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 Four different grades of High Strength Low Alloy Steels were investigated.  This report 

presents an analysis of the effect that cooling rate and coiling temperature have on the final 

microstructure of these steels.  First, a complete microstructural characterization of the as 

received hot band material was conducted with the aid of Optical Microscopy, Scanning and 

Transmission Electron Microscopy, and Electron Backscatter Diffraction-Image Quality 

analisys.  Dilatometric studies to assess the transformation behavior of austenite under controlled 

continuous cooling conditions were conducted. The results provided the transformation 

temperatures for these grades.  Finally the information gathered from the dilatometry was used to 

design a thermomechanical processing procedure where cooling rate and coiling temperature 

were varied and the effects studied.  The results show that cooling rate has an important role in 

the final ferrite grain size, where in most cases samples cooled at 30 C/s to the coiling 

temperature showed grain refinement over those cooled at 10 C/s.  The combination of the 

cooling rate and low coiling temperatures defined the transition from polygonal ferrite to acicular 

ferrite. A complete characterization of the final microstructures was carried out and the 

microstructural components were used to predict the yield stress value expected for a given 

processing condition. 
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1.0 INTRODUCTION 

 

 

 

The development of High Strength Low Alloy (HSLA) steels over the past 50 years has 

been, and continues to be of great importance.  Advances in properties like formability and 

weldability, and increased performance with tougher and stronger grades have allowed these 

high strength steels to remain competitive with other materials in performance applications like 

the automotive and gas and oil industries.  Also, improved production and processing methods of 

these steels have allowed the development of more cost-effective steels for their continued use. 

 These advances in performance have been possible due to improved control of the final 

microstructure of these steels.  This control is achieved through alloying advancements using 

solid solution and precipitation methods creating strength through dispersion and grain 

refinement and improved methods in the thermomechanical processing of these steels.  Year 

after year, research leading to improvements in these areas is conducted.   

  As these advancements have been made, many companies have to adapt their processes 

in order to implement improvements.  Many of these companies and that have embarked on 

programs to improve their current products for the transportation sector.  In order to achieve this 

objective, a clear understanding of the fundamental microstructural characteristics of their 

current steels is needed.  In addition, it is also important to have an understanding of the major 

factors in their processing that cause variation in mechanical properties.  This research has been 

conducted in order to meet these needs and present a program for advancement in these steels.
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2.0 BACKGROUND 
 

  

 

High strength low alloy, or HSLA, steels have historically included steels with a wide 

variety of compositions, all with the common goal of achieving a high mechanical strength with 

small amounts of alloy additions.1

As the use of HSLA steels has increased so has the knowledge of the effects and 

importance of alloying as well as the thermomechanical processing of these alloys. Alloying, 

hot-rolling, and controlled cooling all play key roles in how these steels have evolved.  The 

alloying elements can act as solutes, or they may transform into precipitates, such as carbide or 

nitrides, creating barriers to dislocation and defect motion during deformation.  The hot-rolling 

processes can affect the austenite microstructure which goes on to change the way in which the 

final microstructure forms. Finally, the transformation temperature and cooling rates of the steel 

from the austenite to ferrite regions determines how the final microstructure is formed.    

 

Advances in the metallurgy of HSLA steels have produced some very high strength 

materials.  But as these advances have been made, the variability of these steels, due to their 

dependence on processing parameters, has also become apparent.    It is, therefore, of great 

importance to identify reproducible methods which allow for a final desired microstructure.  This 

reproducibility has become possible through the automatic monitoring and control of the 

processing in all aspects from heating to deformation and finally cooling. This processing control 

is an engineering problem focusing on which conditions will achieve the desired properties in 

specific HSLA steel. 
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2.1 MODERN PROCESSING OF HSLA STEELS 
   

 In the modern processing of HSLA steels four processes contribute the most to the final 

product.  Reheating, roughing, finishing and cooling all play specific roles in how these steels are 

engineered.  Figure 1 below shows how these steps are represented in modern mills.   

 

Figure 1 Showing the thermomechanical processes present in both hot-strip and plate 

mills from reheating to roughing to finishing and finally cooling 

 

In the hot-strip mill process shown above, starting g from the slab material the steel is 

first subjected to reheating.  In this process, the steel is allowed to austenetize at high-

temperature, allowing for some of the precipitates to dissolve and solutes to disperse.  In the 

roughing phase, the steel is rolled for the first time, at high temperature.  In this process, the large 
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austenite grains which had formed are deformed and then allowed to recrystallize as smaller 

austenite grains.  Finishing refers to the final hot-rolling passes and occurs at much lower 

temperatures, to allow the austenite to deform but not recrystallize, this residual deformation aids 

in the formation of fine ferrite grain size.  Finally, the steel is cooled in air or using some other 

cooling system, from the final rolling temperature.  This cooling is rapid and continues until the 

steel reaches a desired coiling temperature.  From there, the steel is allowed to slowly cool to 

ambient temperature.  During this cooling, is when the nucleation of ferrite and other ambient 

temperature micro-constituents form, but it is through the combination of the entire 

thermomechanical process that determines the constitution of the final microstructure. 2

 

 

 
 

2.2 METALLURGY OF THE PROCESSING METHODS OF HSLA STEELS 

 
2.2.1 Reheating/Normalizing 

  

 In the thermomechanical processing of HSLA products, the first step is usually reheating.  

In this process, the steel is brought to a high temperature and allowed to normalize.  This 

temperature is known as the soaking or charge temperature and usually is in the range of 1150-

1300 oC. This high temperature is chosen in order to allow for the dispersion of the solutes, and 

is also dependent upon what the precipitates present in the austenite.  These precipitates, which 

have formed in the austenite, begin to decompose into the bulk, at high temperature, allowing the 

austenite grains to coarsen.3 Figure 2 shows the effect of different alloying elements on the grain 

size during reheating. 
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Figure 2 Effect of different alloying elements on austenite grain coarsening 

 

In this figure the trends for vanadium, aluminum, and niobium bearing steels show grain 

coarsening behaviors.  The temperature at which this coarsening occurs is denoted Tgc and is 

depicted by the hashing in the figure.  Below the coarsening temperature, grain growth occurs in 

a ‘normal’ manner where grains slowly grow into each other until they are hindered by the same 

growth in other grains.  At the grain coarsening temperature however, this growth begins to 

change into an abnormal or ‘secondary’ grain growth pattern.  In secondary grain growth a few 

grains grow by consuming others then growing into the bulk of finer grains.  At Tgc, this 

coarsening is just beginning to take effect and a distribution of larger ‘coarsened’ grains as well 

as finer grains is present.  When the bulk reaches higher temperatures the secondary grains are 

all that remain and they continue growing normally.   

 The phenomenon of grain coarsening in these steels is a product of the stability and 

solubility of the precipitates present in the austenite grains. Below Tgc, these precipitates are the 

primary barriers to the growth of the austenite grains.  Many have studied how these alloying 
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elements act in the steels at high temperatures.  In more common grades of steel, VC and VN 

precipitates dissolve at lower temperatures, with other precipitates found in these HSLA steels 

like Nb(CN), AlN, and TiC needing temperatures in the range of 1150-1300 oC.4

 

  The solubility 

and activity of these elements can be affected by other elements that are not participating in the 

precipitation itself.  In the cases of Nb and C in particular the activity can be increased depending 

on other alloying elements decreasing the solubility of some precipitates, thereby increasing the 

dissolutions temperatures.   

2.2.2 Roughing 
   

 After reheating, the steel is allowed to cool and move on to the roughing phase of the 

thermomechanical process.  Roughing is where most of the plastic deformation occurs, and is 

intended to achieve a fine and homogeneous austenite grain structure.5 This grain refinement is 

achieved through the deformation and recrystallization of the austenite grains and means that 

these deforming passes must take place at temperatures usually above 1000 oC.  There are many 

factors affecting the amount of grain refinement and, therefore, the effectiveness of the roughing 

pass.  It has been found that the amount of deformation should be around 60% in order to 

achieve the maximum grain refinement for a particular roughing temperature.6

 Multiple rolling passes at roughing temperatures can further refine the austenite grain 

size, as long as enough time is allowed to pass.  This ‘interpass’ time, which is usually between 

20-30 seconds, allows for the recrystallization to be completed before the next rolling pass 

 Also the roughing 

temperature itself affects the amount to which grain refinement can occur and the amount of 

deformation needed. 
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begins and deforms the grains again.  Militzer et al., investigated this multipass grain refinement 

and developed a model to predict the effects.7 

   (1) 

 From this equation, the final grain size (drex) can be determined from the initial grain size (d0,), 

the strain (ε), R as the gas constant, and other material specific parameters (Qgx, A, P)    Using 

this model, a grain refining limit is obtained.  Where eventually drex = d0, this limit is 

somewhere in the range of 20-40 μm. 

 

2.2.3 Finishing 
 

  Like roughing, the finishing passes occur above the austenite transition temperature in 

order to deform the austenite grain structure.  However, the finishing passes occur below the 

recrystallization stop temperature.  This means the resulting deformed austenite grains cannot 

recover from the rolling fast enough and a stretched microstructure remains.  Figure 3 shows the 

differences between deformation above and below the recrystallization stop temperature, Trxn. 
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Figure 3 Effect of deformation of austenite either above or below the austenite 

recrystallization temperature. 

