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A CO-SIMULATION ENVIRONMENT FOR MIXED SIGNAL, MULTI-DOMAIN 
SYSTEM LEVEL DESIGN EXPLORATION 

 
 

David Kent Reed, MS 
 
 

University of Pittsburgh, 2004 
 
 
 

This thesis presents a system-level co-simulation environment for mixed domain design 

exploration. By employing shared memory IPC (Inter-Process Communication) and utilizing 

PDES (Parallel Discrete Event Simulation) techniques, we examine two methods of 

synchronization, lock-step and dynamic. We then compare the performance of these two 

methods on a series of test systems as well as real designs using the Chatoyant MOEMS (Micro-

Electro Mechanical Systems) simulator and the mixed HDL (Hardware Description Language) 

simulator from Model Technology, ModelSim. The results collected are used to ascertain which 

method provides the best overall performance with the least overhead. 
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1.0 INTRODUCTION 

 
 
 
 
There have been significant advances in the area of mixed signal technologies in terms of digital 

and analog circuits as well as optical and mechanical devices. Using System-on-a-Chip (SoC) 

concepts and fabrication mechanisms such as Multi-Chip-Modules (MCM), these four 

technologies can now be integrated together permitting a new realm of system development. 

Such developments as Micro-Electro-Mechanical Systems (MEMS) and Micro-Optical-Electro-

Mechanical Systems (MOEMS) are possible and thus advancing computing technology (1, 2).  

With the above in mind, there have been efforts put forth in designing the verification tools 

used for these systems, however, mostly pertaining to a specific domain.  Due to the complexity 

of these systems, it is difficult to verify that all components are operating correctly. This 

difficulty lies in the fact that there are not many tools that provide end-to-end simulation of 

MEMS or MOEMS (2).  

Nevertheless, the need for a system wide simulation tool that can prove digital, analog, 

mechanical, and optical components that all function together is evident. Also, such a system 

simulation must be as fast and accurate as possible. One way to provide these features is to create 

a co-simulation environment that is capable of handling the digital, analog, mechanical, and 

optical technological domains. Each domain is handled by the most fitting simulator available 

and then coupled via an efficient co-simulation architecture. This in turn provides a system 

simulation environment needed to perform analysis and verification.  
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A complete system level simulation encompasses and examines many aspects required to 

verify that every component will function and operate with other pieces of the system. Unlike 

circuit or digital simulation and likewise mechanical or optical modeling and analysis, all of 

which focus on a particular domain, system level simulation must process every element, 

regardless of its physical domain, simultaneously. 

In examining modern co-simulation technology, we have found that much of the current 

research on system simulation is in the realm of embedded system design (3, 4, 5). This involves 

the co-simulation of both hardware and software systems in a framework or toolset. 

Hardware/software co-verification is limited to RTL or behavioral hardware description 

language (HDL) simulation and an interface to an instruction set simulator (ISS) (5). As a result, 

design exploration and verification is reduced to digital and software based analysis and does not 

typically account for analog circuitry, mechanical modeling, or optical analysis. 

Optical and mechanical simulation typically involves performing both static as well as 

dynamic analysis. Static simulation is used to measure mechanical tolerance, crosstalk, as well as 

power and insertion loss. Dynamic simulation analyzes noise, data streams, and bit error rates (1). 

The simulations just mentioned, whether static or dynamic, are typically performed in a 

simulator created for a certain physical domain (2). Examples of such tools are ANSYS Finite 

Element Analysis (8) for mechanical modeling and RSoft for optical analysis (9). 

There is an attempt to unify the simulation environment for the physical domains found 

within MOEM systems with a common toolset and language. The core concept is to provide a 

universal language that has the capability to describe the behavioral functionality of every 

domain found in a system. Once this description is created, a software simulator is utilized to 

perform a system level simulation (4). This is seen in the many SystemC simulators and language 
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flavors available (3). This concept, coupled with the use of HDL’s and other modeling techniques, 

provides a method for performing system level simulation (3, 4).  

When considering system level description languages such as SystemC, there are other 

languages available for modeling system level components. These languages are based on the 

hardware description language (HDL) varieties available for digital system design. Mixed Signal 

HDL’s provide a designer with the same language semantics already found in the digital system 

realm, however, with the added benefit providing facilities to describe other components (2). 

Examples of the Mixed Signal HDL’s are VHDL-AMS and Verilog A. VHDL-AMS is an 

extension to the VHDL 93 language. VHDL-AMS provides the facility to describe mathematical 

expressions as well as maintaining a larger built-in type definition for real voltages, lumens for 

optics, and force measurements for mechanical simulations (10). Similarly, Verilog-A is built on 

the similar constructs of Verilog, providing the same modeling capabilities as VHDL-AMS (10).  

Utilizing a higher level object-oriented approach, C++ is also a viable option for system 

level modeling. For purposes of this thesis as well as an example of the using C++, Chatoyant 

provides an environment for simulating components, independent of what their behavior is, in a 

true mixed-signal, multi-domain platform. Chatoyant, built on and utilizing Ptolemy (1, 2), 

expresses the components within a particular system as C++ objects, each encapsulating data 

types and behavior unique to a particular device. Chatoyant takes advantage of the different 

simulation domains within Ptolemy (i.e. Dynamic Data Flow, or DDF, and Discrete Event, or 

DE) to perform analysis of optical, mechanical, and electrical components at both the macro and 

micro level (1, 2). This tool will be discussed in more detail in Chapter 2.  

One potential problem that arises from the existence of the simulation and system analysis 

tools previously mentioned, with the exception of Chatoyant, is the inability to handle a 
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particular physical domain, albeit optical, mechanical, analog, digital, etc. Another potential 

problem is that there is no direct connection to another simulator that performs a different 

analysis that would bridge this gap in a complete system simulation. In such a case, a co-

simulation, or real-time link between two or more simulators, becomes a solution. A design is 

typically partitioned into the pieces that will simulate in the appropriate simulator. Then an 

interface is defined between these simulators created based on the signals that will connect from 

one domain to another.  

A simple example for such a need for co-simulation is in a digital and analog system 

design. If the digital portion of the design was created using VHDL or Verilog, and the analog 

sub-system was specified in the form of a SPICE netlist, a standard HDL simulator could only 

execute the VHDL description and only a SPICE simulator could simulate the netlist. Therefore, 

to perform a complete simulation, concurrently, a co-simulation interface must be used between 

the HDL and SPICE simulator. Some factors to consider in this case is first, how the two 

simulators will remain synchronized throughout the simulation time and second, how 

information is translated between the two physical domains (3). These considerations are 

discussed in detail in Chapter 3. The concept of co-simulation and the potential need for it brings 

us to the purpose of this research. The following section will detail techniques, results, and 

limitation of the work accomplished. It constitutes the statement of the purpose for this thesis 
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1.1 STATEMENT OF PURPOSE 

 
 

The purpose of this research is to examine and create an efficient co-simulation interface 

between Chatoyant and ModelSim. As mentioned in the previous section, Chatoyant is a 

simulation environment for performing MOEM system level design exploration and simulation. 

ModelSim is a commercially available mixed-language HDL simulator. This research addresses 

the lack of HDL simulation support found in Chatoyant for digital systems by bridging 

Chatoyant to ModelSim for a real-time simulation interface. 

 
 
 
 

1.2 STATEMENT OF WORK PERFORMED 

 
 

To implement the co-simulation interface needed to address Chatoyant’s lack of HDL 

simulation support, many approaches were researched and examined. Among the different 

techniques considered, the realm of Parallel Discrete Event Simulation (12) was studied in depth. 

Since both simulators were discrete event by nature, the issue of time synchronization was 

readily solved by many techniques found in the domain of PDES. This thesis provides the details 

of the theory used to implement the interface It also discusses the trade-offs between two 

common synchronization algorithms used in PDES. The remainder of the thesis focuses on the 
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background, theory, implementation, and testing of the co-simulation environment. The 

following section describes what each chapter discusses in more detail.  

 
 
 
 

1.3 LIMITATIONS OF WORKED PERFORMED 

 
 

The co-simulation interface presented in the previous section is based entirely on discrete 

event (DE) simulation. This process, though one of the more detailed simulation techniques for 

time-based simulation, also has one of the highest overheads in terms of scheduling processes, 

when compared to cycle-based or instruction level simulation (7). Also, since both of the 

simulators used in the co-simulation simulate using discrete event simulation, the interface 

between them must transfer individual events. As seen in Chapter 5 with the test systems, this 

works well for sparsely distributed events. However, for systems that have a clock or periodic 

signal that cross the interface, there is a large performance penalty due to a high volume of inter-

simulator event traffic. The future work section of Chapter 6 describes potential solutions to this 

problem and possible methods of modifying this particular co-simulation interface to obtain 

reduced inter-simulator event traffic and lower synchronization overhead.  

 
 
 
 

1.4 CHAPTER DESCRIPTIONS 

 
 
Chapter 2 covers the background on the technology used in the co-simulation interface described 

by this thesis. This includes a look into ModelSim, the commercial mixed language digital 
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simulator, Ptolemy, a multi-domain simulation framework from the University of California at 

Berkeley, and Chatoyant, a complete simulation environment for performing MOEMS system 

simulation, built on top of Ptolemy. This provides the foundation of the toolsets used in the co-

simulation system described in Chapter 4.  

Chapter 3 provides a look into the different components needed for the co-simulation 

environment. Topics covered by this chapter include what simulation techniques are applicable 

to the co-simulation interface’s design, described in this thesis, as well as a more detailed look 

into parallel discrete event simulation concepts. The chapter concludes with a discussion on how 

we measure the performance of the co-simulation interface. 

Chapter 4 describes the details behind the architecture of the co-simulation environment 

between ModelSim and Chatoyant. This includes a detailed look into the algorithms and setup of 

both simulators for the two types of synchronization that we describe in Chapter 3. Finally, there 

is a discussion about the automated system generator that creates all of the necessary files needed 

to implement the co-simulation environment for a particular system.  

Chapter 5 provides the descriptions and results of a series of test systems. These systems 

provide insight into how the co-simulation environment operates from simple to complex 

systems and real-world designs. Runtime results such as the number of messages, cycles per 

second, and system resource utilization are examined for all of these systems, utilizing two 

different synchronization algorithms. This chapter concludes with a cross comparison of all of 

the systems and a general conclusion as to which synchronization approach is the overall best. 

Chapter 6 summarizes and concludes this thesis, reiterating the general concepts and 

goals of the research performed. It reviews the systems used to test the interface and provide 

final remarks about the results collected. Finally we look into what improvements can be made to 
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the co-simulation interface and what is required to make the co-simulation interface a more 

complete and efficient tool. 

A set of appendices contain a list of key definitions used throughout this thesis along with 

the complete set of runtime measurements that we use in Chapter 5. 
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2.0 BACKGROUND 

 
 
 
 
The co-simulation interface between Chatoyant and ModelSim utilizes three tools. ModelSim is 

a commercial product, from Model Technology Incorporated, a subsidiary of Mentor Graphics. 

We discuss, in more detail, ModelSim in Section 2.1. Chatoyant, a tool for performing mixed 

signal multi domain system, or MSMD (1), was developed at the University of Pittsburgh. 

Chatoyant was developed to support the modeling and simulation of optical, mechanical, and 

electrical components found MOEM systems. Chatoyant utilizes the Ptolemy heterogeneous 

simulation framework for the actual simulation process (1, 2).  

Ptolemy utilizes an object-oriented programming, or OOP, paradigm to model user 

designs and components (7). After we discuss ModelSim, we first examine Ptolemy to provide a 

proper background for Chatoyant. Second, we examine Chatoyant and its contribution in the 

realm of system-level simulation. We then conclude with a brief look into the need for a co-

simulation interface between Chatoyant (ultimately Ptolemy) and ModelSim.  

 
 
 

2.1 MODELSIM 

 
 

 ModelSim® works on a single kernel concept which means that all design components, 

independent of their source language, are compiled into one primary executable object. This 
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executable object provides dynamic links to all compiled design objects. After all components 

have been compiled by the ModelSim compiler, the top level master design file is loaded, which 

in turn engages an elaboration procedure. This process links in all external components and loads 

them into the ModelSim memory space. Coincidentally, at this time all external C applications 

are linked as well from any foreign language interface (FLI) or programming language interface 

(PLI) callouts. Likewise, any delay annotation files such as SDF (Standard Delay Format) for 

back-annotated simulation, are linked and applied. At this point ModelSim begins preparation for 

simulation.  

 ModelSim is considered a discrete event simulator (30), which means that all activity 

within components and between them is treated as individual events with timestamps. In the 

ModelSim environment, the user can force events on any visible net and then tell the simulator to 

advance to a stop point. Since ModelSim is a mixed language simulator, it supports of both 

Verilog and VHDL. The implication of this feature requires ModelSim to simulate Verilog 

designs differently than VHDL. In Figure 1 we illustrate ModelSim’s method of performing 

simulation for any VHDL design.  
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Figure 1 Reproduction of ModelSim's VHDL simulation flow using a discrete event methodology (30)

 
 

This diagram, reproduced from the ModelSim User’s Guide, (30), shows the flow of every 

VHDL simulation. First, every concurrent statement at the current time is executed. Next, a delta 

cycle counter is incremented and any new event transactions are detected. If there are any 

transactions to be processed, then the simulator checks to see if there any events to be executed. 

If there are events that need to be executed, they are now processed and the delta cycle is 

incremented again. If there are no transactions, then the simulator determines that it is safe to 

advance the simulation clock. This process repeats until the user determined stop time or there is 

an infinite zero-delay loop detected. The infinite loop problem is the next topic for investigation. 

An issue with this flow, as well as many discrete event simulators, is that of zero-delay 

feedbacks. These are typically defined by user logic that contains a combinatorial feedback 
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without any type of storage. This design issue creates a problem in discrete event simulators 

since events are constantly scheduled for the same time on the same set of nets, with the 

possibility of looping in this cycle forever (9, 30). ModelSim deals with this issue by using delta-

cycles (30). This feature, as seen on the top of Figure 1, is used to determine if stability is 

attainable, by cycling through a series of delta iterations until a stable value is determined in a 

feedback loop. If the loop iterates a preset maximum number of times, the simulator stops and 

reports a maximum loop iteration error (30). 

Verilog simulation, in ModelSim, extends the VHDL simulation flow described above. 

However, the Verilog Language Reference Manual, or LRM, from the Verilog 1364 standard, 

places constraints on how simultaneous events are processed (30). Verilog is defined by the 1364 

LRM such that the simulator cannot control the order in which simultaneous events are handled 

(38). Since some designs require that events be processed in a particular order, the expected 

simulation results will vary from the actual results seen by the user (30). Verilog requires that 

ModelSim and every other Verilog capable simulator maintain a total of seven event queues. 

These queues are processed in a particular order, also defined by the Verilog standard. Listed 

below are the event queues, in order of how they are processed during a simulation, and brief 

description of what each queue holds, as defined by the Verilog LRM.  

• Active events – These are the current events being processed and are in an 

arbitrary order. 

• Inactive event – These events are events that are waiting for all active events to be 

processed. 

• Non blocking update events – These events are similar to concurrent statements in 

VHDL, and are processed after all inactive events have be processed.  
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• Monitor events – These events are events that are left over from the active, 

inactive, and non-blocking events executions. 

• Future events – These are events scheduled to occur in the simulation future time, 

and are divided into: 

o Future inactive events 

o Future non-blocking events 

Zero delay oscillations, by the Verilog standard, are handled in the active event portion of 

the simulation (30, 38). According to the Verilog 1364 standard, all events are simulated only from 

the active event queue, and all other queues are used to sort event types and priorities (38). For 

more on this topic refer to the ModelSim User’s Manual (30) and the Verilog 1364 LRM Standard 

(38). 

One powerful feature ModelSim provides is the ability to support executing C based 

object files embedded within VHDL and Verilog designs. This is possible through the Foreign 

Language Interface, or FLI, used with VHDL or the Programming Language Interface, or PLI, 

used with Verilog. We will focus on the fundamentals of the FLI since it is used in the 

implementation of the Chatoyant/ModelSim co-simulation interface.  

The FLI, as defined in the ModelSim FLI Reference Manual (31), provides a set of 

functions that will allow a user to have access to information within the ModelSim environment. 

These functions will allow the user to traverse a design’s hierarchy, obtain and set values of 

HDL objects such as arrays and signals, obtain information about the ModelSim runtime 

environment, and within a set of defined limits, control the simulation (31). The FLI code, written 

in C, can contain operating system dependent functions such as calls to pipes and sockets or 

shared memory (31). Each FLI program is compiled into a shared object file (.so in UNIX/Linux) 
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or dynamically linked library (.dll in Windows). These programs are then referenced in part of 

the user’s VHDL code, specifically within the architecture of a design unit, with the object file’s 

name and name of the initialization method to call when the simulator begins loading the object 

file.  

The FLI defines two types of methods above the standard functions and procedures found 

in C. The first of these new types of method is a callback, which defines a function that is 

registered in the simulator and activated when some criteria, such as simulator restart, are met in 

the ModelSim environment. For example, there is a callback function that the user can define if 

the simulation is closing. If the user closes ModelSim, this callback will be activated and 

executed before the simulator is terminated (31). The second type of function defined by the FLI 

is a process method. This function type is the same as a VHDL process block (27), except it is 

implemented as a C function (31). The features defined in the FLI reference manual (31) are used in 

the implementation of the Chatoyant/ModelSim interface. The use of the FLI are discussed in 

more detail in Chapter 4.  

The last topic to discuss about ModelSim is the user interface. ModelSim can operate in 

both console mode and graphical mode. Both are based on a TCL (Tool Command Language) 

user interface and the ModelSim GUI makes use of the Tk extension package (30). In terms of 

user features, ModelSim provides many graphical tools for performing code verification and 

analysis. The user can select and log all signal and variable activity and view it in a waveform or 

tabular form. Code can also be debugged in a step-wise fashion similar to a standard software 

debugger. This is most useful for functional and behavioral simulation. Code performance can be 

measured using a mechanism based on the GNU code profiler, gprof (30), which reports to the 

user the quantity of time spent in particular segments of the user’s code. This is a useful tool for 
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measuring performance in the Chatoyant/ModelSim co-simulation interface. Other tools, such as 

a coverage measurement feature for performing different types of coverage analysis as well as a 

waveform comparison feature for measuring mismatches between two simulation runs, exist in 

ModelSim.  

To provide a view as to the look and feel of ModelSim, Figure 2 shows an example 

snapshot from a ModelSim simulation, courtesy of Mentor Graphics. The design comes from one 

of the tutorials ModelSim provides as a teaching tool. In this particular example, we show a 

simple counter running in the ModelSim simulator. We ran this simulation and provided some of 

the GUI windows found within ModelSim. The upper left window in the screen shows the main 

ModelSim command console. The upper right window shows the HDL code editor and debug 

window. The window in the lower right corner displays the dataflow view for the design 

component selected. The center window shows the current state of all processes found in the 

current design unit that is selected. The lower right corner shows the waveform view for the 

simulation. 
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Figure 2 A snapshot of the ModelSim graphical environment from a test design simulation (44)

 

 
 We now conclude our discussion about ModelSim and turn the discussion to the other 

tools used in the Chatoyant/ModelSim co-simulation interface. This will include a discussion 

about Ptolemy and Chatoyant. 
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2.2 PTOLEMY 

 
 
Our discussion continues about the tools used in the Chatoyant/ModelSim co-simulation 

interface with an examination of Ptolemy (7). Ptolemy, from the University of California at 

Berkeley, is the simulation framework that Chatoyant uses, and therefore we must examine how 

Ptolemy works and what information it provides. Ptolemy uses the object oriented programming 

(OOP) paradigm and C++ to define classes that describe different parts of a system. A system in 

this case is what the user of Ptolemy wishes to model and simulate. Within Ptolemy, there are a 

series of predefined classes, the most general of which is the domain (7).  

The domain, for the scope of this research, defines the computation model used to 

simulate a system. There are numerous domains available in Ptolemy. For example, there is the 

discrete event domain (used in the Chatoyant/ModelSim co-simulation interface), which is used 

for digital hardware and network simulations. Another domain is the dynamic data flow domain 

(found in some Chatoyant models), and a subset domain known as the synchronous data flow 

domain, both of which are targeted for signal processing applications (7, 35).  

 Every system, regardless of the domain it simulates in, is comprised of a set of basic units 

called blocks (7). These blocks, contain user defined code that performs some action, in a method 

called go() (7). The block contains other methods such as startup(), which defines what the block 

must do when a simulation begins, and wrapup(), which defines what the block must do when a 

simulation completes (7). 
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Typically, a block’s go() method defines an action based on input stimulus from a Porthole (7). 

Systems in Ptolemy are created by a series of blocks which connected to another by means of the 

portholes. Portholes are defined as standard interface by which blocks communicate to one 

another (7). A domain will define the mechanism for transporting information from porthole to 

porthole through a scheduler. The data sent through the portholes is defined as a stream of 

particles (7). Particles also adhere to the OOP style found in Ptolemy and can be primitive data 

types such as floating point numbers or integers or more complex objects, as seen in the case of 

Chatoyant. Two other important classes that assist in the connection and transfer of particles 

between portholes is the Geodesic class which establishes the connection between two portholes 

and the Plasma class which acts a garbage collector when a particle has been consumed by the 

destination porthole (7). In Figure 3, we show a diagram of the flow between two blocks, with 

portholes, and particles being transported between them.  
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Figure 3 How blocks connect through portholes and how particles are transferred between them in Ptolemy 

(7)

 
 
 As seen in Figure 3, each block contains a series of methods that the user must define. 

