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UNCONVENTIONAL APPROACH WITH THE LIKELIHOOD OF

CORRELATION MATRICES

Myung Soon Song, PhD

University of Pittsburgh, 2011

Numerical approximations are important research areas for dealing with complicated func-

tional forms. Techniques for developing accurate and e¢ cient calculation of combined likeli-

hood functions in meta-analysis are studied. The �rst part of the thesis introduces a B-spline

approximation for making a parsimonious model in the simplest case(2-dimensional case) of

correlation structure. Inference about the correlation between vitamin C intake & vitamin C

serum level is developed by using likelihood intervals and the MLE, along with comparison

with conventional methods. The second part studies a multivariate numerical integration

method for developing a better approximation of the likelihood for correlation matrices.

Analyses for (1) intercorrelations among Math, Spatial and Verbal scores in an SAT exam

and (2) intercorrelations among Cognitive Anxiety, Somatic Anxiety and Self Con�dence

from Competitive State Anxiety Inventory (CSAI-2) are explored. Algorithms to evaluate

likelihood and to �nd the MLE is developed. Comparison with two conventional meth-

ods (joint asymptotic weighted average method & marginal asymptotic weighted average

method) is shown.
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1.0 INTRODUCTION

In many areas of statistics, reliably approximating the values of integrals is a problem of

substantial concern. With development of computer and calculation methods, modern sta-

tisticians can study very complicated functional structures. They don�t need to su¤er from

using di¢ cult mathematics which give us usually elegant but not so practical forms due to

computational problems. The problem of complicated functional form can be severe espe-

cially in the realm of multi-dimensional analysis. For example, how to combine information

about population correlation matrices from many di¤erent independent studies is one of the

hot questions in meta-analysis. Conventionally, asymptotic methods are used to tackle this

problem. But these approaches are naïve and have some evident �aws. One of the most

serious of these �aws is that we have to assume that the sample size from each study is

su¢ ciently large to justify Central Limit approximations, an assumption which is violated

in many situations.

In this paper, I develop approximation methods for calculating the combined likelihood

of correlation matrices from di¤erent studies. Chapter 1 introduces a B-spline approximation

method for developing a parsimonious model of the simplest 2-dimensional case of correlation

structure, 2�2 correlation matrix. Inference about the correlation between vitamin C intake

and vitamin C serum level is developed by using likelihood intervals and the MLE; The

results are compared to conventional methods. Chapter 2 studies quadrature methods for

developing a better approximation of the likelihood for k�k population correlation matrices.

Analyses for (1) intercorrelations among Math, Spatial and Verbal scores in an SAT exam

and (2) intercorrelations among Cognitive Anxiety, Somatic Anxiety and Self Con�dence

from Competitive State Anxiety Inventory (CSAI-2) are explored. Algorithms to evaluate

likelihood, to �nd the MLE and to show likelihood regions are developed. Comparison

1



with two conventional methods (joint asymptotic weighted average method and marginal

asymptotic weighted average method) are shown.
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2.0 EXPLANATION OF SOME TOOLS USED

In this chapter, some tools used in the following chapters are explained brie�y. If you know

these already, you can skip this chapter.

2.1 B-SPLINE

In mathematics or statistics, a B-spline is a spline function having minimal support with

respect to a given degree, smoothness, and domain partition.

The term B-spline was �rst introduced by Romanian mathematician Isaac Jacob Schoen-

berg and is short for basis spline. B-splines can be evaluated in a numerically stable way by

the de Boor algorithm (de Boor [7]).

Hastie et al. [19] provides a quite rigorous de�nition of the B-spline. Let �0 and �K+1

be two boundary knots, which typically de�ne the domain over which a spline is evaluated.

Now the augmented knot sequence � satis�es:

1: �0 < �1 and �K < �K+1

2: � 1 � � 2 � � � � � �M � �0;

3: � j+M = �j; j = 1; � � � ; K;

4: �K+1 � �K+M+1 � �K+M+2 � � � � � �K+2M .

The actual values of these additional knots beyond the boundary are arbitrary, and it is

customary to make them all the same and equal to �0 and �K+1; respectively.

Denote by Bi;m(x) the ith B-splines basis function of orderm �M for the knot-sequence

3



� : They are de�ned recursively in terms of divided di¤erences as follows:

Bi;1 =

8<: 1 if � i � x � � i+1
0 otherwise

(2.1)

for i = 1; � � � ; K + 2M � 1:

Bi;m(x) =
x� � i

� i+m�1 � � i
Bi;m�1(x) +

� i+1 � x
� i+m � � i+1

Bi+1;m�1(x) (2.2)

for i = 1; � � � ; K + 2M �m:

Thus withM = 4; Bi;4; i = 1; � � � ; K+4 are the K+4 cubic B-spline basis functions for

the knot sequence �: This recursion can be continued and will generate the B-spline basis

for any order spline. In the statistical package R, cubic spline basis is used as default for

B-spline approximation.

A fundamental theorem states that every spline function of a given degree, smoothness,

and domain partition, can be represented as a linear combination of B-splines of that same

degree and smoothness, and over that same partition.

Also, a B-spline curve of order K is in general CK�2 continuous (continuous up to

(K � 2)nd derivative). For example, a cubic B-spline curve(a B-spline curve of order 4) is

C2 continuous. At a knot position the continuity is CK�M�1;where M is the multiplicity of

that knot.

In this chapter the cubic B-spline is used for approximation. From now on, a B-spline

refers to a cubic B-spline if there is no further explanation.

2.2 HIGHEST LIKELIHOOD REGIONS (HLR)

Many statistical methods involve summarizing a probability distribution by a region of the

sample space covering a speci�ed probability. But it is not always clear which region should

be used. Suppose someone wishes to give a 90% prediction interval from a given distribution.

Should he or she use the interval symmetric with respect to the mean or the median, the

interval de�ned between the 5% and 95% quantiles, the interval of shortest length, or the

interval that maximizes the probability of covering a given set? Hyndman [23] investigates

4



an approach to this question by suggesting highest density regions (HDR) from any given

(possibly multivariate) density f(x) which is bounded and continuous in x. He claims that

the usual purpose in summarizing a probability distribution by a region of the sample space

is to sketch a comparatively small set which contains most of the speci�ed probability. The

criteria he adapts are the following:

1. The region should occupy the smallest possible volume in the sample space.

2. Every point inside the region should have probability density at least as large as every

point outside the region.

It follows immediately from the criteria and corresponding de�nition of HDR that the

highest density region has the smallest possible volume in the sample space. Furthermore,

the HDR has some virtues like:

1. The modes are contained in every HDR.

2. The HDR has a link to conventional wisdom. For example, in the case of a normal

distribution an HDR coincides with the usual probability region symmetric with respect to

the mean spanning the �
2
and 1 � �

2
quantiles. This assertion is true for any symmetric

unimodal distribution.

In this paper I will use the term Highest Likelihood Regions (HLR) rather than the

Highest Density Regions (HDR). Both density functions and likelihood functions are non-

negative on the corresponding domains. But there is a big di¤erence between these two types

of function. The area under the density curve de�ned on the domain should equal one, but

the likelihood function has no such restriction. Of course the essential characteristics of

HLR are inherited from those of HDR with no di¢ culty.

2.3 LIKELIHOOD STRIP

In many situations, it is needed to display a collection of likelihoods over a common interval.

For example, in meta-analysis, comparing and possibly combining information about a pa-

rameter from a collection of studies can be a main interest. One way to do this is simply to

5



superimpose the likelihood curves. But such displays are very di¢ cult to read if there are

many curves. A second way is to display likelihood intervals (a point estimate with margin

of error) for each likelihood function. Such intervals are sometimes misinterpreted by users

as implying that all values within the interval are equally plausible. These approaches will

be inadequate if the likelihood function is not approximately normal, as may occur with

small sample sizes or nonlinear models.

The �density strip� is a spectrum-like shaded monochrome strip whose darkness at a

point is proportional to the probability density of the quantity at that point. Its use has

been suggested by Jackson [24]. Density strips are useful for comparing distributions arising

from parameter estimation, such as posterior distributions from Bayesian multiple regression

or meta-analysis. The purpose of the density strip is to indicate the shape of a distribution,

emphasizing the uncertainty surrounding the parameter estimate, rather than to allow the

value of the density at every point to be accurately determined.

The concept of density strip will be adapted to likelihoods for the purpose of this paper,

and will be referred to as �likelihood strip�instead of �density strip�throughout the paper.

6



3.0 CORRELATION FOR BIVARIATE CASE

3.1 INTRODUCTION

Numerical approximation methods for likelihood function of correlation coe¢ cient are stud-

ied. The least squares approach is used to estimate a log-likelihood function by a function

from a space of B-splines having desirable mathematical properties. The likelihood interval

from the Highest Likelihood Regions (HLR) is used for further inference.

This approach can be easily extended to the realm of meta-analysis involving sample

correlations from di¤erent studies by use of an approximated combined likelihood function.

The sample correlations between vitamin C intake and serum level of vitamin C from many

studies are used to illustrate application of this approach.

3.2 BACKGROUND

In many areas of research, it is useful to assess the relationship between continuous variables.

Correlation coe¢ cients have been used extensively as an index of the relationship between

two normally distributed variables. Since the correlation coe¢ cient is a scale-free measure of

the relationship between variables, it is invariant under substitution of di¤erent but linearly

equitable measures of the same construct. Therefore, the correlation coe¢ cient is a natural

candidate as an index of e¤ect magnitude across studies in meta-analysis. (Hedges and Olkin

[20])

How to combine the sample correlation coe¢ cients frommany independent studies having

possibly di¤erent sample sizes has been an old question in meta-analysis.

7



Arguably, the most common process to deal with the issue above in meta-analysis is (P1)

to calculate the sample correlations for individual studies, (P2) convert them to a common

metric, and (P3) combine the results to obtain an average e¤ect size. Why the process (P2)

is needed instead of going straight from (P1) to (P3) may be worthy of explanation.

The sample correlation r was proposed by Pearson as an estimator of the population

correlation �: The exact distribution of the sample correlation coe¢ cient under the assump-

tion of a bivariate normal distribution was �rst derived by Fisher [13], who obtained the

distribution in a rather complicated form. Simpler forms of the distribution more suitable

for computation are given by Hotelling [21]. These distributions will be shown later in this

chapter. Due to the complexity of the exact distribution, the large sample distribution of a

sample correlation r has been preferred. The asymptotic distribution of a sample correlation

r is normal with mean � and variance (1��2)2
n

; where n is the sample size: Unfortunately, the

variance of r in the approximation depends strongly on �; the unknown true value of the

correlation. In order to stabilize the variation of r; Fisher [14] proposes the z-transformation

z = z(r) =
1

2
log

1 + r

1� r = tanh
�1 r: (3.1)

The corresponding transformation for � is

� = �(�) =
1

2
log

1 + �

1� � = tanh
�1 �: (3.2)

The z-transformation stabilizes the variance in the sense that z is approximately normally

distributed with mean � and variance 1
n
when n is large. A more accurate approximation

to the distribution of z is obtained by setting the asymptotic variance equal to 1
n�3 instead

of 1
n
for moderate values of n: Consequently

p
n� 3(z� �) has, approximately the standard

normal distribution:

p
n� 3(z � �) � N(0; 1) (3.3)

For the conversion of metric (P2) described in the previous page, there are some alter-

native approaches(such as unbiased estimators, Kramer�s t-transformation) beside Fisher�s

z-transformation. (Hedges and Olkin [20]) Among these, Fisher�s z-transformation is the

8



most popular method, partly because of a simple distributional form. But Fisher�s z-

transformation produces an upward bias in the estimation of the correlation coe¢ cients in

the process (P3) described in the previous page. This upward bias is usually higher than

the negligible downward bias produced by untransformed correlations.(Hunter [22]) Fur-

thermore, Fisher�s z-transformation is based on asymptotic theory, and may not work very

well for small sample sizes.

Considering these problems, asking whether or not direct approaches from the process

(P1) to the process (P3) are possible is still attractive. In the following sections, the use

of log-likelihood functions and the B-spline approximations are suggested to answer this

question.

3.3 APPROACH

3.3.1 Likelihood Function and Approximation

It is well known that likelihood functions play an important role in both the frequentist

and Bayesian statistical paradigms. Many times uncertainty is taken into account by using

the likelihood when studying a statistical problem. The concept of the likelihood is one

of the best methods for unifying the demands of statistical modeling and inference. One

of the very important advantages of likelihood functions is that they are most naturally

represented, understood, and communicated graphically. In order to see what the data say,

we look at graphs of likelihood functions.(Royall [35])

The distribution of the sample correlation r in a sample of size n from a bivariate normal

distribution with correlation � was �rst obtained by Fisher[13] in the form:

(1� �2) 12 (n�1)(1� r2) 12 (n�4)
�(n� 3)!

