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LUZIN TYPE APPROXIMATION OF FUNCTIONS OF BOUNDED
VARIATION

Gregory P. Francos, PhD

University of Pittsburgh, 2011

This paper is divided into two sections:

(I) Consider the function space
BV™ = {uy € W™ b D% is a measure for |a| = m}.

Such functions are called mth order functions of bounded variation. We will show that a
given function u € BV™(IR™) possesses the so-called C™-Luzin property; that is, u coincides

with a C™(R™) function outside a set of arbitrarily small Lebesgue measure.

(IT) Consider a set of Lebesgue measurable functions f® : RY — R indexed by the
multi-indices in RY of order |a| = m. We will prove that for any such collection, there is

g € C™L(RYN) which is m times differentiable almost everywhere, and such that

D% (z) = f%(x) a.e. for all |a] =m.

Keywords: Functions of Bounded Variation, Calculus of Variations, Luzin Property, Whit-

ney Extension Theorem, Real Analysis, Distributions .
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1.0 INTRODUCTION

As a starting point for this thesis, recall a well-known result of Luzin:

Let f : R™ — R be Lebesque measurable. For each € > 0, there exists a closed set C such

that |R"\C| < € and f|c is continuous.

Federer ([8], p. 442) proved that if f : R” — R is differentiable almost everywhere, then
f coincides with a C! function outside a set of arbitrarily small measure. The proof utilized
a result of Whitney [25], which provided a characterization of functions that are restrictions
of C™ functions to closed subsets of R™. Federer showed that an almost everywhere differen-
tiable functions satisfies the assumptions of Whitney’s result for m = 1 on closed sets whose

complement has arbitrarily small measure.

Following a similar idea, namely a version of Whitney’s result for L” functions, Calderén
and Zygmund [6] proved that a function in the Sobolev space W™?(R"™) coincides with a C™
function outside an open set of arbitrarily small measure. Recall that WP is the space of

functions whose weak derivatives of orders less than or equal to m are L” functions.

More precise variations of Calderén and Zygmund’s results for W™ functions have been
the subject of [16], [20], [27], [28], [13], and [24]. For instance, Liu [16] showed that in
addition to coinciding with a C™ function outside a set of small measure, one could also
estimate the error in terms of the Sobolev norm. Michael and Ziemer [28] showed that the
approximation can be made to coincide outside a set of small Bessel capacity. Bojarski,
Hajlasz, and Strzelecki [12] fine-tuned these results by replacing the Whitney Extension

theorem with Whitney Smoothing to obtain improved results in norm and capacity.

Our aim is to generalize the result to the function space BV™. These functions’ weak

derivatives of orders less that m are L' functions and the mth order distributional derivatives



are Radon measures of finite total variation. Our main result is that a function in BV™
coincides with a C"™ function outside a set of arbitrarily small measure.

It is well known that the space BV™ is strictly larger than the space W™!. As an
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important example, convex functions are BV|:_, and our result shows that a convex function
coincides with a C? function outside a set of arbitrarily small measure. Alberti provided a
sketch of a proof of this result in [3]. However, our proof is based on a different method.
We utilize pointwise estimates for BV™ functions similar to those developed in [12], [13] to
show that our function satisfies the conditions of Whitney’s result on a large closed set.
BV (R") functions (m = 1) are known to possess the C''-Luzin property [9], i.e. for any
¢ > 0 the function coincides with some C*(R™) function outside a set of measure e¢. The

ideas used in the proof do not generalize to higher order derivatives, so a different technique

must be utilized.

In the thesis we also discuss another independent, but related result based on another

theorem of Luzin from 1917 [23]:

Let f : R — R be Lebesgue measurable. Then there exists g € C(R) which is differentiable

almost everywhere and for which ¢'(x) = f(z) almost everywhere.

This result can be looked at two ways. On one hand, Lebesgue measurable functions on
R possess enough structure to be derivatives of continuous functions outside a set of measure
zero. On the other hand, one can view this result as saying that classical derivatives have a
certain lack of structure.

Recently Moonens and Pfeffer [19] generalized Luzin’s result to vector fields on RY; any
measurable vector field is a gradient of an a.e. differentiable continuous function. This is

interesting because it allows us to find a.e. solutions to non-integrable systems:

of opi , O,
0;1:i =P al'j 7& (93:2

A construction of this kind was used by Balogh [5] to construct surfaces in the Heisenberg
group with large characteristic sets, while the horizontal distribution in the Heisenberg group
is not integrable.

Our second main result is the following generalization of Moonens and Pfeffer’s result:



Theorem 1. Let U be open in R™ and let f = {f*}a)=m be a Lebesgue measurable function
defined on U. Then for any o > 0, there is u € C™ (R") which is m-times differentiable

almost everywhere and such that
D™u(x) = f(x) for a.e. z €U.

|Dul|oo <o for each |y| < m.



2.0 BACKGROUND

2.1 VECTOR-VALUED MEASURES

Our goal is to study functions of bounded variation on R™. The distributional derivative of
a function of bounded variation is a vector-valued measure. Therefore, we begin with some
basic results on this topic. The results here generally follow from those in ([22], Chapter 6)
involving complex measures. We denote by B the Borel o-algebra on R™. A vector-valued
Radon measure on R" is any set function p : B — R™ whose components are signed Radon
measures, i.e. for each i = 1,...,m, p' is countably additive, u*() = 0, and for any compact
subset K C R", |p|(K) is finite.

The total variation of the measure p defined by

|pu|(E) := sup {Z |n(E;)| : E; € B are pairwise disjoint, £ = U Ez}
=0

1=0

is a positive Radon measure on B. One can easily show that |u|(E) is finite if and only if
|11|(E) < oo for each ¢ = 1,...,n. If 1 is a signed measure and f € L (1), we will denote

by fu the measure given by
()= [ fan

The notion of absolute continuity for vector measures is as follows: Let u be a positive Radon
measure and let v be a vector-valued Radon measure. We say v is absolutely continuous with

respect to u, and write v << p, if for any Borel set B,

u(B) = 0= [v[(B) =0.



For any Borel set £ C R", we say the measure u is concentrated on E if u(B) = n(BNE)
for each Borel set B. We say v is singular with respect to p if there exist Borel sets X, X,
such that
X, UX,=R", X,NX, =0,

|v| is concentrated on X, and |u| is concentrated on X,.
We present some fundamental results for vector-valued measures:
Theorem 2 (Radon-Nikodym). Let p be a positive Radon measure and let v be a vector-

valued Radon measure on R™. Assume v << . Then there exists a unique function f €

Li (R™, R™) such that v = fu, i.e. for all u-measurable sets A,

v(A) = / fdu
A
The function fis called the density of v with respect to p.

Indeed, this follows from ([22],Theorem 6.10) applied to the components of v.

Every complex measure has a polar decomposition, i.e. given a complex measure pu,
there exists a complex function o such that = o |p|. The same holds true for vector-valued

measures:

Theorem 3. Let i be a vector-valued measure on R™. Then there exists a unique function

f € Ll (R",R™) such that p = f|u|. Also |f(z)] =1 for u — almost every x € R".

loc

Proof. Existence of a density f follows trivially from Theorem 2 since p << |p|. It remains
to show that |f| = 1 p—a.e. Fixr < 1, and consider the set A, = {|f| <r}. Then if {F;}52,

is a partition of A,,

S BN = 30| [ f il <3 lul(Ey) = el

which implies |p|(A,) < r|p|(Ar), so |p](Ar) = 0. Thus |f| > 1 p-almost everywhere.
On the other hand, for any measurable set F with |u|(E) > 0, define

1
fEW/EfdM



and note that

1 u(E)|
|fE|:) /fd|u]‘: <1.
[l (E) Je |1l (E)
Let B(a,r) C {|]x| > 1} be arbitrary, and let A = f~!(B(a,r)). Note that for z € A,
|f(z) —a| < r. Suppose that |u|(A) > 0. Then since |fa] <1,

1
r<|fa—a s—/ f—al dipl <.
A

which is a contradiction, so |u|(A) = 0. Since {|f| > 1} is the countable union of such sets,

If] <1 p-ace. O

For an R™-valued vector measure y and a py-measurable ¢ : R® — R™. define the integral

/gp-duz/gpldul+...+/¢mdum.

We derive the following useful formula for the total variation of an open set from Theorem 3.

Theorem 4. Let i be an R™-valued Radon measure on R™. Then for every open set {2 C R,

1l(©) = supf / o di: € CALR™), o]l < 1}

Remark: In the above theorem, C.(Q;R™) can be replaced with C¥(Q;R"), for any k €
NU {o0}.

Proof. Let pn = o|p|, where |o(z)] = 1 p-almost everywhere. Assume first that |p|(€2) is
finite. Then

/so-duzz/dmm =/s0-0d|u| < ol ().
Q — Ja Q

then taking the supremum over all ¢ € C.(2, R™) with [|¢|l« < 1 yields the inequality

() > supf / o-di: g€ CULR™, o] < 1)

By density of compactly supported functions in L', for each i = 1, ..., m, we can select a

sequence {¢:}52, C Cc(Q,R) such that

% = o'l Lapuny — O



For j € N, let p; = ((p}, ,907]“) We can assume that ||¢;]/. < 1.

Since |p|(§2) < oo, we can apply the dominated convergence theorem.

im [ oyedp = lim [y odl = [ lofdul = |ul(©),
) J=> Jq Q

Jj—o0

If |u](Q) = o0, let U, = B(0,n) N Q. There exists ¢,, € C.(U,) such that

[ endn > lulw) -1

n

Un Q

For positive Radon measures p, v on R, define

Since |p|(Uyp) — o0

B
lim ZBET) 1(B(z,r)) > 0 for all r > 0.
D,v(z)=¢ ° pu(B(z,r))
0 if (B(zx,r)) = 0 for some r > 0.

The following non-trivial result requires the Besicovitch Covering Theorem ([9], p. 40).

Theorem 5 (Besicovitch). D, v(x) ezists and is finite for p-almost every x € R™. In addition

if v << p, then D,v is the density of v with respect to pu, i.e. for each Borel set A C R",

V(A) = /A Do dp

Theorem 6 (Lebesgue Decomposition Theorem). Let p, v be (positive) Radon measures on

R"™. Then there exists a unique pair of Radon measures vs, vy, such that
V= Vs + Vge, Vae << [, vs Lp (2.1)
Moreover D,v is the density of ve. with respect to p and

D,y =0 p-ae. (2.2)



Proof. The proof of (2.1) can be found in ([22], Theorem 6.10). For (2.2), let x be concen-
trated on the set C, v5(C) = 0. Fix o > 0, and let

. vs(B(z,T))
D ={z: hr:;sypm

Let E=CnND, and let U be any open set containing £. Then the collection of closed balls

> o).

F=A{B(z,r)CU:z € E, r<1l,v(B(x,r)) > au(B(x,r))}

is a fine Besicovitch covering for E. By the Besicovitch covering theorem, there exists a

disjoint countable subfamily of closed balls B(x;,7;) € F such that

(E\ U B(xz;, 1)) = 0.

Then
an(E) <@y u(Blair) £ 3 v(Blas ) < n(U).

=1

Taking inf over all such U,

au(D) = au(E) < vy(E) < v(C) = 0.

So D,vs = 0 p-a.e. The equality D,v,. = D,v p-a.e. follows immediately from the equation

V = Vg + Vs and hence D, v is the density of v,. by Theorem 5. ]

Remark: We can analogously define D, when v is any vector-valued Radon measure.
Note that the above result continues to hold if we replace v by any signed (Radon) measure
by separating v into its positive and negative parts, and also to the case where v is a vector-

valued measure on R".

Corollary 1. Let pu be a positive Radon measure and v a vector-valued Radon measure on

R". For any Borel set A C R",

v(A) = /AD#V du + vs(A).