These methods perform a specific operation, defined in more detail in (9). Any data that requires 

transmission to other blocks is done so through the porthole object. In the case of sending, the 

block will call the sendData() method in the porthole instance. Once again, this data can be in the 

form of primitive floating point numbers or integers or a complex user-defined data type. The 

porthole will then pass a particle, which acts as a generic wrapper for the data being transmitted, 

through an instance of the Geodesic object. The Geodesic instance will contain the destination 

pointer for the particle. The scheduler of the domain these blocks reside in will call the 

grabData() method of the destination block. The destination block will then process the data and 

the particle will be collected by the Plasma instance between the two blocks. This will happen 

for every connection between every block in a system. (7, 9)
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 Ptolemy also provides support for a hierarchy when building systems. Every block now 

becomes defined as a star, which is the atomic unit of component description. The next level of 

abstraction available in Ptolemy is a collection of Stars called a Galaxy. A Galaxy, models 

system behavior (through a collection of Stars) and can have portholes the same as Stars. A 

Galaxy and all of the stars within it, are all confined to a specific domain of simulation (e.g. 

discrete event or dynamic data flow). All Galaxies or groups of Stars are ultimately contained in 

a Universe which has similar properties as a Galaxy. A Universe also has the ability of invoking 

a scheduler and executing a simulation (7).  

 
 

 
 
 

Figure 4 Illustration of a Ptolemy Universe with Stars and Galaxies, derived from (7)
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 The diagram in Figure 4 shows the how a system can be described using the hierarchical 

constructs in Ptolemy. First, the stars represent the atomic level block. Each line with an 

arrowhead represents the connection between the ports of the stars. Next, the borders with the 

“Galaxy” label represent the description of a particular galaxy. Signals traverse the galaxy border 

using the same system as seen in the stars using portholes. Finally, the universe border defines 

the entire system as a whole, acting as a container for all stars and galaxies. The universe will 

activate the scheduler referenced by all of the stars and galaxies for the domain these items reside 

in. (7)

 As we discuss the methodology of how a system is modeled in Ptolemy, one key item 

found in a domain and used by a universe, galaxy, and star is the scheduler. The scheduler is 

responsible for managing the flow of data throughout a simulation as well as the execution of the 

simulation. There are different schedulers for different domains in Ptolemy (7). For example, 

there is a scheduler that maintains the order and flow of data particles in the dynamic data flow 

(DDF) domain. This scheduling methodology is used in signal processing simulations (9). The 

discrete event (DE) domain requires the scheduler to manage time instead of the flow of data. 

The DE scheduler maintains an event queue and the global time of the universe during a 

simulation (9). The DE scheduler must resolve zero-delay oscillations (the same issue handled by 

ModelSim). Instead of detecting this at runtime, Ptolemy detects a zero-delay loop at compile 

time, as a universe is loaded, before simulation. More details concerning the different schedulers 

for the different domains is available in (9). 

 Ptolemy also provides a feature for allowing simulation between multiple domains. This 

heterogeneous simulation is limited to a particular combination of domains. First, the main 

universe of a system is defined, defining the scheduler needed for its operation. For example, a 
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DE based universe will instantiate the DE scheduler. Secondly, the user can then define a sub-

galaxy within the universe that calls upon a different a scheduler, such as the synchronous data 

flow (SDF) domain and scheduler.  

The communication system between both the domains and schedulers is resolved by 

using a Wormhole object in Ptolemy. A wormhole makes use the EventHorizon interface to 

resolve the difference in scheduling requirements between the two schedulers as well as any 

encapsulation differences needed to transfer particles between the two domains. For a more 

detailed description of the Wormhole, EventHorizon, and domains that work together, see 

references (7, 9). The importance of mentioning this capability in Ptolemy is relevant for 

discussing the different components found in Chatoyant. Chatoyant contains objects that utilize 

domains such as SDF due to their signal processing behavior while other components utilize the 

DE domain due to the necessity to simulate with a time reference.  

The Wormhole, though a powerful mechanism in Ptolemy, is not directly applicable to 

the Chatoyant/ModelSim co-simulation interface. In order to make use of the Wormhole in the 

co-simulation interface, either an existing simulation domain, such as DE, must be modified or a 

new domain needs to be created. If an existing domain is modified, there must be a mechanism 

implemented to handle both the particle translation to and from ModelSim, as well a substantial 

modification to the scheduler for it to perform the synchronization. If a new domain is created, it 

must implement the necessary interfaces, such as the EventHorizon, as well as the scheduler 

object, in addition to the remainder of the interface to ModelSim. Though this solution could 

possibly provide a faster co-simulation runtime performance, certain issues such as integration 

into Ptolemy and ModelSim as well as making a new domain flexible to handle any system, 

outweighs the potential speedup.  
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With a broad based knowledge of Ptolemy, Chatoyant builds upon the framework 

provided by Ptolemy to provide a true Mixed Signal Multi-Domain simulation tool. This 

includes generic stars for describing optical behavior, piece-wise linear circuit solvers, and other 

customizable components needed for a complete system simulation.  

 
 
 
 

2.3 CHATOYANT: A MIXED SIGNAL, MULTI-DOMAIN MOEMS SIMULATION 
TOOL 

 
 

Chatoyant is a mixed signal and multi domain system simulation tool (1). Chatoyant 

provides the ability to simulate macro and micro optoelectronic systems. Chatoyant offers a 

means to perform architectural design and analysis. Components, built as Stars in Ptolemy, 

represent different models. These models are connected together through signals and use a 

Chatoyant specific message class. The specific message class contains subclasses for carrying 

electrical, optical, and mechanical signal information, depending on the type of models that are 

being connected together (1, 2). The models and the signals passing data between then define the 

overall the “dynamics” of the system’s behavior (37). We turn our focus to the different models 

available in Chatoyant which encompasses the three physical domains of optics, electronics, and 

mechanics. 

Chatoyant manages component modeling using three different techniques, all described 

in (1). The first technique, known as the “derived model” approach, is based on modeling a device 

by its underlying physics. The second modeling technique uses interpolation of empirical 

measurements take from a fabricated device. This method creates a mapping between a set of 

inputs and their resulting outputs. The third modeling technique involves utilizing low level 
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simulations to create a reduced order description. The technique utilizes results of a set of 

simulations or the output of a finite element solver to generate a computational model. These 

results are used to define a polynomial that is a result of curve fitting or an interpolation of data 

points for a particular region of operation. Though there are others ways to perform this 

technique, this was the one chosen in Chatoyant. 

From these three modeling techniques, Chatoyant provides four libraries of components. 

The Optoelectronic library provides models such as a Vertical Cavity Surface Emitting Laser, or 

VCSEL, Multiple Quantum Well (MQW) modulators, p-i-n detectors. The Optical Library 

provides models such as lenses, lenslets, and mirrors. The Electrical Library includes CMOS 

drivers and amplifiers as well as a circuit solver which is capable of providing a simulation that 

has a proven speed up over SPICE (2) utilizing piece-wise linear simulation techniques described 

in (1, 2, 37, and 39). The last major library is the Mechanical Library which provides models such as 

scratch drive actuators and an RF MEMS variable shunt capacitor switch (8) as well as electro-

static devices (1).  

Many of the components found the four primary libraries of Chatoyant are non-linear, 

meaning that their behavior is described in terms of non-linear differential equations (39). The 

simulation of non-linear devices, without any modification or simplification, is difficult and 

computationally slow, as stated in (2). Chatoyant addresses this problem with the piece-wise 

linear modeling approach (1, 2, 39).  

Piece-wise linear modeling is divided into several steps. First, a device is decomposed 

into linear and non-linear sub-blocks. The linear sub-blocks typically consist of passive elements 

such as interconnects or parasitic elements, as described in (2). All non-linear sub-blocks are 

linearized using the piece-wise techniques described in (2 and 39) and produce a template to be fed 
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into the second stage of the modeling process. This second stage performs Modified Nodal 

Analysis, or MNA, which produces a mathematical representation of the device being modeled. 

The linear sub-blocks are directly passed into the MNA process, while the non-linear sub-blocks 

undergo the linearization procedure mentioned earlier. Both of these sub-blocks are then 

combined during MNA to produce a linear mathematical expression in the frequency domain.  

After MNA process, complex electrical devices have been proven to simulate, in 

Chatoyant, efficiently and faster than in their original non-linear description, as discussed in (2). 

The final mathematical expression resulting from the MNA composition provides a linear solver 

that, when coupled with the constraint that signals must be described in a piece-wise nature, can 

use a simple transformation between the frequency and time domain (2). Figure 5 illustrates this 

process from start to finish. We see in this diagram that a device is decomposed into linear and 

non-linear segments, both of which are fed into the MNA composition process and then produces 

the linear frequency domain solver. This solver accepts piece-wise linear input in the time 

domain and produces piece-wise linear output also in the time domain.  

 
 

 
 
 

Figure 5 The modeling process, in Chatoyant, for non-linear devices (39)
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 As described in more detail in (1, 2, 8, 36, 37, 39), the modeling process is applicable to 

optoelectronics, electronics, and mechanics. Resulting complex devices are modeled quickly 

providing simulation models that increase the overall simulation speed while maintaining an 

acceptable tolerance with respect to accuracy of the results, as proven in (1, 2, 8, 36, 37, 39). We now 

conclude our discussion on Chatoyant and examine the need for the co-simulation interface 

described in this thesis.  

 
 
 
 

2.4 PROPOSING THE CHATOYANT/MODELSIM CO-SIMULATION 

 
 

One disadvantage of Ptolemy, and thus Chatoyant, is the lack of support for the 

simulation of VHDL or Verilog code. This prevents Chatoyant from being a complete end-to-end 

simulation solution for performing system design exploration. Many systems contain complex 

digital as well as analog components that couple with optical and mechanical devices. This is 

often seen in optical computing research (36, 39, 40). Despite the lack of support for direct HDL 

simulation, the Chatoyant MSMD toolset and the Ptolemy simulation framework provide a 

promising set of features that can allow the integration of an external HDL simulator. ModelSim 

provides the mechanisms for communicating to external applications via the FLI. The methods 

provided by the FLI coupled with a few modifications to Chatoyant and Ptolemy makes a co-

simulation interface possible. The remainder of this thesis will explain how the mixed-language 

HDL ModelSim simulator interfaces to the Chatoyant/Ptolemy toolset.  
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The following chapter provides a more in depth analysis of the mechanics needed to build 

the co-simulation interface. We discuss the basic theory behind discrete event simulation and 

more specifically, parallel discrete event simulation. It then becomes of interest to look into how 

this theory can be applied to co-simulation, as well as how signals are translated from one 

physical domain to another, and finally how to measure the performance of the co-simulation 

interface based on the theory behind discrete event simulation.  
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3.0 SIMULATION CONCEPTS AND CONSIDERATIONS 

 
 
 
 
In this chapter, we discuss the theory and application of discrete event simulation as it applies to 

the co-simulation interface between Chatoyant and ModelSim. First, we must define a simulation 

domain which (presented in (7)) is a computational model for how components in a given 

simulation interact with one another. One possible simulation domain could be data flow, which 

simulates according to the flow of data between components. Though a data flow model of 

simulation has no concept of simulation “time” (7), it does track the events based on the order of 

data being produced and consumed by components. Data flow models of computation are 

efficient, though they are more suited to signal processing simulation (7). The discrete event (DE) 

simulation domain governs the interaction between objects by means of events that change the 

objects’ internal state at some given time (7, 11). The discrete event domain provides a robust 

model for simulating most systems, however, at the cost of slower runtimes. This cost is seen 

especially in systems that fit better within a data flow simulation domain (7). Since systems 

containing electronic components, especially those of a digital nature, frequently measure 

activity over time, we assume the use of the DE simulation domain for the remainder of the 

thesis.  

In the context of co-simulation, where more than one simulator is executing 

cooperatively, parallel discrete event simulation (PDES) becomes an important subject to 

discuss. This realm of discrete event simulation deals with distribution and synchronization of a 
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simulation over multiple event processing entities. Time synchronization is of key importance 

when considering PDES (11). Therefore, it is the first concept to be examined in detail.  

The second concept to be examined is how events cross the co-simulation interface. As 

we will see in the context of the Chatoyant/ModelSim co-simulation interface, this will imply a 

translation from one physical domain to another (i.e., analog to digital). The main issue involved 

with the translation process is how events of a particular type are converted to the correct type 

and value. The different performance metrics and how they measure the operation of the co-

simulation interface is the last topic of this chapter. These concepts are important and are later 

applied to the operation of the co-simulation interface.  

 
 
 
 

3.1 DISCRETE EVENT SIMULATION FUNDAMENTALS 

 
 
We divide the discussion of Discrete Event Simulation, or DES, into two sub-topics, as seen in 

(12). First, we examine sequential DES as well as its limitations. Secondly, we look at parallel 

DES, or PDES, and specifically discuss conservative and optimistic approaches to asynchronous 

PDES and the implications of both.  

 Prior to our initial examination of PDES, it is necessary to define a few key terms. First, a 

common element among all types of PDES is the scheduler (11, 12). Regardless of the number of 

schedulers in a system, the main objective of the scheduler is to manage time and event order (12). 

Although this is a physical process typically executing on a processor in workstation, the 

scheduler is most commonly visualized as a time wheel (12), as seen in Figure 6.  
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Figure 6 Representation of a Discrete Event Scheduler as a timing wheel, adapted from (12)

 
 

 As seen in the figure above, the wheel represents a collection of distinct units of time, 

called time steps (12). As the wheel rotates in a counter clock-wise fashion, time progresses to the 

next point. At each time stamp, there is a set of events that have been scheduled, taking the form 

of a linked list in Figure 6. These events are sent to one or more Logical Processes, or LP, 

defined as a computational block (12), that performs some operation. This operation has the ability 

to produce new events for the current or a later time step. This wheel is implemented as a priority 

queue, as seen in (12). As new events arrive from the LP’s, the scheduler will sort in the priority 

queue the new events by the earliest time stamps first. As soon as all activity has ceased for a 

given time step, the scheduler will proceed to the next time step (9).  

 After the scheduler issues events, some other process or processes consume these events. 

A single process is sometimes referred as logical process, or LP, as defined in (11, 15, 17, 18). An LP 

will process a series of incoming events, for a given timestamp, and compute a set of new events 

for some period of time later (15, 18), by means of a state-change function (19). An example of an 

LP is a block or star in Ptolemy that consumes events and produces output events (7, 9). We will 

see, in Chapter 4, that there are two simulators with their own definition of an LP’s, one being 
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Chatoyant with the stars being the LP’s, and the other being ModelSim with an LP being the 

different components loaded into the simulation kernel from a user design. Also, both of these 

simulators maintain their own simulation time and event queue, independent of one another.  

 Figure 7 provides a graphical view of the general concept of an LP. In this diagram we 

illustrate the functionality of consuming events and calculating new events based on some state 

function. As an event comes into the LP, it is used to lookup which state value is going to be 

used. In gate-level simulation, this is typically in the form of a gate ID number (12). Using 

Ptolemy, events occur in the form of a message being consumed at the porthole of a star and then 

referenced within the go() method with in the star (7,9). Once the state is retrieved, the incoming 

event value is used with the current state to determine if there is state change. This task is 

typically performed by a lookup table for gate-level simulation (12) or through a user defined 

process (19), as seen the case of the piece-wise linear solver in Chatoyant. If there is a change in 

the value of an output from an LP, a new event is created, with a timestamp of explicitly when 

the event occurs based on delay calculation unique to the user’s application (see (12) for 

examples). This event is sent back to the scheduler and the LP will continue with its execution. It 

should be noted that this diagram is our own generalization of a logical process. 
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Figure 7 Generalized LP block diagram 

 
 
 With an understanding of the discrete event simulation process, we can now discuss how 

this works in the context of PDES. In the case of PDES, there are multiple LP nodes (12) and one 

or more schedulers, depending on the method of synchronization used between those LP nodes. 

Figure 8a (top box in the diagram) shows the case of sequential DES, such as seen in a DE based 

universe in Ptolemy. There is a master scheduler and n number of LP nodes, with all event traffic 

routing through the scheduler. Figure 8b (bottom box in the diagram) illustrates an example of 

asynchronous PDES. In the case seen in Figure 8b, there are now multiple simulation nodes, 

each having their own local scheduler with on or more local LP’s (12). Event traffic is between the 

local LP’s or between the other simulation nodes (12). 
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Figure 8 The sequential simulation (A) architecture and the asynchronous PDES (B) architecture 
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 In the following two subsections, we go into more detail about the sequential DES and 

asynchronous PDES algorithms. These algorithms will be the foundation for the synchronization 

methodology used in the Chatoyant/ModelSim co-simulation interface.  

 
 
3.1.1 Synchronous Simulation Methodology 

 
 
In sequential DES, all LP nodes must process their events before the whole simulation can 

progress to the next time step (12). In the sequential methodology, there is a fixed difference 

between timestamps, ∆, such that every LP node will consume and produce events for some k∆ 

time later, where k ≥ 0 (12, 16). Figure 9 shows the pseudo code for the sequential algorithm from 

(12). This code shows both the scheduler and LP process code for every time step. 

 
 

 
 
 

Figure 9 Pseudo code for the synchronous PDES algorithm (12)
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 In the section marked as Scheduler in Figure 9, each LP is updated with the set of events 

bound for it. These events in turn activate their destination ports within the LP. In the LP 

segment, each LP will perform an evaluation for each event based upon this event and the 

current state of the LP, as seen in Figure 7. If there is a change generated by the output 

evaluation function, a new event is scheduled at some delay time later. This process will then 

repeat for every port of an LP that has a new event at time t. This process occurs for each LP at 

the given time step until all events for the current time step are consumed (12).  

 The algorithm seen in Figure 9 does have limitations. As discussed in (16), there are four 

factors that determine simulation overhead: frequency, duration, level of detail, and number of 

simulated events. The evaluation frequency is related to the inverse of the time-step, or 1/∆. The 

duration of synchronization is defined by the time it takes each LP to execute and reach a 

quiescent state for a given time step. This factor is partially dependent on the maximum 

frequency as well as the length of time it takes an LP to perform a particular operation. The level 

of detail reflects the amount of processing potential at each LP. If an LP is capable of processing 

information faster, the simulation overhead will decrease. Likewise, the number of simulated 

events, which refers to the average quantity of events processed by each LP for a given time step, 

also reduces synchronization overhead if more events are processed in a short amount of time. In 

sequential DES, the finer the resolution of the time step frequency is the greater computational 

load is, placed on every LP. Since all LP’s are executing sequentially in this type of simulation, 

the sum of the runtime for each LP times the number of events processed by each LP, proves to 

be a large performance inhibitor (12, 16). 
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 To resolve the problems with sequential simulation, asynchronous parallel discrete event 

simulation is utilized (12). This branch of discrete event simulation provides a method for 

partitioning a design into smaller individual simulations that, in turn, simulate independently of 

one another, as seen in Figure 8b. This method of simulation has shown to have significant 

speed-ups depending on the system being simulated and type of synchronization used (12).  

 
 
3.1.2 Asynchronous Simulation Methodology 

 
 
To explain asynchronous simulation, the methodology, described by (12), is based on there being 

multiple simulators, each with their own scheduler and one or more LP’s. Asynchronous PDES 

methods are divided by the two means of controlling their simulation, based on the concept that 

each simulator is permitted to progress to its respective local simulation time, otherwise known 

as its local virtual time, or LVT (11). Both approaches deal with a concept called temporal 

causality. Temporal causality is defined as the restriction that any event arriving from another 

node must not have a timestamp earlier than the destination node’s LVT (11). The first type of 

synchronization, known as conservative, strictly adheres to maintaining causality. The second 

type of synchronization, known as optimistic, does allow causality to be broken with the ability 

to rollback to a known safe state in order to recover from the causality violation (11, 12 13). The 

different implementation approaches to both of these synchronization methods will now be 

discussed.  

The conservative methods of synchronization, first developed by Chandy and Misra, as 

well as Bryant (11, 12), strictly prohibit violating causality. For any given time step, no LP is 

permitted to send or receive an event that is earlier than any other of the LVTs of the other LP 

nodes. To enforce this, there must be constant communication between the LP nodes. This 
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method of simulation, however, is prone to deadlocks since there exists the possibility that every 

LP will not receive an event that permits itself and other simulators to progress to the next time 

stamp (12). To resolve this, deadlocks can be avoided by null message passing; deadlocks are 

recoverable by assuming that the event with the earliest timestamp is the safest event, or by 

means of lookahead (11, 12). The pseudo code in Figure 10 describes a general purpose 

conservative synchronization algorithm with deadlock resolution, according to (12). 
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Figure 10 Asynchronous, conservative based PDES synchronization pseudo code (12)

 
 

In the pseudo code seen in Figure 10, the code is divided into three parts. The first part, 

related to the local scheduler of any of the simulators used for simulation (refer to Figure 8b), 

checks to see if the global virtual time, or gvt, is equal to the overall stop time of the simulation, 

denoted as maximum-time. Then for every event in the simulator’s event queue, the event’s 

timestamp is checked against the current LVT of the simulator. As soon as the minimum of these 
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times is determined, the scheduler will then activate the LP and its computational section. Once 

all of the events at that time stamp have been processed and all output events have been issued to 

the scheduler, the third stage of the code is invoked. In this stage, all other incoming event 

queues are processed from the other simulators. The same event processing is performed until 

there are no more events. At this point, all event queues in each LP node are checked to 

determine if there is deadlock. If there is a deadlock, the simulators perform a deadlock recovery 

as seen in the segment of code labeled Deadlock Resolution. Once the deadlock is resolved, the 

simulation proceeds normally. There are several methods for handling deadlock. We investigate 

those methods now. 

