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In spontaneously hypertensive rats (SHR) the hypersensitivity of the renal vasculature to 

angiotensin II (Ang II), compared to Wistar-Kyoto rats (WKY), appears to be the determining 

factor in the development and progression of hypertension.  Recent evidence indicates that the 

ERK cascade and NAD(P)H oxidase generation of superoxide are involved in smooth muscle 

contraction, and Phospholipase D (PLD) generation of phosphatidic acid is involved in activation 

of ERK and NAD(P)H.  Importantly, Ang II-mediated PLD activity is greater in aortic smooth 

muscle from SHR compared with WKY; however, this signaling pathway has not been examined 

in the kidney vasculature.   

The purpose of these studies were to define Ang II-mediated signal transduction 

mechanism(s) involved in PLD regulation in WKY and SHR preglomerular smooth muscle cells 

(PGSMCs).  The goals of this study were to determine: 1) whether Ang II-mediated PLD activity 

is greater in SHR; 2) the Ang II signaling pathway(s) responsible for regulating PLD activity, 

and whether they are altered in SHR; and 3) whether PLD-mediated generation of phosphatidic 

acid is involved in Ang II-induced activation of the ERK cascade. 

The data indicates that the mechanisms leading to activation of PLD are similar in WKY 

and SHR and PLD is required for Ang II activation of ERK; however, Ang II more potently 

activates PLD in SHR.  Further analysis indicates that the AT2 receptor inhibits AT1 

receptor/RhoA-dependent activation of PLD through a nitric oxide/cGMP-dependent 

 iii



phosphorylation of RhoA at serine 188, which promotes RhoGDI inhibition of RhoA.  These 

experiments expose two key differences between WKY and SHR PGSMCs: 1) SHR have an 

increased AT1/AT2 receptor ratio; and 2) SHR are less sensitive to nitric oxide and cGMP.  

Therefore, the hypersensitivity of the SHR to Ang II may be due to an imbalance in Ang II 

receptors and/or impaired AT2 receptor-mediated signaling within the kidney vasculature. 
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If I can stop one heart from breaking,   We find in life exactly what we put into it. 

    I shall not live in vain.      - Emerson 

If I can ease one life the aching,     

    Or cool one pain,      

Or help one fainting robin    A thing of beauty is a joy forever; 

    Unto his nest again,        Its loveliness increases; it will never 

I shall not live in vain.    Pass into nothingness. 

- Emily Dickinson     - Keats 

  

 

Lives of great men all remind us,   For out of the old fieldes, as men saithe 

   we can make our lives sublime,    Cometh al this new corne for yere to yere, 

And, departing, leave behind us,    And out of old bookes, in good faithe, 

   Footprints on the sands of time.   Cometh al this new science that men lere. 

- Longfellow      - Chaucer 

 

 

Dost thou love life?  Then waste not time;  Employ thy time well, if thou meanest to 

For time is the stuff that life is made of.  Gain leisure; and since thou art not sure of 

  - Benjamin Franklin   a minute, throw not away an hour. 

- Benjamin Franklin 

 

I hope I shall possess firmness and virtue   

enough to maintain in what I consider the most How poor are they that have not patience 

enviable of all titles, that of an “Honest Man”.   - Shakespeare 

  - George Washington      

        

       Those whom shave quickly,  

   nick themselves. 

         - Bradley Andresen 
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PREFACE 
 
 

One chapter of this dissertation has been published 

 

Chapter 3:  Andresen,B.T.; Jackson,E.K.; Romero,G.G.  2001.  Angiotensin II Signaling to 
Phospholipase D in Renal Microvascular Smooth Muscle Cells in SHR.  Hypertension 37: 635-
639 
 
 

This chapter has been modified from the original manuscript to provide greater detail and a 

consistent format throughout the dissertation. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 
1.1 GENERAL INTRODUCTION 

 Hypertension is defined as a systolic blood pressure (BP) of 140 mm Hg or greater, or a 

diastolic BP of 90 mm Hg or greater.  This condition, though generally asymptomatic, affects 

25% of the adult US population.  In addition to the large number of hypertensive Americans, it is 

estimated that the average American has a 90 percent chance of developing hypertension before 

death (1).  Importantly, hypertension is a leading cause of stroke, end-stage renal disease, 

congestive heart failure, coronary artery disease, and peripheral vascular disease and, according 

to American Heart Association statistics, hypertension killed 42,565 and contributed to 210,000 

deaths in the US in 1997.  Consequently, hypertension and hypertension-induced/related 

illnesses are, and will continue to be, a large public health concern.  Development of 

interventions to prevent or treat hypertension requires an understanding of the pathophysiology 

of essential hypertension, yet that understanding remains elusive. 

Anticipating the need to discern the basic biology of essential hypertension, researchers 

at the Kyoto School of Medicine, Okamoto, Japan in the late 1950s announced that a rodent 

model for human essential hypertension was developed through selective breeding of rats for 

increased blood pressure.  These rats developed hypertension spontaneously and were thus 

named the spontaneously hypertensive rat (SHR), which was bred from the Wistar-Kyoto line 

(WKY).  Since the establishment of the SHR, over 12,772 papers have been published 
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concerning the SHR.  Judging from the attention the SHR has received the SHR is the most 

studied model in hypertension research.  However, as with human essential hypertension, the 

precise cause of hypertension in the SHR is unknown.   

 

1.2 ANIMAL AND ORGAN PHYSIOLOGY 

 Exhaustive studies have demonstrated that the SHR develops hypertension early in life by 

a mechanism that is dependent on the renin-angiotensin system (RAS).  In vivo angiotensinogen 

is cleaved by renin to form the decapeptide angiotensin I that is then cleaved by angiotensin 

converting enzyme (ACE) to form angiotensin II (Ang II) that then acts on AT1 (AT1R) and AT2 

(AT2R) receptors.  In the SHR, inhibition of any component of the RAS reduces blood pressure 

(2-4) and normalizes blood pressure of the SHR to that of the WKY.  In kidney transplantation 

experiments, hypertensive rats receiving kidneys from normotensive rats become normotensive, 

whereas normotensive recipients of hypertensive kidneys become hypertensive irrespective of 

genetic background (5-7).  These experiments have been conducted in other models of genetic 

hypertension besides the SHR with similar results, thus indicating that the kidney is the organ 

responsible for hypertension (reviewed in (8)).   

Ang II is a more potent renal vasoconstrictor in SHR than WKY (9-11).  Since the renal 

vasculature generates the greatest contractile response to Ang II (12) and the kidney is 

responsible for hypertension in the SHR, it is not surprising that the renal vasculature of the SHR 

is hypersensitive to Ang II compared to WKY (11).  These data suggest that the defect leading to 

hypertension in the SHR is altered Ang II-mediated signal transduction leading to enhanced 

vasoconstriction in the renal vasculature. 
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1.3 CELLULAR PHYSIOLOGY 

As mentioned above, there are two types of Ang II receptors: AT1R and AT2R (13).  

Rodents have two subtypes of AT1 receptors: AT1A and AT1B; however, as of yet, no differences 

in the signal transduction of the AT1A and AT1B receptors have been described.  Unlike rodents, 

humans do not have multiple AT1R subtypes; therefore, for the remainder of this review we will 

consider the signaling properties of the AT1A and AT1B receptors as a singular AT1R. 

 

1.3.1 AT1 RECEPTORS: 

AT1Rs are heterotrimeric G-protein coupled receptors (GPCR) that can apparently couple 

to all Gα subunits except Gα13 (14).  Although these coupling data are based on chimeric Gαs 

constructs in COS cells transfected with the AT1R (15) and thus only indicate what G-proteins 

may bind to the AT1R, the diversity of signal transduction cascades activated by AT1Rs 

(reviewed in (16)) strongly suggests that AT1Rs may couple to many Gα subunits in vivo; 

however, the precise coupling may be cell and environment dependent.  Specific signal 

transduction mechanisms of the AT1R that may be responsible for hypertension are reviewed 

below.  However, it appears that the main action of AT1R is the activation of phospholipase C 

(PLC) through a Gαq/11-mediated pathway (16).  This pathway results in the formation of inositol 

trisphosphate (IP3) that then activates Ca2+ channels on the endoplasmic reticulum resulting in an 

increase in cytosolic Ca2+.  Simultaneous generation of diacylglycerol (DAG) by PLC also leads 

to the activation of protein kinase C (PKC).  Although the IP3-Ca2+/PKC pathway is known to 

lead to vasoconstriction, Ang II-mediated Ca2+ transients are identical in SHR and WKY 

preglomerular smooth muscle cells (Fig. 1.1) (17).  Thus, this pathway is unlikely to be the 

causative pathway of hypertension. 
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Figure 1.1:  Angiotensin II Mobilization of Calcium in PGSMCs. 

Angiotensin II increases free [Ca2+]i in WKY and SHR PGSMCs.  Cells were loaded with 5µM of 

the ratiometric dye Fura-2 acetoxymethyl at 37°C for 30 min, and the 345 nM/375 nM ratio of 

fluorescence was quantified for 5 cells at each concentration.  Importantly, ANOVA analysis indicates 

that the curves are not significantly different from one another.  Data obtained from Mokkapatti R. et al. 

(17) with assistance from K.E. Dineley and I.J. Reynolds. 
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1.3.2 AT2 RECEPTORS: 

Like the AT1Rs, AT2Rs are also heterotrimeric G-protein coupled receptors, but unlike 

AT1Rs, AT2Rs couple selectively to Gαi/o subunits as demonstrated by reconstitution and 

immunoprecipitation experiments (18;19).  The AT2R is considered a fetal gene due to high 

expression of AT2Rs during embryogenesis and significantly lower expression and distribution 

in the adult; due to this there is much less information regarding AT2R signaling compared to 

AT1R signaling (reviewed in (20)).  In general the AT1R leads to vasoconstriction, whereas the 

AT2R counteracts the AT1R through three main pathways: 1) generation of the vasodilator nitric 

oxide (NO) through yet undetermined mechanisms (21;22); 2) activation of phospholipase A2 

(PLA2), presumably both mPLA2 and cPLA2, through unexamined mechanisms and subsequent 

formation of arachidonic acid metabolites (23;24); and 3) activation of a variety of phosphatases 

(25;26). 

 

1.3.3 INTERNALIZATION OF AT1 AND AT2 RECEPTORS: 

The AT1R rapidly internalizes upon stimulation (t½ = 5 min (27)) through a β-arrestin 1-

mediated clathrin-dependent pathway (28).  On the other hand, the AT2R does not internalize 

after stimulation with Ang II (29;30).  This difference appears to be due to an altered sequence in 

the C-terminal tail of the AT2R.  The AT1R has a conserved sequence from serine 326 to serine 

338 across a variety of species.  However, the AT2R shares only 4 residues in common with this 

sequence and mutation of the conserved AT1R residues abrogates Ang II-mediated 

internalization (31).  Furthermore, deletion experiments confirm that the conserved sequence in 

the AT1R is involved in internalization, and is not involved in signaling to PLC, measured by 

Ca2+ transients, ERK, or agonist induced desensitization of the receptor (32).   These differences 
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are important because Ang II activation of AT1Rs is attenuated by receptor internalization and 

recycling and degradation of Ang II in the lysosome (30), whereas AT2Rs can act as 

constitutively active receptors, a conclusion supported by observations of the physiological 

effects of renal AT2Rs (22).  Thus, the balance between AT1Rs and AT2Rs on any given cell 

determines the signal transduction and physiological outcome of Ang II stimulation.  

  

1.3.4 PHYSIOLOGICAL SIGNIFICANCE: 

The main differences between the AT1R and AT2R are within their coupling and 

internalization (Table 1.1).  Physiologically, these differences can be best illustrated in Ang II 

receptor knockout mice.  AT2R knockout mice have increased blood pressure compared to 

controls and have enhanced responses to exogenously added Ang II (33;34).  Conversely, 

AT1AR/AT1BR double knockout mice have lower blood pressure compared to controls and lack 

the typical increase in blood pressure after exogenously added Ang II (35).  Additionally, the 

AT2R acts as a vasodepressor agent in the hypertensive (mRen-2)27 transgenic rat (36).  

Furthermore, similar experiments conducted in rats that are not genetically modified, utilizing 

AT1R antagonists and AT2R agonists and antagonists indicate that the AT2R indeed counteracts 

the AT1R and actively lowers blood pressure (37-39).  In conclusion, the AT1R mediates the 

contractile “hypertensive” properties of Ang II, whereas AT2Rs counteract the AT1R through 

vasodilatory mechanisms. 
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Table 1.1:  Differences Between the Angiotensin Receptors 
 

Description AT1R AT2R 

Coupling 
All Gα subunits 
except Gα13 
 

Gαi, and Gαo 

Agonist-Mediated Internalization t½ = 5 min Internalization deficient 

Vascular Expression Abundant 
 
Low, not on all vascular beds 
 

Physiology Contraction Dilation 
 
 
 
1.4 SIGNAL TRANSDUCTION PATHWAYS INVOLVED IN HYPERTENSION 

 

1.4.1 RHO/RHO KINASE: 

 The Rho family is a group of small G-proteins that are activated by a variety of stimuli 

(reviewed in (40)).  The basic cycle of Rho activity is shown in Figure 1.2.  Small G-proteins are 

inactive when bound to GDP and are activated by GTP exchange factor proteins (GEFs) that 

initiate exchange of bound GDP for GTP.  This results in activated G-proteins, which bind to 

their respective downstream targets.  Inactivation requires the hydrolysis of bound GTP.  Small 

G-proteins have a slow intrinsic hydrolysis rate (41), and therefore inactivation of the small G-

protein is catalyzed by GTPase-activating proteins (GAPs), which enhances/increases the 

intrinsic GTPase activity of the G-protein.  The third component in this cycle is the guanine 

nucleotide dissociation inhibitor (GDI).  In the case of RhoA, the GDI binds to serine 188 when 

this residue is phosphorylated by either protein kinase A (PKA) (42) or protein kinase G (PKG) 

(43;44).  Binding of Rho GDI to either GDP- or GTP-bound RhoA inhibits nucleotide exchange, 

hydrolysis of GTP, and GTP-bound RhoA signaling (45).  Additionally, the GDI masks the 

cysteine 190 prenylation site (C20 geranylgeranyl) (46;46) that is crucial for proper interactions  
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Figure 1.2:  Diagram of the RhoA GDP/GTP Cycle . 

RhoA cycles between the inactive GDP bound state and active GTP bound state with the 

assistance of GEFs and GAPs.  Structurally, RhoA contains a consensus PKA/PKG phosphorylation site 

at S188 represented by the S in the spiked circle, and RhoA is geranylgeranylated at C190 represented by 

the squiggly line originating near the S188 site.  When RhoA is phosphorylated the GDI binds to RhoA 

inhibiting intrinsic GTPase activity, and GEF and GAP function and masking the geranylgeranylation 

moiety (box). 
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with RhoGAPs (47).  Non-phosphorylated RhoA resides on membranes due to interactions of the 

prenylation group with the lipid membrane; however, GDI masking of the prenylation group 

allows RhoA to move to the cytoplasm where it no longer interacts with effectors. Importantly, 

RhoA is more active in SHR thoracic aorta and thoracic aortic smooth muscle cells than in WKY 

(48), suggesting that RhoA may play a role in hypertension.   

Although RhoA is typically viewed as a signal transduction protein involved primarily in 

cytoskeleton reorganization (reviewed in (49)), RhoA also activates a variety of kinases that 

mediate cell signaling.  One of these, p160ROCK, is activated by RhoA and is involved in 

smooth muscle contraction (50-52).  p160ROCK contributes to contraction by phosphorylating, 

and thereby inactivating, the regulatory subunit of myosin phosphatase (53;54).  This process 

allows a greater percentage of the myosin to remain phosphorylated, which is hypersensitive to 

Ca2+, thereby resulting in increased contractile responses to Ca2+ (55).  Thus, p160ROCK, and 

potentially other members of the Rho kinase family, may play a role in hypertension.  In support 

of this hypothesis, Y-27632, an inhibitor of Rho associated kinases, reduces blood pressure in 

many hypertensive rat models (56); therefore, Rho kinase inhibitors may be a novel group of 

anti-hypertensive drugs (57).   

 

1.4.2 MEK/ERK CASCADE: 

 Although the classical mechanisms leading to ERK activation through receptor tyrosine 

kinases (RTKs) are well established (reviewed in (58)), the mechanisms by which GPCRs 

activate the ERK mitogen-activated protein kinase (MAPK) cascade are still debated.  In brief, 

tyrosine kinase receptors recruit Shc, Grb2, and SOS, a phosphotyrosine binding protein, adapter 

protein, and Ras-GEF respectively.  SOS engages Ras, a small G-protein, which in turn activates 
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Raf-1.  Raf-1 is a kinase that activates, through phosphorylation, the kinase MEK, which is the 

activator, through phosphorylation, of the kinases ERK1 and ERK2.  Phosphorylated ERK1/2 

translocates to the nucleus and activates, through phosphorylation, various transcription factors 

(59-61).  This pathway also has many supporting players that allow for the cascade to localize 

and traffic to the correct areas of the cell and thus function properly.   

Numerous studies demonstrate that Ang II stimulates the ERK MAPK pathway 

(reviewed in (62)); moreover, in SHR smooth muscle cells Ang II more potently activates ERK, 

compared to WKY, suggesting that ERK is involved in hypertension (63).  However, the 

mechanism for activation of the ERK MAPK cascade initiated by Ang II is unknown.  There are 

three prominent theories regarding GPCR-mediated activation of MAPK: 1) RTK 

transactivation/phospho-tyrosine scaffolds; 2) β-arrestin scaffolding/internalization; and 3) 

“direct” stimulation of Raf.   

The RTK transactivation model is based on the idea that an EGF-like ligand (proHB-

EGF) is present within the matrix surrounding cells (64).  Upon activation of AT1Rs, according 

to this model, the target cell secretes matrix metalloproteinase(s) (MMP) that cleave proHB-EGF 

releasing HB-EGF, which acts in an autocrine fashion activating EGF receptors (EGFR) (65).  

Evidence supporting this theory includes use of MMP inhibitors, the dependence of 

transactivation on Ca2+, which is required for the secretion of the MMP, and the inhibition of 

Ang II-mediated phosphorylation with high concentrations of EGFR kinase inhibitors (66).  

However, competing theories regarding transactivation are proposed that involve cytosolic 

mechanisms for phosphorylation of EGFR.  Evidence for an intracellular mechanism, or at least 

an intracellular component, include the requirement of c-Src and reactive oxygen species, based 

on experiments utilizing inhibitors, in Ang II mediated phosphorylation of the EGFR (67).  
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Furthermore, recent evidence indicates that Ang II phosphorylates caveolin-1 thereby releasing 

the EGFR; the released transactivated EGFR, phosphorylated at tyrosine 845, a c-Src consensus 

site (68), co-localizes to focal adhesion complexes (69). 

