), µ ∈ B(Rn) be as above, and let t > 0. Then

t|{|f | > t}| ≤
∫
{|f |>t}

|f | dy ≤ ‖f‖1, (3.3)

t|{Mf > t}| ≤ 2 · 5n
∫
{|f |>t/2}

|f | dy ≤ 2 · 5n‖f‖1, (3.4)

t|{Mµ > t}| ≤ 5n|µ|(Rn). (3.5)

By Chebychev’s inequality (3.3), |{|f | > t}| → 0 as t→∞. We also know that for f ∈ L1(µ),

∫
E

|f | dµ→ 0 as µ(E)→ 0.

These facts along with inequalities (3.3),(3.4) give us the follow result:

Corollary 5. If f ∈ L1(Rn), then

t|{|f | > t}| → 0 and t|{Mf > t}| → 0 as t→∞.

Remark: The convergence t|{Mµ > t}| → 0 as t→∞ is not true for arbitrary µ ∈ B(Rn).

In fact, a simple example where this fails is δ0, the Dirac measure concentrated at zero. This

presents a major difficulty in estimates involving BV functions, because it may happen that

t|{M‖Df‖ > t}| does not converge to 0 as t→∞.

To prove our pointwise estimate, we use the following well-known potential estimate for

smooth functions. For a proof see ([11], Theorem 7.12):

Lemma 2. Let Q ⊂ Rn be an open cube, and let f ∈ C1(Q). Then for each x ∈ Q

|f(x)− fQ| ≤ C(n)

∫
Q

|∇f(y)|
|x− y|n−1

dy (3.6)

We will also need the following lemma ([13], Lemma 3.2):
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Lemma 3. Fix x ∈ Rn, m < n. Then there exists Cm,n independent of r such that∫
B(x,r)

1

|y − z|n−m
dy ≤ Cm,n

|x− z|n−m
for each r > 0, z ∈ Rn.

These lemmas along with approximation of BV (Q) functions by C∞ functions yield the

following result:

Theorem 26. Let f ∈ BVloc(Rn) be defined pointwise as in (3.1), and let Q ⊂ Rn be an

open cube. Then for each x ∈ Q,

|f(x)− fQ| ≤ C(n)

∫
Q

d‖Df‖(y)

|x− y|n−1
(3.7)

Proof. Note that f ∈ BV (Q). By Theorem 17, we can find a sequence {fk} ⊂ BV (Q) ∩

C∞(Q) such that

(i) fk → f in L1(Q),

(ii) ‖Dfk‖(Q)→ ‖Df‖(Q),

and moreover, for each function u which is continuous and bounded on Q,∫
Q

u d‖Dfk‖ →
∫
Q

u d‖Df‖.

Now we will apply this to the function u(z) =

∫
B(x,ε)

dy

|z − y|n−1
. By first applying

inequality (3.6) and Fubini’s Theorem, we find:

∣∣∣∣∫
B(x,ε)

fk(y)− (fk)Q

∣∣∣∣ ≤ C(n)

∫
B(x,ε)

(∫
Q

|∇fk(z)|
|y − z|n−1

dz

)
dy

≤ C(n)

∫
Q

(∫
B(x,ε)

dy

|y − z|n−1

)
|∇fk(z)| dz.

Letting k →∞, applying Fubini’s Theorem and Lemma 3 yields∣∣∣∣∫
B(x,ε)

f(y)− fQ
∣∣∣∣ ≤ C(n)

∫
Q

(∫
B(x,ε)

dy

|y − z|n−1

)
d‖Df‖(z) (3.8)

≤ C(n)

∫
Q

d‖Df‖(z)

|x− z|n−1
(3.9)

which is a bound independent of ε. Now taking the limsup as ε → 0 on the left hand side

yields the result.
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Now we prove the following lemma due to Hedberg [14], see also [12] Lemma 3.4:

Lemma 4 (Hedberg). If m > 0 and Q ⊂ Rn be a cube, then there exists a constant C(n,m)

such that ∫
Q

d|µ|(y)

|x− y|n−m
dy ≤ C(diam(Q))mMdiam(Q)µ(x)

for each µ ∈ B(Rn) and x ∈ Q.

Proof. Let δ = diam(Q). Let Ak = Q ∩B(x, δ/2k)\B(x, δ/2k+1) for k = 0, 1, 2, ...

On Ak,
δ

2k+1 ≤ |x− y| ≤ δ
2k
,

∫
Q

d|µ|(y)

|x− y|n−m
=
∑
k

∫
Ak

d|µ|(y)

|x− y|n−m

≤
∑
k

(2k+1

δ

)n−m ∫
Ak

d|µ|(y)

≤ C
∑
k

(2k+1

δ

)n−m( δ
2k
)n∫

Ak

d|µ|(y)

≤ C2n−m
∑
k

( 1

2m
)kδmMδµ(x).

Summing the geometric series gives the result.

Now we can prove Theorem 24.

Proof. By Theorem 26 and Hedberg’s lemma,

|f(x)− fQ| ≤
∫
Q

d‖Df‖(z)

|x− z|n−1
≤ C(diam(Q))Mdiam(Q)‖Df‖(x).

Applying the Triangle Inequality, for any cube Q containing x, y, we have

|f(x)− f(y)| ≤ C(diam(Q))(Mdiam(Q)‖Df‖(x) +Mdiam(Q)‖Df‖(y)). (3.10)

To complete the argument, note that for any ε > 0 we can find a cube containing x and y

whose diameter is less that |x− y|+ ε.
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3.2 FIRST APPROXIMATION BY LIPSCHITZ FUNCTIONS

We provide a first proof of the main result of this section:

Theorem 27. Let f ∈ BV (Ω). For every ε > 0, there exists a locally Lipschitz function gε

such that

(i) |{f 6= gε}| < ε and (ii) ‖gε − f‖1 < ε.

Proof. Using a partition of unity we may assume that Ω = Rn and that f has compact

support. Let

Et = {|f | ≤ t} ∩ {M‖Df‖ ≤ t}. (3.11)

Note f |Et is a Lipschitz mapping with constant 2Ct by (3.2). Let f̃t be the Mcshane (Lips-

chitz) extension of f |Et to all of Rn. Then let

ft =


f̃t if |f̃t| ≤ t,

t if f̃t > t,

−t if f̃t < −t.

ft is Lipschitz with the same Lipschitz constant as f |Et , since the Mcshane extension and

the truncation both preserve the Lipschitz constant.

(i): On Et, f = f̃t and |f̃t| = |f | ≤ t. So ft = f̃t = f on Et. Then to prove ft coincides

with f outside a set of small measure, it suffices to prove that |Ec
t | → 0. Note

|Ec
t | ≤ |{|f | > t}|+ |{M‖Df‖ > t}|.

Since f ∈ BV (Rn), |Ec
t | → 0 as t→∞ by (3.3) and (3.5).

(ii) We begin by finding a uniform bound on ‖Dft‖(Rn). Note that by (3.3),(3.5),

t|Ec
t | ≤ t|{Mf > t}|+ t|{M‖Df‖ > t}| ≤ 2 · 5n(‖f‖1 + ‖Df‖(Rn)).
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By Rademacher Theorem([9], p. 81), ft is differentiable almost everywhere, and the Lipschitz

condition implies ‖∇ft‖∞ ≤ C t. By Corollary 3, |∇ft| = |∇f | on Et, where∇f is the density

of the absolutely continuous part of Df . Then

∫
Rn
|∇ft|dx ≤

∫
Et

|∇f |dx+

∫
Ect

C t

≤ ‖Dfac‖(Et) + C t|Ec
t |

≤ C(‖f‖1 + ‖Df‖(Rn)).

We also have the estimate

∫
Rn
|ft| ≤

∫
Ect

t dx+

∫
Et

|f | ≤ t|Ec
t |+ ‖f‖1 ≤ C(‖f‖1 + ‖Df‖(Rn)).

Hence

sup
t>0
‖ft‖BV ≤ C(‖f‖1 + ‖Df‖(Ω)).

Since f has compact support, ft has compact support for t large. Indeed, if d =

dist (x, supp(f)), then

M‖Df‖(x) ≤ ‖Df‖(R
n)

ωndn
,

so for

t >
‖Df‖(Rn)

ωndn
,

x ∈ Et because |f(x)| = 0 < t and M‖Df‖(x) ≤ t, so ft(x) = f(x) = 0.

This implies that family ft all have support in the same compact ball, so we can apply

Theorem 20 to guarantee existence of g ∈ L1(Rn) such that ‖ft − g‖L1(Rn) → 0. Since

|{f 6= ft}| → 0 and Et are increasing sets, ft → f almost everywhere, so f is the L1(Rn)

limit of ft.
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3.3 SECOND APPROXIMATION BY LIPSCHITZ FUNCTIONS

Now we provide an alternative construction for a Lipschitz approximation of a BV function.

Our first approximation was constructed by restricting the function f to the set Et, whereby

we lost all information about f on Ec
t . This is a significant problem because despite the fact

that the measure of Ec
t is small, ‖Df‖(Ec

t ) may be large.

Recall again our pointwise estimate (3.2). Now instead let Et = {M‖Df‖ ≤ t}, and

consider the Whitney decomposition of Ec
t , which is an open set by lowersemicontinuity of

the maximal function M‖Df‖. Recall the Whitney decomposition is made up of pairwise

disjoint cubes {Qi}i∈I , and for each i we let Q̃i be a concentric cube linearly dilated by a

factor of 3/2. Finally recall the associated locally finite partition of unity {ξi} subordinate

to {Q̃i}i∈I has the property that ‖∇ξi‖∞ ≤ C(n)diam(Q̃i)
−1. For the relevant details, see

section 2.4 of this thesis.

Now for t > 0, let

gt =

 f(x) if x ∈ Et,∑
i ξi(x)fQ̃i if x ∈ Ec

t .
(3.12)

Clearly since gt = f on Et, |{gt 6= f}| → 0 as t→∞. We must show that gt is Lipschitz.

Let x ∈ Ec
t . Let x ∈ Et such that dist (x,Et) = |x− x|.

Claim: |gt(x)− f(x)| ≤ C(n)t|x− x|.

|gt(x)− f(x)| =

∣∣∣∣∣∑
i

ξi(x)fQ̃i − f(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
i

ξi(x)(fQ̃i − f(x))

∣∣∣∣∣
≤
∑
i

|fQ̃i − f(x)|

Now let T̃i be a cube containing Q̃i and also the point x. Note that since |x−x| < Cdiam(Q̃i),

we can ensure that diam(T̃i) < Cdiam(Q̃i). Since x ∈ T̃i and Q̃i ⊂ T̃i, a simple variation

of the inequality (3.6) and the same approximation argument as in section 3.1, along with
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Lemma (4) implies that

|f(x)− fQ̃i | ≤ C(n)
|T̃i|
|Q̃i|

∫
T̃i

‖Df‖(z)

|x− z|n−1
≤ C(n)diam(T̃i)M‖Df‖(x)

≤ Cdiam(Q̃i)t,

because x ∈ Et implies M‖Df‖(x) < t.

Combining these inequalities, and noting that diam(Q̃i) ≤ C|x− x|, we see that

|gt(x)− f(x)| ≤
∑
i

|f(x)− fQ̃i | ≤
∑
i

C t diam(Q̃i)

≤ 4nC t |x− x|.

Now let x, y ∈ Ec
t , and suppose |x− y| ≥ |x− x|. Then since |y − x| ≥ |y − y|, a simple

application of the triangle inequality shows

|gt(x)− gt(y)| ≤ |gt(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− gt(y)|

≤ Ct(|x− x|+ |x− y|+ |y − y|)

≤ Ct|x− y|.

