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University of Pittsburgh, 2010

This thesis investigates whether reflection after tutoring with the Itspoke qualitative physics

tutoring system can improve both near and far transfer learning and retention. This question

is formalized in three major hypotheses. H1: that reading a post-tutoring reflective text

will improve learning compared to reading a non-reflective text. H2: that a more cohesive

reflective text will produce higher learning gains for most students. And H3: that students

with high domain knowledge will learn more from a less cohesive text.

In addition, this thesis addresses the question of which mechanisms affect learning from

a reflective text. Secondary hypotheses H4 and H5 posit that textual cohesion and stu-

dent motivation, respectively, each affect learning by influencing the amount of inference

performed while reading.

These hypotheses were tested by asking students to read a reflective/abstractive text after

tutoring with the Itspoke tutor. This text compared dialog parts in which similar physics

principles had been applied to different situations. Students were randomly assigned among

two experimental conditions which got “high” or “low” cohesion versions of this text, or a

control condition which read non-reflective physics material after tutoring. The secondary

hypotheses were tested using two measures of cognitive load while reading: reading speeds

and a self-report measure of reading difficulty.

Near and far transfer learning was measured using sets of questions that were mostly

isomorphic vs. non-isomorphic to the tutored problems, and retention was measured by

administering both an immediate and a delayed post-test. Motivation was measured using
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a questionnaire.

Reading a reflective text improved learning, but only for students with a middle amount

of motivation, confirming H1 for that group. These students also learned more from a

more cohesive reflective text, supporting H2. Cohesion also affected high and low knowledge

students significantly differently, supporting H3, except that high knowledge students learned

best from high, not low cohesion text.

Students with higher amounts of motivation did have higher cognitive load, confirming

hypothesis H5 and suggesting that they engaged the text more actively. However, secondary

hypothesis H4 failed to show a role for cognitive load in explaining the learning interaction

between knowledge and cohesion demonstrated in H3.
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1.0 INTRODUCTION

Physics education, as well as science education generally, is faltering in the United States.

Although fourth grade American students score slightly above average for OECD (Organi-

zation for Economic Co-operation and Development) countries in science literacy, by the

time they are 15 their scores have fallen into the bottom third (Provasnik et al., 2009) of all

OECD countries.

Although improving these statistics has long been recognized as a national educational

priority, progress has been difficult. Between 1995 and 2007, there was no measurable im-

provement in American science scores (Provasnik et al., 2009). There is still a great need for

educational interventions that can improve learning outcomes in math and science.

It is broadly recognized that one of the most effective educational interventions is one-on-

one tutoring with a human tutor (Bloom, 1984; Kulik et al., 1990). Individualized tutoring

has been reported to produce large learning gains, in the range of two full standard devia-

tions (Bloom, 1984). The limited supply and high cost of talented human tutors, however,

has made necessary another educational goal: the creation of effective Intelligent Tutoring

Systems (ITSs). In a speech to the National Academy of Sciences in 2009 (Obama, 2009),

President Obama envisioned “learning software as effective as a personal tutor.”

Creating software tutors that fulfill this vision is still an un-obtained research goal, but

for the reasons noted above, an important focus of this research is the area of science literacy.

One difficult area of science education is qualitative physics. Qualitative physics empha-

sizes the conceptual understanding of physics principles, rather than quantitative problem

solving. Research in qualitative physics is motivated by the observation that students can

do well in physics class, and become competent solvers of quantitative physics problems, but

still have a poor conceptual understanding of physics and retain many misconceptions (Hal-
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loun and Hestenes, 1985b,a). An important consequence of poor conceptual understanding

is a reduced ability to transfer learning to new problem solving situations. “Transfer” is the

use of learned material in situations other than that in which it was learned.

The issue of poor conceptual physics understanding has been investigated using several

tutoring systems which specialize in qualitative physics, for example Why2-Atlas (VanLehn

et al., 2002), Why2-Autotutor, (Graesser et al., 2005) and Itspoke (Litman and Silliman,

2004). This study uses the Itspoke system (Litman and Silliman, 2004), which will be

described more fully in Section 3.1. Briefly, Itspoke is a speech enabled version of the Why2-

Atlas (VanLehn et al., 2002) text based tutor. It teaches by first presenting students with an

introductory text about physics. Then, after a pre-test, it engages them in a series of spoken

tutoring dialogs about each of five problems in qualitative physics, followed by a post-test.

The issue of transfer has been studied separately by other researchers (Gick and Holyoak,

1983), who have found that a process of abstractive comparison of previous problem solving

episodes can help in solving dissimilar target problems. The success of comparative abstrac-

tion in improving transfer in other fields raises the question of whether it could also improve

conceptual understanding and transfer in the domain of qualitative physics.

In this study I implement a form of comparative abstraction by administering a reflective

reading to students following their tutoring sessions with the Itspoke tutor. This reading

points out and compares parts of the previous problem solving episodes in which similar

physics laws were applied. The hypothesis is that, similar to results in other domains (Gick

and Holyoak, 1983), this comparison will help students infer what parts of the previously tu-

tored problems were fundamental and important, and which were incidental surface features.

This should result in improved learning and transfer.

Other research (e.g. (Katz et al., 2003, 2007)) suggests that reflection can be an effective

way to improve learning after tutoring, and also that reading a reflective text, such as the

one used here, will be sufficient to produce learning gains.

The decision to use a reflective text, however, raises the issue of how that text should

be structured to maximize learning gains. One important and frequently studied feature

of text is its cohesion. Cohesion is the property of a text that makes it seem to “hang

2



together.” 1 Textual cohesion has been shown to significantly affect how well the text is

understood by the reader. For most readers (Britton and Gulgoz, 1991; McKeown et al.,

1992), higher cohesion seems to make a text easier to comprehend. However McNamara

and colleagues (McNamara et al., 1996; McNamara and Kintsch, 1996; McNamara, 2001;

O’Reilly and McNamara, 2007) have shown that for certain students, low cohesion text can

actually produce higher comprehension. They hypothesized that this is because low cohesion

text includes gaps which the reader must use inference to bridge, and these inferences cause

learning. This explanation implies a higher cognitive load for these students when reading

lower cohesion text.

Another factor that has been shown to influence text comprehension is reader interest

(Schiefele, 1996). Higher levels of interest seem to be associated with better comprehension,

also possibly because of more active processing. This explanation for the benefits of interest

also implies higher cognitive load for more interested students when reading.

These considerations lead to three primary hypotheses which are tested in this work.

H1 hypothesizes that administering an abstractive/reflective reading after tutoring with the

Itspoke tutor will improve learning and transfer in qualitative physics. H2 suggests that

the cohesiveness of this reading will impact its superiority over a non-reflective control. For

most students, high cohesion should cause more learning. H3 holds that the effect of textual

cohesion will vary with knowledge level. Following McNamara, I expect high pre-testers to

learn more from a low cohesion text.

In addition, the hypothesized mechanisms underlying the effects of textual cohesion

and interest suggest two secondary hypotheses. H4, that textual cohesion affects learning

by modifying the amount of inference made from text. H5, that motivation also affects

inference from text. Both of these hypotheses imply differences in cognitive load. If low

cohesion causes more inference, it should be accompanied by increases in cognitive load.

Similarly, if higher motivation causes more inference while reading text, it should also be

accompanied by higher cognitive load.

These hypotheses were tested by asking students to read a text following tutoring with the

Itspoke tutor. In the control condition students read a shortened version of the non-reflective

1More formal definitions of cohesion will be discussed in Sections 2.4 and 6.
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introductory physics text. In the experimental conditions, students read either a high or low

cohesion version of a reflective text, which compared relevant parts of the preceding tutorial

dialogs. Learning gains were measured using pre-tests, post-tests and delayed post-tests. The

readings were all administered in a tap-to-read interface which allowed the collection of both

self-report and reading speed measures of cognitive load. In addition, student motivation

was assessed using a questionnaire patterned on work by Pintrich and DeGroot (1990).

Results showed that this type of abstractive/reflective text did significantly improve

learning after qualitative physics tutoring, as measured by both immediate and delayed

post-tests, but only for students with a middle level of motivation, supporting H1 in this

group. Students in the highest or lowest motivation groups did not benefit from reflection. In

general, reflective text with higher cohesion caused higher learning gains than low cohesion

text, in this group, supporting H2. However, results also showed a significant interaction

between knowledge level and textual cohesion. This supports H3, except that middle moti-

vation students with low domain knowledge had higher mean learning gain from low cohesion

text, and students with high domain knowledge had higher mean learning gain from high

cohesion text.

For the secondary hypotheses, results using the cognitive load measures suggest that

students with higher motivation did engage the text more actively than those with lower

motivation, supporting H5. However H4 was not supported: there were no significant cog-

nitive load differences to explain the interaction found for middle motivation students in

H3.
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2.0 BACKGROUND AND MOTIVATION

In this thesis I describe an experiment using the Itspoke tutor, which teaches qualitative

physics. Itspoke will be described in more detail in Section 3.1. In this section I begin

by describing the general concern with problem solving based tutors that was mentioned

in the introduction: they don’t promote robust conceptual learning, which leads to poor

transfer. I next briefly describe various tutors that have been designed to address this

problem, including Itspoke, the one used in this study. Then I describe a body of research

into the transfer of learning, which suggests that producing an abstract representation is

important for achieving robust learning and transfer. In Section 2.3 I survey work in reflection

and present a taxonomy of the various types that have been studied. I argue that this work

suggests that a carefully designed reflective reading could aid student abstraction and so help

transfer in conceptual physics tutoring. This work informs decisions about how to augment

Itspoke with a reflective reading, as well as suggesting the structure and the content of the

reading.

In Sections 2.4, 2.5 and 2.6, I review work suggesting a set of important factors that

should be considered when evaluating the effectiveness of a reflective text. These factors are

the cohesiveness of the text, the effect of textual cohesion on inference, and student motiva-

tion. Finally, in Section 2.7 I describe specific hypotheses generated by these considerations.

2.1 QUALITATIVE PHYSICS TUTORING

Teachers in elementary mechanics courses have long noticed that students can do well in

physics class, learn to competently solve quantitative physics problems, and still have a very
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poor understanding of physics concepts. In several studies, students who had performed

well in quantitative problem solving showed poor transfer to qualitative physics problems

(Halloun and Hestenes, 1985b,a), indicating that quantitative performance had masked a

shallow understanding of physics concepts. “Quantitative” physics emphasizes solving nu-

merical problems, whereas “qualitative” physics emphasizes understanding how and why

physics concepts are applied. Qualitative physics problems usually involve comparing mag-

nitudes, rather than solving for numerical answers. Shallow learning with poor conceptual

understanding diminishes a student’s ability to properly use domain language, to “reality

check” answers to physics problems, and to transfer problem solving skill to new problems.

The problem of shallow learning in physics is not limited only to classroom instruction.

VanLehn et al. (2000) noted that model tracing tutors have also been criticized for failing

to encourage deep learning. One criticism is that tutors don’t “promote stepping back to

see the ’basic approach’ one has used to solve a problem.” In addition, they note that

quantitative problem solving skills do not transfer well to qualitative problems. Students

who do well in quantitative problem solving often also do poorly on measures of conceptual

understanding such as the Force Concepts Inventory (Hestenes et al., 1992).

The problem of shallow learning described above has also been described as a lack of

“robust learning.” Robust learning is broadly defined to include both transfer and long term

retention (PSLC, 2009). Retention refers to the persistence of learning, as measured, for

example, by a delayed post-test. Transfer is understood to be what happens when knowledge

is applied in a situation which is different than the one in which it had been learned. Given

that we would like learning to be useful outside an academic setting, retention and transfer

are some of the most important goals in tutoring research.

VanLehn et al. (2000) suggested that model tracing tutors should be improved to deal

with the problem of shallow learning. In particular they suggested engaging students in a

natural language dialog designed to help them infer or construct a deeper understanding

of the target material. These interactive directed lines of reasoning were called “knowledge

construction dialogs.” They investigated the addition of knowledge construction dialogs to

the Andes physics homework helper. Similar considerations led to a number of tutors which

used natural language to encourage deeper conceptual understanding. These tutors included
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Atlas-Andes (Rosé et al., 2001), Why2-Atlas (VanLehn et al., 2002), AutoTutor (Graesser

et al., 2005), and Itspoke (Litman and Silliman, 2004). Itspoke is described in more detail

in Section 3.1. By emphasizing conceptual learning, these tutors sought to produce a deeper

and more transferable understanding of physics. All of these tutors have produced learning

gains. For example, Rosé et al (2001) found that a version of the Andes model tracing tutor

which included short dialogs about conceptual physics improved learning of physics concepts

compared to a problem-solving only version of the tutor, with an effect size of 0.9 standard

deviations.

These learning gains do not seem as strong as those reported for human tutors (Bloom,

1984), however, so there may still be room for improvement. Hints about an additional

source of improvement come from the transfer literature, which has investigated a method of

producing transfer in non-physics domains which may be complementary to the approaches

described above.

2.2 ABSTRACTION AND TRANSFER

As described above, qualitative physics tutors have had success in improving learning gains

by using natural language dialog to teach abstract physics concepts directly. As I will

describe in this section, work in other domains has shown that transfer can be increased by

helping students induce more abstract representations by comparing examples. This section

provides an overview of that work, and argues that a similar process of comparison and

abstraction might increase learning and transfer in qualitative physics.

The role of abstraction has been widely studied in the transfer literature, notably by Gick

and Holyoak (Gick and Holyoak, 1983). They considered “Dunker’s radiation problem,”

which is a standard problem in transfer research. The students are asked to find a way to

irradiate a tumor with enough radiation to kill it, without harming surrounding tissue (the

answer is to divide the radiation into several beams which converge on the tumor). Before

solving this target problem, students are exposed to an analogous problem, such as a general

dividing an army to attack a fortress from several directions. Typically students can learn,
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understand and remember the source analog, but still show very poor transfer to the target

problem. Gick and Holyoak asked students to summarize the source analog, or to state its

underlying principle, or to make a diagram of the problem, all without significantly improving

transfer. However, when they gave students two analogs and asked them to describe their

similarities, transfer was (finally) improved. Their interpretation for these results was that

students were using a process of induction to create more general, abstract representations

of the problem, which were more easily applied to the target problem.

Having a more general and abstract representation of knowledge is generally thought to

be important for transfer. These representations are often thought of as mental schemata

(Reed, 1993), which can contain both some specific contextual details of the learning context,

and also more general information. Schemata are formed by a process of induction from the

learned material and other sources.

A number of instructional factors are thought to affect schema induction from examples

(Gick and Holyoak, 1987). These include the number of examples and the order in which

they are presented, as well as the presence of abstract training. The process of schema

induction is also mediated by domain knowledge (Chi et al., 1982), with experts structuring

their knowledge according to deeper domain principles, and novices creating structures more

dependant on surface features.

Other individual differences such as I.Q. and memory span (Skanes et al., 1974; Leher and

Littlefield, 1993; Goska and Ackerman, 1996) have also been found to affect learners’ ability

to create and use transferable schemata. Individual differences in background knowledge

have also been shown to affect reader’s ability to make inferences from text, as described in

Section 2.4.

The work described above was all in non-physics domains, however my own previous work

in tutorial dialog cohesion has suggested that abstraction is also an important mechanism in

learning from physics tutoring. In a series of studies, I measured cohesion in tutorial (non

reflective) dialog automatically by counting the number of “cohesive ties” (Halliday and

Hasan, 1976) between tutor and student. A cohesive tie was counted whenever the tutor

or student repeated each other’s choice of a word or word-stem (Ward and Litman, 2006).

In later work (Ward and Litman, 2008), the measure was extended to count cohesive ties
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between words which had semantic relationships to each other as measured by WordNet’s

(Miller et al., 1990) hyponym/hypernym hierarchy. In (Ward and Litman, 2008) we found

that cohesive ties that repeated the other participant’s usage but at a higher or lower level

of abstraction improved correlations with learning, particularly with far transfer learning.

The results described above were obtained by automatically recognizing the semantic

relationships between words. We next investigated if the relationship between tutor-student

cohesion and learning would also be present with (presumably) more accurate human tagging

of the cohesive ties. In (Ward et al., 2009), we tagged a corpus of reflective tutorial dialogs for

various types of cohesive tie. We again found that abstractive ties, in which one participant

repeated the other’s contribution but at a greater level of generality, were correlated with

learning. We also found that the reverse type of tie, in which repetition was at a more

specific level, was correlated with learning.

We have seen that inducing abstract schema from examples can help learning and transfer

in non-physics domains, and also that abstraction is an important mechanism for learning

from tutoring dialogs with our physics tutor. This suggests that abstracting from multiple

examples may also be an effective intervention in physics tutoring, however there are reasons

to think it may be difficult to do during problem solving. For example, working memory

constraints may make it difficult to induce while simultaneously remembering the state of

the current solution. In addition, practical considerations suggest that schema induction

from several examples would be best attempted reflectively, after the examples have been

presented.

2.3 REFLECTION AND ABSTRACTION

The previous section argued that the process of inducing abstract schema from examples,

which has increased transfer in other domains, could also increase transfer in qualitative

physics tutoring. It also suggested that this might be best done as a reflective process, after

tutoring is complete. Pursuing that suggestion, in this section I examine some related work

which provides information about how best to implement reflection. This work provides
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a useful taxonomy of reflection, which allows us to categorize the type of post-tutoring

reflection suggested here in relation to other work. It also suggests that reading a reflective

text may be as effective as more interactive forms of reflection, and it provides a theoretical

description of the reflective process which will be useful in determining the structure of the

reflective text.

Tchetagni, Nkambou, and Bourdeau (2007) draw a distinction between “reflection-in-

action” and “reflection-on-action 1” According to these authors, reflection-in-action is when

a student reflects on problem solving activity during that activity. Reflection-on-action is

used to mean when a student reflects after the problem solving activity. By this scheme, the

kind of abstractive reflection suggested in the previous section is “reflection-on-action.”

Next, I briefly review work in the reflection-on-action category, which suggests that

a reflective reading after problem solving could help students create more abstract and

transferable representations. Following that I describe some work in the reflection-in-action

category, which suggests a useful way to structure the reading.

2.3.1 Reflection-on-action

Reflection-on-action has a large scope (Tchetagni et al., 2007), which considers an entire

solution path or the student’s cognitive state after problem solving. Collins and Brown

(1986) provide a very useful way to subdivide the category of reflection-on-action. They

point out that the computer can promote reflection by making the student’s own thought

processes and learning visible. They suggest several ways this might happen, which are

paraphrased below:

1. Students can compare their own solution process to that of an expert

2. Students can see different portions of a process together, or see aspects of a process

otherwise invisible

3. Students can derive abstractions about the process by comparing multiple performances

simultaneously

1They take these terms from Donald Schön (1983).
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4. Abstractions can be developed in a form that is helpful for developing good metacognitive

strategies

The Sherlock II tutor (Katz et al., 1998) implemented reflection of the third type: the

comparison of multiple performances simultaneously. Among other choices, students were

able to select a replay of their own problem solving sequence, a replay of an expert’s solution,

or a comparison of their own and an expert’s solution.

In Katz et al. (2003), study 1, tutors and students were directed to “reflect-on-action”

after problem-solving sessions with the Andes tutor. The goal of this laboratory study

was to describe student-tutor interaction during reflective dialogs about physics. Among

other things, the human tutors would refer back to the previous problem solving sessions

and offer generalizations of physics concepts and problem solving strategy. Interestingly,

Katz et al. measured the amount of abstraction in these dialogs by counting the incidence

of certain dialog events, including conceptual generalization, conceptual specialization and

strategic generalization. They found that the amount of abstraction in them correlated with

quantitative learning. They considered this a measure of near transfer, because quantitative

learning was measured using problems similar to those that had been tutored in Andes.

In a second experiment, Katz et al. (2003) compared two types of reflection-on-action.

In one condition they asked students reflective questions which were followed by interactive

followup discussions with a human tutor. In a second condition, the questions were followed

by a standard “canned text” response. They found that the canned text reflective response

was just as effective as the interactive personalized response. This study is discussed in more

detail in Section 7.

Similarly, in (Katz et al., 2007), Katz and colleagues also presented reflection questions

after quantitative problem solving with the Andes physics tutor, but this time in a classroom

rather than a laboratory based study. Student answers to these questions were followed by

either an interactive dialog or a “canned” text response. Although reflection was shown to

improve conceptual understanding of physics, there was again no advantage to the interactive

dialog relative to the fixed text. In fact, the text response performed marginally better than

dialog.
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Reflection about the problem solving process has also been shown effective in the context

of classroom active-learning environments. Davis and Linn (2000) compared giving students

“self-monitoring” prompts, which asked them to plan or to reflect on their own learning vs.

“activity” prompts, which encouraged them to complete task steps. They found that while

activity prompts helped task completion, self-monitoring prompts led to greater knowledge

integration.

In later work, Davis (2003) compared reflective prompts with various degrees of speci-

ficity. This work is described in greater detail in Section 7.

Together, these results confirm that reflection-on-action interventions have successfully

increased learning, including in the domain of quantitative (but not qualitative) physics. In

addition, the Katz studies surveyed imply that reflection need not be implemented using

sophisticated personalized feedback. These results imply that reflection-on-action after tu-

toring with Itspoke, implemented using a text, could improve learning. This expectation is

formalized as Hypothesis One in Section 2.7

In this work I add reflection of Collins and Brown’s third type, above, to the Itspoke

tutor. This reflection will be scaffolded by a reading which points out comparable places

in different tutored solution paths, and discusses what aspects are common and which are

unimportant surface details.

2.3.2 Reflection-in-action

The second type of reflection in Tchetagni et al’s taxonomy is “reflection-in-action.” This is

done during problem solving, rather than after, and so is different from the kind implemented

in this thesis. However, an implementation of reflection-in-action by Tchetagni et al. (2007)

offers an example of a general four step reflective dialog frame, which I use to structure the

current work’s reflective reading.

Tchetagni et al. (2007) modify the remedial sub-dialogs used by their Prolog-Tutor to ex-

plicitly follow a four-step reflective dialog frame. The four steps are taken from philosophical

work by John Dewey (1910), and could also apply to on-action reflection:

1. Elicit curiosity
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2. Identify relevant facts of the learning situation

3. Draw a solution by linking facts to principles, concepts, heuristics or past experiences in

the learning domain

4. Evaluate the correctness of the solution

Several aspects of this four-step reflective dialog frame are supported by more recent work

in learning. For example the first step, “elicit curiosity” could provide a benefit similar to

that of impasses, which have been shown to be important in tutoring (VanLehn et al., 2003).

The second step reminds the student of relevant context which may have been forgotten

at the end of problem solving. A contextualization step has also been used in a successful

after-action-review tutor (Pon-Barry et al., 2005). The third step allows for showing how

common principles apply to different sets of specific facts in the tutoring dialogs, which is

similar to abstraction as discussed in Section 2.2. The fourth step involves task-oriented

feedback, which has been shown to increase learning in several studies (Kluger and DeNisi,

1996).

In section 4.3.1, I describe how I used these steps to structure the reflective readings

which were given after tutoring in the Itspoke tutor.

2.4 TEXTUAL COHESION AND LEARNING

As Section 2.2 argued, results from the learning literature suggest that causing students to

induce abstract schema from several examples will be a good way to increase far-transfer

learning. Section 2.3 further suggested that a good way to nurture this type of abstraction

would be through a reflective reading.

In this section, I review work suggesting that certain a property of a reading, namely its

cohesion can affect how well students are able to make inferences and build mental models

from it. Based on these considerations, in Section 2.7 I hypothesize a role for cohesion in

learning from a reflective text.

Cohesion is often defined (e.g.: (Morris and Hirst, 1991)) to be the degree to which text

“hangs together.” Halliday and Hasan (1976) propose that cohesion is generated by certain
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lexical and syntactic features of the text such as word or synonym repetition, which are called

“cohesive ties.” Cohesive ties tend to make relationships in the text, such as logical, causal

or temporal relationships, explicit. In the absence of cohesive ties, the relationships within

a text have to be inferred by the reader. In the current work, as well as in previous papers

(e.g.: (Ward and Litman, 2008)) I use the term “cohesion” to refer to these properties of the

text, and “coherence” to refer to properties of the mental model constructed by the reader.

This is a common usage in the text comprehension literature. For example, O’Reilly and

McNamara apply a similar definition “ the degree to which the concepts, relations and ideas

within a text are explicit” to the term “cohesion” and define “coherence” as a property of

the reader’s comprehension. However there is also some variation in usage. In (McNamara,

2001) textual coherence is defined to be the “extent to which the relationships between ideas

in a text are explicit.” Also McKeown et al. (1992) use the term “coherence” in describing

changes made to increase the cohesiveness of a text. In the following discussion, I will use

the word “cohesion” throughout to make clear when I am referring to properties of a text,

rather than of the mental model of the reader.

Several studies have shown that high cohesion text is, in general, more easily understood

and remembered than low cohesion text. For example, Britton and Gulgoz (1991) increased

textual cohesion by adding information where ever software based on Kintsch’s reading

comprehension model indicated inference was required. They found that students who read

the revised version of the text remembered more, and were able to reproduce significantly

more of the text’s structure.

Similarly, McKeown et al. (1992) found that students who read a text revised for increased

cohesion recalled significantly more, and did better on a post-test, than students who read a

less cohesive version. Also McNamara et al. (1996) experiment 1, found that a more cohesive

text improved recall overall.

More cohesive text has thus been shown to improve comprehension in general, but in a

series of experiments (McNamara et al., 1996; McNamara and Kintsch, 1996; McNamara,

2001; O’Reilly and McNamara, 2007) McNamara and her colleagues have added additional

detail to the picture. Specifically, they have shown that students with low domain knowledge

react differently to textual cohesion than students with high domain knowledge.
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In repeated experiments with several different texts, students with low domain knowledge

have been shown to learn better from texts with high cohesion. Students with higher domain

knowledge learned better from texts with low cohesion. This was interpreted to be because

the low knowledge students are unable to make the inferences necessary to create a coherent

mental representation of the low cohesion texts, and so only learn when given the additional

cues from the high cohesion texts. The high knowledge students, on the other hand, get an

“illusion of knowing” when reading the high cohesion text. They make few new inferences,

and so don’t learn. When reading the low cohesion text, the high knowledge students are

triggered to make inferences by the gaps in the text. They are able to complete these

inferences because of their higher knowledge level, and so they learn. McNamara’s more

recent work (O’Reilly and McNamara, 2007) suggests that the advantage of low cohesion

text is specific to high knowledge readers with low comprehension skill. This is thought to

be because readers with higher comprehension skill actively engage the text, and so draw

inferences and learn even from the high cohesion version. Note however that the interaction

of cohesion and prior knowledge does not appear in every study. For example, Boscolo and

Mason (2003) failed to find such and interaction in their study of motivation and cohesion,

which is described more fully in Section 2.6.

In previous work, I have shown a similar interaction between student domain knowledge

and lexical cohesion, but in tutoring dialog rather than in text (Ward and Litman, 2006,

2008). In this case cohesion was measured as the number of cohesive ties between tutor and

student. Cohesive ties were counted when tutor and student used the same words (or word

stems) in adjacent turns. Like cohesion in text, dialog cohesion was found to be correlated

with learning for the students with lower pre-test scores. This was also interpreted to be

a function of domain knowledge: when students with lower domain knowledge used the

same terms as their tutor, it was evidence that they had made new inferences about their

meaning. When high knowledge students repeated their tutor’s terms, however, it was not

an indication of new inference, because they were already familiar with the domain. This

work is described more completely in Section 6.

In many of McNamara’s studies of the cohesion reversal effect, she has found that low

cohesion text has different effects on different levels of textual representation, understood
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in the sense of VanDijk and Kintsch’s theory of text comprehension (vanDijk and Kintsch,

1983). In that theory, a reader builds several different levels of mental representation while

reading a text. At the shallowest level, a verbatim representation of the words is built,

and quickly decays. At the next level, a propositional model is built of those objects and

relationships which are explicitly mentioned in the text. This representation decays more

slowly than the verbatim representation. At the deepest level is the situation model. This

representation is built from the propositional model using inference and world knowledge.

This model is thought to be more elaborated and to last much longer in memory than the

propositional model.

This situation model representation was shown to be improved by low cohesion text in

several of McNamara’s studies, which is relevant to our interest in robust learning2. As

just described, the situation model is thought to be a richer representation of the text,

which has been elaborated using real world knowledge. In our physics domain, this richer

representation may be useful for solving “far transfer” problems, which are dissimilar to the

tutored problems. Situation models are also thought to decay more slowly than shallower

representations, and so may help with retention, the other aspect of robust learning.

As mentioned above, McNamara attributes the effect of low cohesion text to its influence

on inference during reading. Other researchers, however (Kalyuga and Ayres, 2003), have

suggested an alternative mechanism for the cohesion reversal effect. Kalyuga and Ayres

(2003) suggest that readers with high domain knowledge fail to learn from a highly cohesive

text because such a text conflicts with their pre-existing and relatively well developed domain

schema. They must reconcile the text with their own schema, and this extraneous cognitive

load inhibits learning. This explanation predicts the observed interaction between domain

knowledge and textual cohesion, but also predicts a different level of cognitive load in the

reader. If the “schema interference” explanation is correct, we should see a high cognitive

load for high pre-testers reading highly cohesive text. McNamara’s explanation is that the

high pre-testers don’t learn because they are not triggered to make any inferences from the

2Note, however in two studies (O’Reilly and McNamara, 2007; McNamara, 2001) the effects were instead
seen in more shallow “text base” measures. This was interpreted to be because the materials used in those
studies, which were about cell division, were so difficult that subjects could not form coherent situation
models, and so fell back to text based representations.
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high cohesion text. Under this explanation, cognitive load should be lower when reading the

highly cohesive text than when reading the less cohesive text.

This difference is of importance for developers of tutoring systems, because the two ex-

planations have different implications for how to treat a knowledgeable student. From a

knowledge integration viewpoint (e.g.: (Davis and Linn, 2000; Davis, 2003)) schema recon-

ciliation could be potentially beneficial. It may be possible to help make it more productive

by reducing extraneous sources of cognitive load, or by removing parts of the instructional

material which are simply redundant with the pre-existing schema. On the other hand, the

“illusion of knowing” interpretation suggests that steps should be taken to further engage

the student with the material, perhaps by presenting question-stem prompts (Bell and Davis,

2000) about the text.

This section has described evidence that the cohesiveness of the reflective text used in this

study may impact how well students learn from it. The work of Britton (Britton and Gulgoz,

1991) and others suggests that higher cohesion may improve comprehension of the reflective

text. However, McNamara’s work suggests that low cohesion may be more beneficial for

certain groups of students. These expectations are formalized as Hypotheses Two and Three

in Section 2.7 on Page 21.

In an attempt to distinguish between the two potential explanations for the cohesion

reversal effect, I add two simple measures of cognitive load to the tutoring environment.

The expected effect of cohesion on cognitive load is described in Hypothesis Four, in Section

2.7. The measures of cognitive load are described next.

2.5 COGNITIVE LOAD

Cognitive load theory has been studied as a way to understand how the structure of educa-

tional material affects learning difficulty (Sweller, 1994). Typically, theorists divide cognitive

load into several types. “Intrinsic load” is the load made necessary by the learning task,

“extraneous load” is additional load imposed by instructional design, while “germane load”

is additional load from the construction of mental schema (Paas et al., 2003). Accurately
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measuring these various types of load is important to cognitive load theory.

Various measures of cognitive load have been tested in the literature (e.g. (Rubio et al.,

2004)) including subjective measures which question the learner about load, and performance

measures which measure aspects of a primary or secondary task. Subjective measures include

likert scale questions about task difficulty, while performance measures include reading times.

Schultheis and Jameson (2004) compare reading time to several other measures of cog-

nitive load while reading: subjective self report, P300 amplitude (a measure of the brains

reaction to stimulus) and pupil size. A repeated measures Anova found that all the measures

of cognitive load except pupil size were significantly different between easy and difficult texts.

Schultheis and Jameson (2004) used a 4 point scale to self-report cognitive load, in which

1 was labeled “easy” and 4 was labeled “difficult. ” However, it seems to be common to use

longer self-report scales. Paas et al. (2003) (Table 1) lists 27 cognitive load studies, of which

8 used a 7 point rating scale, and 16 used a 9 point scale (the other 3 used non self-report

methods such as secondary task).

In the current work I use both subjective “self-report” and empirical “reading-time”

measures of cognitive load to examine the relation between textual cohesion and inference.

These measures were implemented in the Linger environment which will be described in

Section 3.2. The measures are described in Section 4.4.2 and evaluated in Section 5.1.3.

2.6 STUDENT MOTIVATION

In this section I review evidence suggesting that student motivation is an important factor

in learning. I first briefly review some related work in detecting and managing motivation

during tutoring. Then, I describe an instrument used to measure motivation, and work

linking motivation to learning both in the classroom and from text. Based on the results

linking motivation to text comprehension, I then suggest measuring motivation in the current

study, as a potential factor affecting the effectiveness of the reflective reading.

The majority of Intelligent Tutoring Systems which implement student models model

only the student’s cognitive state. That is, the system tries to keep track of what the
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student knows, but not of how the student is feeling. In contrast to this approach, expert

human tutors seem to actively manage the student’s emotional state. For example, Graesser

et al. (Graesser et al., 1995) state that a good human tutor “bolsters student motivation,

confidence and self-efficacy while mastering the material.”