An alternative hypothesis for transactivation is that Ang II mediates EGFR re-localization 

from caveolin-1 rich areas to focal adhesion points where the focal adhesions phosphorylate the 

EGFR through a c-Src dependent mechanism.  Evidence for this hypothesis is that depletion of 

cholesterol with β-cyclodextrin inhibits Ang II-mediated transactivation of the EGFR that is 

reversed by adding back cholesterol (69).  Recent evidence from our laboratory indicates that 

removal of cholesterol from the membrane with β-cyclodextrin destroys membrane lipid rafts 

that have been proposed to be important microdomains for localizing signal transduction proteins 

to the plasma membrane.  When these rafts are disrupted, the raft-bound proteins are distributed 

throughout the membrane and cease to signal properly.  Thus, since EGFR is associated with 

caveolin-1 (70), and β-cyclodextrin removes caveolae structures while also inhibiting EGFR 

transactivation but not Ang II-mediated Ca2+ mobilization (69), a logical conclusion is that Ang 

II-mediated re-localization of the EGFR is the key mechanism by which Ang II transactivates 

EGFR. 

The aforementioned alternative hypothesis implies that focal adhesion complexes may 

play a role in Ang II-mediated activation of ERK.  Specifically, the focal adhesion kinases PYK2 

and FAK, which are activated through a Rho/Rho kinase-dependent mechanism (71), are 

recruited to and phosphorylate integrins (72), and both focal adhesion kinases and integrin 

activation/engagement can lead to activation of ERK MAPK (73;74).  The mechanisms for 

integrin-mediated activation of the ERK MAPK cascade independent of focal adhesion kinases 

are not fully understood.  However, FAK activation of the ERK MAPK cascade is proposed to 
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be mediated through GRB2/SOS.  GRB2’s SH2 domain binds to phospho-tyrosine 925 of FAK, 

and SOS is associated with FAK through its association with GRB2 (75); therefore, the integrins 

and FAK can act as phosphotyrosine scaffolds for the recruitment and activation of some of the 

components of the ERK MAPK cascade.  Furthermore, c-Src is recruited to and activated in 

focal adhesion complexes (74), thus leading to c-Src mechanisms of activation of the ERK 

MAPK cascade including the aforementioned RTK transactivation.   

GPCR desensitization and internalization are often mediated by G-protein receptor 

kinases (GRKs) (reviewed in (76)).  Recent data indicate that β-arrestin, which binds 

phosphorylated G-protein coupled receptors, acts as a scaffolding protein for MAPKs (77).  

Therefore, β-arrestin and potentially other β-arrestin like proteins may act as the scaffold 

required for Ang II activation of the ERK MAPK cascade.  Although AT1R internalization is 

independent of GRK2-mediated phosphorylation, as demonstrated by a GRK2 phosphorylation 

site deficient mutant (78), β-arrestin association with the AT1R is correlated with AT1R 

internalization (28), and internalization, in some systems, is a requirement for activation of the 

ERK MAPK cascade (79;80).  Correspondingly, the aforementioned mutant AT1R (78), that can 

internalize, still activates ERK1/2, but the role of internalization in Ang II-mediated ERK1/2 

phosphorylation was not examined.  Additionally, PKC was demonstrated to phosphorylate the 

mutant receptor, which in some systems can mediate internalization (81).  Therefore, the role of 

internalization of Ang II receptors in the activation of the ERK MAPK cascade is still not fully 

known. 

“Direct” activation of the ERK MAPK cascade may occur through two pathways: PKC 

or c-Src (82).  Ang II, as previously mentioned, can activate PKC and PKC can directly activate 

Raf-1 through phosphorylation of multiple serine residues (83;84).  However, for some PKC 
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isotypes, PKC-mediated activation of ERK does not involve phosphorylation of Raf-1, but 

proceeds through other unknown pathways (85).  Interestingly, the majority of theories regarding 

AT1R-mediated activation of the ERK MAPK cascade propose the involvement of c-Src.  

Furthermore, c-Src is involved in AT1R-mediated activation of ERK1/2 in SHR smooth muscle 

cells (86) and plays a role in the elevated levels of phospho-ERK1/2 in hypertensive patients 

(87).  c-Src may potentially mediate GPCR-induced activation of ERK MAPK by: 1) recruitment 

to focal adhesion complexes (74), where: a) c-Src may be involved in RTK transactivation (66), 

and b) c-Src can further activate other kinases associated with focal adhesions that then lead to 

phosphorylation of Raf-1 (88); 2) interacting with β-arrestin (89); and 3) direct phosphorylation 

of Raf-1 at tyrosine 341 (82).  Additionally, recent data suggest that the AT1R directly couples to 

c-Src in the C-terminal tail, independent of Gα-subunits and traditional AT1R signaling (90), 

which suggests that Ang II can activate the ERK MAPK cascade through direct activation of c-

Src.   

 Regardless of how the ERK1/2 MAPK cascade is activated, it plays a key role in smooth 

muscle contraction as demonstrated by experiments with the specific MEK inhibitor PD98059 

(91-93).  In primary smooth muscle cells, Ang II induces greater contractile responses in SHR 

compared to WKY and inhibition of MEK reduces the contraction in both SHR and WKY cells.  

Importantly, PD98059 normalizes the contractile responses of SHR cells to Ang II to those of the 

WKY (91).  However, there is evidence that MEK does not play a role in Ang II mediated 

vascular contraction of isolated smooth muscle from the thoracic aorta (94), indicating that the 

role of MEK in contraction may not be physiologically relevant.  To address this disparity, 

PD98059 was used in vivo, where it reduced Ang II-mediated increases in mean arterial blood 

pressure in normotensive rats (92) and lowered blood pressure in deoxycorticosterone acetate 
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(DOCA)-salt-induced hypertensive rats (93).  Therefore, PD98059 reduces smooth muscle 

contractions in physiologically relevant systems, but the mechanism by which MEK mediates 

smooth muscle contraction is unknown. 

 

1.4.3 SUPEROXIDE: 

 Recent data indicate that hormones, including Ang II, acting through GPCRs, induce 

superoxide generation in smooth muscle cells (95;96), and superoxide generation is linked to 

hypertension (reviewed in (97)).  Formation of superoxide classically occurs through NAD(P)H 

oxidase in leukocytes in order to destroy phagocytosed pathogens (reviewed in (98)).  Therefore, 

NAD(P)H oxidase or a homologue of NAD(P)H oxidase should be present in vascular smooth 

muscle cells.  Recently, a family of proteins similar to some of the classical NAD(P)H oxidase 

subunits, called Nox, were found in the kidney and smooth muscle cells along with an 

assortment of the traditional NAD(P)H oxidase subunits (Table 1.2) (99-101).  The p47phox 

subunit, which is required to activate the oxidase subunits, is present in both leukocyte and 

smooth muscle cells (96) suggesting that the signal transduction pathways leading to activation 

of the catalytic oxidase subunit gp91phox/Nox1 are similar in the two systems.  The leukocyte 

p67phox and p47phox NAD(P)H oxidase subunits are weakly activated by DAG, moderately 

activated by phosphatidic acid (PA), strongly activated by arachidonic acid, and maximally 

activated by the synergistic actions of PA and DAG (102).  Although the p67phox subunit has yet 

to be identified and is most likely not present in smooth muscle, Ang II activates all the 

phospholipases, A, C, and D.  Thus, Ang II has the potential to activate fully NAD(P)H oxidase, 

indeed, Ang II acting through the AT1R generates superoxide primarily by a NADH-mediated 

mechanism (95;103).  
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SHR have higher levels of superoxide compared to the WKY (104).  However, these 

observations could be a consequence not a cause of hypertension; to address this, normotensive 

rats were made similarly hypertensive with Ang II and norepinephrine.  Only in Ang II-mediated 

hypertension did superoxide dismutase mimetics reduce blood pressure.  Correspondingly, 

elevated superoxide levels were observed only in the Ang II-mediated hypertensive rats (105).  

Therefore, Ang II-mediated production of superoxide is partially responsible for increased blood 

pressure in rats chronically infused with Ang II.  Moreover, the AT1R mediates superoxide 

production (103), AT1R mediates hypertension in the SHR (2), and superoxide dismutase lowers 

blood pressure in SHR (106).  These facts strongly indicate that hypertension is partially 

dependent on superoxide. 

 

 

 

Table 1.2: 
 

NAD(P)H Subunits in Vascular Smooth Muscle Cells 
 

 

Subunit 
 

mRNA 
references 

 

Protein 
references 

p22phox (107;108) (108) 
p47phox (96) (96) 
p67phox Not present in smooth muscle 
nox-1 (99;100) Not examined 
Cytochrome b558 

α-subunit (107) Not examined 

Rac* Not examined (96;109) 
 

     * Rac is part of the functional NAD(P)H complex.  However, the 

       precise role of Rac in the complex  remains to be determined. 
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1.5 INTEGRATED PATHWAYS 

 Ang II, acting through the AT1R, is a major contributing factor to hypertension in the 

SHR and Ang II activates all the three signaling mechanisms discussed thus far.  Therefore, an 

important question that remains to be answered is: Can all the aforementioned vasoactive 

signaling pathways be tied together into one common pathway?  Here we would like to propose 

that there is a common signal transduction pathway involving Ang II stimulation of 

phospholipase D, thereby generating phosphatidic acid (PA). 

 

1.5.1 PHOSPHOLIPASE D 

 Ang II-mediated phospholipase D (PLD) activity, through the AT1R (110;111), is 

increased in smooth muscle from SHR compared to WKY (112;113), thus suggesting that PLD 

may play a role in the hypertensive phenotype of the SHR.  There are two subtypes of PLD, 

PLD1 (114) and PLD2 (115).  PLD1, which has two splice variants PLD1a and PLD1b (116), is 

predominately expressed on the Golgi and endoplasmic reticulum (115;117).  Recent evidence 

suggests that PLD1 can also be found on the plasma membrane (118;119).  On the other hand, 

PLD2 is expressed predominately on the plasma membrane (115), and recent studies utilizing 

catalytically inactive PLD2 indicate that, in most cases, PLD2 mediates hormone-induced PLD 

activation.  Thus, PLD2 is an enzyme involved in signal transduction (120;121). 

Agonists induce PLD activity primarily through two general pathways, PKC and small 

G-proteins of the ADP ribosylation factor (ARF) and Rho families.  PKC activates PLD in a 

variety of systems (122;123) and can synergize with other factors (124;125).  Recent evidence 

indicates that PKC can phosphorylate and activate PLD (126).  However, PKC can also activate 

PLD through kinase-independent mechanisms (127).  Furthermore, PKC-dependent activation of 
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PLD is partly mediated by small G-proteins (128;129) presumably through activation of Rho 

(128) and ARF (130) GEFs.  Therefore, PKC can directly and indirectly activate PLD through a 

variety of mechanisms.  The requirement for G-proteins is supported by original observations 

indicating that cytosolic factors are required for PKC-mediated PLD activity in a system where 

PKC alone did not activate PLD (131). ARF proteins were the first small G-proteins found to 

activate PLD (132;133), and subsequent studies show that all ARF family classes can activate 

PLD in a variety of systems (120;134;135).  Additionally, ARF is the strongest single agent for 

activating PLD in vitro (115), suggesting that ARF may be the primary regulator of PLD.  The 

second type of G-protein found to activate PLD is Rho (136;137).  Additionally, other members 

of the Rho family and similar small G-proteins activate PLD (138;139).  As with ARF, many 

systems signal through Rho to activate PLD.  However, Rho is a poor activator of PLD in vitro 

suggesting that mechanisms other than the direct interaction of Rho with PLD are involved 

(134). 

The function of PLD is to remove the choline head group from phosphatidylcholine (PC) 

by a transphosphatidylation reaction resulting in the formation of PA and free choline.  This 

reaction requires both of PLD’s HKD domains (140) and phosphatidylinositol 4,5-bisphosphate 

(PIP2) (141).  The HKD domains are critical for coordinating and catalyzing the reaction (142).  

PIP2 binding, not through the consensus PH domain located near the amino-terminus PX domain 

(117;143), but through a second PIP2 binding domain between the two HKD domains (144) is 

essential for catalysis.  The physiological role of PLD is generation of PA.  PLD1-mediated 

generation of PA is predominately involved in the trafficking of vesicles to and from the various 

Golgi compartments and ER (145-147), presumably through generation of negative curvature in 

the membrane initiating the fission event (148).  PLD2-mediated generation of PA is also 
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involved with vesicle formation/endocytosis (149), again presumably by generating negative 

curvature at the membrane and by recruiting dynamin through dynamin’s PH domain to the 

budding vesicle (150).  Since PLD2 is activated by a variety of agonists (120;121), it most likely 

plays a variety of roles in signal transduction.  However, due to the high basal activity of PLD2 

(134) and lack of specific inhibitors, little is known about the physiological functions of PLD2. 

 

1.5.2 PLD AND RHO/RHO KINASE 

 RhoA has been implicated in Ang II-mediated activation of PLD (151).  In thoracic 

smooth muscle, thrombin-mediated RhoA activity is increased in SHR compared to WKY (48).  

This suggests that the increased activation of RhoA may be responsible for the increased Ang II-

mediated PLD activity observed in SHR compared to WKY (112).  As mentioned, PLD2, which 

cannot be directly activated by Rho (143), is the main Ang II-activated PLD (120).  Therefore, 

other intermediary protein(s) are probably involved in conveying the signal from RhoA to PLD2.  

It has been reported that muscarinic acetylcholine M3 receptor-mediated activation of PLD 

occurs through a Rho kinase dependent mechanism based on the use of Y-27632 (152).  

However, the effect of Rho kinase inhibitors on Ang II-mediated activation of PLD2 has not 

been studied. 

 

1.5.3 PLD AND THE MEK/ERK CASCADE 

 The work of our laboratory and others has shown that the coupling of the Ras/Raf-1/ERK 

cascade is critically dependent on the localization of the components of the cascade in specific 

loci (121;153;154).  Raf-1 activation requires its translocation to the membrane, and Raf-1 

membrane interactions are mediated in part by the binding of Raf-1 to specific lipids including 
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PA (155).  PLD is the major source of PA in agonist-stimulated cells.  In fact, over-expression of 

a catalytically inactive form of PLD2 inhibits agonist-dependent PLD activity and 

simultaneously impairs ERK1/2 phosphorylation that can be recovered by the addition of PA 

(120;121).  Ang II-dependent ERK1/2 phosphorylation is also inhibited by expression of 

catalytically inactive PLD2 in A10 cells (120).  Therefore, PLD and PA play an important role in 

Ang II-dependent ERK1/2 phosphorylation. 

 

1.5.4 PLD AND SUPEROXIDE 

 PLD1 is responsible for generating the oxidative burst exhibited by leukocytes through 

the aforementioned PA-mediated activation of NAD(P)H oxidase (102), indicating that PLD may 

play a role in generation of superoxide in smooth muscle.  Although PA alone is a moderate 

activator of NAD(P)H oxidase, Ang II stimulates PLC and PLD resulting in the accumulation of 

DAG and PA that can, through synergism, maximally activate NAD(P)H oxidase (102).  The 

role of PLD in this pathway has been demonstrated by inhibiting PLD with D-erythro-

sphingosine, dihydro- (DESD) in vascular smooth muscle cells (156).  Unfortunately, PLD 

inhibitors are nonspecific and generally function as PLX inhibitors, where X is D, C, and/or A.  

For example, DESD inhibits PLA2 (157) and calphostin C, a classic PKC inhibitor, also inhibits 

PLD (158).  Furthermore, DESD also inhibits PKC (159) and activates ERK1/2 (unpublished 

observations), indicating that DESD is not a specific inhibitor of PLD.  However, inhibition of 

Ang II-mediated generation of superoxide with DESD was rescued by addition of PA, indicating 

that PLD may indeed play a role in Ang II-mediated generation of superoxide.  A second 

argument that lends strength to the idea that PLD is involved in formation of superoxide is the 

time course of agonist-mediated production of PA and superoxide.  Insulin-mediated generation 
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of PA peaks within 2 minutes (121) and Ang II-mediated activation of NAD(P)H oxidase peaks 

between 3 to 4 minutes (95).  This indicates that agonists stimulate PLD before NAD(P)H 

oxidase.  However, the time course of Ang II-mediated PLD activity remains to be determined.  

Therefore, the current data indicate that PLD is most likely activated before NAD(P)H oxidase 

and, thus, can be involved in generation of superoxide.  Additionally, Ang II-mediated PLD 

activity is increased in SHR compared to WKY (112), and SHR have increased superoxide levels 

compared to WKY (104).  Taken together, these data indicate that PLD leads to generation of 

superoxide.  This suggests that PLD is required for Ang II-mediated generation of superoxide, 

thus participating in the pathophysiology of hypertension. 

 

1.6 STATEMENT OF PROBLEM AND HYPOTHESIS 

An integrated signaling pathway can be formed by linking Ang II to the PLD pathway.  

However, the mechanism of Ang II-mediated activation of PLD is unknown.  Previous reports 

suggest that RhoA and c-Src are involved (151), and that Ang II more potently activates PLD in 

SHR compared to WKY thoracic aortic smooth muscle cells (112).  As mentioned, kidney 

vasculature is the tissue most likely to contribute to hypertension but no studies have examined 

Ang II-mediated PLD activation in this tissue.  Therefore, the objective of these studies is to 

define Ang II-mediated signal transduction mechanism(s) leading to activation of PLD in 

preglomerular smooth muscle cells (PGSMCs).  Due to the aforementioned differences between 

the SHR and WKY, the hypothesis underlying the objective is that Ang II-mediated PLD activity 

is greater in SHR compared to WKY PGSMCs due to an alteration in a signal transduction 

pathway.  
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Chapter 2 

 
EXPERIMENTAL METHODS 

 
 
 

2.1 MATERIALS USED:  

Angiotensin II was obtained from Sigma.  All agonists and antagonists used along with 

their vendors and reported IC50 values for the antagonists are reported in Table 2.1.  

[3H]palmitate and 125I-Sar1-Ile8-Ang II were obtained from NEN/Perkin Elmer (Boston, MA).  

All primary antibodies were obtained from Cell Signaling Technology (Beverly, MA), and the 

corresponding secondary antibodies were obtained from Jackson Immuno Laboratories (West 

Grove, PA). Alexa 488 conjugated phalloidin was obtained from Molecular Probes (Eugene, 

OR).  All molecular biology enzymes were obtained from New England Biolabs (Beverly, MA), 

and the lipids were obtained from Avanti Polar Lipids (Alabaster, AL).  The catalytically 

inactive (dominant negative, dn) mutants T31N ARF1, T27N ARF6, and T17N RhoA were used 

to inhibit specific G-protein functions; E156K ARNO, a mutant of an ARF GEF that inhibits 

nucleotide exchange, was also used to examine G-protein functions.  Catalytically inactive 

K898R PLD1 and K758R PLD2 were used to investigate PLD function.  All constructs, except 

the dnARNO were previously subcloned as EGFP fusion proteins as described elsewhere 

(120;121;160). 

 

2.2 CELL CULTURE:  

All cell culture reagents were obtained from Invitrogen/GibcoBRL (Carlsbad, CA).  

Thirteen to 15 week old SHR and WKY rats from Taconic Farms (Germantown, NY) were used 

to obtain the PGSMCs.  PGSMCs were obtained by forcefully injecting a greater-than 1% Fe2O3
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Table 2.1:  List of Agonists and Antagonists. 
 