 

The elongated and deformed grains produced in the finishing passes create nucleation sites for 

the formation of a fine grained ferrite structure later on in the TMP process.  Generally, the 

recrystallization stop temperature can be defined as the temperature at which the structure has 

not fully recrystallized 15 seconds after a particular process. 8

 This controlled rolling resulting in a deformed austenite matrix is vital to achieving a 

fine ferrite grain structure.  Without this un-recrystallized structure, HSLA type steels would 

tend to transform into bainitic structures, resulting in a less desirable product with reduced 

toughness.

 

9

  Finally, the alloying elements present in the steel can affect the recrystallization process 

by changing the recrystallization stop temperature and pinning the movement of crystalline 

defects.  For example, the additions of niobium and titanium tend to result in the formation of 

  Figure 3 also shows equations for Sv, a parameter which is a quantification of the 

amount of defects present in the austenite matrix ,like grain boundaries, twin boundaries, 

deformation banding, etc,.   These defects correlate to ferrite nucleation sites and, therefore, Sv 

has a strong relation to the final ferrite grain size.  
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carbonitride precipitates at the grain boundaries, pinning them in place.  Effects such as solute 

drag by segregation to the grain boundaries are also important factors.10 Figure 4 shows how the 

different alloying elements can affect the recrystallization stop temperature.  Each element 

affects Trxn differently, exemplifying how each of them suppresses recrystallization in differing 

amounts. 11 

 

Figure 4 Plot of recrystallization stop temperature vs. solute content showing the 

effect of many different elements used in HSLA alloys 

 

2.2.4 Cooling and Coiling 
   

 After the finishing passes are complete and the steel has left the rolling mills, the product 

is subjected to final cooling. During cooling the temperature is carefully controlled in order to 

achieve the properties desired. By controlling the temperature and cooling rate the desired final 

microstructure and properties are achieved.  For instance, it has been found in NbV steels that 
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with higher controlled cooling rates the final rolling can occur at higher temperatures (800 oC) 

and achieve the same strength as though it were rolled at 700 oC and allowed to air cool. In 

addition the steel cooled quickly retains better toughness properties.12

  In modern mills the cooling process happens in two parts.  Initially, after the final hot 

rolling passes the strip is cooled rapidly (10-30 oC/s), usually to below the ferrite transition 

temperature.  Once a predetermined temperature is reached this rapid cooling is then stopped at a 

temperature known as the 'coiling temperature.’  From this the hot-strip is gathered into a coil, 

stored, and allowed to cool to ambient temperature at a much slower rate.  This coiling procedure 

has become a necessity because of economic and industrial requirements, but also has its effects 

on the final product.  For instance, by lowering the coiling temperature through longer periods of 

accelerated cooling, the yield stress can be increased through an enhancement of the structure 

formed during transformation.  In turn, the slow cooling from the coiling temperature allows for 

beneficial effects, such as precipitation hardening and tempering of the hardened structure to take 

place.2, 

 It is also important to 

understand that the cooling rate from rolling temperature can affect the transformation from 

austenite to ferrite, by lowering the temperature at which this transformation occurs.  Lowering 

the transformation temperature then increases the driving force for the nucleation of ferrite. 

Furthermore, an increase in cooling rate promotes finer precipitate formation which in turn 

provides for better properties at room temperature.  In continuous cooling scenarios, the cooling 

rate is limited by the need to allow ferrite and pearlite to form; this restriction is reduced when 

the cooling rate is decreased once a specified temperature is reached.5  

13 
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Figure 5 Effect of coiling temperature on Ti microalloyed steel 
 

 

 

2.3 FORMATION OF FERRITE AND HIGH CARBON MICRO-
CONSTITUENTS DURING TMP PROCESSING 

  

  As the hot-strip is allowed to cool from the final rolling temperature, transition 

temperatures for the formation of ferrite and other transition products such as bainite, pearlite, 

etc. are reached.  Depending on the alloy content, the thermomechanical processing and the 

cooling procedures these microstructural components can form in varying amounts and 

combinations.  Being able to predict exactly how the transformations occur has been found to be 

extremely complex due to the interactions of many different and sometimes competing 

processes. 

 In these steels, the formation of ferrite is usually controlled by way of the deformations of 

the austenite during the high temperature rolling passes.  This is because ferrite nucleation 
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primarily occurs at sites in the austenite grain structure like grain boundaries, grain edges and 

corners, and dislocations.14  Therefore, the processes of roughing and finishing have the primary 

effect of promoting ferrite nucleation.  However, due to the many other variables involved, 

polygonal ferrite is not always the only or even the primary product remaining after the 

transformation from austenite.   

 

Figure 6 Examples of different types of microstructures possible under different 

processing conditions in HSLA Steels; a, b & c) Quasipolygonal Ferrite & Bainite d) 

fine polygonal ferrite & pearlite e) acicular & quasipolygonal ferrite f) 

quasipolygonal, bainitic, & acicular ferrite 15

 

 

 The figure above shows some microstructures that can evolve from the same steel simply 

through differences in the processing parameters.  Present here are examples of polygonal, quasi 

polygonal, acicular and Widmanstatten ferrites.  Also high carbon products can be observed like 

bainite, pearlite and martensite.  
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2.4 STRENGTHENING MECHANISMS 
   

 Modern steels attain strengths that were previously unachievable before the advent of 

micro-alloying.  This significant improvement is possible through the interaction of multiple 

strengthening mechanisms.  Solid solution strengthening contributes through the addition of 

elements that, when in solution, act by deforming the crystal lattice, strengthening the matrix.  

The precipitation of solute atoms into the bulk, either at grain boundaries or within the grain, can 

act as a direct barrier to both dislocation motion and grain boundary movement, further 

strengthening the steels.  Finally, the evolution of techniques to refine grain size has allowed for 

a significant boost in both strength and toughness. 

 

Figure 7 Diagram showing how many different factor contribute to the strengthening 

of manganese containing micro-alloyed steels16
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2.4.1 Grain Size Strengthening / Hall-Petch Equation 
  

  It is known that ferrite grain refinement results in higher overall strength and toughness.  

This strengthening is said to occur because of how dislocations act as they approach the grain 

boundary.  When a dislocation moves toward a grain boundary, its motion is hindered.  This 

dislocation cannot usually move into another grain because, due to the approximately random 

orientation of the polycrystal, no similar slip plane exists in the adjacent grain.   

 

Figure 8 Illustration of dislocation pile up at the grain boundary 
 

As more dislocations approach the dislocation already stopped near the grain boundary, stress is 

built up until eventually enough stress is exerted on an adjacent crystal so as to create dislocation 

sources in those grains as well.  The stresses required to activate these dislocation sources are 

dependent on the size of the grain involved.17, 18
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 Hall-Petch were able to develop a relationship between grain size and yield stress in a 

polycrystal.19, 20  Equation 2 shows that the yield stress, σy, is dependent upon σi, known as the 

lattice friction stress, which is the minimum stress needed for dislocation motion.  The ky term is 

a constant representing the increase in stress needed to spread dislocation motion and yielding 

from one grain to another. Finally, d represents the grain size.  

     (2) 

The inverse square relationship with respect to grain size in the equation represents how larger 

grains can hold more dislocations; therefore, they need less stress in order to propagate yielding 

into the bulk.   

 It is well understood that a fine grain size is ideal and desired of all high strength steels.  

In order to achieve fine grain size a good understanding of how the ferrite microstructure evolves 

in any thermomechanical processing route becomes very important.  Generally, the goal in any 

steel processing technique is to achieve as many ferrite nucleation sites as possible in order to 

achieve a fine grain size.  Austenite grain boundaries as well as deformation bands in the 

austenite grain are considered the most important of these. Figure 9 shows the importance of 

deformed austenite structures in the final grain size.  The figure also shows continued refinement 

with higher cooling rates. 
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Figure 9 Effect of cooling rate on final ferrite grain size, shows conditions of both 

recrystallized and deformed austenite. 

 

The importance of the deformed austenite was investigated by Hulka who used a parameter 

similar to Sv in order to quantify the deformation in the austenite.  Hulka used the dimension of 

the austenite perpendicular to the rolling plane to develop an equation that described his 

observations.  

      (3) 

Here h(γ) is the austenite dimension variable and d(α) is the final ferrite grain size.  This 

equation shows that the smaller the perpendicular dimension of the austenite the small the final 

ferrite grain size will be.  Therefore, a deformed and ‘pancaked’ austenite structure is ideal for 

nucleating many small ferrite grains. 21

 

 

 



17 
  

 
 Due to the nature of the many strengthening mechanisms that interact in steels, it is 

possible to modify the Hall-Petch equation to accommodate these mechanisms.  This 

modification leads to a linear addition of many strengthening terms. 

          (4) 

 The equation above shows terms for many different strengthening mechanisms added 

together, σsss, for solid solution strengthening, σpptn, for precipitation strengthening, and so on. 

Each of these may in turn have equations modeling their overall contribution to the yield stress. 