Work has begun to also add this capability to computer tutors. For example, del Soldato

(del Soldato and du Boulay, 1995) describes an architecture for tutoring systems which

maintains both cognitive and motivational student models, and reconciles the difference

when their recommendations disagree. Other researchers (e.g.(Litman and Forbes-Riley,

2006b, 2004; Dmello et al., 2005)) have done work suggesting that student emotional state

can be detected during tutoring and so could be used to inform the student model. Also,

Aist et al. (2003) have shown that a system using human-supplied emotional scaffolding

helped students stay on task with an automated reading tutor for a longer period of time.

This suggests that managing student motivation during tutoring could indeed have a payoff

in learning gains.

In other studies, motivation is typically assessed with a questionnaire such as the “Mo-

tivated Strategies for Learning Questionnaire” (MSLQ) developed by Pintrich and DeGroot

(1990). In this questionnaire, Pintrich and DeGroot identify three components of motiva-

tion toward academic performance. The first is a “self-efficacy” component, which reflects

student’s beliefs about their ability to perform the task. Second is an “intrinsic value” com-

ponent, which reflects students’ beliefs about the importance and interest of the task, and

third is an “affective” component, which includes students’ emotional reactions to the task.

Self efficacy was addressed by questions like “I expect to do very well in this class.”

These questions are thought to measure the students’ expectations of success on the task.

Intrinsic value is addressed by questions such as “I think I will be able to use what I learn in

other classes.” These questions are thought to measure one aspect of the student’s expected

reward for expending effort on the task. The affective component measures how students feel

about the task. It was measured by Pintrich and DeGroot using “Test anxiety” questions

(i.e. “I worry a great deal about tests”). Test anxiety was thought to be one of the most

important affective reactions in a school context.

In addition to the three categories of motivation question mentioned above, Pintrich and
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DeGroot included several questions about self regulated learning behavior. In particular,

they asked about students’ self-regulation strategies using questions like “I find that when

the teacher is talking I think of other things and don’t really listen to what is being said.”

Using this instrument, Pintrich and DeGroot found that self-regulation, self-efficacy and

test-anxiety were significant predictors of classroom performance. They also found that

the motivational and self-regulated learning questions were significantly correlated with one

another.

Other work has shown that motivation and interest can also affect text processing. For

example, McDaniel et al. (2000) found that, compared to low-interest stories, high-interest

stories required fewer attentional resources for processing, as measured by a secondary reac-

tion time task. This was presumed to be because students were expending fewer attentional

resources attempting to maintain concentration on the primary reading task. Importantly,

McDaniel et al. found evidence that story interest was affecting the depth of text processing

being done, with more interesting stories being processed more deeply.

A similar result was found by Schiefele (1996). In that study high-interest readers devel-

oped a deeper representation of the text’s meaning than did low interest readers. Subjects

were tested using a “recognition and verification” task, in which they had to decide whether

a series of sentences had been present in the original text. The sentences represented exact

matches, paraphrases, correct inferences or incorrect inferences from the original in such

a way that verbatim, propositional and situation model representations could be assessed

separately. Schiefele found that low interest readers had better verbatim representations,

but that high interest readers built better propositional representations. Surprisingly, no

difference was found for the situation model representation.

In a similar study, Schiefele and Krapp (1996) found that topic interest was significantly

correlated with indicators of deep processing in a free recall task. Subjects with high inter-

est recalled more idea units, elaborations and main ideas than subjects with low interest.

Interestingly, the effect of topic interest was not related to measures of intelligence or prior

knowledge.

A study by Boscolo and Mason (2003) also has particular relevance to our current work.

Boscolo and Mason investigated the interaction between topic knowledge, textual coherence
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and reader’s interest. They were motivated by many of the same results discussed in Section

2.4, which show that textual cohesion can affect depth of processing, and by some of the work

reviewed above showing that level of interest can also affect depth of processing. Students

were randomized by level of interest and prior knowledge, and assigned to one of three texts

that varied by level of coherence. After reading, students were given tasks which assessed

their text base and situation model understanding. Results indicated that performance on

all tasks improved with increasing interest, and also with increasing prior knowledge. They

also found that the effects seemed to be additive, so that students with high knowledge and

high interest did significantly better than the other groups. Surprisingly, they did not find

the “cohesion reversal effect” interaction between knowledge level and textual cohesion.

These studies and others suggest that topic interest can have a similar effect to prior

knowledge, leading to deeper processing and greater recall of a text.

Because these studies have suggested that student motivation is important in tutoring

and also in text comprehension, I include a motivational survey in the current work. This

survey is modeled on Pintrich and DeGroot’s MSLQ. It is described more fully in Section 4.4.3

and evaluated in Section 5.1.1. The expected effect of motivation is described in Hypothesis

5 of the next section.

2.7 HYPOTHESES

The literature discussed in Section 2 above suggests three primary and two secondary hy-

potheses. The three primary hypotheses concern learning gains, and their relation to re-

flection, textual cohesion and prior knowledge. The two secondary hypotheses are more

concerned with the mechanisms underlying the first three sets of results, and use evidence

from cognitive load measures to address the question of whether textual cohesion and moti-

vation affect inference during reading.

Primary Hypotheses

1. Abstractive Reflection improves learning. Based on the research reviewed in Sec-

tions 2.2 and 2.3, I expect students in the reflective reading conditions to learn more than
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those in the no-reflection control, particularly in “far-transfer” measures of learning. I

will also look for interactions between reflection and motivation.

2. Reflective Cohesion Affects Learning. Based on the research reviewed in Section

2.4, I expect that the cohesiveness of the reflective reading will affect its superiority over

a no-reflection control. For most students, I expect high cohesion text to beat control by

a larger margin than low cohesion text. I will also look for interactions between textual

cohesion and motivation.

3. The Impact of Reflective Cohesion on Learning Interacts with Knowledge.

Also based on the work in Section 2.4, I expect that the cohesiveness of the reflective

reading will interact with student knowledge. I expect subjects with high pre-test scores

to learn more from low cohesion reflective text, and subjects with low pre-test scores to

learn more from high cohesion text. I will also look for interactions between knowledge,

cohesion and motivation.

Secondary Hypotheses

4. Textual cohesion affects learning through inference. If the aptitude treatment

interaction in Hypothesis 3 is confirmed, I expect that subjects who learn more from

low cohesion text will also have higher cognitive load when reading that text than when

reading the high cohesion reflective text. This hypothesis follows McNamara’s expla-

nation which was described at the end of Section 2.4. Higher cognitive load would be

evidence that the gaps in the low cohesion text are triggering inference, which is then

causing learning.

5. Motivation affects inference. Engagement with the reflective text may vary by mo-

tivation level. Based on the research described in Section 2.6, I expect higher levels of

motivation to be accompanied by evidence of greater inference while reading the reflective

text
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3.0 EXPERIMENTAL TESTBED

In this chapter I describe the preexisting software used for this experiment. In Section 3.1

I describe the Itspoke tutor. I will briefly explain the origins and features of the version of

Itspoke used in this study, and give a detailed description of the physics problems it tutors.

Then in Section 3.2 I describe Linger, the software used to collect the reading time and

self-reported reading difficulty measures.

3.1 THE ITSPOKE TUTOR

Itspoke (Intelligent Tutoring SPOKEn dialog system) is a spoken dialog tutoring system

which teaches five problems in qualitative physics. At the start of each tutoring session, a

problem statement is presented at the top of the screen (see the screen shot in Figure 1 on

Page 24). The tutor then asks a question, to which the student responds. The tutor walks

through the correct solution to the problem, entering sub-dialogs as necessary to remediate

student incorrect answers. The student wears a head-set, and so can hear the tutor’s spoken

utterance as well as read it on screen, but the student makes only spoken responses.

Itspoke was built by adding a spoken dialog interface to the Why2-Atlas tutoring system

(VanLehn et al., 2002). Why2-Atlas is a text based intelligent tutoring system which interacts

with the student using typed natural language dialog. Tutor questions and responses are

determined using a finite state dialog manager (Rosé et al., 2001), which selects the next

tutor utterance based on a semantic analysis (Rosé, 2000) of the previous student answer.

Why2-Atlas also includes a system for essay analysis using the LCFlex parser (Rosé, 2000),

but the version of Itspoke used in this study does not ask the student to submit essay
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answers, so Why2-Atlas’s essay functionality was not used. Itspoke uses speech recognition

and text-to-speech software to convert Why2-Atlas’s text interactions to and from speech.

The version of Itspoke used in this study is identical to the control condition of Forbes-Riley

and Litman (In press.). Besides removing the essay, this version differs from the original

Why2-Atlas/Itspoke systems in that it has been reimplemented using the TuTalk (Jordan

et al., 2007) dialog system. In addition, in this version only the tutor utterances are displayed.

Figure 1: The Itspoke user interface

Why2-Atlas has an extensive evaluation history, and has been tested in several configu-

rations. In experiment 1 of VanLehn et al. (2007) a version of Why2-Atlas was fielded which

tutored ten problems in qualitative physics. In other experiments (e.g., exp. 5 of VanLehn

et al. (2007)) a reduced set of only five of the problems was used, so the pre- and post-test

questions were also reduced to include only the questions more closely related to the tutored

material. Instead of 40 questions, that study used only 26 questions.
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These five problems and their solutions (as embodied in Why2-Atlas’s original “ideal

essay”) are briefly summarized below.

• Elevator-Keys

Problem statement: “Suppose a man is in a freefalling elevator that has nothing

touching it (you should ignore air resistance). The man is holding his keys motionless

right in front of his face. He then lets go. He doesn’t toss them up or throw them down;

he just releases his grip on them. What will be the position of the keys relative to the

man’s face as time passes?”

Solution Steps: ”Since the man is holding the keys motionless while falling, the man

and the keys must have the same velocity when he drops them. The elevator is falling

freely. Consequently, everything in it, including the man and the keys, are falling freely

vertically down. The man and the keys will, therefore, have the same free-fall accel-

eration g. Since the man and the keys have the same initial velocity and the same

acceleration, both will have the same velocity at all times. Consequently, both have the

same displacement from the point of release at any time during the fall. Thus, the keys

will remain in front of the man’s face at all times throughout the fall.”

• Plane-packet

Problem statement: “An airplane flying horizontally drops a packet when it’s directly

above the center of an empty swimming pool, where a bright red target is painted. Does

the packet hit the target? Assume air resistance is negligible.”

Solution Steps: ”The plane has a horizontal velocity when it drops the packet. The

packet will have the same velocity as the plane at the instant of the drop. Thus at the

instant of the drop, the packet has a horizontal velocity component (equal to the plane’s

horizontal velocity) and a vertical velocity component of zero. Neglecting air resistance,

earth’s gravity is the only force on the packet after it is released. This force is in the

vertical direction and causes a downward vertical acceleration of the packet. Thus, the

vertical component of its velocity keeps increasing, and the packet hits the ground after

some time. During this period of time, the packet keeps traveling along the horizontal

due to its horizontal velocity component. Therefore, it has a horizontal displacement
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from the point of release when it hits the ground. Since the packet was dropped right

above the target, it will miss the target by the amount of its horizontal displacement.”

• Earth-Sun

Problem statement: “The sun pulls on the earth with the force of gravity and causes

the earth to move in orbit around the sun. Does the earth pull equally on the sun?“

Solution Steps: ”The force of gravity between the earth and the sun results from their

interaction resulting from the gravitational pull between them. According to Newton’s

third law of motion, if a force is exerted by one body on a second body, the second body

must exert a force of equal magnitude and opposite direction on the first body. This

law is universal and is obeyed whenever a force is exerted. The sun, therefore, must

experience a force of gravity due to the earth that is equal in magnitude and opposite in

direction to the force of gravity on the earth due to the sun. ”

• Pumpkin

Problem statement: “Suppose a man is running in a horizontal line at a constant

velocity. He tosses a pumpkin vertically up while he is running. Where will the pumpkin

land relative to the man? Assume that air resistance is negligible.”

Solution Steps: ”The man is holding the pumpkin and running with a constant hori-

zontal velocity. In order to throw the pumpkin vertically up, he exerts an upward vertical

force on the pumpkin. The downward force of gravity is always present but the force

applied by the man is greater such that there is a net upward vertical force on the pump-

kin while being thrown. This net force causes the pumpkin to accelerate upward and

acquire an upward vertical velocity at the end of the throw. After the release, the only

force acting on the pumpkin is the downward vertical force of the earth’s gravity. This

force decelerates the upward velocity of the pumpkin, eventually bringing it to zero, at

which time the pumpkin begins to fall. The acceleration due to gravity is ever present,

hence the downward velocity of the falling pumpkin keeps increasing until it lands. Since

the vertical force of gravity is the only force acting on the pumpkin after the throw,

there is no force acting on it in the horizontal direction. Thus, the pumpkin’s horizontal

velocity component, which is equal to the man’s velocity at the time of throwing it, will

remain constant. He continues to run with the same constant horizontal velocity, so the
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pumpkin and the man have the same velocity along the horizontal at all times during

the flight of the pumpkin. Consequently, the man and the pumpkin have the same dis-

placement along the horizontal at all times during the flight of the pumpkin. Therefore,

the pumpkin will land in the man’s hands when it reaches that level.”

• Car-Truck

Problem statement: “Suppose a lightweight car and a massive truck are driving to-

wards each other in a straight line. They hit a patch of frictionless ice and have a head-on

collision. Upon which vehicle is the impact force greater? Which vehicle undergoes the

greater change in its motion? (As usual, assume air resistance is negligible)”.

Solution Steps: ”The car and the truck will both experience a force due to the impact.

The force experienced by each vehicle results from the interaction of touch between them.

These two forces resulting from the interaction are the action/reaction pair of Newton’s

third law of motion. In terms of the third law, the force on the truck exerted by the car

and the force on the car exerted by the truck will be equal in magnitude and opposite

in direction. According to Newton’s second law of motion, the acceleration of a body is

equal to the force acting on it divided by its mass. Since the magnitude of the forces of

impact on both the vehicles are the same, the acceleration of the car will be much greater

than that of the much more massive truck. A larger magnitude of acceleration implies a

larger rate of change of velocity, which means greater change in motion. Therefore, the

car undergoes a greater change in its motion.”

In early studies, Why2-Atlas was used to evaluate the effectiveness of a typed natural

language interface in tutoring, and to compare learning gains from tutoring to those from

reading an expository text. In later studies, Itspoke was used to evaluate the effect of

porting Why2-Atlas’ typed interface to a spoken one. In the current study, Itspoke is used to

provide tutoring over five problems in qualitative physics, which are then (in the experimental

conditions) compared with each other in the post-tutoring reading.
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3.2 THE LINGER INTERFACE

All readings were presented using the Linger (Rohde, 2003)“tap-to-read” interface. Linger is

a platform for language processing experiments which presents text in incremental units (an

increment can be at the word, sentence or text-block level), and records the reading time for

each unit.

The Linger interface is shown Figure 2 presenting a block of text from one of the reflective

readings. After reading this block, the student will tap a key and Linger will present the next

block of text. Linger records the time between presenting the text and the next tap-for-more

in milliseconds.

In addition, Linger allows a variety of questions to be asked following each text presen-

tation. In the current study, I used Lingers likert scale implementation to ask students how

hard or easy the previous text had been to read. The Linger interface is shown presenting

this question in Figure 3.

Both of these measures were used to estimate cognitive load, as will be described in

Section 4.4.2.
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Figure 2: Linger Tap-to-read Interface
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Figure 3: Linger difficulty rating screen
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4.0 STUDY DESIGN

In this section I describe the experimental procedure, materials and measures used in this

study. Section 4.1 provides an overview of the experimental conditions and procedure. Sec-

tion 4.2 describes how participants were recruited and selected. Section 4.3 describes the

reflective texts developed for the study. Section 4.4 describes the measures of learning and

of cognitive load, as well as the motivational survey used for the study. Finally, Section 4.5

describes the statistical methods used for analysis.

4.1 OVERVIEW

Table 1 on Page 32 outlines the experimental procedure designed to test the hypotheses just

described in Section 2.7. All subjects read and signed a consent form, provided background

information such as high school GPA and SAT scores, read a non-physics “warm-up” reading,

then read introductory material about physics. After reading the introductory material, they

took a pre-test to measure their domain knowledge before tutoring. The pre- and post-tests

are described more fully in Section 4.4.1. Each subject’s pre-test score was compared to the

distribution of scores on similar tests used in previous studies. Subjects whose scores fell in

the middle third of the expected range were dismissed at this point. Subjects who fell in the

upper or lower third continued to the next phase of the study, and were recorded as “high”

and “low” pre-testers, respectively. Extreme groups design is described more fully in Section

4.2.

Next, the subjects took a motivational survey (described in Section 4.4.3), then engaged

the Itspoke system (described in Section 3.1) in interactive tutorial dialogs which covered
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five physics problems. The Itspoke system was identical for all subjects. After tutoring there

was a second motivational survey, which was identical to the first except for minor changes in

tense. After this the subjects read a post-tutoring text which varied by condition. After the

post-tutoring text was a post-test, followed one week later by a delayed post-test. Retention

testing with a 1 week delay has also been used in studies with the Why2-Atlas tutor (VanLehn

et al., 2007).

The study contained a control condition and two experimental conditions. In the control

condition, subjects re-read a shortened version of the introductory physics text (the “again”

condition). In the high cohesion reflection condition (“refHigh”), subjects read a reflective

text with high cohesion, and in the low cohesion reflective condition (“refLow”), subjects

read a reflective text with low cohesion. These texts will be described more fully in Section

4.3.1.
Control High Cohesion Low Cohesion

(“again”) (“refHigh”) (“refLow”)
non-physics non-physics non-physics

warmup reading warmup reading warmup reading
pre-reading pre-reading pre-reading

pre-test pre-test pre-test
Motivation Survey Motivation Survey Motivation Survey

tutoring dialogs tutoring dialogs tutoring dialogs
Motivation Survey Motivation Survey Motivation Survey

Shortened Reflective Reading Reflective Reading
Pre-reading HIGH Cohesion LOW Cohesion

Post-test Post-test Post-test
Delayed Delayed Delayed
Post-test Post-test Post-test

Table 1: Study Design. The portion that differs between conditions is shown in bold.

All readings were presented on screen using Linger’s “tap-to-read” interface, as shown

in Section 3.2. Linger also collected the motivation survey. The pre- and post-tests were

administered using a web interface, and their results recorded in a relational database.

Hypothesis one, that adding a reflective reading improves learning, was tested by combin-

ing the two reflective reading conditions into one “ref” condition, and comparing its learning

gains to those of the control “again” condition. I expected that this combined reflective
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reading condition would show larger learning gains than the control.

Hypothesis two, that reflective cohesion affects learning, was tested by comparing learn-

ing for all students between all three experimental conditions: “again, refHigh or refLow”.

I expected students in the high cohesion reflective condition to beat the control by a higher

margin than those in the low cohesion reflective condition.

Hypothesis three, that reflective cohesion interacts with knowledge, was tested by com-

paring learning gains of high vs low knowledge subjects in the two reflective reading con-

ditions. I expected that high knowledge subjects would learn more from the low cohesion

reflective text, and that low knowledge subjects would learn more from the high cohesion

reflective text. The High and Low knowledge groups (“hiPre” and “loPre” respectively) were

determined based on pre-test scores as described in Section 4.2.

Hypothesis four was that the aptitude treatment interaction predicted in Hypothesis

three would be caused by differing amounts of inference when reading the high vs low cohesion

text. This hypothesis was tested by comparing the cognitive load measures described in

Section 4.4.2. I expected students who learned more from the low cohesion text to also

have higher cognitive load when reading that text than when reading the high cohesion text.

Similarly, I expected the students who learned more from the high cohesion text to have

higher cognitive load when reading that text than when reading the low cohesion text.

Hypothesis five, that student motivation affects inference from text, was tested by com-

paring measures of cognitive load between different levels of student motivation. I expected

more highly motivated students to engage the text more actively, to make more inferences,

and so have a higher cognitive load. In addition, I investigated using motivation level as a

covariate when testing the primary hypotheses, above.

4.2 PARTICIPANTS

Because hypotheses two and three involved comparing learning gains between high and low

pre-testers, our study used an “extreme groups” design (Feldt, 1961), to increase the power

of this comparison. Extreme groups design is very common in the psychological literature,
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and was also used in the Boscolo and Mason study (Boscolo and Mason, 2003) described in

Section 2.

I established high and low thresholds by examining data collected from previous studies

with the Itspoke tutor in 2005 and 2008. Thresholds were designed to divide the subject

pool into roughly even thirds, assuming the distribution of pre-test scores would be the same

as in previous years.

After each student’s pre-test, a selection score was calculated based on the subset of 26

questions which had also been used in 2005 and 2008 (the 26Q “near transfer” questions).

Subjects whose selection scores fell between the high and low thresholds were paid (or given

course credit) and dismissed without moving on to tutoring. These thresholds produced

fairly even splits on the new data.

In total 166 students were recruited by flyer, by advertisement during an undergraduate

psychology course, and by inclusion in the psychology subject pool. Of those 166, 40 were

dismissed as middle-third pre-testers and not used in the study. An additional 12 were

removed because they did not return for the delayed post test, 9 were removed because they

did not provide complete background information (missing SAT scores or high school gpa),

6 were removed because of incomplete or missing pre-tutoring motivation surveys. This left

a total corpus of 99 subjects of which 45 were low pre-testers and 54 were high pre-testers.

Subjects were assigned randomly to experimental conditions, which resulted in an allocation

of 33 subjects to the control condition, 32 to the high cohesion condition, and 34 to the low

cohesion condition. 47 subjects were paid for their participation and the remainder were

taken from the psychology subject pool. The distribution of subjects among categories and

conditions is shown in Tables 14, 15 and 16 on page 57.

Median Mean N
Low pre-test .385 .374 45
High pre-test .692 .682 54

Table 2: Pre-test scores for high and low pre-testers

Table 2 shows the median and mean pre-test scores on the 26Q subset for the accepted

high and low pre-testers. A two sided t-test shows that pre-test scores were significantly
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different between pre-test groups both for the 26Q subset used for selection (p < 2.2e-16)

and also for the full set of 44 questions (p < 2.2e-16).

4.3 MATERIALS

4.3.1 Reflective Texts

Section 2.2 reviewed literature which suggested that one key to transfer was creating a more

abstract schematic representation of the learned material. The literature also suggested that

an effective way to create such an abstract representation would be to explicitly compare

two or more analogs, noticing which features were common between them and which were

incidental surface details. Section 2.3 reviewed literature from reflection research, which

suggested that reflection after problem solving was a good way to generate these abstracted

representations. It suggested in particular helping students derive abstractions about the

problem solving process by comparing multiple problem solving performances simultaneously.

Based on these considerations, I added reflective readings to the Itspoke tutor. In general,

the readings concentrated on places in which the same physics principle had been applied

in different situations, and on similarities in the overall problem solving approach between

problems. The readings were structured to roughly follow the four steps described by Tch-

etagni et al. (2007), which were mentioned in Section 2.3.2. They first elicited curiosity by

asking a question about the similarities of the tutored problems. They then reviewed rele-

vant parts of several of the problems, pointing out which were common and essential, and

which were unimportant. Finally, they (where possible) “evaluated” the correctness of the

commonalities derived by showing how they would work in another of the tutored problems.

The rest of this section demonstrates how a portion of one reflective text was developed,

based on how Newton’s third law is discussed in two of the Itspoke tutored problems. In the

Earth-Sun problem Newton’s third law is used to motivate the idea that the earth pulls on

the sun with exactly the same force as that with which the sun pulls on the earth (but in the

opposite direction). In the car-truck problem, it is used to motivate the idea that the force
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of the car hitting the truck is the same as that of the truck hitting the car. The following

excerpts show how the tutor describes these points in two example dialogs:

From Earth-Sun: Okay. Newton’s third law says every force has an equal and opposite
reaction force. That is, if there is a force acting on object A due to object B, then there is
also a force acting on B due to A. These two forces have the same magnitudes but opposite
directions. Moreover, they are the same type of force. If one is a gravitational force, then
so is the other. If one is a frictional force, then so is the other. In this case, there is a
gravitational force on the earth due to the sun. Is there a gravitational force on the sun
due to the earth?

From Car-Truck: Alright. Newton’s third law says that every force has an equal and
opposite reaction force. That is, if there is a force acting on object A due to object B, then
there is also a force acting on B due to A. The two forces have the same magnitude and
opposite directions. So in our problem, upon which vehicle is the impact force greater?

These points were compared in the reflective reading by first reminding the student

that they had occurred in the dialogs, then rhetorically asking what they had in common.

The reading then pointed out that they both required the use of Newton’s third law to

find action/reaction pairs. Then the cases were contrasted by pointing out that the forces

involved operate along different axes (vertical in earth-sun and horizontal in car-truck).

Another point of contrast was that that while they were different forces in each case (gravity

in the case of earth-sun and impact in the case of car-truck) the important point is that both

forces in the same action/reaction pair have to be the same type of force. The reading also

reminded the student that the point of finding an action/reaction pair in both cases was to

show that their magnitudes were equal. Finally, the reading “evaluated” the correctness of

these points by applying them in a third situation, the Plane-Packet problem. To the extent

possible, each point in the reading was constructed this way.

For the reasons discussed in Section 2.4 on Page 13, both “high” and “low” cohesion

versions of the reflective text were written. Both versions were written to contain similar

rhetorical questions, and to have roughly the same semantic content and the same general

structure, however the high cohesion version was constructed to contain fewer “inferential

gaps.”

The high and low cohesion versions were constructed using similar methods to those used

by McNamara in generating her texts. Examples of her “heart disease” text are shown in the
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Appendices. Appendix D.1 shows her high cohesion version, and Appendix D.2 shows her low

cohesion version. The high cohesion version was written to remove places in which inference

was required to understand the low cohesion text. For example, referring expressions were

made explicit, and causal and logical relations that were only implied in the low cohesion

version were spelled out. Examples of this process can be seen by comparing the first two

paragraphs of each text.

Similar changes were made to make “high” and “low” cohesion versions of the reflective

texts written for our experiment. The next two listings show high and low cohesion excerpts

from the part of the reflective texts that discusses how Newton’s Third Law was used in the

tutored problems.

High cohesion excerpt: Newton’s Third Law
Newton’s Third Law
In the Car-truck problem we wanted to compare the relative accelerations of the car and
truck. Therefore, we first had to compare the impact force of the car on the truck with the
impact force of the truck on the car. Similarly, in the Earth-Sun problem we were asked to
compare the force of the Sun’s pull on the Earth with the force of the Earth’s pull on the
Sun. Do you remember which of Newton’s Laws was useful in these two problems?
In these two problems we used Newton’s Third Law to show that the forces involved in an
action/reaction pair had the same magnitude but acted in opposite directions to each other.
An action-reaction pair is formed whenever one object exerts a force on a second object.
Newton’s Third Law says that when one object exerts a force on a second object, there
is an equal and opposite reaction force from the second object back onto the first object.
In addition, the type of force is always the same for both objects in the action/reaction
pair. For example it was gravitational force on both Earth and Sun, and impact force on
both car and truck. The two forces in an action-reaction pair can operate along any axis,
but always have opposite directions to each other. For example, the earth pulled in the
opposite direction than did the sun (vertically down vs vertically up), and the car’s impact
force was opposite to the truck’s (horizontally right vs horizontally left).
In both the Car-truck and Earth-Sun problems, using Newton’s Third Law allowed us to see
that the forces acting on each object in the action/reaction pair had the same magnitude,
even though the objects in the pair had different masses. The Earth pulls as hard on the
Sun as the Sun pulls on it, even though the Sun is more massive. Similarly, the car hit the
truck with as much force as the truck hit it, even though the truck had more mass.
You can use the idea of an action/reaction pair to analyze any problem in which one object
exerts a force on another object. For example in the Plane-Packet problem, the Earth
exerts a gravitational force on the packet, and the packet accelerates downward toward the
Earth. Does the Earth also accelerate toward the packet? Yes. Earth and packet form
an action/reaction pair, linked by gravitational attraction. The packet pulls on the Earth
with gravity as hard as the earth pulls on it. The Earth therefore accelerates toward the
packet, although less noticeably because of its greater mass.
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Low cohesion excerpt: Newton’s Third Law
In the Earth-Sun problem we had to compare the strength of the Sun’s pull on the Earth
with that of the Earth’s on the Sun. In the Car-Truck problem we had to compare the
force of the car’s impact on the truck with that of the truck on the car. Do you remember
which of Newton’s Laws was useful in these cases?
In both situations we used the Third Law to show that the forces involved in an ac-
tion/reaction pair had the same magnitude but acted in opposite directions. An action-
reaction pair is formed whenever one object exerts a force on another object. Newton’s
Third Law says this force will have an equal and opposite reaction force. The type of force
is always the same for both objects in the pair. It was gravitational on both Earth and
Sun, and impact on both car and truck. They can operate along any axis, but always have
opposite directions to each other. For example, the earth pulled in the opposite direction
of the sun (vertically up vs vertically down), and the car’s impact force was opposite to the
truck’s (horizontally right vs horizontally left).
In both of these situations, using Newton’s Third Law allowed us to see that the forces
acting on each object in the action/reaction pair had the same magnitude, even though the
objects in the pair had different masses. The Earth pulls as hard on the Sun as the Sun
does on it. The car hit the truck with as much force as the truck hit it, even though their
masses were very different.
You can use the idea of an action/reaction pair to analyze any situation in which a force
is exerted. After the plane releases it, the force of gravity becomes the net force, and
the packet accelerates downward toward the Earth. Does the Earth accelerate toward the
packet? Yes. Earth and packet form an action/reaction pair. The packet pulls on the
Earth as hard as the earth pulls on it. The Earth therefore accelerates toward the packet,
although less noticeably because of its greater mass.

Notice first that the high and low cohesion versions of the text are semantically very

similar. Each point expressed in the high cohesion version is also expressed in the low cohe-

sion version, but there are many differences in how the ideas are expressed. In general, the

high cohesion version uses more consistent referring expressions and makes the relationships

between ideas more explicit. For example, the high cohesion version uses “problem” through-

out, while the low cohesion version also uses other referring expressions such as “case” or

“situation.” Also, the low cohesion excerpt opens by saying that we wanted to compare the

strengths of the Sun and Earth’s gravitational pull, but doesn’t say why. The high cohesion

version says why. The high cohesion version uses bridging expressions such as “similarly” or

“for example” that make the relationship between adjacent ideas more explicit, while the low

cohesion example forces the reader to infer these relationships. The high cohesion version

also includes topic headings, to make the overall structure of the text more clear. In the low

cohesion version, this structure had to be inferred.
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These changes make the high cohesion versions longer than the low cohesion versions.

The top four lines of Table 3 show word counts for four texts used by McNamara in her

cohesion work. As can be seen, in each case the “low” cohesion version has a lower word

count than the corresponding “high” cohesion version. On average, her low cohesion texts

are only 73% as long as her high cohesion texts. The bottom rows of Table 3 show word

counts for the high and low cohesion texts developed for this study. For these texts the

low cohesion version is 71% as long as the high cohesion version, right in the middle of

McNamara’s range.

The read-again control, which is reproduced in the second part of Appendix A.1, had 2013

words. It was a shortened version of the introductory reading, from which some content had

been removed to control for length relative to the reflective readings. Sections were selected

for removal if they covered concepts not in the reflective readings, with the result that all the

post-test readings covered a similar set of physics topics. Note that this process of reduction

left the length of the read-again text right in the range between the high cohesion and low

cohesion reflective text’s word counts.
McNamara Text Word Counts

Low High diff Low/High
Cell Division 650 902 252 0.72

Air War 1036 1300 264 0.80
Heart Disease 682 1052 370 0.65

Traits of Mammals 590 817 227 0.72
Reflective Reading Word Counts
Low High diff Low/High

Qualitative Physics 1541 2161 620 0.71

Table 3: Comparing Word Counts: High vs Low Cohesion Texts

Having written “high” and “low” cohesion versions of the reflective texts I verified that

their cohesiveness really varied in the intended way by using the CohMetrix tool (Graesser

et al., 2004). CohMetrix produces a wealth of interesting output, but a great deal of it is

not clearly relevant to my design goals. The full CohMetrix output is reproduced in Table

41 in Appendix B. Selected measures that seem most relevant are shown in Table 4 below.

My design goals in designing these texts were to vary the degree to which they used con-
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Measure Low High
Description Cohesion Cohesion

CREFC1u ’Prop. of content words that overlap between adj. sent.’ 0.11 0.16
LSAassa ’LSA, Sentence to Sentence, adjacent, mean’ 0.29 0.39

LSApssa ’LSA, sentences, all combinations, mean’ 0.3 0.39
LSAppa ’LSA, Paragraph to Paragraph, mean’ 0.41 0.51

CAUSVP ’Incidence of causal verbs, links, and particles’ 54.53 56.38
CONADpi ’Incidence of positive additive connectives’ 31.71 35.63

CONTPpi ’Incidence of positive temporal connectives’ 8.24 9.92
CONCSpi ’Incidence of positive causal connectives’ 15.22 20.75
CONLGpi ’Incidence of positive logical connectives’ 18.39 26.61
CONLGni ’Incidence of negative logical connectives’ 8.24 9.47

Table 4: Selected CohMetrix output for high and low cohesion physics texts

sistent expressions and the extent to which they made various logical and causal relationships

explicit. The first row in Table 4 measures the extent to which content words are re-used in

adjacent sentences. A higher number confirms that our high cohesion text is actually more

cohesive along this dimension. Similarly, the LSA measures in rows 2, 3, and 4 measure

how semantically similar adjacent portions of the text are. For each of these measures my

high cohesion text is more cohesive than the low cohesion version. The six measures at the

bottom of Table 4 measure the extent to which various types of relationship are spelled out

in the text. For each of these measures, my high cohesion text again scores higher than the

low cohesion text. In general, the CohMetrix tool seems to confirm that the cohesiveness of

my high and low cohesion texts varied in the way we intended.

