
  i
 

CLASSIFICATION OF VISEMES USING VISUAL CUES 
 
 
 
 
 
 
 
 

by 

Nazeeh Shuja Alothmany 

BSc, King Abdulaziz University, 1993 
  

MS, University of Michigan, 1998 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

 Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2009 

 



UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 
 
 

This dissertation was presented 

by 

 
Nazeeh Shuja Alothmany 

 
 
 

It was defended on 

April, 17th, 2009 

and approved by 

Ching-Chung Li, Professor, Department of Electrical and Computer Engineering 

Luis F. Chaparro, Associate Professor, Department of Electrical and Computer Engineering 

Amro El-Jaroudi, Associate Professor, Department of Electrical and Computer Engineering 

John D. Durrant, PhD, Professor and Vice Chair of Communication Science and Disorders 

Susan Shaiman, PhD, Associate Professor, Department of Communication Science and Disorders 

Dissertation Director: J. Robert Boston, Professor, Department of Electrical and Computer Engineering 

 

 

  ii



Copyright © by Nazeeh Shuja Alothmany 

2009 

  iii



CLASSIFICATION OF VISUAL VISEMES USING VISUAL CUES 

Nazeeh Shuja Alothmany, Ph.D 

University of Pittsburgh, 2009 

 Studies have shown that visual features extracted from the lips of a speaker (visemes) can 

be used to automatically classify the visual representation of phonemes.  Different visual features 

were extracted from the audio-visual recordings of a set of phonemes and used to define Linear 

Discriminant Analysis (LDA) functions to classify the phonemes.  

. Audio-visual recordings from 18 speakers of Native American English for 12 Vowel-

Consonant-Vowel (VCV) sounds were obtained using the consonants /b,v,w,ð,d,z/ and the 

vowels /ɑ,i/. The visual features used in this study were related to the lip height, lip width, 

motion in upper lips and the rate at which lips move while producing the VCV sequences. 

Features extracted from half of the speakers were used to design the classifier and features 

extracted from the other half were used in testing the classifiers. 

When each VCV sound was treated as an independent class, resulting in 12 classes, the 

percentage of correct recognition was 55.3% in the training set and 43.1% in the testing set. This 

percentage increased as classes were merged based on the level of confusion appearing between 

them in the results. When the same consonants with different vowels were treated as one class, 

resulting in 6 classes, the percentage of correct classification was 65.2% in the training set and 

61.6% in the testing set. This is consistent with psycho-visual experiments in which subjects 

were unable to distinguish between visemes associated with VCV words with the same 

consonant but different vowels. When the VCV sounds were grouped into 3 classes, the 

percentage of correct classification in the training set was 84.4% and 81.1% in the testing set. 
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In the second part of the study, linear discriminant functions were developed for every 

speaker resulting in 18 different sets of LDA functions. For every speaker, five VCV utterances 

were used to design the LDA functions, and 3 different VCV utterances were used to test these 

functions. For the training data, the range of correct classification for the 18 speakers was 90-

100% with an average of 96.2%. For the testing data, the range of correct classification was 50-

86% with an average of 68%. 

A step-wise linear discriminant analysis evaluated the contribution of different features 

towards the dissemination problem. The analysis indicated that classifiers using only the top 7 

features in the analysis had a performance drop of 2-5%. The top 7 features were related to the 

shape of the mouth and the rate of motion of lips when the consonant in the VCV sequence was 

being produced. Results of this work showed that visual features extracted from the lips can 

separate the visual representation of phonemes into different classes.  
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1.0  INTRODUCTION 

A human being has five senses - sight, hearing, touch, smell, and taste. One can acquire 

more exact information on the surrounding environment by integrating cues obtained from 

different senses. This merging of cues from different senses in humans has led many researchers 

to investigate the effects of combining several modalities or sensor outputs together on the 

performance of many automated systems currently utilizing a single modality.  

Hearing impairment is one of the handicaps common among people, and amplification 

devices to compensate for it date back several centuries. These amplification devices are often 

called hearing aids, and their aim is to maximize speech understanding for individuals with 

hearing impairment. However, some researchers believe that the performance of these devices in 

noisy environments has not yet reached a satisfactory level that justifies the cost to the patient [1] 

Alternatively, a person skilled in lip reading is able to infer the meaning of spoken 

sentences by looking at the configuration and the motion of the visible articulators of the 

speaker, such as the tongue, lips, teeth, and cues from the context. Lip reading is widely used by 

hearing impaired persons for speech understanding. In addition to lip reading, facial expressions 

and body language can be used to assist in aural communication [2]. Sumby and Pollack [3] 

showed that adding visual information to acoustic waveforms is equivalent to a 12dB increase in 

the signal to noise ratio (SNR). 
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One of the important studies that attempted to investigate the relation between acoustic 

and visual information was conducted by McGurk [4]. The study showed that presenting a 

viewer with conflicting audio-visual recordings of a certain word results in the wrong perception 

of the sound. This study demonstrates that vision can play a role in speech perception. Clavert 

[5] confirmed the Mcgurk effect by using functional Magnetic Resonance Imaging (FMRI) to 

show that the speech perception center in the brain analyzes speech-like lip motions even when 

no sound is present.  

It is not yet clear how the brain combines visual information with audio information to 

understand speech. It is also not clear what kind of visual cues are utilized by the brain in this 

process. Therefore, many studies have attempted to explore different methods of combining 

visual cues with acoustic information in addition to utilizing different types of visual cues to 

represent the speech [6-10]. 

In some applications, such as lip reading and screening of security camera recordings, 

there is no access to audio. In other applications, an audio signal might be present but severely 

corrupted. Having automatic viseme classifiers based on visual cues will help in narrowing down 

the list of possible spoken phonemes. Furthermore, the identification of visemes might be useful 

to adjust the parameters of hearing aid filters for better performance in situations where more 

than one person is talking.  

The initial objective of the present study was to investigate whether utilizing visual 

information in conjunction with a hearing aid device would enhance the performance of the 

device in noisy environments. To further investigate this objective, audio-visual recordings were 

obtained from the Advanced Multimedia Lab at Carnegie Mellon University [11]. The data 

consisted of recordings for the change in x-y coordinates of lip corners together with lower and 
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upper lip heights in consecutive frames of video recordings for subjects repeating different 

words. The points of interests on the lips in that database are shown in Figure 1-1. The 

consistency of the visual information accompanying the utterance of specific words across 

different speakers was evaluated.  

 
 

 

 

Figure  1-1 Points of focus around the lips in Chen's audio-visual data base 

 
 
 
The data set showed that a repeated pattern for the same word exists within the same 

speaker and even across speakers. However, since these data were for connected speech, it was 

difficult to quantify and model these patterns. In order to build and systematically evaluate 

models of lip motion patterns, models should first be built for smaller blocks of speech, then 

extended to connected speech.  

Phonemes are the basic units of speech in the acoustic/auditory domain. The term 

“viseme” has been introduced as an analogy to represent the visual representation of the 

phoneme [12]. A viseme describes the particular facial and oral movements that occur with the 
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voicing of phonemes, and they are considered the smallest distinguishable visual unit of speech 

[13-17].  

Researchers concerned with speech production and lip reading have obtained different 

viseme-to-phoneme mappings and identified phonemes that are visually confused with one 

another. One of the important studies conducted in this area was done by Owen and Blazek [18]. 

The group presented video recordings of vowel-consonant-vowel (VCV) sounds for 23 English 

consonants to 10 subjects. Subjects observed video sequences of speakers (without audio) saying 

a certain sound. Based on the motion patterns of the visual articulators (lips, tongue, throat, teeth, 

and facial emotions) they observed, the subjects attempted to identify the produced sound. 

Results from all subjects were gathered in matrices with row representing the actual VCV 

sequence and columns representing the response of the subject. These matrices were called 

confusion matrices. When a cluster of confused sequences appeared in the matrix, a 75% 

response criterion was used as a requirement for considering these phonemes to have the same 

visual representation (i.e. viseme). The viseme-to-phoneme mapping obtained by Owen is 

consistent with mappings obtained by many other researchers working in speech production as 

well as audio-visual signal processing as discussed in Section 2.2.  

The objective of the current study is to analyze the feasibility of using a set of visual 

features extracted from the 2D images of lip motion in an automated classification system to 

classify sounds into different visemes. Different visual features from the audio-visual recordings 

of a set of phonemes were extracted and used in a stepwise linear discriminant analysis to 

identify which visual features are most effective in distinguishing between the different visemes. 
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Figure  1-2 Steps of designing an automatic viseme classifier based on visual cues 

 
 
 
Figure 1-2 shows a block diagram representing the steps involved in reaching the 

objective. The figure has three major blocks, with feedback loops between them. The first step in 

designing a visual classifier of phonemes is to develop an audio-visual database consisting of 

recordings for speakers uttering different phonemes. Visual features are extracted from the video 

images and used to train and test a visual classifier. The parameters of the classifier were 

modified based on the feedback coming from the results of analyzing the classification output.  

Chapter Two of this thesis reviews the literature available on different audio-visual 

applications and then concludes with a summary of the objective of the study that is based on the 

review. Chapter Three describes the experimental setup. Chapter Four presents the results of the 

experiments conducted. Chapter Five discusses the results. The conclusion is presented in 

Chapter Six and suggestions to future work are presented in Chapter Seven. 
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2.0  LITERATURE REVIEW  

There have been a wide range of studies in the area of audio-visual signal processing. In 

each study, different visual features as well as different classifiers have been chosen and tested 

for performance. Despite this extensive research, there are many research questions still open in 

this area, for example [13] 

1. Which facial features are important? How are geometric features such as lip height 

and width related to non-geometric features such as discrete cosine transform of the 

mouth image? 

2. What methods offer an effective means of using visual information and audio 

information together for speech comprehension? 

3. How can visual cues such as face pose and gaze be effectively used to direct the 

attention of audio speech recognition to enhance the robustness of the audio signal? 

This chapter summarizes the different approaches used by many researchers working in 

audio-visual applications. Section 2.1 discusses work done in studying the correlation between 

the audio and visual signals. Section 2.2 focuses on work in the area of mapping visemes to 

phonemes. Section 2.3 presents some miscellaneous audio-visual applications and Section 2-4 

summarizes the review and re-states the objectives of this study based on the literature review. 
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2.1 AUDIO-VISUAL CORRELATION 

Studies have been conducted by many researchers to investigate the correlation between 

visual articulators and sounds produced by them. Many parameters have been used in these 

studies to represent both visual and audio signals.  

Hani et al [19] examined the linear association between the vocal tract configuration, 

facial behavior and speech acoustics. They applied linear estimation techniques to support the 

claims that facial motion during speech is largely a byproduct of producing the speech acoustics. 

The experimental data they used included measurements of speech acoustics, the motion of 

markers placed on the face and in the vocal-tract for two subjects. The numerical results showed 

that, for both subjects, 91% of the total variance observed in the facial motion data could be 

explained by vocal-tract motion by means of simple linear estimators. For the inverse path, i.e. 

recovery of vocal-tract motion from facial motion, their results indicated that about 80% of the 

variance observed in the vocal-tract can be estimated from the face. Regarding speech acoustics, 

they observed that, in spite of the nonlinear relation between vocal-tract geometry and acoustics, 

linear estimators are sufficient to explain between 72 and 85% (depending on subject and 

utterance) of the variance observed in the RMS amplitude of the spectral envelope.  

J Barker [20] showed that there is correlation between the linear estimate of acoustics 

from lip and jaw configuration and speech acoustics itself. In his study, the lips and jaw 

movements were characterized by measurements taken from video images of the speaker’s face, 

and the acoustics were characterized using spectral pair parameters and a measure of RMS 

energy. The speech acoustics estimated from the lip and jaw configurations had a correlation of 

0.75 with the actual speech acoustics. 
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Ezzat and Poggio [21] designed a system that had a set of images spanning a wide range 

of mouth shapes. They attempted to correlate those images with the phonemes from a speech 

signal. The purpose was to use the correlation results in animating a lip that moves according to 

the speech signal. Their system takes input from a keyboard and produces an audio-visual movie 

of a face enunciating that sentence. The generic name of their system is Mike Talk, and videos of 

their results are available on their website [22]. Their results indicated a correlation between the 

lips and the acoustics produced. 

Roland et al [23] investigated the statistical relationship between the acoustic and visual 

speech features for vowels. Their study used an audio-visual speech data corpus recorded using 

Australian English. The acoustic features were the voice source excitation frequency f0, the 

formant frequencies f1-f3, and the RMS energy, while the visual features were extracted from the 

3D positions of the two lip corners and the mid point of upper and lower lips as shown in Table 

2-1. Several strong correlations are reported between acoustic and visual features. In particular, 

F1 and F2 and mouth height were strongly correlated. 

 
 

Table  2-1 Acoustic and visual features used by Roland 

 
 

Acoustic feature Visual feature

Voice source excitation f0

Formant frequency F1 

Formant frequency F2 

Formant frequency F3 

Mouth height 

Mouth width 

Lip protrusion
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 The studies presented in this section indicate that the audio and visual signals are 

correlated, which justifies the attempt to model the visual representation of phonemes. Most of 

the studies in this area focused on the visual cues related to the mouth and lips, which led us to 

focus on visual features related to the mouth area in designing the first block shown in Figure 1-

2. 

2.2 LIP READING 

A person skilled in lip reading is usually able to infer the meaning of spoken sentences by 

looking at the configuration and the motion of visible articulators of the speaker such as the 

tongue, lips, and teeth. This skill of lip reading is widely used by hearing impaired persons for 

speech understanding. However, lip reading is effective only if the speaker is observed from the 

frontal view. In addition, lip reading becomes difficult if more than one person is talking at the 

same time because a lip reader can focus only on one speaker at a time.  

This section reviews some of the concepts involved in lip reading as well as research that 

has been conducted in the visual identification of phonemes. 

2.2.1 Visemes and Phonemes 

The Webster English dictionary defines phonemes as abstract units of the phonetic 

system of a language that correspond to a set of similar speech sounds which are perceived to be 

a single distinctive sound in the language [24]. An example of a phoneme is the /t/ sound in the 

words “tip”, “stand”, “water”, and “cat”. Since the number of consonants in the world's 
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languages is larger than the number of consonant letters in any one alphabet, linguists have 

devised systems such as the International Phonetic Alphabet (IPA) to assign a unique symbol to 

each consonant [25]. The Longman Pronunciation Dictionary, by John C. Wells [24], for 

example, used symbols of the International Phonetic Alphabet and noted that American English 

has 25 consonants and 19 vowels, with one additional consonant and three additional vowels for 

foreign words. 

The term "viseme" combines the words "visual" and "phoneme" [12]. Visemes refer to 

the visual representations of lip movements corresponding to speech segments (phonemes), and 

they are considered the smallest unit of speech that can be visually distinguished [13], [15], [14], 

[16], [17].  

 The mapping between visemes and phonemes is many to many, meaning that one viseme 

may correspond to more than one phoneme and the same phoneme can correspond to multiple 

visemes. This happens because the neighboring phonemic context in which a sound is uttered 

influences the lip shape for that sound. For example, the viseme associated with \t\ differs 

depending on whether the speaker is uttering the word "two" or the word "tea". In the former 

case, the \t\ viseme assumes a rounded shape in anticipation of the upcoming \uu\ sound, while  

in the latter it assumes a more spread shape in anticipation of the upcoming \ii\ sound[18, 26].  

Researchers have developed many mappings between the visemes and phonemes, which are 

discussed in the remaining part of this section. 

 Faruqui et al [27] used a map between Hindi phonemes and 12 visemes, where several 

phonemes were mapped to one viseme. The mapping shown in Table 2-2 was used to animate a 

face with lips moving in synchrony with an incoming audio stream. In this system, once the 

incoming audio signal was recognized, the mapping shown in Table 2-2 was used to select the 
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corresponding viseme to be animated to the observer. The paper did not explain how this 

mapping was obtained, but it stated that the animated faces were shown to different observers 

and the perception rates were promising. 

Verma et al [28] also used this mapping with a modified scheme for synchronizing the 

audio and visual signals. He applied the speech to a recognizer that generated a phonetic 

sequence that was converted to a corresponding viseme sequence using the mapping in Table 2-

2. Ashish also stated that he would attempt to extend this work to English language phonemes. 

 
 

Table  2-2 Faruqui’s phoneme-to-viseme mapping rule 
 

 

Phoneme Viseme No Phoneme 
Viseme 

No 

a,h 

e,i 

l 

r 

o,u 

p,b,m 

1 

2 

3 

4 

5 

6 

g,k,d,n,t,y 

f,v,w 

h,j,s,z 

sh,ch 

th 

Silence 

7 

8 

9 

10 

11 

12 

  
 
 

Saenko et al [29] attempted to use articulatory features to model visual speech. They 

presented another mapping of English phonemes to 14 visemes as shown in Table 2-3. 
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Table  2-3 Kate et al. viseme to phoneme mapping rule 
 

 
Viseme Index Corresponding Phoneme Viseme Index Corresponding Phoneme

1 

2 

3 

4 

5 

6 

7 

ax ih iy dx 

ah aa 

ae eh ay ey hh 

aw uh u wow ao w oy 

el l 

er axr r 

Y 

8 

9 

10 

11 

12 

13 

14 

b p 

bcl pcl m em 

s z epi tcl dcl n en 

ch jh sh zh 

t d th dh g k 

f v 

gcl kcl ng 

 
 
 
 Saenko’s group wanted to design a classifier that would identify some of the phonemes 

using the four visual features related to lip shape shown in Table 2-4. 

 
 

Table  2-4 Viseme to feature mapping 
 
 

Viseme Lip-Open Lip-Round

/ao/ Wide Yes 

/ae/ Wide No 

/uw/ Narrow Yes 

/dcl/ Narrow No 
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 Saenko’s group developed an audio-visual database consisting of two speakers and 

conducted preliminary experiments to classify the phonemes using the features listed in Table 2-

4. They obtained classification rates above 85%.  The system they developed focused on vowel 

identification, and the testing was done on two subjects only. 

 Jintao et al [30, 31] worked on visually classifying consonants based on visual physical 

measures. They developed an audio-visual database consisting of four speakers producing 69 

consonant-vowel (CV) syllables. The video recordings from the database were presented to six 

viewers with average or better lip reading abilities, and visual confusion matrices were obtained. 

Consonants that were most commonly visually confused with each other were grouped together 

as one visual unit as shown in Table 2-5 

Studies conducted by this group included placing 20 optical markers on the face of a 

speaker as shown in Figure 2-1. A motion detector designed by Qualisys tracked the 3D 

positions of these markers. The output of the detector had 51 points for every marker per frame. 

These points were arranged in matrices, and Euclidean distances between the points in 

consecutive frames were calculated and used as visual features. These features were then used to 

train a clustering based classifier using the classes shown in Table 2-5. The recognition accuracy 

was 38.4% for the spoken CV sequence /Ca/, 36.1% for the spoken CV sequence /Ci/ and 36.0% 

for the spoken CV sequence /Cu/. 