If |x − x|, |y − y| ≥ |x − y|, then noting that f(x) =
∑

i ξi(x)f(x) =
∑

i ξi(y)f(x), we

have

|gt(x)− gt(y)| =

∣∣∣∣∣∑
i

ξi(x)fQ̃i −
∑
i

ξi(y)fQ̃i

∣∣∣∣∣
≤

∣∣∣∣∣∑
i

(ξi(x)− ξi(y))(fQ̃i − f(x))

∣∣∣∣∣
≤
∑
i

‖∇ξi‖∞|x− y||f(x)− fQ̃i |

≤
∑
i

Cdiam(Q̃i)
−1|x− y|diam(Q̃i)t

≤ C t |x− y|.

Therefore gt is Lipschitz.

The advantage to this approximation is that the information about f on Ec
t is built into

the function gt. We will see that this yields stronger bounds than the previous approximation.
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Claim 1: ‖gt − f‖1 → 0 as t→∞.

∫
Ect

|gt|dx =

∫
Ect

∑
i

|ξi(x)||fQ̃i |dx ≤
∫
Ect

∑
i

χQ̃i(x)|fQ̃i |dx

=
∑
i

∫
Q̃i

|f |dx→ 0 as t→∞

since f ∈ L1(Rn).

Claim 2: ‖Dgt‖(Rn) ≤ C(n)‖Df‖(Rn).

It suffices to show that ‖Dgt‖(Ec
t ) ≤ C(n)‖Df‖(Ec

t ). Since ∇(
∑

i ξi(x)) = ∇(1) = 0,

∫
Ect

|∇gt| dx ≤
∑
i

∫
Ect

|∇ξi(x)fQ̃i |dx =

∫
Ect

|∇ξi(x)(fQ̃i − f(x))|dx

≤
∑
i

‖∇ξi‖∞
∫
Q̃i

|fQ̃i − f(x)|dx

≤
∑
i

Cdiam(Q̃i)
−1diam(Q̃i)‖Df‖(Q̃i)

≤ C
∑
i

‖Df‖(Q̃i).

In the second to last step we employed the Poincaré inequality for BV functions on cubes

([4],Remark 3.50). Since each Q̃i is covered by finitely many Qi and each Q̃i intersects at

most 4n other cubes, we get that

∫
Ect

|∇gt|dx ≤ C(n)
∑
i

‖Df‖(Q̃i) ≤ C(n)‖Df‖(Ec
t ).

I believe this bound is not optimal. In fact, the way we have defined gt on Ec
t is by

somewhat crude approximation of f by averaging over cubes in the Whitney decomposition.

I believe that by modifying the definition of gt on Ec
t , we can, in fact find a Lipschitz function

gt which approximates the given function f in the Luzin sense, in terms of L1 convergence,

and also ‖Dgt‖(Rn)→ ‖Df‖(Rn) as t→∞.

Such an approximation will be more difficult to construct when dealing with C1 approx-

imations, and ever moreso for higher order functions of bounded variation, but I believe it

is possible and I am currently working on this issue.
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3.4 APPROXIMATION BY C1 FUNCTIONS

The approximation of BV functions by C1 functions will result from an application of the

Whitney Extension Theorem (Theorem 23), and this requires formulation of certain Taylor

remainder type estimates. We will provide a sketch of the proof, which will motivate and

clarify the proof in the higher order case. We start by proving a potential estimate similar

to that developed for Lipschitz functions.

Theorem 28. Let f ∈ BVloc(Rn). Then for any cube Q,∣∣∣∣f(x)− fQ −
∫
Q

(x− z) · dDf(z)

∣∣∣∣ ≤ C(n)

∫
Q

d‖Df − ~aLn‖(z)

|x− z|n−1
(3.13)

holds for each x ∈ Q and each vector ~a ∈ Rn.

Proof. Fix x ∈ Rn, a cube Q containing x, and a vector ~a ∈ Rn.

Note that by Lemma 5 with m = 1 (proven in section 4.2) that for any fk ∈ C1(Q),∣∣∣∣fk(y)− (fk)Q −
∫
Q

(y − z) · ∇fk(z)dz

∣∣∣∣ ≤ C

∫
Q

|∇fk(z)− ~a|
|y − z|n−1

dz

holds for each y ∈ Q.

We want to find a sequence {fk} ∈ C∞(Q) ∩BV (Q) such that the vector measures and

total variations

Dfk
∗
⇀ Df and ‖Dfk − ~aLn‖

∗
⇀ ‖Df − ~aLn‖ (3.14)

weakly in the sense of Radon measures.

Let A be a linear function with DA = ~a. Since A is smooth and locally integrable,

A ∈ BV (Q). By Theorem 4.4, there exists a sequence {gk} ⊂ C∞(Q) ∩BV (Q) such that

gk → (f − A) in L1(Q) and ‖Dgk‖(Q)→ ‖D(f − A)‖(Q) = ‖Df − ~aLn‖(Q).

Let fk = gk + A. Then fk ∈ C∞(Q) and D(fk − A) = D(gk). So

fk → f in L1(Ω) and ‖Dfk − ~aLn‖(Q)→ ‖Df − ~aLn‖(Q).

This guarantees the weak-* convergence (3.14).
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Note that the functions

z 7→
∫
Q

dy

|y − z|n−1
and z 7→

∫
Q

(y − z)dy

are continuous on Q and can be extended to continuous compactly supported functions on

Rn.

For any ε > 0, average the inequality (3.13) over a ball B(x, ε)

∣∣∣∣∫
B(x,ε)

(
fk(y)− (fk)Q −

∫
Q

(y − z) · ∇fk(z)dz

)
dy

∣∣∣∣ ≤ C

∫
Q

(∫
B(x,ε)

|y − z|1−n dy
)
|∇fk(z)−~a|dz

Applying the weak-* convergence of the measures and Fubini Theorem implies

∣∣∣∣∫
B(x,ε)

(
f(y)− fQ −

∫
Q

(y − z) ·Df(z)

)
dy

∣∣∣∣ ≤ C

∫
Q

(∫
B(x,ε)

1

|y − z|n−1
dy

)
d‖Df − ~aLn‖(z)

≤ C

∫
Q

d‖Df − ~aLn‖(z)

|x− z|n−1
,

the last step applying Lemma 3.

Taking the limsup as ε→ 0 on the left hand size, and noting that

∫
B(x,ε)

(y − z) dy → (x− z) as ε→ 0

completes the argument.

Define

T 1
Qf(y) = fQ +

∫
Q

(y − z) · dDf(z),

T 1
xf(y) = f(x) +∇f(x) · (y − x),

recalling that ∇f is the density of Dfac with respect to Lebesgue measure.

Theorem 29. If f ∈ BV (Rn) then for any x, y ∈ Rn,

|f(y)− T 1
xf(y)|

|x− y|
≤ C(n)

(
M|x−y|‖Df −∇f(x)Ln‖(x) +M|x−y|‖Df −∇f(y)Ln‖(y)

)
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Proof. T 1
Qf(y) is a polynomial in y. Indeed, differentiating under the integral sign, the

gradient is constant:

∂iT
1
Qf = ∂i

∫
Q

(y − z) · dDf(z) =
∑
j

∫
Q

δijdµ
j(z) =

∫
Q

dµi(z).

So T 1
Qf is equal to its first degree Taylor polynomial centered at x.

T 1
Qf(y) = T 1

Qf(x) +
n∑
i=1

(∫
Q

dµi(z)
)

(yi − xi)

= T 1
Qf(x) +

Df(Q)

|Q|
· (y − x).

By the triangle inequality,

|f(y)− T 1
xf(y)| ≤ |f(y)− T 1

Qf(y)|+ |T 1
Qf(y)− T 1

xf(y)|

≤ |f(y)− T 1
Qf(y)|+ |f(x)− T 1

Qf(x)|+
∣∣∣∣(Df(Q)

|Q|
− ∇f(x)

)
· (y − x)

∣∣∣∣
≤ C

∫
Q

d‖Df − ~aLn‖(z)

|x− z|n−1
+ C

∫
Q

d‖Df −~bLn‖(z)

|y − z|n−1
dy

+

∣∣∣∣Df(Q)

|Q|
− ∇f(x)

∣∣∣∣ |y − x|.
Now select the vectors ~a = ∇f(x) and ~b = ∇f(y). It follows from Lemma 4 that∫

Q

d‖Df − ~aLn‖(z)

|x− z|n−1
≤ C(diam(Q))MdiamQ‖Df − ~aLn‖(x).

Divide both sides of the inequality by |y − x| and note for any ε > 0 we can choose Q

containinig x, y with diam(Q) < |x− y|+ ε. To complete the proof, estimate∣∣∣∣Df(Q)

|Q|
− ∇f(x)

∣∣∣∣ =
|Df(Q)−∇f(x)Ln(Q)

|Q|

≤ ‖Df −∇f(x)Ln‖(Q)

|Q|
≤ CMdiam(Q)‖Df −∇f(x)Ln‖(x).

We will now use our pointwise inequality to show that for any ε > 0, there is a closed

set C with |Rn\C| < ε and such that the jet {f,∇f} is a Whitney jet on C. This implies

the existence of C1 extension, say g, of f |C with g = f and ∇g = ∇f on C.
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Theorem 30. Let f ∈ BV (Rn). Then for each ε > 0, there is a function g ∈ C1(Rn) such

that

|{f 6= g}| < ε.

Moreover |{∇g 6= ∇f}| < ε, where ∇f is the absolutely continuous density of the derivative

measure Df .

Proof. Define

ηk(z) = sup
r< 1

k

Mr‖Df −∇f(z)Ln‖(z)

Claim 1: ηk(z)→ 0 for almost every z ∈ Rn. (3.15)

To prove this, note that since the maximal function is subadditive,

Mδ‖Df −∇f(x)Ln‖(x) =Mδ‖Dfs +Dfac −∇f(x)Ln‖(x)

≤Mδ‖Dfs‖(x) +Mδ‖Dfac −∇f(x)Ln‖(x)→ 0 as δ → 0

for almost every x ∈ Rn. Indeed, convergence of the first term is an immediate consequence

of the Besicovitch Differentiation Theorem. The second term converges to zero whenever x

is a Lebesgue point of ∇f .

Fix ε > 0. By Lusin Theorem, there is a closed set C̃ ⊂ Rn with |Rn\C̃| < ε/2 such that

f |C̃ , Df |C̃ are continuous.

Claim (3.15) implies that by Egorov Theorem, there exists a closed set C ⊂ C̃ such that

|C̃\C| ≤ ε/2 and

ηk ⇒ 0 uniformly on compact subsets of C

Claim 2: Let K be a compact subset of C.

sup
x,y∈K,|x−y|<ρ

|f(y)− T 1
xf(y)|

|x− y|
→ 0 as ρ→ 0.
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Fix 0 < ρ < 1. Choose k(ρ) such that 1
k+1

< ρ < 1
k
. Fix x, y ∈ K with |x− y| < ρ. Let

Q contain x, y with diam(Q) = r < 1
k
. Then

Mr‖Df −∇f(x)Ln‖(x) +Mr‖Df −∇f(y)Ln‖(y)

≤ 2 sup
z∈K,r< 1

k

Mr‖Df −∇f(z)Ln‖(z).

Hence
|f(y)− T 1

xf(y)|
|x− y|

≤ C sup
z∈K

ηk(z)

Take the supremum over all x, y ∈ K, |x − y| < ρ, and let ρ → 0. Then k → ∞, and

uniform convergence of ηk to 0 on K implies Claim 2.