 

2.4.2 Solid Solution Strengthening 
  

 The use of solute atoms plays an important part in the strengthening of HSLA steels. The 

primary role of these alloying additions is to increase the lattice friction thereby increasing the 

resistance to deformation in the ferrite crystal.  By creating stresses within the lattice structure 

the solute can interact with dislocations, relieving some of the stresses induced by the 

dislocations.  The two main types of solutes, interstitial and substitutional, each affect strength in 

different ways.  Interstitial solutes are atoms that fit in between lattice points on the ferrite 

matrix.  They have the most significant effects on strength, but their limited solubility restricts 

their ultimate effectiveness.  Substitutional solutes, in contrast, replace Fe atoms in the lattice.  

Their solubility is much higher but their effectiveness and cost are such that abundant use of 

them is not particularly economical.  The figure below shows the significant difference in how 

interstitial atoms (C, N) can strengthen steel versus how substitutional solutes (Cu, Mn, etc.) 

effect yield stress. 
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Figure 10 Effects of solid solution content on yield stress in low alloy steels 22

The figure shows that the effects of each of these solutes in the yield strength of bulk multi-

crystal material as well defined and linear, for both interstitial and substitutional solutes up until 

their solubility limits.  These strengthening effects can be modeled linearly with a general 

equation such that; 

 

∆σys (SS)= Σ (χi ki)      (5) 

Here, the total contribution to the yield strength of the steel due to the solid solution additions 

can be determined by the summation of the products of the weight percent of each solute (χ) by 

their strengthening coefficient (k).23

 

 

 

2.4.3 Precipitation Strengthening 
  

 The strengthening effect of precipitation in steels has been thoroughly investigated for 

over half a decade.  The effects of these small precipitates on the overall strength can be 

attributed to multiple mechanisms.  Ashby and Orowan were some of the first to observe and 
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quantify the effects of incoherent precipitates pinning dislocation motion. This mechanism is 

known as dispersion strengthening.24, 25Others later identified more mechanisms contributing to 

strength. For example, Coherency Strengthening,26 Chemical (Anti-phase) Strengthening, 27and 

Particle Shearing28 have all been found to play roles in how precipitates participate in the 

strengthening of steel.  

 

Figure 11 Depending on particle size, hardness, and applied stress different 

mechanisms provide strengthening through precipitation. 

 

Each of these mechanisms provides strengthening in different ways.  Particle cutting and the 

bowing of dislocation loops (Orowan mechanism) are the two systems which show to be the 

most effective at increasing strength, while chemical hardening occurs generally as a result of 

particle cutting.  
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Figure 12 How dislocation motion through a particle shears the particle creating 

antiphase boundaries. 

 

 
The particle shearing (or cutting) effect, shown in figure 12, occurs when dislocations move 

through the particles as they slip through the crystal lattice.  This cutting usually happens when 

the particles are small or soft.  Many factors act as the source of strengthening for this type of 

mechanism including; coherency strain, stacking fault behavior, and modulus effect.29 In the 

case of coherency strain, the mismatching between the atoms in the matrix and those of the 

particles create a strain affecting the dislocation as it passes from the bulk to the particle.30 Next 

the difference in stacking fault energies between particle and bulk can lead to strengthening 

where if the particle is more likely to create extended stacking faults with respect to the matrix 

this can have a significant effect.  Finally, in some cases, once particles are sheared and an anti-

phase boundary is created between the particle and the bulk differences in modulus between the 

two impede the dislocation motion they pass through these boundaries.31, 32

   While particle shearing cannot be entirely ruled out in these low alloy steels, the high 

hardness of the particles most often identified in HSLA suggests that the Orowan, or dispersion-

strengthening, process is at work. 
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Figure 13 Depiction of how hard particles lead to Orowan bowing of dislocation 

particles. a) approach, b) sub-critical, c)critical, d)escape 

 

Figure 13 shows the effect that these small hard particles have on a dislocation line.  In 

the Orowan process, when a force is applied the dislocation begins to move under the stress, as 

the dislocation moves toward an array of particles (a) the dislocation line has a tension per unit 

length of tb.    When the line finally reaches the particles (b) the motion of the dislocation is 

halted as the line begins to bow around the particles in order to achieve a force balance.  At this 

point, in order for the dislocation to continue its motion through the lattice the dislocation line 

must increase in length, increasing the amount of or stress required to move it (c).  From here on, 

as stress increases, the dislocation continues to bow around the particles (d) until; finally, the 

loops escape the particle array and can continue through the crystal.33 This behavior was 
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modeled by Ashby-Orowan and a mathematical relationship was developed, as shown in  

equation 6.34 

    (6) 

 This equation shows that the size (x) and volume fraction (f) of these particles are the primary 

factors in developing strength through dispersion.  Therefore, as particle size decreases and 

volume fraction increases so does the yield stress of these steels. 
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3.0 STATEMENT OF OBJECTIVES 
 

 

 

This research is being carried out in order to understand and develop accurate and 

effective laboratory TMP methods for simulating the effects of a hot-strip process on the 

resulting final microstructure.   For this purpose, an investigation in three parts has been 

conducted, each part with specific objectives and goals.  

 First, a comprehensive and systematic characterization of the microstructure of the four 

commercial as-hot rolled HSLA (350 – 420 MPa YS) steels provided by the sponsoring company 

of this project.  The microstructural investigation was conducted, to better understand the 

relationship between the current processing and the final microstructure.  This characterization 

includes data from Optical, and Electron Microscopy as well as the results from Electron 

Backscatter Diffraction and Vickers hardness testing 

 The next objective was an understanding of the transformations which occur in these 

steels during cooling from the finishing temperature was needed.   This understanding comes 

from a combination of computer models used to create continuous cooling transformation maps, 

and dilatometric cooling studies to experimentally observe these transformations in the hot band.  

 Finally, thermomechanical process (TMP) simulations were carried out.  The starting 

condition for these experiments was the transfer bar material.  The major objective of this part of 

the study was to investigate how the final rolling temperature, cooling rate, and coiling 

temperature conditions affect the final microstructure of these steels.  



24 
  

 

4.0 EXPERIMENTAL PROCEDURE 
 

 

4.1 MATERIALS 
 

 Commercial samples from 350 – 420 MPa HSLA steels were received for this 

investigation.  Both transfer bar and hot rolled materials of four different alloys were provided. 

The chemical composition of the steels is presented in Tables 1 and 2.  

Table 1 Chemical composition of transfer bar samples received and subjected to 

thermomechanical processing simulations 

Grade C SI Mn S P Al Nb V Ti B 

7045 0.080 0.10 1.14 0.003 0.014 0.04 0.03 0.00 0.019 - 
7153 0.290 0.13 1.35 0.015 0.018 0.03 0.00 0.00 0.038 44.00 
7631 0.180 0.03 0.67 0.008 0.008 0.035 - - 0.019 - 
7038 0.061 0.031 0.806 0.005 0.007 0.04 0.017 - 0.017 - 

 

Table 2 Chemical composition of hot band samples subjected to microstructural 

analysis and continuous cooling studies 

Coil 
number  C  SI  Mn  S  P  Al  Nb  V  Ti  Grade  

263677  0.058  0.032  0.773  0.0057  0.0137  0.034  0.0153  0.0016  0.0147  7038  

263684  0.054  0.03  0.79  0.0012  0.0088  0.048  0.0184  0.0019  0.0157  7038  
263655  0.0643  0.0756  1.1218  0.0053  0.0121  0.0396  0.0349   -  0.0212  7045  

272174  0.299  0.158  1.387  0.0012  0.011  0.029  -  0.00311  0.0416  7153  

272244  0.158  0.035  0.657  0.003  0.012  0.027  0.0032  0.0009  0.157  7631  
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4.2 CONTINUOUS COOLING STUDIES 
 

Both computer simulations as well as experimentation were used to determine the effect 

of cooling rate on the hot band material.  A thermodynamic J-MAT Pro software package was 

used to determine the theoretical continuous cooling transformation temperatures for the steels 

provided.  Then, dilatometry samples, see Figure 14, were machined from the as-received hot 

band material. Dilatometric studies in a Theta High Speed Dilatometer from each of the alloys 

received were conducted. Each dilatometry sample was reheated to a given austenite temperature 

held for fifteen minutes and then cooled at rates of 0.1, 1.0, and 10 C/s.  The transformation 

behavior was recorded and the corresponding transformation temperatures during cooling were 

assessed and recorded.  

 

 

Figure 14 Drawing of dilatometer sample 

 

 

 

4.3 THERMOMECHANICAL PROCESSING SIMULATIONS 
 

 In the thermal-mechanical processing studies of the alloys, effects of both coiling 

temperature and cooling rate to the coiling temperature were examined.  The TMP studies were 

conducted using a high temperature computer controlled MTS-458 compression test machine 

with the capability of deformation under constant true-strain rate conditions.  Cylindrical 
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specimens of 0.5” diameter and 0.75” length were machined from the transfer bar material. The 

temperature was monitored via a thermocouple placed in a hole of 1/16” diameter drilled into the 

cylinder at half height.   In addition, the modified Rastegaev design was used for the 

compression specimens in order to decrease instances of barreling and to reduce rolling friction.  