This study is very close to the objectives of our project but it was done only on two 

speakers. In addition, this study required the use of the 3D coordinates of the points of focus 

shown in Figure 2-1. This adds some limitations on the applications of this study since 3D 

coordinates are not available in many applications, such as video conferencing, telephony, and 

satellite images. 
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Table  2-5 Jintao phonemic equivalence classes 
 
 

Visual Unit Confused Consonants

1 

2 

3 

4 

5 

6 

7 

8 

9 

/m,b/p/ 

/f,v/ 

/r/ 

/w/ 

/θ,δ/ 

/ζ,∫,d ζ,t∫/ 

/t,d,s,z/ 

/l,n/ 

/k,g,y,h/ 

  
 
 

 

 

Figure  2-1 Placement of 20 optical markers on speaker face 
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 Warda et al [32] attempted to classify visual visemes associated with three French 

phonemes /ba/, /bi/,/bou/. The group used lip corners and center points of both upper and lower 

lips as visual features entered into a neural network for the purpose of distinguishing between the 

video recordings of the three phonemes. The study didn’t mention the number of speakers 

involved. The results are shown in Table 2-6 

 
 

Table  2-6 Recognition rate of French vowels 
 

 

 
Recognition Rate 

Training Set Testing Set

Ba 

bi 

Bou 

63.33% 

73.33% 

83.33% 

63.64% 

72.73% 

81.82% 

Average 73.33% 72.73% 

 
 
 
Leszcynski et al [33, 34] used three classification algorithms for visemes obtained from 

the CORPORA database that consists of audio-visual recordings of Polish. The group used two 

different sets of features to describe the visemes. The first one was based on a normalized 

triangle covering the mouth area and the color image texture vector indexed by barycentric 

coordinates. The second procedure performed a 2D Discrete Fourier Transform (DFT) on the 

rectangular image including the mouth area with respect to small blocks of DFT coefficients. 

The classifiers in their work were based on Principle Component Analysis and Linear 

Discriminant Analysis. The group reported that the DFT+LDA exhibits higher recognition rates 

than MESH+LDA and MESH+PCA methods – 97.6% versus 94.4 and 90.2%, respectively. It is 
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also much faster than MESH+PCA. The group obtained a 94% recognition rate for the 6 classes 

shown in Figure 2-2 but the group didn’t associate those visemes with corresponding phonemes. 

 
 
 

 

 

 
 

Figure  2-2 Representative images for six major viseme classes 
 
 
 

 Huang and Chen [35] used Gaussian mixture models (GMM) and Hidden Markov 

Models (HMM) in mapping an audio parameter set to a visual parameter set in a technique 

aiming to synthesize mouth movements based on acoustic speech. In this technique, the visual 

information was represented by lip location (width and height of the outer contour of the mouth), 

while 13 spectral coefficients were extracted from the acoustical speech representing the audio 

data. Both audio and visual features were combined to form a single feature vector that was 

applied to the GMM and HMM. Huang and Chen reported smooth and realistic lip movements 

with this system. However, the system assumed that both audio and visual information is 

available, which might not always be the case.  
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 The studies presented in this section presented different applications for viseme– 

phoneme mappings and applications. The common visual cues in the applications presented in 

the previous sections were related to motions and positions of the lips. 

2.2.2 Visual Perception of Phonemes 

Researchers concerned with speech production and lip reading have obtained different 

viseme-phoneme mappings and identified phonemes that are visually confused with one another. 

This section will cover the work done in this area. 

Kricos [36] conducted a study with 12 female students who had normal hearing with no 

experience in lip reading. These subjects were presented with black and white video recordings 

from six different speakers repeating VCV sounds involving 23 English phonemes and 3 vowels. 

Subjects were asked to identify the consonant being shown. The responses were used to generate 

confusion matrices for every speaker. Phonemes that were confused with each other for more 

than 75% of the utterances were grouped together and considered to have the same visual 

representation (i.e. viseme). Results from this study are shown in Table 2-7  

Another study by Benguerel [37] used video recordings of VCV sounds including the 

consonants /p,t,k,t∫,f,θ,s,∫,w/ and the vowels /i/, /æ/, or /u/. These recordings, obtained from a 

single female speaker, were presented to 10 subjects. Five of those subjects were hearing 

impaired, while the remaining five had normal hearing. All subjects were asked to identify the 

consonant being shown on the video monitor. Consonants that were confused with each other for 

more than 75% of total utterances were considered to have the same visual representation. Their 

results are shown in Table 2-8. 
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Table  2-7 Phonemes visually confused with each other for different speakers (Kricos) 
 

 
Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5 Speaker 6 

/p,b,m/ 

/f,v/ 

/w,r/ 

/∂,θ/ 

/∫,ζ,t∫,d ζ/ 

/t,d,s,z/ 

/l/ 

/k,n,j,h/ 

/p,b,m/ 

/f,v/ 

/w,r/ 

/∂,θ/ 

/∫,ζ,t∫,d ζ/ 

/t,d,s,z/ 

/l/ 

/k,g,n,j,h/ 

/p,b,m/ 

/f,v/ 

/w,r/ 

/∂,θ/ 

/∫,ζ,t∫,d ζ/ 

/k,g/ 

/p,b,m/ 

/f,v/ 

/w,r/ 

/∂,θ/ 

/∫,ζ,t∫,d ζ/ 

/t,d,s,z/ 

 

/p,b,m/ 

/f,v,s,z/ 

/w,r/ 

/∫,ζ,t∫,d ζ/ 

 

/p,b,m/ 

/w,r, ∂,θ / 

/∫,ζ,t∫,d ζ/ 

/t,d,s,z,n,l,j,h/ 

 

 
 
 

Table  2-8 Phonemes visually confused with each other (Benguerel) 
 

 
Normal Hearing Hearing Impaired

/p/ 

/f/ 

/w/ 

/ θ/ 

/t∫,∫/ 

/t,k,s/ 

/p/ 

/f/ 

/w/ 

/ θ/ 

/t∫,∫/ 

/t,k,s/ 
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Owen and Blazek [18] extended the studies made by Benguerel and Kricos. They used 10 

subjects, 5 hearing impaired and 5 normal hearing. All subjects were presented with video 

recordings for vowel-consonant-vowel (VCV) sequences without sounds. They used 23 English 

consonants /p,b,m,f,v,t,k,t∫,f,θ,∂,s,∫,w,r,dζ,ζ,d,s,z,g,n,l,h,j/ and 4 vowels /ɑ/, /i/, /u/, and /^/. 

Subjects were asked to identify the consonant shown on video.  The highest overall correct score 

was 46%. Results from all subjects were gathered in confusion matrices. When a cluster 

appeared in the matrix, a 75% response criterion was used as a requirement for considering these 

phonemes to have the same visual representation (i.e. viseme). This criterion resulted in different 

viseme classes as shown in Table 2-9 

 
 
 

Table  2-9  Visemes associated with different vowels (Owen) 
 

 
Viseme Class /ɑ/C/ɑ/ /^/C/^/ /i/C/i/ /u/C/u/ 

Class 1 

Class 2 

Class 3 

Class 4 

Class 5 

Class 6 

Class 7 

/p,b,m/ 

/f,v/ 

/θ,∂/ 

/w,r/ 

/t∫,dζ,∫,ζ/

/k,g,n,l/ 

/h/ 

/p,b,m/ 

/f,v/ 

/θ,∂/ 

/w,r/ 

/t∫,dζ,∫,ζ/

/t,d,s,z/ 

/p,b,m/ 

/f,v/ 

/θ,∂/ 

/w,r/ 

/t∫,dζ,∫,ζ/

/t,d,s,z/ 

/p,b,m/ 

/f,v/ 
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The viseme clustering was consistent between all four vowels for the first two classes. 

For vowels /ɑ/, /^/, and /i/, the viseme clustering was consistent between all three vowels for the 

first five classes. 

Dodd [38] conducted a review for the literature available on viseme classification and 

concluded that visemes can generally be classified into nine distinct groups as shown in Table 2-

10.  

 
 

Table  2-10 Dodd’s Viseme groups for English consonants 
 
 

Viseme # Consonants Viseme # Consonants

1 

2 

3 

4 

5 

 

/f,v/ 

/th,dh/ 

/s,z/ 

/sh,zh/ 

/p,b,m/ 

 

6 

7 

8 

9 

/w/ 

/r/ 

/g,k,n,t,d,y/ 

I 

 

 
 
The studies presented in this section show some of the attempts made in obtaining 

mappings between phonemes and visemes. Most of the work was based on human response. The 

consistency of these mappings across different subjects motivated us to investigate if this 

consistency can be captured by an automatic classifier that is based on visual cues.  
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A comparison of the results in Tables 2-7 through 2-10 and the results of viseme- to-

phoneme mappings in Tables 2-2, 2-3 and 2-5 show that many phonemes are consistently 

grouped together in one viseme. These common assignments are summarized in Table 2-11 

 
 
 

Table  2-11 Common viseme-to-phoneme mapping 
 
 

Viseme Class Associated phonemes

1 

2 

3 

4 

5 

6 

7 

/p,b.m/ 

/f,v/ 

/θ,∂/ 

/w,r/ 

/t∫,dζ,∫,ζ/ 

/t,d,s,z/ 

/l/ 

 
 
 
This objective of this study is to classify visemes based on visual cues. The study 

involves conducting experiments on a set of audio-visual recordings of specific sounds. Since the 

viseme classes for some phonemes are consistent across different studies, as shown in Table 2-

11, a sample representing each class in Table 2-11 will be in the audio-visual data set used for 

this study.  
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2.2.3 Lip reading in Speech Recognition 

One of the major areas of application for visual cues is the area of audio-visual speech 

recognition. Several researchers have worked on incorporating lip motion information into 

systems that were originally based on audio information, hoping to enhance the performance of 

these systems. This section covers some of the work done in this area.  

In a study of audio-visual signal processing, Chen [13]  stated that an automatic lip 

reading system involves three core components: visual feature extraction, audio feature 

extraction, and the recognizer or classifier. The automatic lip reading system proposed by Chen 

used both visual and audio information. Lip movements were used as the visual features. The 

audio signal was divided into frames and converted into sixteenth-order linear prediction coding 

(LPC) coefficients to create the audio features. The audio and visual features were combined in 

one vector and applied to a hidden Markov model (HMM) for final recognition. 

For the lip-tracking phase, Chen modeled the color distribution of the face pixels and of 

the background and then used a Gaussian function to extract the face of the speaker. After 

extracting the face, a template resembling the shape of the lips was used to extract the corners 

and height of both the upper and lower lips. This process was repeated for every image frame. 

One of the limitations of this technique was that the speaker needed to be in front of the camera. 

Chen compared the performance of a HMM based speech recognizer with audio only input, 

audio-visual input and visual only input. The audio signals were corrupted with additive white 

Gaussian noise at various SNRs ranging from 32 dB to almost 16 dB.  

The study showed that at an SNR of 16dB the recognition rate of the audio-visual based 

system was almost four times higher than the recognition rate of the audio-based system. The 

differences between the recognition rates became less as the SNR increased, but the audio-visual 
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system consistently had higher values. At an SNR of 32 dB, both systems performed at about the 

same rate. Chen concluded that automatic lip reading could enhance the reliability of speech 

recognition. He added that through lip synchronization with acoustics, it would be possible to 

render realistic talking heads with lip movements synchronized with the voice. 

Luettin and Dupont [39] stated that the main approaches for extracting visual speech 

information from image sequences can be grouped into image-based, geometric-feature-based, 

visual-motion-based, and model-based approaches. In the image-based approach the gray-level 

representing the mouth is either used directly or after some preprocessing as a feature vector. The 

visual-motion-based method assumes that visual motion during speech production contains 

relevant speech information such as lip movement. The geometric-feature based approach 

assumes that certain measures such as the width or height of the mouth openings are important 

features. In the model-based approach, a model for the visible speech articulators, usually lip 

contours, is built and is described by a small set of parameters. The group developed a large 

vocabulary continuous, audio-visual speech recognizer for Dutch using different representations 

of visual cues and showed that a combined audio-visual recognizing system improves upon 

audio-only recognition in the presence of noise. 

Petjan [40] also developed an audio-visual speech recognizer that used lip height and 

width as visual cues applied with the acoustic waveform to the recognizer. Petjan’s results 

confirmed Chen’s claim of obtaining higher recognition rates with the addition of visual cues. 

Some researchers have used the image of the entire mouth area as a visual feature applied 

to a speech recognizer together with audio cues [41, 42]. Li et al.[42] used eigen vector analysis 

in lip reading. In the training part of their approach, they formed a vector consisting of all gray 

level values of pixels representing the mouth in all frames of a sequence representing one spoken 
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letter from the English alphabet. Next they formed a training matrix containing several such 

vectors and computed Eigen vectors for each letter in the alphabet. In the classification stage, a 

sequence representing an unknown letter was projected on the model of Eigen space for each 

letter, and a projection close to "1" represented a match. Li and his group applied their technique 

to ten spoken letters [A-J] using one person only. The success rate of recognition varied from 90-

100% depending on the letter to be recognized. 

Potaminos and Chalapathy [43] investigated the use of visual, mouth-region information 

in improving automatic recognition of the speech. The visual information in the system was 

represented by the highest 24 coefficients from a Discrete Cosine Transform (DCT) of a 64x64 

pixel region-of-interest containing the speaker's mouth. The audio part of the signal consisted of 

24 ceptral coefficients of the acoustical speech signal. Both features were combined in a vector 

that was then applied to a HMM. Incorporating the visual information improved the SNR by 

61% over audio only processing. 

Another popular visual feature used in speech recognition was based on visual cues from 

the lips and jaw movements. Paul et al.[15] designed a speech recognizer system that 

incorporated lip reading information with the acoustic signal to improve speech recognition. The 

image of the face was supplied to a neural network that extracted the mouth corners and lip 

movement information. This extracted information was then applied with the acoustic 

information to a Multi State Time Delay Neural Network (MS-TDNN) to perform the final 

recognition. Paul and his team stated that compared to audio-alone recognition, the combined 

audio-visual system achieved a 20-50% error rate reduction for various signal/noise conditions.  

Baig and Gilles [44] presented a new neural architecture, called a spatio-temporal neural 

network (STNN) and used it in visual speech recognition. Biag and his group chose four points 
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on the lips and generated a time signal by tracking these four points in successive image frames. 

These time signals together with the acoustical signal were used as inputs to the STNN for 

recognition purposes. They tested their system on 510 audio and visual sequences of numbers 

spoken in French. They used 260 sequences for training the network, while the remaining 250 

sequences were used for testing the performance. Although the test and training samples were 

from the same person, their results showed a success rate of 77.6%. The study did not compare 

the performance of the system for audio only input. 

Luettin and Dupont [39] combined the inner and outer lip contour positions together with 

the lip intensity information and formed a vector of 24 elements representing the visual features. 

The audio features were obtained by choosing 24 linear prediction coefficients. The audio and 

visual features were applied to a HMM for speech recognition. They tested their system on clean 

speech and reported an error rate of 48% with visual features only and 3.4% with the audio 

signal only. When both audio and visual features were used, the error dropped to 2.6%. 

Goldschen [45] applied Hidden Markov Models (HMM) as classifiers in a speech 

recognizer having both audio and visual input data. He also studied which features led to better 

speech classification decisions. The feature set he preferred was associated with the dominant 

mouth movement in terms of upper and lower lips, rather than the lip positions. Mase and 

Pentland [46] reached the same conclusion. 

The examples shown in this section explored many speech recognizers that utilized both 

audio and visual information. Performance of speech recognizers improved when visual cues 

were included in the system.  Visual features extracted from the lips were commonly used in 

most applications, which is consistent with the studies previously discussed in Sections 2.1 and 

2.2.  
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2.3 MISCELLANEOUS APPLICATIONS OF AUDIO-VISUAL SIGNAL 

PROCESSING 

Human beings can use the visual information available in lip movements or facial 

expressions to separate two sounds coming from two different sources. Okuno et al. [47] 

attempted to design a system that would use visual information in enhancing sound source 

separation. They used the movement of the mouth as an indication of a sound source. This 

information was sent to a module that checked whether the image information and the sound 

information are from the same source. If it is, the position information is recorded. Otherwise, 

the visual module is moved to focus on another sound source. Okuno stated that adding the 

visual information increased the dimension of the problem. However it provided an accuracy of a 

few degrees for a point source at 2 meters distance, which was higher accuracy than audio only 

sound source separation. 

Speaker detection is another area in which audio-visual information has been combined. 

Speaker detection is a useful tool in video conferencing, where a camera needs to focus on a 

person identified as the speaker. Cutler et al.[48] proposed a measurement for the correlation 

between the mouth movements and the speech and used it in a time delayed neural network 

(TDNN) to search for a certain speaker. The system was able to successfully locate a single 

speaker. Their results did not provide a quantitative measure for the accuracy of the device with 

and without the visual information.  

Another area in which visual information has been used is sound sensing. Takahashi and 

Yamazaki[49] proposed a sound sensing system that used audio-visual information. The system 

was divided into two subsystems: an audio subsystem and a visual subsystem. The audio 

subsystem extracted a target signal with a digital filter composed of tapped delay lines and 
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adjustable weights. These weights were modified by a special adaptive algorithm called "cue 

signal method". For the purpose of adaptation, the cue signal algorithm needed only a narrow 

bandwidth signal that is correlated with the power level of the target signal. This narrow band 

signal was called the “cue” and was generated from the visual subsystem.  

The authors stated that fluctuations in sound power due to lip movement correspond to a 

visual stimulus in the image. Therefore, by locating the lips in an image, the system obtained a 

visual estimate of the sound power by the squared absolute time difference in successive image 

frames. Another estimate for the sound power was obtained directly from the audio signal. Both 

audio and visual estimates of the sound power were multiplied together to form the cue signal. 

With the visual cues used, their results showed a 96% improvement in object localizing over 

audio only based object localization. 

Facial expressions are another area of focus of researchers, since many people can 

understand emotions based on the facial expressions appearing on the people surrounding us 

[50]. Craig et al. [51] stated that facial expressions can indicate pain. Katsikitis and Pilowsky[52] 

mentioned that facial expressions reveal brain functions and pathology.  

Ekman and Friesen [53] developed an anatomically based Facial Action Coding System 

(FACS), and many researchers [54-56] working in this area mention that FACS is the most 

comprehensive method of coding facial displays. This coding system was obtained by viewing 

videotapes in slow motion of a large sample of recorded facial expressions and then coding those 

expressions to form action units. The FACS contained more than 7000 facial expressions. In a 

later study [54], Ekman and Friesen proposed that emotion codes can be obtained by specific 

combinations of FACS action (i.e. fear, joy, sadness, anger, disgust and surprise). Hegely and 
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Nagel [56] collected these emotions together to form the Emotions Face Action Coding System 

(EMFACS). 

Izard [57] developed another anatomically based systems which requires slow motion 

viewing of videotapes. He called it the Maximally Discriminate Facial Movement Action Coding 

System (MAX). Compared with FACS, MAX is less comprehensive, and is intended only to 

code emotion based facial displays, while FACS is intended for displays that are not only 

emotion related. 

Essa and Pentland [58], Mase and Pentland [59], and Yacoob and Davis [60] attempted to 

use optical-flow-based approaches to discriminate facial displays (e.g. fear, joy, surprise). Such 

approaches were based on the assumption that muscle contraction causes skin deformation. This 

skin deformation changes the optical spectrum appearing on the face of the speaker. In a 

digitized image sequence, algorithms for optical flow extract motion from the texture changes in 

the skin, and the pattern of this motion can be used to discriminate facial displays. 