One of the first deadlock resolution methods is null message passing, as defined by 

Chandy/Misra and Bryant in (11, 12, 20). It states that an LP node will broadcast a null event with a 

safe timestamp as a promise that there will be no other events with timestamp t, such that t > tnull. 

This method is typically a solution that incurs high overhead since the communication system is 

loaded with additional messages (17). Deadlock recovery methods require mechanisms that first 

detect then resolves deadlocks as described in (21, 22). As noted in (11), deadlock recovery does 

reduce synchronization overhead significantly when compared to null message passing. 

However, deadlock recovery typically performs similarly to the synchronous system when 

approaching and resolving a deadlock situation, which has the potential for reducing the overall 

simulation performance (11).  

The final conservative synchronization method is lookahead. This method provides both 

deadlock avoidance as well as limiting the need for null messages (11). Lookahead requires more 

implementation considerations than the preceding methods mentioned. One consideration 

includes how to perform the lookahead within the simulator. This means that there must be a 
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method available to the simulator to be able to determine when the next time stamp is. Another 

consideration is what resources are available within the simulator to support creating a function 

if it does not exist. This is seen in Ptolemy’s DE scheduler, where there is not a built-in method 

for performing the lookahead. Therefore, a look into the Ptolemy DE scheduler shows that there 

is an event queue object available. Having access to this event queue is important for 

implementing a lookahead function. The conservative approach to asynchronous PDES provides 

a noticeable runtime speedup over synchronous methods, as shown in (12).  

To further speedup simulation beyond the conservative methods, the optimistic approach, 

as first proposed by Jefferson in (44), and later discussed by Nicol and Fujimoto in (13), provides a 

different methodology when considering the constraint of maintaining causality. Optimistic 

asynchronous simulation assumes that the probability of violating causality is small with respect 

to the total number of events that will be processed and produced (12, 13). With this assumption, 

any processing element is allowed to freely execute until it receives an event in the past with 

respect to its own LVT. When this violation occurs, the LP must stop and return to a previously 

known safe state, typically defined as the last known LVT which is earlier than the timestamp of 

the violating event. In order to accomplish this, the current state of any LP must be saved 

periodically so that if there is an event violating causality, the LP has a previously known safe 

state. Depending upon the number of elements within the LP and the complexity of the 

computation occurring within the LP, there is the potential for a large overhead both in terms of 

execution time as well as system resources (12). Also, each node must be capable of supporting 

the state saving ability (13). Figure 11 illustrates the pseudo code for a general purpose optimistic 

simulation, as described in (12).  
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Figure 11 Asynchronous optimistic synchronization pseudo code reproduced from (12)

 
 

We can observe that the pseudo code described in Figure 11 is less complicated when 

compared to the pseudo code for the conservative method as seen in Figure 10. The pseudo code 

for the optimistic approach divides into two segments. First, the LP process will consume events 

and produce any output events. The second segment of code performs the scheduler functions. In 

the optimistic case, other events are received from other LP nodes and then checked against the 

LVT of the current node. If there is the timestamp of an event is less than the current node’s 

LVT, then causality has been violated. At this point, the LP must rollback to the checkpoint that 

is less than ts and simulate from that checkpoint to the timestamp of the violating event. 

Cancellation messages are sent from the current LP to other LP nodes to reverse any effects the 
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rollback may have caused, and all new output events are scheduled. Regardless of whether there 

was a rollback, the LP performs a checkpoint and then proceeds to the next event and timestamp. 

This will repeat until there are no more events to be processed or a stop time has been reached.  

Assuming there exists the resources to perform the checkpoint and restore for a rollback 

system, there are many methods discussed in (13) regarding how to determine when it is 

appropriate save the state of a simulation and how to efficiently perform a rollback. The 

optimistic asynchronous PDES methods have shown further speedups beyond the conservative 

methods, described in (12).  

We can apply the concepts described within this section to the co-simulation interface 

between Chatoyant and ModelSim. Both the synchronous and asynchronous techniques provide 

a possible method of synchronization for the co-simulation interface. We will now further 

investigate these two synchronization techniques in the following chapter 

 
 
 
 

3.2 USING PDES FOR THE CHATOYANT/MODELSIM CO-SIMULATION 
INTERFACE 

 
 

We now apply the theory presented in the previous sections to the co-simulation interface 

between Chatoyant and ModelSim. To refresh: co-simulation is defined as one or more 

independent simulators executing in a cooperative fashion, each simulating a particular segment 

of a design (3, 5). As described in (3), one of the more critical components of co-simulation is 

synchronization. In this section, we investigate a cycle-accurate lock-step approach as well as 

using the conservative asynchronous PDES methodology as a dynamic synchronization 

approach.  
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3.2.1 Lock-Step Co-Simulation 

 
 
 A common synchronization technique used in co-simulation is referred to as lock-step 

synchronization (25). Lock-step synchronization means that every simulator that is part of a co-

simulation will synchronize by a constant step size, which we will call δ. This step size, δ, which 

is defined as the “step” from synchronization to synchronization (25), is usually determined by a 

fixed simulation clock (5, 25). In Figure 12 we illustrate how n number of Discrete Event 

simulators will progress through time with using the lock-step co-simulation technique. This 

figure exemplifies how the step size restricts the simulators from allowing interim events to be 

available to the other simulators, if they occur on the signals that cross the co-simulation 

interface. 
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Figure 12 An example of a lock-step co-simulation 

 
 
 The diagram in Figure 12 depicts the event behavior between two synchronization cycles 

during the co-simulation. The top box shows the simulation state of simulators 1 through n at 
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time t0. At this point, each simulator has a set of events scheduled. Simulator 1 has an event, 

Event1A, scheduled at t1, as well as an event, Event1B, at time t4. Likewise, Simulator 2 has an 

event, Event2A, scheduled at time t2. Finally, Simulator n has an event, EventnA, scheduled at time 

t1 as well as an event, EventnB, scheduled at time t3. The next synchronization step is scheduled to 

occur at tdelta, which allows us to define the step size, δ, as δ = tdelta – t0. When the simulation 

reaches tdelta, all of the simulators synchronize with one another. This state of the interface is in 

part defined by the current values of the signals that traverse the interface between the different 

simulators (5). At the tdelta point in simulation time, the simulators only receive the current state of 

the signals that traverse the interface 

As seen in the previous example, when performing lock-step co-simulation between 

discrete event simulators, the synchronization period has an impact on simulation accuracy. 

However, this period has the inverse effect on simulation runtime performance when considering 

the overhead associated with each simulator computing the next synchronization point (5, 6).  

Let us now consider three different cases with respect to the magnitude of δ as it effects 

overhead and simulation accuracy. If we consider the case of δ being at least an order of 

magnitude greater than the resolution of the events being scheduled (for example δ = 10-9 versus 

a resolution = 10-12), the associated synchronization overhead is reduced, and therefore the 

simulation performance is potentially increased (5, 6). However, the number of interim events 

visible across the interface is significantly reduced. If δ is equal to the resolution of the events 

being scheduled, there are an increased number of events that are visible at the synchronization 

point. However, this increases the synchronization overhead and thus impact the overall 

simulation performance. Finally, if the value of δ is significantly less than that of the simulation 
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resolution (for example δ = 10-12 versus a resolution = 10-9), every event will be visible at the 

synchronization points, but there is an even higher synchronization overhead imposed. 

The lock-step method of synchronization does, as seen in the discussion above, have the 

pitfall of not always showing the entire event traffic. However, for the perspective that we are 

interested in with the Chatoyant/ModelSim co-simulation interface, we would like to maintain as 

much event visibility across the co-simulation interface as possible without incurring a large 

overhead. To address this desire, we will now look at applying the asynchronous PDES methods 

to co-simulation.  

 
 
3.2.2 Dynamic Co-Simulation 

 
 
As we have stated, one of the goals of the co-simulation interface is to provide an event accurate 

co-simulation. Using the cycle-accurate co-simulation methodology, discussed in the previous 

section, leads to some events not being seen across the interface. These events can represent 

critical occurrences that can directly impact how a system behaves. Therefore it is necessary to 

have in place an alternative to the lock-step approach for synchronization in a co-simulation 

environment. The asynchronous approach seen in PDES becomes an answer for both the runtime 

issues as well as accuracy deficiencies.  

When considering the application of asynchronous PDES to co-simulation, we must 

evaluate both the conservative and optimistic methods of synchronization, described in Section 

3.1.2. One issue we must consider is that co-simulation is typically performed on one 

workstation, especially in the case of the Chatoyant/ModelSim interface (3, 25). This places a 

constraint on the CPU power and system memory that is available to the simulator programs. 

Therefore, when we consider using an optimistic approach, the need for period checkpoints, 
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rollback overhead, and support for these two functions becomes critical. To perform a 

checkpoint, even if performed in an efficient way as proposed by (26), consumes memory and 

perhaps disk space, as seen in (30). A rollback also requires loading a checkpoint from disk back 

into memory and potentially restarting the simulation from that point, as seen in ModelSim (30).  

When considering the optimistic approach, we must also make the assumption made that 

all of the simulators being used have the ability to checkpoint and rollback. In the case of the 

Chatoyant/ModelSim co-simulation interface, ModelSim has mechanisms to perform the 

checkpoint and restore operations, however, Chatoyant does not. To implement this feature in 

Chatoyant is difficult and at best a time consuming process since we must add this ability to all 

Chatoyant stars as well as directly modifying the discrete event scheduler in Ptolemy. For these 

reasons we focus of on using a conservative approach for synchronization.  

 The conservative synchronization provides a noticeable speedup without the overhead of 

optimistic methodologies (12). To implement the conservative synchronization methods, we need 

to have a notion as to every simulator’s place in time as well as a method for avoiding deadlock 

(23). For each simulator to have insight into the others’ time state, a special communication packet 

or a shared memory location is used. To avoid deadlock, we must choose ether a null message 

scheme, a deadlock recovery scheme, or a lookahead method.  

 The critical issue concerning the use of conservative PDES is deadlock resolution. As 

stated in (17), the null message scheme used to solve the deadlock problem can be very costly 

since it utilizes much of avaialable communication bandwidth. Deadlock recovery systems 

require extra resources to allow an undo, as seen in (12, 15). Lookahead provides a powerful 

mechanism, given that it is available or easily implemented in the simulator being used (16). 

Utilizing the predictive barrier scheduling scheme proposed in (16), we can take advantage of 
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searching the event queue of each simulator to determine when the next synchronization should 

be scheduled. We define the lookahead operation for each simulator in the pseudo code in Figure 

13. This pseudo code is adapted from the algorithm presented in (16) as it applies to the 

Chatoyant/ModelSim co-simulation interface. 

 
 

 
 
 

Figure 13 Dynamic synchronization pseudo code adapted from (16)

 
 

As we see in Figure 13, there is a lookahead operation and a synchronization operation 

performed. First, all of the simulators update the port values that serve as outputs to the other 

simulator and each simulator posts its current time to the other simulators. Secondly, both of the 

simulators determine their next event times, based upon a lookup within their respective event 

queues. Third, each simulator posts its next event time to the other simulators (12). When each 

simulator has all of the next event times, they will all determine the minimum of these times. 

This minimum time defines the safe time interval that all simulators can execute before 
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synchronization is performed (16). The synchronization operation performs two calculations, 

depending on how a simulator schedules events. If a simulator requires that events (we define 

synchronization wake-up as an event) be time stamped with the actual time of occurrence, the ts 

value is used. This is seen in the case of Chatoyant and Ptolemy (7, 9). However, if the simulator 

requires that events be time stamped with a relative time of occurrence, as seen in ModelSim (30, 

31), the tr value is used. With the current wake-up time determined, this value is scheduled and 

the simulation continues.  

With the current simulation time and the next event time, synchronization is reduced to a 

series of integer comparisons in every simulator without requiring complicated calculations or an 

over utilization of I/O operations. As long as the lookahead functionality is available, as well as 

the shared memory discussed earlier, the conservative co-simulation approach provides an 

efficient and easily implemented interface. In Figure 14, we illustrate an example of the dynamic 

synchronization for n simulators. 
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Figure 14 Our example of dynamic synchronization 
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 Similar to the example seen in Figure 12 for the lock-step method of synchronization, 

Figure 14 shows how we perceive the dynamic algorithm operates. Once again we show n 

simulators stepping through time, and all start at t0. Simulator 1 has events scheduled at t1 

(Event1A) and t4 (Event1B). Simulator 2 has one event, Event2A, scheduled at t2. Finally, Simulator 

n, has one event, EventnA, scheduled at t1. Using the dynamic synchronization method, each 

simulator looks at their event queues and determines the next event times. For Simulator 1, this 

time is t1, Simulator 2 determines t2 to be its next event time, and Simulator n determines its next 

time to be t1. Next, all of the simulators post their next time values to one another and all 

calculate the next synchronization time. Time is set equal to t1, which is the earliest time. Each 

simulator schedules a synchronization wake-up event at t1 and proceeds with the simulation. 

When the simulators synchronize at t1, they perform the lookahead and posting operation again 

to determine that this time, t2, is the valid synchronization time. This continues until the end of 

the simulation.  

With this method of synchronization, deadlock is avoided since no simulator waits for an 

event that is known not to violate causality. With the issue of synchronization covered, we now 

shift our focus to how event data is translated from one physical domain, such as digital 

electronics (i.e., multi-valued logic), to another physical domain, such as analog electronics (i.e., 

voltages). 
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3.3 DIGITAL/ANALOG SIGNAL TRANSFORMATION 

 
 
With a basic understanding of temporal synchronization of discrete event simulation, another 

consideration of co-simulation is that of communicating between the different physical domains 

represented by each simulator. In this context, a physical domain is defined as the set of common 

characteristics of a signal groups that exist in a particular segment of a design. We define the 

simulation of multiple physical domains as mixed-signal simulation, as seen in (1, 2, 19). Since we 

have been referring to MOEM systems, the possible physical domains are optical, mechanical, 

electrical, and now digital. In the case of a co-simulation environment, the interface between the 

multiple simulators must handle the conversion between these physical domains and convert 

from one signal type to another. Even in the case of a unified language set such as VHDL-AMS, 

there is still the consideration of how signals are translated between the different physical 

domains (10). For example, a VHDL-AMS component defines how it converts a logic literal into 

a voltage, governed by a set of physical rules. 

In the co-simulation interface between Chatoyant and ModelSim, the interface has to 

convert between analog and digital signal types. The conversion between analog and digital 

signal values becomes a technology specific concern, meaning that how digital values translate 

to voltages and vice versa is dependent on the properties of an integrated circuit (e.g., 0.13 

micron low voltage CMOS integrated circuit). Different voltage levels correspond to different 

logic values, depending on how the integrated circuit reacts to certain voltages.  
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To accurately model the translation between digital and analog signals, we make use of 

the Voltage-Transfer Characteristic, or VTC, as provided in (26). The VTC plots the output 

voltage as a function of the input voltage for a given gate. This plot provides the necessary 

information for mapping logic values to voltages, and vice versa (26). Figure 15 illustrates an 

example VTC and the corresponding relationship to logic values.  

 
 

 
 

 

Figure 15 Sample voltage threshold graph for TTL and CMOS technologies adapted from (26)

 
 

The graph in the left side of Figure 15 depicts a VTC curve. There are four primary 

points of interest concerning this graph. The point marked as VOH denotes the lower limit of a 

gate’s output voltage producing an equivalent logic ‘1’, as designed and manufactured for a 

given power supply voltage. Likewise, the point marked at VOL denotes the upper limit of a 
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gate’s output voltage producing an equivalent logic ‘0’. There are also two points on the curve 

where its derivative, signified by the equation dVout/dVin, is equal to -1 (26). These points 

represent the limits where the upper limit of the input voltage, VIL, is equal to a logic ‘0’ and the 

lower limit of the input voltage, VIH, is equal to a logic ‘1’ (26). The area under the VTC curve, 

bounded within VIL to VIH, is considered to be undefined and marks the region of operation 

where proper operation for a steady-state signal cannot be guaranteed (26). The right side of 

Figure 15 provides a chart that defines the different logic regions in terms of the voltage 

boundaries determined by the VTC curve. This mapping is the method used to define the 

voltage/logic conversions within the Chatoyant/ModelSim co-simulation interface. The current 

interface requires that the user provides the VIH and VIL limits as well as the highest and lowest 

allowable voltages for each port that crosses the interface.  

There is also a way for taking in account for drive strength when converting between 

analog and digital signals. The IEEE Verilog and VHDL standards both contain types for logic 

‘1’, ‘0’, high-impedance, and unknown (‘X’) (27). VHDL provides a more detailed list of types by 

providing for weak (weak in the sense that the driving circuitry behind the logic can be over 

powered a stronger one (31)) one’s and zero’s and unknown’s (27, 31). This is typically performed 

by taking in account the output impedance of the signal driver as well as what the device 

receiving a signal considers a strong or weak driver. Currently, the Chatoyant/ModelSim 

interface assumes all signals are strong. Another and there is no support for high impedance, ‘Z’. 

However, the Chatoyant message class has parameter fields which provide one of the 

mechanisms for performing the drive strength determination. The other mechanism needed is a 

list of parameters within the co-simulation interface star in Chatoyant for calculating whether a 

port drives a strong or a weak value onto a signal.  
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 We provide an example of a voltage/logic mapping in Table 1. In this table, we provide 

the voltage and logic values determined by the VTC for a CMOS Inverter, seen in (26). In VHDL, 

logic values are defined by a standard known as the 9 level Multi-Value Logic, or MVL-9 (27). 

The table shows the voltage level for the different regions of the inverter, the MVL-9 definition, 

and the corresponding MVL-9 character found in VHDL. 

 
 

Table 1 Voltage to MVL-9 mapping for a generic 5V CMOS technology (voltages provided in (26)) 

 
 

Region 
Voltage 
Level MVL-9 Value 

MVL-9 
Character 

Low Output Voltage 0.0V Strong/Weak Low ‘0’ or ‘L’ 
Low Input Voltage 2.06V Strong/Weak Low ‘0’ or ‘L’ 

Threshold 2.51V Undefined ‘X’ 
High Input Voltage 2.92V Strong/Weak High ‘1’ or ‘H’ 

High Output Voltage 5.0V Strong/Weak High ‘1’ or ‘H’ 
 
 
 With voltage-logic mapping defined, we can apply the same theory to any technology and 

logic value system that would be found in the co-simulation interface. The conversion between 

voltage and logic and vice versa will later be implemented as a look up table within Chatoyant, 

as seen in Chapter 4. We will now investigate the topic of performance measurement for the co-

simulation interface between Chatoyant and ModelSim.  
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3.4 CO-SIMULATION PERFORMANCE ANALYSIS 

 
 
With the synchronization and event communication methodology understood, we now consider 

how to measure the performance of the co-simulation interface between Chatoyant and 

ModelSim. We define a specific metric for measuring runtime performance. This metric is the 

number of events per second that cross the co-simulation interface. We also use code profiles 

from both simulators to determine where the largest percentage of the execution time is being 

spent. This is a tool that pinpoints bottlenecks within the interface code.  

The metric used to measure performance for the Chatoyant/ModelSim co-simulation 

interface is that of events per second, which simply indicates how many events pass through the 

interface per second of wall-clock execution time. This measure varies based on input stimulus 

on both sides of the interface as well as the type of signals that pass through the interface.  

The other performance measurement we use is a code profile on both the ModelSim and 

Chatoyant interface code. For Chatoyant, this metric is further divided into interface-related 

execution, event processing, and miscellaneous processing. This provides us with valuable 

insight into the performance impact. The ModelSim code profile is divided into two segments. 

The first segment profiles the synchronization and other functions found within the interface 

code. The second segment represents the remainder of the ModelSim execution, which 

encapsulates event processing and computation processes. Using these profiles, we are to 

evaluate the cost for processing an event in the interface and how this impacts the scalability of 

the co-simulation interface for larger systems. 
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 In the following chapter, we describe how the theory discussed in this chapter can be 

applied to the Chatoyant/ModelSim co-simulation interface. Later, it is shown that co-simulation 

provides a solution for performing efficient system-level design exploration in the Chatoyant 

toolset. 
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4.0 CO-SIMULATION ENVIRONMENT IMPLEMENTATION 

 
 
 
 
In this chapter, the actual co-simulation environment is discussed. As noted in Chapter 1, the co-

simulation is between Mentor Graphic’s subsidiary Model Technology’s ModelSim, a mixed 

language simulator and the University of Pittsburgh’s Chatoyant. As discussed in Chapter 2, 

Chatoyant is a simulation environment built upon the University of California at Berkeley’s 

Ptolemy multi-domain simulation framework. Since neither Chatoyant or Ptolemy support direct 

HDL language simulation, a need was presented for a co-simulation environment. The following 

chapter discusses the architectural environment, the applications of parallel discrete event 

simulation, the considerations for the analog/digital domain crossovers, and finally a system 

specific interface generator tool that automates the creation of all interface related components as 

well as code generated for both ModelSim and Chatoyant.  

 
 
 
 

4.1 GENERAL CO-SIMULATION ARCHITECTURE 

 
 
Based on the background provided by Chapters 2 and 3, the co-simulation architecture for 

executing Chatoyant and ModelSim is defined by two major sub-components. The first of these 

is the communication system the two simulators use to synchronize and exchange event 

58 



 

information. The second is the method of synchronization used to maintain temporal causality. 

