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Slips and falls are serious public health concerns in older populations.  Understanding 

relationships between propensity to slip and biomechanical and physiological characteristics is 

important to identify factors responsible for slip-initiated falls and to improve slip/fall 

prevention.  Thus, the first goal of this thesis was to investigate the relationship between knee 

flexion/extension strength and slip severity.  Reduced muscle strength is associated with aging 

and falls.  Knee corrective moments generated during slipping assist in balance recovery. 

Isometric knee flexion/extension peak torque, rate of torque development (RTD), and angular 

impulse were measured in 30 young and 28 older subjects. Motion data were collected for an 

unexpected slip during self-paced walking.  Slips were characterized as non-hazardous or 

hazardous based on a 1.0 m/s peak slip velocity threshold measured at the slipping heel.  Within-

gender regressions relating strength to slip hazardousness and age group revealed significantly 

greater left knee extension RTD and angular impulse in young males experiencing non-

hazardous versus hazardous slips.  Findings were not evident in older males, who perhaps 

implement cautious walking styles, allowing less reliance on post-slip recovery reactions.  Other 

strength variables were not associated with hazardousness.  Thus, rapid knee extension force 

generation may assist balance recovery from hazardous slips. 

Decreased postural stability is also associated with aging and falls.  Therefore, the second 

goal of this project was to investigate the association between ability to integrate sensory 
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information important for balance and slip severity.  The Sensory Organization Test (SOT) was 

administered and COP standard deviation (COP ST DEV) and path length (PATH LENGTH) 

were calculated for each condition.  COP ST DEV, PATH LENGTH, and variable ratios were 

regressed on age group and hazardousness within condition.  Significantly greater PATH 

LENGTH and its subsequent effects on ratio variables associated with Condition 4, in which 

somatosensation was rendered inaccurate, were evident in individuals experiencing hazardous 

versus non-hazardous slips.  Conditions in which vestibular or visual information was rendered 

inaccurate or missing were not associated with hazardousness.  Somatosensory channels detect 

slips first at the shoe-floor interface and thus may be especially important in early detection and 

response to a slip. 
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1.0  INTRODUCTION 

1.1 SCOPE OF THE PROBLEM 

Falls are a well-acknowledged public health concern that is more prominent with increasing age.  

Epidemiological estimates of the average annual risk of falling in the elderly indicate that at least 

one in every three older adults (>65 years) falls each year (Tinetti et al., 1988), a 10-fold increase 

compared to younger individuals (Thomas and Brennan, 2000). In nursing homes, falling 

accidents represent a more serious concern: the mean annual incidence rate of falls among older 

institutionalized patients is 1.5 falls per bed (Rubenstein et al., 1996). Injury-related falls are 

often serious. In the United States, falls are the leading cause of unintentional injury-related 

deaths in individuals aged 65 years and older, accounting for about 40% of such incidents in that 

age group (NCIPC, 2006).  Falls are also the leading cause of unintentional nonfatal injury in all 

individuals aged 25 years and older, accounting for nearly 31% of unintentional nonfatal injuries 

in that age group (NCIPC, 2006). 

Falls in older adults are often attributed to base of support perturbations during walking 

such as slips, trips and stumbles (Berg et al., 1997; Bloem et al., 2001). One estimate attributes 

67% of falls in the elderly to slips and trips (Lloyd and Stevenson, 1992). In an epidemiological 

study conducted in England and focused on incidence of falls in individuals requiring accident 

and emergency health care services, slips, trips, and stumbles were reported as the most common 
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cause of falls in four adult age groups over the age of 60 years (Scuffham et al., 2003). Similarly, 

a study based in northern California reported that 49% of falls with fractures resulted from 

slipping or tripping (Keegan et al., 2004).  Slips specifically are a significant cause of falls in 

older adults (Sjogren and Bjornstig, 1991; Bjornstig et al., 1997) and account for up to 44% of 

occupational same-level and 43% of fatal occupational same-level falls (ISA, 1998; USDOL-

BLS, 1992-1998).  Slip-initiated falls are also a risk factor for fractures, accounting for 10-26% 

of fall-related hip fractures in older adults (Nyberg et al., 1996; Norton et al., 1997; Luukinen et 

al., 2000). 

1.2 EXPERIMENTAL RESEARCH BACKGROUND 

1.2.1 Knee Corrective Reactions in Response to an Unexpected Slip 

To regain balance and avoid a slip-initiated fall, the body must generate an immediate, effective 

corrective response.  Two major reactions are generated by the knee of the leading/slipping leg in 

response to an unexpected slip (Cham and Redfern, 2001; Chambers and Cham, 2007; Moyer et 

al., 2007).  The primary reaction involves the initiation of a corrective knee flexion moment at 

approximately 100-150 ms after heel strike onto the contaminated floor (Figure 1). This response 

decelerates the slipping foot, bringing the foot closer to the body center of mass.  The secondary 

reaction, a knee extension moment at approximately 150-200 ms (Figure 1), prevents knee 

buckling and contributes to the forward movement of the body over the supporting foot to 

continue normal gait (Cham and Redfern, 2001; Chambers and Cham, 2007; Moyer et al., 2007).  

These corrective moments generated in response to a slip are active muscle reactions observed in 
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young and older adults (Chambers and Cham, 2007).  Thus, it is likely that knee flexor/extensor 

strength characteristics influence the effectiveness of corrective reactions and, in turn, slip 

severity. 

1.2.2 Relationship between Muscle Strength and Falls in the Elderly 

Aging has been associated with decreased muscle strength, including peak and explosive 

measures such as rate of force/torque development (RFD/RTD) and angular impulse (Larsson et 

al., 1979; Borges, 1989; Frontera et al., 1991; Thelen et al., 1996; Izquierdo et al., 1999; Johnson 

et al., 2004; Perry et al., 2007). Both peak and explosive strength capabilities show decreases in 

fallers compared to non-fallers (Whipple et al., 1987; Gehlsen and Whaley, 1990; Perry et al., 

2007).  Ability to exert a rapid rise in muscle force in response to external perturbations is 

suggested to contribute to balance recovery and fall prevention (Thelen et al., 1996; Izquierdo et 

al., 1999; Aagaard et al., 2002; Chang et al., 2005). Thus, higher explosive strength generation 

capabilities specifically may help restore dynamic equilibrium and aid in fall prevention in the 

elderly (Aagaard et al., 2002; Chang et al., 2005).  Several studies noted the importance of 

evaluating strength characteristics, e.g. RTD, during time intervals relevant to a particular 

functional movement (Abernethy et al., 1995; Aagaard et al., 2002; Andersen and Aagaard, 

2006).  For instance, it is expected that physiological time intervals corresponding to slip-

initiated recovery efforts would be greater than 0-100 ms based on the onset of flexion/extension 

corrective knee moments. 

  To our knowledge, only one study has investigated the importance of leg muscle 

strength in specifically preventing a slip-initiated fall (Lockhart et al., 2005). Results showed that 

subjects with stronger lower extremities experienced less severe slips, reinforcing that slip 
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recovery ability may be related to lower extremity peak strength. In that study, only overall peak 

leg strength was examined (Chaffin et al., 1978) and peak and explosive strength measures at 

individual joints instrumental in slip-recovery efforts, e.g. knee, were not assessed (Lockhart et 

al., 2005). 

As mentioned previously, numerous studies have compared general strength measures in 

fallers and non-fallers, as well as young and older adults.  To our knowledge, however, no 

previous gait research has examined the direct association between slip severity and strength 

characteristics at specific joints identified as instrumental in slip-recovery efforts, such as the 

knee joint. Thus, the first goal of this study was to investigate the relationship between knee 

flexion/extension strength characteristics and slip severity in young and older adults. Variables 

considered in this analysis include peak isometric torque, RTD and angular impulse of these 

individual muscle groups.  
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Figure 1: Profile of leading/slipping leg knee moment generated during stance phase on dry floors (mean) 

and typical slip-recovery (SR) and slip-fall (SF) events on oily floors.  Vertical lines denote time periods (% stance) 

in which primary knee flexion (1º) and secondary knee extension (2º) corrective moments occur.  The primary 

corrective moment acts to pull the slipping foot back near the body, while the secondary moment helps to bring the 

body over the base of support to avoid knee buckling and continue gait (adapted from Cham and Redfern, 2001). 
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1.2.3 Postural Control and Integration of Sensory Information Important for Balance 

Appropriate postural control involves the acquisition of visual, vestibular, and somatosensory 

information and the integration of this sensory channel information by the central nervous 

system in order to generate an appropriate motor response aimed at maintaining postural stability 

(Nashner et al., 1982; Anacker and Di Fabio, 1992; Peterka, 2002; Horak, 2006).  During 

postural control, visual sensors act to detect orientation of the head and body relative to the 

visual world, vestibular sensors detect deviations of head orientation from earth-vertical 

(gravity), and somatosensory cues detect leg orientation relative to the support surface (Peterka, 

2002; Lord, 2006; Virk and McConville, 2006).  Feedback control loops utilize sensory 

integration information to update body state and to correct for center of pressure (COP) 

movements away from equilibrium.  Specifically, corrective torque generation acts to resist 

destabilization from gravity or external perturbation (Peterka, 2002; Peterka and Loughlin, 

2004).  In a well-lit environment with a stable base of support, healthy individuals typically 

weight the information from these sensory channels as follows: 70% somatosensory, 10% vision 

and 20% vestibular (Peterka, 2002; Horak, 2006).  A certain amount of redundancy exists among 

these channels, allowing the individual to maintain postural stability more easily even if one 

sensory channel is inaccurate or missing (Peterka, 2002; Welgampola and Colebatch, 2002).  