Pantic [61] and his group designed an expert system they called Integrated System for 

Facial Expression Recognition (ISFER). This system performs recognition and emotional 

classification of human facial expressions from a still, full-face image. At the time of publishing 

their work, the system was capable of automatically classifying face actions into six emotion 

categories (happiness, anger, surprise, fear, disgust and sadness). 

This discussion affirms the claims that visual cues may contribute to speech perception. 

However, the applications of facial expressions were limited to identifying emotions and not 

speech. Despite this limitation, identifying emotions may help in speech perception, since 

different emotions involve the use of different vocabulary. 
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2.4 SUMMARY 

Despite the wide range of audio-visual applications reviewed in this chapter, there is still 

little work done in the area of automatic recognition of visemes based only on visual cues. The 

work done on recognizing visemes was based on the visual response of subjects as detailed in 

Section 2.2.2.  The consistency of viseme grouping in speech psychology test results shown in 

Table 2-11 motivated this attempt to design an automated viseme classifier that is based on a set 

of visual cues only. The outlines of this work were detailed in Figure 1-2.   

There are many factors to be considered in choosing which phonemes to focus on in 

developing the audio-visual data needed for this study. Since most audio-visual applications 

utilize 2-D imaging devices, this study shall focus on visual features that could be extracted from 

2-D images of speakers. The recording device used in this study was a Motion Analysis system 

(ExpertVision, Inc) VP110 that traces the 2-D motion of optical reflectors placed anywhere on 

the face of the subject. The VP110 is manufactured by the Motion Analysis Corporation located 

in Santa Rosa, California. The optical reflectors used with the device had a circular shape with a 

reflector side and an adhesive side that sticks to the point of interest. This limits the ability to 

distinguish phonemes that involve the inside part of the mouth such as sounds within classes 5 

and 7 in Table 2-11. The voiced consonants in English are /b/ /d/ /g/ /v/ /ð/ /n/ /l/ /w/ /j/. In 

addition, the English sounds that involve the lips, jaw and teeth in production are 

/b,p,m,f,v,th,w,/. One sound from each of the classes of the common viseme-to-phoneme 

mapping (Table 2-11) was chosen to represent the class to be distinguished. These phonemes are 

shown in Table 2-12.  
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Table  2-12 VCV sounds to be rerecorded 
 
 

Viseme Class VCV sound

Class 1 /b/ 

Class 2 /v/ 

Class 3 /ð/ => the 

Class 4 /w/ 

Class 5 /d/, /z/ 

 
 
 
The remaining two classes of Table 2-11 were not studied since they are sounds produced 

inside the mouth. Phonemes /d/ and /z/ were chosen together from the same class to test if the 1st 

and 2nd derivatives of the lip motion waveform can capture the difference between both sounds, 

even though subjects could not distinguish them consistently. 

The common viseme-to-phoneme mappings showed that the viseme classes did not 

change when vowels /ɑ,i,^/ were presented to subjects in association with different consonants. 

In order to test whether the classifier can distinguish between vowels, designs and tests on the 

VCV recordings were implemented using VCV words with both vowels /ɑ,i/. This resulted in a 

total of 12 VCV sequences where the consonants are shown in Table 2-12 and the vowels are 

/ɑ,i/. The 2nd vowel in the VCV sequence was emphasized during the sound production. 

 The correlation between the acoustics and visual cues discussed in Section 2.1 showed 

that lip motion has high correlation with the acoustic signal being produced. In addition, work on 

audio-visual speech recognition showed that visual features related to lip motion were the most 

popular ones to use. The visual features representing the first block of Figure 2-1 were extracted 
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from the 2-D images of lip motion. The study assumes that the location of lips is already 

determined, and it will not consider techniques to extract lips from recorded video sequences. 
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3.0  EXPERIMENTAL METHOD 

 This chapter explains the experimental setup employed in the study. The first section 

presents the data recording method. Section 3.2 explains the pre-processing applied to 

waveforms. Section 3.3 discusses the feature extraction. The final section describes the linear 

discriminant analysis method.   

3.1 DATA RECORDING  

3.1.1 VP110 Motion Analyzer 

 The VP110 Motion Analysis System (ExpertVision, Inc) analyzes the motion of objects 

within single or multiple video frames. The system features a real-time data acquisition system 

together with data analysis capabilities. The ExpertVision system consists of the following units: 

infra-red optical reflectors, video camera, array of infra-red LED lights, computer, and the 

VP110 unit [62].  

Figure 3-1 shows how a subject with five optical markers placed around the subject’s 

face sits directly in front of the camera of the Analyzer. An array of infra-red LEDs is attached to 

the camera to insure that the amount of infra-red light reflected off the optical markers is higher 

than the amount reflected off the remaining parts of the face. The Motion Analyzer has a 
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threshold for the brightness of the infra-red light received from the camera. This threshold 

ensures that only objects with high brightness due to infra-red light reflections are detected by 

the camera. Once the recording process starts, the Motion Analyzer tracks the optical reflectors 

at a frame rate of 60 Hz and identifies their outlines in consecutive frames. These outlines are 

used as input to ExpertVision software to identify the x-y coordinates for the center point of 

individual reflectors in each frame. A microphone, used to record the audio signal spoken by 

subjects, is sampled at 22050 Hz by the computer. The recorded audio signal was not used in the 

study. 

The ExpertVision software processes the recorded video sequence frame-by-frame, 

calculates the coordinates of the center of each optical reflector based on the coordinate system 

shown in Figure 3-2, and stores the coordinates in a file called the centroid file. The centroid 

files are processed further in Matlab to generate a path associated with each centroid in 

consecutive frames. The path files are used to generate distance waveforms. Then, the visual 

features are extracted. This process is discussed further in Section 3-3.  

3.1.2 The Recording Procedure 

Five reflectors were placed on the face of the subjects as shown in Figure 3-2. The 

motion of these reflectors represented the visual features associated with the VCV sequence as 

discussed in Section 3.3. The reflectors were placed on the mid points of upper and lower lips, 

lip corners and the upper nose bridge. The upper nose bridge is a point on the face that does not 

move while a subject is speaking. It was used as a correction factor for the effect of head 

movement during the recordings. Participants sitting in front of the LED lights repeated the 

desired VCV sequence. The recording of the audio-visual sounds involved the following steps:  
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o Participants’ hearing was screened using the Welch Allyn AudioScope 3 Screening 

Audiometer. This instrument provides the means for quickly checking that the ear 

canal is patent and that the subject can hear tones presented at 500, 1000, 2000, and 

4000 Hz at 25 dB hearing level. These are frequencies that are of primary importance 

for hearing speech and to assure accurate hearing of speech at conversational levels. 

Participants were required to detect all four test tones, at least in one ear, to be 

included in the study. 

o The required VCV word was presented to participants via a head-phone, thus guiding 

them in producing the proper clear VCV sequence. The guide signal was recorded by 

a PhD audiology student capable of producing clear VCV sequence. The guide signal 

emphasized the 2nd vowel in the sequence. 

o Participants repeated the VCV word they heard in the head phone several times 

closing their lips after each repetition.  

o Participants repeated the desired VCV words while sitting directly in front of the 

camera. 

o The recording time for each VCV sequence was 45 seconds. 

o Once the recording of a certain VCV word was done, the collected data was saved 

and the recording of the next VCV word began. 
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 Figure  3-1 Experimental setup for audio-visual data recording 

 
 
 

 

 
 

Figure  3-2  Location of optical reflectors and coordinate system for tracking of lip movements  
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3.1.3 The Recorded Audio-Visual Data 

Audio-visual recordings from 28 participants (26 females and 2 males) were obtained. 

The participants were monolingual speakers of Native American English and capable of 

producing clear speech. The protocol for the recordings was approved by the University of 

Pittsburgh Institutional Review Board (IRB). 

Table 3-1 lists the number of word utterances obtained for each VCV sequence for all 28 

speakers after the processing of centroid and path files was completed. Some speakers produced 

more utterances than others. In addition, the Motion Analyzer sometimes failed to capture some 

of the optical reflectors in consecutive frames, reducing the number of available word utterances. 

For speakers 4, 10, 11, 19 and 21 multiple reflectors were dropped out in consecutive frames for 

several seconds. This led to discarding the recordings of some of the VCV sequences associated 

with those speakers. The brightness threshold set in the Motion Analyzer was not able to remove 

other bright spots on the face of some participants. Teeth and even cheeks of some participants 

resembled optical reflectors and were captured by the motion analyzer. This led to additional 

centroids appearing in each frame, causing confusions in the path assignments in consecutive 

frames.  

A criterion of a minimum number of 8 word utterances was used to include a speaker in 

the analysis. Exception was made for speakers 1, 7 and 14 who had 8 or above word utterances 

in 11 of the VCV sequences and had 7 utterances in the 12th VCV word. The missing utterance 

for each of these speakers was compensated by adding the average of the other 7 utterances. This 

resulted in including audio-visual data from the 18 speakers shown in bold fonts in Table 3-1. 

Audio-visual data coming from the remaining 10 participants was not used in the study.  
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Table  3-1 Number of utterances for each word by all speakers 
 
 

# 
Ab Av At Aw Az Ad Ib Iv It Iw Iz Id

Total 1 2 3 4 5 6 7 8 9 10 11 12
1. 11 12 12 12 12 12 9 10 12 7 13 12 134 
2. 14 12 11 9 10 9 9 8 10 10 11 10 123 
3. 10 10 9 10 10 11 8 10 8 9 10 11 116 
4. 0 16 10 14 15 14 8 8 13 14 12 10 134 
5. 12 12 12 11 8 8 11 11 11 12 12 11 131 
6. 11 11 11 8 10 14 12 15 11 13 14 14 144 
7. 10 9 8 11 11 11 7 10 10 10 8 9 114 
8. 13 15 17 16 17 11 17 17 16 17 16 12 184 
9. 10 12 13 13 12 11 12 11 11 9 8 10 132 

10. 12 11 11 10 6 8 10 0 10 10 10 10 108 
11. 0 14 6 6 8 7 9 6 9 9 7 8 89 
12 9 9 10 10 10 10 11 8 10 11 10 11 119 
13 6 8 8 8 10 9 11 10 10 8 11 8 107 
14. 12 12 10 13 13 7 13 13 13 11 12 10 139 
15. 12 13 13 13 13 13 13 14 13 13 12 11 153 
16. 10 9 9 7 8 8 8 12 7 12 8 8 107 
17. 12 9 12 12 10 10 9 10 11 11 9 8 123 
18. 8 12 14 18 17 14 13 10 13 12 8 12 151 
19. 19 15 16 0 0 14 11 8 11 14 13 13 134 
20. 9 12 10 9 10 12 11 12 11 10 9 8 123 
21. 7 0 12 12 9 7 9 12 8 9 10 12 107 
22. 11 14 15 8 15 15 16 15 10 13 15 15 162 
23. 12 11 11 12 10 11 12 10 10 11 10 11 131 
24. 8 9 9 10 8 9 7 7 8 9 8 8 100 
25. 11 11 11 14 14 15 13 12 9 12 13 13 148 
26. 15 15 14 12 13 9 12 14 13 11 11 12 151 
27. 6 9 9 9 10 11 13 10 12 10 9 10 119 
28. 10 9 9 11 11 9 9 8 8 8 6 5 103 

Tota
l 

28
2 313 315 303 305 305 310 299 307 315 306 304 3664 
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3.2 PRE-PROCESSING THE WAVEFORMS 

 The recording system produces two waveforms per reflector. Each waveform shows the 

position of the reflector on one axis (x or y) in every frame as the subjects repeats a VCV word. 

Thus, the total number of waveforms to be processed for every VCV word is ten. Figure 3-3 

shows an example of the waveforms associated with the lip markers for one subject repeating 

/ɑbɑ/ 8 times. These waveforms are generated by the ExpertVision system and stored as centroid 

files on the computer. 

 
 
 

 

 
Figure  3-3 Waveforms associated with each reflector 
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3.2.1 Generating Path files from Centroid files 

In every frame of the image, the Motion Analyzer scans the image from top to bottom 

and left to right. When a reflector is detected, a number is assigned to it and the x-y coordinates 

for that reflector are recorded.  There is no guarantee that the same number assignment is given 

to every centroid in consecutive frames. A certain centroid might be assigned number 2 in one 

frame, but in the following frame, it may be assigned as number 3. This confusion increased 

when the reflectors within a frame were along the same line in the x-direction. 

The assignment confusion is corrected by scanning the generated centroid files frame by 

frame to ensure that every reflector has the same assignment in consecutive frames. This process 

involved developing a Matlab code to perform that following tasks: 

o Check the first frame and assign a path number for the x and y coordinates of each 

centroid as shown in Table 3-1 

 
 
 

Table  3-2 Path assignment in the first frame of the centroid file 
 
 

  Path 1 

Reference Path

 

 Path 2 

Upper lip 

 

Path 3 

Left lip 

corner 

 Path 4 

Right Lip corner

 Path 5 

Lower Lip 
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o Check the next frame fj, 1 < j <= n, where n is the total number of frames: 

o Use the last coordinate location Pi for Path i (i=1,2,3,4,5) from previous frame fj-1 

o Measure Euclidean distance between all five centroids in fj and Pi and assign the 

centroids in fj with the closest centroid in path Pi   

o Go to the next path Pi+1 in frame fj-1 and measure the Euclidean distance between 

the remaining centroids in fj and Pi+1 and assign the centroid with the shortest 

distance in fj with the path Pi+1. 

o Repeat the above steps for the remaining centroids in frame fj 

o Go to the next frame 

o A flag is used to determine if all five centroids were detected in a frame. If one centroid 

is dropped out in a frame, the path associated with that centroid is marked and a search is 

made for the closest centroid to the missing path in future frames. The algorithm then 

linearly interpolates points across missing frames to keep the path connected between 

frames. 

o If a certain path Pj is dropped for more than 60 frames, that path is dropped during those 

60 frames while preserving the other paths. Pj continues to be tracked when it appears at 

later frames. 

o If the number of detected centroids in a given frame fj is greater than five, the Euclidean 

distance between them and the five centroids detected in the previous frame fj-1 is 

calculated. Each centroid in fj is assigned to the closest centroid in fj-1 and the extra 

centroids from frame fj are discarded 

o If more than one centroid is missing in a given frame, the frame is dropped. 
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The corrected assignments are stored in path files. There are 10 path files marking the x-y 

coordinates for each reflector in consecutive frames. 

3.2.2 Removing the effect of head motion from every frame  

The reference reflector location (at the upper nose bridge) was used to track the location 

of the head in every frame. Since the visual features to be extracted rely on the x-y coordinates of 

the reflectors in consecutive frames, the effect of head motion on the changes in these 

coordinates should be minimized. This correction was done by the following technique: 

o Calculate the average location of the reference reflector in x and y coordinates in the first 

60 frames, and use it as the reference point in that window. 

o Find the difference between the above reference point and the actual location of the 

reflector in each frame within the 60 frames window in both x and y directions. 

o Add the difference in x-direction as well as the difference in y-direction to the location of 

the four reflectors around the lips in all the frames within the window. 

o Move to the next 60 frames window 

This correction reduces the effects of head motion in the x-y directions that is parallel to 

the face of the camera lens. It does not compensate perfectly for forward or backward face 

tilting. To assess the error that could be introduced by tilting, the actual motion of the forehead 

reference centroid was monitored across speakers in consecutive frames. A sample waveform for 

this motion for one VCV sequence from one subject is presented in Figure 3-4. The motion for 

the forehead reference point in consecutive frames was between half and one pixel. The range of 

the overall motion for the forehead reference point in different speakers was between 1-2 pixels 

which is close to the pixel noise level (0.5 pixels) in the Motion Analyzer system itself [62]. This 
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indicates that the subjects had minimal head motion during the 45 sec length of a recording 

session, and error due to head tilting is not significant. 
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Figure  3-4 Motion of forehead reflector in consecutive frames 

 

 

3.2.3 Generate the distance waveforms 

It is usually desirable to simplify a problem by reducing the number of variables without 

jeopardizing the information stored in those variables. The number of variables in this problem 
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can be reduced by decreasing the number of waveforms to be processed. This can be achieved by 

converting the path files into distance waveforms. The following distance waveforms were 

generated: 

1. Euclidean distance between upper and lower lips in consecutive frames 

2. Euclidean distance between lip corners in consecutive frames 

3. Euclidean distance between upper lip and forehead reflector in consecutive frames. 

4. Euclidean distance between lower lip and forehead reflector in consecutive frames. 

The distance between the upper and lower lip waveforms superimposed on the audio file 

associated with the utterance for the eight repetitions of the word /ɑbɑ/ for one subject is shown 

in Figure 3-5. The peaks of the waveform correspond to the distance between upper and lower 

lips while speaking. The first peak is associated with producing the sounds /ɑ/, the minimum is 

associated with producing the consonant /b/, and the second peak represents the mouth opening 

while producing the second vowel /ɑ/ in the sequence.  

 

 

 

 

 

Figure  3-5 Upper/Lower distance waveform for “aba” with the audio signal superimposed 
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The focus on distance waveforms reduced the number of waveforms to consider. In 

addition, it further reduced the effect of any possible head motion remaining in the path files, 

since the distance between two points is independent of the location of the head as long as head 

tilting is not involved. Figures 3-6 through 3-9 shows examples of these waveforms extracted 

from four different VCV sequences repeated by the same speaker. The x-axis in these figures 

represents the frame number while the y-axis represents the amplitude of the distance waveform. 

There is a pattern repeating in every waveform around the extremas of the waveform. 

The objective now is to quantify this pattern by using a set of parameters (visual features) to 

characterize these waveforms. In addition, it is noted that there is a correlation between the 1st 

waveform representing the distance between upper and lower lips and the 4th waveforms 

representing the distance between the lower lips and the forehead reference point. This 

correlation shows that the role played by the upper lips in producing a word is much smaller than 

the role played by the lower lips and that the lower lips dominate the upper/lower distance 

waveform. In the remaining analysis of the data, only the upper-lower lip waveform will be used, 

and the lower-lip waveform will discarded.  