Once these items are identified a general design can be derived and implemented.  

 In order to create a communication subsystem in the interface, it is necessary to consider 

a link that is as fast as possible. Since overhead is also a consideration, questions concerning 

message content, event information, and even channel mechanisms (pathway determination) are 

a focal point for discussion. Different implementation possibilities must be researched to find the 

best. Finally, thought must be given as to the structure of the event that crosses the interface 

 For communication architectures, many possibilities were examined. First a bidirectional 

message pipe system was considered. This would inherently provide a method of 

synchronization since both sides of the pipe (multidirectional) would have to be ready to receive 

and likewise send in order to continue execution. This does, however, present problems in terms 

of bandwidth utilization as well as having an implicit deadlock potential. By carefully 

implementing the interface, these potential problems are avoided and we can fully utilize the 

features provided by the pipes. This caution is exercised in the implementation of the interface, 

discussed later in this chapter. 

 The next possibility is shared memory. This method provides both simulators with a 

general repository of the ports that cross the interface as well as a place to keep the other 

simulator informed for time synchronization. For this methodology to be utilized only one 

stipulation must be met: both simulators must be synchronized in terms of the execution of the 

interface code running in both simulators. Without this, there is a possibility of a simulator 

receiving stale time and event data while the other simulator has already proceeded. Utilizing a 

semaphore or a blocking message FIFO readily solves this issue. Therefore, there are no event or 

time coherency problems.  
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 With the communication sub-system defined, the more challenging aspect the co-

simulation interface is time synchronization. Making use of the information provided in the 

previous chapter, two options are viable, lock-step and dynamic synchronization. Lock-step is 

the easier to implement since the synchronization is consistent and requires no major effort to 

determine when the next time to synchronize is. The dynamic method is more difficult to 

implement since it requires access to certain runtime data. It also performs comparisons and 

calculations to determine the next step time. Both of these methods are implemented for 

comparison purposes since the lock-step method is useful for cycle-accurate analysis and the 

dynamic method is useful for a more detailed simulation. The following sections provide a 

detailed explanation of the implementation of the co-simulation interface. 

 
 
 
 

4.2 IMPLEMENTATION 

 
 
The co-simulation environment was implemented in the Linux operating system. As a result, the 

architecture described above was partly created utilizing POSIX IPC (Inter-Process 

Communication) mechanisms such as shared memory and named pipes. Figure 16 shows the 

general block diagram of the co-simulation architecture with respect to its Linux-based 

implementation. This diagram depicts the underlying communication structure along with the 

shared memory arrangement and the simulators.  
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Figure 16 ModelSim/Chatoyant co-simulation architecture based on a Linux implementation 

 
 
 A large portion of the code body for the Chatoyant interface star and ModelSim FLI 

interface code is the same for both types of synchronization. This segment of code is responsible 

for the updating of every port that crosses the interface. Though this code is the same for each 

synchronization method, it is unique to a system meaning that it is not reusable with any other 

systems. This limitation occurs because every port is checked and updated and this is 

implemented by referencing variables that contain the port’s name. The segment of code 

responsible for event communication is illustrated in Figure 17.  
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Figure 17 Synchronization independent interface pseudo code for both ModelSim and Chatoyant 

 
 

 As seen in Figure 17, there are several sub-segments to the operation of this code, as it 

executes for every time step (either periodic in lock-step mode or at the next 

synchronization/event occurrence for the dynamic mode). Each major segment is marked by a 
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letter for explanation purposes. In segment A, both simulators will determine if it is time to 

synchronize. If the current time in each simulator is less then the next synchronization time, each 

simulator will exit their respective synchronization functions and continue on with their 

simulations. If the current time is a valid synchronization point then the code in Chatoyant will 

proceed to segment B and ModelSim will proceed to wait for Chatoyant to post a response 

through the pipe, seen in segment D. Within segment B, Chatoyant will check every port bound 

for ModelSim to determine if there is any new data. If there is, it makes the appropriate update 

along with setting the dirty flag in the shared memory and sets a flag that there has been an 

update. After checking all of the ModelSim bound ports, Chatoyant moves to segment C, where, 

based on the update flag’s status, it will either post a ModelSim bound change message or a null 

message if there were no changes to report. Chatoyant now moves to segment I where it waits for 

a message to be posted in the pipe coming from ModelSim. 

At this time, ModelSim proceeds from segment D to segment E. If the message from 

Chatoyant is a null, ModelSim will proceed to segment G. Otherwise, ModelSim proceeds to 

segment F where it scans the dirty flags in the shared memory for all ports coming from 

Chatoyant. If there is a dirty flag set to true, ModelSim calls the force function from the FLI and 

drives the new value onto that signal. ModelSim now enters segment G where it checks all for 

any state change on ports bound for Chatoyant. As in Chatoyant’s segment B, ModelSim 

determines if any signal has changed and if there is a change, posts the new value and sets the 

dirty flag in the shared memory. ModelSim then writes either a Chatoyant bound port value 

change or a null, seen in segment H. ModelSim now proceeds to its synchronization routine.  

When Chatoyant receives the message from ModelSim via the pipe coming from 

ModelSim, Chatoyant performs the same operation in segment J as ModelSim did in segment F. 
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If there were no changes posted by ModelSim, Chatoyant proceeds directly to its synchronization 

routine. Otherwise, Chatoyant checks the dirty bit of every port coming from ModelSim, from 

the shared memory. As seen in segment K, any port that has a dirty flag set true is updated by 

Chatoyant converting the logic value to the proper voltage, posting the old value to porthole for 

that signal at the current time, and finally posting the new value for the signal at the current time 

plus the rise/fall time constant. After segment K, Chatoyant moves to its synchronization 

segment where both Chatoyant and ModelSim perform the time synchronization, represented by 

segment L.  

As seen in the pseudo code in Figure 17, the checking and updating of port information is 

staggered. This means that Chatoyant and ModelSim do not simultaneously check the ports 

bound to the other interface before proceeding. This process is parallelizable in the sense that all 

outbound ports are checked before either simulator synchronizes with the other. For systems that 

contain large quantities of ports between Chatoyant and ModelSim, this presents a potential 

bottleneck. The reason the method shown in Figure 17 is used is because we want to support the 

ability to cause ModelSim to iterate through a delta cycle. Though this feature is not 

implemented at this time, it is available for future enhancements. If we find that there is a 

demand to making the code more efficient we can make the adjustment easily. We now proceed 

to discuss the two different synchronization methods as they are implemented in the Chatoyant 

and ModelSim interface code. 

As for the synchronization segments, there are two different implementations to consider. 

The lock-step system is the simpler of the synchronization algorithms to implement. This method 

sets the next synchronization time to be the current time plus the constant synchronization period 
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(defined by the user), called SYNC_PULSE. This constant is set in the Chatoyant star parameters 

and by means of a generic within the VHDL container for the FLI code loaded in ModelSim.  

 The dynamic synchronization approach, since it utilizes a lookahead algorithm, requires 

two steps. First, the synchronization process requires each respective simulator to get their 

respective next event time and post it to the shared memory. Once this information is posted, the 

simulators can determine which next event time is the least, and thus, set their next 

synchronization time to this value. This is illustrated through the pseudo code in Figure 18. 

 
 

 
 

 

Figure 18 The dynamic synchronization pseudo code 

 
 
 The pseudo code in Figure 18 is annotated with letters signifying each important 

segment. One important point is that the code in Figure 18 is appended to the code in Figure 17, 

if we are running in dynamic synchronization mode. In segment A, both simulators perform the 

lookahead function and get their respective next event times. They then post this time along with 

their current times to the shared memory and post that this operation is complete, seen in 
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segment B. The simulators now determine when the next synchronization point is based on all of 

the current and next times. It is important that each simulator perform the same logic so that they 

both derive the same answer.  

 In segment C, both simulators first test to determine if Chatoyant’s next event time is less 

than ModelSim’s next event time. If it is, we must check to see if Chatoyant’s event queue is 

empty. In the case where ModelSim is the primary source of events from the viewpoint of 

Chatoyant, it is possible that Chatoyant has no possible future events, and thus we are required to 

take further action. To handle this case, Chatoyant, in segment E, and ModelSim, in segment F, 

will use ModelSim’s next event time as the safe synchronization point. This provides a speedup 

by preventing both simulators from having to perform a single step execution. If Chatoyant’s 

next event time is a non-zero value, then both simulators will use this value for the next event 

time. This is seen in segment G for Chatoyant and segment H for ModelSim.  

 If the ModelSim next time is less than the Chatoyant next time, the simulators use this 

value for the next synchronization point. We do not need to perform the same check as in the 

previous case since ModelSim, according to the FLI reference manual (31) always returns a future 

event and if there are none, the default future event is set to the stop time of the simulation. 

Therefore, the simulators set the next synchronization point as seen in segments I in Chatoyant 

and J in ModelSim. If neither of the cases mentioned above are met, and since we assume that 

both simulators are at the same time step, we will manually step through the simulation using the 

SYNC_PULSE constant, seen in segment K. This segment is available only as a safety 

mechanism, since there should be always be an event on at least one queue until the stop time is 

reached.  
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The remainder of this section will describe the detailed implementation for both 

ModelSim and Chatoyant. The figures above are used as a simple representation of what each 

simulator must perform in terms of the co-simulation activities. The following sub-sections to 

provide us with a general idea of the structure of the code used in both Chatoyant and ModelSim. 

The code discussed in the following sub-sections is the template used by the generator to create 

all of the necessary files. After we discuss the general structure of the interface code, we then 

discuss the system generator which automatically creates all of these files.  

 
 

4.2.1 Common Structures and Methods 

 
 
There are a set of functions as well as data structures that are shared by both the Chatoyant star 

as well as the FLI code executed in ModelSim. Among the common functions are methods for 

opening, reading, writing, and closing the pair of named pipes that sit between the two 

simulators. These functions provide a simpler means of writing and reading data from the pipes. 

The shared structures include the interface port structure for event status update, bound for both 

simulators. There are a series of runtime constants used for decoding messages sent through the 

pipe as well as establishing the pipe handles. Finally a set of constants are available on a per 

system basis for the shared memory. These variables are the keys required to properly create and 

gain access to the allocated memory in both sides of the interface. The application of these 

structures and methods are explained in further detail in the following two sub-sections. 

 
 
4.2.2 Chatoyant Interface Star 
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In this section we present the code that is generated for the customized interface stars in 

Chatoyant. The Chatoyant star needed for the co-simulation interface is created on a per-system 

basis. This is because of the high level of customization in terms of port names, voltage threshold 

values per port, and rise/fall time parameters per port needed. However, independent of the ports, 

is a consistent setup of the code in any Chatoyant interface star.  

 One of the first items that comprise a Ptolemy star is its title and domain. In this case, the 

name of the system is typically appended to the string DEMTI_CHAT_PL_ to demark that this is 

a Discrete Event star for interface ModelSim (MTI) and Chatoyant (CHAT) in the Ptolemy 

description language (PL). The domain utilized in every interface star is discrete event or DE. 

Immediately following these definitions is a method call that allows this star to be a self-

repeating star. This is a vital inclusion since it allows the star to reactivate itself at the next 

synchronization time however it is determined. Following this method call are extra comments, 

descriptions, and copyright notices which remain the same for all interface stars.  

The next important element in the Chatoyant star is the header files that will be included 

in the generated CC and H files by the Chatoyant make program. For every system there is a 

custom header file generated usually of the form MTI_CHAT_[System Name].h. This file 

contains the shared memory structure definition as well as the shared memory key values and 

pipe file names. Also embedded in this header file is the callouts to all other header files needed 

for the general operation of both the Chatoyant star and the FLI code. This includes the OS level 

header files for instantiating the pipes and shared memory, as well as ModelSim and 

Ptolemy/Chatoyant specific functions.  

The port instantiations follow all header file definitions. These ports define the 

Chatoyant-side signals that will cross over into ModelSim and back. These ports utilize the 
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custom Chatoyant message type, and specifically, the electrical properties found within it. This 

message type creates either a single voltage or an array of voltages. Input ports define signals 

that are bound for ModelSim and likewise, ports designated as outputs become signals that 

originated in ModelSim and are bound for Chatoyant.  

After the port declarations are the parameters for the star. A name, a type, and a short 

description define each parameter. The first parameter for the interface state defines the level of 

debug messaging. This value will range from 0, which defines quiescent, to 2, which defines 

verbose with 1 being a normal level of messaging. The second parameter defines the 

synchronization period. The scale for this parameter is on the order of picoseconds. This 

parameter is available for the lock-step synchronization method as well as a failsafe 

synchronization pulse period for the dynamic algorithm. The third parameter, the rise/fall time, 

determines the slope of the transition for an event change. This prevents Ptolemy from 

scheduling a zero time output event which could potentially crash the piece-wise linear circuit 

solver. The final parameter, the DE multiplier, determines the current time resolution of the 

simulation. The default value for this parameter is 1ps or 1E-12.  

All globally accessible variables follow the parameter definitions. These variables are 

declared as private members when generated into C++ code. The variables declared here are 

grouped based on a common purpose. The first set of variables creates the previous values for all 

of the output ports, which permits creating a transition slope based on the rise/fall time 

parameter. These variables exists as electrical signals, as required by the Chatoyant Message 

type, as well as double precision floating points. There are also previous value variables for each 

input, which later determines if there is a true event change since it is possible to receive events 
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of equal value at as the simulation time progresses. A discussion of this aspect will clarify this 

topic, discussed in this section.  

The next set of variables hold the local instantiation of the pipe file descriptors. 

Following this is a pointer to the container galaxy’s scheduler object. This is set for the dynamic 

scheduling routine. Next is a set of variables that hold Chatoyant’s and ModelSim’s current and 

next time values. These variables keep this time information from a past iteration. The last set of 

variables measure the number of events that pass through the interface as well as the number of 

synchronizations. The number of synchronizations is independent of the number of events since 

either algorithm synchronizes based on scheduling criteria and not event activity. Chapter 5 

clarifies this point with real data from simulations.  

The next section of this code is the constructor and destructor method definitions. These 

methods, adhering to the OOP mechanisms in C++, create and destroy all variables that are of 

the type Signal, found in the Chatoyant Message class.  

With the variables and parameters defined, the remainder of the interface code for the star 

contains methods that perform some action during the simulation. The first of these methods are 

the voltage to logic conversion functions. There is a method to convert a voltage into a logic 

value for each input port. Likewise, there is a logic to voltage conversion function for every 

output port. Each port has its own threshold value set defined in the way seen in Chapter 3, 

Section 3.3.  

One of the more vital functions is the setup method. This function is responsible for 

instantiating the scheduler pointer, if in dynamic mode, creating and opening the Chatoyant side 

of the two pipes, and initializing all other variables. First, the shared memory is created (if 

ModelSim has not already performed this operation) and the shared memory is setup for access 
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via pointers to the common interface structures. Next, we create and open the pipes from the 

Chatoyant side. For the ModelSim bound port, the Chatoyant code is given write-only 

permission on the pipe. The interface gives the Chatoyant side of the interface read-only 

permission on the Chatoyant bound pipe. After this, we initialize all of the time keeping and 

event counting variables to 0. Finally, the values of the state saving variables are set to unknown 

and 0 volts.  

Another function that is similar to the setup function, named begin, is called at every 

click of the Go button, found in the run window of Ptolemy. This function only re-initializes the 

variables of type Signal. This allows for back-to-back simulation capability. Opposite to the 

begin and setup functions is the wrapup function. This method behaves like the destructor 

method of the class, freeing and nullifying all of the Signal variables. A simulation ending at its 

stop-time calls the wrapup function.  

The final and most critical method is the go function. This method is responsible for all 

simulation runtime execution. Whenever the scheduler sends an event to the porthole of the star, 

the go method executes to handle it. In the interface star, the go method is responsible for two 

actions: First, to update all port statuses and the second is to synchronize with ModelSim. The 

event communication scheme is consistent regardless of the synchronization scheme. As seen in 

Figure 17, the first step of the go method is the update of the input ports. This requires going 

through each port and determining if there is a change in state. Each bit of every port is checked 

to determine if there is such a change. If there is a change, then the port that has the change is set 

to dirty and the value in the shared memory is updated, after voltage to logic conversion. If there 

are no changes, a null is posted in the pipe, otherwise a ModelSim bound event is sent through 

the pipe. At this point Chatoyant waits for ModelSim to do the same on its end. When ModelSim 
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posts either a Chatoyant bound event or a null, the code progresses to the synchronization 

section. It is at this point that code for the two synchronization approaches differ.  

For the lock-step mode, the calculation of the next re-fire time, which will issue the 

scheduler a wakeup to call the star, is simply the current time (call arrivalTime) plus the 

synchronization pulse period. For the dynamic approach, the calculation requires extra steps. 

First, the next time must be fetched from the DE scheduler. This is available by a method added 

to the EventQueue data structure used in DE. The method added for the purpose of this interface 

searches the queue for the next highest timestamp, relative to the current time. When this time 

stamp is found, it is returned to the interface star and the value is posted to the shared memory. 

ModelSim performs the same operation, and based on the least value between these two times, 

the next re-fire time is set equal to the smallest time. At this point, all temporaries are made null, 

concluding the description of the Chatoyant co-simulation interface star. We now proceed to 

look at the ModelSim side of the co-simulation interface. 

 
 
4.2.3 ModelSim FLI Interface 

 
 
We now discuss the structure of the code, created by the generator, for the ModelSim side of the 

interface. The second half of the co-simulation interface is in special C code loaded in 

ModelSim. The code is built using ModelSim API functions from the Foreign Language 

Interface, or FLI. This FLI code is compiled and linked into a shared object file then called out in 

the architecture section of a VHDL design. The FLI provides numerous functions for getting 

information about a user’s design loaded within ModelSim. The FLI also provides state 

information such as current simulation time, delta cycle, and next event time, and is also capable 

of controlling ModelSim. These features make the FLI a suitable API for building the co-
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simulation interface since there is no possibility of linking directly into the ModelSim simulator 

core like Seamless.  

 The code created for the co-simulation interface shares some properties with the 

Chatoyant interface star. First of all, the FLI code is unique to every system due to its access to 

ports within Chatoyant. Likewise, there is also a similar pattern in terms of initialization, 

runtime, and stopping, as seen in the Chatoyant interface star. First  are the global variables. First 

is a structure that contains the ModelSim FLI Signal for every port and the previous-state 

information for the Chatoyant bound ports. Following this structure definition is the declaration 

of the pipe file descriptors and the shared memory pointers, similar to the members in Chatoyant. 

The next item is the internal sync signal, used to schedule a wakeup in the ModelSim scheduler, 

similar to the re-fire in Chatoyant. This structure contains a signal ID (for getting its memory 

location), driver ID (for allowing the FLI code to force a new value), a process to attach itself to 

(similar to a VHDL process, except defined in the context of the FLI), and a last state variable. 

These will all be used when ModelSim determines when to call the synchronization routine. The 

next global definition is an enumeration of the IEEE Standard Logic values for fast lookup 

during runtime translation. The final set of variables is the event and null event counters the 

same as in Chatoyant.  

 Following the variable declarations is a set of utility functions. These functions provide a 

way to translate an enumerated value into a string of logic literals. This is necessary since 

ModelSim returns the current state of all signals as an enumerated value and not a string of 

characters. These functions utilize arrays defined the global declarations section.  

 Due to the rules of C and the inherent methodology of writing FLI code, the next section 

of code is the primary runtime function. This function, called SyncInterface, is the analog to the 
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go method in the Chatoyant star. This method begins by retrieving the current ModelSim 

simulation time, and storing it in a temporary variable. Next, the function waits for the Chatoyant 

side to send any event update or null message information. These constitute the ModelSim bound 

ports. As soon as Chatoyant sends a message, ModelSim checks each dirty bit of the ModelSim 

bound ports. This updates any ports that have changed by issuing a force command similar to the 

way a force issued in ModelSim’s GUI. ModelSim then determines if any of the ports bound for 

Chatoyant have changed state. If so, it marks the dirty bit for that port and updates the shared 

memory corresponding to that port. Once again, the code is relatively independent of the 

synchronization method used. Refer to Figure 17 for clarification. 

 With all event information communicated, ModelSim retrieves its next event time. If the 

synchronization method is dynamic, the FLI provides a predefined function for performing this 

operation. Therefore, unlike Chatoyant, where such a function had to be implemented in the 

Ptolemy DE scheduler, this method is part of the FLI. The next step is to get Chatoyant’s next 

event time and then perform the same calculation that the Chatoyant interface star performs. 

Once the safe re-fire time has been determined, the code then makes use of the internal signal 

structure. This signal acts as a pseudo clock by toggling from ‘1’ to ‘0’ every re-fire time. If the 

past value was ‘1’ then the wakeup schedules the signal to change from a ‘1’ to a ‘0’ at the 

desired time. If the synchronization method is lock-step, the signal is simply scheduled to wake 

the scheduler up at the sync pulse time. This is due to the fact that ModelSim works on the 

concept of relative time instead of absolute time. 

 With the conclusion of the main synchronization function, the next series of methods are 

similar to the setup and wrapup methods of Chatoyant. These functions operate as callback 

functions. The callbacks are not explicitly called at a known time. However, they are engaged 

74 



 

when a certain state is reached within the ModelSim runtime environment. For example, if the 

simulator is closing, the quit callback linked in from the FLI code will be placed on ModelSim’s 

runtime stack among the other closing procedures. The other callback that exists, other than the 

quit, is the restart. The quitting and restarting callbacks perform the same function as the quit by 

releasing all shared memory and pipes, however, this callback is only executed if the user restarts 

or closes a simulation in Modelsim.  