Figure 15 shows a schematic of this modified Rastegaev design.35 

 

Figure 15 Schematic Drawing of Rastegaev modified compression sample for use in 

thermomechanical processing simulations 

 

 For these tests, the samples were made from the transfer bar material, each sample was 

encapsulated under vacuum in a sealed quartz tube, reheated to 1250 C in a radiant heat furnace 

held for an hour and then quenched.  Then, in preparation for the compression test, each sample 

was coated using an electroless nickel plating process.36

 An experimental design procedure was established for each alloy system. The procedure 

followed during the simulation was as follows;  

 Finally, each sample was subjected to a 

simulated hot rolling process using the MTS compression testing apparatus.   
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• Each sample was heated to 1250 C and held for 2 minutes  

• Samples were cooled to the first rolling temperature and deformed with a 50% reduction  

• Further cooling to the final rolling temperature and deformed with a 50% reduction again  

• Samples were then cooled at 30 Or 10 oC/s to the prescribed coiling temperature  

• Finally each sample was cooled from the coiling temperature to room temperature at a 

rate of 30 C/hr 

A constant true-strain rate of 10-2 sec-1 was used.  A schematic of the process is shown in figure 

16 below.  

 

Figure 16 Schematic of TMP process showing approximate temperature range for 

each step of the process.  After Tcoil, the slow cooling to room temperature is 

depicted as sloping curve toward the horizontal axis. 

 

Each alloy differed in composition, so the processing temperatures and coiling temperatures 

were different for each grade, table 3 shows the parameters used for each grade of steel being 

examined. 
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Table 3 Matrix of parameters used in running TMP simulations 

Grade First Rolling
Temp 

Final Rolling 
Temp 

T coiling
(°C)

Cooling 
Rate
(°C/s)

7045 1024 901
550
600
650

10
30

7153 984 889 650
750

10
30

7631 984 889 550
650

10
30

7038 1024 901 550
650

10
30  

 

 

 

4.4 FINISHING ROLLING TEMPERATURE STUDY 
 

After some discussion of initial results it was decided that, for the steel grade 7038, a 

study of the effect of final rolling temperature was needed.  For this, an extra set of TMP 

simulation tests were run using the 7038 transfer bar material.  In this case, the final rolling 

temperature was 870 oC in place of 901 oC.  All conditions run during the TMP were also run 

with this new rolling temperature and a comparison analysis made. 
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4.5 EXPERIMENTAL TECHNIQUES AND MICROSTRUCTURAL ANALYSIS 

 

4.5.1 Optical Microscopy 
 

 Optical microscopy was used to characterize the microstructure of the samples at all 

stages of the process. Hot rolled samples were cut perpendicular to the rolling plane and 

compression samples were cut parallel to the compression axis.  Samples were all mounted in 

Bakelite and ground using abrasive papers, starting from 180 grit and gradually increased to 600 

grit.  Then samples were polished using 1 micron and 0.05 micron alumina pastes. Finally, 

samples were etched using a 3% Nital solution for 10-15 seconds. 

Using a microscope connected to a computer, the Bioquant software was used to determine the 

ferrite grain size and volume fraction of the microconstituents. The ferrite grain size was 

determined by using the software’s automatic measuring capabilities by manually tracing at least 

200 individual grains for each sample. Volume fraction was determined by using the programs 

color threshold capabilities, with some manual adjustments, along with the automatic measuring 

process. 

 

4.5.2 Scanning Electron Microscopy and EBSD-IQ 
  

 In order to obtain high quality high magnification images and better identify the phases 

present, the optical microscopy samples were re-polished and etched for slightly less time then 

coated with palladium and placed in the scanning electron microscope, where images with 

magnifications as high as from 1000 to 10000 times were taken.   
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Also, electron backscatter diffraction was used to further characterize the samples.  For 

the EBSD analysis samples were ground and etched in the same way as for optical microscopy 

except a final vibro-polishing step is added before the sample is placed in the SEM and the 

diffraction test is run. 

In modern HSLA steels, multiple microconstituents are often present in any given 

sample.  The presence of these microstructural features are usually easily identified using 

traditional SEM and optical microscopy, but the actual volume fraction is difficult to quantify 

using traditional metallographic techniques.  This is why EBSD-IQ was used in this study.  

In EBSD-IQ analysis the microstructure is easily quantified using a value recorded during 

traditional ESBD analysis known as image quality (IQ).  Image quality is a quantification of the 

sharpness of the Kikuchi pattern produced.  This sharpness is related to the degree of lattice 

imperfection, or crystalline defects, of the sample.  For example, an elastically distorted lattice 

will have a Kikuchi pattern which appears unfocused and unclear and its IQ value will be low, 

see figure 17 below. 

 

Figure 17 Two Kikuchi patterns showing how difference in lattice distortion can 
affect the image quality of the diffraction pattern (a) Ferrite, with high IQ (b) 
Martensite, with low IQ. 
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The IQ method used to characterize the microstructure of these samples is able to 

eliminate the contribution from grain boundaries, which is something that can be a problem 

using optical metallography.  Depending on the phase and the defect structure of each grain, such 

as dislocation density, the IQ is measured and analyzed as a full distribution of values in a given 

sample.  Also, a normalization procedure is used to minimize the effects of image processing. 

Then, a computer program is used to identify grain boundaries on the IQ distribution.  The 

program then eliminated the grain boundary data and creates a curve and using a multi-peak 

model for allows for the analysis of the multi-component microstructures. 37, 38

 

 

4.5.3 Transmission Electron Microscopy (TEM)  
  

 Some hot band samples were further examined using the TEM technique in order to study 

and characterize any precipitation that might be present due to the addition of niobium.  For this 

purpose, the JEM-200CX electron microscope was used, and was operated at 200 kV.  Thin foils 

were prepared for use in the TEM for this analysis.  The preparation of the thin foils began by 

cutting thin strips of from the hot band parallel to the rolling direction about 0.8 mm thick.  After 

cutting the strips from the stock material, they were then thinned by mechanical grinding using 

papers with a very fine grit of 2400 to strips less than 0.4 mm in thickness.  Next, 3mm diameter 

discs were punched from these thin strips and these were then chemically thinned and polished 

using a twin-jet polisher with an electrolytic solution made from 80g of sodium chromate 

(Na2CrO4) in 400 ml of acetic acid (CH3COOH). 39
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4.5.4 Microhardness 
 

 As part of the microstructural characterization of the samples, microhardness tests were 

run on all optical microscopy samples.  A Leco M-400 G microhardness tester was used along 

with a square pyramid diamond indenter.  The tester was put on the 500 gram setting and set for 

a test time of 7 seconds, and using a microscope connected to a computer with the Omniment 

program the hardness values were automatically calculated by manually measuring the 

indentation size. 
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5.0 RESULTS 
 

 

 

Commercial transfer bar and hot band samples of the four different high strength low 

alloy steels to be investigated in this research were used in the thermomechanical processing 

simulations while the hot band material was used for the systematic microstructural analysis of 

the microstructure. Samples machines from the hot band condition were then used in the 

dilatometric studies to help develop transformation data for the steels being studied. 

 

 

 

5.1 HOT BAND MICROSTRUCTURAL ANALYSIS 
 

 Using low and high magnification optical micrographs of each of the four alloys along 

with the Bio-Quant software a preliminary analysis of the microstructure was made.  In addition 

to the optical analysis, the microhardness of each hot band sample was measured.  For each of 

the alloys, multiple samples of hot band material were analyzed.  In each case the conditions of 

each sample was somehow different.  The CSP or CP value given in the coil identification 

pertains to either the location in the coil where the sample was taken, or if it was taken after the 

sample had been subject to a skin pass process.  In the case of alloy 7038 samples of two 

different coils were receive and examined.  
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 In order to obtain a better understanding of the nature of the microstructure the scanning 

electron microscope was used to attain high quality imaging of the micro-constituents.  Also the 

electron backscatter diffraction – image quality (EBSD-IQ) method was used to attain a 

quantification of the microconstituents present in the hot band.    

 

5.1.1 Hot Band Analysis of 7045 
 

 Initial optical microscopy of the hot band for grade 7045 was taken from the hot band 

samples 163655 csp1 and 163655 csp4.  From the initial optical microscopy of these samples 

show a very fine ferrite grain structure with some non-polygonal ferrite grains observable.   

Otherwise, very little of the total area observed showed other microconstituent or secondary 

phase particles.  

15 µm

 

Figure 18 Optical micrograph of the ferrite microstructure in 163655 csp4, 

prepared using 3% Nital solution 

The optical micrographs, of the 7045 hot band, were then used to conduct a microstructural 

analysis.  Table 5 shows the results of this analysis including microhardness measurements. 
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Table 4 Chemical Composition of 7045 

Grade C SI Mn S P Al Nb V Ti B 

7045 0.080 0.10 1.14 0.003 0.014 0.04 0.03 0.00 0.019 - 
 

Table 5 Results from the microstructural analysis of 7045 hot band materials 

Coil ID 163655 263655 
Info CSP1 CSP4 

Grade 7045 7045 

   
Average 

Grain Size 
(µm) 

2.75 2.95 

% Ferrite 98.5 99.7 

   

Hardness 188.7 189.4 

Std Dev 3.4 2.6 
 

The higher magnification SEM images, likewise, show polygonal and non-polygonal ferrite 

grains.  Upon closer examination the secondary particles observed under optical magnifications 

appear to be high in carbon without the identifiable lamellar structure of pearlite. 
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Figure 19 Secondary electron micrograph showing the microstructure in 163655 

csp4 hot band material. 