Figure 3-6 and Figure 3-7 show the same speaker repeating two different words. Figure 

3-6 shows that the speaker had 12 utterances of the word /ɑbɑ/, and Figure 2-7 shows 19 

utterances of the word /ɑðɑ/. In addition to speaking at different rates, the amplitudes of the 

waveforms differ from one speaker to another. This demonstrates the need for amplitude as well 

as time normalization before visual features can be extracted to represent a specific word.  
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Figure  3-6 Four distance waveforms associated with the VCV word “ɑbɑ” 
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Figure  3-7 Four distance waveforms associated with the VCV word “ɑðɑ” 
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Figure  3-8 Four distance waveforms associated with the VCV word “iði” 
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Figure  3-9 Four distance waveforms associated with the VCV word “ɑwɑ” 
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3.2.4 Obtaining Single Utterances 

The distance waveforms in Figures 3-6 through Figure 3-9 showed the need for applying 

time-and-amplitude normalization to the waveforms to compensate for speaking at different 

rates.  But before the time-and-amplitude normalization can be obtained, distances associated 

with single utterances from every word need to be obtained for every speaker. The following 

steps were used to obtain single utterances for every VCV word: 

o Start with the upper-lower lips as well as lip-corners distance waveforms calculated 

earlier. 

o Use a threshold to determine the starting point of an utterance. 

o The algorithm displayed the distance waveforms and requested the user to choose the 

word length as well as the number of points to go behind the starting point identified 

in the previous step in each waveform. 

o The algorithm allowed five possible word lengths options 120, 108, 96, 84, and 60 

samples. VCV words repeated at a fast rate require shorter word length, while VCV 

word sequences repeated at slower rates require longer word lengths. If the selected 

word length is less than 120, then zeros are added before and after the word so that 

the word is stored in the middle of the record. 

o Samples from the starting point determined in step 2 to the ending point that depends 

on the length of the word are stored in a vector of 120 samples (i.e. 2 sec). 

o The resulting processed words are displayed. The algorithm waits for an input from 

the user to verify that the word length chosen was long enough to capture each 

complete word utterance. If more than one word utterance was captured or if the 

samples captured were not enough to obtain one complete utterance, then the user can 
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go back to step 3 to modify the word length. If the parameters worked, then files are 

stored. 

An example for the results of breaking up the words into single utterances is shown in 

Figure 3-10 for two distance waveforms. The ninth waveform in every figure shows the average 

of all utterances together plus and minus a standard deviation about the average. The waveforms 

show good consistency for the word spoken by the same speaker, which was common across 

speakers.  

 

 

Figure  3-10 Broken utterances for the word /ɑbɑ/ together with the mean for each speaker 
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3.2.5 Time-And-Amplitude Normalization 

The objective of time–and–amplitude normalization is to have the same time and 

amplitude scales for all word utterances before extracting the visual features. Subtracting the 

mean of the word utterance ensures that all utterances have zero means.  

Several normalization schemes were evaluated. One method for amplitude normalization 

is to divide each of the utterances by the maximum amplitude of the absolute value of the 

waveform. This forces all utterances to have maximum amplitude of one. Another method 

popular in amplitude normalization involves dividing each utterance by the standard deviation 

present in the waveform representing the utterance. The visual features used in the study and 

discussed in Section 3.3. were related to the extremas present in the distance waveforms. 

Dividing by the maximum of the absolute value of the waveform forced that feature to have an 

amplitude of one across utterances of all speakers. This removes the variability in one of those 

extremas, which may result in losing one or more visual features. The second amplitude 

normalization method preserves the amplitude variability across the speakers, which makes it 

more practical in preserving the contribution of the extremas towards discrimination. 

The time normalization can also be achieved in many ways. One way is to extract the 

visual features from the amplitude-normalized waveform as discussed in Section 3.3. The time 

normalization can then be applied on the extracted features by dividing the slope features by the 

utterance time-length, which is the number of frames between the first and last peaks as shown in 

Figures 3-13, 3-14, and 3-15 and presented in equation 3-1 and equation 3-2:  
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Where: 

Norm_slope1: Normalized slope between the first and second extremas in the utterance 

Norm_slope2: Normalized slope between the second and third extremas in word utterance 

t1, t2, t3: Time location of the 1st, 2nd, and 3rd extremas respectively.  

Time normalization can also be done by mapping all utterances to the same time scale, 

and then extracting visual features. The second time-normalization scheme ensures that the 

visual features are extracted after the time-normalization is applied rather than extracting the 

features then applying the normalization as is the case in the first method. 

One of the popular time-and-amplitude normalization techniques was introduced by 

Smith [63-65]. Popularity of the technique is attributed to its linearity and simplicity. The 

algorithm starts by applying a low pass filter with a cutoff frequency of 10 Hz to minimize the 

noise in the signal. The application of this low pass filter reduced the high frequency noise 

introduced by the pre-processing of the waveform. The amplitude normalization is achieved by 

dividing each word utterance by the standard deviation of the waveform. The time normalization 

starts with determining the starting and ending points for each word utterance and then re-

sampling the word utterance on a 120 points time scale using linear interpolation. 
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Figure  3-11  Distance waveforms associated with ten utterances of /ɑbɑ/ before normalization 
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Figure  3-12 Amplitude normalization by dividing over the maximum value 

  51



0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Normalized Upper-lower lips distance waveforms for every word

0 20 40 60 80 100 120
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Normalized lip corners distance waveforms for every word

 

Figure  3-13 Ten word utterances after applying the Ann Smith normalization technique 

 

 

 

Figures 3-11 displays upper-lower and lip-corners distance waveforms associated with 10 

utterances coming from a speaker stating the word /ɑbɑ/. The figure shows the variations present 

between different utterances and affirms the need for time and amplitude normalization. Figure 

3-12 displays the result of division by the maximum amplitude on these waveforms, while Figure 

3-13 shows the results of applying Smith’s algorithm of both time and amplitude normalizations 

on the waveforms. 

Figure 3-12 shows how the first amplitude normalization method forces one of the 

extremas to be one. This may result in the redundancy of this feature in the discrimination 

problem.  
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Figure  3-14 Standard deviation at each point of the 8 utterances in the 3 distance waveforms 

 

 

 

Smith’s algorithm consistently resulted in good time and amplitude normalization as 

shown in Figure 3-13. Figure 3-14 displays three graphs. In each graph, the standard deviation 

for each of the 120 samples in the waveform between the 8 different utterances for the same 

speaker is shown before and after normalization. The solid line represents the standard deviation 

across the 10 utterances before normalization while the dotted line represents the standard 

deviation across those points after normalization. Smith’s algorithm reduced the calculated 

standard deviation in the upper-lower lips distance waveforms and the upper lips waveform. The 

algorithm is not as effective in reducing the standard deviation in lip-corners waveforms but it 
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does as well as the first method described. In this study, the visual features were extracted from 

the distance waveforms after the application of Smith’s time-and-amplitude normalization. 

3.3 FEATURE SELECTION AND EXTRACTION 

Three normalized distance waveforms associated with each VCV word were obtained as 

shown in the previous section. This section discusses the process of selecting a set of parameters 

to capture the uniqueness in each of these waveforms. These parameters are the visual features 

needed for the classification problem stated in Chapter 1.  

The distance waveforms capture the motion of the lips while a VCV sound is being 

produced. As part of preliminary work, spectral analysis and eigen space analysis to extract 

features were evaluated, but no patterns could be identified in either the spectrum or in the eigen 

vector space for the distance waveforms. Therefore, the efforts to extract features concentrated 

on temporal features derived from the articulator motion patterns defined in the speech 

production literature.  

 The recording device used in this study can trace different points on the face of a speaker 

by placing optical reflectors on them. Since the visual features are expected to represent the 

produced sound, the points to track around the face need to be related to the sound production. 

Chen’s audio-visual library was based on lip-corners and lip-height as shown in Figure 1-1. 

Preliminary work on this library showed patterns repeating for the same word across different 

speakers. The literature review in Chapter 2 showed the visual features extracted from lip motion 

were popularly used in different applications and resulted in satisfactory results in different 
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areas. The articulators involved in producing the sounds selected for this study are detailed in 

speech production literature [12, 66, 67]. This results in the following observations:  

1. The vowel /ɑ/ in the VCV sequence involves wide opening of the mouth at the start of the 

word, then closure of the lips to produce the consonant and then another opening of the 

mouth to produce the second /ɑ/ in the word. 

2. The amount of closure in the mouth depends on the consonant being produced. 

Consonants /b/ and /v/ for example involve complete mouth closure while consonant /w/, 

/ð/ and /z/ involve partial closure of the mouth. 

3. There is limited lip motion in producing the consonant /ð/ while there is more lip motion 

in producing the sound /w/. 

4. The distance travelled by the upper lip in producing the consonant /v/ is greater than the 

distance travelled when producing the consonant /z/ [66, 67] 

5. Different consonants need different speeds for the lip motion in producing them. For 

example, the motion speed for the lower lips while producing the sound /z/ is different 

from the speed of the lower lip while producing the sound /ð/ [66, 67]. 

 The first three points are related to the distance travelled by different points around the 

lips when the sound is produced. This distance was represented by the maximum and minimum 

values detected in the upper-lower and lips corners distance waveforms. The speech production 

literature suggested that producing some consonants requires more motion in the upper-lip at the 

time of lip closure. This property was represented by the distance travelled by the upper-lip at the 

time of lip closure. The speed of lip motion is another characteristic that is related to the sound 

production. It was captured by calculating the slope between the consecutive extremas. The 

process of extracting the features is discussed in Sections 3.3.1 through 3.3.3. 
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3.3.1 Detecting Extremas in the waveforms 

The extremas in the distance waveforms are related to the location of the lips during the 

production of the word. The distance together with the rate at which this distance changes are 

two parameters used to characterize these waveforms.  

The extrema in upper-lower and lip-corners distance waveforms represent the maximum 

and minimum openings of lips during the sound production. The first extrema is related to the 

production of the first vowel in the VCV sequence. The second extrema is related to the 

production of the consonant in the VCV sequence while the third one represents the mouth 

opening to produce the second vowel. The amount of rounding in the mouth shape is represented 

by the extremas obtained from the lip corners waveform. These extremas are visually detected in 

each word utterance and selected using a mouse. A program stored the amplitude and the time of 

occurrence of the detected extremas and used these values to calculate the visual features to 

represent the spoken word. This process is described in the following sections. 

3.3.2 Features from the upper and lower lips distance waveform 

The Euclidean distance between the upper and lower lip calculated frame-by-frame is 

used to extract amplitude-related and time-related features. The amplitudes of the captured 

extremas are used as features representing the VCV sound and the slopes between these extremas 

are used to represent the rate at which different points around the lips move while producing the 

sound. 
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Figure  3-15 Features extracted from upper/lower distance waveform 

 

 

 

The upper graph in Figure 3-15 shows a sample upper-lower distance waveform for the 

sequence /ɑbɑ/. The lower graph in the figure shows the extremas extracted from the waveform. 

The slope of the waveform between the extremas is calculated to capture how quickly the lips 

moved while stating the VCV word. The slopes are calculated by the following formulas 
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Where: 

o y1, y2, y3:Amplitude of the distance waveform at the 1st, 2nd, and 3rd extremas respectively 

o t1,t2,t3: Time of occurrence of the 1st, 2nd, and 3rd extremas respectively. 
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3.3.3 Features from the left and right lip corners distance waveform 

The Euclidean distance between the lip corners waveforms calculated frame-by-frame is 

used to extract amplitude-related and time-related features. The amplitudes of the captured 

extremas are used as features representing the VCV sound and the slopes between these extremas 

are used to represent the rate at which different points around the lips move while producing the 

sound. 

The upper graph in Figure 3-16 shows a sample lip corners distance waveform for the 

sequence /ɑbɑ/. The lower graph in the figure shows the extremas extracted from the waveform. 

The slope of the waveform between the extremas is calculated to capture how quickly the lips 

moved while stating the VCV word. The slopes are calculated by equations 3-3, and 3-4. 

 

 

 
 

Figure  3-16 Features extracted from lip corners distance waveform 
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3.3.4 Features from the upper-lip distance waveform 

 The speech production literature suggested that producing some consonants requires 

more motion in the upper-lip at the time of lip closure. This property was represented by the 

distance travelled by the upper-lip at the time of the lip closure. Therefore, the points of interest 

in this waveform are chosen to match the frames at which an extrema is detected in the upper-

lower lip distance waveform. Whenever an extrema is detected in the upper-lower distance 

waveform, the corresponding amplitude value at the upper-lip distance waveform is taken as a 

feature. Figure 3-17 shows an example of these features for one subject speaking the word /ɑbɑ/. 

The upper graph in the figure marks the extremas extracted from the upper-lower lips distance 

waveform. The lower graph in the figure shows the corresponding signal value extracted from 

the upper-lip distance waveform. In addition to the amplitude information, the slope of the 

waveform between the extremas is calculated to capture how quickly the lips moved while 

stating the VCV sequence. The slopes are calculated by Equations 3-3 and 3-4.  
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Figure  3-17 Amplitude features extracted from the upper-lips waveform 

 

 

To summarize, three distance waveforms were used with every VCV word to extract the 

visual features. These waveforms are the upper-lower lips distance waveform, lip corners 

distance waveform, and waveform representing distance traveled by the upper lip in consecutive 

frames. Five features are extracted from each of these waveforms to make the total of 15 features 

for every word. The extracted features are summarized in Table 3-3: 
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Table  3-3 Summary of the extracted visual features 

 

 

The Extracted Feature Abbreviation 

Three upper-lower lip distance extremas UL1, UL2, UL3 

Three upper lip amplitudes at locations 

matching the upper-lower distance extremas 
UP1, UP2, UP3 

Three lip corners extremas LR1, LR2, LR3 

Two features representing the slope between 

the consecutive extremas in the upper-lower lip 

distance waveform 

slope_UL1, slope_UL2 

Two features representing the slope between 

the consecutive extremas in the lip corners 

distance waveform. 

slope_LR1, slope LR2 

Two features representing the slope between 

the consecutive extremas in the upper lip 

distance waveform. 

slope_UP1, slope_UP2 

 

 

 

The effectiveness or usefulness of the above features may vary. Some features might be 

more important than others in the discrimination problem. The classification technique that is 

usually used to measure the contribution of different variables to the discrimination problem is 

the linear discriminant analysis, which is described in the next section. 
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3.4 LINEAR DISCRIMINANT ANALYSIS 

Linear discriminant analysis is a statistical technique that can be used to examine whether 

two or more mutually exclusive groups can be distinguished from each other based on linear 

combinations of values of predictor variables or features (mutually exclusive means that a case 

can belong to only one group).  

 The main purpose of discriminant function analysis is to predict group membership based 

on a linear combination of chosen variables or features. The procedure begins with a set of 

observations where both group membership and the values of the features are known. The end 

result of the procedure is a model that allows prediction of group membership when only the 

features are known. A second purpose of discriminant analysis is to provide an understanding of 

the data set, as a careful examination of the prediction model that results from the procedure can 

give insight into the relationship between group membership and the features used to predict 

group membership. A brief discussion of Fisher’s approach to discriminant analysis is discussed 

in the next section.  

3.4.1 Discriminant Analysis Model 

 This section describes the development of Fisher’s discriminant analysis. The material is 

based on lecture notes by Gutierrez-Osuna [68] and Huberty’s book Applied Discriminant 

Analysis [69]. The concept of Fisher’s discriminant functions is that given a set of independent 

variables or features, the analysis attempts to find linear combinations of those features that best 

separate the groups of cases. The set of cases separated from others are considered to be a group. 

The combinations of the features are called discriminant functions and have the form. 

  62



ippkikokik xbxbbd +++= .......11  eq  3-5  

where: 

o dik: is the value of the kth discriminant function for the ith case 

o p: is the number of features 

o bjk: is the value of the jth coefficient of the kth function 

o xij: is the value of the ith case of the jth predictor 

o The number of functions is equal to min(#groups-1, #features). 

 The procedure automatically chooses a first function that will separate the groups as 

much as possible. It then chooses a second function that is both uncorrelated with the first 

function and provides as much further separation as possible. The procedure continues adding 

functions in this way until reaching the maximum number of functions as determined by the 

number of predictors and categories in the dependent variable. 

The discriminant model is based on the following assumptions:  

o The features are not highly correlated with each other.  

o The mean and variance of a given feature are not correlated.  

o The correlation between two features is constant across groups.  

o The values of each feature have a normal distribution. 

o The variance-covariance matrices of the features across the various groups are the same 

in the population, i.e., homogeneous 

3.4.2 Linear Discriminant Analysis for Two Groups 

 We start with a number of samples N1 and N2 from two independent random samples of 

classes w1 and w2 with each observation x1, x2 having p-dimensions with means u1, u2 and a 
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common covariance matrix ∑. The objective of the analysis is to find a scalar function "y" by 

projecting the samples of Xi onto a line in a way that maximizes the separability of the samples.  

 

 

 

 

Figure  3-18 Projection of data on a line (a) Poor separability (b) Good separability 

 

 

The projection of every observation is given by 

xwy t=  eq  3-6 

where “w” is a vector containing the coefficients for the discriminant function. Figure 3-18 

shows an example for projecting a set of data belonging to two different classes on two different 

lines for the purpose of discriminating between both classes. Part (a) of the figure shows the 

result of projecting the data onto a line without achieving good separability between both classes. 

Part (b) of the figure shows a projection that resulted in much better separability on the line. 
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 To explain this concept further, a separability measure needs to be defined. In order to 

achieve this, the mean vector for each class in x and y feature space is defined as  

∑
∈

=
iwxi

i x
N
1μ   eq  3-7 

This means that the mean along the line of projection is given by 
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Now we could chose the distance between the projected means as our objective function 
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 The distance between the projected means is not a very good measure because it does not 

take the standard deviation within the classes into account. Fisher presented a solution to this 

problem by suggesting maximizing a function that represents the difference between the means, 

normalized by a measure of the within-class scatter. Fisher defined the scatter for each class as 
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Then he defined the within-class scatter of the projected samples to be 

2
2

2
1 ssscatterclasswithin +=−−   eq  3-11 

The Fisher linear discriminant is defined as the linear function wtx that maximizes the criterion 

function 
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 Therefore, we would be looking for a projection where examples from the same class are 

projected very close to each other and at the same time, the projected means of different classes 

are as far apart as possible. Fisher’s solution to the above problem is given by 
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w   eq  3-13 

and the within class scatter matrix Sw is given by 

21 SSSw
+=   eq  3-14 

 Equation 2-9 is usually known as the Fisher Linear Discriminant function, which 

represents a specific choice of direction for the projection of the data down to one line. This 

equation can be generalized for C-class problems, and the next section will discuss this process.  

3.4.3 Linear Discriminant Analysis, C-classes 

 The solution presented by Fisher shown in equation 2-9 can be extended for a general 

situation that involves C-classes.  In this case, we will seek (C-1) projections [y1,y2,y3, ….. yc-1] 

by means of (C-1) projection vectors wi which can be arranged by columns into a projection 

matrix W=[w1|w2|w3|…|wc-1] so the problem becomes 

xWyxwy tt
ii =⇒=   eq  3-15 

The solution to the above problem is given by the following equation 
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where SB is defined as the generalized between-class-scatter and given by: 
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Sw, which is the generalization of the within-class scatter, is 
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 Equation 3-16 simply means that the projections with maximum class separation are the 

eigen vectors corresponding to the largest eigen values of Sw
-1SB.  

3.4.4 Stepwise Discriminant Analysis 

 Some variables may contribute more to the discrimination problem than others. Variables 

with very little contribution to the discrimination problem can be discarded to reduce the 

complexity and dimensions of the problem. The stepwise discriminant analysis is a technique 

used to test which variables contribute more to the discrimination function. It can help in 

reducing the dimensions of the problem by discarding variables that have insignificant 

contribution to the discrimination function.  

