SYSTEM-ON-A-CHIP SOLUTION FOR PLUG AND PLAY
NETWORKED SMART TRANSDUCERS

by
Gustavo Eduardo Lopez

BS, University of Pittsburgh, 2002

Submitted to the Graduate Faculty of
The School of Engineering in partial fulfillment
of the requirements for the degree of
Master of Science

in
Electrical Engineering

University of Pittsburgh

2004



UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Gustavo Eduardo Lopez

It was defended on

July 16, 2004

and approved by

James T. Cain, Professor, Electrical Engineering

Raymond Hoare, Assistant Professor, Electrical Engineering

Marlin Mickle, Professor, Electrical Engineering

Thesis Advisor: Dr. James T. Cain, Professor, Electrical Engineering



SYSTEM ON-A-CHIP SOLUTION
FOR PLUG AND PLAY
NETWORKED SMART TRANSDUCERS
Gustavo Eduardo Lopez, MS

University of Pittsburgh, 2004

The IEEE 1451 standards define sets of common communication interfaces to standardize the
connectivity of transducers to microprocessor, instrumentation systems, and networks. This is
done by defining different standards that address the various aspects of the development of smart
networked transducers. There are seven standards that have been defined so far for the set of
standard. The IEEE P1451.0 standard was recently proposed to provide a common set of
functions and communication protocols to facilitate interoperability between standards as well as
the creation of new standards. The IEEE 1451.1 standard defines a common control network
information object model for connecting transducers to Network Capable Application Processors
(NCAP). The IEEE 1451.2 defines a Smart Transducer Interface Module (STIM) and a
Transducer Electronics Data Sheet (TEDS) for connecting to transducers and NCAPs. The IEEE
1451.3 defines a Transducer Interface Bus Module (TBIM) that is used for transducers that are
physically separated but still need to make the connection to the same NCAP. The IEEE P1451.4
will define a mixed-mode transducer interface module. The IEEE P1451.5 will define a protocol
for wireless smart sensors. The IEEE P1451.6 recently proposed a standard that will use
Consolidated Auto Network (CAN) as the communication medium between the NCAP and the

transducers.



Past solutions have concentrated on the implementation of the NCAP and STIM of the 1451.1
and 1451.2 standards. These solutions range from hardware implementations, software
implementations, and a combination of hardware and software. However, none of the solutions
that have been reported have taken advantage of eliminating inter-chip communications. Our
solution eliminates this, and establishes a faster (80 MHz as opposed to the 6000 bits/s that is
specified in the 1451.2 standard) and more efficient parallel connection between the NCAP and
TIM.

This is implemented using a combination of hardware and software by means of Altera’s
Excalibur chip. This chip is used because of its ideal structure since it provides a low power
embedded processor and a Field Programmable Gate Array (FPGA). Doing this will provide a
cost and performance advantage over the separate implementations of the NCAP and TIM, chips

or PCBs, assumed by the IEEE 1451 standards.



TABLE OF CONTENTS

1.0 INTRODUCTION ..ottt ettt sttt se et neeneene s 1
1.1 IEEE 1451 OVERVIEW......coiiiiiiii ettt 2
11.1 TEEE PLASL.0.. ..ottt e e 4
11.2 ] PSR 4
1.1.3 IEEE 1451.2...ceieee ettt nas 5
1.1.4 IEEE 1451.3 ..ottt ettt ns 6
1.1.5 IEEE PLASL. 4.t 7
1.1.6 IEEE PLASL.S ...ttt 7
1.1.7 IEEE PLASL.6....c.eciiiiieee ettt sttt nas 8

2.0  STATEMENT OF PROBLEM......cocoiiiiiiitieese et 9
2.1 BACKGROUND ...ttt e e a e e nna e e e nnaeeasnaeanes 9
2.2 MOTIVATION AND THE PROBLEM........ccooiiiiiiee e 13
2.3 EXCALIBUR SYSTEM....ciiiiiiiiiiiet ettt st 14
2.3.1 PEIIPNEIAIS. .. ..o s 15

3.0  REQUIREMENTS. ..ottt sttt sttt st na bt en s 17
3.1 SYSTEM REQUIREMENTS ...ttt 17
3.2 NETWORK CAPABLE APPLICATION PROCESSOR .......ccocceviieeiiieeciee e 19
3.2.1 APPHCALION LAYET ..ocvvieiieciieciee ettt e e sae e nnees 21
3.2.2 N oo G I =T SR 22
3.2.3 TrANSAUCEE LAY ...ttt sttt sttt ettt beenbe e nneas 22

3.3 TRANSDUCER INTERFACE MODULE.........ccoviiiee e 24
331 Transducer Electronic Data Sheet..........ccooiiiiiiiiiiieeeee e, 25
3.3.2 NCAP COMMUNICALION ..ottt 25
3.3.3 B I 0o =] RSP RRPRRTRURRTRRPRS 26
3.34 StAtUS AN INTEITUPES ... 27

3.4 PHYSICAL WORLD ..ottt st 28



4.0  SPECIFICATIONS . ... .ot 30

4.1 NETWORK CAPABLE APPLICATION PROCESSOR .......ccocceiiieiiieecee e 30
4.1.1 Data MOEL.......c.ooiieee s 37
4.1.1.1 Class Header Format and Return COUES .........cocvririreeiierieienie e sieseseeeeens 38
4.1.2 Functional Overview and Top-level class definitions ...........ccccooeveiiiiniieienn 39
I R =1 o Tox Qo - LSRR 40
4.1.2.2  NCAP BIOCK CIaSS.....cciiiiiiiiiiiiiiiiiiieieiese s 43
4.1.2.3  FUNCEION BIOCK ClIASS .....ouviiiiiiiiiiieiieieiee et 46
4.1.2.4  Client-Server Network Communication CIasses .........ccccouveririerinieerieseennenn, 48
4.1.2.5 Publish-Subscribe Network Communication CIasses..........ccccovcvrverrveriesernnnn. 51
4.1.2.6  Transducer BIOCK ClIaSS .........ccoiiiriiiiiiieie et 53
4.1.2.7  Parameter CIASSES .......civirueiiiiiiiiisiieieieie ettt bbbt 57

4.2 TRANSDUCER INTERFACE MODULE.........ccooi i 59
4.2.1 Transducer Electronic Data SHEet..........ccooovvvviieiieiiiieiese e 61
4.2.2 NCAP COMMUNICALION ..ottt 65
4.2.3 I 0o =T SRS SUST USSR 67
4.2.4 StatuS AN INTEITUPLS ..ottt 68
4.3 SUMMARY AND TESTS ...ttt 70
5.0 DESIGN ..ot e ettt a e raa e e nnaaeanees 73
51 NETWORK CAPABLE APPLICATION PROCESSOR .......ccccovviiiiinenieinesie e 74
511 D1 1Y 0L To] o 1TV TSSO 76
5.1.2 IEEE 14511 AP ..ot 7
5.1.2.1  Client-Server Network CommuniCatioNS. .........ccviverveieiieresieseese e nee s 78
5.1.2.2 Publish-Subscribe Network CommuniCations...........cccoeverereneneniesieienieen, 83
513 TraNSAUCET 1/O APt 86
5.1.3.1  Transducer BIOCK ClIass ........cccooueiiiiiiiiieiieeee e s 86
5.1.3.2  Parameter CIaSSES .....cueiuieieiiriieeiesiesieeiesieesieeeesseestesneesseessesseesseessessessseessennes 90
514 APPHCALION LAYET ...cvvieieciiecieee ettt snaesne e nnees 94
5141 BIOCK CIBSS ...ttt st 94
5.1.4.2  NCAP BIOCK ClIaSS......ceiuiiiiiiieiiieiesiie e 98
5.1.4.3  FUNCtion BIOCK CIaSS .......ccuviiiiiiiiiiiesie st 102

Vi



5.15 Summary and Example implementation ... 105

5.2 TRANSDUCER INTERFACE MODULE..........ccooi e 111
521 Transducer Electronic Data Sheet...........cccooiviiiiiiiiicieeese e 112
522 Transducer Interface Module Control Unit...........ccoovviiinenenineniseees 113

5221 Example Configuration.........cccooeeiiiiiiieniiie s 120

523 Transducer Channel BIOCK............ccviiiiieriiie e 129
5.2.4 INtErrupt ManagemMENT...........ooiiiieiie e 147
5.2.4.1 Interrupt SErViCe ROULINE........cccveiiiiieiicie e 150

5.25 Summary and CONSEIAINTS ........coviiieiiiie e e 151

6.0 IMPLEMENTATION AND TESTS ...t 153

6.1  APPLICATION SYSTEM...cciiiiiiiieiit ettt 153

6.2  SYSTEM IMPLEMENTATION ..ottt 159
6.2.1 Network Capable Application Processor Implementation...........cccccooovevenienee. 162
6.2.2 Transducer Interface Module Implementation.............cccceoeveiiiininicicice 165

6.3 TEST RESULTS ..ottt sttt 174

7.0  CONCLUSIONS AND FUTURE WORK ......cocotiiiieiiienieiceseeee e 182
7.1 CONCLUSIONS.... ..ottt sttt sae b be e s nee e 182
7.2 FUTURE WORK ...ttt e et e e nna e e e nne e e 183

APPENDIX A. NCAP OBJECT MODEL ...ttt 185

APPENDIX B. NCAP SOFTWARE CODE ........ccoiiiiiiiieise et 192

APPENDIX C. TIM VHDL CODE.......ccocotiiiiiiie ettt anas 196

APPENDIX D. GLUE LOGIC VHDL CODE .......ociiiiiicie e 221

APPENDIX E. TEDS BLOCKS ...ttt e e e nnaa e s nnaa e s 239

BIBLIOGRAPHY ...ttt ettt n st et n e tenneneans 242

Vii



LIST OF TABLES

Table 3-1 THM S SEALUS BItS.......ccviiiiiieiiiiiisiesie ettt 27
Table 4-1 SIMPIE PrimMItIVE TYPES ...ccviiieie ettt et sre e ans 37
Table 4-2 Class Header FOIMAL ..........ooiiiiiiieece e e 38
Table 4-3 Meta-TEDS STIUCLUIE ......ccviiieiieie ettt ene e sreeeeanes 61
Table 4-4 Channel-TEDS SIIUCTUIE...........oiiiiiiiiiieee e 63
Table 4-5 TIM’S COMMEANUS. .....cciiiiiiieieitesie sttt st sbe st e besneeseeneenee e 66
Table 4-6 SYSIEM SUMMAIY ..ottt ettt sb ettt e b e eneenreeeeanes 70
Table 5-1 Datatype t0 C MaPPING ...eoveveiiiiiiiieieee et 77
Table 5-2 AHB Signal SUMIMAIY .......c.ccoviiiiieie et e e e saeeneennees 115
Table 5-3 AMBA AHB COMMANT SEL......cccooiiiiiieieiiie et 119
Table 5-4 Status ReQISTEr BIlS........cuoiiiiiiieieiie e e nreas 133
Table 6-1 Thermistor’s ADC Output and Corresponding Temperature Value ..............ccc....... 157
Table 6-2 Interrupt Service ROULINES SUMMAIY ......cc.eiieiierieeieiiesieeieseesieseesree e eeessee e eneessens 174
Table 6-3 SYNtheSIS RESUILS ..........oiiee e nres 174

viii



LIST OF FIGURES

Figure 1-1 IEEE 1451 StruCture OVEIVIEW..........oiuiiieiiieiesiesiee e see sttt ste e sneeneesneas 2
Figure 1-2 STIM Definition @ .........oooiiiiieceeeeeee e 6
Figure 1-3 TBIM OVErall StrUCLUIE @ ... 7
Figure 2-1 Excalibur System ArChiteCIUIe ..........coveiii i 14
Figure 3-1 Design ReferenCce SITUCTUIE.........ooi it 18
Figure 3-2 IEEE 1451.1 NCAP ....oo ittt sttt sneesteenaeaneenneans 20
Figure 3-3 TIM trigger DENAVION ........cuv i 27
Figure 4-1 UML Model of IEEE 1451.1 ODJECES ....c.vecviiiieiececeece e 31
Figure 4-2 Conceptual View of an IEEE 1451.1 NCAP ....ccooiiiiiiiiie e 40
Figure 4-3 BIOCK Class UML DIagram.........ccocuuieieieriinieniesie s 40
Figure 4-4 State Machine for BIOCK ClaSS.........c.cciveiiiiiiicieiieseese e 43
Figure 4-5 NCAP Block UML Class DIiagram ............ccccvveieiiieieeie e se e see e sie e 43
Figure 4-6 State Machine for the NCAP BIOCK ...........cccoiiiiiiciecce e 46
Figure 4-7 Function Block UML Class DIagram ............cccooeiieiiiienin e 47
Figure 4-8 State Machine for a FUNCION BIOCK...........cccoiiiiiiiiiiiiccee e 48
Figure 4-9 Entity UML Class DIagram ........cccccceiieiriiieiieie e sae s sae e ste e sne e 48
Figure 4-10 Client Port UML Class DIagram..........cccccceiieieiieieeie e seesie e s sie e e esne e 49
Figure 4-11 Client-Server Communication Model ..., 51
Figure 4-12 Publisher Port UML Class DIagram ..........cccooeiiriiininieieienesese e 51
Figure 4-13 Subscriber Port UML Class DIagram ...........ccccceeiuereeresiiesieereseeseesieseeseesaeseessens 52
Figure 4-14 Transducer Block UML Class Diagram..........cccccvveiveieiiieieeriesee s esie e e esee e, 54
Figure 4-15 Correction state machine for a Transducer BIOCK............ccccoeiiiiniiiiiiiiiicice 55
Figure 4-16 Model of a TIM and Transducer BIOCK............c.cociiiiiiiiiiee 56
Figure 4-17 Parameter with Update Class UML Diagram ..........ccccceeveriveresiieseenie e seesee e, 57
Figure 4-18 Time sequence behavior of UpdateAndRead and WriteAndUpdate ........................ 58
Figure 4-19 Physical Parameter UML Class diagram ..........ccoceiveieiinneniesie e 58



Figure 4-20 TIM OVErall SITUCTUI.......coeiiieieiie et 60

Figure 4-21 INtErrupt MASKING . .......coviriiiiiiiiiieeeiee et 69
FIGUIE 5-1 NCAP OVEIVIEW .....eeiviiieeie ettt ettt e st te s e taesteaneesaeeaesneesreeneeaneenneans 74
Figure 5-2 Class Hierarchy Implementation..............c.ccccoiieieiieiecie e 75
Figure 5-3 Structure inStantiation 1N C..........coo i 76
Figure 5-4 Entity Class StrUCTUIE IN C........ooiiiiiiieiieee e 78
Figure 5-5 Perform() Operation pSEUdO-COUE..........ccviiiiierieiieseee e 81
Figure 5-6 Client Port Class StruCtUre iN C ........ociuvoiii i 81
Figure 5-7 EXecute() PSEUAO-COUE...........oiiiiiiieiiieiee et 82
Figure 5-8 Publisher Port Class STruCtUre in C........ccooveiiiiiiiiieeee e 83
Figure 5-9 Subscriber Port Class StrucCture iN C.........ooveiieieceseece e 84
Figure 5-10 Transducer Block Class Structure in C...........coceoeiieieiiii i 86
Figure 5-11 EnableCorrections() operation pSEUAO-COUE ..........ocverierirrieerienie e 87
Figure 5-12 DisableCorrections() operation pSEUdO-COUE...........cocurerieiierieriene e 88
Figure 5-13 Update All() PSEUAO-COUE .........eeiueeiiesieeiie et 90
Figure 5-14 Parameter With Update Class Structure in C.........ccooviieiieie e, 91
Figure 5-15 UpdateAndRead() PSEUTO-COUE ........ceeiuiiiiiieieiie e 91
Figure 5-16 WriteAndUpdate() PSEUAO-COUE .......c.eeiiiiiiiieicrieiicsiee e 92
Figure 5-17 Physical Parameter Class StruCture in C..........c.coooviiiiniiiieieierese e 93
Figure 5-18 BIOCk Class SIrUCIUIE IN C .....veeveeiece et 95
Figure 5-19 GoActive() operation PSEUAO-COUE ..........ccuerreerieiieiireiiesee e e e et sre e 97
Figure 5-20 Golnactive() operation PSEUAO-COUE ...........cierrueririeeiisie e e 97
Figure 5-21 Initialize() operation PSEUAO-COUE. ..........couiriiriiririiririeee e 98
Figure 5-22 NCAP BIOCK StrUCTUIE IN C...c.veeeeeciiecie et 99
Figure 5-23 Function Block Class StruCture in C.........cccccvevveieiie i 102
Figure 5-24 Start() Operation PSEUAO-COUR ........eieeiieiiiieiieeie sttt 103
Figure 5-25 Clear() Operation PSEUAO-COUE .........cuiuerierieiieriisiesieeieeee et 103
Figure 5-26 Pause() Operation pSEUdO-COUE.........ccveiierieiieieee et 104
Figure 5-27 Resume() Operation PSEUdO-COAE ........cceeiveiieiieerieeie s et 104
Figure 5-28 Application-specific example operation SampleAndSetAl()........ccoovevvririienenne 106
Figure 5-29 TIM Commands Header File ..o 108