Name  Vendor Location Description   IC50 Refs
PMA Sigma  SaintLouis, MO DAG analogue, PKC activator  - -
UK-14,304 Sigma/RBI   Saint Louis, MO Specific α2-adrenergic agonist - (161)
CGP-42112A Sigma/RBI Saint Louis, MO Specific AT2R agonist - (162;163) 
SNAP Molecular Probes Eugene, OR Instant Nitric Oxide  donor  - (164)
DEANO Molecular Probes Eugene, OR Nitric Oxide donor, t½ = 2 min - (165) 
8-Br-cGMP Calbiochem San Diego, CA Non-hydrolizable cGMP analogue - (164;165) 

YC-1 Alexis Corp. Carlsbad, CA Nitric Oxide independent stimulant of soluble
guanylate cyclase -  (166)

L-158,809 Sigma/RBI Saint Louis, MO Specific AT1R antagonist 0.3 nM (167;168) 
PD-123,319 Sigma/RBI Saint Louis, MO Specific AT2R antagonist 3 nM (169;170) 

LY-294002 Calbiochem San Diego, CA PI3K inhibitor 1.4 µM (171;172) 
Wortmannin Calbiochem San Diego, CA PI3K inhibitor 1 to 5 nM (171-173) 

Gö-6983 Calbiochem San Diego, CA Inhibits PKCα (7 nM), β (7 nM), γ (6 nM), δ (10 nM), ζ (60 nM), and 
µ (20 µM).  (IC50 values) (174) 

Ro-31-8425 Calbiochem San Diego, CA Inhibits PKCα (8 nM), βI (8 nM), βII (14 nM), γ (13 nM), and  
ε (39 nM).  (IC50 values) (175) 

Staurosporine Calbiochem San Diego, CA 
Non-specific PKC inhibitor.  Inhibits PKCα (28 nM), βI (13 nM), 
βII (11 nM), γ (32 nM), δ (28 nM), ε (25 nM), and ξ (>1.5 µM).  

(IC50 values) 
(176) 

Brefeldin A Sigma Saint Louis, MO  Inhibits the interaction between many ARF GEFs
and ARF  ~3 µg/mL (177) 

Y-27632 Tocris Ballwin, MO Inhibits Rho kinases 140 nM (56) 
HA-1077 Calbiochem San Diego, CA Inhibits Rho kinases ~300 nM (178) 
Pertussis Toxin Sigma Saint Louis, MO  Inhibits signaling through Gαi ~0.01 ng/mL (179) 
OBAA Tocris Ballwin, MO Inhibits PLA2    ~70 nM (180)
NNA Sigma Saint Louis, MO Competes with L-arginine to inhibit NOS. (181) 
ODQ Alexis Corp. Carlsbad, CA Inhibits Nitric Oxide sensitive guanylate cyclase. ~1 µM (182;183) 

 

 See next page for table legend.
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Table 2.1: LEGEND 

 Ref indicates appropriate references that describe the function of the drug and reasonable 

concentrations for the experiments conducted.  PMA is Phorbol 12-myristate 13-acetat, SNAP is S-

nitroso-N-acetylpenicillamine, DEANO is diethylamine nitric oxide, OBAA is 4-(4-Octadecyl)-4-

oxobenzenebutenoic acid, NNA is N5-(Nitroamidino)-L-2,5-diaminopentanoic acid, and ODQ is 1H-

[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one. 

 
 
 
Dulbecco’s Modified Eagle’s Medium (DMEM) solution containing 20 U of 

penicillinstreptomycin into isolated kidneys through the renal artery.  The iron-loaded kidney 

was removed from the rat, the cortex minced, and washed multiple times in a 1% collagenase IV 

solution.  During the washes the vessels were isolated from the solution with a magnet, allowing 

the solution to be decanted without loosing the vessels.  After multiple washes, enough to visibly 

separate the remaining tissue from the vessels, the vessels were plated with Dulbecco’s Modified 

Eagle’s/F12 medium (DMEM/F12) supplemented with 10% fetal bovine serum (FBS) and 20 U 

penicillin-streptomycin.  After the cells grew to confluence, differential platting was performed 

by the following procedure: the cells were trypsinized and passed into a fresh plate, after 20 min 

the media from the new plate was removed and placed on a second plate, after a second 20 min 

interval the media was removed and placed on a third plate.  The few remaining cells were 

PGSMCs at passage 1 (184).  All experiments were conducted between passage 4 and 10, and 

the PGSMCs were grown in DMEM/F12 supplemented with 10% FBS, 100 U/mL penicillin G, 

100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B. 

 

2.3 TRANSFECTION OF PGSMCS:   

PGSMCs were grown to 50-75% confluence in 60-mm dishes and transfected using 

Lipofectamine Plus following the manufacturer’s protocol, or grown to 100% confluence and 
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transfected with Lipofectamine 2000 following the manufacturer’s protocol 

(Invitrogen/GibcoBRL).  The following day the cells were washed and fresh media was added.  

Since all constructs used were subcloned as EGFP fusion proteins or co-transfected with EGFP, 

the transfection efficiency was determined by the fraction of green fluorescent cells.  Cells were 

serum starved the evening after transfection and the experiments were conducted the following 

day.  Therefore, cells expressed the plasmid(s) for 36 to 48 hr before experiments. 

 

2.4 PHOSPHOLIPASE D ASSAYS:  

PGSMCs were serum starved for at least 15 hours in 2 ml of DMEM/F12 with 

[3H]palmitate (5 µCi/ml).  PGSMCs were incubated for 12 min. in DMEM/F12 with 0.5% 

ethanol (EtOH media) to take advantage of the transphosphatidylation reaction (160).  All 

antagonists used were included in the EtOH media.  Cells were then stimulated with agonist(s) 

for 20 min., washed with ice cold PBS, scraped on ice, and centrifuged at 16,000 x g for 1 min.  

The resulting supernatant was decanted and the cell pellet was resuspended in 200 µL PBS, 

vortexed, then 800 µL of a 1:1 chloroform:methanol solution was added, vortexed, and the 

samples placed on ice.  After 5 min, the samples were centrifuged at 16,000 x g for 12 min at 

4°C, then the upper aqueous phase was removed and the lower organic phase was concentrated 

using a rotary evaporator.  The concentrated organic fraction, which contained the lipids, was 

resuspended in 20 µL chloroform and spotted onto plastic-backed silica gel 60 TLC plates 

(VWR).  Each sample was spiked with cold phosphatidylethanol (PtdEtOH), and a PA control 

was run on each plate (Avanti Polar Lipids).  The TLC plates were resolved using ethyl 

acetate:trimethylpentane:acetic acid (9:5:2) as the solvent, and separation of PtdEtOH from PA 

was determined by developing the plate in an iodine chamber.  The lipid spots corresponding to 
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PtdEtOH and PA were circled with a pencil and the iodine was allowed to disperse overnight.  

The area around the circles was sprayed with En3Hancer Spray (NEN/Perkin Elmer).  After the 

En3Hancer dried slightly, the plate was wrapped in Saran Wrap and exposed to Fuji X-ray film 

for 4-7 days at -80°C.  After developing the film, the autoradiogram was compared to the circled 

spots to verify where the PtdEtOH generated by PLD resides on the plate.  Once determined, the 

precise location of the PtdEtOH spot, the PtdEtOH spot and origin spot (total unreacted 

phospholipid) were scrapped, mixed with 5 mL EcoLite(+) (ICN), and the amount of PtdEtOH 

and total unreacted phospholipid was determined by β-counting.  PLD activity is expressed as 

the ratio of PtdEtOH to total unreacted phospholipid. 

To measure PA produced after addition of Ang II, the above protocol was followed with 

the following changes: no ethanol was added to the sample, all use of PBS was replaced with ice 

cold deionized water and the samples were spiked with PA.  Additionally, Ang II was left on the 

cells for various amounts of time.  For analysis, the PA spot was located and analyzed utilizing 

the same procedures for PtdEtOH. 

 

2.5 125I-SAR1-ILE8-ANG II BINDING:   

PGSMCs were grown to confluence in 6-well plates, then they were washed, serum 

starved overnight, and the next day washed twice for 5 min in 1.5 mL binding buffer (50 mM 

Na2HPO4, 150 mM NaCl, 10 mM MgCl2, and 0.05% bovine serum albumin pH = 7.1).  Next, 1 

mL binding buffer with approximately 30 pM 125I-Sar1-Ile8-Ang II was added to the PGSMCs.  

Then various amounts of Ang II, L-158,809, or PD-123,319 were added at room temperature for 

60 min.  Next, the solution was decanted and the PGSMCs were quickly washed with 1 mL 
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binding buffer then lysed in 10% SDS.  Protein concentration was determined by the BCA 

method (Pierce), and the amount of 125I-Sar1-Ile8-Ang II bound was determined by γ-counting. 

To analyze the binding data, the number of cells in each sample was determined as 

follows.  Multiple 100-mm plates were trypsinized and resuspended in 5 mL serum free media, 

100 µL of this cell solution was placed into 20 mL Isoton solution and the cells were counted on 

a Coulter Counter.  Each sample was counted 6 times, the two outlying numbers were discarded, 

and the remaining 4 numbers were averaged and the number of cells in the sample was 

determined by the following formula: Coulter counts x 40 (the dilution factor) = cell number.  

This was repeated for 5 separate 100 µL aliquots.  Protein concentration was determined utilizing 

the BCA protocol on six 100 µL aliquots of the same cell solution.  The amount of cells in 1 µg 

of protein was then calculated by dividing the average number of cells in the 100 µL aliquot by 

the average µg protein in the 100 µL aliquot. 

 

2.6 QUANTIFICATION OF MRNA:   

Total RNA was isolated from confluent 100-mm plates utilizing the Rneasy Mini Kit 

protocol (Qiagen, Valencia, CA), and 10 µl of total RNA was used in the Clontech Advantage 

RT-for-PCR Kit.  The resulting cDNA was used to amplify PLD1, PLD2, AT1R, AT2R, and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH).  The primers and expected sizes are 

listed in Table 2.2.  All primers used were designed with Primer Designer 2.0 from Scientific & 

Educational Software (Durham, NC).  GAPDH was used as an internal control in each reaction.  

The primers for the AT1R were designed to amplify both AT1A and AT1B generating the same 

size band, and the PLD1 primers were designed to amplify both PLD1a and PLD1b generating 

two separate bands.  The amplification cycles were designed so that all the reactions would occur 
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simultaneously (annealing at 60°C for 45 sec and elongation at 72°C for 60 sec).  This cycle was 

repeated for a total of 30 times.  The PLD PCR products were run on a 3% agarose gel stained 

with ethidium bromide, whereas the Ang II receptors were run on a separate 2% agarose gel 

stained with ethidium bromide.  A digital picture was taken of the gels and the negatives were 

analyzed utilizing Molecular Analyst for Windows NT (Molecular Dynamics). 

 

2.7 CLONING OF RHOA FROM WKY AND SHR PGSMCS: 

Total RNA was isolated and cDNA generated as for RT-PCR.  RhoA was amplified from 

the cDNA via PCR with the primers in Table 2.3.  Restriction sites for EcoRI and BamHI 

respectively were placed in the 5’ area of the primers (before the dash) for future cloning and 

restriction analysis of colonies.  Deep Vent polymerase was used to amplify RhoA due to its 

ability to generate blunt ends, which is needed for the cloning kit.  The amplification cycles 

were: annealing 68°C for 45 sec, elongation 72°C for 1 min, and denaturing 94°C for 1 min.   

The PCR products were run on a 2% agarose gel, and DNA isolation was performed using 

GENECLEAN Turbo (Q-BIOgene, Carlsbad, CA).  The isolated RhoA cDNA was inserted into 

the Zero Blunt TOPO PCR Cloning Kit for Sequencing (Invitrogen) according to the 

manufacturer’s instructions.  Since the pCR4Blunt-TOPO plasmid is designed to grow only if 

there is an insert, only 8 colonies from the LB plate were screened by restriction analysis with 

EcoRI and BamHI.  Colonies that resulted in a 600bp band were sent to the University of 

Pittsburgh core sequencing facilities with primers to the T3 and T7 priming sites, which flank the 

insert region on pCR4Blunt-TOPO. 
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2.8 GENERATION OF S188A RHOA: 

 The S188A RhoA mutant was generated from WKY RhoA DNA by PCR with the 

primers listed in Table 2.3.  The mutation was introduced in the second primer at (C), which is 

normally an A and produces an alanine at position 188 instead of the endogenous serine.  

Restriction sites XhoI and PstI respectively were placed in the 5’ area of the primers (before the 

dash) for future cloning and restriction analysis of colonies.  The PCR products were separated 

on a 2% gel and the 600bp band was extracted via the GENECLEAN protocol.  The isolated 

band along with the EGFP-C1 plasmid (Clontech) was digested for 2 hours with XhoI and PstI 

then the PCR product was ligated into the cut EGFP plasmid overnight at 4°C.  The ligation 

reaction was then transformed into DH5α cells (Invitrogen/GibcoBRL) and plated onto LB 

plates with 30 µg/mL kanamycin (Sigma).  The resulting colonies were screened for a 615bp 

band on a 2% agarose gel after digestion with XhoI and PstI.  Colonies that resulted in the 615bp 

band were sent to the sequencing facility. 

 

2.9 MAPK ASSAYS:  

PGSMCs were grown to confluence in 60-mm dishes and serum starved overnight.  The 

next day, the cells were stimulated with Ang II for 5 min, washed with ice cold PBS, scraped on 

ice, and centrifuged at 16,000 x g for 1 min.  The resulting supernatant was decanted and the cell 

pellet was resuspended in 220µL lysis buffer (0.5% Triton-X-100, 50 mM HEPES, 10 mM 

MgCl2, 5 mM MnCl2, 1 mM PMSF, 1 mM vanadate, and 10 ug/mL Leupeptin, pH 7.4).  The 

samples were then vortexed and 20 µL of each sample was removed for protein concentration 

determination by the BCA method.  After removal of 20 µL, 62.5 µL of 4x SDS sample buffer 

(0.2 M Tris pH 6.8, 4% SDS, 4% 2-Mercaptoethanol, 0.8% bromo-phenolblue, and 40%  
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      Table 2.2:  Primers used for RT-PCR. 
 

Primers for PLD1 
 

Expected Sizes 
 

Forward 
 

 

5’-CGTGAACCACAGAACCAATG-3’ 
 

Reverse 
 

 

5’-TCTCACGGCAGCATCAGTAG-3’ 

 

PLD1a = 527bp 
 
 

PLD1b = 413bp 
 

 

Primers for PLD2 
 

Expected Size 
 

Forward 
 

 

5’-CAGGAGGCGGTTGAGGTAAT-3’ 
 

Reverse 
 

 

5’-AGTTGCACATGGAGCCAGAT-3’ 
467bp 

 

 

Primers for AT1R 
 

Expected Size 
 

Forward 
 

 

5’-GGAAACAGCTTGGTGGTG-3’ 
 

Reverse 
 

 

5’-CTGAATTTCATAAGCCTTCTT-3’ 
555bp 

 

 

Primers for AT2R 
 

Expected Size 
 

Forward 
 

 

5’-AGTGCATGCGGGAGCTG-3’ 
 

Reverse 
 

 

5’-GACAACAAAACAGTGAG-3’ 
309bp 

 

 

Primers for GAPDH 
 

Expected Size 
 

Forward 
 

 

5’-TACTCCTTGGAGGCCATGTA-3’ 
 

Reverse 
 

 

5’-CGTGGAGTCTACTGGCGTCT-3’ 
723bp 

  

The reverse primers were designed to bind to the complement strand of cDNA. 
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    Table 2.3:  Primers used for Sequencing and Generation of S188A RhoA. 
 

 

Primers for Cloning RhoA 
 

 

Size 
 

Forward 
 

 

5’-GACGAATTCA-ATGGCTGCCATCAGGAAG-3’ 
 

Reverse 
 

 

5’-GGATCCTAC-TGAGGCTGCGTTCACAAG-3’ 
631bp 

 

 

Primers for S188A RhoA 
 

Size 
 

Forward 
 

 

5’-TACTCGAGCT-ATGGCTGCCATCAGGAAGAA-3’ 
 

Reverse 
 

 

5’-ATCTGCAG-TCACAAGATGAGGCACCCCG(C)CTTTTT-3’ 
630bp 

 

 The reverse primers were designed to bind to the complement strand of cDNA.  The (C) in 

S188A RhoA represents the introduced mutation.   
 
 
 
glycerol) was added and boiled for 5 min.  The samples were then run on a 10% SDS-PAGE gel, 

transferred to Nitrobond nitrocellulose (VWR) and probed for the proteins in the MAPK cascade. 

To determine ERK1/2 and MEK activity the following protocol was utilized.  The 

specific anti-phospho-Erk1/2, E10, antibody was used to determine the level of phopho-ERK1/2 

by densitometry of the Western blot.  The E10 and secondary antibody were stripped from the 

nitrocellulose with stripping buffer (62.5 mM Tris-HCl 2% SDS, and 100 mM 2-

mercaptoethanol pH = 6.8), and the membrane was reprobed with the specific Erk1/2 antibody.  

Total ERK1/2 levels were determined by densitometry.  ERK1/2 activation was expressed as the 

ratio of phospho-Erk1/2 to total Erk1/2.  Identical procedures were used to determine MEK 

activation. 

 In order to confirm that PLD generation of PA is involved ERK1/2 activation, the 

protocol for measuring activation of ERK1/2 was used with the following additions.  20 mM PA 

was added to DMEM/F12 containing 1 mg/mL BSA.  The PA solution was sonicated at 40 units 

on a Heat Systems Sonifier Cell Disrupter (Plainview, NY) while on ice for 10 sec then allowed 
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to sit on ice for 10 sec.  This sequence was repeated 10 times.  Immediately following the last 

sonication 20 µL of the PA solution was added to the cells resulting in a final concentration of 

200 µM PA.  The cells were incubated with the PA for 5 min at 37°C and 5% CO2, then 1 µM 

Ang II was added to the cells for 5 min.  The remainder of the experimental procedure for 

accessing the levels of active ERK1/2 was followed.  

 

2.10 CONFOCAL IMAGINING EXPERIMENTS:  

 PGSMCs were plated on 25-mm diameter poly-L-lysine coated glass coverslips (Fisher 

Scientific, Pittsburgh, PA) in 6-well plates.  Cells were transfected with SuperFect (Qiagen), 

following the manufacturer’s protocol, and stimulated with 1 µM Ang II or 100 ng/mL EGF for 

5 min.  Following stimulation the coverslips were washed twice with ice-cold PBS and 1.5 mL 

fresh 3% paraformaldehyde in PBS was applied for 30 min at 4°C to fix the cells.  After fixation, 

the cells were washed with PBS, permeabilized with 1.5 mL 0.1% Triton X-100 in PBS for 2 

min, washed three times in PBS, and blocked with 2 mL 3% BSA in PBS for 30 min.  After 

blocking, the primary antibodies (Table 2.4) were added at a 1:500 dilution in 2 mL 3% BSA in 

PBS for 60 min.  The cells were then washed twice with PBS, then the secondary antibodies 

(Table 2.4) were added at 3 µg/mL and 2.6 µg/mL for Cy3- and Cy5-conjugated antibodies 

respectively in 2 mL 3% BSA in PBS for 60 min. Ten units of the Alexa 488-conjugated 

phalloidin was added with the secondary antibodies.  The cells were washed after 

immunostaining twice with PBS then once with deionized water.  The coverslips were then 

mounted, cells down, on Fisherbrand Superfrost plus microscope slides with Gel/Mount 

(Biomeda, Foster City, CA) mounting gel and sealed with Revlon clear nail polish.  Confocal 
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images were taken with a Zeiss LSM5 PASCAL confocal microscope AxioVert 200 stage (Carl 

Zeiss Inc., Jena, Germany) equipped with a 1.4 NA 63x oil immersion objective. 