When presented with conflicting, inaccurate or missing sensory information from one or more of 

the channels, however, the central nervous system is thought to use a sensory re-weighting 

strategy to increase sensory weighting of the available accurate sensory channels and decrease 

that of the inaccurate or missing channels (Peterka, 2002; Peterka and Loughlin, 2004; 

Mahboobin et al., 2005; Virk and McConville, 2006).  This ability to re-weight sensory 

information depending on sensory context allows an individual to maintain stability when 
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moving from one environment or sensory context to another or adapt when one or two of the 

sensory inputs are not functioning properly (Horak, 2006; Virk and McConville, 2006). 

Decreased postural stability with aging, commonly indicated by increased postural sway, 

has been well documented (Overstall et al., 1977; Whipple et al., 1993; Baloh et al., 1994; Perrin 

et al., 1997) and is often considered a risk factor for falling, especially under conditions of 

conflicting or reduced sensory information (Wolfson et al., 1985; Woollacott et al., 1986; Tinetti 

et al., 1988; Gehlsen and Whaley, 1990; Anacker and Di Fabio, 1992; Maki et al., 1994; Judge et 

al., 1995; Fernie et al., 2001; Stalenhoef et al., 2002).  A reduced ability to effectively re-weight 

and integrate sensory information contributes to this decreased postural stability (Horak et al., 

1989).  In fact, Peterka and Loughlin (2004) predict that any environment change altering the 

available sensory-orientation cues increases falls risk, even if accurate orientation information is 

restored during the change.  In addition, postural instability in the elderly arises from degradation 

or failure of the peripheral sensory systems.  This degradation reduces the overall amount, as 

well as the redundancy of information important for sensory integration (Gill et al., 2001; 

Welgampola and Colebatch, 2002; Low Choy et al., 2003; Vouriot et al., 2004). 

As mentioned previously, somatosensory channels, whose major component in postural 

control is peripheral sensation, are most heavily weighted during maintenance of postural control 

(Peterka, 2002; Horak, 2006; Bugnariu and Fung, 2007).  Peripheral sensation is considered most 

important in maintaining postural stability regardless of age or falls history, especially under 

challenging conditions (Lord et al., 1991; Fitzpatrick and McCloskey, 1994; Lord and Ward, 

1994; Benjuya et al., 2004; Melzer et al., 2004).  However, deterioration and impairment of 

peripheral sensation with aging due to neuropathy, including degradation of proprioceptive and 

cutaneous inputs, results in reduced reliance on somatosensory channels (Nakagawa, 1992; 
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Benjuya et al., 2004; Melzer et al., 2004; Low Choy et al., 2007).  The reduced integrity and 

reliance on somatosensory information is associated with increased falls risk and occurrence 

(Anacker and Di Fabio, 1992; Melzer et al., 2004; Vouriot et al., 2004).  Individuals who fall are 

reportedly less able than non-fallers to compensate for conflicting or missing somatosensory 

information during challenging balance conditions (Anacker and Di Fabio, 1992). 

As individual somatosensory and vestibular channel function and integration abilities 

become less efficient with age, vision becomes more instrumental in maintaining postural 

control, especially under challenging balance conditions when the support surface is not stable, 

making somatosensory input inaccurate (Perrin et al., 1997; Lord et al., 2000).  Elderly 

individuals and fallers increasingly rely on visual cues into their sixth decade to maintain or 

recover balance, most likely due to delayed or reduced vestibular and somatosensory functioning 

(Pyykko et al., 1990; Lord and Ward, 1994; Sundermier et al., 1996; Vouriot et al., 2004; 

Buatois et al., 2006; Bugnariu and Fung, 2007).  Since visual control of postural stability is 

slower than somatosensory and vestibular control, increased reliance on vision could in turn 

increase falls risk (Pyykko et al., 1990).  Elderly individuals and fallers exhibit greater postural 

sway than younger individuals and non-fallers, respectively, when vision is occluded or 

inaccurate (Whipple et al., 1993; Low Choy et al., 2003; Buatois et al., 2006).  However, visual 

acuity also decreases with age, which could lead to overdependence on inaccurate visual 

information, and thus further decreases in postural stability and increases in fall risk (Lord et al., 

2000; Jeka et al., 2006). 

Finally, the vestibular system, which senses linear and angular accelerations at the head, 

is extremely important for sensory integration and postural stability as it provides a reference for 

body orientation against potentially conflicting visual and somatosensory clues (Nashner et al., 
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1982; Horak et al., 1990).  As reliance and function of somatosensory sensory channels begins to 

decline with age, individuals may also increasingly rely on vestibular input to maintain postural 

stability (Welgampola and Colebatch, 2002).  However, vestibular loss is also common with age 

due to peripheral or central vestibular system deterioration, neuropathies, or CNS disorders 

(Matheson, 1999; Horak, 2006).  A decline in vestibular function, then, may cause individuals to 

reduce reliance on vestibular channels and overweight potentially inaccurate somatosensory and 

visual channels, further contributing to decreased postural stability (Teasdale et al., 1991a; 

Peterka, 2002; Welgampola and Colebatch, 2002; Vouriot et al., 2004).  Thus, deterioration of 

vestibular function may also contribute to increased falls risk and occurrence (Woollacott et al., 

1986; Kerber et al., 1998; Matheson, 1999). 

As detailed above, the accuracy of all three sensory channels declines with age, which in 

turn decreases the ability to maintain postural stability using sensory re-weighting techniques. 

The Sensory Organization Test (SOT) is a common test used to reliably assess sensory 

integration abilities and, therefore, also identify deficits in particular sensory modalities related 

to sensory re-weighting and integration (Anacker and Di Fabio, 1992; Cohen et al., 1996; 

Camicioli et al., 1997; Wallmann, 2001; Buatois et al., 2006).  The SOT assesses subject ability 

to effectively weight sensory inputs (visual, vestibular, and somatosensory) while suppressing 

inaccurate or conflicting sensory information (Vouriot et al., 2004).  During the SOT, inaccurate 

visual and somatosensory cues are applied using sway-referencing techniques.  Sway-referencing 

occurs when the support surface and/or visual surround tilts to directly follow the anterior-

posterior center of gravity (COG) sway of the subject (Nashner and Peters, 1990).  The SOT 

collects COP, which is representative of the net neuromuscular response during postural control 

(Winter et al., 1996) and used in calculation of postural stability and sway measures.  Indeed, 
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these measures have been used to reliably assess sway changes with age and between fallers and 

non-fallers (Cohen et al., 1996; Camicioli et al., 1997; Wallmann, 2001; Shimada et al., 2003; 

Buatois et al., 2006; Whitney et al., 2006).  A common method of assessing postural sway using 

the SOT is the equilibrium score.  An equilibrium score is assigned for each SOT condition 

based on the ability of the subject to minimize COG sway and maintain upright posture within 

the limits of stability, estimated as a COG maximum displacement of 12.5 degrees (Nallegowda 

et al., 2004).  Trials in which the maximum COG displacement of a subject extends beyond the 

limits of stability are considered falls.  Because COG and the limits of stability are estimated 

measures and therefore only indirectly assess postural stability, they may not be as accurate as 

more directly quantified measures such as COP path length or standard deviation. 

To our knowledge, only Lockhart et al. (2005) has investigated the association between 

sensory integration abilities and slip recovery ability in young (N = 14, 22.6 ± 2.1 year), middle- 

age (N = 14, 46.9 ± 13.6 years) and older (N = 14, 75.5 ± 6.8 years) adults.  In this study, 

subjects with lower SOT scores, signifying increased postural sway, in each age group 

experienced longer and thus more severe slips. These results indicate that the ability to integrate 

sensory information accurately may affect slip recovery capabilities. In addition, SOT scores for 

older participants were significantly lower than both the scores of young and middle-age 

participants and SOT scores of middle-age participants were lower than those of the young 

participants, signifying that postural sway increases with age.  In that study, however, only SOT 

equilibrium scores and not direct measures of postural sway, such as COP standard deviation, 

were examined.  Also, SOT conditions 5 and 6, which utilize inaccurate somatosensory 

information using sway referencing techniques coupled with either absent or inaccurate vision 

information, respectively, were not assessed.  Decreased performance on these conditions, which 
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cause the subject to rely on vestibular channels only for accurate sensory information, have thus 

been cited as indicators of vestibular loss (Horak et al., 1990) as well as the best SOT predictors 

for recurrent falls risk (Buatois et al., 2006).  Thus, the study by Lockhart et al. (2005) may have 

omitted tests that most distinguish individuals at risk of falling during an unexpected slip.   

In summary, while numerous studies have compared postural sway measures in young 

versus older adults and fallers versus non-fallers, to our knowledge no gait research to date has 

investigated the direct association between slip severity and sensory integration abilities from all 

three sensory channels important to balance. Thus, the second goal of this research was to 

investigate the relationship between postural measures representing subject sway during the SOT 

and slip severity in young and older adults. Postural sway measures considered in this analysis 

include COP standard deviation and PATH LENGTH.  

1.3 SPECIFIC AIMS 

The long term goal of this project is to identify biomechanical and physiological factors that 

affect the ability of an individual to recover from a severe slip.  Knowledge of these factors and 

their influences may aid in the advancement of slip and fall prevention.  The first focus of this 

research project is to investigate the impact of muscle strength on the severity of an unexpected 

slip.  Knowledge of individual joint muscle strength contributions to slip recovery is limited and 

may be critical to the development of effective fall prevention programs.  Specifically, knee 

corrective moments generated during slipping assist in balance recovery and are modulated by 

knee flexor/extensor activity.  Thus, it is likely that knee flexion and extension strength may 

influence the ability to recover from an unexpected slip.  Given that the ability to generate 
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stronger, more rapid knee corrective moments within a limited time frame during reaction to a 

slip may be especially important for slip recovery and fall prevention, the relationship between 

slip severity and both peak and explosive muscle strength measures will be investigated in this 

study.  Specific strength measures examined will include peak torque, rate of torque 

development and angular impulse.  Thus, the first specific aim for this project is as follows: 

 

Specific Aim 1:  To investigate the relationship between knee flexion and extension strength 

and slip severity in young and older adults, including the influences of both peak and 

explosive strength measures. 