Claim 2 simply says that the formal Taylor remainder of degree 1 for the jet {f,∇f}

converges uniformly to 0 on compact subsets K ⊂ C. Thus the jet {f,∇f} is a Whitney jet

on C. By the Whitney Extension Theorem, there exists a function g ∈ C1(Rn) such that

g|C = f |C and ∇g|C = ∇f |C . Since |Rn\C| < ε, this proves the theorem.
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4.0 HIGHER ORDER FUNCTIONS OF BOUNDED VARIATION

Let Ω ⊂ Rn be open. We say a function f is in BV m(Ω) if f is in Wm−1,1(Ω) and in addition

the mth order distributional derivatives of f are Radon measures of finite total variation.

This is a natural definition because in order for the mth order distibutional derivatives to be

measures, we must require that the (m− 1)st order derivatives exist in the weak sense and

be locally integrable. When f ∈ BV m(Ω), for each multi-index α of order m, there exists a

signed Radon measure µα such that∫
Ω

f Dαϕdx = (−1)m
∫

Ω

ϕdµα for each ϕ ∈ Cm
c (Ω) (4.1)

and |µα|(Ω) <∞.

When f ∈ BV m we will denote the distributional derivative µα by Dαf .

Similarly we define BV m
loc(Ω) to be the space of functions f ∈ Wm,1

loc (Ω) whose mth

order distributional derivatives are signed Radon measures (whose total variation may not

in general be finite).

The mth derivate of f is a vector-valued measure Dmf defined by

Dmf := {Dαf}|α|=m.

Its total variation will be denoted ‖Dmf‖, and as for any vector-valued measure,

‖Dmf‖(A) := sup

{
∞∑
k=0

|Dmf(Ak)| : Ak are disjoint and A =
∞⋃
k=0

Ak

}

for any Borel set A.

BV m(Ω) is a Banach space with the norm

‖f‖BVm(Ω) = ‖f‖Wm−1,1(Ω) + ‖Dmf‖(Ω).
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The proof follows from weak lowersemicontinuity of the total variation with respect to L1

convergence, and is analogous to the proof of Theorem 16.

‖Dmf‖ has a polar decomposition Dmf = σ ‖Dmf‖, where |σ(x)| = 1 for ‖Dmf‖-a.e.

x ∈ Ω. If we let M := #{α ∈ Nn : |α| = m}, from Theorem 4

‖Dmf‖(Ω) = sup

∑
|α|=m

∫
Ω

φαd(Dαf) : φ ∈ Cm
c (Ω,RM), |φ| ≤ 1

 , (4.2)

or equivalently,

‖Dmf‖(Ω) = sup


∫

Ω

f
( ∑
|α|=m

Dαφα

)
dx : φ ∈ Cm

c (Ω,RM), |φ| ≤ 1

 . (4.3)

Analogous to Theorem 13 for the case m = 1, f ∈ BV m(Ω) if and only if f ∈ Wm−1,1(Ω)

and the right hand side of equation (4.3) is finite.

4.1 BASIC PROPERTIES

Theorem 31. Let fk ∈ BV m(Ω), and suppose fk → f in L1(Ω).

Then ‖Dmf‖(Ω) ≤ lim inf
k→0

‖Dmfk‖(Ω).

Proof. Let ψ ∈ Cm
c (Ω,RM) with ‖ψ‖∞ ≤ 1. Then for f, {fk} as above,

∫
Ω

f
( ∑
|α|=m

Dαψα
)
dx = lim

k→∞

∫
Ω

fk
( ∑
|α|=m

Dαψα
)
dx

= lim
k→∞

(−1)m
∫

Ω

Dmfk · ϕdx

≤ lim inf
k→∞

‖Dmfk‖(Ω)

Then taking the supremum over all such ψ, the result follows from (4.3).
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It is easy to check that

Wm,1(Ω) ( BV m(Ω)

is an closed isometrically embedded subspace. So as in the case m = 1, we cannot approxi-

mate BV m functions by C∞ functions in (BV m, ‖ · ‖BVm). However, we have a result similar

to Theorem 17 for BV m functions, which says that we can approximate by smooth functions

in the following weaker sense:

Theorem 32. Let f ∈ BV m(Ω). There exists a sequence {fk} in C∞(Ω) ∩ BV m(Ω) such

that

fk → f in Wm−1,1(Ω) and ‖Dmfk‖(Ω)→ ‖Dmf‖(Ω) (4.4)

Proof. Fix ε > 0. Let Ui,` = {x ∈ Ω : dist(∂Ω, x) > 1
`+i
} ∩B(0, i+ `).⋃∞

`=1 U1,` = Ω, and U1,` ⊂ U1,`+1, so ‖Dmf‖(Ω) = lim
l→∞
‖Dmf‖(U1,`).

Since ‖Dmf‖(Ω) <∞, we can choose ` large so that ‖Dmf‖(Ω\U1,`) < ε. Fix such an l,

and let Ui := Ui,`. Then

‖Dmf‖(Ω\U1) < ε, U =
∞⋃
i=1

Ui

Let V1 = ∅, and let Vk = Uk+1\Ūk for k > 1. Let ζk be a partition of unity subordinate to

Vk.

Let η be a standard mollifier on Rn, i.e. η is a function symmetric about the origin such

that

supp(η) ⊂ B(0, 1),

∫
B(0,1)

η dx = 1, 0 ≤ η ≤ 1,

and let ηδ = (δ)−nη(x/δ). Let γ(ε) > 0 be a constant to be later determined. It follows from

standard theory for mollifiers that

(i) supp(ηδk ∗ fζk) ⊂ Vk for δk small.

(ii) Since fζk ∈ Wm−1,1(Ω), for every β with |β| ≤ m− 1,

‖Dβ(fζk) ∗ ηδk −Dβ(fζk)‖L1(Ω) <
ε

2k
(4.5)

for δk sufficiently small.
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(iii) Since fDα−βζk ∈ Wm−1,1(Ω), for every α with |α| = m, and every β < α,

‖Dβ(fDα−βζk) ∗ ηδk −Dβ(fDα−βζk)‖L1(Ω) ≤
γ(ε)

2k
(4.6)

for δk sufficiently small.

For each integer k, choose δk small so that all of the finitely many conditions (i)-(iii) are

satisfied. For each k, we will write ηk := ηδk

Let

f ε =
∞∑
k=0

fζk ∗ ηk

Since the partition of unity is locally finite, this is a finite sum in some neighborhood of

each x ∈ Ω, so f ε ∈ C∞(Ω).

We have ‖f ε − f‖Wm−1,1 < ε. Indeed,

‖Dβf ε −Dβf‖1 = ‖Dβ
( ∞∑
k=1

ηk ∗ fζk
)
−Dβ

( ∞∑
k=1

fζk
)
‖1

≤
∞∑
k=1

‖ηk ∗Dβ(fζk)−Dβ(fζk)‖1

<
∞∑
k=1

ε

2k
= ε by (4.5)

By Theorem 31, this implies

‖Dmf‖(Ω) ≤ lim inf
ε→0

‖Dmf ε‖(Ω) (4.7)

We will frequently use the following fact: If g ∈ W k,p(Ω) and |β| ≤ k, then

Dβ(g ∗ ηk) = Dβg ∗ ηk = g ∗Dβηk (4.8)

Fix Ψ = {ψα}|α|=m ∈ C∞c (Ω;RM) with ‖Ψ‖∞ ≤ 1.

43



Iε :=

∫
f ε
( ∑
|α|=m

Dαψα
)
dx =

∞∑
k=1

∑
|α|=m

∫
(fζk ∗ ηk)(x)Dαψα(x) dx

=
∞∑
k=1

∑
|α|=m

∫
Dαψα(x)

(∫
fζk(y)ηk(y − x) dy

)
dx

=
∞∑
k=1

∑
|α|=m

∫
fζk(y)

(∫
ηk(y − x)Dαψα(x)dx

)
dy

=
∞∑
k=1

∑
|α|=m

∫
fζk(y)

(
ηk ∗Dαψα

)
(y) dy

=
∞∑
k=1

∑
|α|=m

∫
fζk(y) Dα

(
ηk ∗ ψα

)
(y) dy

Here we have moved sums outside the integral, used Fubini Theorem, symmetry of η, and

used property (4.8).

Now by Leibniz Rule, if g ∈ Wm−1,1(Ω) and hα ∈ C∞(Ω)

gDαhα = Dα
(
ghα
)
−
∑
β<α

Cα,βD
α−βgDβhα

Substituting hα = ηk ∗ ψα and g = ζk, we have

Iε =
∞∑
k=1

∑
|α|=m

∫
fζk D

α
(
ηk ∗ ψα

)
dy

=
∞∑
k=1

∑
|α|=m

[ ∫
fDα

(
ζk(ηk ∗ ψα)

)
dy −

∑
β<α

Cα,β

∫
fDα−βζkD

β(ηk ∗ ψα) dy
]

Note also that since η is symmetric, Dβηk(y − x) = (−1)|β|Dβηk(x− y), so∫
fDα−βζkD

β(ηk ∗ ψα) dy =

∫
fDα−βζk(D

βηk ∗ ψα) dy

=

∫
(−1)|β|ψα(Dβηk ∗ fDα−βζk) dy

= (−1)|β|
∫
ψα(ηk ∗Dβ(fDα−βζk)) dy
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For β < α,
∑∞

k=1D
α−βζk = Dα−β(1) = 0. Therefore

∞∑
k=1

ψαD
β(fDα−βζk) = ψαD

β
( ∞∑
k=1

fDα−βζk

)
= 0

in which case

Iε =
∞∑
k=1

∑
|α|=m

(∫
fDα

(
ζk(ηk ∗ ψα)

)
dy
)

−
∞∑
k=1

∑
|α|=m

∑
β<α

Cα,β(−1)|β|
∫
ψα
(
ηk ∗Dβ(fDα−βζk)−Dβ(fDα−βζk)

)
dy
)

= Iε1 + Iε2

Since ‖ζk
(
ηk ∗ Ψ

)
‖∞ ≤ 1, ζk

(
ηk ∗ Ψ

)
∈ C∞(Ω,RM), and each point in Ω belongs to at

most three of the sets {Vk}∞k=1,

|Iε1| ≤
∫
f
∑
|α|=m

Dα
(
ζ1(η1 ∗ ψα)

)
dy +

∞∑
k=2

∫
f
∑
|α|=m

Dα
(
ζk(ηk ∗ ψα)

)
dy

≤ ‖Dmf‖(Ω) + 3‖Dmf‖(Ω\U1)

≤ ‖Dmf‖(Ω) + 3ε.

Also by condition (iii) above, selecting γ(ε) < ε
( ∑
|α|=m

∑
β<α

Cα,β

)−1

,

|Iε2| ≤
∞∑
k=1

∑
|α|=m

∑
β<α

Cα,β

∫ ∣∣ηk ∗Dβ(fDα−βζk)−Dβ(fDα−βζk)
∣∣ dy

≤
∞∑
k=1

∑
|α|=m

∑
β<α

Cα,β
γ(ε)

2k
< ε.

Hence ∫
Ω

f ε
( ∑
|α|=m

Dαψα
)
dx ≤ ‖Dmf‖(Ω) + 4ε

and therefore

‖Dmf ε‖(Ω) ≤ ‖Dmf‖(Ω) + 4ε

Now the proof is complete comparing with (4.7).
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The following theorems assert weak-∗ convergence of the distributional measures and total

variation measures when fk is an smooth approximating sequence of f ∈ BV m(Ω).

Theorem 33 (Weak Convergence of Total Variation). Let f ∈ BV m(Ω) and let fk be a

smooth approximating sequence satisfying equation (4.4). Let µk and µ be the extensions of

the measures ‖Dmfk‖ and ‖Dmf‖ by zero, i.e. for any Borel set A

µk(A) = ‖Dmfk‖(A ∩ Ω)

µ(A) = ‖Dmf‖(A ∩ Ω).