Recall that Cp(R™) is the space of continuous functions on R™ such that | 1|im |f(z)| = 0.
T|—0o0
The following important result states that [Co(R"™, R™)]* is isometrically isomorphic to the

space of R™-valued Radon measures of finite total variation on R".



Theorem 7 (Riesz Representation Theorem). Let L : Co(R™;R™) — R be a bounded linear
functional. Then there exist a unique finite positive measure i and a function o : R* — R™

such that |o(z)| = 1 p-a.e. and

L(yp) = / w-odu for every ¢ € Co(R™;R™).

In additz’on, |M|(Rn) - ||L||[Co(Rm;R”)]*‘

Proof. Let L satisfy the assumptions of the above theorem, and define for ¢ = 1,...,m the
functional

Li: Go(R"R) = R by Li(y) = L(¢ &)

Then ||L;|| < ||L||, so by the Riesz Representation Theorem for complex measures ([22],

Theorem 6.19), there exists a signed measure '’ of finite total variation on R™ such that

Li(v) = / Y dy’ for each ¢ € C.(R",R).
Let ji = {u',...,u™}. Then

L(p) = L(p1e1+ ... + omem)

= Li(¢1) + .. + Lin(om)

=/ soldu1+~~+/ somdu’”:/ - dji.
n n Rm

It follows immediately from Theorem 3 that we have the polar decomposition i = o u where
1 is the total variation of ji. Moreover, Theorem 4 immediately implies the last statement

of the theorem. 0
The following result ([22], Theorem 6.12) relates a finite measure with density ¢ to its
total variation.

Theorem 8. Let p be a finite positive measure and g € L'(u) be a vector valued function

on R™. Let A = gu. Then |\ = |g|u.



2.2 SOBOLEV SPACES

Let Q C R™ be an open set, p € [1,00], and m be any positive integer. The Sobolev Space
W™P(Q) consists of functions f € LP({2) such that for all multi-indices «, 0 < |a| < m, the
distributional derivatives are represented by functions v® € LP(£2). That is, there exists a

function v® € LP(Q2) such that for every ¢ € C°(Q),

/Q f(x)D*¢(z)dx = (—1) /Q v () () da.

The functions v® are called weak derivatives of f. Whenever weak derivatives exist, it is
natural (and common practice) to denote weak derivative v* more simply by D f. However,
one must note that in the context of Sobolev spaces this is not the classical derivative.

The space of functions with locally p-integrable weak derivatives of orders less than or
equal to m is denoted WI"P(R™). A Sobolev function is a function in the space VV&;(Q)

C(Q) € WP(Q), since if f € C'(Q) then integration by parts is valid, and continuity
of f and V f guarantees local integrability. Also, it is easy to see that the weak and classical

derivatives of f coincide.

W™P(Q) is a Banach space ([10], Chap. 6) with the norm

1w =D 11D flp-
|| <m
Note: Where unambiguous we will drop the dependence on € in || - ||»(o) and simply write
| - ||p- Similarly || - |[wm») will be replaced with || - ||, -

Clearly a sequence fr — f in W™P(Q) if and only if

| D f = D fll 1) — 0 as k — oo for each |a| < m.

We present some key results in the theory of Sobolev spaces.

10



Theorem 9 (Density of Smooth Functions). ([9], p. 125) Let 2 C R™ be any open set. Let
feWwmr(Q),pe[l,00). Then there exists a sequence of functions { fi.} in W™?(Q)NC*>(Q)
such that fr — f in W™P(Q).

In particular, W™?(Q) is the closure of C*°(2) in the space (W™P(Q), | - |lm.p)-

We say that a bounded open set 2 is a Lipschitz domain if its boundary is locally the
graph of a Lipschitz function. If ) is a Lipschitz domain, then C*(Q) is dense in WP(Q)

for 1 < p < o0.

Theorem 10 (Traces). ([9], p. 133) Letp € [1,00) and let ) be a bounded Lipschitz domain.

Then there exists a bounded linear ‘trace’ operator
T : WH(Q) — LP(052, do)

such that for every function u € CY(Q), Tu = ulsq. Moreover for every ¢ € C*(R";R") and
fewtr(Q),

/Qfdiv¢dx:—/ﬂ¢-Dfdx—i—/aQ((b-u)dea.

Tf is called a trace of f on 02 and provides a well-defined notion of “boundary values”
of f. Here Df = {D*f}a)=1 is the weak gradient of f. The existence of a trace allows us
to integrate by parts against smooth functions which do not vanish on 0€2. It also makes

Sobolev functions excellent candidates for weak solutions of PDE with given boundary data.

Theorem 11 (Extensions). ([1/, p.91) Let p € [1,00], and assume Q is a bounded Lipschitz
domain. LetV be any open set with 2 CC V. Then there exists a bounded linear extension

operator

B WmP(Q) - Wme(R")

such that supp(Ef) C V' for every f € W™P(Q).

11



By an extension operator we mean that Ef|q = f, and by boundedness we mean exis-

tence of a constant C such that

| Efllwme@ny < Ol fllwme) for every f e W™P(Q).

Sobolev functions f € Wf)f(Q) have certain smoothness properties. If p = oo, the
function has a locally Lipschitz representative. If p > n, the function has a representative
which is Holder continuous with exponent 1 — %. In both these cases, the function is almost
everywhere differentiable in the classical sense (for n < p < oo this is an extension of the
classical Rademacher Theorem).

For p < n we still have some regularity. Indeed, every Sobolev function is absolutely
continuous on almost all lines parallel to the coordinate axes. This excludes the charac-
teristic functions of a large class of sets from being Sobolev functions. In addition, the

set of 'measure-theoretically significant’ discontinuities of a Sobolev function has Hausdorff

dimension less than n — 1.

2.3 FUNCTIONS OF BOUNDED VARIATION

Let 2 C R™ be open. We say that a function f has bounded variation in 2, or f € BV (Q), if
f € L'(Q2) and the first order distributional derivatives of f are Radon measures of finite total

variation in . That is, there exist Radon measures p’, i = 1,...,m such that |x*|(Q) < oo

and for each ¢ € C}(Q),

/f&-s@dfcz—/wdui-
Q Q

The derivative of f is the vector-valued measure Df := {u'},. The total variation of D f
is a finite positive measure and is denoted || Df||.
Similarly we define BVj,.(€2) as the space of locally integrable functions whose distribu-

tional derivatives are (not necessarily finite) Radon measures.

12



Functions of bounded variation are a natural generalization of Sobolev functions. A
larger space than W1!(R"), the set of 'measure theoretically significant’ discontinuities of
BV (R") functions may have positive n — 1-dimensional Hausdorff dimension, although the
Hausdorff dimension of this set may not exceed n — 1. A fundamental and surprising result
is that for H"1-a.e. point at which there is a jump, the jump is across a hyperplane (see
9], p. 213).

BV (Q) is a Banach space with the norm:

1fllBvie) = [[fllzr@ + 1DFI(€).

For the proof, see Corollary 16.

A simple example illustrates the vast difference between BV spaces and Sobolev spaces.
Consider the function f = (1) on (—1,1). This is not a Sobolev function, since a Sobolev
function on R must be equal almost everywhere to an absolutely continuous function, and

f has an unremovable jump discontinuity at 0. However, f is in BV (—1,1). Indeed, for any

@ € C(?o(_L ]-))
1 1
/ fo'de = —(0) = —/ o ddy,
—1 —1

where Jg is the Dirac measure on R concentrated at 0. So the distributional derivative of f
is the measure dy. One can easily see that total variation ||Df|(—1,1) = 1.

In fact, we have the following result for any nonempty open set 2 C R™:

Theorem 12. WH(Q) € BV(Q). In addition W (Q) is a closed isometrically embedded
subspace of BV (2).

Proof. If f € WH1(Q) then the distributional derivative is the measure (V f)L£", which by
Theorem 8 has total variation |V f|£", so f € BV (Q2) and

[fllBvie) = [y + 1DFIE) = [ fller@) + [V Fllzve = 1wt

Since W1(Q) is complete, it is a closed subspace of BV ().

13



If B CC ) is an open ball, then

/XB divgpdx:/divapdm:—/ o -vdH" !,
Q B OB

from which it easily follows that ||Dyp||(Q2) = H" *(0B) < oo, so x5 € BV (Q). However,
the function yp is discontinuous on each line passing through the interior of B, so it is not

in W(Q). 0

Remark: As a consequence, the limit of any convergent sequence of smooth functions
in BV (Q) must lie in WH(Q). Therefore we have no hope of approximating functions in
BV (Q)\W(Q2) by smooth functions with respect convergence in BV norm. However, we

are guaranteed convergence of a slightly weaker type, see Theorem 17.

We now proceed to give an equivalent characterization of the space BV (Q2).

For f € Li (Q), define

loc

V(f,Q) :=sup {/Qfdivgodx to € Ceo(Q,R™), le]|oo < 1} :

Theorem 13. f € BV(Q) if and only if f € LY (Q) and V(f,Q) < oco. In case either of
these holds, | Df||(Q2) =V (f, ).

Proof. Let f € BV (). Recall that if ¢ € C}(Q,R™), then

/Qgp.dpf_—/ﬂfdiwdx.

Then the fact that ||Df]|(2) = V(f,Q) is an immediate consequence of the fact that || D f]|

is a finite measure and Theorem 4.

For the other implication, fix f € L'(Q) and define the linear functional L on C}(Q;R™) by

L(p) = —/Qfdivgp dzx.

14



Assuming V(f,Q) < oo, L is a bounded linear functional on C!({;R™), so it extends
uniquely to a bounded linear functional (also denoted L) on C.(€2; R™). By the Riesz Rep-
resentation Theorem, there exists a finite Radon measure p on €2 and a unique o : @ — R™,

|o| =1 p—a.e. such that
L(s@)z/so-adu-
Q

Let Df := o u. Measurability of o implies that D f is a vector-valued Radon measure on €.
For each ¢ € C}(;R™),

/fdivgpdx:—/go-de.
Q Q
Therefore Df is the distributional derivate of f. Since V(f,€) < oo, D f has finite total

variation, and therefore f € BV (Q). O

Theorem 7 easily implies that for f € BVj.(€2), its distributional derivative is a measure

D f defined on the Borel sets of {2, i.e. a measure satisfying

/fdivcpda::—/gp-de for every ¢ € C1(Q)
Q Q

However, for f € BVj,.(2) the variation V(f, ) is not, in general, finite.
Let’s make a brief note about BV functions of one variable. For an interval (a,b) C R,

define the variation of a function f : (a,b) — R by

\/f= {Zu(tiﬂ) )t <t < <ty € (a,b)}.

A function f € L'(a,b) is in BV (a,b) if and only if it has a pointwise representative f* such
that
b
\/ ff<oo.
See [4], Theorem 3.27.
As a further remark, functions of bounded variation on Q@ C R™ are in BV (¢ N ) for
L7 1a.e. line ¢ parallel to the coordinate axes, and in fact may be characterized in terms of

these one-dimensional variations (see [28], Theorem 5.3.4). The property of being absolutely

continuous on lines for Sobolev functions is analagous to the property of being of bounded

15



variation on lines for BV functions. In fact, one can recover the measure Df from its

restrictions to almost all one dimensional slices, see ([4], Theorem 3.107).

Decomposition of the measure D f:
Let f € BViee(Q). To each component i’ of D f, apply the Lebesgue Decomposition Theorem

(Theorem 6). There exist Radon measures p’ and p!, such that
p = e floe << L, py L L

By the Radon-Nikodym Theorem, p!,. = (¢")L" for some ¢* € LL (R™). The vector field

loc

V£ :={g'}", is called the density of the absolutely continuous part of the measure D f with
respect to the Lebesgue measure, and the measure D f, = {u’}" | is called the singular part

of the measure. Then

Df=Dfs +VfL"

and

IDf = 1D Sl + IV FI L™
As an immediate consequence of the decomposition we have the following result:
Theorem 14. Let f € BVioo(Q). Then f € W,oX(Q) if and only if Df, = 0.

loc

Remark: The main difficulty in the study of BV functions is accounting for the singular

part of the measure D f.

