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ABSTRACT 

 
COMPUTER MODELING OF SINTERING IN CERAMICS 

 
Alice C. De Bellis, M.S. 

 
University of Pittsburgh, 2002 

 
 

A computer model of the sintering process has been developed to study the 

evolution of the microstructure in a sintered part as a function of the volumetric density.  

The model of the sintering process begins with a particle packing model, which generates 

a close-packed array of particles.  A Representative Volume Element (RVE) of the 

packing is selected and examined.  Next is densification, which is simulated by uniformly 

increasing the radii of the particles. 

Two dimensionless parameters, the intercept ratio Λ and the surface area ratio Ψ, 

are used to quantify the model.  This model shows good results at lower packing 

densities.  Areas in which the model can be improved and extended are also highlighted. 

The intent of this model is to predict the final microstructure of a sintered part 

based on its geometry and its stereology.  It treats the sintering process as continuous, 

without the stages normally used to describe sintering. 

KEYWORDS 
 
Sintering 

Particle packing 

Powder metallurgy 

Dimensionless parameters 

Densification 

Microstructure 

Modeling 

Stereology 

 

 iii 



 iv 

 
ACKNOWLEDGEMENTS 

 
 
 
 

I would like to thank my adviser, Dr. William Slaughter, for his guidance and 

support in this endeavor.  I would also like to thank Dr. Ian Nettleship of the Materials 

Science and Engineering Department, for helping me understand the sintering process, 

and fellow graduate students Jesus Ameneiro and Rich McAfee for their encouragement 

and assistance.  Finally, many thanks to Kumar Krishnan for providing the foundation on 

which I could build. 

This work is dedicated to my husband Michael. 

 



 v 

 

 
 
 

TABLE OF CONTENTS 
 
 

ABSTRACT....................................................................................................................... iii 

ACKNOWLEDGEMENTS............................................................................................... iv 

TABLE OF CONTENTS.................................................................................................... v 

LIST OF TABLES............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

1.0 INTRODUCTION .................................................................................................. 1 

1.1 Sintering.............................................................................................................. 1 

1.2 The Sintering Process ......................................................................................... 2 

1.2.1 Driving Energy and Mass-Transport Mechanisms ..................................... 2 

1.2.2 Initial Neck Growth .................................................................................... 6 

1.2.3 Intermediate Stage Sintering....................................................................... 6 

1.2.4 Final Stage Sintering................................................................................... 8 

1.3 Measurement Techniques ................................................................................... 8 

1.3.1 Definitions................................................................................................... 8 

1.3.2 Stereology ................................................................................................... 9 

1.3.2.1 Calculating the Packing Density............................................................. 9 

1.3.2.2 Calculating the Grain Size .................................................................... 10 

1.3.3 Internal Surface Area Parameters ............................................................. 11 

1.3.4 Dimensionless Parameters ........................................................................ 12 

2.0 PARTICLE PACKING......................................................................................... 13 

2.1 Particle Shapes.................................................................................................. 13 

2.2 Particle Size Distributions ................................................................................ 14 

2.2.1 Mono-Dispersed Spheres .......................................................................... 14 

2.2.2 Binary Mixtures ........................................................................................ 15 

2.2.3 Log-Normal Distribution .......................................................................... 16 

2.3 Particle Packing Models ................................................................................... 17 

3.0 PREVIOUS SINTERING MODELS ................................................................... 20 



 vi 

4.0 DESCRIPTION OF MODEL ............................................................................... 22 

4.1 Initial Packing and Rearrangement................................................................... 22 

4.2 Selection of Representative Volume Element (RVE)....................................... 24 

4.3 Densification..................................................................................................... 25 

4.4 Computer Software and Hardware ................................................................... 26 

5.0 RESULTS ............................................................................................................. 28 

6.0 DISCUSSION....................................................................................................... 34 

7.0 CONCLUSIONS................................................................................................... 37 

8.0 DIRECTIONS FOR FUTURE RESEARCH........................................................ 38 

8.1 Refining the Particle Packing Model ................................................................ 38 

8.2 Simulating Different Sintering Conditions ....................................................... 39 

APPENDIX A................................................................................................................... 40 

SIMULATION CODE DESCRIPTION AND ALGORITHMS.................................. 40 

APPENDIX B ................................................................................................................... 58 

THE LOG-NORMAL DISTRIBUTION...................................................................... 58 

APPENDIX C ................................................................................................................... 61 

MONTE CARLO INTEGRATION.............................................................................. 61 

BIBLIOGRAPHY............................................................................................................. 71 

 

 



 vii 

 
 
 
 