Then

µk
∗
⇀ µ

weakly in the sense of Radon measures on Rn. In particular, for every φ ∈ Cc(Rn),∫
Rn
φ dµk →

∫
Rn
φ dµ

First we prove the following simple proposition:

Proposition 1. Let {ai}, {bi}, {ci} be sequences in R with ai = bi + ci for each i, and

assume {ai} is convergent and {ci} bounded below. Then

lim
i→∞

ai ≥ lim sup
i→∞

bi + lim inf
i→∞

ci.

Proof. Let L = lim
i→∞

ai. Fix ε > 0, and choose k large so n ≥ k implies an < L+ ε. Then

bn = an − cn < L+ ε− cn < L+ ε− inf
n≥k

cn for each n ≥ k.

So sup
n≥k

bn < L+ ε− inf
n≥k

cn. Letting k →∞,

lim sup
i→∞

bi + lim inf
i→∞

ci < L+ ε.

Since ε is arbitrary, this proves the proposition.

Now we prove the theorem:
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Proof. Let fk ∈ C∞ be a sequence satisfying (4.4). Let C ⊂ Rn be closed.

Claim: lim sup
k→∞

‖Dmfk‖(C ∩ Ω) ≤ ‖Dmf‖(C ∩ Ω).

Let V = Ω\C. Then V is open, so ‖Dmf‖(V ) ≤ lim inf
k→∞

‖Dmfk‖(V ), hence

‖Dmf‖(C ∩ Ω) = ‖Dmf‖(Ω)− ‖Dmf‖(V )

= lim
k→∞
‖Dmfk‖(Ω)− ‖Dmf‖(V )

≥ lim inf
k→∞

‖Dmfk‖(V ) + lim sup
k→∞

‖Dmfk‖(C ∩ Ω)− ‖Dmf‖(V )

≥ lim sup
k→∞

‖Dmfk‖(C ∩ Ω). (4.9)

Let K ⊂ Rn be compact, and let U ⊂ Rn be open. The previous calculation shows

lim sup
k→∞

µk(K) = lim sup
k→∞

‖Dmfk‖(K ∩ Ω) ≤ ‖Dmf‖(K ∩ Ω) = µ(K)

Since fk → f in L1(Ω)

µ(U) = ‖Dmf‖(U ∩ Ω) ≤ lim inf
k→∞

‖Dmfk‖(U ∩ Ω) = lim inf
k→∞

µk(U)

by weak lowersemicontinuity.

By Theorem 1.9.1 in [9], this is sufficient to prove the convergence µk
∗
⇀ µ.

Corollary 6. Let Ω as above, and suppose Ω is bounded. Let g ∈ C(Ω̄). Then∫
Ω

g d‖Dmfk‖ →
∫

Ω

g d‖Dmf‖

This follows easily by extending g to a Cc(Rn) function.

Theorem 34 (Weak Convergence of Derivatives). Let f ∈ BV m(Ω), and let {fk} be as

above. Define µk and µ to be the extensions of the vector-valued measures Dmfk and Dmf ,

respectively. Then µk
∗
⇀ µ in the sense of weak convergence of vector-valued measures, i.e.

for each ϕ ∈ Cc(Rn,RM), ∫
ϕ · dµk →

∫
ϕ · dµ as k →∞
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Proof. Fix ε > 0. Choose U1 ⊂ Ω large enough so that ‖Dmf‖(Ω\U1) < ε.

Let ζ ∈ C∞c (Ω) with 0 ≤ ζ ≤ 1 and ζ = 1 on U1. Let ϕ ∈ C∞c (Rn;RM). The idea is that

(ϕζ) will have compact support in Ω, and (1− ζ)|ϕ| ≤ |ϕ|χΩ\U1 .

∣∣∣∣∫
Ω

ϕ ·Dmfk dx−
∫

Ω

ϕ · d(Dmf)

∣∣∣∣
=

∣∣∣∣∫
Ω

(ϕζ) ·Dmfk dx−
∫

Ω\U1

(1− ζ)ϕ ·Dmfk dx−
∫

Ω

(ϕζ) · d(Dmf)−
∫

Ω\U1

(1− ζ)ϕ · d(Dmf)

∣∣∣∣
≤

∣∣∣∣∣∣
∫

Ω

∑
|α|=m

Dα(ϕζ)fk dx−
∫

Ω

∑
|α|=m

Dα(ϕζ) f dx

∣∣∣∣∣∣+ ‖ϕ‖∞
(
‖Dmfk‖(Ω\U1) + ‖Dmf‖(Ω\U1)

)

Note that lim sup
k→∞

‖Dmfk‖(Ω\U1) ≤ ‖Dmf‖(Ω\U1) by (4.9). Also, fk → f in L1(Ω), so for k

large, we have ∣∣∣∣∣∣
∫

Ω

∑
|α|=m

Dα(ϕζ)fk dx−
∫

Ω

∑
|α|=m

Dα(ϕζ) f dx

∣∣∣∣∣∣ < ε

and

‖Dmfk‖(Ω\U1) + ‖Dmf‖(Ω\U1) < 2‖Dmf‖(Ω\U1) + ε < 3ε.

Hence ∣∣∣∣∫
Ω

ϕ ·Dmfk dx−
∫

Ω

ϕ · d(Dmf)

∣∣∣∣ ≤ Cε‖ϕ‖∞, (4.10)

which completes the proof in the case where ϕ is smooth.

Now an approximation argument shows this is true for ϕ ∈ Cc(Rn,RM). Let ϕ ∈ Cc(Rn),

let supp(ϕ) ⊂ K, and let ϕk = ϕ ∗ η(1/k). Then supp(ϕk) ⊂ K + B̄(0, 1), which is compact,

and

ϕk → ϕ uniformly in K + B̄(0, 1) as k →∞

For k ≥ N large,

‖Dmfk‖(Ω) ≤ ‖Dmf‖(Ω) + ε and ‖Dmfk‖(Ω\U1) ≤ ‖Dmf‖(Ω\U1) + ε.
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Then∣∣∣∣∫
Ω

ϕ ·Dmfk dx−
∫

Ω

ϕ · d(Dmf)

∣∣∣∣
≤
∣∣∣∣∫

Ω

(ϕ− ϕj) ·Dmfk dx

∣∣∣∣+

∣∣∣∣∫
Ω

(ϕ− ϕj) · d(Dmf)

∣∣∣∣+

∣∣∣∣∫
Ω

ϕjD
mfk · dx−

∫
Ω

ϕj · d(Dmf)

∣∣∣∣
≤ ‖ϕ− ϕj‖∞

(
‖Dmfk‖(Ω) + ‖Dmf‖(Ω)

)
+

∣∣∣∣∫
Ω

ϕj ·Dmfk dx−
∫

Ω

ϕj · d(Dmf)

∣∣∣∣
Now by (4.10), for k ≥ N large, we have the bound∣∣∣∣∫

Ω

ϕjD
mfk dx−

∫
Ω

ϕj d(Dmf)

∣∣∣∣ ≤ C‖ϕj‖∞‖Dmf‖(Ω)

So for k ≥ N ,∣∣∣∣∫
Ω

ϕDmfk dx−
∫

Ω

ϕd(Dmf)

∣∣∣∣ ≤ lim
j→∞

C‖ϕ− ϕj‖∞‖Dmf‖(Ω) + C‖ϕj‖∞‖Dmf‖(Ω\U1)

≤ C‖ϕ‖∞‖Dmf‖(Ω\U1) ≤ Cε‖ϕ‖∞

4.2 POINTWISE ESTIMATES

To develop pointwise estimates similar to the case m = 1, we will apply Lemma 5 and a

similar approximation argument. However, the computations are more involved.

For notational simplicity, we will denote the density of the absolutely continuous part of

Dmf with respect to the Lebesgue measure by ∇mf = {∇βf}|β|=m.

Henceforth, we will utilize the following pointwise representatives at every x:

Dβf(x) = lim sup
r→0

∫
B(x,r)

Dβf(y)dy for |β| ≤ m− 1.

∇βf(x) = lim sup
r→0

∫
B(x,r)

∇βf(y)dy for |β| = m.

For x ∈ Rn, define

Tmx f(y) :=
∑

|β|≤m−1

(y − x)β

β!
Dβf(x) +

∑
|β|=m

∇βf(x)
(y − x)β

β!
(4.11)
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For any cube Q ⊂ Rn, define

TmQ f(y) :=
∑

|β|≤m−1

∫
Q

Dβf(z)
(y − z)β

β!
dz +

∑
|β|=m

∫
Q

(y − z)β

β!
d(Dβf)(z) (4.12)

Tmx f(y) is a formal Taylor expansion of f of degree m centered at x, constructed from

weak derivatives of f for |β| < m and the densities ∇βf for |β| = m.

TmQ f(y) is nearly an averaging of the Taylor expansion Tmz f(y) over z ∈ Q, except that

we integrate the mth degree terms with respect to Dmf , hence creating a disparity arising

from the singular part (Dmf)s of the measure. Luckily when approximating up to sets of

small Lebesgue measure, the singular part is, for our purposes, easily dealt with.

Let us introduce an important lemma for Cm functions that is the basis for the pointwise

estimates used in this paper. This is a generalization of inequality (3.6) and was first proven

in [13]:

Lemma 5. Let f ∈ Cm(Q) where Q ⊂ Rn is an open cube. Then

(i) |Tm−1
Q f(y)− f(y)| ≤ C

∫
Q

|Dmf(z)|
|y − z|n−m

dz

(ii) |TmQ f(y)− f(y)| ≤ C

∫
Q

|Dmf(z)− ~a|
|y − z|n−m

dz

for each y ∈ Q and any constant vector ~a = {aα}|α|=m.

Proof. Fix x ∈ Q and, for y ∈ Q, define

ϕx(y) =
∑
|β|<m

Dβf(y)
(x− y)β

β!
+
∑
|α|=m

aα
(x− y)α

α!

Then clearly ϕx ∈ C1(Q) and

∂iϕx(y) =
∑
|β|<m

Dβ+eif(y)
(x− y)β

β!
−
∑
|β|<m

Dβf(y)
(x− y)β−ei

(β − ei)!
+
∑
|α|=m

aα
(x− y)α−ei

(α− ei)!

=
∑

|α|=m,α≥ei

(Dαf(y)− aα)
(x− y)α−ei

(α− ei)!

Note that

Tmy f(x) = ϕx(y) +
∑
|α|=m

(Dαf(y)− aα)
(x− y)α

α!
,
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so by the inequality 3.6

|f(x)− TmQ f(x)| ≤ |ϕx(x)− (ϕx)Q|+
∑
|α|=m

∫
Q

(Dαf(y)− aα)
(x− y)α

α!
dy

≤ C(n)

∫
Q

|∇ϕx(y)|dy
|x− y|n−1

+
∑
|α|=m

∫
Q

(Dαf(y)− aα)
(x− y)α

α!
dy

≤ C(m,n)

∫
Q

|∇mf(y)− ~a||x− y|m−1dy

|x− y|n−1
+

∫
Q

|∇mf(y)− ~a||x− y|mdy

≤ C(m,n)

∫
Q

|∇mf(y)− ~a|dy
|x− y|n−m

since |x− y|n < C(n)|Q|. Note that ∇mf(y)− ~a = {Dαf(y)− aα }|α|=m.

Now we apply the previous result to get the following potential estimates for BV m

functions.

Theorem 35. Let f ∈ BV m(Q) where Q ⊂ Rn is an open cube. Then

(i) |Tm−1
Q f(y)− f(y)| ≤

∫
Q

d‖Dmf‖(z)

|y − z|n−m

(ii) |TmQ f(y)− f(y)| ≤
∫
Q

d‖[Dmf ]− ~aLn‖(z)

|y − z|n−m
(4.13)

for each y ∈ Q and any constant vector ~a = {aα}|α|=m.