 The final function in the FLI code is the initialization function. This is utilized when 

ModelSim first elaborates a design and loads the shared object file. This method is specified in 

the VHDL container as the first method to execute. This method performs the same operation as 

the setup does in Chatoyant, but on the ModelSim side variables. The first step is creating and 

instantiating ModelSim’s side of the shared memory. Following the shared memory initialization 

is the creation and opening of the pipes. This step is the reversal Chatoyant. ModelSim is the 

writer of the Chatoyant bound pipe and the reader of its incoming pipe.  

Once the pipes are open, the generic values are captured. These values are set in the 

VHDL code calling the FLI shared object file, and are similar to the parameters found in the 

Chatoyant interface star. The only difference is that the debug message level and the 

synchronization pulse value are the only parameters available in the ModelSim side. The 

simulation resolution is handled externally in the ModelSim initialization file and there is no 

need for the rise/fall time parameter since discrete logic is used in ModelSim. The internal port 

structure members are then initialized. This follows suit as to what is found in the Chatoyant star.  

Once the ports are initialized, the internal re-fire signal is instantiated and linked to the 

SyncInterface method. It should be noted that the SyncInterface is defined in the FLI code as a 

process and is viewed by ModelSim as a process equal to any VHDL process. Therefore, the FLI 
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process maintains a sensitivity list of signals that can activate its execution. The default for the 

SyncInterface process is the internal re-fire signal. Directly after the re-fire signal is initialized, 

the Chatoyant bound signals are added to the SyncInterface process’s sensitivity list. These aide 

ModelSim in maintaining consistency with Chatoyant with regards to the criteria based in the 

synchronization routines. These criteria are the simulators respective re-fire signal or event and 

the ports bound to the other simulator. During simulations, the preceding criteria allow for 100% 

accuracy by providing dynamic synchronization.  

The final step in the initialization function is the instantiation of the callback methods. This 

is accomplished by a methodology that allows FLI code to add the desired methods to the proper 

callback list. It is at this time that all event and message counters are set to zero. With that last 

step, the FLI code is completed. With an understanding of the code structure for the interface, we 

can now discuss the system generator which creates all of the code needed for operation. This 

automatic generator is explained in more detail in the following section. 

 
 
 
 

4.3 AUTOMATED CO-SIMULATION INTERFACE GENERATOR 

 
 

As previously discussed, despite the apparent reusability of much of the code in both the 

Chatoyant star and the ModelSim FLI code, it is still necessary that customization be done within 

the co-simulation environment. The driving factor behind this inherent uniqueness is the fact that 

all systems differ in the ports that cross the interface boundary. Much of the code in both sides of 

the interface could be condensed down into a general template. However, the event handling 

sections demand the most attention for an automation system.  
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 To reduce error and system setup time, the following flow was implemented in Figure 19. 

This flow utilizes a co-simulation interface generator that allows the user the ability to select 

ports that are included in the interface. From that selection it will generate all of the necessary 

files and libraries needed by both Chatoyant and ModelSim. Figure 19 shows this flow and what 

feeds the generator and what outputs are needed by each simulator.  

 

 

 
 
 

Figure 19 Co-Simulation system flow with the generator 

 
 

 As seen in Figure 19, the key to generating the correct files for the co-simulation 

interface is the user’s HDL design, namely the top-level of the design or part of the design that 

will be interfacing with Chatoyant. Using the generator GUI, seen in Figure 20, the user can 

select the VHDL file that contains the ports they want included in the interface. The generator 
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proceeds to parse the entity section of the selected VHDL file. During the parsing, a list of ports 

are created, which includes each port’ name, direction, vector size (if not a single bit), and initial 

value.  

 Once this list is complete, it is displayed in a list-field in the GUI and the user is able to 

select which ports to include in the interface (transition number 1 in Figure 20). A decision to 

include or exclude is made at this time (transition number 2 in Figure 20) and each port included 

must be assigned a voltage for each of the four thresholds (transition number 3 in Figure 20). 

Once selections have been made, then they are updated (transition number 4 in Figure 20). A 

destination directory and a name for the system must be specified to generate the files (transition 

number 5 in Figure 20). The final operation of pressing the generate button (item number 6 in 

Figure 20) will produce all of the necessary files needed by both Chatoyant and ModelSim.  
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Figure 20 Chatoyant-ModelSim Co-Simulation Environment System Generator GUI snapshot 

 
 

 There are a set of files produced by the generation process. Included is the .pl file for 

Chatoyant, the .c file for the FLI, the common .h and .c file for shared structures, constants, and 

functions, a Makefile for compiling the FLI and shared library files, the FLI wrapper VHDL file, 

a top-level VHDL file that links the user’s top-level design and the FLI wrapper together, and a 

Readme.txt for explaining all of the files and providing a summary of the generator’s actions.  

 When all of the files have been compiled from the Makefile, the user must add the .pl file 

to Chatoyant using the proper method of linking a star into Chatoyant. The VHDL files and the 
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.so file created must be appended to the user’s design and compiled into ModelSim. With those 

tasks performed, the user is now able to co-simulate their design. Subsequent chapters discuss 

how applications that utilize this flow to create series of designs that will measure certain aspects 

of performance within the co-simulation interface. 

 This chapter explained how the co-simulation environment between ModelSim and 

Chatoyant was created. This chapter dealt with the makings of the co-simulation interface as a 

new feature for Chatoyant. This included the operating system level constructs used for 

communication as well as the higher level algorithms that implement the time and event 

synchronizations. The following chapter describes six unique systems, all of which test a 

particular aspect of the co-simulation environment. Performance measurements are made and 

finally a set of conclusions are drawn.  
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5.0 SYSTEM APPLICATIONS 

 
 
 
 

5.1 INTRODUCTION 

 
 
With the theory and implementation of the co-simulation interface explained in the previous two 

chapters, this chapter shows several applications of the interface. First, a set of test systems are 

examined, which stress different aspects of the interface, in both modes of synchronization. In 

addition to these simple tests are two complex systems currently being modeled and 

implemented. These systems contain some elements of VHDL code, analog circuits, and optics 

(free space or fiber based). For the scope of this research, we limit the performance analysis to 

that of the co-simulation interface and minimal support components in both ends of the interface. 

This requires using only source and graph stars within Chatoyant and the minimal design in 

VHDL.  

 The first system represents a simple one-way link from ModelSim to Chatoyant. This is 

in the form of behavioral VHDL producing a clock pulse that is 200MHz from ModelSim to 

Chatoyant, which has a display graph to verify that the output is at the proper frequency and time 

for transitions. This system is tested using both the lock-step and dynamic synchronization 

schemes. The lock-step method is tested at 1ps and 1ns to show any speed-up between these two 

resolutions. We will also see if this cycle-accurate mode has any impact on the number of events 

seen across the interface.  
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 The second system is similar to the first, however, executes in the reverse with the source 

being Chatoyant and the destination being in ModelSim. Once again, event data and waveforms 

are used to determine correctness and accuracy. These two systems represent simple operation 

with single, one-way event flow. This is significant to show basic operation and accuracy. It will 

also show the impact on the interface when a clock or periodic signal crosses over the interface.  

 The next set of test systems exercise the interface’s multi-bit operation. Similar to the 

first two examples, there is one system allowing ModelSim to be the source and Chatoyant the 

data sink. Likewise, the other system is setup to have Chatoyant be the source of data and 

ModelSim the sink. Once again, accuracy concerning the ordering of the bits in signal arrays and 

timestamp of events are verified. With these two systems, a comparison is made with regards to 

the performance of the lock-step versus the dynamic synchronization algorithm, when 

considering the behavior of the events crossing the interface.  

 The next system evaluated represents the infrastructure of a currently modeled design. 

This design, known as Fiber Image Guide, or FIG, utilizes fiber optics, analog drivers and 

receivers, and digital control hardware. For the scope of this research, the co-simulation interface 

contains the digital circuits, described in structural RTL (Register Transfer Level) VHDL, and 

the other side of the interface is concerned with only supplying and graphing within Chatoyant. 

The uniqueness of FIG lies in that it exercises both directions of event flow, namely Chatoyant 

being both the data source as well the data sink, with ModelSim being a middle component.  

 The final system observed is the Smart Pixel Optical Transceiver, or SPOT. This system 

provides a variation to FIG in that it contains a series of single signals, one being a clock and the 

others being data, all crossing the interface It also requires ModelSim to be the source and sink 

of all event data, with Chatoyant being the intermediary.  
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 For each system, we present a brief description of its design and relevance to defining 

performance and validation measurement of the co-simulation environment. The performance 

metrics discussed in Chapter 3 are applied to these systems, and items such as waveform and 

numerical output as examined for simulation accuracy. For all of the systems, the following 

runtime parameters are used. First, the workstation that these simulations were performed on was 

a Dell Precision with dual 2.2 GHz Intel Xeon processors with 2GB of RAM. The Operating 

System used was Red Hat Linux 7.3 using the core 2.4 Linux kernel and GCC 3.2.3 for 

compilation. For all systems, the system co-simulation interface generator, discussed in the 

previous chapter, was used to create both the lock-step and dynamically synchronized interfaces. 

The latest version of ModelSim, 5.8c was used for all VHDL simulation. Wherever possible, 

behavioral coding constructs were used in order to exploit the maximum performance from 

ModelSim. Ptolemy Classic, version 0.7, was used for the underlying framework and Chatoyant 

version 1.2 was used as the main simulation system. Shown in all results are the average of three 

executions of every system, and for the lock-step systems, three runs each at 1ps and 1ns were 

performed. Graphical plots are provided as well as runtime measurements and system profiling 

when available.  
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5.2 SINGLE BIT, MODELSIM TO CHATOYANT APPLICATION 

 
 
5.2.1 System Description 

 
 
The first system that is evaluated is the single bit, clocked signal originating in ModelSim and 

terminating in Chatoyant. This system, as done in the remainder of the systems discussed, is split 

into three segments. The first is the ModelSim side of the interface which contains the VHDL 

code. The second section includes the Chatoyant stars that are separate from the interface star. 

The third segment is the interface itself, which contains the FLI code for ModelSim and the 

Chatoyant star, as well as the logical connection between the two simulators.  

 As for the ModelSim side, behavioral VHDL is utilized to create a self oscillating clock. 

Figure 21 shows the graphical description of this code using the latest HDL Designer Series 

graphical code entry application from Mentor Graphics (version 2004.10). Shown in this diagram 

is the initial block and then a forever loop that will wait for one-half a clock cycle, then set the 

clock to a ‘1’ value, wait for other half of the clock cycle, and then negate the signal back to ‘0’. 

The clock cycle has a period of 5ns or 200MHz.  
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Figure 21 ModelSim behavioral VHDL for the single bit clock from ModelSim to Chatoyant 

 
 

 The Chatoyant side is relatively simple in that it contains the interface star as well as a 

bit-to-graph splitter and a plotting star. All graphical data is stored in a file for later examination 

and to also reduce run-time drawing overhead. Figure 22 shows the Chatoyant galaxy used for 
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the Single bit test. Though the galaxy for the lock-step and dynamic synchronization are the 

same structure, they are two unique palettes due to the static compile–time nature of selecting 

which algorithm to use.  

 
 

 
 
 

Figure 22 The Chatoyant side of the single-bit from ModelSim (Dynamic system shown) 

 
 
 The co-simulation interface, for this system, remains simple, due the single bit and single 

port structure. For the FLI code, the two algorithms are implemented as two separate interfaces, 

with two separate wrappers. The code for each follows the structure set in the previous chapter. 

For the event communication, there is only one port sensitized to the synchronization process in 

addition to the internal FLI signal. Within Chatoyant, the block seen on the left hand side of 

Figure 22 is generated twice, each instance for both of the algorithms tested, with each instance 

placed in it own unique galaxy. This star has only one output to consider and the remainder of 

the code is synchronization.  

 This system, though small, stresses the system in terms of seeing how fast ModelSim can 

feed events to Chatoyant, and how fast Chatoyant can consume these events. This system also 

tests to ensure that events occur when they are supposed to on each side of the interface as well 

as verifying that the voltage conversion process is performed correctly.  
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5.2.2 Runtime Results and Analysis 

 
 
There are several measurements to examine when comparing all synchronization methods. 

Appendix B provides the complete runtime results collected for this system. First, we must 

compare the co-simulation performance to that of a simulation that contains no co-simulation. In 

this particular case, this is limited to ModelSim’s runtime since it is the only source of events. 

The runtime for this system, executing without any co-simulation interface, is 32 milliseconds. 

This runtime is equal to 12,500 events per second, assuming 400 events, 1 event per rising edge 

and 1 event per falling edge.  

As seen in Figures 23, the events per second, ranked from fastest to slowest, is first the 

non co-simulation, secondly, the dynamic co-simulation, thirdly, the 1ns synchronization 

resolution for the lock-step mode, and finally, the 1ps resolution lock-step mode. This 

measurement is for the events that traverse the interface, in the cases of the co-simulation 

measurements, and not the total events in a particular simulator 
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Figure 23 The events per second for the single-bit, ModelSim to Chatoyant test system 

 
 

 The non co-simulation is 5.25 times faster for the non co-simulated system versus the 

dynamic synchronization. The dynamic mode is 14 times faster than the 1ns synchronization 

resolution and 227 times faster than the 1ps resolution runtime. In terms of events per second, the 

non-co-simulation execution is once again 5.25 times faster than the dynamic mode. Likewise, 

the dynamic mode is 19.5 times faster than the 1ns lock-step resolution and 227 times faster than 

the 1ps lock-step resolution. 

 The primary focus for this thesis is the examination of the dynamic synchronization 

results. We focus on this specific mode since it provides the best overall performance for co-

simulation. When we analyze this mode of synchronization, we can observe several 

characteristics. First, we see the presence of null events, or events that indicate just 

synchronization has occurred without any real event communication. These null events are 
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present in dynamic mode since for every event sent through the interface from ModelSim, there 

are two Chatoyant events generated. These events will cause the lookahead function within the 

DE scheduler to find two additional synchronization points when the interface code enters its 

synchronization section. In addition to this, the interface star will also schedule one other 

synchronization if the event queue is empty, which it is when the real event has finished 

changing the state of the ports exiting the interface star (i.e., a rising edge or falling edge for a 

port value). The overall number of null events present is equal to the 1ns lock-step mode. The 

number of real events that cross the interface is equal to the 1ps lock-step mode, since the 1ps 

lock-step resolution allows all of the transitions to be seen, unlike the 1ns resolution, as seen in 

Appendix B.  

It is seen that most of the overhead in Chatoyant is not in the synchronization or interface 

code. As shown in the pie graph in Figure 24 most of the time in Chatoyant is spent processing 

events. As seen in three of the other systems discussed later, this is most likely due to the null 

events being processed instead of Chatoyant having to processes only the real events.  

This pie chart, as seen in all of the systems discussed in this chapter regarding the 

Chatoyant processing distribution, is divided into 7 categories. The first 5 of these categories 

relate to the co-simulation interface methods. This includes the main go() method where most of 

the interface operation is found, the read_fifo() and the write_fifo() methods which perform the 

pipe communication during synchronization, and the conv_to_logic() and conv_to_volt() which 

are the functions that convert between voltages and logic values. The next measurement is the 

event processing slice. This is the sum of all functions called during simulation that are part of 

the event handling process. This includes the scheduler actions and accesses to the event queue, 

handling events at portholes (both sending and receiving), and other simulation control 
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associated with a simulation. Appendix B shows a breakdown of all event processing-based 

functions. The remainder of the graph shows the other processing performed by Chatoyant. This 

includes the setup of the universe, galaxy, stars, as well as the execution of the other stars 

independent of the interface star.  
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Figure 24 The Chatoyant runtime distribution graph for the dynamic synchronization co-simulation 

 
 

The high Chatoyant event processing overhead is most likely due to the DE scheduler of 

Ptolemy utilizing a linear queue instead of a priority queue, where the algorithmic performance 

is O(n) instead of the sub-linear O(log n) as in a priority queue, where n is the number of events 

processed during every iteration (9). 
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 Within ModelSim, the synchronization overhead accounts for half of the execution time. 

This is a higher distribution than seen in Chatoyant, due to the lower event processing overhead 

seen in ModelSim. The ModelSim execution distribution is seen in the pie chart of Figure 25.  

 This graph, like the others that are seen throughout this chapter, shows six possible slices. 

The first five slices constitute the co-simulation interface function calls. The most important of 

these five functions is the SyncInterface() method, which is where most of the synchronization is 

performed. The next two functions, write_fifo() and read_fifo(), are the function calls made by 

the SyncInterface() function, to access the pipes between ModelSim and Chatoyant. The last two 

function calls, conv_to_string() and conv_to_enum(), are the functions that convert between the 

string form and the enumerated form of the signals within ModelSim. The final section shows on 

the processing chart accounts for all other processing performed by ModelSim.  
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Figure 25 The ModelSim overhead distribution graph for the dynamic co-simulation 
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 Finally we examine the waveforms for this system in the case of dynamic co-simulation. 

Figure 26 shows the ModelSim waveform as it enters the co-simulation interface. In this 

waveform we see s transition at 2.5ns.  

 
 

 
 
 

Figure 26 ModelSim waveform for the single-bit, ModelSim to Chatoyant system in dynamic mode 

 
 

 In Figure 27 we see the resulting waveform in Chatoyant. In this figure we zoom in on 

the 2.5ns region to show the rise time slope that is added in the interface. This slope is present so 

that stars in the electrical domain, such as the piece-wise linear solver, do not receive an 

instantaneous transition. Such a transition is not handled within the solver. Therefore, the 

transitions are sloped by a factor, set by the user in the interface’s global parameters.  
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Figure 27 Chatoyant waveform for the single-bit, ModelSim to Chatoyant co-simulation in dynamic mode 

 
 

At the end of this chapter we discuss, the implications of the results found within this 

section compared to the other systems discussed in the following sections. This cross comparison 

provides a look into how the co-simulation scales and performs for larger systems.  
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5.3 SINGLE BIT, CHATOYANT TO MODELSIM APPLICATION 

 
 
5.3.1 System Description 

 
 
The second system we examine is similar to previous one, with the exception that the events now 

originate in Chatoyant and terminate in ModelSim. Utilizing the piece-wise linear source star 

found in the Chatoyant electrical library, the same 200MHz clock signal can be generated as seen 

in the previous system. The piece-wise linear source star is a simple script reader, reading an 

ASCII text file that contains a list of times and voltage values. In ModelSim there is behavioral 

VHDL code that takes the single-bit signal that crosses the interface and then uses it as a clock to 

an eight bit counter. The result is two 4-bit buses, one bus is the high nibble and the other bus is 

the low nibble. Figure 28 illustrates the Chatoyant palette for this test system and Figure 29 

shows the VHDL source for the code loaded into ModelSim. 

 
 

 
 
 

Figure 28 The Chatoyant palette for the single-bit, Chatoyant to ModelSim test system 
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Figure 29 VHDL source code for the counter that will use the single bit from the interface 

 
 
 As the single-bit, ModelSim to Chatoyant example showed how the interface performs 

when ModelSim is the source of events, this system tests to determine how the interface 

performs when Chatoyant is the source of events. We also see how ModelSim performs 

converting these incoming events into signal “forces”. As in the previous system, the central 

clock operates at 200MHz, which for a 1us simulation time is 200 cycles. We present the data 

from the lock-step and dynamic synchronization modes in the following sub-section. 
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5.3.2 Runtime Results and Analysis 

 
 

As in the previous section, we provide more thorough listing of all runtime data in 

Appendix C for this system. We first execute the non co-simulation system to gain a baseline for 

the performance of this particular system. In this case, the events originate in Chatoyant, 

therefore we must run the system with all of the stars present in the co-simulation version, 

without the interface star. Chatoyant performed the simulation without the interface in 385 

milliseconds. This is equal to 1039 events per second, assuming 400 events (200 rising edge 

events and 200 falling edge events for 200 total cycles). 

 Figure 30 shows a comparison graph between the lock-step synchronization execution, 

the dynamic synchronization execution, and the non co-simulation execution in terms of the 

events per second.  
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Figure 30 The events per second for the single-bit, Chatoyant to ModelSim execution modes 

 
 
 In terms of events per second execution performance, the dynamic synchronization 

provides between an 8.55 times (1ps) to a 10.43 time (1ns) speedup over the lock-step modes. 

Overall, the non co-simulation execution is 4.3 times faster than the dynamic co-simulation.  

 Further analysis into the dynamic synchronization mode is found in the profile of the 

code for both the Chatoyant and ModelSim side of the interface. Figures 31 and 32 are the 

Chatoyant and ModelSim respective pie charts showing the breakdown of execution.  
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Figure 31 The Chatoyant code profile using the dynamic synchronization 

 
 
 The graph seen in Figure 31 shows that most of the execution time is found in the other 

processing within Chatoyant, namely the piece-wise linear source and graphing stars. The second 

most amount of time is spent within the event processing functions within Chatoyant. Thirdly is 

the execution time of the go() method within the Chatoyant interface star. This shows that the 

interface is a significant contributor to the execution time of the simulation, but the amount of 

event processing is still higher than the interface. The piecewise linear source star’s go() method 

accounted for 1/3rd of the overall processing time, in addition to approximately the other 10% of 

functions neither related to the co-simulation interface or event processing.  
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ModelSim Overhead Distribution - Dynamic Algorithm 
(Single-Bit, Chatoyant to ModelSim)
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Figure 32 The ModelSim code profile for the dynamic synchronization 

 
 

 Within the ModelSim code profile, the SyncInterface() method consumes a majority of 

the execution time. The other processing performed by ModelSim consumes only 20% of the 

total execution time, implying that the interface code is the largest bottleneck in the simulation 

on the ModelSim side of the interface.  

