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The IEEE 1451 standards define sets of common communication interfaces to standardize the 

connectivity of transducers to microprocessor, instrumentation systems, and networks. This is 

done by defining different standards that address the various aspects of the development of smart 

networked transducers. There are seven standards that have been defined so far for the set of 

standard. The IEEE P1451.0 standard was recently proposed to provide a common set of 

functions and communication protocols to facilitate interoperability between standards as well as 

the creation of new standards. The IEEE 1451.1 standard defines a common control network 

information object model for connecting transducers to Network Capable Application Processors 

(NCAP). The IEEE 1451.2 defines a Smart Transducer Interface Module (STIM) and a 

Transducer Electronics Data Sheet (TEDS) for connecting to transducers and NCAPs. The IEEE 

1451.3 defines a Transducer Interface Bus Module (TBIM) that is used for transducers that are 

physically separated but still need to make the connection to the same NCAP. The IEEE P1451.4 

will define a mixed-mode transducer interface module. The IEEE P1451.5 will define a protocol 

for wireless smart sensors. The IEEE P1451.6 recently proposed a standard that will use 

Consolidated Auto Network (CAN) as the communication medium between the NCAP and the 

transducers. 
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Past solutions have concentrated on the implementation of the NCAP and STIM of the 1451.1 

and 1451.2 standards. These solutions range from hardware implementations, software 

implementations, and a combination of hardware and software. However, none of the solutions 

that have been reported have taken advantage of eliminating inter-chip communications. Our 

solution eliminates this, and establishes a faster (80 MHz as opposed to the 6000 bits/s that is 

specified in the 1451.2 standard) and more efficient parallel connection between the NCAP and 

TIM.  

This is implemented using a combination of hardware and software by means of Altera’s 

Excalibur chip. This chip is used because of its ideal structure since it provides a low power 

embedded processor and a Field Programmable Gate Array (FPGA). Doing this will provide a 

cost and performance advantage over the separate implementations of the NCAP and TIM, chips 

or PCBs, assumed by the IEEE 1451 standards. 
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1.0 INTRODUCTION 

 
 
 
 

Transducers, defined as devices that convert energy from one domain into another (either sensors 

or actuators), are frequently used in the manufacturing, industrial control, automotive, aerospace, 

building, and biomedical industries among others. Because of the diversity of the transducer 

market, manufacturers are always looking for ways to build low-cost, networked smart 

transducers. The Institute of Electrical and Electronics Engineers (IEEE) in conjunction with the 

National Institute of Standards and Technology (NIST) addressed this issue by creating a family 

of standards to aid in the design and development of smart networked transducers.  

The ultimate goal of the standards is to achieve transducers to network interchangeability 

and transducer to networks interoperability. This is done by defining a set of common 

communication interfaces for connecting transducers to microprocessors, instruments and field 

networks. 

This thesis concentrates on the design and implementation of a single chip solution of the 

approved IEEE 1451 standards, in which inter-chip communications are eliminated yielding a 

speed improvement over the implemented solutions to date.  
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1.1 IEEE 1451 OVERVIEW 

 

The standards were first proposed in September 1993, when NIST and the IEEE's Technical 

Committee on Sensor Technology of the Instrumentation and Measurement Society co-

sponsored a meeting to discuss smart sensor communication interfaces and the possibility of 

creating a standard interface. The response was to establish a common communication interface 

for smart transducers. Since then, a series of workshops has been held and seven technical 

working groups have been formed to address different aspects of the interface standard. 

This family of standards is designed to work in concert with each other to ease the 

connectivity of sensors and actuators into a device or field network. The overall structure for the 

standards is shown in Figure 1-1. 

 

Figure 1-1 IEEE 1451 Structure Overview 
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From the figure, it is easy to see that transducers are interfaced to a Transducer Interface 

Module (TIM) that is denoted smart because it provides functions like self-identification. The 

TIM is controlled by a Network Capable Application Processor (NCAP) in a network-

independent environment. Depending on the standard, single or multiple TIMs can be connected 

to a single NCAP. 

Each TIM defines a Transducer Electronic Data Sheet (TEDS) and a communication 

interface (analog, digital or wireless) for connection with an NCAP. The TEDS allows for self 

identifying transducers, thus enabling “plug and play”. The communication interface allows the 

NCAP to access and control the TIM. 

The most important achievement of the standards is the idea of “plug and play” smart 

networked transducers which happens at both the TIM and NCAP level. As it has been 

mentioned before the TEDS enables “plug and play” for the TIM. The object model defined for 

the NCAP also gives this advantage by defining an Application Programming Interface (API) for 

NCAP to Transducer and NCAP to Network communications. These APIs allow for a common 

network-independent application model that maps to any transducer network protocol 

establishing interoperability between transducers and existing control network. 

The following sub-sections of this Chapter go into detail about the different standards and 

their current status. 
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1.1.1 IEEE P1451.0 

 

This standard (1)* will provide a common set of functions, communications protocols, and TEDS 

formats that facilitate interoperability among the family of standards. It will also simplify the 

creation of future standards for different physical interfaces while maintaining interoperability 

among the family members. This standard is in the early stages of development. 

 

1.1.2 IEEE 1451.1 

 

This standard defines an interface for connecting NCAPs to control networks through the 

development of a common control network information object model for smart sensors and 

actuators (2). The purpose of the standard is to provide a network-neutral application model that 

will simplify the interface of smart sensors and actuators to a network. This way, at the 

application level, the physical connections become transparent to the user. 

The NCAP is defined by hardware and software blocks. The software blocks are defined 

by APIs that hide the communication details to a particular network or transducer 

communication interface. The hardware blocks are composed of the IO and network hardware 

needed for the various TIMs and networks respectively. 

The NCAP is divided into three layers (Network, Application, and Transducer). The 

Network and Transducer layers handle the communication and interface to both the network and 

the various TIMs implemented in the system.  

An information model describes the objects in the standard. This model is defined by a 

software architecture that includes an Object model (for the software components of IEEE1451.1 
                                                 
* Parenthetical references placed superior to the line of text refer to the bibliography. 
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systems), a data model (for the information communicated across the specified object interfaces), 

and two network communication models (Client-Server, and Publish/Subscribe methods).  

 

1.1.3 IEEE 1451.2 

 

This was the first published standard (3) in the family. However, it has not been widely accepted 

in industry because of discontent with the digital communication interface and the complex 

software features for its interface with an NCAP. 

This standard defines a STIM, TEDS, and Transducer Independent Interface (TII) for 

NCAP communication. Each Transducer is denoted in the STIM as a channel, and there can be 

up to 255 channels within one STIM. Individual channels and the STIM as a whole can be 

accessed by the NCAP. The different transducers that are interfaced to the STIM are triggered 

(sampled or set) by a command that is sent from the NCAP to the STIM. The STIM decodes this 

information and then sends the results back to the NCAP. 

The TII is a ten wire serial connection for NCAP/STIM communication and has been 

widely criticized by industry because of its complexity, so as part of this standard’s revision; the 

TII may be eliminated in favor of a RS-232 serial connection. Figure 1-2 shows the structure of 

the STIM. 

The TEDS supports a variety of transducers and is accessed by the digital interface (TII). 

The TEDS can be written by the NCAP or it can also be set at manufacture time. It resides in 

non-volatile memory, and contains fields that describe the type, attributes, operation, and 

calibration of the transducers. The TEDS is the core of the standard since it provides a method 

for self-identifying transducers. 
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Figure 1-2 STIM Definition (3)

 

1.1.4 IEEE 1451.3 

 

This standard (4) introduces the concept of a Transducer Bus Interface Module (TBIM) and a 

Transducer Bus Controller (TBC) connected by a Transducer Bus. A TBIM contains the bus 

interface, TEDS, and the interface to the transducers. The TBC is the hardware and software in 

the NCAP or host processor that provides the interface to the Transducer Bus. The Transducer 

Bus provides a communications path between an NCAP or host processor and one or more 

TBIMs.  

This standard was created for transducers that are physically separated but still need to 

connect to a single NCAP (something that is not supported in the IEEE 1451.2). The different 

communication between the various TBIMs and single NCAP is synchronized by a sync signal 

that is handled by the TBC. Figure 1-3 shows the structure of the standard. 
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Figure 1-3 TBIM Overall Structure (4)

 

1.1.5 IEEE P1451.4 

 

This standard (5) will define a mixed-mode transducer interface able to work both in analog 

signal transmission mode and in digital communication mode, but not simultaneously. An IEEE 

P1451.4 transducer contains a Mixed-Mode Interface (MMI) and a TEDS. The MMI is a two-

wire, master-slave, multi-drop, serial connection. The TEDS resides in one or more memory 

nodes on the MMI. Its main objective is to make a bridge between legacy transducers and the 

networked smart transducers. This standard is in the balloting stage at the moment and could be 

approved by the end of 2004. 

 

1.1.6 IEEE P1451.5 

 

This standard (6) will define an interface for wireless communications and data formats for 

transducers, and a TEDS based on the IEEE 1451 concept, and protocols to access TEDS and 

transducer data. 
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The proposed standard will include multiple MAC/PHY combinations so it will be easy 

to implement any type of wireless network as a NCAP-TIM interface. Different physical layers 

are being analyzed for the implementation of the standard. Among the physical layers being 

considered are the IEEE 802.11 (WiFi), the IEEE 802.15.1 (Bluetooth), the IEEE 802.15.4 (LR-

PAN, lower power, lower rate, lower cost), and other proprietary layers. This standard is in the 

stages of development. 

 

1.1.7 IEEE P1451.6 

 

This project (7) establishes a CANopen-based network for multi-channel transducer modules. The 

standard defines the mapping of IEEE 1451 Transducer Electronic Data Sheet (TEDS) to the 

CANopen dictionary entries as well as communication messages, process data, configuration 

parameters, and diagnosis information. It adopts the CANopen device profile for measuring 

devices and closed-loop controllers. This project defines an intrinsically safe (IS) CAN physical 

layer. 

The targets of the standard are sensor bus and transducer network users across various 

industries. In particular, the instrumentation and measurement, and process control industry. 

CANopen network will be able to use IEEE 1451 transducers and have the benefit of the TEDS. 

Only a proposal has been submitted for this standard. 
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2.0 STATEMENT OF PROBLEM 

 
 
 
 

The various solutions that have been designed and implemented based on the 1451 standards 

address different areas in the development and understanding of this family. However, none of 

the implementations has taken advantage of a single chip solution by eliminating inter-chip 

communications. This inter-chip communication can be eliminated because there is no physical 

separation between the NCAP and TIM, and a high-speed connection between the modules can 

be established. This issue is addressed in this thesis by designing the NCAP/TIM combination 

using Altera’s Excalibur chip. 

 
 
 
 

2.1 BACKGROUND 

 

Most of the implementations that have been documented on the standards have been on the 

implementation of a STIM (1451.2) and NCAP (1451.1) since they were the first standards to be 

approved. In this section we will review reported implementations on the IEEE 1451 family. 

Analog Devices (8) designed a microcontroller (ADuC812 (9) ) chip specifically to meet 

the IEEE 1451.2 standard requirements. This chip integrates the data converters (for transducer 

interfacing), EEPROM (for the TEDS), and an 8-bit microcontroller for the STIM’s functionality 

(10).  
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The first implementation that we will review is from Dr. Paul Conway and his research 

group from the University of Limerick, Ireland. This research group designed and implemented 

an IEEE 1451.2 STIM using Analog Device’s ADuC812 microconverter (11). The motivation for 

the solution was to exploit the on-chip resources provided by the ADuC812. In order to do this, 

software was developed to map the STIM’s functionality to the microconverter. On-chip data 

converters and flash/EE memory were used for transducer interfacing and TEDS (only 

mandatory blocks were implemented) respectively. The software-architecture was designed to 

meet all the mandatory specifications of the standard. The entire implementation for a two-

channel STIM consumed 5,534 bytes of program memory, 178 bytes of RAM memory and 268 

bytes of flash/EE data memory. This solution found that a STIM implementation using the 

ADuC812 is useful only when implementing a small system, because of limitations of on-chip 

resources, such as the 640 bytes of flash memory which is too small to hold an entire set of 

TEDS, if mandatory (Meta and Channel TEDS) and optional (Calibration information) TEDS 

blocks are to be included in a system with more than one transducer. 

Another solution that has been implemented is a proof-of concept IEEE 1451.1 design in 

VHDL connecting to a Bluetooth wireless network (12). This research group, from Ohio State 

University, developed a network infrastructure (defined by a software model) that enables smart 

transducer communication through Bluetooth using the OBEX Session protocol. This protocol is 

specific to Bluetooth and is used for wireless object exchange. This network infrastructure acted 

as a bridge between the 1451.1 data types and operations to the network-specific OBEX format 

on both the client and server sides. This was implemented and simulated using behavioral 

VHDL. This experiment relied completely on simulations. Future work for this project will 

include a synthesizable version of the hardware representation that can be mapped to an 
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Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA). This 

type of solution is helpful for future versions of smart transducers that have the capability of 

hosting a Java Virtual Machine (JVM), in which the VDHL design may be translated to a high-

level description.  

Next, we discuss a full hardware implementation of a 1451.2 STIM (13), which was 

developed in the Nuclear Physics Institute of Lyon in France. In this project, a STIM was 

designed in VHDL and synthesized onto an Altera APEX20K FPGA. The transducers and the 

NCAP were interfaced directly to the FPGA. The NCAP/STIM communication was done via the 

TII. This solution allowed the concept of Ethernet Capable Front-end Module (frequently used 

for slow control-type sensors) to include the data-acquisition requirements of a high-energy 

physics experiment. This solution achieved data rates close to 1Mbps on the Ethernet port. 

An interesting solution involved the development of a STIM and NCAP (connecting 

through the TII) for a CAN network (14). Here, the University of Barcelona research group 

designed a two channel STIM based on a microcontroller that includes a multiplexed eight 

channel A/D converter, and an I2C bus interface. The TEDS was implemented using a serial 

EEPROM that interfaced directly to the microprocessor. They also developed a software tool for 

the generation of a TEDS storing it in the serial EEPROM. The 1451.1 information model was 

also designed and adapted to work in a CAN network environment. This solution was the first 

one to modify/generate the TEDS in situ via a software tool that was built. 

The implementation of STIMs in industry has been slow due to discontent with the 

communication protocol (TII), which is believed to be overly complicated. Dr. Darold 

Wobschall from the State University of New York at Buffalo addressed this issue by exploring 

different connections between a STIM and an NCAP (15). The different communication protocols 
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that were implemented were RS232, RS485, TII, Microlan/1-wire, IEEE 1451.4, Esbus, and I2C. 

Users can select any one of the protocols for the NCAP/STIM communication. There were no 

comparisons on how each communication protocol performed. This was because the objective of 

the project was to design a device that would give users a broader range of selection in the 

communication interface to smart transducers. 

One of the most interesting solutions implemented presented a System on a Chip solution 

for the STIM. This solution was developed by Dr. Angel de Castro and his research group at the 

University of Madrid, Spain. The STIM and NCAP were completely described in hardware 

(Xilinx Virtex XCV800 FPGA) using VHDL (16,17). This design is unique in that a 

microcontroller was not used for the STIM’s functionality. This provides a speedup advantage 

(hardware ran at 45 MHz) over the usual software solutions. Future work in this group consists 

of an ASIC solution, in which the data converters and Micro Electro-Machine Systems (MEMS) 

sensors can be integrated in the SOC design. To date, there has been no documentation on the 

success or completion of that work.  

This last solution is close to what we are trying to accomplish in this thesis, since they 

designed the NCAP and TIM in a single chip and targeted it for an ASIC solution. However, 

they did not eliminate inter-chip communications and the information model was not built for the 

1451.1 NCAP, both of which are key elements in the design that is presented here. 
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2.2 MOTIVATION AND THE PROBLEM  

 

A single chip solution would provide a cost and performance advantage over the separate 

implementations of the NCAP and Transducer Interface Module (TIM), chips or PCBs, assumed 

by the IEEE 1451 standards. Advances in integrated circuit technology have allowed systems 

with the complexity of both devices to possibly be implemented on a single chip. In this way 

inter-chip communications can be eliminated, increasing the speed of the TIM/NCAP connection 

paving the way for faster and more efficient instrumentation and control systems. This was the 

motivation for the effort to develop a 1451 compatible single chip implementation of a combined 

NCAP and TIM. 

The goal of this thesis is to design and implement an IEEE 1451 single chip solution 

using Altera’s Excalibur chip. The TIM will have the functionality of a smart transducer as is 

stated in the standards. The information model for the NCAP will be designed using the 

functionality described in the IEEE 1451.1 standard.  

The most important aspect of the problem will be the elimination of inter-chip 

communication since it is a solution that has not been explored. In achieving this solution, we 

will provide academia and industry with a more efficient (performance-wise) connection 

between the NCAP and TIM. This implementation will also give another option and better 

understanding on the family of standards. Next, we will give an overview of the Excalibur 

system and what it provides. 
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2.3 EXCALIBUR SYSTEM 

 

The Excalibur chip (18) is composed of a Reduced Instruction Set Computer (RISC) processor 

(ARM 922T) with programmable logic on a single device. The processor communicates to its 

peripherals by means of an Advanced Microcontroller Bus Architecture (AMBA) high-

performance bus (AHB). The chip’s architecture provides a variety of on-chip peripherals such 

as an interrupt controller, programmable logic device (PLD), etc. Figure 2-1 shows the chip’s 

architecture. 

 
Figure 2-1 Excalibur System Architecture 

 
The bus architecture used by the Excalibur family conforms to specifications of the 

AMBA bus (19). Two AMBA-compliant AHBs ensure that the embedded processor activity is 

unaffected by peripheral and memory operation. Three bidirectional AHB-to-AHB bridges 

enable embedded peripherals and PLD-implemented peripherals to exchange data with the 

embedded processor or with other peripherals. The bidirectional bridges handle the 
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resynchronization across the domains and are capable of supporting 32-bit data accesses to the 

entire 4-Gbyte address range (32-bit address bus). 

The only bus master on AHB1 is the ARM processor. Processor-specific slaves such as 

the interrupt controller are local to the AHB1. Memory resources such as the on-chip SRAM are 

also local to the AHB1, allowing for fast access to the memory by the embedded processor. 

Any transaction that after decoding is not intended for AHB1 is then routed to the AHB1-

2 bridge. This bridge is a slave on AHB1, giving the embedded processor access to AHB2. There 

are three bus masters on AHB2 (ARM processor, Configuration logic, and PLD). Note that the 

PLD can be configured as either a master or a slave on AHB2. A priority arbitration scheme is 

used to grant access to masters on the AHB2 bus. 

The ARM embedded processor supports both the 32-bit ARM and 16-bit Thumb 

instruction sets. It consists of a Harvard architecture, implemented using a five-stage pipeline. It 

allows for single clock-cycle instruction operation through simultaneous fetch, decode, execute, 

memory, and write stages (20). 

2.3.1 Peripherals 

The embedded stripe contains a variety of peripherals that can be configured in different ways 

depending on the application. These peripherals include: Configuration Registers, Embedded 

Stripe Phase-Locked Loops (PLLs), Universal Asynchronous Receiver Transmitter (UART), 

Timer, Watchdog timer, General Purpose I/O Port, Interrupt Controller, PLD, and an External 

Bus Interface (EBI).  

The interrupt controller provides a simple, but flexible, software interface to the interrupt 

system. It can be configured to handle up to 64 individual interrupts. Designers can also build 

their own interrupt controller in case more interrupts need to be handled. 
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The programmable logic device that is provided comes in various sizes depending on 

different versions of the chip. The device can be configured to implement any custom hardware 

logic. 

The EBI is a 16-bit bidirectional memory interface that provides a bridge between 

external devices (flash memory, or memory mapped devices) and the AHB2 bus. The EBI 

supports up to four blocks of up to 32 Mbytes of external memory or memory mapped devices of 

different configurations. 

The rest of the thesis is structured as follows. Chapter 3 defines the functional and non-

functional requirements of the system in order to remain IEEE 1451 compliant. Chapter 4 entails 

the specifications derived from the requirements section. Chapter 5 consists of the design 

decisions made from the different discussions of requirements and specifications. Chapter 6 

includes the implementation along with the results of the tests. Lastly, Chapter 7 discusses the 

conclusions and future work that can be done regarding the problem. 
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3.0 REQUIREMENTS 

 
 
 
 

In order to design an IEEE 1451 compliant system, a variety of requirements must be met. These 

requirements can be divided into three sub-sections, system Requirements, for the application-

specific behavior and object interaction, NCAP requirements, for the top-level functionality and 

structure of a 1451.1 NCAP, and TIM requirements, for the top-level functionality and structure 

of an IEEE 1451 compliant TIM.  

The common design requirement among the system’s objects is that they shall be 

designed in a network and transducer independent environment. The design shall focus on the 

IEEE 1451.1 standard for the NCAP’s functionality, and the 1451.2 and 1451.3 standards for the 

functionality of the TIM. Note that during this chapter we will use the word “shall” to denote a 

requirement. This is done to use the same wording as in the IEEE 1451 standards.  

 
 
 
 

3.1 SYSTEM REQUIREMENTS 

 

The system requirements are both functional and non-functional. The standards do not specify 

non-functional requirements because they are implementation and application specific, as it only 

specifies the functionality and not how it is to be implemented. Since one of the main goals of 

this project is to eliminate inter-chip communications, the results should obtain higher speeds for 
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the NCAP/TIM communication. This implementation shall have the non-functional requirement 

of achieving higher data rates than the 6000 bits/s maximum rate of the TII defined for the 

1451.2 STIM (3). 

The functional requirements encompass the system’s behavior as stated by the IEEE 1451 

family. The main requirement is that the design shall be network and transducer independent. 

This means, that at the application level, the physical connections in the system become 

transparent to the users.  

This network and transducer independency is achieved by different blocks that are 

defined in the standard. These blocks shall be designed and implemented as is shown in Figure 

3-1. 

 

Figure 3-1 Design Reference Structure 

 
The Network Hardware, Network Library and IO Hardware objects (shown in Figure 

3-1) are defined in the standard as implementation-specific, so their functionality is not specified 

by the standard as it depends on the application. However, these blocks shall interface with the 

APIs that are shown in the figure and meet the electrical specifications of the underlying network 
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and the Excalibur chip. The remaining blocks (1451.1 API, Application API, IO API, Control, 

TEDS, and Registers) that are shown within the single chip annotation in Figure 3-1 are 

completely described in the standard and shall be designed following its specifications. The 

transducers and the network are application specific and they are not defined by the standard and 

they cannot be implemented within the FPGA. However, they too shall meet the electrical 

specifications of the Excalibur chip.  

The design shall prove its compliance with the standard by showing interactions between 

a network, NCAP and TIM. These interactions shall make use of the objects and formats 

described in the standards. 

 
 
 
 

3.2 NETWORK CAPABLE APPLICATION PROCESSOR 

 

The Network Capable Application Processor (NCAP) consists of hardware and software blocks 

that shall be implemented in order to remain compliant with the IEEE 1451.1 standard. An 

information model is defined for the NCAP. This information model consists of a data model 

(for the datatypes), an object model (for the classes), and two communication models (used for 

network communications. The complete information model shall be implemented. In order to do 

this, we shall use Figure 3-2 as a reference for the NCAP design. 

Note that the NCAP is divided into three layers, network, application, and transducer. For 

the network layer, the hardware shall consist of the network-specific logic that is needed for the 

underlying network. Also, the software for this layer shall consist of the network library 

(network-specific), and the 1451.1 API (standard-defined). 
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Figure 3-2 IEEE 1451.1 NCAP 

 
The application layer shall only consist of software blocks. These blocks shall consist of 

the standard-defined blocks for the application, as well as application-specific code. For the 

transducer layer, the hardware shall consist of the specific hardware needed to communicate with 

the TIM. The software shall consist of the T-Block API. 

The hardware blocks that have been defined for the NCAP shall be designed to meet the 

electrical and timing specifications of the underlying network as well as those of the Excalibur 

chip. On the other hand, the software blocks shall be designed using the objects and formats 

defined in the 1451.1 standard. It is important to note, that for the software some blocks are 

standard-defined while others are implementation-specific. However, these objects shall 

communicate with each other using the object orientation of the 1451.1 standard. The following 

discussion gives background information on the objects of an IEEE 1451.1 NCAP. 

The objects defined by the information model are at the core of the standard, because 

they allow for a common interface that is network and transducer independent. The common 

control network information object model defines three major blocks for the standard’s API. 
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These blocks include an NCAP Block that consists of a standard software interface for 

supporting network communications and system configuration (key source for network 

communications and system configuration), Transducer Blocks for the interface between 

transducers and application functions, and Function Blocks which encapsulate application-

specific functionality.  

The three major blocks shall work together to communicate with the “physical world” 

consisting of the networks and transducers. For network communications, these objects can be 

either network visible or independent. Network visible means that the object can be directly 

accessed by a network, while independent means that the blocks may only be accessed by other 

objects within that local NCAP. For an object to become network visible it shall be registered 

with its local NCAP block. If they are not registered then they shall not be accessed directly by 

the network but rather by the NCAP application. 

 

3.2.1 Application Layer 

 

The application-specific behavior of the NCAP shall be defined within this layer. The 

application’s behavior shall not be affected by the different physical connections that can be 

made between the NCAP/network and NCAP/TIM, which is achieved by means of the 1451.1 

API and the IO T-Block API previously shown in Figure 3-2.  

The application layer shall also act as a bridge between the network operations and the 

transducer operations. It shall have application-specific code that is pertinent to the particular 

control or monitoring system that is implemented. 
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3.2.2 Network Layer 

 

The network layer has hardware and software blocks that handle the communications with the 

underlying network. The hardware consists of the logic blocks needed for the network 

communication protocol. The requirement for the hardware is that it meets the electrical and 

logical specifications of the underlying network as well as those of the Excalibur chip. The 

software blocks consist of the network library which is network-specific and the 1451.1 API 

defined by the NCAP Block of the standard’s object model. 

The network library consists of the “driver” that shall be responsible for encoding and 

decoding data to/from the on-the-wire format of the underlying network. The 1451.1 API shall 

provide the network independency of the design, since it shall hide the communication details of 

the network driver.  

The term IEEE 1451.1 Network Communication is defined by the standard as the 

communication between two objects in distinct process spaces either within a single NCAP or 

over the network between the two NCAPs.  

Therefore, to prove that the system supports network communications either of the 

communications stated before shall be executed. Those communications shall be made using the 

two communication models that are defined in the standard (client-server and/or publish-

subscribe).  

 

3.2.3 Transducer Layer 

 

The transducer layer contains both hardware and software blocks that handle the transducer-side 

communications of the NCAP. The hardware block shall be responsible for the physical 

22 



 

connection between the NCAP and TIM. This block shall meet the electrical and timing 

specifications of the Excalibur chip. 

The software shall be responsible for interactions with any transducer that is physically 

connected to the NCAP. This shall be done through the IO T-Block API defined in the standard 

by the Transducer Block class. Therefore, this block shall be responsible for decoding and 

encoding information that is sent and received by the NCAP/TIM communication. For example, 

if the application needs to send a trigger command to the TIM, it signals this to the API. The API 

then puts the command in the format of the NCAP/TIM communication protocol and sends it.  

All the commands that are supported by the TIM shall be represented within this layer. A 

common command that shall be represented in the transducer layer is the trigger command. This 

command allows the NCAP to read/set the transducers that are physically connected to the 

system. There are different steps that shall be followed when reading or setting an actuator. For 

example, the steps for reading a sensor are as follows: 

1. Select the channel of the sensor that will be used. 

2. Trigger the Sensor.  

3. Wait until the TIM indicated a reading is available (TIM ACK).  

4. Access the raw sensor reading.  

5. Convert raw sensor reading into SI units using the information stored in the 

TEDS. 

Similarly, the sequence for setting an actuator shall be the following: 

1. Select the actuator channel.  

2. Convert the SI units into a raw actuator setting from the information stored in the 

TEDS. 
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3. Write the raw actuator setting.  

4. Trigger the Actuator.  

5. Wait until the TIM indicates that the action is complete (TIM ACK).  

There shall also be the possibility of reading/setting all the transducers that are 

implemented in the system. The sequence for this operation (global trigger) is complicated and 

dependent upon the types of transducers that are in the application. For a system with sensors 

and actuators, it shall be the programmer’s responsibility to make sure that each actuator receives 

a different data set. 

 
 
 
 

3.3 TRANSDUCER INTERFACE MODULE 

 

The Transducer Interface Module (TIM) block contains a combination of hardware and software 

blocks that shall maintain the functionality of a smart transducer as is stated in the IEEE 1451 

family of standards. In order for the TIM to be deemed “smart”, it shall have the capability of 

self-identification, which is achieved by the TEDS. Other functionality that the TIM shall have 

includes the ability to communicate with an NCAP, handle triggering, generate interrupts, and 

interface with the physical transducers. 

The TIM shall be initialized (by the NCAP or by itself) after it is powered-on, and then 

shall enter the operational state until it is reset by the NCAP or is powered down. 
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3.3.1 Transducer Electronic Data Sheet 

 

The Transducer Electronic Data Sheet (TEDS) is at the core of the TIM’s functionality because it 

provides the idea of self-identifying transducers, which enables the idea of “plug and play”. This 

block may be generated either at manufacture time or remotely via an NCAP. 

The TEDS shall reside in non-volatile memory and completely describe the TIM (the 

entity and its transducers). There shall be a block labeled Meta-TEDS that describes the TIM in 

its entirety. There shall also be a block labeled Channel-TEDS that describes each implemented 

transducer. Other blocks that have information such as calibration are not mandatory and will not 

be implemented in this design. 

The information that shall be represented by the Meta-TEDS includes the amount of 

transducers that are implemented, the maximum and minimum sampling rate of the system, and a 

checksum for data integrity. 

The Channel-TEDS information shall include the type of transducer (actuator, sensor), 

the physical units of the transducer (e.g. Temperature in Celsius), the data model, timing 

information such as update time, write setup time, sampling period, etc. and a checksum for data 

integrity. 

 

3.3.2 NCAP Communication 

 

The TIM shall communicate with an NCAP using a protocol that will take advantage of the lack 

of physical separation between the two modules. The structure of this connection may resemble 

the STIM/NCAP connection from the 1451.2 standard since there may only be one TIM 

connected to an NCAP. Unlike what is allowed by the 1451.3 standard, in which multiple 
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Transducer Bus Interface Modules (TBIM) can connect to a single NCAP. This interface shall 

support the different commands that can be sent to the TIM, and shall also provide the capability 

of interrupts over the protocol as well as access to the different modules in the TIM. 

The set of mandatory commands that shall be fully implemented are Read TEDS, 

Read/Write Interrupt masks, Read Status, Trigger, and Read/Write Transducer Data. These 

commands shall be applied to either an individual implemented channel or to the TIM as a whole 

(CHANNEL_ZERO). 

 

3.3.3 Trigger 

 

The TIM shall handle both individual and global triggering. Figure 3-3 shows use-case diagrams 

depicting the behavior of the TIM when it receives either an individual or global trigger 

command.  

When an individual trigger is sent by the NCAP, the TIM shall decode the command to 

select the channel for which it is intended and set the appropriate signals to sample/set the 

transducer. Then, the TIM shall generate an acknowledge signal (TIM ACK) when the sensor is 

completely sampled (ADC finished conversion, etc) or the actuator has completely acquired a 

data set. The signal tells the NCAP that the command was executed and that there is information 

that it should read. 

When a global trigger occurs, the TIM shall sample/set all the transducers in the system. 

The requirement is that each individual channel generates an ACK signal when it executes the 

trigger command successfully. CHANNEL_ZERO shall generate the ACK signal when every 

channel in the system has been completely sampled/set.  
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Figure 3-3 TIM trigger behavior 

(a) Sensor Trigger, (b) Actuator Trigger, (c) Global Trigger 

 

3.3.4 Status and Interrupts 

 

The status of the TIM and its individual channels shall be represented in such a way that it is 

accessible by the NCAP. The status shall include information regarding the operation of the 

device. Table 3-1 summarizes the different status bits that shall be represented in the TIM. 

Table 3-1 TIM’s Status Bits 

TIM CHANNEL_ZERO Individual Channel 
CHANNEL_ZERO Trigger Acknowledged Channel Trigger Acknowledged 
Invalid Command Reserved 
TIM Operational Channel Operational 
Corrections enabled/disabled Corrections enabled/disabled 
 

The TIM Channel Trigger Acknowledged bit shall be set by the TIM when it 

acknowledges the trigger signal and shall be cleared when read. After global triggers, every 

channel trigger acknowledge bit shall be set by the TIM when it would have acknowledged each 

channel trigger if they were individually addressed. 
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The TIM trigger acknowledged bit shall be set by the TIM when every implemented 

channel acknowledges their respective triggers. 

The invalid command bit shall be set by the TIM when the NCAP sends a command that 

is not implemented in the TIM. It shall be cleared when read or if the condition goes away. 

The TIM operational bit shall be set by the TIM after the module is completely 

initialized.  

The channel operational bit shall be set by the TIM after the TIM and the particular 

channel have been completely initialized. 

The corrections enabled/disabled bit in both the CHANNEL_ZERO and Individual 

Channel definition shall be set if the TIM has the capability apply corrections to the transducer 

data. 

The TIM shall generate interrupts by a combination of the status and interrupt mask bits. 

The status and interrupt bits shall be compared on a one to one (bit by bit) basis to determine if 

an interrupt exists. 

The default setting for the interrupt mask shall be all ones (every status bit can generate 

an interrupt). It shall be the responsibility of the NCAP to service the interrupt as well as 

setting/clearing the interrupt mask. 

 
 
 
 

3.4 PHYSICAL WORLD 

 

The transducers are not defined in the standard giving the designer the freedom to decide what is 

best for the particular application that will be built. For transducers, it is usually the case that 
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they are implemented off-chip and interface to the TIM by means of an Analog to Digital 

Converter (ADC), Digital to Analog Converter (DAC) or digital IO. For this implementation, 

transducers and their respective data converters will be implemented off chip. These off-chip 

blocks shall meet the electrical specifications of the Excalibur chip and they shall also comply 

with the particular timing specifications of the data converters and/or digital IO. 
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4.0 SPECIFICATIONS 

 
 
 
 

The specifications for this IEEE 1451 implementation are independent of the network employed 

and the transducers that are interfaced to the application system. The NCAP’s behavior is 

completely described using the specifications of the IEEE 1451.1 standard, while the TIM will 

have the functionality that a smart transducer is required to have as is stated by the standards. 

 
 
 
 

4.1 NETWORK CAPABLE APPLICATION PROCESSOR 

 

The information model of the IEEE 1451.1 standard defines three different models for the NCAP 

that enable network and transducer independency. These models include, an object model; this 

model defines transducer device specific abstract objects – or, classes with attributes, methods, 

and state behavior. A data model; this model defines information encoding rules for transmitting 

information across both local and remote object interfaces. A network communication model; 

this model supports a client/server and publish/subscribe for communicating information 

between NCAPs. 

Therefore, by designing and implementing the different objects that are defined in the 

information model that is defined in the standard, we will achieve network and transducer 

independency. This is because the standard-defined objects hide the communication details of 
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the NCAP with a particular network and transducers, making the application’s behavior 

transparent to the physical connections of the NCAP.  

In order to implement the information model, there are different properties among the 

NCAP’s objects that need to be taken into consideration. These properties include a class 

hierarchy and an owning relationship that can be described using Unified Modeling Language 

(UML) (21). These properties are shown in Figure 4-1. 

IEEE 1451_Root
<<Abstract Class>>

IEEE1451_Entity
<<Abstract Class>>

IEEE1451_Block
<<Abstract Class>>

IEEE1451_NCAP Block IEEE1451_FunctionBlock
<<Abstract Class>>

IEEE1451_Component
<<Abstract Class>>

IEEE1451_BaseTransducer Block
<<Abstract Class>>

IEEE1451_Service
<<Abstract Class>>

IEEE1451_MutexServiceIEEE1451_ConditionVariableService

IEEE1451_BasePort
<<Abstract Class>>

IEEE1451_SubscriberPort

IEEE1451_BasePublisherPort
<<Abstract Class>>IEEE1451_BaseClientPort

IEEE1451_ClientPort

IEEE1451_AsynchronousClientPort

IEEE1451_SelfIdentifyingPublisherPort

IEEE1451_EventGeneratorPublisherPort

IEEE1451_PublisherPort

IEEE1451_TransducerBlock
<<Abstract Class>>

IEEE1451_Dot2TransducerBlock

IEEE1451_PhysicalParameter
<<Abstract Class>>

IEEE1451_ScalarParameter

IEEE1451_ScalarSeriesParameter IEEE1451_VectorSeriesParameter

IEEE1451_VectorParameter

IEEE1451_TimeParameter IEEE1451_ParameterWithUpdate

IEEE1451_Parameter

IEEE1451_ComponentGroup IEEE1451_Action IEEE1451_File

IEEE1451_PartitionedFile

 
Figure 4-1 UML Model of IEEE 1451.1 Objects 

 
The figure shows the inter-object relationships (inheritance and ownership) through the 

use of two types of arrows. The diamond-based arrows are used to denote the owning 
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relationship between the objects by pointing to the block that owns the other block. For example, 

the NCAP Block owns the Component block, the Function Block, and so forth. Note that only 

Block Objects can own other classes.  

The normal-shaped arrows denote the inheritance relationship between the child and the 

parent classes. For example, IEEE1451_Root class is the parent of IEEE1451_Entity who 

inherits all the functionality of its parent class.  

The next step is to define the classes shown in the figure. These classes will be 

implemented following the specifications of the 1451.1 standard. The different object classes that 

are defined in the standard can be further explained as follows: 

• The Root class is the origin for the class hierarchy of all objects that are defined in 

the standard.  

• The Entity abstract class is the root for the class hierarchy of all objects defined 

by this standard that may be made visible over the network.  

• The Block abstract class is the root for the class hierarchy of all Block objects. 

• The NCAP Block class provides resources and operations within an NCAP 

process to support Block, Service, and Component management. This support 

includes registration, deregistration, initialization and startup, and shutdown. 

• The Function Block class is the root for the class hierarchy of all Function Block 

objects. The Function Block is the primary mechanism for the abstraction and 

packaging of application functionality.  

• The Base Transducer Block class is the root for the class hierarchy of all 

Transducer Block objects. 
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• The Transducer Block class is the root for the class hierarchy of all Transducer 

Block objects in the family of transducers specified by IEEE 1451.X standards.  

• The Component abstract class is the root for the class hierarchy of all Component 

objects. 