Figure 5-30 Snippet C Code for UpdateAndRead Operation .............ccoceveeneninneeniesenneeniennns 109

Figure 5-31 Snippet C Code for WriteAndUpdate Operation ............cccceeerereneneninenieeiennenes 110
Figure 5-32 TIM high-level ArChiteCIUIE .........couviieiiee e 111
Figure 5-33 Simple AMBA transfer (... 114
Figure 5-34 PLD Slave and AHB CONNECTION.........coiiiiiieiieiesiie sttt 114
Figure 5-35 State Machine for the Control UNit..........c.ocoieiiiiiiiiiiiceece e 116
Figure 5-36 Pseudo VHDL code for TIM Control Unit..........ccccoevveiiiiniiene e 117
Figure 5-37 Control Unit Example Configuration for Write Interrupt Mask Command ........... 120
Figure 5-38 Snippet VHDL code for TIM Control unit for Write Interrupt Mask Command ... 121
Figure 5-39 Control Unit Example Configuration for Read Interrupt Mask Command ............ 122
Figure 5-40 Snippet VHDL code for TIM Control unit for Read Interrupt Mask Command ... 122
Figure 5-41 Control Unit Example Configuration for Status Command...............cccccccevevvenenne. 123
Figure 5-42 Snippet VHDL code for TIM Control unit for Status Command .............cccccoeunee. 124
Figure 5-43 Control Unit Example Configuration for Trigger Command ...........cccccevvvieiiennene. 125
Figure 5-44 Snippet VHDL code for TIM Control unit for Trigger Command................c.c....... 125
Figure 5-45 Control Unit Example Configuration for Write Actuator Data Command............. 126

Figure 5-46 Snippet VHDL code for TIM Control unit for Write Actuator Data Command .... 127
Figure 5-47 Control Unit Example Configuration for Read Sensor Data Command................. 127
Figure 5-48 Snippet VHDL code for TIM Control unit for Read Sensor Data Command ........ 128

Figure 5-49 Control Unit Example Configuration for Reset Command............cccccceevvivvrvernnnne. 129
Figure 5-50 Snippet VHDL code for TIM Control unit for Reset Command..............cccccveueene. 129
Figure 5-51 TIM Transducer Channel ..o e 131
Figure 5-52 Sensor Channel Interface with an 8-bit ADC Configuration............cc.ccocvveiennene, 132
Figure 5-53 “Glue” Logic for Sensor Channel interfaced with ADC.........c.cccoevviveivcieiieniene, 133
Figure 5-54 VHDL Code for Status Generation Block for a sensor channel that is interfaced with

AN B-DIEADC ... bbbttt neenreas 134
Figure 5-55 “Glue” logic State Machine for Sensor Channel interfaced with ADC................... 135
Figure 5-56 Sensor Channel Interface with digital 1/0 Configuration ............ccccoeevviinivennenne. 136
Figure 5-57 “Glue” Logic for Sensor Channel interfaced with digital 1/O...............cccccevennnnn. 137
Figure 5-58 “Glue” logic State Machine for Sensor Channel interfaced with digital 1/0.......... 138
Figure 5-59 Actuator Channel Interface with an 8-bit DAC Configuration...............ccccceeveenene. 139

Xi



Figure 5-60 “Glue” Logic Architecture for an Actuator Channel interfaced with DAC............ 140

Figure 5-61 “Glue” logic State Machine for Actuator Channel interfaced with DAC............... 141
Figure 5-62 Actuator Channel Interface with digital 1/0 Configuration...........cccccceeevvvvivernnnne. 142
Figure 5-63 TIM Transducer CHANNEL ZERO StruCture .........coceeveieeieeveciie e 143
Figure 5-64 CHANNEL_ZERO Example for 8-Channel TIM Configuration.............ccccceu.... 144
Figure 5-65 “Glue” Logic for CHANNEL_ZERO........ccccoiiiiiiiieiiee e 145
Figure 5-66 State Machine for “Glue” 10gic’s CONtrol..........ccccceeieiieii i 147
Figure 5-67 Interrupt Controller overall StrUCTUIE ............ccoveieiieiiece e 148
Figure 6-1 Thermistor’s CONNECLIONS .........coiieiiiieiieie ettt st sre e enes 154
Figure 6-2 Thermistor’s DEhaVIOr PIOLS .........cccoiiiiiiiiee e 155
Figure 6-3 ADC VOItage QIVIAEIS........ccouiiiiiieieciese et sra e anes 156
Figure 6-4 PhotoCell’s CONNECLIONS. .......ccuiiiiieciiciece et 158
FIQUIe 6-5 LED CONNECLIONS .....ccviiiiiiieieeiie ettt sttt ettt sttt nre e enes 158
Figure 6-6 Picture of the IMplementation............couiiiiiiiee e 159
Figure 6-7 System ImMplementation.............cocverieiieiieie e 160
Figure 6-8 System’s EMbedded StrPE .......c.coveiiiieceee e 164
Figure 6-9 EXECULE() € COUR ... .eiueiiiieiieie ettt sttt enes 165
Figure 6-10 Top Level System Implementation ............cccooeiiiiniiinieieee e 166
Figure 6-11 NCAP/TIM Connections, part (a) from Figure 6-10 .........cccooeiiniiininienicieiene, 167
Figure 6-12 Priority encoder connections with Transducer channels, part (b) of Figure 6-10... 168
Figure 6-13 Transducer Channel Connections with Control Logic, part(c) of Figure 6-10....... 169
Figure 6-14 Transducer channels and glue logic, part (d) of Figure 6-10.........ccccccevvririvennene. 171
Figure 6-15 Interface between Control Unit, Transducer Channels and “glue” logic, part (e) of

10 0T R O USSR 172
Figure 6-16 Initialization RESUILS...........cciiiiiecicccce et 176
Figure 6-17 Application Code for Individual Triggers and Client-Server Operations............... 177
Figure 6-18 Main Loop FirSt ITEIration ...........cccuiieiiiiiieiie e 179
Figure 6-19 Application Code for Global Trigger and Publish-Subscribe Operations .............. 180
Figure 6-20 Main Loop Second HEration...........c.ccveiveieiieieeie e 180

Xii



1.0 INTRODUCTION

Transducers, defined as devices that convert energy from one domain into another (either sensors
or actuators), are frequently used in the manufacturing, industrial control, automotive, aerospace,
building, and biomedical industries among others. Because of the diversity of the transducer
market, manufacturers are always looking for ways to build low-cost, networked smart
transducers. The Institute of Electrical and Electronics Engineers (IEEE) in conjunction with the
National Institute of Standards and Technology (NIST) addressed this issue by creating a family
of standards to aid in the design and development of smart networked transducers.

The ultimate goal of the standards is to achieve transducers to network interchangeability
and transducer to networks interoperability. This is done by defining a set of common
communication interfaces for connecting transducers to microprocessors, instruments and field
networks.

This thesis concentrates on the design and implementation of a single chip solution of the
approved IEEE 1451 standards, in which inter-chip communications are eliminated yielding a

speed improvement over the implemented solutions to date.



The standards were first proposed in September 1993, when NIST and the IEEE's Technical
Committee on Sensor Technology of the Instrumentation and Measurement Society co-
sponsored a meeting to discuss smart sensor communication interfaces and the possibility of
creating a standard interface. The response was to establish a common communication interface

for smart transducers. Since then, a series of workshops has been held and seven technical

11

IEEE 1451 OVERVIEW

working groups have been formed to address different aspects of the interface standard.

This family of standards is designed to work in concert with each other to ease the

connectivity of sensors and actuators into a device or field network. The overall structure for the

standards is shown in Figure 1-1.

Any
Network

(—

Network-Capable

Application
Processor
(NCAP)

2 PIIEIIEIEII}
1451.1 '

. Comimon

Commeon .

. Funciona-
Object .
Model LS

TEDS

Note: The Data Converters and the Transducers
are not part of the |IEEE 1451 Standard

Analog + Digital h TEDS
IEEE P1451.4
Txdcr
Digital
Point-to-Point E c%.- TEDS
IEEE 1451.2 2% D
gn o= AS .
2= ma I'xder
Distributed
Multidrop Bus 5 % TEDS
IEEE 1451.3 -
2 AaDp] .,
= /A I'xder
Wireless E % TEDS
IEEE P1451.5 |2 & .
Z 2| AD Txder
TSl A | T
Controller Area
Network (CAN - 2 TEDS
IEEE P1451.6 ) < T —
| AD Txder
| DA

TII = Transducer Independent Interface

Txder

Transducer {Sensor or Actuator)

Figure 1-1 IEEE 1451 Structure Overview

Mixed-Mode
Transducer
Interface Module

Smart Transducer
Interface Module
(STIM)

Transducer Bus
Interface Module
(TBIM)

Wireless
Transducer
Interface Module

CAN Transducer
Inteface Module



From the figure, it is easy to see that transducers are interfaced to a Transducer Interface
Module (TIM) that is denoted smart because it provides functions like self-identification. The
TIM is controlled by a Network Capable Application Processor (NCAP) in a network-
independent environment. Depending on the standard, single or multiple TIMs can be connected
to a single NCAP.

Each TIM defines a Transducer Electronic Data Sheet (TEDS) and a communication
interface (analog, digital or wireless) for connection with an NCAP. The TEDS allows for self
identifying transducers, thus enabling “plug and play”. The communication interface allows the
NCAP to access and control the TIM.

The most important achievement of the standards is the idea of “plug and play” smart
networked transducers which happens at both the TIM and NCAP level. As it has been
mentioned before the TEDS enables “plug and play” for the TIM. The object model defined for
the NCAP also gives this advantage by defining an Application Programming Interface (API) for
NCAP to Transducer and NCAP to Network communications. These APIs allow for a common
network-independent application model that maps to any transducer network protocol
establishing interoperability between transducers and existing control network.

The following sub-sections of this Chapter go into detail about the different standards and

their current status.



1.1.1 IEEE P1451.0

This standard " will provide a common set of functions, communications protocols, and TEDS
formats that facilitate interoperability among the family of standards. It will also simplify the
creation of future standards for different physical interfaces while maintaining interoperability

among the family members. This standard is in the early stages of development.

1.1.2 IEEE 1451.1

This standard defines an interface for connecting NCAPs to control networks through the
development of a common control network information object model for smart sensors and
actuators . The purpose of the standard is to provide a network-neutral application model that
will simplify the interface of smart sensors and actuators to a network. This way, at the
application level, the physical connections become transparent to the user.

The NCAP is defined by hardware and software blocks. The software blocks are defined
by APIs that hide the communication details to a particular network or transducer
communication interface. The hardware blocks are composed of the 10 and network hardware
needed for the various TIMs and networks respectively.

The NCAP is divided into three layers (Network, Application, and Transducer). The
Network and Transducer layers handle the communication and interface to both the network and
the various TIMs implemented in the system.

An information model describes the objects in the standard. This model is defined by a

software architecture that includes an Object model (for the software components of IEEE1451.1

" Parenthetical references placed superior to the line of text refer to the bibliography.



systems), a data model (for the information communicated across the specified object interfaces),

and two network communication models (Client-Server, and Publish/Subscribe methods).

1.1.3 IEEE 1451.2

This was the first published standard © in the family. However, it has not been widely accepted
in industry because of discontent with the digital communication interface and the complex
software features for its interface with an NCAP.

This standard defines a STIM, TEDS, and Transducer Independent Interface (TII) for
NCAP communication. Each Transducer is denoted in the STIM as a channel, and there can be
up to 255 channels within one STIM. Individual channels and the STIM as a whole can be
accessed by the NCAP. The different transducers that are interfaced to the STIM are triggered
(sampled or set) by a command that is sent from the NCAP to the STIM. The STIM decodes this
information and then sends the results back to the NCAP.

The TII is a ten wire serial connection for NCAP/STIM communication and has been
widely criticized by industry because of its complexity, so as part of this standard’s revision; the
TII may be eliminated in favor of a RS-232 serial connection. Figure 1-2 shows the structure of
the STIM.

The TEDS supports a variety of transducers and is accessed by the digital interface (TII).
The TEDS can be written by the NCAP or it can also be set at manufacture time. It resides in
non-volatile memory, and contains fields that describe the type, attributes, operation, and
calibration of the transducers. The TEDS is the core of the standard since it provides a method

for self-identifying transducers.



[ Smart Transducer Interface Module
(STIM) Transducer -

e | [y Independent P
| XDCR 4 ADG | — Interface (Til) | :
YooR k! DA T oy
| AULR e AL STIM [ I I
——y ——— Com_n:ul . I Network Capable : | : l
: ¥DCR H_b': oo |_ Unit | .ﬁ.p-plh:;a‘lior‘l Processor r ___I) E |
[ A B | [NCAP) rTTME
| I =
|
e e e e e e e | | |

|

TEDS !
| |
| |

we L.
-, -

{

MNaote: Tha blocks shown in the dashad
lines are not part of the standard

Figure 1-2 STIM Definition ©

1.1.4 |IEEE 14513

This standard “ introduces the concept of a Transducer Bus Interface Module (TBIM) and a
Transducer Bus Controller (TBC) connected by a Transducer Bus. A TBIM contains the bus
interface, TEDS, and the interface to the transducers. The TBC is the hardware and software in
the NCAP or host processor that provides the interface to the Transducer Bus. The Transducer
Bus provides a communications path between an NCAP or host processor and one or more
TBIMs.

This standard was created for transducers that are physically separated but still need to
connect to a single NCAP (something that is not supported in the IEEE 1451.2). The different
communication between the various TBIMs and single NCAP is synchronized by a sync signal

that is handled by the TBC. Figure 1-3 shows the structure of the standard.