 This is seen in Figures 33, for the Chatoyant side of the signal, and 34, for the ModelSim 

waveform of the received signal.  
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Figure 33 The Chatoyant waveform using the dynamic synchronization mode 

 
 

 
 
 

Figure 34 The ModelSim waveform using the dynamic synchronization mode 

 
 

 In both of the waveforms in Figure 33 and 34, we see a snapshot between 1ns and 8ns. In 

Chatoyant, we see the transitioning of the clock with a period of 5ns or 200MHz. In ModelSim, 

we see the clock from Chatoyant as the top most signal trace. Closer examination shows a brief 
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logic transition from 0 to ‘X’ to ‘1’ around 2.5ns. The same is seen at 5ns with a transition from 

1 to ‘X’ to 0. The ‘X’ state is identified by a discontinuity in the transition of the signal trace. 

This is due to the brief period in time when the signal transitions between the threshold level of 

the logic, and thus is in an unknown state. We see this behavior for this particular case since 

there is an intermediate event from when the piece-wise linear source transitions from the 

original state of a signal to the new state. This is defined as the mid-point for the voltage level 

sent through the interface. This proves that the interface is properly handling the different 

voltage regions when converting from an electrical signal to a standard logic signal for the HDL 

design. 

 This system provided a first look into the performance of the co-simulation interface 

based on Chatoyant being the primary provider of events. However, this system accounts for 

only one bit of execution, as did the system presented in Section 5.2. The following section now 

looks at a larger example with multi-bit buses crossing the interface, first from the standpoint of 

ModelSim being the primary supplier of events.  

 
 
 
 

5.4 MULTI-BIT, MODELSIM TO CHATOYANT APPLICATION 

 
 
5.4.1 System Description 

 
 
The system described in this section looks at the impact on performance when considering the 

use of buses. We will first look at the situation when ModelSim is the primary source of events. 

This is accomplished by writing behavioral VHDL code to create a 4-bit counter. Figure 35 
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shows the graphical view of this block diagram in the HDL Designer program from Mentor 

Graphics.  

 
 

 
 
 

Figure 35 VHDL based block diagram for the multi-bit test system from ModelSim to Chatoyant 

 
 
 In Figure 35, we make use of the behavioral clock generator and counter made for the 

single-bit tests as the multi-bit count generator for this system. Two buses cross the interface. 

The first is the lower two bits of the count value and the second is the upper two bits of the count 

value. When these signals cross over the interface, they will be in the form of two, two-bit buses. 

This is done to stress the interface with two ports instead of only one.  

 The Chatoyant side of the interface contains the interface star with the two ports. Each 

port is then sliced into two separate single-bit paths to show the values of all bit lines. Figure 36 

shows the Chatoyant palette with the interface star at the far left and all of the bit slices going to 

graphs.  
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Figure 36 The Chatoyant palette for the multi-bit test from ModelSim to Chatoyant 

 
 
 Since this system is similar to the single-bit, ModelSim to Chatoyant system, we can 

predict that there will be approximately the same performance trend. We now present the results 

gathered from the simulations of the different modes of synchronization as well as the non co-

simulation execution of the system within ModelSim. 
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5.4.2 Runtime Results and Analysis 

 
 
We first provide the cross comparison graph of the events per second for the lock-step simulation 

at 1ps and 1ns resolution as well as the dynamic synchronization and non co-simulation 

runtimes. The summary of these results are found in Figure 37 and the detailed tables are 

available in Appendix D. For the non co-simulation bar, this is based on ModelSim’s execution 

time, as was done in the single-bit, ModelSim to Chatoyant example.  
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Figure 37 The events per second for the multi-bit, ModelSim to Chatoyant test system 
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 We see in this graph that the non co-simulation execution is 5.66 times faster than the 

dynamic mode of synchronization. The greatest improvement in the co-simulation is shown 

between the dynamic simulation and the 1ps lock-step, with a 187.06 times in performance. This 

is due to the loss of events across the interface in the lock-step method (having only 252 events) 

versus no loss in the dynamic synchronization (having 379).  

 We see in the following code profiles, that the event processing is largest overhead when 

considering the dynamic synchronization co-simulation. The actual runtime of the interface 

based code is minimal compared to the event processing and other code execution. This 

additional overhead is associated with the null events produced from the synchronization as well 

as the fact that there are two events created for every transition port in the interface. This 

overhead distribution is seen in Figure 38.  
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Figure 38 Chatoyant code profile for the multi-bit, ModelSim to Chatoyant system in dynamic mode 
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 Lock-step processing distribution, seen in Appendix D, shows that over 66% of the 

execution time is spent within the synchronization function. This is accounted by the large 

quantity of null events created by the synchronization pulse. The lock-step’s 66% compared to 

the dynamic synchronization’s 1% execution contribution shows the reduction in the interfaces 

overhead when running in dynamic mode.  

Figure 39 is the ModelSim code profile for the multi-bit, ModelSim to Chatoyant test 

system utilizing dynamic synchronization. The majority of the overhead for running this system 

is found in the SyncInterface() function within the interface code. The actual ModelSim 

processing overhead is minimal when compared to the interface overhead.  
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Figure 39 ModelSim code profile for the multi-bit, ModelSim to Chatoyant system in dynamic mode 
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 The final results to examine are the waveforms. In Figures 40 and 41 we show the 

Chatoyant and ModelSim waveforms, respectively. The ModelSim waveform has one additional 

signal, the design’s clock, shown for reference purposes. 

 
 

 
 
 

Figure 40 Chatoyant waveform for the multi-bit, ModelSim to Chatoyant system in dynamic mode 
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Figure 41 ModelSim waveform for the multi-bit, ModelSim to Chatoyant system in dynamic mode 

 
 
 A closer inspection of these graphs shows that accuracy is maintained. Each bit toggles at 

different frequency. The signal group with the highest toggle rate produces the most events and 

thus incurs the most synchronization as well as event processing overhead in the simulators as 

well as the interface.  

 We will now examine the opposite case to the system described in this section. This will 

now make Chatoyant the source of the events, with multiple bits, and ModelSim the destination 

of these events.  

 
 
 
 

5.5 MULTI-BIT, CHATOYANT TO MODELSIM APPLICATION 

 
 
5.5.1 System Description 

 
 
This section examines the case of a multi-bit bus originating in Chatoyant and being used in 

ModelSim. This makes Chatoyant the primary source of all events and ModelSim will simply 

use these events for some trivial purpose. 

 As seen in the single-bit, Chatoyant to ModelSim system in Section 5.3, we utilize the 

piece-wise linear source star for creating the events. In this case we have 4 piece-wise linear 
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source stars, one for each bit in the bus. These bits are then paired off into a high order pair and a 

low order pair, to create a pair of two bit buses. These buses then traverse the interface into 

ModelSim via the Chatoyant interface star created for this test system. Figure 42 shows a screen 

capture for the Chatoyant palette created for this system. The far left of the diagram shows the 

piece-wise linear source stars, followed by graphs used to display each bit, with each slice being 

pared and merged into a two bit bus, and then entering the interface star.  

 
 

 
 
 

Figure 42 Chatoyant palette for the multi-bit, Chatoyant to ModelSim test system 

 
 
 Within ModelSim, the buses are used to create a running sum between each of the two bit 

buses and the previous sum value. This design is constructed through behavioral VHDL. This 
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code is represented as a flow chart diagram within Mentor Graphics’ HDL Designer tool in 

Figure 43. This diagram shows a forever loop that first waits for 5ns and then performs the sum 

between the upper two bit bus, the lower two bit bus, and the previous sum value. The sum is 

initially set to all zeros. This loop will run until the actual simulation stops within ModelSim.  

 
 

 
 
 

Figure 43 ModelSim flowchart view for the multi-bit, Chatoyant to ModelSim test system 
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 We now examine the results yielded from the different simulations performed with this 

system to gain insight on how it performs compared to the non co-simulation execution within 

Chatoyant.  

 
 
5.5.2 Runtime Results and Analysis 

 
 
We begin our analysis of this test system by examining the events per second for the different 

modes of co-simulation versus the non co-simulation mode. The non co-simulation execution is 

measured from the Chatoyant system in Figure 42 executing without the ModelSim Star. Seen in 

Figure 44 is the graph of the different events per second measurements for these modes.  
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Figure 44 Events per second results for the multi-bit, Chatoyant to ModelSim test system 
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 As shown in figure 44, the non co-simulation mode of execution shows only a 2.1 times 

speedup in event throughput. Meanwhile, the dynamic mode of co-simulation provides a 19.4 

times speedup over the lock-step co-simulations, while producing an order of magnitude in terms 

of the number of events traversing the interface, than seen in either lock-step resolution.  

 This system provides results that do show a speedup between dynamic and lock-step 

modes of simulation. The 1ns lock-step mode is seen to be slower than the 1ps lock-step due to 

the fact that few events are traversing the interface (because of detail loss) in nearly the same 

time, show in Appendix E. When comparing to the 1ps lock-step co-simulation, the dynamic 

mode is 19.4 times faster since the dynamic co-simulation produces a higher event throughput in 

the interface. 

 We continue the examination of this system by analyzing the code profiles. Figure 45 

shows the profile for Chatoyant. Here we see that over half of the execution time in Chatoyant is 

spent on other processing tasks. 32.11% of the time is spent processing events and 10.98% is 

spent in the interface star. The larger quantity of execution time spent in other Chatoyant 

processing functions is most likely due to the four piece-wise linear source stars and associated 

graphs. Since the interface handles the multi-bit buses as one port instead of individual signals, 

there is not as much processing time needed to handle event changes.  
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Figure 45 Chatoyant profile for the multi-bit, Chatoyant to ModelSim system in dynamic mode 

 
 
 The ModelSim profile, seen in Figure 46, shows a smaller overhead in terms of the 

interface code compared to the previous systems. In the case of this system, the SyncInterface() 

function is still the highest percentage of the runtime, but is closer to the 38% of all other 

ModelSim processing. The other functions used by the interface account for around 18% of the 

total execution. This tighter distribution of the function calls is most likely due to the higher 

number of events and efficiency of the interface in handling them, leaving more processing to be 

done in the ModelSim kernel. 
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Figure 46 ModelSim code profile for the multi-bit, Chatoyant to ModelSim system in dynamic mode 

 
 

 The final examination of this system is the analysis of the waveforms produced from the 

simulations. We focus our analysis on the dynamic co-simulation since it has provided the best 

performance for the interface. Figure 47 shows the Chatoyant graphs for each bit. These bits 

toggle in periodic fashion, each bit being the inverse of the other within a bus pair.  
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Figure 47 Chatoyant waveform for the multi-bit, Chatoyant to ModelSim test system 

 
 
 In Figure 48, we see the resulting ModelSim waveform. Here we see the same pattern as 

produced by Chatoyant, with the addition of the unknown crossover produced by the bits 

toggling in and out of the unknown voltage region. The sum produced by the behavioral VHDL 

code is also shown with the incoming signals as a reference, shown as the top most signal.  
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Figure 48 ModelSim waveform for the multi-bit, Chatoyant to ModelSim test system 

 
 
 With the systems described and analyzed in this section, we conclude the examination of 

the four primary test cases. For the complete set of runtime results see Appendix E. We now 

examine two larger systems that represent real-world designs that are currently fabricated and 

being tested. The first system discussed is the Smart Pixel Optical Transceiver system created at 

the University of Delaware.  

 
 
 
 

5.6 SMART PIXEL OPTICAL TRANSCEIVER – SPOT 

 
 
5.6.1 System Description 

 
 
The system presented in this section represents a real-world design created at the University of 

Delaware. The Smart Pixel Optical Transceiver, or SPOT, system is a prototype design used to 

prove the feasibility of an optics based high speed communication interconnect (40). Using a 

digital design to generate 8-bit parallel data, two data channels and one high speed clock signal 

are serialized and transmitted through analog circuitry to Vertical Cavity Surface Emitting 

Lasers, or VCSEL’s, arrays to a series of lenses and received by a matching set of 
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photodetectors. The receivers translate the optical signal into a series of electrical signals, which 

in turn are amplified through analog circuits and then sent through digital circuitry which 

recovers the serialized data and translates it into a pair of 8-bit parallelized words. Each 

serialized data signal is a Double-Data Rate channel and is sent with a serialized clock, which is 

a clock that is 4X faster than the original user clock. This clock speedup is accomplished through 

a Phased-Lock-Loop, or PLL, within a Xilinx Virtex Field Programmable Gate Array, or FPGA, 

chip. Each channel is sent as parallel data along with the 4X clock to a transceiver chip which 

accomplishes the serialization/de-serialization (SERDES) as well as transmission and reception 

of the optical signals. Figure 49 shows the actual prototype system. 

 
 

 
 
 

Figure 49 SPOT prototype test system (40) 
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 The primary user clock in this system is a 125MHz clock, which equates to the data being 

transferred through the optics at 500Mbs, or 4X the clock. The data being sent is in two 

independent channels, each being a simple 8-bit count value, with one sending an up-count and 

the other sending a down-count value. Figure 50 shows the top level block diagram for the 

digital side of the SPOT system, created in Mentor Graphics’ HDL Designer. In this diagram, we 

see the block diagram representing the code found within the Virtex FPGA (left), the transmitter 

logic found within the SPOT transceiver (upper right), and the block containing behavioral 

VHDL code for the SPOT receiver (lower right). 

 
 

 
 
 

Figure 50 SPOT top-level VHDL block diagram 

 
 
 The Chatoyant galaxy for this system is simple for the purpose of collecting and profiling 

the performance of the co-simulation interface. A full system simulation would contain the 
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piece-wise linear circuit solver along with the VCSEL model star for each clock and data 

channel with its corresponding receiver and analog amplifier circuits. This system was tested in 

the simplified form to better understand the impact of the interface by itself. Figure 51 shows the 

simplified Chatoyant palette with the interface star in the center, a set of graphs from each signal, 

and then a set of zero-delay interrupters, provided by Ptolemy, indicated as diamonds on the 

signal path. This setup causes a loop-back operation during simulation so that whatever is sent 

from ModelSim will be received at a few time steps later, defined by the rise/fall time constant.  

 
 

 
 
 

Figure 51 Chatoyant palette example for the SPOT system 

 
 
 We now investigate the runtime performance of this system as we did in the previous test 

systems. Since this system ultimately has ModelSim as the initial source of events due to the data 

and clock channels being driven by the FPGA and transmitter VHDL code, we should see results 

that follow closely to the single and multi-bit ModelSim to Chatoyant systems. 
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5.6.2 Runtime Results and Analysis 

 
 
Due to the amount of data/clock information being transmitted in this system, we expect to see a 

reduction in the runtime of the simulation in both the co-simulation cases as well as the non co-

simulation case. This is mostly due to the larger design present in ModelSim and the impact this 

has on the runtime capability of ModelSim. Figure 52 shows the comparison between the 

different simulation modes. The non-co-simulation system results are based on the simulation 

executing only in ModelSim since it is the initial source of events. 
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Figure 52 Events per second measurements for the different simulation modes for the SPOT system 
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 As we see in Figure 52, there is a reduction in the events per second compared to the 

previous systems. The non co-simulation system is only 3.49 times faster over the dynamic co-

simulation mode. The dynamic co-simulation mode has a speedup of 54 times over the 1ns lock-

step mode and a 103 times speedup over the 1ps lock-step mode. The lock-step system does not 

see a loss of event accuracy between the 1ps to 1ns resolutions, mostly due to the even clock 

period being at every 8ns with the half period at 4ns. However, event though the accuracy is 

maintained in the lock-step mode, the dynamic synchronization method proves to be the optimal 

mode for co-simulation.  

 When considering the impact of the overhead in ModelSim as well as Chatoyant, we 

examine the code profiles provided by both simulators. Figure 53 provides a graph of the 

Chatoyant execution distribution. We see in this graph that 43.72% of the time spent during 

simulation is found within the event processing methods. The go() code of the interface star is 

the second highest consumer of execution time. The other processing found in Chatoyant is 

limited to only 10.97%, which is explained by the fact that ModelSim is the primary source of 

events and that there is little computation performed in Chatoyant.  
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Figure 53 Chatoyant code profile for the SPOT system in dynamic mode 

 
 
 The ModelSim code profile is seen in Figure 54. Here we see that the majority of the 

code execution is found within the SyncInterface() function, as expected. However, the 

remaining ModelSim execution does consume 18% of the execution which is higher than most of 

the test systems. This can be explained by the addition simulation computation needed to handle 

the larger design and gate-level constructs.  
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Figure 54 ModelSim code profile for the SPOT system in dynamic mode 

 
 
 We conclude our analysis of the SPOT system runtime data by looking at the resulting 

output waveforms from both ModelSim and Chatoyant. We see in Figure 55 the waveform from 

ModelSim. Here we see the primary user clock running at 125MHz and then the serialized 

data/clock channels being sent to Chatoyant via the co-simulation interface. The signals are then 

received back from Chatoyant into ModelSim with a few pico-seconds of delay (due to rise/fall 

time skewing). The bottom of the waveform shows the recovered 8-bit data channels which show 

the count-up and count-down values that were originally serialized on the transmitter side.  
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Figure 55 ModelSim waveform for the SPOT test system in dynamic mode 

 
 
 The Chatoyant results are split into three waveforms. The 4X clock is seen in Figure 56, 

the first data channel is seen in Figure 57, and the second data channel is seen in Figure 58. 

These are identical waveforms as seen in the ModelSim waveform from the output of the 

transceiver logic. 

 
 

 
 
 

Figure 56 Chatoyant waveform for the 4X clock for the SPOT system in dynamic mode 
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Figure 57 Chatoyant waveform for the first data channel for the SPOT system in dynamic mode 

 
 

 
 
 

Figure 58 Chatoyant waveform for the second data channel for the SPOT system in dynamic mode 

 
 

 In this section we saw the first of two real-world applications using the co-simulation 

interface. Appendix F provides the detailed runtime results for this system. We saw that the 

dynamic co-simulation mode provided a significant speedup over the lock-step mode. We now 

discuss the last system tested using the co-simulation interface in the following section.  
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5.7 FIBER IMAGE GUIDE - FIG 

 
 
5.7.1 System Description 

 
 
The final system tested in this thesis is by far the largest in terms of functional blocks in both 

VHDL and Chatoyant. This system is the Fiber Image Guide, or FIG, design, created at the 

University of Pittsburgh (41). FIG, as a complete system, is an 8x8 crossbar switch. There are 8 

channels that are 8-bits each. This system consists of 64 bits of optical input into the first stage of 

the crossbar. These 64 bits are recovered from the optics into amplified digital signals. The bits 

then enter the first of three digital crossbar switching logic stages. Based on configuration logic, 

the bits are then switched to the proper transmission channel to a set of analog circuits that drive 

a large array of VCSEL’s. The fiber image guide directs the laser light of each VCSEL 

transmitter to a corresponding photodetector of an identical crossbar chip. The process is then 

repeated again for another set of bit translations, based on more control information. At the third 

chip, the final crossover occurs and the output of the chip is another set of external fiber bundles 

with the fully switched bit data. To illustrate this, refer to Figure 59 which depicts the top and 

bottom of the complete FIG multi-chip module.  
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Figure 59 The FIG MCM architecture (42)

 
 

 The complete FIG system is massive and would require a potentially long simulation 

runtime due to the amount of optical, analog, and digital components (essentially 64 individual 

paths times 3 stages or 192 major components). To reduce the simulation, we examine a small 

segment of the design, namely the small segment of the incoming fiber optics for two bits of the 

first two buses through the digital component, and then out to a set of a data sinks (black holes in 

Ptolemy). This reduction in the simulation performed is done for the same reasons as was seen in 

the SPOT system. This reduction allows us to perform a simulation that examines the co-

simulation interface performance.  
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 In terms of the Chatoyant palette, there are a set of piece-wise linear sources that 

represent the incoming optical/analog data bits for any given stage in the crossbar. These bits are 

merged into buses in a similar fashion as in the multi-bit, Chatoyant to ModelSim system. These 

buses are then sent through the interface to VHDL code that models the crossbar control logic. 

The result of this logic is then fed as two buses from the interface star into two graphs for 

monitoring. In the real system simulation, these buses would feed analog circuits that would in 

turn drive the VCSEL array. We see this system in Figure 60.  

 
 

 
 
 

Figure 60 Chatoyant palette for the FIG co-simulation test 

 
 
 The digital logic for the crossbar control component within FIG is illustrated in Figure 

61. In this diagram we see the top-level block diagram for the control word cache with the main 

controller (top left blocks) and the main multiplexer units (right side). The HDL of this design is 

primarily gate-level code with the control logic coded in structural Register Transfer Level 

(RTL) VHDL. This has an impact on the performance of the digital logic design in ModelSim, 

seen in the following subsection.  
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Figure 61 VHDL diagram of the FIG crossbar chip (41, 42) 

 
 
 We now examine the runtime results gathered from the different simulation modes for the 

FIG system simulation. Appendix G provides all of the tables used in producing the summary 

graphs seen in the following subsection.  