Proof. We will prove (ii), from which (i) follows easily.

Let fk be a sequence in C∞(Q) ∩BV m(Q) such that

‖fk − f‖ → 0 in Wm−1,1(Q), ‖Dmfk‖(Q)→ ‖Dmf‖(Q)

Such a sequence exists by a Theorem 17. Then Theorems 33 & 34 imply the weak-∗ conver-

gence

Dmfk
∗
⇀ Dmf ‖Dmfk − ~aLn‖

∗
⇀ ‖Dmf − ~aLn‖.
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Fix x ∈ Q. Since m ≥ 1, for each ε > 0, the function z 7→
∫
B(x,ε)

dy

|y − z|n−m
is continuous.

As k →∞, by the weak-* convergence and Lemma 3,

∫
B(x,ε)

(∫
Q

|∇Dmfk(z)− ~a|
|y − z|n−1

dz
)
dy →

∫
B(x,ε)

(∫
Q

d‖Dmf − ~aLn‖(z)

|y − z|n−1

)
dy

≤ C(m,n)

∫
Q

d‖Dmf − ~aLn‖(z)

|x− z|n−1
(4.14)

Similarly for |β| ≤ m− 1, Dβfk → Dβf in L1(Q), so

∑
|β|<m

∫
B(x,ε)

(∫
Q

Dβfk(z)
(y − z)β

β!
dy

)
dz →

∑
|β|<m

∫
B(x,ε)

(∫
Q

Dβf(z)
(y − z)β

β!
dy

)
dz.

For |β| = m, the weak-* convergence above implies that

∑
|β|=m

∫
B(x,ε)

(∫
Q

(y − z)β

β!
dy

)
dDβfk(z)→

∑
|β|=m

∫
B(x,ε)

(∫
Q

Dβf(z)
(y − z)β

β!
dy

)
dDβf(z).

Therefore

∣∣∣∣∫
B(x,ε)

TmQ fk(y)− f(y)dx

∣∣∣∣→ ∣∣∣∣∫
B(x,ε)

TmQ f(y)− f(y)dx

∣∣∣∣ .
Now we recall Lemma 5 holds for each k. Letting k →∞ and applying the estimate (4.14),

which is independent of ε, we have

∣∣∣∣∫
B(x,ε)

TmQ f(y)− f(y)dx

∣∣∣∣ ≤ C(m,n)

∫
Q

d‖Dmf − ~aLn‖(z)

|x− z|n−1
.

Taking the limsup as ε→ 0 implies the result.

Now we can prove the crucial pointwise estimate foe BV m functions:

Theorem 36. Let f ∈ BV m(Rn). Then there is a constant C(m,n) such that for all

x, y ∈ Rn,

|f(y)− Tmx f(y)|
|x− y|m

≤ C(M|x−y|‖Dmf −∇mf(x)‖(x) +M|x−y|‖Dmf −∇mf(y)‖(y)) (4.15)
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Proof. First note TmQ f(y) is an mth degree polynomial in y. Indeed, recall

TmQ f(y) :=
∑

|β|≤m−1

∫
Q

Dβf(z)
(y − z)β

β!
dz +

∑
|β|=m

∫
Q

(y − z)β

β!
d(Dβf)(z).

Differentiating under the integral sign, we see that Dm(TmQ f)(y) =
Dmf(Q)

|Q|
. Therefore

TmQ f(y) is equal to its Taylor polynomial centered at x:

TmQ f(y) =
∑
|α|≤m

Dα
(
TmQ f

)
(x)

(y − x)α

α!
(4.16)

Compute

DαTmQ f(x) = Dα
( ∑
|β|≤m−1

∫
Q

Dβf(z)
(x− z)β

β!
dz +

∑
|β|=m

∫
Q

(x− z)β

β!
d(Dβf)(z)

)
=

∑
|β|≤m−1

∫
Q

Dβf(z)
(x− z)β−α

(β − α)!
dz +

∑
|β|=m

∫
Q

(x− z)β−α

(β − α)!
d(Dβf)(z)

=
∑

|γ|≤m−|α|−1

∫
Q

Dγ+αf(z)
(x− z)γ

γ!
dz +

∑
|γ|=m−|α|

∫
Q

(x− z)γ

(γ)!
d(Dγ+αf)(z)

= T
m−|α|
Q Dαf(x)

Employing (4.16), we compute

|TmQ f(y)− Tmx f(y)|

≤
∑
|α|<m

|Tm−|α|Q Dαf(x)−Dαf(x)| |y − x|
|α|

α!
+
∑
|α|=m

|(Dαf)Q −∇αf(x)| |y − x|
m

m!

≤
∑
|α|<m

(∫
Q

d‖Dm−|α|(Dαf)− ~aLn‖(z)

|x− z|n−(m−|α|)

) |y − x||α|
α!

+ C

∣∣∣∣Dmf(Q)

|Q|
− ∇mf(x)

∣∣∣∣ |y − x|mm!

=
∑
|α|<m

(∫
Q

d‖Dmf − ~aLn‖(z)

|x− z|n−(m−|α|)

) |y − x||α|
α!

+ C

∣∣∣∣Dmf(Q)

|Q|
− ∇mf(x)

∣∣∣∣ |y − x|mm!
(4.17)

where in the second inequality we applied our potential estimate (4.13) toDαf ∈ BV m−|α|(Rn)

for |α| < m.

By Hedberg’s Lemma,∫
Q

d‖Dmf − ~aLn‖(z)

|x− z|n−(m−|α|) ≤ Cdiam(Q)m−|α|Mdiam(Q)(‖Dmf − ~aLn‖)(x)

53



Therefore using the fact that |x− y| < diam(Q) and (4.17) we have

|TmQ f(y)− Tmx f(y)| ≤ Cdiam(Q)mMdiam(Q)‖Dmf − ~aLn‖(x)

+ C

∣∣∣∣Dmf(Q)

|Q|
− ∇mf(x)

∣∣∣∣ |y − x|mm!
.

Also by (4.13),

|f(y)− TmQ f(y)| ≤
∫
Q

d‖Dmf −~bLn‖(z)

|y − z|n−m
≤ Cdiam(Q)mMdiam(Q)‖Dmf −~bLn‖(y)

Since ~a, ~b ∈ RM are arbitrary vectors, we choose ~a = ∇mf(x), ~b = ∇mf(y).

Applying the triangle inequality, |f(y)− Tmx f(y)| ≤ |f(y)− TmQ f(y)|+ |TmQ f(y)− Tmx f(y)|,

yields

|f(y)− Tmx f(y)| ≤ Cdiam(Q)m
(
Mdiam(Q)‖Dmf −∇mf(x)Ln‖(x) +Mdiam(Q)‖Dmf −∇mf(y)Ln‖(y)

)
+

∣∣∣∣Dmf(Q)

|Q|
− ∇mf(x)

∣∣∣∣ |y − x|m
Note that by the same calculation as (3.15),∣∣∣∣Dmf(Q)

|Q|
− ∇mf(x)

∣∣∣∣ ≤ CMdiam(Q)‖Dmf −∇mf(x)Ln‖(x).

The statement follows since we can select Q containing x, y such that diam(Q) < |x− y|+

ε.

For |β| < m, Dβf ∈ BV m−|β|(Rn), so replacing f with Dβf in the previous inequality

yields the following theorem:

Theorem 37. Let f ∈ BV m(Rn). Then the exists a constant C(m,n) such that for all

x, y ∈ Rn and any multiindex β with |β| < m,

|Dβf(y)− Tm−|β|x Dβf(y)|
|x− y|m−|β|

≤ CM|x−y|‖Dmf −∇mf(x)‖(x) +M|x−y|‖Dmf −∇mf(y)‖(y)

(4.18)

The proof follows immediately from (36), noting thatDmf has more terms thanDm−|β|Dβf

and ∇mf has more terms than ∇m−|β|∇βf , and that all nonzero terms coincide with terms

in Dmf and ∇mf respectively.
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4.3 LUZIN TYPE APPROXIMATION BY SMOOTH FUNCTIONS

Now we can prove our main result: Our goal is to apply the Whitney Extension Theorem to

an appropriate jet of functions.

Theorem 38. Let f ∈ BV m(Rn). For each ε > 0 , there exists a function g ∈ Cm(Rn) such

that

|{Dβf 6= Dβg}| < ε for each β, |β| ≤ m− 1, |{∇mf 6= ∇mg}| < ε

Proof. Fix ε > 0. By Luzin Theorem, there is a closed set C̃ ⊂ Rn with |Rn\C̃| < ε/2 such

that Dβf |C̃ and ∇mf |C̃ are continuous functions on C̃. Define

ηk(z) = sup
r< 1

k

Mr‖Dmf −∇mf(z)Ln‖(z) (4.19)

Claim: ηk(z)→ 0 for almost every z ∈ Rn.

Indeed,

Mr‖Dmf −∇mf(z)Ln‖(z) = Mr‖Dmfs +Dmfac −∇mf(z)Ln‖(z)

≤Mr‖Dmf‖s(z) +Mr‖Dmfac −∇mf(z)Ln‖(z)→ 0

as r → 0, just as in the proof for the C1 case. (see 3.15)

Applying Egorov theorem to the sequence ηk, we find a closed set C ⊂ C̃ such that

|C̃\C| ≤ ε/2 and

ηk ⇒ 0 uniformly on compact subsets of C

Then we define the jet F = {fβ}|β|≤m on C̃ by

fβ =


Dβf |C if |β| < m

∇βf |C if |β| = m

Note that

Tm−|β|DβF = (Tm−|β|Dβf)|C

Let K be a compact subset of C. Fix a multiindex β with |β| < m

Claim: sup
x,y∈K,|x−y|<δ

|fβ(y)− Tm−|β|x DβF (y)|
|x− y|m−|β|

→ 0 as δ → 0 (4.20)
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Fix k(δ) so that 1
k+1

< δ < 1
k
. Let x, y ∈ K be any pair of points such that |x− y| < δ.

M|x−y|‖Dmf −∇mf(x)Ln‖(x) +M|x−y|‖Dmf −∇mf(y)Ln‖(y)

≤ sup
z∈K,r< 1

k

Mr‖Dmf −∇mf(x)Ln‖(z).

Employing inequality (4.18),

|fβ(y)− Tm−|β|x DβF (y)|
|x− y|m−|β|

≤ C sup
z∈K

ηk(z)→ 0 as k →∞

Taking the supremum over all x, y ∈ K with 0 < |x− y| < δ, and noting that k →∞ as

δ → 0 implies the claim.

For |β| = m, equation (4.20) reduces to

sup
x,y∈K,|x−y|<δ

|∇βf(y)−∇βf(x)| → 0 as δ → 0 (4.21)

which is true because ∇mf is uniformly continuous on the compact set K.

The above estimates imply that F is a Whitney jet on the closed set C. Therefore by

the Whitney Extension Theorem, there exists a function g ∈ Cm(Rn) such that

g(x) = f(x), Dβg(x) = Dβf(x) (|β| < m), Dmg(x) = ∇mf(x) ∀x ∈ C

Since |Rn\C| < ε, this proves the theorem.
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4.4 BOUNDING THE ERROR IN VARIATION

Given a function f ∈ BV m(Rn), we want to construct a function g ∈ Cm(Rn) such that

g coincides with f on large set, say F , whose complement has measure less that ε, and

moreover, such that we have estimates on the errors in Wm−1,1 norm and the variation:

‖f − g‖Wm−1,1(Rn) < ε
∣∣∣‖Dmf‖(Rm)− ‖Dmg‖(Rn)

∣∣∣ < ε.