<
[
[ : Synchronization Signal x
[ | Transducer Y
R . I |
A Iy
. | Controller G ication Ghannel(s) )
| ! (TBC) TT
L U Il 1l
(LS e | |
' | | | Bus Interface | | Bus Inferface
|
i : : Network I
| [ N [T~ 1= == |~
: | : CB[.DEb'.E | | Sensor }_ﬂ Apc = | Sensor }—ﬁ ADG
1| . Application N el (] | | t===== L
1l Berracenr | | ————— == e
I Processor | ! ‘ I ! | [
<L | | Actuator L_\ pac | Actustor L_| DAC
s | (NCAP) : [ SN A T
. | [ [ === 7 |—— =
: | | Xducer IL_H DI ::3 | Hducer IL_H oo
____________ | b Ll Ll —— = L
Note: Blocks shown in dashed lines | TEDS '::’ | TEDS r:>
are not part of this standard b e
Transducer Bus Transducer Bus
Interface Module Interface Module
(TBIM) (TBIM)

Figure 1-3 TBIM Overall Structure

1.15 IEEEP14514

This standard © will define a mixed-mode transducer interface able to work both in analog
signal transmission mode and in digital communication mode, but not simultaneously. An IEEE
P1451.4 transducer contains a Mixed-Mode Interface (MMI) and a TEDS. The MMI is a two-
wire, master-slave, multi-drop, serial connection. The TEDS resides in one or more memory
nodes on the MMI. Its main objective is to make a bridge between legacy transducers and the
networked smart transducers. This standard is in the balloting stage at the moment and could be

approved by the end of 2004.

1.1.6 IEEE P1451.5

This standard © will define an interface for wireless communications and data formats for
transducers, and a TEDS based on the IEEE 1451 concept, and protocols to access TEDS and

transducer data.



The proposed standard will include multiple MAC/PHY combinations so it will be easy
to implement any type of wireless network as a NCAP-TIM interface. Different physical layers
are being analyzed for the implementation of the standard. Among the physical layers being
considered are the IEEE 802.11 (WiFi), the IEEE 802.15.1 (Bluetooth), the IEEE 802.15.4 (LR-
PAN, lower power, lower rate, lower cost), and other proprietary layers. This standard is in the

stages of development.

1.1.7 IEEE P1451.6

This project ) establishes a CANopen-based network for multi-channel transducer modules. The
standard defines the mapping of IEEE 1451 Transducer Electronic Data Sheet (TEDS) to the
CANopen dictionary entries as well as communication messages, process data, configuration
parameters, and diagnosis information. It adopts the CANopen device profile for measuring
devices and closed-loop controllers. This project defines an intrinsically safe (IS) CAN physical
layer.

The targets of the standard are sensor bus and transducer network users across various
industries. In particular, the instrumentation and measurement, and process control industry.
CANopen network will be able to use IEEE 1451 transducers and have the benefit of the TEDS.

Only a proposal has been submitted for this standard.



2.0 STATEMENT OF PROBLEM

The various solutions that have been designed and implemented based on the 1451 standards
address different areas in the development and understanding of this family. However, none of
the implementations has taken advantage of a single chip solution by eliminating inter-chip
communications. This inter-chip communication can be eliminated because there is no physical
separation between the NCAP and TIM, and a high-speed connection between the modules can
be established. This issue is addressed in this thesis by designing the NCAP/TIM combination

using Altera’s Excalibur chip.

2.1 BACKGROUND

Most of the implementations that have been documented on the standards have been on the
implementation of a STIM (1451.2) and NCAP (1451.1) since they were the first standards to be
approved. In this section we will review reported implementations on the IEEE 1451 family.
Analog Devices ® designed a microcontroller (ADuC812 © ) chip specifically to meet
the IEEE 1451.2 standard requirements. This chip integrates the data converters (for transducer

interfacing), EEPROM (for the TEDS), and an 8-bit microcontroller for the STIM’s functionality

(10)



The first implementation that we will review is from Dr. Paul Conway and his research
group from the University of Limerick, Ireland. This research group designed and implemented
an IEEE 1451.2 STIM using Analog Device’s ADuC812 microconverter ‘Y. The motivation for
the solution was to exploit the on-chip resources provided by the ADuC812. In order to do this,
software was developed to map the STIM’s functionality to the microconverter. On-chip data
converters and flash/EE memory were used for transducer interfacing and TEDS (only
mandatory blocks were implemented) respectively. The software-architecture was designed to
meet all the mandatory specifications of the standard. The entire implementation for a two-
channel STIM consumed 5,534 bytes of program memory, 178 bytes of RAM memory and 268
bytes of flash/EE data memory. This solution found that a STIM implementation using the
ADuC812 is useful only when implementing a small system, because of limitations of on-chip
resources, such as the 640 bytes of flash memory which is too small to hold an entire set of
TEDS, if mandatory (Meta and Channel TEDS) and optional (Calibration information) TEDS
blocks are to be included in a system with more than one transducer.

Another solution that has been implemented is a proof-of concept IEEE 1451.1 design in
VHDL connecting to a Bluetooth wireless network 2. This research group, from Ohio State
University, developed a network infrastructure (defined by a software model) that enables smart
transducer communication through Bluetooth using the OBEX Session protocol. This protocol is
specific to Bluetooth and is used for wireless object exchange. This network infrastructure acted
as a bridge between the 1451.1 data types and operations to the network-specific OBEX format
on both the client and server sides. This was implemented and simulated using behavioral
VHDL. This experiment relied completely on simulations. Future work for this project will

include a synthesizable version of the hardware representation that can be mapped to an

10



Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA). This
type of solution is helpful for future versions of smart transducers that have the capability of
hosting a Java Virtual Machine (JVM), in which the VDHL design may be translated to a high-
level description.

Next, we discuss a full hardware implementation of a 1451.2 STIM @ which was
developed in the Nuclear Physics Institute of Lyon in France. In this project, a STIM was
designed in VHDL and synthesized onto an Altera APEX20K FPGA. The transducers and the
NCAP were interfaced directly to the FPGA. The NCAP/STIM communication was done via the
TII. This solution allowed the concept of Ethernet Capable Front-end Module (frequently used
for slow control-type sensors) to include the data-acquisition requirements of a high-energy
physics experiment. This solution achieved data rates close to 1Mbps on the Ethernet port.

An interesting solution involved the development of a STIM and NCAP (connecting
through the TII) for a CAN network . Here, the University of Barcelona research group
designed a two channel STIM based on a microcontroller that includes a multiplexed eight
channel A/D converter, and an I1°C bus interface. The TEDS was implemented using a serial
EEPROM that interfaced directly to the microprocessor. They also developed a software tool for
the generation of a TEDS storing it in the serial EEPROM. The 1451.1 information model was
also designed and adapted to work in a CAN network environment. This solution was the first
one to modify/generate the TEDS in situ via a software tool that was built.

The implementation of STIMs in industry has been slow due to discontent with the
communication protocol (TII), which is believed to be overly complicated. Dr. Darold
Wobschall from the State University of New York at Buffalo addressed this issue by exploring

different connections between a STIM and an NCAP ™. The different communication protocols

11



that were implemented were RS232, RS485, TII, Microlan/1-wire, IEEE 1451.4, Esbus, and I°C.
Users can select any one of the protocols for the NCAP/STIM communication. There were no
comparisons on how each communication protocol performed. This was because the objective of
the project was to design a device that would give users a broader range of selection in the
communication interface to smart transducers.

One of the most interesting solutions implemented presented a System on a Chip solution
for the STIM. This solution was developed by Dr. Angel de Castro and his research group at the
University of Madrid, Spain. The STIM and NCAP were completely described in hardware
(Xilinx Virtex XCV800 FPGA) using VHDL . This design is unique in that a
microcontroller was not used for the STIM’s functionality. This provides a speedup advantage
(hardware ran at 45 MHz) over the usual software solutions. Future work in this group consists
of an ASIC solution, in which the data converters and Micro Electro-Machine Systems (MEMS)
sensors can be integrated in the SOC design. To date, there has been no documentation on the
success or completion of that work.

This last solution is close to what we are trying to accomplish in this thesis, since they
designed the NCAP and TIM in a single chip and targeted it for an ASIC solution. However,
they did not eliminate inter-chip communications and the information model was not built for the

1451.1 NCAP, both of which are key elements in the design that is presented here.

12



2.2 MOTIVATION AND THE PROBLEM

A single chip solution would provide a cost and performance advantage over the separate
implementations of the NCAP and Transducer Interface Module (TIM), chips or PCBs, assumed
by the IEEE 1451 standards. Advances in integrated circuit technology have allowed systems
with the complexity of both devices to possibly be implemented on a single chip. In this way
inter-chip communications can be eliminated, increasing the speed of the TIM/NCAP connection
paving the way for faster and more efficient instrumentation and control systems. This was the
motivation for the effort to develop a 1451 compatible single chip implementation of a combined
NCAP and TIM.

The goal of this thesis is to design and implement an IEEE 1451 single chip solution
using Altera’s Excalibur chip. The TIM will have the functionality of a smart transducer as is
stated in the standards. The information model for the NCAP will be designed using the
functionality described in the IEEE 1451.1 standard.

The most important aspect of the problem will be the elimination of inter-chip
communication since it is a solution that has not been explored. In achieving this solution, we
will provide academia and industry with a more efficient (performance-wise) connection
between the NCAP and TIM. This implementation will also give another option and better
understanding on the family of standards. Next, we will give an overview of the Excalibur

system and what it provides.

13



2.3 EXCALIBUR SYSTEM

The Excalibur chip ®® is composed of a Reduced Instruction Set Computer (RISC) processor
(ARM 922T) with programmable logic on a single device. The processor communicates to its
peripherals by means of an Advanced Microcontroller Bus Architecture (AMBA) high-
performance bus (AHB). The chip’s architecture provides a variety of on-chip peripherals such
as an interrupt controller, programmable logic device (PLD), etc. Figure 2-1 shows the chip’s

architecture.

Flash SDRAM

Interrupt Watchdog ARM

Bridge

Dual-Port
ERAM

Dual-Port
SRAM

UART 2

Stripe-to-PLD

Configuration PLD-to-Stripe
Legic

Bridge

Bridge

1 |
1 |
1 |
1 |
] |
1 |
1 |
1 |
1 |
1 |
1 |
1 i I
1 AHB2 |
1 ' I
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
| Embedded Stripe |
] I

PLD Array

Figure 2-1 Excalibur System Architecture

The bus architecture used by the Excalibur family conforms to specifications of the
AMBA bus . Two AMBA-compliant AHBs ensure that the embedded processor activity is
unaffected by peripheral and memory operation. Three bidirectional AHB-to-AHB bridges
enable embedded peripherals and PLD-implemented peripherals to exchange data with the

embedded processor or with other peripherals. The bidirectional bridges handle the

14



resynchronization across the domains and are capable of supporting 32-bit data accesses to the
entire 4-Gbyte address range (32-bit address bus).

The only bus master on AHB1 is the ARM processor. Processor-specific slaves such as
the interrupt controller are local to the AHB1. Memory resources such as the on-chip SRAM are
also local to the AHB1, allowing for fast access to the memory by the embedded processor.

Any transaction that after decoding is not intended for AHBL1 is then routed to the AHB1-
2 bridge. This bridge is a slave on AHB1, giving the embedded processor access to AHB2. There
are three bus masters on AHB2 (ARM processor, Configuration logic, and PLD). Note that the
PLD can be configured as either a master or a slave on AHB2. A priority arbitration scheme is
used to grant access to masters on the AHB2 bus.

The ARM embedded processor supports both the 32-bit ARM and 16-bit Thumb
instruction sets. It consists of a Harvard architecture, implemented using a five-stage pipeline. It
allows for single clock-cycle instruction operation through simultaneous fetch, decode, execute,
memory, and write stages %,

2.3.1 Peripherals

The embedded stripe contains a variety of peripherals that can be configured in different ways
depending on the application. These peripherals include: Configuration Registers, Embedded
Stripe Phase-Locked Loops (PLLs), Universal Asynchronous Receiver Transmitter (UART),
Timer, Watchdog timer, General Purpose 1/0O Port, Interrupt Controller, PLD, and an External
Bus Interface (EBI).

The interrupt controller provides a simple, but flexible, software interface to the interrupt
system. It can be configured to handle up to 64 individual interrupts. Designers can also build

their own interrupt controller in case more interrupts need to be handled.

15



The programmable logic device that is provided comes in various sizes depending on
different versions of the chip. The device can be configured to implement any custom hardware
logic.

The EBI is a 16-bit bidirectional memory interface that provides a bridge between
external devices (flash memory, or memory mapped devices) and the AHB2 bus. The EBI
supports up to four blocks of up to 32 Mbytes of external memory or memory mapped devices of
different configurations.

The rest of the thesis is structured as follows. Chapter 3 defines the functional and non-
functional requirements of the system in order to remain IEEE 1451 compliant. Chapter 4 entails
the specifications derived from the requirements section. Chapter 5 consists of the design
decisions made from the different discussions of requirements and specifications. Chapter 6
includes the implementation along with the results of the tests. Lastly, Chapter 7 discusses the

conclusions and future work that can be done regarding the problem.

16



3.0 REQUIREMENTS

In order to design an IEEE 1451 compliant system, a variety of requirements must be met. These
requirements can be divided into three sub-sections, system Requirements, for the application-
specific behavior and object interaction, NCAP requirements, for the top-level functionality and
structure of a 1451.1 NCAP, and TIM requirements, for the top-level functionality and structure
of an IEEE 1451 compliant TIM.

The common design requirement among the system’s objects is that they shall be
designed in a network and transducer independent environment. The design shall focus on the
IEEE 1451.1 standard for the NCAP’s functionality, and the 1451.2 and 1451.3 standards for the
functionality of the TIM. Note that during this chapter we will use the word “shall” to denote a

requirement. This is done to use the same wording as in the IEEE 1451 standards.

3.1 SYSTEM REQUIREMENTS

The system requirements are both functional and non-functional. The standards do not specify
non-functional requirements because they are implementation and application specific, as it only
specifies the functionality and not how it is to be implemented. Since one of the main goals of

this project is to eliminate inter-chip communications, the results should obtain higher speeds for

17



the NCAP/TIM communication. This implementation shall have the non-functional requirement
of achieving higher data rates than the 6000 bits/s maximum rate of the TII defined for the
1451.2 STIM @,

The functional requirements encompass the system’s behavior as stated by the IEEE 1451
family. The main requirement is that the design shall be network and transducer independent.
This means, that at the application level, the physical connections in the system become
transparent to the users.

This network and transducer independency is achieved by different blocks that are

defined in the standard. These blocks shall be designed and implemented as is shown in Figure

3-1.
SINGLE CHIP
[ NCAP TIM 1
| ) N |
E

Y EREE | .
L | T|w .| | | Control | E ;
e JE ..: z ¢
W | Jolr . [APPLICATION ' . e ||| izg
‘E Rk Al A - 2 :55\
K P . 5 = =
K | . I W : | Zz =
L|p TEDS z 7

| [H]|1], |

Bk |

\ - - — — — — o _ |

Figure 3-1 Design Reference Structure

The Network Hardware, Network Library and 10 Hardware objects (shown in Figure
3-1) are defined in the standard as implementation-specific, so their functionality is not specified
by the standard as it depends on the application. However, these blocks shall interface with the

APIs that are shown in the figure and meet the electrical specifications of the underlying network

18



and the Excalibur chip. The remaining blocks (1451.1 API, Application API, 10 API, Control,
TEDS, and Registers) that are shown within the single chip annotation in Figure 3-1 are
completely described in the standard and shall be designed following its specifications. The
transducers and the network are application specific and they are not defined by the standard and
they cannot be implemented within the FPGA. However, they too shall meet the electrical
specifications of the Excalibur chip.

The design shall prove its compliance with the standard by showing interactions between
a network, NCAP and TIM. These interactions shall make use of the objects and formats

described in the standards.

3.2 NETWORK CAPABLE APPLICATION PROCESSOR

The Network Capable Application Processor (NCAP) consists of hardware and software blocks
that shall be implemented in order to remain compliant with the IEEE 1451.1 standard. An
information model is defined for the NCAP. This information model consists of a data model
(for the datatypes), an object model (for the classes), and two communication models (used for
network communications. The complete information model shall be implemented. In order to do
this, we shall use Figure 3-2 as a reference for the NCAP design.