• The Parameter class is used to model network visible variables and to provide a 

means for accessing them. 

• The Parameter With Update class is used to model network visible variables, and 

to provide a means for accessing the variable. This class has an associated 

mechanism that supports an update action involving the variable. 

• The Physical Parameter abstract class and its subclasses are used to represent 

network visible variables, modeled by the Parameter With Update class that 

directly or indirectly represent the physical world. The Physical Parameter 

provides the information necessary to interpret a measurement or actuation. 

• The Scalar Parameter class is used to model physical world quantities that do not 

have dimensions or orientations associated with them, and are appropriately 

represented as mathematical scalars. 

• The Scalar Series Parameter class is used to model physical world quantities, 

best modeled as a succession of scalars evenly distributed along some dimension. 

• The Vector Parameter class is used to model physical world quantities that have 

multiple dimensions and perhaps orientation associated with them, and is 

appropriately represented as mathematical vectors.  
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• The Vector Series Parameter class is used to model a uniform series of physical 

world quantities that have dimensions and orientation associated with them and is 

appropriately represented as mathematical vectors. 

• The Time Parameter class is used to represent time parametric values. The 

purpose of this class and its subclasses is to model network visible variables that 

directly or indirectly represent the time of some event, or the duration between 

two events, where the significant characteristic of the event is the time rather than 

some other value. 

• The Action class provides a model to represent activities that alter the system state 

and that require significant time to execute compared to other activities in the 

system. 

• The File class is an abstraction of a data resource. Files represent a block of 

memory, which may be opened, closed, read from, and written to. 

• The Partitioned File class is used for files that are subdivided into a number of 

partitions. 

• The Component Group class provides a way to specify set membership relations 

between objects in a system. 

• The Service abstract class shall be the root for the class hierarchy of all Service 

objects. The Service classes represent object types used to support communication 

and other aspects of block functionality. 

• The Base Port abstract class is the root for the class hierarchy of all 

communication port objects used to send communications via the underlying 

network. 
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• The Base Client Port abstract class is the root for the class hierarchy of all client-

server communication client-side port objects. 

• The Client Port class provides the client-side application interface to client-server 

communications. This class abstracts the details of the specific network. Two 

models of client-server communication are provided: blocking and “send and 

forget”. 

• The Asynchronous Client Port class provides the client-side functionality for an 

asynchronous, non-blocking, client-server communication model. 

• The Base Publisher Port provides basic publisher-side functionality for its 

subclasses. 

• The Publisher Port class provides publisher-side functionality for a publish-

subscribe communication model. 

• The Self Identifying Publisher Port class provides publisher-side functionality for 

a publish-subscribe communication model with operations to allow the subscriber 

to establish communication with the publisher, and the publisher to notify 

subscribers of changes in the publication policy. 

• The Event Generator Publisher Port class is used to allow events internal to the 

operation of a block to result in the publication of an event record. 

• The Subscriber Port class provides objects with a mechanism for subscribing to 

publications. 

• The Mutex Service class provides mutual exclusion capability. 

• The Condition Variable Service class provides the capability for ordering 

concurrent activities. 
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In order to identify the different objects previously mentioned, we will use the identifying 

properties that are defined in the standard. Therefore, we will identify the object by its Class ID, 

Class Name, Object ID, Object Tag, Object Name, and Object Dispatch Address.  

The Class ID identifies the object’s class, the position in the class hierarchy, and cannot 

be modified. 

The Class Name provides a human-readable description of the semantics of the class and 

it cannot be modified. 

The Object ID is unique within a system and it unambiguously distinguishes the object 

from any other object. 

The Object Tag is unique within a system and usually defines a logical endpoint for the 

server side of client-server communications. 

The Object Name provides a human-readable description of the semantics of an instance 

of a class and it will be bound when the object is created. 

The Object Dispatch Address is the network-specific address used by the underlying 

network infrastructure to address the object. For example, in an Ethernet network this value 

would be the IP address. 

The rest of this section goes into detail about the complete information model. This 

includes the data model (for the encoding rules for transmitting information across both local and 

remote object interfaces), a functional overview (high-level object interaction in the NCAP), and 

the top-level class definition (for the objects that hide the communication details of network and 

transducer communications). 
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4.1.1 Data Model 

 

The data model of the standard defines a variety of datatypes (primitive and derived) that will be 

used for the functionality of the object classes. The primitive datatypes will be mapped to the 

programming language that will be used. The definitions for these types are shown in Table 4-1. 

The derived datatypes will be derived from these primitive types. These types are used to 

represent structures. 

Table 4-1 Simple Primitive Types 

Datatype Default Value Definition 
Boolean FALSE TRUE or FALSE 
Integer8 0 8-bit signed integer 
UInteger8 0 8-bit unsigned integer 
Integer16 0 16-bit signed integer 
UInteger16 0 16-bit unsigned integer 
Integer32 0 32-bit signed integer 
UInteger32 0 32-bit unsigned integer 
Integer64 0 64-bit signed integer 
UInteger64 0 64-bit unsigned integer 
Float32 +0.0 IEEE Std 754-1985 single-precision floating point number 
Float64 +0.0 IEEE Std 754-1985 double-precision floating point number 
Octet All Bits set to 0 8-bit quantity not interpreted as a number 
 

Next, we describe the IEEE 1451 String datatype which is represented by a structure. 

This type contains four fields that are used to represent the character set, character code, 

language, and the string data. The first three mentioned fields are represented as 8-bit unsigned 

integers. These fields have an enumeration associated with them that is used to represent 

different languages, character sets, and character codes. The last field in the structure (string 

data) is represented as an octet array. The size of the array is set by the enumeration for the 

character code. Also, to interpret the string data there is an enumeration associated for each of 

the supported languages in the NCAP implementation. 
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An important derived datatype that will be used in communications with networks is the 

Argument datatype. This type is a container, which can hold any of the other 1451.1 types. All 

application data in a network communication will be carried in arrays of Argument, hence using 

the Argument Array datatype. 

 

4.1.1.1 Class Header Format and Return Codes 

 

The class header format will be used for all the object classes that were previously shown. The 

format of the header is shown in Table 4-2. 

Table 4-2 Class Header Format 

Format Description 
Class ID It is represented as an array of an Octet type (8-bit unsigned 

char), and is used to encode the position of the class in the 
class hierarchy. 

Class Description It is the formal name for the class interpreted as an IEEE 1451 
String.  

Parent Class Name It is the value of the class descriptor of the immediate parent 
class in the hierarchy from which this class is sub-classed. 

 
The different operations that are defined for the object classes have two return types, 

OpReturnCode and ClientServerReturnCode (used for client-server communications). 

The OpReturnCode is a 16 bits unsigned integer that is expressed as a sequence of two 

fields (minor and major) and is used as the return type for most IEEE 1451.1 operations. The 

minor field is the high order 8 bits while the major field is represented by the low-order 8 bits. 

For example, an OpReturnCode value 0x103 (HEX notation) would have a major field of 3 and a 

Minor field of 1. The combination of these fields is used to determine the result of the operation.  
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The ClientServerReturnCode is a 32 bit unsigned integer interpreted as a sequence of 

four fields (portCode, performCode, operationMinorCode, and operationMajorCode). The 

portCode is the return code for the client-side function and it is the high order 8 bits of the code. 

The performCode is the return code for the server-side operation. Lastly the minor and major 

codes are used to show the OpReturnCode of these operations. For example if the 

ClientServerReturnCode is 0x04020103 (HEX notation), the field values would be as follows: 

portCode = 4, performCode = 2, operationMinorCode = 1, and operationMajorCode = 3. 

 

4.1.2 Functional Overview and Top-level class definitions 

 

For the object interaction, the standard uses a “backplane” or “card cage” concept for the 

different objects that can be plugged to the NCAP, in a similar fashion to what is done in the 

USB 1.1 or 2.0 standard and other “plug and play” devices. Block classes form the major blocks 

of functionality that can be plugged into the card-cage to create various types of devices. This 

relationship is shown in Figure 4-2. 

Note that the NCAP Block centralizes and “glues” all the system and communications 

facilities together. Network communications are viewed as ports, Function block application 

code is plugged in as needed, and Transducer blocks map the physical transducer to the NCAP. 

The following sub-sections will go into detail about these classes. Note that we will only 

describe the objects that are directly used in network and transducer communications. For a 

detailed description about the rest of the classes and their functionality refer to Appendix A.  

To describe the structure and functionality for the object classes we will use UML 

diagrams. In doing so, we define the class header as the attributes of the class, network visible 

operations as public, and local operations as protected. 
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Figure 4-2 Conceptual View of an IEEE 1451.1 NCAP 

 

4.1.2.1 Block class  

e sta and block objects 

are the cor f

shown in Figure 4-3.  

W rt with the Block class since it is the root hierarchy for all block objects 

e o  the APIs defined for the NCAP. The UML class diagram for the Block class is 

+GetGroupIDs(out group_ids : OctetArray) : OpReturnCode

out block_major_state : ushort) : OpReturnCode
rID(out block_manufacturer_id : String) : OpReturnCode

+_class_ID : Clas
+_description : String
+_class_name : String

+SetGroupIDs(in group_ids : OctetArray) : OpReturnCode
+GetBlockMajorState(
+GetBlockManufacture
+GetBlockModelNumber(out block_model_number : String) : OpReturnCode
+GetBlockVersion(  bl
+GoActive() : Op ur
+GoInactive() : O tu
+Initialize() : OpReturnCode
+Reset() : OpReturnCo
+GetNetworkVisibleSe roperties : ObjectPropertiesArray) : OpReturnCode
#RegisterNotifyUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode
#DeregisterNotifyUpdate(in registration_id : ushort, in timestamp : TimeRepresentation) : OpReturnCode

out ock_software_version : String) : OpReturnCode
Ret nCode
pRe rnCode

de
rverObjectProperties(out this_block_object_tag : ObjectTag, out server_object_p

sID
IEEE1451_Block

 
Figure 4-3 Block Class UML Diagram 
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The different operations that are described for this class are as follows: 

• The GetGroupIDs operation will be used obtain the identifiers that represent sets 

of objects of which this Block instance is a member. 

• The SetGroupIDs operation will be used to initialize/modify the identifiers that 

represent sets of objects of which this Block instance is a member. For example, 

all Blocks in a particular control group could be given a common group ids value. 

• The GetBlockMajorState operation will be used to obtain the current state of the 

state machine that controls this block’s behavior. 

• The GetBlockManufacturerID operation will be used to obtain a parameter that 

identifies the manufacturer of the Block. For our implementation this operation 

will return a zero as the manufacturer ID.  

• The GetBlockModelNumber operation will be used to obtain an identifier 

(represented as a 1451.1 String) that is used to distinguish between different 

implementations of the class.  

• The GetBlockVersion operation will be used to obtain an identifier (represented as 

a 1451.1 String) that is used to distinguish between different implementations of 

the model.  

• The GetNetworkVisibleServerObjectProperties operation will be used to obtain 

the ObjectTag of the target Block that is executing and the server object 

properties. The server object properties datatype consists of a data structure that 

contains information regarding the server object.  

• The GoActive operation will be used for transitions within the state machine for 

this block. The transition will be from the unitialized state to the inactive state. 
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• The GoInactive operation will be used for transitions within the state machine for 

this block. The transition will be from the active state to the inactive state. 

• The Initialize operation will be used for transitions within the state machine for 

this block. This transition will be from the unitialized to the initialized state. 

• The Reset operation will be used for transitions within the state machine for this 

block. This transition will be from any state back to the unitialized state. 

ED state is reserved for local activities 

related 

e Block class cannot 

execute any network communications, but it is in this state where owned objects are registered 

with the Block for network comm

The BL_INACTIVE state is reserved for activities such as the configuration of the 

 erties of the Block and its owned objects, initialization, and 

• The RegisterNotifyOnUpdate and DeRegisterNotifyOnUpdate operations are 

defined as optional in the standard and will not be implemented in this design. 

The behavior for this class is controlled by a state machine with three states. This state 

machine is shown in Figure 4-4. The BL_UNITIALIZ

to bringing the Block Object into existence and performing any related local preparations 

needed for the Block function. While in this state any classes owned by th

unications. 

network communication prop

diagnosis and maintenance of the Block object. The BL_ACTIVE state is reserved for activities 

related to the normal application function of the block.  

Every Block object defined in the standard will inherit the state machine shown in Figure 

4-4, as well as the network visible operations that are shown in Figure 4-3. 
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BL_UNITIALIZED BL_INACTIVE

BL_ACTIVE

RegisterObject or
DeregisterObject

Initialize

Initialize

Reset

DeregisterObject

Reset

GoActive GoInactive

 
Figure 4-4 State Machine for Block Class 

 

4.1.2.2 NCAP Block Class 

The next p

communication as was previously discussed in Section 3.2. It is 

important t

and it is the only one to own itself as was previously shown in Figure 4-1. 

This cl

its Network Vi n in Figure 4-5. 

ste  is to define the NCAP Block class since it is the key source for network 

s and system configuration 

o note that this object class owns every other Block object within the same hierarchy 

ass is the key source for system configuration and bookkeeping information about 

sible Owned Objects. The structure for this class is show

+GetNCAPBlockState(out ncap_block_state : ushort) : OpReturnCode
+GetNCAPMan

+class_ID : ClassID
+description : String
+class_name : String

ufa rerID(out ncap_manufacturer_id : String) : OpReturnCode
delNumber(out ncap_model_number : String) : OpReturnCode

on(out ncap_os_version : String) : OpReturnCode
erties(out this_object_tag : ObjectTag, out client_port_properties : ClientPortProperties) : OpR

tu
+GetNCAPMo
+GetNCAPSerialNumber(out ncap_serial_number : String) : OpReturnCode
+GetNCAPOSVersi
+GetClientPortProp eturnCode
+SetClientPortServerObectBindings(in this_object_tag : ObjectTag, in client_port_properties : ClientPortProperties) : OpReturnCode
+IgnoreReque
+RespondToR e
+RebootNCAPBlock() : OpReturnCode
+ResetOwnedBlocks
#GetBlockCookie(in
+PSK_NCAPBLOCK_GO_ACT
#RegisterObject(in object_reference, in owning_block_object_reference, out object_dispatch_address : ObjectDispatchAddress) : OpReturnCode
#DeregisterObject(in object_reference) : OpReturnCode
+GoInactive() : OpReturnCode

stNCAPBlockAnnouncement() : OpReturnCode
equ stNCAPBlockAnnouncement() : OpReturnCode

() : OpReturnCode
 block_reference, out block_cookie : ushort) : OpReturnCode

IVE() : OpReturnCode

IEEE1451_NCAPBlock

 
Figure 4-5 NCAP Block UML Class Diagram 
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The following discussion goes into detail about this class’ operations and their top-level 

functionality. 

• The GetNCAPBlockState operation will be used to obtain the current state of the 

state machine for this object. 

• The GetNCAPManufacturerID operation will be used to identify the manufacturer 

of the NCAP.  

• The GetNCAPModelNumber operation will return an identifier that is used to 

distinguish between different NCAP implementations. 

•  The GetNCAPSerialNumber operation will be used to distinguish different 

instances of NCAP implementations. 

• The GetNCAPOSVersion operation will return an identifier assigned by the 

manufacturer to specify the operating system that is in use.  

• The GetClientPortProperties will be used to obtain the ObjectTag of the NCAP 

Block as well as client port information.  

• The SetClientPortPropertiesBindings will be used to initialize or modify the 

ObjectTag of the NCAP Block as well as the client port information. 

• The IgnoreRequestNCAPBlockAnnouncement operation will be used to ignore a 

publication that provides a notification of the existence of an NCAP Block object 

within the system.  

• The RespondToRequestNCAPBlockAnnouncement operation is used to respond to 

a publication that provides a notification of the existence of an NCAP Block 

object within the system. 
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• The RebootNCAPBlock operation will be used to place the NCAP Block and all 

its owned objects to be placed in their default power-on state.  

• The ResetOwnedBlocks operation will cause all objects owned by the NCAP 

Block class to behave as if they just received a reset operation. 

• The PSK_NCAPBLOCK_GO_ACTIVE operation will be used for transitions 

implemented. 

• The GoInactive operation will be used for transitions within the state machine for 

this block. This transition will be from the active to the initialized state. 

The behavior of this class is controlled by the state machine for the Block object that was 

However, the NCAP Block sub-states the BL_INACTIVE state 

entation, this transition will occur when the Initialize operation of the Block class is 

called.  

• The GetBlockCookie operation will be used to obtain the block cookie (used to 

tell a client whether the context of the server has changed) of the particular object 

that is being accessed.  

within the state machine for this block. This transition will from the active to the 

initialized state. 

• The RegisterObject and DeRegisterObject operations are optional and will not be 

previously shown in Figure 4-4. 

to include two states NB_INITIALIZED and NB_ERROR. The sub-states are shown in Figure 

4-6.  

The initial transition from the BL_UNITIALIZED state to the NB_INITIALIZED state 

will be caused by implementation-specific mechanisms within the NCAP Block. For this 

implem
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The “Fail” signal shown in the state machine is an internally generated transition that 

causes the NCAP to go from the NB_INITIALIZED to the NB_ERROR sub-state. The 

GoInactive operation causes the transition to the NB_ERROR sub-state if the NCAP detects an 

error. 

 
Figure 4-6 State Machine for the NCAP Block 

 

4.1.2.3 Function Block Class 

The Fu

e owned and controlled by the Function block. Similarly, any interaction between the 

application’s objects and other standard-defined objects will be done through the use of this 

class. 

nction Block class (shown in Figure 4-7) will be used as the primary mechanism for the 

abstraction and packaging of application functionality. Therefore, the application-specific objects 

will b
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+GetFunctionBlockState(out function_block_state : ushort) : OpReturnCode
+Start() : OpReturnCode

+_class_ID : ClassID
IEEE1451_FunctionBlock

+_description : String
+_class_name : String

+Clear() : OpReturnCode
+Pause() : OpReturnCode
+Resume() : OpReturnCode  

Figure 4-7 Function Block UML Class Diagram 

 
The definitions for the operations for this class are as follows: 

• The GetFunctionBlockState operation will be used to obtain the current state of 

the state machine for this object. 

• The Start operation will be used for transitions within the state machine for this 

block. This transition will be from the idle to the running state. 

• The Clear operation will be used for transitions within the state machine for this 

block. This transition will be from the running to the idle state. 

• The Pause operation will be used for transitions within the state machine for this 

block. This transition will be from the running to the stopped state. 

• The Resume operation will be used for transitions within the state machine for this 

This l

was shown in Figure 4-4. However, the BL_ACTIVE state is sub-stated as is shown in Figure 

4-8.  

block. This transition will be from the stopped to the running state. 

 b ock’s behavior is controlled by the inherited state machine of the Block class that 
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FB_STOPPED

FB_RUNNING

FB_IDLE

BL_ACTIVE
Reset

New Block Cookie

Clear

 

 

4.1.2.4

ill be supported by this NCAP. These models are the 

client-server and publish-subscribe models. In th  section, we will focus on the standard-defined 

ftware blocks that enable the NCAP to engage in network communications. 

Figure 4-9) by means of the Perform operation.  

Resume Pause

Start Clear

GoActive GoInactive

Figure 4-8 State Machine for a Function Block 

 Client-Server Network Communication Classes 

There are two communication models that w

is

so

We start with the client-server model. This model is a tightly coupled communication 

model used for one-to-one communication. The server-side of the NCAP is provided by Entity 

abstract class (shown in 

+GetObjectTag(out object_tag : ObjectTag) : OpReturnCode
+SetObjectTag(in object_tag : ObjectTag) : OpReturnCode
+GetObjectID(out object_id : ObjectID) : OpReturnCode

+GetDispatchAddress(out dispatch_address : ObjectDispatchAddress) : OpR
+GetOwningBlockObecjtTag(out owning_block_object_tag : ObjectTag) : Op

+_class_ID : ClassID
+_description : String

+GetObjectName(out object_name : String) : OpReturnCode
eturnCode
ReturnCode

+GetObjectProperties(out object_properties : ObjectProperties) : OpReturnCode
#Perform(in server_operation_id : ushort, in server_input_arguments : ArgumentArray, out server_output_arguments : ArgumentArray) : ClientServerReturnCode

+_class_name : String

IEEE1451_Entity

Figure 4-9 Entity UML Class Diagram 
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The operations that are defined for the Entity class can be further explained as follows: 

• The GetObjectTag operation will be used to obtain the ObjectTag of the object 

ll be used to obtain the current value of the 

• The GetObjectProperties operation will be used to obtain the current values of the 

ObjectTag, dispatch address, object name, the associated block cookie of this 

object, and the ObjectTag of the owning block of this object. 

• The Perform operation will be used as the server-side construct for client-server 

communications. 

On the other hand, the client-side functionality is given by the Client Port class (shown in 

Figure 4-10) through the Execute function. 

that is being accessed. 

• The SetObjectTag operation will be used to initialize or modify the ObjectTag of 

the object that is being accessed. 

• The GetObjectID operation will be used to obtain the current value of the object 

ID for the object that is being accessed. 

• The GetObjectName operation wi

object name for the object that is being accessed. 

• The GetDispatchAddress operation will be used to obtain the value of the object 

dispatch address of the object.  

• The GetOwningBlockObjectTag operation will be used to return the ObjectTag of 

the owning block object. 

#Execute(in execute_mode : ushort, in server_operation_id : ushort, in server_input_arguments : ArgumentArray, out server_output_arguments : ArgumentArray) : ClientServerReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_ClientPort

 
Figure 4-10 Client Port UML Class Diagram 
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Now that we have shown the client-server operations and their structures, we can 

describe their functionality. First, we begin by showing the system configuration for this 

communication model. 

The network port information will be set at compile-time as was discussed earlier in this 

Section, so there will be no dynamic system configuration for the network communications. 

Therefore, as soon as the NCAP is operational the server and client objects will be able to 

communicate across the underlying network.  

Next, we can describe the complete interaction for a client-server operation. This 

interaction is shown in Figure 4-11. Note that the first thing that will be done is to encode the 

arguments that will get sent over the network. After this, the Client Port invokes the Execute 

operation which will have the server information as well as the packet that will be sent over the 

network. 

This information will then be sent to the network infrastructure so that it can be 

marshaled onto the on-the-wire format of the particular network that is employed. After this 

information is sent over er-side will de-

marshal the information and call the Perform operation so that the information can be decoded. 

ack to the client-side so that it 

o execution modes for the Execute 

operation. If the execution mode is EM_NO_R TURN_VALUE then the client object sends 

information over the netw end and forget) from the 

server-side. The figure assumes the blocking execution mode labeled EM_RETURN_VALUE. 

the network, the network infrastructure for the serv

Then, the operation can be executed and the results can be sent b

knows that the operation completed successfully. 

It is important to note that the client-server interaction does not necessarily need to return 

to the client as is shown in Figure 4-11, since there are tw

E

ork and does not expect a return value (s
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Figure 4-11 Client-Server Communication Model 

 

4.1.2.5 Publi

The publish-subscribe model is a loosely coupled communication model for one-to-many or 

many-to-m

publisher-side functionality through the 

sh-Subscribe Network Communication Classes 

any communications The Publisher Port class (shown in Figure 4-12) provides the 

Publish operation.  

#Publish(in publication_contents : ArgumentArray) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_PublisherPort

 
Figure 4-12 Publisher Port UML Class Diagram 
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On the other hand, the Subscriber Port class provides objects with a mechanism for 

subscribing to publications. The structure for this class is shown in Figure 4-13. 

+SetSubscriptionQualifier(in subscription_qualifier : SubscriptionQualifier) : OpReturnCode

+_class_ID : ClassID
+_description : String

e : String

+GetSubscriptionQualifier(out subscription_qualifier : SubscriptionQualifier) : OpReturnCode

+GetSubscriptionDomain(out subscription_domain : PubSubDomain) : OpReturnCode
#A
#D

+GetSubscriptionKey(out subscription_key : ushort) : OpReturnCode
+SetSubscriptionDomain(in subscription_domain : PubSubDomain) : OpReturnCode

ddSubscriber(in notification_operation_reference, in subscription_id : ushort) : OpReturnCode
eleteSubscriber(in notification_operation_reference, in subscription_id : ushort) : OpReturnCode

+_class_nam

IEEE1451_SubscriberPort

 
The op

follows: 

• The GetSubscriptionQualifier operation will be used to obtain the current value of 

the port’s subscription qualifier. 

• The GetSubscriptionKey operation will be used to obtain the current value of the 

port’s subscription key. This key is used to determine the type of publication that 

the port is subscribing to. 

• The GetSubscriptionDomain operation will be used to obtain the current value of 

the subscription domain defining a ser of candidate publications to be accepted by 

the port. 

• The AddSubscriber and DeleteSubscriber operations are optional and will not be 

implemented. 

 
Figure 4-13 Subscriber Port UML Class Diagram 

erations that are defined for the Subscriber Port class can be summarized as 

• The SetSubscriptionQualifier operation will be used to initialize or modify the 

current value of the port’s subscription qualifier. The subscription qualifier is used 

to determine which publications will be accepted by the port. 
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The o

communication e operations and objects can be further explained as 

follows: 

• 

ublication’s contents. 

• Key, 

• er Port’s filter, the Port invokes all of its 

 

4.1.2.6 Transducer Block Clas

This class establishes the mapping between the individual channels of the TIM transducers and 

the public transducers of the Transducer Block in the NCAP. The most relevant operations that 

will be done through this class are the access of the Meta-TEDS as well as global triggering. The 

structure for this class is shown in Figure 4-14. 

 perations previously defined will be used for publish-subscribe network 

s. The interaction between th

The Publisher object invokes the Publish operation on its associated local 

Publisher Port passing in as an input argument the p

• Using the network infrastructure, the invocation of the Publish operation results in 

the delivery of the publication to all Subscriber Ports in the publication’s Domain. 

The receiving Subscriber Ports each use the values of their Subscription 

Subscription Domain, and Subscription Qualifier attributes to filter the incoming 

publication. 

If the publication passes a Subscrib

registered Subscribers’ callback operations, providing as an input argument the 

publication’s contents. Subscribers will be registered at compile-time. 

s 

53 



 

+GetCorrectionMode(out correction_mode : ushort) : OpReturnCode
+GetNumberOfTransducerChannels(out number_of_transducer_channels : ushort) : OpReturnCode

mumSamplingPeriod(out minimum_sampling_period : TimeRepresentation) : OpReturnCode

+GetUnrepresentedChannelNumber(out unrepresented_channel_numbers : ushort) : OpReturnCode
+UpdateAll() : OpReturnCode

+DisableCorrections() : OpReturnCode
+GetLastUpdateTimestamp(out update_timestamp : TimeRepresentation) : OpReturnCode

+GetMini
+GetChannelParameterObjectChannelNumbers(in channel_number : ushort, out parameter_object_tags : ObjectTag) : OpReturnCode

+EnableCorrections() : OpReturnCode

+GetUpdateTimestampUncertainty(out update_timestamp_uncertainty : Uncertainty) : OpReturnCode

+_classID : ClassID
+_description : Strin
+_class_name : Stri

g
ng

IEEE1451_TransducerBlock

 
Figure 4-14 Transducer Block UML Class Diagram 

 
The operations that are shown for this class are described in the following discussion. 

• The GetCorrectionMode operation will be used to obtain the current state of the 

state machine for this object. 

• The GetNumberOfTransducerChannels operation will be used to access the Meta-

TEDS. This access will return the number of transducers that are implemented in 

the TIM that is physically connected to the NCAP. 

• The GetMinimumSamplingPeriod operation will be used to access the Meta-

TEDS. This access will return um sampling rate 

• The GetUnrepresentedChannelNumber operation will return an array of numbers 

with each array representing a channel present at the physical interface that is not 

represented

the time in seconds of the minim

of the TIM as a whole, e.g. The minimum sampling rate for a global trigger. 

•  The GetChannelParameterObjectChannelNumbers will return the physical 

interface channel numbers for the implemented physical interface channels that 

correspond to the public transducer.  

 by a public transducer in the NCAP.  
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• The UpdateAll operation will cause a global trigger to be applied to the transducer 

system. The operations that we have defined will be used to setup the transducer 

system and to apply top-level commands to the TIM as a whole.  

• The EnableCorrections operation will be used for transitions within the state 

machine for this block. This transition will be from the uncorrected to the 

corrected state. 

rrections operation will be used for transitions within the state 

s they are optional according to the standard. 

ly 

corrections to the transducer data. This sub-stated state machine is shown in Figure 4-15. 

• The DisableCo

machine for this block. This transition will be from the corrected to the 

uncorrected state. 

• The GetLastUpdateTimestamp and GetUpdateTimestampUncertainty operations 

will not be implemented a

The behavior of this block is controlled by the basic state machine that was defined for all 

Block Objects. However, the Transducer Block sub-states this state machine so that it can app

 
Figure 4-15 Correction state machine for a Transducer Block 
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Next, we give a brief overview about how this object models each of the transducer 

channels. In order to do this, the Transducer Block class exposes the channels as instances of a 

subclass of the Component class associated with the channel (e.g. Temperature sensor that is 

interfaced with an ADC is represented as a sca eter). This model is shown in Figure 

4-16. 

lar param

 
Figure 4-16 Model of a TIM and Transduc

 
er Block 

The Transducer Block is modeled to contain a register, (raw data-1 to raw data-4 in the 

figure), that corresponds to each TIM register. These two sets of registers agree after the TEDS is 
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read and the NCAP knows the number/type of transducers in the TIM. A second set of registers, 

the engineering data registers of the figure, contains values mapping the contents of the raw data 

registers using the correction information that is provided by the TEDS. If the TIM does not 

support correction, then these two sets of registers may be modeled as a single set of registers. 

Next, we will discuss the Parameter class since it is used to model the individual transducers. 

 

4.1.2.7 Parameter Classes 

ing the Channel-TEDS is 

done by children of the Param

 
In order to apply individual triggering and access the Meta-TEDS we will use Parameter classes 

to model the transducers. So, there will be a Parameter class definition for each implemented 

transducer. This is important because individual triggering and access

eter class. 

We begin by showing how individual triggering is generated by the NCAP. This is done 

through the Parameter With Update class. The structure for this class is shown in Figure 4-17 . 

+UpdateAndRead(out data : ArgumentArray) : OpReturnCode
+ReadBlockUntilUpdate(out data : ArgumentArray) : OpReturnCode
+WriteAndUpdate(in data : ArgumentArray) : OpReturnCode

+GetLastTimeStamp(out last_timestamp : TimeRepresentation) : OpReturnCode
#RegisterNotifyOnUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode

+WriteBlockUntilUpdate(in data : ArgumentArray) : OpReturnCode

#DeregisterNotifyOnUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_Class_name : String

IEEE1451_ParameterWithUpdate

Figure 4-17 Parameter with Update Class UML
 

 Diagram 

 
The UpdateAndRead operation will be used to 

The WriteAndUpdate operation will be used to trigger an actuator channel. 

The ReadBlockUntilUpdate, WriteBlockUntilUpdate, GetTimeStamp, 

RegisterNotifyOnUpdate, and DeregisterNotifyOnUpdate operations are optional and will not be 

implemented in this design. 

trigger a sensor channel. 

57 



 

The behavior for the UpdateAndRead and WriteAndUpdate operations is shown in Figure 

4-18. It is important to note, that the UpdateAndRead operation has no effect if it is applied to an 

actuator, and the WriteAndUpdate operation has no effect if it is applied to a sensor channel.  

Parameter has
value-N

Parameter has
value-M

Parameter has
value-M

UpdateAndRead

WriteAndUpdate (M)
Current value N->new value M

(new value M acquired from update source)
Current value N-> new value M;

UpdateAndRead returns Parameter value M

(update target to reflect value M)
WriteAndUpdate returns

 

 
Figure 4-18 Time sequence behavior of UpdateAndRead and WriteAndUpdate 

Next, we define the object class that will be used to access the Channel-TEDS. This class 

is the Physical Parameter class and its structure is shown in Figure 4-19. 

+GetPhysicalParam
+GetMetadata(out m

eterType(out parameter_type : ushort) : OpReturnCode
etadata : PhysicalParameterMetadata) : OpReturnCode

+SetMetadata(in metadata : PhysicalParameterMetadata) : OpReturnCode
+GetInterpretation(out parameter_interpretation : ushort, out buffering : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_PhysicalParameter

 
Figure 4-1 diagram 

The operations that are shown in the figure are further explai n the fo  

di ssi

T e used to det ne the ty  

tra duc se   

T ccess the Channel-TE f the trans cer 

channel that is being accessed. 

9 Physical Parameter UML Class 

 
ned i llo ingw

scu on.  

he GetPhysicalParameterType operation will b ermi pe of

ns er (sensor or actuator) that is being acces d.

he GetMetadata operation will be used to a DS o du
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T efined as optional in the stand and will n be 

im me

er’s 

data. For exam

In t  

the NCAP. Th

information mo

will be designe

 
 
 
 

ODULE 

 

The TIM is req

family of stand s smart is the TEDS since it will 

provide se i

triggering beha

To mee

will be used to M and its functionality. Note that the control unit will be responsible 

for NCAP m

well as the oth nd software since 

the Excali

configurability rmance of 

he SetMetaData operation is d ard ot 

ple nted.  

The GetInterpretation operation will be used to obtain information about the transduc

ple, if it is an actuator value or sensor reading. 

his section we have defined a complete set of specifications that will be used to design 

is has been done by defining the different objects and formats defined by the 

del of the 1451.1. The next section derives a set of specifications for the TIM that 

d in compliance with the IEEE 1451 family of standards. 

4.2 TRANSDUCER INTERFACE M

uired to have the functionality of a smart transducer as is stated by the IEEE 1451 

ards. The key element that will denote the TIM a

lf- dentification capabilities. Other required functionality for the TIM includes 

vior, interrupt generation, and status bits.  

t the previously stated top-level requirements, the structure shown in Figure 4-20 

 design the TI

 co munication and controlling the behavior of the TIM’s objects. This module, as 

er blocks can be implemented using a combination of hardware a

bur chip provides these capabilities (on-chip FPGA and ARM processor). This 

 that the Excalibur chip provides will be exploited to enhance the perfo
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the TIM’s j

advantages and

 ob ects by designing them using hardware or software. This will depend on the 

 disadvantages of each module implementation.  

 
Figure 4-20 TIM Overall Structure 

 
or a variable number of 

transducers. Therefore, designer al effort, and configure it for 

their particular application. It is ber of transducers that can be 

in ace ited by the resources of the Excalibur chip. This chip com n 

various sizes with the area ranging from 4,160 Logic Elements (LEs) in the smallest version 

(E A1 e largest chip (EPXA10). Similarly, the I/O ranges from 186 in the 

EP 1 

One of the key aspects of this architecture is that it will allow f

s can reuse this TIM with minim

 important to note that the num

terf d to this TIM will be lim es i

PX ), to 38,400 LEs in th

XA to 711 in the EPXA10. 
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4 Transducer Electronic Data Sheet 

 

o com ly with the requirements stated in Section 3.3.1 two mandatory TEDS blocks will be 

implem d the Channel-TEDS for 

each indivi a

The TEDS structure will be based on the TEDS that is defined for the STIM of the 

1451.2 sta

entity can mak

the mandatory TEDS blocks (Meta and Channel) along with an explanation of each of the fields. 

Tab 4

the definition of each field. 

Field 
No. 

Description Type No. of 

.2.1 

T p

ented. These blocks are the Meta-TEDS for the TIM entity an

du l implemented channel. 

ndard. This is because at the top-level the TIM and STIM are similar since only one 

e the connection with the NCAP. The following discussion goes into detail about 

le -3 shows the information that will be represented by the Meta-TEDS along with 

Table 4-3 Meta-TEDS Structure 

Bytes 
1 Meta-TEDS Length U32 4 
2 IEEE U8 1 1451 Standards Family Working Group Number 
3 TEDS Version Number U8 1 
4 Number of Implemented Channels U8 1 
5 Worst-Case Channel Data Model Length U8 1 
6 Worst-Case Channel Update Time (twu) F32 4 
7 Worst-Case Channel Sampling Period (twsp) F32 4 
8 Channel Groupings Data Sub-block Length U16 2 
9 Number of Channel Groupings = G U8 1 
10 Group Type  U8 1 
11 Number of Group Members = N U8 1 
12 Member Channel Numbers List = M(N) Array of U8E N 
13 Ch kec sum for Meta-TEDS U16 2 

 
The ex

•  specifies the total number of bytes in the TEDS. 

planation of the fields shown in the figure can be further explained as follows: 

The Meta-TEDS Length field
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• The IEEE 1451 Standards Family Working Number is used to denote if the 

transducer module belongs to the 1451.2, 1451.3 family among others. Since this 

• version number specifies the version number of the TEDS. Again, for 

• cifies the number of channels 

• Data Model Length field specifies the maximum value 

, this field will 

• 

in seconds. 

• The Worst-Case Channel Sampling Period specifies the maximum value in 

nnel sampling period for all implemented channels. 

• The Channel Groupings Data Sub-Block Length specifies the total number of 

implementation is different than the STIM and TBIM, this field shall be set to 255 

which does not correspond to any approved standard and is reserved for future 

use. 

The TEDS 

this implementation this field will be set to 255. 

The Number of Implemented Channels field spe

implemented in the TIM. There can be up to 255 transducers in the TIM, so this 

field will be set to a number between 1 and 255.  

The Worst-Case Channel 

of the Channel Data Model Length for all implemented channels. So if there are 

two transducers interfaced to an 8-bit and 12-bit ADC respectively

be set to 12. 

The Worst-Case Channel Update Time field specifies the maximum value of the 

Channel Update Time for all implemented channels 

seconds, of the cha

bytes in the Channel Grouping data sub-block, which are the fields that follow it. 

If this value is zero, then no channel groupings are defined and there are no data 

bytes in the subsequent fields of the channel groups’ data sub-block. 

62 



 

• The Number of Channel Groupings field specifies the number of discrete channel 

groupings defined in this TIM’s Meta-TEDS.  

• The Group Type field specifies the relationship between the channels comprising 

the specific group. 

• The Number of Group Members field specifies the number of channels 

comprising the specific group. 

• The Member Channel Numbers List specifies a one-dimensional array of 1 byte 

elements that represent the channel address for a member channel in the specific 

group. 

• The Checksum field is the one’s complement of the sum (module 216) of all the 

data structure’s preceding bytes, including the initial length field and excluding 

the checksum field. 

Similarly, Table 4-4 shows the structure for the Channel-TEDS. 