The full post-reading texts for the “again,” “refHigh” and “refLow” conditions are re-

produced in Appendices A.2, A.3 and A.4. The baseline and introductory pre-reading texts

are reproduced in Appendix A.1.
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4.4 MEASURES

4.4.1 Learning Measures

As described in Section 2.3, a major benefit from metacognitive activities such as abstraction

and reflection may be in “far transfer” learning. To investigate the effect of reflection on

far transfer we exploited the fact that different subsets of pre- and post-test questions had

previously been created for use with different versions of the Why2-Atlas system.

Section 3.1 described how Itspoke implemented the five problems that had been used in a

reduced version of Why2-Atlas. That version of Why2-Atlas had also removed 14 questions

from the pre- and post-tests, only using 26 questions that were judged to be more related to

the remaining problems. We use this 26 question (26Q) set as a measure of near transfer. To

the 14 questions that had been removed, we add 4 new questions designed specifically to be

dissimilar to the tutored problems, and use the resulting 18 question set (18Q) to measure

far transfer learning. All of the questions involve using Newton’s Laws or problem-solving

principles to reason about force and motion problems, but they differ in how similar they

are to the tutored problems.

In the 26Q “near transfer” set, surface features are often changed, but underlying problem

situations are the same as in the tutored problems. For example as described on page 26

of Section 3.1, one of the tutored problems involves a man running at a constant horizontal

velocity and throwing a pumpkin straight up. The student is expected to reason that the

pumpkin has the same horizontal velocity as the man, and therefore the same horizontal

displacement after the toss, and will land back in the man’s hands. Compare that tutored

problem with the situation described in the following question:

A man is standing on a train that is moving horizontally in a straight line at a constant
speed. He throws a steel ball straight up. Immediately after he releases the ball, what is
the relationship between the horizontal speed of the man and the horizontal speed of the
ball? (Assume air resistance is negligible)

This question is isomorphic to part of the pumpkin problem. A majority of the questions

in the 26Q question set are isomorphic to a tutored problem in this way.

In contrast, the 18Q set tests the same physics principles as the “near transfer” questions,
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but they are almost entirely non-isomorphic to the tutored problems. For example, one of

the far transfer questions reads like this:

The American bobsledders have a bobsled that weighs 300 N. The Jamaican’s bobsled
weighs 280 N. If the bobsledding teams are equally strong (i.e., they can push on the bobsled
with the same force) and push the sled for the same period of time until they jump into it,
which team’s bobsled will be moving faster at the moment they jump into it?

This question tests physics concepts similar to those used in the tutored force-and-motion

problems, however the structure of the question is different from any of the tutored problems.

This question asks the student to use Newton’s Second Law to reason that since the forces

on the bobsleds are the same, the less massive bobsled will accelerate faster. Newton’s

Second Law is also used in several tutored problems, the most similar probably being the

“car-truck” problem. In that problem it was used to deduce that the car would have a

greater acceleration than the truck. Although the Second Law is used the same way, the

many differences in the problem situation (push vs impact force, for example) are sufficient

to classify this as a “far transfer” problem.

I use these question sets to measure “overall” learning (using the whole 44Q set), “near

transfer” learning (using the 26Q set) and “far transfer” learning (using the 18Q set) for both

immediate and delayed post-tests. A delayed post-test was also given to measure the long

term retention aspect of robust learning, as described in Section 2. The immediate post-test

contained questions that were isomorphic to those on the pre-test, while the delayed post-

test contained the same questions as the pre-test. This gives us six measures of learning:

“overall,” “near,” “far,” “delayed overall,” “delayed near,” and “delayed far.”

Each of these six measures is reported as Normalized Learning Gain (NLG). NLG is

computed as (post-pre)/(1-pre) where “post” is percentage correct on the post-test and

“pre” is percentage correct on the pre-test. NLG is an instance of a POMP (Percentage Of

Maximum Possible achievement) score as described by Cohen et al. (1999) which expresses

learning gains as a percentage of the amount remaining to be learned after the pre-test. Hake,

when discussing the use of pre and post tests in physics education (Hake, 2007), argued that

this measure of average normalized gain was “a much better indicator of the extent to which

a treatment is effective than is either gain or posttest” (pg 9). Perhaps for this reason, NLG
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is a commonly reported measure in tutoring research (e.g.: (Graesser et al., 2003) 1.

The full set of post-test questions is reproduced in Appendix C. For reference, the ques-

tions in the 18Q set are marked “18Q(far).”

4.4.2 Cognitive Load Measures

As mentioned in Section 3.2, the readings were presented in a series of text blocks. Reading

time was recorded for each block using Linger, and after each block the student was presented

with a 1 to 7 likert scale asking how hard the block had been to read.

Linger presents a wide range of options in how to present textual material. It can be

presented word by word, line by line or block by block. In addition the previous words or

lines presented can disappear or remain on screen after the next ones are presented. We

chose among these options using an informal usability study.

A major design goal was to make data collection as unobtrusive as possible, and to erect

minimum barriers to text comprehension. Presenting text word-by-word or line-by-line made

it extremely hard to comprehend. Similarly, using smaller block sizes made comprehension

difficult, because when reading certain topics the original referent would often disappear

before the reader had finished its explanation.

After experimentation, it was decided to size blocks of text to match individual topics

as much as possible. The number of blocks per text and mean number of words per block

are presented in Table 5. Note that the median block size for the high cohesion reflective

text is larger than for the low cohesion text. The high and low cohesion texts had the same

topic structure and therefore the same number of blocks, with the exception that one of the

longer blocks had to be split between two screens in the high coherence version, resulting in

one extra block of text.

I first describe how the self-report “hardness” ratings collected after each block were

turned into cognitive load measures. The per-block self-reports were converted by first

taking the mean of the responses over all the text blocks in a reading. Separate means were

calculated for the non-physics “warm up” reading, for the introductory physics reading,

1See also (Jackson et al., 2004) where this measure is called an “estes score,” and the term “normalized
learning gain” is used for a different measure (post− pre/SDpre).
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Number Mean Words
Text of Blocks per Block

non-Physics warmup 3 190.7
pre-reading 15 135.1

again 11 184.7
refLow 6 260.3
refHigh 7 273.1

Table 5: Mean block sizes for each text.

and for the post-tutoring reading. This resulted in three hardness ratings for each student.

Measures were also calculated using the median rather than the mean.

Using these measures in their raw form carried the risk that there might be some bias in

self-reporting between subjects, beyond differences caused by text difficulty. In other words,

some subjects might just tend to rate all texts harder than other subjects. I corrected for

this by subtracting the rating on the target text from the rating on a baseline text, with the

baseline selected according to the hypothesis being tested. The underlying difficulty rating

is on a 1-to-7 scale, with 1 being “extremely easy” and 7 being “extremely hard.” So, if the

post-tutoring reading is generally judged to be harder than the baseline this number will be

positive. A higher number on the self-report measure indicates a higher cognitive load.

In Section 5.6.1 I use this self-report measure to test the hypothesis that differences in

textual cohesion affect cognitive load. Because the important variable in this comparison was

the text’s cohesion, rather than its content, I used the physics pre-reading for the baseline

measure.

The second measure of cognitive load was based on per-block reading speeds. Linger’s

tap-to-read interface presented blocks of text, and recorded the number of milliseconds be-

tween when the student was presented the text and tapped for the next block. The elapsed

time was divided by the number of words in the block to arrive at a words-per-minute (WPM)

reading speed. I again averaged the reading speeds over all the blocks in a text to arrive

at a mean reading speed for each text. Separate means were calculated for the non-physics

“warm up” reading, for the introductory physics reading, and for the post-tutoring reading.
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This resulted in three reading speed ratings for each student. Measures were also calculated

using the median rather than the mean.

As with the self-reports, using these measures in their raw form carried the risk that

there might be some bias in reading speed between subjects, beyond that caused by text

difficulty. I corrected for this by subtracting the speed on the target text from the speed on a

baseline text, with the baseline selected according to the hypothesis being tested. Following

the literature (i.e. (Schultheis and Jameson, 2004)), I assume that students read easy texts

faster than hard texts. Therefore, a higher number on the baseline-corrected reading speed

measure indicates a lower cognitive load. For example, assume a student read the non-

physics baseline text at 200 words per minute (WPM). After tutoring, this student read

the post-tutoring reading at 300 wpm (students often read the final reading more rapidly

than the first one, possibly because it was the third time they had been exposed to the

material: first in the physics pre-reading, second during tutoring, and third from the post-

tutoring reading). The difference in reading speed for this student would be 300-200 = 100

wpm. Now consider a second student whose difference in reading speed was 300-250 = 50

wpm. This student showed a smaller increase in reading speed relative to the baseline, which

suggests a relatively higher cognitive load than the first student.

Similarly to the self-report measure, the baseline measure was selected according to

the hypothesis being tested. In section 5.6.2 I use the reading-speed measure to test the

hypothesis that motivation affects cognitive load when reading. Because the important

variable in this comparison is motivation toward physics, I use the non-physics warm-up

reading as a baseline. Subtracting the baseline adjusts for individual differences in reading

speed, so that the resulting number shows more clearly the effect of any difference in topic

motivation.

4.4.3 Motivational Survey

The potential effects of motivation on text processing and learning were reviewed in Section

2. In this section I describe the motivation instrument used in this study. Section 5.1.1

validates the instrument on our collected data.
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As mentioned in Section 2, Pintrich and DeGroot (1990) developed the “Motivated

Strategies for Learning Questionnaire (MSLQ)” for measuring motivation. The MSLQ in-

cludes questions which measure, among other things, the students’ self-regulation behavior,

attitudes about self-efficacy, and beliefs about the intrinsic value of the task. In this work I

use a reduced version of the MSLQ, which is also patterned on an instrument used in pre-

vious work by Ido Roll (Roll, 2009)2. The instrument used in this study is shown in Figure

4.

Please read the following statements and then click a number on the scale that best matches
how true it is of you. 1 means “not at all true of me” whereas 7 means “very true of me”.

1. I think that when the tutor is talking I will be thinking of other things and won’t really
listen to what is being said.

2. If I could take as much time as I want, I would spend a lot of time on physics tutoring
sessions.

3. I think I am going to find the physics tutor activities difficult.
4. I think I will be able to use what I learn in the physics tutor sessions in my other

classes.
5. I think that what I will learn in the physics tutor sessions is useful for me to know.

Figure 4: Pre-tutoring Motivational Survey

Questions one and two address self-regulation, particularly the students’ tendency to

manage and control their own effort. Question one is on a reversed scale relative to the

other questions, so responses to it were inverted. Question three addresses self-efficacy, the

students expectation of success on the task. Questions four and five address intrinsic value,

the student’s beliefs about the importance and interest of the task.

Although these different types of motivation question are theoretically distinct, we will

find in Section 5.1.1 that their responses were highly correlated with each other in our corpus.

2I am very grateful to Maxine Eskenazi for providing the survey used in this study.
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4.5 STATISTICAL METHODS

The major statistical method used in this study is the ANOVA (ANalysis Of VAriance). In

its simplest form, an Anova tests the null hypothesis that the means of two or more groups

are the same. It does this by comparing the variance within groups (the error variance)

to the variance between groups (the effect variance). The ratio of these two variances is

called the F-measure. The higher the between group variance is relative to the within group

variance, ie: the higher the F-measure, the more likely it is that there is a “true” difference

between the group means.

When we examine differences in the levels of only one explanatory variable, or factor, it

is called a “one factor design.” A one factor analysis is used in the current study to compare

different values of the factor “experimental condition,” which as described in Section 4.1

either “again, refHigh and refLow” or “noRef, ref.” This will be used to test hypotheses one

and two, as shown in the top two rows of Table 6 .

When more than two levels of an explanatory factor are being compared, the Anova

will indicate the probability that there is a difference between group means, but will not

tell us which means are different from one another. In these situations, we use the post-

hoc TukeyHSD (Honest Significant Difference) test. This test performs multiple pairwise

comparisons between the means and reports which differences are significant after correcting

for multiple comparisons.

When comparing the effects of more than one explanatory factor, we have a “multi-factor

design.” This design raises the possibility of interactions between the explanatory variables.

For example, to test hypothesis three in the current study we simultaneously compare the

effects of both pre-test category and cohesion condition on learning. This is shown in the

third row of Table 6. In general, a significant interaction between two factors indicates that

the effect of one factor on the outcome variable (which in our case is normalized learning

gain or cognitive load as described in Sections 4.4.1 and 4.4.2) is different for different values

of the other factor. We interpret significant two-way interactions by examining the mean

normalized learning gains for each combination of factors in the 2x2 design.

In this work we also encounter three-way interactions between the effects of three dif-
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ferent independent variables: motivation, pre-test category and experimental condition. We

interpret these using one of the methods described by Roberts and Russo (1999, p. 212).

As Roberts and Russo note, a three way interaction means that there are “different two

way interactions between two of the factors according to the value of the third factor.” We

analyze these by splitting the data according to the levels of the third factor, and performing

two way Anovas on the remaining two variables. This method is easy to interpret, however

splitting the data results in reduced degrees of freedom, and a correspondingly more strin-

gent F-measure. Our results, described in Section 5, are strong enough to survive the slightly

reduced sensitivity.

In Section 5.3.2 I will also use this method to interpret a two way interaction. I will split

the data by the second predictor in order to show that the first predictor is only significant

at certain values of the second.

In each Anova described in the top of Table 6, the dependant measure is Normalized

Learning Gain on either “overall,” “near,” “far,” “delayed overall,” “delayed near,” and

“delayed far” questions (see Section 4.4.1). The independent measures are experimental

condition (“again- refHigh- refLow” or “noRef -ref.”), pre-test category (“highPre-loPre”)

and motivation level (“lowMot, midMot, hiMot”).

The statistical methods used to test secondary hypotheses four and five are identical to

those used to the first three hypotheses, with the exception that the dependant variable is

cognitive load, rather than normalized learning gain. This is shown in the bottom two rows

of Table 6.

All statistics were calculated using the R statistical language (R Development Core Team,

2005).
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Outcome Independent
Hypotheses Variable Factors

Primary Hypotheses
1 Abstractive Reflection im-

proves learning
NLG Reflective Category (ref, noRef)

2 Reflective Cohesion Affects
Learning

NLG Exp. Condition (again, refHigh, refLow)

3 The Impact of Reflective Co-
hesion on Learning Interacts
with Knowledge

NLG Reflective Cohesion (refHigh refLow)
Pre-test category (highPre, LowPre)

Secondary Hypotheses
4 Textual cohesion affects learn-

ing through inference
Cog. Load Reflective Cohesion (refHigh refLow)

Pre-test category (highPre, LowPre)
5 Motivation affects inference Cog. Load Motivation (lowMot, midMot, hiMot)

Table 6: Outcome Variables and Factors per Hypothesis
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5.0 RESULTS

In this section I first examine whether the motivation instrument, the “near-far” division of

questions and the cognitive load measures behave sensibly on the collected data. Following

that, I test each of the hypotheses described in Section 2.7.

The distribution of scores is shown in Table 7. Note that no students answered all

questions correctly, and that the mean scores were well below the maximum possible score

(44). Similarly, no students answered all problems incorrectly. This suggests that there are

no ceiling or floor effects in this data set.
Min. 1st Qu. Median Mean 3rd Qu. Max.

pre-test 14.00 20.50 26.00 25.82 30.50 42.00
post-test 19.00 28.00 34.00 32.46 37.00 41.00

delayed post-test 16.00 26.00 31.00 31.12 36.00 43.00

Table 7: Correctness distribution on pre-, post- and delayed post-tests. N = 99

5.1 EVALUATING MEASURES

In this section I use the collected data to evaluate the motivation and cognitive load measures

used, and also to evaluate the division of test questions into “near” and “far” subsets.

5.1.1 Evaluating the Motivation Instrument

After data collection, I used correlation analysis and Cronbach’s Alpha (Cronbach, 1951)

to explore whether the various questions in the motivational survey were measuring distinct

50



aspects of motivation, as formulated by Pintrich and DeGroot.

Q1 Q2 Q3 Q4 Q5
Q1 1.000 0.223* -0.295** 0.309** 0.459**
Q2 0.223* 1.000 -0.040 0.349** 0.459**
Q3 -0.295** -0.040 1.000 -0.134 -0.088
Q4 0.309** 0.349** -0.134 1.000 0.519**
Q5 0.459** 0.459** -0.088 0.519** 1.000

Table 8: Correlation matrix for motivation responses. ** = p < .01, * = p < .05

Table 8 shows all the pairwise correlations between question responses in our corpus.

Note that most of the questions are significantly correlated with all the other questions,

with the exception of question 3, the self-efficacy question. This suggests that, with the

exception of question 3, our questions are not distinguishing between different aspects of

motivation.

Next we use Cronbach’s Alpha (Cronbach, 1951) to assess the reliability of the measure.

Cronbach’s Alpha measures the internal consistency of responses to a multi-point question-

naire (i.e. 1 to N likert scales). Alpha is a function of the number of test items and the

average correlation between them. Higher values are thought to indicate that the various

test items are measuring the same underlying latent construct.

A common rule of thumb in psychological research is that alphas in the .6 to .7 (e.g.

Gliem and Gliem (2003)) range indicate acceptable reliability for an instrument. Cortina

(1993) acknowledges this practice, but cautions that the number of items on the instrument

should be taken into account. Cortina shows that an alpha of .8 can be produced by a 3 item

scale with average interitem correlations of .57. However, the same alpha can be produced

with average interitem correlations of only .28 if the scale has 10 items.

Table 9 shows Alpha scores for various subsets of the motivation questions. The first

row shows an Alpha of .53 for the full set of five questions. This is slightly lower than

the generally accepted range discussed above. The second row shows Alpha after removing

question 3 (the most poorly correlated question, as shown in Table 8). With question 3

removed Alpha rises to .71. For comparison, the bottom rows of Table 9 show Alpha for

other subgroups of questions. Questions 4 and 5, the “intrinsic value” questions have an
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alpha of .68. Adding question 2 improves this to .7, however the highest Alpha results from

the set of questions 1,2,4 and 5, as shown in row 2. For this reason we remove responses to

question 3 in the analysis below.

Questions Alpha
1, 2, 3, 4, 5 0.531

1, 2, 4, 5 0.716
4, 5 0.683

2, 4, 5 0.703

Table 9: Cronbach’s Alpha for subsets of motivation responses

As mentioned in Chapter 4, motivation was evaluated twice: once before tutoring and

once after. Mean motivation was 4.31 before tutoring and 4.44 after tutoring. A t-test shows

that these values are not significantly different from each other (p= .43). In addition, pre-

and post-tutoring motivation levels are very significantly correlated (R(97) = .69, p < .0001).

In this work we use the pre-tutoring motivation scores, and discard the post-tutoring scores.

5.1.2 Evaluating the Near Far Division

In Section 4.4.1 I described the origin of the questions used for pre- and post-tests in this

study, and argued that they could be categorized into sets of “near” and “far” transfer

questions based on their source. This division is plausible and follows my own previous work

(Ward and Litman, 2008); however a formal tagging study to label individual questions as

“near” or “far” was beyond the scope of the current study.

Here I provide further support for this categorization by comparing the pre- and post-

test correctness percentages for the two sets of questions. This analysis shows that the far

transfer questions become relatively more difficult only after tutoring, as would be expected

if they were effectively non-isomorphic to the tutored problems.

Table 10 shows percentage correct on the pre- and post-tests for both the 26Q (near)

and 18Q (far) question sets. Note that before tutoring, the “far transfer” questions actually

have higher mean correctness (e.g. compare .54 near and .65 far). After tutoring, however,

the “far transfer” questions have lower mean correctness figures (e.g. .76 near vs .70 far).

52



This relationship is also shown graphically in Figure 5.

Mean % Cor.
Near Far

Pre: 0.542 0.651
Post: 0.764 0.700

Table 10: Percentage correct on 26Q(“near”) vs 18Q(“far”) question sets. N=99

Table 11 shows p-values for an Anova predicting percentage correct by test phase (pre-

test or post-test), gain type (near transfer or far transfer) and their interaction. This shows

a significant effect for test phase, reflecting that students learned between the pre and post

tests. There is also a significant interaction between gain type and test phase, suggesting

that this gain was significantly different for near and far transfer questions.

A post hoc TukeyHSD analysis shows that correctness on near transfer questions is

significantly different between the pre- and post-tests (p < 0.000). However the difference

between pre- and post-test correctness is not significant (p=0.107) for far transfer questions.

Test Gain Test Phase
Phase Type x Gain Type

Pct. Correct 0.000 0.135 0.000

Table 11: Anova explaining pct. correct by test phase (pre or post), gain type (near or far

transfer), and their interaction.

In this work we define “far transfer” questions to be those which are dissimilar to the

tutored problems, rather than intrinsically harder. We do not expect them to be harder to

solve before tutoring, using previous knowledge. Therefore it seems sensible to assume that

these problems may not be relatively more difficult than near transfer problems until after

the tutored material has been presented. The fact that our far transfer questions become

relatively harder only after tutoring lends additional support to our division of questions.
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Figure 5: Pre- and post-test correctness for near and far transfer questions, showing that

far-transfer questions get relatively harder after tutoring.
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5.1.3 Evaluating the Cognitive Load Measures

As described in Section 4.4.2 I developed two metrics intended to measure cognitive load.

One measure was based on records of reading time, while the other measure was based on

self-reports of reading difficulty. Both the reading speed and reading difficulty measures were

converted into cognitive load measures by averaging them per student and normalizing by

subtracting a baseline. This produced two measures of cognitive load per student. I will

evaluate their reliability by examining correlations between them at the student level.

A Pearsons correlation shows that these two measures of cognitive load are significantly,

but not highly, correlated (R(97) = -0.277, p < 0.006). The correlation is negative because

the reading speed measure becomes smaller with higher cognitive load, while the self-report

measure becomes larger with higher cognitive load.

Although these two measures are significantly correlated, Cronbach’s alpha (run after re-

versing the scale on the self-report measure) suggests that they have extremely low reliability

α < 0.000.

The lack of consistency between these two measures of cognitive load suggests that one of

them may be less reliable than the other. We assess each measure’s reliability separately by

calculating its alpha between text blocks for each student. That is, for each text we calculate

the cognitive load measure separately on each text block for each student, then calculate

alpha across the set of text blocks. We do this separately for the various texts because they

contain different numbers of blocks. Results are shown in Table 12.

Test Target Text # Students # Blocks Alpha
Reading Speed Again 33 11 .87
Reading Speed Ref-low 34 6 .71
Reading Speed Ref-high 32 7 .66

Reading Difficulty Again 33 11 .80
Reading Difficulty Ref-low 34 6 .75
Reading Difficulty Ref-high 32 7 .78

Table 12: Between block alphas by cohesion measure and text

Surprisingly, both measures show high internal reliability. All of the alphas are above

the .7 threshold for reliability except for the reading speed measure, calculated on the high
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cohesion reflective text.

These results suggest that the measures of cognitive load used to test hypotheses four

and five may each be reliable, but address different aspects of cognitive load. This further

suggests that the results presented in Sections 5.6.1 and 5.6.2 should be interpreted with

caution.

5.2 DIVIDING SUBJECTS BY MOTIVATION

The motivation results are on a continuous scale, but for later analysis we want to divide

subjects into three discrete categories by motivation level 1. I do this first by noticing that

the midpoint of the response scale is 3.5. Subjects who feel un-motivated to learn physics

will probably choose average scores below this midpoint, so I set the first threshold at 3.5 and

call the subjects with motivation scores below this the “low” motivation group. Summary

statistics for students who averaged below 3.5 on the motivation scale are shown on the top

line of Table 13.

Students who chose above 3.5 are summarized on line two of Table 13. We use the

median score of these students to divide them into “middle” motivation subjects who scored

below 4.75 (and above 3.5) and “high” motivation subjects who scored above 4.75. These

students are summarized on the last two lines of table Table 13. Note that this division

is not sensitive to the choice of “mean” or “median.” Note also that these thresholds also

divide the data set into fairly even thirds.

The distributions of students in each motivation group among pre-test categories (which

were described in Section 4.2) and experimental conditions (which were described in Section

4) are shown in Tables 14, 15 and 16.

In Sections 5.3.2, 5.4.2 and 5.5.2 I use these categories to show interactions between

motivation, student knowledge and textual cohesion.

1Note that subjects were also divided into three knowledge categories according to pretest score, however
only the top and bottom pre-test groups were retained for the study.
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Min. 1st Qu. Median Mean 3rd Qu. Max. N
below 3.5 (low mot) 1.500 2.438 2.750 2.750 3.250 3.500 28

above 3.5 3.750 4.500 4.750 4.930 5.500 6.750 71
Mid Mot 3.750 4.250 4.500 4.382 4.500 4.750 36

High Mot 5.000 5.250 5.500 5.493 5.750 6.750 35

Table 13: Summary statistics for student motivation

preTest cat again hiRef lowRef tot
low preTesters 2 4 7 13

high preTesters 4 6 5 15
6 10 12 28

Table 14: Distribution of lowMot subjects

preTest cat again hiRef lowRef tot
low preTesters 7 3 6 16

high preTesters 4 8 8 20
11 11 14 36

Table 15: Distribution of midMot subjects

preTest cat again hiRef lowRef tot
low preTesters 6 6 4 16

high preTesters 10 5 4 19
16 11 8 35

Table 16: Distribution of highMot subjects
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5.3 HYPOTHESIS ONE: ABSTRACTIVE REFLECTION IMPROVES

LEARNING

Before examining the hypotheses in detail, it is worth noting that students learned overall

as a result of the experiment. Mean correctness (a count of the 44Q questions answered

correctly, averaged over all students) rose from 25.8 on the pre-test to 32.5 on the post-test.

An Anova predicting correctness by test phase (pre- to post-test) shows that this difference

is highly significant (p < 0.000). Similarly, mean correctness on the delayed post-test was

31.1. Repeating the Anova shows that students also learned significantly between the pre-

and delayed post-test (p < 0.000).

Our first hypothesis was that abstractive reflection would improve learning, ie: that

there would be an overall advantage to reflection without regard to the cohesiveness of the

reflective text.

5.3.1 Initial Results

To test if there was an overall effect for reflection we combined the high and low cohesion

conditions into one “ref” condition. We ran an Anova with normalized learning gain as the

dependent variable and condition (“ref” vs “noRef”) as the independent variable. Table

17 shows results for this Anova, for each of the six measures of normalized learning gain

described in Section 4.4.1. The second column shows the p-value for the Anova. The third

and fourth columns show mean normalized learning gain for the control and reflection groups,

respectively, while the fifth and sixth column show the number of subjects in each group.

Note that while the mean learning gains often favor reflection, none of the results approach

statistical significance.
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Gain Mean NLG N
Type pVal noRef ref noRef ref

allGain 0.160 0.314 0.379 33 66
nearGain 0.518 0.487 0.521 33 66

farGain 0.745 0.016 0.049 33 66
delAllGain 0.742 0.310 0.293 33 66

delNearGain 0.885 0.336 0.345 33 66
delFarGain 0.394 0.223 0.142 33 66

Table 17: Anovas explaining NLG by reflection category; all subjects

5.3.2 Motivation Interaction Results

Finding no significant effect for reflection overall, I next tested for interactions with motiva-

tion. For this I ran an Anova with normalized learning gain as the dependent variable and

both condition (“ref,” “noRef”) and motivation category (“hiMot,” “midMot,” “lowMot”)

as the independent variables. Table 18 shows pValues for these two predictors and their

interaction, for all six measures of normalized learning gain. The last column of this table

shows a significant interaction between experimental category and motivation for “overall”

and “near” learning. Significant p-values are in bold.

subj Gain condCat motCat condCat
Group Type pVal pVal x motCat

all allGain 0.146 0.303 0.017
all nearGain 0.503 0.513 0.008
all farGain 0.747 0.552 0.576
all delAllGain 0.745 0.665 0.699
all delNearGain 0.886 0.950 0.478
all delFarGain 0.398 0.401 0.835

Table 18: Anovas explaining NLG by reflection and motivation categories; all subjects

Following the method described in Section 4.5, I next divided the corpus into “high”

“med” and “low” motivation subjects using the same splits as in Table 18. For each level of

motivation and each measure of normalized learning gain, I ran an Anova with NLG as the
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independent variable and reflective category (“reflect” vs “no reflect”) as the independent

variable. Table 19 summarizes the results. For the middle motivation subjects, there is a

significant difference in NLG between conditions for overall learning and also for near transfer

learning. The mean NLG’s shown in columns 4 and 5 show that learning is higher in the

reflective group for these measures.

This supports hypothesis one, suggesting that reflection is better than the read again

control, but only for our middle motivation subjects.

NLG
subj Gain Mean Mean N N

Group Type pVal noRef ref noRef ref
lowMot allGain 0.299 0.243 0.360 6 22
lowMot nearGain 0.112 0.331 0.521 6 22
lowMot farGain 0.662 0.077 -0.019 6 22
lowMot delAllGain 0.753 0.249 0.286 6 22
lowMot delNearGain 0.231 0.228 0.364 6 22
lowMot delFarGain 0.491 0.248 0.084 6 22
midMot allGain 0.007 0.185 0.410 11 25
midMot nearGain 0.032 0.378 0.558 11 25
midMot farGain 0.409 -0.131 0.060 11 25
midMot delAllGain 0.752 0.264 0.291 11 25
midMot delNearGain 0.843 0.322 0.344 11 25
midMot delFarGain 0.929 0.131 0.115 11 25

hiMot allGain 0.222 0.429 0.359 16 19
hiMot nearGain 0.076 0.620 0.471 16 19
hiMot farGain 0.832 0.094 0.114 16 19
hiMot delAllGain 0.484 0.364 0.302 16 19
hiMot delNearGain 0.540 0.387 0.325 16 19
hiMot delFarGain 0.765 0.277 0.246 16 19

Table 19: Anovas explaining NLG by reflection condition, for each motivation category.
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5.4 HYPOTHESIS TWO: REFLECTIVE COHESION AFFECTS

LEARNING

The second hypothesis was that the cohesiveness of the reflective text would affect how much

students learned from it. We expected an overall advantage for high cohesion reflective text

relative to low cohesion reflective text.

5.4.1 Initial Results

To answer this question we again perform an Anova, this time explaining NLG by experimen-

tal condition, where (in contrast to the test of hypothesis one) the conditions are now “again”

“refHigh” and “refLow.” This tests the null hypothesis that mean normalized learning gain

is equal in all conditions. Results are shown in Table 20.

NLG
Gain Mean Mean Mean N N N
Type pVal Again refHi refLo noRef refHi refLo

allGain 0.295 0.314 0.397 0.361 33 32 34
nearGain 0.381 0.487 0.559 0.484 33 32 34

farGain 0.947 0.016 0.046 0.052 33 32 34
delAllGain 0.579 0.310 0.323 0.263 33 32 34

delNearGain 0.630 0.336 0.379 0.313 33 32 34
delFarGain 0.479 0.223 0.191 0.097 33 32 34

Table 20: Anovas explaining NLG by Experimental Condition, all subjects

Mean normalized learning gains almost always favor the high cohesion reflective text as

predicted by hypothesis two, however none of the differences approach statistical significance.

5.4.2 Motivation Interaction Results

Finding no significant effect for reflective cohesion overall, I again tested for interactions

with motivation. I ran an Anova with normalized learning gain as the dependant variable

and condition (“again,” “refHigh” or “refLow”), motivation (“highMot” or “lowMot”) and

their interaction as independent variables. Results are shown in Table 21.
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subj Gain condCat motCat condCat
Group Type pVal pVal x motCat

all allGain 0.276 0.339 0.065
all nearGain 0.360 0.577 0.038
all farGain 0.948 0.550 0.546
all delAllGain 0.576 0.708 0.186
all delNearGain 0.631 0.971 0.223
all delFarGain 0.482 0.440 0.469

Table 21: Anovas explaining NLG by experimental condition and motivation category; all

subjects

Table 21 shows that there was a significant interaction between experimental condition

and motivation for near transfer learning, and a strong trend for overall learning. This

pattern of results is very similar to that shown in Table 18 when explaining NLG by reflective

condition.

I next analyze this interaction by dividing the data into motivation categories, and

examining the effect of experimental condition on learning separately within each motivation

category. I use an Anova predicting normalized learning gain by experimental category, where

experimental category is “again” “refHigh” or “refLow.”

For middle motivation students, Table 22 shows a significant difference between con-

ditions for both immediate and delayed overall NLG, and a strong trend for near transfer

NLG. Next I do a post-hoc TukeyHSD test to determine which of the three conditions were

significantly different from each other.