 Before the stepwise process, a statistical measure for evaluating each variable in the 

analysis, together with a significance level of F values that a variable must have to enter a model 

or be removed from the model, must be developed. Once the criteria and the F values are chosen, 

the Linear Discriminant Function (LDF) is estimated for all variables. The process proceeds as 

follows [70]: 
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o The variable that best meets the criteria is entered into the analysis. 

o The remaining variables are tested again and the variable with the best value for the 

selection criteria is added to the analysis. 

o The variables in the model are tested to check if any meet the removal criteria and 

variables meeting the criteria are removed. 

o The process of evaluating variables not in the model is repeated until all variables 

have been tested for entry or removal.  

o The process is terminated when no more variables meet the entry or removal criteria. 

 In this work, the statistical measure chosen is Wilk's lambda which is the ratio of the 

generalized within-class-scatter given by equation 3-19 to the generalized over all scatter given 

by equation 3-17. The change in Wilk's lambda for a model if a variable is added or removed is 

calculated by the following formula 
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Where: 

o pλ is the Wilk's lambda value before adding the new variable 

o 1+pλ is the Wilk's lambda value with the added variable 

o g is the number of groups 

o p is the number of independent variables entered in the stepwise analysis 

o n total sample size  

 There are many software packages available to perform the discriminant analysis. One of 

those packages is SPSS version 16 which is a statistical software package that can perform the 
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above calculations and provide useful statistics to better understand the strength of the 

discrimination and the distribution of the data.  
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4.0  RESULTS 

Experiments were conducted to evaluate the ability of visual cues to classify visemes 

associated with VCV words. The first section of this chapter presents the results of developing 

the linear discriminant functions (LDA) needed for the classification (training phase) with all 

speakers involved in the training phase. The second section presents the results of testing the 

developed functions. The third section shows the step-wise linear discriminant analysis results, 

and the final section presents the results of training and testing discrimination functions that were 

built for each individual speaker. 

4.1 TRAINING AND TESTING THE CLASSIFIER 

 There are two methods for generating the training data by partitioning the VCV 

sequences coming from the 18 speakers shown in bold fonts in Table 3-1. These two methods are 

speaker-based training and word-based training. In speaker-based training, VCV words from 9 

speakers are used to develop the LDA functions and VCV words from the remaining 9 speakers 

are used to test the resulting functions. In word-based training, all the available VCV words are 

divided into two equal parts. One is used for developing the LDA functions and the other one is 

used for testing them.  
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4.1.1 Speaker Based Training 

 LDA functions were developed and tested for different numbers of discrimination classes 

using speaker-based data analysis. 

4.1.1.1 Speaker-Based Training with 12 Classes 

In this part, each VCV word was treated as a separate class and the SPSS linear 

classification algorithm was applied to calculate the LDA functions needed to discriminate 

between those 12 classes.  

 A prerequisite for SPSS analysis is to ensure the validity of the assumptions listed in 

Section 3.4.1. This can be achieved by many tests performed by the SPSS package. The Wilk's 

lambda test seeks to confirm the assumption of un-equal means between the LDA functions. It 

tests the null hypothesis that the population means for all the discrimination functions are equal 

in all the classes. If the hypothesis is accepted, then the discrimination functions represent 

nothing more than the sampling variability. SPSS calculates the value of lambda for different 

functions. If the significance level for the function is small, then the null hypothesis is rejected.  

The first step of the test calculates Wilk’s lambda for all 11 functions according to equation 4-1 
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where: 

Sw is within-class scatter and given by eq 3-19 

SB is overall-class-scatter and given by eq 3-17 

i is the ith discrimination function, i=1:11 
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In the following steps, the test excludes one function at a time and calculates the Wilk’s lambda 

for the remaining functions. Table 4-1 shows the results of this test. The small significance 

values shown in the 3rd column of the Table indicates that the null hypothesis is rejected for the 

first eight functions. The differences between the means in the remaining three functions are not 

sufficient, indicating that these functions have small contribution towards the discrimination.  

 

 
Table  4-1 Testing equality of means for speaker based training analysis 

 
 

Test of Function(s)
Wilks' 

Lambda Sig.
1 through 11 .011 .000
2 through 11 .059 .000
3 through 11 .189 .000
4 through 11 .309 .000
5 through 11 .486 .000
6 through 11 .690 .000
7 through 11 .838 .000
8 through 11 .932 .003
9 through 11 .968 .163
10 through 11 .984 .310

11 .994 .396
 

 

 

 Another assumption involved in the LDA analysis is that samples represent a multivariate 

normal distribution with equal covariance matrices in the population. SPSS performs the Box M 

test to verify the validity of this assumption. Box M tests the null hypothesis that the covariance 

matrices for the features are equal.  The SPSS literature states that for sample sizes of  more than 
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40, the normality test may detect statistically significant but unimportant deviations from 

normality [70].  

 

 

Table  4-2 Test of equality of covariance matrix between groups 

 

Class Rank Log Determinant
/ɑbɑ/ 15 -70.745 
/ɑvɑ/ 15 -65.853 
/ɑðɑ/ 15 -56.453 
/ɑwɑ/ 15 -63.055 
/ɑdɑ/ 15 -64.485 
/ɑzɑ/ 15 -60.873 
/ibi/ 15 -50.944 
/ivi/ 15 -63.958 
/iði/ 15 -67.769 
/iwi/ 15 -57.317 
/idi/ 15 -64.722 
/izi/ 15 -53.074 

Pooled within-groups 15 -51.497 
 

 

 

Table 4-2 shows the results for the test of equality of covariance matrices between 

groups. The second column of Table 4-2 shows that the covariance matrices for each of the 12 

classes are full ranked. However, the 3rd column of Table 4-2 shows that the log determinant for 

the covariance matrix associated with every class is not always close to the overall covariance 

matrix. The significance results for the Box M test presented in Table 4-3 shows that the null 
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hypothesis is rejected. The literature associated with the SPSS software stated that small 

variability in the data available in a large sample can result in failing the normality test, but the 

LDA analysis can still be used to discriminate between the classes. 

 

 
Table  4-3 Tests null hypothesis of equal population covariance matrices. 

 

Box's M 8611.260 

F 

Approx. 5.996 
df1 1320.000 
df2 547550.691
Sig. .000 

 

 

Table 4-4 shows how well the training process does in classifying all 12 classes. The 

average percent of correct classification is 55.3%, which is much higher than chance (8%). In 

addition, the features discriminated the following classes (/ɑbɑ/, /ɑwɑ/, /eðe/, /iwi/, /ɑðɑ/, /izi/, 

and /iði/) with a correct percent of classification above the average performance.  The Table 

shows that sounds are confused with each other at different rates.  

Two sequences VCV1 and VCV2 are mutually confused if utterances of VCV1 are mis-

classified as VCV2 and utterances of VCV2 are mis-classified as VCV1. For example,  VCV 

sequences for the same consonant and different vowels are often mutually confused as shown in 

cells with thick boarder lines. Sixteen of the 29 mis-classified sequences of /ɑvɑ/ were classified 

as /ivi/. In addition, 8 of the 34 mis-classified sequences of /ivi/ were classified as /ɑvɑ/. This 

mutual confusion is also present between other sequences such as /ɑðɑ/ and /iði/. This mutual 
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confusion is consistent with the results of common viseme-to-phoneme mappings presented in 

Table 2-11.  

The Table shows other mutual confusions between sounds associated with consonant 

pairs /d/, and /z/, in addition to /ɑbɑ/ and /ɑvɑ/. The viseme-to-phoneme mappings in Table 2-11 

were obtained based on visual observations of VCV sequences. Sequences that had similar 

visible articulators were confused with each other and assigned to the same visible class by 

different observers. The visual features used in this study were extracted from the motion of the 

visible articulators. The confusion results in Table 4-4 show that the classifier has confusion 

patterns similar to the ones shown by studies involving human identification of visemes. These 

confusions will be discussed further as the effect of merging mutually confused classes together 

on the performance of the classifier is studied. 

SPSS performs additional analyses that help in understanding the discrimination problem. 

Table 4-5 presents the contribution of each of the resulting 11 functions in discriminating 

between the variables. The first column shows the function number, the 2nd column shows the 

percentage of explained variance by the function across the data, and the 3rd column presents the 

cumulative explained variance achieved by adding the scores for functions above that row. 

Results of this test indicate that 97% of the variance in the data can be explained by the first six 

functions.  

There are two more important results generated by the SPSS package. The first one is 

called the structural matrix, which shows the contribution of each visual feature towards the 

discrimination problem. The second important result is the coefficients of the discrimination 

functions. Tables 4-6 and 4-7 show these results respectively. 
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Table  4-4 Classification results and the confusion matrix 12-class speaker based 
 
 

Class 
Predicted Group Membership 

/ɑbɑ/ /ɑvɑ/ /ɑðɑ/ /ɑwɑ/ /ɑdɑ/ /ɑzɑ/ /ibi/ /ivi/ /iði/ /iwi/ /idi/ /izi/ Total

Original Count 

/ɑbɑ/ 66 5 0 0 0 0 1 0 0 0 0 0 72 

/ɑvɑ/ 11 43 0 0 1 0 1 16 0 0 0 0 72 

/ɑðɑ/ 3 4 20 0 6 6 1 8 10 1 10 3 72 

/ɑwɑ/ 12 0 0 56 0 0 0 1 0 2 0 1 72 

/ɑdɑ/ 1 5 16 0 17 12 0 5 3 0 6 7 72 

/ɑzɑ/ 4 6 6 1 8 24 0 4 10 0 8 1 72 

/ibi/ 13 0 2 1 4 0 49 1 1 0 0 1 72 

/ivi/ 4 8 0 0 4 5 0 38 8 0 0 5 72 

/iði/ 0 0 10 0 1 2 0 0 42 1 16 0 72 

/iwi/ 3 1 4 5 0 1 0 3 1 54 0 0 72 

/idi/ 1 0 4 0 7 8 0 3 15 1 33 0 72 

/izi/ 0 4 9 1 4 3 0 4 2 0 9 36 72 

% 91.7 59.7 27.8 77.8 23.6 33.3
68.

1
52.
8 

58.
3 

75.0 
45.
8 

50.
0 

 

 
 

 
The columns of Table 4-6 represent the discrimination functions, and the rows represent 

the correlation between the feature and the score of a discriminating function. The higher the 

correlation is, the more contribution this feature has towards the discrimination score provided 

by the function. Features with the highest contribution in each function are picked up by SPSS 

program and shown in bold fonts.  

The second extrema in the lip-corners distance is the most significant feature in the 

discrimination score provided by the 1st discriminant function. The order in which features are 

arranged for the 1st function is not the same for the remaining functions, which means that a 

  76



certain feature may contribute more in the discrimination by a given function while playing little 

role in discriminating in other functions. 

 
 

Table  4-5 Contribution of the discriminant functions towards the classification problem 

 

Function % of Variance Cumulative %
1 49.4 49.4 
2 21.8 71.2 
3 11.9 83.1 
4 6.3 89.4 
5 5.1 94.5 
6 2.6 97.1 
7 1.6 98.7 
8 .5 99.2 
9 .3 99.6 
10 .3 99.8 
11 .2 100.0 

 
 
 
Table 4-5 showed that for a 97% overall accuracy with the training data, it would be 

enough to consider the first 6 functions and discard the remaining ones. This suggests that the 

following features (Slope_LR2, Slope_LR1, LR2, Slope_UP2, UP2, Slope_UP1, Slope_UL2, 

UL1, UL3, UL2, LR3) contribute more to the discrimination than the remaining ones 

(slope_UL1, UP1, UP3, and LR1). 
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Table  4-6 The contribution of each feature towards the discrimination (Structural matrix) 
 
 

Feature 
Function 

1 2 3 4 5 6 7 8 9 10 11 
LR2 -.563* -.522 .190 .401 -.158 .034 .087 -.023 -.213 .096 .149 

Slope_UP2 -.529* .177 -.445 -.163 .022 .096 -.278 -.286 .019 .228 -.085 

Slope_UP1 .528* -.351 .375 .050 -.116 .127 .081 -.133 .113 -.330 .045 

UP2 .501* -.202 .306 -.121 -.290 .265 .346 .071 -.287 .250 -.306 

Slope_LR2 .471 .690* -.136 .296 .028 .313 -.025 -.042 -.074 -.137 -.060 

Slope_LR1 -.473 -.669* .126 -.146 -.008 -.014 .032 .168 -.243 -.061 .046 

LR1 .168 .460* -.029 .211 .013 -.269 .119 -.028 -.209 .151 .296 

UL3 -.020 -.075 -.172 -.074 .639* .411 -.178 .262 -.054 -.175 .342 

UL1 -.095 -.091 -.169 -.045 .601* .494 -.252 .020 .048 -.348 -.063 

UL2 -.250 .291 .040 -.350 .409 .465* .056 .216 .087 -.369 .266 

Slope_UL1 -.180 .366 -.109 -.261 -.130 .109 .475* .132 .241 -.147 .340 

Slope_UL2 .284 -.263 .241 .352 .358 -.243 -.429* .080 .015 .307 .049 

LR3 .042 .326 .147 .411 .161 .189 .190 -.606* -.265 -.001 .237 

UP1 -.024 .124 .055 -.064 .019 .092 .417 .202 -.255 .687* -.404 

UP3 .029 .042 .147 -.167 -.101 .191 .078 -.133 -.338 .356 -.514* 
   
  
 

Table 4-7 shows the coefficients of the 11 discrimination functions calculated using the 

training set. The performance of the discriminator is tested by obtaining the dot product between 

an unknown record and the coefficients of all the functions and then assigning that record to the 

class associated with the function that resulted in the highest score [70]. 
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Table  4-7 Classification function coefficients 
 
 

features 
Function 

1 2 3 4 5 6 7 8 9 10 11 12 

UL1 1.211 2.483 .560 2.500 .858 .236 -.609 1.831 -.560 -.110 .565 2.436 

UL2 -5.624 -8.215 -1.015 -7.009 -1.785 -2.039 -2.108 -6.111 .652 -3.233 -.438 -3.672

UL3 6.229 7.341 2.892 7.034 3.244 3.788 4.983 6.193 1.600 4.675 1.797 5.249 

LR1 -4.034 -2.710 -2.709 -1.492 -3.211 -2.910 -3.925 -2.135 -2.256 -1.469 -3.331 -2.922

LR2 2.044 2.217 1.776 -3.724 2.812 2.511 1.309 1.541 1.743 .319 3.285 2.480 

LR3 -2.414 -2.680 -2.548 -1.055 -2.690 -2.149 -.966 -2.103 -1.813 -2.465 -1.875 -1.753

UP1 -.512 .935 .189 -.198 .757 -.656 1.153 1.611 .120 .106 .558 2.054 

UP2 4.111 -1.888 .007 3.157 .077 .259 -.662 -1.900 .551 1.046 -.339 -2.021

UP3 -3.758 -.566 -.671 -2.863 -1.708 -.648 -.358 -.336 -1.221 -1.459 -.793 -.416 

Slope_UL1 5.891 34.763 -22.292 23.503 -14.189 -34.393 -36.739 19.305 -26.315 -9.467 -18.495 17.989

Slope_UL2 17.023 -37.834 29.650 22.780 54.386 29.698 72.226 -22.957 42.830 52.321 32.218 12.492

Slope_LR1 -14.972 -13.460 -5.054 12.706 -20.396 -14.944 -22.420 -7.375 -13.218 -29.758 -29.647 -7.793

Slope_LR2 17.473 14.018 6.296 -13.222 16.678 12.961 -9.184 9.621 6.737 68.177 15.272 21.009

Slope_UP1 14.955 31.766 -6.844 20.020 13.488 -24.260 74.064 27.627 -11.702 18.793 6.345 38.253

Slope_UP2 48.609 -29.999 -6.792 27.674 28.107 7.123 -48.588 -27.771 9.683 -7.070 7.550 -.204 

(Constant) -23.418 -19.112 -12.345 -23.949 -14.781 -13.717 -23.829 -13.721 -7.625 -18.136 -9.602 -16.592
 

4.1.1.2 Speaker-Based Training with 6 Classes 

Owen’s work summarized in Table 2-9 showed that the visual identification of the VCV 

sounds was not affected by the change in the vowel involved in the VCV sequence. This means 

that viewers in Owen’s experiments assigned both /ɑbɑ/ and /ibi/ to the same viseme class. 

Results of the 12 classes shown in Table 4-4 indicate that when the vowels were considered 

different classes, the classifier had an overall 55.3% of correct classification. However, the 

results showed a level of mutual confusion between consonants associated with both vowels. In 

this section, the speaker-based training is performed assuming that sounds coming from different 
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vowels with the same consonant belong to the same class. This reduced the number of classes to 

the six shown in Table 4-8: 

 
Table  4-8 Six classes resulting from combining words for the same vowel 

 
Class # VCV Sounds

1 /ɑbɑ,ibi/ 

2 /ɑvɑ,ivi/ 

3 /ɑðɑ,iði/ 

4 /ɑwɑ,iwi/ 

5 /ɑdɑ,idi/ 

6 /ɑzɑ,izi/ 

 
 
 
The classification results for this training set are shown in Table 4-9 and the average 

percentage of correct classification was 65.2%.  

Merging the vowels into one class increased the performance in recognizing some of the 

sounds. For example, the recognition rates for /ɑvɑ/, /ɑðɑ/ in the 12 class case were 59.7% and 

27.8% respectively. These percentages increased to 74.3% and 68.1% respectively when the 

vowels were merged together. Classes associated with the consonants /b/ and /w/ had the highest 

recognition score in both 12 class and 6 class cases. Classes associated with consonants /d/ and 

/z/ had the poorest performance in both 6 and 12 class configurations. In the 6 class 

configuration, 33 utterances involving the consonant /d/ were classified as /z/, and 22 utterances 

involving the consonant /z/ were classified as /d/. The total number of mis-classified utterances 

for both sounds was 173, and 55 of them (32%) were mutually confused. This confusion is 
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shown in cells marked with thick boarders in Table 4-9. The mutual confusion between visemes 

representing sequences /z/ and /d/ is a result of them having similar visual articulators as 

discussed in the previous section. 

 
 
 

Table  4-9 Classification results and the confusion matrix 6 class speaker based 
 
 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /ɑdɑ,idi/ /ɑzɑ,izi/ Total

Original Class 

/ɑbɑ,ibi/ 130 5 4 1 1 3 144

/ɑvɑ,ivi/ 13 107 10 1 10 3 144

/ɑðɑ,iði/ 4 10 98 2 9 21 144

/ɑwɑ,iwi/ 19 8 4 113 0 0 144

/ɑdɑ,idi/ 4 23 28 1 55 33 144

/ɑzɑ,izi/ 2 17 41 2 22 60 144

% 90.3 74.3 68.1 78.5 38.2 41.7  

 
 
 
There were other confusion patterns appearing in the table between classes involving the 

consonant /ð/ and the pair /d,z/. 99 of the 224 mis-classified utterances involving these sounds 

were mutually confused. In addition, despite that /b/ and /v/ had recognition rates higher than the 

overall performance, 18 of the 51 mis-classified utterances for /b/ and /v/ were mutually 

confused. 

The structural matrix associated with the resulting classification functions is shown in 

Table 4-10. Features that have high correlation with the score of each function are shown in bold 
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fonts. The top six significant variables for the first function are (LR2, Slope_UP1, Slope_UP2, 

UP2, Slope_LR1, and Slope_LR2). In the second function, Slope_UL1 became important. 

Slope_UP2, and UP2 did not have high correlation with the score associated with the function. 