Note that the NCAP is divided into three layers, network, application, and transducer. For
the network layer, the hardware shall consist of the network-specific logic that is needed for the
underlying network. Also, the software for this layer shall consist of the network library

(network-specific), and the 1451.1 API (standard-defined).

19



i H

1 1

i i

! 1

i i

1 1

i i

1 | ! N

4 |1 |IEEE 1451.1 Smart H

5 | Transducer Chject Model | |
xz ' i g
2o : 1| T-Block, | 2
E'g Nﬁ'ggkx ] | i | Transducer 5
3 * N | (| woapl | T
i : o)
P | : )

1 i Application Software E

i i

1 1

i i

1 1

i i

! 1

i i
Metwork Transducer

Application Layer

Abstraction Layer Abstraction Layer

Figure 3-2 IEEE 1451.1 NCAP

The application layer shall only consist of software blocks. These blocks shall consist of
the standard-defined blocks for the application, as well as application-specific code. For the
transducer layer, the hardware shall consist of the specific hardware needed to communicate with
the TIM. The software shall consist of the T-Block API.

The hardware blocks that have been defined for the NCAP shall be designed to meet the
electrical and timing specifications of the underlying network as well as those of the Excalibur
chip. On the other hand, the software blocks shall be designed using the objects and formats
defined in the 1451.1 standard. It is important to note, that for the software some blocks are
standard-defined while others are implementation-specific. However, these objects shall
communicate with each other using the object orientation of the 1451.1 standard. The following
discussion gives background information on the objects of an IEEE 1451.1 NCAP.

The objects defined by the information model are at the core of the standard, because
they allow for a common interface that is network and transducer independent. The common

control network information object model defines three major blocks for the standard’s API.

20



These blocks include an NCAP Block that consists of a standard software interface for
supporting network communications and system configuration (key source for network
communications and system configuration), Transducer Blocks for the interface between
transducers and application functions, and Function Blocks which encapsulate application-
specific functionality.

The three major blocks shall work together to communicate with the “physical world”
consisting of the networks and transducers. For network communications, these objects can be
either network visible or independent. Network visible means that the object can be directly
accessed by a network, while independent means that the blocks may only be accessed by other
objects within that local NCAP. For an object to become network visible it shall be registered
with its local NCAP block. If they are not registered then they shall not be accessed directly by

the network but rather by the NCAP application.

3.2.1 Application Layer

The application-specific behavior of the NCAP shall be defined within this layer. The
application’s behavior shall not be affected by the different physical connections that can be
made between the NCAP/network and NCAP/TIM, which is achieved by means of the 1451.1
API and the 10 T-Block API previously shown in Figure 3-2.

The application layer shall also act as a bridge between the network operations and the
transducer operations. It shall have application-specific code that is pertinent to the particular

control or monitoring system that is implemented.

21



3.2.2 Network Layer

The network layer has hardware and software blocks that handle the communications with the
underlying network. The hardware consists of the logic blocks needed for the network
communication protocol. The requirement for the hardware is that it meets the electrical and
logical specifications of the underlying network as well as those of the Excalibur chip. The
software blocks consist of the network library which is network-specific and the 1451.1 API
defined by the NCAP Block of the standard’s object model.

The network library consists of the “driver” that shall be responsible for encoding and
decoding data to/from the on-the-wire format of the underlying network. The 1451.1 API shall
provide the network independency of the design, since it shall hide the communication details of
the network driver.

The term IEEE 1451.1 Network Communication is defined by the standard as the
communication between two objects in distinct process spaces either within a single NCAP or
over the network between the two NCAPs.

Therefore, to prove that the system supports network communications either of the
communications stated before shall be executed. Those communications shall be made using the
two communication models that are defined in the standard (client-server and/or publish-

subscribe).

3.2.3 Transducer Layer

The transducer layer contains both hardware and software blocks that handle the transducer-side

communications of the NCAP. The hardware block shall be responsible for the physical

22



connection between the NCAP and TIM. This block shall meet the electrical and timing
specifications of the Excalibur chip.

The software shall be responsible for interactions with any transducer that is physically
connected to the NCAP. This shall be done through the 10 T-Block API defined in the standard
by the Transducer Block class. Therefore, this block shall be responsible for decoding and
encoding information that is sent and received by the NCAP/TIM communication. For example,
if the application needs to send a trigger command to the TIM, it signals this to the API. The API
then puts the command in the format of the NCAP/TIM communication protocol and sends it.

All the commands that are supported by the TIM shall be represented within this layer. A
common command that shall be represented in the transducer layer is the trigger command. This
command allows the NCAP to read/set the transducers that are physically connected to the
system. There are different steps that shall be followed when reading or setting an actuator. For
example, the steps for reading a sensor are as follows:

1. Select the channel of the sensor that will be used.
2. Trigger the Sensor.
3. Wait until the TIM indicated a reading is available (TIM ACK).
4. Access the raw sensor reading.
5. Convert raw sensor reading into Sl units using the information stored in the
TEDS.
Similarly, the sequence for setting an actuator shall be the following:
1. Select the actuator channel.
2. Convert the Sl units into a raw actuator setting from the information stored in the

TEDS.

23



3. Write the raw actuator setting.
4. Trigger the Actuator.
5. Wait until the TIM indicates that the action is complete (TIM ACK).

There shall also be the possibility of reading/setting all the transducers that are
implemented in the system. The sequence for this operation (global trigger) is complicated and
dependent upon the types of transducers that are in the application. For a system with sensors
and actuators, it shall be the programmer’s responsibility to make sure that each actuator receives

a different data set.

3.3 TRANSDUCER INTERFACE MODULE

The Transducer Interface Module (TIM) block contains a combination of hardware and software
blocks that shall maintain the functionality of a smart transducer as is stated in the IEEE 1451
family of standards. In order for the TIM to be deemed “smart”, it shall have the capability of
self-identification, which is achieved by the TEDS. Other functionality that the TIM shall have
includes the ability to communicate with an NCAP, handle triggering, generate interrupts, and
interface with the physical transducers.

The TIM shall be initialized (by the NCAP or by itself) after it is powered-on, and then

shall enter the operational state until it is reset by the NCAP or is powered down.

24



3.3.1 Transducer Electronic Data Sheet

The Transducer Electronic Data Sheet (TEDS) is at the core of the TIM’s functionality because it
provides the idea of self-identifying transducers, which enables the idea of “plug and play”. This
block may be generated either at manufacture time or remotely via an NCAP.

The TEDS shall reside in non-volatile memory and completely describe the TIM (the
entity and its transducers). There shall be a block labeled Meta-TEDS that describes the TIM in
its entirety. There shall also be a block labeled Channel-TEDS that describes each implemented
transducer. Other blocks that have information such as calibration are not mandatory and will not
be implemented in this design.

The information that shall be represented by the Meta-TEDS includes the amount of
transducers that are implemented, the maximum and minimum sampling rate of the system, and a
checksum for data integrity.

The Channel-TEDS information shall include the type of transducer (actuator, sensor),
the physical units of the transducer (e.g. Temperature in Celsius), the data model, timing
information such as update time, write setup time, sampling period, etc. and a checksum for data

integrity.

3.3.2 NCAP Communication

The TIM shall communicate with an NCAP using a protocol that will take advantage of the lack
of physical separation between the two modules. The structure of this connection may resemble
the STIM/NCAP connection from the 1451.2 standard since there may only be one TIM

connected to an NCAP. Unlike what is allowed by the 1451.3 standard, in which multiple

25



Transducer Bus Interface Modules (TBIM) can connect to a single NCAP. This interface shall
support the different commands that can be sent to the TIM, and shall also provide the capability
of interrupts over the protocol as well as access to the different modules in the TIM.

The set of mandatory commands that shall be fully implemented are Read TEDS,
Read/Write Interrupt masks, Read Status, Trigger, and Read/Write Transducer Data. These
commands shall be applied to either an individual implemented channel or to the TIM as a whole

(CHANNEL_ZERO).

3.3.3 Trigger

The TIM shall handle both individual and global triggering. Figure 3-3 shows use-case diagrams
depicting the behavior of the TIM when it receives either an individual or global trigger
command.

When an individual trigger is sent by the NCAP, the TIM shall decode the command to
select the channel for which it is intended and set the appropriate signals to sample/set the
transducer. Then, the TIM shall generate an acknowledge signal (TIM ACK) when the sensor is
completely sampled (ADC finished conversion, etc) or the actuator has completely acquired a
data set. The signal tells the NCAP that the command was executed and that there is information
that it should read.

When a global trigger occurs, the TIM shall sample/set all the transducers in the system.
The requirement is that each individual channel generates an ACK signal when it executes the
trigger command successfully. CHANNEL_ZERO shall generate the ACK signal when every

channel in the system has been completely sampled/set.

26



Sensor Trigger

(a)
Select Channel from
trigger command

Sample A/D,
igita
Ve Digital /O
Wait until sampling
is complete (A/D ACK)
Generate ACK

N

A

TIM

Actuator Trigger

Select Channel from

Send Data to D/A
or Digital I/0

2\

Global Trigger
(b) (c)

Select Channel from
trigger command

ample A/D and/or Digital
1/0 and send data to D/A
and/or 1/0

Wait until every
channel has finished
Generate Channel

zero ACK

Generate ACK

2}

Figure 3-3 TIM trigger behavior

(a) Sensor Trigger, (b) Actuator Trigger, (c) Global Trigger

3.3.4 Status and Interrupts

The status of the TIM and its individual channels shall be represented in such a way that it is

accessible by the NCAP. The status shall include information regarding the operation of the

device. Table 3-1 summarizes the different status bits that shall be represented in the TIM.

Table 3-1 TIM’s Status Bits

TIM CHANNEL_ZERO

Individual Channel

CHANNEL ZERO Trigger Acknowledged

Channel Trigger Acknowledged

Invalid Command

Reserved

TIM Operational

Channel Operational

Corrections enabled/disabled

Corrections enabled/disabled

The TIM Channel Trigger Acknowledged bit shall be set by the TIM when it

acknowledges the trigger signal and shall be cleared when read. After global triggers, every

channel trigger acknowledge bit shall be set by the TIM when it would have acknowledged each

channel trigger if they were individually addressed.




The TIM trigger acknowledged bit shall be set by the TIM when every implemented
channel acknowledges their respective triggers.

The invalid command bit shall be set by the TIM when the NCAP sends a command that
is not implemented in the TIM. It shall be cleared when read or if the condition goes away.

The TIM operational bit shall be set by the TIM after the module is completely
initialized.

The channel operational bit shall be set by the TIM after the TIM and the particular
channel have been completely initialized.

The corrections enabled/disabled bit in both the CHANNEL_ZERO and Individual
Channel definition shall be set if the TIM has the capability apply corrections to the transducer
data.

The TIM shall generate interrupts by a combination of the status and interrupt mask bits.
The status and interrupt bits shall be compared on a one to one (bit by bit) basis to determine if
an interrupt exists.

The default setting for the interrupt mask shall be all ones (every status bit can generate
an interrupt). It shall be the responsibility of the NCAP to service the interrupt as well as

setting/clearing the interrupt mask.

3.4 PHYSICAL WORLD

The transducers are not defined in the standard giving the designer the freedom to decide what is

best for the particular application that will be built. For transducers, it is usually the case that

28



they are implemented off-chip and interface to the TIM by means of an Analog to Digital
Converter (ADC), Digital to Analog Converter (DAC) or digital 10. For this implementation,
transducers and their respective data converters will be implemented off chip. These off-chip
blocks shall meet the electrical specifications of the Excalibur chip and they shall also comply

with the particular timing specifications of the data converters and/or digital 10.

29



4.0 SPECIFICATIONS

The specifications for this IEEE 1451 implementation are independent of the network employed
and the transducers that are interfaced to the application system. The NCAP’s behavior is
completely described using the specifications of the IEEE 1451.1 standard, while the TIM will

have the functionality that a smart transducer is required to have as is stated by the standards.

41 NETWORK CAPABLE APPLICATION PROCESSOR

The information model of the IEEE 1451.1 standard defines three different models for the NCAP
that enable network and transducer independency. These models include, an object model; this
model defines transducer device specific abstract objects — or, classes with attributes, methods,
and state behavior. A data model; this model defines information encoding rules for transmitting
information across both local and remote object interfaces. A network communication model,
this model supports a client/server and publish/subscribe for communicating information
between NCAPs.

Therefore, by designing and implementing the different objects that are defined in the
information model that is defined in the standard, we will achieve network and transducer

independency. This is because the standard-defined objects hide the communication details of

30



the NCAP with a particular network and transducers, making the application’s behavior
transparent to the physical connections of the NCAP.

In order to implement the information model, there are different properties among the
NCAP’s objects that need to be taken into consideration. These properties include a class
hierarchy and an owning relationship that can be described using Unified Modeling Language
(UML) @V, These properties are shown in Figure 4-1.

|IEEE 1451_Root
<<Abstract Class>>

IEEE1451_Entity
<<Abstract Class>>

IEEE1451 Block
<<Abstract Class>>

T 1

|IEEE1451 NCAP Block IEEE1451_FunctionBlock
- <<Abstract Class>>

IEEE1451_Component |IEEE1451_BaseTransducer Block |IEEE1451_Service
<<Abstract Class>> <<Abstract Class>> <<Abstract Class>>

|IEEE1451_TransducerBlock
<<Abstract Class>>
‘ |IEEE1451_ComponentGroup ‘ ‘ IEEE1451_Action ‘ |IEEE1451_File ‘
T ‘ IEEE1451_ConditionVariableService ‘ IEEE1451_MutexService
‘ |IEEE1451_Parameter ‘ ‘ |IEEE1451_PartitionedFile ‘ IEEE1451_BasePort
T T <<Abstract Class>>
‘ IEEE1451_TimeParameter ‘ ‘ IEEE1451_ParameterWithUpdate ‘ ‘ |IEEE1451_Dot2TransducerBlock ‘
IEEE1451_PhysicalParameter ‘ IEEE1451_SubscriberPort ‘
<<Abstract Class>>

i IEEE1451_BasePublisherPort
IEEE1451_BaseClientPort <<Abstract Class>>

IEEE1451_ClientPort ‘ IEEE1451_PublisherPort

‘ IEEE1451_AsynchronousClientPort ‘

‘ |IEEE1451_ScalarParameter ‘ ‘ |IEEE1451_VectorParameter ‘

|IEEE1451_VectorSeriesParameter

‘ |IEEE1451_ScalarSeriesParameter

‘ IEEE1451_SelfldentifyingPublisherPort ‘

|

‘ IEEE1451_EventGeneratorPublisherPort

Figure 4-1 UML Model of IEEE 1451.1 Objects

The figure shows the inter-object relationships (inheritance and ownership) through the

use of two types of arrows. The diamond-based arrows are used to denote the owning

31



relationship between the objects by pointing to the block that owns the other block. For example,

the NCAP Block owns the Component block, the Function Block, and so forth. Note that only

Block Objects can own other classes.

The normal-shaped arrows denote the inheritance relationship between the child and the

parent classes. For example, IEEE1451 Root class is the parent of IEEE1451 Entity who

inherits all the functionality of its parent class.

The next step is to define the classes shown in the figure. These classes will be

implemented following the specifications of the 1451.1 standard. The different object classes that

are defined in the standard can be further explained as follows:

The Root class is the origin for the class hierarchy of all objects that are defined in
the standard.

The Entity abstract class is the root for the class hierarchy of all objects defined
by this standard that may be made visible over the network.