2.11 DATA AND STATISTICAL ANALYSIS:  

For all mathematical operations containing two independent data sets with a measurable 

error, the following error propagation formulas were applied.  If f and g are two means and fe 

and ge are their respective error, then the error for f/g is [fe*g-f*ge]/g2 and the error for f±g is 

fe+ge.  For multiple comparisons, the data were analyzed by ANOVA with Fisher’s LSD post 

hoc test.  For individual comparisons, a t-test was used to determine significance.  Data points 

are assumed to be significant only if P < 0.05.  Statistical analysis was conducted using the 

NCSS 2000 (Kaysville, UT) software package.  Dose response curves were analyzed using the 

curve fit routines of GraphPad Prism (San Diego, CA). 

 
 

 
 
 

 
Table 2.4:  Antibodies and Fluorophores used for Confocal Imaging Experiments. 
 

Position Name Conjugate Origin Epitope Absorption 
Peak (nm)

Emission 
Peak (nm) 

Assigned 
Color 

 
1° 

 
E10 - Mouse Phospho-

ERK1/2 - - - 

 
1° 

 
- - Rabbit Phospho-

MEK - - - 

 
- 
 

EGFP dnPLD2 - - 488 507 Blue 

 
- 
 

phalloidin Alexa 488 - Binds F-actin 495 518 Blue 

 
2° 

 
AffiniPure Cy5 Donkey Anti-Mouse 650 750 Red 

 
2° 

 
AffiniPure Cy3 Donkey Anti-Rabbit 550 570 Green 
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Chapter 3 

 
MECHANISM OF ANGIOTENSIN II STIMULATION OF PLD 

 
 
 

3.1 INTRODUCTION 

 Angiotensin II importantly contributes to the pathophysiology of hypertension in SHR.  

Blood pressure in SHR is normalized by angiotensin converting enzyme inhibitors (3), AT1R 

antagonists (2), and active immunization against renin (4).  However, Ang II production is 

apparently not elevated in SHR, either systemically (185) or locally (186), compared to WKY.  

On the other hand, renal transplantation studies demonstrate that the kidneys mediate 

hypertension in SHR (7;187;188).  A working hypothesis to explain these observations is that 

hypertension in SHR is due to enhanced renovascular sensitivity to Ang II (10;11;189). 

 The mechanism of enhanced renal sensitivity to Ang II is unclear, but may involve 

multiple signaling pathways.  Previous studies demonstrated that Ang II-induced PLD activity is 

increased in thoracic smooth muscle cells from SHR compared to WKY (112).  PLD generates 

PA, a lipid involved in the activation of MAPK (121;153).  Because MAPK activity is elevated 

in vasculature from the SHR (63), and MAPK appears to be involved in vascular smooth muscle 

cell contraction (91;190), it is possible that PLD mediates, in part, the enhanced renovascular 

response to Ang II in SHR.  In order to describe the increased PLD activity in SHR, the 

mechanisms of PLD activation must first be described.  Since the underlying hypothesis is that 

increased PLD activity may be involved in hypertension, PGSMCs from SHR and WKY were 

utilized to determine: 1) the effect of Ang II on PLD activity; 2) the relative roles of Ang II 

receptor subtypes in the stimulation of PLD; 3) the relative contributions of PLD isoforms to 
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Ang II- dependent PLD activity; and 4) the signaling pathways that mediate Ang II-induced 

stimulation of PLD (Fig. 3.1). 

 

3.2 RESULTS 

 

3.2.1 ANGIOTENSIN II STIMULATES PLD THROUGH THE AT1 RECEPTOR. 

 As shown in Figure 3.2, Ang II increased PLD activity in both SHR and WKY PGSMCs 

in a concentration-dependent fashion, but the EC50 for Ang II in SHR PGSMCs (6.0 x 10-9 M) 

was significantly less (P < 0.05) than that for WKY PGSMCs (7.2 x 10-8 M).  Two-factor 

ANOVA analysis indicated that there is a significant shift to the left of the SHR dose response 

when compared with the WKY response curve (Fig. 3.2).  However, the time course of Ang II-

mediated generation of PA is similar in WKY and SHR PGSMCs (Fig. 3.3).  The PA generation 

time course indicates that PA is generated within 40 sec and maximal concentrations arise before 

3 min.  Thus, Ang II-mediated increase in PA levels fit the kinetics of other early signal 

transduction compounds.   

To determine the Ang II receptor that is responsible for activating PLD, the specific 

AT1R and AT2R antagonists, L-158,809 and PD-123,319 respectively, were administered at 5x 

their IC50 values.  As shown in Figure 3.4, 1.5 nM L-158,809 inhibited Ang II-induced PLD 

activity in SHR and WKY PGSMCs by 92 ± 9 and 63 ± 5 percent, respectively, and 15 nM PD-

123,319 did not significantly attenuate Ang II-mediated PLD activity.  Because only L-158,809 

decreased Ang II-dependent PLD activation in WKY and SHR, PLD activation is downstream of 

the AT1R in PGSMCs as previously shown in thoracic aortic smooth muscle cells (110).  Further 

analysis of the receptors is presented in Chapter 4 
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Figure 3.1:  Simplified Flow Diagram of how a GPCR can Activate PLD. 

 PLD can be activated by a variety of mechanisms.  However, all mechanisms described thus far 

involve PI3K, PKC, ARF, or Rho.  The (R) indicates the GPCR. 
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Figure 3.2:  Ang II-Mediated PLD Activity Concentration Response Curve. 

 Ang II stimulates PLD in WKY and SHR PGSMCs; however, Ang II is a more potent activator of 

PLD in SHR, compared to WKY PGSMCs.  Data are expressed as Mean ± SEM, n = 6; * indicates that 

the SHR is significantly greater than WKY (P < 0.05) at the respective concentration. 
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Figure 3.3:  Ang II-Mediated PA Production. 

 Stimulation of WKY and SHR PGSMCs with 1 µM Ang II leads to a rapid accumulation of PA.  

Data are expressed as Mean ± SEM, n ≥ 3; SHR is not significantly different than WKY (P = 0.6113). 
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Figure 3.4:  Ang II Activates PLD by Acting on the AT1R. 

 1 µM Ang II-mediated PLD activity is significantly attenuated by the AT1R antagonist L-158,809 

(AT1) in both WKY and SHR PGSMCs, and the AT2R antagonist PD-123,319 (AT2) does not inhibit Ang 

II-mediated PLD activity in WKY and SHR PGSMCs.  Data are expressed as Mean ± SEM, n = 3; bars 

with different letters are significantly different (P < 0.05). 
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3.2.2 Identification of the PLD Activated by Ang II. 

RT-PCR demonstrated the presence of all PLD isoforms in both SHR and WKY 

PGSMCs (Fig. 3.5, top panel).  Transfection of cells with dnPLD2, but not dnPLD1, blocked 

Ang II-induced PLD activity (Fig. 3.5, bottom panel) in both SHR and WKY PGSMCs.  These 

data suggest that PLD2 is the main signaling isoform in Ang II-mediated PLD activity in WKY 

and SHR PGSMCs, and the more potent Ang II-mediated PLD activity in SHR is not due to 

increased quantity of PLD2. 

 

3.2.3 ROLE OF PI3K AND PKC IN ANG II-MEDIATED PLD ACTIVITY. 

 As shown in Figure 3.6, neither 7 µM LY-294002 nor 100 nM wortmannin abolished 

Ang II-mediated PLD activity.  There is a slight inhibition in WKY PGSMCs by wortmannin.  

However, the degree of inhibition does not match what is expected for 100 nM wortmannin and 

LY-294002 does not inhibit signaling in the WKY, thus indicating that the significant decrease 

observed is not biologically significant.  Therefore, PI3K activity is not essential for the 

activation of PLD by Ang II.  390 nM Ro-31-8425, 1 µM Go-6983, and 250 nM staurosporine 

did not inhibit Ang II-mediated PLD activity suggesting that the effects of Ang II on PLD are 

independent of PKC activity (Fig. 3.7).  Combining Ro-31-8425 and Go-6983 slightly inhibited 

Ang II-mediated PLD2 activity only in SHR PGSMCs.  However, the degree of inhibition was 

less than 50%, which is not what would be expected with the concentrations of Ro-31-8425 and 

Go-6983 used because at these concentrations PKC signaling should be nearly abolished (Fig. 

3.8).  To verify that: 1) the PKC inhibitors are functional in this experimental system, and 2) the 

inhibition of PLD by combining Ro-31-8425 and Go-6983 is an artifact and not due to PKC 

inhibition, 500nM PMA served as a positive control for the PKC inhibitors (Fig. 3.8).  All PKC 
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Figure 3.5:  All PLD Isoforms are Present and Ang II activates PLD2. 

 RT-PCR (Top) indicates that all PLD isoforms are present and similarly expressed in WKY and 

SHR PGSMCs.  Transfection with dnPLDs (Bottom) indicates that 1 µM Ang II activates PLD2.  Data 

are expressed as Mean ± SEM, n = 3; bars with different letters are significantly different (P < 0.05). 
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Figure 3.6:  Ang II-Mediated PLD Activity is not Mediated through PI3K. 

 Inhibition of PI3K with 7 µM LY-294002 (LY) and 100 nM wortmannin (Wort) does not inhibit 

1 µM Ang II-mediated PLD activity.  Data are expressed as Mean ± SEM, n = 3; bars with different 

letters are significantly different (P < 0.05). 
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Figure 3.7:  Ang II-Mediated PLD Activity is not Mediated through PKC. 

 Inhibition of PKC with 390 nM Ro-31-8425 (Ro), 1 µM Go-6983 (Go), and 250 nM 

staurosporine (Star) does not inhibit 1 µM Ang II-mediated PLD activity.  Data are expressed as Mean ± 

SEM, n = 3; bars with different letters are significantly different (P < 0.05). 
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Figure 3.8:  The PKC Inhibitors Block PMA-Induced PLD activity. 

 500 nM PMA stimulates PLD in WKY and SHR PGSMCs.  PMA stimulation of PLD is greatly 

reduced by all PKC inhibitors used (390 nM, 1 µM, and 250 nM for Ro, Go, and Star, respectively), 

however, 100 nM wortmannin has little effect on PMA-mediated PLD activation.  Data are expressed as 

Mean ± SEM, n = 3; * indicates that the bar is significantly less than control PMA (P < 0.05). 
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inhibitors, but not the negative control wortmannin, significantly and similarly blocked PMA-

induced PLD activity in WKY and SHR PGSMCs.  Therefore, the PKC inhibitors are functional 

in this experimental system, and due to the similarity of inhibition between the various inhibitors, 

the effect of Ro-31-8425 and Go-6983 in combination in SHR PGSMCs is most likely an 

artifact.  Additionally, the fact that wortmannin had little effect on PMA-induced PLD activity 

indicates that PKC is not non-specifically inhibited by the addition of any compound. 

 

3.2.4 ROLE OF SMALL G PROTEINS IN ANG II-MEDIATED PLD ACTIVITY. 

 Previous data from A10 smooth muscle cells indicate that ARF is involved in Ang II-

mediated PLD activation (120).  Therefore, analysis of the G proteins involved in Ang II-

mediated PLD activity was conducted in two steps: 1) analysis of ARF activation by ARF GEFs, 

and 2) the role of the small G proteins ARF and RhoA.  Transfection of PGSMCs with E156K 

ARNO (dnARNO), which inhibits BFA-insensitive ARF GEFs, had no effect on Ang II-

mediated PLD activity in WKY PGSMCs, but enhanced Ang II-mediated PLD activity in SHR 

PGSMCs (Fig. 3.9, top panel).  Addition of 50 µg/mL BFA completely blocked Ang II-mediated 

PLD activity in SHR PGSMCs, but only reduced by 40 ± 0.4 % in WKY PGSMCs (P < 0.05 

compared with inhibition of SHR PGSMCs) (Fig. 3.9, bottom panel).  These data suggest that a 

BFA-sensitive GEF activates ARF that then activates PLD in SHR PGSMCs, and that there is a 

different mechanism for activation of PLD in WKY PGSMCs.   

To examine further these conclusions, WKY and SHR PGSMCs were transfected with 

catalytically inactive mutants of the small G proteins (Fig. 3.10).  T17N RhoA significantly 

reduced Ang II-mediated PLD activity in WKY and SHR PGSMCs.  However, T31N ARF1 and 

T26N ARF6 did not reduce Ang II-induced PLD activity.  The inhibition of Ang II-mediated 
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Figure 3.9:  Differential Effects of Inhibiting ARF GEFs. 

 Transfection of dnARNO (top) does not inhibit 1 µM Ang II-medaited PLD activity.  However, 

administration of 50 µg/mL BFA (bottom) inhibits 1 µM Ang II-mediated PLD activity to a greater extent 

in SHR compared to WKY PGSMCs.  Data are expressed as Mean ± SEM, n = 3; bars with different 

letters are significantly different (P < 0.05). 
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Figure 3.10:  Effects of dn-G proteins on Ang II-Mediated PLD Activity. 

 Only dnRhoA significantly inhibits 1 µM Ang II-mediated PLD activity.  Con and AII cells were 

transfected with empty EGFP plasmid. Data are expressed as Mean ± SEM, n = 3; bars with different 

letters are significantly different (P < 0.05). 
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PLD activity by T17N RhoA corresponds with the observed transfection efficiency of 50% and 

the ARF mutants increase PLD activity only in SHR indicating that RhoA mediates Ang II-

induced PLD activation in both WKY and SHR PGSMCs.  Thus, the results with the small G 

protein mutants do not confirm the previous conclusion regarding BFA and ARF in SHR 

PGSMCs.  Therefore, the BFA data are either an artifact or there is a non-ARF GEF target for 

BFA in SHR PGSMCs. 

 

3.2.5 ROLE OF RHO KINASES  IN ANG II-MEDIATED PLD ACTIVITY. 

 Rho cannot directly activate PLD2 (143).  However, Rho kinase has been implicated in 

agonist-mediated activation of PLD (152).  Therefore, the role of Rho kinase in Ang II-mediated 

PLD activity was examined with two Rho kinase inhibitors Y-27632 and HA-1077.  Neither Y-

27632 nor HA-1077 inhibited Ang II-mediated PLD activity (Fig. 3.11), yet the effectiveness of 

the inhibitors in this experimental system is unknown.  To determine if the inhibitors block Rho 

kinase under these specific conditions, the effect of the inhibitors on the interaction of UK-

14,304, an α2-adrenergic agonist, and Ang II was examined in SHR PGSMCs because previous 

studies indicated that UK-14,304 and Ang II synergistically constrict renal blood vessels in SHR 

(191).  UK-14,304 and Ang II synergistically activate PLD and the Rho kinase inhibitors block 

the synergism without inhibiting the Ang II component of PLD activation (Fig. 3.12).  Therefore, 

the Rho kinase inhibitors function in this experimental system, and the inhibitors do not affect 

Ang II-mediated PLD activation. 
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Figure 3.11:  Ang II-Mediated PLD Activity is not Mediated by Rho Kinase. 

 Inhibition of Rho Kinases with 1 µM Y-27632 (Y) and 1 µM HA-1077 (HA) does not inhibit 1 

µM Ang II-mediated PLD activity.  Data are expressed as Mean ± SEM, n = 3; bars with different letters 

are significantly different (P < 0.05). 
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Figure 3.12:  Rho Kinase Inhibitors Block the Synergy between UK-14,304 and Ang II-

medaited PLD Activity in SHR. 

 Stimulation with 1 µM UK-14,304 (UK) leads to enhanced 1 µM Ang II-mediated PLD activity

only in SHR and this synergy is blocked 1 µM of the Rho kinase inhibitors Y-27632 and HA-1077.  The

dotted gray line indicates the level of activation by 1 µM Ang II in SHR.  Data are expressed as mean

and SEM, n = 3; bars with different letters are significantly different (P < 0.05).   
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3.3 DISCUSSION 

 Preglomerular microvascular smooth muscle cells modulate preglomerular vascular 

resistance and thus regulate renal blood flow, glomerular filtration rate and, indirectly, renal 

sodium excretion (192).  Since renal function determines long-term arterial blood pressure (193), 

altered responses of PGSMCs to vasoactive factors are likely to be important in the 

pathophysiology of genetic hypertension.  Several studies suggest that the preglomerular 

microcirculation is more responsive to Ang II in SHR compared with WKY rats (10;11;189), and 

the basis for this hyperresponsiveness to Ang II is under intense investigation. 

 PLD is an important regulatory enzyme activated by several vasoactive agents including 

Ang II and endothelin-1 (120).  Recent work has demonstrated that PA, the product of PLD-

catalyzed hydrolysis of phosphatidylcholine, plays a central role in the regulation of the MAPK 

cascade (121;153).  In A10 cells, a vascular smooth muscle cell line, the stimulation of MAPK 

phosphorylation by Ang II is inhibited in the absence of PLD activity, and addition of PA 

restores the effects of Ang II on MAPK phosphorylation (120).  Recent data indicate that MAPK 

inhibition; 1) reduces Ang II-induced primary smooth muscle cell contraction, and 2) normalizes 

the Ang II contractile response of the SHR smooth muscle cells (91).  Additionally, MAPK has 

been implicated in the phosphorylation of caldesmon leading to increased smooth muscle 

contraction (190).  Therefore, alterations in the regulation of PLD activity by vasoactive peptides 

may play an important role in the development of hypertension. 

 These experiments demonstrate that Ang II stimulates PLD activity in PGSMCs, and that 

SHR PGSMCs are significantly more sensitive to Ang II than WKY PGSMCs.  In order to 

establish the biochemical basis for these differences, the mechanism of Ang II-mediated 

activation of PLD was examined.  Previous studies on thoracic aorta vascular smooth muscle 

cells show that AT1 receptors transduce signals to PLD (110).  SHR and WKY PGSMCs are not 
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different, since the selective AT1 antagonist L-158,805 inhibited the effects of Ang II on PLD.  

This finding is consistent with previous in vivo experiments demonstrating that the enhanced 

renovascular response to Ang II in the SHR kidney is mediated by the AT1R (9).  Semi-

quantitative PCR shows that SHR and WKY PGSMCs express similar amounts of PLD1 and 

PLD2, thus Ang II could activate either or both PLDs.  To determine the PLD isoform(s) 

activated by Ang II, PGSMCs were transfected with dnPLD1 and dnPLD2.  The data indicate 

that PLD2 is the main signaling isoform, thus confirming previous findings from our laboratory 

(120;121). 