 

Figure 20 High magnification Secondary electron micrograph of 163655 csp4 hot 

band material showing secondary phase particle (very fine carbides). 

 

From the IQ analysis of the EBSD data, it is clear that three phases are present.  The EBSD-IQ 

distribution in the graph below shows that three peaks were identified each corresponding to a 

polygonal ferrite, acicular ferrite, and finally a low IQ peak representing the high carbon 

secondary phase observed in the micrographs. 
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Figure 21 EBSD-IQ distribution curve for 7045 Hot band material showing peaks 

for each phase identified 

From the micrographs and EBSD-IQ analysis a phase balance was constructed for the hot band 

material of 7045 and is shown in the table below. 

Table 6 Results from EBSD-IQ analysis of 7045 hot band material 

Steel 
Grade 

α 
(Polygonal 

Vol.%) 

α  
(Acicular 

Vol.%) 

Pearlite 
(Vol.%) 

High Carbon 
Constituents 

(Vol.%) 

7045 75.4 12.4 - 12.2 

 

For this grade, due to the presence of niobium in the composition, in addition to these 

microstructural observations a TEM analysis was made.  Figure 22 shows the bright and dark 

field TEM images of a 7045 grain showing very few and extremely small precipitates. The 

precipitates were analyzed as NbC. The presence of these particles is very sparse and many 

grains do not appear to contain them. 
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Figure 22 Very high magnification TEM images of 7045 hot band material, with 

arrows showing 2 examples of the very few well dispersed particles, shown in both 

bright and dark field conditions. 

 

5.1.2 Hot Band Analysis of 7038 
  

Initial optical microscopy of the hot band for grade 7038 was taken from the hot band 

samples 263677 csp4 and 263677 cp5, as well as, 263684 csp4 and 263684 cp5.  In comparison 

to 7045 the ferrite grain structure is coarser and there is no immediate observation of any non-

polygonal ferrite.   The secondary phases present are generally in larger sized colonies than those 

found in 7045 but still take up very little of the total observed area.  However, as in 7045 the 

nature of these colonies is not directly identified using optical microscopy. 
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15 µm

 

Figure 23 Optical micrograph of the ferrite microstructure in 263677 csp4, 

prepared using 3% Nital solution 

Using these observations and micrographs, a thorough analysis of the optical microstructure in 

the hot band of 7038 was conducted.  Table 8 has the results from this analysis. 

Table 7 Chemical compost ion of 7038 

Grade C SI Mn S P Al Nb V Ti B 

7038 0.061 0.031 0.806 0.005 0.007 0.04 0.017 - 0.017 - 
 

Table 8 Results from the microstructural analysis of 7038 hot band materials 

Coil ID 263677 263677 263684 263684 
Info CSP4 CP5 CSP4 CP5 

Grade 7038 7038 7038 7038 
     

Average 
Grain 

Size (µm) 
4.15 4.4 4.25 4.65 

% Ferrite 94.6 93.6 94.1 93.7 
     

Hardness 146.8 168.6 151.2 151.5 

Std Dev 6.4 15.4 5.7 5 
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Using the electron microscope the higher magnification, and better contrast and resolution the 

larger secondary phases are immediately identified with the characteristic lamellar structure 

exhibited in pearlite.  

 

Figure 24 Secondary electron micrograph showing the microstructure the 

secondary phase in the 7038 hot band material. 

 

The EBSD-IQ graph shown in Figure 25 shows two distinct peaks, the first easily identified as 

Polygonal ferrite and the other as carbon-rich or pearlite. 
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Figure 25 EBSD-IQ distribution curve for 7038 Hot band material showing peaks 

for each phase identified 

 

The following table shows the results from the analyses made from combining the observations 

made with the SEM as well as the ESBD-IQ data.  This information was used to create the phase 

balance seen in table 9. 

Table 9 Results from EBSD-IQ analysis of 7038 hot band material 

Steel 
Grade 

α 
(Polygonal 

Vol.%) 

α  
(Acicular 

Vol.%) 

Pearlite 
(Vol.%) 

High Carbon 
Constituents 

(Vol.%) 

7038 97.8 - 2.2 - 

 

Similarly to 7045, this grade was also subjected to TEM analysis.  Figure 26 shows two TEM 

images of the same area taken in the bright and dark field of 7038.  During this observation very 

few grains showed any precipitation.  In the cases where particles were found they were small 

and dispersed as seen in the figure. 
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Figure 26 Very high magnification TEM images of 7038 hot band material, with 

arrows showing 2 examples of the very few well dispersed particles, shown in both 

bright and dark field conditions. 

 

5.1.3 Hot Band Analysis of 7153 
  

For the hot band analysis of grade 7153 the coils identified as 272174 csp1 and 272174 

csp4 were prepared and used.  Optical microscopy of 7153 reveals an obviously banded 

structure, with a high quantity of this banded structure.  The ferrite grains are large, and have two 

distinct shapes.  Some ferrite grains have an elongated shape while others are more regular and 

round.  In some cases lamellas in the secondary phase are observable even with optical 

magnifications. 
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15 µm

 

Figure 27 Optical micrograph of the ferrite microstructure in 272174 csp4, 

prepared using 3% Nital solution 

From the microstructural analysis of 7153 hot band material results were compiled and are 

shown in table 11. 

Table 10 Chemical composition of 7153 

Grade C SI Mn S P Al Nb V Ti B 
(ppm) 

7153 0.290 0.13 1.35 0.015 0.018 0.03 0.00 0.00 0.038 44.00 
 

Table 11 Results from the microstructural analysis of 7153 hot band materials 

Coil ID 272174 272174 
Info CSP1 CSPP4 

Grade 7153 7153 
   

Average 
Grain 

Size(µm) 
8.05 9.0 

% Ferrite 43.4 45.7 
   

Hardness 190 177.3 
Std Dev 13.9 8.3 
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With the SEM microscopy analysis, the pearlite observed in only some of the secondary phase 

under the optical microscope, is found to be by far the predominant secondary phase observed. 

 

Figure 28 Secondary electron micrograph showing the microstructure and 

secondary phase in the 7153 hot band. 

 

Due to the extreme heterogeneous nature of the 7153 hot band, two different diffraction tests 

were run and the results were averaged.  The figures below show IQ results from the two 

separate ESBD tests.   Each distribution shows peaks for polygonal ferrite, pearlite and the lower 

IQ peaks for high carbon constituents.  The distribution in figure 30 shows two distinct high IQ 

peaks both of which have been identified as coming from polygonal ferrite.  Also, in both figures 

a peak appears at very low IQ values, these peaks have been attributed to very high carbon 

enriched areas within these steels. 
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Figure 29 EBSD-IQ distribution curve for 7153 Hot band material showing peaks 

for each phase identified, 1 of 2.  
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Figure 30 EBSD-IQ distribution curve for 7153 Hot band material showing peaks 

for each phase identified, 2 of 2 
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The tables below shows the values obtained from the analyses made from the hot band of 7153. 

Table 12 Results from EBSD-IQ analysis of 7153 hot band material 

Steel 
Grade 

α 
(Polygonal 

Vol.%) 

α  
(Acicular 

Vol.%) 

Pearlite 
(Vol.%) 

High Carbon 
Constituents 

(Vol.%) 

7153 69.6 - 23.3 7.1 

 

5.1.4 Hot Band Analysis of 7631 
 

 The hot band material used in this analysis of the 7631 grade steel came from the coil 

samples 272244 csp4, and 272244 cp5.  The optical micrographs of this steel show a 

comparatively intermediate grain size with both polygonal and non-polygonal ferrite observed.  

More significant amounts of a secondary phase are observed than in both 7045 and 7038, but less 

than that of 7153 and with no apparent banding. 

15 µm

 

Figure 31 Optical micrograph of the ferrite microstructure in 272244 csp4, 

prepared using 3% Nital solution 
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Table 14 below shows the chemical composition of 7631 and Table 14 shows the results from 

the optical microstructural analysis made. 

Table 13 Chemical composition of 7631 

Grade C SI Mn S P Al Nb V Ti B 

7631 0.180 0.03 0.67 0.008 0.008 0.035 - - 0.019 - 
 

Table 14 Results from the microstructural analysis of 7631 hot band materials 

Coil ID 272244 272244 
Info CSP4 CP5 

Grade 7631 7631 
   

Average 
Grain 

Size(µm) 
6.15 6.35 

% Ferrite 87.2 84.2 
   

Hardness 149.1 139.3 

Std Dev 3.3 3.9 
 

Under the high magnifications of the SEM the secondary phase appears to be mainly 

pearlitic in structure and well distributed throughout the bulk. 
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Figure 32 Secondary electron SEM micrograph showing the microstructure as well 

as the nature of the secondary phase in the 272244 csp4 hot band material. 

 

Using the electron backscatter diffraction method, the IQ data collected shows a 3 peak 

distribution very similar to that of 7045 with polygonal and acicular ferrite peaks.  However in 

this case the third peak is more distinct and represents the presence of pearlite.  
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Figure 33 EBSD-IQ distribution curve for 7631 Hot band material showing peaks 

for each phase identified 
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Using the data from the EBSD-IQ as well as the information gathered using the microscopy 

methods a total micro-constituent phase balance was constructed, this phase balance in shown in 

the table below. 