Tables 23 and 24 show results for a post hoc TukeyHSD test on the significant results

from Table 22. Given an Anova, the Tukey test does pairwise comparisons of its means and

produces adjusted p-values for each comparison. In Table 23 the first column names the

comparison being made (eg “refHigh vs again”), and the last column shows the adjusted

p-value for that comparison (e.g. 0.019).

For overall gain (Table 23), the high cohesion reflective condition had significantly higher

learning gains than the read again control, while the the low cohesion reflective condition
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produced a trend toward significance. For delayed overall gain (Table 24), the high cohesion

reflective condition is significantly better than the low cohesion condition. Taken together,

this suggests that reflective texts can improve learning for “middle” motivated subjects, and

that the cohesiveness of the text can affect learning. This supports the second hypothesis

that the cohesiveness of the reading affects how well students can learn from it.

These results are for all students, not divided by knowledge level. Next we look in finer

detail to see if high and low cohesion texts have different effects if we do distinguish by

knowledge level.
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subj Gain Mean Mean Mean N N N
Group Type pVal Again refHi refLo noRef refHi refLo
lowMot allGain 0.583 0.243 0.351 0.367 6 10 12
lowMot nearGain 0.214 0.331 0.567 0.483 6 10 12
lowMot farGain 0.443 0.077 -0.152 0.092 6 10 12
lowMot delAllGain 0.594 0.249 0.227 0.335 6 10 12
lowMot delNearGain 0.336 0.228 0.314 0.405 6 10 12
lowMot delFarGain 0.654 0.248 0.009 0.147 6 10 12
midMot allGain 0.019 0.185 0.448 0.379 11 11 14
midMot nearGain 0.068 0.378 0.605 0.521 11 11 14
midMot farGain 0.594 -0.131 0.148 -0.009 11 11 14
midMot delAllGain 0.043 0.264 0.417 0.192 11 11 14
midMot delNearGain 0.136 0.322 0.479 0.238 11 11 14
midMot delFarGain 0.285 0.131 0.295 -0.027 11 11 14

hiMot allGain 0.325 0.429 0.388 0.319 16 11 8
hiMot nearGain 0.162 0.619 0.506 0.423 16 11 8
hiMot farGain 0.962 0.094 0.124 0.100 16 11 8
hiMot delAllGain 0.753 0.364 0.317 0.281 16 11 8
hiMot delNearGain 0.808 0.387 0.338 0.306 16 11 8
hiMot delFarGain 0.952 0.277 0.252 0.237 16 11 8

Table 22: Anovas explaining NLG by experimental condition, for each motivation category.

diff lwr upr p adj
refHigh-again 0.263 0.037 0.488 0.019
refLow-again 0.194 -0.019 0.407 0.080

refLow-refHigh -0.069 -0.282 0.144 0.710

Table 23: Post hoc Tukeys allGain, middle motivation

diff lwr upr p adj
refHigh-again 0.153 -0.0713 0.377 0.229
refLow-again -0.072 -0.2844 0.139 0.681

refLow-refHigh -0.225 -0.4375 -0.014 0.035

Table 24: Post hoc Tukeys delAllGain, middle motivation
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5.5 HYPOTHESIS THREE: REFLECTIVE COHESION INTERACTS

WITH KNOWLEDGE

Hypothesis three suggested that the cohesiveness of the reflective reading would affect learn-

ing differently for subjects with different knowledge levels. We expected high knowledge

readers to learn more from reading a low cohesion reflective text, and low knowledge readers

to learn more from reading a high cohesion text.

5.5.1 Initial Results

I examine this question by removing subjects in the “again” condition, and comparing only

subjects in the “refHigh” and “refLow” reflective conditions. I first perform an Anova ex-

plaining normalized learning gain by pre-test category (high pre-test or low pre-test), exper-

imental category (refHigh or refLow), and their interaction.

pValues Mean Normalized Learning Gain
Gain preTest Exp preTestCat hiPre loPre hiPre loPre
Type Cat Cond : Exp. Cond refHi refHi refLo refLo

allGain 0.693 0.420 0.458 0.417 0.369 0.352 0.369
nearGain 0.061 0.233 0.286 0.624 0.465 0.505 0.465

farGain 0.228 0.959 0.682 0.013 0.093 -0.030 0.134
delAllGain 0.733 0.279 0.162 0.361 0.268 0.233 0.293

delNearGain 0.474 0.339 0.123 0.439 0.292 0.285 0.341
delFarGain 0.630 0.344 0.445 0.201 0.176 0.028 0.165

Table 25: Anovas explaining NLG by pre-test category and experimental condition; all

subjects; expCond = refHi, refLo

Table 25 shows results for this Anova. Each row shows results for a separate Anova,

predicting the measure of normalized learning gain shown in the first column. The second and

third column show p-values for pre-test category and experimental condition, respectively.

The fourth column shows p-values for their interaction. As shown in column four, there are

no significant interactions between pre-test category and reflective condition.
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5.5.2 Motivation Interaction Results

Finding no significant two way interaction between reflective cohesion and student knowledge

level, I next tested for interactions with motivation. For each measure of learning, I ran an

Anova explaining NLG by motivation category, pre-test category, reflective condition (high

or low cohesion reflective text), and their interactions. Results are summarized in Table

26. Looking at the three-way interaction p-values in the last column, we see that there is a

significant interaction for delayed overall learning and delayed near transfer learning.

motCat
Gain motCat motCat preTest :preTest
Type motCat preTest Cond :preTest :Cond :Cond :Cond

allGain 0.534 0.818 0.365 0.397 0.616 0.663 0.138
nearGain 0.436 0.089 0.186 0.210 0.994 0.466 0.316

farGain 0.584 0.223 0.985 0.583 0.190 0.765 0.376
delAllGain 0.970 0.704 0.260 0.638 0.032 0.274 0.016

delNearGain 0.886 0.459 0.302 0.902 0.082 0.228 0.027
delFarGain 0.449 0.692 0.424 0.699 0.200 0.580 0.355

Table 26: Anova for preTest category, experimental cond, motivation category & interactions.

Experimental condition (Cond) = refHi, refLo

Next I examine the two way interaction between knowledge and reflection condition at

each of the three levels of motivation. Table 27 shows results for these subdivisions of the

data. The left two columns name the motivation group and the type of normalized learning

gain used in each Anova. Columns 3, 4 and 5 show the p-values for pre-test category,

experimental condition, and their interaction. The last four columns show mean NLG for

each of the cells in the Anova. For example “hiPre refHi” means the high pre-testers in the

high cohesion reflective condition. Note that the interaction between pre-test category and

textual cohesion (in column 3) is significant only for the “middle” motivation subjects. Where

there is a significant interaction, the low pre-testers learned more from the low cohesion

reflective text (“loPre refLo”) than from the high cohesion text (“loPre refHi”). In contrast,

the high pre-testers learned more from the high cohesion reflective text.

Figure 6 displays this interaction graphically for delayed overall gain. The dark line

shows NLG for high pre-testers, who (as we see in Table 27) had a gain of .50 from the high
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cohesion reflective text, and a gain of .10 from low cohesion reflective text. The dashed line

shows NLG for low pre-testers, who had a gain of .18 from the high cohesion text, and of

.31 from low cohesion text.

For highly motivated subjects, on the other hand, there was no interaction between

aptitude and textual cohesion: both high and low pre-testers almost always learned more

from high cohesion reflective text.

Table 26 shows that there is a significant three way interaction between textual cohesion,

domain knowledge and motivation in predicting normalized learning gain. Table 27 explains

this three way interaction by showing that there is a significant two way interaction between

knowledge and textual cohesion, but only for middle motivation subjects. This interaction

tells us that textual cohesion affects NLG differently for subjects in different knowledge

categories, but it doesn’t tell us between which conditions NLG was significantly different.

I address this question using the post-hoc TukeyHSD test.

Table 28 shows post-hoc TukeyHSD results for the interactions shown in Table 27 which

were significant or a trend. Column three of Table 28 compares low pre-tester’s NLG between

the high cohesion and low cohesion reflective text. Column four makes the same comparison

for the high pre-testers (other paired comparisons are also made by the TukeyHSD test, but

have no theoretical interest and so are not reported). High pre-testers learn significantly

more from high cohesion than from low cohesion. Low pre-testers had higher mean NLG

under low cohesion for every measure of learning (see Table 27), however these differences are

not significant. So, we can say that cohesion affects low knowledge students differently than

high knowledge students, and that high cohesion does not benefit low knowledge students as

it does high knowledge students. However we cannot say that the low knowledge students

learned significantly more from low cohesion in this study.
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pValues Mean Norm. Learning Gain
subj Gain preTest Exp preTestCat hiPre loPre hiPre loPre

Group Type Cat Cond : Exp. Cond refHi refHi refLo refLo
lowMot allGain 0.987 0.859 0.586 0.330 0.383 0.394 0.348
lowMot nearGain 0.840 0.502 0.756 0.554 0.586 0.508 0.464
lowMot farGain 0.910 0.115 0.707 -0.153 -0.152 0.160 0.043
lowMot delAllGain 0.676 0.279 0.339 0.180 0.300 0.372 0.309
lowMot delNearGain 0.800 0.385 0.397 0.289 0.350 0.484 0.349
lowMot delFarGain 0.374 0.497 0.630 -0.077 0.138 0.116 0.169
midMot allGain 0.535 0.284 0.071 0.479 0.364 0.306 0.476
midMot nearGain 0.469 0.247 0.033 0.668 0.437 0.484 0.571
midMot farGain 0.297 0.359 0.309 0.154 0.133 -0.200 0.246
midMot delAllGain 0.638 0.006 0.003 0.506 0.180 0.102 0.312
midMot delNearGain 0.710 0.021 0.006 0.584 0.200 0.132 0.381
midMot delFarGain 0.910 0.146 0.255 0.365 0.110 -0.153 0.142

hiMot allGain 0.158 0.259 0.484 0.419 0.362 0.392 0.246
hiMot nearGain 0.035 0.378 0.980 0.636 0.397 0.544 0.301
hiMot farGain 0.228 0.907 0.479 -0.0129 0.237 0.073 0.127
hiMot delAllGain 0.524 0.715 0.895 0.348 0.291 0.324 0.238
hiMot delNearGain 0.517 0.771 0.968 0.386 0.299 0.344 0.267
hiMot delFarGain 0.635 0.889 0.842 0.273 0.235 0.281 0.193

Table 27: preTest/expCond interactions for diff motivation groups. expCond = refHi, refLo
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Figure 6: Interaction of cohesion and pre-test category, showing that high pre-testers had

higher delayed overall NLG from high than low cohesion, and low pre-testers had higher

delayed overall NLG from low than high cohesion.

subj Gain loPre hiPre
Group Type hiRef vs loRef hiRef vs loRef
midMot allGain 0.796 0.222
midMot nearGain 0.648 0.132
midMot delAllGain 0.734 0.001
midMot delNearGain 0.705 0.005

Table 28: Selected comparisons from post-hoc Tukeys, showing significant NLG difference

between cohesion conditions for high pre-test but not low pre-test students.
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5.6 SECONDARY HYPOTHESES

5.6.1 Hypothesis Four: Textual Cohesion Affects Learning Through Inference

My fourth hypothesis was that textual cohesion would affect inference during reading. That

is, based on work of McNamara’s (e.g. (McNamara and Kintsch, 1996)) described in Section

2.4, I expected that if learning was improved by low cohesion text, it would be because

the gaps in the text had spurred inference. If this were true, low cohesion text should be

accompanied by increased cognitive load.

An alternative theory was offered by Kalyuga and Ayres (2003). Kalyuga and Ayres

thought of the cohesion-reversal effect as an instance of schema interference. In this view, text

with less cohesion requires less reconciliation with existing mental schema, and so imposes

less extraneous cognitive load. By this view, the low cohesion text in our study should be

accompanied by decreased cognitive load.

As shown in Section 5.5.2, our results did suggest that textual cohesion influenced learn-

ing, particularly for subjects with middle motivation levels. For those subjects, there was a

significant interaction between knowledge and textual cohesion. Students with low pre-test

scores had higher mean NLG with low cohesion than high cohesion text, although this differ-

ence was not significant. I now address the question of whether this interaction in learning

gains is accompanied by a similar interaction in cognitive load during reading, and is there-

fore explainable by either the inference-making or schema-interference theories described

above.

To address this question I included two measures of cognitive load in the study. The

first was a measure of reading speed. A decrease in a student’s reading speed relative to a

baseline indicates increased cognitive load. The second was a self-report measure of reading

difficulty. An increase in rated difficulty relative to a baseline indicates increased cognitive

load. These measures were described more fully in Section 4.4.2.

Table 29 shows results of an Anova explaining cognitive load by knowledge level (high or

low pre-test) and reflective condition (high or low cohesion text). This is a similar setup to the

Anova used to test Hypothesis 3, with the exception that the dependant variable is cognitive
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pValues Cog. Load: Avg. Reading Diff.

Subj. preTest Exp. preTest hiPre loPre hiPre loPre

Group Cat Cond x Exp. Cond refHi refHi refLo refLo

All 0.638 0.266 0.015 0.933 0.470 0.410 0.722

Low Mot. 0.641 0.658 0.092 1.044 0.286 0.340 0.738

Mid Mot. 0.247 0.139 0.707 1.017 0.635 0.542 0.372

High Mot. 0.132 0.447 0.014 0.665 0.511 0.233 1.217

Table 29: Anova explaining self-reported cognitive load by pre-test and experimental condi-

tion (refHi or refLo)

load rather than NLG. Therefore, if there was a significant interaction between knowledge

and cohesion that affected learning from text, and if cohesion was affecting inference, then

we might also see an interaction affecting cognitive load.

This Anova uses the self-report cognitive load measure, which was calculated for each

student as average difficulty in the reflective reading minus average difficulty in the physics

pre-reading. The physics pre-reading was chosen as a baseline in preference to the non-

physics warmup reading in order to isolate the effects of textual cohesion. There were no

significant results when using the reading-speed measure of cognitive load.

Table 29 shows no main effect for either pre-test category (knowledge) or for experimental

condition (textual cohesion). However, there are significant interactions between knowledge

and cohesion for all students, and also for the highly motivated students (rows one and four

in Table 29).

Note that in those student groups which have a significant interaction, cognitive load

for HIGH pre-testers is higher when reading the high cohesion text, and lower when reading

the low cohesion text. Cognitive load for LOW pre-testers is higher when reading the low

cohesion text. Figure 7 shows this interaction for the highly motivated students in Table 29.

This result seems to favor Kalyuga’s interpretation of the reverse cohesion effect, how-
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ever it should be noted that differences in cognitive load were predicted for the middle

motivation subjects, who had shown a significant learning interaction between knowledge

and cohesion. The results in Table 29 do not show a matching cognitive load interaction for

middle motivation subjects.

Hypothesis four is therefore not supported. Although middle motivation students’ learn-

ing was significantly affected by the cohesiveness of the reflective text, that interaction was

not accompanied with a similar interaction in cognitive load, so this cognitive load measure

does not allow us to attribute the difference in learning to differences in inference during

reading.
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Figure 7: Cognitive Load for High Motivation Subjects Reading High and Low Cohesion

Text, showing that high pre-testers had higher load from high cohesion than low cohesion

text.
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5.6.2 Hypothesis Five: Motivation Affects Inference

Hypothesis five was that motivation levels would affect inference from text. I expected stu-

dents with higher levels of motivation to engage the text more actively, make more inferences,

and so have higher cognitive load.

As in Section 5.6.1, I look for evidence of inference by examining measures of cogni-

tive load. Recall from Section 4.4.2 that I collected reading times for each block of text,

which were converted into words-per-minute scores. I calculated a cognitive load measure

by subtracting the reading speed for the non-physics warmup reading from the speed on

the post-tutoring text. The warmup reading was chosen as a baseline in preference to the

introductory physics reading because we are interested in the effects of physics-related moti-

vation. Subtracting a baseline adjusts for individual differences in reading speed, so that the

resulting number shows more clearly the effect of the difference in topic motivation. Note

that a lower number on this measure means that the student read more slowly relative to

the baseline, and so additional cognitive load due to motivation was higher.

Table 30 shows median cognitive load for “low” “middle” and “high” motivation subjects,

using the reading speed measure. Note that the low motivation students also have the lowest

cognitive load when reading, shown by their higher scores.

Table 31 shows results for an Anova explaining cognitive load by motivation category

and type of text: high cohesion or low cohesion. As shown in Table 31 cognitive load showed

significant differences by motivation category, but not by type of text. There was also no

interaction between motivation category and text type.

lowMot midMot hiMot
All Text 289.508 71.226 105.043

Low cohesion text 179.137 71.604 129.564
High cohesion text 285.445 59.729 93.191

Table 30: Cog load by motivation Category, showing lower load for lowMot students (higher

number = lower load)
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Cog Load Exp. motCat
Measure motCat Cond. x expCond
wpmMed 0.002 0.380 0.140

Table 31: Anova explaining Cog. Load by motivation category and experimental condition

(refHi or refLo)

I next repeated the Anova using only motivation category as an independent variable, and

performed a post-hoc TukeyHSD test to determine which of the three motivation categories

were significantly different. This test showed that cognitive load was significantly higher for

high motivation students than for low motivation students (p = 0.020). Cognitive load was

also significantly higher for middle motivation than low motivation readers (p = 0.002).

Tests using the self-reported “reading difficulty” measure of cognitive load failed to show

significant differences between conditions. Results for the reading speed measure in Table

31, although weakened by the lack of corroboration from the self report measure, suggest

that cognitive load during reading is higher for more highly motivated students. This tends

to support hypothesis five, which suggested that highly motivated students would engage

the text more actively.
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6.0 USING COHESION TO EVALUATE KNOWLEDGE LEVEL

The preceding results have shown that it can be useful to read a reflective text after tutoring

in qualitative physics, but that the benefit varies with the knowledge and motivation level

of the student. In particular, we have evidence that, for moderately motivated students,

a high cohesion text will help students who have a high amount of knowledge to learn.

However, a text with low cohesion may be better for students with a low amount of domain

knowledge, although that advantage was not significant in the current study. In any actual

implementation of a post-tutoring reflective text, therefore, it would be useful to accurately

identify student levels of knowledge or motivation in order to personalize the text.

In the current study, I categorized students as having “low” or “high” domain knowledge

based on their pre-test score. In a deployed system, however, using pre-test alone might

not be optimal because it ignores any learning from tutoring. Inserting another post-test

between tutoring and the reflective reading would probably also be sub-optimal, because

frequent tests are time consuming and probably onerous for the student. A better solution,

if possible, would be to use an estimate of student knowledge that had been updated with

information from the tutoring dialog.

Researchers have examined a variety of features that are associated with learning from

tutorial dialog. For example, Core, Moore, and Zinn (2003) found that dialog interactivity

was correlated with learning in human-human tutorial dialog. Litman and Forbes-Riley

(2006a) found that certain types of dialog act predicted learning, and Dzikovska et al. (2008)

found that tutorial restatements of correct tutorial response to student answers were also

associated with learning from tutoring. In peer learning, Kersey et al. (July, 2009) have

found that initiative shifts were associated with learning from dialog.

In my own previous work, I have also developed several methods which are useful in
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gauging student learning during natural language tutoring. These methods are interesting

in the present context both because they were tested on corpora that were very similar to

the current one, and also because they use dialog features which are closely related to the

elements of textual cohesion that were manipulated in the current study.

In Section 6.1 I describe these previously developed measures of dialog cohesion, and

summarize their results on previous corpora of tutoring dialogs. Then, in Section 6.2, I show

that they also produce significant correlations with learning in the current corpus.

6.1 DIALOG COHESION AND LEARNING: METRIC AND PRIOR

RESULTS

In (Ward and Litman, 2006) and (Ward and Litman, 2008) I created measures of cohesion in

dialog by adapting the concept of a “cohesive tie,” that had been used by Halliday and Hasan

(1976) to describe cohesion in text. In Cohesion in English Halliday and Hasan suggest that

the cohesiveness of a text can be measured by counting the number of “cohesive ties” that it

contains, where a “cohesive tie” consists of two words joined by a relationship such as exact

repetition, repetition of synonyms, repetition of superordinate class terms and so forth.

I measured cohesion in dialog by counting three kinds of cohesive tie between tutor and

student: “token,” “stem group,” and “semantic similarity” repetition, which correspond

roughly to the three types of Halliday and Hasan tie mentioned above.

At the “token” level, a cohesive link was counted if exactly the same word form (after

stripping punctuation, and ignoring case) appeared in both one turn and the next. Re-

sults were collected at this level both with and without stop-words being counted. This

corresponds to the first of Halliday and Hasan’s reiteration types.

At the “stem” level, a link was counted if two words in consecutive turns were given the

same stem by a standard Porter stemmer (Porter, 1997). Table 32 gives examples of how

tokens are grouped by stems. Tokens to which the stemmer assigns a common stem appear

together in the second column, with their stem in the first column.

Table 33 shows how counting cohesive ties at the token or stem level can affect the
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Stem
Group

Tokens

packag package, packages
packet packet, packets
speed speed, speeding, speeds
veloc veloc, velocities, velocity, velocitys
horizont horizontal, horizontally
displac displace, displaced, displacement, dis-

placements, displacing
find find, finding
so so
thu thus

Table 32: Examples of how tokens are grouped by stems (Table 1 from Ward & Litman

2006)

amount of cohesion counted 1. Two consecutive turns are shown at the bottom of the table.

The three columns at the top of the table show the matches counted at each level, and their

total count. For example, the “Token w/stop” level counts 14 exact word repetitions. The

“token, no stop” level matches tokens after removing high frequency “stop words.” This

level counts 9 cohesive ties between these turns. The “stem, no stop” level matches stems

after removing stop words. This level counts 11 cohesive ties: the same 9 as at the “token,

no stop” level, plus the additional stems “acceler” and “vertic.” This allows the stem level

to match the tokens “accelerates” to “acceleration,” and “vertical” to “vertically.” These

matches were not found at the token levels.

At the “semantic similarity” level I counted a cohesive tie whenever one utterance and

the next had different words with similar meanings, with similarity measured using WordNet

(Miller et al., 1990). WordNet is a large semantic lexicon with several useful features. First,

it groups words into groups of synonyms called “synsets.” Second, it organizes synsets into

an “is-a” (hypernym/hyponym) taxonomy. If we know the sense in which a word is being

1The algorithm and results presented in this section were originally published in (Ward and Litman, 2006)
and (Ward and Litman, 2008). Cohesion examples in this section were taken from previous Itspoke tutoring
dialogs which included essay submissions. Results on the current corpus which has no essays are in Section
6.2.
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Token w/stop(14) Token, no stop (9) Stem, no stop(11)
packet, horizontal, the, it, is,
of, only, force, acting, on,
there, will, still, after

packet, horizontal, only, force,
acting, there, will, still, after

packet, horizont, onli, forc,
act, acceler, vertic, there, will,
still, after

Student
Essay

No. The airplane and the packet have the same horizontal velocity. When the
packet is dropped, the only force acting on it is g, and the net force is zero. The
packet accelerates vertically down, but does not accelerate horizontally. The
packet keeps moving at the same velocity while it is falling as it had when it
was on the airplane. There will be displacement because the packet still moves
horizontally after it is dropped. The packet will keep moving past the center of
the swimming pool because of its horizontal velocity.

Computer
Tutor

Uh huh. There is more still that your essay should cover. Maybe this will help
you remember some of the details need in the explanation. After the packet
is released, the only force acting on it is gravitational force, which acts in the
vertical direction. What is the magnitude of the acceleration of the packet in the
horizontal direction?

Table 33: Two consecutive turns, counting cohesive ties at the token and stem levels (Table

2 from Ward & Litman 2006)

used, and therefore its relevant synset, we can use WordNet to find its relationship to other

synsets in the taxonomy.

Word sense disambiguation was done in a simple way: for each potential pair of words,

I chose the senses in which the words were most similar.

I measured semantic similarity as a function of the distance between two concepts in the

WordNet hierarchy. In this work, I used the simplest method of measuring this distance:

Path Distance Similarity, as implemented in NLTK (Loper and Bird, 2002). This measure

calculates the similarity between two concepts as 1/1+N, where N is the number of edges

in the shortest path between them. Scores range from zero to one, where zero means no

similarity and one indicates exact synonyms. For example, in WordNet the shortest path

between “man” and “person” has two edges, and so the similarity of those terms is 1/1+2,

or.333.

Finding semantic similarity ties is slightly more complicated than finding lexical reiter-

ation ties because a word in one utterance may have non-zero similarities to several words
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Start Step 1 Step 2
Sim Tok A Tok B Tok A Tok B Tok A Tok B
0.33 man person man person man person
0.13 release person release
0.13 release elevator release elevator release elevator
0.11 velocity person velocity velocity
0.09 man elevator elevator
0.07 velocity elevator velocity elevator velocity

Table 34: Finding the best semantic ties (Table 3 from Ward & Litman 2008)

in the other utterance. Therefore, I created the following algorithm to find the best set of

ties. For each word in utterance B, I looked up the WordNet path similarity values between

it and each word in utterance A. After collecting the set of all possible word pairs this way,

I sorted them by their similarity values. Starting at the high end of the list, for each pair

I removed all lower pairs which had the same token in the same position. This process is

illustrated in Table 34. To keep the example small, I have selected only two tutor and three

student words from the example shown in Table 36. This produces six possible pairs, which

are shown in columns two and three of Table 34, sorted by their similarity values

Starting at the top of the list, the algorithm considers first the pair: “man-person.” It

removes all instances below of “man” in position A and of “person” in position B. This

step is shown under “Step 1” in Table 34. In step 2, it moves down to the next remaining

pair, “release-elevator.” It removes all instances below that of “release” in position A and of

“elevator” in position B. There are no pairs remaining to be considered in this example, so

it stops and counts two semantic cohesive ties: “man-person” with a similarity of .33, and

“release-elevator” with a similarity of .13.

This method can count cohesive ties with a broad range of similarity scores. I investigated

whether the stronger ties were more useful by instituting a threshold, and only counting

cohesive ties for pairs with similarity values above the threshold. In the example shown in

Table 34, a threshold of .3 would count the tie between “person” and “man” but not between

“elevator” and “release.”
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Threshold
> 0.5 0.3 0
5-five motion-contact remains-same

remain-stay man-person man-runner
speed-velocity decrease-acceleration force-magnitude

conclude-reason acceleration-change summarize-point
package-packet travel-flying submit-pull

Table 35: Example Semantic ties (Table 4 from Ward & Litman 2008)

A threshold > .5 counts cohesive ties only for word pairings which are listed in WordNet

as being exact synonyms, and which therefore have a similarity score of one (note from the

path similarity formula that scores between .5 and 1 are impossible). A threshold reduced

to .3 allows cohesive ties with slightly more semantic distance in the pair, and a threshold of

0 allows all pairs found by our algorithm. Examples of cohesive ties counted at each of these

thresholds are shown in Table 35. In these examples we can see that the matches counted

become more distant and less sensible as the threshold is reduced.

I counted the total number of cohesive ties for each dialog as described above. I then

line normalized the count, dividing it by the total number of lines in the dialog. I did this to

remove the possibility that the count of cohesive ties correlates with learning simply because

the longer dialogs had more cohesive ties. However, neither the total number of tutor turns,

student turns, tutor words, or student words are correlated with learning in spoken dialogs

with this prior version of our computer tutor (Litman et al., 2006). In the example shown

in Table 36, the algorithm counts a total of 10 cohesive ties at the token and stem levels,

line-normalizing the count (as if this were an entire dialog) would give a score of 10/2 = 5.

Finally, I summed the line normalized counts over all dialogs for each student, resulting

in a per-student cohesion measure which I correlated with learning.

These metrics were then applied to two corpora of tutoring dialogs that had been collected

using the Itspoke tutor in 2003 and 2005. In each corpus I measured the partial correlation

between the cohesion measures and post-test score, controlling for pre-test score. Results
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Speaker Utterance
Student Before the release of the keys, the man’s and the keys velocity

are the same. After the release the only force on the keys
and man is downward force of earth’s gravity, so they are in
freefall. We can ignore the forces that the air exerts on these
objects since they are dense. Therefore, at every point in time
the keys will remain in front of the man’s face during their whole
trip down.

Tutor So you can compare it to your response, here’s my summary
of a missing point: After the release, the only force on the
person, keys, and elevator is the force of gravity. Kindly
correct your essay. If you’re finished, press the submit button.

Level Cohesive Ties Counted between Utterances, at each level
Token so-so, release-release, point-point, only-only, keys-keys, gravity-

gravity, can-can, after-after, force-force
Stem forces-force
Sem man-person

Table 36: Token, Stem, and Semantic Similarity Sem Matches (Table 2 from Ward & Litman

2008)
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preTest
Corpus Cat. Gain type Threshold p-value Cor.

2003 High overall 0.30 0.038 0.899
2003 High overall 0.00 0.002 0.894
2003 Low overall 0.30 0.004 0.689
2005 Low overall 0.30 0.011 0.613
2005 Low far 0.00 0.039 0.519

Table 37: Partial correlations between learning and dialog cohesion. Low pre-test students

(extracted from Table 5 in Ward & Litman 2008).

were slightly different between the 2003 and 2005 corpora. In the 2003 corpus the measure

of lexical cohesion was significantly correlated with overall learning for low (below mean)

pre-testers. The measure of semantic similarity cohesion was also significantly correlated

with overall learning for low pre-testers, and in addition correlated with learning for high

pre-testers, with the correlations becoming stronger when using lower similarity thresholds.

In the 2005 corpus, the measure of lexical cohesion correlated with overall learning for

low pre-testers, just as it had in the 2003 corpus. The semantic similarity cohesion measure

also correlated with overall learning, and in addition correlated with far transfer learning at

low thresholds (the near-far transfer distinction had not been available in the 2003 corpus).

A portion of the semantic similarity results is reproduced in Table 37, for comparison to

results on the current corpus, which are described in the next section.

6.2 COHESION AND LEARNING IN THE REFLECTION CORPUS

In this section I perform a similar analysis in the new corpus of Itspoke dialogs which was

collected for the current study. I use the same measures of normalized learning gain described

in Section 4.4.12, and report correlations between NLG and dialog cohesion. For consistency

2The previous work described in Section 4.4.1 reported partial correlations of dialog cohesion and post-
test score, controlling for pre-test score. In this section I report correlations between dialog cohesion and
normalized learning gain, for consistency with the analysis in Section 5.
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with the previous work in dialog cohesion just described, I report results using a high/low

pre-test split. For consistency with the analysis of textual cohesion in this thesis, I also

report results using the low/mid/high motivation split.

Table 38 shows results for high and low knowledge students, using extreme groups design,

as described in Section 4.2. Note that, similar to the results from the 2003 corpus shown

in the top two rows of Table 37, the significant results in the 2010 corpus are for high

knowledge students. In addition, significance was achieved at the lower semantic thresholds

(higher thresholds produced no significant results or trends, and are not shown). Finally,

note that the 2010 results were for delayed far transfer learning gains. The near/far division

was not available in the 2003 question set, however the 2005 corpus included results for far

transfer learning (for low knowledge students). Together, these similarities suggest that this

measure of dialog cohesion correlates with learning in the new corpus in a way similar to

previous corpora.

preTest
Corpus Cat. Gain type Threshold p-value Cor.

2010 Low allGain 0.10 0.909 -0.017
2010 Low nearGain 0.10 0.415 -0.125
2010 Low delFarGain 0.10 0.680 0.063
2010 Low allGain 0.20 0.824 0.034
2010 Low nearGain 0.20 0.553 -0.091
2010 Low delFarGain 0.20 0.578 0.085
2010 Low allGain 0.30 0.763 0.046
2010 Low nearGain 0.30 0.679 -0.064
2010 Low delFarGain 0.30 0.635 0.073

2010 High allGain 0.10 0.234 -0.165
2010 High nearGain 0.10 0.960 0.007
2010 High delFarGain 0.10 0.033 0.291
2010 High allGain 0.20 0.276 -0.151
2010 High nearGain 0.20 0.880 0.021
2010 High delFarGain 0.20 0.067 0.251
2010 High allGain 0.30 0.128 -0.210
2010 High nearGain 0.30 0.877 0.021
2010 High delFarGain 0.30 0.234 0.165

Table 38: Correlations between learning and dialog cohesion, new 2010 corpus

Table 39 shows results for the same correlations between NLG and dialog cohesion, but
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divides students by motivation level. We again see significant results for delayed far transfer

learning, at thresholds near 0.3. However, Table 39 shows that these results are for highly

motivated students.
Motivation

Corpus Group Gain type Threshold p-value Cor.
2010 Low allGain 0.10 0.973 0.007
2010 Low nearGain 0.10 0.454 -0.147
2010 Low delFarGain 0.10 0.153 0.278
2010 Low allGain 0.20 0.750 0.063
2010 Low nearGain 0.20 0.756 -0.061
2010 Low delFarGain 0.20 0.115 0.305
2010 Low allGain 0.30 0.911 -0.022
2010 Low nearGain 0.30 0.677 -0.082
2010 Low delFarGain 0.30 0.271 0.215

2010 Mid allGain 0.10 0.616 -0.087
2010 Mid nearGain 0.10 0.848 -0.033
2010 Mid delFarGain 0.10 0.682 0.071
2010 Mid allGain 0.20 0.609 -0.088
2010 Mid nearGain 0.20 0.821 -0.039
2010 Mid delFarGain 0.20 0.765 0.052
2010 Mid allGain 0.30 0.467 -0.125
2010 Mid nearGain 0.30 0.987 0.003
2010 Mid delFarGain 0.30 0.998 0.000

2010 High allGain 0.10 0.569 -0.099
2010 High nearGain 0.10 0.408 -0.144
2010 High delFarGain 0.10 0.059 0.323
2010 High allGain 0.20 0.810 -0.042
2010 High nearGain 0.20 0.664 -0.076
2010 High delFarGain 0.20 0.042 0.346
2010 High allGain 0.30 0.956 -0.010
2010 High nearGain 0.30 0.800 -0.044
2010 High delFarGain 0.30 0.039 0.351

Table 39: Cohesion-Learning correlations by motivation category

It is encouraging that this measure of cohesion has now produced correlations with

learning in three corpora which were collected under different experimental setups over a

course of seven years. It suggests that measuring dialog cohesion during tutoring might be a

useful addition to a student model that estimated student knowledge at the end of tutoring.