 G-protein coupled receptors (GPCR) can regulate PLD activity by several mechanisms 

(194).  For instance, GPCRs activate PI3K (195), and PIP2 and/or PIP3 appear to be required for 

the activity of PLD (141).  Likewise, many GPCRs activate PKC, which has been shown to be an 

important regulator of PLD activity (196).  Additionally, the small G proteins ARF and RhoA 

can be activated by GPCRs and consequently activate PLD (120;137).  Furthermore, RhoA 

activates Rho kinases that then activate PLD (152).  Pharmacological inhibition of PI3K, PKC, 

and Rho kinase(s) and dn-mutants of the small G proteins were used to determine the pathway 

Ang II utilizes to activate PLD.  Since only dnRhoA inhibited Ang II-mediated PLD activity in 

both SHR and WKY PGSMCs, the data from these experiments lead to the conclusion that PLD 

is activated through a RhoA-dependent mechanism, and that Rho kinase is not involved in Ang 

II/RhoA-mediated activation of PLD. 

 

3.4 CONCLUSIONS 

 Ang II stimulates PLD2 activity through the AT1R and RhoA in WKY and SHR 

PGSMCs.  However, the sensitivity of SHR PGSMCs to Ang II-mediated PLD2 activity is 

increased by ten fold compared to WKY PGSMCs. 
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Chapter 4 

 
CHARACTERIZATION OF ANG II RECEPTORS PRESENT ON 
WKY AND SHR PGSMCS AND THEIR EFFECTS ON ANG II-

MEDIATED PLD ACTIVITY 
 
 
 
4.1 INTRODUCTION 

 The AT2R is traditionally thought to be expressed during development and wound 

healing, as well as sparsely in a few organs of the adult organism (20), but not the renal 

vasculature (197-199).  However, physiological studies utilizing specific agonists and 

antagonists suggest that the AT2R is present in the renal vasculature (37;200;201).  Additionally, 

binding studies indicate that there are AT2Rs in the vasculature of rats up to 8 weeks of age (202) 

and immunohistochemical staining indicates that there are AT2Rs present in the vasculature of 

the human kidney (203).  The experiments in Chapter 3 with the AT2R specific antagonist PD-

123,319 indicate that there are AT2Rs on cultured PGSMCs.  The role of the AT2R in Ang II-

mediated PLD activation appears to be opposite in WKY and SHR PGSMCs (Fig 3.4).  

Therefore, the data suggest that there are differences in the expression and/or signal transduction 

of the AT2R between cultured WKY and SHR PGSMCs.  The purpose of the following 

experiments was to examine the levels of angiotensin II receptors on WKY and SHR PGSMCs, 

and to define the role of the AT2R in Ang II-mediated PLD activity. 
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4.2 RESULTS 

 

4.2.1 PERTUSSIS TOXIN ACTS SIMILARLY TO PD-123,319. 

 Due to the apparent potentiation of Ang II-mediated PLD activity in SHR PGSMCs by 15 

nM PD-123,319, 10 nM Ang II-mediated PLD activity was examined in WKY and SHR 

PGSMCs.  Because the AT2R signals through Gαi/o proteins (18;19), AT2R signaling can be 

inhibited with pertussis toxin as well as PD-123,319.  As shown in Figure 4.1, 1 ng/mL pertussis 

toxin acts similarly to 15 nM of PD-123,319 in WKY and SHR PGSMCs.  Importantly inhibition 

of AT2R signaling potentiates 10 nM Ang II-mediated signaling in WKY but not SHR PGSMCs.  

Thus there is an apparent discrepancy in that inhibition of the AT2R potentiates at low 

concentrations of Ang II signaling in WKY PGSMCs and at high concentrations of Ang II in 

SHR PGSMCs.  Therefore, the role of the AT2R in Ang II-mediated PLD activity warrants 

further investigation. 

 

4.2.2 DETERMINATION OF ANGIOTENSIN II RECEPTOR  EXPRESSION. 

 The amount of AT1R and AT2R mRNA present in PGSMCs from WKY and SHR was 

determined by RT-PCR with GAPDH as an internal control (Fig. 4.2).  As indicated by the Ang 

II receptor antagonists and pertussis toxin, WKY and SHR PGSMCs express both receptor 

subtypes.  Importantly, SHR PGSMCs contain significantly more AT1R message and 

significantly less AT2R message compared to WKY PGSMCs.  Furthermore SHR PGSMCs 

contain more AT1R than AT2R message, whereas WKY PGSMCs contain similar amounts of 

AT1R and AT2R message.   
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Figure 4.1:  Effects of Pertussis Toxin and PD-123,319 on Ang II-Mediated PLD 

Activity. 

 Ang II-mediated PLD activity is significantly attenuated by the AT2R antagonist PD-123,319 

(PD) and Pertussis toxin (PTX) in WKY PGSMCs, but PD and PTX enhance Ang II-mediated PLD 

activity in SHR PGSMCs.  The difference between the WKY and SHR with PD and PTX is significantly 

different (P < 0.05).   Data are expressed as Mean ± SEM, n = 3; bars with different letters are 

significantly different (P < 0.05). 
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FIGURE 4.2:  Semi-Quantitative RT-PCR of WKY and SHR AT1Rs and AT2Rs. 

 Levels of AT1R mRNA are greater in SHR compared to WKY PGSMCs.  SHR have 4-fold 

greater levels of AT1R mRNA compared to AT2R mRNA, whereas WKY PGSMCs have similar mRNA 

levels for AT1Rs and AT2Rs, and WKY PGSMCs have 2 fold more AT2R mRNA than SHR PGSMCs.  

Data are expressed as Mean ± SEM, n = 3; * indicates that the SHR is significantly different (P < 0.05) 

compared to WKY by t-test. 
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 Receptor message does not necessarily directly correlate with abundance of receptor 

protein.  To determine the amount of receptor available for activation by Ang II a series of 

binding experiments with 125I-Sar1-Ile8-Ang II were conducted.  Displacement of 125I-Sar1-Ile8-

Ang II with unlabeled Ang II (Fig. 4.3a) indicates that there are more Ang II receptors present on 

SHR PGSMCs compared to WKY PGSMCs, yet the affinity for Ang II is similar between the 

SHR and WKY PGSMCs.  Displacement of 125I-Sar1-Ile8-Ang II with L-158,809 (Fig. 4.3b) 

indicates that there are significantly more AT1 receptors on SHR compared to WKY PGSMCs, 

and displacement with PD-123,319 (Fig. 4.3c) indicates that SHR PGSMCs have significantly 

fewer AT2 receptors than WKY PGSMCs.  Interestingly, the affinities for L-158,809 and PD-

123,319 are similar in WKY and SHR PGSMCs, indicating that the only difference between 

WKY and SHR PGSMCs is the relative amount of receptors. 

 Table 4.1 illustrates that the ratios of AT1Rs to AT2Rs are similar in the RT-PCR and 

ligand binding studies.  Therefore, SHR PGSMCs express more AT1R than AT2R and have an 

increased AT1R to AT2R ratio compared to WKY PGSMCs.  This suggests that the altered 

responses observed in blood pressure control in the SHR are due to an imbalance of Ang II 

ratios. 

 

 

Table 4.1:  AT1R/AT2R Ratios 
 WKY SHR 
RT-PCR 1.00 ± 0.18 4.34 ± 0.90 
Binding 0.74 ± 0.01 2.79 ± 0.53 
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Figure 4.3:  Identification of AT1R and AT2R Numb

 Displacement of 125I-Sar1-Ile8-Ang II with cold Ang I

50% more Ang II receptors than the WKY, however WKY an

for Ang II.  Displacement of 125I-Sar1-Ile8-Ang II with L-158,8
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4.2.3 EFFECT OF THE AT2R ON ANG II-MEDIATED PLD ACTIVITY. 

 Because the AT2R generally inhibits the functions of the AT1R and the AT1R is the 

receptor that mediates Ang II activation of PLD, the increased sensitivity of SHR PGSMCs, 

compared to WKY PGSMCs, to Ang II-mediated PLD activity may be due to the altered 

AT1R/AT2R ratio.  To examine the hypothesis that the altered receptor ratio is responsible for the 

different effects of Ang II-mediated PLD activity in WKY and SHR PGSMCs, Ang II-mediated 

PLD activation concentration-response curves were generated in the presence of 15 nM PD-

123,319 and 100 nM CGP-42112A, an AT2R agonist. 

As reported in Chapter 3, Ang II-mediated PLD activity has approximately a 10-fold 

greater potency in SHR compared to WKY PGSMCs, EC50 = 4 nM and 47 nM respectively (Fig. 

4.4).  The efficacy of Ang II-mediated PLD activity is significantly decreased by 30% in SHR 

compared to WKY PGSMCs due to higher basal levels of PLD activity in SHR PGSMCs.  

Additionally, two-factor ANOVA analysis indicates that there is a significant shift to the left of 

the SHR concentration-response curve when compared with the WKY response curve.  As 

predicted by the imbalance in receptor hypothesis, the WKY concentration-response curve is 

normalized to the SHR with addition of PD-123,319, EC50 = 4 nM and 24 nM for the WKY and 

SHR respectively (Fig. 4.5a).  Interestingly, there is no significant change in the SHR 

concentration-response curve with the addition of PD-123,319 (Fig. 4.5b).  However, the 

efficacy of Ang II-mediated PLD activity is increased to that of WKY PGSMCs.  Addition of 

PD-123,319 significantly shifted the WKY concentration-response curve leftward, indicating 

that the AT2R attenuates the AT1R signaling to PLD (Fig. 4.5c).  Thus, these data support the 

hypothesis that decreased amounts of AT2Rs on SHR PGSMCs compared to WKY PGSMCs are 
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responsible for increased sensitivity of PLD to Ang II in SHR PGSMCs, and AT2Rs attenuate 

Ang II-mediated PLD activity.   

The hypothesis that the AT2R attenuates Ang II-mediated PLD activity can be examined with the 

AT2R agonist.  Use of CGP-42112A should result in little effect in the SHR, but should shift the 

WKY concentration-response curve rightwards indicating that the AT2R is attenuating Ang II-

mediated PLD activity.  Interestingly, CGP-42112A significantly altered the Ang II-mediated 

PLD activity concentration-response curves of WKY and SHR PGSMCs (Fig. 4.6a).  The WKY 

concentration-response curve is significantly shifted downwards resulting in a 60% decrease in 

efficacy (Fig. 4.6b).  The SHR curve is shifted significantly rightward resulting in an EC50 = 31 

nM, compared to an EC50 = 4 nM without CGP-42112A, without altering the efficacy of Ang II-

mediated PLD activity (Fig. 4.6c).  Thus, the SHR has functional AT2Rs, but too few to inhibit 

PLD activation as seen in WKY PGSMCs.  Therefore, the amount of AT2Rs appear to be the 

primary difference in Ang II-mediated PLD activity between SHR and WKY PGSMCs. 

 

4.3 DISCUSSION 

 Although the majority of reports indicate that there are no AT2Rs in the renal 

vasculature (198;199;204), the experiments presented here indicate that there are AT2Rs on 

cultured WKY and SHR PGSMCs.  Furthermore, there are more AT2Rs on WKY compared to 

SHR PGSMCs, and the ratio of AT1Rs to AT2Rs is increased by approximately 3-fold in SHR 

PGSMCs compared to WKY PGSMCs.  Importantly, the change in receptor ratio is due to both 

an increase in SHR AT1R levels, as well as to a decrease in SHR AT2R levels compared to WKY 

PGSMCs.  Because the AT2R generally attenuates AT1R-mediated responses, the effect of the 

AT2R on Ang II/AT1R-mediated PLD activity was examined.  As expected, the AT2R attenuates 
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Figure 4.4:  Ang II-Mediated PLD Activity Concentration Response Curve. 

 Ang II stimulates PLD in WKY and SHR PGSMCs.  However, Ang II is a more potent activator 

of PLD in SHR compared to WKY PGSMCs.  Data are expressed as Mean ± SEM, n ≥ 3.  * indicates that 

the SHR is significantly greater than WKY (P < 0.05) at the respective concentration. 
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 Ang II-mediated PLD activity, as shown with the AT2R antagonist.  However, the results with 

the AT2R agonist did not conform to the initial hypothesis that the curve would be shifted to the 

right.  Instead, addition of the AT2R agonist decreased the efficacy of Ang II-mediated PLD 

activity in WKY PGSMCs and had a small but significant effect in SHR PGSMCs. 

 The effects seen with the AT2R agonist might be explained by the differences in 

internalization of the AT1R and AT2R.  As previously mentioned, the AT1R rapidly internalizes 

upon stimulation (27), but the AT2R does not undergo agonist-dependent internalization (29).  

When the AT1R is internalized, Ang II is trafficked to the lysosome and the receptor is recycled 

to the plasma membrane (30).  Therefore, addition of Ang II results in degradation of the agonist 

through internalization of AT1Rs, as well as ecto-peptidases, but addition of the AT2R agonist 

results in degradation only through the ecto-peptidase pathway.  Thus, addition of a fixed amount 

of the AT2R agonist does not result in a competitive interaction during the duration of 

stimulation in these experiments (20 min) but generates what appears to be a constitutively active 

receptor.  Using the analogy of a constitutively active receptor, an inhibitory receptor would turn 

off the observed response, which would appear as a downward shift of, or complete elimination 

of the concentration response curve.  This is what is seen in the WKY PGSMCs, and the 

response that is generated from Ang II (40% of control) is most likely due to the kinetics of 

inhibition of the AT1R response.  As shown in Fig. 3.3, generation of PA is rapid and results in a 

doubling of basal PA levels.  This parallels the results seen when analyzing PLD activity, 

suggesting that PLD is responsible for Ang II generation of PA.  Therefore, if the kinetics of 

inhibition are slower than activation of PLD, then some PLD activity will be observed.   

Although the analogy to the constitutively active receptor explains the data for Ang II-

mediated PLD activity in WKY PGSMCs, it fails to explain the observations in SHR PGSMCs.  
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Since SHR PGSMCs fail to respond to the AT2R antagonist, the small yet significant shift in the 

concentration-response curve in the presence of the AT2R agonist indicates that SHR PGSMCs 

have functional AT2Rs.  In addition to having few receptors, there appears to be a defect in AT2R 

signal transduction since the concentration-response curve in the presence of the AT2R agonist is 

shifted slightly to the right instead of a slight decrease in efficacy. 

 

4.4 CONCLUSIONS 

 There are AT1Rs and AT2Rs on cultured PGSMCs.  AT1Rs are responsible for Ang II-

mediated PLD activation, whereas AT2Rs inhibit AT1R-mediated PLD activation.  The increased 

potency of Ang II-mediated PLD activity in SHR PGSMCs compared to WKY PGSMCs is due 

to an altered ratio of AT1 to AT2 receptors. 
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Chapter 5 

 
MECHANISM OF AT2R INHIBITION OF AT1R-MEDIATED 

ACTIVATION OF PLD 
 
 
 

5.1 INTRODUCTION 

Multiple physiological studies indicate that AT2Rs antagonize AT1R-mediated responses 

(37;200;201).  Furthermore, AT2R knockout mice have increased blood pressure compared to 

controls and display enhanced responses to exogenous Ang II (33;34).  Conversely, 

AT1AR/AT1BR double knockout mice have lower blood pressure compared to controls and lack 

the typical increase in blood pressure after exogenous Ang II (35).  These data suggest that 

alterations in the levels of Ang II receptors can affect basal blood pressure and Ang II-mediated 

changes in blood pressure.  Therefore, the previous observations that the AT2R inhibits AT1R-

mediated PLD activity (Chapter 4) is not surprising, and elevated PLD activity may serve as a 

biomarker for the enhanced physiological responses to Ang II in hypertension. 

To understand the mechanism of AT2R-mediated inhibition of AT1R-mediated PLD 

activation, the signal transduction of the AT2R must be examined.  Unfortunately, the signal 

transduction initiated by the AT2R is poorly understood in comparison to the AT1R.  However, 

the AT2R has been shown to couple to Gαi/o proteins (18;19) and signal via inhibiting adenylyl 

cyclase through Gαi/o, stimulating NOS (21;22), activating PLA2 (23;24), and activating a 

variety of phosphatases (25;26).  Since no kinases have been described in Ang II-mediated PLD 

activity in PGSMCs (Chapter 3), AT2R-medaited inhibition of Ang II-mediated PLD activity 

most likely does not occur through a phosphatase.  Interestingly, in plants, PLD can be inhibited 

by the addition of lysophosphatidylethanolamine (LPE) (205), which can be produced through a 

65 



 

PLA2 pathway.  Therefore, one mechanism of AT2R-medaited inhibition of PLD could be 

through activation of PLA2 resulting in the formation of LPE and subsequent inhibition of PLD.  

PKA and PKG share consensus phosphorylation sites, and, when this site is phosphorylated 

RhoA is inactivated due to interactions with Rho GDI (Fig 1.2).  Since the AT2R couples to Gαi 

and inhibits adenylyl cyclase thus reducing cAMP levels, it is unlikely that the AT2R is 

inhibiting AT1R-mediated activation of PLD through a cAMP-PKA mechanism.  However, 

generation of NO and subsequent cGMP can stimulate PKG activity and, thus, may provide a 

pathway for the AT2R to inhibit AT1R-mediated PLD activity by inactivating RhoA, which is 

required for the AT1R to activate PLD (Fig. 3.10).   

Therefore, the two likely candidate pathways for inactivation of AT1R-mediated PLD 

activity are through PLA2 or NOS.  The purpose of the following experiments was to identify 

and characterize the pathway utilized by the AT2R to inhibit AT1R-medaited PLD activity. 

 

5.2 RESULTS 

 

5.2.1 EFFECT OF INHIBITING PLA2 AND NOS. 

 Since inhibition of the AT2R increases PLD activity at low concentrations of Ang II in 

WKY PGSMCs, 10n M Ang II was used to examine the role of PLA2 and NOS.  If either PLA2 

or NOS are involved in AT2R inactivation of PLD, then addition of 700 nM OBAA, a PLA2 

inhibitor, or 1 µM NNA, a NOS competitive antagonist, should mimic PD-123,319 and pertussis 

toxin.  As shown in Figure 5.1, only NNA acted similarly to inhibiting the AT2R in WKY 

PGSMCs.  There was little effect of any antagonist in SHR PGSMCs most likely due to no 

significant AT2R-mediated signaling at 10 nM Ang II (Fig. 4.5).  Therefore, the data indicate that 
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Figure 5.1:  Effects of Inhibiting PLA2 and NOS on Ang II-Mediated PLD Activity. 

 10 nM Ang II-mediated PLD activity was significantly increased by 1 µM NNA, 15 nM PD-

123,319 (PD) and 1 ng/mL pertussis toxin (PTX) in WKY, but not SHR PGSMCs.  700 nM OBAA does 

not increase 10 nM Ang II-mediated PLD activity to the extent of NNA, PD, and PTX in WKY PGSMCs.  

Data are expressed as Mean ± SEM, n ≥ 3; bars with different letters are significantly different (P < 0.05). 
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 AT2R stimulation of NOS mediates AT2R inhibition of AT1R-mediated PLD activity. 