H.1.)  Increased knee flexion and extension strength will be associated with less hazardous slips. 

 

The second focus of this research project is to examine the influence of individual 

sensory modalities used to detect an unexpected slip on slip severity.  The ability to accurately 

acquire and integrate somatosensory, vestibular and visual sensory channel information is vital to 

maintaining postural stability and declines in this ability have been noted with aging and falls 

incidence.  However, specific knowledge of sensory channel contributions and integration 

abilities regarding the outcome of a slip is lacking and may aid in fall prevention.  

Somatosensory and vestibular channels specifically contribute most to postural stability and, 

thus, may influence the ability to detect a slip and produce an appropriate corrective response.  

The Sensory Organization Test (SOT) was used in this study to assess postural sway measures 

characterizing the ability to integrate sensory information and identify deficits in the individual 

sensory channels related to sensory re-weighting and integration.  The relationship between these 

postural sway measures and slip severity will be examined in this study.  Specific sway measures 
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will include COP standard deviation and PATH LENGTH.  Thus, the second specific aim for 

this project is as follows: 

 

Specific Aim 2:  To investigate the association between the ability to integrate sensory 

information important for balance and slip severity.  

H.2.)  Increased sway in conditions requiring the use of vestibular and proprioception channels to 

maintain balance will be associated with increased slip severity. 
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2.0  METHODS 

2.1 SUBJECTS 

Thirty young and twenty-eight older subjects between the ages of 20-31 and 50-65 years old, 

respectively, were recruited for participation in this study (Table 1). Age group and gender group 

differences in stature, body mass and age were tested using an ANOVA model including age 

group (young/older), gender group (male/female) and their interaction as fixed effects. 

Statistically significant effects are reported in the last column of Table 1.  Participants were 

screened for clinically significant neurological, cardiovascular, pulmonary, and orthopedic 

abnormalities that affect normal balance and gait. Study protocol was approved by the University 

of Pittsburgh Institutional Review Board and written informed consent was acquired for each 

subject prior to participation. Subjects were asked to complete two visits. Strength testing and 

gait testing were completed in Visits 1 and 2, respectively. 
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Table 1.  Subject population characteristics stratified by age and gender groups. Mean (standard deviation) 

[minimum - maximum] values are reported.  

 

 Young female 
(N=14) 

Young male 
(N=16) 

Older female 
(N=15) 

Older male 
(N=13) 

Age / Gender 
differences 

Age (years) 25 (4) [20-31] 23 (2) [21-26] 55 (3) [50-60] 58 (6) [50-65] page< 0.01 
pagexgender< 0.05 
 

Stature (cm) 166 (5) [158-174] 178 (7) [164-190] 164 (5) [157-175] 177 (6) [168-191] pgender< 0.01 

Body mass (kg) 63 (12) [52-88] 75 (11) [56-98] 82 (18) [56-112] 88 (13) [61-112] page< 0.01 
pgender< 0.05 

  

2.2 GAIT TESTING 

2.2.1 Gait Testing Protocol 

Subjects were instructed to walk at a self-selected pace along an 8 m vinyl tile walkway, 

focusing their vision toward an X taped onto the opposite wall.  Hindfoot kinematics were 

tracked using four reflective markers (Figure 2). Subjects were fitted with a safety harness and 

practiced walking across the walkway.  Ground reaction forces were collected at 1080 Hz using 

two Bertec FP4060 force platforms embedded in the floor (Bertec Co., Columbus, OH) and shoe 

kinematic data were recorded at 120 Hz using a Vicon 612 motion capture system (Vicon, Lake 

Forest, CA).   

Subjects were exposed to two environmental conditions: a baseline condition in which 

subjects walked onto a known dry floor and an unexpected slippery condition in which the floor 

was contaminated with a glycerol-water solution (75%:25%) without the participant’s 
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knowledge. Coefficients of friction for the dry and slippery conditions, measured by the English 

XL VIT Slipmeter ® (ASTM F1679) at the shoe-floor interface, were 0.53 and 0.03, 

respectively.  To prevent the subject from discerning the contaminated floor, the laboratory lights 

were dimmed. Between all trials (baseline dry and unexpected slip), subjects listened to loud 

music and faced away from the walkway to distract them from noticing the possible application 

of the contaminant.  Subjects were informed that the first few trials would be dry and two to 

three baseline trials were first collected to capture normal gait patterns.  The leading leg force 

plate was then covered with the glycerol solution, creating an unexpected slippery condition 

(Moyer et al., 2006).  In this study, only the first unexpected slip trial was analyzed, eliminating 

effects of anticipation and adaptation. 
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Figure 2.  Placement of the markers tracking the kinematics of the hindfoot in the leading/slipping (left) 

leg. Filled circles (L_HEEL, L_HF_LAT, L_HF_MED) represent markers that remain on the shoes during the 

static/calibration and dynamic walking trials and the hollow circle (SL_HEEL) denotes the “true” heel marker that is 

used only in the static/calibration trial. To reconstruct the heel marker position during walking, the three-

dimensional relationship between the markers on the rigid heel segment was obtained from the static trial and used 

to mathematically recreate the trajectory of SL_HEEL during the dynamic gait trials. The kinematics of the 

SL_HEEL marker were used to determine peak slip velocity for hazardousness categorization. (adapted from Moyer 

et al, 2006). 

2.2.2 Gait Data Processing 

Kinematics of the inferior heel marker placed slipping foot (SL_HEEL marker in Figure 2) were 

used as a basis to quantify slip severity. Because the SL_HEEL marker is easily knocked off 

during gait, it was physically present only during the static calibration trials.  To derive the 

position of the SL_HEEL marker during gait, a rigid body assumption was used for the hindfoot 

and the trajectory of the SL_HEEL marker was reconstructed from its three-dimensional 

relationship with other markers on the hindfoot during the static calibration trial (Moyer et al., 

2006).  The medial/lateral and anterior/posterior positions of the virtual slipping foot SL_HEEL 

marker were numerically differentiated to compute heel velocity components.  Resultant 
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horizontal heel velocity was then calculated at each time point as the magnitude of the vector 

containing both anterior/posterior and medial/lateral components.  Slip hazardousness, a measure 

of slip severity, was based on peak slip velocity (PSV), which was determined as the first local 

maximum horizontal heel velocity approximately 50 ms after heel strike on the slippery surface 

(Figure 3).  All PSV values were visually verified by inspecting the horizontal heel velocity 

curves.  Slip hazardousness was categorized as hazardous (H) or non-hazardous (NH), with H 

trials having a PSV value of greater than 1.0 m/s (Moyer et al., 2006).  Subject trials having a 

PSV value of greater than 1.5 m/s were considered falls (Redfern et al., 2001).  

 

 

Figure 3.  Typical horizontal velocity measured at the heel of the slipping foot in a hazardous and non-

hazardous slip.  The dashed horizontal line denotes the 1 m/s hazardousness threshold, while downward facing 

arrows reflect how peak slip velocity was derived, i.e. first local maximum after heel strike (time = 0) (adapted from 

Moyer et al, 2006). 
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2.3 MUSCLE STRENGTH  

2.3.1 Strength Measurement Protocol 

Subjects were seated and isometric knee flexion and extension strength at 45 degrees knee 

flexion were collected at 1000 Hz using a Biodex AP System 2 (Biodex Medical Systems, Inc., 

Shirley, NY) (Figure 4).  Submaximal trials to approximately 50% of maximum were collected 

prior to each maximum voluntary contraction (MVC) trial to familiarize subjects with strength 

testing protocol.  For MVC trials, subjects were instructed to contract as hard and fast as possible 

for five seconds then relax for ten seconds for three repetitions and received standardized verbal 

coaching by a physical therapist throughout (Chaffin et al., 1999). Knee extension isometric 

strength was collected first, followed by knee flexion.  Only MVC trials were analyzed.  

 

 

Figure 4. Strength Testing Setup. Subjects were seated with the knee angle set at 45o flexion. Isometric 

knee flexion and extension strength were collected at 1000 Hz using a Biodex AP System 2 (Biodex Medical 

Systems, Inc., Shirley, NY). 
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2.3.2 Strength Data Processing 

Isometric strength data for both the left (slipping) and right (trailing) legs were first lowpass 

filtered at 20 Hz using a fourth-order zero phase-lag Butterworth filter (Winter, 1990).  The 

mean torque value during the resting period was subtracted from the time series to set the resting 

period torque to zero (Pohl et al., 2002).  The derivative of the torque data, as well as its mean 

and standard deviation during the resting period, were computed for use in determining the onset 

of contraction. Specifically, the onset of contraction was defined as the first time point, working 

backwards from peak torque of each repetition, at which the torque derivative was less than or 

equal to the mean baseline resting torque derivative value plus two standard deviations and 

torque value was less than or equal to 2.5% of peak torque value (Aagaard et al., 2002; Pohl et 

al., 2002). All onsets were visually verified.   