���� dn�2dxn�2

�
cos�1(�x)p
1� x2

�����
x=r�

: (3.4)

Anderson [1] gives a di¤erent form of the density,

2n�3(1� �2) 12 (n�1)(1� r2) 12 (n�4)
�(n� 3)!

1X
�=0

(2�r)�

�!
�2[
1

2
(n� 1 + �)]; (3.5)

9



but the most commonly used form of the likelihood function of the population correlation

coe¢ cient based on a single sample correlation r from a sample size n is

L(�jr; n) = n� 2p
2�

�(n� 1)
�(n� 1

2
)
(1� �2) 12 (n�1)(1� r2) 12 (n�4)(1� �r)�n+ 3

2 (3.6)

�F
�
1

2
;
1

2
; n� 1

2
;
1 + �r

2

�
;

where

F (a; b; c; x) =
1X
j=0

�(a+ j)

�(a)

�(b+ j)

�(b)

�(c)

�(c+ j)

xj

j!
; (3.7)

which stems from Hotelling [21] who made a comprehensive study of the distribution of r:

The series in Eqn(3.6) converges faster than the ones in (3.4) or (3.5).

3.3.2 Numerical Evaluation Results

In this section, some numerical evaluation results are provided.

Fig 1 and Fig 2 show the graphs of the log-likelihood functions of the population corre-

laton (�) with various given sample correlations (r�s) and a �xed sample size n = 100.

In Fig 1, the graphs of the log-likelihood of the population correlation � are displayed

when the sample correlation r has one of the values 0:1; 0:2; � � � ; 0:9. These functions are

all uni-modal and the greater the r�s, the more skewed the likelihood functions.

Fig 2 uses the same magnitudes of the sample correlations as in Fig 1 with opposite

(negative) sign. The graphs in Fig 2 are mirror images of those in Fig 1.

Fig 3 displays the likelihood functions for � when the sample correlations r range from

0:1 to 0:9 in steps of 0:1; respectively with a sample size n = 100. The greater the magnitude

of the sample correlation, the more the likelihood function concentrates around the peak or

mode.

Fig 4, Fig 5 and Fig 6 display the log-likelihood functions of � and their B-spline approx-

imations for �xed sample size n = 100 and various r (r equalling �0:3; 0 and 0:7) when one

knot is used. In each �gure, the solid line is for the log likelihood function and the dashed

line is for the B-spline approximation.
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Figure 1: Log likelihood functions obtained from positive sample correlations (n=100)
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Figure 2: Log likelihood functions obtained from negative sample correlations (n=100)
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Figure 3: Likelihood functions obtained from postive sample correlations (n=100)
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Figure 4: The log-likelihood(solid line) and its B-spline approximation(dashed line) when

r=-0.3, n=100
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Figure 5: The log-likelihood(solid line) and its B-spline approximation(dashed line) when

r=0, n=100
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Figure 6: The log-likelihood(solid line) and its B-spline approximation(dashed line) when

r=0.7, n=100
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3.4 DATA - VITAMIN C

3.4.1 Notation and Convention

Let X and Y be random variables with bivariate normal distribution. Consider the situation

in which each of k studies has examined correlations between X and Y . Let r(i) and n(i) be

the sample correlation coe¢ cient between X and Y and the sample size from the ith study

for i = 1; � � � ; k; respectively.

3.4.2 Background

Recently, a great deal of attention has been given to fruit and vegetable consumption and

their role in reducing rates of chronic diseases such as cancer, coronary heart disease (CHD),

stroke, diabetes, and arthritis. It is suggested that the protective e¤ect of fruits and veg-

etables is partly due to antioxidant nutrients like vitamin C and carotenoids which inhibit

lipid per-oxidation and oxidative cell damage.(Steinmetz and Potter [37])

Vitamin C intake is measured by many di¤erent methods including Food Frequency

Questionnaires (FFQ), Diet History Questionnaires (DHQ), 24 hr Dietary Recalls (DR) and

Weight Records (WR). FFQ is one of the most commonly used tools in epidemiologic studies

to assess long-term nutritional exposure. It is used to determine usual intakes of selected

items from all major food groups.

Because fruits and also vegetables are the main source of dietary vitamin C, the serum

level of vitamin C has been considered a good predictor of vitamin C intake from fruit and

vegetable consumption. Therefore, signi�cant changes of plasma vitamin C are expected by

altering fruit and vegetable consumption.

Dehghan et al. [8] assess the association between vitamin C intake measured by dietary

assessment methods and plasma level of vitamin C in epidemiological studies. The purposes

of their study are: �rst, to investigate the strength of the correlation between plasma level

of vitamin C as a biomarker and dietary vitamin C intake measured by methods commonly

used for dietary assessment in epidemiological studies and, second, to explore whether the

correlation between dietary vitamin C intake and plasma vitamin C varies between di¤erent
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Study ID Sample r(i) n(i)

1 Bingam et al.(1997) 0.35 127

2 EPIC group of Spain (1997) 0.61 40

3 Mckeowen et al. FFQ1(2001) 0.41 70

4 Mckeowen et al. FFQ2(2001) 0.39 70

Table 1: Four Studies used for Vitamin C example

Method for forming interval Study 1 Study 2 Study 3 Study 4

Asymptotic (0.20, 0.50) (0.42, 0.80) (0.22, 0.60) (0.19, 0.59)

Exact Likelihood (0.19, 0.49) (0.37, 0.77) (0.19, 0.58) (0.17, 0.56)

B-spline Approx (0.19, 0.49) (0.37, 0.76) (0.19, 0.58) (0.18, 0.57)

Table 2: 95% C.I�s and HLR likelihood intervals from Individual Studies for Comparison

dietary assessment methods.

In the following subsections, a baby version of a meta-analysis will be given based on the

data from Dehghan et al. [8]. The analysis is done for just four studies of the correlation

between dietary vitamin C measured by FFQ and plasma vitamin C for females.

In Table 2, 95% con�dence intervals by using conventional asymptotic theory, 95% HLR

likelihood intervals of the exact likelihood function and 95% HLR likelihood intervals ob-

tained from the B-spline approximation to the log-likelihood function are compared, for

each study. Table 2 shows di¤erences between the classical asymptotic method and the two

likelihood methods. Generally, the intervals from the asymptotic method tend to shift to

the right compared to those of the likelihood methods for all studies. As we see, B-splines

approximate the corresponding exact likelihood function extremely well.
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3.4.3 Test of Homogeneity

If k studies investigate the same population correlation, combining the data from several

studies to form a single estimated correlation is meaningful. Thus, we �rst need to determine

whether or not the data obtained from several studies are consistent with the hypothesis of

homogeneous correlations.

A formal hypothesis test can be made for the hypotheses:

8<: H0 : �1 = �2 = �3 = �4

Ha : Not all of �i�s are the same
(3.8)

where �i is a population correlation from the ith study for i = 1; � � � ; 4: This test uses the

statistic

Q = �2 log
�
supH0 L(�jr)
supHa L(�jr)

�
(3.9)

where L(�jr) =
4Q
i=1

L(�(i)jr(i)) = exp
�
4P
i=1

logL(�(i)jr(i))
�
is the combined likelihood from the

four study.

Q has approximately a �2 distribution with 3(= 4� 1) degrees of freedom if H0 is true.

A test of H0 at the 100� % level of signi�cance is given by rejecting H0 if Q is greater than

the 100(1� �) percentile of the �2 distribution with 3 degrees of freedom.

By using the statistical software R, we obtain Q = 3:39 which is less than 7:81, the

95% critical value of the �2 distribution with 3 degrees of freedom, so the hypothesis of

homogeneous correlations is accepted at the 5% level of signi�cance.

3.4.4 Comparison of Estimators and Visualization

When a series of k independent studies share a common population correlation coe¢ cient �,

it is natural to estimate � by pooling estimates from each of the studies. If the sample sizes

of the studies di¤er, then the estimates from the larger studies will be more precise than the

estimates from the smaller studies. In this case it is reasonable to give more weight to the
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Asymptotic Exact Likelihood & B-spline Approx

Estimators er = 0:43 br = 0:41
95% C.I. or C.I. HLR Likelihood Interval

HLR Likelihood Interval (0.34, 0.52) (0.31, 0.50)

Table 3: Results from the Combined Study

more precise estimates when pooling. This leads to weighted estimators of the form:

rw = w1r(1) + � � �+ wkr(k) (3.10)

where w1; � � � ; wk are nonnegative weights that sum to 1.(Hedges and Olkin [20])

The weights that minimize the variance of rw give weight inversely proportional to the

variance in each study. This is intuitively clear in that a smaller variance, i.e., more precision,

should lead to larger weight. Consequently, if this weight is used, the asymptotic weighted

average of correlation has the form:

er =
kP

m=1

n(m)�
1� r2(m)

�2 r(m)
kP

m=1

n(m)�
1� r2(m)

�2 (3.11)

Table 3 summarizes the main results obtained from the statistical software R from this

way of combining the four studies. It shows the MLE br from the exact combined likelihood

or its B-spline approximation and an asymptotic pooled estimate er. Note that br is less thaner by 0:02: Also, in Table 3 appear the 95% asymptotic C.I. for � and the 95% HLR likelihood
interval for �.

Fig 7 shows the combined likelihood(solid line) and its B-spline approximation(dashed

line) from the four studies. The B-spline curve approximates the likelihood extremely well.

Fig 8 illustrates the likelihood strip(See Section 2.3) of the combined likelihood function

(or its B-spline approximation) from the four studies.
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Figure 7: The Combined Likelihood(solid line) & its B-spline approximation(dashed line)

from 5 Studies
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Figure 8: The Likelihood Strip of Combined Likelihood (and B-spline approximation) from

4 Studies
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3.5 SUMMARY AND DISCUSSION

As we see in the previous sections, a B-spline generally gives a close approximation to the

log-likelihood function. In particular, when the MLE of the combined likelihood (or log-

likelihood) is not far from the origin, say between �0:8 and 0:8; a B-spline �ts the exact

likelihood function nearly perfectly.(See Fig.7) From Table 3, we can also observe that B-

splines detect the right location of the MLE and also the likelihood interval from the exact

combined likelihood, which are very important for inference.

Furthermore, just 2 or 3 inner knots, which correspond to degrees of freedom 5 or 6

when we use a cubic B-spline in the computer program R, are used for approximation in

the previous sections. Consequently we can obtain a parsimonious model from the exact

likelihood function.

But there is a limitation when applying a B-spline approximation. When the MLE of �

is close to 1 in magnitude, the B-spline approximation �ts less well, which is a general �aw

of spline approximation when we deal with values close to the boundaries of domain of the

approximated function. Fortunately, the vitamin C data do not su¤er from this boundary

issue, so the results are reliable.
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4.0 CORRELATIONS FOR MULTIVARIATE CASE

4.1 INTRODUCTION

All the contents in the previous chapter were devoted to the bivariate case - the single

correlation coe¢ cient �: In this chapter, numerical methods are developed for approximating

the combined likelihoods of correlation matrices estimated in di¤erent studies. As a good

starting point for this more general multivariate case, it is quite natural to deal with the

trivariate case.

There are many conventional ways to combine information from di¤erent studies. Using

weighted averages are probably the most common choices. However, if the sample sizes are

not su¢ ciently large, these methods are not so reliable.

We can start by deriving a needed form of the density function and from this obtain

the likelihood function. The derivation of the density function is added in the Appendix.

The distribution of the sample correlation matrix R in a sample of size N from a trivariate

normal distribution with correlation matrix P has the form:

f(Rjn; P ) = jRj 12 (n�4)jP jn

�
3
2

1X
�=0

1X
�=0

1X
=0

(�12 � �13�23)
� (�13 � �12�23)

� (�23 � �12�13)


(1� �212)
1
2
(n+�+)

(1� �213)
1
2
(n+�+)

(1� �223)
1
2
(n+�+�)

�2
�+�+r�12r

�
13r


23

�!�!!
�
�[1
2
(n+ �+ �)]�[1

2
(n+ �+ )]�[1

2
(n+ � + )]

�[1
2
n]�[1

2
(n� 1)]�[1

2
(n� 2)]

(4.1)

where n = N � 1; R =

26664
1 r12 r13

r12 1 r23

r13 r23 1

37775 ; P =
26664
1 �12 �13

�12 1 �23

�13 �23 1

37775 ; and
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Figure 9: The Domain of the Likelihood of P in the Three Dimensional Case

jRj = 1� (r212 + r213 + r223 � 2r12r13r23); jP j = 1� (�212 + �213 + �223 � 2�12�13�23):

The likelihood of the correlation matrix P when in a sample of size N we observe the sample

correlation matrix R is proportional to (4.1). But Eqn(4.1) is not de�ned on the complete

entire cubic domain (�1; 1)� (�1; 1)� (�1; 1) because P is supposed to be positive de�nite.