The approximation given by the Whitney Extension Theorem in the previous section will not,

in general, provide us with good estimates. At issue is the fact that the extension provided

by the Whitney Theorem is determined using only the information about f on the set F .

However, since the mth order derivative may have a singular part, the information about f

outside F is crucial, despite the fact that F has small measure. Therefore we need to modify

our approximation to account for this, and one way to do so is by a kind of averaging process

over cubes in the Whitney decomposition. This technique is called Whitney smoothing and

was first introduced in [12]. In general, the Whitney smoothing will not produce a Cm

function even provided we have good estimates on C; however, BV m functions have enough

structure to ensure the desired regularity.

Start by recalling that the function

ηk(z) = sup
r< 1

k

Mr‖Dmf −∇mf(z)Ln‖(z)→ 0

as k →∞ for almost every z in Rn.

So for ε > 0, by Luzin and Egorov Theorems we can find a closed set F with |F c| < ε,

such that Dβf |F for |β| < m and ∇βf |F for |β| = m are continuous, and

ηk ⇒ 0 uniformly on compact subsets of F.

For each a ∈ F , let Ka = F ∩B(a, 1), and define the function

ηa(t) = sup
z∈Ka

sup
r<t

Mr‖Dmf −∇mf(z)Ln‖(z)
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By the uniform convergence of ηk, it is easy to check ηa(t) → 0 as t → 0. We will consider

the concave envelope of this function, which we will also denote ηa.

Our goal is to show that the Whitney smoothing

g(x) =

 f(x) if x ∈ F∑
i∈I ϕi(x)TmQif(x) if x /∈ F

(4.22)

is a Cm function on Rn. Here Qi are the enlarged cubes in the Whitney decomposition and

{ϕi} is the partition of unity on F c subordinate to {Q̃i}.

Proof. Recall the definitions of Tm
Q̃i
f and Tma f(x) (see (4.12) and (4.11)).

Let’s include a few important estimates: Let x ∈ Rn, let Q be a cube containing x and

S ⊂ Q be any measurable subset of positive measure. Let f ∈ BV m(Q). Then

|f(x)− Tm
S
f(x)| ≤ C(n)

|Q|
|S|

∫
Q

d‖Dmf − ~aLn‖(z)

|x− z|n−m
.

This follows from a variant of (3.6) and an approximation argument.

If Q is a cube containing both x and a, then by (36),

|f(x)−Tma f(x)|
|x−a|m

≤ C(m,n)
[
M|x−y|‖Dmf −∇mf(x)Ln‖(x) +M|x−y|‖Dmf −∇mf(a)Ln‖(a)

]
In particular if a ∈ F and x ∈ Ka, then we can easily find a cube Q of diameter less than

2|x− a| containing x and a, which yields the estimate

|f(x)− Tma f(x)| ≤ 2ηa(2|x− a|)|x− a|m (4.23)

immediately from definition of ηa.

Clearly g|F c ∈ Cm(F c), as Tm
Q̃i
f is a polynomial for each i and the sum is locally finite.

To prove it is Cm in a neighborhood of each point a ∈ F , we will show that

|Dαg(x)−Dαg(a)−∇(Dαf)(a) · (x− a)| = o(|x− a|).

where Dαg(a) is equal to Dαf(a) for |α| ≤ m− 1 and is equal to ∇αf(a) for |α| = m.
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The idea is to prove that for a ∈ F and x in a sufficiently small neigbhood of a, that

|Dαg(x)− Tm−|α|a Dαf(x)| ≤ C(m,n)ηa(|x− a|)|x− a|m−|α| (4.24)

which by the argument in section 2.4 shows that that g is Cm in a neigborhood of a; moreover,

Dkg|F = Dkf |F for k < m and Dmg|F = ∇mf |F .

First consider the case a ∈ int (F ). Then for x ∈ B(a, δ) ⊂ Ka for δ sufficiently small,

and |α| < m we have the estimate

|Dαf(x)− Tm−|α|a Dαf(x)| ≤ ηa(2|x− a|)|x− a|m−|α| for each x ∈ B(a, δ),

which is true by (4.23). Concavity of ηa implies that ηa(c|x − a|) ≤ cηa(|x − a|) for c ≥ 1,

which implies (4.24). By the induction, g is m-times differentiable at a with derivative

∇mf(a). When |α| = m, it is enough to note

|∇αf(x)−∇αf(a)| → 0 as |x− a| → 0, x ∈ Ka,

which proves continuity of the mth order derivative.

Now assume a ∈ ∂F . Fix x ∈ F c with |x− a| < 1, and let b be the nearest point to x in

Ka, qi be the nearest point to Q̃i in Ka.

Expand
∣∣∣Dαg(x)− Tm−|α|a Dαf(a)

∣∣∣ as

∑
β+γ=α

(
α

β

)
Sβ,γ(x)

where

Sβ,γ(x) =
∑
i

Dβϕi(x)Dγ(Tm
Q̃i
f(x)− Tma f(x)).

For |β| > 0, we can replace a by b.

|Dγ(Tm
Q̃i
f(x)− Tma f(x))|

≤ |Tm−|γ|
Q̃i

f(x)− Tm−|γ|qi
f(x)|+ |Tm−|γ|qi

f(x)− Tm−|γ|a f(x)|

= I + II
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where again we replace a by b if |γ| < |α|.

To estimate II, we need to use a lemma ([18],Lemma 2.1.5), which states that if ηa is a

modulus of continuity such that for each |α| ≤ m, x, y ∈ Ka

|Dαf(y)− Tm−|α|x Dαf(y)| ≤ ηa(|x− y|)|x− y|m−|α|

then for some constant C, for every x, y ∈ Ka and z ∈ Rn,

|Tm−|α|x Dαf(z)− Tm−|α|y Dαf(z)| ≤ Cηa(|x− y|)(|x− z|m−|α| + |y − z|m−|α|).

Now the conditions of this Lemma hold with qi and a immediately from our above

estimates, and therefore

|Tm−|γ|qi
Dγf(x)− Tm−|γ|a Dγf(x)| ≤ Cηa(|qi − a|)(|x− a|m−|γ| + |x− qi|m−|γ|),

noting that for |β| > 0 we can replace a by b. Since all these are comparable to |x − a| we

get that

II ≤ Cηa(|x− a|)|x− a|m−|γ|.

To estimate I, we note that T
m−|γ|
Q̃i

Dγf(x) is a polynomial of degree m, so is equal to its

Taylor expansion centered at qi. Therefore

I =

∣∣∣∣∣∣
∑

σ≤m−|γ|

[
T
m−|γ+σ|
Q̃i

Dγ+σf(qi)−Dγ+σf(qi)
] (x− qi)σ

σ!

∣∣∣∣∣∣ .
The left and right terms are just the two Taylor expansions written out.

First we will consider the case |γ| < m. Let Q be a cube containing Q and qi such that

diam(Q) < 10diam(Q̃i). Then for |α| < m, we estimate

|Tm−|α|
Q̃i

Dαf(qi)−Dαf(qi)|

≤ C(n)
|Q|
|Qi|

∫
Q

‖Dmf −∇mf(z)Ln‖(z)

|qi − z|n−(m−|α|)

≤ C(n)diam(Q̃i)
m−|α|M10diam(Q̃i)

‖Dmf −∇mf(qi)Ln‖(qi)

≤ C(n)|x− qi|m−|α|MC|x−qi|‖Dmf −∇mf(qi)Ln‖(qi)

≤ C(n)|x− qi|m−|α|ηa(|x− qi|)
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because x ∈ Q̃i and diam(Q̃i) < C ′dist (Qi, Ka) = C ′dist (Qi, qi) ≤ C|x− qi|. We also apply

concavity of ηa in the last step.

Now for |α| = m, we cannot apply this estimate because Dαf is a measure. Instead we

have

||T 0
Q̃i
Dαf(qi)−∇αf(qi)|

=

∣∣∣∣∣Dαf(Q̃i)

|Q̃i|
− ∇αf(qi)

∣∣∣∣∣ =
|Dαf(Q̃i)−∇αf(qi)Ln(Q̃i)|

|Q̃i|

≤ ‖D
mf −∇mf(qi)Ln‖(Q̃i)

|Q̃i|
≤ C(n)MC|x−qi|‖Dmf −∇mf(qi)Ln‖(qi)

≤ C(n)ηa(|x− qi|)

since qi ∈ Ka.

Note that when |α| = |γ+σ| = m, that |σ| = m−|γ|. The above estimates for |γ+σ| ≤ m

imply that

I ≤ Cηa(|x− qi|)|x− qi|m−|γ| ≤ Cηa(|x− a|)|x− a|m−|γ|.

Now we compute

|Sβ,γ(x)| ≤ C(n)
∑
i

Dβϕi(x)ηa(|x− a|)|x− a|m−|γ|

≤ C(n)diam(Qi)
−|β|ηa(|x− a|)|x− a|m−|γ|

≤ C(n)ηa(|x− a|)|x− a|m−|β+γ| = Cηa(|x− a|)|x− a|m−|α|

This proves the estimate for each a ∈ F , and thus proves that g ∈ Cm(Rn).

Now we can sketch some partial results involving the above estimates in the case m = 1.

Let gt be an approximation such that |{f 6= gt}| < 1/t, and let Ft be the set {gt = f}.

Recall that for x ∈ F c
t ,

gt(x) =
∑
i

ϕiT
1
Q̃i
f(x) =

∑
i

ϕi(x)
(
fQ̃i +

∫
Q̃i

(x− z) · dDf(z)
)
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Then ∫
F ct

|gt|dx =
∑
i

∫
F ct

∣∣∣∣ϕi(x) fQ̃i +

∫
Q̃i

ϕi(x)(x− z) · dDf(z)

∣∣∣∣ dx
≤
∑
i

∫
F ct

χQ̃i(x)|fQ̃i | dx+

∫
F ct

χQ̃i(x)

∫
Q̃i

|x− z|d‖Df‖(z) dx

≤
∑
i

∫
Q̃i

|f | dx+

∫
Q̃i

diam(Q̃i)

|Q̃i|
‖Df‖(Q̃i)

≤ C(n)‖f‖1 +
∑
i

diam(Q̃i)‖Df‖(Q̃i)

≤ C(n)(‖f‖1 + ‖Df‖(Rn))

where the last step follows from the fact that diam(Q̃i) are uniformly bounded and the fact

that each x ∈ F c
t lies in at most 4n of the cubes Q̃i.

Now we will get an upper estimate on the error in variation. Note that since gt is locally

Lipschitz,

‖Dgt‖(Rn) =

∫
Rn
|∇gt(x)| dx.

Differentiating, we see that

∇gt =
∑
i

∇ϕi(x)T 1
Qi
f(x) +

∑
i

ϕi(x)
Df(Qi)

|Qi|
.

Then recalling |∇ϕi(x)| ≤ C(n)diam(Qi)
−1, and the fact that

∑
i

∇ϕi(x)f(x) = 0, we

estimate

‖Dgt‖(F c
t ) ≤

∑
i

∫
F ct

∣∣∣∣∇ϕi(x)
(
fQ̃i +

∫
Q̃i

|x− z|‖Df‖(z)
)∣∣∣∣+

∫
F ct

χQ̃i(x)
|Df(Q̃i)|
|Q̃i|

dx

≤
∑
i

C(n)

∫
F ct

diam(Q̃i)
−1χQ̃i |fQ̃i − f(x)|dx+

∫
Q̃i

diam(Q̃i)
−1diam(Q̃i)‖Df‖(Q̃i)dx

+

∫
Q̃i

|Df(Q̃i)|dx

≤ C(n)
∑
i

( ∫
Q̃i

|fQ̃i − f(x)|dx+ 2‖Df‖(Q̃i))

Now we apply the Poincaré inequality for BV functions and the fact that Q̃i ⊂ F c
t and

each x ∈ F c
t lies in at most 4n of the cubes Q̃i to recover

‖Dgt‖(F c
t ) ≤ C(n)‖Df‖(F c

t ) (4.25)
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Then the sequence {gt} is uniformly bounded in BV (Rn). Using the same argument as

in the proof for Lipschitz functions (see p. 31), we can assume that all the functions gt are

supported in a compact ball. Therefore they converge in L1(Rn) to some function f̃ . Since

gt(x)→ f(x) for almost every x ∈ Rn, it follows that

‖gt − f‖L1(Rn) → 0 as t→∞.