This student model could then be used to personalize a post-tutoring adaptive text. It
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should be noted, however, that based on evidence from Chapter 5, we would prefer to be

able to judge the learning for middle (rather than high) motivation students. This is because

those were the students who showed an interaction with textual cohesion, and for whom the

benefit of personalized cohesion might be largest. The idea of a post-tutoring adaptive text

is expanded in Section 8.3
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7.0 RELATED WORK

The study described above drew heavily on previous work in the areas of reflection, text

processing and computational linguistics. In this chapter I review relevant work in each of

those areas, and show how the current study is related to them.

First I consider previous work in reflection. I review a number of previous studies, and

suggest that my work extends them both in domain and in the specific implementation of

reflection used. Second, I review related work in text processing, which collectively shows

that motivation, knowledge and textual cohesion can all impact what is learned from text. I

compare those results to my findings for those three factors. Finally, I review work from the

natural language processing literature concerning cohesion in text and dialog, and compare

my work in dialog cohesion.

7.1 RELATED WORK IN REFLECTION IN INTELLIGENT TUTORING

SYSTEMS

In this section I look at related work in reflection. Section 7.1.1 describes several studies of

reflection during problem solving. Section 7.1.2 adds more detail to our previous discussion

of the work of Katz and colleagues in reflection following problem solving in Andes, which is

the work most closely related to the current study. Following that, in Section 7.1.3 I discuss

a broader range of other reflection studies, including those in non-physics domains and with

other reflective interventions. Finally, I discuss the current work in light of those related

studies.
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7.1.1 Reflection In Action

Sections 2.3.2 and 2.3.1 described “reflection-in-action” and “reflection-on-action,” and dis-

cussed the differences between them. The thesis work described here was of the “reflection-

on-action” type. However, several studies have examined “reflection-in-action,” usually by

means of having students self-explain their own problem solving steps.

For example, the Cognitive Algebra tutor was modified (Aleven and Koedinger, 2002) to

require students to select self-explanations for each of their problem solving steps. Requiring

self-explanation led to better performance on transfer questions. The authors attribute this

in part to improved integration of visual and verbal declarative knowledge.

Similarly, the ALPS learning environment (Corbett et al., 2006) required students to

generate explanations for the meaning of each term in an algebra equation. Generating

these explanations led to better transfer than selecting them from a menu.

Finally Atkinson et al. (2003) prompted students to identify the principle underlying

each step in a worked-out example probability problem, which improved both near- and

far-transfer performance.

7.1.2 Reflection In Quantitative Physics

As described in Section 3.1 the current study was carried out in the domain of qualitative

physics. Other, closely related work by Sandra Katz and colleagues (Katz et al., 2003, 2007;

Connelly and Katz, 2009) has investigated reflection after tutoring in quantitative physics.

The first study in this series (Katz et al., 2003) has already been described in Section

2.3.1 to motivate the ideas that reflection could help learning in physics, and that a reflective

text could be just as effective as an interactive dialog. In this section, I largely point out a

few interesting features of the remaining two.

These studies had several features in common. Reflection questions were given after

each of a series of quantitative physics problems in Andes. Typically the reflection question

would ask the student to think what would happen to the answer if some feature of the

preceding problem were changed. For example, after analyzing the forces involved while

pulling a suitcase on frictionless wheels, the reflection question might ask how the forces
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would change if there were no wheels. In these studies, qualitative post-test questions were

considered far transfer, because tutoring in Andes is largely quantitative. The immediate

benefits of reflection were measured using largely qualitative pre- and post-tests administered

before and after the relevant unit had been covered in physics class, roughly three weeks

apart. Longer term retention was measured using scores on the course final exam, a delayed

quantitative problem solving test.

In (Katz et al., 2007), Katz, Connelly and Wilson investigated implementing reflection

questions following problem solving in Andes, as described above. Students would enter

a response to the question, then either get canned-text feedback or one of two varieties

of interactive dialog feedback. Low student participation prevented detailed comparison of

the dialog conditions. However, it was determined that students in the reflection condition

learned more than students in the non-reflective control when measured by the (near transfer)

pre- and post-tests.

Retention and far-transfer were gauged using performance on the delayed final exam,

as mentioned above. On this test, students who received canned text feedback actually did

marginally better (p = .07) than those in the interactive reflection conditions.

Student participation was higher in a second experiment in the same study. In this

experiment a new implementation of dialog feedback to reflective questions was compared

to standard Andes, without reflective questions. Again, students in the reflection condition

learned significantly more, as measured by the near-transfer pre- and post-tests, than stu-

dents using only Andes. Also similarly to the first experiment, there was no difference in

far-transfer learning gains between conditions.

In (Connelly and Katz, 2009), Connelly and Katz again improved the reflective dialog

feedback. In an attempt to increase transfer to quantitative problems, the new extended

feedback dialogs asked both qualitative and quantitative questions. In addition, some new

“what-if” reflection questions were designed to explicitly compare the Andes problems to

other problem scenarios. As in the first experiment, unproductive student behavior limited

the types of analysis that could be done. However, significant results were obtained by

regressing outcome measures (learning gain or final exam score) against number of reflection

dialogs completed and other independent measures.
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Near transfer learning gains, as measured by the largely qualitative pre- and post-tests,

were significantly predicted by reflective dialog completion. In addition, dialog completion

was a significant predictor of learning gains on the subset of quantitative questions.

Far transfer learning, as before, was measured by scores on the quantitative final exams.

The number of reflective dialogs completed was a positive and significant predictor of final

exam score. In both the near- and far- transfer results, the significance of KCD completion

disappeared if QPA was added to the regression. These results were the first indication of a

longer term benefit to reflection in this series of studies.

Note that in the two studies just described, the benefit of reflection seemed to apply to

all students. Statistical results were obtained without subdividing students by pre-test score

or motivation.

In (Katz et al., 2003), Katz, Allbritton and Connelly found both that students who

reflected learned more than those who didn’t (Experiment 2) and also that among students

who received reflective dialog, students who participated in more dialogs, or whose dialogs

had more of certain features such as abstraction from the previously tutored problem, learned

more (Experiment 1). The benefit of reflection in these experiments was shown for the group

of all students.

7.1.3 Reflection In Other Domains

A wide variety of interventions have been proposed to encourage student reflection in various

contexts. For example, systems have been built that encourage learners to interact with a

computer tutor’s student model(Cimolino et al., 2003), or as “learning companions” that

encourage reflection following interaction with a tutor (Goodman et al., 1998). Interventions

have also taken the form of scripts for reflective dialogs among students following group work

(Frederiksen and White, 1997), or of software tools to scaffold reflective inquiry in classroom

learning (Kyza et al., 2002).

In this section I review a subset of these studies that have been evaluated either in terms

of learning gains or of reflective behavior, and compare them to my current work. I categorize

these studies along two dimensions, first according to the visibility of the reflection produced
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by the student, and second according to the type of guidance given to the student. Taken

together these studies will suggest that explicit reflection is better than implicit reflection,

and that highly personalized guidance may not be better than more generalized guidance.

The first division is between “explicit” and “implicit” reflection. In an explicit reflection

condition, the student is required to reflect out loud or on paper, while in an implicit reflection

condition the student does not produce any evidence of reflection, and may or may not be

reflecting at all. For example in tutorial dialog, when the tutor points out a mistake, that is

an opportunity for the student to reflect on the thought processes that arrived at the error

(Tchetagni et al., 2007). If the tutor asks the student to do this out loud (or on paper) the

reflection is explicit. Otherwise, the reflection (if it happens at all) is implicit.

The second division is between different amounts of specificity in the guidance provided

for reflection. I divide this dimension into three levels. The most specific guidance is “per-

sonalized” to match the student’s particular errors or misconceptions. An example of this

might be if a dialog-based tutor were to ask, following an incorrect response, how the stu-

dent had arrived at that answer. I term the next category along this dimension “guided”

reflection. In this category the tutor asks the student to reflect about some general topic

or issue, but the selection of topic is not chosen to benefit that specific student. The final

category along this dimension is called “unguided.” Here the student is not given a specific

topic for reflection, but must choose one independently.

These categories are shown as the horizontal and vertical axes in Table 40. Next I will

describe several studies which fit in the various cells of Table 40, and the results of their

evaluations. The studies discussed differ on many dimensions, and would be categorized

differently in a system which accommodated their many other important differences. This

system (shown in Table 40) was chosen to highlight a potentially interesting trend among

the patterns of significance in these studies.

Tchetagni et al. (2007) describe a modification to their Prolog-tutor that encourages

explicit reflection. In its standard form, Prolog-tutor engages the student in a tutorial dialog

concerning problem solving in Prolog. For example, the tutor might ask the student which

element of a knowledge base should be included in a Prolog statement. The student might

respond “I don’t know,” and be given a remedial sub-dialog. This form of Prolog-tutor
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points out individual student errors at a fine level of detail, but does not ask the student to

explicitly reflect on them (although they may do so covertly). It is shown as “Prolog-tutor”

in Cell 2 of Table 40.

In its modified form, Prolog tutor asked tutorial questions like above, but also asked a

variety of reflection questions. For example, students might be asked to justify their previous

response, or to explain if they agreed or disagreed with a tutor statement. Students were

asked to respond aloud to these questions in “think aloud” format, and their answers were

recorded for analysis. Because this version asks students to reflect explicitly in response to

specific prompts, is is shown in Cell 1 of Table 40 as “Prolog-tutor-ER.”

An analysis of student responses suggested that Prolog-tutor-ER caused reflective think-

ing, however the authors noted some qualifications to this result. For example, Prolog-tutor-

ER did not seem to trigger much confusion among students, as had been expected. Also,

the authors note that the questions were so specific that students seemed unable to see their

higher goal, and often didn’t seem to realize that they were doing “reflection” at all. This

suggests that the effectiveness of reflection may be compromised by making the reflective

guidance too specific and personalized.

Gama (2004a) investigated adding a Reflection Assistant (RA) to “MIRA,” an algebra

word problem solving environment. The focus of reflection in this study was the students’

knowledge monitoring accuracy (KMA). Before each problem in MIRA, students would es-

timate various aspects of their knowledge and ability to solve the upcoming problem. After

each problem, the reflective assistant would compare their performance to their predictions,

and rate their accuracy. This combination, with a directed (but not personalized) reflection

target and explicit reflection, is shown as “MIRA-RA” in Cell 3 of Table 40. In the control

condition, students solved algebra problems in MIRA without interacting with the reflection

assistant. Mira gave feedback at the answer level rather than at the problem-solving step

level, then allowed students to see a correct solution after problem solving (Gama, 2004b).

This condition offered an opportunity for implicit, guided reflection, and is shown as “MIRA”

in Cell 4 of Table 40.

Results suggested that students in the reflection condition performed significantly better

on several measures of problem solving performance (Gama, 2004a). Pre- and post-tests were
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not given, however students in the reflective condition got a greater percentage of problems

correct and “almost correct” while working in MIRA. A measure of KMA also improved in

the reflective condition, but not significantly.

Lin and Lehman (1999) gave students reflection prompts while they solved problems in

experimental variable control. The students set up biology lab experiments with a simulated

biologist named Paula. The reflection prompts asked students to provide reasons for their

actions (reason prompts), to explain the rules or procedures they used (rule based prompts),

or to reflect on their feelings (emotion focused prompts). These prompts guided the student

to reflect on certain topics, but were not personalized to address the student’s knowledge

level, so this condition is shown in Cell 3 of Table 40 as Paula-ref.

The control group solved problems without receiving prompts, and received feedback

after all the problems were completed. This condition is shown as “Paula” in Cell 4 of Table

40.

The evaluation in the Lin and Lehman (1999) study involved measuring performance

on simulated test problems after tutoring, where some problems were contextually similar

to the tutored problems (“near” transfer) and some problems were contextually dis-similar

to the tutored problems. Both conditions did equally well on the near transfer problems,

but the reflection condition that received “reason” prompts did significantly better than the

other groups on far transfer problems.

Lee and Hutchison (1998) presented reflection questions to students who had read elab-

orated or un-elaborated versions of case studies. The cases described how experts balanced

chemical equations, and the reflection questions asked students to think about what actions

the expert had performed (case reflection questions), or why the expert had performed some

particular action (strategy questions). This condition is shown as “Lee-ref” in Cell 3 of Table

40. In the control conditions, students read the cases without reflection questions. This is

shown as “Lee” in cell 4 of Table 40.

Across several experiments, Lee and Hutchison (1998) found that reflection questions

produced more learning than the no-reflection control, but that this effect held only for low

knowledge students. Students were judged low knowledge if they scored 0 or 1 correct on the

pre-test, because both scores were possible without any chemistry knowledge at all. They
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hypothesize that “participants who have more pre-knowledge can ask their own questions

and therefore do not need the reflection questions as much as those participants without

pre-knowledge.” Note that this explanation is consistent with the related work described

in Section 7, which argues that factors such as increased domain knowledge or increased

motivation can lead to higher levels of textual engagement while reading.

Davis (2003) compared directed with un-directed reflection prompts that were given while

students evaluated scientific evidence. Students were required to read an article about heat

flow in a fictitious pseudo-scientific “tabloid.” They would then critique the claims made and

evidence used, and write an analysis in the form of a letter to the editor. Students worked

in pairs using the “Knowledge Integration Environment” (KIE), which used a sequence of

activity screens to support step-by-step problem solving, and also presented the reflection

prompts at various steps. Performance was measured by evaluating the final letters for the

coherence of understanding shown in them. Also, quality of reflection was evaluated by

examining the student’s typed responses to reflection prompts.

Generic prompts were of the form “Our thoughts now are...” they asked the student

to reflect about the current activity, but did not dictate a specific topic. Students would

complete the prompts by typing responses into a text box in the KIE, so their reflection is

“explicit” according to Table 40. The unguided generic prompt condition is shown as “KIE-

generic” in Cell 5 of Table 40. An example of a directed prompt is “Claims in the article we

didn’t understand very well included...” This condition is shown as “KIE-directed” in Cell

3 of Table 40.

Results suggested that students developed significantly more coherent understandings of

heat flow from generic rather than directed prompts. This effect was especially strong for

students who had scored highly on a measure of “autonomy,” indicating that they took re-

sponsibility for their own science learning. Students in the directed prompt condition tended

to generate less productive reflections, which were in turn correlated with less coherent un-

derstanding as shown in the final letter. Davis speculates that because the prompts were

dumb, ie. not informed by any type of student model, they were often inappropriate and

unrelated to the student’s actual difficulties. Generic prompts on the other hand allowed

students to expand their repertoire of ideas and identify weaknesses in their own understand-
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ing. This effect was especially strong for autonomous students who more readily engaged in

reflection.

The thesis experiment reported in the current work required only implicit reflection

from students; they were not asked, for example, to write down their own comparisons of

the preceding physics problems. In the experimental conditions, students read a reflective

reading which directed their attention to certain comparisons between problems, but did not

tailor the comparisons to each student. This is shown as “Itspoke-ref” in Cell 4 of Table

40. The control condition, which allowed students to re-read the introductory text in light

of the recently tutored problems, is shown as “Itspoke-again” in Cell 6 of Table 40.

In this work, reflection increased learning, but only for students with a certain middle

level of motivation. Students with higher levels of motivation were not helped by reading

a reflective text. Section 7 reviews related work in motivation and text comprehension

which suggests that these highly motivated students may have engaged the control text

more actively and so had no need of the additional reflective scaffolding provided in the

experimental texts.
Tutor Reflective Response

Guidance Explicit Implicit
Prolog-tutor-ER (a) Prolog-tutor (a)

Personalized
Andes-ref-dis (b) Andes (b)

Andes-ref-noDis (b)
MIRA-RA (c) MIRA (c)

Guided Paula-ref (d) Paula (d)
Lee-ref (e) Lee (e)

KIE-directed (f) Itspoke-ref
KIE-generic (f) Itspoke-again

Unguided

Reference key: a: (Tchetagni et al., 2007), b: (Katz et al., 2003)
c: (Gama, 2004a); d: (Lin and Lehman, 1999)
e: (Lee and Hutchison, 1998); f: (Davis, 2003)

Table 40: Comparing Studies by Type of Reflection

Katz et al. (2003) compared three versions of the Andes homework helper. In the control

condition, the students solved quantitative physics problems in the standard version of Andes
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and received error feedback when their solutions went awry. This condition is shown in Cell

2 of Table 40 because students were not prompted to reflect, but received personalized

correctness feedback that may have led to covert reflection.

In the first experimental condition, students were given a reflection question after tutoring

with Andes and asked to discuss their answer with a human tutor. The questions were usually

modified versions of problems solved in the preceding Andes session. Some features would be

changed in the modified version, and the student asked to consider how the changes would

impact the solution. While the reflection questions were not individualized in this condition,

the following feedback discussion was, so this condition is shown as “Andes-ref-dis.” in Cell

1 of Table 40.

In the second experimental condition, students were given a reflection question after

tutoring with Andes, but not allowed to discuss their answer. Instead, they were given a

“canned text” response which explained the correct answer. In this condition neither the

questions nor the response were individualized for the student, so it is shown in Cell 3 of

Table 40 as “Andes-ref-noDis”.

Results showed that students in the reflective conditions learned significantly more than

those in the control when measured using qualitative questions. The difference was not

significant when measured with quantitative questions, and there was no significant difference

in learning between the two reflective conditions.

The other two studies of Katz and her colleagues, described in Section 7.1.2, also support

the pattern of results seen above. (Katz et al., 2007) showed an advantage for reflection over

no-reflection, and the positive correlations found between reflective dialog completion and

learning in (Connelly and Katz, 2009) also support an advantage for reflection.

It is now possible to suggest a pattern of results in Table 40. Comparing the two columns

we see an overall advantage for “explicit” over “implicit” reflection. The Andes, Mira, Paula

and Lee tutors all found an advantage for explicit reflection on their respective evaluation

measures. The only exception to this pattern may be the equivocal results for the Prolog

tutor, which were attributed to the excessive specificity of the prompts.

Looking at the three rows of Table 40, we see several hints that less guided explicit

reflection may be preferable to more individualized explicit reflection. One hint is that
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there are no clear examples of effective personalized reflection prompts. As suggested above,

reflection prompts in the Prolog tutor may have been too specific to allow the student to

step back from problem solving and engage in reflection. In addition, the Andes tutor with

human guided reflection caused more learning than the no-reflection control, but seemed no

more effective than the less personalized “canned text” feedback condition.

Only one experiment in this sample compared explicit reflection at the “guided” and

“unguided” levels. Those results, shown as KIE in Cells 3 and 5 of Table 40 found an

advantage for less specific guidance in reflection, particularly for students who had sufficient

knowledge to reflect effectively without help.

The current Itspoke study compared implicit reflection at the “guided” and “unguided”

levels, and found an advantage for “guided,” but only for students with middle motivation.

Subjects with higher motivation did not benefit from the reflective text, perhaps because

they were prone to reflect effectively without prompting.

Although it is difficult to make confident comparisons across studies that are dissimilar

in their outcome measures and implementations of reflection, two broad lessons seem appro-

priate. First, students will learn more from reflection if required to reflect explicitly. Second,

more general instructions to reflect may often be more effective than more specific person-

alized ones, particularly for students who, for reasons of sufficient knowledge or motivation,

may be reflecting by themselves.

7.1.4 Relation To Current Work

The intervention described in the series of studies done by Katz and her colleagues is in many

ways similar to the one used in my thesis work. By asking students what would happen if a

problem feature were changed, the reflection questions were asking students to compare two

different physics questions. Making this comparison could help students differentiate between

unimportant surface level features and important deep features of these problems, in the same

way that was hypothesized for my intervention. However, there are also some interesting

differences. First, the thesis intervention explicitly compared the application of abstract

physics laws between different problems, while the feedback to Katz’s reflection problems
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seems to have largely emphasized the application of laws to the newly modified problem. In

addition, in the thesis intervention, the reflective text came after all the tutored problems,

and made pairwise comparisons between them in various combinations. In contrast, in the

Andes reflection intervention, reflection was done between the tutored problems, as each

problem was completed. Doing reflection after each problem may reduce working memory

demands, however it may also reduce the chances that broad comparisons are made between

the full set of problem instances.

Another interesting difference between the studies is that reflection after Itspoke only

seemed to benefit students with a middle amount of motivation. However, as mentioned

above, reflection after Andes benefited all students.

There are many differences between the Itspoke and Andes studies which make it difficult

to compare them: they were done in different years, with different students and different

measures of learning. It seems likely, however, that a major source of the difference in

outcomes between these experiments may be that the two tutors emphasize different aspects

of physics. The Andes tutor is a problem-solving homework helper. It provides the student

with means to draw free-body diagrams, to define variables and enter equations, and it

follows along step-by-step as the student solves quantitative physics problems. Conceptual

“on-demand” help is available, and conceptual help was also given by the human tutors

during tutoring in (Katz et al., 2003), however the emphasis of the tutor, and most of the

feedback, is on problem solving. Katz et al. noticed that the human tutors tended to

address issues concerning step-by-step problem solving during problem solving, and then

used the post-problem solving reflective dialogs to elaborate on conceptual explanations and

provide more abstracted solution schema. For many students using this tutor, it may be

that post problem solving reflection was their first opportunity to think about more abstract

conceptual issues.

In contrast, the Why2-Atlas tutor, and therefore the Itspoke tutor, was designed to

directly address conceptual understanding. It tutors qualitative physics problems (as op-

posed to quantitative physics problems) and emphasizes conceptual explanations. The major

feature of the reflective text used in this experiment, comparing different problem solving

episodes, was not present in the tutoring dialogs. However the reasons for each application
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of Newton’s laws were discussed, and seems likely that sufficiently motivated students would

be able to pick up a conceptual understanding more easily from Itspoke than from the Andes

tutor. Consequently, reflection after Itspoke might be expected to have a more narrow effect

on learning than did reflection after Andes.

Another difference between reflection after Itspoke and reflection in almost all other

evaluated studies is shown in Table 40. In most of the other studies, students were asked

to reflect explicitly, usually by answering a question or responding to some other kind of

reflective prompt. As described, explicit reflection seems in general to produce more benefit

than implicit reflection, probably because it ensures that the student engages the material

more actively. The Itspoke study, however, required only implicit reflection, relying instead

on features of the text (i.e. its cohesiveness) to encourage engagement and active abstraction.

7.2 RELATED WORK IN HUMAN TEXT PROCESSING

In this section I discuss related work in text comprehension which, like the current study,

has dealt with the relationship between motivation, knowledge and cohesion.

7.2.1 Motivation, Knowledge And Learning From Text

Schiefele and Krapp (1996) investigated the effect of topic interest on recall of expository

text. In their work, they define topic interest as the “relatively long term orientation of

an individual towards a certain topic, or a domain of knowledge.” Their topic interest

questionnaire consisted of two parts, “feeling related valences” and “value related valences.”

The feeling related questions asked how the subject felt in relation to the topic (“bored,”

“interested” etc). The value related questions asked the student to rate the personal value

of the topic to them on a 1 to 4 rating scale ranging from “completely true” to “not at all

true” for terms like “meaningful,” “unimportant” “worthless” and so forth. Note that these

questions are very similar to the intrinsic value questions used in our motivation survey, as

described in Section 4.4.3. The questions on Schiefele and Krapp’s instrument (both feeling
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and topic interest together) had a very high reliability coefficient (alpha) of .91.

They found that interest was significantly related to free recall of idea units from the text.

Interest was also related to the correctness of the sequence of ideas recalled (a measure of

comprehension), and to the recall of “new” idea units, which had been implied but not stated

in the text (a measure of comprehension and elaboration). They also found that interest

(but not prior knowledge) was significantly related to measures of active engagement with

the text such as intensity of attention, elaboration and note-taking while reading. Schiefele

and Krapp concluded that student interest increases the quantity of recall and also the depth

of processing, and that the relationship between interest and learning was independent of

prior knowledge.

The study described above was among university students. In (Schiefele, 1996) Schiefele

found a similar result among 12th grade students. Students were assessed for prior knowl-

edge of and interest in the topic of an expository text (“pre-historic people” or “television”),

then asked to read the text. After reading, the students were asked to rate if certain sen-

tences had appeared in the text. The sentences were designed to separately test three dif-

ferent levels of representation hypothesized in van Dijk and Kintsch’s text processing theory

(vanDijk and Kintsch, 1983): the verbatim representation of the superficial text structure,

the propositional representation and the situation model. Results suggested that interest

was negatively related to the shallow verbatim representation, but positively related to the

deeper propositional representation. There were no significant correlations for the situation

model representation. This result was consistent with van Dijk and Kintsch’s expectation

that highly interested subjects would more actively engage the text to build deeper level

(propositional and situation model) representations, and that less interested readers would

instead build more shallow verbatim representations.

The above study used non-physics texts, however in (Alexander et al., 1994) Alexander,

Kulikowich and Schulze found significant relationships between topic knowledge, domain

interest and retention from reading a physics test. Two physics texts were used in this

study, with higher and lower levels of technicality. After reading, students were asked to

evaluate their interest in the whole text and on each passage within the text on a 1-to-10

scale. Domain knowledge and reading comprehension were both evaluated by having students
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complete fill-in-the-blank questions. The post reading comprehension questions tested recall

of various facts from the text, and had very high reliability ratings. No attempt was made

to evaluate different levels of representation as had been done in (Schiefele, 1996).

Alexander et al. (1994) found that both prior domain knowledge and interest were sig-

nificantly related to comprehension of the physics text, however the effect of prior knowledge

was larger. Domain knowledge accounted for 21% of the variance in recall, while interest

explained 5% of the variance.

In a review of many published studies, Tobias (1994) concludes that although interest

and prior knowledge are well correlated, some 80% of the variance in interest was not ex-

plained by prior knowledge, and could therefore affect learning independently. Based on his

literature review, Tobias suggested that interest affected learning by invoking deeper types

of comprehension processes and greater use of imagery, among other things.

Finally, as mentioned in Section 2, Boscolo and Mason (2003) found that both higher

prior knowledge and higher interest improved text comprehension, and that these effects

seemed to be additive, so that students with high interest and high prior knowledge learned

significantly more from the text than other groups.

These studies, taken together, strongly suggest that both topic interest and topic knowl-

edge affect how a text is processed, and how much of it is retained.

7.2.2 Cohesion And Learning From Text

In Section 2.4, I described work by Britton and Gulgoz (Britton and Gulgoz, 1991) , McK-

eown et al. (McKeown et al., 1992) and McNamara (McNamara et al., 1996) showing that,

in general, increasing the cohesiveness of a text can improve how well it is understood. In

addition, I reviewed work by McNamara and her colleagues (McNamara et al., 1996; Mc-

Namara and Kintsch, 1996; McNamara, 2001; O’Reilly and McNamara, 2007) showing that

low cohesion text can actually be beneficial for certain students.

Rather than repeat that review, this section will expand on McNamara’s results which

suggested that textual cohesion affects the type and depth of processing achieved. As de-

scribed in Section 2.4, VanDijk and Kintsch’s theory of text comprehension (vanDijk and
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Kintsch, 1983) holds that several different levels of representation can be generated while

reading a text.

In many of McNamara’s studies (e.g. (McNamara et al., 1996; McNamara and Kintsch,

1996)) low cohesion text led to improved situation model representations, as measured by

improved performance on a sorting task. This was interpreted to be because the inferences

necessary to process a low cohesion text had caused learning, and produced a more elaborated

situation model.

However in others (e.g. (O’Reilly and McNamara, 2007; McNamara, 2001)) low cohesion

only produced gains at the propositional model level, not the situation model level. This

difference was attributed to the difficulty of the texts. In (O’Reilly and McNamara, 2007) the

texts concerned cell mitosis, contained many unfamiliar terms, and were difficult for most

students. McNamara suggests that when unable to form situation model representations

from these texts, subjects fell back to a propositional level representation.

Similar difficulty in affecting the situation model occurred in the Schiefele study (Schiefele,

1996) described above. In that study interest was positively correlated with creation of a

propositional representation, but not correlated with creation of a situation model represen-

tation.

7.2.3 Relation To Current Work

The results shown in the current study seem to fit the general pattern seen in related work,

given certain assumptions.

In the current study, reflection was shown to help students with a middle amount of

motivation, but not those with low or high motivation. It seems safe to assume that students

with very low motivation are not likely to engage in active reflection from either the reflective

or control condition texts, and so show no difference in learning between conditions. The

results described in Section 7.2.1 show that increased motivation alone can lead to greater

engagement with and learning from text. It thus seems likely that our highly motivated

subjects engaged in active processing, and possibly reflection, in both the reflection and

control texts, and so also show no difference in learning between conditions.

102



The cognitive load measures collected during the study also provide some evidence that

this interpretation is correct, and that subject motivation affects engagement with the text.

As described in Section 5.6.2, the reading speed measure of cognitive load was significantly

different for different levels of motivation. Both middle and high motivation students had

significantly higher cognitive loads than did low motivation students. This suggests that,

similarly to the work reviewed above, higher motivation is also associated with more active

text processing in our corpus.

The results for our middle motivation subjects more closely follow the pattern we ex-

pected based on the related work described in Sections 7.1 and 7.2.2, above. These students

did learn more from reflection, and also showed a significant learning gain interaction be-

tween domain knowledge and the cohesiveness of the text. There are still two puzzling

aspects to this result, however. First, low cohesion seemed to help low pre-testers, where

in McNamara’s work it helped high pre-testers. Second, the benefits of reflection seemed

to be more in retention than in far transfer. That is, reflection showed significant learning

advantages for near transfer and delayed near transfer learning, but not for far transfer or

delayed far transfer learning.

I first consider the question concerning levels of domain knowledge. One possible interpre-

tation is that the middle motivation low pre-testers in our study are like the high pre-testers

in McNamara’s studies. That is, they may have roughly the same levels of knowledge rel-

ative to their domains. Remember that in both this study and McNamara’s work, “high”

and “low” knowledge was defined relative to the distribution of pre-test scores, rather than

against some absolute scale. These studies were done in different domains and with different

populations of students, but it seems plausible that a below average freshman understanding

of force and motion is equivalent to an above average understanding of cell mitosis (or the

Vietnam war). In this case, like McNamara’s high pre-testers, our low pre-testers would have

a sufficiently high level of knowledge to successfully make inferences and bridge the gaps in

low cohesion text.

If this interpretation is correct, then what about the high pre-testers in the current study,

who would presumably be “extra-high” in one of McNamara’s studies? Why were they not

also helped by low cohesion text? As shown in the related work described above, high domain
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knowledge has also been associated with more active processing and increased learning from

text. Perhaps these students are actively engaging text no matter what its level of cohesion,

but learning more from the high cohesion text, perhaps because it has a larger number of

explicit propositions on which to base inference.

This analysis suggests an additional statistical test to compare cognitive load between

pre-test categories. An Anova explaining the “self-report” measure of cognitive load by pre-

test category (highPre or loPre) shows a significant (p = .039) difference between categories,

with the high pre-testers having higher cognitive load than the low pre-testers over all types

of text.

This additional cognitive load result supports the interpretation being built, and invites

one further inference. If these students with “extra-high” domain knowledge engage the text

more actively, what are they doing? Possibly they are reconciling the text with their existing

domain schema, in the way suggested by Kalyuga and Ayres (2003). Thus, our results suggest

a way to partially reconcile the conflicting interpretations of McNamara and Kalyuga for the

cohesion reversal effect. Perhaps students with a moderate amount of domain knowledge

respond to low cohesion largely by making inferences that they wouldn’t make from high

cohesion text. These students are represented by the low pre-testers in the current study,

who may have learned more from low cohesion text, (Table 27) and who had a higher level

of cognitive load (Table 29). Students with a high amount of domain knowledge, on the

other hand, respond to high cohesion by actively reconciling it with their existing schema,

resulting in greater learning (Table 27) and higher cognitive load (Table 29).

This analysis, while suggestive, suffers from a few shortcomings. First, interaction with

learning gains shown in Table 27 is for moderately motivated subjects. The interaction with

cognitive load shown in Table 29, on the other hand, is for the group of all students, and

is not significant for middle motivation subjects. Second, Kalyuga’s interpretation suggests

that schema reconciliation is extraneous load, and should produce less learning than the low

cohesion text. Our high pre-testers instead learned more from high cohesion text. I argue

in Section 8.3 that this suggests productive avenues for further research.