P is positive de�nite if and only if

j�ijj < 1; 1 � i < j � 3 and �212 + �213 + �223 � 2�12�13�23 < 1: (4.2)

Fig 9 and Fig 10 illustrate the domain (4.2) of the likelihood function (4.1) in the trivariate

case.

It turns out that representing the likelihood in terms of in�nite series has serious draw-

backs, both because of the mathematical complexity of the representation and also due to

increasing di¢ culty in calculation of the likelihood as the dimensionality of the parameter

space increases. In general, p(p�1)
2

combined in�nite series are required for a p�p correlation
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Figure 10: The Di¤erent Perspective of the Domain of the Likelihood of P in the Three

Dimensional Case

matrix. Even in relatively low dimensions, computation can be di¢ cult. For example, if

you have 5 variables you need to use 5(5�1)
2

= 10 combined in�nite series for the likelihood.

Consequently, it was chosen to follow Fisher�s [16] approach and represents the likelihood

function as a multiple integral to which numerical integration can be applied in this pa-

per. It is proved that just p � 1 multiple integrals need to be computed for the general p

variable case. For example, 5 � 1 = 4 multiple integrals are needed for the 5 dimensional

case. When Fisher [16] suggested a multiple integral representation of the likelihood for the

p-dimensional case, calculation was not easy, but we can now calculate a revised multiple

integral form of the likelihood easily with advanced computers.

As an application of inference, intercorrelation among math, spatial and verbal scores in

an SAT examination is explored and comparisons among various approaches are given. Also,

a similar process will be conducted for intercorrelations among cognitive anxiety, somatic

anxiety, and self-con�dence from the area of sports psychology.
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4.2 APPROACH - LIKELIHOOD AS A FORM OF MULTIPLE INTEGRAL

As mentioned in the introduction of this chapter, the likelihood function of the correlation

matrix P obtained from a sample correlation matrix R from a sample of size N has a form of
p(p�1)
2

combined in�nite series. This form turns out to be computationally unpractical due to

heavy burden of calculations - curse of dimensionality. But the computational problem can

be solved by using a di¤erent form of the likelihood function based on a multiple integral.

It is shown in Appendix that the likelihood function has a form of p � 1 multiple integrals

in p variable case:

L(P ) = f(Rjn; P ) = C
Z 1

0

� � �
Z 1

0

�
pQ
i=1

vi

�n
2
�1

�
p�1Q
k=2

bk�1k 
pP
i=1

(P�1)iivi + 2
P

1�i<i�p
(P�1)ijRij

p
vivj

!np
2

dbp�1 � � � db1

(4.3)

where

C =
jRj

n�p�1
2 �(np

2
)

�
p(p�1)

4 jP j
n
2

pQ
i=1

�
�
1
2
(n+ 1� i)

� ,

vi = (1� bi�1) bi � � � bp�1 ; for i = 1; � � � ; p� 1;

vp = 1� bp�1; n = N � 1;

(4.4)

and where Pij, Rij and (P�1)ii are the elements from the ith row and jth column in P;R and

P�1(the inverse matrix of P), respectively.

Fisher[16] uses a representation of the likelihood in terms of p multiple integrals in the p

variable case. Its integration domain is (0;1) for each coordinate. But this paper suggests

a representation of the likelihood with p � 1 multiple integrals in the p variable case with

integration domain (0; 1) for each coordinate. This representation has obvious calculational

advantage over Fisher�s representation.

In section 4.3, numerical integration methods are introduced to calculate the likelihood

(4.3).
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4.3 APPROACH - NUMERICAL INTEGRATION

Numerical integration is the study of how the numerical value of an integral can be obtained

by using approximate computational methods. It is sometimes called quadrature. Basically,

all numerical integration methods are based on adding up the value of the integrand at a

sequence of points in the range of integration.

We can formulate the situation in which we have main interest:

I(f) =

Z
� � �
Z

Sm

f(x1; � � � ; xm) dx1 � � � dxm �
MP
i=1

Wi f(yi;1; � � � ; yi;m) (4.5)

where Rm is a m-dimensional Euclidean space, Sm is a speci�ed region in Rm, f : Rm ! R is

a common function. A vector (yi;1; � � � ; yi;m) is called a point of the formula: The scalar Wi

is called the ith coe¢ cient of the formula. We say that formula (4.5) has degree r(or degree

of exactness r) if it is exact for all polynomials in x1; � � � ; xm of degree r and there is at least

one polynomial of degree r + 1 for which it is not exact.(Evans [10])

At this point, we need to mention a very important aspect of numerical integration - the

assessment of error in an approximation. The only absolutely certain method to assess is to

compare the approximation with the correct answer, which is not always possible in practice.

With iterative methods, we have the natural method of examining the approximations at

successive stages and stopping the iteration when the changes become small for a number

of iterations. Perhaps the best way to be con�dent that we have accurately approximated

a particular integral is to use very di¤erent methods and see if the results agree.(Evans and

Swartz [11]) In the following sections, three main methods of numerical integration will be

used: Gauss-Legendre quadrature, adaptive integration and the Monte Carlo method.

Among the many quadrature rules, one of the most commonly used rules is the Gauss-

Legendre rule(Press et al. [33]): For the multi-dimensional case (4.5) here becomes:

I(f) =

Z 1

0

� � �
Z 1

0

f(x1; � � � ; xm) dx1 � � � dxm �
MP
i1=1

� � �
MP
im=1

Wi1 � � � Wimf(yi;1; � � � ; yi;m)

(4.6)
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Even if an optimal Gauss-Legendre quadrature extension giving a degree of exactness of

3M + 1 can be found(Kuonen [26]), you still do not know the accuracy in terms of correct

decimal places. To get a prescribed accuracy you need adaptive integration, which keeps

subdividing the domain of integration Sm until a speci�ed error has been achieved.

Adaptive algorithms developed by Genz and Malik [18] operate by repeated subdivision

of hyper-rectangular regions into smaller hyper-rectangles. In each subregion, the integral

is estimated using a rule of degree seven, and an error estimate is obtained by comparison

with a rule of degree �ve which uses a subset of the same points. These subdivisions are

designed to dynamically concentrate the computational work into the subregions where the

integrand is most irregular, and thus adapt to the behavior of the integrand. But one of

the disadvantages of adaptive algorithms is their slow speed. This disadvantage can be

considerably overcome by using Monte Carlo methods.

Monte Carlo (MC) methods can be loosely described as statistical simulation methods.

We refer to Robert and Casella [34] and Tanner [39] for a comprehensive introduction. The

classical MC method for approximating a multiple integral such as given in the left-hand

side of (4.5), denoted by I(f), is as follows. We choose M sets of points fyi;1; � � � ; yi;mg ;

i = 1; � � � ;M at random, uniformly distributed in Sm. The integral is then estimated using

Wi = V=M in the right-hand side of (4.5),

I(f) � bI(f) = V

M

MP
i=1

f(yi;1; � � � ; yi;m) (4.7)

where V = I(1) is the m-dimensional volume of Sm. Thus we see that the basic MC

method iteratively approximates a de�nite integral by uniformly sampling from the domain

of integration,and averaging the function values at the samples. The integrand is treated as

a random variable, and the sampling scheme yields an estimate of the mean of the random

variable. Since bI(f) in (4.7) estimates I(f); the absolute error in this mean can be evaluated
by considering the corresponding standard error of the mean,

� =
���I(f)� bI(f)��� � �

M1=2
(4.8)
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where �2 = V � I(f 2)� I2(f). If fyi;1; � � � ; yi;mg ; i = 1; � � � ;M are regarded as independent

random variables then bI(f) is a random variable with mean I(f) and variance �2=M , which
can also be estimated from the random sample through

V

M2

MP
i=1

n
f(yi;1; � � � ; yi;m)� bI(f)o2 : (4.9)

The absolute error (4.8) has an average magnitude of O(M�1=2):(Kuonen [26])

In section 4.4, it is sketched how to calculate maximum likelihood estimates(MLEs) and

the corresponding likelihood regions by using the multiple integral representation (4.3) of

the likelihood and the numerical integration methods introduced in this section.

4.4 HOW TO GET THE INFERENCE

Fig 11 illustrates how information from sample correlation matrices from k studies can be

combined using calculation of the likelihood function at selected points in the parameter

space to get inferential results. In this �gure, Ri and Ni stand for the correlation matrix

and the sample size from study i for i = 1; � � � ; k; respectively. Also, LR denotes a HLR

likelihood region. This �ow chart is helpful for readers to understand and use the likelihood

function and its numerical integration when they try to apply the approach of this paper to

their data.

Now, we want to explain brie�y how to get the MLE step by step.

1) Fix an initial subdomain of the parameter space for calculating the likelihood:

The likelihood function (4.3) can be calculated for any values in the parameter space (4.2) by

the numerical integration methods described in section 4.3. But many values of likelihood in

the domain (4.2) are needed to �nd the MLE numerically. We do not need to use the whole

domain (4.2). The sample correlations will suggest what subset is relevant for an initial

stage.

2) Choose a collection of coarse grid points in the subdomain chosen in step 1).

3) Calculate the values of the combined likelihood (the multiplication of the likelihoods of

the k studies) at the grid points from step 2).
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Figure 11: Flow Chart of Combining Correlation Matrices Process
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4) Find the point (an initial candidate for the MLE) which achieves the maximum value of

the calculated combined likelihoods from step 3).

5) Choose a smaller subdomain around the point from step 4) and a more re�ned set of grid

points than in step 2).

6) Calculate the values of the combined likelihood at the grid points from step 5).

7) Find the point which attains the maximum value of the combined likelihood computed in

step 6)

8) Repeat steps 5) - 7) until convergence occurs with desired accuracy.

The three numerical integration methods in section 4.3 can be used separately in the

computations to check whether each calculation method yields the same result for the MLE.

Also, we can explain brie�y how to visualize the 100(1� �)% HLR likelihood region for

elements of the population correlation matrix in the following steps:

a) Fix a subdomain of the parameter space for calculating the likelihood:

The sample correlations given will suggest what subset is relevant. Outside of this subdo-

main, the likelihood should be practically zero so that a negligible contribution is made to

the total volume under the surface de�ned by the likelihood.

b) Assign equidistant grid points in the subdomain chosen in step a):

The �ner the grid points, the higher resolution the plot.

c) Calculate the values of the combined likelihood at the grid points from step b) and sort

these points in descending order.

d) Sum these combined likelihood values starting with the largest and stop summing up if

the ratio between the cumulative sum from the top to the total sum of all the combined

likelihood values from step c) becomes 1� �:

e) Determine the grid points for which the combined likelihood contribute to the numerator

of the ratio in step d).

f) Visualize the 100(1��)% likelihood region of the population correlation matrix using the

set of grid points from step e).
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4.5 NOTATION AND CONVENTION

Let X1; � � � ; Xp be random variables with a multivariate normal distribution. Consider the

situation in which each of k studies has independently observed correlations among these

p variables. Each study provides p(p�1)
2

nonredundant correlations. Let r(i)st be the sample

correlations between Xs and Xt in the ith study, and let r(i) =
�
r(i)12 ; r(i)13 ; � � � ; r(i)(1�p)p

�0
be the vector of the p(p�1)

2
nonredundant sample correlations from study i; i = 1; � � � ; k:

4.6 DATA - SAT

In this section, data from Friedman [17] are used. The data are from four studies of inter-

relations among math, spatial, and verbal ability. Becker [3] uses the same data and some

results in this section are compared with her results.

The correlation matrices among three variables in the ith study for i = 1; 2; 3;and 4 are

represented as:

M

S

V

M S V26664
1 r(i)12 r(i)13

r(i)12 1 r(i)23

r(i)13 r(i)23 1

37775
where M: Math, S: Spatial, and V: Verbal.

Also, these correlation matrices can be written as a vector r(i): The relationships represented

are

r(i) =

26664
r(i)12

r(i)13

r(i)23

37775
Math-Spatial

Math-Verbal

Spatial-Verbal

(4.10)

The basic information about the four samples is given in Table 4.