129 



 

 
 
5.7.2 System Description 

 
 
We see from Figure 60 that Chatoyant is the initial source of events since the piece-wise linear 

source stars are the only producers of the initial events. Therefore, we can predict that this 

system will behave much like the single and multi-bit Chatoyant to ModelSim test systems in 

terms of performance. We first prove this by examining the events per second measurement for 

the different simulations modes. Figure 62 summarizes the events per second measurements for 

the 1ps lock-step, the 1ns lock-step, and dynamic co-simulations as well as the non co-simulation 

results. For the standalone simulation, we base our comparison on a simulation performed 

without co-simulation in Chatoyant since it is the primary source of events.  
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Figure 62 Events per second measurement for the FIG simulation 

 
 
 The results seen in Figure 62 show an interesting trend in terms of the performance of the 

co-simulation interface when compared to the non co-simulation execution. The non co-

simulation events per second is 1.33X faster than the dynamic co-simulation. Likewise, the 

dynamic co-simulation mode is 1.76X faster than the 1ns lock-step co-simulation and 7.52X 

faster than the 1ps lock-step co-simulation. These numbers imply that the overhead of Chatoyant 

producing the events for this system and processing the ones coming in from the interface is 

greater than the overhead of the interface itself.  
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 To support the assertion that the other Chatoyant processing is producing an overhead 

that is greater than the interface’s overhead, we examine the code profile of the FIG simulation 

for the dynamic co-simulation mode, seen in Figure 63. 
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Figure 63 Chatoyant code profile for the FIG co-simulation in dynamic mode 

 
 
 As predicted, the additional Chatoyant processing is the greatest quantity of execution 

time at 56.52%. The event processing overhead produced by the interface and the piece-wise 

linear sources produce the second highest overhead at 27.26% of the total execution time. The 

interface code accounts for approximately 16.2% of the total execution time. This supports our 

previous assertion that the interface is not the primary consumption of execution time from the 

point of view of Chatoyant’s runtime performance.  
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 In terms of ModelSim, we see a majority of the execution time being devoted to the 

interface code. However, there is still are large percentage of execution spent on the other 

processing within the ModelSim kernel, which is most likely due to the number of gate level 

constructs. We see the overall breakdown of the code profile in Figure 64. 
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Figure 64 ModelSim code profile for the FIG co-simulation in dynamic mode 

 
 
 Our final analysis for this system is the waveforms produced in the dynamic co-

simulation. The first waveform we examine is from the ModelSim side of the co-simulation, seen 

in Figure 65. Here we see the transitions of the input slices, which originated in Chatoyant, and 

their toggling at a future time. The clock in this system is used only for loading the control data 
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and flagging the main controller that the configuration is complete. The snapshot in Figure 65 

time represents a small period in time after the configuration is complete. 

 
 

 
 
 

Figure 65 ModelSim waveform for the FIG co-simulation in dynamic mode 

 
 
 The Chatoyant waveform shows the incoming events as they arrive from the interface. 

The ModelSim bound events are seen in the in the previous figure as the in_1 and in_2 buses. 

Figure 66 shows the resulting Chatoyant waveforms.  
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Figure 66 Chatoyant waveform for the FIG co-simulation using the dynamic mode 

 
 

 We now conclude the discussion on the FIG system. As reported, the co-simulation 

interface had an overall performance that was comparable to the standalone Chatoyant 

simulation. We determined that this is due to the overhead of producing and handling events 

within the components in the Chatoyant simulation itself. We also gained an insight into the 

accuracy of the simulation with the waveforms provided in Figures 65 and 66. We will now 

compare the results of this and previous sections to determine the scalability of the interface and 

how the performance compares overall for the dynamic mode of co-simulation. 
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5.8 ANALYSIS OF RESULTS 

 
 
In this section we further analyze the data collected and examined in the previous sections by 

comparing the events per second and user cycles per second measurements for the dynamic co-

simulation mode. We choose this particular mode because it provides the best overall runtime 

performance with a tolerable overhead compared to the lock-step method. Our goal is to 

determine how the interface will scale and perform for different systems.  

 The events per second measurements for the simulation of the six systems discussed in 

this chapter are summarized in Figure 67.  
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Figure 67 Summary of events per second for the six systems discussed in this chapter 

 
 
 From the graph in Figure 67 we can see that the highest performing systems for the co-

simulation interface are the single and multi-bit ModelSim to Chatoyant tests. Since these 

systems are similar in terms of the behavior of the event traffic, we see that the overhead 

associated with handling buses is not that high when compared to the inclusion of an additional 

port. The multi-bit ModelSim to Chatoyant system differs from the single-bit version by the 

additional port in the interface. We can observe that the multi-bit bus performs at about one-half 

the level as the single-bit version.  
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 One issue that effects both the synchronization as well as Chatoyant event processing is 

the need to handle null events. These null events, within the context of the dynamic 

synchronization, occur for two reasons. First, for every event that goes from ModelSim to 

Chatoyant, there are two events created in the Chatoyant interface star. One event is the current 

state at the current time and the second event is the new state change at some user specified 

constant time later. This behavior is to create the rising or falling slope for an edge. Each of these 

events cause the Chatoyant star to re-evaluate the synchronization code found with in itself. 

From this we receive one null event based on the second event sent at the later time when the 

port’s state is scheduled to change. The second source of null events is from the lookahead 

function returning an event that is not destined for any of the input ports of the interface star.  

 This second case for creating null events could lead to a potential optimization. If the DE 

scheduler’s lookahead function was able to distinguish which events are destined for the 

interface star, we can filter all other events from the lookahead and potentially reduce the number 

of null events. Since the interface code is called when a event is present at one of its portholes, 

no caution is needed for interim events that occur from before the last determined 

synchronization. To implement this optimization, the DE scheduler needs to be aware of what 

ports are the inputs to the interface star. Then, every time a lookahead operation is performed, 

the lookahead method determines whether an event that has a time stamp greater than the current 

time is destined for an input port of the interface star. If it is, then the timestamp of the event is a 

valid lookahead time. Otherwise, we continue to search the event queue for a valid time. The 

only cost of this operation is the search through the event queue for finding a valid event and 

timestamp. More investigation is needed to determine the cost to benefit ratio of this new 

lookahead function versus the current overhead incurred from the null events. 
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 When comparing FIG to SPOT, we see that FIG outperforms SPOT, even though there is 

more event traffic in FIG. Since ModelSim is the primary source in SPOT, the overhead of the 

interface is more pronounced than in FIG, where Chatoyant is the primary source of events. 

Another point to note is that SPOT shows an instance of both clock and data based events 

crossing the interface. The inclusion of a clock severely limits the achievable performance, 

especially high frequency clocks (100 to 1000 MHz). This is due to the high density of event 

traffic generated by the clock as well as the intermittent data event traffic. In FIG the event 

traffic was less dense and more random when compared to SPOT. This coupled with the higher 

computation load in the ModelSim simulator and event processing overhead found in Chatoyant 

provides an insight into how the interface will perform under the circumstance of a clock 

crossing the interface.  

 From this analysis and the data presented in the previous sections, we are able to 

determine the overall cost of sending one event over the interface. The cost of an event across the 

interface is determined as the impact it yields on the Chatoyant and ModelSim simulators. We 

must differentiate the impact of the cost analysis from the perspectives of Chatoyant and 

ModelSim since the interface only exists as segment of the total simulations in both simulators. 

This means that the interface is not a standalone application executing concurrently with 

Chatoyant and ModelSim.  

 To better quantify the cost in Chatoyant and ModelSim, we are able to calculate the time 

it takes to process one event in the interface. This value is the time spent in the interface code of 

both simulators divided by the events per second. This calculation is performed for both 

simulators since each has a different percentage of execution devoted to the interface. We show 
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the number of milliseconds spent on each event for all six systems simulated in this chapter as 

well as an average cost in Figure 68.  
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Figure 68 Time calculations spent on an event in the co-simulation interface for both Chatoyant and 
ModelSim 

 
 

For all of the systems tested we see a low rate of variability in the time spent on 

processing an event in the interface. Some of the variability is due to the accuracy of the 

profiling functions performed on the code during runtime as well as environment variations from 

one simulation to the next. One constant trend seen in these six systems is that the cost of an 

event is higher in ModelSim than in Chatoyant. We can assert that an average runtime cost for an 

event is approximately five times greater in ModelSim than in Chatoyant, as seen in the average 

column in Figure 68. 
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As we have seen from the data presented in the six systems analyzed, the impact of an 

event is less on Chatoyant’s performance than on ModelSim’s performance. In all of the 

execution time distribution graphs, we see that the amount of time spent handling events in the 

interface does not account for the majority of the execution time. Event processing along with 

the other processing performed by other components of Chatoyant always accounts for highest 

percentage of the runtime for a simulation. We thus conclude that the cost of an event being 

processed within the interface star in Chatoyant is much smaller than the remainder of the 

simulation execution. We can further compare the event processing time within the interface 

with the overall Chatoyant event processing time. We show this in Figure 69. 
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Figure 69 Event processing cost comparison between Chatoyant and the co-simulation interface within 
Chatoyant 
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The graph seen in Figure 69 indicates that the cost of processing an event in Chatoyant is 

higher than processing an event within the Chatoyant side of the co-simulation interface. One 

primary trend seen in this graph is that as the computational blocks perform more operations 

and/or become greater in number, the event processing time, in both Chatoyant and the co-

simulation interface, decreases. An interesting anomaly is seen with the SPOT system when it is 

compared to the other systems. In the case of SPOT, the event processing time in both the 

interface and Chatoyant are almost equal, being within 1µs of each other. Initial examination 

indicates that this is most likely due to the configuration of SPOT having ModelSim as the initial 

source of events as well as the loop back within Chatoyant back into ModelSim. Therefore, the 

only events Chatoyant is required to process are the ones produced and consumed by the 

interface, which, in this particular case, are the same events. Therefore, the processing time for 

both Chatoyant and the interface are equal. Further examination is needed to better understand 

this behavior as well as how it relates to the other systems analyzed.  

ModelSim, however, indicates the opposite cost per event relationship than what is seen 

in Chatoyant. For all of the simulations performed on the six systems analyzed, the overhead of 

processing events accounted for the highest percentage of the execution time during a simulation. 

This indicates that cost of processing an event in the interface is higher than any other operation 

within ModelSim from its perspective.  

One final comparison we make is between the non co-simulation and the dynamic 

method events per second measurements. By taking the ratio between the two modes, we can see 

the slow down factor between using no co-simulation and the dynamic co-simulation. A lower 
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the ratio implies a runtime of the dynamic co-simulation being closer to the non co-simulation. 

Figure 70 shows this ratio for all six systems. 

 
 

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

Non Co-Simulation to Dynamic Co-Simulation Ratio for Events per Second

Ratio 5.250 2.338 6.203 2.092 3.593 1.333

Single-bit, 
ModelSim to 

Chatoyant

Single-bit, 
Chatoyant to 
ModelSim

Multi-bit, 
ModelSim to 

Chatoyant

Multi-bit, 
Chatoyant to 
ModelSim

SPOT FIG

 
 
 

Figure 70 Ratio of non co-simulation to dynamic co-simulation events per second 

 
 

 Figure 70 shows two major trends. First, the systems where Chatoyant is the primary 

source of events shows a closer ratio of events per second than the systems that have ModelSim 

as the primary source of events. This most likely due to the larger percentage of Chatoyant’s 

time being spent on processing events and performing other operations, whereas ModelSim has 

more time devoted to the interface than any other process in itself. Secondly, when the system 
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becomes more complex, such as in the instances of FIG and SPOT, the ratio approaches 1. This 

indicates that the co-simulation interface, in dynamic mode, has good scalability for larger 

systems, and thus does not impose a large decrease in system performance.  

To conclude this chapter, we presented and analyzed the runtime performance of six 

systems. The four smaller systems provided measurements for both single and multi-bit systems 

with ModelSim and Chatoyant alternating as the source of events. This then lead into the 

analysis of two larger systems that combined the features of the first four systems. We examined 

the events per second, code profiles, and waveforms for each system. We finally performed a 

cross analysis of all six systems. 

This cross analysis showed us that the cost of processing events in the interface star in 

Chatoyant is much smaller than the other processing being performed in Chatoyant. This analysis 

also showed us that the cost of processing events within the ModelSim interface code is much 

higher than the remaining processing time of ModelSim. From this we can conclude that as we 

simulate larger systems using Chatoyant and ModelSim, concurrently, making use of the 

dynamic co-simulation interface, Chatoyant is not impeded by the interface, however, ModelSim 

does see a performance limitation from the interface.  

One final conclusion to be drawn from the analysis performed on all six systems is that 

utilizing the conservative asynchronous PDES technique, we are able to speedup co-simulation 

when compared to a lock-step method. By utilizing a lookahead method in each simulator, we 

are able to overcome potential deadlocks seen in conservative based asynchronous PDES, and 

show a speedup over the lock-step co-simulation, similar to the speedup seen between 

synchronous PDES and asynchronous PDES.  
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6.0 CONCLUSION AND FUTURE WORK 

 
 
 
 
In this chapter we restate the purpose of this thesis, review the work performed, and summarize 

the results that were collected and how these results support that our goal has been met. We 

finish this chapter with a look into the future work of this research.  

 
 
 
 

6.1 PURPOSE RESTATED 

 
 
As first stated in the introduction, the purpose of this thesis was to develop a co-simulation 

interface utilizing inter-process communication mechanisms and techniques seen in Parallel 

Discrete Event Simulation. We implemented and tested this interface by using Chatoyant, a 

mixed signal, multi-domain simulator, built on the Ptolemy simulation framework, and 

ModelSim, a mixed language HDL simulator. We used these simulators since Ptolemy, and 

therefore Chatoyant, did not support direct VHDL or Verilog simulation within the Ptolemy 

framework. Since Chatoyant is a mixed-signal, multi-domain simulator, digital designs in an 

HDL format need to be supported.  
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6.2 THESIS SUMMARY 

 
 
 

 In summary, Chapter 2 presented the ModelSim mixed language HDL simulator as well 

as the Ptolemy multi-domain simulation framework and the Chatoyant mixed signal MOEMS 

simulator built on Ptolemy.  

 Chapter 3 first reviewed the theory behind discrete event simulation and parallel discrete 

event simulation methodologies. We then applied this foundation to the co-simulation interface 

between Chatoyant and ModelSim. We also examined how signals convert between the digital 

logic and analog signal realm during within the co-simulation interface. We concluded the 

chapter with a look into how the interface’s performance is measured.  

 Chapter 4 explained the detail behind the architecture of the Chatoyant/ModelSim co-

simulation interface as well as its implementation. We discussed the implementation of both the 

Chatoyant interface as well as the ModelSim FLI code for the lock-step and dynamic 

synchronization methods. We concluded this chapter by presenting a tool for automatically 

building the necessary files for the Chatoyant/ModelSim co-simulation interface from a user 

provided VHDL file.  

 Chapter 5 examined six systems that each provided a unique insight into how the 

interface performs. We analyzed the events per second, user cycles per second, the code profiles 

for both sides of the interface, and the waveforms within both simulators. We were able to draw 
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conclusions, discussed later in Section 6.4, based on these results in the final section of the 

chapter. We now proceed with restating the work performed in this thesis.  

 
 
 
 

6.3 WORK PERFORMED 

 
 
We addressed the purpose of this thesis by applying the concepts found in Chapter 3 to the co-

simulation interface architecture. We used both synchronous and asynchronous PDES theory to 

implement a lock-step (synchronous) and dynamic (asynchronous) mode of synchronization in 

the co-simulation interface. We then tested these different modes on six systems to determine 

which provided the best overall runtime performance. We see in the following section a 

summary of the conclusions we were able to draw from the results collected from the different 

simulations executed.  

 
 
 
 

6.4 CONCLUSIONS FROM RESULTS 

 
 
As discussed in the final section of Chapter 5, there are two major conclusions to be drawn. First, 

the impact of the co-simulation interface using the dynamic synchronization yielded a low cost 

per event within Chatoyant when compared to the other processing being performed within 

Chatoyant. Second, the cost per event for co-simulation was high in ModelSim when compared 

to the other processing being performed by ModelSim. These two conclusions provide insight as 

to how the interface scales for larger systems in both simulators. One final point is that we were 
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able to provide speedup using the dynamic synchronization approach, which utilizes 

conservative asynchronous PDES, over a lock-step synchronization mechanism. This showed 

that were able to reduce the overhead of co-simulation by capitalizing on the techniques that 

provide the speedups in parallel and distributed discrete event simulation. 

 
 
 
 

6.5 FUTURE WORK 

 
 
There are two areas where an improvement can readily be detected. The first of these is in the 

lookahead method within Chatoyant and DE Scheduler. Currently, a lookahead operation will 

return the time stamp of the next event bin within the DE event queue. Event though this does 

provide a speedup over the lock-step methods, There is still unnecessary overhead induced by 

the interface star rescheduling itself at timestamps of future events that do not directly impact the 

interface and the temporal causality between the two simulators. Therefore, a more efficient 

approach could be taken to resolve this issue. The DE scheduler, upon initialization, can provide 

a list of all signals that directly effect the interface. Then, during a simulation, when a lookahead 

is performed, the scheduler only needs to determine when the next event time for an event 

destined to the interface star is going to occur, and thus only require the interface star to re-

execute its go() method at the next time an event will occur on one of the ports of the star.  

 Another improvement requires a more drastic change. Instead of performing event based 

co-simulation, a transaction based approach can be used. This requires less communication and 

synchronization between the simulators while providing a higher level of abstraction when 

considering how the different ends of system operate. For example, in the case of a larger system 
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where a standardized bus such as PCI is used, the transactions can reduce the quantity of data 

packets and synchronizations produced within a given window of time, defined as one of the 

parameters of specific transaction. This could potentially speedup the co-simulation to an even 

greater degree and provides an architectural methodology for exploring the design in question.  
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APPENDIX A - TERMS 
 
 
 
 

• Chatoyant – A mixed signal, multi-domain simulator developed at the University of 

Pittsburgh 

• DE – Discrete Event 

• DES – Discrete Event Simulation 

• DDF – Dynamic Data-Flow, a domain and type of simulation based on the order and flow 

of data. (9) 

• Events per Second – The number of discrete events that are registered in one second of 

execution. 

• HDL – Hardware Description Language 

• IPC – Inter-Process Communication 

• LP – Logical Process, in the scope of simulation, is the part of a simulator that performs 

some computation on event data to generate more event data. 

• MCM – Multi-Chip Module 

• MNA – Modified Nodal Analysis 

• MEMS – Micro-Electro-Mechanical Systems 

• ModelSim – A mixed HDL simulator from Mentor Graphics 

• MOEMS – Micro-Opto-Electro-Mechanical Systems 

• PDES – Parallel Discrete Event Simulation 
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• Ptolemy – A multi-domain simulation framework from the University of California, 

Berkeley (9) 

• Scheduler – The part of a simulator that controls event ordering and distribution 

• SDF – Synchronous Data Flow, similar to DDF except with a predetermined static 

schedule (9) 
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APPENDIX B – SINGLE-BIT MODELSIM TO CHATOYANT RESULTS 
 
 
 
 

Table 2 Single-bit, ModelSim to Chatoyant Lock-Step Data 

 
 
Lock-Step:        
        

Sync Wall-Clock      Chatoyant - Received    Chatoyant - Transmitted 

Resolution Runtime Events Nulls Total Events Nulls Total 

1ps 38.1519 400 997600 998000 0 998001 998001
1ns 2.348 286 999 1285 0 999 999 

Sync          ModelSim -Received     ModelSim - Transmitted 

Resolution   Events Nulls Total Events Nulls Total 

1ps   0 998001 998001 400 997600 998000
1ns   0 999 999 286 999 1285 

 
 

Table 3 Single-bit, ModelSim to Chatoyant Lock-Step events per second 

 
 

Sync Events per 

Resolution Second 

1ps - LS 10.484 
1ns - LS 121.806 
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Table 4 Single-bit, ModelSim to Chatoyant 1ps lock-step code profile 

 
 

1ps:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 36.52% SyncInterface() 33.00% 

write_fifo() 2.77% write_fifo() 13.00% 

read_fifo() 1.24% read_fifo() 12.00% 

conv_to_volt() 1.00% conv_to_string() 0.00% 

conv_to_logic() 0.00% conv_to_enum() 0.00% 

other 58.47% other 42.00% 

Total 100.00% Total 100.00% 
 
 

Table 5 Single-bit, ModelSim to Chatoyant 1ns lock-step code profile 

 
 

1ns:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 50.00% SyncInterface() 23.00% 

write_fifo() 1.00% write_fifo() 11.00% 

read_fifo() 1.00% read_fifo() 9.00% 

conv_to_volt() 1.00% conv_to_string() 0.00% 

conv_to_logic() 0.00% conv_to_enum() 0.00% 

other 47.00% other 57.00% 

Total 100.00% Total 100.00% 
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Table 6 Single-bit, ModelSim to Chatoyant dynamic co-simulation results 

 
 

Dynamic       
       

Wall-Clock 
     Chatoyant - 
Received      Chatoyant - Transmitted 

Runtime Events Nulls Total Events Nulls Total 

0.168 400 1200 1600 0 1600 1600 

  
       ModelSim -
Received      ModelSim - Transmitted 

  Events Nulls Total Events Nulls Total 

  0 1600 1600 400 1200 1600 
 
 

Table 7 Single-bit, ModelSim to Chatoyant dynamic co-simulation events per second 

 
 

Events per 

Second 

2380.952 
 
 

Table 8 Single-bit, ModelSim to Chatoyant dynamic co-simulation code profile 

 
 

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 0.01% SyncInterface() 50.00% 

write_fifo() 0.01% write_fifo() 0.00% 
read_fifo() 0.01% read_fifo() 0.00% 

conv_to_volt() 0.01% conv_to_string() 0.00% 

conv_to_logic() 0.01% conv_to_enum() 0.00% 

event processing 75.00%     
other processing 24.95% other processing 50.00% 

Total 100.00% Total 100.00% 
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Table 9 Single-bit, ModelSim to Chatoyant event processing profile for Chatoyant running the dynamic co-
simulation 