Table 4-4 Channel-TEDS Structure 

Field 
No. 

Des Type No. of 
Bytes 

cription 

1 C S Leng 4 hannel TED th U32 
2 Calibration 1 Key U8 
3 Channel Type Key 1 U8 
4 Physical Units 10 UNITS 
5 Lower Range Limi 4 t F32 
6 Upper Range Limi 4 t F32 
7 Worst-Case Uncert 2 4 ainty F3
8 Chann Data Mod 1 el el U8 
9 Chann Data Model L 1 el ength U8 
10 Chann Model Signif 2 el icant Bits U16 
11 Chann Update T 4 el ime (tu) F32 
12 Chann Sampling sp 4 el  Period (t ) F32 
13 Checksum for Cha 2 nnel TEDS U16 
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The explanation for the fi e figure is as foll

TEDS data block excluding this field. 

hin the TIM block or if it needs to be 

• nel transducer type (sensor or 

• l Units field specifies the physical units that apply to the transducer 

• eanings for sensors and actuators. 

it, it may not 

cer data before correction is applied.  

ter correction is applied, or the maximum valid value for an actuator’s data 

before correction is applied. 

e Worst-Case Uncertainty field specifies the “Combined Standard Uncertainty” 

(22).  

elds shown in th ows: 

• The Channel TEDS length field specifies the total number of bytes in the Channel 

• The Calibration Key field specifies the calibration capabilities of the TIM. This 

field specifies if calibration will be done wit

done in the NCAP. 

The Channel Type Key field specifies the chan

actuator). 

The Physica

data of the particular channel. This field applies to transducer data after correction 

for sensors, or before correction for actuators. 

The Lower Range Limit field has different m

For sensors, it specifies the lowest valid value for transducer data after correction 

is applied, so if the corrected transducer data lies below this lim

comply with TIM specifications set by the manufacturer. For actuators, this field 

specifies the lower valid value for transdu

• The Upper Range Limit field specifies the maximum valid value for a sensor’s 

data af

• Th

• The Channel Data Model field describes the data model used when reading or 

writing data to the transducer. This field specifies if the model is an integer, 
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single-precision floating point number, double-precision floating point number, or 

a fraction. 

• The Channel Data Model Length field specifies the number of bytes in the 

representation of the selected channel data model. 

• The Channel Model Significant Bits field specifies the numbers of bytes that are 

significant. For example if data from a transducer comes from a 12-bit ADC, then 

this field will be set to 2. 

• The Channel Update Time field specifies the maximum time in seconds, between 

the receipt of a trigger and a trigger acknowledge for this channel. 

• The Channel Sampling Period field specifies the minimum sampling period of the 

4.2.2 

ts Section 3.2.2, this top-level connection will resemble the STIM/NCAP 

communication of the 1451.2 standard. Therefore, the command structure will have a functional 

 with it. Each individual implemented transducer will have a 

channel address associated with it. So, the channel address will be large enough such that it can 

channel transducer unencumbered by read or write considerations. Typically, this 

time is limited by the ADC/DAC conversion times. 

 

NCAP Communication 

 

Because only one TIM can make the connection to a single NCAP as was stated in the 

requiremen

and channel address associated

accommodate the maximum number of transducers (255) that can be implemented in the TIM. 

The functional address will be used to denote the command that is being sent by the NCAP to the 

TIM. The length of this field will be eight bits, which will give the designer enough room for the 
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mandatory set of commands, as well as leaving some room for future expansions. Table 4-5 

summarizes the list of commands that will be implemented. 

It is important to note that the trigger operation is implemented as a command, which is 

different than what is done in the STIM. In the STIM a single line in the TII (10-wire serial 

connection) is dedicated for the trigger operation, so to trigger a sensor the user has to first set 

the channel address in a separate instruction and then issue the trigger. For the case of actuators, 

the use

ving the speed performance since users can issue a 

trigger 

r has to write the actuator data, write the channel address, and then the user can apply the 

trigger command. Since we are eliminating this serial connection between NCAP/TIM there is 

no need for this dedicated line. Thus impro

and channel address in a single command. 

Table 4-5 TIM’s Commands 

Functional 
Address 

CHANNEL_ZERO 
command Single Channel Command 

0 Read Meta-TEDS  Read Channel TEDS 

1 interrupt mask mask 
Write CHANNEL_ZERO Write channel standard interrupt 

2 interrupt mask mask 
Read CHANNEL_ZERO Read channel standard interrupt 

3 status Read channel status 
Read CHANNEL_ZERO 

4 Trigger Transducer Channel trigger 
CHANNEL_ZERO 

5 Data Write Transducer Channel Data 
Write Transducer Channel 

6 
Read Transducer Channel 

Data Read Transducer Channel Data 
7 Reset Reserved 

MSB For future use For future use 
 

The following is a detailed explanation about the commands and their top-level 

functionality. 
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• The Read Meta-TEDS and Read Channel-TEDS commands return the complete 

structure of the TEDS blocks to the NCAP. 

• The write interrupt mask commands allow the NCAP to set the interrupt mask of 

the implemented transducer channels in the TIM. 

• The Read Status operation returns the status of the particular channel that is 

addressed. 

• The trigger command is used to sample/set the transducer channel that is 

• The write transducer channel data command is used to send the data to the 

actuator’s register that will be used when the channel is triggered. 

• The read transducer channel data command is used to access the sensor 

information from

• The reset command is used to put all the TIM’s objects in their default power-on 

4.2.3 Trigger 

 

 is required to ha sor 

ill be sampled and an act

e handled by the contro

sponsible for setting the control signals of the transducer registers, as well as the data 

addressed. Note that if CHANNEL_ZERO is used as the address, then every 

implemented channel in the TIM is triggered. 

 the last sampled event. 

state. 

 

The TIM ndle both individual and global triggering. When triggered, a sen

w uator will acquire a new data set. The functionality for triggering will 

l unit that was shown in Figure 4-20. Therefore, this unit will be b

re
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converters that are associ

following sequence of events when a trigger command is issued. 

First, the control un o 

that the trigger can be exec

that it is generated differently for sensors and actuators. 

tion when 

interfac

uccessfully completed the trigger 

operati

s can be summarized as follows. For 

CHAN

ated it with the transducers. The control unit will go through the 

it will decode the information and send it to the particular channel s

uted. Then the acknowledge signal will be generated as follows. Note 

For sensors, the trigger ACK signal will be generated when the ADC finishes conversion 

and the TIM latches this data onto its particular data register. If the sensor is connected to digital 

IO then the ACK signal will be generated when the data is latched onto its data register. 

For actuators, the trigger ACK will be sent upon receipt of a trigger func

ed with digital IO. If the actuator is interfaced to a DAC then the ACK signal will be 

generated after the device finished conversion. 

During global triggers, the CHANNEL_ZERO ACK will be generated when every 

channel has been successfully sampled/set as defined by the particular transducer. Also, each 

individual channel will generate an ACK when it has s

on. 

 

4.2.4 Status and Interrupts 

 

There are four mandatory status bits for CHANNEL_ZERO, and three status bits for individual 

channels that will be implemented. These bit

NEL_ZERO the implemented status bits will be Trigger ACK, Invalid Command, TIM 

operational and Corrections enabled/disabled. For individual channels, the implemented status 

bits will be Trigger ACK, Channel Operational, and Corrections enabled/disabled. 
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These status bits along with their corresponding interrupt mask can be implemented using 

registers giving the NCAP an easy way to access this information. This is because registers are 

assigned a memory location in the embedded stripe of the Excalibur chip and are accessible by 

reading/writing to the pre-assigned memory location. 

f status and interrupt mask registers 

similar

t signal is generated. The reason why this is done is because an 

individ

signals that can be 

sent to 

These registers can be 32 bits giving the user a wide range of status bits that were not 

defined in the requirements but may be added for more complex systems. There will be a register 

for each implemented channel in the TIM.  

The interrupts will be generated by a combination o

 to how is done in the 1451.2 STIM3. This scheme is slightly modified with the difference 

being that in the standard the LSB of the status register is reserved for the service request bit. 

This bit is a logical OR of all the AND operations in the status/interrupt mask combination, so 

when this bit is set an interrup

ual line in the TII protocol is reserved for the interrupt signal much like what is done for 

the trigger. Again, because we are eliminating this serial protocol there is no need for this single 

line. Instead, each implemented channel may have up to 32 different interrupt 

an interrupt controller in order to process the requests. Figure 4-21 shows the interrupt 

generation scheme that will be used. 

Interrupt
Generation

Unit

INT

lsbmsb

lsbmsb

...

...

...

Interrupt Mask Register

Status Register  
Figure 4-21 Interrupt Masking 
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he Interrupt Generation Unit shown in the figure is a priority encoder that will take the 

result of the AND operations and encode them into the bit size of the interrupt controller that will 

be used. 

The fun

T

 
 
 
 

4.3 SUMMARY AND TESTS 

 

ctionality that is stated in this section can be summarized in Table 4-6. Note that the table 

shows inputs and outputs to the application system.  

Table 4-6 System Summary 

Name System on a Chip Solution for Smart Networked Transducers 
Purpose Single chip implementation of the IEEE 1451 family of standards 
Inputs Data read from sensor(s), Network information sent to the NCAP 
Outputs Data set sent to actuator(s), System results sent to network(s) 
 

 
 
 

 
Functions 

Initialization: Initialize entire control system (includes both NCAP 

the TIM will be initialized upon power-up by local intelligence within 
the block. 
 

TIM and it responds accordingly. 
 
Trigger: NCAP se
it and executes it for either a sen

 

 

and TIM). NCAP reads TEDS and initializes its control logic. While 

NCAP<->TIM communication: The NCAP sends a command to the 

nds a trigger command to the TIM which decodes 
sor or actuator, or both (global 

triggering). 
 
Interrupts: Interrupts generated by TIM that are serviced by NCAP 
 
NW communication: Communication between NCAP and network 
using the publish/subscribe or client-server method. 

 

The functionality shown in the table needs to be tested in order to ensure compliance with 

the standard. In order to test the system, a proof of concept application with two sensors 
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(temperature an h he transducers 

will be designed to meet the electrical and timing specifications of the Excalibur chip. 

, the NCAP will test the entire command structure of the TIM as well as the network 

communications by the use of the objects define for an IEEE 1451.1 NCAP. The setup for this 

control application will be as follow

s will be 

done in

d lig t) and LEDs to simulate an actuator will be built. Note that t

This test application will consist of a closed-loop control system controlled by the NCAP. 

So, the main program will execute in a loop where the functionality of the system will be tested. 

In doing this

d 

s: 

Initialization: During this stage the network port information will be mapped to pre-

defined objects that are set at compile-time. Then, we will apply a reset command to the TIM in 

order to test that required operation. Next, the TEDS will be read and the different transducer 

objects (on the NCAP-side) will be instantiated from this information. This interaction will prove 

that the TEDS structure can be successfully read and that the different transducer objects in the 

NCAP’s object model can be instantiated correctly. 

After verifying that there were no errors in the TEDS access and object instantiation, the 

NCAP can be initialized. This initialization will consist of calling the Initialize and GoActive 

operations and making sure that they are executed properly. The interrupt masks of the TIM will 

also be set during this phase using application-specifics commands. This will be done to test the 

TIM command Write Interrupt Mask for CHANNEL_ZERO and individual channels. Also, any 

initialization that needs to be done for the network hardware or other non-standard block

 this stage.  

Main Program: The next step is to test the application by showing interactions between 

the network, NCAP, and TIM. To do this, a simple application will be configured that constantly 
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triggers the transducers by using the UpdateAndRead, WriteAndUpdate, and UpdateAll 

operations previously shown in Sections 4.1.2.6 and 4.1.2.7 

This completely tests the mandatory command set of the TIM, since every time that a 

trigger command is issued the TIM will generate an interrupt (Trigger ACK). Then, the NCAP 

will service the interrupt, which will test the Read Status Register and Read Transducer Channel 

Data TIM operations. 

Next, a dummy p gumentArray for network 

ommu

ding to the standard. Therefore, we will show 

that the high-level requirements of the IEEE 1451 solution are met. 

acket will be encoded into an Ar

c nications using both models. To test both communication models, two different dummy 

packets will be used for client-server and publish-subscribe communications.  

This loop will test the entire command set of the TIM, the top-level functionality of the 

NCAP, and that a network can be plugged in accor
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5.0 DESIGN 

 

 

cks. These blocks are used to design a system that meet 

the requ

 requirement, which states that this connection shall be faster than the TII 

of the 1451.2 STIM. To meet th  connection is established using 

the AMBA AHB that is provided by the Excalibur nnection can reach speeds up to 

. There  the AHB the sampling rate for a system with 10 transducers (5 

 5 act would be 374 KHz (assuming an ADC conversion rate of 2.5 µSec), as 

 the 51 that the 1451.2 connection yields under the same configuration. To use this 

unicati p-level functionality is designed as a peripheral on the bus 

tom logic (PLD). The rest of the modules for this IEEE 1451 solution will be discussed 

ollowing sub-sections of this chapter. 

 

 

 

 

 

 

 

The system design is done using a combination of hardware (on-chip and off-chip peripherals) 

and software (C for the ARM922T) blo

irements stated in Chapter 3.0 using the specifications previously stated in Chapter 4.0.  

We begin the design by establishing the NCAP/TIM communication in such a way that it 

meets the performance

is requirement, the NCAP/TIM

 chip. This co

160 MHz fore, using

sensors and uators) 

opposed to  Hz 

bus comm on, the TIM’s to

using cus

in the f
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5.1 NETWORK CAPABLE APPLICATION PROCESSOR 

In this section we will focus on the software blocks that are specified by the standard’s 

informa

 

tion model. To do this, we first give an overview of an IEEE 1451.1 NCAP shown in 

Figure 5-1. 

 
Figure 5-1 NCAP Overview 

 
Note that in the application layer, we have an NCAP Block that is used to control the 

experiment, and we also have the application-specific software (given by Function Blocks). Both 

 the Block class. Then, in the network and transducer layers, 

we hav

of these blocks are inherited from

e APIs. These APIs are the hooks that are provided to communicate with the network and 

TIM that are interfaced with the NCAP. The 1451.1 API provides the necessary hooks for 

network communication. These hooks are specifically provided by the network ports and the 

Server Object Dispatch given by the Entity, Client Port, Publisher Port, and Subscriber Port 
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object classes. Note that the Entity and Client Port classes are used for client/server 

communications; while the Publisher Port and Subscriber Port classes are used for 

publish/subscribe communications. On the other hand, the Transducer I/O API provides the 

hooks 

 programming language that will be used for this NCAP design. The 

softwar

 

previou

designed by defining a super class that acts as the parent. This is shown in 

Figure 

for TIM communication. These hooks are given by the Transducer Block class (for the 

TIM as a whole) and by Parameter classes (for individual transducers within the TIM).  

Next, we discuss the

e blocks are designed in C, which is not an object-oriented programming language. This 

presents some issues when designing the class hierarchy and object owning relationships

sly shown in Figure 4-1. To solve this problem the objects are designed as structures and 

the class hierarchy is 

5-2. 

Struct A {}

struct B {struct A *parent}

struct C {struct A *parent}

A

CB

 
 

 
In the figure, we design a super class A with two child nodes B and C. Using pointers the 

child node “points” to it at 

is described as the class hierarc e shown in 

Figure 5-3 to instantiate 

Figure 5-2 Class Hierarchy Implementation

s parent, which allows us to implement the parent/child relationship th

hy. In order to use this relationship, we use the schem

the structures using C. 
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Struct A super;
Struct B child_one;
Struct C child_two;

child_one.parent = *super;
child_two.parent = *super;

 
Figure 5-3 Structure instantiation in C 

 
Anothe bject class is supposed to have 

operations that only the 

include the structure node as a 

that in the nction foo. Using the 

two schemes previously discussed, bject orientation with the 

C programmin

Next, we will des odel that was previously 

described in the specif entioned before by 

implem is met and users can use this 

implem

 

5.1.1 Datatype Mapping 

 

The datatypes th

need to be mapped to the C programming language. In order to do this, we use some pre-defined 

C types as well as create new t

5-1 summarizes this datatype mapping. 

r issue that needs to be resolved is that each o

particular object and its children can call. To solve this problem, we 

parameter of the operation, e.g. void foo (struct *A, int B). Note 

example an instance of structure A needs to be provided to call fu

we can design the NCAP using its o

g language.  

ign the complete design of the information m

ications chapter. It is important to note, that as was m

enting the different objects and formats, the standard 

entation for their particular application. 

at are defined in the standard and that were defined in the specifications chapter 

ypes that are used in the design of this IEEE 1451.1 NCAP. Table 
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Note th

the ARM does  type as 

only 8-

 

at the colon operator is used to denote an 8-bit integer. This is done because C for 

 not provide an 8-bit integer type and using the colon operator denotes the

bits of length.  

Table 5-1 Datatype to C Mapping 

Datatype C Mapping
Boolean Defined a new structure that defined a TRUE as a 1 and FALSE as a 0 
Integer8 Short : 8 
UInteger8 Unsigned short : 8 
Integer16 Short 
UInteger16 Unsigned short 
Integer32 Int 
UInteger32 Unsigned int 
Integer64 Long 
UInteger64 Unsigned long 
Float32 Float 
Float64 Double 
Octet Char 
 

For all the types that are defined in the standard, we create a header file that contains all 

the structure information of the different objects in the NCAP. It is important to note that arrays 

are implemented as pointers and/or talloc() operation to 

dynam

ign.  

5.1.2 IEE

tails of network communications. 

Therefo e, this egardless of the network that is 

employ d. Ne for network communications 

using the client/server and publish/subscribe models. 

. This way we can use the malloc() 

ically allocate the memory that is needed for the array representation. Next, we show the 

design of the top-level classes for this NCAP des

 

E 1451.1 API 

 

This API is used to hide the communication de

r  API provides the different hooks that can be used r

e xt, we will design the objects that are responsible 
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5.1.2.1 Clien

In this section, ient 

Port classes that were previously shown in the s ecifications chapter. We begin with the Entity 

class whose structure is shown in Figure 5-4.  

t-Server Network Communications 

 we will go into detail about the design of the operations of the Entity and Cl

p

typedef struct {

  ClassID class_ID;

  IEEE1451_String parent_name;
  ObjectTag object_tag;
  ObjectID object_ID;
  char *object_dispatch_address;

  IEEE1451_Root *super;

  IEEE1451_String description;

}IEEE1451_Entity;

 
Figure 5-4 Entity Class Structure in C 

 
The super

relationship of the class hierarchy. The 

the class header th

class_ID encodes the p

name of this object. The 

class). Note that for th

enumeration that is used. 

The object_tag

communications) of this lar object. Note that this value is unique for each object in an 

NCAP application system. 

The object_ID tains

from any other object) of this particular object.  

 field is a pointer to the Entity class, which is used to denote the parent/child 

class_ID, description, and parent_name fields are part of 

at was previously mentioned in the specifications chapter. Therefore, the 

osition of this object in the class hierarchy. The description is the class 

parent_name is the class name of the parent class (in this case the entity 

e description and parent_name parameters the standard provides an 

 field contains the ObjectTag (logical endpoint for server-side 

 particu

field con  the ObjectID (used to unambiguously distinguish the object 
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The ob

underlying net

The following discussion goes into detail about the design of the operations for this class 

along with an explanation of how they are designed. 

(1) OpReturnCode GetObjectTag(IEEE1451_Entity *a,  

/* out */ ObjectTag *object_tag) 

This operation returns the object_tag parameter of the Entity class. 

(2) OpReturnCode SetObjectTag(IEEE1451_Entity *a,  

/* in */ ObjectTag object_tag) 

This operation initializes/modifies the object_tag parameter of the Entity class 

(3) OpReturnCode GetObjectID(IEEE1451_Entity *a,  

/* out */ ObjectID *object_id) 

This operation returns the object_ID parameter of the Entity class. 

(4) OpReturnCo

cription parameter of the Entity class. 

ObjectDispatchAddress *dispatch_address) 

meter of the Entity class. 

(6) EE1451_Entity *a,  

ject_dispatch_address is used to represent the network-specific address of the 

work. 

de GetObjectName(IEEE1451_Entity *a, 

/* out */ IEEE1451_String *object_name) 

This operation returns the des

(5) OpReturnCode GetDispatchAddress(IEEE1451_Entity *a,  

/* out */ 

This operation returns the object_dispatch_address para

OpReturnCode GetOwningBlockObjectTag(IE

/* out */ ObjectTag *owning_block_object_tag) 

This operation returns the ObjectTag of the owning block object following the 

relationship that was described in the specifications chapter. 

79 



 

(7) 

(8) 

 eration_id, 

This operation is the server-side construct for client-server operations. The 

pseudo-code for this operation is shown in Figure 5-5. Note that the server 

operation that is being targeted by the client is provided by the 

server_operation_id that is generated by the network infrastructure after it de-

marshals the network packet. For the server_operation_id the standard defines an 

enumeration, so that this value can be matched to every operation within an 

NCAP. 

Also, when the operation times out, we return an ArgumentArray of size zero 

which is done to follow recommendations that are given by the standard. 

Next, we discuss the design of the client-side for these types of network communications. 

This is done through the Client Port class. The design of this class begins with the structure that 

is created for this object. This structure is shown in Figure 5-6. 

OpReturnCode GetObjectProperties(IEEE1451_Entity *a,  

/* out */ ObjectProperties *object_properties) 

This operation returns the object_properties parameter of the Entity class. 

ClientServerReturnCode Perform(IEEE1451_Entity *a, 

/* in  */ unsigned short server_op

 /* in  */ ArgumentArray server_input_arguments, 

 /* out */ ArgumentArray server_output_arguments) 
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Decode the server_input_arguments

If execution mode is return value then
Call the operation that is meant for the server

peration Timed out

Encode outputs into arguments
tructure

Return successful operation

Return successful operation

 

 

Wait for server operation to complete

If timeout then
Return o

Else then

Send the new packet to the network infras

Else then
Call the operation that is meant for the server

Figure 5-5 Perform() Operation pseudo-code 

typedef struct {
  IEEE1451_BaseClientPort *super;
  ClassID class_ID;
  IEEE1451_String description;
  IEEE1451_String parent_name;

  ObjectID object_ID;

 
6 Client Port Class Structure in C 

 
The only attribute that is specific to this class is the block_state parameter, which is used 

to “point” to the NCAP Block’s state machine.  

Next, we will design the operations that are defined for this class. 

(1) ClientServerReturnCode Execute(IEEE1451_ClientPort *a, 

 /* in  */ unsigned short execute_mode, 

 /* in  */ unsigned short server_operation_id, 

 /* in  */ ArgumentArray server_input_arguments, 

  ObjectTag object_tag;

  unsigned short *block_state;
}IEEE1451_ClientPort;

Figure 5-
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 /* out */ ArgumentArray server_output_arguments) 

This operation provides the client-side functionality for client-server 

communications. The pseudo-code for this operation is shown in Figure 5-7.  

If execution_mode is return then

Send the pac
Wait for return from

ket to the network infrastructure
 server

Return operation timed out
lse then

Return successful operation and server output info

Else

Send the packet to the network infrastructure
Return successful operation

 
Figure 5-7 Execute() Pseudo-Code 

 
It is important to note that the call to the network infrastructure is the “hook” to 

communicate with the underlying network. Therefore, in order to use this 

operation for a custom implementation/application, we have to change the Send 

the packet to the network infrastructure to call the particular network library that 

Therefore, we first check to see which mode we will use. After verifying this, we 

peration) so 

equal to one) we are done and return to the application. In the case that the 

If timeout then

E

is used in the application. Also, from the specifications chapter we know that 

there are two types of execution modes for this operation (blocking and “send and 

forget”).  

then send the packet to the network infrastructure (network-specific o

that it can be marshaled onto the on-the-wire format of the underlying network. 

Then, if the execution mode is “send and forget” (execution_mode parameter is 
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execution mode is the blocking one (execution_mode parameter is equal to zero), 

then we wait until the server decodes the operation and returns the results from its 

operation. Also, in this case (execution mode is blocking), the operation timeouts 

if the server-side does not respond within a certain time that is set between the 

two NCAPs. 

Note that the packet that is sent to the network infrastructure consists of the 

ArgumentArray server_input_arguments. Therefore, the designer needs to 

customize an operation in the network library that decodes this datatype and puts 

it on the format of the underlying network. 

5.1.2.2 Publish-Subscribe Network Communications 

The publish-subscribe network communications are executed using the Publisher Port class and 

the Subscriber Port cla  of the Publisher Port 

class. This 

ss. We begin by showing the generated structure

structure is shown in Figure 5-8. 

typedef struct {

  ClassID class_ID;
  IEEE1451_String description;

  IEEE1451_BasePublisherPort *super;

  IEEE1451_String parent_name;
  ObjectTag object_tag;
  ObjectID object_ID;

}IEEE1451_PublisherPort;

 

 
The parameters for this class have the same meaning as what has been defined for the 

client/server classes in the previous section. 

  unsigned short *block_state;

Figure 5-8 Publisher Port Class Structure in C 

83 



 

Next w

how they are d

(1) 

ing network. It 

does this by sending the publication_contents to the network infrastructure 

(network-specific) so that it can be marshaled and sent across the underlying 

network. Therefore, to customize this operation we need only to call the network-

specific operation (provided by the network infrastructure). For example, the C 

code for this operation can be written in a single line that calls the network-

specific operation that marshals the ArgumentArray onto the on-the-wire format 

of the network that is employed. 

Next, we discuss the Subscriber Port class since it provides the subscriber-side 

functionality for these types of network communications. The structure for this class is shown in 

Figure 5-9. 

 
 

 

e design the operations that are defined for this class along with an explanation of 

esigned. 

OpReturnCode Publish(IEEE1451_PublisherPort *a,  

/* in */ ArgumentArray publication_contents) 

This operation provides a “hook” to communicate with the underly

typedef struct {

  ClassID class_ID;

  ObjectID object_ID;

  SubscriptionQualifier subscription_qualifier;

  IEEE1451_Service *super;

  IEEE1451_String description;
  IEEE1451_String parent_name;

  unsigned short *block_state;

  unsigned short subscription_key;
  PubSubDomain subscription_domain;
}IEEE1451_SubscriberPort

Figure 5-9 Subscriber Port Class Structure in C
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The e further 

explain  in th

he sub publications will be accepted. 

The sub

The su et of candidate publications to be 

accepted by

re defined for this class along with an 

explana ion of

(1) 

 ifier) 

 of the 

(2) 

 ier *subscription_qualifier) 

f the Subscriber Port 

(3) 

 / unsigned short *subscription_key) 

This operation initializes/modifies the subscription_qualifier parameter of the 

Subscriber Port class. 

(4) OpReturnCode SetSubscriptionDomain(IEEE1451_SubscriberPort *a, 

 /* in */ PubSubDomain subscription_domain) 

re are three parameters that are specific to this class. These types ar

ed e following discussion. 

T scription_qualifier field is used to determine which 

scription_key field is used to configure the subscriptions to the publications. 

bscription_domain field is used to define a s

 the port. 

Next, we will design the different operations that a

t  how they are designed. 

OpReturnCode SetSubscriptionQualifier(IEEE1451_SubscriberPort *a, 

/* in */ SubscriptionQualifier subscription_qual

This operation initializes/modifies the subscription_qualifier parameter

Subscriber Port class. 

OpReturnCode GetSubscriptionQualifier(IEEE1451_SubscriberPort *a, 

/* out */ SubscriptionQualif

This operation returns the subscription_qualifier parameter o

class. 

OpReturnCode GetSubscriptionKey(IEEE1451_SubscriberPort *a, 

/* out *
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This operation initializes/modifies the subscription_domain parameter of the 

Subscriber Port class. 

(5) OpReturnCode GetSubscriptionDomain(IEEE1451_SubscriberPort *a, 

 /* out */ PubSubDomain subscription_domain) 

This operation returns the subscription_domain parameter of the Subscriber Port 

tails with the transducers that are physically connected to 

the NC

nd operations that provide this level of abstraction. 

5.1.3.1 Transducer Block Class 

The design of this class begins with the structure that is created for this object. This structure is 

shown in Figure 5-10.  

class. 

 

5.1.3 Transducer I/O API 

 

This API hides the communication de

AP. This is done through the Transducer Block Class (for the TIM as a whole), and by 

means of Parameter Classes (for the individual transducers). In this section, we will show the 

design of the different objects a

typedef struct {
  IEEE1451_BaseTransducerBlock *super;
  ClassID class_ID;
  IEEE1451_String description;
  IEEE1451_String parent_name;
  ObjectTag object_tag;
  ObjectID object_ID;

}IEEE1451_TransducerBlock;

 
Figure 5-10 Transducer Block Class Structure in C 

  unsigned short *block_state;
  unsigned short sub_state : 8;
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Note that the different parameters that are designed for this class are similar to those of 

the other Block classes that we have discussed in this chapter. So, for an explanation on those 

parameters refer to previous sections. Next, we design the different operations that are defined 

for this class. 

(1) OpReturnCode EnableCorrections(IEEE1451_TransducerBlock *a) 

This operation is used to transition in the state machine of this class. This 

transition consists of going from the TB_UNCORRECTED to the 

TB_CORRECTED state. The pseudo-code for this operation is shown in Figure 

5-11. 

Check the Block state

If Block is in BL_ACTIVE state then

If Transducer Block is in TB_UNCORRECTED state then

Return successful operation

 
(2) OpReturnCode DisableCorrections(IEEE1451_TransducerBlock *a) 

This operation is used to transition in the state machine of this class. This 

transition consists of going from the TB_UNCORRECTED to the 

Remain in this state
Return successful operation

Else Transducer Block is in TB_CORRECTED state then
Remain in this state

Else If Block is in BL_INACTIVE state then

If Transducer Block is in TB_UNCORRECTED state then
Transition to TB_CORRECTED state
Return successful operation

Else Transducer Block is in TB_CORRECTED state then
Remain in this state
Return successful operation

Else Block is in BL_UNITIALIZED state then
Return Error, function not operational

 
Figure 5-11 EnableCorrections() operation pseudo-code 
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TB_CORRECTED state. The pseudo-code for this operation is shown in Figure 

5-12. 

OpReturnCode GetCorrectionMode(IEEE1451_TransducerBlock *a,  

/* out */ unsigned short *

(3) 

correction_mode) 

This operation returns the sub_state field of this object class. 

(4) OpReturnCode GetNumberOfTransducerChannels(TransducerBlock *a, 

 /* out */ unsigned short *number_of_transducer_channels) 

This operation returns the field of the Meta-TEDS that signals the number of 

implemented transducer channels in the TIM. Note that this TEDS information is 

obtained accessing a header file that is provided at compile-time. For example, in 

this operation we write a single line of code as is shown below: 

*number_of_transducer_channels = CHANNEL_ZERO.channels; 

Check the Block state

If Block is in BL_ACTIVE state then

Else Transducer Block is in TB_CORRECTED state then
Remain in this state
Return successful operation

Else If Block is in BL_INACTIVE state then

If Transducer Block is in TB_UNCORRECTED state then
Remain in this state
Return successful operation

Else Transducer Block is in TB_CORRECTED state then
Transition to TB_UNCORRECTED state
Return successful operation

Else Block is in BL_UNITIALIZED state then
Return Error, fun

 
Figure 5-12 DisableCorrections() operation pseudo-code 

If Transducer Block is in TB_UNCORRECTED state then
Remain in this state
Return successful operation

ction not operational
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(5) OpReturnCode GetMinimumSamplingPeriod(IEEE1451_TransducerBlock *a, 

 /* out */ TimeRepresentation *minimum_sampling_period) 

This operation returns the time in seconds of the minimum sampling rate of the 

entire TIM. In order to design this operation, we write a single line of code that 

accesses the TEDS header file, this line is as follows: 

*minimum_sampling_period = CHANNEL_ZERO.sampling_period; 

(6) OpReturnCode GetChannelParameterObjectTags(TransducerBlock *a, 

 /* in  */ unsigned short channel_number, 

 /* out */ ObjectTagArray *parameter_object_tags) 

This operation returns an array of ObjectTags that identify the public transducers 

that use the channel that is being accessed. 

(7) OpReturnCode GetParameterObjectChannelNumbers (TransducerBlock *a, 

 /* in  */ ObjectTag parameter_object_tag, 

 /* out */ unsigned short *channel_numbers) 

This operation checks the ObjectTag of the class and returns the channel number 

of the particular channel that is being accessed. 

(8) OpReturnCode GetUnrepresentedChannelNumbers(TransducerBlock *a, 

 /* out */ unsigned short *unrepresented_channel_numbers) 

This operation returns a zero because all channels that are physically connected to 

the NCAP are represented. 

(9) OpReturnCode UpdateAll(IEEE1451_TransducerBlock *a) 
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This operation is used to apply a global trigger to every transducer channel that is 

connected to the NCAP. The pseudo-code for this operation is shown in Figure 

5-13.  

Trigger CHANNEL_ZERO
Waiting for Trigger ACK

If timeout then
Return Error Message

Else then
Return successful operation

 
Figure 5-13 UpdateAll() Pseudo-code 

 
Note that this operation sends a global trigger command through the AHB to the 

TIM. Therefore, because it is a global trigger, this operation does not need to be 

customized. Also, this operation times out if the worse-case channel update time 

of the Meta-TEDS is exceeded. 

In this 

eter With Update class since this class is used 

to apply individual channel triggering for sensors and actuators. The structure that is generated 

for this class is shown in Figure 5-14. 

In this section we will focus on the UpdateAndRead, WriteAndUpdate and GetMetadata 

operations. This is because those three operations are used to apply an individual trigger as well 

as access the Channel-TEDS.  

5.1.3.2 Parameter Classes 

section we will discuss the classes that are used for individual channel triggering as well 

as Channel-TEDS access. We begin with the Param
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typedef struct {
  IEEE1451_Parameter *super;
  ClassID class_ID;

  IEEE1451_String parent_name;
  IEEE1451_String description;

  ObjectTag object_tag;

rWithUpdate;

e in C 

 
(1) (IEEE1451_ParameterWithUpdate *a, 

 

  ObjectID object_ID;
  unsigned short *block_state;
}IEEE1451_Paramete

 
Figure 5-14 Parameter With Update Class Structur

OpReturnCode UpdateAndRead

/* out */ ArgumentArray data) 

This operation is used to apply an individual trigger to a sensor channel. The 

pseudo-code for this operation is shown in Figure 5-15. 

Check to see what type of transducer we are dealing with

If sensor then
Trigger the sensor
Wait for Trigger ACK

If timeout then

Else th
Return error message
en
Get transducer data

Print “Tried to read an Actuator channel so nothing happens”

 
Figure 5-15 UpdateAndRead() pseudo-code 

 
Note that the first thing that we do is to check and see what type of transducer it 

is. After verifying that it is a sensor, we then proceed to trigger the sensor 

channel. Then we wait for the trigger ACK signal and if it is not received by the 

Encode data into an Argument Array
Return successful operation

Else then

Return successful operation
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NCAP within the channel update time that is specified in the TEDS, the operation 

times out and returns an error. Otherwise, it grabs the sensor reading, encodes the 

ding, and returns with a 

on. 

(2) 

 / ArgumentArray data) 

uator channel and then it triggers 

e are dealing with an actuator 

channel, we decode the ArgumentArray and put it in the format of raw actuator 

data. Then we trigger the sensor and wait for the Trigger ACK. Again, if the ACK 

signal is not received within the channel update time that is stored in the TEDS, 

this operation times out. 

ArgumentArray into the interpretation of the sensor rea

successful OpReturnCode to the applicati

OpReturnCode WriteAndUpdate(IEEE1451_ParameterWithUpdate *a, 

/* in *

This operation is used to write a value to an act

the channel. The pseudo-code for this operation is shown in Figure 5-16. From the 

figure, we can see that after verifying that w

Check to see what type of transducer we are dealing with

If actuator then
Decode ArgumentArray and Write results to actu

r the Actuator
ato

Trigge
Wait for Trigger ACK

Else then
Print “Tried to write to a Sensor channel so nothing happens”
Return successful operation

 
Figure 5-16 WriteAndUpdate() Pseudo-code 

 

r register

If timeout then
Return error message

Else then
Return successful operation
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Next, we discuss the Physical Parameter class since this class is used to access the 

Channel-TEDS information. The generated structure for this class is shown in Figure 5-17.  

typedef struct {
  IEEE1451_ParameterWithUpdate *super;
  ClassID class_ID;
  IEEE1451_String description;
  IEEE1451_String parent_name;
  ObjectTag object_tag;
  ObjectID object_ID;
  unsigned short block_state : 8;
  PhysicalParameterType physical_type;
  ParameterInterpretation interpretation;
}IEEE1451_PhysicalParameter;

 
Figure 5-17 Physical Parameter Class Structure in C 

 
Note th

classes that w interpretation 

parameters. These parameters are enumerations that are used to determine the type of transducer 

(physical_type) and the interpretation of the transducer data (sensor reading, actuator value, etc). 

(1) OpReturnCode GetPhysicalParameterType(IEEE1451_PhysicalParameter *a, 

 /* out */ unsigned short *parameter_type) 

This operation returns the physical_type parameter of the Physical Parameter 

object. 

(2) OpReturnCode GetMetadata(IEEE1451_PhysicalParameter *a, 

 /* out */ PhysicalParameterMetadata *metadata) 

This operation returns the complete structure of the Channel-TEDS of the 

Physical Parameter object that is being accessed.  

 

 

at most of the parameters that are defined for this class are the same as the other 

e have defined so far. However, we define a physical_type and 
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(3) 

 _interpretation, 

 

retation returns the interpretation 

zero since there is no 

 

5.1.4 Application Layer 

 

This layer consists of the different NCAP objects that remain unchanged and do not provide 

hooks for communications with a network or TIM. In this section, we will focus on the design of 

those objects that control the NCAP’s functionality (Block and NCAP Block classes), and the 

application-specific functionality (given by the Function Block). 

 

5.1.4.1 Block Class 

 

This class is the root hierarchy of all Block objects. To represent this class, we use a structure 

that has the attributes of an IEEE 1451.1 class header as well as particular information that is 

pertinent to this object. The generated structure for this object class is shown in Figure 5-18.  

or this class. 

The group_ids field is an array of chars (OctetArray) that represent the sets of objects of 

which this Block instance is a member. 

OpReturnCode GetInterpretation(IEEE1451_PhysicalParameter *a, 

unsigned short *parameter

unsigned short *buffering) 

In this operation, the parameter_interp

parameter of the class, and the buffering type returns a 

queuing of Parameter values. 