Table 15 Results from EBSD-IQ analysis of 7631 hot band material 

Steel 
Grade 

α 
(Polygonal 

Vol.%) 

α  
(Acicular 

Vol.%) 

Pearlite 
(Vol.%) 

High Carbon 
Constituents 

(Vol.%) 

7631 77.4 14.4 8.2 - 

 

 

 

5.2 TRANSFORMATION STUDY 
 

Using the hot band material samples were prepared and subject to continuous cooling 

dilatometry experiments in order to understand the nature of the transformations in the steels 

used in this investigation.  As a reference the PC software J-Mat Pro was used to calculate the 

continuous cooling transformations for each of the different alloys and used to aid in the analysis 

of the dilatometer results.  For all cooling tests csp4 samples were used. 

After each cooling experiment both optical and scanning electron micrographs of each 

sample were taken. These micrographs were then used in conjunction with the J-Mat Pro 

analysis as well as the dilatometric readings to develop an experimental CCT for the hot band 

material received. 

 



50 
  

5.2.1 Continuous Cooling of 7045 
 

 Figure 34 shows the J-Mat Pro results of a CCT simulation for 7045.  The results show a 

ferrite transition between 750 and 850 oC depending on the cooling rate, with the bainitic and 

pearlitic starting temperatures happening at least 150 oC lower. 

 

Figure 34 Continuous cooling transformation diagram produced by J-Mat Pro for 

7045 

 

 After running the computer simulations for 7045, the actual continuous cooling 

experiments were run with the resulting microstructures shown in figure 35.  In the figure the 

microstructures are shown in comparison to each other as well as the microstructure of the as 

received hot band.  In every case the ferrite grain size resulting from the dilatometry experiments 

is larger than that observed in the as-received hot band condition.  In addition as expected as the 

cooling rate increases the nature of the ferrite seems to change from polygonal to non-polygonal 

ferrite and the second phase seems to be a mixture of pearlite and low temperature 

transformation product, i.e. bainite. 
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Figure 35 Optical micrographs of each cooling experiment and the as received hot 

band material for 7045. 

 With the aid of the SEM the nature of the secondary phase is revealed in each of the 

cooling conditions.  At the higher cooling rates there is some pearlite but most of the secondary 

phase is just segregated high carbon particles, like bainite.  In both 1.0 and 0.1 C/s conditions the 

secondary phase forms as pearlite, with little, if any other phases present. 

 

Figure 36 Electron micrographs of each cooling experiment and the as received hot 

band material for 7045. 
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5.2.2 Continuous Cooling of 7153 

 
 
 The CCT diagram for 7153 as determined by J-Mat Pro in figure 37 shows that each of 

the transformations is occurring at separate temperatures with very little overlap in the 

transformations. 

 

Figure 37 Continuous cooling transformation diagram produced by J-Mat Pro for 

7153 

 

 Again, in the figure below the comparison of the final microstructures of each 

continuously cooled sample is compared to the as received microstructure.  In the case of 7153 

the higher cooling rates lead to significantly different microstructures, with very little ferrite.  

Conversely, the lower 0.1 C/s cooling rate shows a microstructure almost identical to the hot 

band material. 



53 
  

 

Figure 38 Optical micrographs of each cooling experiment and the as received hot 

band material for 7153 

 

 Next, the microstructures were examined under the SEM showing the microstructure for 

the 10 C/s condition is primarily bainitic as predicted by the theoretical CCT diagram. At 1.0 C/s 

condition we have a mixture of bainite, acicular ferrite and pro-eutectoid ferrite nucleated at the 

prior austenite grain boundaries. At the very low cooling rates, 0.1 C/s, the resulting 

microstructure is banded and very similar to the one observed in the hot band condition.  



54 
  

 

Figure 39 Electron micrographs of each cooling experiment and the as received hot 

band material for 7153 

 

5.2.3 Continuous Cooling of 7038 
 
 

 The CCT from the J-Mat Pro calculations shows very little separation between the ferrite 

and pearlite transition, with the bainite transition coming into play at much lower temperatures.  

The figure below is the output from the software simulation. 

 

Figure 40 Continuous cooling transformation diagram produced by J-Mat Pro for 

7038 
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 In the optical micrographs of 7038 cooling comparisons, the 10 C/s sample showed  some 

non-polygonal ferrite with indications of bainitic constituents and little, if any, pearlite.  For the 

lower cooling rates (1.0 and 0.1 C/s) the amount polygonal ferrite increases significantly and the 

secondary phase appears to be more predominantly pearlitic in nature.  Again the ferrite grain 

size in the continuously cooled samples is much larger than that of the as received structure. 

 

Figure 41 Optical micrographs of each cooling experiment and the as received hot 

band material for 7038 

 

 The observations made with the higher magnifications of the SEM verify those made 

optically showing that and 1.0 C/s cooling rate results in a microstructures most similar to that 

found in the hot band. 
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Figure 42 Electron micrographs of each cooling experiment and the as received hot 

band material for 7038 

 

5.2.4 Continuous Cooling of 7631 
 
 In the CCT diagram for 7631, the computer simulation software shows that the transition 

temperature during cooling is significantly different for each of the expected phases. 

 

Figure 43 Continuous cooling transformation diagram produced by J-Mat Pro for 

7631 
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 From the micrographs in the figure below significantly different microstructures are once 

again evident for each cooling condition.  In the 0.1 C/s condition a somewhat banded structure 

with large polygonal grains and large secondary phase colonies are present.  When the cooling 

rate is increased to 1.0 C/s the banding begins to be disrupted by acicular ferrite formation, 

similar to the structure found in the hot band, and the secondary phase colonies are smaller.  

Finally, in the 10 C/s condition the structure appears to have very elongated acicular ferrite 

grains interspersed with thin secondary phase colonies.  Also, in these experiments the ferrite 

grain structure exhibited is always much larger than that of the hot band.  

 

Figure 44 Optical micrographs of each cooling experiment and the as received hot 

band material for 7631 

 

 Under the electron microscope the characteristics of the secondary phases become 

apparent.  In the 1.0 and 0.1 C/s conditions, pearlite is the only secondary phase found.  

Meanwhile, with the high cooling rate condition a mix of pearlite and bainitic structures are 

evident in the micrographs. 
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Figure 45 Optical micrographs of each cooling experiment and the as received hot 

band material for 7631 

 Through these cooling experiments a good comparison was made between the resulting 

microstructures formed through the different cooling rates.  For each alloy, the cooling condition 

which resulted in a final microstructure most similar to that of the hot band was closely analyzed 

and used to help determine the condition for the thermomechanical processing experiments. 

 

 

 

5.3 THERMOMECHANICAL PROCESSING 
 

Using the computer controlled high temperature MTS compression testing system, hot 

rolling experiments were designed and carried out.  Cooling rates of 10 and 30 C/s from the final 

rolling temperatures to the coiling temperatures were used.  The MTS compression machine 

records force-displacement-time data this is then taken and converted in the true-stress vs. true 

strain and analyzed.  
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Figure 46 Example flow stress plot from data taken during compression test on the 

MTS machine 

 

The plot in figure 46 shows the data taken from one of the compression tests run. The first curve 

is the flow stress at the high temperature of deformation, while the second curve is the flow 

stress of the second deformation at the lower temperatures. These results were analyzed and the 

peak stress at each temperature was extracted. The same procedure was done for all the steels 

investigated in this study, Table 16 shows the results of the peak stress for each steel samples and 

deformation conditions. 

Table 16 Average peak deformation stress of each alloy during compression testing. 

7038 has two values for the second rolling temperature since two different 

conditions were used. 

Grade 
True Stress at 
T

rolling1
 (MPa) 

True Stress at 
T

rolling2 
(MPa) 

7045 169 209 
7153 190 233 
7631 187 257 
7038 165 219/286 
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After the final deformation of TMP was carried out, at the finishing temperature, the samples 

were cooled at 10 or 30 C/s at the prescribed coiling temperature. The samples fully processed 

were then analyzed using the same optical microscopy methods as the hot band materials. The 

sections below show the results of this analysis.  In the process of these analyses, microhardness 

values were measured for each of these samples, these results are also included. 

 

5.3.1 Thermomechanical Processing of 7045 
 

 Figure 47 below shows how the cooling procedure after hot rolling, which was used in 

the TMP simulations, compares to the continuous cooling transformations diagram for the7045 

grade tested. 

Cooling profile for 7045 

Cooling Data 

 

Finish Rolling 
Temperature 

901 C 

T coil 1 650 C 

T coil 2 600 C 

T coil 3 550 C 

 

30 C/s 10 C/s 

 

Figure 47 Schematic of the processing temperatures in comparison to the 

transformation diagram for 7045 
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The following figures show the final microstructures which evolved from each of the TMP tests 

which were run. 

15 µm 15 µm
 

Figure 48 Microstructure resulting from TMP processing of 7045 with Tcoil = 650, 

Left (10 c/s to coiling), Right (30 c/s to coiling)     

15 µm 15 µm
 

Figure 49 Microstructure resulting from TMP processing of 7045 with Tcoil = 600, 

Left (10 c/s to coiling), Right (30 c/s to coiling)     
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15 µm 15 µm

 

Figure 50 Microstructure resulting from TMP processing of 7045 with Tcoil = 550, 

Left (10 c/s to coiling), Right (30 c/s to coiling)     

 

An analysis of each processing condition was made with the results of which are in table 

17 below. 