By weak lowersemicontinuity (Theorem 15) this implies that

‖Df‖(Rn) ≤ lim inf
t→∞

‖Dgt‖(Rn).

In addition, inequality (4.25) gives us a bound on the error in variation; however, it does

not imply the convergence

|‖Dgt‖(Rn)− ‖Df‖(Rn)| → 0 as t→∞.

I believe that these estimates can be significantly improved, and in fact that by modifying

the construction of gt on the set {gt 6= f}, one can recover

‖Dgt‖(Rn)→ ‖Df‖(Rn) as t→∞.

However, this is a nontrivial result and I am currently working on the details.
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5.0 THE LUZIN THEOREM FOR HIGHER ORDER DERIVATIVES

In 1917, N. Luzin proved [17] [23] the following surprising result: For any Lebesgue measur-

able function f : R → R there is a continuous almost everywhere differentiable function g

such that g′ = f almost everywhere. This is surprising even for the function f(x) = 1/x,

because the antiderivative of f is discontinuous and, in fact, unbounded at 0. In this case,

we correct the antiderivative by adding continuous functions which are differentiable almost

everywhere with derivative equal to zero but which are not constant (one example of such a

function is a Cantor staircase).

The original proof due to Luzin is purely one-dimensional, and offers no insight into a

proof in higher dimensions. However, in 2008 Moonens and Pfeffer [19] proved the following

generalization:

Let U be an open subset of RN . Given any Lebesgue measurable function f : U → RN ,

there is an almost everywhere differentiable function g ∈ C(RN) such that ∇g = f almost

everywhere.

The goal of this paper is to extend the results to include higher order derivatives.

For an m-times differentiable function g defined in an open subset U ⊂ RN we write

Dmg = (Dαg)|α|=m

to denote the collection of all partial derivatives of order m. Our main result reads as follows:
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Theorem 39. Let f = (fα)|α|=m be a Lebesgue measurable function defined in an open set

U ⊂ Rn. Then there is a function g ∈ Cm−1(Rn) which is m-times differentiable a.e. and

such that

Dmg = f a.e. in U,

i.e.

Dαg = fα a.e. in U for |α| = m.

Moreover, for any σ > 0, the function g may be chosen such that

‖Dγg‖∞ < σ for every |γ| < m.

The outline of the proof is as follows: If f = (fα)|α|=m is continuous and bounded on

an open set U of finite measure, then we can find and a function g ∈ Cm such that Dmg

approximates f on a large compact set. Using this approximation and a suitable limiting

process, we can find g ∈ Cm such that Dmg is equal to f on a large compact set. We then

show that the same holds more generally for the class of Lebesgue measurable functions, since

such functions are continuous and bounded when restricted to a large compact set. The final

construction involves piecing together approximations of f using a compact exhaustion of

Rn, taking care to avoid any overlap which would cause the resulting approximation to lose

its desired form. The proof requires careful estimates for the approximation, which is the

main difficulty.

5.1 SMOOTH FUNCTIONS WITH PRESCRIBED HIGHER ORDER

DERIVATIVES ON LARGE SETS

Throughout the paper |U | denotes the N -dimensional Lebesgue measure of a set U .

Given a continuous function f = (fα)|α|=m defined in an open set U ⊂ Rn with |U | <∞,

our first task is to construct a compactly supported function u ∈ Cm
c (U) such that Dmu = f

on a large compact subset of U . To this end we need the following approximation result.

For the case m = 1, see [2].
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Lemma 6. Fix m ∈ N and let U ⊂ RN be open with |U | < ∞. Let f = (fα)|α|=m be a

continuous and bounded function on U . Then for any ε, η, σ > 0, there exists a function

u ∈ C∞c (U) and a compact set K ⊂ U such that for each p ∈ [1,∞] the following hold:

(i) |U\K| < ε,

(ii) |Dmu(x)− f(x)| < η for each x ∈ K,

(iii) ‖Dmu‖p ≤ C(m,N)ε1/p−m‖f‖p,

(iv) ‖Dγu‖∞ ≤ σ for every |γ| < m.

Proof. Fix ε, η, σ > 0. By Q(x, r) we will denote the closed cube centered at x with side

length r. Select a compact set K ′ ⊂ U such that |U\K ′| < ε/2. Choose δ > 0 so small that

Q(x, 4δ) ⊂ U for all x ∈ K ′

and

(Q(z, δ) ∩K ′ 6= ∅, (x, y) ∈ Q(z, δ))⇒ |f(x)− f(y)| < η (5.1)

Cover RN with a lattice of closed cubes of side length δ. Let {Ti}i∈I be the finite

subcollection of cubes whose intersection with K ′ is nonempty. Clearly

K ′ ⊂
⋃
i∈I

Ti ⊂ U.

For each i, let Qi be a closed cube concentric with Ti and side length (1−ε/2N)δ. Denote

the center of the cube by ci.

If δ is sufficiently small, then the set

K =
⋃
i∈I

Qi

satisfies

|U\K| = |U\
⋃
i∈I

Qi| < ε.

Defining

aαi =

∫
Ti

fα(y) dy, |α| = m,
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the function

gi(x) =
∑
|α|=m

aαi
α!

(x− ci)α

is a polynomial such that

Dαgi(x) = aαi for |α| = m,

and hence (5.1) yields that for all x ∈ Ti and |α| = m,

|Dαgi(x)− fα(x)| ≤
∫
Ti

|fα(y)− fα(x)| dy < η.

Now if Φi ∈ C∞c (Ti) with Φi ≡ 1 on Qi is a cut-off function,

u =
∑
i∈I

Φigi ∈ C∞c (U)

satisfies

|Dmu(x)− f(x)| < η for all x ∈ K.

We only need to choose Φi carefully to guarantee the estimates (iii) and (iv). Let

T =

[
−1

2
,
1

2

]N
and Q =

[
−1

2
+

ε

4N
,
1

2
− ε

4N

]N
,

i.e. Q is the cube concentric with T with side length (1− ε/2N).

Let ζ ∈ C∞c (BN(0, 1)), ζ ≥ 0,
∫
RN ζ = 1 and let ζε(x) := ε−N(x/ε) be a standard mollifier.

For

Q̃ =

[
−1

2
+

ε

8N
,
1

2
− ε

8N

]N
,

we define

Φ = χQ̃ ∗ ζ(ε/16N).

Clearly Φ ∈ C∞c (T ), Φ = 1 on Q and

|DαΦ(x)| ≤ C(m,N)ε−|α| for |α| ≤ m and x ∈ Ti.

Finally we define
Φi(x) = Φ

(
x− ci
δ

)
and

u =
∑
i∈I

Φigi.
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Observe that for x ∈ Ti and |β|, |γ| ≤ m we have∣∣Dβgi(x)
∣∣ ≤ C(m,N)‖f‖∞δm−|β|

|DγΦi(x)| ≤ C(m,N)ε−|γ|δ−|γ|.

Hence for any |α| ≤ m and x ∈ Qi,

|Dαu(x)| = |Dα(giΦi)(x)|

≤
∑

β+γ=α

α!

β! γ!

∣∣Dβgi(x)
∣∣ |DγΦi(x)|

≤ C(m,N)‖f‖∞ε−|α|δm−|α|

Note that by choosing δ small enough we can ensure

C(m,N)‖f‖∞ sup
|α|<m

δm−|α|ε−|α| < σ,

which proves (iv). Considering the case |γ| = m, we see that the proof of (iii) is complete

for the case p =∞.

We are left with the case 1 ≤ p <∞ of (iii). Observe that for |γ| > 0

supp DγΦi ⊂ Ti\Qi

and
|Ti\Qi|
|Ti|

= 1− (1− ε/2N)N < ε/2

by Bernoulli’s inequality.

Hence for |α| = m and x ∈ Ti

|Dαu(x)| = |Dα(giΦi)(x)|

≤ |Dαgi(x)||Φi(x)|+ C
∑

β+γ=α
|γ|>0

|Dβgi(x)||DγΦi(x)|

≤
(∫

Ti

|f |
)
χTi(x) + C

∑
β+γ=α
|γ|>0

(∫
Ti

|f |
)
δm−|β|ε−|γ|δ−|γ|χTi\Qi(x)

≤
(∫

Ti

|f |p
)1/p

|Ti|−1/pχTi(x)

+ Cε−m
(∫

Ti

|f |p
)1/p

|Ti|−1/pχTi\Qi(x).
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Thus

‖Dαu‖p ≤ ‖f‖p + Cε−m

(∑
i∈I

(∫
Ti

|f |p
)
|Ti\Qi|
|Ti|

)1/p

≤ ‖f‖p(1 + Cε1/p−m) ≤ C ′‖f‖pε1/p−m

Let V ⊂ Rn be open with |V | <∞. Recall that if ui ∈ Cm
c (V ) satisfies

u =
∞∑
i=1

ui converges uniformly in V

and
∞∑
i=1

‖Dmui‖∞ <∞,

then u ∈ Cm(V ).

In the next lemma we will exhaust U by compact sets Ki and build a series ui ∈ Cm
c (U),

u =
∞∑
i=1

ui ∈ Cm
c (U).

The functions ui will be constructed with the help of Lemma 6, so the partial sums of the

series Dmui will approximate a given continuous function f = (fα)|α|=m on U . This will

result in the fact that for the limiting function u, Dmu will coincide with f on a large

compact set.

Lemma 7. Fix m ∈ N and let U ⊂ RN be open with |U | < ∞. Let f = (fα)|α|=m be a

continuous and bounded function on U . For any ε, σ > 0, there exists a function u ∈ Cm
c (U)

and a compact set K ⊂ U such that the following hold:

(i) |U\K| < ε,

(ii) Dmu(x) = f(x) for each x ∈ K,

(iii) ‖Dmu‖p ≤ C(m,N)ε1/p−m‖f‖p for all 1 ≤ p ≤ ∞,

(iv) ‖Dγu‖∞ < σ for |γ| < m.
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Proof. We can assume that f 6= 0. Then the function

ϕ(p) = |U |1/p‖f‖−1
p , p ∈ [1,∞)

is continuous and ϕ(p)→ ‖f‖−1
∞ as p→∞, so ϕ is bounded and hence

0 < A := sup
1≤p<∞

|U |1/p‖f‖−1
p <∞.

Let η0 = ‖f‖∞ and ηi = 2−(m+1)iA−1, i = 1, 2, . . . Then

∞∑
i=1

2miηi = A−1.

Let V ⊂⊂ U be open with |V \U | < ε/2. Let f1 = f |V . Applying Lemma 6, we select a

compact subset K1 of V and u1 ∈ Cm
c (V ) such that

|V \K1| < 2−2ε,

|Dmu1(x)− f1(x)| < η1 for x ∈ K1,

‖Dmu1‖p ≤ C(m,N)ε1/p−m‖f1‖p,

‖Dγu1‖∞ ≤ 2−1σ for |γ| < m.