We now provide some fundamental results for BV functions (see [9], Chapter 5):

Theorem 15 (Weak Lowersemicontinuity). Let {fi} be a sequence in BV () such that
fi = frin Lo (). Then |[Df[|(2) < liminf {|D fi[|(2).
—00

loc
Proof. Fix ¢ € C1(Q;R") with |¢| < 1. Then
/f divpdr = lim /f/yC divpdr = liminf—/cp codDfr < liminf || D fi.||()

Now take the supremum over all such . O
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As a corollary, we can now prove that (BV(Q2),] - ||sv) is a Banach space:

Theorem 16. BV () is a Banach space with the norm

11y = £l + IDFI(€).

Proof. Let {f,} be a Cauchy sequence in BV (Q2). Then the sequence is Cauchy in L'(£2),
so there exists f € L'(Q) with f, — f in L'(Q). By the weak lowersemicontinuity (15),
IDfII(Q) < li]g'g)lf D fi]|(£2), so f € BV(Q). For any € > 0, there exists n sufficiently large
such that

ID(f, — PIQ) < liminf DS, — fu)]| < e

[]

We noted earlier that functions in BV (2)\W () cannot be approximated in BV norm by

smooth functions. However, we have the following weaker type approximation.

Theorem 17 (Approximation by of Smooth Functions). Let f € BV (). Then there exists
a sequence of functions { fi.} in BV (Q2) N C>*(Q) such that

(i) fu — f in LY ().

(D) [Dfell(2) = 1D FI(E).

In addition, we have the weak-* convergence
(iii) |Dfell = IDFI in [Ce()]".

In fact, for any g € C(£2),

/Q gd| DSl — / gd|Df|| as k — oo.

We will prove a more general result for BV functions so we omit the proof here.

Theorem 18 (Traces). (/9],p. 177) Assume OS2 is Lipschitz and 2 is bounded. Then there
exists a bounded linear trace operator T : BV (2) — LY(9Q) such that for every function
u € CYQ), Tu = u|gq. Moreover for every ¢ € C1(R™";R") and f € BV (1),

/Qfdivgbdx:—/ggb-dpﬂ/mqs-uwda
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Remark: This trace operator and the trace defined for Sobolev functions agree on

Wh(Q).

Theorem 19 (Extensions). ([9], p. 183) Assume Q is a bounded Lipschitz domain. Let
fi € BV(Q) and f, € BV(R™\Q). Then f € BV(R"), where

(x) if 2€Q
fay= | e 23)
fo(z) if ze€R"/Q

Moreover,
IDFI®RY) = DA + [ DA RN + / [Tf = Thldo

It follows that if €2 is a bounded Lipschitz domain, then any function in BV (Q2) can be

extended to a function in BV (R") by setting the extension equal to 0 outside €.

Theorem 20 (Compactness). ([9], p. 176) Let Q be a Lipschitz domain. Then the embedding
BV (Q) cc LY(Q) is compact, i.e. if {gr}iey C BV (Q) is a sequence such that

Sllilp ||gk:||BV(Q) < o0

then there is are a subsequence gy and a function f € L*(Q2) such that
\f = gwlloig —0

In addition, it follows from weak lowersemicontinuity that f € BV (Q).

Let f € L] _(R"R™). We say f is approzimately differentiable at x if there is a linear

loc
mapping
L:R"—R™

such that for each € > 0,

T)— —L(y—=x
B0 {y Lol > g)

r=0 |B(z,7)|

We denote
apDf(x):= L.

The following characterization of functions that are approximately differentiable almost

everywhere is due to Whitney [26].
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Theorem 21 (Whitney). Let E C R" be measurable and let f : E — R be a measurable

function. The following are equivalent:

(i) f is approximately differentiable at almost every x € E.
(ii) For every € > 0, there is a closed set C' C E and a locally Lipschitz function g : R" — R
such that glc = flc and |[E\C| < e.
(iii) For every € > 0, there is a closed set C C FE and a function g € C*(R™) such that
gle = flo and |[E\C| < e.

Now the Luzin-type approximation of BV functions by C' functions follows from ap-

proximate differentiability:

Theorem 22. Let f € BVijyo(2). Then for almost every x € Q, fis approximately differen-
tiable at x and ap D f(x) = V f(x), where V f denotes the density of the absolutely continuous
part of the deriwative of f.

Proof. For the proof we cite the following result from ([9],p. 228):

Lemma 1. Let f € BV(R"). Then for L"-a.e. x € R",

1/‘ ) — f@) = VI@) (g — ) dy >0 asr—0.
B(z,r)

r

Fix any such point z. We show that for any € > 0,

B 0 {1 () = f@) = V@) - (g =) > ely—al}

0.
r—0 |B($,7")‘

Suppose not. Then there are € > 0, v > 0 and 7; — 0 such that

B(w, ;) 0 {1 £ (y) — F(x) — V() - (y— )| > ey — al}
Bz, 1) -

Hence there exists ¢ > 0 small such that,

| Bz, r))\B(x,0r5) 0 {|f(y) = f(x) = VI(z) - (y — )| > ely — z[}|
| B(z,7;)|

Y
> —.
2

Since in this annulus, |y — x| > or;, we have

B, r;) 0 {[f(y) = fl2) = V() - (y — 2)| > eons}| _ v
| B, 75)] 2’
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but the left hand side is less than or equal to

1 f(y) = f(@) = V[(z) (y —2)]
T /B(I,Tj)

€0

—0 asj— oo,

which is a contradiction. Therefore at any such x, f is approximately differentiable and

ap Df(z) =V f(x).

As an immediate consequence of Theorem 21 we obtain:

Corollary 2. Let f € BV(R"). Given € > 0, there exists g € C'(R") and C C R" closed
such that f = g on C and |R"\C| < e.

We will now prove an easy corollary of the lemma:

Corollary 3. Let f € BVjo.(R2) and suppose there ezists a Borel set E C Q and a function
g that is differentiable at almost every point of E. Suppose f = g on E. Then Vf = Vg

a.e. on FE.

Proof. Fix x € E which is a density point of F such that g is differentiable at z. Define

H:O\{z} - R by
|f(2) = fly) = Vg(z) - (y — 2)|

H(y) P—
Then fix € > 0.
|B(z,r) N {y: H(y) > €}|
| B(z,r)]
_ |B(z,r)NEN{y: H(y) > e} N |B(z,r)NE N {y: H(y) > e}
| B(z, )] |B(z, )]

< Bl nly:lg@) = g) = Vg(@) - (y = 2)| > elz —yl}] | |Blz,r\E|
- | B(z,r)] |B(z, )|

—0asr— 0.

The convergence of the first term to zero is due to the differentiability of ¢ at x and con-
vergence of the second term to 0 follows from the assumption that x is a density point of
E. Thus ap Df(z) = Vg(x). Since ap Df(z) = Vf(z) at almost every x in , the result
follows. O
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2.4 THE WHITNEY EXTENSION THEOREM

The Whitney Extension Theorem provides a necessary and sufficient condition for a family
{f*}aj<m of continuous functions defined on a compact set K C R™ to be the restrictions
D®flk of some function f € C™(R™). It is easy to obtain a necessary condition on the
set {f*}jaj<m Dy applying the Taylor formula to f € C™(R"). Indeed, consider the Taylor

remainder

R2 1) = 1)~ 3 U peg)

laj<m

For each 3, 0 < |3| < m, D?f € C IPI(R™). Therefore the Taylor formula implies

REDIp) = DO p) - 3 W i) oo -y (24

W<matgl

uniformly as | — y| — 0 on compact subsets of R™.

Now fix a compact set K C R", and suppose f*:= D*f|k. Let F':= {f*}aj<m- Define

for each || < m,

m (y —x)7
(RIF)(y) = fa) — Y Tfﬁ—i—'y(y)'
ly|<m—|6] ’
Then necessarily
R™F)P
% = 0 uniformly as |z —y| = 0, z,y € K. (2.5)

Indeed, since f* = D*f|x, this is just a restatement of (2.4).

Now we let F':= {f*}a<m be an arbitrary collection of continuous functions on K. We
have just seen that in order for there to exist f € C™(R") such that f* = D f|x for each
|a| < m, the condition (2.5) is necessary.

The surpising fact is that it is also sufficient. This is the celebrated theorem of Whit-
ney. Although proving necessity is straightforward, proving sufficiency requires an explicit

construction of the extension and this is quite a difficult task. However, having an explicit
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formula for an extension is useful in many applications. Here we only provide a sketch of
the proof. The interested reader can find complete details in [25], ([18], pp. 1 - 8).

Let’s set some notation. For a compact set K C R", define
J"™(K) ={ {f Haj<m ‘ f¢: K — R are continuous},
the set of all jets of order m on K. For a fixed || < m, we define an operator
D7 J™K) = JE) by {f Haiem = {7 Hajzmoia1-

We will write F' = {f*}|a<m for a jet of order m. For each a € K, define the operator

(—a)r

ol

T JMEK) = C®R") by  {f*Hajem— > [“(a)

la|<m
T FE is a formal Taylor polynomial constructed from the jet ' and centered at a.

Denote by £™(K) the space of all jets F' in J™(K) such that
(RMF)*(y) = o(|z — y[™ 1) as |# —y| = 0 for every z,y € K and |a| < m. (2.6)
Each F € £™(K) is called a Whitney jet of class C™ on K. Now we state the theorem.

Theorem 23 (Whitney Extension Theorem). There ezists a linear extension operator W : E™(K) —

C™(R™) such that for every F € E™(K) and every v € K, D*WF (z) = f*(x) for |a| < m.

For a Whitney jet F, the construction of the extension W F' relies on the well known
Whitney decomposition of the open set R™\ K. The main feature of the decomposition is
that it partitions this set into diadic cubes whose diameter is comparable to the distance
of the cube to the boundary of K. Here is a brief outline of the construction: First divide
R™ into diadic cubes S of side length 1. Collect all such cubes with d(S, K) > y/n. Now
partition the remaining space into diadic cubes of side length 1/2, and collect all cubes with
d(S,K) > \/TE Continue with cubes of side length 1/4,1/8, ... ad finitum. Let I be the
collection of all the cubes. This is a partition of R™\ K. For each S € I, define S = %S to
be the concentric cube of 3/2 side length. Let {¢g}ser be a C°(R") partition of unity with

(a) 0<¢s <1
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(b) supp(¢s) C int(S)
Then the following hold:
L. int(S) Nint(T) = () whenever S, T € L.
2. Adjacent cubes differ in size by at most a factor of 2 (linear dilation).

For each S € I, #{T € I : supp(¢s) Nsupp(¢pr) # 0} < 4™
SNT # () iff S is adjacent to T. Therefore the partition of unity is locally finite.

= W

5. If S is not side length 1 and x € S, the d(z, K) < (17/4)diam(S).

6. There exists C'(3,n) only such that |[D’¢g(x)| < C(1 + W); 18] <m, z e R"\K.

Now we can give an explicit formula for the extension W F': For every S € I, choose a

point ag in K that is nearest to supp(¢s). Let f0 = f.

fO(x) ifreK,
WE(z) = N Gs(@) T F(z) if x € RM\K. (2.7)
Sel

First note that this is a finite sum at each x since the partition of unity is locally finite.
To define the function outside K, we take a weighted sum (over all cubes in the partition)
of formal Taylor polynomials of the jet centered at nearest points on the boundary of K. As
x approaches K, the points at which the polynomials are centered become clustered near z.
This limiting behavior as x approaches K is the crucial part of the construction. A priori
we cannot differentiate the function at any point in K. To prove the extension is in fact a
C™ function, we define a jet { faha‘gm and show inductively that the functions in this jet

are in fact classical derivatives of W E'. Let

_ fé(x) ifx e K,
f(z) = (2.8)
D*WF(z) ifx € R"\K.
Now since T, F' is C°, it is immediate that the function W F' is smooth on R™\ K. We

need to prove inductively that for each |a| < m, a € K and z € R",

fo@) = f*(a) =V [*(a) - (x — a) = o(|z — a) (2.9)
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where Vfo = {foteiln  is the formal gradient of f® consisting of functions in the jet.
Indeed, if (2.9) holds then implies that f* is differentiable at a and V f* coincides with the
classical gradient of f*. If a € int (K), then (2.9) is satisfied for points x near a. This follows
immediately from (2.6). So W F is part C"™ in the interior of K. Therefore the interesting
case is when a is a boundary point of K.