The r(i) vectors for the four studies are

r(1) =

26664
0:46

0:31

0:19

37775 ; r(2) =
26664
0:46

0:55

0:32

37775 ; r(3) =
26664
0:40

0:40

0:18

37775 ; and r(4) =
26664
0:27

0:57

0:22

37775 : (4.11)
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Sample ID Sample Sample Size

1 Berry (1957) n1 = 103

2 Rosenberg (1981) n2 = 69

3 Weiner 1 (1984) n3 = 69

4 Weiner 2 (1984) n4 = 70

Table 4: Four Studies used for SAT example

4.6.1 Test of Homogeneous Correlation Matrices

Before combining the data from di¤erent independent studies to estimate a correlation ma-

trix, it is important to check if the studies actually have the same population correlation

matrix. It is useful to conduct a hypothesis test to decide whether the sample correlation

matrices from the studies are consistent with a common population correlation matrix.

This test can be formalized as testing the hypotheses:

8<: H0 : P1 = � � � = Pk
Ha : At least two Pi�s are di¤erent

(4.12)

where Pi is the p� p population correlation matrix from the ith study, i = 1; � � � ; k:

This test uses the statistic

Q = �2 log
�
supH0 L(PjR)
supH0[Ha L(PjR)

�
(4.13)

where L(PjR) =
kQ
i=1

L(PijRi); P = fP1; � � � ; Pkg; R = fR1; � � � ; Rkg and Ri is the p � p

sample correlation matrix from the ith study, i = 1; � � � ; k:

Because Q has approximately a �2 distribution with 1
2
p(p� 1)(k� 1) degrees of freedom

if H0 is true, a test of H0 at the 100� % level of signi�cance is given by rejecting H0 if Q is

greater than the 100(1 � �) percentile of the �2 distribution with 1
2
p(p � 1)(k � 1) degrees

of freedom.

In the SAT example, we obtain Q = 9:28 which is less than 9:41, the 40% critical value

of the �2 distribution with 1
2
3(3 � 1)(4 � 1) = 9 degrees of freedom, so the hypothesis of
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homogeneity of correlation matrices cannot be rejected even at the 40% level of signi�cance.

Becker [3] tests the hypothesis (4.12) and has a similar result with Q = 9:34, but she uses

a di¤erent statistic for Q (a quadratic form in the sample correlations). Usually, a likelihood

ratio test such as (4.13) does not use an actual likelihood because the likelihood cannot be

evaluated in many situations, but the actual likelihood is used for the homogeneity test of

correlations in this paper. When the sample sizes in the studies are large enough to permit

Central Limit approximations, the test used by Becker and the likelihood ratio test (4.13)

yield similar results, as is the case here, but this is not guaranteed to be the case when the

studies have small sample sizes.

4.6.2 Comparison of Estimators

Assuming that all of the four studies share a common population correlation matrix, i.e. P1

= � � � = P4; pooling estimates from the studies to estimate the common correlation matrix

is quite natural as a next step in the meta-analysis. Becker [3] suggests two conventional

methods to get a pooled estimate of a correlation matrix. One is to separately calculate a

simple weighted average of corresponding sample correlations across studies for each popu-

lation correlation whereas the other is a generalized least squares approach. In this paper

these estimators will be referred to as the Marginal Asymptotic Weighted Average(MAWA)

and the Joint Asymptotic Weighted Average(JAWA), respectively. In this section, the MLE

is compared with these conventional pooled estimates.

If we have k studies in which each study uses the same p variables, the MAWA has the

form:

e�M =
�e�M12 ; e�M13 ; � � � ; e�M1p ; e�M23 ; � � � , e�M(1�p)p

�0
(4.14)

where

e�Mij =

kP
m=1

nm�
1� r2(m)ij

�2 r(m)ij
kP

m=1

nm�
1� r2(m)ij

�2 ; i < j (4.15)
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and the JAWA has the form:

e�J =
 

kX
m=1

b��1m
!�1

�
kX

m=1

b��1m r(m) = �e�J12 ; e�J13 ; � � � ; e�J1p; e�J23; � � � ; e�J(1�p)p �0 (4.16)

where

b�m =
0BBB@

dV ar(r(m)12) � � � dCov �r(m)12; r(m)(p�1)p�
� � � � � � � � �dCov �r(m)12; r(m)(p�1)p� � � � dV ar(r(m)(p�1)p)

1CCCA : (4.17)

and where8>>>>>>>>><>>>>>>>>>:

dV ar(r(m)ij) =
�
1� r2(m)ij

�2
nm

dCov �r(m)ij; r(m)ik�
=

1

nm

n
1
2
r(m)ijr(m)ik

�
r2(m)ij + r

2
(m)ik + r

2
(m)jk � 1

�
+ r(m)jk

�
1� r2(m)ij � r2(m)ik

�o

for i < j; i < k; j < k; and m = 1; 2; 3; and 4;
(4.18)

and b�m is the associated asymptotic covariance matrix for each r(m):(Olkin and Siotani [32])
Similarly, the MLE matrix can be written as a vector b�; where

b� = �b�12 ; b�13 ; � � � ; b�1p ; b�23 , � � � ; b�(1�p)p �0 : (4.19)

If you plug r(i)�s (4.11) into (4.17), you have

b�1 =
26664
0:0060 0:0008 0:0020

0:0008 0:0079 0:0037

0:0020 0:0037 0:0090

37775 ; b�2 =
26664
0:0090 0:0016 0:0051

0:0016 0:0071 0:0035

0:0051 0:0035 0:0117

37775

b�3 =
26664
0:0102 0:0010 0:0043

0:0010 0:0102 0:0043

0:0043 0:0043 0:0136

37775 ; b�4 =
26664
0:0122 0:0013 0:0070

0:0013 0:0065 0:0019

0:0070 0:0019 0:0129

37775
(4.20)
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MAWA JAWA MLE

e�M =

0BBB@
0:413 (0:025)

0:469 (0:056)

0:227 (0:018)

1CCCA e�J =
0BBB@
0:412 (0:023)

0:472 (0:063)

0:253 (0:134)

1CCCA b� =
0BBB@
0:403

0:444

0:223

1CCCA
Table 5: MAWA, JAWA and MLE from the SAT data

which can be used for computing standard errors of, and getting asymptotic con�dence

intervals based upon, the MAWA and the JAWA.

To estimate a speci�c component �ij of the correlation matrix P , the MAWA uses only

corresponding component(marginal information) from each study whereas the JAWA uses

all of the components(joint information). If all the covariances are zero in (4.17), you can

easily check that the JAWA of (4.16) is exactly the same as the MAWA of (4.14).

Table 5 presents the MAWA, the JAWA, and the MLE obtained from the data (4.11).

The MAWA and the JAWA in Table 5 are the same as those in Becker�s paper[3]. For the

MAWA and the JAWA, the number in parentheses represents the corresponding relative

di¤erence from the MLE. For example, 0:025
�
=
��0:413�0:403

0:403

��� is the relative di¤erence ofe�M12 from the MLE b�12 . Most of the components of the MAWA and the JAWA are fairly
close to the corresponding components of the MLE and their relative di¤erences are quite

small, but e�J23 shows considerable relative di¤erence from the MLE b�23 .
Table 6 shows comparisons among the MAWA, the JAWA and the MLE obtained from

the sample correlations (4.11) when we vary the sample sizes from the four studies. The �rst

column �Sample Size�shows various sample sizes. For example, (10; 10; 10; 30) means that

n1 = 10; n2 = 10; n3 = 10; n4 = 30:When sample sizes are as small as (7; 5; 7; 5); the MAWA

and the JAWA are not reliable because large sample theory approximations are known to

be inaccurate and we can easily detect considerable di¤erence between the conventional

estimators and the MLE. When one study has a much bigger sample size than the other

studies like (10; 10; 10; 30);the MLE tends to give more weight to that study. In the third

row, each component of (10; 7; 7; 7) is one-tenth of its counter part of (103; 69; 69; 70) which

presents the real sample sizes used in the SAT data. The MAWA and the JAWA with the
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sample sizes (10; 7; 7; 7) are practically same as those with the sample sizes (103; 69; 69; 70):

(See Table 6) On the contrary, the MLE with sample sizes (10; 7; 7; 7) is quite di¤erent from

the MLE with the sample sizes (103; 69; 69; 70).

4.6.3 HLR Likelihood Regions

In this subsection the HLR likelihood regions (The term Likelihood Regions will be used

hereafter) obtained from the likelihood function are illustrated. Even if expression of a

likelihood region with a closed mathematical form is impossible due to the complexity of the

likelihood function, we can still visualize a likelihood region.

Fig 12 illustrates the 95% likelihood region of the combined likelihood function based

on the sample correlation matrices in (4.11). Fig 13 and Fig 14 show di¤erent perspectives

for the same likelihood region. All of these �gures show that the likelihood region of the

correlation matrix P has an egg-shaped(approximately elliptical) shape:

Also, it is quite useful to see projections from the original likelihood region for assessing

pairs of population correlation coe¢ cients. Fig 15 shows the three-dimensional 95% likeli-

hood region from (4.11), its projections into the �12 & �13 plane, the �12 & �23 plane and

the �13 & �23 plane, respectively, in clockwise manner from the upper-left corner. Similar

but di¤erent graphics can be seen in Fig 16, in which the projections of 30%, 70% and 90%

con�dence regions for the elements of P = [�ij] are given.

Fig 17 demonstrates the likelihood regions with di¤erent credibilities - 99%, 70%, 50%

and 30%, respectively

4.6.4 Visualization of Likelihoods

In the previous subsection, we put main emphasis on joint likelihood but in this subsection

we deal with likelihoods of �12 and �13 when �23�s are �xed.

In Fig 18, Fig 19 and Fig 20, we can see level plot, contour plot and likelihood plot of

�12; �13 when �23 = 0:12; �23 = 0:22 and �23 = 0:32; respectively. Those �23�s are chosen to

detect the behavior of the likelihood with respect to �12 and �13 when �23 changes around

its MLE 0:22: (Table 5) In Fig 19, the global maximum of the likelihood is achieved when
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Sample Size MAWA JAWA MLE

(7; 5; 7; 5)

0BBB@
0:411

0:466

0:224

1CCCA
0BBB@
0:410

0:469

0:248

1CCCA
0BBB@
0:373

0:405

0:200

1CCCA

(10; 10; 10; 30)

0BBB@
0:368

0:517

0:227

1CCCA
0BBB@
0:368

0:519

0:255

1CCCA
0BBB@
0:341

0:491

0:219

1CCCA

(10; 7; 7; 7)

0BBB@
0:413

0:471

0:227

1CCCA
0BBB@
0:411

0:473

0:253

1CCCA
0BBB@
0:382

0:419

0:210

1CCCA

(400; 400; 400; 400)

0BBB@
0:407

0:483

0:231

1CCCA
0BBB@
0:406

0:485

0:255

1CCCA
0BBB@
0:398

0:462

0:229

1CCCA
Table 6: MAWA, JAWA and MLE with various sample sizes
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Figure 12: 95% Likelihood Region of Three Correlations
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Figure 13: 95% Likelihood Region of Three Correlations (Di¤erent Perspective I)
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Figure 14: 95% Likelihood Region of Three Correlations (Di¤erent Perspective II)
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Figure 15: 95% Likelihood Region and its Two-Dimenional Projections
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Figure 16: 95% Likelihood Region and Two-Dimensional Projections of 30%, 70% and 95%

Likelihood Regions
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Figure 17: 99%, 70%, 50% and 30% Likelihood Regions

45



we take �12 = 0:40; �13 = 0:44 with the �xed value of �23 = 0:22;but the local maximums are

achieved when we take �12 = 0:36; �13 = 0:42 with the �xed value of �23 = 0:12 (See Fig 18)

and when we take �12 = 0:44; �13 = 0:48 with the �xed value of �23 = 0:32.(See Fig 20) The

global maximum from Fig 19 is 374; 239, which is much greater than the local maximum

65; 766 from Fig 18 and the local maximum 70; 518 from Fig 20.

Fig 21 summarizes the results from Fig 18, Fig 19 and Fig 20.

4.7 DATA - ANXIETY

4.7.1 Background

An inherent aspect of competitive athletics is the need for athletes to meet the demands of

competition and to perform well under pressure. Depending on how the athlete perceives

the demands of competition, he or she may interpret pressure situations in a variety of ways.

For example, they may be perceived as a natural part of athletic competition, or they may

invoke heightened levels of stress. When in stressful and anxiety-provoking circumstances,

some athletes have been observed to experience de�cits in performance, even to the point

of �choking.�Thus, the relationship between anxiety and athletic performance has received

considerable attention from researchers in the �eld of sport psychology.(Craft et al.[6])

The multidimensional approach to the study of sports anxiety (Martens et al.[29]) con-

siders subcomponents of anxiety, speci�cally cognitive anxiety, somatic anxiety, and self-

con�dence. Cognitive anxiety is the mental component of anxiety and is caused by negative

expectations about success or by negative self-evaluation. Somatic anxiety refers to the

physiological and a¤ective elements of the anxiety experience that develop directly from

autonomic arousal. Self-con�dence is the athlete�s global perceptions of con�dence.