Peak torque was determined as the maximum torque value for each repetition.   Average 

peak torque was also calculated across a three-second interval, beginning at two seconds after 

onset (Chaffin, 1975).  All three-second intervals were also visually verified.   RTD was 

calculated as the slope of the torque-time curve for each repetition in the following time period 

intervals: 0-10, 0-20, …, 0-300 ms, with 0 ms set as the onset of contraction (Andersen and 

Aagaard, 2006).  RTD was computed in different time intervals to verify the time periods related 

to slip-related balance recovery efforts, as a wide range of time intervals reflects different 

neurophysiological processes. As mentioned previously, it is expected that RTD time intervals 

later than 0-100 ms will be relevant to slip-related balance recovery efforts (Cham and Redfern, 

2001; Chambers and Cham, 2007; Moyer et al., 2007).  Angular impulse was calculated as the 

area under the torque-time curve for each time interval (Aagaard et al., 2002).  Additional RTD 

and angular impulse variables, RTD_vol and angular impulse_vol, were calculated with intervals 
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beginning 50 ms after onset continuing to 300 ms after onset (e.g. 50-60 ms, 50-70 ms, … , 50-

300 ms) to eliminate effects of intrinsic contractile muscle properties (Andersen and Aagaard, 

2006).  Within-subject ANOVA models revealed similar strength measures across all three 

repetitions (p > 0.05). Thus, mean values across the three repetitions were used in subsequent 

analyses. 

2.3.3 Muscle Strength Statistical Analysis 

All data were checked for normality.  Those variables not normally distributed underwent a Box 

Cox transformation.    First, knee flexion and knee extension RTD and angular impulse variables 

were individually entered in a mixed linear regression model with time interval as a fixed effect 

and subject as a random factor to examine the dependence of RTD and angular impulse on the 

time interval used in the computation. Second, because gender-related effects on strength have 

been previously established and the focus of this paper is the relationship between slip 

hazardousness and strength capabilities in young and older adults, the following main analyses 

were conducted within each gender group.  A linear regression was also run on RTD and angular 

impulse variables within gender for each time interval using subject nested with age group as a 

random effect and age group, slip hazardousness, trial type (knee flexion or knee extension), and 

their interactions as fixed effects.  Model significance for all variables regarding trial type 

indicated that main analyses could be conducted within knee flexion and knee extension trial 

types.   

Specifically, to investigate the association between strength, slip hazardousness and age 

group, knee flexion/extension peak torque, average peak torque, and RTD and angular impulse 

variables were individually regressed on slip hazardousness (NH/H), age group (young/older) 
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and their interaction. In addition, correlation analyses were run between left and right leg flexion 

and extension variables to examine the relationships between slipping and trailing legs and the 

effects of dominant leg strength capabilities.  All analyses were conducted within each time 

interval for RTD and angular impulse measures.  Statistical significance was set at 0.05. 

2.4 POSTURAL CONTROL AND SENSORIMOTOR INTEGRATION 

2.4.1 Sensory Organization Test Protocol 

The Sensory Organization Test (SOT) was administered for all subjects using a computerized 

dynamic posturography platform (EquiTest, NeuroCom, Clackamas, OR).  The SOT evaluates 

the ability of an individual to effectively apply visual, vestibular, and somatosensory inputs 

while suppressing any inaccurate sensory information (Vouriot et al., 2004).  Inaccurate visual 

and somatosensory cues during the SOT are generated through the use of sway-referencing 

techniques in which the support surface and/or visual surround tilts to directly follow the 

anterior-posterior COG sway of the subject (Nashner and Peters, 1990).  Subjects wore their own 

shoes and were fitted with a safety harness to prevent injury in case of a fall.  A laboratory 

technician was also available to catch the subject in the event of an irrecoverable balance loss.  

Subjects were positioned with one foot on each of the dual-force plates of the platform, aligning 

the ankle medial malleoli with the centers of rotation of the force plates.  During the SOT, the 

subject was exposed to six conditions and two to three 20-second trials (T1-T3) were collected at 

100 Hz for each condition.  SOT conditions can be summarized as follows (Figure 5): 
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• Condition 1 (C1): Eyes open, fixed support surface and surround 
o Visual, vestibular and somatosensory modalities available and accurate 

 

• Condition 2 (C2): Eyes closed, fixed support surface and surround 
o Visual input absent 

 

• Condition 3 (C3): Eyes open, fixed support surface, sway-referenced surround 
o Visual input available but inaccurate 

 

• Condition 4 (C4): Eyes open, sway-referenced support surface, fixed surround 
o Somatosensory input available but inaccurate 

 

• Condition 5 (C5): Eyes closed, sway-referenced support surface, fixed surround 
o Visual input absent, somatosensory input available but  inaccurate 

 

• Condition 6 (C6): Eyes open, sway referenced support surface and surround 
o Visual and somatosensory inputs available but inaccurate 

 

 

Figure 5.  Sensory Organization Test (SOT) conditions.  Subjects were exposed to six conditions in which 

visual, somatosensory, and/or vestibular sensory channels may be missing or inaccurate.  Two to three 20-second 

trials (T1-T3) were collected at 100 Hz for each condition (adapted from NeuroCom International, Inc.). 
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Subjects were instructed to maintain upright stance during each trial, while trying to limit 

postural sway and avoid movement of their feet (Vouriot et al., 2004).  Trials in which subjects 

took a step, required the use of the harness, or were caught by the technician were considered 

falls.   

2.4.2 SOT Data Processing 

Center of Pressure (COP) position data from each SOT trial was imported into a MATLAB 

program to calculate measures of postural sway.  COP position standard deviation in the 

anterior/posterior direction (COP ST DEV) was calculated using the following formula: 
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The total change in resultant (both anterior/posterior and medial/lateral) COP position 

during each trial, known as PATH LENGTH, was also calculated as shown in the equation 

below: 

∑ −+−= ++
i

iiii APCOPAPCOPMLCOPMLCOPlengthPath 2
1

2
1 )__()__(_  

Note that PATH LENGTH can also be interpreted as a measure of sway velocity. 

2.4.3 SOT Statistical Analysis 

All data were checked for normality.  Those variables not normally distributed underwent a log 

transformation.    Trials classified as falls were removed from the statistical analysis due to 

difficulty in determining exactly where a fall began during the trials and, thus, where AP COP 
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data was no longer real.  Trials removed accounted for approximately 1.4 % of the total data set 

and occurred only in conditions 5 and 6.  Because so few trials were classified as falls, only 

qualitative differences in balance variables and slip hazardousness between falls and no falls 

trials have been reported.   

For the preliminary analysis, COP ST DEV and PATH LENGTH were first individually 

entered in a mixed linear regression model with trial (1-3) as a fixed effect and subject as a 

random factor to examine the dependence of these variables on trial, essentially repeated 

exposure, within each condition (C1-C6) for each subject. Nearly all variables within each 

condition showed significant trial effects, warranting the use of subsequent within-trial analyses.  

A linear regression was then run on COP ST DEV and PATH LENGTH variables within trial 

using subject nested with age group as a random effect and age group (young/older), slip 

hazardousness (hazardous/non-hazardous), condition (C1-C6), and their interactions as fixed 

effects.  Significant condition effects for all trials again helped further justify the use of a within-

condition main analysis.  Also, because the strongest age group and condition main effects, as 

well as age group by condition interaction effects were seen in T1, subsequent analyses were 

focused in T1 only.  

 Thus, the main analyses, conducted within condition and T1, investigated the association 

between postural sway variables, slip hazardousness and age groups.  Specifically, COP ST DEV 

and PATH LENGTH were regressed on slip hazardousness (NH/H), age group (young/older) 

and their interaction within condition.  To amplify the effects of the individual sensory 

modalities (visual, vestibular, somatosensory) contributing to postural stability and normalize to 

baseline sway, ratios of the COP ST DEV and PATH LENGTH variables were also calculated 

and analyzed.  Ratios for the following conditions were calculated for COP ST DEV and PATH 
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LENGTH:  C2 to C1, C3 to C1, C4 to C1, C5 to C2, C6 to C1, C6 to C4, and C6 to C5.  These 

ratios were then also regressed on slip hazardousness, age group and their interaction within 

condition.  In addition, correlation analyses were run between COP ST DEV and PATH 

LENGTH variables within each condition, as well as for all conditions together to examine the 

relationship between sway distance and velocity during the SOT.  Statistical significance for all 

analyses was set at 0.05.   
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3.0  RESULTS 

3.1 MUSCLE STRENGTH RESULTS 

 

A relatively even distribution of NH/H slips were experienced across age and gender groups 

(Table 2).  The preliminary analysis examining the dependence of RTD and angular impulse 

measures on the time intervals used to compute these variables revealed a significant time 

interval effect (p < 0.05, Figure 6). Specifically, RTD and angular impulse values increased with 

increasing time intervals.  This statistically significant time interval effect regarding RTD and 

angular impulse measures justifies the use of main within-interval analyses for these variables. 