Table 17 Results from the microstructural analysis of the TMP simulation, 

including microhardness, for 7045 

Steel Grade 7045 7045 7045 7045 7045 7045 

Tcoil  550 600 650 550 600 650 

Cooling Rate 
(C/s) 

10 10 10 30 30 30 

Grain Size (µm)  8.68 11.69 9.35 5.02 5.5 7.77 

% Ferrite  88 92.4 90.5 93.5 91.5 93.3 

VHN  186.8 179.2 173.4 185.2 182.7 151 
 

For this grade, the cooling rate has the most effect on the microstructure.  In all cases the 

30 C/s cooling conditions lead to much smaller grain sizes.  Also, in the case of the coiling 

temperature of 

 550 oC, the nature of the microstructure changes to where some acicular ferrite has formed and 

not all of the secondary phase appears to be pearlite.   
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5.3.2 Thermomechanical Processing of 7153 
 

 As a tool for analysis, the CCT diagram for 7153, from the J-Mat Pro computer 

simulations, were overlaid with the processing parameters which were to be used in the tests. 

Cooling profile for 7153 

Cooling Data  

Finish Rolling 
Temperature 889 C  

T coil 1 750 C  

T coil 2 650 C  

 
 

Figure 51 Schematic of the processing temperatures in comparison to the 

transformation diagram for 7153 

 

After each run was completed the microstructure of the final product was revealed and 

micrographs taken, some example micrographs are shown in the figures below. 
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15 µm15 µm

 

Figure 52 Microstructure resulting from TMP processing of 7153 with Tcoil = 750, 

Left (10 c/s to coiling), Right (30 c/s to coiling)     

 

15 µm15 µm

 

Figure 53 Microstructure resulting from TMP processing of 7153 with Tcoil = 650, 

Left (10 c/s to coiling), Right (30 c/s to coiling)     

 

 After the TMP simulations were run and microstructures revealed each sample was 

analyzed using the standard characterization techniques described earlier.  The Table below 

shows these results 
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Table 18 Results from the microstructural analysis of the TMP simulation, 

including microhardness, for 7153 

Steel Grade 7153 7153 7153 7153 
Tcoil  650 750 650 750 

Cooling Rate 
(C/s) 

10 10 30 30 
Grain Size (µm)  9.87 10.01 9.06 9.94 

% Ferrite  57.1 62.8 65.5 63.6 
VHN  188.1 187 210.5 191.1 

 

In all cases, compared to the hot band material significantly less banding was evident, 

and the higher cooling rate show even less banding than the lower cooling rates.  The cooling 

rate appears to have little effect on the overall grain size. For 7153 coiling temperature appears to 

be the biggest factor in both grain size and morphology of the secondary phase.  The specimens 

which were cooled to 750 oC show a larger grain size than those cooled to 650 oC.  The 

micrographs also show that the sample cooled to 750 at 10 C/s shows the most significant 

banding structure.  
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5.3.3 Thermomechanical Processing of 7631 
 

 The diagram below shows the cooling conditions used in the 7153 TMP simulation runs overlaid 

on the CCT generated by J-Mat pro.   

Cooling profile for 7631 

Cooling Data 

 

Finish Rolling 
Temperature 889 C  

T coil 1 650 C  

T coil 2 550 C  

 

30 C/s 

 
Figure 54 Schematic of the processing temperatures in comparison to the 

transformation diagram for 7631 

 

 The figures below are micrographs of the microstructures revealed after each run was 

completed.   
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15 µm 15 µm

 

Figure 55 Microstructure resulting from TMP processing of 7631 with Tcoil = 650, 

Left (10 c/s to coiling), Right (30 c/s to coiling) 

15 µm 15 µm

 

Figure 56 Microstructure resulting from TMP processing of 7631 with Tcoil = 550, 

Left (10 c/s to coiling), Right (30 c/s to coiling) 

 

After the TMP simulations were run and microstructures revealed each sample was analyzed 

using the standard characterization techniques described earlier.  The Table below shows these 

result. 
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Table 19 Results of the microstructural analysis of the TMP simulation, including 

microhardness, for 7631 

Steel Grade 7631 7631 7631 7631 
Tcoil  550 650 550 650 

Cooling Rate 
(C/s) 

10 10 30 30 
Grain Size (µm)  9.88 9.2 7.61 7.44 

% Ferrite  82.8 85.6 80.4 88.5 
VHN  142.9 136.6 146.3 168.5 

 

  

 The results from the TMP experiments for 7631 show that the cooling rate has a major 

effect on refining the final ferrite grain size. Also, the lower coiling temperature resulted in a 

much different grain morphology.  The samples cooled to 550 oC have a structure that appears to 

have some acicular ferrite, as well as some secondary phases which are bainitic in nature. The 

coiling temperature did not, however, seem to greatly impact the grain size in both cases. 

 

5.3.4 Thermomechanical Processing of 7038 
 

 Finally the TMP simulations of 7038 were carried out.  The schematic below shows the 

cooling conditions for this grade overlaid on the CCT diagram from J-Mat Pro. For 7038, two 

separate final rolling temperatures were used, creating a total of 8 conditions. 
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Cooling profile for 7038 

Cooling Data 

 

Finish Rolling 
Temperature 

901 C  
870 C 

T coil 1 650 C  

T coil 2 550 C  

 

10 C/s 

30 C/s 
10 C/s 

 
 

Figure 57 Schematic of the processing temperatures in comparison to the 

transformation diagram for 7153, only 1 finish rolling temperature is shows for 

simplicity. 

 

 The microstructures for each of the eight runs are shown in the micrographs below.  In 

these sets of figures the microstructures of the samples with the same cooling rate and coiling 

temperature are arranged with each other, so that it is the final rolling temperature that 

differentiates the pair of images.  The first four images are from the 10 C/s cooling processes.  

 

15 µm 15 µm

 

Figure 58 Microstructure resulting from TMP processing of 7038 with Tcoil = 650 @ 

10 C/s Cooling, Left (Tfinish  = 901), Right (Tfinish  = 870). 
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15 µm 15 µm

 

Figure 59 Microstructure resulting from TMP processing of 7038 with Tcoil = 550 @ 

10 C/s Cooling, Left (Tfinish  = 901), Right (Tfinish  = 870). 

 

Following the micrographs of the 10 C/s samples are micrographs from the 30 C/s TMP 

simulations. 

 

15 µm 15 µm

 

Figure 60 Microstructure resulting from TMP processing of 7038  with Tcoil = 650 @ 

30 C/s Cooling, Left (Tfinish  = 901), Right (Tfinish  = 870). 
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15 µm 15 µm

 

Figure 61 Microstructure resulting from TMP processing of 7038  with Tcoil = 550 @ 

30 C/s Cooling, Left (Tfinish  = 901), Right (Tfinish = 870). 

 

Tables 20 and 21 below have the results from the analysis performed on the processed samples.  Table 20 

are the results from the high rolling temperature of 901 0C, and table 21 has the results from the low finish 

rolling temperature of 870 oC. 

Table 20 Results from the microstructural analysis of the TMP simulation, 

including microhardness, for 7038 with a finish rolling temperature of 901 oC 

Steel Grade 7038  7038  7038  7038  
Tcoil  550  650 550  650 

Cooling Rate 
(C/s) 

10 10 30 30 
Grain Size (µm)  9.65 9.57 7.99 8.45 

% Ferrite  84.55 90.42 88.08 92.83 
VHN  135.4  129.9  136.8 146.7  
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Table 21 Results from the microstructural analysis of the TMP simulation, 

including microhardness, for 7038 with a finish rolling temperature of 870 oC 

Steel Grade 7038   7038   7038  7038  
Tcoil  550 650 550  650 

Cooling Rate 
(C/s) 

10 10 30 30 
Grain Size (µm)  9.77 10.34 7.42 8.38 

% Ferrite  89.53 93.77 94.34 93.26 
VHN  125.1  127.6  138.1  131.6  

 
  

First, for 7038, the two separate finishing temperatures appear to have little overall effect on the 

final microstructure and morphology of the grain in each case.  However, at the lower finishing 

temperature the effect of coiling temperature appears to be more pronounced.  With the final rolling 

temperature of 901 oC and a cooling rate of 10 C/s the difference in grain size between the samples with 

varying coiling temperature is very small, less than 0.1 µm, and with the lower finishing temperature this 

difference is on the order of 0.5 µm. Also, in all cases, the cooling rate appears to have a significant effect 

on grain size, with the faster cooling rates yielding a smaller ferrite grain size.  Finally, the lower 

finishing temperature always leads to more ferrite in the phase balance.  This difference in the amount of 

ferrite can be rather significant. 
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6.0 DISCUSSION 
 

 

 

6.1 EFFECT OF SKIN PASS IN HOT BAND MATERIAL 
 

 During the characterization of the hot band materials, microhardness measurements 

showed some unexpected results in the samples of 7038 received.  The chart below shows the 

differences in the hardness values measured in the samples of hot-band material received for 

7038. 
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Figure 62 Graph showing effect of the skin pass on two samples of alloy 7038. 
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The chart above shows the results of hardness test and how the skin pass process affects the 

hardness response of the samples given.  In this particular case it would seem that the P content 

between sample 263677(0.0137 P wt% ) compared to sample 263684 (0.0088 P wt%) is 

responsible for the increase in hardness. The effect of temper rolling or small deformations on 

increasing the YS through grain boundary hardening due to P segregation is well-known. 40, 41

 

\ 

 

 

6.2 PREDICTED YIELD STRESS OF THE HOT BAND MATERIAL 
 

 Upon completion of the hot-band characterization an extended Hall-Petch 

equation was used in order to predict the yield stress in the steels investigated 

 

σys = σpn + σss(c) + σss(Si) + σss(Mn) + ky(d-1/2)    (7) 

(8-12) 
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The equation above takes into account the effects of solid solution of C, Si, and Mn as well as 

the grain size strengthening effect with a Hall-Petch parameter of ky = 18.1.   