The fields shown in the figure are further explained in the following discussion. The 

block_state field is used to represent the current state of the state machine f
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The server_object_properties field is an array of ObjectProperties that is used to store 

information about the server object of the NCAP. 

typedef struct {
  IEEE1451_Entity *super;
  ClassID class_ID;
  IEEE1451_String desc
  IEEE1451_String pare

ription;
nt_name;

  ObjectTag object_tag;

  unsigned short block_state : 8;

 
 Class Structure in C 

 
Using this structure, w

previously shown in the specifi wing discussion we will design the 

operation, its signature and an explan

(1) OpReturnCode GetGroupIDs (IEEE1451_Block *a,  

(2) 

 

This operation sets the attribute group_ids of the Block class. Note that this 

 BL_ACTIVE state, so if it is 

 

  ObjectID object_ID;

  char *group_ids;
  ObjectPropertiesArray *server_object_properties;
}IEEE1451_Block;

Figure 5-18 Block

e can now begin to define the different operations that were 

cations chapter. In the follo

ation of its design and behavior.  

/* out */ OctetArray group_ids) 

This operation returns the attribute group_ids of the Block class.  

OpReturnCode SetGroupIDs (IEEE1451_Block *a, 

/* in */ OctetArray group_ids)

operation is not operational when the Block is in the

called when in this state the operation returns an error message. 

(3) OpReturnCode GetBlockMajorState (IEEE1451_Block *a,  

/* out */ unsigned short block_major_state) 
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This operation returns the current state of the state machine for the Block class. 

s shown in the structure for the 

th every field set to 

(5) lockModelNumber (IEEE1451_Block *a, 

r String with every field set to 

(6) 

n) 

t to 

 pseudo-

Therefore, it returns block_state field that wa

Block class. 

(4) OpReturnCode GetBlockManufacturerID (IEEE1451_Block *a, 

/* out */  String block_manufacturer_ID) 

This operation returns the block_manufacturer_ID String wi

zero. 

OpReturnCode GetB

/* out */  String block_model_number) 

This operation returns the block_model_numbe

zero. 

OpReturnCode GetBlockVersion (IEEE1451_Block *a,  

/* out */ String block_software_versio

This operation returns the block_software_version String with every field se

zero. 

(7) OpReturnCode GoActive (IEEE1451_Block *a) 

This operation causes a transition in the state machine for this block. The

code for this operation is shown in Figure 5-19. 
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Check the current value of the block_state

If Block is in BL_UNITIALIZED state then

Return successful operation

Else if Block is in BL_INACTIVE state then
Remain in this state

Transition to BL_INACTIVE state

Return successful operation

Else Block is in BL_ACTIVE state

 

 
(8) 

 the state machine for this Block 

Return error, function not operational

Figure 5-19 GoActive() operation pseudo-code 

OpReturnCode GoInactive (IEEE1451_Block *a) 

This operation is used for transitions within

object. The pseudo-code for this operation is shown in Figure 5-20. 

Check the current value of the block_state

If Block is in BL_UNITIALIZED state then
Return error, function not operational

n

Else Block is in BL_ACTIVE state
Transition to BL_INACTIVE state
Return successful operation

 
Figure 5-20 GoInactive() operation pseudo-code 

(9) OpReturnCode Initialize (IEEE1451_Block *a) 

This operation is used for transitions within the state machine for this Block 

object. The pseudo-code for this operation is shown in Figure 5-21. 

Else if Block is in BL_INACTIVE state then
Remain in this state
Return successful operatio
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Check the current value of the block_state

If Block is in BL_UNITIALIZED state then
Return error, function not operational

Else if Block is in BL_INACTIVE state then
Transition to BL_ACTIVE state
Return successful operation

Else Block is in BL_ACTIVE state
Remain in this state
Return successful operation

 
Figure 5-21 Initialize() operation pseudo-code 

(10) 
 

OpReturnCode Reset (IEEE1451_Block *a) 

tion to the 

 that is in. Therefore, the code for 

the 

(11) 

/* out */ ObjectPropertiesArray server_object_properties) 

This operation returns the object_tag and server_object_properties parameters of 

the Block object. 

5.1.4.2 NCAP Block Class 

The structure that is generated for this block is shown in Figure 5-22. Note that most of the 

parameters that are defined for this class are similar to the ones of the Block class and have the 

same meaning. Therefore, we will only explain the parameters that are specific to this object 

class. 

This operation makes the state machine of the Block object to transi

BL_UNITIALIZED state regardless of the state

this operation consists of setting the block_state parameter to 

BL_UNITIALIZED state. 

OpReturnCode GetNetworkVisibleServerObjectProperties (IEEE1451_Block *a, 

/* out */ ObjectTag this_block_object_tag,  
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typedef struct {
  IEEE1451_Block *super;
  ClassID class_ID;

  unsigned short *block_state;
  unsigned short sub_state : 8;
  ClientPortPropertiesArray *client_port_properties;
  Boolean ignore_request;
}IEEE1451_NCAPBlock;

 
Figure 5-22 NCAP Block Structure in C 

The block_state is a pointer to the state machine of the Block class. This is done because 

the operations of this class still depend on the value of that state machine. 

The sub_state field is used to represent to current value of the sub-stated state machine of 

the NCAP Block class. Recall that this class substates the BL_ACTIVE state into two states 

which are represented by this field. 

The client_port_prop perties that is used to store 

ation

The ign

publication. If 

Next, we will design the different operations that are defined for the NCAP Block along 

with a brief explanation of their pseudo-code. 

(1) OpReturnCode GetNCAPBlockState(IEEE1451_NCAPBlock *a,  

/* out */ unsigned short *ncap_block_state) 

This operation returns the current value of the sub-state of the state machine for 

the NCAP Block. 

(2) OpReturnCode GetNCAPManufacturerID(IEEE1451_NCAPBlock *a,  

/* out */ IEEE

  IEEE1451_String description;
  IEEE1451_String parent_name;
  ObjectTag object_tag;
  ObjectID object_ID;

erties field is an array of ClientPortPro

inform  about the client object of the NCAP. 

ore_request field is used to determine if the NCAP Block should respond to the 

it is TRUE then we should ignore the publication. 

1451_String *ncap_manufacturer_id) 
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This operation returns the ncap_manufacturer_id String with every field set to 

zero. 

(3) OpReturnCode GetNCAPModelNumber(IEEE1451_NCAPBlock *a,  

/* out */ IEEE1451_String *ncap_model_number) 

This operation returns the ncap_model_number String with every field set to zero. 

(4) OpReturnCode GetNCAPSerialNumber(IEEE1451_NCAPBlock *a,  

/* out */IEEE1451_String *ncap_serial_number) 

This operation returns the ncap_serial_number String with every field set to zero. 

(5) OpReturnCode GetNCAPOSVersion(IEEE1451_NCAPBlock *a,  

/* out */ IEEE1451_String *ncap_os_version) 

This operation returns ncap_os_version String with every field set to zero. 

(6) OpReturnCode GetClientPortProperties(IEEE1451_NCAPBlock *a

/* out */ ObjectTag *this_ncap_block_object_tag, 

/* out */ ClientPortPropertiesArray *client_port_properties) 

This operation returns the object_tag and client_port_properties parameters of the 

(7) OpReturnCode SetClientPortServerObjectBindings(IEEE1451_NCAPBlock *a, 

This operation sets the ignore_request parameter of this class to TRUE. 

, 

 

 

NCAP Block class. 

 /* in */ ObjectTag this_ncap_block_object_tag, 

 /* in */ ObjectPropertiesArray client_port_server_properties) 

This operation initializes/modifies the object_tag and client_port_properties 

parameters of the NCAP Block class. 

(8) OpReturnCode IgnoreRequestNCAPBlockAnnouncement(NCAPBlock *a) 
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(9) OpReturnCode RespondToRequestNCAPBlockAnnouncement(NCAPBlock*a) 

This operation sets the ignore_request parameter of this class to FALSE. 

k_cookie of the object that is being referenced is 

ed state. 

(10) OpReturnCode GetBlockCookie(IEEE1451_NCAPBlock *a, 

 /* in  */ IEEE1451_Object block_reference, 

 /* out */ unsigned short *block_cookie ) 

In this operation the bloc

returned. 

(11) OpReturnCode RebootNCAPBlock(IEEE1451_NCAPBlock *a) 

In this operation the NCAP Block and all objects that are owned by this object are 

placed in the unitialized state. Therefore, the code for this operation consists of 

recursively calling all the objects that are owned by the NCAP Block and setting 

the value of their state machine to the unitialized state. 

(12) OpReturnCode ResetOwnedBlocks(IEEE1451_NCAPBlock *a) 

In this operation, all blocks that are owned by the NCAP Block behave as if they 

received a reset. Therefore, the code for this operation consists of recursively 

calling all the objects that are owned by the NCAP Block and setting the value of 

their state machine to the unitializ

(13) OpReturnCode PSK_NCAPBLOCK_GO_ACTIVE (NCAPBlock *a) 

This operation has the same behavior as the GoActive operation of the Block 

class. So it has the pseudo-code that was shown in Figure 5-20. 

(14) OpReturnCode GoInactive (IEEE1451_NCAPBlock *a) 

This is the inherited operation from the Block class, so it has the same behavior as 

the GoInactive operation of the Block class. 

101 



 

 

5.1.4.3 Function Block Class 

 

The generated structure for this class is shown in Figure 5-23. The parameters for this class have 

the same meaning as the ones that have been defined for the previous classes.  

typedef struct {
  IEEE1451_Block *super;
  ClassID class_ID;
  IEEE1451_String description;
  IEEE1451_String parent_name;
  ObjectTag object_tag;
  ObjectID object_ID;
  unsigned short *block_state;
  unsigned short sub_state : 8;
}IEEE1451_FunctionBlock;

 
Figure 5-23 Function Block Class Structure in C 

 
The different operations that are defined for this class are further discussed in the 

following discussion. 

(1) OpReturnCode GetFunctionBlockState(IEEE1451_FunctionBlock *a,  

/* out */ unsigned short *function_block_state) 

This operation returns the sub_state parameter of the Function Block object. 

(2) OpReturnCode Start(IEEE1451_FunctionBlock *a) 

This operation is used for transitions within the sub-stated BL_ACTIVE state of 

the Function Block. The pseudo-code for this operation is shown in Figure 5-24. 
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Check the Block state

If Block is in BL_ACTIVE state then

Transition to FB_RUNNIN
Return successful operation

If Function Block is in FB_IDLE state then
G state

Remain in this state

Else Function Block is in FB_STOPPED state then
unction not operational

El _INACTIVE or BL_UNITIALIZED state then

 
do-code 

 
(3) OpReturnCode Clear(IEEE1451_FunctionBlock *a) 

This operation is used for transitions within the sub-stated BL_ACTIVE state of 

the Function Block. The pseudo-code for this operation is shown in Figure 5-25. 

Else if Function Block is in FB_RUNNING state then

Return successful operation

Return Error, f

se Block is in BL
Return Error, function not operational

Figure 5-24 Start() Operation pseu

Check the Block state

Remain in this state
Return successful operation

Else if Function Block is

If Block is in BL_ACTIVE state then

If Function Block is in FB_IDLE state then

 in FB_RUNNING state then
Transition to FB_IDLE state

(4) OpReturnCode Pause(IEEE1451_FunctionBlock *a) 

This operation is used for transitions within the sub-stated BL_ACTIVE state of 

the Function Block. The pseudo-code for this operation is shown in Figure 5-26. 

Return successful operation

Else Function Block is in FB_STOPPED state then
Return Error, function not operational

Else Block is in BL_INACTIVE or BL_UNITIALIZED state then
Return Error, function not operational

 
Figure 5-25 Clear() Operation pseudo-code 
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Check the Block state

If Block is in BL_ACTIVE state then

If Function Block is in FB_STOPPED state then
Remain in this state
Return successful operation

Else if Function Block is in FB_RUNNING state then
Transition to FB_STOPPED state
Return successful operation

Else Function Block is in FB_IDLE state then
Return Error, function not operational

Else Block is in BL_INACTIVE or BL_UNITIALIZED state then
Return Error, function not operational

 
Figure 5-26 Pause() Operation pseudo-code 

 
(5) OpReturnCode Resume(IEEE1451_FunctionBlock *a) 

This operation is used for transitions within the sub-stated BL_ACTIVE state of 

the Function Block. The pseudo-code for this operation is shown in Figure 5-27. 

Check the Block state

If Block is in BL_ACTIVE state then

If Function Block is in FB_STOPPED state then
Transition to FB_RUNNING state
Return successful operation

Else if Function Block is in FB_RUNNING state then
Remain in this state
Return successful operation

Else Function Block is in FB_IDLE state then
Return Error, function not operational

Else Block is in BL_INACTIVE or BL_UNITIALIZED
ion not operational

 state then
Return Error, funct

Figure 5-27 Resume() Operation pseudo-code 
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5.1.5 Summary and Example implementation 

 

In this section, we have shown the complete design of the information model that is defined in 

the IEEE 1451.1 standard. By implementing this model, we achieve compliance with the 

specifications that were derived in Section 4.1. Therefore, users can configure this NCAP 

implementation for their particular application. Next, we will show the configuration for an 

NCAP that is interfaced with an 8-Channel TIM. For the purpose of this example we will assume 

that there are four sensors and four actuators implemented in the TIM. Note that we will focus on 

the NCAP objects that deal with TIM communications. 

The first thing that we must do is to instantiate an NCAP Block class. In order to 

instantiate this object in C we use the scheme that was previously designed in Figure 5-3. 

Therefore, we write th

5-22) within this structure by using the arrow C operator (e.g. control->object_tag = 0). This 

NCAP Block object consolidates the system and communication housekeeping. Therefore, this 

class will control the behavior of the experiment. Next, we instantiate (using the same scheme 

that was shown for the NCAP Block) a Transducer Block so that the TIM transducers can be 

mapped to NCAP objects. This block is then used to obtain the number of transducers that are 

implemented within the TIM by accessing the Meta-TEDS through the 

GetNumberOfTransducersChannels  the result of this 

peration (eight in this example), we proceed to instantiate eight parameter objects that are used 

to represent the individual channels. In order to do this instantiation we can use C malloc() 

operation in the main program code as follows:  

e following statement in the main code: 

IEEE1451_NCAPBlock *control; 

Then we would have to initialize the different parameters (previously shown in Figure 

 shown in the Section 5.1.3.1. From

o
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IEEE1451_Parameter *parameters= (IEEE1451_Parameter *)malloc(8*sizeof(IEEE1451_Parameter)); 

By doing this, we have mapped all the TIM transducers to NCAP objects, so the next step 

is to define any application-specific behavior of the system. For the purpose of this example, we 

assume that the transducers need to be sampled/set every two seconds with n number of 

iteratio

tion 

requres

ns. In order to accomplish this, we instantiate a Function Block that has an application-

specific operation called SampleSetAll(). This operation calls the ReadAndUpdate and 

WriteAndUpdate operations (used to trigger the transducers as was previously shown in Section 

5.1.3.2) of the transducers every two seconds for the number of iterations that the applica

. This application-specific operation is shown in Figure 5-28. It is important to note that 

the timer variable that is shown in the code is an interrupt driven signal that increments every 

second. 

SampleSetAll(IEEE1451_FunctionBlock *a, int iterations){

  int count = 0;
  While(count <= iterations){
     UpdateAndRead(sensor1, data1);
     UpdateAndRead(sensor2, data2);
     UpdateAndRead(sensor3, data3);
     UpdateAndRead(sensor4, data4);
     Wr dU
     Wr dU
     WriteAndUpdate(actuator3, writeData3);
     WriteAndUpdate(actuator4, writeData4);
   // Reset the timer...

  While (timer <= 2);

   return 0;

 

 of the memory mapping that exists within the Excalibur chip, we make 

the design decision to implement the commands as a memory address. In doing this, we need to 

iteAn pdate(actuator1, writeData1);
iteAn pdate(actuator2, writeData2);

  timer = 0;
  // Wait until timer reaches two seconds

   count++;
   }

}
 

Figure 5-28 Application-specific example operation SampleAndSetAll() 

Next, we design the NCAP/TIM commands that are sent through the physical interface 

(AMBA AHB). Because
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assign the memory addresses for the mandatory TIM commands. These mandatory commands 

include the following: 

• The TIM_Channel_MASK command is used to issue read/write to the transducer 

channel’s interrupt mask register.  

• The TIM_Channel_STATUS command is used to read the transducer channel’s 

status register. Note that this command is read-only.  

• The TIM_Channel_TRIGGER command is used to trigger the selected transducer 

channel. Note that this command is asserted when this address space is accessed 

regardless of it is a read/w

• The TIM_Channel_DATA command is used to read/write the transducer 

channel’s data register. Note that for sensors this command is read-only, while it 

is write-only for actuators.  

• The TIM_RESET command is used to reset the TIM, which places all the TIM’s 

objects in their default power-on state. 

Next, we need to design the memory address spaces such that we have enough space for a 

future expansion in which up to 255 transducers can be accessed. In order to do this, we can 

configure the TIM to have a base address of 0x80000000 with a range of 64KB. Then, the 16-bit 

offset address is split into channel and functional addresses. Then, in order to leave to be able to 

represent 255 transducers, we use the least significant bits of the offset address for the channel 

address, while the remaining most significant bits of the 16-bit offset address are used to 

represent the functional address (command). With this in mind, we can design a header file for 

this 8-Channel TIM example in Figure 5-29.  

rite access.  
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Note that to access each of these address spaces, all that we have to do is to define the 

base address of the TIM and read/write to it depending on the command. For example, if we 

hich is a constant that we can define in a header file or main 

code.  

want to write an 0xFF (HEX notation) value to the interrupt mask register of channel one, we 

write *TIM_ONE_MASK(EXC_PLD_BLOCK0_BASE) = 0xFF. Note that the base address is 

EXC_PLD_BLOCK0_BASE, w

Using the header file that was previously shown in Figure 5-29, we can show how to 

customize the UpdateAndRead and WriteAndUpdate operations for a particular application. For 

the purpose of the example we assume that channel one is a temperature sensor, and channel 

three is an actuator. With this in mind, we can show the snippet C code that is needed for the 

UpdateAndRead operation when it is called for the temperature sensor in Figure 5-30. 

#ifndef TIM_CTRL00_H
#define TIM_CTRL00_H

#define EXC_PLD_TYPE (volatile unsigned int *)

// Define all the interrupt masks
#define TIM_ZERO_MASK(base_addr) (EXC_PLD_TYPE (base_addr + 0x0000))

#define TIM_TWO_MASK(base_addr) (EXC_PLD_TYPE (base_addr + 0x0008))
…
#define TIM_EIGHT_MASK(base_addr) (EXC_PLD_TYPE (base_addr + 0x0020))

// Define the status
#define TIM_ZERO

#define TIM_ONE_MASK(base_addr) (EXC_PLD_TYPE (base_addr + 0x0004))

 registers
_STATUS(base_addr) (EXC_PLD_TYPE (base_addr + 0x2000))

#define TIM_ONE_STATUS(base_addr) (EXC_PLD_TYPE (base_addr + 0x2004))
#define TIM_TWO_STATUS(base_addr) (EXC_PLD_TYPE (base_addr + 0x2008))
…
#define TIM_EIGHT_STATUS(base_addr) (EXC_PLD_TYPE (base_addr + 0x2020))

#define TIM_ZERO_TRIGGER(base_addr) (EXC_PLD_TYPE (base_addr + 0x4000))
#define TIM_ONE_TRIGGER(base_addr) (EXC_PLD_TYPE (base_addr + 0x4004))
#define TIM_TWO_TRIGGER(base_addr) (EXC_PLD_TYPE (base_addr + 0x4008))
…

#define TIM_ZERO_DATA(base_addr) (EXC_PLD_TYPE (base_addr + 0x6000))

…

// Reset Command

 

// Trigger...

#define TIM_EIGHT_TRIGGER(base_addr) (EXC_PLD_TYPE (base_addr + 0x4020))

// Data registers...

#define TIM_ONE_DATA(base_addr) (EXC_PLD_TYPE (base_addr + 0x6004))
#define TIM_TWO_DATA(base_addr) (EXC_PLD_TYPE (base_addr + 0x6008))

#define TIM_EIGHT_DATA(base_addr) (EXC_PLD_TYPE (base_addr + 0x6020))

#define TIM_RESET(base_addr) (EXC_PLD_TYPE (base_addr + 0x8000))

#endif /* TIM header file */

Figure 5-29 TIM Commands Header File 
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The behavior of this operation was written using the pseudo-code that was designed 

previously in Figure 5-15. Therefore, we trigger the sensor and then we wait until we receive the 

trigger ACK. If we do not receive this trigger ACK within the time that is specified by the 

Channel-TEDS, we timeout and return the timeout enumeration that is given by the IEEE 1451.1 

standard. If the operation does not timeout, we proceed to read the raw sensor data. This is later 

converted to Celsius though an application-specific function that has this information. Then the 

last step is to encode the converted result into an argument array and we return signaling that the 

operation executed successfully.  

// Temperature sensor
// Trigger the sensor then read...

*STIM_ONE_TRIGGER(EXC_PLD_BLOCK0_BASE) = 1;

while (trigger_ACK != 1) {
// Trigger_ACK must be received within the channel Update Time specified in the TEDS
if (jiffies > channel1.ChannelUpdateTime)

return 14;  // Return Operation Timed out

// Next Line Changes depending on the transducer channel
// Reading raw sensor data

// Converting temperature to Celsius
ConvertTemperature(raw,res);

data->typeCode = FLOAT32_TC;
data->Arg_Union.float32Val = *res;

// Next Line Changes depending on the transducer channel

// Timeout routine

}

raw = *STIM_ONE_DATA(EXC_PLD_BLOCK0_BASE);

// Encoding the Celsius temperature into the output argument array

return 0;
 

Figure 5-30 Snippet C Code for UpdateAndRead Operation 

 
On the other hand, we can also show a snippet of the code that is needed for the behavior 

of the WriteAndUpdate operation when it is called for Channel three in Figure 5-31.  
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//Next two Lines Change depending on the transducer channel
// Writing Data to Actuator Data Register
*STIM_THREE_DATA(EXC_PLD_BLOCK0_BASE) = data->Arg_Union.integer32Val;
// Trigger the Actuator
*STIM_THREE_TRIGGER(EXC_PLD_BLOCK0_BASE) = 1;
// Timeout Routine
while (trigger_ACK != 1) {

// Trigger_ACK must be received within the channel Update Time specified in the TEDS
if (jiffies > channel2.ChannelUpdateTime)

return 14;  // Return Operation Timed out
}
return 0;

}

 
Figure 5-31 Snippet C Code for WriteAndUpdate Operation 

 
The behavior of this operation was written using the pseudo-code that was designed 

previously in Figure 5-16. Therefore, we first write the actuator data to the transducer channel’s 

data register. Then, we set the actuator with this data by applying a trigger command. After 

doing this, we need to wait for the trigger ACK from the TIM to make sure that the operation 

was executed correctly. Again, if CK within the spec ied TEDS 

me the operation times out.  

Lastly, for the network interface, we must instantiate the different objects that are used in 

client/server and publish/subscribe communications. These objects include the Entity, Client 

Port, Publisher Port, and Subscriber Port classes. It is important to note that this mapping needs 

to be done at compile-time since this NCAP design does not support dynamic downloading. 

Note that the configuration that we have shown in this example is the minimal 

configuration for an IEEE 1451.1 NCAP. Therefore, if the application requires more objects then 

it is the designer’s responsibility to implement them in such that they fit the standard, and can be 

plugged into the NCAP. 

 
 
 
 

 we do not receive this trigger A if

ti
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5.2 TRANSDUCER INTERFACE MODULE 

 

The TIM is designed using a combination of hardware and software in a way that different 

transducers can be added or deleted with no major effort. In doing this, we allow easy portability 

from the EPXA1 chip to the EPXA10 chip. This porting is simple because these chips both have 

the same architecture, so all we have to do is de

reused with little effor

level of configurability. 

sign the standard-defined blocks in a generic way 

so that they can be t. The architecture shown in Figure 5-32 allows for this 

 
Figure 5-32 T

e trans ha

registers. This block interfaces with the c

own in the figure. The registers within this block consist of the transducer data (sensor read or 

interrupt mask registers, since this is the 

scheme (previously described in Section 4.2.4) that is used to generate an interrupt. The output of 

IM high-level Architecture 

 
Note that for th ducer c nnels, we design a generic block that contains three 

ontrol, priority encoder, and “glue” logic blocks as is 

sh

actuator write), the status register, and the interrupt mask register. Also, within this block we 

perform the AND operation between the status and 
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this operation is sent to the priority encoder. This encoder generates an interrupt signal that is 

interfaced with an interrupt controller. The interface between each transducer channel block and 

the control unit consists of control and data signals that are used to read/write the registers within 

a transducer channel. Also, each transducer channel block also interfaces with “glue” logic that is 

specific to the transducer that is being interfaced to the TIM. Lastly, the TEDS is designed in 

software as part of the NCAP as will be shown in the following discussion. 

 

5.2.1 Transducer Electronic Data Sheet 

 

There are two options to design the TEDS such that it resides in non-volatile memory and is 

accessible to the NCAP. The first option is to implement it in a custom Read Only Memory 

(ROM) block within the PLD.  

The second option CAP and be designed in 

twar

uring compile-time with the 

values 

 

 is for the TEDS to reside within the N

sof e while storing it in the Flash memory that is used for the program memory. This option 

gives a high level of configurability. This is because the NCAP would be able to access the 

TEDS structure by the operations that are pre-defined in the NCAP’s object model. So, there 

would be no need for a command to be sent over the AHB. The high level of configurability and 

the easy-access of the block by the NCAP make a software-based TEDS the best option. 

For the software-based TEDS we create a header file. This header file consists of two 

structure types (Meta-TEDS and Channel-TEDS) that contain the information previously shown 

in Table 4-3 and Table 4-4. This way, the TEDS information is set d

of the TIM and its transducers. Users can access this information through the operations 

that are defined for the NCAP. 
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5.2.2 Transducer Interface Module Control Unit 

 

The TIM control unit consists of two interfaces. It has an interface that is used for AHB 

communications and it has another interface for the transducer channels. The AHB portion of 

this unit is fixed and is designed to meet the timing specifications of the bus. On the other hand, 

for the transducer interface, users have to define all of the control/data signals that need to be 

interfaced with the transducer channel. This is done because it is impossible to dynamically set 

the port size of a VHDL entity, and the number of signals that are interfaced to the transducer 

channels varies depending on the amount of transducers that are implemented. Therefore, the 

designer has to define these signals at compile-time so that this block can interface with the 

transducer blocks. 

Next, we describe the AHB communication portion of the controller. To allow the NCAP 

to control the TIM as is required by the standard, we design the TIM control unit as a slave to the 

embedded stripe. Therefore, the control unit needs to comply with the timing diagrams of the 

bus. This timing is shown in Figure 5-33.  

Note that transactions on this bus consist of two distinct phases. An address phase, which 

lasts only a single cycle and a data phase that may require several cycles. The data phase is 

controlled by the HREADY signal. The events that are shown in the figure can be further 

explained by the following discussion. The master drives the address and control signals onto the 

bus after the rising edge of HCLK. Then, the Slave samples the address and control information 

on the next rising edged of the clock. After the slave has sampled the address and control it can 

start to drive the appropriate response and this is sampled by the bus master. Next, we define the 

signal structure for the protocol. This structure is summarized in Figure 5-34.  
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HCLK

A

Control

HADDR[31:0]

Control

Data
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HWDATA[31:0]

HRDATA[31:0]

(A)

Data

Address Phase Data Phase

(19)

HREADY

 
Figure 5-33 Simple AMBA transfer 
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Bridge
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AHB2

MASTER_HCLK

MASTER_HADDR[31..0]

MASTER_HTRANS[1..0]

MASTER_HSIZE[1..0]

MASTER_HWRITE

MASTER_HBURST[2..0]

MASTER_HWDATA[31..0]

MASTER_HRESP[1..0]

PLDMASTER_HREADY

MASTER_HRDATA[31..0]

MASTER_HLOCK

MASTER_HBUSREQ

MASTER_HGRANT
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Figure 5-34 PLD Slave and AHB Connection 
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iffe unic gnals th own e ex  in 

-2. It is t to note that in addition ignals t  each 

ve also has a gnal (H t indic the cur fer is in d for the 

ted slave. T  is a co ial dec  address bus signal HADDR.  

Signal Source Description 

The d rent bus comm ation si at are sh  in the figure ar plained

Table 5 importan  to the s hat are shown in the table,

sla  select si SEL) tha ates that rent trans tende

selec his signal mbinator ode of the

Table 5-2 AHB Signal Summary 

MASTER_HCLK PLD Stripe-to-PLD bridge slave-port clock that times all 
bus transfers. Signal timings are related to its rising 
edge clock. This signal is invertible 

MASTER_HADDR[31..0] Stripe Stripe-to-PLD 32-bit system address bus 
MASTER_HTRANS[1..0] Stripe Stripe-to-PLD bridge transfer type. 00 IDLE, 01 

BUSY, 10 NONSEQ, 11 SEQ 
MASTER_HWRITE Stripe When high, indicates a write transfer on the stripe-to-

PLD bridge; when low, a read transfer 
MASTER_HSIZE[1..0] Stripe Indicates the size of transfer on the stripe-to-PLD 

bridge. 00 BYTE, 01 Half word, 10 Word, 10 Double 
word 

MASTER_HBURST[2..0] Stripe Indicates whether the stripe-to-PLD bridge transfer 
forms part of a burst. 

MASTER_HWDATA[31..0] Stripe Used to transfer data from the master to the bus slaves 
during writes across the stripe-to-PLD-bridge 

MASTER_HREADY PLD When high, indicates that a stripe-to-PLD bridge 
transfer has finished 

MASTER_HRESP[1..0] PLD Slave response that provides additional information on 
the status of a transfer across the stripe-to-PLD bridge 

MASTER_HRDATA[31..0] PLD Used to transfer data fro
during reads across the 

m the bus slaves to the master 
stripe-to-PLD bridge 

MASTER_HLOCK Stripe When high, indicates that the master requires locked 
access to the bus 

MASTER_HBUSREQ Stripe Bus request signal, from the master to the arbiter 
MASTER_HGRANT PLD Bus grant signal that, in conjunction with 

MASTER_HREADY, indicates that the bus master 
has been granted the bus 

 
To meet the timing requirements of the AHB (previously shown in Figure 5-33), the 

behavior of the control unit is controlled by a state machine. This state machine is shown in 

Figure 5-35.  
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Figure 5-35 State Machine for the Control Unit 

 
Following the timing protocol of the bus, we design the controller state machine to 

remain idle until it is selected for a bus transfer by the NCAP (e.g. NCAP sends a Trigger 

command). Then, there are two basic subroutines one for read and the other for write operations. 

When the TIM is selected for a transfer, the controller decodes the command during the address 

phase of the protocol. For read operations, we read the register information (from the channel 

data, status, or interrupt mask register of the transducer channel) and place the data on the bus 

through the HRDATA signal. For write operations, the data that is received from the bus through 

the HWDATA signal is used to set the register that it is addressing. 

Next, we design the pseudo-code for the TIM control unit. This is shown in Figure 5-36. 

Note that we design the TIM to be selected when the HSEL signal is asserted and the HTRANS 
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bits are “10” in binary. The HSEL signal is generated by an address decoder, and when asserted 

it means that the peripheral has been selected for a bus transaction. To make sure that there is 

going to be a transfer on the bus, we also verify that the transaction signal is not idle or busy. 

After we have verified that the TIM is in fact selected for a transfer, we decode the command 

and set the different control signals of the transducer channel. It is important to note that these 

signals will be asserted when the NCAP sends a command such as Write Interrupt Mask Register 

to the TIM through the AHB. 

When in Address phase 
 
If HSEL = ‘1’ AND HTRANS = “10” THEN 
 
 TIM is selected 
 Check to see if it is a read or write 

 
If HWRITE = ‘1’ THEN  

 
  Selected for write 
  Decode the address and set control signals 
  Transition to Data phase 
 
 ELSE HWRITE = ‘0’ THEN 
  Selected for read 
  Decode the address and set control signals 
  Transition to Data phase 
 
Else 
 TIM is not selected so stay idle 
 
When in Data phase 
 
 If TIM was selected for write THEN 
  Send HWDATA to registers 

Set HREADY and HRESP signals 
 
 ELSE TIM was selected for read THEN 
  Place register data in HRDATA of the bus 

Set HREADY and HRESP signals 

Figure 5-36 Pseudo VHDL code for TIM Control Unit 
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Next, we design the transducer-side communications for the control unit. In order to do 

this we first need to design the command set that was previously derived in Section 4.2.2. To do 

this, we take advantage of the memory mapping that the Excalibur system’s architecture 

provides. In doing so, we design the TIM’s commands as an address (HADDR signal) within the 

PLD. This improves performance since a command is executed in two bus cycles (address and 

data phases) at a clock rate that can run as fast as 80 MHz. 

In order to fully represent the maximum number of transducers (255) and the commands, 

we design the PLD base address to be 0x80000000 with a range of 64KB. Then, the 16-bit offset 

address is split into channel and functional addresses. This is done to represent 255 transducers 

and the mandatory TIM commands (Read/Write Interrupt Mask Register, Read Status Register, 

Individual/Global Trigger, Read/Write Transducer Channel Data, and TIM Reset). To do this, 

we use the least significant bits of the offset address for the channel address, while the remaining 

most significant bits of the 64KB are used to represent the functional address (command). Note 

that to allow for the maximum amount of possible transducers we reserve 10 bits. This is because 

the memory range is byte-addressable, so it cannot be represented by 8 bits. Rather, channel 255 

would have an offset address of 0x3FC (HEX notation), which requires 10 bits for its 

presentation.  

From the timing diagram of the bus (previously shown in Figure 5-33), we know that 

there is a signal HWRITE (previously described in Table 5-2) that denotes the direction of the 

transfer (read or write). Therefore, the commands that have both read and write capabilities like 

the interrupt mask can be implemented as a single address. Next, we design the offset memory 

location

 

re

s for the TIM commands in Table 5-3. 

118 



 

Table 5-3 AMBA AHB Command Set 

Channel INT_MASK Status Trigger Channel_Data Reset 
ZERO 0x0000 0x2000 0x4000 0x6000 0x8000 
1 0x0004 0x2004 0x4004 0x6004 NA 
2 0x0008 0x2008 0x4008 0x6008 NA 
3 0x000C 0x200C 0x400C 0x600C NA 
… … … … … … 
255 0x03FC 0x23FC 0x43FC 0x63FC NA 
 

The INT_MASK corresponds to the Read Interrupt Mask and Write Interrupt Mask 

commands that were discussed in the specifications chapter.  

The Status command is used to read the status registers of the TIM and its individual 

transducers. Note that this command is read-only so if we try to write to that memory location it 

will have no effect. 

The Trigger command is asserted when the NCAP accesses the memory address shown 

in the table. When this command is sent, the control unit sends a signal to the “glue” logic. The 

“glue” logic then configures the different signals that are needed to sample/set the transducer.  

The Channel Data command is used to read or write to or from the transducer data 

registers. For sensors, this command is read-only and returns the sensor reading from the last 

trigger. For actuators, this command is write-only and is used to pre-load the transducer register 

with the data that it will acquire when it receives the next trigger. 

The Reset command is asserted when the memory address shown in the table is accessed. 

This command causes every block within the TIM to return to their default power-on state. For 

example, all the registers are cleared. Note that this command is only valid for the TIM as a 

whole.  
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5.2.2.1 Example Configuration 

In this sub-section, we will design the configuration for the control unit for an 8-Channel TIM 

using t

instantiate nine separate enable signals (for 

CHANNEL_ZERO through Channel eight) and we can use the same data input to every register. 

This is because the register for each channel is only enabled when the command is selected for 

that particular channel. With this in mind, we design the configuration for this command in 

Figure 5-37.  

he blocks that were designed in the previous section. In order to configure the control unit, 

we first need to instantiate the different control/data signals for the transducer channels that are 

implemented. Then, we add the transducer channels and their commands in the state machine of 

the control unit. Next, we design the connections that are made between the control unit and the 

transducer channels and their “glue” logic. We begin with the Write Interrupt Mask Register 

command. For this command, we need to 

 
Figure 5-37 Control Unit Example Configuration for Write Interrupt Mask Command 
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Then, with this configuration we can design the VHDL code that set the enable signals of 

the different registers as well as place the data that is sent from the NCAP into the interrupt mask 

register of the channel that is selected. To do this, we follow the pseudo-VHDL code structure 

that was previously shown in Figure 5-36. Therefore, during the address phase of the bus 

transaction, we set the enable signals of the registers. Then, in the data phase we place the 

HWDATA sent from the NCAP through the AHB onto the interrupt mask register’s input data. 

A snippet of the VHDL code that is needed to do this is shown in Figure 5-38. 

Address Phase
IF HWRITE = ‘1’
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”0000" =>
     mask_zero <= ’1';
  WHEN X”0004" =>
     mask_one <= ’1';
  WHEN X”0008" =>
     mask_two <= ’1';
  WHEN X”000C" =>
     mask_three <= ’1';
  WHEN X”0010" =>
     mask_four <= ’1';
  WHEN X”0014" =>
     mask_five <= ’1';
  WHEN X”0018" =>
     mask_six <= ’1';
  WHEN X”001C" =>
     mask_seven <= ’1';
  WHEN X”0020" =>
     mask_eight <= ’1';

Data Phase
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”0000" =>
     mask_data <= HWDATA;
  WHEN X”0004" =>
     mask_data <= HWDATA;
  WHEN X”0008" =>
     mask_data <= HWDATA;
  WHEN X”000C" =>
     mask_data <= HWDATA;
  WHEN X”0010" =>
     mask_data <= HWDATA;
  WHEN X”0014" =>
     mask_data <= HWDATA;
  WHEN X”0018" =>
     mask_data <= HWDATA;
  WHEN X”001C" =>
     mask_data <= HWDATA;
  WHEN X”0020" =>
     mask_data <= HWDATA;  

Figure 5-38 Snippet VHDL code for TIM Control unit for Write Interrupt Mask Command 
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Next, we design the configuration for the Read Interrupt Mask Register command. The 

logic design for this command is similar to the one that was previously shown for the Write 

Interrupt Mask Register command. However, when we read the interrupt mask register we do not 

need to assert the enable signals of the register. Rather, we use the output information of the 

interrupt mask register and we place it on the HRDATA signal of the AHB during the data 

phase. With this in mind, we design the configuration for this command in Figure 5-39. Also, a 

snippet of the VHDL code is shown in Figure 5-40.  