The Block abstract class is the root for the class hierarchy of all Block objects.
The NCAP Block class provides resources and operations within an NCAP
process to support Block, Service, and Component management. This support
includes registration, deregistration, initialization and startup, and shutdown.

The Function Block class is the root for the class hierarchy of all Function Block
objects. The Function Block is the primary mechanism for the abstraction and
packaging of application functionality.

The Base Transducer Block class is the root for the class hierarchy of all

Transducer Block objects.

32



The Transducer Block class is the root for the class hierarchy of all Transducer
Block objects in the family of transducers specified by IEEE 1451.X standards.
The Component abstract class is the root for the class hierarchy of all Component
objects.

The Parameter class is used to model network visible variables and to provide a
means for accessing them.

The Parameter With Update class is used to model network visible variables, and
to provide a means for accessing the variable. This class has an associated
mechanism that supports an update action involving the variable.

The Physical Parameter abstract class and its subclasses are used to represent
network visible variables, modeled by the Parameter With Update class that
directly or indirectly represent the physical world. The Physical Parameter
provides the information necessary to interpret a measurement or actuation.

The Scalar Parameter class is used to model physical world quantities that do not
have dimensions or orientations associated with them, and are appropriately
represented as mathematical scalars.

The Scalar Series Parameter class is used to model physical world quantities,
best modeled as a succession of scalars evenly distributed along some dimension.
The Vector Parameter class is used to model physical world quantities that have
multiple dimensions and perhaps orientation associated with them, and is

appropriately represented as mathematical vectors.

33



The Vector Series Parameter class is used to model a uniform series of physical
world quantities that have dimensions and orientation associated with them and is
appropriately represented as mathematical vectors.

The Time Parameter class is used to represent time parametric values. The
purpose of this class and its subclasses is to model network visible variables that
directly or indirectly represent the time of some event, or the duration between
two events, where the significant characteristic of the event is the time rather than
some other value.

The Action class provides a model to represent activities that alter the system state
and that require significant time to execute compared to other activities in the
system.

The File class is an abstraction of a data resource. Files represent a block of
memory, which may be opened, closed, read from, and written to.

The Partitioned File class is used for files that are subdivided into a number of
partitions.

The Component Group class provides a way to specify set membership relations
between objects in a system.

The Service abstract class shall be the root for the class hierarchy of all Service
objects. The Service classes represent object types used to support communication
and other aspects of block functionality.

The Base Port abstract class is the root for the class hierarchy of all
communication port objects used to send communications via the underlying

network.

34



The Base Client Port abstract class is the root for the class hierarchy of all client-
server communication client-side port objects.

The Client Port class provides the client-side application interface to client-server
communications. This class abstracts the details of the specific network. Two
models of client-server communication are provided: blocking and “send and
forget”.

The Asynchronous Client Port class provides the client-side functionality for an
asynchronous, non-blocking, client-server communication model.

The Base Publisher Port provides basic publisher-side functionality for its
subclasses.

The Publisher Port class provides publisher-side functionality for a publish-
subscribe communication model.

The Self Identifying Publisher Port class provides publisher-side functionality for
a publish-subscribe communication model with operations to allow the subscriber
to establish communication with the publisher, and the publisher to notify
subscribers of changes in the publication policy.

The Event Generator Publisher Port class is used to allow events internal to the
operation of a block to result in the publication of an event record.

The Subscriber Port class provides objects with a mechanism for subscribing to
publications.

The Mutex Service class provides mutual exclusion capability.

The Condition Variable Service class provides the capability for ordering

concurrent activities.

35



In order to identify the different objects previously mentioned, we will use the identifying
properties that are defined in the standard. Therefore, we will identify the object by its Class ID,
Class Name, Object ID, Object Tag, Object Name, and Object Dispatch Address.

The Class ID identifies the object’s class, the position in the class hierarchy, and cannot
be modified.

The Class Name provides a human-readable description of the semantics of the class and
it cannot be modified.

The Object ID is unique within a system and it unambiguously distinguishes the object
from any other object.

The Object Tag is unique within a system and usually defines a logical endpoint for the
server side of client-server communications.

The Object Name provides a human-readable description of the semantics of an instance
of a class and it will be bound when the object is created.

The Object Dispatch Address is the network-specific address used by the underlying
network infrastructure to address the object. For example, in an Ethernet network this value
would be the IP address.

The rest of this section goes into detail about the complete information model. This
includes the data model (for the encoding rules for transmitting information across both local and
remote object interfaces), a functional overview (high-level object interaction in the NCAP), and
the top-level class definition (for the objects that hide the communication details of network and

transducer communications).

36



4.1.1 Data Model

The data model of the standard defines a variety of datatypes (primitive and derived) that will be
used for the functionality of the object classes. The primitive datatypes will be mapped to the
programming language that will be used. The definitions for these types are shown in Table 4-1.
The derived datatypes will be derived from these primitive types. These types are used to

represent structures.

Table 4-1 Simple Primitive Types

Datatype Default Value Definition
Boolean FALSE TRUE or FALSE
Integer8 0 8-bit signed integer
Ulnteger8 0 8-bit unsigned integer
Integer16 0 16-bit signed integer
Ulntegerl6 0 16-bit unsigned integer
Integer32 0 32-bit signed integer
Ulnteger32 0 32-bit unsigned integer
Integer64 0 64-bit signed integer
Ulnteger64 0 64-bit unsigned integer
Float32 +0.0 IEEE Std 754-1985 single-precision floating point number
Float64 +0.0 IEEE Std 754-1985 double-precision floating point number
Octet All Bits set to 0 | 8-bit quantity not interpreted as a number

Next, we describe the IEEE 1451 String datatype which is represented by a structure.
This type contains four fields that are used to represent the character set, character code,
language, and the string data. The first three mentioned fields are represented as 8-bit unsigned
integers. These fields have an enumeration associated with them that is used to represent
different languages, character sets, and character codes. The last field in the structure (string
data) is represented as an octet array. The size of the array is set by the enumeration for the
character code. Also, to interpret the string data there is an enumeration associated for each of

the supported languages in the NCAP implementation.

37




An important derived datatype that will be used in communications with networks is the
Argument datatype. This type is a container, which can hold any of the other 1451.1 types. All
application data in a network communication will be carried in arrays of Argument, hence using

the Argument Array datatype.

41.1.1 Class Header Format and Return Codes

The class header format will be used for all the object classes that were previously shown. The

format of the header is shown in Table 4-2.

Table 4-2 Class Header Format

Format Description

Class ID It is represented as an array of an Octet type (8-bit unsigned
char), and is used to encode the position of the class in the
class hierarchy.

Class Description It is the formal name for the class interpreted as an IEEE 1451
String.
Parent Class Name It is the value of the class descriptor of the immediate parent

class in the hierarchy from which this class is sub-classed.

The different operations that are defined for the object classes have two return types,
OpReturnCode and ClientServerReturnCode (used for client-server communications).

The OpReturnCode is a 16 bits unsigned integer that is expressed as a sequence of two
fields (minor and major) and is used as the return type for most IEEE 1451.1 operations. The
minor field is the high order 8 bits while the major field is represented by the low-order 8 bits.
For example, an OpReturnCode value 0x103 (HEX notation) would have a major field of 3 and a

Minor field of 1. The combination of these fields is used to determine the result of the operation.

38




The ClientServerReturnCode is a 32 bit unsigned integer interpreted as a sequence of
four fields (portCode, performCode, operationMinorCode, and operationMajorCode). The
portCode is the return code for the client-side function and it is the high order 8 bits of the code.
The performCode is the return code for the server-side operation. Lastly the minor and major
codes are used to show the OpReturnCode of these operations. For example if the
ClientServerReturnCode is 0x04020103 (HEX notation), the field values would be as follows:

portCode = 4, performCode = 2, operationMinorCode = 1, and operationMajorCode = 3.

4.1.2 Functional Overview and Top-level class definitions

For the object interaction, the standard uses a “backplane” or “card cage” concept for the
different objects that can be plugged to the NCAP, in a similar fashion to what is done in the
USB 1.1 or 2.0 standard and other “plug and play” devices. Block classes form the major blocks
of functionality that can be plugged into the card-cage to create various types of devices. This
relationship is shown in Figure 4-2.

Note that the NCAP Block centralizes and “glues” all the system and communications
facilities together. Network communications are viewed as ports, Function block application
code is plugged in as needed, and Transducer blocks map the physical transducer to the NCAP.
The following sub-sections will go into detail about these classes. Note that we will only
describe the objects that are directly used in network and transducer communications. For a
detailed description about the rest of the classes and their functionality refer to Appendix A.

To describe the structure and functionality for the object classes we will use UML
diagrams. In doing so, we define the class header as the attributes of the class, network visible

operations as public, and local operations as protected.

39



Transducer

Block —— I
[ ]

P hy=sical
Tran=ducer

Metworlk Ports

Tranzducer Interface

Function

NCAP Block L 1

Elock

Communication |nterfac:s
Client’=erver and PublishrSubschbe

Function |:| Parameters, Adions,
Files, and ather ohjedts
Bock [ 1@«—

Figure 4-2 Conceptual View of an IEEE 1451.1 NCAP

4.1.2.1 Block class

We start with the Block class since it is the root hierarchy for all block objects and block objects
are the core of the APIs defined for the NCAP. The UML class diagram for the Block class is

shown in Figure 4-3.

IEEE1451_Block

+_class_ID : ClassID

+_description : String

+_class_name : String

+GetGrouplDs(out group_ids : OctetArray) : OpReturnCode

+SetGrouplDs(in group_ids : OctetArray) : OpReturnCode

+GetBlockMajorState(out block_major_state : ushort) : OpReturnCode

+GetBlockManufacturerlD(out block_manufacturer_id : String) : OpReturnCode
+GetBlockModelNumber(out block_model_number : String) : OpReturnCode

+GetBlockVersion(out block_software_version : String) : OpReturnCode

+GoActive() : OpReturnCode

+Golnactive() : OpReturnCode

+Initialize() : OpReturnCode

+Reset() : OpReturnCode

+GetNetworkVisibleServerObjectProperties(out this_block_object_tag : ObjectTag, out server_object_properties : ObjectPropertiesArray) : OpReturnCode|
#RegisterNotifyUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode
#DeregisterNotifyUpdate(in registration_id : ushort, in timestamp : TimeRepresentation) : OpReturnCode

Figure 4-3 Block Class UML Diagram

40



The different operations that are described for this class are as follows:

The GetGrouplDs operation will be used obtain the identifiers that represent sets
of objects of which this Block instance is a member.

The SetGrouplDs operation will be used to initialize/modify the identifiers that
represent sets of objects of which this Block instance is a member. For example,
all Blocks in a particular control group could be given a common group ids value.
The GetBlockMajorState operation will be used to obtain the current state of the
state machine that controls this block’s behavior.

The GetBlockManufacturerlD operation will be used to obtain a parameter that
identifies the manufacturer of the Block. For our implementation this operation
will return a zero as the manufacturer 1D.

The GetBlockModelNumber operation will be used to obtain an identifier
(represented as a 1451.1 String) that is used to distinguish between different
implementations of the class.

The GetBlockVersion operation will be used to obtain an identifier (represented as
a 1451.1 String) that is used to distinguish between different implementations of
the model.

The GetNetworkVisibleServerObjectProperties operation will be used to obtain
the ObjectTag of the target Block that is executing and the server object
properties. The server object properties datatype consists of a data structure that
contains information regarding the server object.

The GoActive operation will be used for transitions within the state machine for

this block. The transition will be from the unitialized state to the inactive state.

41



e The Golnactive operation will be used for transitions within the state machine for
this block. The transition will be from the active state to the inactive state.

e The Initialize operation will be used for transitions within the state machine for
this block. This transition will be from the unitialized to the initialized state.

e The Reset operation will be used for transitions within the state machine for this
block. This transition will be from any state back to the unitialized state.

e The RegisterNotifyOnUpdate and DeRegisterNotifyOnUpdate operations are
defined as optional in the standard and will not be implemented in this design.

The behavior for this class is controlled by a state machine with three states. This state
machine is shown in Figure 4-4. The BL_UNITIALIZED state is reserved for local activities
related to bringing the Block Object into existence and performing any related local preparations
needed for the Block function. While in this state any classes owned by the Block class cannot
execute any network communications, but it is in this state where owned objects are registered
with the Block for network communications.

The BL_INACTIVE state is reserved for activities such as the configuration of the
network communication properties of the Block and its owned objects, initialization, and
diagnosis and maintenance of the Block object. The BL_ACTIVE state is reserved for activities
related to the normal application function of the block.

Every Block object defined in the standard will inherit the state machine shown in Figure

4-4, as well as the network visible operations that are shown in Figure 4-3.

42



Reset

BL_ACTIVE
RegisterObject or Acti | .
DeregisterObject GoActive Golnactive
Initialize R
BL_UNITIALIZED BL_INACTIVE DeregisterObject
- Initialize
Reset

Figure 4-4 State Machine for Block Class

4.1.2.2 NCAP Block Class

The next step is to define the NCAP Block class since it is the key source for network
communications and system configuration as was previously discussed in Section 3.2. It is
important to note that this object class owns every other Block object within the same hierarchy
and it is the only one to own itself as was previously shown in Figure 4-1.

This class is the key source for system configuration and bookkeeping information about

its Network Visible Owned Objects. The structure for this class is shown in Figure 4-5.

IEEE1451_NCAPBlock

+class_ID : ClassID

+description : String

+class_name : String

+GetNCAPBIlockState(out ncap_block_state : ushort) : OpReturnCode

+GetNCAPManufaturerID(out ncap_manufacturer_id : String) : OpReturnCode

+GetNCAPModelNumber(out ncap_model_number : String) : OpReturnCode

+GetNCAPSerialNumber(out ncap_serial_number : String) : OpReturnCode

+GetNCAPOSVersion(out ncap_os_version : String) : OpReturnCode

+GetClientPortProperties(out this_object_tag : ObjectTag, out client_port_properties : ClientPortProperties) : OpReturnCode
+SetClientPortServerObectBindings(in this_object_tag : ObjectTag, in client_port_properties : ClientPortProperties) : OpReturnCode
+IgnoreRequestNCAPBIlockAnnouncement() : OpReturnCode

+RespondToRequestNCAPBlockAnnouncement() : OpReturnCode

+RebootNCAPBIock() : OpReturnCode

+ResetOwnedBlocks() : OpReturnCode

#GetBlockCookie(in block_reference, out block_cookie : ushort) : OpReturnCode

+PSK_NCAPBLOCK_GO_ACTIVE() : OpReturnCode

#RegisterObject(in object_reference, in owning_block_object_reference, out object_dispatch_address : ObjectDispatchAddress) : OpReturnCode
#DeregisterObject(in object_reference) : OpReturnCode

+Golnactive() : OpReturnCode

Figure 4-5 NCAP Block UML Class Diagram

43




The following discussion goes into detail about this class’ operations and their top-level

functionality.

The GetNCAPBIockState operation will be used to obtain the current state of the
state machine for this object.

The GetNCAPManufacturerID operation will be used to identify the manufacturer
of the NCAP.

The GetNCAPModelNumber operation will return an identifier that is used to
distinguish between different NCAP implementations.

The GetNCAPSerialNumber operation will be used to distinguish different
instances of NCAP implementations.

The GetNCAPOSVersion operation will return an identifier assigned by the
manufacturer to specify the operating system that is in use.

The GetClientPortProperties will be used to obtain the ObjectTag of the NCAP
Block as well as client port information.

The SetClientPortPropertiesBindings will be used to initialize or modify the
ObjectTag of the NCAP Block as well as the client port information.

The IgnoreRequestNCAPBlockAnnouncement operation will be used to ignore a
publication that provides a notification of the existence of an NCAP Block object
within the system.