The key estimate is the following:

Let L be a cube with K € int(L) and A = sup,.; d(z, K). Then there exists C(m,n, \)
such that for each 5 with |f| <m, a € K and x € L,

f(z) — D*T"F(z)| < Cw(|x — al)|z — a™ o (2.10)

where w is a modulus of continuity whose existence is guaranteed by (2.6). This is the most
difficulty part of the proof and we will not include the details.
To finish the proof using (2.10), for |a| < m, add and subtract terms to get
/() = f(a) = V[*(a) - (x — a)]
|z — al

fo(@) = DT F ()|

<

— allBl| DatB
S [z — o " DT f(a)]

|z — al |x — al

1<|fl<m—|a

Letting |x — a| — 0, the first term converges to zero by (2.10) and the second since || > 1.
Inductively, this proves that W F' has derivatives up to order m, and D*WF = f". When

la| = m, (2.10) reduces to

|/ (x) = f*(a)| < Cw(lz —al)
which proves continuity of the mth order derivatives, and completes the proof.

Corollary 4. Let C be a closed set on R™ and F = {fP}5<; € J™(C). Suppose the Taylor
remainder-type estimates (2.6) hold on each compact set K C C. Then there is a function
g € C™(R"™) such that for each x € C, |5] < m,

D’g(x) = f(x).

Moreover the mapping F' — g is linear.

24



Proof. If z in not in C, there exists a nearest point y € C such that dist (x,C) = |z — y.
Decompose R™\ C' using the Whitney Decomposition. The same inequalities hold with K
replaced by C.
We define the extension by
f(x) if xeC,
g= (2.11)
Y oser ¢S(x)T$F(x) if x e R"\C,
where ag € C is such that dist (S, C) = dist (ag, C). g is clearly C*° on R"\C.
On each compact K C C' we get that

R™F)P
sup —’( z )m<|y5)’ -0 (2.12)
zyeK, |lz—y|<p ’$ - y’

as p — 0, which guarantees existence of a modulus of continuity wg for the compact set K
([18], Thm 2.2.1).

Fix a € C, and let K = B(0,1)NC. If a € int(C), this is not a problem because
|R"F(y)| — 0 uniformly in K.

For a € OC, we get the estimate |[(R™F)?(y)| < Cwg(x — a)|z — a|™ 1%, which implies

as in the original proof that the function is C"™ is a neighborhood of a. m
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3.0 APPROXIMATION BY LIPSCHITZ FUNCTIONS

We proved, see Corollary 2, that f € BV equals to a C!, and in particular, to a locally
Lipschitz function outside a set of arbitrarily small measure. We will provide two alternative
proofs of this result that will use certain pointwise estimates of f. The motivation stems
from the fact that in the following sections we will use a similar method to prove a higher

order analogue for BV™ functions.

3.1 FIRST POINTWISE ESTIMATE FOR BV FUNCTIONS
Henceforth, we identify f € BVj..(£2) with a pointwise representative

r—0

f(x) = hmsup/B( )fdy (3.1)

defined at every point of (2.
For f € L'Y(R") and a Radon measure p € B(R"), we define the following mazimal

functions:

O M) =spf il ) Mut) = sp lul(B(z. 7))

r>0 r>0 ’B(x7 7“)|

L B)
(iil) Msu(x) = 0<7"I<)5 B

For Lipschitz functions, we want to utilize the following pointwise estimate:

Theorem 24. Let f € BVi,.(R™). Then for each z,y € R,
|f(z) = f)] < C(n)|z — y[(Mpe—y [ Df[|(z) + Moy | DfI|(y))- (3.2)
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This material in this section is devoted to proving the above estimate. We start with

some well-known weak-type estimates (see [27], Sec. 2.8).

Theorem 25. Let f € L'Y(R"), u € B(R™) be as above, and let t > 0. Then

H{f| > 1] < / Fldy < 15, (3.3)

{IfI>t}
HMS > 1)) <25 /{ 2 (3.4)
H{Mpu > 1] < 5"l (R"). (3.5)

By Chebychev’s inequality (3.3), [{|f| > t}| — 0 ast — oco. We also know that for f € L'(u),

/|f|du—>0 as u(FE) — 0.
E

These facts along with inequalities (3.3),(3.4) give us the follow result:

Corollary 5. If f € LY(R"), then
t{lfl >t} =0 and ti{Mf >t} =0 ast— oco.

Remark: The convergence t{{Mpu > t}| — 0 as t — oo is not true for arbitrary p € B(R").
In fact, a simple example where this fails is g, the Dirac measure concentrated at zero. This
presents a major difficulty in estimates involving BV functions, because it may happen that

t{M||Df|| > t}| does not converge to 0 as t — oco.

To prove our pointwise estimate, we use the following well-known potential estimate for

smooth functions. For a proof see ([11], Theorem 7.12):

Lemma 2. Let Q C R" be an open cube, and let f € CY(Q). Then for each x € Q

0) ~ ol < O [ Wil

o lr —y[" !

We will also need the following lemma ([13], Lemma 3.2):
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Lemma 3. Fiz v € R", m <n. Then there exists C,, ,, independent of r such that

1 Crin
][ ————dy < ————— for each r > 0, z € R"™.
B(z,r) |y |I — =z

=3 |

These lemmas along with approximation of BV (Q) functions by C'* functions yield the

following result:

Theorem 26. Let f € BVio(R™) be defined pointwise as in (3.1), and let Q@ C R"™ be an
open cube. Then for each x € Q,

d|| Dfl|(y)
Qlz—y!
Proof. Note that f € BV(Q). By Theorem 17, we can find a sequence {fx} C BV(Q) N
C*(Q) such that

(i) fr = fin LY(Q),
(ii) [[Dfel(Q) = [IDfI(Q),

|f () = fol < C(n) (3.7)

and moreover, for each function v which is continuous and bounded on @),

/uanfkn %/udl\Dfll-
Q Q

d
Now we will apply this to the function wu(z) = / Y

T BY first applying
B(z,e€) |Z y|

inequality (3.6) and Fubini’s Theorem, we find:

fB(m fi(y) — (fk)Q‘ < C(n)][B(m (/Q _lLVj;;(;_)Jl dz) dy

<co | (J[B@,@ #) V() d.

Letting £k — oo, applying Fubini’s Theorem and Lemma 3 yields

][B@,e)f(y) _fQ’ < C(n) /Q (/B(m #) d||Df|(2) (3.8)
SC’(n)/@W (3.9)

|z — 2|1

which is a bound independent of e. Now taking the limsup as ¢ — 0 on the left hand side

yields the result.
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Now we prove the following lemma due to Hedberg [14], see also [12] Lemma 3.4:

Lemma 4 (Hedberg). If m > 0 and Q C R"™ be a cube, then there exists a constant C(n, m)
such that

/QOZ‘L(ZU)WLC@ < C(diam(Q))™ Mdiam(q) ()

|z —y|"

for each € B(R™) and z € Q.

Proof. Let 6 = diam(Q). Let A, = Q N B(x,§/2")\B(z,5/21) for k =0,1,2, ...

On Ak7 2k+1 < ’33—3/’ < 2k7

d|p|(y Cdlpl(y)
/Qlﬂf—yln " Z/Ak Ix—yI" "
2k+1 e
> (5 /Akdmuy)
2k+ 5 "
X)) dnl)

<02y (2—m)k5mM5u(x).
k

IN

| /\

Summing the geometric series gives the result. O]
Now we can prove Theorem 24.

Proof. By Theorem 26 and Hedberg’s lemma,

(2) — fal < /Q DA o diam(Q)) Maunier| DS ).

| = 2|

Applying the Triangle Inequality, for any cube @) containing x,y, we have

|f(z) = f(y)] < C(diam(Q)) (Maiam(@) | Df[[() + Masam@) | D f | (9))- (3.10)

To complete the argument, note that for any € > 0 we can find a cube containing x and y

whose diameter is less that | — y| + €. ]
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3.2 FIRST APPROXIMATION BY LIPSCHITZ FUNCTIONS

We provide a first proof of the main result of this section:
Theorem 27. Let f € BV (Q). For every e > 0, there exists a locally Lipschitz function g,
such that

(1) Hf # gebl <e and (i) [lge — flh <e

Proof. Using a partition of unity we may assume that 2 = R™ and that f has compact

support. Let
Ey =A{lfl <t} n{M|Df| < t}. (3.11)

Note f|g, is a Lipschitz mapping with constant 2Ct by (3.2). Let f; be the Mcshane (Lips-
chitz) extension of f|g, to all of R™. Then let

foo it |fil <t
Ji=4qt ifﬁ>t,

—t if f, < —t.

fi is Lipschitz with the same Lipschitz constant as f|g,, since the Mcshane extension and
the truncation both preserve the Lipschitz constant.
(i): On E, f = ft and \ﬁ] =|f| <t So f; = ft = f on E;. Then to prove f; coincides

with f outside a set of small measure, it suffices to prove that |Ef| — 0. Note

|EEL < {IFI > 3]+ {MI DI > ¢},

Since f € BV(R"), |Ef| — 0 as t — oo by (3.3) and (3.5).
(ii) We begin by finding a uniform bound on || D f;||(R™). Note that by (3.3),(3.5),

HEL| StUMS > ] + t{MIIDFI| > 3] < 2-5"([[f]ls + [ DFII(R™)).
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By Rademacher Theorem([9], p. 81), f; is differentiable almost everywhere, and the Lipschitz
condition implies ||V fi||.c < C't. By Corollary 3, |V fi| = |V f| on E;, where V f is the density

of the absolutely continuous part of Df. Then

/ |Vft|d1'§/ |Vf|da:+/ C't
R” By B¢

S HDfacH(Et) + Ot|E1?|
< C(If1h + [IDFIR™)).

We also have the estimate

/ Iftlé/ tda;+/ I <HE + I f Il < CUIf [l + I DFIR™).
Rn E¢ B

Hence

sup [l fellsv < CIf Il + IDFI(Q))-

Since f has compact support, f; has compact support for ¢ large. Indeed, if d =

dist (z, supp(f)), then

| DfII(R™)
MIDS () < LT,
so for
-~ AR
Wy d™

x € Ey because |f(z)| =0 <t and M||Df||(x) <t so fi(z) = f(x) =0.

This implies that family f; all have support in the same compact ball, so we can apply
Theorem 20 to guarantee existence of g € L'(R") such that ||f; — g||z1®ns) — 0. Since
{f # fi}| — 0 and E; are increasing sets, f; — f almost everywhere, so f is the L'(R")
limit of f;. [
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3.3 SECOND APPROXIMATION BY LIPSCHITZ FUNCTIONS

Now we provide an alternative construction for a Lipschitz approximation of a BV function.
Our first approximation was constructed by restricting the function f to the set E;, whereby
we lost all information about f on Ef. This is a significant problem because despite the fact
that the measure of Ef is small, ||Df||(E£f) may be large.

Recall again our pointwise estimate (3.2). Now instead let £, = {M||Df|| < t}, and
consider the Whitney decomposition of Ey, which is an open set by lowersemicontinuity of
the maximal function M||Df||. Recall the Whitney decomposition is made up of pairwise
disjoint cubes {Q;}:er, and for each i we let @ be a concentric cube linearly dilated by a
factor of 3/2. Finally recall the associated locally finite partition of unity {;} subordinate
to {Q:}ics has the property that |[V& e < C(n)diam(Q;)~". For the relevant details, see
section 2.4 of this thesis.