 

5.2.2 ADDITION OF NO INHIBITS ANG II-MEDIATED PLD ACTIVITY. 

 If AT2R stimulation of NOS is responsible for AT2R inhibition of AT1R-mediated PLD 

activity, then co-administration of Ang II and NO should decrease Ang II-mediated PLD 

activity.  As shown in Figure 5.2, addition of NO with either 200 µM of the NO donors SNAP or 

DEANO decreased Ang II-mediated PLD activity in WKY and SHR PGSMCs.  Use of the two 

structurally different NO donors indicate that the observed decrease is not due to the donor 

molecule.  This is supported by addition of DEANO incubated overnight at 37°C (DEA) thus 

losing most of the NO.  Although DEA reduced PLD activity in WKY PGSMCs, DEA did not 

reduce PLD activity to the extent that DEANO reduced PLD activity, and DEA had no effect in 

SHR PGSMCs indicating that the effects of DEANO are due to NO and not the donor molecule.   

NO reduced Ang II-mediated PLD activity in WKY and SHR PGSMCs, thus supporting 

the earlier observation that the primary defect in PLD regulation is the altered AT1/AT2 receptor 

ratio.  The imbalance in receptor hypothesis was confirmed by concentration-response curves 

with an AT2R antagonist and agonist (Fig. 4.5 and 4.6).  Addition of NO to the Ang II 

concentration-response curve should mimic the effects of the AT2R agonist CGP-42112A in the 

WKY.  Additionally, NO donation bypasses the AT2R.  Thus, the effects of NO on the 

concentration-response curve should be equal in WKY and SHR PGSMCs.  As shown in Figures 

5.3 and 5.4, addition of NO decreases the efficacy of Ang II-mediated PLD activity in both 

WKY and SHR PGSMCs.  In WKY PGSMCs the concentration-response curve generated in the 

presence of DEANO is indistinguishable from the concentration-response curve generated in the 

presence of CGP-42112A (Fig. 5.3).  In SHR PGSMCs the concentration-response curve 
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Figure 5.2:  NO inhibits Ang II-Mediated PLD Activity. 

 1 µM Ang II-mediated PLD activity is significantly attenuated by 200 µM of the structurally 

distinct NO donors SNAP and DEANO in both WKY and SHR PGSMCs.  200 µM DEA, DEANO that 

was allowed to incubate overnight at 37°C thus losing most of the NO, does not attenuate Ang II-

mediated PLD activity.  Data are expressed as Mean ± SEM, n = 3; bars with different letters are 

significantly different (P < 0.05). 
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 generated in the presence of DEANO is significantly different than the concentration-response 

curve generated in the presence of CGP-42112A (Fig. 5.4) due to bypassing the AT2R.  Although 

these data support the hypothesis that the defect in the regulation of PLD is the imbalance of 

receptors, SHR PGSMCs are less sensitive to NO than WKY PGSMCs (Fig. 5.5). 

 

5.2.3 SOLUBLE GUANYLATE CYCALSE GENERATION OF CGMP MEDIATES AT2R INHIBITION OF 

AT1R INDUCED PLD ACTIVITY. 

 NO is a known stimulant of soluble guanylate cycalse (sGC).  Therefore, the role of sGC 

in AT2R-mediated inhibition of AT1R-mediated activation of PLD was examined with 10 µM 

YC-1, a NO independent stimulant of sGC, and 10 µM ODQ, an inhibitor of sGC.  Following the 

earlier paradigm, YC-1 should reduce Ang II-mediated PLD activity.  As shown in Figure 5.6, 

YC-1 inhibits 1 µM Ang II-mediated PLD activity in WKY and SHR PGSMCs.  Additionally, 

DEANO and YC-1 have equivalent effects in WKY PGSMCs suggesting that they inhibit PLD 

through a common pathway.  However, in SHR PGSMCs YC-1 has little effect and synergizes 

with DEANO suggesting that greater stimulation of sGC is required in SHR PGSMCs to observe 

reductions of Ang II-mediated PLD activity similar to WKY PGSMCs.  Although there are 

marked differences between WKY and SHR PGSMCs, the data indicate that NO is acting 

through sGC to inhibit Ang II-mediated PLD activity.  To confirm this, 10 nM Ang II was 

administered in the presence of ODQ (Fig. 5.7, top).  ODQ increased Ang II-mediated PLD 

activity similarly to PD-123,319 in WKY but not SHR PGSMCs, which is what was observed 

for NNA and pertussis toxin (Fig. 5.1).  To confirm that sGC generation of cGMP is responsible 

for AT2R inhibition of AT1R-mediated PLD activity, 100 µM of the non-hydrolyzable cGMP 
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Figure 5.3:  NO and CGP-42112A Similarly Inhibit Ang II-Mediated PLD Activity in 

WKY PGSMCs. 
 Ang II activates PLD resulting in a maximal activity of approximately 2-fold over basal in WKY 

PGSMCs.  Addition of 100 nM CGP-42112A (CGP) or NO from 200 µM DEANO significantly reduces 

the efficacy of Ang II-mediated PLD activity by approximately 40%.  Data are expressed as Mean ± 

SEM, n ≥ 3. 
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Figure 5.4:  NO but not CGP-42112A Reduces the Efficacy of Ang II-Mediated PLD 

Activity in SHR PGSMCs. 

 Ang II activates PLD resulting in a maximal activity of approximately 2-fold over basal in SHR 

PGSMCs.  Addition of NO from 200 µM DEANO significantly reduces the efficacy of Ang II-mediated 

PLD activity by approximately 30%; however, this reduction appears to be attributed to a 30% decrease 

in basal PLD activity.  Addition of 100 nM CGP-42112A (CGP) has no effect on the efficacy of ANG II-

mediated PLD activity.  Data are expressed as Mean ± SEM, n ≥ 3. 
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Figure 5.5:  Differential Effects of NO on Ang II-Mediated PLD Activity in WKY and 

SHR PGSMCs. 

 Ang II activates PLD resulting in maximal activation of PLD at 1µM Ang II in both WKY and 

SHR PGSMCs.  Addition of NO significantly (P < 0.05) reduces the apparent efficacy of Ang II-mediated 

PLD activity in WKY and SHR PGSMCs as determined by ANOVA analysis.  However, the magnitude 

of reduction in WKY PGSMCs is significantly greater (P = 0.0173) than in SHR PGSMCs determined by 

t-test.  However, unlike WKY PGSMCs the reduction in efficacy in SHR PGSMCs is equal to the 

reduction in basal PLD activity. 
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Figure 5.6:  Stimulation of sGC Inhibits Ang II-Mediated PLD Activity. 

 1 µM Ang II-mediated PLD activity is significantly attenuated by 10 µM the NO independent 

stimulant of sGC, YC-1, in both WKY and SHR PGSMCs.  In WKY PGSMCs YC-1 and 200 µM 

DEANO in combination (Y & D) does not further attenuate Ang II-mediated PLD activity compared to 

YC-1 or DEANO alone.  However, in SHR PGSMCs, the addition of YC-1 and DEANO is required to 

obtain a similar magnitude of inhibition of Ang II-mediated PLD activity observed in WKY PGSMCs 

indicating that there is a defect in NO signaling in SHR PGSMCs.  Data are expressed as Mean ± SEM, n 

= 3; bars with different letters are significantly different (P < 0.05). 
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Figure 5.7:  Effects of sGC/cGMP on Ang II-Mediated PLD Activity. 

 10 nM Ang II-mediated PLD activity is significantly enhanced by 10 µM of the sGC inhibitor 

ODQ similarly to 15 nM PD-123,319 (PD) in WKY, but not SHR PGSMCs (top).  Conversely, addition 

of 100 µM 8-Br-cGMP (cGMP) attenuates 1 µM Ang II-mediated PLD activity in WKY, but not SHR 

PGSMCs (bottom).  Data are expressed as Mean ± SEM, n ≥ 3; bars with different letters are significantly 

different (P < 0.05). 
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analogue, 8-Br-cGMP, was used to inhibit Ang II-mediated PLD activity (Fig. 5.7, bottom).  8-

Br-cGMP inhibited Ang II-mediated PLD activity in WKY, but not SHR PGSMCs.  Therefore, 

the AT2R is signaling through an sGC-dependent mechanism to inhibit AT1R-mediated PLD 

activity, and SHR PGSMCs appear to be less sensitive to sGC stimulants and cGMP. 

 

5.2.4 THE AT2R INHIBITS ANG II-MEDIATED PLD ACTIVITY THROUGH PHOSPHORYLATION OF 

RHOA. 

 To examine the role of phosphorylation of RhoA in AT2R-mediated inhibition of AT1R-

mediated PLD activity, the PKA/PKG phosphorylation-deficient mutant S188A RhoA was 

stably transfected into WKY PGSMCs to examine the role of phosphorylation of RhoA in AT2R- 

and NO-mediated inhibition of AT1R-mediated PLD activity.  Since S188A RhoA cannot be 

inactivated by phosphorylation, NO should not reduce Ang II-mediated PLD activity in cells 

expressing S188A RhoA.  As shown in Figure 5.8, after addition of 200 µM DEANO there is a 

slight reduction in PLD activity in the S188A RhoA cells, compared to control.  This is most 

likely due to inhibition of endogenous RhoA.  These data were confirmed by generating Ang II-

mediated PLD activity concentration-response curves with S188A RhoA expressing WKY 

PGSMCs in the presence and absence of 200 µM DEANO.  As shown in Figure 5.9, DEANO 

had no effect on the Ang II mediated PLD activity concentration-response curve (Fig. 5.9, top).  

Thus, NO inhibits Ang II-mediated PLD activity through phosphorylation of RhoA at S188A, 

which inactivates RhoA by promoting association of Rho GDI with RhoA.  Importantly, the 

concentration-response curve from the S188A RhoA cells is shifted to the left of the WKY 

PGSMCs and more closely resembles the SHR concentration-response curve (Fig. 5.9, bottom).   
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Figure 5.8:  Expression of S188A RhoA Prevents NO-Mediated Inhibition of 1µM Ang 

II-Mediated PLD Activity. 

 DEANO inhibits Ang II-mediated PLD activity in WKY PGSMCs; however, upon expression of 

S188A RhoA eliminates the effects of DEANO has no effect on Ang II-mediated PLD activity.  Data are 

expressed as Mean ± SEM, n = 3; bars with different letters are significantly different (P < 0.05). 
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Figure 5.9:  Expression of S188A RhoA Eliminates NO-Mediated Inhibition of Ang II-

Mediated PLD Activity and Shifts the Concentration-Response Curve Towards the SHR 

PGSMCs Concentration-Response Curve. 

 Expression of S188A RhoA eliminates the NO-mediated decrease in efficacy (top), and shifts the 

Ang II-mediated PLD activity concentration-response curve leftwards in such a way that it resembles the 

SHR curve more so than the WKY curve (bottom).  Data are expressed as Mean ± SEM. 
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The EC50 values for the four curves are reported in Table 5.1.  The EC50 values for WKY 

PGSMCs expressing S188A RhoA are similar to SHR, not WKY PGSMCs.   

 In order to confirm that the AT2R-mediated phosphoryaltion of RhoA at S188 is 

responsible for AT2R-mediated inhibition of Ang II-mediated PLD activity, the effects of PD-

123,319 and CGP-42112A on Ang II-mediated PLD activity in WKY PGSMCs expressing 

S188A RhoA was compared to WKY PGSMCs.  Inhibition of the AT2R in WKY PGSMCs 

increased 10 nM Ang II-mediated PLD activity by 2-fold, whereas there was no effect of AT2R 

inhibition in WKY PGSMCs expressing S188A RhoA (Fig. 5.10, top).  Likewise, stimulation of 

the AT2R receptor has no effect in WKY PGSMCs expressing S188A RhoA, but reduces Ang II-

mediated PLD activity in WKY PGSMCs (Fig. 5.10, bottom).  Thus, the data indicate that the 

AT2R leads to phosphorylation, and, thus, inactivation of RhoA at S188. 

 
 

 
Table 5.1:  Comparison of Ang II-mediated PLD Activity EC50 Values in SHR, WKY, 
and WKY expressing S188A RhoA PGSMCs. 
Curve: WKY* SHR* WKY S188A 

 

WKY S188A 
+ DEANO 

 

EC50: 128 nM 10 nM 11 nM 13 nM 
* indicates EC50 obtained from transformed data (Fig. 5.9, bottom). 
 
 
 
5.3 DISCUSSION 

 The signal transduction mechanisms and physiological effects of the AT2R are poorly 

characterized.  However, use of AT2R drugs in physiological experiments indicate that the AT2R 

counteracts AT1R-mediated effects (37;200;201).  Furthermore, the AT2R knockout mice have 

increased blood pressure compared to litter mates that express the AT2R (33). The precise 

mechanisms by which the AT2R inhibits AT1R-mediated effects are unclear.  There are 4 
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Figure 5.10:  Expression of S188A RhoA Eliminates AT2R-Mediated Inhibition of  Ang 

II-Mediated PLD Activity. 

 PD-123,319 increases Ang II-mediated PLD activity in WKY PGSMCs but has no effect in 

WKY PGSMCs expressing S188A RhoA (top).  Similarly, CGP-42112A fails to inhibit Ang II-mediated 

PLD activity in the presence of S188A RhoA (bottom).  Data are expressed as Mean ± SEM of AT2R 

drug/Control, n = 3; gray dotted line represents expected values if the AT2R drug has no effect.  Bars with 

different letters are significantly different (P < 0.05). 
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 separate signal transduction pathways identified thus far that the AT2R activates that may inhibit 

AT1R-mediated effects.  As presented in Chapter 4, the AT2R inhibits AT1R-mediated PLD 

activity.  Since AT2R-mediated inhibition of adenylyl cycalse and activation of phosphatases 

does not fit into the pathway of Ang II-mediated activation of PLD (Chapter 3), the role of PLA2 

and NOS were examined as possible mechanisms for AT2R-mediated inhibition of AT1R-

mediated activation of PLD.  The data indicate that AT2R inhibition of Ang II-mediated PLD 

activity is due to signaling through NOS and sGC, presumably through activation of PKG, and 

subsequent phosphorylation of RhoA at S188.   

 As depicted in Figure 5.11, Ang II activation of PLD2 is mediated by the AT1R and 

requires RhoA.  The AT2R inhibits PLD activity through phosphorylation of RhoA resulting in 

inhibition of RhoA regardless of the activation state of RhoA (45).  This signal transduction 

scheme is supported by the data presented here, except for the role of PKG.  Since cGMP is a 

known activator of PKG (206) and PKG phosphorylates S188 of RhoA (44), the most 

compelling conclusion is that PKG mediates phosphorylation of RhoA.  However, NO/cGMP 

can lead to the activation of PKA (207-211).  Interestingly, inhibition of PKA with 1 µM H89 

increased 10 nM Ang II-mediated PLD activity in WKY PGSMCs, whereas in SHR PGSMCs 

H89 reduced basal PLD activity, and 10 nM Ang II-mediated PLD activity (Appendix A).  

However, in SHR PGSMCs, the reduction of basal and 10 nM Ang II-mediated PLD activity is 

similar, indicating that H89 is not inhibiting Ang II-mediated PLD activity in SHR PGSMCs.  

These data suggest that PKA may be involved in AT2R-mediated inhibition of PLD through 

phosphorylation of RhoA.  Since PKA and PKG phosphorylate the same sequence in RhoA (43), 

activation of either kinase will result in the same effect on Ang II-mediated PLD activity.  
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Figure 5.11:  Ang II Signal Transduction Involved in PLD Regulation. 

 A diagram of how Ang II activates PLD through AT1Rs and inactivation of the AT1R-mediated 

PLD activity through AT2R-mediated signaling resulting in inactivation of RhoA. 
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Therefore, regardless of which kinase phosphorylates RhoA, the data presented here indicate that 

the AT2R leads to phosphorylation of RhoA at S188 through a NO/cGMP mediated mechanism. 

Additionally, these data provide a second hypothesis to explain the results obtained with 

CGP-42112A in WKY PGSMCs.  As depicted in Figure 5.11, activation of PLD by the AT1R 

may occur in at least 3 steps after receptor activation: activation of a Rho GEF, activation of 

RhoA, and finally RhoA activation of PLD.  The AT2R mediated inhibition of RhoA occurs in 

more steps with a minimal step count of 4 after receptor activation: activation of NOS, 

generation of NO and subsequent activation of sGC, generation of cGMP and subsequent 

activation of PKG, and finally phosphorylation of RhoA.  Thus, the kinetics of activation of 

RhoA and subsequently PLD may be quicker than the kinetics of inactivation of RhoA.  

Evidence for this hypothesis is that there is slight increase in PLD activity in the presence of the 

AT2R agonist (Fig. 4.6c) due to RhoA signaling to PLD before RhoA can be inactivated through 

phosphorylation.  This hypothesis is further supported by the DEANO and YC-1 experiments 

that indicate that at maximal reduction of PLD activity there is still some PLD activity that can 

be explained by a time delay to inactivation.  However, a caveat in the NO data is that although 

NO is further downstream than the receptor and should therefore act quicker than CGP-42112A, 

the exogenously NO must be released from the chemical donor and diffuse through the media 

and cell to its target proteins that then lead to the inactivation of RhoA.  Unfortunately, the 

kinetics of NO donation by DEANO and subsequent NO activation of sGC are unknown in this 

system.  Thus, direct kinetic measurements would have to be measured for AT2R mediated 

inhibition of RhoA/PLD to determine if the hypothesis regarding the kinetics of activation is 

valid. 
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5.4 CONCLUSIONS 

 AT2Rs inhibit AT1R-mediated PLD activation through a NO/cGMP-dependent manner, 

most likely resulting in phosphorylation of RhoA at S188.  The altered ratio of AT1 to AT2 

receptors and insensitivity to NO and cGMP in SHR PGSMCs contribute to the increased PLD 

activity observed in SHR compared to WKY PGSMCs. 
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Chapter 6 

 
ROLE OF PLD IN ANG II-MEDIATED ACTIVATION OF 

MEK AND ERK 
 
 
 

6.1 INTRODUCTION 

 Hypertension in the SHR is a disease primarily of the kidney vasculature (7;8;189) that 

involves increased responses to Ang II with regards both to growth (212) and contractility of 

renal vascular smooth muscle cells (9;11).  Recent evidence indicates that PD98059, a MEK 

inhibitor, reduces Ang II-mediated vascular smooth muscle cell contraction in WKY and SHR, 

and normalizes the contraction of SHR to the WKY (91).  PD98059, however, does not attenuate 

Ang II-mediated vascular contraction of isolated thoracic aorta (94) indicating that MEK may 

not be involved in contraction.  To address this apparent disparity, in vivo experiments with 

PD98059 were conducted.  In these experiments, PD98059 reduced blood pressure of 

hypertensive rats (93) and attenuated Ang II-mediated increases in mean arterial blood pressure 

in normotensive rats (92).  Therefore, the data indicate that MEK is involved in Ang II-mediated 

vasoconstriction.  Because MEK is a component of the ERK MAPK cascade, and MAPK is 

involved in cell growth (213), MEK activation could play a role in both the increased 

contractility and cell growth observed in SHR renal vascular smooth muscle cells. Therefore, 

elucidating the signal transduction mechanism mediating Ang II-induced MEK and ERK 

activation in WKY and SHR PGSMCs may lead to novel therapies for hypertension. 