The RespondToRequestNCAPBIlockAnnouncement operation is used to respond to
a publication that provides a notification of the existence of an NCAP Block

object within the system.

44



e The RebootNCAPBIlock operation will be used to place the NCAP Block and all
its owned objects to be placed in their default power-on state.

e The ResetOwnedBlocks operation will cause all objects owned by the NCAP
Block class to behave as if they just received a reset operation.

e The GetBlockCookie operation will be used to obtain the block cookie (used to
tell a client whether the context of the server has changed) of the particular object
that is being accessed.

e The PSK_NCAPBLOCK GO_ACTIVE operation will be used for transitions
within the state machine for this block. This transition will from the active to the
initialized state.

e The RegisterObject and DeRegisterObject operations are optional and will not be
implemented.

e The Golnactive operation will be used for transitions within the state machine for
this block. This transition will be from the active to the initialized state.

The behavior of this class is controlled by the state machine for the Block object that was
previously shown in Figure 4-4. However, the NCAP Block sub-states the BL_INACTIVE state
to include two states NB_INITIALIZED and NB_ERROR. The sub-states are shown in Figure
4-6.

The initial transition from the BL_UNITIALIZED state to the NB_INITIALIZED state
will be caused by implementation-specific mechanisms within the NCAP Block. For this
implementation, this transition will occur when the Initialize operation of the Block class is

called.

45



The “Fail” signal shown in the state machine is an internally generated transition that
causes the NCAP to go from the NB_INITIALIZED to the NB_ERROR sub-state. The
Golnactive operation causes the transition to the NB_ERROR sub-state if the NCAP detects an

error.

Golnactive (error detected)
+—Peset BL_ACTIVE

Godctive or

Golnactive PSK_NCAPBLOCK_GOACTIVE

BL_INACTIVE

[
[
[
Initialize |
(internal) |

NB_INITIALIZED — ¥ NB_ERROR

Initialize Initialize
Reset Reset

Figure 4-6 State Machine for the NCAP Block

4.1.2.3 Function Block Class

The Function Block class (shown in Figure 4-7) will be used as the primary mechanism for the
abstraction and packaging of application functionality. Therefore, the application-specific objects
will be owned and controlled by the Function block. Similarly, any interaction between the
application’s objects and other standard-defined objects will be done through the use of this

class.

46



IEEE1451 FunctionBlock

+_class_ID : ClassID

+_description : String

+_class_name : String

+GetFunctionBlockState(out function_block_state : ushort) : OpReturnCode
+Start() : OpReturnCode

+Clear() : OpReturnCode

+Pause() : OpReturnCode

+Resume() : OpReturnCode

Figure 4-7 Function Block UML Class Diagram

The definitions for the operations for this class are as follows:
e The GetFunctionBlockState operation will be used to obtain the current state of
the state machine for this object.
e The Start operation will be used for transitions within the state machine for this
block. This transition will be from the idle to the running state.
e The Clear operation will be used for transitions within the state machine for this
block. This transition will be from the running to the idle state.
e The Pause operation will be used for transitions within the state machine for this
block. This transition will be from the running to the stopped state.
e The Resume operation will be used for transitions within the state machine for this
block. This transition will be from the stopped to the running state.
This block’s behavior is controlled by the inherited state machine of the Block class that
was shown in Figure 4-4. However, the BL_ACTIVE state is sub-stated as is shown in Figure

4-8.

47



‘ Reset BL_ACTIVE
, New Block Cookie
FB_STOPPED
Resume Pause
FB_RUNNING
Clear
Start Clear
FB_IDLE
GoActive Golnactive
v

Figure 4-8 State Machine for a Function Block

4.1.2.4 Client-Server Network Communication Classes

There are two communication models that will be supported by this NCAP. These models are the
client-server and publish-subscribe models. In this section, we will focus on the standard-defined
software blocks that enable the NCAP to engage in network communications.

We start with the client-server model. This model is a tightly coupled communication
model used for one-to-one communication. The server-side of the NCAP is provided by Entity

abstract class (shown in Figure 4-9) by means of the Perform operation.

IEEE1451_Entity

+_class_ID : ClassID

+_description : String

+_class_name : String

+GetObjectTag(out object_tag : ObjectTag) : OpReturnCode

+SetObjectTag(in object_tag : ObjectTag) : OpReturnCode

+GetObjectID(out object_id : ObjectID) : OpReturnCode

+GetObjectName(out object_name : String) : OpReturnCode

+GetDispatchAddress(out dispatch_address : ObjectDispatchAddress) : OpReturnCode
+GetOwningBlockObecjtTag(out owning_block_object_tag : ObjectTag) : OpReturnCode
+GetObjectProperties(out object_properties : ObjectProperties) : OpReturnCode
#Perform(in server_operation_id : ushort, in server_input_arguments : ArgumentArray, out server_output_arguments : ArgumentArray) : ClientServerReturnCode|

Figure 4-9 Entity UML Class Diagram

48



The operations that are defined for the Entity class can be further explained as follows:

The GetObjectTag operation will be used to obtain the ObjectTag of the object
that is being accessed.

The SetObjectTag operation will be used to initialize or modify the ObjectTag of
the object that is being accessed.

The GetObjectID operation will be used to obtain the current value of the object
ID for the object that is being accessed.

The GetObjectName operation will be used to obtain the current value of the
object name for the object that is being accessed.

The GetDispatchAddress operation will be used to obtain the value of the object
dispatch address of the object.

The GetOwningBlockObjectTag operation will be used to return the ObjectTag of
the owning block object.

The GetObjectProperties operation will be used to obtain the current values of the
ObjectTag, dispatch address, object name, the associated block cookie of this
object, and the ObjectTag of the owning block of this object.

The Perform operation will be used as the server-side construct for client-server

communications.

On the other hand, the client-side functionality is given by the Client Port class (shown in

Figure 4-10) through the Execute function.

|IEEE1451_ClientPort

+_class_ID : ClassID
+_description : String
+_class_name : String

#Execute(in execute_mode : ushort, in server_operation_id : ushort, in server_input_arguments : ArgumentArray, out server_output_arguments : ArgumentArray) : ClientServerReturnCode|

Figure 4-10 Client Port UML Class Diagram

49



Now that we have shown the client-server operations and their structures, we can
describe their functionality. First, we begin by showing the system configuration for this
communication model.

The network port information will be set at compile-time as was discussed earlier in this
Section, so there will be no dynamic system configuration for the network communications.
Therefore, as soon as the NCAP is operational the server and client objects will be able to
communicate across the underlying network.

Next, we can describe the complete interaction for a client-server operation. This
interaction is shown in Figure 4-11. Note that the first thing that will be done is to encode the
arguments that will get sent over the network. After this, the Client Port invokes the Execute
operation which will have the server information as well as the packet that will be sent over the
network.

This information will then be sent to the network infrastructure so that it can be
marshaled onto the on-the-wire format of the particular network that is employed. After this
information is sent over the network, the network infrastructure for the server-side will de-
marshal the information and call the Perform operation so that the information can be decoded.
Then, the operation can be executed and the results can be sent back to the client-side so that it
knows that the operation completed successfully.

It is important to note that the client-server interaction does not necessarily need to return
to the client as is shown in Figure 4-11, since there are two execution modes for the Execute
operation. If the execution mode is EM_NO_RETURN_VALUE then the client object sends
information over the network and does not expect a return value (send and forget) from the

server-side. The figure assumes the blocking execution mode labeled EM_RETURN_VALUE.

50



Client Object

Client Code snippet:

STEP-1: Encode local arguments into
server_input_arguments of Execute
STEP-2: Invoke Execute on a Client Port

Server Object
attributes: ObjeciProperiies
objeciTag = tag_x
objectDispatchAddress = ad_x
Server object operation with 1D, DpX=
value of sever_operation_id

associated with the remote server:
STEP-7; Execute the operaion +—————

returnCode = client_port. Execute| STEP-B: Return to Perform

execule_mode,
server_operation_id,
sarver_inpul_arguments,
sarver_oulput_arguments);

server.Performi
server_operation_id,
server_Inpul_arguments,
sarver_output_arguments);

Step-13: Decode the retumead STEP-6 Decode arguments
—+ Server_oulpul_arguments and invoke operation — [
STEP-9 Encode ocutput

Client Port Object
Altributes:
ClientPortProperties
serverObject Tag =tag_x

|
| STEP-5: Demarshal srguments and  ——
‘—

sarverDispatchAddrass -
ad % | invokes Parform
- - |
STEP-3 Determine Target | STEP-10: Marshal the return values

L STEP-12 Refurn to nd sends them to Client Port

—+ Execute call I

STEP-4: Marshal the arguments and

I places an ‘execute’ message on the |

| network with target ad_x. I

|

I STEP-11: Demarshal network returm |
—+ Message and provide to Client Port |
e J

Metwork +*

Figure 4-11 Client-Server Communication Model

4.1.2.5 Publish-Subscribe Network Communication Classes

The publish-subscribe model is a loosely coupled communication model for one-to-many or
many-to-many communications The Publisher Port class (shown in Figure 4-12) provides the

publisher-side functionality through the Publish operation.

|IEEE1451_PublisherPort
+_class_ID : ClassID
+_description : String
+_class_name : String
#Publish(in publication_contents : ArgumentArray) : OpReturnCode

Figure 4-12 Publisher Port UML Class Diagram

51



On the other hand, the Subscriber Port class provides objects with a mechanism for

subscribing to publications. The structure for this class is shown in Figure 4-13.

IEEE1451_SubscriberPort

+_class_ID : ClassID
+_description : String
+_class_name : String

+SetSubscriptionQualifier(in subscription_qualifier : SubscriptionQualifier) : OpReturnCode
+GetSubscriptionQualifier(out subscription_qualifier : SubscriptionQualifier) : OpReturnCode
+GetSubscriptionKey(out subscription_key : ushort) : OpReturnCode

+SetSubscriptionDomain(in subscription_domain : PubSubDomain) : OpReturnCode
+GetSubscriptionDomain(out subscription_domain : PubSubDomain) : OpReturnCode
#AddSubscriber(in notification_operation_reference, in subscription_id : ushort) : OpReturnCode
#DeleteSubscriber(in notification_operation_reference, in subscription_id : ushort) : OpReturnCode|

Figure 4-13 Subscriber Port UML Class Diagram

The operations that are defined for the Subscriber Port class can be summarized as

follows:

The SetSubscriptionQualifier operation will be used to initialize or modify the
current value of the port’s subscription qualifier. The subscription qualifier is used
to determine which publications will be accepted by the port.

The GetSubscriptionQualifier operation will be used to obtain the current value of
the port’s subscription qualifier.

The GetSubscriptionKey operation will be used to obtain the current value of the
port’s subscription key. This key is used to determine the type of publication that
the port is subscribing to.

The GetSubscriptionDomain operation will be used to obtain the current value of
the subscription domain defining a ser of candidate publications to be accepted by
the port.

The AddSubscriber and DeleteSubscriber operations are optional and will not be

implemented.

52



The operations previously defined will be used for publish-subscribe network
communications. The interaction between the operations and objects can be further explained as

follows:

The Publisher object invokes the Publish operation on its associated local

Publisher Port passing in as an input argument the publication’s contents.

e Using the network infrastructure, the invocation of the Publish operation results in
the delivery of the publication to all Subscriber Ports in the publication’s Domain.

e The receiving Subscriber Ports each use the values of their Subscription Key,
Subscription Domain, and Subscription Qualifier attributes to filter the incoming
publication.

e |If the publication passes a Subscriber Port’s filter, the Port invokes all of its

registered Subscribers’ callback operations, providing as an input argument the

publication’s contents. Subscribers will be registered at compile-time.

4.1.2.6 Transducer Block Class

This class establishes the mapping between the individual channels of the TIM transducers and
the public transducers of the Transducer Block in the NCAP. The most relevant operations that
will be done through this class are the access of the Meta-TEDS as well as global triggering. The

structure for this class is shown in Figure 4-14.

53



IEEE1451_TransducerBlock

+_classID : ClassID
+_description : String
+_class_name : String

+GetCorrectionMode(out correction_mode : ushort) : OpReturnCode

+GetNumberOfTransducerChannels(out number_of_transducer_channels : ushort) : OpReturnCode
+GetMinimumSamplingPeriod(out minimum_sampling_period : TimeRepresentation) : OpReturnCode
+GetChannelParameterObjectChannelNumbers(in channel_number : ushort, out parameter_object_tags : ObjectTag) : OpReturnCode
+GetUnrepresentedChannelNumber(out unrepresented_channel_numbers : ushort) : OpReturnCode

+UpdateAll() : OpReturnCode

+EnableCorrections() : OpReturnCode

+DisableCorrections() : OpReturnCode

+GetLastUpdateTimestamp(out update_timestamp : TimeRepresentation) : OpReturnCode

+GetUpdateTimestampUncertainty(out update_timestamp_uncertainty : Uncertainty) : OpReturnCode

Figure 4-14 Transducer Block UML Class Diagram

The operations that are shown for this class are described in the following discussion.

e The GetCorrectionMode operation will be used to obtain the current state of the
state machine for this object.

e The GetNumberOfTransducerChannels operation will be used to access the Meta-
TEDS. This access will return the number of transducers that are implemented in
the TIM that is physically connected to the NCAP.

e The GetMinimumSamplingPeriod operation will be used to access the Meta-
TEDS. This access will return the time in seconds of the minimum sampling rate
of the TIM as a whole, e.g. The minimum sampling rate for a global trigger.

e The GetChannelParameterObjectChannelNumbers will return the physical
interface channel numbers for the implemented physical interface channels that
correspond to the public transducer.

e The GetUnrepresentedChannelNumber operation will return an array of numbers
with each array representing a channel present at the physical interface that is not

represented by a public transducer in the NCAP.

54



e The UpdateAll operation will cause a global trigger to be applied to the transducer
system. The operations that we have defined will be used to setup the transducer
system and to apply top-level commands to the TIM as a whole.

e The EnableCorrections operation will be used for transitions within the state
machine for this block. This transition will be from the uncorrected to the
corrected state.

e The DisableCorrections operation will be used for transitions within the state
machine for this block. This transition will be from the corrected to the
uncorrected state.

e The GetLastUpdateTimestamp and GetUpdateTimestampUncertainty operations
will not be implemented as they are optional according to the standard.

The behavior of this block is controlled by the basic state machine that was defined for all
Block Objects. However, the Transducer Block sub-states this state machine so that it can apply

corrections to the transducer data. This sub-stated state machine is shown in Figure 4-15.