Now for ¢t > 0, let

f(x) it v € Ey,
g = (3.12)
S &a)fy ife B
Clearly since g; = f on Ey, |{g: # f}| — 0 as t — oo. We must show that g, is Lipschitz.
Let € Ef. Let T € E; such that dist (z, E;) = |z — T

Claim: lg:(z) — f(Z)| < C(n)t|z —z|.

ale) ~ F@)] = | Y &@)fg ~ /@

- Zgz sz_ ))
< Zlf@;—

Now let 7} be a cube containing Q; and also the point Z. Note that since lz—7| < C’diam(@),
we can ensure that diam(7}) < Cdiam(Q;). Since Z € T; and Q; C T}, a simple variation

of the inequality (3.6) and the same approximation argument as in section 3.1, along with
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Lemma (4) implies that

T [ 1DfII(=)

— <Cndiami~/\/lD T
/e (n)diam(T;) M| D f[|(Z)

T—znt

< Cdiam(Q;)t,

/(@) — fg,] < Cn)

because = € F; implies M||Df||(T) <t

Combining these inequalities, and noting that diam(Q;) < Cl|z — T, we see that
l9:(x) — f(T)] < Z @) — f5] < Y Ctdiam(Q;)

<4"C't|x — 7.

Now let z,y € Ef, and suppose |z — y| > |z — Z|. Then since |y —Z| > |y — 7|, a simple

application of the triangle inequality shows

19:(x) = 9:(W)| < |ge() = F@)] + [/ (Z) = fF@I + f @) — 9:)]
< Ci(le =7+ [T -yl + 17—yl

< Ct|lz —y.

I |2 — 7], |y — 5| > |2 — yl, then noting that f(z) = 3, &(2)/(7) = 5, &)/ (@), we

have

|gt(x) - gt(y)’ = Zfz sz Zfz le

< Z(&(r) —&W)(f5, — f(f))|
< Z IVE&illolz =yl f(T) - f5]
< Z Cdiam(Q;) |z — y|diam(Q;)t

< Ctlx—y|.

Therefore g, is Lipschitz.
The advantage to this approximation is that the information about f on EY is built into

the function g;. We will see that this yields stronger bounds than the previous approximation.
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Claim 1: |lg: — f|lx — 0 as t — oc.

/ o = / D la(liglir < / gl
= d Oast
Z/§|f| xr—0ast— o0

since f € LY(R").
Claim 2:  [[Dg;[|(R") < C(n)[[ Df[|(R").
It suffices to show that || Dg|(E£f) < C(n)||Df||(EF). Since V(3_, &(x)) = V(1) =0,

| 1Walde <3 [ 1Veiaiglie = [ Vet - fa)ide

< 2wl /@\f@ f(@))de
< 3 Cdian (@) diam(@0)| DS/
<O IDf(@)

In the second to last step we employed the Poincaré inequality for BV functions on cubes
([4],Remark 3.50). Since each @; is covered by finitely many (); and each @/Z intersects at

most 4" other cubes, we get that

. [Vgildz < C(n) Z IDFI(@:) < C)IDFI(ED).

I believe this bound is not optimal. In fact, the way we have defined ¢g; on Ef is by
somewhat crude approximation of f by averaging over cubes in the Whitney decomposition.
I believe that by modifying the definition of g, on £}, we can, in fact find a Lipschitz function
¢; which approximates the given function f in the Luzin sense, in terms of L! convergence,
and also || Dg|[(R") — || Df]|(R") as t — oo.

Such an approximation will be more difficult to construct when dealing with C* approx-
imations, and ever moreso for higher order functions of bounded variation, but I believe it

is possible and I am currently working on this issue.
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3.4 APPROXIMATION BY C! FUNCTIONS

The approximation of BV functions by C! functions will result from an application of the
Whitney Extension Theorem (Theorem 23), and this requires formulation of certain Taylor
remainder type estimates. We will provide a sketch of the proof, which will motivate and
clarify the proof in the higher order case. We start by proving a potential estimate similar

to that developed for Lipschitz functions.

Theorem 28. Let f € BVioo(R™). Then for any cube Q,

| — z|n1

1) o - f@=2-apse)
holds for each x € ) and each vector a € R™.

Proof. Fix x € R", a cube ) containing z, and a vector @ € R".

Note that by Lemma 5 with m = 1 (proven in section 4.2) that for any f, € C1(Q),

IV fi(2) —d|

d
o ly—zt -

<C

folw) = (o — fQ<y ) Vi)

holds for each y € Q).
We want to find a sequence {fx} € C*(Q) N BV (Q) such that the vector measures and
total variations

Dfe 5 Df and |Dfi—acL"| = |Df - ac”| (3.14)
weakly in the sense of Radon measures.

Let A be a linear function with DA = d. Since A is smooth and locally integrable,

A € BV(Q). By Theorem 4.4, there exists a sequence {g,} C C*(Q) N BV (Q) such that
ge = (f = A)in £1(Q)  and || Dgil|(Q) — [[D(f — AII(Q) = [[Df — aL"|[(Q).
Let fi = gs + A. Then f, € C*(Q) and D(f, — A) = D(g1). So
fo— fin LY(Q)  and [|Dfy, — aL"(|(Q) — IDf — aL"|[(Q).
This guarantees the weak-* convergence (3.14).
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Note that the functions

Z L_l andz»—>/(y—z)dy
oly— =" Q

are continuous on () and can be extended to continuous compactly supported functions on
R™.

For any € > 0, average the inequality (3.13) over a ball B(z,€)

Applying the weak-* convergence of the measures and Fubini Theorem implies

W)= fo—1 w=2)-DI)) dy| <C C—dy ) DS — L7 ()
B(ze) Q Q \ Be 1Y — 2|

<o [ ADIZiele)
Q

|z — 2|t

I

the last step applying Lemma 3.

Taking the limsup as € — 0 on the left hand size, and noting that

/ (y—2)dy — (x —2)ase —0
B(z,e€)

completes the argument. O

Define

TYf(y) = fo + fQ@ ~2)-dDf(2),

T, f(y) = fz) + V() (y — 2),
recalling that V f is the density of D f,. with respect to Lebesgue measure.

Theorem 29. If f € BV(R") then for any x,y € R,

i/ (yix__Ti{ W < 0(n) (Mu_y | DS = VI @)L () + Myoy|DF - VF@)LMW))

36



Proof. T, clg f(y) is a polynomial in y. Indeed, differentiating under the integral sign, the

gradient is constant:

&Tg?f:ai][Q( y-dDf(z Z][ Si5dp? (2 ][du( ).

So Tcl2 f is equal to its first degree Taylor polynomial centered at x.

Thf(y) = T () Z CREDIVSES
D
— Thf(@) + % (y-a)
By the triangle inequality,

[f(w) = T F)l < 1f(y) = Tof )| + 1T f(v) = T f(y)]
<100 = T30+ 110) - s )] + | (P2 = 95) -

d|Df —aL"|(=) d|Df —bL"|(2) ,
SC’/Q -I—C/Q Y

o e
+ —D‘J;S’Q) — Vi) |y — =zl

Now select the vectors @ = Vf(z) and b = Vf(y). It follows from Lemma 4 that

/Q DS = GLNE) i diam (0)) Mol Df — 3271 (2).

|z — 2|71
Divide both sides of the inequality by |y — z| and note for any ¢ > 0 we can choose @

containinig z, y with diam(Q) < |z — y| + €. To complete the proof, estimate

‘Df(Q) [Df(Q) — Vf(z)L"(Q)
Q| Q|

_ IDf = V@@

B Q|

< CMaiam@@|IDf — V f(2) L[ ().

Vi) =

]

We will now use our pointwise inequality to show that for any e > 0, there is a closed
set C' with |[R"\C'| < € and such that the jet {f, Vf} is a Whitney jet on C. This implies
the existence of C! extension, say g, of f|c with ¢ = f and Vg =V f on C.
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Theorem 30. Let f € BV(R"). Then for each € > 0, there is a function g € C*(R") such
that

{f #gtl <e

Moreover |{Vg # V f}| <€, where V[ is the absolutely continuous density of the derivative

measure Df.

Proof. Define
mk(z) = sup M, || Df =V f(2)L"]|(2)

1
r<g

Claim 1: ng(z) — 0 for almost every z € R". (3.15)

To prove this, note that since the maximal function is subadditive,

Ms|Df = Vf(@)L"|(x) = Ms||Dfs + Dfoc — V() L|(2)
< M| Df||(z) + Ms||Dfoe — Vf(2)L"[(z) = 0as § — 0

for almost every x € R™. Indeed, convergence of the first term is an immediate consequence
of the Besicovitch Differentiation Theorem. The second term converges to zero whenever x

is a Lebesgue point of V f.

Fix € > 0. By Lusin Theorem, there is a closed set C' C R™ with |[R"\C| < €/2 such that

flg, Df|s are continuous.

Claim (3.15) implies that by Egorov Theorem, there exists a closed set C' C C such that
IC\C| < ¢/2 and

M = 0 uniformly on compact subsets of C

Claim 2: Let K be a compact subset of C'.

sup |fy) =T, f(y)]

— 0as p—0.
z,yEK,lz—y|<p |z —y|
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Fix 0 < p < 1. Choose k(p) such that =5 < p < . Fix z,y € K with |z —y| < p. Let

. . . _ 1
Q contain r,y with diam(Q) = r < ;. Then

M ||Df = V(@) L"||(2) + Mo[|Df =V f(y) L[| (y)
<2 sup M, [|Df =V f(2)L"|(2).

zEK,T<%

Hence

’f(y> B Ta} (y)‘ < Csupnk(z)
|ZL‘ _y| N z€EK

Take the supremum over all z,y € K, |xr —y| < p, and let p — 0. Then k£ — oo, and
uniform convergence of 7 to 0 on K implies Claim 2.

Claim 2 simply says that the formal Taylor remainder of degree 1 for the jet {f, Vf}
converges uniformly to 0 on compact subsets K C C. Thus the jet {f, Vf} is a Whitney jet
on C. By the Whitney Extension Theorem, there exists a function g € C*(R™) such that
glc = fle and Vglc = Vf|c. Since |[R"\C| < ¢, this proves the theorem.
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4.0 HIGHER ORDER FUNCTIONS OF BOUNDED VARIATION

Let Q C R™ be open. We say a function f is in BV™(Q) if f is in W™~ 11(Q) and in addition
the mth order distributional derivatives of f are Radon measures of finite total variation.
This is a natural definition because in order for the mth order distibutional derivatives to be
measures, we must require that the (m — 1)st order derivatives exist in the weak sense and
be locally integrable. When f € BV™(Q), for each multi-index « of order m, there exists a

signed Radon measure p® such that

/ fDYdx = (—1)m/ e du® for each ¢ € C"(2) (4.1)
Q 0

and |p®|(2) < oco.

When f € BV™ we will denote the distributional derivative u® by D*f.

Similarly we define BV{7(£2) to be the space of functions f € I/Vlf)"cl(Q) whose mth
order distributional derivatives are signed Radon measures (whose total variation may not

in general be finite).

The mth derivate of f is a vector-valued measure D™ f defined by
Dmf = {Daf}|a|:m.

Its total variation will be denoted ||[D™f||, and as for any vector-valued measure,

D™ fII(A) := sup {Z | D™ f(Ag)| : A are disjoint and A = U Ak}
k=0

k=0
for any Borel set A.
BV™(Q) is a Banach space with the norm

[fl[Bvm@) = [l fllwm-r1@) + D™ ().
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The proof follows from weak lowersemicontinuity of the total variation with respect to L!
convergence, and is analogous to the proof of Theorem 16.