 
 

Chatoyant Runtime Overhead - Event Processing Functions: 
  
% of Overhead Function Name 

25 SimControl::flagValues() 
25 KnownListEntry::~KnownListEntry [in-charge]() 
25 NamedObj::name() const 
75  

 
 
Table 10 Single-bit, ModelSim to Chatoyant runtime and events per second for no co-simulation in ModelSim 

 
 

No Co-Sim  

  ModelSim 

Runtime 0.032 
Events per Sec 12500.000 
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APPENDIX C – SINGLE-BIT CHATOYANT TO MODELSIM RESULTS 
 
 
 

 
Table 11 Single-bit, Chatoyant to ModelSim Lock-Step Data 

 
 
Lock-Step:        
        

Sync Wall-Clock      Chatoyant - Received    Chatoyant - Transmitted 

Resolution Runtime Events Nulls Total Events Nulls Total 

1ps 37.3291 0 1000001 1000001 400 999200 999600
1ns 15.264 0 1001 1001 400 9200 9600 

Sync          ModelSim -Received     ModelSim - Transmitted 

Resolution   Events Nulls Total Events Nulls Total 

1ps   400 999200 999600 0 1000001 1000001
1ns   400 9200 9600 0 1001 1001 

 
 

Table 12 Single-bit, Chatoyant to ModelSim Lock-Step events per second 

 
 

Sync Events per 

Resolution Second 

1ps - LS 10.716 
1ns - LS 26.205 
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Table 13 Single-bit, Chatoyant to ModelSim 1ps lock-step code profile 

 
 

1ps:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 33.77% SyncInterface() 31.00% 

write_fifo() 3.08% write_fifo() 16.00% 

read_fifo() 0.81% read_fifo() 15.00% 

conv_to_volt() 0.00% conv_to_string() 0.00% 

conv_to_logic() 0.16% conv_to_enum() 0.00% 

other 62.18% all else 38.00% 

Total 100.00% Total 100.00% 
 
 

Table 14 Single-bit, Chatoyant to ModelSim 1ns lock-step code profile 

 
 

1ns:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 26.00% SyncInterface() 27.00% 

write_fifo() 1.02% write_fifo() 13.00% 

read_fifo() 0.44% read_fifo() 11.00% 

conv_to_volt() 0.00% conv_to_string() 0.00% 

conv_to_logic() 0.16% conv_to_enum() 0.00% 

other 72.38% other 49.00% 

Total 100.00% Total 100.00% 
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Table 15 Single-bit, Chatoyant to ModelSim dynamic co-simulation results 

 
 

Dynamic       
       

Wall-Clock 
     Chatoyant - 
Received      Chatoyant - Transmitted 

Runtime Events Nulls Total Events Nulls Total 

0.899 0 1997 1997 400 1598 1998 

  
       ModelSim -
Received      ModelSim - Transmitted 

  Events Nulls Total Events Nulls Total 

  400 1598 1998 0 1997 1997 
 
 

Table 16 Single-bit, Chatoyant to ModelSim dynamic co-simulation events per second 

 
 

Events per 

Second 

444.939 
 
 

Table 17 Single-bit, Chatoyant to ModelSim dynamic co-simulation code profile 

 
 

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 13.79% SyncInterface() 58.00% 

write_fifo() 3.45% write_fifo() 4.00% 
read_fifo() 3.45% read_fifo() 4.00% 

conv_to_volt() 0.00% conv_to_string() 0.00% 

conv_to_logic() 0.00% conv_to_enum() 4.00% 

event processing 35.65%     
other processing 43.66% other processing 30.00% 

Total 100.00% Total 100.00% 
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Table 18 Single-bit, Chatoyant to ModelSim event processing profile for Chatoyant running the dynamic co-
simulation 

 
 

Chatoyant Runtime Overhead - Event 
Processing Functions: 
  
% of Overhead Function Name 

6.9 FloatParticle::operator double() const 
1.72 ListIter::next() 
4.62 SimControl::flagValues() 

0 SimControl::doPostActions(Star*) 
3.45 Queue::getHead() 
3.45 SimControl::haltStatus() 
3.45 SimControl::getPollFlag() 

0 SimControl::doPreActions(Star*) 
3.45 SimControl::haltRequested() 

0 FloatParticle::die() 
0 FloatParticle::operator=(Particle const&) 

3.45 Queue::head() 

1.72 
ListIter::ListIter[in-charge](SequentialList 
const&) 

1.72 PortHole::receiveData() 
1.72 PortHole::sendData() 

0 GenericPort::isItOutput() const 
0 GenericPort::isItInput() const 

35.65  
 
 
 
Table 19 Single-bit, Chatoyant to ModelSim runtime and events per second for no co-simulation in Chatoyant 

 
 

No Co-Sim  

  Chatoyant 

Runtime 0.385 
Events per Sec 1038.961 
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APPENDIX D – MULTI-BIT MODELSIM TO CHATOYANT RESULTS 
 
 
 
 

Table 20 Multi-bit, ModelSim to Chatoyant lock-step data 

 
 
Lock-Step:        
        

Sync Wall-Clock      Chatoyant - Received    Chatoyant - Transmitted 

Resolution Runtime Events Nulls Total Events Nulls Total 

1ps 41.9313 252 999800 1000052 0 1000001 1000001
1ns 5.37992 252 799 1051 0 1001 1001 

Sync          ModelSim -Received     ModelSim - Transmitted 

Resolution   Events Nulls Total Events Nulls Total 

1ps   0 1000001 1000001 252 999800 1000052
1ns   0 1001 1001 252 800 1052 

 
 

Table 21 Multi-bit, ModelSim to Chatoyant lock-step events per second 

 
 

Sync Events per 

Resolution Second 
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1ps - LS 6.010 
1ns - LS 46.841 
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Table 22 Multi-bit, ModelSim to Chatoyant 1ps lock-step code profile 

 
 

1ps:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 66.66% SyncInterface() 68.00% 

write_fifo() 0.00% write_fifo() 7.00% 

read_fifo() 0.00% read_fifo() 9.00% 

conv_to_volt() 0.00% conv_to_string() 2.00% 

conv_to_logic() 0.00% conv_to_enum() 2.00% 

other 33.34% other 12.00% 

Total 100.00% Total 100.00% 
 
 

Table 23 Multi-bit, ModelSim to Chatoyant 1ns lock-step code profile 

 
 

1ns:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 66.66% SyncInterface() 43.00% 

write_fifo() 0.00% write_fifo() 10.00% 

read_fifo() 0.00% read_fifo() 8.00% 

conv_to_volt() 0.00% conv_to_string() 3.00% 

conv_to_logic() 0.00% conv_to_enum() 1.00% 

other 33.34% other 35.00% 

Total 100.00% Total 100.00% 
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Table 24 Multi-bit, ModelSim to Chatoyant dynamic co-simulation results 

 
 

Dynamic       
       

Wall-Clock 
     Chatoyant - 
Received      Chatoyant - Transmitted 

Runtime Events Nulls Total Events Nulls Total 

0.337125 379 1601 1980 0 1802 1802 

  
       ModelSim -
Received      ModelSim - Transmitted 

  Events Nulls Total Events Nulls Total 

  0 1802 1802 379 1601 1980 
 
 

Table 25 Multi-bit, ModelSim to Chatoyant dynamic co-simulation events per second 

 
 

Events per 

Second 

1124.212 
 
 

Table 26 Multi-bit, ModelSim to Chatoyant dynamic co-simulation code profile 

 
 

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 1.00% SyncInterface() 99.00% 

write_fifo() 0.00% write_fifo() 0.00% 
read_fifo() 0.00% read_fifo() 0.00% 

conv_to_volt() 0.00% conv_to_string() 0.00% 

conv_to_logic() 0.00% conv_to_enum() 0.00% 

event processing 75.00%     
other processing 24.00% other processing 1.00% 

Total 100.00% Total 100.00% 
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Table 27 Multi-bit, ModelSim to Chatoyant event processing profile for Chatoyant running the dynamic co-

simulation 

 
 

Chatoyant Runtime Overhead - Event Processing 
Functions: 
  
% of 
Overhead Function Name 

50 
KnownBlock::findEntry(char const*, 
KnownListEntry*) 

12.5 GenericPort::isItOutput() const 
12.5 GenericPort::isItInput() const 

75  
 
 
Table 28 Multi-bit, ModelSim to Chatoyant runtime and events per second for no co-simulation in ModelSim 

 
 

No Co-Sim  

  ModelSim 

Runtime 0.059 
Events per 

Sec 6372.961 
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APPENDIX E – MULTI-BIT CHATOYANT TO MODELSIM RESULTS 
 
 
 
 

Table 29 Multi-bit, Chatoyant to ModelSim lock-step data 

 
 
Lock-
Step:        
        

Sync Wall-Clock      Chatoyant - Received    Chatoyant - Transmitted 

Resolution Runtime Events Nulls Total Events Nulls Total 

1ps 15.427 0 100001 100001 322 99840 100162
1ns 9.126 0 18440 18440 161 18280 18441 

Sync          ModelSim -Received     ModelSim - Transmitted 

Resolution   Events Nulls Total Events Nulls Total 

1ps   322 99840 100162 0 100001 100001
1ns   161 18280 18441 0 18280 18280 

 
 

Table 30 Multi-bit, Chatoyant to ModelSim lock-step events per second 

 
 

Sync Events per 

Resolution Second 

1ps - LS 20.872 
1ns - LS 17.642 
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Table 31 Multi-bit, Chatoyant to ModelSim 1ps lock-step code profile 

 
 

1ps:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 28.79% SyncInterface() 68.00% 

write_fifo() 1.52% write_fifo() 7.00% 

read_fifo() 0.00% read_fifo() 9.00% 

conv_to_volt() 0.00% conv_to_string() 1.00% 

conv_to_logic() 0.00% conv_to_enum() 2.00% 

other 69.69% other 13.00% 

Total 100.00% Total 100.00% 
 
 

Table 32 Multi-bit, Chatoyant to ModelSim 1ns lock-step code profile 

 
 

1ns:    

Chatoyant % of Time ModelSim % of Time 

go() 4.17% SyncInterface() 44.00% 

write_fifo() 4.17% write_fifo() 9.00% 

read_fifo() 0.00% read_fifo() 11.00% 

conv_to_volt() 0.00% conv_to_string() 1.00% 

conv_to_logic() 0.00% conv_to_enum() 2.00% 

other 91.66% other 33.00% 

Total 100.00% Total 100.00% 
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Table 33 Multi-bit, Chatoyant to ModelSim dynamic co-simulation results 

 
 

Dynamic       
       

Wall-Clock       Chatoyant  Received      Chatoyant - Transmitted 

Runtime Events Nulls Total Events Nulls Total 

7.894 0 40910 40910 3194 39314 42508 
         ModelSim -Received      ModelSim - Transmitted 

  Events Nulls Total Events Nulls Total 

  3194 39314 42508 0 40910 40910 
 
 

Table 34 Multi-bit, Chatoyant to ModelSim dynamic co-simulation events per second 

 
 

Events per 

Second 

404.611 
 
 

Table 35 Multi-bit, Chatoyant to ModelSim dynamic co-simulation code profile 

 
 

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 10.98% SyncInterface() 43.00% 
write_fifo() 0.29% write_fifo() 8.00% 

read_fifo() 0.29% read_fifo() 10.00% 

conv_to_volt() 0.00% conv_to_string() 0.00% 
conv_to_logic() 0.58% conv_to_enum() 0.00% 

event processing 32.11%     
other processing 55.75% other processing 39.00% 

Total 100.00% Total 100.00% 
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Table 36 Multi-bit, Chatoyant to ModelSim event processing profile for Chatoyant running the dynamic co-
simulation 

 
 

Chatoyant Runtime Overhead - Event 
Processing Functions: 
  
% of 
Overhead Function Name 

6.36 ListIter::next() 
4.05 Star::asStar() 
3.76 FloatParticle::operator double() const 
2.31 SimControl::haltRequested() 
2.02 FloatParticle::die() 
1.73 SimControl::flagValues() 
1.73 SimControl::haltStatus() 
1.45 SimControl::getPollFlag() 
1.45 FloatParticle::operator=(Particle const&) 
1.16 SimControl::doPreActions(Star*) 
1.16 Plasma::put(Particle*) 
0.87 SimControl::setPollFlag() 
0.87 Queue::putTail(void*) 

0.58 
badType(NamedObj&, Envelope&, char 
const*) 

0.29 FloatParticle::initialize() 
0.29 FloatParticle::operator<<(double) 
0.29 FloatParticle::operator<<(int) 
0.29 CriticalSection::~CriticalSection [in-charge]() 
0.29 Queue::putHead(void*) 

0.29 
ListIter::ListIter[in-charge](SequentialList 
const&) 

0.29 ListIter::operator++(int) 
0.29 GenericPort::isItOutput() const 
0.29 GenericPort::isItInput() const 

32.11  
 
 
Table 37 Multi-bit, Chatoyant to ModelSim runtime and events per second for no co-simulation in Chatoyant 

 
 

No Co-Sim  

  Chatoyant 

Runtime 3.774 
Events per Sec 846.317 
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APPENDIX F - SMART PIXEL OPTICAL TRANSCEIVER (SPOT) RESULTS 
 
 
 
 

Table 38 SPOT lock-step data 

 
 
Lock-
Step:        
        

Sync Wall-Clock      Chatoyant - Received    Chatoyant - Transmitted 

Resolution Runtime Events Nulls Total Events Nulls Total 

1ps 1,605.67 96 174899 174995 288 171502 171790
1ns 842.65 96 125 221 288 1 289 

Sync          ModelSim -Received     ModelSim - Transmitted 

Resolution   Events Nulls Total Events Nulls Total 

1ps   288 171502 171790 96 174899 174995
1ns   288 1 289 96 125 221 

 
 

Table 39 SPOT  lock-step events per second 

 
 

Sync Events per 

Resolution Second 

1ps - LS 0.239 
1ns - LS 0.456 
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Table 40 SPOT 1ps lock-step code profile 

 
 

1ps:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 31.50% SyncInterface() 95.00% 

write_fifo() 3.10% write_fifo() 1.25% 

read_fifo() 3.55% read_fifo() 1.25% 

conv_to_volt() 0.50% conv_to_string() 1.00% 

conv_to_logic() 0.45% conv_to_enum() 0.00% 

other 60.90% other 1.50% 

Total 100.00% Total 100.00% 
 
 

Table 41 SPOT 1ns lock-step code profile 

 
 

1ns:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 22.46% SyncInterface() 92.00% 

write_fifo() 1.20% write_fifo() 1.00% 

read_fifo() 1.20% read_fifo() 1.00% 

conv_to_volt() 1.00% conv_to_string() 1.00% 

conv_to_logic() 1.00% conv_to_enum() 0.00% 

other 73.14% other 5.00% 

Total 100.00% Total 100.00% 
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Table 42 SPOT dynamic co-simulation results 

 
 
Dynamic       
       

Wall-Clock      Chatoyant - Received      Chatoyant - Transmitted 

Runtime Events Nulls Total Events Nulls Total 

7.712 96 124306 124402 94 124309 124403 
         ModelSim -Received      ModelSim - Transmitted 

  Events Nulls Total Events Nulls Total 

  94 124309 124403 96 124306 124402 
 
 

Table 43 SPOT dynamic co-simulation events per second 

 
 

Events per 

Second 

24.637 
 
 

Table 44 SPOT dynamic co-simulation code profile 

 
 

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 40.10% SyncInterface() 59.00% 

write_fifo() 1.04% write_fifo() 10.00% 
read_fifo() 4.17% read_fifo() 9.00% 

conv_to_volt() 0.00% conv_to_string() 2.00% 

conv_to_logic() 0.00% conv_to_enum() 2.00% 

event processing 43.72%     
other processing 10.97% other processing 18.00% 

Total 100.00% Total 100.00% 
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Table 45 SPOT vent processing profile for Chatoyant running the dynamic co-simulation 

 
 

Chatoyant Runtime Overhead - 
Event Processing Functions: 
   
% of Overhead Function Name  

22.92 FloatParticle::operato 
6.25 ListIter::next()  
1.04 SimControl::flagValues 
1.04 FloatParticle::operato 
0.52 ListIter::ListIter[in- 
2.07 Queue::getHead() 
1.04 Queue::putTail(void*) 
0.52 PortHole::receiveData( 
0.52 PortHole::sendData() 
3.12 SimControl::haltStatus 
2.08 SimControl::getPollFla 
1.04 SimControl::haltReques
0.52 Queue::putHead(void*) 
1.04 Plasma::put(Particle*) 

43.72   
 
 

Table 46 SPOT runtime and events per second for no co-simulation in ModelSim 

 
 

No Co-Sim  

  ModelSim 

Runtime 2.146 
Events per Sec 88.524 
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APPENDIX G – FIBER IMAGE GUIDE (FIG) RESULTS 
 
 
 
 

Table 47 FIG lock-step data 

 
 
Lock-
Step:        
        

Sync Wall-Clock      Chatoyant - Received    Chatoyant - Transmitted 

Resolution Runtime Events Nulls Total Events Nulls Total 

1ps 130.674 677 2999661 3000338 4363 2995638 3000001
1ns 30.586 677 2961 3638 4363 2938 7301 

Sync          ModelSim -Received     ModelSim - Transmitted 

Resolution   Events Nulls Total Events Nulls Total 

1ps   4363 2995638 3000001 677 2999661 3000338
1ns   4363 2938 7301 677 2961 3638 

 
 

Table 48 FIG lock-step events per second 

 
 

Sync Events per 

Resolution Second 

1ps - LS 38.569 
1ns -LS 164.781 
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Table 49 FIG 1ps lock-step code profile 

 
 

1ps:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 31.20% SyncInterface() 89.00% 

write_fifo() 3.21% write_fifo() 1.00% 

read_fifo() 3.80% read_fifo() 1.00% 

conv_to_volt() 0.11% conv_to_string() 1.00% 

conv_to_logic() 0.23% conv_to_enum() 0.00% 

other 61.45% other 8.00% 

Total 100.00% Total 100.00% 
 
 

Table 50 FIG 1ns lock-step code profile 

 
 

1ns:    

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 13.86% SyncInterface() 76.00% 

write_fifo() 1.00% write_fifo() 1.00% 

read_fifo() 1.00% read_fifo() 1.00% 

conv_to_volt() 1.00% conv_to_string() 1.00% 

conv_to_logic() 1.00% conv_to_enum() 0.00% 

other 82.14% other 21.00% 

Total 100.00% Total 100.00% 
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Table 51 FIG dynamic co-simulation results 

 
 

Dynamic       
       

Wall-Clock      Chatoyant - Received      Chatoyant - Transmitted 

Runtime Events Nulls Total Events Nulls Total 

17.357 677 126523 127200 4359 122796 127155 
         ModelSim -Received      ModelSim - Transmitted 

  Events Nulls Total Events Nulls Total 

  4359 122796 127155 677 126523 127200 
 
 

Table 52 FIG dynamic co-simulation events per second 

 
 

Events per 

Second 

290.142 
 
 

Table 53 FIG dynamic co-simulation code profile 

 
 

Chatoyant 
% of 
Time ModelSim 

% of 
Time 

go() 15.00% SyncInterface() 55.00% 

write_fifo() 0.61% write_fifo() 6.00% 
read_fifo() 0.30% read_fifo() 5.00% 

conv_to_volt() 0.01% conv_to_string() 1.00% 

conv_to_logic() 0.30% conv_to_enum() 1.00% 

event processing 27.26%     
other processing 56.52% other processing 32.00% 

Total 100.00% Total 100.00% 
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Table 54 FIG event processing profile for Chatoyant running the dynamic co-simulation 

Chatoyant Runtime Overhead - Event Processing 
Functions: 
  
% of 
Overhead Function Name 

6.06 ListIter::next() 
4.24 FloatParticle::operator double() const 
2.12 SimControl::getPollFlag()e) 
1.21 _GLOBAL__D__ZN8Envelope12dummyMessageE 
1.21 SimControl::flagValues() 
1.21 SimControl::doPreActions(Star*) 
1.21 SimControl::haltRequested() 
1.06 Plasma::put(Particle*) 
0.91 SimControl::doPostActions(Star*) 
0.76 FloatParticle::die() 
0.76 FloatParticle::operator<<(double) 
0.61 SimControl::haltStatus() 
0.61 SimControl::setPollFlag() 
0.61 Queue::putTail(void*) 
0.61 ListIter::operator++(int) 
0.61 GenericPort::isItOutput() const 
0.61 GenericPort::isItInput() const 
0.45 FloatParticle::operator<<(int) 

0.3 KnownBlock::findEntry(char const*, char const*) 
0.3 ParticleStack::put(Particle*) 
0.3 Queue::getHead() 
0.3 Queue::putHead(void*) 
0.3 ListIter::ListIter[in-charge](SequentialList const&) 

0.15 FloatParticle::initialize() 
0.15 FloatParticle::operator=(Particle const&) 
0.15 Plasma::get() 
0.15 Envelope::Envelope[not-in-charge](Message&) 
0.15 PortHole::receiveData() 
0.15 PortHole::sendData() 

27.26  
 
 

Table 55 FIG runtime and events per second for no co-simulation in Chatoyant 

 
 

No Co-Sim  

  Chatoyant 

Runtime 13.023 
Events per Sec 386.712 
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