We will recursively construct sequences fn, Kn ⊂ U compact, un ∈ Cm
c (V ) such that

(I) |V \Kn| < 2−(n+1)ε

(II) |Dmun(x)− fn(x)| < ηn for each x ∈ Kn

(III) ‖Dmun‖p ≤ C(m,N)(2−nε)1/p−m‖fn‖p

(IV) ‖Dγun‖∞ < 2−nσ for |γ| < m.
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Assume that fn−1, Kn−1, and un−1 have been selected to satisfy (I) - (IV). Define a function

f̃n by

f̃n(x) = fn−1(x)−Dmun−1(x), x ∈
n−1⋂
i=1

Ki

Applying Teizte extension theorem to f̃n yields a continuous function fn on U , which by (II)

satisfies

‖fn‖∞ ≤ ηn−1.

By Lemma 6, there is a compact set Kn and un ∈ Cm
c (V ) satisfying (I) - (IV).

Define K =
⋂∞
i=1Ki. Clearly K is compact and

|U\K| ≤ |U\V |+ |V \K| < ε.

Define u =
∑∞

i=1 ui. To show (iii), for p ∈ [1,∞) we estimate

∞∑
i=1

‖Dmui‖p ≤ C(m,N)ε
1
p
−m

∞∑
i=1

(2m−
1
p )i‖fi‖p

≤ 2mC(m,N)ε
1
p
−m‖f‖p

(
1 + ‖f‖−1

p

∞∑
i=2

2m(i−1)‖fi‖p

)

≤ 2mC(m,N)ε
1
p
−m‖f‖p

(
1 +
|U |1/p

‖f‖p

∞∑
i=2

2m(i−1)‖fi‖∞

)

≤ 2mC(m,N)ε
1
p
−m‖f‖p

(
1 + A

∞∑
i=2

(2m)i−1ηi−1

)
≤ 2m+1C(m,N)ε

1
p
−m‖f‖p. (5.2)

Now we claim that u ∈ Cm
c (U). By (IV), for |γ| < m we have

∞∑
i=1

‖Dγui‖∞ < σ,

which implies the uniform convergence of the series in U . Moreover, note that since |U | <∞,

we can let p→∞ in (5.2) and hence

∞∑
i=1

‖Dmui‖∞ ≤ C ′(m,N)ε−m‖f‖∞.
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As we remarked preceeding the proof, this implies u ∈ Cm(U). Since each ui is supported

in V and V ⊂⊂ U , this implies u ∈ Cm
c (U), and (iii) and (iv) follows.

We are left with the proof of (ii). Fix x ∈ K. An easy inductive argument shows that

fn(x) = f(x)−
n−1∑
i=1

Dmui(x).

Hence for every n,

|f(x)−
n∑
i=1

Dmui(x)| = |fn(x)−Dmun(x)| < ηn.

Thus

|f(x)−Dmu(x)| ≤ |f(x)−
n∑
i=1

Dmui(x)|+
∞∑

i=n+1

‖Dmui‖∞

≤ ηn +
∞∑

i=n+1

‖Dmui‖∞ → 0 as n→∞.

Any Lebesgue measurable function on a set U ⊂ Rn with |U | < ∞ is continuous and

bounded outside a set of small measure. This fact allows us to prove a similar result to

Lemma (7) without the restrictions that f be bounded or continuous. We simply isolate the

region where f is badly behaved.

Lemma 8. Let f be a Lebesgue measurable function on an open set U ⊂ RN with |U | <∞.

Then for any ε > 0, there is a compact set K ⊂ U and a continuous, bounded function f̃ on

U such that

(i) |U\K| < ε,

(ii) f = f̃ on K,

(iii) ‖f̃‖p ≤ 2‖f‖p for all p ∈ [1,∞].
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Proof. Fix ε > 0. Suppose first that f is essentially unbounded. Then there exists an R > 0

such that

0 < |{|f | > R}| < ε/2.

Let K ⊂ {|f | ≤ R} be a compact set such that f |K is continuous and

|{|f | ≤ R}\K| < |{|f | > R}| < ε/2.

Let f̃ be the Tietze extension of f |K . Clearly ‖f̃‖∞ ≤ R. We have

U\K ⊂ ({|f | ≤ R}\K) ∪ {|f | > R}.

Hence |U\K| < ε. Also f̃ = f on K. We are left with the estimate for the Lp norm.∫
U

|f̃ |p ≤
∫
K

|f |p +

∫
{|f |≤R}\K

Rp +

∫
{|f |>R}

Rp

≤
∫
K

|f |p + 2

∫
{|f |>R}

Rp ≤ 2

∫
U

|f |p.

Now suppose that f is essentially bounded, say ‖f‖∞ = M > 0. If |{|f | = M}| = 0,

then the proof follows from the previous argument since we can find 0 < R < M with

0 < |{|f | > R}| < ε/2.

Thus we may suppose that |{|f | = M}| > 0. Let K ⊂ U be compact such that f |K is

continuous and

|U\K| < min {ε, |{|f | = M}|} .

Let f̃ be the Tietze extension of f |K . Clearly ‖f̃‖∞ ≤M .

As above, we estimate the Lp norm:∫
U

|f̃ |p ≤
∫
K

|f |p +

∫
U\K

Mp

≤
∫
K

|f |p +

∫
{|f |=M}

Mp

=

∫
K

|f |p +

∫
{|f |=M}

|f |p ≤ 2

∫
U

|f |p

73



As a consequence we have the following immediate result:

Theorem 40. Fix m ∈ N and let U ⊂ Rn be open with |U | < ∞. Let f = (fα)|α|=m be

Borel. Then for any ε, σ > 0, there exists a function u ∈ Cm
c (U) and an compact set K ⊂ U

such that for each p ∈ [1,∞] the following hold:

(i) |U\K| < ε,

(ii) Dmu(x) = f(x) for each x ∈ K,

(iii) ‖Dmu‖p ≤ C(m,N)ε1/p−m‖f‖p,

(iv) ‖Dγu‖∞ < σ for |γ| < m.

To prove Theorem 40, we simply note that by the lemma we can replace f by f̃ which

is bounded and continuous and apply Lemma 7, noting that f̃ = f on a large compact set

and ‖f̃‖p ≤ 2‖f‖p.

5.2 MAIN RESULT 2

Now we come to the main result. We no longer require that the open set U has finite measure.

Theorem 41. Let U be open in Rn and let f = (fα)|α|=m be a Lebesgue measurable function

defined on U . Then for any σ > 0, there is u ∈ Cm−1(Rn) which is m-times differentiable

almost everywhere and such that

Dmu(x) = f(x) for a.e. x ∈ U.

‖Dγu‖∞ ≤ σ for each |γ| < m.

Proof. Let U1 = U∩B(0, 1). We claim that there is a compact set K1 ⊂ U1 and u1 ∈ Cm
c (U1)

such that:

Dmu1(x) = f(x) for x ∈ K1,

|U1\K1| < 2−1,
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|Dγu1(x)| < 2−1σmin{1, dist 2(x, U c
1)} x ∈ RN , |γ| < m. (5.3)

Indeed, let V1 ⊂⊂ U1 with |U1\V1| < 1/4. According to Theorem 40, for any η > 0 there

is a compact set K1 ⊂ V1 and u1 ∈ Cm
c (V1) such that

|V1\K1| < 1/4 (and hence |U1\K1| < 1/2).

Dmu1f(x) = f(x) for x ∈ K1

|Dγu1(x)| < η, x ∈ RN , |γ| < m. (5.4)

Since dist (V1, U1) > 0, by taking η small enough, (5.4) implies (5.3).

Now we will construct a sequence of compact sets Kn and functions un by induction.

Suppose that K1, · · · , Kn−1 and u1, · · · , un−1 have been defined. Let Un = U∩B(0, n)\(K1∪

· · · ∪ Kn−1). Using a similar argument as above we may find a compact set Kn ⊂ Un and

un ∈ Cm
c (Un) such that

Dmun(x) = f(x)−
n−1∑
i=1

Dmui(x) for x ∈ Kn (5.5)

|Un\Kn| < 2−n,

|Dγun(x)| < 2−n min{1, dist 2(x, U c
n)} x ∈ RN , |γ| < m.

Now let C =
⋃∞
n=1Kn. It is easy to see that |U\C| = 0. We will show that

u =
∞∑
n=1

un

satisfies the claim of the theorem.

First, note that clearly supp(u) ⊂ U . Since for |γ| < m,

∞∑
n=1

‖Dγun‖∞ < σ,
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it follows that u ∈ Cm−1(Rn) and

‖Dγu‖∞ ≤ σ for |γ| < m.

It remains to show that for x ∈ C, u is m-times differentiable at x and Dmu(x) = f(x).

Let x ∈ C. Then x ∈ Kn for some n. Observe that (5.5) implies that

n∑
j=1

Dmuj(x) = f(x).

Thus it remains to show that the function∑
j>n

uj (5.6)

is m-times differentiable at x and the m-th derivative at x is 0. Since the function (5.6) is

clearly of class Cm−1 it suffices to show that for |γ| = m− 1

Dg(x) := D(
∑
j>n

Dγuj)(x) = 0.

Since the functions Dγuj are supported in Uj, and x /∈ Uj for j > n, we have

g(x) =
∑
j>n

Dγuj(x) = 0.

Let h ∈ RN . If x+ h /∈ Uj, then |Dγuj(x+ h)| = 0. On the other hand, if x+ h ∈ Uj, since

x /∈ Uj for j > n,

|Dγuj(x+ h)| < 2−jσmin{1, dist 2(x+ h, U c
j )} ≤ 2−jσ|h|2.

Thus

|g(x+ h)− g(x)| = |g(x+ h)|

≤
∑
j>n

|Dγuj(x+ h)|

≤ σ|h|2
∑
j>n

2−j < σ|h|2.

Then Dg(x) = 0, which completes the proof.
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6.0 CURRENT AND RELATED RESEARCH PROBLEMS

As a corollary of the Luzin-type approximation of BV m functions, it was noted that this

implies in the case m = 2 that

Given f : Rn → R convex and ε > 0, there exists g ∈ C2(Rn) such that |{f 6= g}| < ε.

A related question is whether convex functions can be approximated in the Luzin sense by

C2 convex functions. The difficulty is that the Whitney extension, or Whitney smoothing,

does not preserve the convexity. This seems a natural question because we approximate a

convex function by a C2 function, and then ’smooth out’ the corners.

In a 1988 paper, S. Imomkulov [15] provided a proof that subharmonic functions on Rn

have the C2-Luzin property. We are working on verifying this claim. His argument was

based on the representation of any subharmonic function u as

u = K ∗ µ+ v,

where v is harmonic, µ is a finite Borel measure, and K is the fundamental solution to the

Laplace equation:

K(x) = Φ(|x|) =


1

2π
ln|x| n = 2

−Γ(n/2−1)

4πn/2
1

|x|n−2 n ≥ 3

If we let Kδ(x) = Φ(
√
|x|2 + δ2) be smoothed kernels, the claim is that for almost every

x ∈ Rn

lim
δ→0

∫
∂2

∂xi∂xj
Kδ(x− y)dµ(y) =

1

n
δi,jµ

′(x) + lim
δ→0

∫
|x−y|>δ

∂2

∂xi∂xj
K(x− y)dµ(y),
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where

µ′(x) = lim
r→0

µ(B(x, r))

|B(x, r)|
.

This result is presented without proof and references a paper of Calderón and Zygmund [7];

however, the result is not proven explicitly in this paper either. Using the Calderón-Zygmund

decomposition of Rn for the finite measure µ, we are attempting to verify this claim and the

result.

Another direction is to improve the final result of this thesis. Specifically, we would like

to show that given f = {fα}|α|=m, there exists a function u ∈
⋂

0<λ<1

Cm−1,λ(Rn) differentiable

almost everywhere, with Dmu = f almost everywhere. This has applications to the paper

of Balogh [5] related to the Heisenberg group.
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