  

Table 2.  Distribution of hazardous / non-hazardous slips stratified by age and gender groups 

 Young female Young male Older female Older male 

Non-Hazardous  6 9 7 7 

Hazardous  8 7 8 6 
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Typical individual subject RTD and angular impulse values across time intervals can be 

seen in Figure 7.    As seen in the figure, RTD and angular impulse profiles for individual 

subjects demonstrated consistent shape over time intervals.  Strength characteristics categorized 

by fall/recovery are depicted in Figure 8.  Due to power issues regarding several small group 

sizes, no statistics were run regarding fall/recovery status and a more qualitative comparison will 

be discussed.  Overall, males who recovered following the slip demonstrated higher explosive 

strength (RTD and angular impulse) values than those experiencing falls. 
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     (A)   Knee flexion RFD 
 

     (B)   Knee extension RFD 
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     (C)   Knee flexion power 
 

 
     (D)   Knee extension power 
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Figure 6.  Average (across all subjects) knee flexion RTD (A), knee extension RTD (B), knee flexion 

angular impulse (C) and knee extension angular impulse (D) versus time interval.  Gray shaded areas reflect 

standard errors.  Time interval effects were significant for all strength measures (p<0.05). Results of post-hoc tests 

evaluating differences in strength measures between time intervals are denoted by horizontal lines. Specifically, 

differences in strength measures between time intervals connected by a line are not statistically significant (p>0.05). 
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     (A)   Knee Extension – Female 
 

     (B)   Knee Extension – Male 
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     (C)   Knee Extension – Female  
 

 
     (D)   Knee Extension – Male 

0

5

10

15

20

25

30

0-10 0-50 0-90 0-130 0-170 0-210 0-250 0-290

Time Interval (ms)

A
ng

ul
ar

 Im
pu

ls
e 

(k
g 

m
 s

) Young
Old

0

5

10

15

20

25

30

0-10 0-50 0-90 0-130 0-170 0-210 0-250 0-290

Time Interval (ms)

A
ng

ul
ar

 Im
pu

ls
e 

(k
g 

m
 s

) Young
Old

  

Figure 7.  Examples of typical individual subject RTD (A, B) and angular impulse (C, D) values across 

time interval for three young and three older subjects. 
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(A)     Knee Flexion – Peak Torque 
 

     (B)     Knee Extension – Peak Torque 
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     (C)     Knee Flexion – RTD 
 

      
     (D)     Knee Extension – RTD 
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(E) Knee Flexion –  
  Angular Impulse 
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Figure 8  Left leg peak torque (A, B), RTD (C, D), and angular impulse (E, F) stratified by gender and fall 

status: fall (F) or recovery (R).  A peak slipping velocity (PSV) threshold value of 1.5 m/s was used to characterize 

slips as falls or recoveries.  Knee flexion plots (C, E) depict the 0-120 ms time interval, while knee extension plots 

(D, F) are representative of the 0-180 ms time interval.  Standard deviation bars are shown. 
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RTD and angular impulse variables for both male and female subjects showed model 

significance regarding trial type beginning with approximately the 0-100 ms time interval and 

continuing to the 0-300 ms interval.  These results helped justify the use of within-trial type main 

analyses.  No other variables in the linear regression were significant for female subjects.  RTD 

and angular impulse variables for both legs in male subjects showed age group significance.  In 

addition, left leg RTD and angular impulse variables in male subjects showed significant 

hazardousness, age group x hazardousness, and trial type x hazardousness effects.  Trial type x 

age group was also significant for the left leg RTD in male subjects.  Time intervals showing the 

above significant effects are listed in Table 3. 

 

Table 3.  Results of preliminary regression analyses investigating the relationship between dynamic 

strength measures (dependent variable), age group (Young/Older), trial type (knee flexion/knee extension), and slip 

hazardousness (NH/H). Significant (p < 0.05) time intervals are listed below. 

 

RFD Power 
Male Female Male Female 

 

Left Right Left Right Left Right Left Right 
Young/Older 0-100 to 

0-300 ms 
 

0-40 to 
0-90 ms, 
0-120 to 
0-300 ms 
 

  0-90 to 
0-300 ms 

0-110 to 
0-300 ms 

  

NH/H 0-160 to 
0-260 ms 
 

   0-200 to 
0-300 ms 

   

Trial Type 0-70 to 
0-300 ms 
 

0-140 to 
0-300 ms 

0-10 to 
0-300 ms 

0-90 to 
0-300 ms 

0-90 to 
0-300 ms 

0-150 to 
0-300 ms 

0-100 to 
0-300 ms 

0-90 to 
0-300 ms 

Young/Older x NH/H 0-70 to 
0-250 ms 
 

   0-130 to 
0-300 ms 

   

Trial Type x NH/H 0-190 to 
0-250 ms 
 

       

Trial Type x Young/Older 0-190 to 
0-300 ms 
 

   0-220 to 
0-300 ms 
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Knee extension and knee flexion RTD values for all time intervals were significantly 

correlated within right and left legs between knee flexion and extension values (p<0.05).  Knee 

extension vs. knee flexion correlation coefficients ranged from 0.44 to 0.84 and 0.41 to 0.66 for 

left and right sides, respectively.   Right knee flexion angular impulse values were also 

significantly correlated with right knee extension (r value range: 0.39 to 0.70).   Left knee flexion 

angular impulse values were significantly correlated with left knee extension angular impulse 

values between the 0-80 to 0-300 ms time intervals (r value range: 0.39 to 0.81).   RTD and 

angular impulse values were also significantly correlated (p<0.05) between left and right legs for 

both knee extension and knee flexion.  Correlation coefficients ranged from 0.44 to 0.84 between 

right and left knee extension RTD values and 0.49 to 0.81 between right and left knee flexion 

values for all time intervals.  Right knee flexion angular impulse values were also significantly 

correlated with left knee flexion (r value range: 0.37 to 0.78) angular impulse values for all time 

intervals.  Right knee extension angular impulse values were significantly correlated to left knee 

extension angular impulse values (r value range: 0.37 to 0.82) between the 0-90 and 0-300 ms 

time intervals.    

The main analyses investigated associations between strength measures, age and slip 

hazardousness within each gender group. Results for peak and average knee flexion and 

extension torque were similar for both right and left legs.  Both peak and average peak knee 

extension and flexion torque were greater in young male participants compared to their older 

counterparts (pY/O < 0.05; Tables 4 and 5; Figures 9 and 10). In contrast, such age group 

differences in peak and average peak torque were not evident in the female participants recruited 

in this study (pY/O > 0.05; Figures 9 and 10). In both gender groups, the relationship between slip 
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hazardousness and peak knee flexion/extension torque was not statistically significant in young 

and older participants (pNH/H > 0.05; pNH/H x Y/O > 0.05; Tables 4 and 5; Figures 9 and 10). 

 
Table 4.  Results of main statistical analyses for the left leg investigating the relationship between strength 

measures (dependent variable), age group (Young/Older) and slip hazardousness (NH/H) for male participants. 

Significance (p < 0.05) is denoted by *.   

 

Peak Torque Average Peak Torque RTD Angular Impulse 
Male Female Male Female Male Female Male Female 

 

KF KE KF KE KF KE KF KE KF KE KF KE KF KE KF KE 
Young/
Older 

* *   * *   * 0-80 
to 
0-300 
ms 

*0-100 
to 
0-300 
ms 

  *0-170 
to 
0-300 
ms 

*0-90 
to 
0-300 
ms 

  

NH/H          *0-160 
to 
0-280 
ms 

   *0-170 
to 
0-300 
ms 

  

Young/
Older X  
NH/H 

         *0-70 
to 
0-300 
ms 

   *0-130 
to 
0-300 
ms 

  

 

 

Table 5.  Results of main statistical analyses for the right leg investigating the relationship between 

strength measures (dependent variable), age group (Young/Older) and slip hazardousness (NH/H) for male 

participants.  Significance (p < 0.05) is denoted by *. 

 

Peak Torque Average Peak Torque RTD Angular Impulse 
Male Female Male Female Male Female Male Female 

 

KF KE KF KE KF KE KF KE KF KE KF KE KF KE KF KE 
Young/
Older 

* *   * *   * 0-150  
to 
0-300 
ms 

*0-170 
to 
0-300 
ms 

  *0-80 
to 
0-300 
ms 

*0-230 
to 
0-300 
ms 

  

NH/H 
 
 

          
 

      

Young/
Older X  
NH/H 
 

          *0-10 
to  
0-150 
ms 
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     (C)   Knee Flexion - Male 
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Figure 9.  Peak knee flexion (A, C) and extension (B. D) torque stratified by age group and slip 

hazardousness. In female participants (A, B), main and interaction effects of age and hazardousness on peak knee 

flexion/extension torque were not statistically significant (p>0.05). In male subjects (C, D), age effects were 

statistically significant (pY/O <0.05), with young male subjects generating greater peak knee flexion/extension torque 

than their older counterparts. As in the female participants, there were no statistically significant associations 

between strength and slip hazardousness in male subjects.  Standard deviation bars are shown. 

 

 34 



     (A)   Knee Flexion - Female 
 

     (B)   Knee Extension - Female 
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     (C)   Knee Flexion - Male 
 

 
     (D)   Knee Extension - Male 
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Figure 10.  Average peak knee flexion (A, C) and extension (B. D) torque stratified by age group and slip 

hazardousness. In female participants (A, B), main and interaction effects of age and hazardousness on peak knee 

flexion/extension torque were not statistically significant (p>0.05). In male subjects (C, D), age effects were 

statistically significant (pY/O <0.05), with young male subjects generating greater peak knee flexion/extension torque 

than their older counterparts. As in the female participants, there were no statistically significant associations 

between strength and slip hazardousness in male subjects.  Standard deviation bars are shown. 

 

The main analyses using RTD as the dependent variable revealed age group effects 

similar to those found for peak and average peak torque measures.  That is, age group effects 

were statistically significant only for male participants for both right and left leg RTD values. 
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Specifically, young males demonstrated significantly greater knee flexion and knee extension 

RTD values than older males for both legs (pY/O < 0.05; Figure 11).  Tables 4 and 5 list specific 

time intervals in which age group was significant.   

Despite statistically significant correlations between right and left leg variables, results 

regarding slip hazardousness for the trailing leg differed from those of the slipping leg.  Unlike 

the statistical findings for peak and average peak torque, male participants also showed a 

statistically significant relationship between main slip hazardousness effects and left knee 

extension RTD values (pNH/H < 0.05; Table 4).  These findings were, to a great extent, influenced 

by the left knee extension RTD results for young male subjects (pNH/H x Y/O < 0.05; Table 4). 