Next I consider the question about near- and far-transfer learning. The work in ab-

straction reviewed in Section 2.2 led us to believe that successfully processing an abstrac-
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tive/reflective text would lead to useful mental abstractions, and so to better transfer of

learning. So, given that the reflective text used in this study significantly improved learning,

why was the learning only “near” transfer and “delayed near” transfer?

There are (at least) two possibilities. The first is that, similarly to McNamara’s students

who read about cell mitosis, our middle motivation students did not successfully form a

situation model representation of the text, and so fell back on their propositional level

representations. This explanation is consistent with McNamara’s results for difficult texts,

but does not sit easily with the suggestion just made, that these students had a relatively

high level of domain knowledge.

Another possibility is that these students did form a situation model representation of

the text, but that it was inadequate for solving far-transfer questions. This explanation

seems more satisfying for several reasons. First, the delayed post-test results suggest that

the representation being used was the deeper situation model, and not one of the more

shallow representations which are thought to decay more rapidly. Second, the cognitive load

results presented in Section 5.6.2 suggest that these middle motivation students did process

the text more actively, relative to the more poorly motivated students. Their higher level

of cognitive load makes it easier to believe that they were successfully forming a situation

model from it. If this is true, then it suggests that there are significant differences between

even a deep textual representation and whatever operationalized schema is necessary to solve

transfer problems.

7.3 RELATED WORK IN COMPUTATIONAL LINGUISTICS

In this section I first briefly review work from the computational linguistics community

which has explored a number of ways to measure cohesion 1 in text. Following that, I

describe additional work that has measured cohesion in dialog. Finally, I compare both

1Because these metrics all measure properties of text, rather than of a reader’s understanding, I use the
term “cohesion” throughout. Some of the original papers use a different convention. For example, some of
them use “cohesion” for local syntactic relations in the text, and “coherence” for longer range rhetorical or
semantic relations in the text.
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these communities to the dialog cohesion measurements described in Section 6.

7.3.1 Measures Of Cohesion In Text

The various approaches to measuring cohesion in text can be divided into approaches based

on centering theory, approaches using corpus based similarity measures, and approaches

using semantic resources such as WordNet. I will give a few examples of each in turn.

Barzilay and Lapata (2005) measure textual cohesion by modeling the focus state of

a hypothetical reader. This approach is inspired by centering theory (Grosz et al., 1995),

which was intended to model a reader’s attentional state, as described in Grosz and Sidner’s

theory of discourse structure (Grosz and Sidner, 1986). This approach creates a grid show-

ing the transitions certain discourse entities make between syntactic functions in successive

sentences. It models the “smoothness” of the writing as a function of the syntactic roles

each entity assumes. The scores were used to rank texts by coherence.

Miltsakaki and Kukich (Miltsakaki and Kukich, 2004) describe an improvement in an

essay scoring system which also makes use of a measure of cohesion based on centering

theory. They automatically identify one type of transition, the “rough shift,” and find it is

helpful in identifying poorly structured essays.

Work in text segmentation (Hearst, 1994) has used cohesion to identify topic boundaries

in text. Cohesion was measured by counting the number of repeating words between ad-

jacent sentences, and topic boundaries were identified in places where sentence-to-sentence

similarity dropped.

Corpus based approaches to cohesion measure similarity between words by looking at

their distributions in a corpus. For example, latent semantic analysis (LSA) and its varia-

tions can be thought of as doing a type of implicit inference (Foltz et al., 1998). It infers

that two words are similar if they tend to be used in similar contexts. Foltz et al. (1998)

measure the cohesiveness of a text by using LSA to measure the distributional similarity of

words in consecutive sentences. They found that this measure of document cohesiveness was

significantly correlated with human judgments.

Higgins et al. (2004) describe another method of measuring the cohesion of an essay.
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They identify various discourse segments commonly present in a good essay, such as thesis,

support and conclusion. They then use vector based methods to measure the semantic

relatedness of each sentence to its segment, as well as to a few other things such as the

original question.

Lapata and Barzilay (2005) combine several of the approaches described above to measure

textual cohesion. They use both the entity-grid syntactic measure of coherence inspired by

centering theory, and also several semantic measures such as the LSA measure used by Foltz.

They find that the two approaches are complimentary, and the combination models perform

best on a cohesion scoring task.

Semantic Resource Approaches to measuring textual cohesion use resources such as

WordNet or WikiPedia. They determine the similarity between two words by examining

the path between them in the resource. These methods commonly produce a “similarity”

(or inversely, a “distance”) number like the LSA methods, but can also produce link type

information. For example, they can tell if the words connected by hyponymy or synonymy

relations, how many direction switches occur in the path, and so on. This additional path

information allows us to place them more toward coherence than the pure corpus based

measures.

Resnik (1995) finds the similarity between words as the information content of their

nearest common subsuming concept in an “is-a” (hyponymy) hierarchy. The information

content of the subsuming concept is learned from a corpus. Using additional information

from a corpus addresses the problem of link density in semantic resources. Simply counting

links does not give a good way to compare semantic distances, because the different portions

of the semantic hierarchy might be unevenly developed.

7.3.2 Measures Of Cohesion In Dialog

Section 7.3.1 above, describes how latent semantic analysis (LSA) has been used to measure

sentence to sentence cohesion in text. Olney and Cai (2005) extend this measure for use in

dialog. They use a variation of LSA to segment a corpus of tutorial dialogs into cohesive

topics. They use orthonormal projection to measure the extent to which each successive
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utterance contains new or old content compared to the dialog so far. This measure of

utterance-to-utterance similarity is used to predict the topic boundaries between different

tutored problems in the corpus.

Other work examining the cohesiveness of tutorial dialog has been done by the AutoTu-

tor group at the University of Memphis. In (Graesser et al., 2007), they use the CohMetrix

(Graesser et al., 2004) cohesion analysis tool to analyze the cohesiveness of tutor and stu-

dent dialog contributions along many dimensions. Using this tool, they show differences in

cohesiveness between tutorial dialog and other types of discourse.

Work examining tutorial dialog cohesion has been done by Jeon and Azevedo (2007, 2008)

in the domain of learning about the human circulatory system with hypermedia. In (Jeon

and Azevedo, 2008), they used the CohMetrix tool to measure cohesion in a corpus of tutor-

student dialogs, from which the tutor utterances had been removed. Among other things,

they found higher latent semantic analysis (LSA) scores for the utterances of students who

had improved their mental model of the circulatory system, compared to those who had not.

In (Jeon and Azevedo, 2007), they find significant differences in cohesion between transcripts

of students engaged in self regulated learning, vs. in externally regulated tutoring.

7.3.3 Relation To Current Work

In Section 6, I describe a method of evaluating learning during tutorial dialog by measuring

the cohesion between adjacent tutor and student utterances. This method is similar to

several of the textual measures described in Section 7.3.1. My lexical measure counts the

repetition of words between tutor and student, and so is very similar to the text-tiling

method (Hearst, 1994) used to segment expository text. My semantic measure of cohesion

counts the repetition of words that are different but have similar meanings, where semantic

similarity is measured using path distance in the WordNet hierarchy. This was inspired by

the corpus similarity measures described above, for example (Resnik, 1995). However, where

these measures were designed for text, the measures described in Section 6 were adapted for

tutorial dialog.

Work described in Section 7.3.2 does measure cohesion in tutorial dialog, and this work
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has interesting differences from my cohesion measurement described in Section 6. The work

using CohMetrix described above generally treats the tutorial dialog as a text. It separates

out all the student utterances, or all the tutor utterances, and uses CohMetrix to measure the

cohesiveness within that group. My work, in contrast, measures cohesion between adjacent

tutor and student utterances.

CohMetrix, however, provides a much greater variety of cohesion measures than I have

developed, although there are similarities. For example, our semantic measures are similar

in spirit, but where they use LSA to gauge the distributional similarity between two turns,

I use a WordNet similarity metric to locate specific pairs of similar words between turns.

Their “argument overlap” metric is also very similar to my lexical reiteration measure.

The work of Olney and Cai (Olney and Cai, 2005), described above, may be the closest

to my tutorial dialog methods. They also measure similarity between successive utterances

in tutorial dialog. However, they use their measure to predict topic boundaries, whereas my

measure was used to predict learning from tutoring.
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8.0 CONTRIBUTIONS AND FUTURE WORK

In this section I first review contributions made by the current work, then discuss a few of

its limitations. Based on the contributions and limitations, I then discuss a few avenues for

future work.

8.1 CONTRIBUTIONS

This thesis work has made contributions to each of the three related communities whose

work was described in Section 7.

This work contributes to research in reflection in Intelligent Tutoring Systems, which was

outlined in Section 7.1, in several ways. First, by confirming Hypothesis One (Section 5.3)

this work has shown that reading an abstractive-reflective text after tutoring can improve

both immediate and delayed measures of learning after tutoring in qualitative physics, for

moderately motivated students. This result extends other work described in Section 7.1.2

which showed that reflection can benefit qualitative learning after quantitative tutoring.

Second, it shows that reflective prompts such as those implemented for this study, which

compare previous problem solving episodes, are effective even when they require only implicit

reflection on the part of the student. In addition, this work’s use of implicit reflection has

contributed results for a region of study design space that was previously unexplored (see

Table 40).

Third, by showing success while focusing on abstractive comparisons of previous problem

solving episodes, this work adds to evidence that abstraction is a major reason for reflection’s

impact on learning.
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Forth, the sensitivity of this intervention to motivation level suggests that motivation is

a significant factor in learning from ITS’s. It implies that student models should include

estimates of motivation, and that these estimates could be used to determine for which

students reflective prompts would be necessary or useful.

This work also makes contributions to the field of human text processing research, which

was outlined in Section 7.2. By confirming Hypotheses Two (Section 5.4) and Three (Section

5.5) for middle motivation subjects, this work has shown that the cohesiveness of a reflective

text can affect how much students learn from reading it, and that this effect interacts with

student knowledge. Furthermore, results gained from testing the three primary hypotheses

contribute evidence that the benefit of reflection, and the effects of textual cohesion, are

both strongest for students with a “middle” amount of motivation.

In addition, the cognitive load results reported in Section 5.6.2 suggest why this inter-

vention was most effective for middle motivation students. Higher cognitive load for high

and middle motivation readers, relative to low motivation readers, suggest that motivation,

at high levels, causes more active processing of the text.

These results add to evidence of significant interactions among domain knowledge, mo-

tivation and textual cohesion that has been reported by other researchers. This work also

extends those findings into a new domain: reflective tutorial text.

Finally, the work described in Section 6 should be of interest to researchers in the field

of dialog cohesion, which was outlined in Section 7.3.2. It has demonstrated a method for

extending textual measures of cohesion for use in dialog, and shown that they correlate with

what one dialog participant, the student, is learning. The initial study in the series (Ward

and Litman, 2006) was the first work to use measures of tutorial dialog cohesion to predict

learning, a result which has now been replicated in several corpora of tutoring dialogs.

8.2 LIMITATIONS OF THE STUDY

In addition to the contributions described above, the work described in this thesis suffers

from several limitations, a few of which I describe here.
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A major limitation of this study is the low reliability of the cognitive load measures used,

as described in Section 5.1.3. This weakens both results for secondary Hypotheses Four and

Five, and also judgments about the underlying mechanisms behind the interactions that

were discovered.

Another limitation concerns interpreting the effect of student motivation. Results in this

study can’t conclusively determine if the effect of student motivation is because of differences

in model encoding during reading, or because of more active elaboration of the model during

problem solving. However since shallower representations are generally thought to decay

more rapidly than the deeper ones, the fact that some of the results in this study were for

delayed retention suggests that more than verbatim representations may have been involved.

Another limitation of the study is that it cannot tease apart the effect of text com-

prehension on transfer. That is, although the delayed post-test results provide a hint (as

described in Section 7.2.3), we cannot tell for certain if far-transfer learning was hindered

because students failed to form an adequate situation model of the text, or because even a

well formed situation model is not sufficient for problem solving.

Finally, this study did not allocate subjects among conditions with reference to their

motivation level. Post-hoc categorization of subjects by their motivation scores, therefore,

led to an uneven distribution of subjects among cells, and some low counts, as shown in

Tables 14, 15 and 16.

8.3 FUTURE WORK

This work has left a number of issues unsettled, and suggested other interesting areas for

exploration. In this section I will first mention two areas of future work suggested by the

current study’s shortcomings, and one future project suggested by the current study’s success.

This thesis work has shown significant interactions between cohesion and domain knowl-

edge, with effects on both learning gains and cognitive load. This suggests that domain

knowledge could be used to personalize the cohesiveness of expository texts. This study,

as well as previous research, has defined high and low knowledge using a mean or median
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split on the current subject population. However this approach makes it difficult to know

beforehand, based just on the current pre-test distribution, if a particular student has “high”

enough knowledge to need a low cohesion text. For example, in the current study, students

who were “low” knowledge relative to the distribution of pre-test scores may have actually

been “high” enough, relative to the domain, to benefit from low cohesion text. A very useful

avenue for future research, therefore, would be to define “high” and “low” pre-testers with

reference to concepts gleaned from a cognitive task analysis of the tutored problems and

test questions. Such an analysis would allow us to more closely determine the relationship

between the presence of concepts in prior knowledge and the effect of making them explicit

or implicit in text.

Another issue raised by these results is the exact relationship between the mental struc-

tures built when comprehending text, and the abstract schema thought to be necessary for

far transfer problem solving. Cognitive load results suggest that our middle motivated stu-

dents were processing the text more deeply than the least motivated students, while their

performance on the delayed post-test suggests that they were building the type of deep level

model which is thought to decay more slowly. However, this model did not seem to be ade-

quate to improve performance on far transfer questions which were dissimilar to the tutored

problems. This suggests that interesting work could be done which measured both the stu-

dents’ text representations and post-test performance, and attempted to find relationships

between the two. This would help clear up whether the difficulty lay in comprehending the

text at a deep enough level, or in translating that comprehension into useful problem solving

knowledge.

This work also raises issues about the relationship between text and dialog in tutoring,

and how they could be best combined in an Intelligent Tutoring System. An interactive

and responsive tutoring system is often thought to be the holy grail of tutoring research,

largely because interactivity is expected to cause more knowledge creation on the part of

the student. However, not all the knowledge covered during interactive tutoring can be

generated by the student. At each point in the dialog, the tutor must make the decision

whether to “elicit” that piece of knowledge, or to simply “tell” it. It has been shown that

sophisticated policies governing this “elicit-vs-tell” decision can improve learning (Chi et al.,
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2010). Chi et al. (2010) show that the optimal learned ratio of “elicit” vs “tell” actions can

be different for different knowledge components, and that it is often effective for a tutor to

“tell” rather than continuously “eliciting.”

In fact, other evidence suggests that it is sometimes best for the tutor to use a long series

of “tells” without eliciting any knowledge at all from the student. As observed by D’Mello

and colleagues (D’Mello et al., 2010), even in interactive tutoring it is sometimes necessary

for the tutor to enter “lecture” mode. In cases where the student lacks the knowledge

needed to respond effectively to scaffolding, the tutor is forced to simply deliver the missing

information. This raises the question of how that missing information should be delivered,

as a mini-lecture, embedded in the dialog, or as a text to be read?

The inclination to expect that interactive dialog will be better even in this situation

may not be well founded. Most of the benefits of interactivity will clearly be less present

in “lecture” mode. In addition, there are several reasons to expect that text may actually

be better. For example, students may read at their own pace, without feeling rushed to

fulfill a dialog obligation to respond periodically. Text can also be re-read, which is difficult

in a dialog situation. In addition, because of its ubiquity in schools, text is well studied.

Researchers have found many features of text (such as its cohesion, its title structure, or the

presence and placement of its graphics) which can make it more effective for certain students.

These considerations suggest that finding the best way to combine text and interactive

dialog in a tutoring system is an important topic for research, although it has so far received

little attention. It should also be noted that text and interactive tutoring are not mutually

exclusive, but could be combined in many ways. For example, the tutor could switch to

text mode when it decides the next series of points should be delivered primarily in “tells”,

as suggested above. Or, it could present a low cohesion text, then use interactive dialog to

force the student to address the gaps in the text.

Another option for combining text and tutoring is suggested by the use of a reflective

text in the current study. Under this option, a tutor might alternate between presenting

some form of tutoring and presenting a text. A major purpose of the tutoring sessions would

be interactive testing, which would be used to build a model of student knowledge and

motivation. Among other measures, dialog measures of cohesion, as described in Section 6
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could be used during the tutoring phase to measure learning. The post-tutoring text would

then be generated dynamically to have the specific content and cohesive structure deemed

best for that student. The student would read the text then return to tutoring for further

evaluation.

Text generation is a sub-field of Natural Language Processing, which studies how to gen-

erate text output from computer-internal semantic representations. The output is typically

generated in several stages, for example first a “strategic” stage which determines the gen-

eral content and structure of the message, and then a “tactical” stage which translates the

message into natural language output (McKeown, 1985). These choices are often made with

reference to various theoretical models of discourse. For example, rhetorical structure theory

(Mann and Thompson, 1988) is often used to select a message structure that advances the

appropriate discourse goal, while a model of the reader’s focus state (Grosz et al., 1995) is

sometimes used to avoid jarring “rough shifts” in the surface form.

This type of text generation mechanism has been used to generate tutor utterances in

tutorial dialog (Freedman, 1996), and also to generate web pages in dynamic hypertext

systems (O’donnell et al., 2001). However, it does not seem to have been used to generate

individualized instructional text during tutoring, in the way imagined above.
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APPENDIX A

EXPERIMENTAL TEXTS

This section reproduces the experimental texts used for both the pre- and post-tutoring

readings. These readings were all presented block-by-block in the Linger interface, and the

block dividers and block ids are indicated in the texts. For example “Reading Block Divider:

baseline1 e” indicates that the following text starts a new block, and that the block id is

“baseline1.” The letter following the block id is a code controlling what test Linger presents

following the block.

A.1 BASELINE AND INTRODUCTORY PRE-READING TEXTS

Reading Block Divider: lingerIntro a

In a minute you will read some introductory material about physics. First, however, is

a short text to familiarize you with the reading environment we will be using. This is a

”tap-to-read” environment. Please read at a comfortable speed. When you get to the end of

a block of text, tap ’return’ for the next block. Occasionally, after reading a block of text,

a ”reading difficulty” question will appear. This question will ask you to rate, on a 1-to-7

scale, how difficult the previous passage had been to read. 1 means ”very easy” and 7 means

”very hard.” Please complete the following practice reading now.

Reading Block Divider: baseline1 e

When Farmer Oak smiled, the corners of his mouth spread till they were within an
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unimportant distance of his ears, his eyes were reduced to chinks, and diverging wrinkles

appeared round them, extending upon his countenance like the rays in a rudimentary sketch

of the rising sun.

His Christian name was Gabriel, and on working days he was a young man of sound

judgment, easy motions, proper dress, and general good character. On Sundays he was a man

of misty views, rather given to postponing, and hampered by his best clothes and umbrella:

upon the whole, one who felt himself to occupy morally that vast middle space of Laodicean

neutrality which lay between the Communion people of the parish and the drunken section,

– that is, he went to church, but yawned privately by the time the congregation reached the

Nicene creed,- and thought of what there would be for dinner when he meant to be listening

to the sermon. Or, to state his character as it stood in the scale of public opinion, when his

friends and critics were in tantrums, he was considered rather a bad man; when they were

pleased, he was rather a good man; when they were neither, he was a man whose moral

colour was a kind of pepper-and-salt mixture.

Reading Block Divider: baseline2 e

Since he lived six times as many working-days as Sundays, Oak’s appearance in his

old clothes was most peculiarly his own – the mental picture formed by his neighbours in

imagining him being always dressed in that way. He wore a low-crowned felt hat, spread

out at the base by tight jamming upon the head for security in high winds, and a coat

like Dr. Johnson’s; his lower extremities being encased in ordinary leather leggings and

boots emphatically large, affording to each foot a roomy apartment so constructed that any

wearer might stand in a river all day long and know nothing of damp – their maker being a

conscientious man who endeavoured to compensate for any weakness in his cut by unstinted

dimension and solidity.

Reading Block Divider: baseline3 e

Mr. Oak carried about him, by way of watch,- what may be called a small silver clock;

in other words, it was a watch as to shape and intention, and a small clock as to size. This

instrument being several years older than Oak’s grandfather, had the peculiarity of going

either too fast or not at all. The smaller of its hands, too, occasionally slipped round on the

pivot, and thus, though the minutes were told with precision, nobody could be quite certain
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of the hour they belonged to. The stopping peculiarity of his watch Oak remedied by thumps

and shakes, and he escaped any evil consequences from the other two defects by constant

comparisons with and observations of the sun and stars, and by pressing his face close to the

glass of his neighbours’ windows, till he could discern the hour marked by the green-faced

timekeepers within. It may be mentioned that Oak’s fob being difficult of access, by reason

of its somewhat high situation in the waistband of his trousers (which also lay at a remote

height under his waistcoat), the watch was as a necessity pulled out by throwing the body

to one side, compressing the mouth and face to a mere mass of ruddy flesh on account of

the exertion, and drawing up the watch by its chain, like a bucket from a well.

Reading Block Divider: physicsIntro a

Thank you for completing the warm-up reading. The next reading is meant to introduce

you to the basic physics concepts that you will use later while working through the set of

physics problems.

Reading Block Divider: veloc e

Velocity:

In everyday language, we can use the words speed and velocity interchangeably. In

physics, we make a distinction between the two. Very simply, the difference is that velocity

is speed in a given direction. We say a car travels at 1.1 m/s (meters per second), we are

specifying its speed. But if we say a car moves at 1.1 m/s to the north, we are specifying its

velocity.

Scalar vs Vector quantities:

Quantities that require both magnitude and direction for a complete description are

called vector quantities. Quantities that can be specified using only magnitude are called

scalar quantities. Displacement and velocity are vector quantities, while speed and volume

are scalar quantities.

Text Divider: constVel e Constant velocity:

From the definition of velocity it follows that to have a constant velocity requires both

constant speed and constant direction. Constant direction means that the motion is in a

straight line; the object‘s path does not curve at all.

Text Divider: accel e Acceleration:
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We can change the velocity of an object either by changing its speed, by changing its

direction of motion, or by changing both. The rate at which velocity is changing (either

increasing or decreasing) is called the acceleration. Because acceleration is a rate, it is a

measure of how fast the velocity is changing per unit of time. Acceleration = change in

velocity / time interval.

Text Divider: forces e Forces:

A force is any push or pull. Two objects are always involved whenever force is exerted.

When I push a car, I am one object and the car is the other. Physicists say that the force

’acts on’ one of the objects and is ’due to’ the other. Thus, when I push a car, the force acts

on the car and is due to me.

Contact forces:

Forces are put into two categories: contact forces and field forces. If the two objects are

pressing against each other, they are involved in a contact interaction, then the force is called

a contact force. Contact forces only exist when the two objects are in physical contact.

Field forces:

Non-contact forces are called field forces. When a planet pulls on an object near it, the

pull is called a gravitational force. A gravitational force exists even when the planet and the

object are not touching.

Text Divider: newtOne e Newton‘s First Law:

Newton’s First Law is: ’Every body continues in its state of rest, or of motion in a

straight line at constant speed, unless it is compelled to change that state by forces exerted

upon it.’ An object at rest will remain at rest until a force is applied to it.

Now consider an object in motion. If you slide a hockey puck along the surface of a

city street, the puck quite soon comes to rest. If you slide it along ice, it slides for a longer

distance. This is because the friction force on it on the surface of ice is very small. If friction

is absent, it slides with no loss in speed. We thus conclude that in the absence of applied

forces, a moving object will move in a straight line with constant speed indefinitely.

Text Divider: mass e Mass:

Kick an empty tin can and it moves. Kick a tin can filled with solid lead, and you‘ll

only hurt your foot. Even though it has the same volume, the lead-filled can has greater
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resistance to motion than the empty can because it has greater mass. The mass of an object

is a measure of its resistance to changing its motion.

Text Divider: massNotWeight e Mass is not weight:

Now that you have an understanding of field forces, you are ready to understand the

distinction between mass and weight. Mass is an intrinsic property of an object; it is deter-

mined by the actual material in the body. It depends only on the number and kind of atoms

that compose it. Weight is a measure of the gravitational force that acts on the body, and

hence depends on where the object is located.

The amount of material in a particular stone is the same whether the stone is located

on the earth, on the moon or in outer space. Hence, its mass is the same in any of these

locations.

But the weight of the stone would be very different on the earth, on the moon, and in

outer space. On the surface of the moon, the stone would have only one-sixth of the weight

it has on the earth. This is because the acceleration due to gravity is only one-sixth as

strong on the moon as compared to that on the earth. If the stone were in a gravity-free

region of space, its weight would be zero. Its mass, on the other hand, would remain the

same everywhere.

Near a planet, the mass of an object is directly proportional to the magnitude of its

weight (and weight is gravitational force). The constant of proportionality is called g, so W

= mg, where W is the magnitude of the object‘s weight, m is the object‘s mass and g is a

constant that depends on the planet. For Earth, g = 9.8. For the moon, g = 1.6.

Text Divider: forceAcc e Forces produce acceleration:

The key idea behind Newton‘s first law is that it takes a force acting on an object in

order to cause a change its motion. Consider an object at rest, such as a hockey puck on

a smooth, nearly frictionless ice. Push it with a stick and it begins to move. Its velocity

changed from zero in the beginning to some value at the end of the push. When the stick is

no longer in contact with the puck, the puck moves at constant velocity. Apply another force

by striking it with the stick again, and the motion changes. Again the puck has accelerated.

Force produces acceleration.

Text Divider: netForce e Net force:

121



Often, there is more than one force acting on an object. The combination of all the

forces that act on an object is called the ’net force.’ It is the net force that produces the

acceleration of an object. For instance, suppose you attach two threads to a puck. If you

pull on one thread, the puck accelerates. If your friend also pulls on the second thread in

the same direction, the net force increases and the puck accelerates more.

On the other hand, if your friend pulls with the same force as you, but in the opposite

direction, then the two pulls cancel each other, the net force is zero, and the puck does not

accelerate. Thus, acceleration is due to the net force on an object, which is the sum of all

the individual forces acting on the object.

Text Divider: newtTwo e Newton‘s second law:

Push on an empty shopping cart, then push equally hard on a heavily loaded shopping

cart, and you‘ll produce much less acceleration in the second case. This is because accelera-

tion depends on the mass of the object being pushed. For objects of greater mass, we find

smaller accelerations for the same force. Newton’s second law formalizes it this way: ’The

acceleration of a body is directly proportional to the magnitude of the net force acting on it

and inversely proportional to its mass, and the acceleration is in the same direction as the

net force.’ That is, acceleration = net force / mass.

From this relationship, we can see that if the net force that acts on an object is doubled,

the acceleration will be doubled. Suppose instead that the mass is doubled. Then the accel-

eration will be halved. If both the net force and the mass are doubled, then the acceleration

will be unchanged.

Text Divider: normForce e Normal force:

How many forces act on your book as it lies motionless on the table? Don‘t say one, its

weight. If that were the only force acting on it, you‘d find it accelerating. The fact that it is

at rest, and not accelerating, is evidence that net force on it is zero. So, another force must

be acting in opposite direction. The other force is called ’the normal force due to the table

acting on the book.’ The table actually pushes up on the book with the same amount of

force that the book presses down. If the book is to be at rest, the sum of the forces acting

on it must balance to zero.

Text Divider: falling e Falling through air:
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Drop a stone and it falls. Does it accelerate while falling? We know it starts from a rest

position and gains speed as it falls. We know this because it would be safe to catch if it fell

a meter or two, but not from the top of a tall building. Thus, the stone must gain more

speed during the time it drops from a building than during the shorter time it takes to drop

one meter. This gain in speed indicates that the stone accelerates as it falls.

Gravitational force causes the stone to fall downward once it is dropped. Air resistance

tends to slow it down, but if the stone is still moving slowly, then air resistance can be ignored,

and the gravitational force is the only force acting on the stone. Whenever gravitational force

is the only force acting on an object, the object is said to be in free fall.

Text Divider: newtThree e Newton‘s third law:

In the simplest sense, a force is a push or a pull. Looking closer, however, we find that

a force is not a thing in itself, but is due to the interaction between one thing and another.

One force is called the action force. The other is called the reaction force. It doesn‘t matter

which force we call action and which we call reaction. The important thing is that neither

force exists without the other. The action and reaction forces make up a pair of forces.

In every interaction, forces always occur in pairs. For example, in walking across the

floor you push against the floor, and the floor in turn pushes against you. Likewise, the tires

of a car push against the road, and the road in turn pushes back on the tires. In swimming

you push the water backward, and at the same time the water pushes you forward. There is

a pair of forces acting in each instance.

Text Divider: axes e Coordinate axes:

When we deal with vectors it is necessary to define your coordinate axes so as to define

the directions of the vector quantities. Coordinate axes are two mutually perpendicular axes,

which we will refer to as the x- and the y-axes. Often we are trying to analyze the motion

of an object that moves both horizontally and vertically, such as a cannon ball shot at an

angle. If we choose the coordinate axes so that the x-axis is horizontal and the y-axis is

vertical, the analysis is much easier.

Text Divider: compVec e Components of vectors:

Any single vector can be regarded as the sum of two vectors, each of which acts on the

body in some direction other than that of the given vector. These two vectors are known as
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the components of the given vector that they replace.

A man pushing a lawnmower applies a force that pushes the machine forward and also

against the ground. In Figure 6-10, vector F represents the force applied by the man. We

can separate this force into two components. Vector Y is the vertical component, which is

the downward push against the ground. Vector X is the horizontal component, which is the

forward force that moves the lawnmower.

The rule for finding the vertical and horizontal components of any vector is relatively

simple, and is illustrated in Figure 6-11. A vector V is drawn in the proper direction to

represent the force, velocity or whatever vector is in question (Figure 6-11 left). Then vertical

and horizontal lines are drawn at the tail of the vector (Figure 6-11 right). A rectangle is

drawn that encloses the vector V in such a way that V is the diagonal and the sides of the

rectangle are the desired components. We see that the components of the vector V are then

represented in the direction and magnitude of the vectors X and Y.

A.2 “READ-AGAIN” CONTROL TEXT

Velocity:

In everyday language, we can use the words speed and velocity interchangeably. In

physics, we make a distinction between the two. Very simply, the difference is that velocity

is speed in a given direction. We say a car travels at 1.1 m/s (meters per second), we are

specifying its speed. But if we say a car moves at 1.1 m/s to the north, we are specifying its

velocity.

Scalar vs Vector quantities:

Quantities that require both magnitude and direction for a complete description are

called vector quantities. Quantities that can be specified using only magnitude are called

scalar quantities. Displacement and velocity are vector quantities, while speed and volume

are scalar quantities.

Constant velocity:

From the definition of velocity it follows that to have a constant velocity requires both
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constant speed and constant direction. Constant direction means that the motion is in a

straight line; the object‘s path does not curve at all.

Acceleration:

We can change the velocity of an object either by changing its speed, by changing its

direction of motion, or by changing both. The rate at which velocity is changing (either

increasing or decreasing) is called the acceleration. Because acceleration is a rate, it is a

measure of how fast the velocity is changing per unit of time. Acceleration = change in

velocity / time interval.

Forces:

A force is any push or pull. Two objects are always involved whenever force is exerted.

When I push a car, I am one object and the car is the other. Physicists say that the force

’acts on’ one of the objects and is ’due to’ the other. Thus, when I push a car, the force acts

on the car and is due to me.

Contact forces:

Forces are put into two categories: contact forces and field forces. If the two objects are

pressing against each other, they are involved in a contact interaction, then the force is called

a contact force. Contact forces only exist when the two objects are in physical contact.

Field forces:

Non-contact forces are called field forces. When a planet pulls on an object near it, the

pull is called a gravitational force. A gravitational force exists even when the planet and the

object are not touching.

Newton‘s First Law:

Newton’s First Law is: ’Every body continues in its state of rest, or of motion in a

straight line at constant speed, unless it is compelled to change that state by forces exerted

upon it.’ An object at rest will remain at rest until a force is applied to it.

Now consider an object in motion. If you slide a hockey puck along the surface of a

city street, the puck quite soon comes to rest. If you slide it along ice, it slides for a longer

distance. This is because the friction force on it on the surface of ice is very small. If friction

is absent, it slides with no loss in speed. We thus conclude that in the absence of applied

forces, a moving object will move in a straight line with constant speed indefinitely.
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Mass:

Kick an empty tin can and it moves. Kick a tin can filled with solid lead, and you‘ll

only hurt your foot. Even though it has the same volume, the lead-filled can has greater

resistance to motion than the empty can because it has greater mass. The mass of an object

is a measure of its resistance to changing its motion.

Mass is not weight:

Now that you have an understanding of field forces, you are ready to understand the

distinction between mass and weight. Mass is an intrinsic property of an object; it is deter-

mined by the actual material in the body. It depends only on the number and kind of atoms

that compose it. Weight is a measure of the gravitational force that acts on the body, and

hence depends on where the object is located.

The amount of material in a particular stone is the same whether the stone is located

on the earth, on the moon or in outer space. Hence, its mass is the same in any of these

locations.

But the weight of the stone would be very different on the earth, on the moon, and in

outer space. On the surface of the moon, the stone would have only one-sixth of the weight

it has on the earth. This is because the acceleration due to gravity is only one-sixth as

strong on the moon as compared to that on the earth. If the stone were in a gravity-free

region of space, its weight would be zero. Its mass, on the other hand, would remain the

same everywhere.

