Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

CAPILLARY-BASED MICROREACTOR FOR SCREENING PEPTIDE CATALYSTS IN THE ALDOL REACTION

Fang, Hui (2008) CAPILLARY-BASED MICROREACTOR FOR SCREENING PEPTIDE CATALYSTS IN THE ALDOL REACTION. Master's Thesis, University of Pittsburgh. (Unpublished)

[img]
Preview
PDF
Primary Text

Download (642kB) | Preview

Abstract

In recent years, the concept of miniaturization has been applied to many areas of chemistry, one of which is the synthesis arena with the development of new microreactor technology. Compared with conventional scale vessels, microreactors are advantageous in many aspects, such as faster mixing, better heat transfer, minimal reagent use and great safety. However, the technology of microreactors is still immature and most organic reactions are simply carried out based on the existing concept and setup of 'lab-on-a-chip'. The analysis-oriented chips are always incompatible with demands of organic synthesis and so the development of synthesis-oriented microreactors is of great need. Our laboratory developed a novel capillary-based reactor system that was specific for high-throughput synthesis and screening. The computer-controlled reactor system integrated standard HPLC apparatus (autosampler, pump), fused-silica capillaries and GC in which separate zones of reactants and catalysts can be combined and loaded serially into a single reactor capillary, reacted in parallel and ejected serially for online GC analysis. One of the applications of our microreactor was to study peptide-catalyzed aldol reaction. We chose a model aldol reaction with benzaldehyde and acetone substrates and known catalyst L-proline. Chiral GC separation conditions were optimized for determination of chiral aldol products. The optimum reaction conditions were 10 mol% L-proline catalyst, DMSO and acetone 1:1 (v/v), room temperature and 4 hr reaction time. A little amount of acetic acid was added to increase L-proline solubility in organic solvents. Several peptides were preliminarily screened in the microreactor. Unfortunately, all of them showed poor activities. The next step is to keep screening active peptide catalysts by our microreactor. Besides, novel solvents will be studied to further increase product yield and selectivity. The microreactor will also be optimized to increase its throughput and efficiency. The optimization process will be based on the combination of mathematical calculation (Mathcad software) and experiments. Moreover, the design of the microreactor will be improved in some units to make the system capable of accommodating more types of reactions such as multi-step reactions, gas-phase reactions or gas/liquid multiphase reactions.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Fang, Huihuf1@pitt.eduHUF1
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairWeber, Stephen G.sweber@pitt.eduSWEBER
Committee MemberBrummond, Kay M.kbrummon@pitt.eduKBRUMMON
Committee MemberAmemiya, Shigeruamemiya@pitt.eduAMEMIYA
Date: 28 September 2008
Date Type: Completion
Defense Date: 17 August 2006
Approval Date: 28 September 2008
Submission Date: 10 June 2008
Access Restriction: 5 year -- Restrict access to University of Pittsburgh for a period of 5 years.
Institution: University of Pittsburgh
Schools and Programs: Dietrich School of Arts and Sciences > Chemistry
Degree: MS - Master of Science
Thesis Type: Master's Thesis
Refereed: Yes
Uncontrolled Keywords: Aldol reaction; Capillary; Microreactor; Peptides; Screening
Other ID: http://etd.library.pitt.edu/ETD/available/etd-06102008-191812/, etd-06102008-191812
Date Deposited: 10 Nov 2011 19:46
Last Modified: 15 Nov 2016 13:44
URI: http://d-scholarship.pitt.edu/id/eprint/8067

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item