Specifically, young male subjects experiencing NH slips generated greater left knee extension 

RTD values than those experiencing H slips in the same age group (Table 4, Figure 11).  Table 4 

lists specific time intervals in which slip hazardousness and interaction effects were significant 

for the left leg.  These findings relating left knee extension RTD and slip hazardousness in male 

subjects did not hold for female participants or right knee extension RTD results in male 

participants (Tables 4 and 5).  Furthermore, knee flexion RTD was only significantly correlated 

with slip hazardousness for right leg values in female subjects.  Specifically, female subjects 

experiencing H slips had significantly higher right knee flexion RTD values than their NH 

counterparts, as well as older females experiencing H slips.  No other age and gender groups 

exhibited significant relationships between knee flexion RTD and slip hazardousness.  Table 5 

lists time intervals in which these slip hazardousness interaction effects were significant for the 

right leg.  Results for RTD_vol, calculated beginning at 50 ms after onset, showed similar 

intervals for age group and hazardousness significance to those found for the original RTD 

calculation. 

 36 



 

     (A)   Knee Flexion - Female 
 

     (B)   Knee Extension - Female 

0

50

100

150

200

250

300

350

400

450

500

0-10 0-50 0-90 0-130 0-170 0-210 0-250 0-290
Time Interval (ms)

R
TD

 (k
g 

m
/s

)

O, H
O, NH
Y, H
Y, NH

0

50

100

150

200

250

300

350

400

450

500

0-10 0-50 0-90 0-130 0-170 0-210 0-250 0-290
Time Interval (ms)

R
TD

 (k
g 

m
/s

)

Y, H
Y, NH
O, H
O, NH

 
 
     (C)   Knee Flexion - Male 
 

 
     (D)   Knee Extension - Male 
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Figure 11.  Average isometric knee flexion (A, C) and knee extension (B, D) RTD versus time intervals 

stratified by age group and slip hazardousness.  In female participants (A, B), main and interaction effects of age and 

hazardousness on average knee flexion/extension RTD were not statistically significant (p >0.05). In male subjects 

(C, D), age effects were statistically significant (pY/O <0.05) with young male subjects generating greater knee 

flexion RTD than their older counterparts.  There were no statistically significant associations between knee flexion 

RTD and slip hazardousness in male subjects.  Males experiencing nonhazardous slips showed significantly greater 

knee extension RTD values (pNH/H < 0.05) than those experiencing hazardous.  Specifically, young males who 

experienced nonhazardous slips had significantly greater knee extension RTD values (pNH/H x Y/O < 0.05) reported 

during strength testing than the other three subject. 
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The main analyses correlating angular impulse, age group and slip hazardousness 

revealed results similar to those for the RTD measures. Specifically, young male participants 

generated greater knee flexion and knee extension angular impulse values than their older 

counterparts for both right and left legs (pY/O < 0.05; Figure 12).  Significant time intervals 

regarding age group for the left and right legs can be seen in Tables 4 and 5, respectively.  

Young and older female participants generated similar knee flexion/extension angular impulse 

values.  Similar to RTDs in male participants, only left knee extension angular impulse values 

were significantly correlated with slip hazardousness (pNH/H < 0.05; Table 4; Figure 12).  Once 

again, these findings can be attributed to findings in younger male participants. Specifically, 

young male subjects experiencing NH slips generated greater left knee extension angular impulse 

values than young male participants experiencing H slips (pNH/H x Y/O < 0.05;  Table 4; Figure 12).  

Such effects were not found for female subjects or right leg knee extension angular impulse in 

male subjects. Also, knee flexion angular impulse was not significantly correlated with slip 

hazardousness in all age and gender groups (Tables 4 and 5).  As in RTD_vol, results for angular 

impulse_vol showed similar intervals for age group and hazardousness significant effects to 

those found for the original angular impulse calculation. 
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     (A)   Knee Flexion - Female 
 

     (B)   Knee Extension - Female 
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     (C)   Knee Flexion - Male 
 

 
     (D)   Knee Extension - Male 
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Figure 12.  Average isometric knee flexion (A, C) and knee extension (B, D) angular impulse versus time 

intervals stratified by age group and slip hazardousness.  In female participants (A, B), main and interaction effects 

of age and hazardousness on average knee flexion/extension angular impulse were not statistically significant 

(p>0.05). In male subjects (C, D), age effects were statistically significant (pY/O <0.05) with young male subjects 

generating greater knee flexion and extension angular impulse than their older counterparts.  There were no 

statistically significant associations between knee flexion angular impulse and slip hazardousness in male subjects.  

Males experiencing nonhazardous slips showed significantly greater knee extension angular impulse values (pNH/H < 

0.05) than those experiencing hazardous slips.  Specifically, young males who experienced nonhazardous slips had 

significantly greater knee extension angular impulse values (pNH/H x Y/O < 0.05) reported during strength testing than 

the other three subject groups. 
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3.2 SOT RESULTS 

Due to the small number of falls during SOT trials, data from these trials were analyzed 

qualitatively.  Any subject who fell according to the above-stated SOT criteria at least once in 

any of the conditions of the SOT test was classified as a ‘faller’ and those who did not were 

classified as ‘non-fallers.’  According to this categorization, the study included 9 fallers and 49 

non-fallers.   The risk of experiencing a hazardous slip was about the same in subjects who fell 

during the SOT versus non-fallers (Table 6).  Also, PSV was nearly equal in fallers and non-

fallers (Table 6).  COP ST DEV and PATH LENGTH were significantly correlated and r values 

indicated moderate to strong correlations within and across all SOT conditions.  Specifically, r 

values ranged from 0.28 in C1 to 0.80 in C3 (Table 7). 

 

Table 6.  Slip characteristics of fallers vs. non-fallers as characterized by falls during the SOT  

 Mean PSV ± St Dev  
(m/s) 

# Non-Hazardous 
Slips 

# Hazardous  
Slips 

Fallers 
(n = 9) 0.95 ± 0.48 4 5 

Non-fallers 
(n = 49) 1.16 ± 0.76 25 24 
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Table 7.  Results of correlation analysis between COP ST DEV and PATH LENGTH variables.   Variables 

were significantly (p value < 0.05) and moderately to strongly correlated within each SOT condition (C1-C6), as 

well as across the entire data set (Total). 

Condition R value P value 
C1 0.28 0.0342 
C2 0.57 <0.0001 
C3 0.80 <0.0001 
C4 0.58 <0.0001 
C5 0.31 0.0186 
C6 0.62 <0.0001 

Total 0.78 < 0.0001 
 

 

The main analysis involved regression of COP ST DEV and PATH LENGTH on age 

group, hazardousness and their interaction within condition during T1 only.  A significant 

hazardousness effect for C4 PATH LENGTH indicated greater values for individuals 

experiencing hazardous slips than those experiencing non-hazardous slips (Table 8, Figure 13).  

In addition, older subjects produced significantly longer PATH LENGTH values than young 

subjects during all SOT conditions except C1, as well as significantly greater COP ST DEV 

values in C3 and C6 only (Table 8). 
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Table 8.  Results of regression analyses investigating the relationship between postural sway measures 

(dependent variable), age group (Young/Older), slip hazardousness (NH/H), and their interactions within 

condition/condition ratio. Significant (p < 0.05) and borderline significant (p < 0.10) p values are listed below.  * 

denote significant p values and ‘--‘ denote non-significant  p values > 0.10. 

 

  Young/Older NH/H Young/Older  x NH/H 

C1 -- -- -- 
C2 0.0564 -- -- 
C3 *0.0064 -- -- 
C4 -- -- -- 
C5 0.0647 -- -- 

COP ST 

DEV 

C6 *0.0305 -- -- 
C1 -- -- -- 
C2 *0.0033 -- -- 
C3 *0.0006 -- -- 
C4 *0.0347 *0.0488 -- 
C5 *0.0003 -- -- 

Path Length 

C6 *0.0006 -- -- 
C2-C1 -- -- -- 
C3-C1 -- -- -- 
C4-C1 -- -- -- 
C5-C2 -- -- -- 
C5-C4 -- -- -- 
C6-C1 -- -- -- 
C6-C4 -- *0.0285 -- 

COP ST 
DEV Ratio 

C6-C5 -- -- -- 
C2-C1 *0.0020 -- -- 
C3-C1 *0.0004 -- -- 
C4-C1 *0.0380 *0.0320 -- 
C5-C2 -- -- -- 
C5-C4 -- *0.0081 -- 
C6-C1 *0.0011 -- -- 
C6-C4 -- *0.0350 -- 

Path Length 
Ratio 

C6-C5 -- -- -- 
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Next, the individual COP ST DEV and PATH LENGTH ratios were regressed on age 

group, hazardousness and their interaction.  Significant hazardousness effects for PATH 

LENGTH ratios C4-C1, C5-C4, and C6-C4 indicated greater C4-C1 ratio values and lower C5-

C4 and C6-C4 ratio values for individuals experiencing hazardous slips than those experiencing 

non-hazardous slips (Table 8, Figure 14).  A significant hazardousness effect for COP ST DEV 

ratio also revealed that individuals experiencing hazardous slips produced lower C6-C4 ratio 

values than those experiencing non-hazardous slips (Figure 15).  In addition, significant age 

group effects were found for PATH LENGTH ratios C2-C1, C3-C1, C4-C1, and C6-C1 with 

older subjects producing significantly higher PATH LENGTH ratios than younger subjects.  No 

significant age effects were found regarding COP ST DEV ratios.   
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Figure 13.  Average C4 PATH LENGTH values for young and older subjects experiencing hazardous (H) 

and non-hazardous (NH) slips.   Subjects experiencing hazardous slips had significantly greater C4 PATH LENGTH 

values than those experiencing non-hazardous slips (pNH/H < 0.05).  Older subjects had significantly higher C4 