Near a planet, the mass of an object is directly proportional to the magnitude of its

weight (and weight is gravitational force). The constant of proportionality is called g, so W

= mg, where W is the magnitude of the object‘s weight, m is the object‘s mass and g is a

constant that depends on the planet. For Earth, g = 9.8. For the moon, g = 1.6.

Forces produce acceleration:

The key idea behind Newton‘s first law is that it takes a force acting on an object in

order to cause a change its motion. Consider an object at rest, such as a hockey puck on

a smooth, nearly frictionless ice. Push it with a stick and it begins to move. Its velocity

changed from zero in the beginning to some value at the end of the push. When the stick is

no longer in contact with the puck, the puck moves at constant velocity. Apply another force
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by striking it with the stick again, and the motion changes. Again the puck has accelerated.

Force produces acceleration.

Net force:

Often, there is more than one force acting on an object. The combination of all the

forces that act on an object is called the ’net force.’ It is the net force that produces the

acceleration of an object. For instance, suppose you attach two threads to a puck. If you

pull on one thread, the puck accelerates. If your friend also pulls on the second thread in

the same direction, the net force increases and the puck accelerates more.

On the other hand, if your friend pulls with the same force as you, but in the opposite

direction, then the two pulls cancel each other, the net force is zero, and the puck does not

accelerate. Thus, acceleration is due to the net force on an object, which is the sum of all

the individual forces acting on the object.

Newton‘s second law:

Push on an empty shopping cart, then push equally hard on a heavily loaded shopping

cart, and you‘ll produce much less acceleration in the second case. This is because accelera-

tion depends on the mass of the object being pushed. For objects of greater mass, we find

smaller accelerations for the same force. Newton’s second law formalizes it this way: ’The

acceleration of a body is directly proportional to the magnitude of the net force acting on it

and inversely proportional to its mass, and the acceleration is in the same direction as the

net force.’ That is, acceleration = net force / mass.

From this relationship, we can see that if the net force that acts on an object is doubled,

the acceleration will be doubled. Suppose instead that the mass is doubled. Then the accel-

eration will be halved. If both the net force and the mass are doubled, then the acceleration

will be unchanged.

Normal force:

How many forces act on your book as it lies motionless on the table? Don‘t say one, its

weight. If that were the only force acting on it, you‘d find it accelerating. The fact that it is

at rest, and not accelerating, is evidence that net force on it is zero. So, another force must

be acting in opposite direction. The other force is called ’the normal force due to the table

acting on the book.’ The table actually pushes up on the book with the same amount of
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force that the book presses down. If the book is to be at rest, the sum of the forces acting

on it must balance to zero.

Falling through air:

Drop a stone and it falls. Does it accelerate while falling? We know it starts from a rest

position and gains speed as it falls. We know this because it would be safe to catch if it fell

a meter or two, but not from the top of a tall building. Thus, the stone must gain more

speed during the time it drops from a building than during the shorter time it takes to drop

one meter. This gain in speed indicates that the stone accelerates as it falls.

Gravitational force causes the stone to fall downward once it is dropped. Air resistance

tends to slow it down, but if the stone is still moving slowly, then air resistance can be ignored,

and the gravitational force is the only force acting on the stone. Whenever gravitational force

is the only force acting on an object, the object is said to be in free fall.

Newton‘s third law:

In the simplest sense, a force is a push or a pull. Looking closer, however, we find that

a force is not a thing in itself, but is due to the interaction between one thing and another.

One force is called the action force. The other is called the reaction force. It doesn‘t matter

which force we call action and which we call reaction. The important thing is that neither

force exists without the other. The action and reaction forces make up a pair of forces.

In every interaction, forces always occur in pairs. For example, in walking across the

floor you push against the floor, and the floor in turn pushes against you. Likewise, the tires

of a car push against the road, and the road in turn pushes back on the tires. In swimming

you push the water backward, and at the same time the water pushes you forward. There is

a pair of forces acting in each instance.

Coordinate axes:

When we deal with vectors it is necessary to define your coordinate axes so as to define

the directions of the vector quantities. Coordinate axes are two mutually perpendicular axes,

which we will refer to as the x- and the y-axes. Often we are trying to analyze the motion

of an object that moves both horizontally and vertically, such as a cannon ball shot at an

angle. If we choose the coordinate axes so that the x-axis is horizontal and the y-axis is

vertical, the analysis is much easier.
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Components of vectors:

Any single vector can be regarded as the sum of two vectors, each of which acts on the

body in some direction other than that of the given vector. These two vectors are known as

the components of the given vector that they replace.

A man pushing a lawnmower applies a force that pushes the machine forward and also

against the ground. In Figure 6-10, vector F represents the force applied by the man. We

can separate this force into two components. Vector Y is the vertical component, which is

the downward push against the ground. Vector X is the horizontal component, which is the

forward force that moves the lawnmower.

The rule for finding the vertical and horizontal components of any vector is relatively

simple, and is illustrated in Figure 6-11. A vector V is drawn in the proper direction to

represent the force, velocity or whatever vector is in question (Figure 6-11 left). Then vertical

and horizontal lines are drawn at the tail of the vector (Figure 6-11 right). A rectangle is

drawn that encloses the vector V in such a way that V is the diagonal and the sides of the

rectangle are the desired components. We see that the components of the vector V are then

represented in the direction and magnitude of the vectors X and Y.

A.3 LOW COHESION REFLECTIVE TEXT

Reading Block Divider: refLow method e

One similarity between our tutored problems was that several of them used the same

sequence of problem solving steps. Can you remember what they were?

The order of operations was often to look at the forces involved, net force, acceleration,

velocity and displacement. In the Elevator problem we looked at all the forces involved and

discovered there was only gravity. We then found the net force (gravity), the acceleration

(downward), and finally the velocity and displacement (the same for man and keys).

The Car-truck question asked only about velocity. To answer it we reasoned from net

force (same for car and truck) to acceleration (greater for car) to velocity (greater for car).

It wasn’t necessary to take the next step and reason about displacement.
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In Earth-sun we applied the Third Law to show that the Sun’s gravitational pull on the

Earth was the same as the Earth’s on the Sun. We did not need to think about net force,

acceleration, velocity or displacement.

Notice that in no problem did it make sense to do steps out of order. We always had to

look at all forces before finding the net force, for example. And we always had to find net

force before finding acceleration. We couldn’t have done them in the reverse order.

Reading Block Divider: refLow vectors e

Vectors must be specified using both their magnitude and their direction, while scalars

are specified using only their magnitude. Speed is a scalar quantity while velocity and

acceleration are vector quantities.

The direction of a vector can be broken into independent horizontal and vertical compo-

nents. Because they do not affect each other, they can be analyzed separately.

Do you remember which of the tutored problems took advantage of the decomposability

of vectors?

The Plane-packet and the Pumpkin situations had motion in both the X and Y axes.

We looked at the Y direction (which involved gravitational acceleration) separately from the

X direction (in which there was no net force).

This approach was also used in the ’Car-truck’ case. We were able to analyze the vertical

direction (with no net force) separately from the horizontal direction (in which there was a

net impact force).

In the first two problems mentioned, the vertical direction had a net force, and we were

able to analyze it separately from the horizontal direction, which didn’t. In the latter problem

the horizontal had a net force, and we were able to ignore the vertical. In other problems

there might be net forces in both the X and Y axes. Decomposability would still apply.

Reading Block Divider: refLow firstLaw e

Newton’s First Law can be stated as: ’Every body continues in its state of rest, or of

motion in a straight line at constant speed, unless it is compelled to change that state by

forces exerted upon it.’ Do you remember which two problems used this law?

The First Law was useful in both the ’Plane-Packet’ and ’Pumpkin’ cases. In the first

situation, before the load was dropped from the airplane they both had the same horizontal
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velocity. After the release, there were no horizontal forces on the package (air-resistance

was negligible). Therefore, by the First law, it would continue with a constant horizontal

velocity.

In the ’Pumpkin’ problem, it and the man had the same horizontal velocity before release.

Afterwards, there were no horizontal forces on it (air-resistance was negligible). The pumpkin

continued with a constant horizontal speed.

Other parts of these problems were quite different. The packet was dropped from the

plane, without imparting any vertical force other than gravity. The pumpkin had both

an initial upward velocity and an acceleration from gravity. In neither case did what was

happening in the Y axis affect what was happening in the X axis. We were able to apply

Newton’s First Law, and realize that horizontal velocity would continue unchanged.

This law could also be applied in other situations. In the ’Elevator-Keys’ problem, the

man and keys were in a state of freefall, with only gravitational force acting on them. We

concluded that both would have the same downward displacement. But why didn’t they

move sideways, relative to each other? Neither man nor keys had any horizontal forces

acting on them, so both continued in their state of rest in the horizontal direction.

Reading Block Divider: refLow thirdLaw e

In the Earth-Sun problem we had to compare the strength of the Sun’s pull on the Earth

with that of the Earth’s on the Sun. In the Car-Truck problem we had to compare the force

of the car’s impact on the truck with that of the truck on the car. Do you remember which

of Newton’s Laws was useful in these cases?

In both situations we used the Third Law to show that the forces involved in an ac-

tion/reaction pair had the same magnitude but acted in opposite directions. An action-

reaction pair is formed whenever one object exerts a force on another object. Newton’s

Third Law says this force will have an equal and opposite reaction force. The type of force

is always the same for both objects in the pair. It was gravitational on both Earth and

Sun, and impact on both car and truck. They can operate along any axis, but always have

opposite directions to each other. For example, the earth pulled in the opposite direction

of the sun (vertically up vs vertically down), and the car’s impact force was opposite to the

truck’s (horizontally right vs horizontally left).
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In both of these situations, using Newton’s Third Law allowed us to see that the forces

acting on each object in the action/reaction pair had the same magnitude, even though the

objects in the pair had different masses. The Earth pulls as hard on the Sun as the Sun does

on it. The car hit the truck with as much force as the truck hit it, even though their masses

were very different.

You can use the idea of an action/reaction pair to analyze any situation in which a

force is exerted. After the plane releases it, the force of gravity becomes the net force, and

the packet accelerates downward toward the Earth. Does the Earth accelerate toward the

packet? Yes. Earth and packet form an action/reaction pair. The packet pulls on the Earth

as hard as the earth pulls on it. The Earth therefore accelerates toward the packet, although

less noticeably because of its greater mass.

Reading Block Divider: refLow secondLaw e

Newton’s Second Law was stated as ’The acceleration of a body is directly proportional

to the magnitude of the net force acting on it and inversely proportional to its mass, and

the acceleration is in the same direction as the net force.’ ’Acceleration = net force / mass,’

or ’net force = mass times acceleration’: f = ma.

Newton’s Second Law was used in almost all of our tutored problems. Can you think of

how it applied in a few of them?

It was applied in essentially the same way in both the Pumpkin and Plane-packet sit-

uations. In both cases it was used to deduce acceleration from net force. In Plane-packet,

the net force after release was gravity in the downward direction, so the package acceler-

ated downward. In the Pumpkin problem, the net force was gravity, and the downward

acceleration first reduced the upward velocity from the toss to zero, then increased it in the

downward direction.

Newton’s Second Law was used in the Car-truck question. We deduced (using the Third

Law) that the horizontal impact force was equal for both objects. Using the formula f =

ma, we deduced that because the car’s mass was much less than that of the truck, the car’s

acceleration would be greater than the truck’s.

F=ma is also useful in understanding an important part of the Elevator-keys problem.

In the Car-truck problem both objects have the same impact force applied to them, but have
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different masses and so gain different accelerations. Why then do the man and keys both

have gravitational force applied to them, and have different masses, but gain the SAME

acceleration? Gravity pulls with greater force on objects of greater mass. The greater mass

increases an objects resistance to acceleration (acceleration is inversely proportional to mass).

So, as mass increases both the force applied by gravity and the resistance to acceleration

increase by the same amount. The net result is that freefall acceleration due to gravity is

constant near the Earth’s surface. This can be seen by writing Newton’s Second Law as a

= f/m. As an objects mass (m) increases, the force (f) applied to it (its weight) increases

proportionally, and acceleration (a) remains the same.

Reading Block Divider: refLow summary e

We have seen that certain key ideas occur frequently when solving force-and-motion

problems. A fixed solution method allows us to break a problem into manageable parts and

solve them in the correct order. Newton’s First Law can be used to deduce the relationship

between net force and acceleration. Newton’s Second Law allows us to reason about the

relationship between net force, mass and acceleration. Note that, similarly to the First Law,

the Second Law can also be used to deduce the presence of an acceleration given a net force.

Newton’s Third law can be used to reason about the relative magnitude, direction and type

of forces in an action-reaction pair.

Together, these ideas should be very useful in solving future force-and-motion problems.

A.4 HIGH COHESION REFLECTIVE TEXT

Reading Block Divider: refHigh method e Problem Solving Method

One similarity between our tutored problems was that many of them used the same

sequence of problem solving steps. Can you remember what those problem solving steps

were?

The sequence of problem solving steps was to look first at the forces involved, then

find the net force, then find the acceleration, then find the velocity and finally find the

displacement. For example, in the Elevator problem we looked first at all the forces involved
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and discovered there was only gravity. We then found the net force (gravity), the acceleration

(downward), and finally the velocity and displacement (the same for man and keys), which

solved the problem.

Not every step in the sequence is needed to answer every problem. The Car-truck prob-

lem, for example, asked only about velocity. To answer the Car-truck problem we reasoned

from net force (same for car and truck) to acceleration (greater for car) to velocity (greater

for car). It wasn’t necessary to take the next step and reason about displacement.

The Earth-sun problem needed even fewer steps in the sequence because it asked only

about the gravitational forces involved. We simply applied Newton’s Third Law to show

that the Sun’s gravitational pull on the Earth was the same as the Earth’s gravitational pull

on the Sun. For this problem, we did not need to take the next steps in the sequence and

find net force, acceleration, velocity or displacement.

Notice that in no problem did it make sense to do steps out of sequence. We always had

to look at all forces before finding the net force, for example. And we always had to find net

force before finding acceleration. We couldn’t have done these steps in the reverse sequence.

Reading Block Divider: refHigh vectors e Components of Vectors

Often an object’s motion will be the result of several forces acting on it from different

directions. In these cases it can be helpful to take advantage of the decomposability of

vectors.

As you remember, vectors are quantities such as acceleration, which must be specified

using both their magnitude and their direction. Scalar quantities, on the other hand, have

no direction, and are specified using only their magnitude. This is how velocity differs from

speed. Speed is a scalar quantity which is specified only by its magnitude. Velocity is a

vector quantity which is specified using both its magnitude and its direction.

The direction of a vector quantity such as velocity is often easier to analyze if it is broken

into separate horizontal and vertical components. The resulting horizontal and vertical com-

ponents are independent. Because these components are independent, they can be analyzed

separately.

Do you remember which of the tutored problems decomposed direction and analyzed the

horizontal and vertical components separately?
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The Plane-packet and the Pumpkin problems had motion in both the horizontal and

vertical directions, but in both of those problems we were mainly interested in finding hori-

zontal displacement. In both problems we decomposed the motion, and analyzed the vertical

direction (which involved gravitational acceleration) separately from the horizontal direction

(in which there was no net force).

We also decomposed motion in the ’Car-truck’ problem. In the Car-Truck problem we

were interested in horizontal velocity, and therefore in the horizontal forces. To arrive at hor-

izontal velocity we analyzed the horizontal direction (in which there was a net impact force)

separately from the vertical direction (in which there was no net force and no acceleration).

So, in the Plane-packet and Pumpkin problems the vertical direction had a net force,

and we were able to analyze it separately from the horizontal direction, which didn’t have a

net force. In the Car-truck problem it was reversed, there was a net force in the horizontal

direction, and we were able to ignore the vertical direction in which there was no net force.

In other problems there might be net forces in both the horizontal and vertical directions,

but the directions would still be decomposable. We would still be able to analyze them

separately.

Reading Block Divider: refHigh firstLaw e Newton’s First Law

Newton’s First Law can be stated as: ’Every body continues in its state of rest, or of

motion in a straight line at constant speed, unless it is compelled to change that state by

forces exerted upon it.’ The First Law was useful in two of the problems we encountered

during tutoring. Do you remember which two problems used Newton’s First Law?

Newton’s First Law was useful in both the ’Plane-Packet’ and ’Pumpkin’ problems. In the

’Plane-Packet’ problem we wanted to determine if the packet had a horizontal displacement,

and so we were interested in whether it had a horizontal velocity. Before the packet was

dropped from the plane, both packet and plane had the same horizontal velocity. After it

was dropped, there were no horizontal forces on the packet (remember that air-resistance

was negligible). Newton’s first Law told us that because there were no horizontal forces on

the packet, it would continue with a constant horizontal velocity.

Similarly, in the ’Pumpkin’ problem, before the man released the pumpkin, both man

and pumpkin had the same horizontal velocity. After the man released the pumpkin, there
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were no horizontal forces on it (air-resistance was again negligible), and so by Newton’s First

Law the pumpkin continued with a constant horizontal velocity.

Notice that the vertical aspects of these problems were quite different. The packet

was dropped from the plane, without imparting any vertical force other than gravity. The

pumpkin however was tossed, and so had both a vertically upward initial velocity and a

vertically downward acceleration from gravity. However, because vectors are decomposable,

in neither problem did what was happening in the vertical direction affect our analysis of the

horizontal direction. Because of this, we were able to think about the horizontal direction

separately from the vertical direction, apply Newton’s First law, and realize that horizontal

velocity would continue unchanged.

Newton’s first Law could also be applied in other situations. For example, in the

’Elevator-Keys’ problem, the man and keys were in a state of freefall, with only gravita-

tional force acting on them. We concluded that the keys would have the same vertical

displacement as the man. But why didn’t the keys move horizontally, relative to the man?

Well, neither man nor keys had any horizontal forces acting on them, so, as the First Law

told us, both continued in their state of rest in the horizontal direction.

Reading Block Divider: refHigh thirdLaw e Newton’s Third Law

In the Car-truck problem we wanted to compare the relative accelerations of the car and

truck. Therefore, we first had to compare the impact force of the car on the truck with the

impact force of the truck on the car. Similarly, in the Earth-Sun problem we were asked to

compare the force of the Sun’s pull on the Earth with the force of the Earth’s pull on the

Sun. Do you remember which of Newton’s Laws was useful in these two problems?

In these two problems we used Newton’s Third Law to show that the forces involved in an

action/reaction pair had the same magnitude but acted in opposite directions to each other.

An action-reaction pair is formed whenever one object exerts a force on a second object.

Newton’s Third Law says that when one object exerts a force on a second object, there is

an equal and opposite reaction force from the second object back onto the first object. In

addition, the type of force is always the same for both objects in the action/reaction pair.

For example it was gravitational force on both Earth and Sun, and impact force on both

car and truck. The two forces in an action-reaction pair can operate along any axis, but
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always have opposite directions to each other. For example, the earth pulled in the opposite

direction than did the sun (vertically down vs vertically up), and the car’s impact force was

opposite to the truck’s (horizontally right vs horizontally left).

In both the Car-truck and Earth-Sun problems, using Newton’s Third Law allowed us to

see that the forces acting on each object in the action/reaction pair had the same magnitude,

even though the objects in the pair had different masses. The Earth pulls as hard on the

Sun as the Sun pulls on it, even though the Sun is more massive. Similarly, the car hit the

truck with as much force as the truck hit it, even though the truck had more mass.

You can use the idea of an action/reaction pair to analyze any problem in which one

object exerts a force on another object. For example in the Plane-Packet problem, the Earth

exerts a gravitational force on the packet, and the packet accelerates downward toward the

Earth. Does the Earth also accelerate toward the packet? Yes. Earth and packet form an

action/reaction pair, linked by gravitational attraction. The packet pulls on the Earth with

gravity as hard as the earth pulls on it. The Earth therefore accelerates toward the packet,

although less noticeably because of its greater mass.

Reading Block Divider: refHigh secondLaw-a e Newton’s Second Law

Newton’s Second Law was stated as ’The acceleration of a body is directly proportional

to the magnitude of the net force acting on it and inversely proportional to its mass, and

the acceleration is in the same direction as the net force.’ That is, acceleration = net force /

mass. This is often rearranged and written as net force = mass times acceleration: f = ma.

Newton’s Second Law was used in almost all of our tutored problems. Can you think of

how it applied in a few of them?

Newton’s Second Law was applied in essentially the same way in both the Pumpkin

and Plane-packet problems. In both problems we first found the net force on an object.

Newton’s Second Law was then used to deduce that because there was a net force acting

on it, that object would accelerate. In the Plane-packet problem, the net force after release

was gravity in the downward direction, from which the Second Law allowed us to deduce

that the package would accelerate in the downward direction. In the Pumpkin problem, the

net force was again gravity, and the downward acceleration first reduced the upward velocity

from the toss to zero, then increased it in the downward direction.
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Newton’s Second Law was also used in the Car-truck problem. In that problem, we first

deduced (using Newton’s Third Law) that the horizontal impact force was equal for both

car and truck. Then, using the formula for Newton’s Second Law, f = ma, we deduced that

since the forces (f) were equal, but the car’s mass (m) was much less than that of the truck,

the car’s acceleration (a) would be greater than the truck’s.

Reading Block Divider: refHigh secondLaw-b e

Newton’s Second Law (F=ma) is also useful in understanding an important way in which

the Elevator-keys problem differs from the Car-truck problem. In the Car-truck problem the

car and truck have the same impact force applied to each, but they have different masses,

and so gain different accelerations. But in the Elevator problem, man and keys both have

gravitational force applied to them, and they also have different masses, but they gain the

SAME acceleration. Why? The answer lies in realizing that gravity does not pull with equal

force on objects of different mass. Gravity pulls with greater force on objects of greater mass.

At the same time, however, the greater mass increases an objects resistance to acceleration

(remember that acceleration is inversely proportional to mass). So, as mass increases both

the force applied by gravity (its weight) and the resistance to acceleration increase by the

same amount. The net result is that freefall acceleration due to gravity is constant near

the Earth’s surface. This can be seen by writing Newton’s Second Law as a = f/m. As an

objects mass (m) increases, the force (f) applied to it (it’s weight) increases proportionally,

and acceleration (a) remains the same.

Reading Block Divider: refHigh summary e

Conclusion

We have seen that certain key ideas are frequently useful when solving force-and-motion

problems. One key idea is our sequence of problem solving steps. Knowing a fixed sequence

of problem solving steps allows us to break a problem into manageable parts and solve them

in the correct order. Other useful ideas are Newton’s three laws. Newton’s First Law can be

used to reason about the relationship between net force and acceleration. That is, when there

is no net force, there will be no acceleration (or conversely, where there is no acceleration,

there must be no net force). Newton’s Second Law allows us to reason about the relationship

between net force, mass and acceleration. For example, for a given force, an object with
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less mass will accelerate more. Note that, similarly to the First Law, the Second Law can

also be used to deduce the presence of an acceleration given a net force. Newton’s Third

law can be used to reason about the relative magnitude, direction and type of forces in an

action-reaction pair.

Together, these ideas should be very useful in solving future force-and-motion problems.
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APPENDIX B

COHMETRIX OUTPUT FOR LOW AND HIGH COHESION TEXTS
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Measure Low High
Description Cohesion Cohesion

CAUSVP ’Incidence of causal verbs, links, and particles’ 54.53 56.38
CAUSC ’Ratio of causal particles to causal verbs’ 0.48 0.68

CONADpi ’Incidence of positive additive connectives’ 31.71 35.63
CONTPpi ’Incidence of positive temporal connectives’ 8.24 9.92

CONCSpi ’Incidence of positive causal connectives’ 15.22 20.75
CONADni ’Incidence of negative additive connectives’ 5.07 6.77

CONTPni ’Incidence of negative temporal connectives’ 0 0
CONCSni ’Incidence of negative causal connectives’ 2.54 2.26

CONi ’Incidence of all connectives’ 61.51 72.17
CREFA1u ’Argument Overlap, adjacent, unweighted’ 0.42 0.56

CREFS1u ’Stem Overlap, adjacent, unweighted’ 0.37 0.54
CREFP1u ’Anaphor reference, adjacent, unweighted’ 0.24 0.21

CREFAau ’Argument Overlap, all distances, unweighted’ 0.34 0.43
CREFSau ’Stem Overlap, all distances, unweighted’ 0.32 0.42

CREFPau ’Anaphor reference, all distances, unweighted’ 0.12 0.13
DENSNP ’Noun Phrase Incidence Score (per thousand words)’ 278.38 274.7

DENSPR2 ’Ratio of pronouns to noun phrases’ 0.17 0.15
DENCONDi ’Number of conditional expressions, incidence score’ 0 0.9

DENNEGi ’Number of negations, incidence score’ 8.88 10.37
DENLOGi ’Logical operator incidence score’ 38.05 40.14

LSAassa ’LSA, Sentence to Sentence, adjacent, mean’ 0.29 0.39
LSApssa ’LSA, sentences, all combinations, mean’ 0.3 0.39

LSAppa ’LSA, Paragraph to Paragraph, mean’ 0.41 0.51
DENPRPi ’Personal pronoun incidence score’ 46.93 41.5

HYNOUNaw ’Mean hypernym values of nouns’ 4.83 4.91
HYVERBaw ’Mean hypernym values of verbs’ 1.29 1.34

READNP ’Number of Paragraphs’ 51 70
READNS ’Number of Sentences’ 116 152

READNW ’Number of Words’ 1577 2217

Table 41: Complete CohMetrix output for high and low cohesion texts, Part 1
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Measure Low High
Description Cohesion Cohesion

READAPL ’Average Sentences per Paragraph’ 2.28 2.17
READASL ’Average Words per Sentence’ 13.6 14.59
READASW ’Average Syllables per Word’ 1.56 1.58

READFRE ’Flesch Reading Ease Score (0-100)’ 61.15 58.28
READFKGL ’Flesch-Kincaid Grade Level (0-12)’ 8.11 8.75

SYNNP ’Mean number of modifiers per noun-phrase’ 1.02 1.01
SYNHw ’Mean number of higher level constituents per word’ 0.71 0.7

SYNLE ’Mean number of words before the main verb of main clause’ 3.03 3.61
TYPTOKc ’Type-token ratio for all content words’ 0.34 0.27

FRQCRacw ’Celex, raw, mean for content words’ 2445.22 2752.88
FRQCLacw ’Celex, logarithm, mean for content words’ 2.17 2.19

FRQCRmcs ’Celex, raw, minimum in sentence for content words’ 40.84 59.01
FRQCLmcs ’Celex, log., minimum in sentence for content words’ 1.14 1.1

WORDCacw ’Concreteness, mean for content words’ 366.38 360.66
CONLGpi ’Incidence of positive logical connectives’ 18.39 26.61
CONLGni ’Incidence of negative logical connectives’ 8.24 9.47

INTEC ’Ratio of intentional particles to intentional content’ 0 0
INTEi ’Incidence of intentional actions, events, and particles.’ 12.05 9.92

TEMPta ’Mean of tense and aspect repetition scores’ 0.87 0.86
STRUTa ’Sentence syntax similarity, adjacent’ 0.08 0.08

STRUTt ’Sentence syntax similarity, all, across paragraphs’ 0.08 0.08
STRUTp ’Sentence syntax similarity, sentence all, within paragraphs’ 0.09 0.08

CREFC1u ’Prop. of content words that overlap between adj. sent.’ 0.11 0.16
SPATC ’Mean of location and motion ratio scores.’ 0.52 0.49

WORDCmcs ’Concreteness, minimum in sentence for content words’ 158 158
GNRPure ’Genre purity’ 0.5 0.5

TOPSENr ’Topic sentence-hood’ 0.18 0.21

Table 42: Complete CohMetrix output for high and low cohesion texts, Part 2
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APPENDIX C

TEST QUESTIONS

post-mc1

A girl riding a bike in a straight line at a constant speed drops an ice cream cone she
was holding. Immediately after she drops the ice cream cone, what is the relationship
between the horizontal speed of the girl and the horizontal speed of the cone? (Assume air
resistance is negligible)
• the horizontal speed of the girl is greater than the horizontal speed of the cone
• the horizontal speed of the cone is greater than the horizontal speed of the girl
• the horizontal speed of the girl is the same as the horizontal speed of the cone COR-

RECT
• there is not enough information to answer

post-mc2 B33

A frustrated programmer throws her laptop out of the window of a tall building with an
initial velocity, Vi, in the horizontal direction. Assuming air resistance is negligible, what
is true of the horizontal component of velocity of the laptop while it is falling?
• it will increase
• it will decrease
• it will remain the same CORRECT
• there is not enough information to answer

post-mc3 B34

Suppose that a rollerblader is skating down a city street and maintains a constant
horizontal velocity. You pull alongside the rollerblader in your car. Just then you get a call
on you cell phone. You maintain you speed, ignoring the rollerblader. At the end of your
call, you look out the window. What should you see?

• The rollerblader has pulled ahead of you
• The rollerblader is skating along beside you CORRECT
• the rollerblader has fallen behind
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• Other:

post-mc4 B13

A woman carrying her groceries home is walking north at 1 m/s. A jogger is mov-
ing northeast; the northern component of his velocity is 1 m/s. How does the norther
displacement of the jogger compare to the norther displacement of the woman at any time?
• they are the same CORRECT
• the northern displacement of the jogger is greater than that of the woman
• the northern displacement of the woman is greater than that of the jogger
• there is not enough information to answer

post-mc5 18Q(far)

A group of boys, including Albert and Bill, are playing a game of it-tag. Albert, who
has just been tagged ’it’, runs 40 meters north, then 20 meters east, and 10 meters south,
where he arrives at t1. At the time Albert was tagged, Bill was 10 meters north of Albert
and runs 20 meters north, then 20 meters east, where he arrives at t1. Does Albert catch
Bill?
• Yes CORRECT
• No
• there is not enough information to answer

post-mc6 B14

A model rocket is launched vertically. When it is 1,000 meters above the ground it loses
all engine power and breaks into two pieces, the front end and the rear end, which has the
failed engine. After the engine power is lost which of the two pieces of the rocket is/are in
free fall?
• the front end
• the rear end
• both ends CORRECT
• neither end
• Other:

post-mc7 B15

A stuntwoman drives a motorcycle up a ramp and jumps over a row of cars and lands
safely, remaining on her bike. When it lands, the motorcycle is moving at 20 m/s. What
is the speed of the stuntwoman when she lands?
• 20 m/s CORRECT
• a little faster than 20m/s
• a little slower than 20 m/s
• there is not enough information
• Other:

post-mc8 18Q(far)
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A stuntwoman drives a motorcycle up a ramp and jumps over a row of cars and lands
safely, remaining on her bike. When it lands, the motorcycle is moving at 20 m/s. After her
landing, the stuntwoman decelerates at a rate fo 5 m/s2. If the stuntwoman remains on her
motorcycle while decelerating, what is the magnitude of the deceleration of the motorcycle?
• 5 m/s2 CORRECT
• less than 5 m/s2

• greater than 5 m/s2

• there is not enough information to answer this question

post-mc9B18

An old Volkswagon has a maximum acceleration of 2 m/s2 as it starts from a stop sign;
a cyclist can also accelerate at a maximum rate of 2 m/s2. Starting at rest, the Volkswagon
and cyclist accelerate at their maximum rates for the same time. Which has traveled farther
in that time?

• the Volkswagon
• the cyclist
• they travel the same distance CORRECT
• there is not enough information to answer

post-mc10B19

An airplane is taking off from the ground. In which direction does gravity act on the
airplane while it is taking off?

• vertically down, or toward the center of the earth CORRECT
• initially horizontally, then increasingly vertical
• almost vertically down, but slightly angled due to the rotation of the earth
• in the direction of the motion of the airplane
• Other:

post-mc11 18Q(far)

Two friends, Thelma and Louise, are roommates who share a car and also work at the
same store. Thelma plans to drive the car along a straight highway from her house to
the store, where Louise will then drive the car home. Thelma is late for her shift, and
accelerates at a constant rate of 0.1 m/s2 from her house to the store. Later on, Louise,
who is tired and wants to get home to sleep, also accelerates at a constant rate of 0.1 m/s2

from the store to her home taking the same straight highway that Thelma took. What is
the relationship between the time it took Thelma to drive to the store and the time it took
Louise to drive from the store to her home?

• it took Thelma longer
• it took Louise longer
• it took them the same time CORRECT
• there is not enough information to answer

post-mc12 B21
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Two rugby players, Collin and Ewan, of the same mass, are running toward each other
and collide with each other. The magnitude of the force of Collin on Ewan is 500 N. What
is the magnitude of the force of Ewan on Collin?

• 500 N CORRECT
• less then 500 N
• more information is necessary to answer this question

post-mc13 B22

Two rugby players, Collin and Ewan, of the same mass, are running toward each other
and collide with each other. The magnitude of the force of Collin on Ewan is 500 N. If the
direction of the force Collin exerts on Ewan is to the east, what is the direction of the force
that Ewan exerts on Collin?

• Also to the east
• to the west CORRECT
• more information is necessary to answer this question

post-mc14 18Q(far)

A truck driver applies the brakes to stop for a red light. The magnitude of the accel-
eration of the truck while stopping is 2 m/s2. The driver is wearing his seatbelt and does
not move relative to his seat while he slows. What is the magnitude of the acceleration of
the driver while the truck comes to a stop?