I|ID™f|| has a polar decomposition D™ f = o ||[D™f||, where |o(z)| = 1 for || D™ f]-a.e.
x e Q. If welet M :=#{a € N": |a| =m}, from Theorem 4

1D F() =supd 3 / bad(DF) : 6 € CP(Q,RM), 6] <1}, (4.2)

|a|=m

or equivalently,

1Dl =swws [ £( 3 Do) dmisecr@BM ol <1E. (43)

|al=m

Analogous to Theorem 13 for the case m = 1, f € BV™(Q) if and only if f € W™ 11(Q)
and the right hand side of equation (4.3) is finite.

4.1 BASIC PROPERTIES

Theorem 31. Let f, € BV™(), and suppose fr — f in L'().
Then D" £(©) < limint D" (9.
—

Proof. Let ¢ € C™(Q, RM) with ||t < 1. Then for f,{fi} as above,

[HOE Do)t = i [ (3 Dou)is

laj=m laj=m

= lim (—1)’”/Dmfk-<,0dx
Q

k—o0

< liminf || D™ fi.||(22)
k—o0

Then taking the supremum over all such 1, the result follows from (4.3). O
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It is easy to check that
Wm(Q) € BYT(Q)

is an closed isometrically embedded subspace. So as in the case m = 1, we cannot approxi-
mate BV™ functions by C*° functions in (BV™, || - ||py=). However, we have a result similar
to Theorem 17 for BV™ functions, which says that we can approximate by smooth functions

in the following weaker sense:

Theorem 32. Let f € BV™(Q). There exists a sequence {fr} in C>*(Q) N BV™(Q) such
that
fr— fin WPEHQ) and D™ fill(Q) = [ D™ FII(Q) (4.4)

Proof. Fix € > 0. Let U;p = {z € Q: dist(09, x) > 75} N B(0,i + {).
U, Ure =9, and Uy y C Uy gqa, so ||D™fI[(Q) = i (D™ fl[(Une).
Since |[|[D™ f]|(2) < oo, we can choose ¢ large so that || D™ f||(2\Ui,) < e. Fix such an [,
and let U; := U, 4. Then

D™ FI(EATL) <, U= U Ui

Let Vi = 0, and let V}, = Uk+1\Uk for £ > 1. Let (; be a partition of unity subordinate to
Vi
Let n be a standard mollifier on R, i.e. 7 is a function symmetric about the origin such

that

supp(n) C B(0,1), / ndr =1, 0<n<1,
B(0,1)

and let 75 = (6)""n(x/d). Let v(€) > 0 be a constant to be later determined. It follows from

standard theory for mollifiers that

(i) supp(ns, * fCx) C Vi for o5 small.
(i) Since f¢ € W™ H1(Q), for every 8 with |3] < m — 1,

€
IDP(f¢k) * 15, — DP(FG) iy < ok (4.5)
for 9, sufficiently small.
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(iii) Since fD* A, € Wm=LL(Q), for every a with |a| = m, and every 3 < a,

| D?(fD*P¢,) * 1, — Dﬁ(fDa—BCk)HLl(Q) < % (4.6)

for ¢ sufficiently small.

For each integer k, choose J; small so that all of the finitely many conditions (i)-(iii) are
satisfied. For each k, we will write 1, := 15,

Let
F=0 Foxm
k=0

Since the partition of unity is locally finite, this is a finite sum in some neighborhood of
each z € Q, so f¢ € C™(Q).
We have || f¢ — f|lwm-11 < €. Indeed,

IDP e = DPflly = [IDP (D " mie* &) = D (D fG)lh
k=1 k=1

Z [l DP(fG) = DP(fS)

o0

Z =€ by (4.5)

k=1

By Theorem 31, this implies

|D £1/(€2) < lim inf [|D™ £ (<) (47)

We will frequently use the following fact: If g € W*?(Q) and |3| < k, then
DP(g xmi) = DPg . = g x Dl (4.8)

Fix U = {to }jajzm € C(Q;RM) with ||¥|. < 1.
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= [ 1Y Da)de =30 3 [ (76 m@) D) da

|al=m k=1 |a|=m

:i Z /Da¢a($)</ka(y)ﬁk(y—x) dy) dz

k=1 |a|=m

=35 [t [ty - 00wt ay

k=1 |a|=m

= Z Z /ka(y) (i * Do) (y) dy

k=1 |a|=m

g

=3 37 [5Gl D ) ) dy

k=1 |a|=m

Here we have moved sums outside the integral, used Fubini Theorem, symmetry of n, and
used property (4.8).
Now by Leibniz Rule, if g € W™=11(Q) and h, € C>(Q)

gDhe = D*(gha) = Y Ca gD PgD’h,

B<a

Substituting h, = . * ¥, and g = (, we have

I'=y >, /fc’“Da(”k*%) dy

k=1 |a|=m

=> > [/fD‘”(Ck(m*wa)) dy — an,ﬁ/fDa—ﬁngﬁ(nk x 1) dy

k=1 |al=m B<a

Note also that since 1 is symmetric, D%y (y — x) = (—=1)PIDAn(z — y), so

/fDaﬁCkDﬁ(Thc * o) dy = /fDa'BCk(D’BWk * o) dy
= /(—1)6'%(1757% x fD*7P¢) dy
0 [ e DHIDG0) dy
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For B < a, >0, D¢, = D*7#(1) = 0. Therefore
> waD (FD7G) = 6D (Y FD°70G) =0
k=1 k=1

in which case

Z > /fD Ck (M * Vo)) dy)

k=1 |a|=m

- Z > ) Cap(=1) / Yo (e * DP(fD7P¢) = DP(FDPG)) dy)

k=1 |a|=m B<a
=17+ 15

Since ||k (nk * \IJ)HOO <1, & (77k * \IJ) € C*(2,RM) and each point in € belongs to at
most three of the sets {V,}7°,,

< (1Y D (Gl va) dy+2/f S D° (Gl * ) dy

lo|=m lor|=m
< [D™fI[(€2) + 3[| D™ fI[(2\U1)
< [|ID™ f][(€2) + 3e.

Also by condition (iii) above, selecting (e ( Z Z C, 3) :

|a|l=m B<a

| I3] <Z > anﬁ/!nkwﬁ (fD*77¢,) — DP(fD*P¢)| dy

k= 1|a| m <o

S ISP ICHECIEE

k=1 |a|=m B<a

Hence

/ PSS Do) de < D7) + e
la|=m

and therefore

D™ fN(E) < ([ D™F1[(62) + 4e

Now the proof is complete comparing with (4.7). O
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The following theorems assert weak-* convergence of the distributional measures and total

variation measures when fj is an smooth approximating sequence of f € BV ().

Theorem 33 (Weak Convergence of Total Variation). Let f € BV™(Q) and let fi be a
smooth approximating sequence satisfying equation (4.4). Let py, and p be the extensions of

the measures ||D™ fi|| and || D™ f|| by zero, i.e. for any Borel set A
pr(A) = [|D™ fi[(AN Q)

p(A) = [|ID™fI(AN Q).

Then

*

M — 1

weakly in the sense of Radon measures on R™. In particular, for every ¢ € C.(R™),

/n¢duk—> b dp

First we prove the following simple proposition:

Proposition 1. Let {a;}, {b;}, {¢;} be sequences in R with a; = b; + ¢; for each i, and

assume {a;} is convergent and {¢;} bounded below. Then

lim a; > limsup b; + lim inf ¢;.
1—>00 1—00 1—>00

Proof. Let L = lim a;. Fix € > 0, and choose k large so n > k implies a,, < L + €. Then

1—00

bn:an—cn<L+e—cn<L+e—ir>1£cn for each n > k.

Sosupb, < L+ ¢€— 1nfcn Letting k — oo,

n>k
lim sup b; + hmlnfcl < L+e
1—00
Since € is arbitrary, this proves the proposition. O

Now we prove the theorem:
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Proof. Let f, € C* be a sequence satisfying (4.4). Let C' C R™ be closed.

Claim: limsup [|[D™ fi|[[(C N Q) < || D™ f||(C' N Q).

k—o0
Let V = Q\C. Then V is open, so [|[D™f]|(V) < lign inf || D™ fi||(V'), hence
—00
D™ FI(C N Q) = [[D™ fII(E) = [[D™ FII(V)
— T D7) — D" (V)
2 liminf | D™ fi|(V) + lim sup [[D™ fil|(C'0 ©2) = [|ID™ £ (V)
o0 —00
> limsup || D™ f|[(C N Q). (4.9)

o k—o0

Let K C R be compact, and let U C R™ be open. The previous calculation shows

timsup i (K) = lim sup | D" f| (K 1) < D™ FI[(K 1) = ()
—00

k—ro00
Since f — f in L'(Q)

u(U) = [ D™ F[(U N Q) < Timinf [ D™ fl| (U 1 Q) = lim inf i (U)
—00 —00

by weak lowersemicontinuity:.

By Theorem 1.9.1 in [9], this is sufficient to prove the convergence j;, — .

Corollary 6. Let ) as above, and suppose ) is bounded. Let g € C(2). Then

/ g dI|ID™ il = / gd| D" f]
Q Q

This follows easily by extending g to a C.(R™) function.

Theorem 34 (Weak Convergence of Derivatives). Let f € BV™(Q)), and let {fi} be as
above. Define py and i to be the extensions of the vector-valued measures D™ fr, and D™ f,

respectively. Then i — p in the sense of weak convergence of vector-valued measures, i.e.

for each p € C.(R",RM),

/gp~d,uk—>/<p-du as k — oo
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Proof. Fix € > 0. Choose U; C 2 large enough so that [|[D™ f||(Q\U1) < e.
Let ¢ € C%(Q) with 0 < ¢ <1 and ¢ =1on U;. Let p € C°(R";RM). The idea is that
(¢¢) will have compact support in ©, and (1 — {)|¢| < [¢xa\w; -

Lw-Dmfkdw—Aw-d(Dmf)‘
| fe0-prsan— [ L=0p D" - [0 aomn— [ a=qp-aomp

\U1

IN

/Q S DA () fidi / S™ DR(g0) | + el (1D @\ + | D™ FOAT))

laf=m laj=m

Note that limsup [[D™ fi[[(2\U1) < [|[D™ f[[(2\U1) by (4.9). Also, fi, — f in L(€), so for &
k—00

large, we have

|3 0o [ 30 Do) fd| <

|oo|=m |a|=m
and

D™ il (C\UL) + D™ fI[(2\Uy) < 2[[D™ fI[(2\U1) + € < 3e.

Hence

[e-ompar— | so-d(D’"f)’ < Ol (4.10)
Q (9]

which completes the proof in the case where ¢ is smooth.

Now an approximation argument shows this is true for ¢ € C.(R", RM). Let ¢ € C.(R"),
let supp(yp) C K, and let ¢ = @ * 115 Then supp(ypy) C K + B(0, 1), which is compact,

and

©r — o uniformly in K + B(0,1) as k — oo

For k > N large,

D™ fill(2) < [[D™f[() + € and  [[D™ fie[(Q\U1) < [[D™ F[(Q\U1) + €.
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Then

/QSD-Dmfkdﬂs—/Qw-d(Dmf)‘

(o= Dmsue] + | [0 o) d(Dmf)‘ ;

IN

IN

I = el (ID" @) 10" A1@) +| [ 5 Do~ [ - <Dmf>\

Now by (4.10), for k£ > N large, we have the bound

o0 e~ [ d(Dmf)‘ < Clls Il D™ £
Q Q

So for k> N,

[epmhde= [ ewm| < m o - ol DI@) + Closll DA\
< Cllellll D" FIEOND) < Cellgln

4.2 POINTWISE ESTIMATES

To develop pointwise estimates similar to the case m = 1, we will apply Lemma 5 and a
similar approximation argument. However, the computations are more involved.