 Previous studies indicated that in some systems PLD2 generation of PA is required for 

translocation of Raf-1 to membranes, and disruption of Raf-1 translocation attenuates agonist-

mediated signaling to ERK (121;153).  Furthermore, Ang II-induced activation of ERK requires 
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PLD2 generation of PA in a rat smooth muscle cell line (120).  Interestingly, PLD generation of 

PA is increased in SHR cells when compared to WKY (112)(Fig. 3.2), and Ang II-mediated 

ERK activation is increased in smooth muscle cells from SHR compared to WKY (86).  These 

data suggest that PLD leads to activation of ERK in PGSMCs, and increased activation of PLD 

by Ang II in SHR may be responsible for the observed increases in Ang II-mediated ERK 

activation.  Therefore, the purpose of this study was to test the hypothesis that PLD2 is required 

for Ang II-mediated activation of MEK and ERK in WKY and SHR PGSMCs.  

 

6.2 RESULTS 

 

6.2.1 ANG II STIMULATES ERK1/2. 

As shown in Figure 6.1, 10 nM Ang II leads to a greater activation of ERK1/2 in SHR 

compared to WKY PGSMCs.  These data are similar to what has been previously reported (86). 

 

6.2.2 ANG II STIMULATION OF PLD2 AND SUBSEQUENT GENERATION OF PA IS REQUIRED FOR 

ACTIVATION OF MEK AND ERK1/2. 

As previously indicated (Fig. 3.5), WKY and SHR PGSMCs transfected with dnPLD2 

reduced Ang II-mediated PLD activity by approximately 50% (Fig. 6.2), a figure that correlates 

with the observed transfection efficiency.  These data confirm that PLD2 is the PLD isoform 

activated by Ang II.  To test the hypothesis that PLD2 is involved in Ang II-mediated activation 

of MEK and ERK1/2, dnPLD2 was transfected into WKY and SHR PGSMCs and the ability of 

1 µM Ang II to activate MEK and ERK1/2 was assessed by Western blot.  After stimulation with 

Ang II, phospho-MEK levels were significantly decreased by approximately 50% in the presence  
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Figure 6.1:  Ang II Activation of ERK1/2 is Greater in SHR than WKY PGSMCs. 

 10 nM Ang II activates ERK1/2 nearly 2-fold more in SHR compared to WKY PGSMCs.  Data 

are expressed as Mean ± SEM, n = 3; bars with different letters are significantly different (P < 0.05). 
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Figure 6.2:  dnPLD2 Reduces Ang II-Mediated PLD Activity. 

 Ang II-mediated PLD activity is mediated by PLD2 in WKY and SHR PGSMCs.  Data are 

expressed as Mean ± SEM, n ≥ 6; bars with different letters are significantly different (P < 0.05). 
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of dnPLD2 (Fig. 6.3a).  Similarly, phospho-ERK1/2 levels were significantly decreased by 

approximately 50% in the presence of dnPLD2 (Fig. 6.3b).  Since reduction in Ang II-mediated 

PLD activity and transfection efficiency was approximately 50%, these data indicate that 

dnPLD2 is required for Ang II-mediated phosphorylation of MEK and ERK1/2.  In order to 

confirm that the expression of dnPLD2 did not inhibit Ang II-mediated activation of ERK 

through a PA independent mechanism, PA was added back to the cells to recover Ang II-

mediated phosphorylation of ERK1/2 (Fig. 6.4).  As predicted, addition of PA partially 

recovered Ang II-mediated phosphorylation of ERK1/2 in the presence of dnPLD2 in WKY 

PGSMCs, but did not significantly increase ERK1/2 phosphorylation in SHR PGSMCs.  

Although not significant, PA did increase Ang II-mediated phosphorylation of ERK1/2 in the 

presence of dnPLD2 in SHR PGSMCs.  Therefore, examining the WKY and SHR together 

indicate that PLD2 by generating PA plays a key role in the activation of MEK and ERK1/2 in 

SHR and WKY PGSMCs. 

 

6.2.3 CELLULAR LOCALIZATION OF ACTIVATED MEK AND ERK1/2 AFTER STIMULATION WITH 

ANG II. 

In order to confirm that dnPLD2 inhibits Ang II signaling to MEK and ERK1/2, confocal 

images of fixed cells stained for phospho-MEK and phospho-ERK1/2 were compared to cells 

transfected with dnPLD2 and control cells.  Since EGF stimulates ERK1/2 without stimulating 

PLD (Fig. 6.5), EGF was used as a positive control for stimulation of MEK and ERK.  As shown 

in Figure 6.6, essentially no phospho-MEK or phospho-ERK1/2 is seen in control cells (1st row); 

treatment with 1µM Ang II for 5 min (2nd row) significantly increases staining compared to the 

control and cells transfected with dnPLD2 (3rd row), whereas treatment with EGF show abundant  
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Figure 6.3:  dnPLD2 Attenuates Ang II-Mediated MEK and ERK1/2 Phosphorylation. 

 1 µM Ang II-mediated phosphorylation of MEK (a) and ERK1/2 (b) was examined in WKY and 

SHR PGSMCs sham-transfected or transfected with dnPLD2.  Phospho-MEK was decreased in the 

presence of dnPLD2 (a, upper panel); replication of the experiment indicates that dnPLD2 significantly 

attenuated Ang II signaling to MEK in WKY and SHR PGSMCs (a, lower panel) (n = 3).  dnPLD2 also 

decreased Ang II-mediated phosphorylation of ERK1/2 (b, upper panel); replication of the experiment 

indicates that dnPLD2 significantly attenuated ERK phosphorylation in WKY and SHR PGSMCs (b, 

lower panel) (n = 3), * indicates P < 0.05, control versus dnPLD2.   
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Figure 6.4:  PA Partially Recovers dnPLD2-Mediated Inhibition of Ang II-Mediated 

ERK1/2 Activation . 

 Addition of 200 µM PA significantly increases Ang II-mediated activation of Erk1/2 in the 

presence of dnPLD2 (top).  Replication of the experiments (bottom) indicates that PA only partially 

recovers ERK1/2 activity, and the increase in activity is only significantly increased in WKY, not SHR 

PGSMCs.  Data are expressed as Mean ± SEM, n = 3; bars with different letters are significantly different 

(P < 0.05). 
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Figure 6.5:  EGF Stimulates ERK1/2 but not PLD. 

 100 ng/mL EGF potently activates ERK1/2 in WKY and SHR PGSMCs (top).  However, 100 

ng/mL EGF does not generate PA (bottom).  Ang II-mediated PA production is shown as a positive 

control.  Data are expressed as Mean ± SEM, n = 3.  Bars with different letters are significantly different 

(P < 0.05).  EGF generation of PA was fit with a linear regression, dotted lines are the 95% confidence 

intervals, with a slope that is not significantly different from zero in WKY and SHR PGSMCs. 
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Figure 6.6a:  Confocal Images of WKY PGSMCs. 

 Stimulation with 1 µM Ang II for 5 min caused phospho-ERK1/2 and phospho-MEK to 

translocate to the nucleus, and this was inhibited in the presence of dnPLD2.  However, stimulation with 

100 ng/mL EGF is not inhibited by dnPLD2.  Interestingly, Ang II appears to direct active ERK and 

MEK to actin filaments.  Images are representative of the samples. 

93 



 

EGFP
dnPLD2

Cy5
PO4-ERK1/2

Cy3
PO4-MEK Merge

C
on

tro
l

A
ng

 II
A

ng
 II

dn
PL

D
2

EG
F

EG
F

dn
PL

D
2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 

 
Figure 6.6b:  Confocal Images of SHR PGSMCs. 

 Stimulation with 1 µM Ang II for 5 min caused phospho-ERK1/2 and phospho-MEK to 

translocate to the nucleus, and this is inhibited in the presence of dnPLD2.  Stimulation with 100 ng/mL 

EGF however, was not inhibited by dnPLD2.  Interestingly, Ang II appears to direct active ERK and 

MEK to actin filaments.  Images are representative of the samples. 
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phospho-MEK and phospho-ERK1/2 staining in control (4th row) and dnPLD2 transfected cells 

(5th row).  Therefore, dnPLD2 is not non-specifically inhibiting signaling to MEK and ERK1/2, 

thus verifying the previous results that dnPLD2 inhibits Ang II-mediated activation of MEK and 

ERK1/2 through attenuation of Ang II-mediated generation of PA in WKY and SHR PGSMCs. 

Interestingly, stimulation of the PGSMCs with Ang II results in a unique localization of 

phospho-ERK1/2 that is different than EGF.  To examine the hypothesis that Ang II-mediated 

activation of ERK1/2 results in ERK1/2 translocation to actin filaments, Ang II treated cells were 

stained for phospho-MEK, phospho-ERK, and F-actin filaments with phalloidin (214).  As 

shown in Figure 6.7, there was nearly 100% colocalization of cytoplasmic phospho-ERK1/2 with 

the actin filaments in WKY and SHR PGSMCs.  Therefore, these data indicate that Ang II 

directs phospho-ERK1/2 to actin filaments in PGSMCs. 

 

6.3 DISCUSSION 

The biochemical basis of hypertension is an important issue that has been the subject of 

major research for decades.  The kidney plays a central role in all models of genetic hypertension 

(8).  In the SHR model, hypersensitivity of renal vasculature to Ang II appears to be the source 

of the problem (9;11;189).  However, the mechanisms underlying this hypersensitivity remain 

obscure. 

Recent data indicate that inhibition of MEK: 1) reduces smooth muscle contraction in 

response to Ang II (91); 2) blunts Ang II-induced increases in blood pressure (92); and 3) lowers 

blood pressure in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats (93).  

Additionally, ERK1/2 phosphorylation is increased in SHR mesenteric artery vascular smooth 

muscle cells and PGSMCs compared to WKY (86).  However, the mechanisms by which MEK 
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Figure 6.7:  Phospho-ERK1/2 Localizes to Actin Filaments After Stimulation with 

Ang II. 

 Stimulation with 1 µM Ang II for 5 min directs phospho-ERK1/2 and phospho-MEK to actin 

fibers (blue) in PGMSCs.  Interestingly, only some cells contain phospho-ERK1/2 in their nuclei (red), 

whereas all nuclei contain phospho-MEK (green).  Alexa 488 phalloidin was used to visualize the actin 

filaments due to its ability to bind to F-actin.  Images are representative of the samples. 
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and ERK phosphorylation are stimulated in PGSMCs are not known.  Previous reports suggest 

that activation of PLD and subsequent formation of PA play a central role in activation of 

ERK1/2 by a mechanism that involves PA-dependent recruitment of Raf-1 to membranes 

(121;153).  Ang II stimulates PLD activity in WKY and SHR PGSMCs (Fig 3.2 and Fig. 4.4) 

and as shown in these experiments, Ang II-mediated generation of PA by PLD2 is essential for 

Ang II-mediated phosphorylation of MEK and ERK1/2.  Unexpectedly, phospho-ERK1/2 

localizes to actin filaments thus alluding to the yet unknown mechanism for ERK- mediated 

contraction and alterations in blood pressure that were indicated in experiments with PD98059 

(91-93).  Additionally, the experiments conducted with EGF serve as a positive control 

indicating that transfection of dnPLD2 is not non-specifically inhibiting agonist induced MEK 

and ERK1/2 phosphorylation.  Furthermore, the EGF experiments indicate that Ang II does not 

signal to ERK1/2 exclusively through the EGFR. 

 

6.4 CONCLUSIONS 

 Ang II activation of PLD2 and subsequent generation of PA is required for Ang II-

mediated activation of MEK and ERK1/2.  Ang II directs phospho-MEK and phospho-ERK1/2 

to actin filaments.  Importantly, EGF does not stimulate PLD indicating that Ang II does not 

signal to ERK exclusively through EGFR signaling machinery. 
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Chapter 7 

 
DISCUSSION 

 
 
 
 In the SHR, hypertension is a disease primarily of the kidney vasculature (7;8;189) that 

involves increased responses to Ang II with regards to both growth (212) and contractility of 

renal vascular smooth muscle cells (9;11).  Additionally, inhibition of any component of the 

renin-angiotensin system, including the AT1R, reduces blood pressure and normalizes blood 

pressure of the SHR to that of the WKY (2-4).  Therefore, hypertension in the SHR is most likely 

due to altered Ang II signaling in the renal vascular smooth muscle cells.  Thus, the experiments 

conducted in this thesis utilized PGSMCs from SHR and WKY rats. 

7.1 ANG II REGULATION OF PLD 

Altered Ang II-mediated effects can be due to two general defects: 1) alterations in an 

AT1R signaling cascade that causes increased contraction and growth of smooth muscle cells; 

and/or 2) alterations in the relative expression of the contractile and growth promoting AT1R and 

the dilatory AT2R.  Ang II-mediated PLD activity is induced through the AT1R and is inhibited 

through the AT2R.  Furthermore, Ang II more potently activates PLD through the AT1R in SHR 

compared to WKY PGSMCs, and this increased potency is due to a deficiency in AT2R-

mediated signaling.  The deficiency in AT2R-mediated signaling can be attributed to both an 

alteration in the AT1R/AT2R ratio and inefficient signal transduction of NO and cGMP in SHR 

PGSMCs.  Importantly, the AT2R activates NOS generating NO that subsequently activates sGC 

resulting in generation of cGMP.  Although the precise mechanism is unknown (Appendix A), 

the AT2R signaling through NO inactivates RhoA by phosphorylating serine 188.  

Phosphorylation of S188 of RhoA promotes the interaction of Rho GDI with RhoA (45).  
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Importantly, Rho GDI can bind phospho-RhoA regardless of RhoA’s activation state.  Therefore, 

phosphorylation of RhoA, even while bound to GTP, will inactivate RhoA and halt the signal 

transduction from RhoA to its effectors. 

RhoA has many effectors and, as previously indicated (151), one of RhoA’s effectors is 

PLD.  Therefore, AT2R-mediated inactivation of RhoA provides a mechanism for AT2R- 

mediated inhibition of PLD activity.  Additionally, the lower levels of AT2Rs in SHR compared 

to WKY PGSMCs and inefficient signal transduction of NO and cGMP in SHR PGSMCs 

compounds the inability of SHR PGSMCs to properly regulate PLD because the two defects lie 

in series.  Thus, PLD activity is increased in SHR compared to WKY PGSMCs due to alterations 

in the ratio of AT1 and AT2 receptors and inefficient NO signaling. 

Although AT2Rs are not expressed in all vascular beds (197-199), the defect in NO 

signaling at the level of RhoA may be a general defect.  If this is true, then RhoA should be more 

active in SHR compared to WKY vascular smooth muscle cells after addition of an agonist that 

activates RhoA.  Recent experiments, utilizing the Rho-binding domain of Rhotekin to pull down 

active Rho indicates that RhoA activity is increased in SHR compared to WKY after stimulation 

of thoracic aorta and thoracic aortic smooth muscle cells with thrombin (48).  However, there is 

no mutation in SHR RhoA (Appendix B).  These data support the hypothesis that there is a 

general defect in RhoA inhibition in SHR compared to WKY.  In regard to hypertension, 

increased RhoA activity may explain the increased Ang II-mediated renovascular contractions of 

SHR compared to WKY due to Rho kinase inhibition of myosin light chain phosphatase and 

subsequent Ca2+ sensitization of the muscle (53-55). Moreover, NO release from the endothelium 

is one of the primary mechanisms for vasorelaxation and maintaining vascular tone.  Thus, a 

reduction in NO signaling can lead to hypertension as indicated in experimental models utilizing 
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NOS inhibitors (215-217) and the PKG I knockout mice (218).  Therefore, hypertension in the 

SHR may be due to altered control of RhoA resulting from the altered receptor ratio and 

impaired NO-mediated signaling. 

 

7.2 ROLE OF PLD IN ANG II- MEDIATED ERK ACTIVATION 

 Previous experiments indicate that PLD generation of PA is required for activation of the 

ERK cascade (120;121;153); however, these experiments were not conducted in a primary cell 

system.  Thus, the experiments were duplicated to confirm that PLD generation of PA is required 

for ERK activation.  ERK activation is important in the context of hypertension because 

inhibition of ERK activity with PD98059: 1) reduces smooth muscle contraction in response to 

Ang II (91); 2) blunts Ang II-induced increases in blood pressure (92); and 3) lowers blood 

pressure in DOCA-salt-induced hypertensive rats (93).  Therefore, understanding the 

mechanisms of ERK activation within the kidney vasculature may further explain the 

pathophysiology of hypertension. 

 The three prominent concepts regarding GPCR-mediated activation of MAPK are: 1) 

RTK transactivation/phospho-tyrosine scaffolds; 2) β-arrestin scaffolding/internalization; and 3) 

“direct” stimulation of Raf.  None of these include the generation of PA by PLD, and the data 

presented here indicate that PA is essential for Ang II-mediated activation of MEK and ERK.  

The RTK transactivation theory was briefly examined due to the inability of EGF to stimulate 

PLD.  These data, along with the requirement for PA, indicate that Ang II is doing more than 

releasing EGF to stimulate ERK in PGSMCs.  Moreover, EGF and Ang II mediate two spatially 

distinct localizations of phospho-ERK.  Therefore, the data presented here indicate that at most 

Ang II is cooperating with EGF signaling.  Interestingly, previous reports indicate that Src is 
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involved in activation of PLD (151) and ERK (86) in cultured rat smooth muscle cells.  In 

PGSMCs a Src family kinase, but not c-Src, appears to be required for Ang II-mediated 

activation of ERK.  However, the data does not support the hypothesis that Src is involved in 

Ang II-mediated PLD activity (Appendix C).  Therefore, the data indicates that in PGSMCs a yet 

unidentified Src family kinase and PLD are required for Ang II-mediated activation of ERK, and 

the EGFR plays a minimal role, if any, in Ang II-mediated ERK phosphorylation. 

 

7.3 POTENTIAL CLINICAL SIGNIFICANCE 

 Hypertension affects 25% of the adult US population.  In addition to the large number of 

hypertensive Americans, it is estimated that the average American has a 90 percent chance of 

developing hypertension before death (1).  Although there are a number of anti-hypertensive 

therapies, compliance is low and hypertension continues to be a major health problem in Western 

societies; therefore, more efficacious therapies with fewer side effects are desirable.  The 

experiments and conclusions presented here indicate that treatment with an AT1R antagonist may 

be one of the most efficacious current treatments for hypertension and that gene therapy 

introduction of the AT2R may reduce blood pressure and inhibition of phospho-ERK1/2 

translocation to actin filaments may also reduce blood pressure.  

  The latest anti-hypertensive on the market is the AT1R antagonists.  These drugs are 

currently being used however their effectiveness compared to past anti-hypertensives has yet to 

be determined.  There are and have been many clinical studies comparing the various classes of 

anti-hypertensive drugs, but due to the recent arrival of the AT1R antagonists they have not been 

included in any of the comparison trials.  The data presented here indicate that in SHR, which we 

assume models a subset of human hypertension, defective Ang II signal transduction in PGSMCs 
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is due in part to an imbalance of AT1 to AT2 receptors.  Therefore, reducing the AT1R signaling 

component while maintaining the AT2R signaling component in humans may prove to be more 

efficacious than the other forms of anti-hypertensive drugs, specifically the ACE inhibitors since 

they reduce both AT1R and AT2R signaling. 

Additionally, another possible future therapy is addition of the AT2R through gene 

therapy.  Recently the human genome was published (219-221), and the ideas of genetic 

therapies have been discussed in virtually every public news outlet.  Moreover, gene therapy 

studies have been ongoing for multiple diseases including hypertension (222;223).  However, the 

majority of the current gene therapy strategies for hypertension involve down regulation, through 

anti-sense treatment, of various gene products that are current anti-hypertensive drug targets.  