PATH LENGTH values compared to young subjects (pY/O < 0.05).  Standard deviation bars are shown. 
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Figure 14.  Average C4:C1 (top), C5:C4 (lower, left) and C6:C4 (lower, right) PATH LENGTH ratios for 

young and older subjects experiencing hazardous (H) and non-hazardous (NH) slips.   Subjects experiencing 

hazardous slips had significantly greater C4:C1 and significantly lower C5:C4 and C6:C4 PATH LENGTH ratios 

than those experiencing non-hazardous slips (pNH/H < 0.05).  Older subjects had significantly higher C4:C1 PATH 

LENGTH ratios compared to young subjects (pY/O < 0.05).  Standard deviation bars are shown. 
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Figure 15.  Average C6:C4 COP ST DEV ratio for subjects experiencing hazardous (H) and non-hazardous 

(NH) slips.   Subjects experiencing hazardous slips had significantly lower C6:C4 COP ST DEV ratios than those 

experiencing non-hazardous slips (pNH/H < 0.05).  Standard deviation bars are shown. 
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4.0  DISCUSSION 

4.1 MUSCLE STRENGTH AND SLIPPING 

 

 

The relationship between knee strength characteristics (peak torque and explosive 

strength variables) and slip hazardousness was investigated in young and older adults.  The main 

analyses were conducted within each gender group. In young and older female participants, both 

peak torque and explosive strength measures were not significantly associated with slip 

hazardousness except in knee flexion for the right leg RTD. Furthermore, surprisingly, young 

and older female subjects recruited to participate in this study exhibited similar strength 

characteristics.  In contrast, age group differences in all strength variables for male subjects were 

statistically significant, with young males generating greater knee flexion and knee extension 

peak torque, average peak torque, RTD, and angular impulse values than older males.  Only left 

leg knee extension RTD and angular impulse values computed in time intervals ranging from 

about 0-100 ms to 0-300 ms were significantly greater in young male subjects experiencing NH 

slips than those experiencing H slips. Knee flexion strength characteristics were not found to be 

associated with slip hazardousness in any age/gender groups.   
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The lack of statistically significant association between knee flexion strength 

characteristics and slip hazardousness may be unanticipated as the primary reaction generated by 

the slipping leg in response to an unexpected slip consists of increased activity in the knee 

flexors in an attempt to bring the slipping foot back near the body (Cham and Redfern, 2001). 

One explanation for such a finding may be that the slip-initiated knee flexion response generated 

by the slipping leg is modulated by reflex-like, rather than voluntary, postural control processes. 

Indeed, the EMG-based latency of the knee flexors’ response to unexpected slips occurs early in 

stance and is similar between NH and H slips (Chambers and Cham, 2007).  Also, a minimal 

knee flexion moment may be needed to bring the foot back near the body as the coefficient of 

friction of the shoe-floor interface is very low in the slippery environment, causing minimal 

shear forces opposing the knee flexion response; also, at heel contact, considered the onset of the 

perturbation, the knee is already producing a flexion moment during gait (Winter, 1991; Cham 

and Redfern, 2001; Cham and Redfern, 2002). 

In contrast to the lack of statistical significance between knee flexion RTD and slip 

hazardousness, knee extension RTD values were significantly greater in NH than in H slips for 

male subjects. Based on EMG data, the response of the knee extensors to an unexpected slip is 

initiated after the knee flexor reaction (~ 65 ms between flexors and extensors) and the latency of 

such a response is modulated by slip severity (Chambers and Cham, 2007).  Thus, these findings 

suggest that the secondary knee extension reaction to a slip may be modulated by voluntary 

postural control processes, explaining the importance of knee extensor muscle group strength 

characteristics in slip reaction. The knee extension reaction of the slipping leg is believed to play 

at least a partial role in preventing body collapse and knee buckling, as well as bringing the 

body’s center of mass over the base of support and proceeding with the gait cycle (Kepple et al., 
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1997; Moyer et al., 2007).  It is important to note that the knee extensor moment is actually 

coupled with a hip flexion corrective moment during slip recovery to further aid in bringing the 

trunk back over the base of support; however, only knee extension is discussed here (Cham and 

Redfern, 2001). 

Peak knee flexion and knee extension torque were not associated with slip hazardousness 

in any age/gender groups. Average peak torque, used as a comparison method for calculating 

peak torque values, showed reliable results with similar findings to peak torque results. This 

finding may be linked to the fact that maximal strength is not utilized during walking (Pohl et al., 

2002) nor reached in the small time frame used to generate slip-initiated corrective responses 

(Cham and Redfern, 2001; Aagaard et al., 2002). Thus, explosive strength measures that reflect 

the ability to generate muscle force quickly, e.g. RTD and angular impulse, may be more critical 

than peak strength during balance recovery efforts triggered by external perturbations such as 

slips (Aagaard et al., 2002; Chang et al., 2005). Therefore, it is important to identify the specific 

strength characteristics and time intervals that are relevant to a particular functional movement 

(Abernethy et al., 1995; Aagaard et al., 2002; Andersen and Aagaard, 2006).  One relevant study 

by Lockhart et al. (2005) reported that individuals with weaker lower extremities slipped more 

than those with stronger lower extremities, inferring that slip recovery efforts may be related to 

lower extremity peak strength.  The apparent discrepancy between the results of Lockhart et al. 

and the findings of this study may be explained by the differences in strength testing protocols 

and subject groups.  Lockhart et al. employed an overall lower extremity strength testing 

protocol which evaluated combined leg lifting strength (Chaffin et al., 1978), while the present 

study isolated strength contributions by the knee flexors and extensors only.  Also, the older 

subject population used by Lockhart and colleagues was older (mean age 75.5 years) than the 
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older subject group in this study and across-gender, rather than within-gender, analyses were 

reported.  

It is somewhat perplexing that the beneficial effect of greater knee extension RTD values 

was found only in young male participants. We believe such findings were seen in the young 

male, but not female, participants because the young male participants recruited in this study 

were much stronger and exhibited a greater range of strength than their female counterparts in 

the same age group. Interestingly, although a greater sample size is needed to make gender and 

age group comparisons, 57% of the slips in the young female participants were classified as 

hazardous compared to 44% in the young male subjects (Table 3). The lack of strength abilities 

in the young female participants recruited in this study is also supported by the similar strength 

characteristics found in the young and older group of female subjects.  Also, although analyses 

were not completed comparing strength characteristics of those subjects experiencing falls vs. 

recoveries due to power issues, qualitative results seem consistent with those for subjects 

experiencing hazardous vs. non-hazardous slips (Figure 7). 

Also unexpected were the significant NH/H x Y/O effects found for trailing leg knee 

flexion RTD values for female subjects in which young females experiencing H slips produced 

greater knee flexion RTD values than those experiencing NH slips.  This result was especially 

surprising considering no other significant effects were found for the female subject group in all 

other analyses.  However, these significant effects seem to have resulted from the extremely high 

RTD values produced by only two young female subjects.  When these subjects were excluded 

from the analysis, the significant interaction effects disappeared.  Therefore, these results do not 

seem to be practically significant.  Also, since these slip severity effects occurred in the early 
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time intervals (0-10 to 0-150 ms), significance may not be relevant to the given functional task, 

i.e. slipping (Andersen and Aagaard, 2006).  

With the lack of strength abilities in older, as compared to the young, male subjects, one 

might also expect that older male participants would be at greater risk of experiencing a H slip 

than the young males.  Yet, a similar relative distribution of H and NH slips was reported in 

young and older male participants (Table 3).  Findings by Moyer et al. (2006) suggest that older 

adults typically walk with a “safer” gait style based on initial conditions variables that have been 

shown to impact slip severity, such as shorter step length, reduced foot-floor angle at heel 

contact, and slower rates of change of the foot-floor angle at heel contact.  Thus, while young 

individuals may need greater strength generation abilities to reduce slip hazardousness, older 

adults appear to rely more on initially safer gait characteristics and less on strength generation 

abilities to avoid H slips.       

A number of limitations exist in this study.  First, because participation in this study 

involved exposure to a slippery environment and subject safety was a concern, subjects in the 

older age group were healthy and younger than the age at which the greatest increase in 

likelihood and occurrence of falls occurs (NCIPC, 2006). Second, strength of joints other than 

the knee of the leading/slipping leg may be important in slip-recovery efforts. While ankle 

strength of the leading/slipping foot may not contribute to a greater chance of recovery from 

severe slips, the hip joint of the same leg has been shown to play an important role in slip 

recovery efforts (Cham and Redfern, 2001). Hip strength was not measured in this study to 

minimize fatigue effects.  However, knee and hip strength capabilities are reportedly well 

correlated (Lamoureux et al., 2002).  Finally, since the strength capabilities of both female 
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groups and the older male group were comparable, a broader subject base with a greater range of 

strength capabilities may allow for further analysis of the impact of strength on slipping.   

In summary, the ability to rapidly generate muscle force may be more important than 

peak strength in slip recovery efforts.  In particular, findings of this study suggest the ability to 

rapidly generate knee extension muscle force as reflected by the RTD partially determine the 

success of avoiding hazardous slips. This may imply that fall prevention programs should 

include strength training focused not only on improving maximum strength but also muscle force 

generation abilities in short time intervals.  Finally, explosive strength measures such as RTD 

and angular impulse collected from an isometric strength task can be successfully related to 

dynamic balance recovery tasks provided the time intervals used for the computation of these 

strength measures are physiologically relevant to the postural task.  