 
Figure 5-39 Control Unit Example Configuration for Read Interrupt Mask Command 

 

Data Phase
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”0000" =>

  WHEN X”0004" =>
     HRDATA <= mask_data_one;
…
  WHEN X”0020" =>
     HRDATA <= mask_data_eight;

     HRDATA <= mask_data_zero;

 
Figure 5-40 Snippet VHDL code for TIM Control unit for Read Interrupt Mask Command 
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Note that we do not show the address phase, since as was mentioned earlier we do not 

need to set any control signals for this command. Next, we design the configuration for the Read 

Status Register command. This command is read-only, so when it is accessed for a write we need 

to generate an invalid command condition on CHANNEL_ZERO’s status register. Therefore, to 

signal that the NCAP tried to send an invalid command, we use an invalid signal that is 

interfaced with the “glue” logic of CHANNEL_ZERO. This is done because the “glue” logic of 

the transducer channel has the responsibility of generating the control/data bits for the transducer 

channel’s status registers. Also, it is important to note that when an actuator channel’s status 

register is read, the trigger ACK status bit should be cleared. Therefore, we design a signal 

(RD_Status) that is used to denote that the NCAP has requested to read the channel’s status 

register. With this in mind, we design the configuration for this command under the 8-Channel 

TIM example in Figure 5-41. 

 
Figure 5-41 Control Unit Example Configuration for Status Command 

 
Note that the RD_Status signal is also sent to the “glue” logic of CHANNEL_ZERO. 

This is because this channel represents the TIM as a whole, so it has both the sensor and actuator 
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information. Therefore, the trigger ACK status bit for CHANNEL_ZERO’s status register is also 

cleared when the RD_Status signal is asserted by the control unit. 

Next, we design the VHDL code for this command. During the address phase of this 

command, we set the control signals (RD_Status and Invalid) that are interfaced with the “glue” 

logic of the transducer channels that were previously shown in Figure 5-41. Then, during the 

data phase we place the output of the status registers (Status_zero, Status_one, Status_eight 

previously shown in Figure 5-41) on the HRDATA signal of the bus. A snippet of the VHDL 

code for this command is shown in Figure 5-42. 

Address Phase
IF HWRITE = ‘0’ THEN
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”2000" =>
     RD_Status_zero <= ’1';
  WHEN X”2004" =>
     RD_Status_one <= ’1';
...
  WHEN X”2010" =>
     RD_Status_four <= ’1';

ELSE -- HWRITE = ‘1’ THEN
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”2000" =>
     Invalid <= ’1';
  WHEN X”2004" =>
     Invalid <= ’1';

CASE HADDRESS (15 DOWNTO 0) IS

  WHEN X”2004" =>
     HRDATA <= Status_one;
...
  WHEN X”2020" =>
     HRDATA <= Status_eight;  

Figure 5-42 Snippet VHDL code for TIM Control unit for Status Command 

 
Next, we design the configuration/code for the Trigger command. This command is used 

to sample/set the different transducers that are implemented in the TIM. Note that since the 

“glue” logic of the transducer channels is responsible for sampling/setting the transducers, we 

...
  WHEN X”2020" =>
     Invalid <= ’1';

Data Phase

  WHEN X”2000" =>
     HRDATA <= Status_zero;
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generate a trigger signal that is interfaced with the “glue” logic. Therefore, when this signal is 

asserted, the transducer channel’s “glue” logic should sample the sensor and/or set the actuator. 

Taking this into account, we design the configuration for the Trigger command in Figure 5-43. 

Then, using this configuration we design the VHDL code that is used to handle this 

command. As was mentioned earlier in this section, this command is asserted when the offset 

address (previously shown in Table 5-3) is accessed regardless of it is a read or write command. 

Therefore, we assert the trigger signal in the address phase regardless of if it is a read or write 

request that is sent to the bus. A snippet of the VHDL code for this command is designed in 

Figure 5-44. 

 

 
Figure 5-43 Control Unit Example Configuration for Trigger Command 

Address Phase
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”4000" =>
     tr
     tr

igger_zero <= ’1';
igger_one <= ‘1’;

     …
     trigger_eight <= ‘1’;
  WHEN X”4004" =>
     trigger_one <= ’1';

 

...
  WHEN X”4020" =>
     trigger_eight <= ’1';

Figure 5-44 Snippet VHDL code for TIM Control unit for Trigger Command 

125 



 

 
Next, we design the configuration for the Channel_Data command that was previously 

shown in Table 5-3. When this command is selected for a write, we write the actuator data that 

will be used upon reception of the next trigger command. Therefore, to write this actuator data 

(sent by the NCAP through the AHB) we design the control unit to set the control/data signals of 

the actuator channel’s data register. With this in mind, we design the configuration for the Write 

Actuator Data command in Figure 5-45. It is important to note that the Write Channel Data 

command is only valid for an actuator channel, so if a sensor channel is selected for this 

command we ignore the command and nothing occurs. 

 
Figure 5-45 Control Unit Example Configuration for Write Actuator Data Command 

For t
 

he VHDL code of this command, we set the control signals (data_zero_en, 

data_one_en, etc.) during the address phase. Then during the data phase we set the input data of 

the actuator register (data_zero through data_four) to the HWDATA signal of the bus. A snippet 

of this VHDL code is shown in Figure 5-46. 
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On the other hand, when this command is selected for a read, we read sensor data register 

of the transducer channel block. Note that when this command is asserted, the Trigger ACK bit 

of the status registers of the sensor channels is cleared. Therefore, we need to generate a signal 

(RD_Sensor) that is interfaced with the sensor channel’s “glue” logic, so that the Trigger ACK 

status bit can be cleared appropriately. With this in mind, we design the configuration for this 

command in Figure 5-47. 

Address Phase
IF HWRITE = ‘1’ THEN
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”6000" =>
     data_zero_en <= ’1';
  WHEN X”6004" =>
     data_one_en <= ’1';
...
  WHEN X”6010" =>
     data_four_en <= ’1';

Data Phase
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”6000" =>
     data_zero <= HWDATA;

...

 

  WHEN X”6004" =>
     data_one <= HWDATA;

  WHEN X”6010" =>
     data_four <= HWDATA;

 
Figure 5-46 Snippet VHDL code for TIM Control unit for Write Actuator Data Command 

 
Figure 5-47 Control Unit Example Configuration for Read Sensor Data Command 
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Using this configuration, we can design the VHDL code so that during the address phase 

we set the control signals (RD_Sensor_five through RD_Sensor_eight shown in Figure 5-47), 

then during the data phase we place the sensor data register outputs (data_zero_out, data_five, 

etc.) onto the HRDATA signal of the bus. A snippet of the VHDL code that is needed for this 

command under the 8-Channel TIM configuration is shown in Figure 5-48. 

Address Phase
IF HWRITE = ‘0’ THEN
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”6014" =>
     RD_Sensor_five <= ’1';
  WHEN X”6018" =>
     RD_Sensor_six <= ’1';

  WHEN X”6014" =>

  WHEN X”6020" =>

...
  WHEN X”6020" =>
     RD_Sensor_eight <= ’1';

Data Phase
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN X”6000" =>
     HRDATA <= data_zero_out;

     HRDATA <= data_five_out;
...

     HRDATA <= data_eight_out;
 

Figure 5-48 Snippet VHDL code for TIM Control unit for Read Sensor Data Command 

 
Next, we design the configuration for the Reset command. This command places the 

TIM’s registers in their default power-on state. Therefore, we need to generate a signal that 

resets the registers of the implemented transducer channels. This configuration is designed in 

Figure 5-49. 
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Figure 5-49 Control Unit Example Configuration for Reset Command 

 
This command is asserted regardless of it is a read or write request on the bus. Therefore, 

when this comma phase of the bus 

rotoco

nd is selected, we set the reset signal during the address 

p l. A snipped of the VHDL code that is needed for this command is designed in Figure 

5-50. 

Address Phase
CASE HADDRESS (15 DOWNTO 0) IS
  WHEN
     

 C

N  the design of the trans eir respective “glue” 

 

From the specifications chapter, we know that each individual transducer channel has three 

registers associated with it. These registers include a data register (for the sensor reading or 

 X”8000" =>
reset <= ‘1’;

 
Figure 5-50 Snippet VHDL code for TIM ontrol unit for Reset Command 

 
ext, we will show ducer channels and th

logic.

 

5.2.3 Transducer Channel Block 
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actuato

 individual channel generates an interrupt 

signal f

h level 

of conf or a 

sensor or actuator.  

The difference in the configurations is in the data registers. This is because for actuators, 

the control unit handles the control/data signals since the input data to this data register is set by 

the NCAP through the Write Channel Data command. Then, the output of this register is sent to 

“glue” logic so that it can set the physical actuator with this data when the NCAP sends a trigger 

command. On the other hand, when the channel is a sensor we need “glue” logic that interfaces 

with the sensor (through an ADC or digital inputs). This “glue” logic writes the sensor reading to 

th t 

f the sensor data register needs to be sent to the control unit so that the NCAP can access this 

information through the Read Transducer Channel Data command. With this in mind, we design 

a generic transducer channel block in Figure 5-51.  

To use the generic transducer channel block that is shown in Figure 5-51, we need to 

design “glue” logic that handles the status registers and the interface with the physical 

transducers. 

r data), a status register and an interrupt mask register. These registers are designed to be 

32 bits since that is the width size of the bus. Also, each

rom an AND operation between its status and interrupt mask register (there is a one-to-

one relationship between the two). In order to represent this structure and allow for a hig

igurability, we design a generic transducer channel block that can be configured f

e channel’s data register when the trigger command is asserted by the NCAP. Then, the outpu

o
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Figure 5-51 TIM Transducer Channel 

 
Next, we will show the design for a sensor channel that is interfaced with an 8-bit ADC. 

Note that for the purpose of this example we are setting the ADC to continuously convert. For 

is configuration, we need to send the output of the registers to the TIM control unit so that the 

NCAP can access th

ected to 

the “glue” logic. The 

t is interfaced with an 8-bit ADC in 

Figure 5-52. 

th

em. Also, we need the control unit to generate the interrupt mask register’s 

control/data signals, as well as interface signals (RD_Sensor and Trigger) that are conn

RD_Sensor signal indicates that the sensor is being read so the Trigger 

ACK bit of the status register should be cleared, while the Trigger signal is used to denote that 

the sensor should be read. In this case, the sensor information is read from the output of the 8-bit 

ADC. Since we set the ADC to continuously convert, we use the INT signal from the ADC to 

denote when the enable signal of the channel’s data register should be set. With this information, 

we can design the top-level structure for a sensor channel tha
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Using this top-level structure, we can design the “glue” logic for a sensor channel under 

this configuration (8-bit ADC). The “glue” logic is responsible for generating the status register’s 

control/data signals, reading the sensor and setting the control/data signals of the channel’s data 

register. In order to do this, the “glue” logic has four inputs (RD_Sensor, Trigger, 8-bit output 

from the ADC, and conversion_done) and five outputs (Status Register enable and input data 

signals, sensor data register’s enable and input data and a Latch signal). Therefore, using this 

inputs/outputs, we can design three basic blocks (for the “glue” logic), a block that generates the 

control/data signals, a trigger control block, and a block that pads the output of the ADC into the 

32 bits of the channel’s data register. The top-level structure for the “glue” logic that is needed 

for this sensor configuration is designed in Figure 5-53. 

igure 5-52 Sensor Channel Interface with an 8-bit ADC Configuration
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Figure 5-53 “Glue” Logic for Sensor Channel interfaced with ADC 

 
The status_generation block (shown in Figure 5-53) sets the control/data signals of the 

status register. In order to do this, we follow the specifications that were derived in Section 4.2.4. 

The status bits are summarized in Table 5-4.  

Table 5-4 Status Register Bits 

Bit TIM  CHANNEL_ZERO Individual Channel
0 CHANNEL_ZERO Trigger Acknowledge Channel Trigger Acknowledge 
1 Invalid Command Reserved 
2 TIM Operational Channel Operational 
3 Corrections enabled/disabled Corrections enabled/disabled 
4-31 For future use For future use 
 

The Trigger ACK bit is set when the conversion_done signal is asserted. Then, we clear 

this bit when the RD_sensor (generated by the control unit when the NCAP issues a Read 

Transducer Data command) signal is asserted.  
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The Channel Operational bit is asserted upon power-up, since the sensor channel is able 

to respond to commands after it has been powered-up. 

The Corrections enabled/disabled bit is always set to zero, since the TIM does not have 

capabilities to apply corrections to the sensor data (e.g. convert temperature into Celsius). 

In order to generate the bits described above, we design VHDL code in Figure 5-54. 

process (clk, rst, RD_sensor)
   begin
      if rst = '0' then
         status_en <= '0';
         status_out <= (others => '0');
      elsif (rising_edge(clk)) then
         status_en <= '1';
         -- Trigger ACK
         if conversion_done = '1' then
            status_out <= "00000000000000000000000000000101";

            status_out <= "00000000000000000000000000000100";

 

ADC 

h signal (previously shown in Figure 5-52 until 

the ADC finishes conversion, which happens when the conversion_done (output of AND 

operation between the Latch and INT signals previously shown in Figure 5-52) signal is ‘1’. 

Then, when this occurs we know that the NCAP has finished conversion so we enable the sensor 

         -- Clear trigger ACK
         elsif RD_sensor = '1' then

         else
            status_out <= "00000000000000000000000000000100";
      end if;
   end if;
end process;

Figure 5-54 VHDL Code for Status Generation Block for a sensor channel that is interfaced with an 8-bit 

 
Next, we design the control that is used to handle the trigger behavior of the sensor 

channel. When we receive a trigger command (trigger signal is asserted), we need to set the 

Latch signal for the duration until the conversion_done signal is a ‘1’. Then, when this occurs we 

need to set the enable signal of the sensor data register. Therefore, in order to design this block 

we use a state machine with three states. An idle state in which we are waiting for a trigger 

command, then when the sensor channel is selected for a trigger command we move on to the 

converting state. In this state we assert the Latc
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data register and set the Latch signal to zero. The design of this state machine is shown in Figure 

5-55.  

 
Figure 5-55 “Glue” logic State Machine for Sensor Channel interfaced with ADC 

 
Note that the output of the ADC is padded with zeroes using combinational logic (as was 

shown in Figure 5-53 by the eb1 block) so that this value can be sent to the data register. 

Next, we show the configuration for a sensor channel that is interfaced with digital 

inputs. The different connections for this configuration are similar to what was previously shown 

for the sensor channel that is interfaced with the 8-bit ADC. The only difference is that the 

sensor output is directly connected to the “glue” logic instead of using an ADC or external logic 

for the interface. With this in mind, we design the configuration for a sensor channel that is 

interfaced with digital inputs in Figure 5-56.  
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Figure 5-56 Sensor Channel Interface with digital I/O Configuration 

 
Next, we can show the design for the “glue” logic portion of this sensor channel 

configuration. Note that the structure for the “glue” logic is also similar to what was done for the 

8-bit ADC sensor channel configuration. The only difference is that the trigger ACK status bi

can be gen nd only a 

latch o

t 

erated upon reception of the trigger since there is no conversion to be made a

f the sensor reading has to be made. With this in mind, we design the top-level structure 

for the “glue” logic in Figure 5-57. 

The status_generation block remains unchanged from the example that was shown 

before. Therefore, to generate the control/data bits for the status register, we can use the VHDL 

code that was previously designed in Figure 5-54. The only block that requires any changes is 

the control block. This is because as was mentioned earlier, we do not need to wait for the ADC 

to send an INT signal (as was done in the ADC sensor channel example) since we are using 

digital inputs. Therefore, the state machine for the “glue” logic only needs two states, an idle 

state (waiting for trigger command) and an execute state in which we set the sensor_en enable 

signal of the sensor data register so that the sensor_out signal can be written to the sensor 

register. Also, during the execute state we set the done signal that is interfaced with the 
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status_generation block. This is done so that the Trigger ACK bit of the channel’s status register 

can be generated in the same way as was done for the 8-bit ADC sensor channel example. The 

state machine for the “glue” logic is designed in Figure 5-58. 

 
Figure 5-57 “Glue” Logic for Sensor Channel interfaced with digital I/O 
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Figure 5-58 “Glue” logic State Machine for Sensor Channel interfaced with digital I/O 

 
Next, we design an example configuration for an actuator channel that is interfaced with 

an 8-bit DAC. This configuration 

nce the actuator channel data register is written by the NCAP (by means of the Write 

Transducer Channel Data command). Therefore, the control unit sets the control/data signals of 

the channel’s data and interrupt mask registers. Then, the output of the status and interrupt mask 

registers is sent to the control unit so that it can be accessed by the NCAP (using the Read Status 

Register and Read Interrupt Mask Register commands). Also, the “glue” logic sets the 

control/data signals of the status register and it interfaces with the control with the actuator 

channel block (receives the output of the actuator channel data register), the control unit, and the 

8-bit DAC (sets the actuator with the data set that is stored in the data register upon reception of 

a trigger command). With this in mind, we design the configuration for an actuator channel that 

is interfaced with an 8-bit DAC in Figure 5-59. 

is different than what has been shown for the sensor channels 

si
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Figure 5-59 Actuator Channel Interface with an 8-bit DAC Configuration 

 
Next, we need to design the “glue” logic for this configuration. In order to do this we can 

still use three main blocks in a similar fashion to what was done for the “glue” logic that was 

designed for the sens ates the control/data 

ignals

nel configuration in Figure 5-60.  

or channels. Therefore, we need a block that gener

s  of the status register, we also need a control block (used to handle triggering), and a 

combinational logic block that grabs the least significant eight bits of the actuator channel’s data 

register (for the interface with the 8-bit DAC). Note that these eight bits need to go through a 

register before we send them to the DAC. This is because the NCAP writes the data set to the 

transducer data register before sending the trigger command. Then, the physical actuator is set 

with this data when a trigger command is received. With this in mind, we design the “glue” logic 

for this actuator chan
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Figure 5-60 “Glue” Logic Architecture for an Actuator Channel interfaced with DAC 

 
Next, we show the design of the status_generation block. This block needs to use the 

RD_Status (generated by the control unit when the NCAP issues a Read Transducer Data 

command) that is used to clear the Trigger ACK status bit. For the two other status bits (Channel 

Operational and Conversions enabled/disabled) we use the same scheme as what was done for 

the sensor channels. Therefore, the Channel Operational bit is always one, while the 

Conversions enabled/disabled bit is always zero. The only thing that this block must do then is to 

generate the Trigger ACK status bit. This bit is set when we the actuator acquires the data set 

(“glue” logic register is enabled), and when this happens the temp signal (shown in Figure 5-60 

as an input to the status_generation block) is asserted. Therefore, using this signal we set the

Trigger ACK atus signal is 

asserted. To do this, we can use the VHDL that was previously designed for the sensor channel 

 

bit of the status register, and we clear this bit when the RD_St
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configu

tate machine in a similar fashion to what has been done in the “glue” logic that 

has been designed for the sensor channels. This state machine has to generate three output 

signals (done, temp, and actuator_en). The done and temp signals are asserted when the actuator 

has been successfully set (trigger ACK), while the actuator_en signal is asserted upon reception 

of the trigger command (set the actuator). To do this, we need two states (much like what was 

previously designed in Figure 5-58) that are designed in Figure 5-61. 

ration in Figure 5-54. However, we would have to replace the RD_Sensor signal with the 

RD_Status signal, but the logic remains the same. 

Next, we design the block that handles the trigger behavior of the actuator. In order to do 

this, we use a s

 
Figure 5-61 “Glue” logic State Machine for Actuator Channel interfaced with DAC 

 
Next, we show the design for an actuator channel that is interfaced with digital I/O. The 

configuration for this actuator channel is similar to that of an actuator channel that is interfaced

ith a DAC. The only difference is in the combinational logic block (eb1 from Figure 5-59) 

since it depends on the number of digital outputs that are used for the actuator. For example, if 

we use three digital outputs, then we send the least significant three bits of the actuator channel’s 

 

w
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data register to the “glue” logic’s register. With this in mind, we design the configuration for an 

actuator channel that is interfaced with digital I/O in Figure 5-62.  

“Glue”
Logic

Actuator Channel
Block

Control

Status Data/Control

INT_MASK Data/Control

6

INT to Priority Encoder

Actuator Data/Control

Status

INT_MASK

Actuator Vout

Actuator
Output

32
Status

Trigger

RD

Sel = ‘0’

Figure 5-62 Actuator Channel Interface with digital I/O Configuration 

 
As was mentioned earlier, the design of the “glue” logic does not change much, since we 

only need to change the eb1 block that was designed in Figure 5-60 to use the actuat

 

or data that 

is need

 to note that 

the CH

ed to set the physical actuator. Consequently, we also need to change the width size of the 

“glue” logic’s register, which is simple because it is re-configurable. Therefore, we only need to 

change the WIDTH parameter that was shown in the register representation in Figure 5-60. 

The transducer channel block that we have designed in this section is easy to reuse for 

individual channels that are implemented within the TIM. However, it is important

ANNEL_ZERO block is different since it is dependent on the number of transducer 

channels that are implemented. Therefore, this block needs to represent the actuator data as well 

as the sensor readings of all implemented channels. To do this, we design the structure shown in 

Figure 5-63. 
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Figure 5-63 TIM Transducer CHANNEL_ZERO Structure 

s two sets of data registers, one for the actuators and one for the 

sensors. The control unit controls the actuator register, while the “glue” logic does the same for 

Channel TIM implementation, we would use a 

similar configuration to what has been shown for the individual channels. However, the “glue” 

logic for CHANNEL_ZERO interfaces with the “glue” logic of the individual channels as well 

as the control unit. As far as the interface with the individual channel’s “glue” logic, we need to 

 
Note that this structure ha

the sensor register. We use these new registers because, as was mentioned earlier, 

CHANNEL_ZERO needs to represent the result of all the sensor readings and all the actuator 

registers. Therefore, by having two extra registers, the control unit’s interface to the TIM 

channels does not change. Rather, we use the “glue” logic for CHANNEL_ZERO to manipulate 

the transducer data.  

As an example of this logic, for an 8-
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receive the Trigger ACK signals from the individual channels. This is because when a global 

trigger is sent, CHANNEL_ZERO Trigger ACK is generated only after all individual channels 

have generated their respective Trigger ACKs. For the control unit’s interface, we need to 

receive an Invalid (generated by the control unit to signal that the NCAP tried to issue a 

command that is invalid or not implemented) and RD_Status signals. Both of these signals are 

used to generate the status register control/data signals. Also we need to send the outputs of 

CHANNEL_ZERO’s sensor data, interrupt mask, and status registers to the control unit so that 

they can be accessed by the NCAP. In order to handle the various cases that we have described, 

we can design the configuration for CHANNEL_ZERO for an 8-Channel TIM implementation in 

Figure 5-64.  

 
Figure 5-64 CHANNEL_ZERO Example for 8-Channel TIM Configuration 
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Aga

logic of the individual channels. So, we use three main blocks (status_generation, trigger control, 

and combin i

in Figure 5-65.

in, the structure for the “glue” logic for CHANNEL_ZERO is similar to the “glue” 

at onal logic for the transducer data). The design of this top-level structure is shown 

 

 

 
Figure 5-65 “Glue” Logic for CHANNEL_ZERO 

The status_generation block uses information from the “glue” logic’s controller as well 

as the TIM’s control unit to set the different status bits. The Trigger ACK bit is asserted when 

every individual channel has been successfully sampled/set and this bit is cleared when the TIM 
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control unit asserts the RD_Status signal. Also, this block asserts the invalid command bit when 

the control unit asserts the Invalid signal (shown in Figure 5-64) and this bit is cleared when the 

RD_Sta

achine that we are designing needs to set the done (denotes the Trigger 

ACK condition) and sensor_en signals when every implemented channel has executed its 

individual trigger. To set these signals, we must wait until every conversion_done (trigger ACK 

for individual channels) signal is asserted. With this in mind we can design the control for the 

“glue” logic of CHANNEL_ZERO for this 8-Channel TIM example in Figure 5-66. 

In this section, we have shown the complete design for the representation of transducer 

channels (both individual and CHANNEL_ZERO) within a TIM. For more information on the 

VHDL code for the Transducer Channel Blocks and their corresponding “glue” logic, refer to 

Appendices C and D.  

tus signal is asserted. The two other status bits (TIM operational and Corrections 

enabled/disabled previously shown in Table 5-4) are set to one and zero upon power-up. This is 

because the TIM can respond to NCAP commands upon power-up (TIM Operational) and it does 

not have capabilities to apply corrections to the transducer data.  

Next, we can design the control for the “glue” logic. As was designed for the individual 

channels, we use a state machine to control triggering behavior of the channel. For 

CHANNEL_ZERO, this is more complicated since when a global trigger is applied, every 

implemented channel is triggered. Therefore, CHANNEL_ZERO sends the output of its actuator 

channel’s data register to the “glue” logic of the individual actuator channels. On the other hand, 

we enable the sensor data register when the individual sensors have been successfully sampled so 

that we can write the sensor readings onto CHANNEL_ZERO’s sensor data register. 

So, the state m
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Figure 5-66 State Machine for “Glue” logic’s control 

ssor, and it can 

handle 

 

5.2.4 Interrupt Management 

 

The interrupt signal for each channel is generated from the transducer channel block that was 

discussed in the previous section. In order to handle these interrupts, we need an interrupt 

controller. The Excalibur chip provides an interrupt controller that can be used. This interrupt 

controller generates two interrupt signals (FIQ and IRQ) to the embedded proce

up to 63 individual interrupt requests coming from the PLD. The structure for this 

interrupt controller is shown in Figure 5-67.  
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Figure 5-67 Interrupt Controller overall structure 

From the figure, we can see that there are 17 differen
 

t interrupt sources. Out of these 

sources inputs, we have 10 interrupts within the stripe (PLL Status, EBI Error, Stripe-to-PLD 

Error, AHB1-2 Bridge Error, Fast comms, UART, Timer 0, Timer 1, ARM922T COMMTX, 

ARM922T COMMRX), one external pin (INT_EXTPIN_N), and six from the PLD stripe 

interface (where the TIM resides) as an interrupt bus (INT_PLD). These six bits can be 

configured in three different modes. These modes are as follows: 

• Each PLD interrupt signal is interpreted as an individual interrupt. This is the 

default mode. 
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• The signals are interpreted as a single interrupt request, using a six-bit priority 

value. 

• The signals t, using a five-bit priority 

value together with one individual interrupt 

sing this interrupt controller with the 6-bit priority mode, a maximum of 19 

ore channels are implemented, or a bigger chip is used. Designers can implement 

their own interrupt controller within the PLD. This is made possible by the Excalibur chip’s 

architecture, since the outputs from the other interrupt sources within the stripe (such as UART 

or timer), are made available as inputs 

ext, we design the functionality of the interrupt controller. This block has a priority 

errupt identification register INT_ID. With this information, the interrupt 

service

 are interpreted as a single interrupt reques

U

implemented transducer channels can be handled. This is assuming that only the mandatory 

status bits are implemented. Therefore, we would have four possible interrupts from 

CHANNEL_ZERO, and three possible interrupts from each individual channel.  

However, if the application requires that more interrupts be handled, either because more 

status bits, m

to the PLD as was shown in Figure 5-67. 

N

scheme that allows the embedded processor to determine who generated the interrupt. To use this 

priority scheme, we write a unique priority value (between 1H and 3FH) to priority registers 

(provided by the Excalibur chip within the embedded stripe) during system initialization. Then, 

the prioritization logic within the interrupt controller constantly compares the priority values 

within all the priority registers to determine which interrupts are pending, and provides the value 

of the highest in the int

 routine reads this register to identify the interrupt source. Therefore, since the interrupt 

controller already has a built-in priority scheme, all we have to design is a priority encoder (as 
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was previously shown in Figure 5-32) that encodes the generated interrupts from the transducer 

channels into six bits (since we are using the 6-bit priority mode). 

um amount of transducers that we 

can ha

ore interrupts, then it is the designer’s responsibility to create a priority 

encode

5.2.4.1 Interrupt Service Routine 

The interrupts are handled in software by different handlers that are specific to the different 

interrupts. In order to initialize the interrupt controller and all the interrupts, we create a function 

irq_init(). This function initializes the interrupt controller to the six-bit priority mode, sets the 

priorities and the values of all the registers (TIM interrupt mask, UART, timer, etc). Note that if 

the designer implements a new interrupt controller, then he/she would have to edit this 

itialization routine. 

Then, when the processor receives an IRQ interrupt, there is another function 

CIrqHandler() that is called. This function checks the ID register to see who generated this 

The interrupt priority logic of this block is as follows. The LSB of CHANNEL_ZERO 

has the highest priority and the MSB of channel 19 has the lowest priority. It is important to note 

that even though our design architecture allows for a maximum of 255 transducers, the priority 

block we design only handles up to 19 transducers. This is because as was mentioned earlier by 

using the interrupt controller that is provided this is the maxim

ndle. Also, since the Excalibur chip that we have available (EPXA1) is the smallest 

version of the chip, we would not likely be implementing very large transducer systems because 

of the resource constraints that were discussed in Section 5.2. However, in the case that the 

application requires m

r to handle these changes. For more information on how to implement/handle more 

interrupts, refer to Appendix D. Next, we show the software routines that are used to handle the 

generated interrupts. 

in
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interrupt. Then, using case statements we determine which interrupt handler to use for this 

interrupt. Because of the fact that the interrupt controller can handle a maximum of 61 TIM 

interrupts (4 from CHANNEL_ZERO and 3 for each individual channel), we set up the 

CIrqHandler() function to jump to 61 different handlers for the TIM. However, since these 

handlers depend on the application, it is the programmer’s responsibility to implement their 

functionality. It is important to note that the software that is written to handle the TIM interrupts 

is part of the TIM firmware (previously shown in Figure 5-1). Therefore, it is transducer-specific 

code that may vary from application to application. 

 

5.2.5 Summary and Constraints 

 

The architecture that we have described for the TIM provides users with a great deal of 

configurability, which can be exploited for their particular application. This is because to add a 

transducer, users only have to “drop in” a transducer channel block and then implement its 

particular “glue” logic. However, as was mentioned earlier in the specifications chapter, the 

number of transducers that can be interfaced to the TIM is limited by the resources of the 

Excalibur chip. The following discussion goes into detail about the various sizes of the Excalibur 

chip and the maximum amount of transducers that can be interfaced to the TIM.  

As was previously stated in Section 4.2, the I/O of the Excalibur chip ranges from 186 in 

the EPXA1 to 711 in the EPXA10. This I/O count is the total available user I/O (shared stripe 

I/O + PLD I/O). However, in the EPXA1 all the stripe I/O is dedicated so we only have 40 user-

defined PLD I/O pins that can be customized for an application. This is not the case for the 

EPXA10 in which only the SD d on the Stripe, and all other 

ins stripe pins are shared with the PLD. Therefore, using the EPXA10 designers have a 

RAM Clock Enable pin is dedicate

p
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maxim

PXA1 chip is 40. 

Note that to do this, we would have to use a single digital I/O bit for each transducer. So, if the 

application requires that the transducers interface to data converters or more than a single I/O bit, 

the maximum number of transducers that can be implemented decreases. For example, if we use 

8-bit data converters (assuming two bits for control) for each implemented transducer, we can 

implement a maximum of four transducers. This is because we would need 10 bits for each 

ADC/DAC (eight for data and tw e application, a designer can use 

ie

ta 

convert

um of 708 I/O pins that they can use (note that around 100 of these pins must be used for 

AHB communications). Next, we show the maximum amount of transducers that can be 

implemented with each version of the chip. 

The maximum number of transducers that can be implemented in the E

o for control). Depending on th

a var ty of combinations to take advantage of the 40 I/O pins that are provided by the EPXA1 

chip.  

On the other hand, if the EPXA10 chip is used, then the designer could conceivably 

implement the maximum amount of transducers that are allowed by the standard (255). To 

implement this number of transducers, designers would have to use a combination of da

ers and digital I/O bits to interface to every transducer.  
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6.0 IMPLEMENTATION AND TESTS 

 
 
 
 

The implementation was done using Quartus II from

transducers. This tool was used to mpile the hardware and software that was designed. The 

system was tested by using hyperterminal as the debugging tool, having the software output 

relevant information about the system’s behavior to the terminal by the use of an RS-232 

connection. 

 
 
 
 

6.1 PPLICATION SYSTEM 

 

In order to test our NCAP/TIM co concept application system that 

consisted of a three channel TIM. The transducers  consisted of two sensors 

(temperature and light), and LEDs to simulate an ac  The object of this system was not to 

uild a precise instrumentation system, but rather it was to verify the design met the specs and, 

hence, the standard. Next, we will describe the configurations for the sensors and how they were 

interfaced to the TIM. 

For the temperature sensor, a thermistor was used. This sensor is a component that shows 

a large change in resistance with a change in its body temperature. There are two types of 

thermistors, large positive temperature coefficient of resistance (PTC devices) and large negative 

 Altera, as well as external circuitry for the 

 co

 A

mbination, we built a proof of 

in this test system

tuator.

b
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temper

thermistor’s 

resistance changes with respect to the temperature. This way, there is a fixed resistance in 

parallel with the thermistor and the temperature is obtained by reading the voltage through an 

ADC. Then, a table can be created with the different voltage values that the different 

temperatures would yield according to the device’s datasheet. 

According to the device’s datasheet the resistance when at 25 Celsius varies 4.3% every 

time the temperature changes by  of NTC thermistors, this means 

that as 

th respect to 

the vol

ature coefficient of resistance (NTC devices). The thermistor that was used was Jameco’s 

102-NTC (27).  

To read the thermistor, a voltage divider was used. This is because the 

a degree. Because of the nature

the temperature goes down the resistance increases and as the temperature goes up the 

resistance increases.  

Using a simple voltage divider with a 5 Volt source and 1200 ohm resistor as is depicted 

in the Figure 6-1, we can calculate a table with information of the temperatures wi

tages (Vt) so that a look-up table can be created with this values and the conversion of raw 

voltage data to physical units can be simplified.  

1.2K

Rt

Vt

5 V

 
Figure 6-1 Thermistor’s Connections 

 
Now we can calculate the v temperature using the thermistor’s 

data sheet (reference). This is shown in Figure 6-2. Note that two plots are shown in the figure. 

oltage with respect to the 
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The fir

 ADC converter from National 

Semiconductor (28,29). This ADC uses a single supply power voltage of 5 V max, the reference 

voltages are completely differential, and it has a conversion time of 2.5 µs. With this 

information, we can begin to discuss the ADC’s interface with TIM portion of the Excalibur 

chip. The ADC’s control and output signals were interfaced to “glue” logic that resided within 

the PLD. In order to meet the Excalibur chip’s electrical specifications, we powered the ADC 

with a 5V power supply and the ADC’s signals were interfaced directly with the TIM.  

st one shows the thermistor’s resistance vs. the temperature in Celsius, while the second 

plot shows the thermistor’s voltage vs. the temperature in Celsius. The thermistor’s voltage was 

then interfaced to an ADC so that the readings can be interfaced to the TIM. The ADC that was 

interfaced with the thermistor was the ADC0820 8-bit

 
Figure 6-2 Thermistor’s behavior plots 
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The thermistor’s range with this configuration goes from 0 to 50 Celsius with voltages 

from 1V to 3.6V. Therefore, in order to fully utilize the range that the ADC provides, we 

configured the voltage references (since they are completely differential) to use 1V as its Vref- 

and 3.6V as its Vref+ by using a voltage divider as is shown in the Figure 6-3. 

1.5K

3.9K

5 V

Vref+= 3.6 V

1.2K

300

Vref-= 1 V

5 V

 
Figure 6-3 ADC Voltage dividers  

 
Note that in here we did not take into account the resistance of the ADC chip itself which 

is 1.5K ohms according to the datasheet. So, when the connections were made with the ADC, the 

chip’s parallel resistance changed the specified voltages that are shown in the Figure 6-3. The 

new measured voltages were 2.9V for Vref+ and 1.2V for Vref-, which gives a range of 

operati

 

from this m p

It is im

convert the raw readings of the sensor temperature into Celsius. This was done using the 

information h

bits) of the AD  the differential reference voltages to the minimum and 

maximum temperatures that the thermistor could handle. 

on for the thermistor of 16 to 48 Celsius which is sufficient for this type of application. 

With this information the ADC output was matched to the actual temperature in Celsius 

by doing a curve-fitting of the Voltage vs. Temperature plot shown in Figure 6-2. The results

ap ing are shown in Table 6-1. 

portant to note that an application-specific software operation was created to 

 s own in the table previously discussed. Also, note that the complete resolution (8 

C was used by configuring
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Table 6-1 Thermistor’s ADC Output and Corresponding Temperature Value 

Value Celsius 
HEX Temperature in 

FE 16 
F6 17 
ED 18 
E5 19 
DD 20 
D5 21 
CD 22 
C5 23 
BC 24 
B4 25 
AC 26 
A4 27 
9B 28 
93 29 
8B 30 
82 31 
7A 32 
72 33 
6A 34 
62 35 
5A 36 
53 37 
4B 38 
44 39 
3C 40 
35 41 
2E 42 
27 43 
20 44 
19 45 
13 46 
C 47 
6 48 

 
The other sensor that was used is a photoconductive cell (30) that is used to detect the 

amount of light in the environment. This photocell is similar to the thermistor in that it has a 

variant resistance with respect to the light intensity (Lumens), with the rate of change being 130 

ohms for every 100 Lumens. 
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For the purpose of this project, the sensor is used to detect if there is light in the room, 

which simplifies the interface to the TIM. T s are directly interfaced 

to digit

his way, the sensor’s reading

al IO of the Excalibur chip. Figure 6-4 shows the connections for this sensor. 

1.2K

Rlight

Vlight

1.2K1.2K
5 V

Figure 6-4 Photocell’s connections 

2.5 V

 

 

 voltage that it recognizes as a 

digital zero is less than 1V, and a digital one is considered to be greater than 1.65V. 

at were used to simulate an 

actuator. The LEDs are set up to signal if there is light or not according to the photocell and to 

Note that the voltage that is used to “power” the photocell is only 2.5V. This is to obtain 

a range in which a change in light can be easily detected by digital IO of the Excalibur chip18. 

This is because the characteristics of the chip dictate that the

The Excalibur chip also provides a variety of on-chip LEDs th

represent the room temperature by three states low, normal, or high. These connections are 

shown in Figure 6-5 Note that the outputs go through a NOT gate since the LEDs are active low. 