Since the kidney is easily isolated from other organs and can then be perfused in isolation, it is 

possible to introduce DNA only to the kidney and thus use a gene “add back” strategy similar to 

genetic therapies for cystic fibrosis (224;225).  Isolating the kidney and adding back the AT2R 

has advantages over traditional gene therapy treatments and current hypertension gene therapy 

experiments in that: 1) the AT2R DNA would be introduced only to the kidney and not other 

“non-target” organs; 2) due to the ability to isolate the kidney less effective yet safer delivery 

mechanisms, such as liposomes, can be used to deliver the AT2R DNA; 3) if toxicities develop 

the new AT2Rs can be inhibited with available drugs, whereas anti-sense therapies have no 

available pharmacological rescue; and 4) the DNA is not foreign since human AT2R DNA would 

be used.  Furthermore, each patient can have their AT2R sequenced and amplified to assure that 

the immune system recognizes the new AT2Rs as self-proteins.  Therefore, introduction of 

human AT2R may prove to be a valuable therapy for some forms of human hypertension and 
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perhaps other kidney diseases; furthermore, these strategies may be preferable to the current anti-

hypertensive gene therapy strategies. 

Inhibition of ERK1/2 phosphorylation by MEK with the MEK inhibitor PD98059 

reduces Ang II-mediated smooth muscle contraction and vasoconstriction (91;92).  Therefore, 

there must be a mechanism by which MEK and/or ERK1/2 mediate smooth muscle cell 

contraction.  The data presented here indicate that phospho-ERK1/2, and to a lesser extend 

phospho-MEK, translocate to actin filaments (Fig. 6.7).  Although the role of MEK and ERK at 

actin filaments is unknown, they may act at the actin filaments to cause smooth muscle cell 

contraction and thus contribute to hypertension.  Because ERK is phosphorylated to a greater 

extent at low concentrations of Ang II (Fig. 6.1) this may be one of the molecular determinants 

in the SHR’s increased sensitivity to Ang II, in respect to vascular contraction.  Therefore, 

understanding the role of MEK and ERK at the actin cytoskeleton may provide insights into 

MEK’s and/or ERK’s role in vascular contraction and hypertension.  Furthermore determining 

how MEK and ERK traffic to the actin cytoskeleton may provide novel drug targets for the 

treatment of hypertension. 

 

7.4 CONCLUSIONS 

 Ang II activation of the AT1R activates PLD through a RhoA dependent mechanism, 

whereas the AT2R inhibits AT1R signaling by phosphorylation of RhoA at serine 188.  In SHR 

PGSMCs PLD activity is increased due to an imbalance in the ratio of AT1Rs to AT2Rs and a 

defect in NO/cGMP-mediated inhibition of RhoA, compared to WKY PGSMCs.  Furthermore, 

PLD generation of PA and an Src family kinase, not EGF generation, is required for Ang II-

103 



 

mediated phosphorylation of ERK1/2 in PGSMCs, and in PGSMCs phospho-ERK1/2 is 

localized to actin filaments. 

 

104 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 
 

 



 

 
 
 
 

Appendix A 
 

EFFECT OF PKG AND PKA INHIBITORS ON ANG II-MEDIATED 
PLD ACTIVITY 

 
 
 
 The evidence presented indicates that the AT2R phosphorylates RhoA thorough a 

NO/cGMP dependent mechanism.  The logical conclusion is that cGMP is activating PKG that 

then phosphorylates RhoA; however, use of PKG inhibitors does not increase 10nM Ang II-

mediated PLD activity in WKY PGSMCs (Fig. A.1).  These data appear to indicate that PKG is 

not involved in the AT2R-mediated inhibition of AT1R-medaited PLD activity; furthermore, the 

PKA inhibitor H89 acts similarly to PD-123,319 (Fig. A.2).  Although these data appear to be 

paradoxical, cGMP activating a cAMP-dependent protein kinase, there is evidence that cGMP 

can activate PKA through inactivation of phosphodiesterase 3 (PDE3) (208;209;226). 

 PDE3B is expressed in smooth muscle cells and is inactivated by cGMP (208;209;226).  

NO/cGMP inhibition of PDE3 blocks PDE3 degradation of cAMP (207) that then leads to 

increased levels of cAMP that can activate PKA (211).  Importantly, NO mediated decreases in 

renal vascular resistance appear to be due to inhibition of PDEs (227), thus suggesting that 

NO/cGMP mediated inhibition of PDE3 occurs in vivo and is essential for of NO-mediated 

vasodilatory effects.   

Therefore, AT2R-mediated generation of NO and cGMP may lead to cGMP-mediated 

inhibition of PDE3B that then leads to PKA activation and phosphorylation of RhoA resulting in 

AT2R-mediated inhibition of AT1R-meadiated PLD activity.  However, cGMP activation of 
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PKA has not been examined in PGSMCs, and the activity of PKA and PKG was not directly 

tested in any of the experiments; furthermore, H89 is reported to inhibit PKG (206;228).  Thus, 

the data indicates that PKA may be involved in AT2R-mediated phosphorylation of RhoA, but 

the data does not conclusively indicate which cyclic-nucleotide dependent kinase is 

phosphorylating RhoA.  Regardless of which kinase is phosphorylating RhoA, RhoA is 

phosphorylated at S188 by the AT2R, and this phosphorylation is the point of AT2R-dependent 

regulation of AT1R-medaited PLD activity.  
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Figure A.1:  Effect of PKG Inhibition on Ang II-Mediated PLD Activity. 

 10 nM Ang II-mediated PLD activity is not significantly enhanced by PKG inhibitors: 2.5 µM 

KT5823 (KT) Ki = 234 nM (229); 100 µM Rp-8-pCPT-cGMPs, TEA (RP) Ki = 500 nM (230); 100 µM 

PKG inhibitor (PKGi) Ki = 86 µM (231).  All inhibitors were obtained from Calbiochem.  Data are 

expressed as Mean ± SEM, n ≥ 3; bars with different letters are significantly different (P < 0.05). 
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Figure A.2:  Effect of PKA Inhibition on Ang II-Mediated PLD Activity. 

 10 nM Ang II-mediated PLD activity is significantly enhanced by 1 µM of the PKA inhibitor 

H89 (Calbiochem), Ki = 48 nM (232) similarly to 15 nM of the AT2R antagonist PD-123,319 (PD) in 

WKY, but not SHR PGSMCs.  In SHR PGSMCs H89 reduces basal PLD levels and Ang II-mediated 

PLD activity; however, the reduction in Ang II-mediated PLD activity is greater than H89 alone 

indicating that H89 decreases Ang II-mediated PLD activity.  Data are expressed as Mean ± SEM, n ≥ 3; 

bars with different letters are significantly different (P < 0.05). 
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Appendix B 
 

WKY AND SHR RHOA CDNA SEQUENCE 
 
 
         Start site 

SHR:  1     ATGGCTGCCATCAGGAAGAAACTGGTGATTGTTGGTGATGGAGCTTGTGGTA 
WKY: 1     ATGGCTGCCATCAGGAAGAAACTGGTGATTGTTGGTGATGGAGCTTGTGGTA 

 
SHR:  53   AGACATGCTTGCTCATAGTCTTCAGCAAGGACCAGTTCCCAGAGGTTTATGT 
WKY: 53   AGACATGCTTGCTCATAGTCTTCAGCAAGGACCAGTTCCCAGAGGTTTATGT 

 

SHR:  105 GCCCACGGTGTTTGAAAACTATGTGGCAGATATTGAAGTGGACGGGAAGCAG 
WKY: 105 GCCCACGGTGTTTGAAAACTATGTGGCAGATATTGAAGTGGACGGGAAGCAG 

 

SHR:  157 GTAGAGTTGGCTTTATGGGACACAGCTGGACAGGAAGATTATGACCGTCTGA 
WKY: 157 GTAGAGTTGGCTTTATGGGACACAGCTGGACAGGAAGATTATGACCGTCTGA 

 

SHR:  209 GGCCTCTCTCCTACCCAGACACTGATGTTATACTGATGTGTTTTTCCATCGAC 
WKY: 209 GGCCTCTCTCCTACCCAGACACTGATGTTATACTGATGTGTTTTTCCATCGAC 

 

SHR:  261 AGCCCTGATAGTTTAGAAAACATCCCAGAAAAATGGACTCCAGAAGTCAAGC 
WKY: 261 AGCCCTGATAGTTTAGAAAACATCCCAGAAAAATGGACTCCAGAAGTCAAGC 

 

SHR:  313 ATTTCTGTCCAAATGTGCCCATCATCCTAGTTGGGAACAAGAAGGATCTTCG 
WKY: 313 ATTTCTGTCCAAATGTGCCCATCATCCTAGTTGGGAACAAGAAGGATCTTCG 

  

SHR:  365 GAATGATGAGCACACAAGGCGGGAGTTAGCCAAAATGAAGCAGGAGCCGGT 
WKY: 365 GAATGATGAGCACACAAGGCGGGAGTTAGCCAAAATGAAGCAGGAGCCGGT 

 

SHR:  417 AAAACCTGAAGAAGGCAGAGATATGGCAAACAGGATTGGCGCTTTTGGGTAC 
WKY: 417 AAAACCTGAAGAAGGCAGAGATATGGCAAACAGGATTGGCGCTTTTGGGTAC 

 

SHR:  469 ATGGAGTGTTCAGCAAAGACCAAAGACGGAGTGAGAGAGGTTTTTGAGATGG 
WKY: 469 ATGGAGTGTTCAGCAAAGACCAAAGACGGAGTGAGAGAGGTTTTTGAGATGG 

 

SHR:  521 CCACGAGAGCTGCTCTGCAAGCTAGACGCGGGAAGAAAAAGTCGGGGTGCCT 
WKY: 521 CCACGAGAGCTGCTCTGCAAGCTAGACGCGGGAAGAAAAAGTCGGGGTGCCT 

 

SHR:  573 CATCTTGTGAAGC - 585 
WKY: 573 CATCTTGTGAAGC - 585 

  
The red A is different from the previous rat Genbank submission (gi:2225893).  However, this 

apparent mutation is silent.  Thus, there are no differences between the sequence of RhoA in 

WKY and SHR. The start site is highlighted in green, and the stop codon in blue.
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Appendix C 
 

ROLE OF C-SRC IN ANG II-MEDIATED PLD AND ERK1/2 
ACTIVATION 

 
 
 

c-Src is implicated in activation of PLD (151) and ERK (86), thus the role of c-Src in 

activation of PLD and ERK was examined utilizing CGP77675, a c-Src specific antagonist from 

Novartis, and transfection of the kinase dead c-Src like kinase K275D Lyn, obtained from Dr. 

T.E. Smithgall University of Pittsburgh.  As shown in Figure C.1, CGP77675 has little effect on 

PLD activity (top panel); however K275D Lyn inhibits Ang II-mediated PLD activity in WKY, 

but not SHR PGSMCs (bottom panel).  Ang II-mediated activation of ERK1/2 is significantly 

reduced by CGP77675 and K275D Lyn; however, transfection of K275D Lyn significantly 

inhibits Ang II-mediated ERK1/2 activation more than CGP77675 (Figure C.2).   

The ERK1/2 data indicate that CGP77675 and K275D Lyn act similarly in WKY and 

SHR, thus the lack of consistent inhibition of PLD indicates that neither c-Src nor a Src family 

kinase is involved in Ang II dependent PLD activation in PGSMCs.  Although both CGP77675 

and K275D Lyn reduce Ang II-mediated activation of ERK1/2, transfection of K275D Lyn is a 

more potent inhibitor of Ang II-mediated ERK1/2 activtion.  Since the reported IC50 of 

CGP77675 is 0.002 µM for c-Src in vitro, which is 10-fold more selective for c-Src than the 

other Src family kinases, and 0.3µM in cell culture (233), 3 µM of CGP77675 should completely 

abrogate Ang II-mediated activation of ERK1/2 if c-Src is involved.  However, ERK1/2 activity 

was only reduced by 50% indicating that either a second signal transduction pathway is also 
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involved, or a Src family kinase that is not as potently inhibited by CGP77675 is involved.  Use 

of the K275D Lyn construct, which will inhibit all Src family kinases, nearly abolishes Ang II-

mediated ERK1/2 activity indicating that a Src family kinase is involved in Ang II-mediated 

ERK1/2 activation and that there is most likely no secondary signal to ERK.  Therefore, the data 

indicate that a Src family kinase is involved in Ang II-mediated ERK activation, but not PLD 

activation in WKY and SHR PGSMCs. 
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Figure C.1:  Effect of c-Src Inhibition on Ang II-Mediated PLD Activity. 

 3 µM CGP77675 (CGP) has no effect on 1 µM Ang II-mediated PLD activity in WKY PGSMCs, 

and has little, yet significant effect on Ang II-mediated PLD activity in SHR PGSMCs (top).  

Transfection of K275D Lyn (KD Lyn) significantly enhanced basal PLD activity in WKY and SHR 

PGSMCs, and inhibited 1 µM Ang II-mediated PLD activity in WKY, but not SHR PGSMCs.  Data are 

expressed as Mean ± SEM, n = 3; bars with different letters are significantly different  (P < 0.05). 
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Figure C.2:  Inhibiting c-Src Reduces Ang II-Mediated ERK1/2 Phosphorylation. 

 3 µM CGP77675 inhibits 1 µM Ang II-mediated ERK activation by approximately 50% in WKY 

and SHR PGSMCs, whereas transfection of K275D Lyn inhibits ERK activity by approximately 85% in 

WKY and SHR PGSMCs.  Additionally, K275D Lyn inhibits Ang II-mediated ERK activity significantly 

more so than CGP77675 (indicated by the a (P < 0.05)).  Data are expressed as Mean ± SEM, n = 3; * 

indicates significantly different than control (P < 0.05). 

 

 

114 



 

 
 
 
 

Appendix D 
 

EXPERIMENTAL PROCEDURES 

 
 
 
 

The following are step-by-step 1-page instructions on how to perform the experimental 

methods in this thesis that are not from commercial kits.  The purpose of this appendix is for 

future reference for those that wish to perform similar experiments as to those published here.   
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D.1:  PLD Assay  
(In 60-mm diameter dishes) 

1) Serum starve cells overnight, at least 8 hrs, with 1 µL/mL of 3H-palmitic acid (5 µCi/µL) 
2) Pour the 3H-media down the sink 
3) * Add 2 mL 0.5% ethanol media to cells 

4) Incubate for 12 min at 37°C with 5% CO2 
5) Place plates on ice and add agonist 

6) Incubate for 20 min at 37°C with 5% CO2 
7) Place plates on ice and decant media 
8) Add 0.6 mL of ice cold PBS 
9) Scrape cells and place into microfuge tubes 
10) Centrifuge at 16,000 x g for 1 min 
11) Remove supernatant 

12) Add 200 µL PBS to pellet 
13) Vortex until the pellet is resuspended 

14) Add 800 µL of a 1:1 chloroform:methanol solution 
15) Vortex to mix solutions and place on ice for 5 min 

16) Centrifuge at 16,000 x g for 12 min at 4°C 
17) Discard the upper layer and the protein layer (the solid layer at the interface), note the procedure 

can be halted here by placing the tube in a -20°C freezer 
18) Allow the rest of the solution (organic layer) to evaporate overnight in a fume hood or use a 

rotary evaporator 

19) Dissolve the pellet in 20 µL chloroform 
20) Spot TLC plates to resolve the samples with 9:5:2 ethyl acetate:trimethylpentane:acetic acid, and 

spike the samples with phosphatidylethanol (PtdEtOH) and run a PA and PtdEtOH standards 
21) Dry TLC plates in a fume hood then place into an I2 chamber to visualize lipids 
22) Circle the PtdEtOH spots and allow the I2 to dissipate overnight 
23) Spray En3Hancer spray over the PtdEtOH spots 
24) Once partially dry, wrap plates in Saran wrap and put to film 

25) Let the film expose for 3-4 days at -70°C 
26) Develop film and confirm where the PtdEtOH spots lye 
27) Scrape the orgin and PtdEtOH spots and put the powder into scintillation vials, then add 5 mL 

scintillation fluid 
28) Wait ½ hr with the samples in the dark, count samples for 10 min each with a minimum error rate 

of 0.05. 
29) 48 hrs later count the samples a second time, use this data to determine PLD activity by the ratio 

of PtdEtOH to orgin 

* indicates where antagonists, when used, are added to the experiments 
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D.2:  Radiolabeled Binding Assay 

(In 6-well plates) 
 

1) Serum starve cells overnight, at least 8 hrs 
2) Wash cells twice for 5 min with 1.5 mL cold Binding Buffer (BB)  
3) Add enough radioactive agonist to BB so that 1 mL BB contains ~30 pM radioactive 

agonist 
4) Add 1 mL radioactive BB to cells 
5) Add the competing ligands 
6) Allow to sit at room temperature for 60 min 
7) Quickly wash with cold BB  
8) Add 1 mL 10% SDS solution 
9) Allow to sit for 5 min 
10) Remove SDS solution to: 

a. Count samples to determine binding 
b. Determine the protein concentration 

 
 
Binding Buffer (BB): 

1) 50 mM Na2HPO4 
2) 150 mM NaCl 
3) 10 mM MgCl2 
4) pH = 7.1 
5) 0.05% bovine serum albumin 
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D.3:  Preparation of Cells for Imaging 

(In 6-well plates) 
 

1) Place 22-mm diameter glass coverslips into 6-well plates 
2) Soak coverslips in 1 mL 0.0025% Poly-L-lysine for ~1 min 
3) Serum starve cells overnight, at least 8 hrs 
4) Stimulate cells with agonist for the desired time period, then remove media 
5) Wash cells twice with 2 mL ice cold PBS 
6) Fix the cells in 1.5 mL 3% PFA/PBS for 30 min at 4°C 
7) Wash cells three times with 2 mL ice cold PBS 
8) Permeabilize the cells with 1.5 mL 0.1% Triton X-100 in PBS for 2 min 
9) Wash cells four times with 2 mL PBS for 5 min 
10) Block the cells in 2 mL 3% BSA in PBS for 30 min 
11) Add primary antibodies at the given dilution in 3% BSA in PBS for 60 min 
12) Wash cells three times with 2 mL PBS for 5 min 
13) * Add secondary antibodies at the given dilution in 3% BSA in PBS for 60 min 
14) Wash cells three times with 2 mL PBS for 10 min 
15) Wash cells with 2 mL ddH2O and mount the coverslips onto slides 
16) Seal the coverslips with clear nail polish 
 
* indicates that Step 13 and the rest of the steps should be done in the dark 

 
 
3% PFA/PB: 
(Make a fresh solution each time) 

1) Place 1.5 g paraformaldehyde (PFA)** in 25 mL ddH2O 
2) Heat the solution to 60°C 
3) Add 1 N NaOH until the solution is clear (1 to 2 drops) 
4) Let the solution cool then add 25 mL of 2xPBS (PBS with double the salts) 
5) Chill on ice before use 

 
 
** PFA should be handled with caution.  Use gloves while handling and work with PFA in a 
fume hood. 
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