For notational simplicity, we will denote the density of the absolutely continuous part of
D™ f with respect to the Lebesgue measure by V™ f = {V* f} 5.,

Henceforth, we will utilize the following pointwise representatives at every x:

r—0

DA f(x) zlimsup]f D f(y)dy for |B] <m — 1.
B(z,r)

r—0

V7 f(x) = hmsup]/B( Vry for ) =

For x € R", define

B
Ty = @’wa + Y V@ (.11)

|8]<m—1 ' |8l=m
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For any cube ) C R", define

THfy) = > ]/ DPf(z) dz—l— Z][ B‘ d(D°f)(2) (4.12)

|Bl<m—1 |Bl=m

T f(y) is a formal Taylor expansion of f of degree m centered at z, constructed from
weak derivatives of f for || < m and the densities V7 f for |3| =

T3 f(y) is nearly an averaging of the Taylor expansion T}" f(y) over z € @, except that
we integrate the mth degree terms with respect to D™ f, hence creating a disparity arising
from the singular part (D™ f)s of the measure. Luckily when approximating up to sets of
small Lebesgue measure, the singular part is, for our purposes, easily dealt with.

Let us introduce an important lemma for C™ functions that is the basis for the pointwise
estimates used in this paper. This is a generalization of inequality (3.6) and was first proven

n [13]:

Lemma 5. Let f € C"(Q) where Q C R™ is an open cube. Then

. " D™f(z
0 1) - sl <o [ HEL g
Qly— 2|
) |D"f(2) —d]
i) |15 f(y < C’/
for each y € Q and any constant vector & = {aq}jaj=m
Proof. Fix x € Q and, for y € (), define
(z—y)’ (x —y)
Pay) = Y Dﬁf(y)TJr > (o™
|B]<m lor|=m
Then clearly ¢, € C*(Q) and
)Bfel a—e;

Oipaly) = Y DU f( - Y D’f(y)

[Bl<m |Bl<m

— Z (Daf(y)_aa)w

—e.)l
|a|l=m,a>e; (Oé 62)‘

Note that
(x

1) =)+ Y (05) - a) T

|a|=m
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so by the inequality 3.6

) = T3 1@ < ee) — (2adel + 3 f (011 —aa><“””;f’) 0

|lal=m

[V (y)ldy |dy o (93—9)

laj=m
vm —dl|z —y|™d . m
< ) [ B ||n_1y| y+/ V" 5(9) — e — 1"y
Q x =yl Q

V™ f(y) — dld

since |z — y|" < C(n)|Q|. Note that V™ f(y) —a@ = {D*f(y) — da }a=m

]

Now we apply the previous result to get the following potential estimates for BV™

functions.
Theorem 35. Let f € BV™(Q) where QQ C R™ is an open cube. Then

dl|D™ f||(z)

|y — z[n—m

() 17" F(y) — f(w)] < /Q

D™ f] — aL"|(2)

‘y _ Z‘nfm

(i) 175 £(y) — F()] < /Q all (4.13)

for each y € Q and any constant vector @ = {aq}jaj=m

Proof. We will prove (ii), from which (i) follows easily.
Let fi be a sequence in C*°(Q) N BV™(Q) such that

1fe = Sl = 0 in W™EHQ),  [ID™fill(Q) — D™ FII(Q)

Such a sequence exists by a Theorem 17. Then Theorems 33 & 34 imply the weak-* conver-

gence

D™ f, = D™ f ID™ fi — ach(| = | D™ f — ac|l.
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d
Fix x € (). Since m > 1, for each € > 0, the function z — ﬁ is continuous.
B(z,€) y—=z

As k — 00, by the weak-* convergence and Lemma 3,

[ ([T, [ (A,
B(xz,e) |y - Z|n B(xz,e€) Q |y - Z|n

d||D™f —adL"
- Clmm) /Q || |xf_ Zﬁ_1||<z> 1)

Similarly for |3] <m — 1, D f, — DPf in LY(Q), so

Z ][B(m’g) (/Q D’ fu(z )< g dy) dz — Z]f (/ Dﬁf(z)(y;—!'z)ﬂdy) dz.

[Bl<m |B]<m

For || = m, the weak-* convergence above implies that

S ([ a) e - Em][mm ([ s an)apsco

|Bl=m

Therefore

][ Tg‘fk(y)—f(y)dx%][ TS F(y) — f(y)dz.
B(z,e) B(z,e)

Now we recall Lemma 5 holds for each k. Letting k& — oo and applying the estimate (4.14),

which is independent of €, we have

[ ) - ] < Oy [ A2 EEIE)
B(z,e€) 0

|z — 271
Taking the limsup as € — 0 implies the result. O]

Now we can prove the crucial pointwise estimate foe BV™ functions:

Theorem 36. Let f € BV™(R"™). Then there is a constant C(m,n) such that for all
xz,y € R,

1fy) =T f(y)]

|z —y|™

< CMjay [D™f = V™ [(@)[[(2) + Mppy [|D™ F = V" f(y)l|(y)) (4.15)
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Proof. First note T} f(y) is an mth degree polynomial in y. Indeed, recall

T3 f(y) ][ DPf(2) W=2", Z][ 6' d(D"f)(2).

|B]<m—1 |Bl=m
Differentiating under the integral sign, we see that D™ (T3 f)(y) = D"Z)i@) Therefore
nf (y) is equal to its Taylor polynomial centered at x:
T3 fy) = > DYTZS)(x ()Y a!@ (4.16)
|| <m
Compute
DT f(x) = DPf(z i + > d(DPf)(z)
|[3\<m 1][ ﬁ‘ |B|=m / B‘ )
p—a — »\B—«
- o L =2 ype
|5<2m: 17[ e JCE m%/Q (8= o)t e
) (z = 2)"
— D f(z dz+ Y d(D7 f)(2)
MENE 1][ |v|=m—|a|][ e )
T ‘04|Dozf
Employing (4.16), we compute
75 f(y) = T ()]
— || - m
< 3 img e - D@ S (07 g - v s LT
lor|<m ’ lal=m
dlle (D f) — aL () ly — =[ D"f(Q)  om ly — 2|
- g;m / [ — z|n=(m=led > o +C’ o Y f@)‘ m!

_— /dllef—ﬁﬁ”l\(Z)>\y—z\'a+C‘Dmf(62) T e

o o=zt ) gl Q|

|af<m

where in the second inequality we applied our potential estimate (4.13) to D*f € BV™~Il(R")

for |a| < m.

By Hedberg’s Lemma,

/Q dID™] = AL giam (@)l Mo (D™ f — GL7]]) ()

|x — Z|n—(m—|oc|)
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Therefore using the fact that |z — y| < diam(Q) and (4.17) we have

T2 f(y) — T f(9)] < Cdiam(Q)™ Mm@ | D™ f — L™ (2)
D" (Q)
e ‘ Q)

ly —x™

- V)|

Also by (4.13),

d||D™ f — oL (2)
ly — z[n—m

[f(y) =T f(y)] < /Q < Cdiam(Q)" Maiam(o) |1 D™ f — bL"||(y)

Since @, b € RM are arbitrary vectors, we choose @ = V™ f(x), b= V™ f(y).

Applying the triangle inequality, [f(y) — 13" f(y)| < |f(y) — T f ()| + |15 f () — T3 f ()],
yields

F(y) = T F )] < Ciam(Q)™ (Maam@ 1D f = " F(@)£7[(2) + Maiami@) | D™ f = V" F(5)£7())

D" (Q m m
+ [ 9 p(a) -
Q|
Note that by the same calculation as (3.15),
2L 97 0)] < Mol 07 = T H(@) 7).
The statement follows since we can select () containing x, y such that diam(Q) < |z — y| +
€. ]

For |3| < m, DPf € BV IPl(R"), so replacing f with D°f in the previous inequality

yields the following theorem:

Theorem 37. Let f € BV™(R"™). Then the exists a constant C(m,n) such that for all

x,y € R" and any multiindex 5 with |3| < m,

D8 f(y) — T3 I DB f(y)]
[ —y[m1°

< CMay |[D™f = V" () [[(z) + Mgy [|1D™ f = V" f ()| (y)
(4.18)

The proof follows immediately from (36), noting that D™ f has more terms than D™~18I D8 f
and V™ f has more terms than V™ 1#IW? f and that all nonzero terms coincide with terms

in D™f and V™ f respectively.
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4.3 LUZIN TYPE APPROXIMATION BY SMOOTH FUNCTIONS

Now we can prove our main result: Our goal is to apply the Whitney Extension Theorem to

an appropriate jet of functions.
Theorem 38. Let f € BV™(R™). For each ¢ >0 , there exists a function g € C™(R"™) such

that
{D°f # DPg}| <€ for each B, 16| <m —1, |{V"f#V"g} <e

Proof. Fix € > 0. By Luzin Theorem, there is a closed set C C R™ with [R"\C| < €/2 such

that D f|5 and V™ f|5 are continuous functions on C. Define

Me(2) = sup M| D" f — V™ ()7 (2) (4.19)
r<%
Claim: me(z) — 0 for almost every z € R™.

Indeed,

M| D™ f = V™ [(2)L7|(2) = My[|[ D™ fs + D™ fae = V™ f(2) £7]|(2)
< M| D™ flls(2) + My || D™ fae = V™ f(2)£7]|(2) = 0

as r — 0, just as in the proof for the C! case. (see 3.15)
Applying Egorov theorem to the sequence 7, we find a closed set C' C C' such that
IC\C| < ¢/2 and

N = 0 uniformly on compact subsets of C'

Then we define the jet F' = {f’}5<, on C by

fﬁ_ D'Bf‘c if |ﬁ‘ <m

V5f|c if |8 =m
Note that
T8l DB P — (Tm—\BIDﬁf)lc

Let K be a compact subset of C'. Fix a multiindex § with |3| < m

ly) - T PIDAF
Claim: sup [P (y) e ()|
z,yeK, |z —y|<d |$ - y|m

—0 as 0—0 (4.20)
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Fix k(9) so that k%l << % Let z,y € K be any pair of points such that |z — y| < .

Mgy | D™ f = V" f(2) L[ (z) + Mpz—y D™ f = V™ f(y) L] (y)
< sup M,|D™f — V" f(x)L"|(z).

ZEK,T<%

Employing inequality (4.18),

bly) — 17 P DPRF
/() ) < Csupne(z) — 0 as k — o
|z — y|m-18l 2€K

Taking the supremum over all z,y € K with 0 < |z —y| < ¢, and noting that k — oo as
0 — 0 implies the claim.

For || = m, equation (4.20) reduces to

sup |V f(y) = VPf(z)| = 0asd—0 (4.21)

z,yeK,|z—y|<d

which is true because V™ f is uniformly continuous on the compact set K.

The above estimates imply that F' is a Whitney jet on the closed set C'. Therefore by
the Whitney Extension Theorem, there exists a function g € C™(R") such that

g(z) = f(z), Dg(x) = D’f(x) (|8] <m), D"g(z)=V"f(z) VweC

Since |R"\C| < ¢, this proves the theorem. O
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4.4 BOUNDING THE ERROR IN VARIATION

Given a function f € BV™(R"™), we want to construct a function g € C™(R") such that
g coincides with f on large set, say F', whose complement has measure less that e, and

moreover, such that we have estimates on the errors in W~ %! norm and the variation:
1f = gllwm-r1@n) <€ D™ fI(R™) — | D™g[|(R")| < e.

The approximation given by the Whitney Extension Theorem in the previous section will not,
in general, provide us with good estimates. At issue is the fact that the extension provided
by the Whitney Theorem is determined using only the information about f on the set F'.
However, since the mth order derivative may have a singular part, the information about f
outside F' is crucial, despite the fact that F' has small measure. Therefore we need to modify
our approximation to account for this, and one way to do so is by a kind of averaging process
over cubes in the Whitney decomposition. This technique is called Whitney smoothing and
was first introduced in [12]. In general, the Whitney smoothing will not produce a C™
function even provided we have good estimates on C'; however, BV™ functions have enough
structure to ensure the desired regularity.