 
Figure 6-5 LED Connections 
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Next, we show a picture of the complete system implementation. This is shown in Figure 

6-6. The external circuitry was interfaced to the Excalibur chip by means of a 40-pin header that 

was connected to J15 in the development kit. The IO was directly wired to the user-defined IO 

that was given to the designer through the APEX20K FPGA. 

 
Figure 6-6 Picture of the Implementation 

 
Next, we will show the proof of concept implementation of the complete system 

generation along with the NCAP and TIM implementations. 

 

 

6.2 SYSTEM IMPLEMENTATION 

 

The complete IEEE 1451 system was implemented based on the design that was previously 

presented. This implementation consisted of a combination of hardware and software modules. 

We can summarize the complete implementation of the single chip solution in Figure 6-7.  
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Figure 6-7 System Implementation 

 
Next, we discuss the network hardware interface. For this interface, we compared the 

resource usage (of the hardware implementation) of three networks. These networks consisted of 

an Ethernet Network, CAN, and Universal Serial Bus (USB). All of these networks fit the scope 

of the standard.  

The hardware implementations were compared using Open Core IP that was targeted for 

an Altera APEX20K FPGA (PLD present in the Excalibur chip). The results were used for a 

tilization comparison. The results obtained were as follows: 

I/O pins in the FPGA (24).  

device u

• For an Ethernet MAC Controller designed by Cast, Inc. the device consumed 

4,082 Logic Elements (LEs), 17 embedded array blocks (EABs) and 200 I/O pins 

in the FPGA (23).  

• For a CAN Controller designed by Bosch, the utilization was 4515 LEs, and 46 
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• For a USB Controller designed by Cast, Inc. the device utilization was 1,502 LEs, 

12 Embedded System Blocks (ESBs), and 49 I/O pins (25). 

As was mentioned in both the Specifications and Design chapters, the EPXA1 chip 

provides a maximum of 40 user-definable I/O pins. Therefore, it is easy to see that for the 

network interfaces that are discussed above, the hardware for these networks cannot be 

implemented in the FPGA. However, it is important to note that if we had any of the bigger size 

Excalibur chips available, we could implement any of the three network implementations that 

were discussed.  

Because of this resource constraint of the EPXA1 chip, we used an Ethernet MAC/PHY 

hip (26) that was provided by the chip’s development kit. This Ethernet MAC/PHY chip was 

AP had direct access to it through this 

peripheral. This was done to use the example configuration that was provided by the Ethernet 

 

c

interfaced to the External Bus Interface (EBI), so the NC

MAC/PHY chip. Also, this chip provided a software library that was used for the network 

infrastructure.  

This software library provided an operation, smc_init(), that initialized the Ethernet 

MAC/PHY chip. This operation is network-specific and it is called during the initialization phase 

of the NCAP in such a way that is transparent to the user. Other operations that were provided, 

dealt with the physical communications of the chip with the Ethernet network. For our 

implementation, we created an operation called MarshalAndTransmitReceive() that took as an 

input, an ArgumentArray, and returned an OpReturnCode (standard-defined return type) so that it 

could be easily interpreted by the network operations that are defined in the standard. The 

signature of this operation and a brief explanation is shown next. 
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OpReturnCode MarshalAndTransmitReceive(/* in*/ ArgumentArray in,  

/* in */int execute_publish) 

This operation first checks the execute_publish value to see if the Execute or Publish 

operations need network access. This was done so that the different scenarios of the client/server 

and publish/subscribe models could be handled. Then, if it was the Execute operation, we 

marshaled the ArgumentArray onto the Ethernet network’s format (packet of bytes) and did the 

loopback test with this information. Note that after the data was received we called the Perform 

operation, to follow the specifications that were shown in Section 4.1.2.4. On the other hand, for 

the Publish operation, we only sent and received the message to/from the network infrastructure. 

By defining this operation in this way, we assured that it “fit” the network 

communication API of the standard, since we used all the types and behaviors of the Execute and 

Publish operations (network-side API of the 1451.1 standard).  

 

6.2.1 Network Capable Application Processor Implementation 

 

To implement the physical structure of the NCAP we used Altera’s Mega plug-in wizard. Using

is wizard we configured the complete embedded stripe, which included the ARM as well as the 

signals

s discussed in the design chapter, we used the 

 

th

 that allow the processor to communicate with the PLD and others peripherals. This 

configuration was made using the design decisions shown in Chapter 5.0. Next, we show this 

configuration. 

First, we used the Boot from Flash option so that we would permanently store the 

program memory in the flash memory that was provided by the Excalibur chip. Then, because 

the TIM is a slave on the embedded stripe as wa
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Stripe-to-PLD interface (PLD configured as a slave). Also, to handle every possible generated 

interrupt we configured the interrupt controller for the 6-bit priority mode. 

The next step was to configure the bus clock speed. The bus was configured to run at 160 

MHz for AHB1, and 80 MHz for AHB2. This was done so that the performance of the 

NCAP/TIM communication would be faster than the Transducer Independent Interface (TII) of 

the 1451.2 standard.  

We set every memory range/address space for the peripherals that are part of the 

embedded stripe. Note that we selected a memory range of 64K for the PLD (TIM) so that every 

possible implemented channel and command could be represented as was mentioned in Section 

5.2.2. After completing all these steps, the complete embedded stripe block is generated. This 

generated block is shown in Figure 6-8.  

As far as the software is concerned, we followed the design example shown in Section 

5.1.5. 

e MarshalAndTransmitReceive() operation 

that was previously described in this section. The code for this operation is shown in Figure 6-9. 

Therefore, we instantiated an NCAP Block class (to control the experiment) and a 

Transducer Block class (to map the TIM’s transducers). The individual transducers were 

represented as parameters and were instantiated after the TEDS was read in a similar fashion to 

what was shown in Section 5.1.5. On the other hand, the network ports were mapped during 

compile-time. These ports consisted of an Entity, Client Port, Publisher Port and Subscriber Port 

object classes. Next, we show the configuration for the network operations that were used in this 

application. We begin with the Execute operation, which is the client-side construct for 

client/server communications. For this operation we used the pseudo-code that was previously 

shown in Figure 5-7, so the only thing that we had to change was the network-specific call to the 

network infrastructure, which was done through th
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Figure 6-8 System’s Embedded Stripe 

 
Finally, we show the configuration for the Publish operation. This operation was the 

publisher-side construct for publish/subscribe operations. Because this operation only consisted 

of a call to the network infrastructure, we simply called the MarshalAndTrasmitReceive() 

operation in the code. The complete code for these network operations is shown in Appendix B.  
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if (execute_mode == 0)
{

// Next line changes depending on the network infrastructure
MarshalAndTransmitReceive(server_input_arguments, 0);
// Timeout routine
While (interrupt == 0)
{

// Make sure that the operation does not timeout
If (jiffies > timeout)
// Operation Timed out so return ClientServerReturnCode 14
Return 14;
Else
// Operation Completed successfully
Return 0;

}
}

else
{

// Next line changes depending on the network infrastructure
MarshalAndTransmitReceive(server_input_arguments, 0);
Return 0;

}  
Figure 6-9 Execute() C Code 

 
 
6.2.2 Transducer Interface Module Implementation 

 

The Transducer Interface Module (TIM) that was implemented consisted of three channels. 

Channel 1 was a temperature sensor and was interfaced to an 8-bit ADC. Channel 2 was a light 

sensor that was interfaced to a digital I/O bit within the Excalibur chip, and channel 3 consisted 

of LEDs that were used to simulate an actuator. The TIM’s structure was implemented using the 

design structure previously shown in Figure 5-32. Because of the high-level of configurability of 

the blocks that we designed in Chapter 5.0, a designer only needs to instantiate these blocks and 

then make minor changes to the VHDL code depending on his/her application. For example, if 

the designer is interfacing to a 12-bit ADC instead of an 8-bit ADC, then in the combination 

block of the “glue” logic (eb1 block previously shown in Figure 5-53), we set the sensor_out 

signal to use the least significant 12 bits (instead of eight bits as was shown in the example) and 
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pad the most significant bits with zeroes. Next, we show the different blocks that were 

instantiated for this proof of concept implementation in Figure 6-10. 

 

 
We instantiated four Transducer Channel Blocks (for CHANNEL_ZERO, the 

temperature sensor, the light sensor and the LEDs) along with their “glue” logic (both blocks 

were designed in Section 5.2.3), then these blocks were also interfaced with the Control Unit 

(used for NCAP communication) and with the priority encoder (used for the interrup

Figure 6-10 Top Level System Implementation 

ts). Next, we 

describe the different connections that were made between the Control Unit and the NCAP (part 

b) of Figure 6-10). This is shown in Figure 6-11.  

166 



 

 
Figure 6-11 NCAP/TIM Connections, part (a) from Figure 6-10 

 
Note that we connected the MASTER_HGRANT and HSEL signal to power. This was 

done for simplicity since we only had one slave within the PLD, so the NCAP is always granted 

access to the bus and the HSEL signal is always asserted. However, this does not mean that the 

TIM is always selected since from the VHDL code (shown in Section 5.2.2 and Appendix D), we 

use the HTRAN _HLOCK and 

ASTE

S signal to see when the bus is active. Also, the MASTER

M R_BUSREQ signals are unused so they do not need to be connected. This is because the 

NCAP does not need to lock the bus for any type of transaction, nor do we have to send the 

request signal to an arbiter, since the MASTER_GRANT signal is always asserted. Next, we 

discuss the connections (part b in Figure 6-10) between the NCAP, the Priority Encoder and the 

Transducer Channels. This is shown in Figure 6-12. 
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Figure 6-12 Priority encoder connections with Transducer channels, part (b) of Figure 6-10 

 
For this interface, we simply needed to connect the generated interrupt from the 

transducer channels (AND operation between the status and interrupt mask registers) with the 

priority encoder. Then, the priority encoder encoded these generated interrupts onto six bits so 

that it could be interpreted by the embedded stripe’s interrupt controller. Also, channels four 

through 19 were grounded so that th

reviously designed in Section 5.2.4. Next we show the interface between the TIM control unit 

and the transducer channels in Figure 6-13. 

ey do not affect the behavior of the priority encoder that was 

p
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Figure 6-13 Transducer Channel Connections with Control Logic, part(c) of Figure 6-10 
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In this figure we  the transducer channels. 

ollowing  that was  the TIM reset signal 

enerated by the control logic) as th s. Also, since 

e control unit generates the con ask and actuator data register, 

e interfaced these signals (genera sducer channels. Note 

NNEL_ZERO and ce the LED actuators were 

implemented in Channel three, and nt every implemented 

transducer. The Transducer_Sel ducer channel blocks is used to 

configure the individual channel for

for channels one and two we grou e  channels represented the 

nnected the selec annel).  

interf nnels and their respective “glue” 

ec  

the reference example design that was shown in Section 5.2.3. Therefore, the “glue” logic 

generated the status register’s control/data signals of every transducer channel. Then, for the 

actuator channels, it used the outpu h s data register (CHANNEL_ZERO 

and Channel three) and used this value to set the actuator upon reception of a trigger command. 

e select line for this MUX.  

show the connections for the inputs of

F  the example  shown in the Design Chapter, we used

(g e reset signal for the transducer channel block

th trol/data signals of the interrupt m

w ted by the control unit) with the tran

that only CHA  Channel three had actuator data, sin

 CHANNEL_ZERO needs to represe

 signal of the individual trans

 a sensor or actuator configuration (Figure 5-51). Therefore, 

 thosend d this signal (because

sensors), and we co t signal to power for channel three (actuator ch

Next, we show the ace between the transducer cha

logic in Figure 6-14. The conn tions between the channels and the “glue” logic were done using

t of t e actuator channel’

It is important to note that for global triggers the actuator is set with the data set that is stored on 

CHANNEL_ZERO’s data register. Therefore, we used a MUX to select between the data from 

CHANNEL_ZERO or the data from Channel three. Then, we used the global trigger signal 

(trigger_zero signal generated by the control unit) as th
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Figure 6-14 Transducer channels and glue logic, part (d) of Figure 6-10 

Figure 6-15 shows the interface between the control unit, transducer channels, and “glue” 

logic. For this interface, we sent the output of the transducer channel registers (data, status and 

interrupt mask registers) to the control unit so that they could be read by the NCAP. Then, the 

control unit sent the trigger and status interface signals to the “glue” logic so that the transducer 

could be triggered, and the proper status control/data bits of the status registers could be 

generated. 
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Figure 6-15 Interface between Control Unit, Transducer Channels and “glue” logic, part (e) of Figure 6-10 

 
Next, we discuss the software interrupt handlers for the TIM interrupts. In order to do

is, we first discuss the possible generated interrupts by the transducer channels. The Trigger 

 

th
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ACK in

The Invalid Command interrupt is generated by CHANNEL_ZERO when the NCAP tries 

to access a command that is not implemented or invalid and this bit is cleared when the status 

register is read. 

The TIM/Channel Operational interrupt occurs upon power-up, since as has been 

mentioned before that the TIM and its channels is operational upon power-up. Therefore, the 

interrupt handler simply needs to clear the interrupt mask of the channel that generated the 

interrupt. 

The Corrections enabled/disabled interrupt never occurs, since the TIM does not have 

capabilities to apply corrections to the transducer data. However, we set up the routine to clear 

the mask, read the status register and then set the mask again.  

The different interrupt handler routines that have been described for this implementation 

are summarized in Table 6-2. 

In t f concept 

CAP/TIM combination, in which the TIM was interfaced to three transducers and an Ethernet 

network was configured to interface with the NCAP. Next, we will show the tests and results of 

our implementation. 

 

 

 

 

terrupt is generated when the channel has been completely sampled/set and it is cleared 

when the status or data register is read. Note that for sensors this bit is cleared when the data 

register is read, and for actuators this is cleared when the status register is read.  

his section we have shown the complete implementation for a proof o

N
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Table 6-2 Interrupt Service Routines summary 

Routine Interrupt Handler 
 
 
 
 
 
 
 
 
Trigger ACK 

rrupt mask. 

CHANNEL_ZERO:  
1. Clear the interrupt mask 
2. Read the transducer channel data 
3. Set the inte

Channel 1:  
1. Clear the interrupt mask 
2. Read the transducer channel data 
3. Set the interrupt mask 

Channel 2:  
1. Clear the interrupt mask 
2. Read the transducer channel data 
3. Set the interrupt mask 

Channel 3:  
1. Clear the interrupt mask 
2. Read Status Register and signal that the channel 

completely acquired the data 
3. Set the interrupt mask 

Invalid Command 1. Clear the interrupt mask 
2. Read CHANNEL_ZERO status register  
3. Set the interrupt mask 

TIM/Channel Operational Clear the interrupt mask 
Corrections enabled/disabled Will never occur but just in case clear the interrupt mask, read 

the status register and set the interrupt mask. 
 
 

 implementation can be divided in two categories, hardware and 

softwar

ny 

resources. 

Area Us

 
 

6.3 TEST RESULTS 

 

The test results for the system

e. For the hardware results we can take a look at the FPGA synthesis results which were 

efficient for the implementation, as it performed well (speed) and it did not consume too ma

Table 6-3 summarizes the synthesis results. 

Table 6-3 Synthesis Results 

age (LEs) FPGA IO Usage Clock Rate 
415/4160 (9%) 14 out of 40 (35%) 78.01 MHz 
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Note that the area usage was rather small which has to do with the fact that the hardware 

consisted of registers, a control unit (state machine) and combinational logic. The IO usage 

consisted of 10 pins used for the ADC (eight for output and two for control), one pin was used 

for the light sensor, and the LEDs used three I/O bits. 

The other test results include the software simulation, which tested the complete 

command set of the TIM as well as the top level functionality of the NCAP. The tests mentioned 

in the Specifications Chapter were applied and checkpoints were set up in software to test the 

functionality. The debugging was done by using printf statements through hyperterminal. Each 

of the three major steps in the system’s tests was executed yielding positive results.  

These steps consisted of testing system initialization (NCAP objects are instantiated and 

initialized, and TEDS is read transducer-specific objects are instantiated and initialized). Then, 

we applied an individual trigger to every implemented TIM channel and sent/received a dummy 

packet over the network using the client/server model. The last test consisted of applying a 

global trigger command to the TIM and sending/receiving a dummy packet over the network 

using the publish/subscribe communication model. 

Next, we will show the hyperterminal output along with an explanation about each of the 

three tests described above. Figure 6-16 shows the output that was generated when the 

NCAP/TIM combination went through the initialization process. The five steps that initialize the 

system and generate the output 

1. Reset the TIM in order to test that TIM command. This is done by an application-

specific call to the Reset TIM command that was previously shown in Table 5-3. 

2. Read Meta-TEDS information by calling the GetNumberOfTransducerChannels 

and GetMinimumSamplingPeriod respectively. This information is stored and the 

in the Figure are as follows: 
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individual channels are instantiated. Then each individual transducer channel calls 

the GetMetadata operation to read each Channel-TEDS so that the application 

knows what type of transducer it is. 

3. The different NCAP objects are initialized by means of the Initialize and 

GoActive operations of the Block Class. 

ecific and 

ting the interrupt masks as well as setting 

the operation mode to 6-bit priority. 

5. The Ethernet MAC/PHY chip is initialized by calling the smc_init() function that 

is provided by the network library.  

4. The application calls the irq_ini()t function which is application-sp

initializes the interrupt controller by set

 

1

2
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Figure 6-16 Initialization Results 

3

5

4

 



 

After verifying that all these operations occur correctly, the application system is said to 

be operational. The next test shows the individual triggering of every implemented TIM channel. 

The application-specific code that was used for this test is shown in Figure 6-17.  

(1) check = UpdateAndRead(temperature, out);

if (check != 0)
printf("Trigger did not execute correctly\r\n");

else
printf("Channel 1 executed succesfully\r\n");

(2) check = UpdateAndRead(light, out_1);

if (check != 0)
printf("Trigger did not execute correctly\r\n");

else
printf("Channel 1 executed succesfully\r\n");

(3) check = WriteAndUpdate(LEDs, work);

if (check != 0)
printf("Trigger did not execute correctly\r\n");

else
printf("Channel 1 executed succesfully\r\n");

(4) server = Execute(client_port,
0,
0,
server_input,
server_output);

if (server != 0)
printf("Error in communication\r\n");

else
printf("Completed the client-side communication succesfully\r\n");

 
Figure 6-17 Application Code for Individual Triggers and Client-Server Operations 

 
The code shown in Figure 6-17 can be explained as follows: 

1. Channel 1 is triggered. When this is issued to the TIM, it responds by sending the 

ACK as is shown in the output. After this ACK is received the raw data of the 

sensor is read and within the same function a local call to the 

ConvertTemperature operation is executed to give the SI units of the sensor 

reading. The steps mentioned after the issue of the trigger command are 

transparent to the application. 
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2. The next step that is done is triggering channel two to see if there is light or not in 

the room. After receiving the ACK signal the sensor reading was read. Note that 

there is n terpreted as a Boolean 

(TRUE = light, FALSE = dark). 

3. The third step was to trigger the actuator with the information from the light and 

shown in Figure 6-18. 

he next test consisted of the last iteration through the program. This iteration tests 

global triggering and publishes the information over the network. The code that was used for this 

test is shown in Figure 6-19. 

he code (Figure 6-19) shows how the UpdateAll function is called to apply a global 

trigger 

ual channels 

first and outputs the information, and at the end it reads CHANNEL_ZERO, 

o conversion needed since this information was in

the temperature sensor. Since the temperature was operating in “normal” range 

LED 1 was set, and because there was no light there were no other LEDs that 

were set in the system. Note that this function also generated a Trigger ACK 

4. The Execute function was called by the Client Port. Within this function, the 

dummy test packet was sent to the network infrastructure by means of the 

MarshalAndTransmitReceive function. This function then executes the loopback 

test that consists of sending and receiving the complete packet information in the 

Ethernet MAC/PHY chip. Note that the two sent and received packets matched as 

is shown in the Figure.  

The result of this test is 

T

T

command to the TIM. The interaction shown in the figure can be described as follows: 

1. Every implemented channel is triggered. Note that each individual channel 

generates its own trigger ACK and the NCAP then reads the individ
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which contains all the information about all the transducer channels. Note that the 

output from the individual channels and the CHANNEL_ZERO match. 

The Publish operation was called by the Publisher P2. ort. Within this function the 

MarshalAndTransmitReceive operation was called to send the test packet 

information over the network. Note that this time the register that was used was 

0xA, and the packet that was written was 0x1F90 which again matched the sent 

and received packages proving that the operation completed successfully. 

 

1

Figure 6
2

 
-18 Main Loop first iteration 

3

4 
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(1) check = UpdateAll(transducer_block);

if (check != 0)

(2) check = Publish(publisher_port, data);

if (check != 0)
printf(“Error in communication\r\n”);

printf(“Information Published\r\n”);

ure 6-19 Application Code for Global Trigger and Publish-Subscribe Operations 

ult of this test is shown in Figure 6-20. 

printf(“Error in Global Trigger\r\n”);

else

 
Fig

 
The res

 

Figure 

 
In this chapter we have show

order to test the design of our NCAP
1
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2 

6-20 Main Loop Second Iteration 

n the proof of concept application that was implemented in 

/TIM architecture. In the next chapter, we will summarize 



 

the efforts of this thesis, discuss the conclusion  and give the future directions that this project 

could undertake. 

s,
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7.0 CONCLUSIONS AND FUTURE WORK 

 

 
nt system using 

the following structure. First, we introduced the standard, and gave background information 

about its structure and functionality in Chapter 1.0. Then, in Chapter 2.0, we showed a 

comprehensive look at the problem where previous solutions were discussed and our solution 

was proposed. In Chapter 3.0, we derived a set of requirements for the system in order to remain 

compli

long with the test results that showed the system’s performance and 

compliance with the standard. 

 
 
 
 

7.1 CONCLUSIONS 

ut the key aspects of the design that was presented in this thesis: 

 

 

In this thesis we have presented a single chip solution for an IEEE 1451 complia

ant with the standard. From these requirements, we derived a set of specifications and 

tests as was depicted by Chapter 4.0. Next, in Chapter 5.0, the different objects in the system 

were designed using the specifications previously defined. In Chapter 6.0, we showed a proof of 

concept implementation a

 

In this thesis, we have presented the design of an NCAP/TIM combination that will aid in 

the development and understanding of the IEEE 1451 family of standards. The following 

discussion points o
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• By meeting the high-level objectives (high-level of configurability, better 

performance, etc.) of this design, we have created a flexible and high-performance 

architecture that can be reused for control networks.  

• Eliminating the TII in favor of a parallel high performance bus connection 

conversion rate of 2.5 µSec), as opposed to the 51 Hz that the 1451.2 connection 

yields under the same configuration. 

• The low power capabilities of the ARM processor and the high-speed connection 

of the NCAP and TIM make this solution helpful for application systems that 

contain a large number of transducers that need to be sampled periodically in a 

 

7.2 FUTURE WORK 

 

Future work for the presented solution consists of the following: 

• Complete an Application Specific Integrated Circuit (ASIC) for this IEEE 1451 

single chip solution.  

improves the speed performance of the NCAP/TIM communication. This speed 

improvement is significant since the sampling rate for a system with 10 

transducers (5 sensors and 5 actuators) would be 374 KHz (assuming an ADC 

small amount of time. 

• This solution will provide an efficient alternative to the widely criticized TII 

communication protocol of the IEEE 1451.2 standard.  
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• Design a completely re-configurable TIM block. This proposed block would have 

a database of TEDS associated with it that contains information about a variety of 

transducers. Then, using this database we can select the transducer(s) that we 

would like to implement, and the complete transducer channel TIM block would 

be instantiated. In order to accomplish this, we would need to design a Graphical 

User Interface (GUI) that has the capability of dynamically setting the I/O ports of 

the control unit as well as the individual transducer channels. Note that designers 

would still have to build the “glue” logic with the physical transducer. 
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APPENDIX A. NCAP OBJECT MODEL 
 
 

This appendix discusses the top-level structures (using UML class diagrams), and a brief 

explanation for the standard-defined object classes that were not described in the specifications 

chapter. First, we show the Root class which is the root for the class hierarchy of all objects 

defined in the standard. Its structure is shown below. 

+GetClassName(out class_name : String) : OpReturnCode
+GetClassID(out class_id : String) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_Root

 

Next, we describe the Base Transducer Block class. This class is the root for the class 

hierarchy of all Transducer Block Objects. The structure for this class is shown below. 

+IORead(in io_input_arguments : ArgumentArray, out io_output_arguments : ArgumentArray) : OpReturnCode
+IOWrite(in io_input_arguments : ArgumentArray, out io_output_arguments : ArgumentArray) : OpReturnCode
+SetIOControl(in control_arguments : ArgumentArray) : OpReturnCode
+GetIOStatus(in io_input_arguments : ArgumentArray, out status : ArgumentArray) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_BaseTransducerBlock

 

The next class is the Component class (shown below), which is the root for the class 

hierarchy of all Component Objects. 

+SpecifyRuleBasis(in rule_basis : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_Component

 

Now, we define the Parameter class which is used to model network visible variables and 

to provide a means for accessing them. This class’ structure is shown in the next figure. 
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+Read(out data : ArgumentArray) : OpReturnCode
+Write(in data : ArgumentArray) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_Parameter

 

The next class is the Scalar Parameter class. This class is used to model physical world 

quantities that do not have dimensions or orientation with them, and are appropriately 

represented as mathematical scalars. The structure for this class is shown below. 

+GetDatatype(out value_datatype : ushort) : OpReturnCode
+GetUnits(out value_units : Units) : OpReturnCode
+SetDatatype(out value_datatype : ushort) : OpReturnCode
+SetUnits(in value_units : Units) : OpReturnCode

+_class_ID : ClassID

+_class_name : String
+_description : String

IEEE1451_ScalarParameter

 

Next, we define the Scalar Series Parameter class which is used to model physical world 

quantities, best modeled as a succession of scalars evenly distributed along some dimension. 

Examples of such quantities are time series, fourier transforms, and mass spectra. This class’ 

structure is shown below. 

+GetAbscissaUnits(out abscissa_units : Units) : OpReturnC
+GetAbscissaIncrement(out abscissa_increment : Argumen

ode
t) : OpReturnCode

+GetAbscissaOrigin(out abscissa_origin : Argument) : OpReturnCode
+SetAbscissaUnits(in abscissa_units : Units) : OpReturnCode
+SetAbscissaIncrement(in abscissa_increment : Argument) : OpReturnCode
+SetAbscissaOrigin(in abscissa_origin : Argument) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_ScalarSeriesParameter

 

We now define the Vector Parameter class which is used to model physical world 

quantities that have multiple dimensions and perhaps orientations associated with them, and are 

appropriately represented as mathematical vectors. The structure for this class is shown in the 

following figure. 
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+GetDimension(out dimension : ushort) : OpReturnCode
+GetDatatype(out value_datatype : ushort) : OpReturnCode
+GetUnits(out value_units : UnitsArray) : OpReturnCode
+SetDimension(in dimension : ushort) : OpReturnCode
+SetDatatype(in value_datatype : ushort) : OpReturnCode
+SetUnits(in value_units : UnitsArray) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_VectorParameter

 

Next, we show the Vector Series Parameter which is used to model a uniform series of 

physica

ted as mathematical vectors. This class’ structure is shown below. 

l world quantities that have dimensions and orientation associated with them and are 

appropriately represen

+GetAbscissaUnits(out abscissa_units : Units) : OpReturnCode
+GetAbscissaIncrement(out abscissa_increment : Argument) : OpReturnCode
+GetAbscissaOrigin(out abscissa_increment : Argument) : OpReturnCode
+SetAbscissaUnits(in abscissa_units : Units) : OpReturnCode
+SetAbscissaIncrement(in abscissa_origin : Argument) : OpReturnCode
+SetAbscissaOrigin(in abscissa_increment : Argument) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_VectorSeriesParameter

 

We now define the Time Parameter class which is used to represent time parametric 

values. This class’ purpose is to model network visible variables that directly or indirectly 

represent the time of some event, or the duration between two events, where the significant 

characteristic of the event is the time rather than some other value. The structure for this class is 

shown below. 

+GetUncertainty(out uncertainty : Uncertainty) : OpReturnCode
+GetTimeType(out time_type : ushort) : OpReturnCode
+GetEpochRepresentation(out epoch_representation : ushort) : OpReturnCode
+GetEpoch(out epoch : TimeRepresentation) : OpReturnCode
#RegisterNotifyOnUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode
#DeregisterNotifyOnUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_TimeParameter
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The next class is the Action class. This class is used to represent activities that alter 

system state and that require significant time to execute compared to other activities in the 

system. The structure for this class is shown below. 

+GetActionFailedTimeoutDuration(out action_failed_timeout_duration : TimeRepresentation) : OpReturnCode

+GetActionState(out action_st
+AbortTransaction(in transact

+_class_ID : ClassID
+_description : String
+_class_name : String

+InvokeTransaction(in input_arguments : ArgumentArray, out transaction_id : ushort) : OpReturnCode
ate : ushort) : OpReturnCode
ion_id : ushort) : OpReturnCode

+ReleaseTransaction(in transaction_id : ushort) : OpReturnCode
Code+ForceAcquireTransaction(out new_transaction_id : ushort) : OpReturn

IEEE1451_Action

 

represents a 

block o emo rom, and written to. The structure for this 

class is shown

Next is the File class which is an abstraction of a data resource. This class 

f m ry, which may be opened, closed, read f

 below. 

+OpenForRead(out transaction_id : ushort, out actual_ima
e(out transaction_id : ushort, 

ge_size : uint) : OpReturnCode
+OpenForWrit
+Rea  : OpReturnCode
+Writ  : uint) : OpReturnCode
+Clo
+For
+Get urnCode

+_cla
+_de
+_cla

ss_ID : ClassID
scription : String
ss_name : String

out max_file_size : uint) : OpReturnCode
Array)d(in transaction_id : ushort, in requested_number_of_octets : uint, out actual_number_of_octets_read : uint, out data : Octet

e(in transaction_id : ushort, in requested_number_of_octets : uint, in data : OctetArray, out actual_number_of_octets_written
se(in transaction_id : ushort) : OpReturnCode
ceClose() : OpReturnCode
FileState(out file_state : ushort, out actual_image_size : uint, out max_file_size : uint) : OpRet

IEEE1451_File

 

 used for Files that are subdivided 

into a n

We now show the Partitioned File class. This class is

umber of partitions. Its structure is shown below. 

+SeekPartition(in transaction_id : ushort, in partition_id : uint, out actual
 out partition_id : uint, ou

_partition_image_size : uint, out max_partition_size : uint) : OpReturnCode
+Get t actual_partition_image_size : uint, out max_partition_size : uint) : OpReturnCode
+Get ort, out number_of_partitions : ushort) : OpReturnCode
+Get action_id : ushort, out partition_state : ushort) : OpReturnCode

+_class_ID : ClassID
+_des
+_cla

cription : String
ss_name : String

CurrentPartition(in transaction_id : ushort,
action_id : ushNumberOfPartitions(in trans

PartitionedFileSubstate(in trans

IEEE1451_PartitionedFile

 

bjects in a system. This class’ structure is depicted by the figure 

shown 

Up next, we have the Component Group class which provides a way to specify set 

membership relations between o

below. 
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+AddMember(in member_properties : ObjectProperties) : OpReturnCode
+DeleteMember(in member_properties : ObjectProperties) : OpReturnCode
+GetMembers(out members_properties : ObjectPropertiesArray) : OpReturnCode
+SetM
+Loo
+LookupM
+GetNumberOfMembers(out number_of_members : ushort) : OpReturnCode

ut member_properties : ObjectProperties) : OpReturnCode

ry_object_tag : ObjectTag, out member_properties : ObjectPropertiesArray) : OpReturnCode

embers(in members_properties : ObjectPropertiesArray) : OpReturnCode
kupMembersByName(in query_object_name : String, out member_properties : ObjectPropertiesArray) : OpReturnCode

emberByDispatchAddress(in query_dispatch_address : ObjectDispatchAddress, out member_properties : ObjectPropertiesArray) : OpReturnCode

+GetNextMember(in first_flag : bool, o
+CancelIteration() : OpReturnCode
+LookUpMemberByObjectTag(in que

+_cla
+_de
+_cla name : String

ss_ID : ClassID
iption : String

IEEE1451_ComponentGroup

scr
ss_

 

ss. This class is the root for the class hierarchy of all 

service bject types used to support communication and 

other a e structure for this class is shown below. 

The next class is the Service cla

 objects. The service classes represent o

spects of block functionality. Th

+SpecifyRuleBasis(in rule_basis : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_Service

 

ierarchy of all 

commu icatio  port bject via the underlying network. Its 

structur

Next, we show the Base Port class which is the root for the class h

n ns  o s used to send communications 

e is shown below. 

+SetTimeout(in client_timeout : TimeRepresentation) : OpReturn
t : TimeRepresentation) : OpRetu

Code
rnCode

e_priority : ushort) : OpReturnCode
: ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

+GetTimeout(out client_timeou
+SetMessagePriority(in messag
+GetMessagePriority(in message_priority 

IEEE1451_BasePort

 

class is the root for the class hierarchy of 

all clie  class is shown 

below. 

We now show the Base Client Port class. This 

nt-server communication client-side port objects. The structure for this

+SetServerObjectTag(in server_object_tag : ObjectTag) : OpReturnC
_object_tag : ObjectTag) : OpRet

ode
+GetServerObjectTag(out server urnCode

+_class_ID : ClassID
IEEE1451_BaseClientPort

 

+_description : String
+_class_name : String
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U t a  Asynchronous Client Port class. This clp nex  we h ve the ass provides client-side 

functionality for an asynchronous, non-blocking, client-server communication model. The 

structure for this class is shown below. 

#ExecuteAsynchronous(in server_operation_id : ush
#GetAsynchronous(in transaction_id : ushort, out res

ort, in server_input_arguments : ArgumentArray, out transaction_id : ushort) : OpReturnCode
ult_status : ushort) : OpReturnCode

#GetResult(in transaction_id : ushort, out server_output_arguments : ArgumentArray) : OpReturnCode
#Abo
#For ver_operation_id : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String

rtTransaction(in transaction_id : uint) : OpReturnCode
ceAcquireTransaction(out new_transaction_id : ushort, out current_ser

+_class_name : String

IEEE1451_AsynchronousClientPort

 

s basic publisher-side for its 

subclasses. This class’ structure is shown below. 

The next class is the Base Publisher Port class which provide

+SetPublicationTopic(in publication_topic : PublicationTopic) : OpReturnCo
topic : PublicationTopic) : OpReturnC

de
ode

y : ushort) : OpReturnCode
ublication_domain : PubSubDomain) : OpReturnCode

t publication_domain : PubSubDomain) : OpReturnCode

+GetPublicationTopic(out publication_
ey(out publication_ke+GetPublicationK

+SetPublicationDomain(in p
+GetPublicationDomain(ou

+_class_ID : ClassID
IEEE1451_BasePublisherPort

+_description : String
+_class_name : String

 

ss provides publisher-

subscri with operations to allow the subscriber to establish 

communication with the publisher, and the publisher to notify subscribers of changes in the 

publica

Next, we describe the Self Identifying Publisher Port class. This cla

be communication model 

tion policy. The structure for this class is shown below. 

+GetPublisherMetadata(in publication_id : ushort, in cached_publication_change_id : ushort, out publisher_metadata : ArgumentArray) : OpReturnCode
+PublishPublisherMetadata(in publication_id : ushort, in cached_publication_change_id : ushort) : OpReturnCode
#Pub

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_SelfIdentifyingPublisherPort

lishWithIdentification(in publication_contents : ArgumentArray) : OpReturnCode
terPublishe _id : ushort) : OpReturnC#Reg ode

#Dere isterPublis id : ushort) : OpReturnCode
is r(in callback_operation_reference, out publication
g her(in callback_operation_reference, in publication_  

ow w  which is used to allow events 

internal to the operation of a block to result in the publication of an event record. This class’ 

structure is sho

N e describe the Event Generator Publisher Port class

wn in the following figure. 
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+GetEventGeneratorState(out event_generator_state : ushort) : OpReturnCode
+SetEventSequenceNumber(in event_sequence_number : uint) : OpReturnCode
+GetEventSequenceNumber(out event_sequence_number : uint) : OpReturnCode
+SetResponseTag(in response_object_tag : ObjectTag) : OpReturnCode
+GetLastTimestamp(out last_event_timestamp : TimeRepresentation) : OpReturnCode
+EnableEventPublication() : OpReturnCode
+DisableEventPublication() : OpReturnCode
+GetResponseTag(out response_object_tag : ObjectTag) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_EventGeneratorPublisherPort

 

The next class is the Mutex Service class. This class (shown below) provides mutual 

exclusion capability. 

+Lock(in timeout : TimeRepresentation, out transaction_id : ushort) : OpReturnCode
+Unlock(in transaction_id : ushort) : OpReturnCode
+TryLock(out transaction_id : ushort) : OpReturnCode
+IsLocked(out mutex_status : bool) : OpReturnCode
+ForceAcquireLock(out transaction_id : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_MutexService

 

Lastly, we show the Condition Variable class. This class provides the capability for 

ordering concurrent activities. The structure for this class is shown in the following figure. 

+Lock(in lock_timeout : TimeRepresentation, out transaction_id : ushort) : OpReturnCode
+Unlock(in transaction_id : ushort) : OpReturnCode
+TryLock(out transaction_id : ushort) : OpReturnCode
+SetPredicateState(in predicate_state : bool, in transaction_id : ushort) : OpReturnCode
+Wait(in wait_timeout : TimeRepresentation, out transaction_id : ushort) : OpReturnCode
+SignalOne(in transaction_id : ushort) : OpReturnCode
+SignalAll(in transaction_id : ushort) : OpReturnCode
+IsLocked(out mutex_status : bool) : OpReturnCode
+GetPredicateState(out predicate_state : bool) : OpReturnCode
+ForceAcquireLock(out transaction_id : ushort) : OpReturnCode
+ClearAllPendingWaits(in transaction_id : ushort) : OpReturnCode

+_class_ID : ClassID
+_description : String
+_class_name : String

IEEE1451_ConditionVariableService
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APP DE 

e client side functionality of the client/server communication model 

ned short execute_mode, 
 /* in  */ unsigned short server_operation_id, 

/* in  */ ArgumentArray server_input_arguments, 
Array server_output_arguments 

 ) 

if (execute_mode == 0){ 

ding on the network infrastructure 
ceive(server_input_arguments, 0); 

nfrastructure 
MarshalAndTransmitReceive(server_input_arguments, 0); 

rn 0; 

sed to make sure that 

ation_contents){ 

ENDIX B. NCAP SOFTWARE CO
 
 

In this appendix, we show the software code that was written for the network and 

transducer access operations. The code is commented and shows what a user needs to modify for 

his/her particular application. 