The results in Tables 4-9 and 4-10 are discussed further in Chapter 5. 

 
 

Table  4-10 The contribution of each feature towards the discrimination (Structural matrix) 
 

 

features 
Function 

1 2 3 4 5 
Slope_UP2 -.506* -.392 -.213 .197 .134

UP2 .502* .374 .346 -.150 -.050
LR2 -.569 .683* -.171 -.003 -.025

Slope_LR1 -.430 .577* -.012 -.098 -.475
Slope_LR2 .412 -.524* -.007 .291 .306
Slope_UP1 .513 .520* .227 .018 -.003
Slope_UL1 -.163 -.402* .196 -.312 -.002

LR1 .158 -.371* -.072 -.111 .103
Slope_UL2 .252 .337* -.161 .297 .011

UP3 .032 .011 .246* .065 .042
UL1 -.090 -.049 -.141 .673* -.352
UL3 -.020 -.069 -.142 .568* -.555
LR3 .041 -.134 -.044 .354* .218
UP1 -.019 -.074 .092 -.146* .015
UL2 -.235 -.368 .317 .358 -.401*
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4.1.1.3 Speaker-Based Training with 5 Classes 

One of the objectives of this study was to evaluate how well these features could 

discriminate between the /d/ and the /z/ sounds. Both of these sounds were associated with the 

same class shown in Table 2-11. Table 4-9 shows that these two sounds are highly confused with 

each other. Utterances of these sounds are merged together resulting in the 5-class situation 

shown in Table 4-11. The classification results for this training set are shown in Table 4-12. The 

average percentage of correct classification was 72.2% 

 
 
 

Table  4-11 Five classes resulting from combining /VdV/ with /VzV/ 

 

Class # VCV Sounds 

1 /ɑbɑ,ibi/ 

2 /ɑvɑ,ivi/ 

3 /ɑðɑ,iði/ 

4 /ɑwɑ,iwi/ 

5 /ɑdɑ,idi,ɑzɑ,izi/
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Table  4-12 Classification results and the confusion matrix 5 class speaker based 
 
 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /VzV,VdV/ 
Total

Original Class 

/ɑbɑ,ibi/ 
128 4 3 1 8 144

/ɑvɑ,ivi/ 
13 98 8 1 24 144

/ɑðɑ,iði/ 
2 5 97 3 37 144

/ɑwɑ,iwi/ 
19 6 3 112 4 144

/VzV,VdV/ 
6 35 58 1 188 288

% 88.9 68.1 67.4 77.8 65.3  
 
 
 
The performance of individual classes between the 6-class and 5-class configuration did 

not change except for the class involving consonants /d/ and /z/. These two consonants had 38% 

and 42% correct perception in the 6 class case and merging them improved the overall 

performance to 65.3%. Classes associated with the consonants /b/ and /w/ continued to have the 

highest correct percentage score. The mutual confusion observed in the 6 class configuration 

between classes associated with consonants /d/, /z/ and /ð/ remained (69% of the mis-classified 

utterances were mutually confused).  
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Table  4-13 The contribution of features towards the discrimination (Structural matrix) 

 

Feature 
Function 

1 2 3 4 
Slope_UP2 -.491* -.410 -.234 .244

UP2 .486* .386 .358 -.224
LR2 -.600 .644* -.149 -.053

Slope_UP1 .497 .540* .244 -.043
Slope_LR1 -.465 .538* .045 -.133
S ope_LR2 .446 -.477* -.045 .242
Slope_UL1 -.134 -.411* .196 -.337

UL2 -.214 -.367* .347 .298
LR1 .179 -.354* -.092 -.134
UP3 .045 .015 .244* .014
UL1 -.098 -.040 -.115 .603*

UL3 -.038 -.061 -.106 .527*

Slope_UL2 .215 .348 -.169 .390*

LR3 .072 -.111 -.054 .199*

UP1 -.009 -.074 .092 -.159*

 
 
 
The structural matrix associated with the resulting discrimination functions is shown in 

Table 4-13. There was no change in the order of importance for the features in the first function 

for both 5-class and 6-class cases. Slope_UP2 became a significant feature in the second function 

and LR2 remained the feature with the highest correlation with the discrimination score in the 

first function for all 3 class combinations presented. These results are discussed further in 

Chapter 5. 

  85



4.1.1.4 Speaker-Based Training with 3 Classes 

Table 4-12 shows that the three classes /aða,eðe/, and /Vz,dV/ have a great deal of mutual 

confusion. The confusion between classes /aba,ebe/ and /ava,eve/ continued to appear in all class 

configurations tested. In this section, these classes are combined and a discriminator is designed 

based on the resulting training data. Table 4-14 shows the resulting classes after combining the 

classes.  

 
Table  4-14 Three classes resulting from combining /VdV/ with /VzV/ 

 
 

Class # VCV Sounds 

1 /ɑbɑ,ibi/, /ɑvɑ,ivi/ 

2 /ɑðɑ,iði/, /ɑdɑ,idi/, /ɑzɑ,izi/

3 /ɑwɑ/,/iwi/ 

 
 
 
The classification results for this training set is shown in Table 4-15 The average percentage of 

correct classification was 84.4%  

Classes associated with consonants /b/ and /w/ continued to have the highest 

classification score. In addition, in the 3 classes configuration confusion between consonants 

involving partial mouth closure like /w/ had confusion with classes involving complete mouth 

contact like /b/. 
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Table  4-15 Classification results and the confusion matrix 3 class speaker based 
 
 

Classes 
Predicted Group Membership 

/ɑb,vɑ,ib,vi/ /ɑwɑ/,/iwi/ /ɑð,d,zɑ/ /ið,d,z,i/ 
Total

Original Class 

/ɑb,vɑ,ib,vi/ 
240 1 47 288

/ɑwɑ/,/iwi/ 
28 110 6 144

/ɑð,d,zɑ/ /ið,d,z,i/
47 6 379 432

% 83.3 76.4 87.7  
 

  

The structural matrix associated with the discrimination functions is shown in Table 4-16. 

The structural matrix shows that LR2, Slope_LR1, and Slope_LR2 have the highest correlation 

with the score of the first and second functions. The second function’s score is also correlated 

with UL2, Slope_UP1, and Slope UL1. The results associated with the speaker training are 

discussed further in next chapter. 
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Table  4-16 The contribution of each features towards the discrimination (Structural matrix) 

 

Features 
Function 
1 2 

LR2 .666* -.603
Slope_LR1 .529* -.498
Slope_LR2 -.502* .474
Slope_UP2 .399* .364

UP2 -.377* -.288
UL2 .227 .557*

Slope_UP1 -.371 -.415*

Slope_UL1 .122 .415*

Slope_UL2 -.216 -.361*

LR1 -.223 .277*

LR3 -.061 .164*

UL1 .084 .109*

UL3 .009 .095*

UP3 -.011 .087*

UP1 .015 .085*
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4.1.2 Testing Models developed by Speaker-based Training 

 Discriminant models developed using the training set were tested with features extracted 

from word utterances coming from 9 speakers who were different from the speakers used to 

develop the discriminant models. The results of testing are shown in Table 4-17, where the VCV 

sequences included in each of the classes are given in Tables 4-2, 4-8, 4-11, and 4-14 

respectively. 

Performance of the developed LDA functions in the testing set for the 6-class, 5-class and 

3-class configurations were close to the training results. The test results for the 12-class 

configuration were 12% lower than those of training class. This high drop in the test set can be 

attributed to the difficulty present in distinguishing both vowels from each other. 

 

 

Table  4-17 Testing the Fisher functions developed in speaker based training 

 

Number of Classes
% correct Classification

Training Testing 

Twelve 55.3 43.1 

Six 65.2 59.91 

Five 72.1 69.93 

Three 84.4 83.37 
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The confusion matrices associated with the testing phase are presented in Tables 4-18 

through 4-21. Classes /ɑbɑ/, /ɑwɑ/ and /ewe/ had a high percentage of correct classification when 

the testing was done for 12 classes, which is consistent with training results. This indicates that 

the features captured the uniqueness of the visual cues associated with these sounds fairly well. 

The pairs of classes </ɑðɑ/, /iði/>, </ɑwɑ/, /iwi/>, </ɑdɑ/,/idi/>, </ibi/,/ɑbɑ/>, and </ivi/,/ɑvɑ/> 

were mutually confused. This confusion is consistent with the common viseme-to-phoneme 

mappings shown in Table 2-9 in which VCV sequences of the consonant were assigned to the 

same viseme class. The mutual confusion between VCV sequences involving /d/ and /z/ 

appeared in the test set as it appeared in the training set. Comparing the testing results from 

Table 4-18 with the training results of Table 4-4, the confusion patterns between utterances in 

both sets are very similar to each other.  

When the number of classes was reduced to 6, the confusion patterns discussed in the 6-

class training set continued to exist in the 6-class testing set. These results are shown in Table 4-

19.  The mutual confusion between classes /d/ and /z/ is consistent with the results of the 

common viseme-to-phoneme mappings shown in Table 2-11. The overall percent of correct 

classification in the test set was 59.91%. In addition, classes involving consonants /b/ and /v/ 

were mutually confused as they were in the training set. 
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Table  4-18 Confusion matrix for the 12 class testing phase 
 
 

Class 
Predicted Group Membership 

/ɑbɑ/ /ɑvɑ/ /ɑðɑ/ /ɑwɑ/ /ɑdɑ/ /ɑzɑ/ /ibi/ /ivi/ /iði/ /iwi/ /idi/ /izi/ Total

Original 

Count 

/ɑbɑ/ 63. 0 1. 0 0 8. 0 0 0 0 0 0 0 0 0 72. 0

/ɑvɑ/ 14. 0 41. 0 0 6. 0 4. 0 2. 0 1. 0 4. 0 0 0 0 0 72. 0

/ɑðɑ/ 0 5. 0 17. 0 0 3. 0 7. 0 2. 0 1. 0 22. 0 0 15. 0 0 72. 0

/ɑwɑ/ 7. 0 0 0 48. 0 0 0 7. 0 0 0 10. 0 0 0 72. 0

/ɑdɑ/ 4. 0 15. 0 13. 0 0 10. 0 10. 0 3. 0 7. 0 1. 0 0 7. 0 2. 0 72. 0

/ɑzɑ/ 1. 0 6. 0 13. 0 0 18. 0 16. 0 6. 0 0 2. 0 0 10. 0 0 72. 0

/ibi/ 41. 0 1. 0 2. 0 12. 0 0 2. 0 7. 0 4. 0 0 2. 0 1. 0 0 72. 0

/ivi/ 6. 0 25. 0 1. 0 0 6. 0 6. 0 0 19. 0 1. 0 0 7. 0 1. 0 72. 0

/iði/ 1. 0 2. 0 6. 0 0 3. 0 0 0 2. 0 29. 0 0 27. 0 2. 0 72. 0

/iwi/ 0 0 0 0 0 0 3. 0 1. 0 0 68. 0 0 0 72. 0

/idi/ 1. 0 2. 0 5. 0 2. 0 6. 0 12. 0 2. 0 4. 0 1. 0 0 32. 0 5. 0 72. 0

/izi/ 3. 0 4. 0 1. 0 0 3. 0 2. 0 0 4. 0 1. 0 0 31. 0 23. 0 72. 0

% 87.5 56.94 23.61 66.67 13.89 22.22 9.72 26.39 40.28 94.44 44.44 31.94  

 

 

The classification results after merging the VCV sequences for the consonants /d/ and /z/ 

together are shown in Table 4-20.  The percentage of correct classification with the test set in this 

case was 69.93%. The confusion patterns in the training set between the three classes /ɑðɑ/,/iði/, 

and classes associated with consonants /z/,/d/ continued in the test set. In addition, classes 

/ɑbɑ,ibi/ and /ɑvɑ,ivi/ had mutual confusion in both training and testing. The result of testing the 
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3-class models are presented in Table 4-21. The overall percentage of correct classification was 

83.37%. 

 

Table  4-19 Confusion matrix for the 6 class testing phase 
 
 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /ɑdɑ,idi/ /ɑzɑ,izi/ Total

Original Class 

/ɑbɑ,ibi/ 117 8 2 15 0 2 144

/ɑvɑ,ivi/ 21 87 2 7 14 13 144

/ɑðɑ,iði/ 3 12 98 0 3 28 144

/ɑwɑ,iwi/ 19 1 2 122 0 0 144

/ɑdɑ,idi/ 12 15 32 0 46 39 144

/ɑzɑ,izi/ 11 28 24 2 31 48 144

% 81.25 60.42 68.1 84.72 31.94 33  

 
 
 
In summary, the pattern of confusions between consonants was similar in both training 

and testing sets for the different class configurations used in this study. This indicates that the 

models developed using known utterances can effectively identify unknown utterances. It also 

indicates that the set of visual features used in this study are capable of representing the VCV 

sequences used in the study. 
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Table  4-20 Confusion matrix for the 5 class testing phase 

 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /VzV,VdV/ Total

Original Class 

/ɑbɑ,ibi/ 114 7 0 18 5 144

/ɑvɑ,ivi/ 21 76 2 8 37 144

/ɑðɑ,iði/ 2 8 104 1 29 144

/ɑwɑ,iwi/ 18 0 1 124 1 144

/VzV,VdV/ 27 43 56 0 162 288

% 79.17 52.8 72.2 86.1 56.25  

 

 

Table  4-21 Confusion matrix for the 3 class testing phase 

 

Classes 
Predicted Group Membership 

/ɑb,vɑ,ib,vi/ /ɑð,d,zɑ,ið,d,z,i/ /ɑwɑ,iwi/ 
Total

Original 
Class 

/ɑb,vɑ,ib,vi/ 215 23 50 
288

/ɑð,d,zɑ/ /ið,d,z,i/ 19 123 2 
144

/ɑwɑ/,/iwi/ 39 4 389 
432

% 74.65 85.42 90.04  
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Class /ɑb,vɑ,ib,vi/ represent sounds that require complete mouth contact to produce  

them. Class /ɑwɑ,iwi/ involves sounds that require partial mouth closure in producing them. Both 

classes were mutually confused in both training and testing set results. 

4.1.3 Word-Based Training  

The training and testing sets in word-based training are formed by randomly dividing all 

the word utterances into two equal sized sets. The first half of utterances is used for training and 

developing the coefficients of the discrimination functions and the second half of utterances is 

used for testing the coefficients developed in the training process. The LDA functions were 

calculated for 12-class, 6-class, 5-class, and 3-class configurations. The classification function 

coefficients with their classification results are shown in Appendix A for the four configurations. 

The structural matrix for the word-based training with 12 classes is shown in Table 4-22. 

SPSS identified the features that have high correlation with the score of each function and those 

features are marked in bold in Table 4-22. Comparing those features with the features identified 

by SPSS in speaker-based training with 12 classes shown in bold fonts of Table 4-6 indicates that 

both training sets had the same features that are highly correlated with the score of the first and 

second LDA functions. This resemblance of features continued to exist between word-based and 

speaker based training with 6-classes and 5-classes as indicated in Table 4-10 and Table 4-23 for 

the 6-class training, Table 4-13 and Table 4-24 for the 5-class training.  
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Table  4-22 Structural matrix for word-based training with 12 classes 

 

Features Functions 

1 2 3 4 5 6 7 8 9 10 11 

Slope_LR1 .580* -.534 .055 .204 .184 .005 -.144 -.185 .267 .364 -.022

LR2 .548* -.283 .426 .326 .026 -.087 -.249 .216 .190 -.054 -.085

Slope_UP2 .492* .174 .054 -.393 -.222 -.003 .342 .303 .207 -.085 .150

Slope_UP1 -.432* -.340 -.140 .408 .302 -.093 .063 .105 -.245 .079 -.132

Slope_LR2 -.547 .583* .281 .069 .041 .043 .284 -.042 .014 .157 -.057

LR1 -.215 .443* .072 -.109 -.088 .023 -.355 .412 .318 -.057 -.196

UP2 -.406 -.201 -.219 .506* .405 .210 .053 .058 .161 -.234 .387

Slope_UL2 -.266 -.242 .197 -.129 -.105 -.692* -.227 -.074 .163 -.007 .162

Slope_UL1 .160 .363 -.211 .029 .024 .442* -.199 .000 -.134 -.384 -.127

UL1 .097 -.054 .225 -.414 .457 -.160 .490* -.220 -.067 -.021 -.376

LR3 -.046 .353 .408 .202 .398 -.181 -.213 .485* .048 .070 -.174

UP3 -.021 .054 -.169 .205 .333 .049 .166 .131 .243 -.321 .659*

UP1 -.033 .101 -.087 .142 .195 .293 -.030 -.026 .477 -.252 .600*

UL3 .023 -.064 .093 -.420 .236 -.189 .253 -.336 .254 -.355 -.534*

UL2 .246 .327 -.209 -.190 .398 .060 .295 -.317 .020 -.288 -.507*

 

 

Table 4-25 shows the structural matrix for word-based training with 3 classes. Comparing 

the structural matrix for 3 class configurations in word-based training with the structural matrix 

for 3 class configurations in speaker-based training shown in Table 4-16, the variables that are 

highly correlated with the classification score of the LDA functions were different from those 

resulting from the 12, 6, and 5 class configurations. 
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Table  4-23 Structural matrix for word-based training with 6 classes 
 
 

Feature 
Function 

1 2 3 4 5 

Slope_UP2 .505* -.216 -.382 .096 .006

Slope_UP1 -.464* .345 .448 .219 -.068

Slope_LR1 .482 .640* .188 -.036 .380

LR2 .536 .616* -.038 .030 -.094

Slope_LR2 -.402 -.469* -.129 .197 -.064

LR1 -.159 -.400* -.204 -.115 -.100

Slope_UL1 .182 -.393* .196 -.359 -.005

UP2 -.433 .215 .639* .089 -.049

UP3 -.022 -.058 .344* .238 -.147

Slope_UL2 -.270 .263 -.312* .281 -.237

UP1 -.028 -.085 .239* -.086 .049

LR3 -.010 -.109 -.098 .340* -.158

UL3 .013 -.007 -.263 .345 .599*

UL1 .081 .025 -.286 .556 .563*

UL2 .259 -.422 .139 .279 .545*

 
 
 

Table 4-26 summarizes the classification performance associated with word-based 

training and speaker-based training for different number of classes. The results of testing the 

LDA functions developed using word-based training with unknown word utterances were similar 

to speaker-based testing results. The correct classification percentages for the test set are shown 

in Table 4-27. The confusion matrices associated with testing word-based functions is included 

in Appendix A. 
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Table  4-24 Structural matrix for word-based training with 5 classes 
 
 

Feature 
Function 

1 2 3 4 

Slope_UP2 -.505* -.227 -.403 .076

Slope_UP1 .461* .356 .441 .221

Slope_LR1 -.504 .613* .169 -.037

LR2 -.548 .595* -.053 -.037

Slope_LR2 .435 -.441* -.084 .101

UL2 -.245 -.410* .141 .288

Slope_UL1 -.168 -.400* .248 -.348

LR1 .182 -.399* -.166 -.185

UP2 .431 .226 .639* .120

Slope_UL2 .250 .274 -.398* .351

UP3 .033 -.045 .324* .273

UP1 .034 -.081 .251* -.065

UL1 -.078 .036 -.302 .456*

UL3 -.028 -.004 -.307 .353*

LR3 .044 -.090 -.059 .183*

 

 

In a typical classification problem, models are developed based on known parameters; the 

developed models are tested with parameters coming from unknown sources. The analysis of the 

results for structural matrices, the classification results of Table 4-26 and the testing results of 

Table 4-27 suggest that the performance of the discrimination in the training and testing parts is 

not much affected by the way the data is divided. The speaker based training develops a 

discrimination model for utterances coming from known speakers, and then this model can be 

used to classify utterances coming from unknown speakers, which is a configuration that is 
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closer to a typical classification problem. In the remaining part of this research, tests are 

performed on models developed by speaker based training. 