EnableCarrections ar LTl EnableCorrections or

DisableComections DisableCarractions
e e e eI e T L IE ]

: TB_UNCORRECTED : : TE_CORRECTED :

______ T ———

Gohctive Golnactive Goctive Golnactive

BL_INACTIVE

EnableCorrections
change Block Cookie
I____J'__J._.I |__J__J___1

| TB_UNCORRECTED | | TB_CORRECTED |
| |

________ —_ S s e
DisableComeciions

change Block Cookie

Tniialize Initialize

Figure 4-15 Correction state machine for a Transducer Block

55



Next, we give a brief overview about how this object models each of the transducer
channels. In order to do this, the Transducer Block class exposes the channels as instances of a
subclass of the Component class associated with the channel (e.g. Temperature sensor that is

interfaced with an ADC is represented as a scalar parameter). This model is shown in Figure

4-16.
Phiysical Waorld
Y Y f #
Tin: ADC-4 TIM: ADC-3 TIM: DAC-2 TIn: DIO-1 TIM
Sensor ¢ Sensor o Actuatnrf Sensor #
TIM: Reg-4 TIM: Reg-3 TIM: Reg-2 TIM: Reg-1
Y Y # # TIM Control
- A
Trigger
g9 ¢ ACK
NCAPTIM Physicalintertace | L] Contrel
Raw data-4 Raw data-3 Raw data-2 Raw data-1 Time Services
Comection Engine
Engineering Engineering Engineering Engineering Transducer
data-4 data-3 data-2 data-1 Block Control [
............................................................. TIM Block Interface|
=== ¥ ===y =-—=———== ———
I
: Transducer Transducer Transducer Transducer | | | Transducer
| Block Block Block Block I Block
| | Parameter-4 Parameter-3 Parameter-2 Parametar-1 | Operations
I I
I
:. ____________ Public Transducers _ [

Figure 4-16 Model of a TIM and Transducer Block

The Transducer Block is modeled to contain a register, (raw data-1 to raw data-4 in the

figure), that corresponds to each TIM register. These two sets of registers agree after the TEDS is

56



read and the NCAP knows the number/type of transducers in the TIM. A second set of registers,
the engineering data registers of the figure, contains values mapping the contents of the raw data
registers using the correction information that is provided by the TEDS. If the TIM does not
support correction, then these two sets of registers may be modeled as a single set of registers.

Next, we will discuss the Parameter class since it is used to model the individual transducers.

4.1.2.7 Parameter Classes

In order to apply individual triggering and access the Meta-TEDS we will use Parameter classes
to model the transducers. So, there will be a Parameter class definition for each implemented
transducer. This is important because individual triggering and accessing the Channel-TEDS is
done by children of the Parameter class.

We begin by showing how individual triggering is generated by the NCAP. This is done

through the Parameter With Update class. The structure for this class is shown in Figure 4-17 .

IEEE1451_ParameterWithUpdate

+_class_ID : ClassID

+_description : String

+_Class_name : String

+UpdateAndRead(out data : ArgumentArray) : OpReturnCode

+ReadBlockUntilUpdate(out data : ArgumentArray) : OpReturnCode

+WriteAndUpdate(in data : ArgumentArray) : OpReturnCode

+WriteBlockUntilUpdate(in data : ArgumentArray) : OpReturnCode

+GetlLastTimeStamp(out last_timestamp : TimeRepresentation) : OpReturnCode
#RegisterNotifyOnUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode
#DeregisterNotifyOnUpdate(in notification_operation, in registration_id : ushort) : OpReturnCode

Figure 4-17 Parameter with Update Class UML Diagram

The UpdateAndRead operation will be used to trigger a sensor channel.

The WriteAndUpdate operation will be used to trigger an actuator channel.

The ReadBlockUntilUpdate, WriteBlockUntilUpdate, GetTimeStamp,
RegisterNotifyOnUpdate, and DeregisterNotifyOnUpdate operations are optional and will not be

implemented in this design.

57



The behavior for the UpdateAndRead and WriteAndUpdate operations is shown in Figure
4-18. It is important to note, that the UpdateAndRead operation has no effect if it is applied to an

actuator, and the WriteAndUpdate operation has no effect if it is applied to a sensor channel.

UpdateAndRead
—PaateAndiRe
| Parameter has
value-N
WriteAndUpdate (M) (new value M acquired from update source)

Current value N->new value M Current value N-> new value M;

Parameter has
value-M

il
1

(update target to reflect value M)

WriteAndUpdate returns UpdateAndRead returns Parameter value M

Parameter has
value-M

Figure 4-18 Time sequence behavior of UpdateAndRead and WriteAndUpdate

Next, we define the object class that will be used to access the Channel-TEDS. This class

is the Physical Parameter class and its structure is shown in Figure 4-19.

IEEE1451_PhysicalParameter

+_class_ID : ClassID

+_description : String

+_class_name : String

+GetPhysicalParameterType(out parameter_type : ushort) : OpReturnCode

+GetMetadata(out metadata : PhysicalParameterMetadata) : OpReturnCode

+SetMetadata(in metadata : PhysicalParameterMetadata) : OpReturnCode
+Getlnterpretation(out parameter_interpretation : ushort, out buffering : ushort) : OpReturnCode

Figure 4-19 Physical Parameter UML Class diagram

The operations that are shown in the figure are further explained in the following
discussion.

The GetPhysicalParameterType operation will be used to determine the type of
transducer (sensor or actuator) that is being accessed.

The GetMetadata operation will be used to access the Channel-TEDS of the transducer

channel that is being accessed.

58



The SetMetaData operation is defined as optional in the standard and will not be
implemented.

The Getlnterpretation operation will be used to obtain information about the transducer’s
data. For example, if it is an actuator value or sensor reading.

In this section we have defined a complete set of specifications that will be used to design
the NCAP. This has been done by defining the different objects and formats defined by the
information model of the 1451.1. The next section derives a set of specifications for the TIM that

will be designed in compliance with the IEEE 1451 family of standards.

4.2 TRANSDUCER INTERFACE MODULE

The TIM is required to have the functionality of a smart transducer as is stated by the IEEE 1451
family of standards. The key element that will denote the TIM as smart is the TEDS since it will
provide self-identification capabilities. Other required functionality for the TIM includes
triggering behavior, interrupt generation, and status bits.

To meet the previously stated top-level requirements, the structure shown in Figure 4-20
will be used to design the TIM and its functionality. Note that the control unit will be responsible
for NCAP communication and controlling the behavior of the TIM’s objects. This module, as
well as the other blocks can be implemented using a combination of hardware and software since
the Excalibur chip provides these capabilities (on-chip FPGA and ARM processor). This

configurability that the Excalibur chip provides will be exploited to enhance the performance of

59



the TIM’s objects by designing them using hardware or software. This will depend on the

advantages and disadvantages of each module implementation.

‘ NCAP Communication
2
4 [a]

TEDS TIM Contral

Addrass
ot
signals

o
-]
3

INT

Status/Interrupt
Mask Registers

DATA and Control Signals

DATA and Contral signals

REG REG

Transducer Registers ~_

REG REG

‘ Transducers/Physical World |

Figure 4-20 TIM Overall Structure

One of the key aspects of this architecture is that it will allow for a variable number of
transducers. Therefore, designers can reuse this TIM with minimal effort, and configure it for
their particular application. It is important to note that the number of transducers that can be
interfaced to this TIM will be limited by the resources of the Excalibur chip. This chip comes in
various sizes with the area ranging from 4,160 Logic Elements (LEs) in the smallest version
(EPXAL), to 38,400 LEs in the largest chip (EPXAL0). Similarly, the 1/O ranges from 186 in the

EPXAL to 711 in the EPXAL0.

60



421

Transducer Electronic Data Sheet

To comply with the requirements stated in Section 3.3.1 two mandatory TEDS blocks will be

implemented. These blocks are the Meta-TEDS for the TIM entity and the Channel-TEDS for

each individual implemented channel.

The TEDS structure will be based on the TEDS that is defined for the STIM of the

1451.2 standard. This is because at the top-level the TIM and STIM are similar since only one

entity can make the connection with the NCAP. The following discussion goes into detail about

the mandatory TEDS blocks (Meta and Channel) along with an explanation of each of the fields.

Table 4-3 shows the information that will be represented by the Meta-TEDS along with

the definition of each field.

Table 4-3 Meta-TEDS Structure

Field Description Type No. of
No. Bytes
1 Meta-TEDS Length uU32 4
2 IEEE 1451 Standards Family Working Group Number U8 1
3 TEDS Version Number uUs 1
4 Number of Implemented Channels U8 1
5 Worst-Case Channel Data Model Length U8 1
6 Worst-Case Channel Update Time (twy) F32 4
7 Worst-Case Channel Sampling Period (twsp) F32 4
8 Channel Groupings Data Sub-block Length Ul6 2
9 Number of Channel Groupings = G U8 1
10 | Group Type U8 1
11 | Number of Group Members = N U8 1
12 | Member Channel Numbers List = M(N) Array of USE N
13 | Checksum for Meta-TEDS Ul16 2

The explanation of the fields shown in the figure can be further explained as follows:

e The Meta-TEDS Length field specifies the total number of bytes in the TEDS.

61




The IEEE 1451 Standards Family Working Number is used to denote if the
transducer module belongs to the 1451.2, 1451.3 family among others. Since this
implementation is different than the STIM and TBIM, this field shall be set to 255
which does not correspond to any approved standard and is reserved for future
use.

The TEDS version number specifies the version number of the TEDS. Again, for
this implementation this field will be set to 255.

The Number of Implemented Channels field specifies the number of channels
implemented in the TIM. There can be up to 255 transducers in the TIM, so this
field will be set to a number between 1 and 255.

The Worst-Case Channel Data Model Length field specifies the maximum value
of the Channel Data Model Length for all implemented channels. So if there are
two transducers interfaced to an 8-bit and 12-bit ADC respectively, this field will
be set to 12.

The Worst-Case Channel Update Time field specifies the maximum value of the
Channel Update Time for all implemented channels in seconds.

The Worst-Case Channel Sampling Period specifies the maximum value in
seconds, of the channel sampling period for all implemented channels.

The Channel Groupings Data Sub-Block Length specifies the total number of
bytes in the Channel Grouping data sub-block, which are the fields that follow it.
If this value is zero, then no channel groupings are defined and there are no data

bytes in the subsequent fields of the channel groups’ data sub-block.

62



e The Number of Channel Groupings field specifies the number of discrete channel
groupings defined in this TIM’s Meta-TEDS.

e The Group Type field specifies the relationship between the channels comprising
the specific group.

e The Number of Group Members field specifies the number of channels
comprising the specific group.

e The Member Channel Numbers List specifies a one-dimensional array of 1 byte
elements that represent the channel address for a member channel in the specific
group.

e The Checksum field is the one’s complement of the sum (module 2*°) of all the
data structure’s preceding bytes, including the initial length field and excluding
the checksum field.

Similarly, Table 4-4 shows the structure for the Channel-TEDS.

Table 4-4 Channel-TEDS Structure

Field Description Type No. of
No. Bytes
1 Channel TEDS Length u32 4
2 Calibration Key U8 1
3 Channel Type Key U8 1
4 Physical Units UNITS 10
5 Lower Range Limit F32 4
6 Upper Range Limit F32 4
7 Worst-Case Uncertainty F32 4
8 Channel Data Model U8 1
9 Channel Data Model Length U8 1
10 | Channel Model Significant Bits Ul6 2
11 | Channel Update Time (t,) F32 4
12 | Channel Sampling Period (ts,) F32 4
13 | Checksum for Channel TEDS Ul16 2

63




The explanation for the fields shown in the figure is as follows:

The Channel TEDS length field specifies the total number of bytes in the Channel
TEDS data block excluding this field.

The Calibration Key field specifies the calibration capabilities of the TIM. This
field specifies if calibration will be done within the TIM block or if it needs to be
done in the NCAP.

The Channel Type Key field specifies the channel transducer type (sensor or
actuator).

The Physical Units field specifies the physical units that apply to the transducer
data of the particular channel. This field applies to transducer data after correction
for sensors, or before correction for actuators.

The Lower Range Limit field has different meanings for sensors and actuators.
For sensors, it specifies the lowest valid value for transducer data after correction
is applied, so if the corrected transducer data lies below this limit, it may not
comply with TIM specifications set by the manufacturer. For actuators, this field
specifies the lower valid value for transducer data before correction is applied.
The Upper Range Limit field specifies the maximum valid value for a sensor’s
data after correction is applied, or the maximum valid value for an actuator’s data
before correction is applied.

The Worst-Case Uncertainty field specifies the “Combined Standard Uncertainty”
(22).

The Channel Data Model field describes the data model used when reading or

writing data to the transducer. This field specifies if the model is an integer,

64



single-precision floating point number, double-precision floating point number, or
a fraction.

e The Channel Data Model Length field specifies the number of bytes in the
representation of the selected channel data model.

e The Channel Model Significant Bits field specifies the numbers of bytes that are
significant. For example if data from a transducer comes from a 12-bit ADC, then
this field will be set to 2.

e The Channel Update Time field specifies the maximum time in seconds, between
the receipt of a trigger and a trigger acknowledge for this channel.

e The Channel Sampling Period field specifies the minimum sampling period of the
channel transducer unencumbered by read or write considerations. Typically, this

time is limited by the ADC/DAC conversion times.

4.2.2 NCAP Communication

Because only one TIM can make the connection to a single NCAP as was stated in the
requirements Section 3.2.2, this top-level connection will resemble the STIM/NCAP
communication of the 1451.2 standard. Therefore, the command structure will have a functional
and channel address associated with it. Each individual implemented transducer will have a
channel address associated with it. So, the channel address will be large enough such that it can
accommodate the maximum number of transducers (255) that can be implemented in the TIM.
The functional address will be used to denote the command that is being sent by the NCAP to the

TIM. The length of this field will be eight bits, which will give the designer enough room for the

65



mandatory set of commands, as well as leaving some room for future expansions. Table 4-5
summarizes the list of commands that will be implemented.

It is important to note that the trigger operation is implemented as a command, which is
different than what is done in the STIM. In the STIM a single line in the TII (10-wire serial
connection) is dedicated for the trigger operation, so to trigger a sensor the user has to first set
the channel address in a separate instruction and then issue the trigger. For the case of actuators,
the user has to write the actuator data, write the channel address, and then the user can apply the
trigger command. Since we are eliminating this serial connection between NCAP/TIM there is
no need for this dedicated line. Thus improving the speed performance since users can issue a

trigger and channel address in a single command.

Table 4-5 TIM’s Commands

Functional CHANNEL_ZERO
Address command Single Channel Command
0 Read Meta-TEDS Read Channel TEDS
Write CHANNEL_ZERO | Write channel standard interrupt
1 interrupt mask mask
Read CHANNEL_ZERO Read channel standard interrupt
2 interrupt mask mask
Read CHANNEL ZERO
3 status Read channel status
CHANNEL_ZERO
4 Trigger Transducer Channel trigger
Write Transducer Channel
5 Data Write Transducer Channel Data
Read Transducer Channel
6 Data Read Transducer Channel Data
7 Reset Reserved
MSB For future use For future use

The following is a detailed explanation about the commands and their top-level

functionality.

66



e The Read Meta-TEDS and Read Channel-TEDS commands return the complete
structure of the TEDS blocks to the NCAP.

e The write interrupt mask commands allow the NCAP to set the interrupt mask of
the implemented transducer channels in the TIM.

e The Read Status operation returns the status of the particular channel that is
addressed.

e The trigger command is used to sample/set the transducer channel that is
addressed. Note that if CHANNEL_ZERO is used as the address, then every
implemented channel in the TIM is triggered.

e The write transducer channel data command is used to send the data to the
actuator’s register that will be used when the channel is triggered.

e The read transducer channel data command is used to access the sensor
information from the last sampled event.

e The reset command is used to put all the TIM’s objects in their default power-on

state.

4.2.3 Trigger

The TIM is required to handle both individual and global triggering. When triggered, a sensor
will be sampled and an actuator will acquire a new data set. The functionality for triggering will
be handled by the control unit that was shown in Figure 4-20. Therefore, this unit will be

responsible for setting the control signals of the transducer registers, as well as the data

67



converters that are associated it with the transducers. The control unit will go through the
following sequence of events when a trigger command is issued.

First, the control unit will decode the information and send it to the particular channel so
that the trigger can be executed. Then the acknowledge signal will be generated as follows. Note
that it is generated differently for sensors and actuators.

For sensors, the trigger ACK signal will be generated when the ADC finishes conversion
and the TIM latches this data onto its particular data register. If the sensor is connected to digital
10 then the ACK signal will be generated when the data is latched onto its data register.

