Pitt Logo LinkContact Us

Variance components models in statistical genetics: extensions and applications

Dai, Feng (2007) Variance components models in statistical genetics: extensions and applications. Doctoral Dissertation, University of Pittsburgh.

[img]
Preview
PDF - Primary Text
Download (2241Kb) | Preview

    Abstract

    Variance components linkage analysis is a powerful method to detect quantitative trait loci (QTLs) for complex diseases. It has the advantages of easy applicability to large extended pedigrees and provides a good flexible framework to accommodate more complicated models like gene-gene, gene-environmental interactions.</br></br> This dissertation consists of two major parts. In the first part, I propose two approaches for deriving relative-to-relative covariances that are indispensable for expanding the applications of standard variance components linkage approach to more complicated genetic models such as those involving genomic imprinting. In the first approach, I extend 'Li and Sacks' ITO method to model ordered genotypes and derive some generalized linear functions of the extended transition matrices. I demonstrate the wide applicability of this extension by applying it to calculate the covariance in unilineal and bilineal relatives under genomic imprinting.</br></br> In the second approach, I derive a general formula for calculating the genetic covariance using ordered genotypes for any type of relative pair, which does not have the limitation of extended ITO method to biallelic loci and to unilineal and bilineal relatives. I also propose a recursive algorithm to calculate necessary coefficients in the formula, which opens up the possibility of calculating even inbred relative-to-relative covariance.In the second part of my dissertation, I discuss linkage evidence for susceptibility loci for adiposity-related phenotypes in the Samoan population, an extensive summary of our multicenter study "Genome-scan for Obesity Susceptibility Loci in Samoans". Obesity, BMI greater than or equal to 30 kg/m^2, in the U.S. has become a major and serious public health problem, affecting 33% of adults in 2002. Obesity increases risks for serious diet-related diseases, such as cardiovascular disease, type-2 diabetes, and certain forms of cancers. Obesity is a typical multi-factorial disease with overwhelming evidence of genetic effects, yet their roles in obesity are largely unknown. Our current research findings will help further understand the whole picture of the genetics of obesity, which may have great influence on early prevention and later interventions of human obesity, making it a fundamentally important contribution to public health.


    Share

    Citation/Export:
    Social Networking:

    Details

    Item Type: University of Pittsburgh ETD
    Creators/Authors:
    CreatorsEmailORCID
    Dai, Fengfeng.fed1@gmail.com
    ETD Committee:
    ETD Committee TypeCommittee MemberEmailORCID
    Committee ChairWeeks, Daniel E.
    Committee MemberKammerer, Candace
    Committee MemberFeingold, Eleanor
    Committee MemberMazumder, Sati
    Title: Variance components models in statistical genetics: extensions and applications
    Status: Unpublished
    Abstract: Variance components linkage analysis is a powerful method to detect quantitative trait loci (QTLs) for complex diseases. It has the advantages of easy applicability to large extended pedigrees and provides a good flexible framework to accommodate more complicated models like gene-gene, gene-environmental interactions.</br></br> This dissertation consists of two major parts. In the first part, I propose two approaches for deriving relative-to-relative covariances that are indispensable for expanding the applications of standard variance components linkage approach to more complicated genetic models such as those involving genomic imprinting. In the first approach, I extend 'Li and Sacks' ITO method to model ordered genotypes and derive some generalized linear functions of the extended transition matrices. I demonstrate the wide applicability of this extension by applying it to calculate the covariance in unilineal and bilineal relatives under genomic imprinting.</br></br> In the second approach, I derive a general formula for calculating the genetic covariance using ordered genotypes for any type of relative pair, which does not have the limitation of extended ITO method to biallelic loci and to unilineal and bilineal relatives. I also propose a recursive algorithm to calculate necessary coefficients in the formula, which opens up the possibility of calculating even inbred relative-to-relative covariance.In the second part of my dissertation, I discuss linkage evidence for susceptibility loci for adiposity-related phenotypes in the Samoan population, an extensive summary of our multicenter study "Genome-scan for Obesity Susceptibility Loci in Samoans". Obesity, BMI greater than or equal to 30 kg/m^2, in the U.S. has become a major and serious public health problem, affecting 33% of adults in 2002. Obesity increases risks for serious diet-related diseases, such as cardiovascular disease, type-2 diabetes, and certain forms of cancers. Obesity is a typical multi-factorial disease with overwhelming evidence of genetic effects, yet their roles in obesity are largely unknown. Our current research findings will help further understand the whole picture of the genetics of obesity, which may have great influence on early prevention and later interventions of human obesity, making it a fundamentally important contribution to public health.
    Date: 25 September 2007
    Date Type: Completion
    Defense Date: 04 June 2007
    Approval Date: 25 September 2007
    Submission Date: 14 June 2007
    Access Restriction: 5 year -- Restrict access to University of Pittsburgh for a period of 5 years.
    Patent pending: No
    Institution: University of Pittsburgh
    Thesis Type: Doctoral Dissertation
    Refereed: Yes
    Degree: PhD - Doctor of Philosophy
    URN: etd-06142007-103724
    Uncontrolled Keywords: Genome scan; ITO method; Linkage analysis; Samoa
    Schools and Programs: Graduate School of Public Health > Biostatistics
    Date Deposited: 10 Nov 2011 14:47
    Last Modified: 25 Sep 2012 01:15
    Other ID: http://etd.library.pitt.edu/ETD/available/etd-06142007-103724/, etd-06142007-103724

    Actions (login required)

    View Item

    Document Downloads