In order to assess the multidimensional aspects of anxiety, Martens et al.[29] develop the

Competitive State Anxiety Inventory-2 (CSAI-2). This 27-item measure has three subscales:

cognitive anxiety, somatic anxiety, and self-con�dence. Athletes are asked to indicate �how

you feel right now� for each item on a 4-point Likert scale ranging from �not at all� to
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Figure 18: Level plot, contour plot and conditional likelihood I
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Figure 19: Level plot, contour plot and conditional likelihood II
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Figure 20: Level plot, contour plot and conditional likelihood III
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Figure 21: Three-dimensional view of Correlations and their corresponding conditional like-

lihoods and contours
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�very much so.�Examples of the cognitive anxiety items include �I am concerned about this

competition.�and �I am concerned about choking under pressure.�These items di¤er from

the somatic anxiety statements such as �I feel nervous.� or �I feel tense in my stomach.�

The self-con�dence subscale includes items such as �I feel at ease.�and �I�m con�dent I can

meet the challenge.�Each of the three subscales has 9 items, which are summed to get a

score representing the level of intensity the athlete is feeling for each component of anxiety,

and for self-con�dence about performing.(Craft et al.[6])

In this section, I used the data from three studies which are Caruso et al.[4], Edwards

and Hardy [9] and Maynard et al.[30]. These studies use the CSAI-2 to calculate correlations

among cognitive anxiety, somatic anxiety, and self-con�dence.

When I checked Craft et al.[6], there are 29 studies which can be used for meta-analysis,

but I decided to use just three studies partly because there is a limitation for access to the

speci�c data and partly because my goal is not to conduct rigorous meta-analysis but to show

that my likelihood approach is applicable to meta-analytic application. To be notationally

consistent, I use the same notations in this section as were used for the SAT data in section

4.6.

The correlations matrices among the three variables in the ith study for i = 1; 2;and 3

are represented as:

CA

SA

SC

CA SA SC26664
1 r(i)12 r(i)13

r(i)12 1 r(i)23

r(i)13 r(i)23 1

37775
where CA: Cognitive Anxiety, SA: Somatic Anxiety, and SC: Self-Con�dence

Also, these correlation matrices can be written as a vector r(i); the relationships represented

are

r(i) =

26664
r(i)12

r(i)13

r(i)23

37775
CA-SA

CA-SC

SA-SC

(4.21)

Basic information about three studies are given in Table 7.
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Study ID Study Size

1 Caruso et al. (1990) n1 = 24

2 Edwards and Hardy(1996) n2 = 45

3 Maynard et al. (1995) n3 = 24

Table 7: Three Studies used for the Anxiety example

The r(i) vectors for the three studies are:

r(1) =

26664
0:42

�0:42

�0:48

37775 ; r(2) =
26664
0:47

�0:37

�0:50

37775 ; r(3) =
26664
0:67

�0:36

�0:72

37775 : (4.22)

4.7.2 Test of Homogeneous Correlation Matrices

With the same purpose as the SAT example, we conduct the test of homogeneous correlation

matrices.

In the Anxiety example, we have Q = 6:38 which is less than 7:23, the 30% critical value

of the �2 distribution with 1
2
3(3� 1)(3� 1) = 6 degrees of freedom, so we conclude that the

hypothesis of homogeneity of correlation matrices cannot be rejected even at the 30% level

of signi�cance.

4.7.3 Comparison of Estimators

Because all of the three studies appear to share a common population correlation matrix, i.e.

P1 = P2 = P3; it is reasonable to pool estimates from the studies to estimate the common

correlation matrix.

Table 8 shows the MAWA, the JAWA, and the MLE from (4.22). For the MAWA and

the JAWA estimators, each value inside parentheses represents the corresponding relative

di¤erence from the MLE. The components of the MAWA are not so di¤erent from their

counterparts in the MLE and their relative di¤erences are relatively small, but the JAWA is
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MAWA JAWA MLE

e�M =

0BBB@
0:544 (0:035)

�0:381 (0:007)

�0:598 (0:046)

1CCCA e�J =
0BBB@
0:605 (0:111)

�0:378 (0:004)

�0:653 (0:115)

1CCCA b� =
0BBB@
0:511

�0:374

�0:555

1CCCA
Table 8: MAWA, JAWA and MLE from the Anxiety data

quite di¤erent from the MLE. (rJ12 = 0:605 and rJ23 = �0:653 have the relative di¤erences

of 0:111 and 0:115, respectively)

4.7.4 HLR Likelihood Regions

Fig 22 shows the 95% likelihood region for the common correlation matrix P determined

from the combined likelihood function obtained from the data in (4.22). Fig 23 and Fig 24

illustrate di¤erent perspectives for the same likelihood region. The likelihood region for the

correlation matrix P looks like a skinny egg:

Fig 25 shows the three-dimensional 95% likelihood region and its projections into the �12

& �13 plane, the �12 & �23 plane and the �13 & �23 plane, proceeding clockwise from the

upper-left corner. Fig 26 illustrates the two-dimensional projections of 30%, 70% and 95%

likelihood regions for the element of P .

Lastly, Fig 27 demonstrates the likelihood regions with di¤erent credibilities with 99%,

70%, 50% and 30% clockwise from the upper-left corner, respectively.

4.7.5 Visualization of Likelihoods

We can see level plot, contour plot and likelihood plot of �12 and �13 when �23 = �0:755;

�13 = �0:555 and �23 = �0:355; respectively, from Fig 28, Fig 29 and Fig 30, . Those �23�s

are picked because the MLE of r23�s is -0:555 from Table 8 and we want to check the behavior

of the �slices�of likelihood with respect to �12 and �13 when �23 changes around the MLE.

In Fig 29, the global maximum of the likelihood is achieved when we take �12 = 0:511,

�13 = �0:374 with the �xed value of �23 = �0:555, but the local maximums are achieved
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Figure 22: 95% Likelihood Region of Three Correlations
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Figure 23: 95% Likelihood Region of Three Correlations (Di¤erent Perspective I)
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Figure 24: 95% Likelihood Region of Three Correlations (Di¤erent Perspective II)
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Figure 25: 95% Likelihood Region and its Two-Dimenional Projections
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Figure 26: 95% Likelihood Region and Two-Dimensional Projections of 30%, 70% and 95%

Likelihood Regions
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Figure 27: 99%, 70%, 50% and 30% Likelihood Regions
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when we take �12 = 0:586, �13 = �0:5 with the �xed value of �23 = �0:755 and when we

take �12 = 0:471; �13 = �0:286 with the �xed value of �23 = �0:355 in Fig 28 and Fig 30,

respectively. The global maximum from Fig 29 is 1184:4 which is far greater than the local

maximum 4:7 from Fig 28 and the local maximum 72:2 from Fig 30.

Fig 31 is a comprehensive summary of three di¤erent cases above, which practically

combine contours and corresponding likelihoods.

4.8 SIMULATION

In this section, a simple simulation is conducted to compare the accuracies of the MAWA,

the JAWA and the MLE in terms of Mean Squared Error (MSE hereafter).

The MSE of eP of with respect to P is de�ned as:
MSE( eP ) = E ntr h( eP � P )0( eP � P )io = E " X

1�i<i�p
(e�ij � �ij)2

#
(4.23)

where P =
�
�ij
�
is the p� p population matrix and eP = �e�ij� is the estimator matrix of P .

( eP can be the MAWA or the JAWA or the MLE in this section.)
In the simulation, four di¤erent cases are assumed. The basic information about the

cases is given in Table 9.

Each case consists of �ve studies with the corresponding hypothesized three-dimensional

population correlation matrix and the sample sizes. For example, case 3 has the population

correlations �12 = 0:7; �13 = 0:6 and �23 = 0:4 and the �ve studies have the sample sizes

10; 10; 15; 15 and 100; respectively.

In each case, the MAWA, the JAWA and the MLE is calculated 100 times and the

corresponding MSEs are also calculated.

Table 10 shows the MSEs of the MAWA, the JAWA and the MLE for each case. The MLE

shows consistently the best performance whereas the JAWA shows the worst performance.

Case 2 shows that the three estimators work well when the sample sizes are large enough.

Case 4 shows that all of the estimators have big errors when sample sizes are small, even
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Figure 28: Level plot, contour plot and conditional likelihood I
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Figure 29: Level plot, contour plot and conditional likelihood II
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Figure 30: Level plot, contour plot and conditional likelihood III
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Figure 31: Three-dimensional view of Correlations and their corresponding conditional like-

lihoods and contours
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Case Population Correlations Sample Sizes

1 �12 = �13 = �23 = 0:7 n1 = n2 = n3 = n4 = n5 = 10

2 �12 = �13 = �23 = 0:7 n1 = n2 = n3 = n4 = n5 = 100

3 �12 = 0:7; �13 = 0:6; �23 = 0:4 n1 = n2 = 10; n3 = n4 = 15; n5 = 100

4 �12 = 0:7; �13 = 0:6; �23 = 0:4 n1 = n2 = n3 = 10; n4 = n5 = 15

Table 9: Four Cases Used for Simulation

though the MLE is still the best among the three estimators. Interestingly enough, the

MAWA is better than the JAWA for every case.

4.9 DISCUSSION

In meta-analysis, asymptotic normal approximation approaches have been used to combine

information about population correlation matrices from many di¤erent independent studies.

But these approaches are questionable when we do not have large enough sample sizes. To

overcome this problem, the likelihood approach using numerical integration to calculate the

likelihood is used in this paper. In relatively low dimensional spaces, say those for 3 � 3

or 4 � 4 correlation matrices, numerical integration works very well. But as dimension

increases, the calculation becomes more di¢ cult and cumbersome. Thus, the following are

Case MAWA JAWA MLE

1 0:0487 0:0836 0:0194

2 0:0021 0:0025 0:0018

3 0:0236 0:0364 0:0111

4 0:0579 0:1026 0:0269

Table 10: The MSE�s from the MAWA, the JAWA and the MLE
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two limitations of the methods used in this paper:

1) Because it is really di¢ cult to get the �rst and second derivatives in a form useful for

Newton�s method of root- �nding, numerical methods using grid points to �nd the MLE and

construct the con�dence and the likelihood regions had to be used. Such an approach is

computer intensive, especially when p is large.

2) The resolutions of our con�dence and likelihood regions plots are not very high. It is

sometimes hard to detect subtle changes of shape because when grid points are used to make

the plots, there is a trade-o¤ between high resolution and use of an economical number of

grid points for calculation.

Despite these limitations, the approach used in this paper is quite promising. The main

ideas can be summarized as: 1) Derivation of the likelihood function for the population

correlation matrix as a certain integral; 2) Calculation of the likelihood with numerical

integration based on wise choices of grid points to balance precision of resolution and com-

putational e¤ort; and 3) Use of graphs to visualize many aspects of the likelihood function.

These three steps above can be applied in many situations provided that we have way to

calculate the likelihood at individual particular points.
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5.0 FUTURE WORK

5.1 BIVARIATE CASE

We need to improve the behavior of B-splines as approximations to the likelihood function

for � when the sample correlation r is close to 1 in magnitude. B-spline approximations show

extremely good performance when they are used for r in intermediate range - according to

our experience, when jrj < 0:8: But they become worse as r becomes close to 1 in magnitude.

It can be easily checked that the characteristics of likelihood function of � depend heavily on

r; for example, if you choose r = 0:9; the likelihood of � will have a peak near r = 0:9, show

heavy tail on left hand side and extremely steep slope on right hand side. Of course, many

other explanations can be made for this symptom. Some improvement can be expected by

applying other splines like natural cubic splines which show better behaviors at boundaries

or by using non-equidistant grid points for problematic steep slope areas as a compensation.

But it must be admitted that there are obvious limitations in improvement.

We also need to make a guide to tell users whether or not B-spline approximations are

useful in various situations. Tables will be the optimal format for this purpose. With tables

including many di¤erent choices of r and n, potential users may have a clue for their choices

and have a chance to stimulate a good decision of using B-spline approximations.

5.2 MULTIVARIATE CASE

Sometimes it is impossible to get information about r12; r13 and r23 from every study, then

how to combine the information from all the studies is a natural question for the next step.
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For example, suppose there are 10 studies having all of r12; r13 and r23; 5 studies having

r12 and 5 studies having r13; and it is desired to combine the information from these 20

studies. Under the assumption of the same population correlation matrices over all the

studies, this goal can be achieved easily by multiplying the corresponding trivariate and

bivariate likelihoods. Comparison between this approach and the large-sample approach

described by Becker [3] will be of interest.