• 2 m/s2 CORRECT
• less than 2 m/s2

• greater than 2 m/s2

• there is not enough information to answer
• Other:

post-mc15 18Q(far)

A truck driver applies the brakes to stop for a red light. The magnitude of the acceler-
ation of the truck while stopping is 2 m/s2. The driver is wearing his seatbelt and does not
move relative to his seat while he slows. During the period when the truck slows, a contact
force is acting on the truck driver. What object exerts this contact force?

• the tires of the truck
• the seat of the truck
• the seatbelt CORRECT
• the road
• Other:

post-mc16 18Q(far)

A man puts his small child on his shoulders and begins walking horizontally. Is it
necessary for the man to apply a horizontal force on his child if the child is to move with
her father when he starts walking?
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• Yes, the child will fall forward if he does not
• Yes, the child will fall backwards if he does not CORRECT
• no force is necessary . The child will move with her father
• Other:

post-mc17 18Q(far)

The American bobsledders have a bobsled that weighs 300 N. The Jamaican’s bobsled
weighs 280 N. If the bobsledding teams are equally strong (i.e., they can push on the bobsled
with the same force) and push the sled for the same period of time until they jump into it,
which team’s bobsled will be moving faster at the moment they jump into it?

• The American team’s
• The Jamaican team’s CORRECT
• They will be the same
• there is not enough information to answer

post-mc18 18Q(far)

On the earth, a coin is dropped and accelerates at a rate, A, until it hits the ground a
short time, t, later. An astronaut on the moon drops another similar coin, which accelerates
at a rate less than A until it hits the moon’s surface in the same time, t. What is the
relationship between the magnitude of the velocities of the coin dropped on the earth and
the coin dropped on the moon right before they land?

• the final velocity of the coin dropped on the moon is greater
• the final velocity of the coin dropped on the earth is greater CORRECT
• the final velocities are the same
• there is not enough information to answer

post-mc19 18Q(far)

A motorboat’s engine is running at it’s maximum force when it’s driver accidentally
drops his 100-kg cooler overboard. When the cooler falls overboard what happens to the
force produced by the engine?

• it decreases
• it increases
• it remains the same CORRECT
• there is not enough information to answer

post-mc20 post-mc20 18Q(far)

A 500-kg horse is walking along carrying a 100-kg woman when the horse is startled by
a snake and begins to run. The force of the ground on the horse’s hoofs as the horse speeds
up is 1200 N. If this is the only force acting on the horse in the horizontal direction while
it is taking off, what is the horizontal acceleration of the horse?

• 12 m/s2

• 2.4 m/s2
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• 2 m/s2 CORRECT
• Other:

post-mc21 B23

A wild horse runs at full speed, and jumps over the fence that had been trapping him.
While he is in the air during his jump, in which direction is his acceleration due to the
earth’s gravitation force?

• vertically downward CORRECT
• both vertically downward and horizontally in the direction the horse is moving
• only horizontally in the direction the horse is moving
• he is not accelerating due to the earth’s gravity while the horse is in the air

post-mc22B24

An empty chair lift of mass, mcl, is moving up a hill at a 45-degree angle with a constant
speed of 2 m/s. What is the magnitude of the acceleration of the chair lift?

• 0 m/s2 CORRECT
• 2 m/s2

• 9.8 m/s2

• 11.8 m/s2

• Other:

post-mc23 B17

An empty chair lift of mass, mcl, is moving up a hill at a 45-degree angle with a constant
speed of 2 m/s. What is the magnitude of the net force acting on the chair-lift while it is
moving up the hill?

• 0 Newtons CORRECT
• mccl * g (where g is the acceleration due to gravity) Newtons
• 2 * mb Newtons
• 11.8 * mb Newtons
• Other:

post-mc24 B35

A stuntman jumps horizontally off the edge of a tall building and freefalls until he lands
safely on the foam mats below. At the moment the stuntman stps off the building, a stunt
dog also jumps from the edge of the same building (and, being a professional, also lands
safely). Which of the following is true?

• the stuntman will land first
• the stunt dog will land first
• the man and the dog will land at the same time CORRECT
• there is not enough information to answer the question

post-mc25 B11
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Using a slingshot, you shoot a stone straight up into the air. Does the force from the
slingshot continue to act on the stone after the stone leaves the slingshot?

• Yes. The stone will still feel the force from the slingshot.
• No. The stone will only feel the force from the slingshot while the slingshot is pushing

on it. CORRECT
• Yes, but only for a short while. After a few seconds the force from the slingshot has

dissipated.

post-mc26 B25

Using a slingshot, you shoot a stone straight up into the air. When the stone is halfway
between where it was first shot and it’s maximum height (and is still moving upward),
which force(s) act on it?

• gravity CORRECT
• the force of the slingshot
• there are no forces acting on it
• both gravity and the force of the throw

post-mc27 B29

Using a slingshot, you shoot a stone straight up into the air. When the stone shot from
the slingshot reaches it’s maximum height, which force(s) are acting on it?

• gravity CORRECT
• the force of the slingshot
• there are no forces acting on it at that instant
• both gravity and the force of the slingshot

post-mc28 B26

Assume you have two balloons: one is filled with water and the other is filled with
oil. The balloon filled with oil weighs less than the balloon filled with water, but they are
identically shaped. You drop both balloons from a bridge at the same time. What is the
relationship between the accelerations of the heavier (water-filled) and the lighter (oil-filled)
balloons as they fall to the river below?

• the acceleration of the heavier balloon is the same as that of the lighter balloon COR-
RECT

• the acceleration of the heavier balloon is greater than that of the lighter balloon
• the acceleration of the heavier balloon is less than that of the lighter balloon

post-mc29B27

A block slides in a straight line across a flat frictionless surface at a speed of 2 m/s.
When the block is moving due east, a strong force begins to push on the block to the north.
Which is true of the speed of the block in the eastern direction several seconds after the
force begins to act on it?

• it is greater than 2 m/s
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• it is less than 2 m/s
• it is 2 m/s CORRECT
• insufficient information to tell

post-mc30 18Q(far)

A shot putter throws the shot (a very heavy metal ball) at a 45-degree angle above the
horizon. As the shot flies through the air, which of the following forces will significantly
affect it’s motion?

• gravitational force CORRECT
• the force from the shot putter’s throw
• air resistance

post-mc31B28

a 100 kg man is skating clockwise around a skating rink at 3 m/s. A small 30 kg child is
skating counter-clockwise (in the opposite direction from everyone else) around the skating
rink at a speed of 2 m/s. Neither are paying attention and the child runs into the man.
The magnitude of the force the man exerts on the child is 30 N. What is the magnitude of
the force the child exerts on the man?

• 30 N CORRECT
• less than 30 N
• 0 N (the child does not exert a force on the man)
• greater than 30 N (because the child hit hte man, he exerts a greater force on the man

than the man exerts on him)

post-mc32 B16

a 100 kg man is skating clockwise around a skating rink at 3 m/s. A small 30 kg child is
skating counter-clockwise (in the opposite direction from everyone else) around the skating
rink at a speed of 2 m/s. Neither are paying attention and the child runs into the man. The
magnitude of the force the man exerts on the child is 30 N. During the collision between the
man and child, which is true of the relationship between the magnitudes of the acceleration
of the man and the acceleration of the child?

• the acceleration of the man is greater than the acceleration of the child
• the acceleration of the child is greater than the acceleration of the man CORRECT
• the accelerations of the man and child are equal
• there is not enough information

post-mc33 18Q(far)

A hot air balloon carrying sightseers is moving downward and is slowing down for a
landing. What can you say about the sum of the forces acting on the balloon in the vertical
direction?

• there are no forces acting on the balloon in the vertical direction
• the sum of the forces act downward CORRECT
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• the sum of the forces on the balloon act upward

post-mc34B30 post-mc34 B30

A cross-country skier is skiing horizontally across the snow and before realizing it, has
skied onto a large patch of ice. The ice is very slippery and her skis are waxed, so that
there is no frictional force between the skis and ice, and there are no other forces acting
on the skier in the horizontal direction. What happens to the horizontal speed of the skier
while she is on the ice patch?

• because there are no forces acting on the skier in the horizontal direction, the skier’s
horizontal speed decreases

• because there are no forces acting on the skier in the horizontal direction, the skier’s
horizontal speed remains constant CORRECT

post-mc35B20

A research satellite orbits the earth at a fixed distance of 100 miles from the earth’s
surface. Does the earth’s gravity act on the satellite?

• Yes. The earth’s gravity acts on everything near it’s surface CORRECT
• Because the satellite is orbiting the earth, it is accelerating toward the earth; thus the

earth does not exert a gravitational force on the satellite
• Because the satellite is so high above the earth’s surface, it does not experience the

earth’s gravitational force

post-mc36B36W

A distant planet has a moon that orbits around it. Which of the following statements
is true:

• The planet exerts a gravitational force on the moon, but the moon does not exert a
gravittational force on the planet

• Both the planet and the moon exert a gravitational force on the other, but the force
of the planet on the moon is greater than the force of the moon on the planet

• Both the planet and the moon exert a gravitational force on the other, and the gravi-
tational force of the moon on the planet is the same as the force of the planet on the
moon CORRECT

post-mc37 B31

In the filming of Mission Impossible 4, Tom Cruise insists on performing his own stunt,
which involves riding a 200-kg motorcycle straight into a 100,000-kg tractor-trailer traveling
in the opposite direction, then jumping off a moment before the motorcycle and tractor-
trailer collide. The motorcycle is smashed to half it’s length during the collision, whereas
the tractor-trailer’s front end is merely dented in a few inches. Which of the following is
true of the relationship between the force of the motorcycle and the tractor-trailer and the
force of the tractor-trailer on the motorcycle?
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• Because the motorcycles’s acceleration during the collision was greater than the tractor-
trailer’s acceleration, the force of the motorcycle on the tractor-trailer is greater than
the force of the tractor-trailer on the motorcycle

• the force of the tractor-trailer on the motorcycle is greater than the force of the mo-
torcycle on the tractor-trailer

• the force of the tractor-trailer on the motorcycle is equal to the force of the motorcycle
on the tractor-trailer CORRECT

post-mc38 18Q(far)

Which of the following statements is true about the relationship between the sun and
the earth’s motion?
• the earth orbits the sun, but the sun does not orbit the earth CORRECT
• the sun orbits the earth, but the earth does not orbit the sun
• the sun and the earth orbit each other
• neither the sun nor the earth orbit the other

post-mc39B32

You are sitting on a subway train facing the wrong way (facing the back of the train,
which is west) when the train accelerates east and the upper half of your body lurches west
(in the direction you are facing) while you remain on your seat. While you lurch west,
which of the following is true:
• there is a westward force on you, in the same direction you lurch
• there is an eastward force on you (opposite the direction you lurch) CORRECT
• there are no forces acting on you

post-mc40 18Q(far)

A basketball player bounces a basketball on the floor of a gymnasium. Which of the
following is true of the relationship between the force of the ball on the gym floor and the
force of the gym floor on the ball when the ball hits the floor?
• the ball exerts a force on the floor, but because it does not move, the floor does not

exert a force on the ball
• the floor exerts a force on the ball, but the ball does not exert a force on the floor
• the ball and floor both exert a force on the other CORRECT

post-sled1 18Q(far)

Two identical twins are sitting in identical sleds, which are resting on friction-free ice.
Behind each twin on the sled is a pile of bricks. Each brick weighs 1kg. In the first sled, the
first twin has a pile of four bricks. In the second sled, the second twin has a pile of three
bricks. At exactly the same time each twin begins picking bricks off her pile and throwing
them horizontally behind her. The twins are identical, so they weigh the same and throw
with exactly the same amount of force. They also throw at the same rate, one brick per
second.

What happens to the sleds, when the twins begin throwing bricks?
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• Nothing, both remain stationary.
• They both move
• Only the first sled moves
• Only the second sled moves

post-sled2 18Q(far)

Two identical twins are sitting in identical sleds, which are resting on friction-free ice.
Behind each twin on the sled is a pile of bricks. Each brick weighs 1kg. In the first sled, the
first twin has a pile of four bricks. In the second sled, the second twin has a pile of three
bricks. At exactly the same time each twin begins picking bricks off her pile and throwing
them horizontally behind her. The twins are identical, so they weigh the same and throw
with exactly the same amount of force. They also throw at the same rate, one brick per
second.

When the first brick is being thrown from each sled, which sled has the greater accel-
eration?

• Neither, both have identical acceleration.
• The first sled.
• The second sled.

post-sled 3 18Q(far)

Two identical twins are sitting in identical sleds, which are resting on friction-free ice.
Behind each twin on the sled is a pile of bricks. Each brick weighs 1kg. In the first sled, the
first twin has a pile of four bricks. In the second sled, the second twin has a pile of three
bricks. At exactly the same time each twin begins picking bricks off her pile and throwing
them horizontally behind her. The twins are identical, so they weigh the same and throw
with exactly the same amount of force. They also throw at the same rate, one brick per
second.

After the last brick has been thrown, which sled has the greater velocity?

• Neither, both have identical velocity
• The first sled
• The second sled

cube1 18Q(far)

A metal cube is suspended by a spring near an electro-magnet. When a switch is
thrown, current flows through the magnet, creating a magnetic field which pulls the cube
downward, stretching out the spring.

What is the reaction force to this pull?

• The reverse pull of the spring
• Electrical resistance in the magnet
• The cube’s magnetic pull on the magnet.
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APPENDIX D

MCNAMARA’S TEXTS

D.1 HEART DISEASE HIGH COHESION

D.1.1 Heart Disease

The heart is the hardest-working organ in the body. We rely on it to supply blood regularly

to the body every moment of every day. Any disorder that stops the heart from supplying

blood to the body is a threat to life. Heart disease is such a disorder. It is very common.

More people are killed every year in the U.S. by heart disease than by any other disease.

There are many kinds of heart disease, some of which are present at birth and some of

which are acquired later.

D.1.1.1 1. Congenital heart disease A congenital heart disease is a defect that a

baby is born with. Most babies are born with perfect hearts. But one in every 200 babies

is born with a bad heart. For example, hearts have flaps, called valves, that control the

blood flow between its chambers. Sometimes a valve develops the wrong shape. It may be

too tight, or fail to close properly, resulting in congenital heart disease. Sometimes a gap

is left in the wall, or septum, between the two sides of the heart. This congenital heart

disease is often called a ”septal defect”. When a baby’s heart is badly shaped, it cannot

work efficiently. It cannot pump enough blood through the lungs so that it receives enough

oxygen. As a result, the baby becomes breathless. The blood also cannot get rid of carbon
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dioxide through the lungs. Therefore, the blood becomes purplish, which causes the baby’s

skin to look blue. Fortunately, it is now possible to save the lives of many ”blue babies”.

D.1.1.2 2. Acquired heart disease Some heart diseases are acquired after the baby

is born. Rheumatic fever is an example of an acquired disease that may cause damage to the

heart. This disease usually follows a sore throat caused by bacteria known as streptococci.

This is often called ”strep throat”. When strep throat causes rheumatic fever, the tissues

of the heart become inflamed. If the heart is badly affected, it fails very soon. Usually,

however, it recovers, and the results of the damage are seen only years later. This is because

the rheumatic fever leaves scars in the valves of the heart. Therefore, they cannot work

properly. This puts a strain on the heart so that eventually it may fail. The effects of the

rheumatic fever may take up to twenty or thirty years to appear.

Coronary disease is another example of an acquired heart disease. This disease affects

the coronary arteries. These are the blood vessels that extend across the heart and supply

it with blood from the lungs. They are very important because they give the heart muscle

the oxygen it needs to carry on working. In coronary disease the coronary arteries become

blocked, causing parts of the heart muscle to die because of the lack of oxygen. When this

happens, the patient has a heart attack, which can be fatal. The blockage of a coronary

artery is usually caused by a clot of blood, called a ”thrombus”. When a clot forms in a

coronary artery, this is called ”coronary thrombosis.” That is the correct name for a heart

attack. In normal arteries, blood does not form clots. But in coronary disease, the walls of

the arteries are not normal. They become lumpy, rough, and narrow. The lumps break off

and form clots that stop the flow of blood to the heart.

Other examples of acquired heart disease are arrhythmia, angina, and high blood pres-

sure. Arrhythmia, which means ”lack of rhythm”, is an interruption of the heart’s normal

beat. Angina is a sharp pain in the chest which is very similar to that caused by a heart

attack, or thrombosis. High blood pressure is one of the most common heart diseases. It

places a heavy strain on the heart and other organs. Therefore, if it is not treated, high

blood pressure may lead to heart attacks, kidney failure, or other serious problems. High

blood pressure is a disease which has no symptoms. Thus, a person may not be aware of
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having it unless the blood pressure is measured.

D.1.1.3 3. Treatment and prevention of heart disease Since the mid-1960’s,

medical science has made tremendous progress in the treatment and prevention of heart

disease. Both new drugs and new surgical methods have been developed. Among the new

drugs for treating heart disease are chemicals called ”beta blockers”. The beta-blockers

lessen the after-effects of heart attacks; they can prevent second attacks; and they can lower

the blood pressure of people who have high blood pressure. Other drugs dissolve the lumps

which break off the walls of arteries so that they do not stop the flow of blood to the heart.

Surgical techniques for treating heart disease range from repairing or replacing damaged

parts, such as valves or arteries, to replacement of the entire heart. If a heart has been

so damaged that it can no longer function, it can be replaced by a mechanical heart, or,

more often, by a heart transplant. In transplant surgery, the healthy heart of someone who

has died replaces the diseased heart of the patient. Mechanical devices can be implanted in

people’s bodies to keep their hearts functioning. The pacemaker is the most common of these

devices. It does not heal the diseased heart, but it relieves the symptoms of an irregular

heart beat and maintains the steady beat needed for normal living. When a heart cannot

pump enough blood through the lungs because of poorly functioning valves, the valves can

be replaced with artificial ones of plastic and metal. For patients with coronary disease,

”by-pass surgery” is often used to repair clogged or damaged arteries. Doctors use pieces of

a patient’s own veins, often from the leg, to replace the damaged portions of arteries.

Preventive care is also getting better as scientists learn more and more about the causes

of heart disease. They have shown that diet can be an important means of controlling

heart disease. For example, a substance called cholesterol is known to cause a build-up of

fatty substances in the blood vessels, which can cause blood clots to form in the arteries.

Therefore, doctors stress the importance of a diet low in cholesterol. Similarly, salt is known

to increase blood pressure, so doctors recommend a low-salt diet for patients with high blood

pressure.
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D.2 HEART DISEASE LOW COHESION

D.2.1 Heart Disease

The heart is the hardest-working organ in the body. We rely on a regular blood supply every

moment of every day. Any disorder that stops the blood supply is a threat to life. Heart

disease is very common. More people are killed every year in the U.S. by heart disease than

by any other disease.

A congenital disease is one that a person is born with. Most babies are born with perfect

hearts. In about one in every 200 cases something goes wrong. Sometimes a valve develops

the wrong shape. It may be too tight, or fail to close properly. Sometimes a gap is left in the

septal wall between the two sides of the heart. This is often called a septal defect. When a

baby’s heart is badly formed, it cannot work efficiently. The blood does not receive enough

oxygen. The baby becomes breathless. The blood cannot get rid of carbon dioxide through

the lungs. It becomes purplish, and the baby’s skin looks blue. It is now possible to save

the lives of many blue babies.

The disease called rheumatic fever may cause harm to the heart. The disease usually

follows a sore throat caused by bacteria called streptococci. The tissues of the heart become

inflamed. If it is badly affected, it fails. Usually it recovers, and the results of the damage are

seen only years later. The valves of the heart are left with scars. They cannot work properly.

This puts a strain on the heart. Eventually it may fail. The effects of the rheumatic fever

may take up to twenty or thirty years to appear.

The blood vessels that extend across the heart and supply it with blood are called the

coronary arteries. They are very important. They give the heart the oxygen it needs to

carry on working. If they become blocked, parts of the heart muscle will die. The patient

has a heart attack, which can be fatal. The blockage of a coronary artery is usually caused

by a thrombus, or blood clot. Coronary thrombosis happens when a clot forms in a coronary

artery. That is the correct name for a heart attack. In normal arteries, blood does not form

clots. In coronary disease, the walls of the blood vessels become lumpy, rough, and narrow.

Arrhythmia is an interruption of the heart’s normal beat Angina is a sharp pain in
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the chest which is very similar to that caused by thrombosis. High blood pressure is very

common. If untreated, high blood pressure may lead to heart attacks, kidney failure, or

other serious problems. High blood pressure may have no symptoms. A person may not be

aware of having it unless the blood pressure is measured.

Among the new drugs for treating heart disease are a family of compounds called beta

blocking drugs, or simply, beta blockers. They lessen the after-effects of heart attacks, can

prevent second attacks, and can lower the blood pressure of people who have high blood

pressure. Other drugs dissolve the lumps which break off the walls of veins and arteries.

Heart transplants are used more often than mechanical hearts. In transplant surgery, the

healthy heart of someone who has died replaces the heart of the patient. Mechanical devices

can be implanted in people’s bodies to keep their hearts functioning. The commonly used

pacemaker does not heal the diseased heart, but it relieves the symptoms of an irregular

heart and keeps a steady beat for normal living. When a heart cannot pump enough blood

through the lungs because of poorly functioning valves, the valves can be replaced with

artificial ones of plastic and metal. By-pass surgery is used to repair clogged or damaged

blood vessels. Doctors use pieces of a patient’s own veins, often from the leg, to replace the

damaged portions of arteries.

A substance called cholesterol is known to cause a build-up of fatty substances in the

blood vessels, which can lead to heart disease, so doctors stress the importance of a diet low

in fats. Salt is known to increase the blood pressure, so a low-salt diet is recommended.
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Carolyn P. Rosé, Pamela Jordan, Michael Ringenberg, Stephanie Siler, Kurt Vanlehn, and Anders
Weinstein. Interactive conceptual tutoring in atlas-andes. In In, pages 256–266. Press, 2001.

Susana Rubio, Eva Daz, and Jess Martn. A comparison of swat, nasa-tlx, and workload profile
methods. APPLIED PSYCHOLOGY: AN INTERNATIONAL REVIEW, 53:61–86, 2004.

Ulrich Schiefele. Topic interest, text representation, and quality of experience. Contemporary
Educational Psycholgy, 21:3–18, 1996.

Ulrich Schiefele and Andreas Krapp. Topic interest and free recall of expository text. Learning and
Individual Differences, 8(2):141–160, 1996.

D.A. Schön. The Reflective Practioner. How Professionals Think in Action. Templesmith, London,
1983.

Holger Schultheis and Anthony Jameson. Assessing cognitive load in adaptive hypermedia systems:
Physiological and behavioral methods. In Wolfgang Nejdl and Paul De Bra, editors, Adaptive
Hypermedia and Adaptive Web-Based Systems: Proceedings of AH 2004, pages 225–234. Springer,
Berlin, 2004.

G.R. Skanes, A.M. Sullivan, E.J. Rowe, and E. Shannon. Intelligence and transfer: Aptitude by
treatment interactions. Journal of Educational Psychology, 66:563 – 568, 1974.

John Sweller. Cognitive load theory, learning difficulty and instructional design. Learning and
Instruction, 4:295–312, 1994.

166

http://www.R-project.org


Josephine Tchetagni, Roger Nkambou, and Jacqueline Bourdeau. Explicit reflection in prolog-tutor.
International Journal of Artificial Intelligence in Education (IJAIED), 17:169–215, 2007.

Sigmund Tobias. Interest, prior knowledge, and learning. Review of Educational Research, 64(1):
37–54, 1994.

T. A. vanDijk and W. Kintsch. Strategies of Discourse Comprehension. New York, Academic Press,
1983.

K. VanLehn, A.C. Graesser, G.T. Jackson, P. Jordan, A. Olney, and C.P. Rose. When are tutorial
dialogues more effective than reading? Cognitive Science, 31:3 – 62, 2007.

Kurt VanLehn, Reva Freedman, Pamela Jordan, Charles Murray, Remus Osan, Michael Ringen-
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Andy Gaydos, Maxim Makatchev, Umarani Pappuswamy, Michael Ringenberg, Antonio Roque,
Stephanie Siler, and Ramesh Srivastava. The architecture of why2-atlas: A coach for qualitative
physics essay writing. In Proc. 6th Int. Conf. on Intelligent Tutoring Systems, volume 2363 of
LNCS, pages 158–167. Springer, 2002. URL citeseer.ist.psu.edu/vanlehn02architecture.
html.

Kurt VanLehn, Stephanie Siler, Charles Murray, Takashi Yamauchi, and William .B Baggett. Why
do only some events cause learning during human tutoring? Cognition and Instruction, 21:
209–249, 2003.

Arthur Ward and Diane Litman. Cohesion and learning in a tutorial spoken dialog system. In
Proceedings of the 19th International FLAIRS Conference (FLAIRS-19), pages 533–538, May
2006.

Arthur Ward and Diane Litman. Semantic cohesion and learning. In Proceedings 9th International
Conference on Intelligent Tutoring Systems (ITS), pages 459–469, Ann Arbor, June 2008.

Arthur Ward, John Connelly, Sandra Katz, Diane Litman, and Christine Wilson. Cohesion, seman-
tics and learning in reflective dialog. In Proceedings of the AIED Workshop on Natural Language
Processing in Support of Learning: Metrics, Feedback and Connectivity, June 2009.

167

citeseer.ist.psu.edu/vanlehn02architecture.html
citeseer.ist.psu.edu/vanlehn02architecture.html

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Study Design. The portion that differs between conditions is shown in bold.
	2. Pre-test scores for high and low pre-testers
	3. Comparing Word Counts: High vs Low Cohesion Texts
	4. Selected CohMetrix output for high and low cohesion physics texts
	5. Mean block sizes for each text.
	6. Outcome Variables and Factors per Hypothesis
	7. Correctness distribution on pre-, post- and delayed post-tests. N = 99
	8. Correlation matrix for motivation responses. ** = p < .01, * = p < .05 
	9. Cronbach's Alpha for subsets of motivation responses
	10. Percentage correct on 26Q(``near'') vs 18Q(``far'') question sets. N=99
	11. Anova explaining pct. correct by test phase (pre or post), gain type (near or far transfer), and their interaction.
	12. Between block alphas by cohesion measure and text
	13. Summary statistics for student motivation
	14. Distribution of lowMot subjects
	15. Distribution of midMot subjects
	16. Distribution of highMot subjects
	17. Anovas explaining NLG by reflection category; all subjects
	18. Anovas explaining NLG by reflection and motivation categories; all subjects
	19. Anovas explaining NLG by reflection condition, for each motivation category.
	20. Anovas explaining NLG by Experimental Condition, all subjects
	21. Anovas explaining NLG by experimental condition and motivation category; all subjects
	22. Anovas explaining NLG by experimental condition, for each motivation category.
	23. Post hoc Tukeys allGain, middle motivation
	24. Post hoc Tukeys delAllGain, middle motivation
	25. Anovas explaining NLG by pre-test category and experimental condition; all subjects; expCond = refHi, refLo
	26. Anova for preTest category, experimental cond, motivation category & interactions. Experimental condition (Cond) = refHi, refLo
	27. preTest/expCond interactions for diff motivation groups. expCond = refHi, refLo
	28. Selected comparisons from post-hoc Tukeys, showing significant NLG difference between cohesion conditions for high pre-test but not low pre-test students.
	29. Anova explaining self-reported cognitive load by pre-test and experimental condition (refHi or refLo)
	30. Cog load by motivation Category, showing lower load for lowMot students (higher number = lower load)
	31. Anova explaining Cog. Load by motivation category and experimental condition (refHi or refLo)
	32. Examples of how tokens are grouped by stems (Table 1 from Ward & Litman 2006)
	33. Two consecutive turns, counting cohesive ties at the token and stem levels (Table 2 from Ward & Litman 2006)
	34. Finding the best semantic ties (Table 3 from Ward & Litman 2008)
	35. Example Semantic ties (Table 4 from Ward & Litman 2008)
	36. Token, Stem, and Semantic Similarity Sem Matches (Table 2 from Ward & Litman 2008)
	37. Partial correlations between learning and dialog cohesion. Low pre-test students (extracted from Table 5 in Ward & Litman 2008).
	38. Correlations between learning and dialog cohesion, new 2010 corpus
	39. Cohesion-Learning correlations by motivation category
	40. Comparing Studies by Type of Reflection
	41. Complete CohMetrix output for high and low cohesion texts, Part 1
	42. Complete CohMetrix output for high and low cohesion texts, Part 2

	LIST OF FIGURES
	1. The Itspoke user interface
	2. Linger Tap-to-read Interface
	3. Linger difficulty rating screen
	4. Pre-tutoring Motivational Survey
	5. Pre- and post-test correctness for near and far transfer questions, showing that far-transfer questions get relatively harder after tutoring.
	6. Interaction of cohesion and pre-test category, showing that high pre-testers had higher delayed overall NLG from high than low cohesion, and low pre-testers had higher delayed overall NLG from low than high cohesion.
	7. Cognitive Load for High Motivation Subjects Reading High and Low Cohesion Text, showing that high pre-testers had higher load from high cohesion than low cohesion text.

	1.0 INTRODUCTION
	2.0 BACKGROUND AND MOTIVATION
	2.1 QUALITATIVE PHYSICS TUTORING
	2.2 ABSTRACTION AND TRANSFER
	2.3 REFLECTION AND ABSTRACTION
	2.3.1 Reflection-on-action
	2.3.2 Reflection-in-action

	2.4 TEXTUAL COHESION AND LEARNING
	2.5 COGNITIVE LOAD
	2.6 STUDENT MOTIVATION
	2.7 HYPOTHESES

	3.0 EXPERIMENTAL TESTBED
	3.1 THE ITSPOKE TUTOR
	3.2 THE LINGER INTERFACE

	4.0 STUDY DESIGN
	4.1 OVERVIEW
	4.2 PARTICIPANTS
	4.3 MATERIALS
	4.3.1 Reflective Texts

	4.4 MEASURES
	4.4.1 Learning Measures
	4.4.2 Cognitive Load Measures
	4.4.3 Motivational Survey

	4.5 STATISTICAL METHODS

	5.0 RESULTS
	5.1 EVALUATING MEASURES
	5.1.1 Evaluating the Motivation Instrument
	5.1.2 Evaluating the Near Far Division
	5.1.3 Evaluating the Cognitive Load Measures

	5.2 DIVIDING SUBJECTS BY MOTIVATION
	5.3 HYPOTHESIS ONE: ABSTRACTIVE REFLECTION IMPROVES LEARNING
	5.3.1 Initial Results
	5.3.2 Motivation Interaction Results

	5.4 HYPOTHESIS TWO: REFLECTIVE COHESION AFFECTS LEARNING
	5.4.1 Initial Results
	5.4.2 Motivation Interaction Results

	5.5 HYPOTHESIS THREE: REFLECTIVE COHESION INTERACTS WITH KNOWLEDGE
	5.5.1 Initial Results
	5.5.2 Motivation Interaction Results

	5.6 SECONDARY HYPOTHESES
	5.6.1 Hypothesis Four: Textual Cohesion Affects Learning Through Inference
	5.6.2 Hypothesis Five: Motivation Affects Inference


	6.0 USING COHESION TO EVALUATE KNOWLEDGE LEVEL
	6.1 DIALOG COHESION AND LEARNING: METRIC AND PRIOR RESULTS
	6.2 COHESION AND LEARNING IN THE REFLECTION CORPUS

	7.0 RELATED WORK
	7.1 RELATED WORK IN REFLECTION IN INTELLIGENT TUTORING SYSTEMS
	7.1.1 Reflection In Action
	7.1.2 Reflection In Quantitative Physics
	7.1.3 Reflection In Other Domains
	7.1.4 Relation To Current Work

	7.2 RELATED WORK IN HUMAN TEXT PROCESSING
	7.2.1 Motivation, Knowledge And Learning From Text
	7.2.2 Cohesion And Learning From Text
	7.2.3 Relation To Current Work

	7.3 RELATED WORK IN COMPUTATIONAL LINGUISTICS
	7.3.1 Measures Of Cohesion In Text
	7.3.2 Measures Of Cohesion In Dialog
	7.3.3 Relation To Current Work


	8.0 CONTRIBUTIONS AND FUTURE WORK
	8.1 CONTRIBUTIONS
	8.2 LIMITATIONS OF THE STUDY
	8.3 FUTURE WORK

	9.0 ACKNOWLEDGEMENTS
	APPENDIX A. EXPERIMENTAL TEXTS
	 A.1 Baseline and Introductory Pre-Reading Texts
	 A.2 ``Read-again'' Control Text
	 A.3 Low Cohesion Reflective Text
	 A.4 High Cohesion Reflective Text

	APPENDIX B. COHMETRIX OUTPUT FOR LOW AND HIGH COHESION TEXTS
	APPENDIX C. TEST QUESTIONS
	APPENDIX D. MCNAMARA'S TEXTS
	 D.1 Heart Disease High Cohesion
	 D.1.1 Heart Disease
	 D.1.1.1 1. Congenital heart disease
	 D.1.1.2 2. Acquired heart disease
	 D.1.1.3 3. Treatment and prevention of heart disease


	 D.2 Heart Disease Low Cohesion
	 D.2.1 Heart Disease


	APPENDIX E. BIBLIOGRAPHY