Start by recalling that the function

mk(2) = sup My [| D™ f = NV"™ f(2)L"[(2) = 0

r<%
as k — oo for almost every z in R".

So for € > 0, by Luzin and Egorov Theorems we can find a closed set F' with |F°| < e,

such that D? f|r for |8| < m and VP f|p for |3| = m are continuous, and
N = 0 uniformly on compact subsets of F.
For each a € F, let K, = F'N B(a, 1), and define the function
Ma(t) = SUp sup M| D™ f = N™f(2)L"]|(2)
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By the uniform convergence of 7y, it is easy to check 7,(t) — 0 as t — 0. We will consider
the concave envelope of this function, which we will also denote 7,.
Our goal is to show that the Whitney smoothing
f(z) if xeF

g(x) = (4.22)
Dier pil0) TG f(x) if x ¢ F

is a C"™ function on R™. Here @); are the enlarged cubes in the Whitney decomposition and

{¢:} is the partition of unity on F*° subordinate to {Q;}.

Proof. Recall the definitions of T@@f and T f(z) (see (4.12) and (4.11)).

Let’s include a few important estimates: Let z € R™, let Q be a cube containing = and

S C @ be any measurable subset of positive measure. Let f € BV™(Q). Then

[@l [ d|ps —acr()
Sl g o=

[f(z) = T3 f(x)] < C(n)

This follows from a variant of (3.6) and an approximation argument.

If @ is a cube containing both = and a, then by (36),
|f (2)=T5" f ()]

lz—a[™
< C(m,n) [Mg_y||D™f = V™ f(2)L™|(2) + Mgy | D™ f = V™ f(a) L7 (a)]

In particular if a € F and = € K, then we can easily find a cube @) of diameter less than

2|z — a| containing = and a, which yields the estimate
|f(x) = T7" f(2)] < 2na (2] — a])|z — a|™ (4.23)

immediately from definition of 7,,.

Clearly g|pe € C™(F°), as Téif is a polynomial for each ¢ and the sum is locally finite.

To prove it is C™ in a neighborhood of each point a € F', we will show that
|D%g(x) — Dg(a) = V(D f)(a) - (x — a)| = of|z — al).
where D%g(a) is equal to D*f(a) for |a| < m — 1 and is equal to Vf(a) for |a| = m.
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The idea is to prove that for a € F' and x in a sufficiently small neigbhood of a, that
|D%g(x) = T~ *ID* f ()| < C(m, n)na(|a — al)|x — a|™ 1 (4.24)
which by the argument in section 2.4 shows that that g is C"™ in a neigborhood of a; moreover,

D¥g|r = D*f|r for k < m and D™g|r = V™ f|r.

First consider the case a € int (F'). Then for x € B(a,0) C K, for ¢ sufficiently small,

and |a| < m we have the estimate
|DYf(z) — T 1D f ()] < na(2|lz — al)|z — a|™" 1?1 for each = € B(a, ),

which is true by (4.23). Concavity of 7, implies that n,(c|z — a|) < en.(|Jz — al) for ¢ > 1,
which implies (4.24). By the induction, g is m-times differentiable at a with derivative

V™ f(a). When |a] = m, it is enough to note
IVef(x) = Vf(a)] > 0as |z —a] =0, z € K,,
which proves continuity of the mth order derivative.
Now assume a € 0F. Fix x € F° with |x —a| < 1, and let b be the nearest point to z in

K,, g; be the nearest point to @; in K,.
Expand |D%g(z) — T" ™' Do f(a)| as

= ()

Bty=a
where

SP7 (@ ZD% )DU(TE f(x) = T;" ().
For || > 0, we can replace a by b.
| DV (15 f(z) = T3 f ()]

< T3 f (@) = Ty ()] + (TP f () = T30 ()]
=I+1I
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where again we replace a by b if || < |a].

To estimate 11, we need to use a lemma ([18],Lemma 2.1.5), which states that if 7, is a

modulus of continuity such that for each |o| < m, z,y € K,

1D f(y) — T2 D f(y)| < nallz — yl) |z — y|™

then for some constant C', for every z,y € K, and z € R",
T 1D f(2) = T D f(2)] < Cna(lz = yl) (J2 — 271 4 [y — 2™1).

Now the conditions of this Lemma hold with ¢; and a immediately from our above

estimates, and therefore
TP D7 f () = T DY f(2)] < Cnallas — al)(Jz — a7 4 |2 — g™ ~1),

noting that for || > 0 we can replace a by b. Since all these are comparable to |z — a| we
get that
IT < Cne(|z — al)|z — a|™ 1.

To estimate I, we note that Tg*MD7 f(z) is a polynomial of degree m, so is equal to its

Taylor expansion centered at g;. Therefore

g

- Z| |[Ta§”*”DV*“ﬂqi)—DV*Uf(qi) el
o<m—|y

The left and right terms are just the two Taylor expansions written out.

First we will consider the case |y| < m. Let @ be a cube containing @ and ¢; such that

diam(Q) < 10diam(Q; ). Then for |a| < m, we estimate
127D f(45) = D f(a2)]

IQI / IID’”f v f(z)L|(2)
|Q| gi — 2|n—(m=TaD

< C(n)diam(Q;)™ Q‘Mlodlam(Ql D" f = V" f(a:)L"[|(q:)
< C(n)|x — qi‘mi‘Ol'MCkE—qﬂ D™ f —N" f(q:)L"[|(q:)

< Cn)lz — " "na(|z — ¢))
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because = € @ and diam(@;) < C'dist (Qy, K,) = C'dist (Q;, ¢;) < Clx — ¢;|. We also apply

concavity of n, in the last step.

Now for |a| = m, we cannot apply this estimate because D®f is a measure. Instead we

have

||T@%Daf(%) - Vf(q)|

- |M | = 1@ - V@) @)
|Qil N Q]

D™ =V (@) £7)(@)

B Q]

< C(n)Mcep—g|D™f = V" f(ai) L] (q:)

< C(n)na(lz — al)

since ¢; € K,.

Note that when |a| = |y+0| = m, that |o| = m—|y|. The above estimates for |y+o| < m
imply that

I <Cnollr = q))|lz — @™ M < Onu(lz — a)|z — a|™ P

Now we compute

577 ()] < C(n ZDB% 2)na(|z — al)|z — a1
<C(n )dlam(Q) (|2 — al)|w — o]

< C(nna(lz — al)|z — a7 = Oy (|2 — al)w — a1

This proves the estimate for each a € F', and thus proves that g € C™(R"). O

Now we can sketch some partial results involving the above estimates in the case m = 1.

Let ¢g; be an approximation such that |{f # ¢:}| < 1/t, and let F; be the set {g: = f}.
Recall that for z € FY,

= ST @) = o) (g +f (=) ap1t2)

i
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Then
mm—z/
<Y [ xa@ltalie+ [ xaf o= swlpsie

SSZ:/%!ﬂdx+:/ dw;;|)HDfWQJ

)y +Zdiam@)||Dfll@)
< C)(IIf [l + 1D FII(R™))

o) f / @)@ — 2) - ADf(2)| do

where the last step follows from the fact that diam(@) are uniformly bounded and the fact
that each x € FY lies in at most 4" of the cubes Q:.
Now we will get an upper estimate on the error in variation. Note that since g, is locally
Lipschitz,
[1Dg:l|(R") = [ [Vge()| de.

R

Differentiating, we see that

Vg, = ZV% +Z¢, !Ql DF@Q)

Then recalling |V;(z)| < C(n)diam(Q;)~!, and the fact that ZV%(x)f(x) = 0, we

estimate

1Dgell(F,

|veda)(fa /%u—¢m0mu0yﬁéx@<ﬂDg?M

= ZC / diam(Q:) x|/, —f(x)|dx—i—][~‘ diam (Q;) " diam(Q;)|| Df|(Q:)dx

-+/;+Df@Zn¢r
S (1 = fwlde + 21051@0)

Now we apply the Poincaré inequality for BV functions and the fact that @ C F¥ and

each z € Ff lies in at most 4" of the cubes @7 to recover

[1Dgil|(E5) < C(n)[DFINE) (4.25)
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Then the sequence {g;} is uniformly bounded in BV (R™). Using the same argument as
in the proof for Lipschitz functions (see p. 31), we can assume that all the functions g; are
supported in a compact ball. Therefore they converge in L'(R") to some function f Since

gi(x) — f(z) for almost every x € R", it follows that
lge — fllzr@ny = 0 as t = oo.
By weak lowersemicontinuity (Theorem 15) this implies that
IDFI®R?) < limin | Dl ().

In addition, inequality (4.25) gives us a bound on the error in variation; however, it does

not imply the convergence
[ Dge]|(R™) = IDF(R™)] = 0 as ¢ — oo.

I believe that these estimates can be significantly improved, and in fact that by modifying

the construction of g; on the set {g; # f}, one can recover
|Dg:||(R™) — || Df||(R™) as t — oo.

However, this is a nontrivial result and I am currently working on the details.
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5.0 THE LUZIN THEOREM FOR HIGHER ORDER DERIVATIVES

In 1917, N. Luzin proved [17] [23] the following surprising result: For any Lebesgue measur-
able function f : R — R there is a continuous almost everywhere differentiable function g
such that ¢ = f almost everywhere. This is surprising even for the function f(z) = 1/z,
because the antiderivative of f is discontinuous and, in fact, unbounded at 0. In this case,
we correct the antiderivative by adding continuous functions which are differentiable almost
everywhere with derivative equal to zero but which are not constant (one example of such a

function is a Cantor staircase).

The original proof due to Luzin is purely one-dimensional, and offers no insight into a
proof in higher dimensions. However, in 2008 Moonens and Pfeffer [19] proved the following

generalization:

Let U be an open subset of RY. Given any Lebesque measurable function f : U — RY,
there is an almost everywhere differentiable function g € C(RYN) such that Vg = f almost

everywhere.

The goal of this paper is to extend the results to include higher order derivatives.

For an m-times differentiable function ¢ defined in an open subset U C RY we write

D™g = (D%g)

laf=m

to denote the collection of all partial derivatives of order m. Our main result reads as follows:

64



Theorem 39. Let f = (f%) be a Lebesgue measurable function defined in an open set

|a|=m
U C R™. Then there is a function g € C™ (R™) which is m-times differentiable a.e. and
such that

D"g=f ae inU,

1.€.

D% = f* a.e. in U for|a] =m.

Moreover, for any o > 0, the function g may be chosen such that

|ID7glloc <o for every |y| < m.

The outline of the proof is as follows: If f = (f%) is continuous and bounded on

lal=m
an open set U of finite measure, then we can find and a function g € C™ such that D™g
approrimates f on a large compact set. Using this approximation and a suitable limiting
process, we can find g € C™ such that D™g is equal to f on a large compact set. We then
show that the same holds more generally for the class of Lebesgue measurable functions, since
such functions are continuous and bounded when restricted to a large compact set. The final
construction involves piecing together approximations of f using a compact exhaustion of
R™, taking care to avoid any overlap which would cause the resulting approximation to lose

its desired form. The proof requires careful estimates for the approximation, which is the

main difficulty.

5.1 SMOOTH FUNCTIONS WITH PRESCRIBED HIGHER ORDER
DERIVATIVES ON LARGE SETS

Throughout the paper |U| denotes the N-dimensional Lebesgue measure of a set U.

Given a continuous function f = (f%) defined in an open set U C R™ with |U]| < oo,

|a|=m
our first task is to construct a compactly supported function v € C*(U) such that D"u = f
on a large compact subset of U. To this end we need the following approximation result.

For the case m = 1, see [2].
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Lemma 6. Fir m € N and let U C RY be open with |U| < co. Let f = (f%) be a

|al=m

continuous and bounded function on U. Then for any €,n,0 > 0, there exists a function

u € CX(U) and a compact set K C U such that for each p € [1,00] the follo