Expanded visualization ot the likelihood function can be considered. For example, the

likelihood strip in one dimensional space can be generalized to the corresponding version in

two dimensional space - �likelihood contours�which may look like mono-colored or multi-

colored spectrum contours. It can be even generalized further to three dimensional space by

making �likelihood cloud�with many di¤erent colors.

Finally, it is quite important to develop computing methods for the likelihood integral

in the multivariate case. Among the three main methods used in multivariate case, the MC

method is the fastest. But MC becomes slower as the dimension increases. Other methods

need to developed to speed up getting the results

Beside the ideas and directions described above, many other good ideas will arise in the

future because the topic in this paper is just at the starting point of research.
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APPENDIX A

MATHEMATICAL DERIVATIONS

In this chapter, the mathematical derivations of the density functions or likelihood function

are shown.

A.1 DERIVATION OF THE DENSITY OF R IN TRIVARIATE CASE

We will derive the density function of R when P is given.

where

R =

26664
1 r12 r13

r12 1 r23

r13 r23 1

37775 is the sample correlation matrix (A.1)

and

P =

26664
1 �12 �13

�12 1 �23

�13 �23 1

37775 is the population correlation matrix (A.2)

We can start from the distribution of S

where

S =

26664
s11 s12 s13

s12 s22 s23

s13 s23 s33

37775 is the scatter matrix (A.3)
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The density of S is

jSj 12 (n�4)e� 1
2
tr(P�1S)

2
3
2
n�

3
2 jP j 12n�

�
1
2
n
�
�[1
2
(n� 1)]�[1

2
(n� 2)]

(A.4)

where n = N � 1 and N is sample size.

It can be easily calculated that

P�1 =
1

jP j

26664
1� �223 �13�23 � �12 �12�23 � �13

�13�23 � �12 1� �213 �12�13 � �23
�12�23 � �13 �12�23 � �23 1� �212

37775 (A.5)

where

jP j = 1� (�212 + �213 + �223 � 2�12�13�23) (A.6)

and also

P�1S = P�1D
1
2
SRD

1
2
S (A.7)

and

D
1
2
S =

26664
p
s11 0 0

0
p
s22 0

0 0
p
s33

37775 (A.8)

so

tr(P�1S) =
1

jP j [(1� �
2
23)s11 + (1� �213)s22 + (1� �212)s33

� 2fr12 (�12 � �13�23)
p
s11s22 + r13 (�13 � �12�23)

p
s11s33

+ r23 (�23 � �12�13)
p
s22s33g]

(A.9)

73



The density of S can be rewritten as

C1 � s
1
2
(n�4)

11 s
1
2
(n�4)

22 s
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(n�4)
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exp[� 1
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p
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(A.10)

where

C1 =
jRj 12 (n�4)

2
3
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3
2 jP j 12n�[1

2
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2
(n� 1)]�[1

2
(n� 2)]

(A.11)

Since
@sij
@rij

=
p
sii
p
sjj; for i; j = 1; 2; 3 and i < j (A.12)

the density of s11; s22; s33; r12; r13; and r23 is

C1 � s
1
2
n�1

11 s
1
2
n�1

22 s
1
2
n�1

22

exp[� 1
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(A.13)

We know that

exp

(
rij
�
�ij � �ik�jk

�p
siisjj

jP j
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=

1X
�=0

�
rij
�
�ij � �ik�jk

�p
siisjj

	�
�!jP j�

for i; j; k = 1; 2; 3 and i < j; i 6= k; j 6= k

(A.14)
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Now the density of s11; s22; s33; r12; r13; and r23 can be written as
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Since Z 1
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(A.16)

and the term-by-term integration of (A.16) with respect to s11; s22 and s33 are permissible,

the density of R is
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If we input (A.11) to (A.17) and rearrange the terms, the density of R can be expressed as
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(A.18)

This type of derivation can be extended to general p dimensional case. We can easily

detect that if we have a p dimensional case ,we have to deal with p(p�1)
2

combined in�nite

series if I use a classical derivation of the likelihood function fromWishart distribution above.

A.2 DERIVATION OF THE LIKELIHOOD FUNCTION OF

CORRELATION MATRIX P

We will derive the likelihood function of correlation matrix P when sample correlation matrix

R and sample size N are given.

Let Z1; � � � ;ZN be independently distributed, each following N(0; P ) where Zi : p � 1

for i = 1; � � � ; N ,

The density of S =
NP
�=1

Z�Z
0
� = (sij)p�p; where sii � si for convention, is

jSj
1
2
(n�p�1) e�
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2
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np
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4 jP jn2
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� (A.19)

where n � N � 1

for S positive de�nite, and 0 otherwise.(Anderson[1])

Here

jSj =
���D 1

2
s RD
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��� = jDsj jRj = jRj
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2
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where

Ds = diag (s1; � � � ; sp) (A.21)

Since
@sij
@rij

=
p
si
p
sj; for i; j = 1; � � � ; p and i < j (A.22)

If we conduct the transformation from S to fs1; � � � ; spg and R, then the transformation

matrix is p(p�1)
2

� p(p�1)
2

and the Jacobian is

J =
Y
i<j

s
1
2
i s

1
2
j =

pY
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s
p�1
2

i (A.23)

So the density of fs1; � � � ; spg and R can be expressed as
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where
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If we de�ne

bi �

8>>>>><>>>>>:

iP
j=1

sj �
i+1P
k=1

sk for i = 1; � � � ; p� 1

pP
k=1
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(A.26)

then we have an equivalent expression with respect to si�s:

si =

8>>>>><>>>>>:

pQ
k=1

bk for i = 1

(1� bi�1)
pQ
j=i

bj for i = 2; � � � ; p

(A.27)

or simply

sk = (1� bk�1)
pY
j=k

bj for k = 1; � � � ; p with b0 � 0 (A.28)
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Now we can easily derive the partial derivatives:

@sk
@bj

=

8>>>>>>>>>>><>>>>>>>>>>>:

0 for j < k � 1

�
pQ
j=k

bj for j = k � 1

(1� bk)
bj
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(A.29)

For the transformation from fs1; � � � ; spg to fb1; � � � ; bpg ; the corresponding Jacobian is:

J = b2 � � � � � bp�2p�1 � bp�1p =
pQ
k=2

bk�1k (A.30)

Let

vi �

8>>>><>>>>:
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(A.31)

Then
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s = diag
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b (A.32)

where

Db = diag (v1; � � � ; vp) (A.33)

Since tr(P�1D
1
2
s RD

1
2
s ) = bp � tr(D

1
2
b P

�1D
1
2
b R); the density of fb1; � � � ; bpg and R for given P

can be expressed as
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If bp is integrated out from (A.34), then the density of fb1; � � � ; bp�1g and R for given P is
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By Schott[36], We know that

tr(D
1
2
b P

�1D
1
2
b R) = (v

1
2 )0(P�1 �R)v 1

2 (A.36)
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where

� is Hadamard product and v � (v1; � � � ; vp)0 : p� 1 (A.37)

As a result the likelihood of P with R (or the density of R for given P ) can be expressed as
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Z 1
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Furthermore, we can get an alternative form of (A.38) with
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which is
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APPENDIX B

R CODES

B.1 FUNCTIONS FOR GETTING THE MLE FROM NUMERICAL

INTEGRATION

B.1.1 Getting the MLE by GL & Grid & 1-5-2 rule (3-dimensional)

I used basic functions GL.YW, Outer2 and GL.integrate.2D which is renamed to gl3d for

convention from Kuonen[26] for numerical integration in this paper.

I developed the codes for expression of optimized form of integrand and iterative algo-

rithm for �nding the MLE.

## First, run the Codes(GL.YW, Outer2 and gl3d) below

## GL.YW

GL.YW <- function(M, xrange=NULL, epsilon=NULL){

if (is.null(epsilon)) epsilon <- .Machine$double.eps

if (M%%2 ==1) stop("M needs to be an even number")

MM <- (M + 1) / 2

Y <- W <- numeric(M)
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for (i in 1:�oor(MM)) {

ok<-F

z <- cos( pi * (i-0.25)/(M + 0.5) )

while (ok == F) {

p1 <- 1.0

p2 <- 0.0

for (j in 1:M) {

p3 <- p2

p2 <- p1

p1 <- ((2.0*j - 1.0)*z*p2 - (j - 1.0)*p3)/j

}

pp <- M*(z*p1 - p2)/(z^2 - 1.0)

z1 <- z

z <- z - p1/pp

if (abs(z - z1) < epsilon) ok<-T

}

Y[i] <- -z

Y[M+1-i] <- z

W[i] <- 2.0 / (( 1 - z^2) * pp^2)

W[M+1-i] <- W[i]

}

if(!is.null(xrange)) {

xL<- (xrange[2]-xrange[1])/2.0

W <- xL * W

Y <- xL * Y + (xrange[1]+xrange[2])/2.0

}

cbind(Y, W)

}

## Outer2
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outer2 <- function (X, Y, FUN="*", ...){

no.nx <- is.null(nx <- dimnames(X <- as.array(X)))

dX <- dim(X)

no.ny <- is.null(ny <- dimnames(Y <- as.array(Y)))

dY <- dim(Y)

if (is.character(FUN) && FUN=="*") {

robj <- as.vector(X) %*% t(as.vector(Y))

dim(robj) <- c(dX, dY)

} else {

match.fun <- function(FUN) return(FUN)

FUN <- match.fun(FUN)

Y <- rep(Y, rep(length(X), length(Y)))

X <- rep(X, length.out = length(Y))

robj <- array(FUN(X, Y, ...), c(dX, dY))

}

if (no.nx) nx <- vector("list", length(dX))

else if (no.ny) ny <- vector("list", length(dY))

if (!(no.nx && no.ny)) dimnames(robj) <- c(nx, ny)

robj

}

## GL for 2-dim integral (2 = 3-1)

gl3d <- function(fct, low=c(0,0), upp=c(1,1), order=10) {

YW.list<-as.list(1:2)

for(i in 1:2) {

name.YW<-paste("GL.YW", abs(low[i]), abs(upp[i]), order, sep=".")

if (!exists(name.YW)) {

assign(name.YW, GL.YW(order,

xrange=c(low[i],upp[i])), immediate=T)

}
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YW.list[[i]]<- get(name.YW)

}

fcteval <- outer2(YW.list[[1]][,1], YW.list[[2]][,1], fct)

sum(YW.list[[1]][,2] * apply(YW.list[[2]][,2] *

fcteval, 2, sum))

}

### Getting the MLE

mle.gl3d = function(rn,mm) {

# mm >= 2 : accuracy = 0.1^mm, ex)mm=2 means 0.01 accuracy

## Making integrand for integration w.r.t (0,1)*(0,1) for GL in 3-dim

integ.gl3d = function(b1,b2, rho12,rho13,rho23, rn) {

## rn: 4 by 1 vector

n = rn[4]-1

rho = c(rho12,rho13,rho23)

## Making Matrices P & R

P = vec2sm(rho, diag = F)

r = rn[1:3]

R = vec2sm(r, diag = F)

P[1,1]=P[2,2]=P[3,3]=1

R[1,1]=R[2,2]=R[3,3]=1

## Making coe¢ cient

if(det(P)>0.01) { ## Can change to make it e¢ cient

coe¤1 = 0.5*(n-4)*log(det(R))- 0.5*n*log(det(P))

sum1 = 0

for (i in 1:3){

temp1 = lgamma(0.5*(n+1-i))

sum1 = sum1+temp1

sum1
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}

coe¤2 = lgamma(0.5*n*3)-sum1

coe¤3 = -0.25*3*2*log(pi)

coe¤ = coe¤1 + coe¤2 + coe¤3

## 3. Making integrand

## For numerator

v1=b1*b2

v2=(1-b1)*b2

v3=1-b2

num =(n/2-1)*(log(v1)+log(v2)+log(v3))+log(b2)

## For denominator

Pv = solve(P,diag(1,3))