4.2 SENSORIMOTOR INTEGRATION AND SLIPPING 

The relationship between postural control variables collected during an SOT (COP ST DEV, 

PATH LENGTH, and condition ratios) and slip hazardousness was investigated in young and 

older adults.  The risk of experiencing a hazardous slip was relatively the same for both subjects 

who fell or did not fall during the SOT.  COP ST DEV and PATH LENGTH were significantly 

and moderately to strongly correlated, indicating that subjects exhibiting greater sway distances 

also experienced higher sway velocities.  The main analyses were conducted within condition 

and T1.  Subjects experiencing hazardous slips exhibited significantly greater PATH LENGTH 

values than those experiencing non-hazardous slips for C4 only.  In addition, those experiencing 

hazardous slips produced significantly greater PATH LENGTH C4-C1 ratios and significantly 
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lower C5-C4 PATH LENGTH, C6-C4 PATH LENGTH, and C6-C4 COP ST DEV ratios than 

individuals experiencing non-hazardous slips.  As expected, older subjects produced significantly 

greater PATH LENGTH values than young subjects during SOT C2 through C6.  Additionally, 

significantly greater COP ST DEV values in C3 and C6 were reported in older adults.  Older 

adults also produced significantly higher PATH LENGTH ratios than younger subjects for ratios 

C2-C1, C3-C1, C4-C1 and C6-C1.   

The existence of significantly greater C4 PATH LENGTH and subsequent effects on 

PATH LENGTH ratio variables in subjects experiencing hazardous slips supports the importance 

of somatosensation in detecting and responding to slips.  The significant hazardousness effects 

regarding C4-C1, C5-C4 and C6-C4 PATH LENGTH ratios shown in Figure 14 are likely all 

due to the hazardousness effects regarding C4 PATH LENGTH.  PATH LENGTH values were 

similar in C1, C5 and C6 for subjects experiencing both hazardous and non-hazardous slips.  

Therefore, dividing C4 by C1 led to similar hazardousness effects for the C4-C1 PATH 

LENGTH ratio.  Dividing both C5 and C6 PATH LENGTH values by greater C4 PATH 

LENGTH values for individuals experiencing hazardous slips further led to lower C5-C4 and 

C6-C4 PATH LENGTH ratios in these subjects compared to those experiencing non-hazardous 

slips.  Likewise, though no significant hazardousness effects were evident regarding C4 COP ST 

DEV, greater values for subjects experiencing hazardous slips compared to those experiencing 

non-hazardous slips again led to significantly lower C6-C4 COP ST DEV ratio values in these 

subjects due to the placement of greater C4 COP ST DEV in the denominator of the ratio.  This 

result is evident in Figure 15. 

Because C4 involves the application of support surface sway referencing which renders 

somatosensation inaccurate, subjects must increase weighting on vision and vestibular input 
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channels for accurate sensory information regarding sway.  Increased postural sway during C4 

may demonstrate a deficit in the ability to successfully detect a perturbation to normal balance or 

the existence of inaccurate somatosensory information.  Because the slip occurs at the shoe-floor 

interface, proprioceptors in the distal musculature detect deviations from the normal joint 

trajectories first and serve as the primary sensory input for triggering reactive balance 

adjustments to avoid a fall and continue normal gait (Nashner, 1980).  This may suggest that 

somatosensation is the first sensory modality activated during an unexpected slip.  Therefore, the 

ability to first detect and evoke a response to an unexpected gait perturbation may explain why 

the somatosensory system is the most highly weighted and important of the three sensory 

modalities involved in maintaining postural control (Lord et al., 1991; Fitzpatrick and 

McCloskey, 1994; Lord and Ward, 1994; Benjuya et al., 2004; Melzer et al., 2004).   This is 

supported by previous research which has noted that fallers are less able than non-fallers to 

compensate for missing or conflicting somatosensory information during challenging balance 

conditions (Anacker and Di Fabio, 1992).   

High dependence on the somatosensory channels due to early slip detection may explain 

the lack of significant hazardousness effects when only the vestibular or visual sensory 

modalities are rendered inaccurate or missing during the SOT.  It may be likely that the 

vestibular system, located more proximally in the body in the inner ear, may not be efficient to 

detect the slipping perturbation early and elicit a corrective response if the slip is sufficiently 

attenuated by distal reactions.  Previous research examining changes in head acceleration and 

upper body corrective moments has suggested that the vestibular system may act in sensing a fall 

and initiating an upper body postural response to a slip, if necessary, to avoid a fall (Beschorner 

et al., 2008).  However, it is inconclusive at this time what change in head acceleration is 
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required in order to detect a slip and trigger a corrective response as a result of vestibular sensory 

input.  Also, because detection of an unexpected slip occurs distally to proximally, input to the 

vestibular system may occur slightly later than in the somatosensory modalities, i.e. the 

proprioceptors in the leg and thigh musculature.  Indeed, onset of upper body reactions to an 

unexpected slip seems to occur slightly later than onset of lower body reactions (Tang et al., 

1998; Beschorner et al., 2008).  Therefore, the vestibular system may produce redundant 

information and corrective reactions occurring later than those already triggered by the distal 

proprioceptors.  Corrective reactions elicited by the visual system likewise occur later than those 

produced as a result of proprioceptive slip detection and are thus less effective in aiding slip 

recovery (Pyykko et al., 1990).   

Significant age effects indicating increased postural sway with age were expected, as 

deterioration of the three peripheral sensory channels (somatosensory, vestibular, and visual) as 

well as central sensory integration and re-weighting processes with aging has been widely 

reported (Teasdale et al., 1991b; Camicioli et al., 1997; Matheson, 1999; Lord et al., 2000; 

Melzer et al., 2004; Bugnariu and Fung, 2007; Low Choy et al., 2007).  Fewer age effects were 

evident when examining SOT variable ratios because the ratios acted to normalize the subject 

postural sway measures calculated for the condition placed in the numerator to those determined 

for the condition placed in the denominator.  The results of this normalization therefore reveal 

that no interaction exists between conditions, i.e. subjects with worse performance during the 

conditions placed in the numerator also performed worse during the baseline conditions placed in 

the denominator. 

Several limitations also exist for the postural control and sensory integration portion of 

the study.  First, consistent with the above muscle strength chapter, subject safety was a concern 
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due to exposure to the slippery environment and thus subjects in the older age group were 

younger than the age at which the risk and occurrence of falls drastically increases and postural 

control ability decreases (Camicioli et al, 1997; NCIPC, 2006).  All subjects were screened for 

clinically significant disorders affecting normal balance and gait including vestibular disorders, 

most likely excluding those individuals with individual sensory modality (vestibular, 

somatosensory and vision), re-weighting and integration deficits that would presumably lead to 

the greatest changes in postural sway measures. 

In summary, the ability to successfully utilize somatosensory information to detect an 

unexpected slip may be instrumental during slip recovery efforts.  Earlier detection by the 

somatosensory channels as compared to vestibular and visual sensory modalities may make 

somatosensation especially important in promptly detecting and responding to a slipping 

perturbation.  Thus, the findings of this study may indicate that fall prevention programs should 

include exercises and practice focused on utilizing accurate somatosensory information to 

overcome distal perturbations to postural stability, such as slips.   
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5.0  CONCLUSION 

Results from this study indicate that the ability to rapidly generate muscle force may be more 

important than peak strength in slip recovery efforts.  Specifically, young male subjects 

experiencing non-hazardous slips generated greater knee extension explosive strength (RTD and 

angular impulse) than young males experiencing hazardous slips, as well as both older male 

subject groups.  Thus, explosive knee extension muscle strength capabilities in particular may 

determine the success of avoiding hazardous slips.  These results indicate that a minimum 

strength capability threshold, achieved by only young male subjects in this study, may be 

necessary to impact slip severity.  Despite significant strength differences, similar numbers of 

hazardous and non-hazardous slips were experienced by both young and older male subjects.  

This could be due to changes in older subject gait initial conditions which enable them to avoid 

hazardous slips by adopting a safer gait style, while younger subjects may rely on greater 

strength capabilities to reduce slip hazardousness.  Peak torque may be less important in 

responding to a slip, as maximum strength capabilities are not utilized or reached in the small 

time frame during reaction to a slip.  Fall prevention programs may therefore include strength 

training focused on force generation in short time intervals.  Finally, explosive strength measures 

from isometric strength testing can be related to dynamic balance recovery tasks in relevant time 

intervals. 
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Subjects in this study experiencing hazardous slips also exhibited increased sway during 

C4 of the Sensory Organization Test compared to those experiencing non-hazardous slips.  Since 

C4 involves the application of support surface sway referencing, increased sway during this 

condition would indicate a deficit in the ability to detect either a distal perturbation or inaccurate 

somatosensory information.  Thus, the ability to utilize somatosensory information to detect a 

slip may also be instrumental in slip recovery efforts.  Because leg proprioceptors detect a slip at 

the shoe-floor interface, somatosensation is most likely the first sensory modality to detect a 

slipping perturbation.  This earlier detection may explain why somatosensory channels are 

considered the most heavily weighted and important of the sensory channels and also why fallers 

are less able than non-fallers to compensate for missing or conflicting somatosensory 

information.  Although the vestibular system has been suggested to detect falls and initiate upper 

body postural responses, the change in head acceleration required to sense a fall remains unclear.  

In addition, slip detection by both vestibular and visual channels occurs later than somatosensory 

detection, making somatosensation the most efficient sensory channel in slip and fall detection.  

Therefore, fall prevention programs may also consider including exercises or practice utilizing 

accurate somatosensory information to overcome distal perturbations such as slips.   
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APPENDIX A 

JOURNAL OF APPLIED BIOMECHANICS MANUSCRIPT 

Modified analyses regarding muscle strength and slipping were documented in a manuscript 

accepted to the Journal of Applied Biomechanics.   
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