 
 

Table  4-25 Structural matrix for word-based training with 3 classes 
 
 

Feature Function 

1 2 

LR2 .598* -.536

Slope_LR2 -.458* .454

Slope_UP2 .454* .264

Slope_UP1 -.377* -.306

UP2 -.346* -.200

Slope_UL2 -.263* -.244

UL1 .083* .067

Slope_LR1 .563 -.588*

UL2 .255 .502*

LR1 -.211 .350*

Slope_UL1 .155 .342*

LR3 -.013 .172*

UP3 .002 .117*

UP1 -.024 .074*

UL3 .006 .052*
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Table  4-26 Comparing performance results between speaker based and word based training 

 

Number of Classes 
% correct Classification 

Speaker based Training word based Training 

Twelve 55.3 53.9 

Six 65.2 62.3 

Five 72.1 71.8 

Three 84.4 85.1 

 

 

 

Table  4-27 Testing speaker-based and word-based LDA functions 

 

Number of Classes 
% correct Classification 

Speaker-Based testing Word-Based testing 

Twelve 43.1 49.42 

Six 59.91 62.15 

Five 69.93 71.32 

Three 83.37 83.45 
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4.2 STEP-WISE ANALYSIS 

In step-wise analysis, the features are applied to the discrimination problem one at a time. 

In every step of the analysis, the feature with the highest statistical value in discrimination is 

entered. This process is continued till all features are applied or the user set thresholds for 

entering and removing variables are reached. Table 4-28 shows which features were entered in 

every step of the analysis for different class configurations. The order in which these features 

enter into the analysis indicates how important those features are in the discrimination problem. 

Features being admitted to the analysis at later steps have a smaller contribution towards the 

discrimination problem. 

Figure 4-1 shows the effect of adding one feature at a time on the classification 

performance for different class configuration with the training set. Adding more features in each  

classifier improves the performance. The increase in the performance becomes stable after 

adding the 7th feature into the analysis. In the 3 class case, the first two features LR2 and UL2 

were enough to obtain high classification score and adding more features resulted in a small drop 

in the performance. 

 Table 4-29 shows the training and testing results obtained when the discrimination 

problem included the top 7 captured in the step-wise analysis. The LDA functions obtained using 

these seven features were tested to determine the impact of ignoring 8 features on the 

discrimination problem 
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Figure  4-1 Effect of adding features on the classification performance 
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Comparing these results with the summary of the classification performance when all 15 features 

are included (Table 4-17), shows that in the training set, these 7 features performed almost as 

well at the 15 features. The effect of ignoring those features resulted in a 4.8% drop in the 

training performance for the 12 and 6 class case. The performance difference is almost negligible 

in the case of training for 5 and 3 classes. In the testing phase, ignoring 8 features resulted in a 

3.8% drop for the 12 class case and 1% or less in the remaining classes. 
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Table  4-28 Features in the order of their importance in different classes 
 
 

Step number 12 Classes 6 Classes 5 Classes 3 Classes 

1 
LR2 LR2 LR2 LR2 

2 
Slope_UP1 Slope_UP1 Slope_UP1 UL2 

3 
Slope_LR2 UL2 UL2 UL3 

4 
Slope_UL2 UL3 UL3 Slope_UP2 

5 
UL2 UP2 Slope_UP2 Slope_UL2 

6 
UL3 LR1 LR1 LR1 

7 
UP2 UP3 Slope_UL2 Slope_UP1 

8 
LR1 Slope_UL2 UP2 Slope_UL1 

9 
UP1 Slope_LR2 Slope_LR2 UL1 

10 
Slope_UP2 Slope_UP2 UP3 UP2 

11 
UP3 Slope_UL1 Slope_UL1 UP1 

12 
LR3 UL1 UL1  

13 
Slope_LR1 UP1 UP1  

14 
Slope_UL1 Slope_LR1   

15 
UL1    
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Table  4-29 Classification performance with the top 7 features 
 
 

Number of Classes
% correct Classification 

Training Testing 

Twelve 50.1 39.5 

Six 61.9 59.14 

Five 70.9 68.68 

Three 84.1 83.37 

 

4.3 SPEAKER SPECIFIC DISCRIMINATION 

The results presented so far were associated with models that included multiple speakers 

in their development. Despite the variability across speakers, the models developed were able to 

classify utterances into different groups. This section shows the results obtained by developing 

models for each individual speaker, i.e. models that can be used to identify unknown utterances 

coming from the same speaker. 

The data set used in this research consisted of 8 utterances of 12 different VCV words 

coming from 18 speakers. The utterances for every individual speaker are divided into training 

and testing sets. The training set consisted of 5 utterances of each VCV word and the testing set 

consisted of the 3 remaining utterances. Fisher discrimination functions were developed and 

tested for every speaker. The range of correct classification across speakers in the training and 

testing phases for different classes are summarized in Table 4-30. The percentage of correct 
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classification for every speaker for models with different class configurations are presented in 

figures 4-2 through 4-5. 

 

 

Table  4-30  Range and average of correct discrimination for 18 speaker-specific models 
 
 

 

# of classes # of classes # of classes # of classes 

3 5 6 12 

Trainin

g 
Testing Training Testing

Trainin

g 
Testing 

Trainin

g 
Testing

Range of % correct 85-100 
55.6-

100 

88.3-

100 

50-

98.3 
80-100 

66.7-

91.7 
90-100 

50-

86.1 

Average % correct 90.06 81.94 93.9 77.49 92.87 75.31 96.29 68.06 
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Figure  4-2  Training and testing results for every speaker (3 class configuration) 
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Figure  4-3  Training and testing results for every speaker (5 class configuration) 
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Figure  4-4 Training and testing results for every speaker (6 class configuration) 

 

  107



Classification for every speaker (12 Classes)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Speaker

%
 c

or
re

ct

Training
Testing

 

Figure  4-5 Training and testing results for every speaker (12 class configuration) 
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5.0  DISCUSSION 

The objective of this research is to investigate the feasibility of using a small set of 

features extracted from moving lips to distinguish between the sounds produced. Audio-visual 

data representing 12 different VCV sounds were obtained from 18 speakers. Several visual 

features, as shown in Table 3-2, were extracted from the lip motion to represent each of these 

VCV sounds, and many tests using linear discriminant analysis were conducted on these features 

to study how well they can classify the different sounds. 

5.1 SPEAKER-BASED VERSES WORD-BASED TRAINING 

In speaker-based training, the classifier was designed using features from 9 of the 18 

speakers. In word-based training, the classifier was designed using features extracted from half 

of the utterances from all 18 speakers. Each of these configuration schemes models a different 

problem.  

In speaker-based training, a model was developed based on features extracted from 

known speakers. The resulting model was tested using features from utterances produced by 

speakers who were not included in the development of the discrimination model. In word-based 

training, a model was developed based on the contribution of 18 speakers in the data set. The 

resulting model was tested with unknown utterances coming from the same speakers used to 
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develop the discrimination model. In this modeling scheme, the training and testing data come 

from the same source.  

The performance of both models on the training data is shown in Table 4-21. The 

performance of both models on test data is shown in Table 4-22. Results suggest that there is not 

much difference in the performance of the two. The features highly correlated with the score of 

the first and second discrimination functions across different classification classes didn’t change 

in both training methods. This indicates that the method of dividing the data didn’t result in 

significant differences in the classification performance.  

5.2 PERFORMANCE FOR DIFFERENT NUMBER OF CLASSIFICATION 

CLASSES 

The ideal performance of a classifier would be to distinguish between all 12 VCV words 

listed in section 3.5. However, Owen’s results shown in Table 2-9 suggest that changing the 

vowel does not affect the classification done visually.  

Table 4-4 shows the classification results when the training was done by associating 

every VCV word to a different class. The average percent of correct classification was 53.3%, 

and the correct classification percentage for each class was more than that of chance (8%). The 

highest classification scores were associated with classes /ɑbɑ/ (91%), /ɑwɑ/ (77.8%), and /iwi/ 

(75%) while the lowest scores were associated with /ɑðɑ/ (27%), /ɑdɑ/ (23%), and /ɑzɑ/ (33%). 

This indicates that the features used to represent these sounds capture certain characteristics in 

sounds /ɑbɑ/, /ɑwɑ/ and /iwi/ in a way that distinguishes them well from the other 9 VCV 
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sounds. However, these features don’t perform as well in capturing the difference between the 

sounds /ɑðɑ/, /ɑdɑ/, and /ɑzɑ/. In addition, the classification scores indicate that the features used 

in the study were able to detect some difference between the VCV sounds associated with both 

vowels. 

The classification scores and confusions associated with consonants /d/ and /z/ shown in 

Table 4-4 are consistent with common viseme-to-phoneme mapping of Table 2-11 in which 

consonants /d/ and /z/ were assigned to the same visual class. Twenty percent of the mis-

classified utterances for these sounds are mutually confused, and these two classes have the 

poorest classification score. 

The discussion in section 2.2.2 on the visual perception of phonemes showed that 

changing the vowel associated with the consonant didn’t have an effect on how the observer 

classified the sequence. To compare more directly to Owen’s results, the classification problem 

was re-defined to assign words with the same consonants to the same class, reducing the number 

of classes to six classes as shown in Table 4-8. The classification scores for the training data 

when divided into six classes are shown in Table 4-9. The over all average percent of correct 

classification is 65.2%. 

Merging the vowels resulted in an increase of about 7% in the overall classification 

performance. As for individual VCV sounds, the sounds with the highest scores continued to be 

consonants /b/ and /w/ in the 6 class case as they were in the 12 class case. In addition, 

consonants /d/ and /z/ continued to have the lowest discrimination score in the 6 class 

configuration as it was in the 12 class. Table 4-9 shows that the discrimination scores for classes 

associated with /d/ and /z/ were 38.2% and 41.7% respectively. It also shows that 32% of the 

mis-classified utterances for these sounds were mutually confused. This is consistent with 

  111



common viseme-to-phoneme mapping shown in Table 2-9 as discussed in section 4.1.1.2. This 

led to testing the classification performance when both /d/ and /z/ are considered to belong to the 

same class, reducing the number of classes to 5 as shown in Table 4-11. 

The five-class training results presented in Table 4-12 showed that the class associated 

with the consonant /b/ and /w/ continued to be detected very well. In addition, merging classes 

/d/ and /z/ increased the overall percentage of correct classification from 65.2% to 72.1% with 

individual scores for each class still 3 to 4 times higher than chance (20%). The /d/ and /z/ 

classes had the poorest performance in the 6 class configuration. When both classes were 

combined, the recognition for the combined class jumped to 65.3%. 

There is still confusion between classes as shown in Table 4-12; Classes /ɑðɑ, iði/, /ɑdɑ, 

idi/, and /ɑzɑ,izi/. Sixty seven percent of the mis-classified sounds from these sequences were 

mutually confused. In addition, although class /ɑbɑ,ibi/ and /ɑvɑ,ivi/ involve full closure of lips 

and have high percentages of correct classification, there is still mutual confusion between both 

classes. Merging these classes results in a three class problem as shown in Table 4-14. 

The three classes presented in Table 4-14 are directly related to the role of the upper and 

lower lips in producing those sounds. Class 1 represent sounds that involve complete lip contact. 

Class 2 represents sounds that involve partial lip closure. Class 3 involves sounds with little 

contribution coming from the lips when producing them. The training results of the 3 class 

configuration are shown in Table 4-15, with overall performance increasing to 84.4%.  

When the number of classes in the training phase was reduced to 3, features highly 

correlated with the discrimination scores of the first and second LDA functions were (LR2, UL2, 

UP2, Slope_LR1, Slope_LR2, Slope_UP1, and Slope_UL1). The intuitive meaning for these 
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features is shown in Table 5-1. Features related to the upper and lower lips became important, 

while some of the slope features became less correlated with the score of the function.  

The features having high correlation with the discrimination score of the first and second 

discrimination functions were the same for the 12 class, 6 class, and 5 class cases. These seven 

features were (UP2, LR2, Slope_LR1, Slope_LR2, Slope_UP1, Slope_UL1, and Slope_UP2). 

These features are related to contributions of the upper lip in the sound production. They capture 

how fast the upper lip and the lip corners are moving while producing the consonant. The speech 

production literature discussed in Section 3-3 stated that the upper-lip moves at different rates 

while producing different sounds. This can explain the significance of slope features at higher 

number of classes.  

The results presented in this section indicate that the features chosen to represent these 

VCV sounds provide good discrimination between these sounds. The optical reflectors used with 

the Motion Analyzer could not be used to track the tongue because the adhesive side does not 

stick to moist surfaces. The tongue plays a role in producing the consonant /ð/ but it has no role 

in producing the consonants /d/, and /z/. In the context of two dimensional images, the tongue is 

expected to appear in the image sequence when /ð/ is stated. Capturing this property may reduce 

the confusion between the classes /ð/ and /d,z/ presented in Table 4-12.  

5.3 TESTING THE MODELS 

Four different models were developed in the speaker training method. Each of these 

models had a different number of classes to discriminate between. The Fisher functions for each 
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model were tested using the utterances coming from 9 speakers that were not used in developing 

that model, as described earlier in section 3.5. 

The results of testing the LDA models for different classes are shown in Table 4-17. The 

second column shows the classification performance with the training results, and the third 

column shows the testing results. The testing results are lower than the training results but the 

difference between the training and testing results decreases as more classes are merged. For the 

3 class configuration, the testing and training results are almost identical. For the 12 class case, 

the drop in the testing results is higher than the drop in other classes. This shows that the 

automatic classifier performance drops when comparing sequences from two different vowels.  

The confusion matrix associated with testing the 12 class case shown in Table 4-24 

suggest the following: 

o Classes /ɑbɑ/, /ɑwɑ/ and /iwi/ have the highest percentage of correct recognition as 

was the case with the training data.  

o Classes /ɑdɑ/, and /ɑzɑ had low scores, which is consistent with common viseme-to-

phoneme mappings that assigned both of them to the same class. 

o Class /ibi/ is almost at chance and most of /ibi/ utterances were classified as /ɑbɑ/, i.e. 

the discrimination functions didn’t capture the visual differences between the vowels 

“ɑ” and “i” for the consonant /b/. 

Table 4-20 shows the testing results when the consonants associated with two vowels are 

assigned to the same class, reducing the number of classes to six. Consonants /d/ and /z/ are 

mutually confused in testing as they were in training. The results of testing the models after 

merging these two classes are shown in Table 4-21. The performance of the functions with the 

testing set was almost equal to the performance with the training set.  
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The results of testing the model consisting of three classes are shown in Table 4-22. The 

overall performance of the Fisher functions with the testing data is almost the same as the results 

obtained using the training data. In addition, the confusion patterns between VCV sequences in 

the testing set are similar to those of the training set. Furthermore, some of the confusion patterns 

resulting from the automatic classification are similar to those patterns obtained from visual 

classification of visemes shown in Table 2-9. 

The utterances in the test set came from unknown speakers. Yet, the performance of the 

developed LDA functions with the unknown data is comparable with the performance of these 

functions with the training set. This indicates that the developed functions can be used to classify 

VCV utterances coming from unknown speakers. 

5.4 STEPWISE ANALYSIS 

The stepwise analysis is a technique to identify which variables contribute more to the 

discrimination problem. This analysis may help in reducing the dimensionality of the problem by 

discarding variables with small contribution toward the discrimination. Details of this analysis 

were discussed in section 3.4.4. and the results of the step-wise analysis for different class 

configurations are shown in table 4-28. 

The intuitive meaning of the visual features used in this study is shown in Table 5-1. The 

feature LR2 is associated with how much the lip corners close during an utterance. In other 

words, it reflects the rounding of the lips when the consonant in the VCV sequence is produced. 

For configurations involving classes greater than 3, the LR2 feature was consistently picked to 

be the most significant feature in the analysis. The 2nd feature to be picked by the step-wise 

  115



analysis was slope_UP1, which represents how fast the upper lip moved towards the lower lip at 

the beginning of the consonant production in the VCV sequence. When the number of classes 

involved is higher than 3, slope features representing how fast different points around the lips 

move in producing a sound become significant. When the training involved 3 classes, the 

rounding of the mouth (LR2) remained significant; however, the slope information was entered 

at later stages.  The 2nd and 3rd significant features for the 3 class were UL2, and UL3. This is 

expected since the 3 class case can be classified based on how far the lips close during the 

production of the consonant (complete, partial or little contribution) as discussed in section 5.2.  

The features associated with the production of the consonant are picked up at early stages 

of the stepwise analysis, while amplitude features related to the 2nd opening to produce the 2nd 

vowel are picked up at later steps of the analysis. In addition, the slope features become more 

significant when the number of classification classes increases. This is expected, since the rate at 

which lips move is different between consonants and for a larger number of classes, the amount 

of mouth opening is not enough to capture the variation between the visual articulators. This 

study suggests that the features associated with the consonant in the word (second extrema) play 

a bigger role in distinguishing between the sounds than the other features. 

Table 4-29 shows the results of training and testing new models based on the top seven 

features appearing in Table 4-28. When comparing the results of developing and testing the LDA 

models shown with the top seven features with the results shown in Table 4-23 with all 15 

features, the percentage of correct classification using 7 features is very close to the 

corresponding percentage when all features are used. When the LDA functions were developed 

bases on 12 classes, the percent of correct classification was 55.3% when all 15 features were 

used. This percentage dropped by 4.8% to 50.1% when only 7 features were used. The 
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performance difference for different numbers of classes when all features were included in the 

analysis was better than the performance when 7 features were used by only 2-5% in both 

training and testing. This suggests that adding features beyond the top seven shown in Table 4-23 

results in a small improvement of 2-5% in performance. Reducing the number of features 

reduces the complexity of the model with minimal loss in classification accuracy. 