H = Pv*R # * : Hadamard Product

comp1 = Pv[1,1]*v1 + Pv[2,2]*v2 + Pv[3,3]*v3

comp2 = 2*(H[1,2]*sqrt(v1*v2)+H[1,3]*sqrt(v1*v3)+H[2,3]*sqrt(v2*v3))

den = (n/2)*3*log(comp1 + comp2)

logint = num - den

integ = exp(coe¤)*exp(logint)

integ

}

else {

integ = 0

integ

}

integ

}

# Getting the row of MLE by 1-5-2 rule

max.grid = function(rho1,rho2,rho3){

n1 = length(rho1)
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n2 = length(rho2)

n3 = length(rho3)

mat1 = matrix(0,nrow=n1*n2*n3, ncol=4)

for (k1 in 1:n1){

for (k2 in 1:n2){

for (k3 in 1:n3){

comb = 1

for (i in 1:length(rn[,1])){

ind = gl3d(function(x,y) integ.gl3d(x,y,rho1[k1],rho2[k2],rho3[k3],rn[i,]),

low=c(0,0),upp=c(1,1),order=128)

comb = comb*ind

comb

}

mat1[(k1-1)*n2*n3+(k2-1)*n3+k3,] <-c(rho1[k1], rho2[k2], rho3[k3], comb)

}

}

}

mat1[mat1[,4]==max(mat1[,4])]

}

rho12 =seq(round(min(rn[,1]),1)-.1, round(max(rn[,1]),1)+.1, by=.1)

rho13 =seq(round(min(rn[,2]),1)-.1, round(max(rn[,2]),1)+.1, by=.1)

rho23 =seq(round(min(rn[,3]),1)-.1, round(max(rn[,3]),1)+.1, by=.1)

maxt =max.grid(rho12,rho13,rho23)

nn =mm-2

for (k in 0:nn){

rho12 =seq(maxt[1]-.1*.1^k, maxt[1]+.1*.1^k, by=.05*.1^k)

rho13 =seq(maxt[2]-.1*.1^k, maxt[2]+.1*.1^k, by=.05*.1^k)

rho23 =seq(maxt[3]-.1*.1^k, maxt[3]+.1*.1^k, by=.05*.1^k)

maxt =max.grid(rho12,rho13,rho23)

rho12 =seq(maxt[1]-.05*.1^k, maxt[1]+.05*.1^k, by=.02*.1^k)
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rho13 =seq(maxt[2]-.05*.1^k, maxt[2]+.05*.1^k, by=.02*.1^k)

rho23 =seq(maxt[3]-.05*.1^k, maxt[3]+.05*.1^k, by=.02*.1^k)

maxt =max.grid(rho12,rho13,rho23)

rho12 =seq(maxt[1]-.02*.1^k, maxt[1]+.02*.1^k, by=.01*.1^k)

rho13 =seq(maxt[2]-.02*.1^k, maxt[2]+.02*.1^k, by=.01*.1^k)

rho23 =seq(maxt[3]-.02*.1^k, maxt[3]+.02*.1^k, by=.01*.1^k)

maxt =max.grid(rho12,rho13,rho23)

maxt

}

rho12 =seq(maxt[1]-.01*.1^nn, maxt[1]+.01*.1^nn, by=.01*.1^k)

rho13 =seq(maxt[2]-.01*.1^nn, maxt[2]+.01*.1^nn, by=.01*.1^k)

rho23 =seq(maxt[3]-.01*.1^nn, maxt[3]+.01*.1^nn, by=.01*.1^k)

maxt =max.grid(rho12,rho13,rho23)

maxt

}

## 2. Using SAT score Data

rn1 = c(.46, .31, .19, 103)

rn2 = c(.46, .55, .32, 69)

rn3 = c(.40, .40, .18, 69)

rn4 = c(.27, .57, .22, 70)

rn = rbind(rn1,rn2,rn3,rn4)

## for (103,69,69,70) (Accuracy 0.001)

start = proc.time()[3]

mle.gl3d(rn,2)

proc.time()[3]-start

> mle.gl3d(rn,2)

[1] 0.40 0.44 0.22 372036.01

> proc.time()[3]-start

elapsed
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488.83

## for (7,5,7,5) (0.001)

> mle.gl3d(rn,3)

[1] 0.373 0.405 0.200 0.1546279

## for (10,10,10,30) (0.001)

> mle.gl3d(rn,3)

[1] 0.341 0.491 0.219 110.4775

## for (10,7,7,7) (0.001)

> mle.gl3d(rn,3)

[1] 0.382 0.419 0.210 2.117855

## for (400,400,400,400) (0.01)

> mle.gl3d(rn,3)

[1] 0.398 0.462 0.229 53.43076

B.1.2 Getting the MLE by ADAPTIVE Algorithm & 1-5-2 rule

mle.ad3d <- function(rn,mm) {

# mm >= 2 : accuracy = 0.1^mm, ex)mm=2 means 0.01 accuracy

## Making integrand for integration w.r.t (0,1)*(0,1) for MC in 3-dim

integ.ad3d = function(b, rho12,rho13,rho23, rn) {

## rn: 4 by 1 vector

n = rn[4]-1

rho = c(rho12,rho13,rho23)

## 1. Making Matrices P & R

P = vec2sm(rho, diag = F)

r = rn[1:3]

R = vec2sm(r, diag = F)

P[1,1]=P[2,2]=P[3,3]=1

R[1,1]=R[2,2]=R[3,3]=1
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## 2. Making coe¢ cient

if(det(P)>0.01) { ## Can change to make it e¢ cient

coe¤1 = 0.5*(n-4)*log(det(R))- 0.5*n*log(det(P))

sum1 = 0

for (i in 1:3){

temp1 = lgamma(0.5*(n+1-i))

sum1 = sum1+temp1

sum1

}

coe¤2 = lgamma(0.5*n*3)-sum1

coe¤3 = -0.25*3*2*log(pi)

coe¤ = coe¤1 + coe¤2 + coe¤3

## 3. Making integrand

## For numerator

b1 = b[1]

b2 = b[2]

v1=b1*b2

v2=(1-b1)*b2

v3=1-b2

num =(n/2-1)*(log(v1)+log(v2)+log(v3))+log(b2)

## For denominator

Pv = solve(P,diag(1,3))

H = Pv*R # * : Hadamard Product

comp1 = Pv[1,1]*v1 + Pv[2,2]*v2 + Pv[3,3]*v3

comp2 = 2*(H[1,2]*sqrt(v1*v2)+H[1,3]*sqrt(v1*v3)+H[2,3]*sqrt(v2*v3))

den = (n/2)*3*log(comp1 + comp2)

logint = num - den

integ = exp(coe¤)*exp(logint)

integ

}
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else {

integ = 0

integ

}

integ

}

# Getting the row of the MLE by 1-5-2 rule

max.grid <- function(rho1,rho2,rho3){

n1 = length(rho1)

n2 = length(rho2)

n3 = length(rho3)

mat1 = matrix(0,nrow=n1*n2*n3, ncol=4)

for (k1 in 1:n1){

for (k2 in 1:n2){

for (k3 in 1:n3){

comb <- 1

for (i in 1:length(rn[,1])){

ind <- adapt(2, lo=c(0,0), up=c(1,1), functn = function(b) integ.ad3d(b,

rho1[k1],rho2[k2],rho3[k3],rn[i,]), eps=0.0001)

comb <- comb*(ind$value)

comb

}

mat1[(k1-1)*n2*n3+(k2-1)*n3+k3,] <-c(rho1[k1], rho2[k2], rho3[k3], comb)

}

}

}

mat1[mat1[,4]==max(mat1[,4])]

}

rho12 =seq(round(min(rn[,1]),1)-.1, round(max(rn[,1]),1)+.1, by=.1)
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rho13 =seq(round(min(rn[,2]),1)-.1, round(max(rn[,2]),1)+.1, by=.1)

rho23 =seq(round(min(rn[,3]),1)-.1, round(max(rn[,3]),1)+.1, by=.1)

maxt =max.grid(rho12,rho13,rho23)

nn =mm-2

for (k in 0:nn){

rho12 =seq(maxt[1]-.1*.1^k, maxt[1]+.1*.1^k, by=.05*.1^k)

rho13 =seq(maxt[2]-.1*.1^k, maxt[2]+.1*.1^k, by=.05*.1^k)

rho23 =seq(maxt[3]-.1*.1^k, maxt[3]+.1*.1^k, by=.05*.1^k)

maxt =max.grid(rho12,rho13,rho23)

rho12 =seq(maxt[1]-.05*.1^k, maxt[1]+.05*.1^k, by=.02*.1^k)

rho13 =seq(maxt[2]-.05*.1^k, maxt[2]+.05*.1^k, by=.02*.1^k)

rho23 =seq(maxt[3]-.05*.1^k, maxt[3]+.05*.1^k, by=.02*.1^k)

maxt =max.grid(rho12,rho13,rho23)

rho12 =seq(maxt[1]-.02*.1^k, maxt[1]+.02*.1^k, by=.01*.1^k)

rho13 =seq(maxt[2]-.02*.1^k, maxt[2]+.02*.1^k, by=.01*.1^k)

rho23 =seq(maxt[3]-.02*.1^k, maxt[3]+.02*.1^k, by=.01*.1^k)

maxt =max.grid(rho12,rho13,rho23)

maxt

}

rho12 =seq(maxt[1]-.01*.1^nn, maxt[1]+.01*.1^nn, by=.01*.1^k)

rho13 =seq(maxt[2]-.01*.1^nn, maxt[2]+.01*.1^nn, by=.01*.1^k)

rho23 =seq(maxt[3]-.01*.1^nn, maxt[3]+.01*.1^nn, by=.01*.1^k)

maxt =max.grid(rho12,rho13,rho23)

maxt

}

� � � � � � -

## Getting the MLE

rn1 <- c(.46, .31, .19, 103)

rn2 <- c(.46, .55, .32, 69)

rn3 <- c(.40, .40, .18, 69)
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rn4 <- c(.27, .57, .22, 70)

rn <- rbind(rn1,rn2,rn3,rn4)

library(corpcor)

> mle.ad3d(rn,2)

[1] 0.40 0.44 0.22 369249.06

> proc.time()[3]-start

elapsed

4055.84

B.1.3 Getting the MLE by Monte Carlo Method & 1-5-2 rule

mle.mc3d <- function(rn,mm,np) {

# mm >= 2 : accuracy ex) mm = 2 means 0.01 accuracy

# np : number of points used in speci�c axis

## Monte Carlo Methods for 3-dim

## 3 dimensional (for p=3)

mc3d = function(ftn, low=c(0,0), upp=c(1,1),npoints=100) {

x = runif(n=npoints, min=low[1], max=upp[1])

y = runif(n=npoints, min=low[2], max=upp[2])

ftn.tmp = ftn(x, y)

v.tmp = di¤(c(low[1], upp[1]))* di¤(c(low[2], upp[2]))

mean.approx = mean(ftn.tmp) * v.tmp

mean.approx

}

## Making integrand for integration w.r.t (0,1)*(0,1) for MC in 3-dim

integ.mc3d = function(b1,b2, rho12,rho13,rho23, rn) {

## rn: 4 by 1 vector

n = rn[4]-1
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rho = c(rho12,rho13,rho23)

## 1. Making Matrices P & R

P = vec2sm(rho, diag = F)

r = rn[1:3]

R = vec2sm(r, diag = F)

P[1,1]=P[2,2]=P[3,3]=1

R[1,1]=R[2,2]=R[3,3]=1

## 2. Making coe¢ cient

if(det(P)>0.01) { ## Can change to make it e¢ cient

coe¤1 = 0.5*(n-4)*log(det(R))- 0.5*n*log(det(P))

sum1 = 0

for (i in 1:3){

temp1 = lgamma(0.5*(n+1-i))

sum1 = sum1+temp1

sum1

}

coe¤2 = lgamma(0.5*n*3)-sum1

coe¤3 = -0.25*3*2*log(pi)

coe¤ = coe¤1 + coe¤2 + coe¤3

## 3. Making integrand

## For numerator

v1=b1*b2

v2=(1-b1)*b2

v3=1-b2

num =(n/2-1)*(log(v1)+log(v2)+log(v3))+log(b2)

## For denominator

Pv = solve(P,diag(1,3))

H = Pv*R # * : Hadamard Product

comp1 = Pv[1,1]*v1 + Pv[2,2]*v2 + Pv[3,3]*v3

comp2 = 2*(H[1,2]*sqrt(v1*v2)+H[1,3]*sqrt(v1*v3)+H[2,3]*sqrt(v2*v3))

92



den = (n/2)*3*log(comp1 + comp2)

logint = num - den

integ = exp(coe¤)*exp(logint)

integ

}

else {

integ = 0

integ

}

integ

}

# Getting the row of the MLE by 1-5-2 rule

max.grid <- function(rho12,rho13,rho23){

n1 = length(rho12)

n2 = length(rho13)

n3 = length(rho23)

mat1 = matrix(0,nrow=n1*n2*n3, ncol=4)

for (k1 in 1:n1){

for (k2 in 1:n2){

for (k3 in 1:n3){

comb <- 1

for (i in 1:length(rn[,1])){

ind = mc3d(function(x,y) integ.mc3d(x,y,rho12[k1],rho13[k2],rho23[k3], rn[i,]),

npoints=np)

comb <- comb*ind

comb

}

mat1[(k1-1)*n2*n3+(k2-1)*n3+k3,] <-c(rho12[k1], rho13[k2], rho23[k3], comb)