The resulting values are shown in the table below. 

 
Table 22 Predicted yield stress (PYS) in MPa calculated for each hot band sample 

investigated 

 244CSP4 
(7631) 

244CP5 
(7631) 

655CSP1 
(7045) 

655CSP4 
(7045) 

174CSP1 
(7153) 

174CSP4 
(7153) 

677CSP4 
(7038) 

677CP5 
(7038) 

684CSP4 
(7038) 

684CP5 
(7038) 

PYS 
(MPA) 305.46 293.17 416.18 406.99 313.40 309.01 346.90 344.35 349.99 333.27 

  

After completing the calculations for predicted yield stress these numbers were compared to 

yield stress values measured in the commercial hot band material.  In these cases the value 

provided correspond well with the values calculated using the extended Hall-Petch model. 

0

50

100

150

200

250

300

350

400

450

500

Predicted Yield Stress (MPA)

Yield stress provided 
by Ternium

 

Figure 63 Chart showing the predicted yield stresses according to Hall-Petch model 

with dark plot points showing yield stress values measured.  

The additional implications of the results presented in Figure 62 also seem to indicate that any 

strengthening due to precipitation or dislocation is minimal. 
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6.3 TRANSFORMATION STUDY 
 

 Using the results from the dilatometry experiments, as well as the micrographs and J-Mat 

Pro predictions of continuous cooling transformations an experimental CCT diagram was 

constructed for each alloy in the hot band.  These would differ from those calculated by the 

computer model due to differences in characteristics of the austenite (composition and grain size) 

prior to transformation.  J-Mat Pro uses an ideal, fully recrystallized, austenite grain structure of 

a given size; on the other hand the hot band material used in the dilatometry experiments were 

reheated to the final rolling temperature and then cooled again, in this case very little grain 

growth if any takes place. Due to these factors the kinetics of the transformations are much more 

similar to those of the transformations after rolling during the thermomechanical processing of 

these steels. The following four figures show the transformation temperatures determined from 

the dilatometric experiments. 
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Figure 64 Continuous Cooling Diagram showing the transformation temperatures 

observed in the cooling experiments for 7045 
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Observed Transformations From Dilatometer for 7153
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Figure 65 Continuous Cooling Diagram showing the transformation temperatures 

observed in the cooling experiments for 7153 

Observed Transformations From Dilatometer for 7631
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Figure 66 Continuous Cooling Diagram showing the transformation temperatures 

observed in the cooling experiments for 7631 
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Observed Transformations From Dilatometer for 7038
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Figure 67 Continuous Cooling Diagram showing the transformation temperatures 

observed in the cooling experiments for 7038 

 

The observed transformations from the dilatometer seem to confirm with some accuracy the 

predictions from the J-Mat Pro software.   

In the dilatometer experiments hot rolled samples were reheated to the final rolling temperature 

provided, equalized for 15 minutes and then cooled.  In this case the characteristics of the 

austenite in the sample can be different from the equilibrium condition that the software uses to 

determine the transformations during continuous cooling. 

In some cases additional transformations were observed in the dilatometer. These 

transformations could be due to completion of ferrite or it could be that the evolution of Acicular 

Ferrite is having some effect on the expansion of the sample. Also, in temperature regions where 

multiple transformations are occurring individual transformations can be hidden within the 

expansion curve. 
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Finally, due to the nature of the dilatometer results it is necessary to observe the microstructure 

of the samples after the experiments in order to get an appreciation of the transformations that 

occurred. 

 

 

 

6.4 TMP SIMULATIONS 
 

 Similarly to the hot-band analysis, the microstructural analysis of the samples which had 

undergone thermomechanical processing was used to calculate a predicted yield stress for each 

condition, table 18 and 19 below show the results 

Table 23 Calculated yield stress predicted using extended Hall-Petch model from 

microstructural data analyzed from optical microscopy for 7153, 7631, and 7045 

Steel 7153 7153 7631 7631 7045 7045 7045 
Tcoil 650 750 550 650 550 600 650 

Cooling 10 10 10 10 10 10 10 
PYS (MPa) 331.1 329.78 297.41 304.02 332.86 305.99 325.77 

Steel 7153 7153 7631 7631 7045 7045 7045 
Tcoil 650 750 550 650 550 600 650 

Cooling 30 30 30 30 30 30 30 
PYS (MPa) 339.03 330.42 322.79 325.15 394.04 382.64 343.92 
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Table 24 Calculated yield stress predicted using extended Hall-Petch model from 

microstructural data analyzed from optical microscopy for  7038, “Low” denotes 

samples deformed at the lower finishing temperature. 

 

Steel 7038 7038 
7038 
Low 

7038 
Low 

Tcoil 550  650 550 650 
Cooling 10 10 10 10 

PYS (MPa) 304.68 305.45 303.54 298.5 
Steel 7038 7038 7038 7038 
Tcoil 650 550  650 550  

Cooling 30 30 30 30 
PYS (MPa) 322.92 317.33 330.55 318.14 

 

These yield stress calculations were then compared to the values calculated for the hot-band and 

plotted with respect to cooling rate.  
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Figure 68 Comparison plots of predicted yield stress of TMP Simulation results with 

hot-band analysis results 
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The discrepancies present between some of the predicted yield stress values for the experimental 

samples and the values calculated for the Hot Band material are due to the resulting larger ferrite 

grain size inherent in most of the TMP samples.  This difference in grain size is due to the 

sometimes significant differences in the amount of hot deformation in the provided Hot Band 

compared to the deformation applied in the TMP experiments.   For Example, in the results for 

7038 a difference of about 4μm in grain size makes the predicted yield stress change by 

approximately 90 MPa in the Hall-Petch relation used. 

Using the data collected from the MTS compression testing machine the peak 

deformation stresses at each rolling temperature could be calculated from the forces recorded by 

the system.  Figure 69 shows the average maximum true stress applied to the samples during the 

experiments at each rolling temperature. These results show that, at the primary four rolling 

temperatures, 7045, 7153, and 7038 all exhibit very similar behavior.  Grade 7631, shows a 

much more pronounced increase in peak stress at the finishing temperature then all the other 

grades.  Finally,  at 870 oC, the peak stress observed in 7038 is significantly higher than that 

those seen at 901 oC suggesting a significant change in the nature of the deformation. 
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Figure 69  Plot of average peak stress at each deformation temperature for each 

alloy investigated.  
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7.0 CONCLUSIONS 
 

 

 

 The importance of well designed and implemented thermomechanical processes in order 

to achieve desired microstructures, strengths and toughness, in low-alloy steels, is well 

understood. 

 The microstructures in the current hot-band product has been observed and well defined, 

grain size and phases identified using multiple methods. Furthermore, an understanding of how 

the structure of these steels evolved through processing and cooling experiments.  

 In the continuous cooling experiments, at the highest cooling rates explored, all samples 

exhibited at least some low transformation product, bainitic and/or acicular ferrite formation.  

This observation sheds light on the importance of determining a coiling temperature that will 

avoid these transformations while still allowing for the high cooling rates desired from finishing 

to coiling. 

 The findings from the continuous cooling experiments directly affect how the 

microstructures in the TMP simulations can be interpreted.  In all cases, when coiling 

temperatures was below the observed bainite transition in the hot-band, acicular or bainitic 

ferrites formed altering the microstructures, regardless of the cooling rate to coiling temperature.  

Looking at the effect of rolling temperature, in the 7038 samples, no significant difference was 

seen in the microstructure. 
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 In the calculation for predicted yield stress from the microstructural analysis of the hot 

band microstructures, the predicted yield stresses were very similar to the measured yield 

stresses for the same steels and conditions. That is, most of the strengthening was due to solid 

solution and grain size refinement, very small contributions due to dislocation and precipitation 

strengthening were expected. The TEM results conducted on the steels containing microalloying 

additions supports the lack of any substantial precipitation. In the case of the predicted YS from 

the TMP samples, most results did not match the strengths of the hot-band.  The difference was 

attributable to the difference in ferrite grain size.    This difference in grain size has many 

possible factors.  The most probable of which would be, the degree of deformation and number 

of rolling passes.  The effect of austenite deformation on the formation of a fine ferrite grain is 

well understood in these cases.  Otherwise, the microstructures formed are very similar to those 

in the hot band. 

 Finally, these results show that, with a good understanding of the cooling transition 

temperatures for these hot rolled materials, a processing path can be devised to provide 

guidelines to optimize the final microstructure of the hot band material. . 
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