The code for the Execute operation is shown below. 

// Execute function for th
ClientServerReturnCode Execute(IEEE1451_ClientPort *a, 
 /* in  */ unsig

 
 /* out */ Argument

 { 
   
  
    

// Next line changes depen
   MarshalAndTransmitRe
   // Timeout routine 
   While (interrupt == 0){ 
    If (jiffies > timeout) 
     Return 14; 
    Else 
     Return 0; 
   } 
  } 
  else{ 

// Next line changes depending on the network i
   
   Retu
  } 
 } 
 
It is important to note that jiffies is a timer interrupt signal that is u

the operation does not timeout. 

Next is the software code for the Publish operation. 

OpReturnCode Publish(IEEE1451_PublisherPort *a, ArgumentArray public
  

// Next line changes depending on the network infrastructure 
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 MarshalAndTransmtReceive(publication_contents, 1); 
 return 0;  
} 
 

Now, we move on to the transducer access. We begin with the UpdateAndRead operation 

pRetur arameterWithUpdate *a, 

nt raw; 

 the transducer channel 
ASE) = 1; 

temp->typeCode = FLOAT32_TC; 

l1.ChannelUpdateTime) 
; 

depending on the transducer channel 
DATA(EXC_PLD_BLOCK0_BASE); 

temp->Arg_Union.float32Val = *res; 
return 0; 

} 
_tag  == “0.11”) { 
ensor  

 channel 
 = 1; 

  while (trigger_ACK != 1) { 

ing on the transducer channel 
_PLD_BLOCK0_BASE); 

 = light; 

} 

(used for sensor trigger). 

O nCode UpdateAndRead(IEEE1451_P
 /* out */ ArgumentArray data 
 ) 
 { 
  ArgumentArray temp; 
  float *res; 
  i
  Boolean light; 
  // First check to see what kind of sensor we're dealing with... 
  // Check the object tags 
  if (a->object_tag == “0.10”) { 
   
   // Temperature sensor 
   // Trigger the sensor then read... 
   // Next Line Changes depending on
   *STIM_ONE_TRIGGER(EXC_PLD_BLOCK0_B
   
   // read the sensor after it was triggered 
   // Timeout routine 
   while (trigger_ACK != 1) { 
    if (jiffies > channe
     return 14
   } 
   // Next Line Changes 
   raw = *STIM_ONE_
   ConvertTemperature(raw,res); 
   
   
  
  else if (a->object
   // Light S
   // Trigger the sensor 

// Next Line Changes depending on the transducer
   *STIM_TWO_TRIGGER(EXC_PLD_BLOCK0_BASE)
   temp->typeCode = BOOLEAN_TC; 
   // Read the sensor... 
 
    if (jiffies > channel2.ChannelUpdateTime) 
     return 14; 
   } 
   // Next Line Changes depend

light = *STIM_TWO_DATA(EXC
   temp->Arg_Union.booleanVal
   return 0; 
  
  else { 
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   // LED Actuator so nothing should be done here... 
ing from an actuator...\r\n"); 

0
  } 

hannel TIM that was implemented as the 

 the comments it is easy to add more 

ithUpdate *a, 

= “0.12”) { 
 write decode the argument array data and set the actuator 

hanges depending on the transducer channel 
  *STIM_THREE_TRIGGER(EXC_PLD_BLOCK0_BASE) = data->Arg_Union.integer32Val; 

  while (trigger_ACK != 1) { 

 } 
 return 0; 

printf("No effect because writing to a sensor...\r\n"); 
return 0; 

ration. It is important to note that this operation times 

e Worse Channel Update Time that is found on 

TransducerBlock *a){ 
tion... 

igger\r\n"); 
XC_PLD_BLOCK0_BASE) = 1; 

NNEL_ZERO.worseChannelUpdateTime){ 
“Error”); 

 

   printf("No effect because read
   return ; 

 } 
 
Note that this operation is written for the 3-C

proof of concept design. However, as is shown by

transducers for another application. 

Next, is the WriteAndUpdate operation. 

OpReturnCode WriteAndUpdate(IEEE1451_ParameterW
/* in */ ArgumentArray data  

 ) 
{  

  if (a->object_tag =
tuator so  // LED Ac

Next Line C  
     

   if (jiffies > channel2.ChannelUpdateTime) 
  return 14;  

 
 
  } 

lse { // Sensors so nothing should be done here...   e
   
   
  } 
 } 
 

Next, we show the UpdateAll ope

out if the trigger ACK is not received within th

the TIM’s Meta-TEDS. 

OpReturnCode UpdateAll(IEEE1451_
 // Set the global trigger func
 printf("Applying a global tr
 *STIM_ZERO_TRIGGER(E
 

while (trigger_ACK != 1) { 
 

if (jiffies >= CHA
  printf(
  return 14; 

}
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 } 
 return 0; 
 
} 
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APPENDIX C. TIM VHDL CODE 
 
 

This appendix is dedicated for the VHDL code of the control unit (for the 3-Channel 

L code of the 

e additions must be 

TIM), the Transducer Block and the Priority Encoder. First, we show the VHD

control unit. Note that in the VHDL code we show with comments where th

made to expand this control unit for an 8-Channel TIM implementation. 

-- Created by Gustavo E. Lopez 
-- Basic slave implementation on the AMBA bus that decodes the instruction 
-- for the TIM implementation 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
 
ENTITY slave_interface IS 
    
 PORT ( 
  -- AHB interface 
  hresetn  : IN std_logic; 
  hclock  : IN std_logic; 
  hwrite  : IN std_logic; 
  hsel  : IN std_logic; 
  htrans  : IN std_logic_vector(1 downto 0); 
  hsize  : IN std_logic_vector(1 downto 0); 
  hburst  : IN std_logic_vector(2 downto 0); 
  haddress : IN std_logic_vector(31 downto 0); 
  hwdata  : IN std_logic_vector(31 downto 0); 
  hready  : OUT std_logic; 
  hresp  : OUT std_logic_vector(1 downto 0); 
  hrdata  : OUT std_logic_vector(31 downto 0); 
   
  -- Inteface to the TIM 
  -- Interrupt mask registers definition, along with their respective enable signals 
  INT_MASK_ZERO  : IN std_logic_vector(31 downto 0); 
  INT_MASK_ZERO_en : OUT STD_LOGIC; 
  INT_MASK_ONE  : IN std_logic_vector(31 downto 0); 
  INT_MASK_ONE_en  : OUT STD_LOGIC; 
  INT_MASK_TWO  : IN std_logic_vector(31 downto 0); 
  INT_MASK_TWO_en  : OUT STD_LOGIC; 
  INT_MASK_THREE  : IN std_logic_vector(31 downto 0); 
  INT_MASK_THREE_en : OUT STD_LOGIC; 
 
  INT_MASK_data  : OUT std_logic_vector(31 downto 0);  
   
  -- Status registers definition, along with its parcitular enable signals 
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  status_zero  : IN std_logic_vector(31 downto 0); 
   
   
  status_one  : IN std_logic_vector(31 downto 0); 
  status_two  : IN std_logic_vector(31 downto 0); 
  status_three : IN std_logic_vector(31 downto 0); 
 
  -- "Glue" Interface signals 
  RD_Status_ZERO  : OUT std_logic; 
  RD_Sensor_one   : OUT std_logic; 
  RD_Sensor_two   : OUT std_logic; 
  RD_Status_three : OUT std_logic; 
  -- We would need to add the RD_Status/RD_Sensor signals for other transducers here 

 NCAP 

ucer data regs 

 
  4 through 8) 

n 

 
 -- Define a signal that will signal the status register that an invalid command was sent from the
  status_invalid : OUT std_logic; 
   
  -- Channel Data definition, and control signals 
  -- Here is where we shoul.d define the control/data signals for the newer transd
  data_zero_in  : IN std_logic_vector(31 downto 0); 
  data_zero_out  : OUT std_logic_vector(31 downto 0); 
  data_zero_en  : OUT std_logic; 
  data_one  : IN std_logic_vector(31 downto 0); 
  data_two  : IN std_logic_vector(31 downto 0); 
  data_three_en  : OUT std_logic; 
  data_three_out  : OUT std_logic_vector(31 downto 0); 
   

 -- Define signals that will be used to determine the trigger ACK  
 -- We would need to define five more trigger signals (for channels

  trigger_zero : OUT std_logic; 
  trigger_one : OUT std_logic; 
  trigger_two : OUT std_logic; 
  trigger_three : OUT std_logic; 
    
  -- Signal used to reset the entire TIM 
  STIM_reset  : OUT std_logic 
   
  ); 
END slave_interface; 
 
ARCHITECTURE rtl OF slave_interface IS 
 
 SIGNAL haddress_reg  : std_logic_vector(31 downto 0); 
 SIGNAL hburst_reg  : std_logic_vector(2 downto 0); 
 SIGNAL htrans_reg  : std_logic_vector(1 downto 0); 
 SIGNAL hresp_reg  : std_logic_vector(1 downto 0); 

 
-- Note that for “glue” logic/transducer channel interface output shown in the port declaratio
-- We need to instantiate temporary signals right here… 

 SIGNAL mask_zero_en   : std_logic; 
 SIGNAL mask_one_en  : std_logic; 
 SIGNAL mask_two_en  : std_logic; 
 SIGNAL mask_three_en:   std_logic; 
 SIGNAL mask_data  : std_logic_vector(31 downto 0); 
  
 SIGNAL zero_out   : std_logic_vector(31 downto 0); 
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 SIGNAL zero_en   : std_logic; 
 SIGNAL three_en   : std_logic; 
 SIGNAL three_out  : std_logic_vector(31 downto 0); 
 
 SIGNAL glue_zero  : std_logic; 
 SIGNAL glue_one  : std_logic; 
 SIGNAL glue_two  : std_logic; 
 SIGNAL glue_three  : std_logic; 
  
 SIGNAL invalid   : std_logic; 
  
 SIGNAL zero_temp  : std_logic; 
 SIGNAL one_temp  : std_logic; 
 SIGNAL two_temp  : std_logic; 
 SIGNAL three_temp  : std_logic; 
  
 SIGNAL rst   : std_logic; 
  
 SIGNAL internal_write : std_logic; 
  
 TYPE state_type IS (address,data); 
 SIGNAL state : state_type; 
  
BEGIN 
 
-- We are always ready and we always respond with an OKAY repsponces to the initiating master. 
hready <= '1'; 
hresp <= "00"; 
 
-- Create a FSM to control the internal read and write signals to the register bank. 
PROCESS(hclock,hresetn) 
BEGIN 
 IF hresetn = '0' THEN 
  internal_write <= '0'; 
  state <= address; 
  invalid <= '0'; 
  zero_en <= '0'; 
  three_en <= '0'; 
  mask_zero_en  <= '0'; 
  mask_one_en   <= '0'; 
  mask_two_en   <= '0'; 
  mask_three_en <= '0'; 
  glue_zero <= '0'; 
  glue_one <= '0'; 
  glue_two <= '0'; 
  glue_three <= '0'; 
  zero_temp <= '0'; 
  one_temp <= '0'; 
  two_temp <= '0'; 
  three_temp <= '0'; 
   
 ELSIF rising_edge(hclock) THEN 
  CASE state IS  
   WHEN address => 
    IF hsel = '1' AND htrans = "10" THEN 
     IF hwrite = '1' THEN 
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      internal_write <= '1'; 
      CASE haddress(15 downto 0) IS 
       WHEN X"0000" => 
        mask_zero_en  <= '1'; 

'; 

'; 

 

'; 

        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"0004" => 
        mask_zero_en  <= '0
        mask_one_en   <= '1'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0';  
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"0008" => 
        mask_zero_en  <= '0
        mask_one_en   <= '0'; 
        mask_two_en   <= '1'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"000C" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0
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        mask_two_en   <= '0'; 
        mask_three_en <= '1'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
 -- We would add the Write INT_MASK commands for channels 4 through 8 here 
       WHEN X"2000" => 
        mask_zero_en  <= '0'; 

0'; 
k_one_en   <= '0'; 

 mask_two_en   <= '0'; 

 zero_en <= '0'; 
0'; 

        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '1'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"2004" => 
        mask_zero_en  <= '
        mas
       
        mask_three_en <= '0'; 
       
        three_en <= '
        invalid <= '1'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"2008" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
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        invalid <= '1'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"200C" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '1'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 

-- Add the addresses for Channels 4 through 8 here, however this command will always 
--return an invalid command since we cannot write to the Status register  

       WHEN X"4000" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '1'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '1'; 
        one_temp <= '1'; 
        two_temp <= '1'; 
        three_temp <= '1'; 
        rst <= '1'; 
       WHEN X"4004" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
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        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '1'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"4008" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '1'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"400C" => 
        mask_zero_en  <= '0'; 
          mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '1'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '1'; 
        rst <= '1'; 
 -- We would add the Trigger commands for channels 4 through 8 here 
       WHEN X"6000" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 

202 



 

        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"6004" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"6008" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '1'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"600C" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
 -- We would add the Write Transducer Data command for channels 4 through 8 here 
       WHEN X"8000" => 
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        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '0'; 
       WHEN others => 
       -- Ignore the other commands... 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 

= '0'; 

s... 

        zero_en <
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
      END CASE; 
      
     ELSE -- Read Operation so set the different operation
      
      internal_write <= '0'; 
      CASE haddress(15 downto 0) IS 
       WHEN X"0000" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
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        rst <= '1'; 
       WHEN X"0004" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0';  
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"0008" => 
        mask_zero_en  <= '0'; 
        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0';  
        rst <= '1'; 
       WHEN X"000C" => 
        mask_zero_en  <= '0'; 

 '0'; 

        mask_one_en   <= '0'; 
        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '0'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
 -- We would add the Read INT_MASK command for channels 4 through 8 here 
       WHEN X"2000" => 
        mask_zero_en  <=
        mask_one_en   <= '0'; 
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        mask_two_en   <= '0'; 
        mask_three_en <= '0'; 
        zero_en <= '0'; 
        three_en <= '0'; 
        invalid <= '0'; 
        glue_zero <= '1'; 
        glue_one <= '0'; 
        glue_two <= '0'; 
        glue_three <= '0'; 
        zero_temp <= '0'; 
        one_temp <= '0'; 
        two_temp <= '0'; 
        three_temp <= '0'; 
        rst <= '1'; 
       WHEN X"2004" => 
        mask_zero_en  <= '0'; 

mask_two_en   <= '0'; 
  mask_three_en <= '0'; 

en <= '0'; 
_en <= '0'; 
id <= '0'; 
zero <= '0'; 
one <= '0'; 

glue_two <= '0'; 
glue_three <= '0'; 
zero_temp <= '0'; 

ne_temp <= '0'; 
two_temp <= '0'; 
three_temp <= '0'; 
st <= '1'; 

> 
ask_zero_en  <= '0'; 
ask_one_en   <= '0'; 
ask_two_en   <= '0'; 

mask_three_en <= '0'; 
ero_en <= '0'; 

 three_en <= '0'; 
  invalid <= '0'; 

0'; 

glue_two <= '0'; 
_three <= '0'; 

 '0'; 
 one_temp <= '0'; 

 '0'; 
three_temp <= '0'; 

 '1'; 
C" => 
_zero_en  <= '0'; 
one_en   <= '0'; 

mask_two_en   <= '0'; 
mask_three_en <= '0'; 
zero_en <= '0'; 
hree_en <= '0'; 

invalid <= '0'; 

        mask_one_en   <= '0'; 
        
      
        zero_
        three
        inval
        glue_
        glue_
        
        
        
        o
        
        
        r
       WHEN X"2008" =
        m
        m
        m
        
        z
       
      
        glue_zero <= '
        glue_one <= '0'; 
        
        glue
        zero_temp <=
       
        two_temp <=
        
        rst <=
       WHEN X"200
        mask
        mask_
        
        
        
        t
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        glue_zero <= '0'; 
lue_one <= '0'; 

<= '0'; 
lue_three <= '1'; 
ero_temp <= '0'; 

e_temp <= '0'; 
two_temp <= '0'; 
three_temp <= '1'; 

  rst <= '1'; 
8 here 

0" => 
_zero_en  <= '0'; 
_one_en   <= '0'; 

two_en   <= '0'; 
mask_three_en <= '0'; 
zero_en <= '1'; 
three_en <= '0'; 
nvalid <= '0'; 

glue_zero <= '0'; 
glue_one <= '0'; 

lue_two <= '0'; 
e <= '0'; 

ero_temp <= '1'; 
ne_temp <= '1'; 
o_temp <= '1'; 

three_temp <= '1'; 
st <= '1'; 

WHEN X"4004" => 
 mask_zero_en  <= '0'; 

mask_one_en   <= '0'; 
mask_two_en   <= '0'; 
mask_three_en <= '0'; 
zero_en <= '0'; 
three_en <= '0'; 

 invalid <= '0'; 
 glue_zero <= '0'; 
 glue_one <= '0'; 

glue_two <= '0'; 
 glue_three <= '0'; 
 zero_temp <= '0'; 

one_temp <= '1'; 
two_temp <= '0'; 
three_temp <= '0'; 
rst <= '1'; 

HEN X"4008" => 
 mask_zero_en  <= '0'; 

mask_one_en   <= '0'; 
   mask_two_en   <= '0'; 

    mask_three_en <= '0'; 
     zero_en <= '0'; 

       three_en <= '0'; 
       invalid <= '0'; 

    glue_zero <= '0'; 
    glue_one <= '0'; 

       glue_two <= '0'; 
    glue_three <= '0'; 

        g
        glue_two 
        g
        z
        on
        
        
      
 -- We would add the Read Status command for channels 4 through 
       WHEN X"400
        mask
        mask
        mask_
        
        
        
        i
        
        
        g
        glue_thre
        z
        o
        tw
        
        r
       
       
        
        
        
        
        
       
       
       
        
       
       
        
        
        
        
       W
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        zero_temp <= '0'; 
 one_temp <= '0'; 

  two_temp <= '1'; 
 three_temp <= '0'; 

  rst <= '1'; 
  WHEN X"400C" => 
   mask_zero_en  <= '0'; 

 mask_one_en   <= '0'; 
 mask_two_en   <= '0'; 

ask_three_en <= '0'; 
zero_en <= '0'; 

en <= '1'; 
invalid <= '0'; 
glue_zero <= '0'; 

ne <= '0'; 
glue_two <= '0'; 
glue_three <= '0'; 

emp <= '0'; 
one_temp <= '0'; 
two_temp <= '0'; 

temp <= '1'; 
rst <= '1'; 

rough 8 here 
EN X"6000" => 

mask_zero_en  <= '0'; 
mask_one_en   <= '0'; 
mask_two_en   <= '0'; 
mask_three_en <= '0'; 
zero_en <= '0'; 
three_en <= '0'; 
invalid <= '0'; 
glue_zero <= '1'; 
glue_one <= '0'; 

lue_two <= '0'; 
glue_three <= '0'; 
zero_temp <= '0'; 
one_temp <= '0'; 
two_temp <= '0'; 
three_temp <= '0'; 
rst <= '1'; 

N X"6004" => 
mask_zero_en  <= '0'; 
mask_one_en   <= '0'; 

k_two_en   <= '0'; 
mask_three_en <= '0'; 
zero_en <= '0'; 
three_en <= '0'; 
invalid <= '0'; 
glue_zero <= '0'; 
glue_one <= '1'; 
glue_two <= '0'; 
glue_three <= '0'; 

temp <= '0'; 

temp <= '0'; 
three_temp <= '0'; 

       
      
       
      
     
     
         
       
        m
        
        three_
        
        
        glue_o
        
        
        zero_t
        
        
        three_
        
 -- We would add the Trigger command for channels 4 th
       WH
        
        
        
        
        
        
        
        
        
        g
        
        
        
        
        
        
       WHE
        
        
        mas
        
        
        
        
        
        
        
        
        zero_
        one_temp <= '0'; 
        two_
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        rst <= '1'; 
HEN X"6008" => 

mask_zero_en  <= '0'; 
mask_one_en   <= '0'; 

 mask_two_en   <= '0'; 

     zero_en <= '0'; 
   three_en <= '0'; 

 invalid <= '0'; 
   glue_zero <= '0'; 

glue_one <= '0'; 
glue_two <= '1'; 
glue_three <= '0'; 

 '0'; 
one_temp <= '0'; 
two_temp <= '1'; 

 
rst <= '1'; 

HEN X"600C" => 
 '0'; 

mask_one_en   <= '0'; 
mask_two_en   <= '0'; 

<= '0'; 
zero_en <= '0'; 
three_en <= '0'; 
invalid <= '0'; 

ero <= '0'; 
glue_one <= '0'; 
glue_two <= '0'; 

zero_temp <= '0'; 
one_temp <= '0'; 

emp <= '0'; 
three_temp <= '0'; 
rst <= '1'; 

4 through 8 here 
N X"8000" => 

eset_STIM should get one 
mask_zero_en  <= '0'; 

_en   <= '0'; 
mask_two_en   <= '0'; 
mask_three_en <= '0'; 

= '0'; 
three_en <= '0'; 
invalid <= '0'; 

 <= '0'; 
glue_one <= '0'; 
glue_two <= '0'; 

e <= '0'; 
zero_temp <= '0'; 
one_temp <= '0'; 
two_temp <= '0'; 

mp <= '1'; 
rst <= '0'; 

HEN others => 
k_zero_en  <= '0'; 

       W
        
        
       
        mask_three_en <= '0'; 
   
     
       
     
        
        
        
        zero_temp <=
        
        
        three_temp <= '0';
        
       W
        mask_zero_en  <=
        
        
        mask_three_en 
        
        
        
        glue_z
        
        
        glue_three <= '0'; 
        
        
        two_t
        
        
 -- We would add the Read Transducer Data command for channels 
       WHE
       -- r
        
        mask_one
        
        
        zero_en <
        
        
        glue_zero
        
        
        glue_thre
        
        
        
        three_te
        
       W
        mas
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        mask_one_en   <= '0'; 
mask_two_en   <= '0'; 

k_three_en <= '0'; 
zero_en <= '0'; 
three_en <= '0'; 
invalid <= '1'; 

ne <= '0'; 
glue_two <= '0'; 
glue_three <= '0'; 
zero_temp <= '0';  
one_temp <= '0'; 
two_temp <= '0'; 

 rst <= '1'; 
 END CASE; 

 END IF;      
  state <= data; 
 ELSE 

internal_write <= '0'; 
mask_zero_en  <= '0'; 
mask_one_en   <= '0'; 
mask_two_en   <= '0'; 

ask_three_en <= '0'; 
 zero_en <= '0'; 
 three_en <= '0'; 
 invalid <= '0'; 
 glue_zero <= '0'; 
 glue_one <= '0'; 
 glue_two <= '0'; 
 glue_three <= '0'; 
 zero_temp <= '0';  
 one_temp <= '0'; 
 two_temp <= '0'; 
 three_temp <= '0'; 

  rst <= '1'; 
   state <= address; 

    END IF; 
 
    -- Remain in data state on burst transfers 

  -- Never happens in this example but it could for bigger TIMs 
  IF htrans = "11" THEN 

     IF hwrite = '1' THEN 
      internal_write <= '1'; 
     ELSE 
      internal_write <= '0'; 
     END IF; 
     mask_zero_en  <= '0'; 
     mask_one_en   <= '0'; 
     mask
 
     z
 
     invalid <= '0'; 
     glue_zero <= '0'; 
     glue_one <= '0'; 

        
        mas
        
        
        
        glue_zero <= '0'; 
        glue_o
        
        
        
        
        
        three_temp <= '0'; 
       
     
    
   
   
     
     
     
     
     m
    
    
    
    
    
    
    
    
    
    
    
   
  

  WHEN data => 

  
  

_two_en   <= '0'; 
    mask_three_en <= '0'; 

ero_en <= '0'; 
    three_en <= '0'; 
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     glue_three <= '0'; 
     zero_temp <= '0';  
 
 
 
 
 
    ELSE 
     internal_write <= '0'; 
     mask_zero_en  <= '0'; 
     mask_one_en   <= '0'; 
     mask_two_en   <= '0'; 
     mask_three_en <= '0'; 
  
     three_en <= '0'; 
     invalid <= '0'; 
     glue_zero <= '0'; 
     glue_one <= '0'; 
 
 
     zero_temp <= '0';  
 
     two_temp <= '0'; 
     three_temp <= '0'; 
     rst <= '1'; 
     state <= address; 
    END IF; 
  others => 
    internal_write <= '0'; 
    mask_zero_en  <= '0'; 
    mask_one_en   <= '0'; 
 
    mask_three_en <= '0'; 
    zero_en <= '0'; 
 
    invalid <= '0'; 
    glue_zero <= '0'; 
    glue_one <= '0'; 
  '0'; 
    glue_three <= '0'; 
 
    one_temp <= '0'; 
    two_temp <= '0'; 
    three_temp <= '0'; 
    rst <= '1'; 
 ess; 
 
 
END PR
 
 
-- Create he Register Bank 
PROCE
BEGIN 
 

    glue_two <= '0'; 

    one_temp <= '0'; 
    two_temp <= '0'; 
    three_temp <= '0'; 
    rst <= '1'; 
    state <= data; 

    zero_en <= '0';

    glue_two <= '0'; 
    glue_three <= '0'; 

    one_temp <= '0'; 

  WHEN

   mask_two_en   <= '0'; 

   three_en <= '0'; 

   glue_two <=

   zero_temp <= '0'; 

   state <= addr
 END CASE; 
END IF; 
OCESS; 

 t
SS(hclock,hresetn) 

IF hresetn = '0' THEN 
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 ta <= (others => '1'); 
  zero_out <= (others => '0'); 
 
  (others => '0'); 
 
  rst '1'; 
 LSIF rising_edge(hclock) THEN 
 haddress_reg <= haddress(31 downto 0); 
  THEN 
   CASE haddress_reg(15 downto 0) IS 
    WHEN X"0000" => 
     mask_data <= hwdata; 
     rst <= '1'; 
    WHEN X"0004" => 
     mask_data <= hwdata; 
     rst <= '1'; 
    WHEN X"0008" => 
     mask_data <= hwdata; 
     rst <= '1'; 
    WHEN X"000C" => 
     mask_data <= hwdata; 
     rst <= '1'; 
 me for channels 4 through 8 here 
    WHEN X"2000" => 
     rst <= '1'; 
    WHEN X"2004" => 
     rst <= '1'; 
    WHEN X"2008" => 
     rst <= '1'; 
    WHEN X"200C" => 
     rst <= '1'; 
 do the same for channels 4 through 8 here 
    WHEN X"4000" => 
     rst <= '1';  
    WHEN X"4004" => 
     rst <= '1'; 
    WHEN X"4008" => 
     rst <= '1'; 
    W N X"400C" => 
     rst <= '1'; 
 nnels 4 through 8 here 
    WHEN X"6000" => 
     rst <= '1'; 
     zero_out <= hwdata; 
    WHEN X"6004" => 
     rst <= '1'; 
 
 
     rst <= '1'; 
     -- no effect 
    W EN X"600C" => 
     rst <= '1'; 
     three_out <= hwdata; 
  channels 4 through 8 here, note that only actuator channels can be 
 o... So ignore if any of the other channels are sensors 
 

 mask_da

 three_out <= (others => '0'); 
 haddress_reg <=
 hrdata <= (others => '0'); 

<= 
E
 
 IF internal_write = '1'

-- We would do the sa

-- We would 

HE

-- We would do the same for cha

    -- no effect 
   WHEN X"6008" => 

H

-- We would do the same for
-- written t
   WHEN X"8000" => 
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 O; 
 
 
 ;  
 
 
 K_TWO;  
    WHEN X"000C" => 
     rst <= '1'; 
     hrdata <= INT_MASK_THREE; 
 -- We would do the same for channels 4 through 8 here 
    WHEN X"2000" => 
     rst <= '1'; 
 atus_zero; 
    WHEN X"2004" => 
     rst <= '1'; 
     hrdata <= status_one;      
    WHEN X"2008" => 
 
     hrdata <= status_two; 

     rst <= '1'; 

 -- We would do the same for channels 4 through 8 here 
    WHEN X"4000" => 
     rst <= '1'; 
     hrdata <= (others => '0');  
 " => 
 
  (others => '0'); 
 
  
 ers => '0'); 
  
 
  (others => '0'); 
 nels 4 through 8 here 
  
  
  data_zero_in; 
  
  
  data_one; 

    -- reset_STIM  
    rst <= '0'; 
   WHEN others => 
    rst <= '1'; 
    null; 
  END CASE;     
 
 END IF; 
 IF hsel = '1' AND hwrite = '0' THEN 
 rst <= '1'; 
  CASE haddress(15 downto 0) IS 
   WHEN X"0000" => 
    rst <= '1'; 
    hrdata <= INT_MASK_ZER
   WHEN X"0004" => 
    rst <= '1'; 
    hrdata <= INT_MASK_ONE
   WHEN X"0008" => 
    rst <= '1'; 
    hrdata <= INT_MAS

    hrdata <= st

    rst <= '1'; 

    WHEN X"200C" => 

     hrdata <= status_three; 

   WHEN X"4004
    rst <= '1'; 
    hrdata <=
   WHEN X"4008" => 
    rst <= '1';
    hrdata <= (oth
   WHEN X"400C" =>
    rst <= '1'; 
    hrdata <=
-- We would do the same for chan
   WHEN X"6000" =>
    rst <= '1';
    hrdata <=
   WHEN X"6004" =>
    rst <= '1';
    hrdata <=
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    WHEN X"6008" => 
  
  data_two; 
  
  
 ng 
 gh 8 here, note that only sensor channels can be 
  read f any of the other channels are actuators 
  
 IM  
  
 
  
  (others => '0');    
   E E;  
 
 
END PR CESS; 
-- Assign
INT_MA K_ZER
INT_MA
INT_MA K_ONE e_en; 
INT_MA K_TWO
INT_MA
status_in alid <=
data_zer
data_three_en <=
RD_Stat
RD_Sens
RD_Sens r_two <
RD_Stat
trigger_ o <= 
trigger_
trigger_  <= t
trigger_
STIM_R
END rtl

ext, w ansducer Block. Note that this block should not 

change

IBRAR

    INT_ TO 0); 

    actu 0); 

    clk   

    rst <= '1';
    hrdata <=
   WHEN X"600C" =>
    rst <= '1';
    -- do nothi
-- We would do the same for channels 4 throu
-- rom... So ignore if 
   WHEN X"8000" =>
    -- reset_ST
    rst <= '0';
   WHEN others => 
    rst <= '0';
    hrdata <=

ND CAS
 END IF; 
END IF; 
O
 all the signals 
S O_en <= mask_zero_en; 
SK_DATA <= mask_data; 
S _en <= mask_on
S _en <= mask_two_en; 
SK_THREE_en <= mask_three_en; 
v  invalid; 
o_en <= zero_en; 

 three_en; 
us_ZERO <= glue_zero; 
or_one <= glue_one; 
o = glue_two; 

us_three <= glue_three; 
zer zero_temp; 
one <= one_temp; 
two wo_temp; 
three <= three_temp; 
eset <= rst; 
; 
 
N e show the VHDL code for the Tr

. 

L Y ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 

NTITYE  Transducer_Block IS 
   PORT(  

    INT_     std_logic;   MASK_en    : IN 
  MASK_in    : IN     std_logic_vector (31 DOWN
      Transducer_sel : IN     std_logic; 
  ator_data  : IN     std_logic_vector (31 DOWNTO 
      actuator_en    : IN     std_logic; 
           : IN     std_logic; 
      reset          : IN     std_logic; 
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  or_data    : IN         sens std_logic_vector (31 DOWNTO 0); 
    sens

    statu WNTO 0); 
r (31 DOWNTO 0); 

    INT_ DOWNTO 0); 
0); 

    data _logic_vector (31 DOWNTO 0) 
 ); 

 Decla

ND Tra

_Block IS 

 SIGNA 1 DOWNTO 0); 
OWNTO 0); 

 SIGNA c; 
 SIGNA WNTO 0); 

 COMP

    WID
 ); 

    clk   
OWNTO 0); 

    en    

    dout vector (WIDTH-1 DOWNTO 0) 
 ); 

 -- prag
t_lib.reg32; 

EGIN 

 -- HDL

 INT_M

 -- eb3 
 = '0' else 

  or_en      : IN     std_logic; 
      status_en      : IN     std_logic; 
  s_in      : IN     std_logic_vector (31 DO
      INT_MASK_out   : OUT    std_logic_vecto
  out        : OUT    std_logic_vector (31 
      Status_out     : OUT    std_logic_vector (31 DOWNTO 
  _out       : OUT    std
  
 
-- rations 
 
E nsducer_Block ; 
 
ARCHITECTURE struct OF Transducer
 
   -- Architecture declarations 
 
   -- Internal signal declarations 
  L INT_MASK_reg : std_logic_vector(3
   SIGNAL Status_reg   : std_logic_vector(31 D
  L data_en      : std_logi
  L data_in      : std_logic_vector(31 DO
 
 
   -- Component Declarations 
  ONENT reg32 
   GENERIC ( 
  TH : INTEGER 
  
   PORT ( 
  : IN     std_logic; 
      din   : IN     std_logic_vector (WIDTH-1 D
  : IN     std_logic; 
      reset : IN     std_logic; 
    : OUT    std_logic_
  
   END COMPONENT; 
 
   -- Optional embedded configurations 
  ma synthesis_off 
   -- FOR ALL : reg32 USE ENTITY my_projec
   -- pragma synthesis_on 
 
 
B
   -- Architecture concurrent statements 
   Embedded Text Block 1 eb1 
   -- eb1 1            
   Status_out <= status_reg; 
  ASK_out <= INT_MASK_reg; 
   INT_out <= Status_reg AND INT_MASK_reg; 
 
   -- HDL Embedded Text Block 3 eb3 
  3            
   Data_in <= actuator_data when Transducer_sel
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  or_data;     sens

 -- eb4 
sel = '0' else 

    sens

 -- Insta

    GEN

    ) 

n => dat
  din in, 

       dout  => data_out 

 I1 : reg32 
    GENERIC MAP ( 

 => 32 
      ) 
      PORT MAP ( 
         clk   => clk, 
         reset => reset, 
         en    => status_en, 
         din   => status_in, 
         dout  => Status_reg 
      ); 
   I2 : reg32 
      GENERIC MAP ( 
         WIDTH => 32 
      ) 
      PORT MAP ( 
         clk   => clk, 
         reset => reset, 
         en    => INT_MASK_en, 
         din   => INT_MASK_in, 
         dout  => INT_MASK_reg 
      ); 
 
END struct; 
 

Next, we show the VHDL code for the priority encoder. 

LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
ENTITY INT_generation IS 
   PORT(  
      CHANNEL_ZERO : IN     std_logic_vector (31 DOWNTO 0); 

 
   -- HDL Embedded Text Block 4 eb4 
  4                        
   Data_en <= actuator_en when Transducer_
  or_en; 
 
 
  nce port mappings. 
   I0 : reg32 
  ERIC MAP ( 
         WIDTH => 32 
  
      PORT MAP ( 
         clk   => clk, 
         reset => reset, 
         e    a_en, 
          => data_
  
      ); 
  
  
         WIDTH
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      CHANNEL_1    : IN     std_logic_vector (31 DOWNTO 0); 
      CHANNEL_2    : IN     std_logic_vector (31 DOWNTO 0); 
      CHANNEL_3    : IN     std_logic_vector (31 DOWNTO 0); 
      CHANNEL_4    : IN     std_logic_vector (31 DOWNTO 0); 
      CHANNEL_5    : IN     std_logic_vector (31 DOWNTO 0); 
      CHANNEL_6    
      CHANNEL_7    : IN     std_logic_vector (31 DOWNTO 0); 
      CHANNEL_8    : IN     std_logic_vector (31 DOWNTO 0); 

      CHANNEL_11   : IN     std_logic_vector (31 DOWNTO 0); 

      CHANNEL_13   : IN     std_logic_vector (31 DOWNTO 0); 
_vector (31 DOWNTO 0); 
_vector (31 DOWNTO 0); 

16   : IN     std_logic_vector (31 DOWNTO 0); 
_logic_vector (31 DOWNTO 0); 
_logic_vector (31 DOWNTO 0); 
_logic_vector (31 DOWNTO 0); 
ic_vector (5 DOWNTO 0) 

l_1, Channel_2, Channel_3, Channel_4, 

Channel hannel_6, Channel_7, Channel_8, Channel_9, Channel_10, Channel_11, Channel_12, Channel_13, 

Channel , Channel_16, Channel_17, Channel_18, Channel_19 )    

HANNEL_ZERO(0) = '1' THEN 

' THEN 
 

HANNEL_ZERO(3) = '1' THEN 
0"; 

0) = '1' THEN 
 INT <= "000101"; 

3) = '1' THEN 
1"; 

: IN     std_logic_vector (31 DOWNTO 0); 

      CHANNEL_9    : IN     std_logic_vector (31 DOWNTO 0); 
      CHANNEL_10   : IN     std_logic_vector (31 DOWNTO 0); 

      CHANNEL_12   : IN     std_logic_vector (31 DOWNTO 0); 

      CHANNEL_14   : IN     std_logic
      CHANNEL_15   : IN     std_logic
      CHANNEL_
      CHANNEL_17   : IN     std
      CHANNEL_18   : IN     std
     CHANNEL_19   : IN     std 

      INT          : OUT    std_log
   ); 
 
-- Declarations 
 
END INT_generation ; 
 
ARCHITECTURE struct OF INT_generation IS 
 
 
BEGIN 
 
eb5_truth_process: PROCESS(CHANNEL_ZERO, Channe

_5, C

_14, Channel_15

BEGIN 

       
-- CHANNEL_ZERO definition  

 IF C
  INT <= "000001"; 

(1) = '1 ELSIF CHANNEL_ZERO
 INT <= "000010"; 

 ELSIF CHANNEL_ZERO(2) = '1' THEN 
 INT <= "000011";  

 ELSIF C
  INT <= "00010
 -- Channel one 

ELSIF CHANNEL_1( 
 
 ELSIF CHANNEL_1(2) = '1' THEN 

 INT <= "000110";  
 ELSIF CHANNEL_1(
  INT <= "00011
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 -- Channel two  
 ELSIF CHANNEL_2(0) = '1' THEN 

 INT <= "001000"; 
ELSIF CHANNEL_2(2) = '1' THEN 
 INT <= "001001"; 
ELSIF CHANNEL_2(3) = '1' THEN 

1010"; 

 INT <= "001011"; 
ELSIF CHANNEL_3(2) = '1' THEN 

-- Channel Four  
ELSIF CHANNEL_4(0) = '1' THEN 

0"; 
ELSIF CHANNEL_4(2) = '1' THEN 
 INT <= "001111"; 
ELSIF CHANNEL_4(3) = '1' THEN 
 INT <= "010000"; 

01"; 
LSIF CHANNEL_5(2) = '1' THEN 

 <= "010010"; 
L_5(3) = '1' THEN 

L_6(0) = '1' THEN 
= "010100"; 

 THEN 

(3) = '1' THEN 
"; 

LSIF CHANNEL_7(0) = '1' THEN 
INT <= "010111"; 

INT <= "011000"; 
SIF CHANNEL_7(3) = '1' THEN 

INT <= "011001"; 
-- Channel Eight 

 '1' THEN 
 

1"; 
ELSIF CHANNEL_8(3) = '1' THEN 
 INT <= "011100"; 
-- Channel Nine 

INT <= "011101"; 
EL_9(2) = '1' THEN 

 
NEL_9(3) = '1' THEN 

 
 
 
 
  INT <= "00
 -- Channel Three 
 ELSIF CHANNEL_3(0) = '1' THEN 
 
 
  INT <= "001100"; 
 ELSIF CHANNEL_3(3) = '1' THEN 
  INT <= "001101"; 
 
 
  INT <= "00111
 
 
 
 
 -- Channel Five 
 ELSIF CHANNEL_5(0) = '1' THEN 
  INT <= "0100
 E
  INT
 ELSIF CHANNE
  INT <= "010011"; 
 -- Channel Six 
 ELSIF CHANNE
  INT <
 ELSIF CHANNEL_6(2) = '1'
  INT <= "010101"; 
 ELSIF CHANNEL_6
  INT <= "010110
 -- Channel Seven 
 E
  
 ELSIF CHANNEL_7(2) = '1' THEN 
  
 EL
  
 
 ELSIF CHANNEL_8(0) =
  INT <= "011010";
 ELSIF CHANNEL_8(2) = '1' THEN 
  INT <= "01101
 
 
 
 ELSIF CHANNEL_9(0) = '1' THEN 
  
 ELSIF CHANN
  INT <= "011110";
 ELSIF CHAN
  INT <= "011111"; 
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 -- Channel Ten 
 ELSIF CHANNEL_10(0) = '1' THEN 

 INT <= "100000"; 
F CHANNEL_10(2) = '1' THEN 

 INT <= "100001"; 
'1' THEN 

 INT <= "100010"; 

 = '1' THEN 
<= "100011"; 

L_11(2) = '1' THEN 
INT <= "100100"; 

ELSIF CHANNEL_11(3) = '1' THEN 

 Channel Twelve 
 = '1' THEN 

NT <= "100110"; 
(2) = '1' THEN 

1"; 
IF CHANNEL_12(3) = '1' THEN 

0"; 
nel Thirteen 

ANNEL_13(0) = '1' THEN 

) = '1' THEN 
INT <= "101010"; 

) = '1' THEN 
INT <= "101011"; 

een 
(0) = '1' THEN 

INT <= "101100"; 
ELSIF CHANNEL_14(2) = '1' THEN 

; 
ELSIF CHANNEL_14(3) = '1' THEN 

NEL_15(0) = '1' THEN 
 "101111"; 

SIF CHANNEL_15(2) = '1' THEN 
 INT <= "110000"; 

INT <= "110001"; 
 

NEL_16(0) = '1' THEN 

ELSIF CHANNEL_16(2) = '1' THEN 
 "110011"; 

 = '1' THEN 
NT <= "110100"; 

_17(0) = '1' THEN 
INT <= "110101"; 

_17(2) = '1' THEN 
INT <= "110110"; 

ANNEL_17(3) = '1' THEN 

 
 ELSI
 
 ELSIF CHANNEL_10(3) = 
 
 -- Channel Eleven 
 ELSIF CHANNEL_11(0)
  INT 
 ELSIF CHANNE
  
 
  INT <= "100101"; 
 --
 ELSIF CHANNEL_12(0)
  I
 ELSIF CHANNEL_12
  INT <= "10011
 ELS
  INT <= "10100
 -- Chan
 ELSIF CH
  INT <= "101001"; 
 ELSIF CHANNEL_13(2
  
 ELSIF CHANNEL_13(3
  
 -- Channel Fourt
 ELSIF CHANNEL_14
  
 
  INT <= "101101"
 
  INT <= "101110"; 
 -- Channel Fifteen 
 ELSIF CHAN
  INT <=
 EL
 
 ELSIF CHANNEL_15(3) = '1' THEN 
  
 -- Channel Sixteen
 ELSIF CHAN
  INT <= "110010"; 
 
  INT <=
 ELSIF CHANNEL_16(3)
  I
 -- Channel Seventeen 
 ELSIF CHANNEL
  
 ELSIF CHANNEL
  
 ELSIF CH
  INT <= "110111"; 
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 -- Channel Eighteen 
 ELSIF CHANNEL_18(0) = '1' THEN 

"111000"; 
 CHANNEL_18(2) = '1' THEN 

 "111001"; 
F CHANNEL_18(3) = '1' THEN 

INT <= "111010"; 
-- Channel Nineteen 

 = '1' THEN 
 INT <= "111011"; 

19(2) = '1' THEN 
 INT <= "111100"; 
ELSIF CHANNEL_19(3) = '1' THEN 
 INT <= "111101";  

els… 
SE 

 END PROCESS eb5_truth_process; 

  INT <= 
 ELSIF
  INT <=
 ELSI
  
 
 ELSIF CHANNEL_19(0)
 
 ELSIF CHANNEL_
 
 
 
      -- Here we would add more chann
 EL
           INT <= "000000"; 
     END IF; 
 
  
 
 
END struct; 
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 the generic “glue” logic blocks that were 

shown  the design chapter. First we show the VHDL for the “glue” logic for a sensor channel 

that is . 

IBRARY ieee; 
SE ieee.std_logic_1164.all; 

.std_logic_arith.all; 

8 bits 
td_logic_vector (7 DOWNTO 0); 

 std_logic; 
std_logic; 

ctor (31 DOWNTO 0); 

c_vector (31 DOWNTO 0) 

hitecture my_project_lib.glue_sensor_adc.struct 

vo.UNKNOWN (ICET) 
5:50 06/21/2004 

L Designer(TM) 2003.1 (Build 399) 

tions 

APPENDIX D. GLUE LOGIC VHDL CODE 

This Appendix contains the VHDL code for

in

interfaced with an 8-bit ADC

L
U
USE ieee
 
ENTITY glue_sensor_adc IS 
   PORT(  
      RD_sensor       : IN     std_logic; 
      clk             : IN     std_logic; 
     conversion_done : IN     std_logic;  

      rst             : IN     std_logic; 
ge if ADC was bigger than  -- Width Size would chan

_in       : IN     s      sensor
      trigger         : IN    
      sensor_en       : OUT    
      sensor_out      : OUT    std_logic_ve

c;       status_en       : OUT    std_logi
  std_logi      status_out      : OUT  

   ); 
 
-- Declarations 
 
END glue_sensor_adc ; 
 
-- 
-- VHDL Arc
-- 
-- Created: 

- gusta--          by 
--          at - 23:0
- -

-- Generated by Mentor Graphics' HD
-- 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 

e.std_logic_arith.all; USE iee
 
 
ARCHITECTURE struct OF glue_sensor_adc IS 
 
   -- Architecture declara
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-- Non hierarchical state machine declarations 
TYPE IS ( 

 declaration 
TTRIBUTE state_vector : string; 

t : ARCHITECTURE IS "csm1_current_state" ; 

 signals 
tate : CSM1_STATE_TYPE ; 

1_next_state : CSM1_STATE_TYPE ; 

al signal declarations 

ture concurrent statements 
 status_generation 

nsor) 

> '0'); 
edge(clk)) then 

          status_en <= '1'; 

          if conversion_done = '1' then 
; 

 '1' then 
tus_out <= "00000000000000000000000000000100"; 

          

tatus_out <= "00000000000000000000000000000100"; 

 -- HDL Embedded Block 2 eb2 
e machine 

------------------------------------ 
ROCESS( 

-------------------------------------------------------------- 

N 
_state <= s0; 
s 

ND clk = '1') THEN 

TYPE CSM1_STATE_
      s0, 
      s1 
   ); 
 
-- State vector
A
ATTRIBUTE state_vector OF struc
 
 
-- Declare current and next state
SIGNAL csm1_current_s
SIGNAL csm
 
 
   -- Intern
 
 
 
BEGIN 
   -- Architec
   -- HDL Embedded Text Block 1
   process (clk, rst, RD_se
      begin 
         if rst = '0' then 
            status_en <= '0'; 
            status_out <= (others =
         elsif (rising_
  
            -- Trigger ACK 
  
               status_out <= "00000000000000000000000000000101"
            -- Clear trigger ACK 
            elsif RD_sensor =
               sta
      
            else  
               s
         end if; 
      end if; 
   end process; 
 
  
   -- Non hierarchical stat
   ----------------------------------------
   csm1_clocked : P
      clk, 
      rst 
   ) 
   --------------
   BEGIN 
      IF (rst = '0') THE
         csm1_current
         -- Reset Value
      ELSIF (clk'EVENT A
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         csm1_current_state <= csm1_next_state; 
o Internals 

 

-------------------------------------------- 
 csm1_nextstate : PROCESS ( 
    conversion_done, 
    csm1_current_state, 
    trigger 

 ---------------------------------------------------------------------------- 

    CASE csm1_current_state IS 
  WHEN s0 => 

         ELSE 
            csm1_next_state <= s0; 
         END IF; 

    WHEN s1 => 
ion_done = '1') THEN 

; 

; 

------------------------------------ 

------------------------------------------------------------------------ 

ment 

    -- Default Assignment To Internals 

S 

N 
          sensor_en <= '0'; 

         -- Default Assignment T
 
      END IF; 
 
   END PROCESS csm1_clocked;
 
   --------------------------------
  
  
  
  
   ) 
  
   BEGIN 
  
    
         IF (trigger = '1') THEN 
            csm1_next_state <= s1; 

  
         IF (convers
            csm1_next_state <= s0
         ELSE 

          csm1_next_state <= s1  
         END IF; 

 OTHERS =>       WHEN
         csm1_next_state <= s0; 
      END CASE; 
 
   END PROCESS csm1_nextstate; 
 
   ----------------------------------------
   csm1_output : PROCESS ( 
      conversion_done, 
      csm1_current_state, 
      trigger 
   ) 

 ----  
   BEGIN 

    -- Default Assign  
      sensor_en <= '0'; 
  
 
      -- Combined Actions 
      CASE csm1_current_state I

    WHEN s0 =>   
         IF (trigger = '1') THE
  
         ELSE 

          sensor_en <= '0';   
         END IF; 
      WHEN s1 => 
         IF (conversion_done = '1') THEN 
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            sensor_en <= '1'; 
LSE 

  sensor_en <= '0'; 
       END IF; 

 END PROCESS csm1_output; 

 eb1 

is block 
 sensor_out <= X"000000"  & sensor_in; 

s. 

he “glue” logic for sensors that are interfaced with Digital IO. 

gic; 
ending on the amount of digital I/O that the sensor is interfaced with 

 DOWNTO 0); 

); 
_logic; 

    status_out : OUT    std_logic_vector (31 DOWNTO 0) 

 glue_sensor_digitalio IS 

declarations 
IS ( 

         E
          
  
      WHEN OTHERS => 
         NULL; 
      END CASE; 
 
  
 
   -- Concurrent Statements 
 
 
 
   -- HDL Embedded Text Block 3
   -- eb1 3 
-- If ADC is 10 or 12 bits, then we would have to change th
  
 
 
   -- Instance port mapping
 
END struct; 
 
Next, is t

ENTITY glue_sensor_digitalio IS 
   PORT(  
      RD_sensor  : IN     std_logic; 

lk        : IN     std_logic;       c
      rst        : IN     std_lo
 -- Width size varies dep 

      sensor_in  : IN     std_logic_vector (7
gic;       trigger    : IN     std_lo

      sensor_en  : OUT    std_logic; 
d_logic_vector (31 DOWNTO 0      sensor_out : OUT    st

     status_en  : OUT    std 
  
   ); 
 
-- Declarations 
 
END glue_sensor_digitalio ; 
 

IBRARY ieee; L
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
 
ARCHITECTURE struct OF
 
   -- Architecture declarations 

machine -- Non hierarchical state 
YPE TYPE CSM2_STATE_T

      s2, 
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      s3 
   ); 
 
-- State vector declaration 
ATTRIBUTE state_vector : string; 

state_vector OF struct : ARCHITECTURE IS "csm2_current_state" ; 

urrent and next state signals 
urrent_state : CSM2_STATE_TYPE ; 

IGNAL csm2_next_state : CSM2_STATE_TYPE ; 

ecture concurrent statements 
t Block 1 eb1 

nding on the amount of digital I/O that are interfaced with the sensor 
00"  & sensor_in; 

eneration1 
 process (clk, rst, done) 

       if rst = '0' then 

          status_out <= (others => '0'); 

 

tus_out <= "00000000000000000000000000000101"; 
      -- Clear trigger ACK 

tatus_out <= "00000000000000000000000000000100"; 

000000000000000000000000100"; 

d Block 3 control 

-------------------------------------- 
ked : PROCESS( 

---------------------------------------- 

    IF (rst = '0') THEN 

ATTRIBUTE 
 
 
-- Declare c
SIGNAL csm2_c
S
 
 
   -- Internal signal declarations 
   SIGNAL done : std_logic; 
 
 
 
BEGIN 
   -- Archit
   -- HDL Embedded Tex
   -- eb1 1                         
  -- This changes depe
   sensor_out <=  "0000000000000000000000
 
   -- HDL Embedded Text Block 2 status_g
  
      begin 
  
            status_en <= '0'; 
  
         elsif (rising_edge(clk)) then 
            status_en <= '1'; 
            -- Trigger ACK
            if done = '1' then 
               sta
      
            elsif RD_sensor = '1' then 
               s
                
            else  
               status_out <= "00000
         end if; 
      end if; 
   end process; 
 
   -- HDL Embedde
   -- Non hierarchical state machine 
   --------------------------------------
   csm2_cloc
      clk, 
      rst 
   ) 
   ------------------------------------
   BEGIN 
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         csm2_current_state <= s2; 
         -- Reset Values 

csm2_next_state; 
ment To Internals 

 

---------------------------------------------- 
ESS ( 

    trigger 

------------------------------------ 

S 

ger = '1') THEN 
s3; 

state <= s2; 

_next_state <= s2; 

<= s2; 

 csm2_nextstate; 

-------------------------------------- 
 csm2_output : PROCESS ( 

    trigger 
 ) 
 ---------------------------------------------------------------------------- 
 BEGIN 

 <= '0'; 
000000000000000000000000000000"; 

ment To Internals 

ctions 
rrent_state IS 

 

LSE 
          sensor_en <= '0'; 

= '0'; 
       END IF; 

         sensor_en <= '1'; 

      ELSIF (clk'EVENT AND clk = '1') THEN 
         csm2_current_state <= 
         -- Default Assign
 
      END IF;
 
   END PROCESS csm2_clocked; 
 
   ------------------------------
   csm2_nextstate : PROC
      csm2_current_state, 
  
   ) 
   ----------------------------------------
   BEGIN 
      CASE csm2_current_state I
      WHEN s2 => 
         IF (trig
            csm2_next_state <= 
         ELSE 
            csm2_next_
         END IF; 
      WHEN s3 => 
            csm2
      WHEN OTHERS => 
         csm2_next_state 
      END CASE; 
 
   END PROCESS
 
   --------------------------------------
  
      csm2_current_state, 
  
  
  
  
      -- Default Assignment 
      sensor_en
      sensor_out <= "00
      -- Default Assign
 
      -- Combined A
      CASE csm2_cu
      WHEN s2 => 
         IF (trigger = '1') THEN
            sensor_en <= '0'; 
            done <= '0'; 
         E
  
            done <
  
      WHEN s3 => 
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         done <= '1'; 

    END CASE; 

OCESS csm2_output; 

w the VHDL code for an actuator channel that is interface with an 8-bit 

DAC. 

; 
_logic_1164.all; 

  : IN     std_logic; 
   : IN     std_logic_vector (31 DOWNTO 0); 

    rst             : IN     std_logic; 
    trigger         : IN     std_logic; 

    status_out      : OUT    std_logic_vector (31 DOWNTO 0); 
f the DAC 
OWNTO 0) 

arations 

SE ieee.std_logic_arith.all; 

declarations 

      WHEN OTHERS => 
         NULL; 
  
 
   END PR
 
   -- Concurrent Statements 
 
 
 
 
   -- Instance port mappings. 
 
END struct; 
 

Next, we sho

 
LIBRARY ieee
USE ieee.std
USE ieee.std_logic_arith.all; 
 
ENTITY glue_actuator_dac IS 
   PORT(  
      RD_status     
      actuator_in  
      clk             : IN     std_logic; 
      conversion_done : IN     std_logic; 
  
  
      status_en       : OUT    std_logic; 
  
 -- Width size may vary depending on the size o
      to_actuator     : OUT    std_logic_vector (7 D
   ); 
 
-- Decl
 
END glue_actuator_dac ; 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
U
 
LIBRARY my_project_lib; 
 
ARCHITECTURE struct OF glue_actuator_dac IS 
 
   -- Architecture declarations 
-- Non hierarchical state machine 
TYPE CSM2_STATE_TYPE IS ( 
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      s2, 
      s3 
   ); 

 State vector declaration 
TE state_vector : string; 

CHITECTURE IS "csm2_current_state" ; 

2_STATE_TYPE ; 
IGNAL csm2_next_state : CSM2_STATE_TYPE ; 

nternal signal declarations 
 

AL actuator_out : std_logic_vector(7 DOWNTO 0); 

s 

_logic; 
    din   : IN     std_logic_vector (WIDTH-1 DOWNTO 0); 

 OUT    std_logic_vector (WIDTH-1 DOWNTO 0) 

s 

 ENTITY my_project_lib.reg32; 

mbedded Text Block 1 eb1 

t <= actuator_in (7 downto 0); 

d Text Block 2 status_generation1 
 process (clk, rst, RD_status) 

> '0'); 
if (rising_edge(clk)) then 

status_en <= '1'; 
      -- Trigger ACK 

 
--
ATTRIBU
ATTRIBUTE state_vector OF struct : AR
 
 
-- Declare current and next state signals 
SIGNAL csm2_current_state : CSM
S
 
 
   -- I
   SIGNAL actuator_en  : std_logic;
   SIGN
 
 
   -- Component Declaration
   COMPONENT reg32 
   GENERIC ( 
      WIDTH : INTEGER 
   ); 
   PORT ( 
      clk   : IN     std
  
      en    : IN     std_logic; 
      reset : IN     std_logic; 
      dout  :
   ); 
   END COMPONENT; 
 
   -- Optional embedded configuration
   -- pragma synthesis_off 
   FOR ALL : reg32 USE
   -- pragma synthesis_on 
 
 
BEGIN 
   -- Architecture concurrent statements 
   -- HDL E
   -- eb1 1       
-- May change depending on the width size of the DAC 
   actuator_ou
 
   -- HDL Embedde
  
      begin 
         if rst = '0' then 
            status_en <= '0'; 
            status_out <= (others =
         els
            
      
            if conversion_done = '1' then 
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               status_out <= "00000000000000000000000000000101"; 
CK 

= "00000000000000000000000000000100"; 

0000000000000000100"; 
       end if; 

 end process; 

 -- HDL Embedded Block 3 eb3 

-------------------------------------- 
SS( 

rst 

---------------------------------------------------------------- 

EN 

lk'EVENT AND clk = '1') THEN 
2_next_state; 

Assignment To Internals 

d; 

 ---------------------------------------------------------------------------- 

    conversion_done, 

---------------------------------------------------------------- 
GIN 

 s2 => 
 

s3; 

       END IF; 

HEN 
state <= s2; 

s3; 

THERS => 
; 

            -- Clear trigger A
            elsif RD_status = '1' then 
               status_out <
                
            else  
               status_out <= "0000000000000
  
      end if; 
  
 
  
   -- Non hierarchical state machine 
   --------------------------------------
   csm2_clocked : PROCE
      clk, 
      
   ) 
   ------------
   BEGIN 
      IF (rst = '0') TH
         csm2_current_state <= s2; 
         -- Reset Values 
      ELSIF (c
         csm2_current_state <= csm
         -- Default 
 
      END IF; 
 
   END PROCESS csm2_clocke
 
  
   csm2_nextstate : PROCESS ( 
  
      csm2_current_state, 
      trigger 
   ) 
   ------------
   BE
      CASE csm2_current_state IS 
      WHEN
         IF (trigger = '1') THEN
            csm2_next_state <= 
         ELSE 
            csm2_next_state <= s2; 
  
      WHEN s3 => 
         IF (conversion_done = '1') T
            csm2_next_
         ELSE 
            csm2_next_state <= 
         END IF; 
      WHEN O
         csm2_next_state <= s2
      END CASE; 
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   END PROCESS csm2_nextstate; 

------------------------------------------------------ 
S ( 

_done, 
_state, 

    trigger 

 ---------------------------------------------------------------------------- 

    -- Default Assignment 
    actuator_en <= '0'; 

 

      WHEN s2 => 

            actuator_en <= '1'; 

       END IF; 
 

') THEN 

r an actuator channel that is interfaced with digital I/O. 

 
   ----------------------
   csm2_output : PROCES
      conversion
      csm2_current
  
   ) 
  
   BEGIN 
  
  
      -- Default Assignment To Internals 

      -- Combined Actions 
      CASE csm2_current_state IS 

         IF (trigger = '1') THEN 

         ELSE 
            actuator_en <= '0'; 
  
      WHEN s3 =>
         IF (conversion_done = '1
            actuator_en <= '0'; 
        ELSE  

            actuator_en <= '0'; 
 IF;          END

      WHEN OTHERS => 
         NULL; 
      END CASE; 
 
   END PROCESS csm2_output; 
 
   -- Concurrent Statements 
 
 
 
 
   -- Instance port mappings. 
   I0 : reg32 
      GENERIC MAP ( 
         WIDTH => 8 
      ) 
      PORT MAP ( 
         clk   => clk, 
         reset => rst, 
         en    => actuator_en, 
         din   => actuator_out, 
         dout  => to_actuator 
      ); 
 
END struct; 
 

t, we show the VHDL code foNex
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LIBRARY ieee; 
ic_1164.all; 

SE ieee.std_logic_arith.all; 

NTITY glue_actuator_digitalio IS 

ic; 
ic_vector (31 DOWNTO 0); 

    clk         : IN     std_logic; 
    rst         : IN     std_logic; 

    status_en   : OUT    std_logic; 
ic_vector (31 DOWNTO 0); 

f digital I/O that is interfaced with the actuator 
 

arations 

ND glue_actuator_digitalio ; 

 
 Created: 

 Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 
 

 
SE ieee.std_logic_arith.all; 

ECTURE struct OF glue_actuator_digitalio IS 

rations 
3_STATE_TYPE IS ( 

ing; 
 OF struct : ARCHITECTURE IS "csm3_current_state" ; 

ignals 

M3_STATE_TYPE ; 

ignal declarations 
ctuator_en  : std_logic; 

USE ieee.std_log
U
 
E
   PORT(  
      RD_status   : IN     std_log
      actuator_in : IN     std_log
  
  
      trigger     : IN     std_logic; 
  
      status_out  : OUT    std_log
 -- Width size varies depending on the amount o
      to_actuator : OUT    std_logic
   ); 
 
-- Decl
 
E
 
-- 
-- VHDL Architecture my_project_lib.glue_actuator_digitalio.struct 
--
--
--          by - gustavo.UNKNOWN (ICET) 
--          at - 23:22:52 06/21/2004 
-- 
--
--
LIBRARY ieee; 
USE ieee.std_logic_1164.all;
U
 
 
ARCHIT
 
   -- Architecture declarations 
-- Non hierarchical state machine decla
TYPE CSM
      s4, 
      s5 
   ); 
 
-- State vector declaration 
ATTRIBUTE state_vector : str
ATTRIBUTE state_vector
 
 
-- Declare current and next state s
SIGNAL csm3_current_state : CSM3_STATE_TYPE ; 
SIGNAL csm3_next_state : CS
 
 
   -- Internal s
   SIGNAL a
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   SIGNAL actuator_out : std_logic; 
 SIGNAL done         : std_logic; 

itecture concurrent statements 
L Embedded Text Block 1 eb1 

eb1 1                        
terfaced with the actuator 

_out <= actuator_in(0); 

eb2 

    begin 
en  -- Active low Asynchronous reset 

          to_actuator <= '0'; 

          if actuator_en = '1' then 

ock 3 status_generation2 
tus) 

          status_out <= (others => '0'); 
lk)) then 

s_en <= '1'; 
      -- Trigger ACK 

tatus_out <= "00000000000000000000000000000101"; 

tus = '1' then 
000000000000000000000000100"; 

00000000000000000000000100"; 

erarchical state machine 
-------------------------------- 

-------------------------------------- 

  
 
 
 
BEGIN 
   -- Arch
   -- HD
   -- 
 -- This changes depending on the amount of digital I/O that is in
   actuator
 
   -- HDL Embedded Text Block 2 
   -- eb2 2           
      
      process(clk, rst, actuator_out) 
          
  
         if rst = '0' th
  
         elsif (clk'event and clk = '1') then 
  
                  to_actuator <= actuator_out; 
            end if; 
         end if; 
      end process; 
 
   -- HDL Embedded Text Bl
   process (clk, rst, RD_sta
      begin 
         if rst = '0' then 
            status_en <= '0'; 
  
         elsif (rising_edge(c
            statu
      
            if done = '1' then 
               s
            -- Clear trigger ACK 
            elsif RD_sta
               status_out <= "00000
                
            else  
               status_out <= "000000
         end if; 
      end if; 
   end process; 
 
   -- HDL Embedded Block 4 eb4 
   -- Non hi
   --------------------------------------------
   csm3_clocked : PROCESS( 
      clk, 
      rst 
   ) 
   --------------------------------------
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   BEGIN 
      IF (rst = '0') THEN 
         csm3_current_state <= s4; 

s 
 '1') THEN 

= csm3_next_state; 
 Internals 

    END IF; 

 END PROCESS csm3_clocked; 

------------------------------------------ 
SS ( 

---------------------------------------------- 

tate IS 

EN 
_next_state <= s5; 

   ELSE 

 IF; 

e <= s4; 

       csm3_next_state <= s4; 

sm3_nextstate; 

---------------------------------------------- 
CESS ( 

rrent_state, 

---------------------------------------------------------- 

 
= '1'; 

 <= '0'; 

= '0'; 
 '0'; 

         -- Reset Value
      ELSIF (clk'EVENT AND clk =
         csm3_current_state <
         -- Default Assignment To
 
  
 
  
 
   ----------------------------------
   csm3_nextstate : PROCE
      csm3_current_state, 
      trigger 
   ) 
   ------------------------------
   BEGIN 
      CASE csm3_current_s
      WHEN s4 => 
         IF (trigger = '1') TH
            csm3
      
            csm3_next_state <= s4; 
         END
      WHEN s5 => 
            csm3_next_stat
      WHEN OTHERS => 
  
      END CASE; 
 
   END PROCESS c
 
   ------------------------------
   csm3_output : PRO
      csm3_cu
      trigger 
   ) 
   ------------------
   BEGIN 
      -- Default Assignment 
      actuator_en <= '0'; 
      done <= '0'; 
      -- Default Assignment To Internals 
 
      -- Combined Actions 
      CASE csm3_current_state IS 
      WHEN s4 => 
         IF (trigger = '1') THEN
            actuator_en <
            done
         ELSE 
            actuator_en <
            done <=
         END IF; 
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      WHEN s5 => 
         actuator_en <= '0'; 

HERS => 

    END CASE; 

 END PROCESS csm3_output; 

 -- Concurrent Statements 

” logic for CHANNEL_ZERO. Note that this 

CHAN lt as the proof of concept 

applica ted out the different lines that can be used to expand this 

“glue” logic for an 8-Channel TIM implementation. 

 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
ENTITY glue_CHANNEL_ZERO IS 
   PORT(  
      RD_status        : IN     std_logic; 
      actuator_in      : IN     std_logic_vector (31 DOWNTO 0); 
      clk              : IN     std_logic; 
      conversion_done  : IN     std_logic; 
      conversion_done1 : IN     std_logic; 
      conversion_done2 : IN     std_logic; 
    --  conversion_done3 : IN     std_logic; 
     -- conversion_done4 : IN     std_logic; 
     -- conversion_done5 : IN     std_logic; 
     -- conversion_done6 : IN     std_logic; 
     -- conversion_done7 : IN     std_logic; 
      invalid          : IN     std_logic; 
      rst              : IN     std_logic; 
      sensor_in        : IN     std_logic_vector (7 DOWNTO 0); 
    --  sensor_in1       : IN     std_logic_vector (7 DOWNTO 0); 
     sensor_in2       : IN     std_logic; 
      --sensor_in3       : IN     std_logic; 
      trigger          : IN     std_logic; 
      sensor_en        : OUT    std_logic; 
      sensor_out       : OUT    std_logic_vector (31 DOWNTO 0); 
      status_en        : OUT    std_logic; 
      status_out       : OUT    std_logic_vector (31 DOWNTO 0); 
      to_actuator1     : OUT    std_logic_vector (2 DOWNTO 0); 
     -- to_actuator2     : OUT    std_logic_vector (7 DOWNTO 0); 
     -- to_actuator3     : OUT    std_logic; 
     -- to_actuator4     : OUT    std_logic 
   ); 

         done <= '1'; 
      WHEN OT
         NULL; 
  
 
  
 
  
 
 
Next, we show the “glue

NEL_ZERO configuration is for the 3-Channel TIM that was bui

tion. However, we have commen
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-- Declarations 
 
END glue_CHANNEL_ZERO ; 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
 
ARCHITECTURE struct OF glue_CHANNEL_ZERO IS 
 
   -- Architecture declarations 
-- Non hierarchical state machine declarations 
TYPE CSM2_STATE_TYPE IS ( 
      s2, 
      s3, 
      s0 
   ); 
 
-- State vector declaration 
ATTRIBUTE state_vector : string; 
ATTRIBUTE state_vector OF struct : ARCHITECTURE IS "csm2_current_state" ; 
 
 
-- Declare current and next state signals 
SIGNAL csm2_current_state : CSM2_STATE_TYPE ; 
SIGNAL csm2_next_state : CSM2_STATE_TYPE ; 
 
 
   -- Internal signal declarations 
   SIGNAL done : std_logic; 
 
 
 
BEGIN 
   -- Architecture concurrent statements 
   -- HDL Embedded Text Block 2 status_generation1 
   process (clk, rst, RD_status, invalid) 
      begin 
         if rst = '0' then 
            status_en <= '0'; 
            status_out <= "00000000000000000000000000000100"; 
         elsif (rising_edge(clk)) then 
            status_en <= '1'; 
            -- Trigger ACK 
            if done = '1' then 
               status_out <= "00000000000000000000000000000101"; 
            -- Clear trigger ACK 
            elsif RD_status = '1' then 
               status_out <= "00000000000000000000000000000100"; 
            -- invalid command    
            elsif invalid = '1' then    
               status_out <= "00000000000000000000000000000110"; 
         end if; 
      end if; 
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   end process; 
 
   -- HDL Embedded Block 3 control1 
   -- Non hierarchical state machine 
   ---------------------------------------------------------------------------- 
   csm2_clocked : PROCESS( 
      clk, 
      rst 
   ) 
   ---------------------------------------------------------------------------- 
   BEGIN 
      IF (rst = '0') THEN 
         csm2_current_state <= s2; 
         -- Reset Values 
      ELSIF (clk'EVENT AND clk = '1') THEN 
         csm2_current_state <= csm2_next_state; 
         -- Default Assignment To Internals 
 
      END IF; 
 
   END PROCESS csm2_clocked; 
 
   ---------------------------------------------------------------------------- 
   csm2_nextstate : PROCESS ( 
      conversion_done, 
      conversion_done1, 
      conversion_done2, 
--      conversion_done3, 
--      conversion_done4, 
--      conversion_done5, 
--      conversion_done6, 
--      conversion_done7, 
 
      csm2_current_state, 
      trigger 
   ) 
   ---------------------------------------------------------------------------- 
   BEGIN 
      CASE csm2_current_state IS 
      WHEN s2 => 
         IF (trigger = '1') THEN 
            csm2_next_state <= s3; 
         ELSE 
            csm2_next_state <= s2; 
         END IF; 
      WHEN s3 => 
         IF (conversion_done = '1' AND 
         conversion_done1 = '1' AND 
         conversion_done2 = '1') THEN 
--  AND 
    --     conversion_done3 = '1' AND 
     --    conversion_done4 = '1' AND 
     --    conversion_done5 = '1' AND 
     --    conversion_done6 = '1' AND 
     --    conversion_done7 = '1') THEN 
            csm2_next_state <= s0; 
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         ELSE 
            csm2_next_state <= s3; 
         END IF; 
      WHEN s0 => 
            csm2_next_state <= s2; 
      WHEN OTHERS => 
         csm2_next_state <= s2; 
      END CASE; 
 
   END PROCESS csm2_nextstate; 
 
   ---------------------------------------------------------------------------- 
   csm2_output : PROCESS ( 
      conversion_done, 
      conversion_done1, 
      conversion_done2, 
--      conversion_done3, 
--      conversion_done4, 
--      conversion_done5, 
--      conversion_done6, 
--      conversion_done7, 
      csm2_current_state, 
      trigger 
   ) 
   ---------------------------------------------------------------------------- 
   BEGIN 
      -- Default Assignment 
      sensor_en <= '0'; 
      -- Default Assignment To Internals 
 
      -- Combined Actions 
      CASE csm2_current_state IS 
      WHEN s2 => 
         IF (trigger = '1') THEN 
            sensor_en <= '0'; 
            done <= '0'; 
         ELSE 
            sensor_en <= '0'; 
            done <= '0'; 
         END IF; 
      WHEN s3 => 
         IF (conversion_done = '1' AND 
         conversion_done1 = '1' AND 
         conversion_done2 = '1') THEN  
--         conversion_done3 = '1' AND 
--         conversion_done4 = '1' AND 
--         conversion_done5 = '1' AND 
--         conversion_done6 = '1' AND 
--         conversion_done7 = '1') THEN 
            sensor_en <= '1'; 
            done <= '1'; 
         ELSE 
            sensor_en <= '0'; 
            done <= '0'; 
         END IF; 
      WHEN s0 => 
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         sensor_en <= '0'; 
         done <= '0'; 
      WHEN OTHERS => 
         NULL; 
      END CASE; 
 
   END PROCESS csm2_output; 
 
   -- Concurrent Statements 
 
 
 
   -- HDL Embedded Text Block 4 eb2 
   -- eb1 3 
   sensor_out <= "00000000000000000000000" & sensor_in2 & sensor_in; 
   to_actuator1 <= actuator_in (2 downto 0); 
--   to_actuator2 <= actuator_in (15 downto 8); 
--   to_actuator3 <= actuator_in(16); 
--   to_actuator4 <= actuator_in(17); 
 
 
   -- Instance port mappings. 
 
END struct; 
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APPENDIX E. TEDS BLOCKS 
 
 

This section shows the tables with the generated information for the TEDS blocks for the 

TIM that was implemented. First, we show the Meta-TEDS implemented block with all its 

values. 

Field 
No. 

Description Value 

1 Meta-TEDS Length 20 
2 IEEE 1451 Standards Family Working Group Number 255 
3 TEDS Version Number 255 
4 Number of Implemented Channels 3 
5 Worst-Case Channel Data Model Length 8 
6 Worst-Case Channel Update Time (twu) 2.7x10-6

7 Worst-Case Channel Sampling Period (twsp) 2.5x10-6 
8 Channel Groupings Data Sub-block Length 0 
9 Number of Channel Groupings = G - 
10 Group Type  - 
11 Number of Group Members = N - 
12 Member Channel Numbers List = M(N) - 
13 Checksum for Meta-TEDS 64210 

 

The following table shows the implementation of the temperature sensor transducer 

channel. 

Field 
No. 

Description Value 

1 Channel TEDS Length 42 
2 Calibration Key 4 
3 Channel Type Key 0 
4 Physical Units Celsius (0, 128, 128, 

128, 128, 128, 128, 
130, 128, 128) 

5 Lower Range Limit 16 
6 Upper Range Limit 48 
7 Worst-Case Uncertainty 0.5 
8 Channel Data Model 0 
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9 Channel Data Model Length 1 
10 Channel Model Significant Bits 8 
11 Channel Update Time (tu) 2.7x10-6

12 Channel Sampling Period (tsp) 2.5x10-6 
13 Checksum for Channel TEDS 63352 

 

The next table shows the Channel-TEDS for the light sensor. 

Field 
No. 

Description Value 

1 Channel TEDS Length 42 
2 Calibration Key 0 
3 Channel Type Key 0 
4 Physical Units Boolean value (4, 

128, 128, 128, 128, 
128, 128, 128, 128, 

128) 
5 Lower Range Limit 0 
6 Upper Range Limit 1 
7 Worst-Case Uncertainty 0 
8 Channel Data Model 0 
9 Channel Data Model Length 1 
10 Channel Model Significant Bits 1 
11 Channel Update Time (tu) 2.5x10-8

12 Channel Sampling Period (tsp) 2.5x10-8

13 Checksum for Channel TEDS 63126 
Lastly, the following table shows the Channel-TEDS for the LEDs. 

Field 
No. 

Description Value 

1 Channel TEDS Length 42 
2 Calibration Key 0 
3 Channel Type Key 1 
4 Physical Units Boolean Bit 

Sequence (4, 128, 
128, 128, 128, 128, 
128, 128, 128, 128) 

5 Lower Range Limit 0 
6 Upper Range Limit 15 
7 Worst-Case Uncertainty 0 
8 Channel Data Model 0 
9 Channel Data Model Length 1 
10 Channel Model Significant Bits 4 
11 Channel Update Time (tu) 2.5x10-8
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12 Channel Sampling Period (tBsp B) 2.5x10P

-8
P
 

13 Checksum for Channel TEDS 63108 
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