}
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}

}

mat1[mat1[,4]==max(mat1[,4])]

}

rho12 =seq(round(min(rn[,1]),1)-.1, round(max(rn[,1]),1)+.1, by=.1)

rho13 =seq(round(min(rn[,2]),1)-.1, round(max(rn[,2]),1)+.1, by=.1)

rho23 =seq(round(min(rn[,3]),1)-.1, round(max(rn[,3]),1)+.1, by=.1)

maxt =max.grid(rho12,rho13,rho23)

nn =mm-2

for (k in 0:nn){

rho12 =seq(maxt[1]-.1*.1^k, maxt[1]+.1*.1^k, by=.05*.1^k)

rho13 =seq(maxt[2]-.1*.1^k, maxt[2]+.1*.1^k, by=.05*.1^k)

rho23 =seq(maxt[3]-.1*.1^k, maxt[3]+.1*.1^k, by=.05*.1^k)

maxt =max.grid(rho12,rho13,rho23)

rho12 =seq(maxt[1]-.05*.1^k, maxt[1]+.05*.1^k, by=.02*.1^k)

rho13 =seq(maxt[2]-.05*.1^k, maxt[2]+.05*.1^k, by=.02*.1^k)

rho23 =seq(maxt[3]-.05*.1^k, maxt[3]+.05*.1^k, by=.02*.1^k)

maxt =max.grid(rho12,rho13,rho23)

rho12 =seq(maxt[1]-.02*.1^k, maxt[1]+.02*.1^k, by=.01*.1^k)

rho13 =seq(maxt[2]-.02*.1^k, maxt[2]+.02*.1^k, by=.01*.1^k)

rho23 =seq(maxt[3]-.02*.1^k, maxt[3]+.02*.1^k, by=.01*.1^k)

maxt =max.grid(rho12,rho13,rho23)

maxt

}

rho12 =seq(maxt[1]-.01*.1^nn, maxt[1]+.01*.1^nn, by=.01*.1^k)

rho13 =seq(maxt[2]-.01*.1^nn, maxt[2]+.01*.1^nn, by=.01*.1^k)

rho23 =seq(maxt[3]-.01*.1^nn, maxt[3]+.01*.1^nn, by=.01*.1^k)

maxt =max.grid(rho12,rho13,rho23)

maxt

}
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## Getting the MLE

rn1 <- c(.46, .31, .19, 103)

rn2 <- c(.46, .55, .32, 69)

rn3 <- c(.40, .40, .18, 69)

rn4 <- c(.27, .57, .22, 70)

rn <- rbind(rn1,rn2,rn3,rn4)

library(corpcor)

start =proc.time()[3]

mle.mc3d(rn,2,100)

proc.time()[3]-start

> mle.mc3d(rn,2,100)

[1] 0.40 0.45 0.18 2298211.37

> proc.time()[3]-start

elapsed

2.25

> mle.mc3d(rn,2,1000)

[1] 0.43 0.45 0.24 633359.08

> proc.time()[3]-start

elapsed

4.71

> mle.mc3d(rn,2,5000)

[1] 0.38 0.42 0.23 446156.21

> proc.time()[3]-start

elapsed

17.24

> mle.mc3d(rn,2,10000)

[1] 0.40 0.44 0.23 427133.47

> proc.time()[3]-start

elapsed
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34.23

> mle.mc3d(rn,2,100000)

[1] 0.40 0.44 0.23 390936.23

> proc.time()[3]-start

elapsed

449.56

B.2 FUNCTIONS FOR VISUALIZATION FROM NUMERICAL

INTEGRATION

B.2.1 Getting the Likelihood Region by Monte Carlo(MC) Method

## Monte Carlo Method

## For Integration

mc3d = function(ftn, low=c(0,0), upp=c(1,1),npoints=100) {

x = runif(n=npoints, min=low[1], max=upp[1])

y = runif(n=npoints, min=low[2], max=upp[2])

ftn.tmp = ftn(x, y)

v.tmp = di¤(c(low[1], upp[1]))* di¤(c(low[2], upp[2]))

mean.approx = mean(ftn.tmp) * v.tmp

mean.approx

}

## Making Integrand in (0,1)*(0,1)

integ.mc3d = function(b1,b2, rho12,rho13,rho23, rn) {

## rn: 4 by 1 vector

n = rn[4]-1
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rho = c(rho12,rho13,rho23)

## 1. Making Matrice P & R ## P: Population R: Sample

P = vec2sm(rho, diag = F)

r = rn[1:3]

R = vec2sm(r, diag = F)

P[1,1]=P[2,2]=P[3,3]=1

R[1,1]=R[2,2]=R[3,3]=1

## 2. Making Coe¢ cient

if(det(P)>0) { ## Can change to make it e¢ cient

coe¤1 = 0.5*(n-4)*log(det(R))- 0.5*n*log(det(P))

sum1 = 0

for (i in 1:3){

temp1 = lgamma(0.5*(n+1-i))

sum1 = sum1+temp1

sum1

}

coe¤2 = lgamma(0.5*n*3)-sum1

coe¤3 = -0.25*3*2*log(pi)

coe¤ = coe¤1 + coe¤2 + coe¤3

## 3. Making Core of Integrand

## For Numerator

v1=b1*b2

v2=(1-b1)*b2

v3=1-b2

num =(n/2-1)*(log(v1)+log(v2)+log(v3))+log(b2)

## For Denominator

Pv = solve(P,diag(1,3))

H = Pv*R # * : Hadamard Product

comp1 = Pv[1,1]*v1 + Pv[2,2]*v2 + Pv[3,3]*v3

comp2 = 2*(H[1,2]*sqrt(v1*v2)+H[1,3]*sqrt(v1*v3)+H[2,3]*sqrt(v2*v3))
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den = (n/2)*3*log(comp1 + comp2)

logint = num - den

integ = exp(coe¤)*exp(logint)

integ

}

else {

integ = 0

integ

}

integ

}

# Getting Grid Matrix (of Rho�s and Likelihood)

cr.grid <- function(rho12,rho13,rho23,rn){ ####### changed

n1 = length(rho12)

n2 = length(rho13)

n3 = length(rho23)

mat1 = matrix(0,nrow=n1*n2*n3, ncol=4)

for (k1 in 1:n1){

for (k2 in 1:n2){

for (k3 in 1:n3){

comb <- 1

for (i in 1:length(rn[,1])){

ind = mc3d(function(x,y) integ.mc3d(x,y,rho12[k1],rho13[k2],rho23[k3], rn[i,]),

npoints=10000) ## originally np

comb <- comb*ind

comb

}

mat1[(k1-1)*n2*n3+(k2-1)*n3+k3,] <-c(rho12[k1], rho13[k2], rho23[k3], comb)

}

}
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}

mat1

}

## Previous Information

> mle.mc3d(rn,2,10000)

[1] 0.40 0.44 0.23 427133.47

> proc.time()[3]-start

elapsed

34.23

library(corpcor)

rn1 <- c(.46, .31, .19, 103)

rn2 <- c(.46, .55, .32, 69)

rn3 <- c(.40, .40, .18, 69)

rn4 <- c(.27, .57, .22, 70)

rn <- rbind(rn1,rn2,rn3,rn4)

## Matrix for Rho�s and Likelihood (50*50*50=125,000)

rho12 =seq(0.2, 0.6, length.out=50)

rho13 =seq(0.2, 0.6, length.out=50)

rho23 =seq(0.0, 0.4, length.out=50)

start =proc.time()[3]

Sat50 =cr.grid(rho12,rho13,rho23,rn)

proc.time()[3]-start

write.table(Sat40, �le="Sat50.dat")

### Opening pre-existed Matrix in R

Sat50 = as.matrix(read.table("Sat50.dat"))

## Matrix sorted

B1 = Sat50[order(Sat40[,4], decreasing = T),]

B2 = B1[B1[,4]>0,]
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## Matrix with probability

t1 = cumsum(B2[,4])

t2 = sum(B2)

t3 = t1/t2

B2[,4] = t3

## 30%, 50%, 70%, 95% and 99% likelihood region matrix

D30 = B2[B2[,4]<0.30,]

D50 = B2[B2[,4]<0.50,]

D70 = B2[B2[,4]<0.70,]

D95 = B2[B2[,4]<0.95,]

D99 = B2[B2[,4]<0.99,]

B.2.2 Making Plots

## 95% CR

library(rgl)

plot3d(D95[,1], D95[,2], D95[,3], col=rainbow(length(D95[,1])), size=2.5,

xlim=c(0.2,0.6),ylim=c(0.2,0.6),zlim=c(0,0.4),

xlab="rho12", ylab="rho13", zlab="rho23")

snapshot3d("ConfR95_sat_1.png")

snapshot3d("ConfR95_sat_2.png")

snapshot3d("ConfR95_sat_3.png")

## 95% CR and Projections

par(mfrow=c(2,2))

library(scatterplot3d)

scatterplot3d(D95[,1],D95[,2],D95[,3],

xlim=c(0.2,0.6),ylim=c(0.2,0.6),zlim=c(0,0.4),
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xlab="rho12", ylab="rho13", zlab="rho23", pch=1,

angle=30,color=rainbow(length(D95[,1])))

plot(D95[,1],D95[,2],xlim=c(0.2,0.6), ylim=c(0.2,0.6), pch=20,

main="rho12 vs. rho13", xlab="", ylab="", col="red")

plot(D95[,1],D95[,3],xlim=c(0.2,0.6), ylim=c(0,0.4), pch=20,

main="rho12 vs. rho23", xlab="", ylab="", col="purple")

plot(D95[,2],D95[,3],xlim=c(0.2,0.6), ylim=c(0,0.4), pch=20,

main="rho13 vs. rho23", xlab="", ylab="", col="blue")

## 95% CR and 50%, 70%, 95% Projections

par(mfrow=c(2,2))

scatterplot3d(D95[,1],D95[,2],D95[,3],

xlim=c(0.2,0.6),ylim=c(0.2,0.6),zlim=c(0,0.4),pch=1,

xlab="rho12", ylab="rho13", zlab="rho23",

angle=50,color= rainbow(length(D95[,1])))

plot(D95[,1],D95[,2],xlim=c(0.2,0.6), ylim=c(0.2,0.6),pch=19,

main="rho12 vs. rho13", xlab="", ylab="", col="purple")

points(D70[,1],D70[,2], col="green", pch=19)

points(D30[,1],D30[,2], col="blue", pch=19)

plot(D95[,1],D95[,3],xlim=c(0.2,0.6), ylim=c(0,0.4), pch=19,

main="rho12 vs. rho23", xlab="", ylab="", col="purple")

points(D70[,1],D70[,3], col="green", pch=19)

points(D30[,1],D30[,3], col="blue", pch=19)

plot(D95[,2],D95[,3],xlim=c(0.2,0.6), ylim=c(0,0.4),pch=19,

main="rho13 vs. rho23", xlab="", ylab="", col="purple")

points(D70[,2],D70[,3], col="green", pch=19)

points(D30[,2],D30[,3], col="blue", pch=19)

## 30%, 50%, 70%, 99% CR�s

par(mfrow=c(2,2))
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scatterplot3d(D99[,1],D99[,2],D99[,3],

xlim=c(0.2,0.6),ylim=c(0.2,0.6),zlim=c(0,0.4),pch=1,

xlab="rho12", ylab="rho13", zlab="rho23",

angle=260,color= rainbow(length(D99[,1])))

scatterplot3d(D70[,1],D70[,2],D70[,3],

xlim=c(0.2,0.6),ylim=c(0.2,0.6),zlim=c(0,0.4), pch=1,

xlab="rho12", ylab="rho13", zlab="rho23",

angle=200,color= rainbow(length(D70[,1])))

scatterplot3d(D50[,1],D50[,2],D50[,3],

xlim=c(0.2,0.6),ylim=c(0.2,0.6),zlim=c(0,0.4), pch=1,

xlab="rho12", ylab="rho13", zlab="rho23",

angle=140,color= rainbow(length(D50[,1])))

scatterplot3d(D30[,1],D30[,2],D30[,3],

xlim=c(0.2,0.6),ylim=c(0.2,0.6),zlim=c(0,0.4), pch=1,

xlab="rho12", ylab="rho13", zlab="rho23",

angle=80,color= rainbow(length(D30[,1])))
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