 

Table  5-1 Intuitive meaning of the features used in the analysis 
 
 

Feature Intuitive Meaning of the Feature in producing the VCV sequence 

UL1 How far the upper and lower lips go apart to produce the initial vowel 

UL2 How close the upper and lower lips get to produce the consonant 

UL3 How far the upper and lower lips go apart to produce the second vowel 

LR1 How wide is the mouth when producing the initial vowel 

LR2 How wide is the mouth when producing the consonant 

LR3 How wide is the mouth when producing the second vowel 

UP1 How much the upper lips moved to produce the initial vowel 

UP2 How much the upper lips moved to produce the consonant 

UP3 How much the upper lips moved to produce the second vowel 

Slope_UL1 How fast the upper and lower lips moved in producing the consonant 

Slope_UL2 How fast the upper and lower lips moved in producing the second vowel

Slope LR1 How fast the lip corners moved in producing the consonant 

Slope_LR2 How fast the lip corners moved in producing the second vowel 

Slope_UP1 How fast the upper lips moved in producing the consonant 

Slope_UP2 How fast the upper lips moved in producing the second vowel 
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The top 7 features when the training was done for 12 classes shown in Table 4-23 were 

LR2, Slope_UP1, Slope_LR2, Slope_UL2, UL2, UL3, and UP2. Some of these features are 

different from the top seven features that were highly correlated with the discrimination scores of 

the first and second LDA function of the model (LR2, Slope_UP2, Slope_UP1, UP2, 

Slope_LR1, Slope_LR2, and LR1). This indicates that a certain feature might contribute towards 

the discrimination of a specific LDA function, but the same feature might not have significant 

contribution across all classes. The step-wise analysis evaluates the contribution of features at a 

more global level than the correlation analysis presented in the structural matrix. 

These features provide a new look on existing viseme-to-phoneme mappings. Mappings 

presented in chapter 2 were based on information observed by the eyes identifying visual 

representation of sounds, while the features used in this study are simple and easy to extract. The 

success of the features in achieving good discrimination suggests that they sample the 

information observed by the eyes of a person experienced in lip reading.  

5.5 SPEAKER SPECIFIC DISCRIMINATION  

The results associated with the analysis of speaker specific discrimination are shown in 

Table 4-30, where the average and the range of percentage of correct classification across all 18 

speakers are shown. 

Some of the speakers scored 100% correct classification in the training and even in the 

testing set, while some speakers performed poorly, particularly in the testing part. The poor 

performance in the testing part can be attributed in part to the fact that the training data consisted 
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of 5 utterances and the testing data consisted of only 3 utterances for every word. Jacknife  

training and testing might provide better insight on speaker-specific classifiers. 

Results presented in Table 4-30 show the overall average performance across speakers in 

training and testing. The average percentage of correct classification when the training was based 

on 12 classes was 96.29%. The average for testing with 12 classes was 68.06%. When all 

speakers were included in the training and testing, the percentage of correct classification was 

55.3% in training and 43.1% in testing. The training and testing performances are higher than 

those results obtained when more than one speaker is involved. This is certainly expected due to 

smaller within-speaker variability in producing these sounds.  

Figures 4-1 through 4-4 show the testing and training results for each of the speakers 

independently. No specific pattern for the performance of testing the speaker-specific classifiers 

across different class configurations was observed. Some of the results of testing for speaker-

specific models were close to training results, while others were not.  
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6.0  CONCLUSION 

The objective of this study was to investigate the feasibility of utilizing visual cues 

extracted from lip motion in distinguishing between different sounds. An audio-visual database 

with 12 VCV sequences was developed. Several features from the lip motion were extracted to 

represent the VCV sequence. The results suggest that the visual features used provide good 

discrimination between the VCV sequences used in this study.  

Visual features representing the change in mouth shape while producing the consonants 

in the VCV sequence were the most significant ones. The minimum distance between the upper-

lower lips, the distance between lip corners (amount of rounding in the mouth), and rate at which 

the upper-lip moves while producing the consonant were the features that most effectively 

captured the differences between the VCV sounds in the study. These features are two 

dimensional and very easy to extract from video sequences. These visual features manage to 

capture the uniqueness of the VCV sounds produced by a single speaker at performance rates 

much higher than the rates when multiple speakers are involved.  

The results of this study contribute towards a better understanding of the visemes-to-

phoneme mappings and the automatic visual classification of phonemes. Visemes are defined as 

the visual representation of phonemes. The features used in this study represent a set of 

parameters that characterize visemes, and they probably represent a sample of what the eye 
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observes and captures. These features should enable researchers to work on designing automatic 

classifiers to distinguish between different viseme classes.  
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7.0  FUTURE WORK 

The success in classification of these sounds should encourage attempts to expand the 

audio-visual data bases to include additional labial English sounds such as /m/, /p/, /f/ ,/θ/, to 

develop Fisher discriminant functions to identify unknown phonemes. Audio-visual recordings 

for the new sounds would need to be obtained. Then a lip tracking algorithm similar to the one 

used by Chen [9, 35] can extract images of the lip-region from successive frames in the video 

sequence and trace several points around the face in consecutive frames as shown in Figure 3-2.  

The next step would be to extract the visual features from the distance waveforms for these 

markers as described in sections 3.2 and 3.3. Grayscale based image segmentation algorithms 

can be used to detect the appearance of tongue and teeth in each frame in the image sequence. 

These represent two additional visual features that can be included in the analysis by assigning a 

binary value of zero or one representing whether lips or teeth were present in a specific frame or 

not. The extracted features can be used to calculate the Fisher discriminant functions associated 

with each phoneme. These functions can be used to identify unknown phonemes. 

For hearing impaired individuals, lip-reading is not universally well developed and is very 

limited in new hearing-aid users. This work provides a first step towards building automatic lip 

reading systems that are based on visual information only. The speaker-specific classifiers 

discussed in Section 4.4 proved to have good classification. This indicates that the variability of 

these features for the same word is reduced within one speaker. This becomes important in 
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situations where a hearing-impaired handicapped person interacts with few people around him or 

her. In such situations, a visual classifier could be trained using utterances of important words 

from specific people. Then a signal could be presented to the handicapped person indicating the 

word to be communicated to him or her. This can contribute towards improving the 

communication between that hearing-impaired handicap person and the people living with him 

or her.  

Follow-up studies to this work might include studying the relation between the important 

peaks in the distance waveforms and the acoustic waveform itself. One of the common problems 

facing people with hearing aids is what is referred to as the cocktail party effect resulting from 

having more than one person speaking at the same time. In such situations, the noise coming 

from other speakers occupies the same frequency range as the speaker of interest, which makes it 

hard to attenuate without affecting the speech signal of interest itself. This study suggests that the 

features associated with the consonant in the word (second extrema) play a bigger role in 

distinguishing between the sounds than the other features. Studying the acoustical behaviors of 

the signal together with the lip waveforms that produced those acoustics may help in identifying 

instances and points of interest in the acoustical waveform that should be emphasized or de-

emphasized. The overall impact of this might improve the intelligibility of speech.  

  123



APPENDIX A 

WORD-BASED TRAINING 

A.1 WORD-BASED TRAINING WITH 12 CLASSES 

Table  7-1 Classification Function Coefficients 

 

Features 
Functions 

1 2 3 4 5 6 7 8 9 10 11 12 

UL1 1.682 2.118 .351 2.715 .108 .793 1.093 2.373 .388 1.262 3.926 1.923 

UL2 -5.974 -7.041 -.076 -6.716 -.063 -2.431 -5.229 -6.164 .353 -4.111 -3.849 -1.042

UL3 5.674 6.095 1.399 6.024 1.534 3.320 5.718 5.300 .717 4.105 3.324 .911 

LR1 -4.550 -4.173 -3.657 -1.524 -3.963 -4.148 -3.519 -2.929 -2.670 -1.023 -3.719 -3.896

LR2 1.902 1.911 1.698 -2.843 2.067 2.060 .532 1.223 1.793 1.040 1.943 2.631 

LR3 -1.898 -1.496 -1.774 -.468 -1.203 -1.304 .089 -.957 -1.262 -2.251 -.385 -.855 

UP1 -.800 -.266 -.752 -.763 -1.295 -.692 -.908 .762 -.180 -.585 .871 -.144 

UP2 3.504 -.411 .848 2.217 2.060 .268 .760 -1.226 .657 .540 -1.979 .257 

UP3 -2.317 .037 -.289 -1.031 -1.285 .098 .531 .280 -.639 .318 1.222 -.325 

Slope_UL1 1.638 24.721 -30.842 6.991 -44.724 -15.928 .965 30.710 -12.520 -2.012 23.586 -3.317

Slope_UL2 -2.981 -26.217 28.585 4.478 72.496 31.513 10.332 -21.481 26.720 31.734 -6.787 37.200

Slope_LR1 -10.649 -15.863 -3.249 -3.723 -13.703 -16.661 1.204 -2.399 -11.180 -34.762 -4.836 -17.544

Slope_LR2 14.093 2.313 3.333 -22.472 1.748 .359 -3.046 3.480 4.336 76.920 10.298 10.672

Slope_UP1 8.239 4.158 -28.823 4.902 -32.880 -18.486 8.300 20.198 -16.681 -1.559 16.472 -4.259

Slope_UP2 39.731 -18.219 6.212 6.109 51.007 6.892 -37.528 -20.083 12.731 -42.798 -23.259 16.368

(Constant) -22.518 -17.881 -10.803 -20.352 -13.691 -13.820 -17.529 -12.784 -6.520 -19.047 -14.087 -10.024
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Table  7-2  Classification results for word-based training with 12-classes 
 
 

Class 
Predicted Group Membership 

/ɑbɑ/ /ɑvɑ/ /ɑðɑ/ /ɑwɑ/ /ɑdɑ/ /ɑzɑ/ /ibi/ /ivi/ /iði/ /iwi/ /idi/ /izi/ Total

Original Count 

/ɑbɑ/ 64 3 0 2 0 1 2 0 0 0 0 0 72 

/ɑvɑ/ 10 37 0 2 0 4 2 17 0 0 0 0 72 

/ɑðɑ/ 0 5 33 0 6 4 1 4 11 0 3 5 72 

/ɑwɑ/ 9 0 0 53 0 0 2 1 0 7 0 0 72 

/ɑdɑ/ 0 5 11 0 28 11 3 2 6 0 1 5 72 

/ɑzɑ/ 2 7 16 0 16 12 1 7 0 0 4 7 72 

/ibi/ 19 1 2 5 3 0 36 3 0 1 1 1 72 

/ivi/ 5 11 0 1 2 5 0 36 5 0 3 4 72 

/iði/ 0 1 7 0 1 2 0 4 46 0 0 11 72 

/iwi/ 1 1 1 5 0 0 1 3 1 59 0 0 72 

/idi/ 1 1 6 0 2 2 0 6 3 0 35 16 72 

/izi/ 0 0 9 0 11 2 3 3 12 0 5 27 72 

% 88.9 51.4 45.8 73.6 38.9 16.7 50.0 50.0 63.9 81.9 48.6 37.5  
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A.2 WORD-BASED TRAINING WITH 6 CLASSES 

 

Table  7-3 Classification function coefficients 
 
 

Feature 
Function 

1 2 3 4 5 6 

UL1 1.329 2.062 .242 2.237 1.736 1.218 

UL2 -4.586 -5.539 .822 -5.033 -.981 -.923 

UL3 4.686 4.702 .428 4.512 1.575 1.354 

LR1 -3.341 -2.942 -2.774 -.880 -3.373 -3.550 

LR2 1.843 2.134 2.215 -1.002 2.557 2.826 

LR3 -.728 -1.086 -1.483 -1.005 -.776 -1.002 

UP1 -.397 .577 -.238 -.365 -.010 -.147 

UP2 1.170 -1.560 .210 1.062 -.395 -.303 

UP3 -.296 .622 -.118 -.257 .219 .223 

Slope_UL1 7.603 30.881 -19.132 8.418 -10.004 -6.788 

Slope_UL2 11.116 -14.110 33.403 19.726 43.040 41.594 

Slope_LR1 -8.826 -13.088 -10.788 -17.774 -13.801 -20.710 

Slope_LR2 26.392 21.212 18.028 27.758 22.173 20.425 

Slope_UP1 15.747 17.015 -19.590 8.276 -5.990 -7.462 

Slope_UP2 -18.022 -34.086 -1.843 -21.331 5.250 .674 

(Constant) -15.592 -11.917 -6.562 -15.675 -10.807 -9.393 
 

  126



Table  7-4 Classification results for word-based training with 6-classes 
 
 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /ɑdɑ,idi/ /ɑzɑ,izi/ 
Total

Original Class 

/ɑbɑ,ibi/ 
124 9 3 5 1 2 144 

/ɑvɑ,ivi/ 
22 98 6 2 6 10 144 

/ɑðɑ,iði/ 
1 13 106 2 9 13 144 

/ɑwɑ,iwi/ 
24 5 2 113 0 0 144 

/ɑdɑ,idi/ 
5 22 33 1 55 28 144 

/ɑzɑ,izi/ 
6 21 41 0 34 42 144 

% 86.1 68.1 73.6 78.5 38.2 29.2  

  127



A.3 WORD-BASED TRAINING WITH 5 CLASSES 

Table  7-5 Classification function coefficients 

 

Feature 
Function 

1 2 3 4 5 

UL1 1.213 1.857 .113 2.321 1.043

UL2 -4.793 -5.238 .672 -5.171 -1.288

UL3 5.146 4.774 .774 4.733 2.327

LR1 -3.805 -3.254 -3.047 -1.000 -3.822

LR2 1.868 2.210 2.345 -1.242 2.741

LR3 -.639 -1.181 -1.583 -.902 -1.114

UP1 -.484 .427 -.296 -.389 -.289 

UP2 1.100 -1.179 .136 1.102 -.311 

UP3 -.100 .465 .040 -.316 .423 

Slope_UL1 3.756 23.895 -21.662 4.663 -15.047

Slope_UL2 13.344 -2.569 32.435 25.742 44.294

Slope_LR1 -8.844 -14.227 -12.597 -15.901 -19.709

Slope_LR2 26.494 21.700 18.488 26.442 21.022

Slope_UP1 8.628 9.560 -23.201 3.025 -15.201

Slope_UP2 -25.823 -31.348 -8.008 -22.300 -4.432

(Constant) -16.613 -12.637 -6.967 -16.450 -10.764
 

  128



Table  7-6 Classification results for word-based training with 5-classes 
 
 

 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /VzV,VdV/ 
Total

Original 
Class 

/ɑbɑ,ibi/ 
123 5 0 5 11 144 

/ɑvɑ,ivi/ 
22 81 6 2 33 144 

/ɑðɑ,iði/ 
1 8 102 2 31 144 

/ɑwɑ,iwi/ 
24 2 2 113 3 144 

/VzV,VdV/ 
11 25 50 1 201 288 

% 85.4 56.2 70.8 78.5 69.8  
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A.4 WORD-BASED TRAINING WITH 3 CLASSES 

Table  7-7 Classification function coefficients 
 
 

Features 
Function 

1 2 3 

UL1 1.269 2.027 .605 

UL2 -4.478 -4.742 .247 

UL3 4.235 4.146 .754 

LR1 -2.770 -.503 -3.028

LR2 1.857 -1.059 2.402

LR3 -1.266 -1.364 -1.309

UP1 .214 -.088 -.202 

UP2 -.509 .307 .046 

UP3 .203 -.055 -.010 

Slope_UL1 19.525 12.996 -15.486

Slope_UL2 -10.866 7.556 36.463

Slope_LR1 -9.374 -17.420 -13.519

Slope_LR2 21.230 24.734 19.052

Slope_UP1 10.829 4.013 -15.530

Slope_UP2 -31.927 -29.103 -.566 

(Constant) -10.791 -13.845 -6.825
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Table  7-8 Classification results for word-based training with 3-classes 

 

Classes 
Predicted Group Membership 

/ɑb,vɑ,ib,vi/ /ɑwɑ/,/iwi/ /ɑð,d,zɑ/ /ið,d,z,i/ 
Total

Original Class 

/ɑb,vɑ,ib,vi/ 
235 8 45 288

/ɑwɑ/,/iwi/ 
29 112 3 144

/ɑð,d,zɑ/ /ið,d,z,i/
41 3 388 432

% 74.65 85.42 90.04  
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APPENDIX B 

WORD-BASED TESTING 

B.1 WORD BASED TESTING WITH 12-CLASSES 

Table  7-9 Classification results for word-based testing with 12 classes 
 

Class 
Predicted Group Membership 

/ɑbɑ/ /ɑvɑ/ /ɑðɑ/ /ɑwɑ/ /ɑdɑ/ /ɑzɑ/ /ibi/ /ivi/ /iði/ /iwi/ /idi/ /izi/ Total

Original Count 

/ɑbɑ/ 62 2 0 1 0 0 7 0 0 0 0 0 72 

/ɑvɑ/ 9 33 0 4 2 4 3 15 0 0 1 1 72 

/ɑðɑ/ 0 5 28 0 9 5 4 3 9 0 2 7 72 

/ɑwɑ/ 10 0 0 52 0 0 3 1 0 6 0 0 72 

/ɑdɑ/ 2 3 15 0 20 11 4 2 3 0 1 11 72 

/ɑzɑ/ 2 8 10 0 15 8 4 8 4 0 6 7 72 

/ibi/ 24 1 0 5 7 0 30 2 0 2 0 1 72 

/ivi/ 1 14 1 0 2 3 2 34 4 0 7 4 72 

/iði/ 1 1 13 0 3 1 0 1 41 0 0 11 72 

/iwi/ 1 0 1 2 2 0 3 2 0 61 0 0 72 

/idi/ 1 2 5 0 4 0 0 5 4 0 32 19 72 

/izi/ 0 0 11 2 2 4 1 6 16 1 3 26 72 

% 86.1 45.83 38.89 72. 2 27.78 11.1 41.6
7 

47.2 56.9 84.7
2 

44.4 36.1 49.42
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B.2 WORD BASED TESTING WITH 6-CLASSES 

Table  7-10 Classification results for word-based testing with 6 classes 
 
 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /ɑdɑ,idi/ /ɑzɑ,izi/ 
Total

Original Class 

/ɑbɑ,ibi/ 127 5 0 6 0 6 144

/ɑvɑ,ivi/ 21 95 4 2 13 9 144

/ɑðɑ,iði/ 4 10 110 1 5 14 144

/ɑwɑ,iwi/ 22 5 3 113 0 1 144

/ɑdɑ,idi/ 9 21 33 0 50 31 144

/ɑzɑ,izi/ 6 22 44 4 26 42 144

% 
88.19 65.97 76.39 78.47 34.72 29.17 62.15
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B.3 WORD BASED TESTING WITH 5-CLASSES 

Table  7-11 Classification results for word-based testing with 5 classes 

 

Classes 
Predicted Group Membership 

/ɑbɑ,ibi/ /ɑvɑ,ivi/ /ɑðɑ,iði/ /ɑwɑ,iwi/ /VzV,VdV/ 
Total

Original 
Class 

/ɑbɑ,ibi/ 122 7 0 9 6 144 

/ɑvɑ,ivi/ 25 71 2 4 42 144 

/ɑðɑ,iði/ 2 8 102 1 31 144 

/ɑwɑ,iwi/ 23 0 1 119 1 144 

/VzV,VdV/ 18 28 43 0 199 288 

% 
84.72 49.30 70.83 82.64 69.1 71.32
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B.4 WORD BASED TESTING WITH 3-CLASSES 

Table  7-12 Classification results for word-based testing with 3 classes 

 

Classes 
Predicted Group Membership 

/ɑb,vɑ,ib,vi/ /ɑwɑ/,/iwi/ /ɑð,d,zɑ/ /ið,d,z,i/ 
Total

Original Class 

/ɑb,vɑ,ib,vi/ 225 14 49 288

/ɑwɑ/,/iwi/ 25 118 1 144

/ɑð,d,zɑ/ /ið,d,z,i/ 39 3 390 432

% 78.12 81.94 90.28 83.45
. 
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