For actuators, the trigger ACK will be sent upon receipt of a trigger function when
interfaced with digital 10. If the actuator is interfaced to a DAC then the ACK signal will be
generated after the device finished conversion.

During global triggers, the CHANNEL_ZERO ACK will be generated when every
channel has been successfully sampled/set as defined by the particular transducer. Also, each
individual channel will generate an ACK when it has successfully completed the trigger

operation.

4.2.4 Status and Interrupts

There are four mandatory status bits for CHANNEL_ZERO, and three status bits for individual
channels that will be implemented. These bits can be summarized as follows. For
CHANNEL_ZERO the implemented status bits will be Trigger ACK, Invalid Command, TIM
operational and Corrections enabled/disabled. For individual channels, the implemented status

bits will be Trigger ACK, Channel Operational, and Corrections enabled/disabled.

68



These status bits along with their corresponding interrupt mask can be implemented using
registers giving the NCAP an easy way to access this information. This is because registers are
assigned a memory location in the embedded stripe of the Excalibur chip and are accessible by
reading/writing to the pre-assigned memory location.

These registers can be 32 bits giving the user a wide range of status bits that were not
defined in the requirements but may be added for more complex systems. There will be a register
for each implemented channel in the TIM.

The interrupts will be generated by a combination of status and interrupt mask registers
similar to how is done in the 1451.2 STIM?®. This scheme is slightly modified with the difference
being that in the standard the LSB of the status register is reserved for the service request bit.
This bit is a logical OR of all the AND operations in the status/interrupt mask combination, so
when this bit is set an interrupt signal is generated. The reason why this is done is because an
individual line in the TII protocol is reserved for the interrupt signal much like what is done for
the trigger. Again, because we are eliminating this serial protocol there is no need for this single
line. Instead, each implemented channel may have up to 32 different interrupt signals that can be
sent to an interrupt controller in order to process the requests. Figure 4-21 shows the interrupt

generation scheme that will be used.

Interrupt Mask Register

Isb
O
: Interrupt INT
Dieeneration‘
E Unit
msﬁ Isb

Status Register

Figure 4-21 Interrupt Masking

69



The Interrupt Generation Unit shown in the figure is a priority encoder that will take the

result of the AND operations and encode them into the bit size of the interrupt controller that will

be used.

4.3 SUMMARY AND TESTS

The functionality that is stated in this section can be summarized in Table 4-6. Note that the table

shows inputs and outputs to the application system.

Table 4-6 System Summary

Name System on a Chip Solution for Smart Networked Transducers

Purpose Single chip implementation of the IEEE 1451 family of standards

Inputs Data read from sensor(s), Network information sent to the NCAP

Outputs Data set sent to actuator(s), System results sent to network(s)
Initialization: Initialize entire control system (includes both NCAP
and TIM). NCAP reads TEDS and initializes its control logic. While
the TIM will be initialized upon power-up by local intelligence within
the block.
NCAP<->TIM communication: The NCAP sends a command to the
TIM and it responds accordingly.

Functions

Trigger: NCAP sends a trigger command to the TIM which decodes
it and executes it for either a sensor or actuator, or both (global

triggering).
Interrupts: Interrupts generated by TIM that are serviced by NCAP

NW communication: Communication between NCAP and network
using the publish/subscribe or client-server method.

The functionality shown in the table needs to be tested in order to ensure compliance with

the standard. In order to test the system, a proof of concept application with two sensors

70




(temperature and light) and LEDs to simulate an actuator will be built. Note that the transducers
will be designed to meet the electrical and timing specifications of the Excalibur chip.

This test application will consist of a closed-loop control system controlled by the NCAP.
So, the main program will execute in a loop where the functionality of the system will be tested.
In doing this, the NCAP will test the entire command structure of the TIM as well as the network
communications by the use of the objects defined for an IEEE 1451.1 NCAP. The setup for this
control application will be as follows:

Initialization: During this stage the network port information will be mapped to pre-
defined objects that are set at compile-time. Then, we will apply a reset command to the TIM in
order to test that required operation. Next, the TEDS will be read and the different transducer
objects (on the NCAP-side) will be instantiated from this information. This interaction will prove
that the TEDS structure can be successfully read and that the different transducer objects in the
NCAP’s object model can be instantiated correctly.

After verifying that there were no errors in the TEDS access and object instantiation, the
NCAP can be initialized. This initialization will consist of calling the Initialize and GoActive
operations and making sure that they are executed properly. The interrupt masks of the TIM will
also be set during this phase using application-specifics commands. This will be done to test the
TIM command Write Interrupt Mask for CHANNEL _ZERO and individual channels. Also, any
initialization that needs to be done for the network hardware or other non-standard blocks will be
done in this stage.

Main Program: The next step is to test the application by showing interactions between

the network, NCAP, and TIM. To do this, a simple application will be configured that constantly

71



triggers the transducers by using the UpdateAndRead, WriteAndUpdate, and UpdateAll
operations previously shown in Sections 4.1.2.6 and 4.1.2.7

This completely tests the mandatory command set of the TIM, since every time that a
trigger command is issued the TIM will generate an interrupt (Trigger ACK). Then, the NCAP
will service the interrupt, which will test the Read Status Register and Read Transducer Channel
Data TIM operations.

Next, a dummy packet will be encoded into an ArgumentArray for network
communications using both models. To test both communication models, two different dummy
packets will be used for client-server and publish-subscribe communications.

This loop will test the entire command set of the TIM, the top-level functionality of the
NCAP, and that a network can be plugged in according to the standard. Therefore, we will show

that the high-level requirements of the IEEE 1451 solution are met.

72



5.0 DESIGN

The system design is done using a combination of hardware (on-chip and off-chip peripherals)
and software (C for the ARM922T) blocks. These blocks are used to design a system that meet
the requirements stated in Chapter 3.0 using the specifications previously stated in Chapter 4.0.
We begin the design by establishing the NCAP/TIM communication in such a way that it
meets the performance requirement, which states that this connection shall be faster than the TII
of the 1451.2 STIM. To meet this requirement, the NCAP/TIM connection is established using
the AMBA AHB that is provided by the Excalibur chip. This connection can reach speeds up to
160 MHz. Therefore, using the AHB the sampling rate for a system with 10 transducers (5
sensors and 5 actuators) would be 374 KHz (assuming an ADC conversion rate of 2.5 uSec), as
opposed to the 51 Hz that the 1451.2 connection yields under the same configuration. To use this
bus communication, the TIM’s top-level functionality is designed as a peripheral on the bus
using custom logic (PLD). The rest of the modules for this IEEE 1451 solution will be discussed

in the following sub-sections of this chapter.

73



5.1 NETWORK CAPABLE APPLICATION PROCESSOR

In this section we will focus on the software blocks that are specified by the standard’s

information model. To do this, we first give an overview of an IEEE 1451.1 NCAP shown in

Figure 5-1.
Trarsducer /0
Metwork Metwork TIM
Network  Hardware Protocol 1451.1 AP) G Hardware
TIM
L | E; L | | Firmware 1|
| » Application Software: | 4 |
- Function Blocks H
- Compaonents | a |
Servi P
J - | 5| e ERl AMBA TIm
- 5 i [~ AHE |
|| 2 :
a | | - |
I {E | | |
1S —
]
| | 5
75 | MCAF Block
L —
Metwark Layear Application Layer Transducer Layer

Figure 5-1 NCAP Overview

Note that in the application layer, we have an NCAP Block that is used to control the
experiment, and we also have the application-specific software (given by Function Blocks). Both
of these blocks are inherited from the Block class. Then, in the network and transducer layers,
we have APIs. These APIs are the hooks that are provided to communicate with the network and
TIM that are interfaced with the NCAP. The 1451.1 API provides the necessary hooks for
network communication. These hooks are specifically provided by the network ports and the

Server Object Dispatch given by the Entity, Client Port, Publisher Port, and Subscriber Port

74



object classes. Note that the Entity and Client Port classes are used for client/server
communications; while the Publisher Port and Subscriber Port classes are used for
publish/subscribe communications. On the other hand, the Transducer 1/O API provides the
hooks for TIM communication. These hooks are given by the Transducer Block class (for the
TIM as a whole) and by Parameter classes (for individual transducers within the TIM).

Next, we discuss the programming language that will be used for this NCAP design. The
software blocks are designed in C, which is not an object-oriented programming language. This
presents some issues when designing the class hierarchy and object owning relationships
previously shown in Figure 4-1. To solve this problem the objects are designed as structures and
the class hierarchy is designed by defining a super class that acts as the parent. This is shown in

Figure 5-2.

Struct A {}

struct B {struct A *parent}

struct C {struct A *parent} B C

Figure 5-2 Class Hierarchy Implementation

In the figure, we design a super class A with two child nodes B and C. Using pointers the
child node “points” to its parent, which allows us to implement the parent/child relationship that
is described as the class hierarchy. In order to use this relationship, we use the scheme shown in

Figure 5-3 to instantiate the structures using C.

75



Struct A super;
Struct B child_one;
Struct C child_two;

child_one.parent = *super;
child_two.parent = *super;

Figure 5-3 Structure instantiation in C

Another issue that needs to be resolved is that each object class is supposed to have
operations that only the particular object and its children can call. To solve this problem, we
include the structure node as a parameter of the operation, e.g. void foo (struct *A, int B). Note
that in the example an instance of structure A needs to be provided to call function foo. Using the
two schemes previously discussed, we can design the NCAP using its object orientation with the
C programming language.

Next, we will design the complete design of the information model that was previously
described in the specifications chapter. It is important to note, that as was mentioned before by
implementing the different objects and formats, the standard is met and users can use this

implementation for their particular application.

5.1.1 Datatype Mapping

The datatypes that are defined in the standard and that were defined in the specifications chapter
need to be mapped to the C programming language. In order to do this, we use some pre-defined
C types as well as create new types that are used in the design of this IEEE 1451.1 NCAP. Table

5-1 summarizes this datatype mapping.

76



Note that the colon operator is used to denote an 8-bit integer. This is done because C for

the ARM does not provide an 8-bit integer type and using the colon operator denotes the type as

only 8-bits of length.

Table 5-1 Datatype to C Mapping

Datatype C Mapping
Boolean Defined a new structure that defined a TRUE asa 1 and FALSE asa 0
Integer8 Short : 8
Ulnteger8 Unsigned short : 8
Integer16 Short
Ulntegerl6 Unsigned short
Integer32 Int
Ulnteger32 Unsigned int
Integer64 Long
Ulnteger64 Unsigned long
Float32 Float
Float64 Double
Octet Char

For all the types that are defined in the standard, we create a header file that contains all

the structure information of the different objects in the NCAP. It is important to note that arrays
are implemented as pointers. This way we can use the malloc() and/or talloc() operation to
dynamically allocate the memory that is needed for the array representation. Next, we show the

design of the top-level classes for this NCAP design.

5.1.2 IEEE 1451.1 API

This API is used to hide the communication details of network communications.
Therefore, this API provides the different hooks that can be used regardless of the network that is
employed. Next, we will design the objects that are responsible for network communications

using the client/server and publish/subscribe models.

77



5.1.2.1 Client-Server Network Communications
In this section, we will go into detail about the design of the operations of the Entity and Client
Port classes that were previously shown in the specifications chapter. We begin with the Entity

class whose structure is shown in Figure 5-4.

typedef struct {
IEEE1451 Root *super;
ClasslD class_ID;
IEEE1451_String description;
IEEE1451 String parent_name;
ObjectTag object_tag;
ObjectID object_ID;
char *object_dispatch_address;
HEEE1451_Entity;

Figure 5-4 Entity Class Structure in C

The super field is a pointer to the Entity class, which is used to denote the parent/child
relationship of the class hierarchy. The class_ID, description, and parent_name fields are part of
the class header that was previously mentioned in the specifications chapter. Therefore, the
class_ID encodes the position of this object in the class hierarchy. The description is the class
name of this object. The parent_name is the class name of the parent class (in this case the entity
class). Note that for the description and parent_name parameters the standard provides an
enumeration that is used.

The object tag field contains the ObjectTag (logical endpoint for server-side
communications) of this particular object. Note that this value is unique for each object in an
NCAP application system.

The object_ID field contains the ObjectID (used to unambiguously distinguish the object

from any other object) of this particular object.

78



The object_dispatch_address is used to represent the network-specific address of the
underlying network.
The following discussion goes into detail about the design of the operations for this class
along with an explanation of how they are designed.
(1) OpReturnCode GetObjectTag(IEEE1451 Entity *a,
/* out */ ObjectTag *object_tag)
This operation returns the object_tag parameter of the Entity class.
(2) OpReturnCode SetObjectTag(IEEE1451 Entity *a,
/* in */ ObjectTag object_tag)
This operation initializes/modifies the object_tag parameter of the Entity class
(3) OpReturnCode GetObjectID(IEEE1451 Entity *a,
/* out */ ObjectID *object_id)
This operation returns the object_ID parameter of the Entity class.
(4) OpReturnCode GetObjectName(IEEE1451 Entity *a,
/* out */ IEEE1451 String *object_name)
This operation returns the description parameter of the Entity class.
(5) OpReturnCode GetDispatchAddress(IEEE1451 Entity *a,
[* out */ ObjectDispatchAddress *dispatch_address)
This operation returns the object_dispatch_address parameter of the Entity class.
(6) OpReturnCode GetOwningBlockObjectTag(IEEE1451 Entity *a,
[* out */ ObjectTag *owning_block_object_tag)
This operation returns the ObjectTag of the owning block object following the

relationship that was described in the specifications chapter.

79



(7) OpReturnCode GetObjectProperties(IEEE1451_Entity *a,
/* out */ ObjectProperties *object_properties)
This operation returns the object_properties parameter of the Entity class.
(8) ClientServerReturnCode Perform(IEEE1451_Entity *a,
/*in */ unsigned short server_operation_id,
/*in */ ArgumentArray server_input_arguments,
/* out */ ArgumentArray server_output_arguments)
This operation is the server-side construct for client-server operations. The
pseudo-code for this operation is shown in Figure 5-5. Note that the server
operation that is being targeted by the client is provided by the
server_operation_id that is generated by the network infrastructure after it de-
marshals the network packet. For the server_operation_id the standard defines an
enumeration, so that this value can be matched to every operation within an
NCAP.
Also, when the operation times out, we return an ArgumentArray of size zero
which is done to follow recommendations that are given by the standard.
Next, we discuss the design of the client-side for these types of network communications.
This is done through the Client Port class. The design of this class begins with the structure that

is created for this object. This structure is shown in Figure 5-6.

80



Decode the server_input_arguments

If execution mode is return value then
Call the operation that is meant for the server
Wait for server operation to complete

If timeout then
Return operation Timed out

Else then
Encode outputs into arguments
Send the new packet to the network infrastructure
Return successful operation
Else then
Call the operation that is meant for the server
Return successful operation

Figure 5-5 Perform() Operation pseudo-code

typedef struct {
IEEE1451 BaseClientPort *super;
ClassID class_ID;
IEEE1451 String description;
IEEE1451 String parent_name;
ObjectTag object_tag;
ObjectID object_ID;
unsigned short *block_state;
HEEE1451_ClientPort;

Figure 5-6 Client Port Class Structure in C

The only attribute that is specific to this class is the block_state parameter, which is used
to “point” to the NCAP Block’s state machine.
Next, we will design the operations that are defined for this class.
(1) ClientServerReturnCode Execute(IEEE1451 ClientPort *a,
/* in */ unsigned short execute_mode,
/* in */ unsigned short server_operation_id,

/*in */ ArgumentArray server_input_arguments,

81



/* out */ ArgumentArray server_output_arguments)
This operation provides the client-side functionality for client-server

communications. The pseudo-code for this operation is shown in Figure 5-7.

If execution_mode is return then

Send the packet to the ne