LIST OF TABLES 
 
 
Table 1.  The Classic Stages of Sintering. .......................................................................... 4 
 
 



 viii 

 
 
 
 

LIST OF FIGURES 
 
 
 
 

Figure 1.  Neck Formation. ................................................................................................. 4 

Figure 2.  Coarsening Resulting from Low Coordination Number. ................................... 7 

Figure 3.  Calculating the Packing Density. ..................................................................... 10 

Figure 4.  Calculating the Mean Intercept Size................................................................. 11 

Figure 5.  Formation of Bridging Structures in a Random Packing. ................................ 15 

Figure 6.  Binary Mixture of Powders. ............................................................................. 16 

Figure 7.  Selection of Representative Volume Element (RVE). ..................................... 25 

Figure 8.  Packing Density versus Densification. ............................................................. 29 

Figure 9.  Solid-Void Surface Area versus Packing Density............................................ 30 

Figure 10.  Solid-Solid Surface Area versus Packing Density. ........................................ 31 

Figure 11.  Intercept Ratio Λ versus Packing Density...................................................... 32 

Figure 12.  Surface Area Ratio Ψ versus Packing Density. .............................................. 33 

Figure 13.  Solid-Solid Surface Area Between Two Particles.......................................... 36 

Figure 14.  Layout of the touch Array. ............................................................................. 43 

Figure 15.  Location of Particles after Rearrangement. .................................................... 45 

Figure 16.  Intersection Between Two Spheres. ............................................................... 46 

Figure 17.  Intersection of Three Circles. ......................................................................... 46 

Figure 18.  Total Contact Length for Three Circles.......................................................... 47 

Figure 19.  Algorithm for Rearrange. ............................................................................... 48 

Figure 20.  Algorithm for Contactforce. ........................................................................... 49 

Figure 21.  Algorithm for Density. ................................................................................... 50 

Figure 22.  Algorithm for Move. ...................................................................................... 51 

Figure 23.  Algorithm for Roll.......................................................................................... 52 

Figure 24.  Algorithm for SingleRotation......................................................................... 53 

Figure 25.  Algorithm for DoubleRotation. ...................................................................... 54 

Figure 26.  Algorithm for Findstable. ............................................................................... 55 



 ix 

Figure 27.  Algorithm for Solid-Void Calculation............................................................ 56 

Figure 28.  The Log-Normal Distribution......................................................................... 60 

Figure 29.  Monte Carlo Integration. ................................................................................ 62 

Figure 30.  Overlapping Volume Fractions in the Density Calculation. .......................... 64 

Figure 31.  Cube with Inscribed Sphere............................................................................ 65 

Figure 32.  Incremental Area in Spherical Coordinates.................................................... 67 

Figure 33.  Local and Global Coordinates of Points on the Surface of a Particle. ........... 68 

 

 
 
 



 

1.0 INTRODUCTION 

1.1 Sintering 

Sintering is a manufacturing process in which a fine powder that has been formed into a 

shape is subsequently fired at high temperatures.  The compact, when fired, densifies and 

becomes non-porous.  More formally, sintering is a thermal treatment that bonds particles 

together into a solid, coherent structure, by means of mass transport mechanisms occurring 

largely at the atomic level [1].  Sintering can occur either at atmospheric pressure or under 

isostatic or hydrostatic pressure.  It generally takes place at temperatures in excess of half the 

absolute melting temperature.  If sintering takes place at temperatures high enough that some 

melting occurs, it is called liquid-phase sintering; sintering that takes place at lower temperatures 

is called solid-state sintering.   

Sintering is an inexpensive way of making parts, provided the finished part can be used 

as is and does not require additional machining.  The difficulty is that, when a part is sintered, its 

size and shape change non-linearly, which needs to be taken into account by the designer of the 

unfired piece.  At present, the only practical way of doing this is by trial and error; e.g., by 

making prototype shapes until a suitable mold shape has been identified.  While this may be 

acceptable for very high-volume items, it is not cost-effective for small batches. 

Various models have been developed for the sintering process.  Ashby [2] developed 

sintering diagrams, which consider the influence of various mass-transport mechanisms during 

various stages of the sintering process.  This approach is strongly dependent on the material 

properties of the sintered compact. 
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Another model, developed by Aigeltinger and DeHoff [3], attempts to predict 

microstructural changes in terms of the geometric properties of features of the sintered 

microstructure.  This model is described in more detail in Section 3.0. 

The intent of this work is to develop a model that will predict the microstructural 

properties of a sintered part based on its geometric properties.  Specifically, the model uses 

dimensionless length and area ratios of the sintered part to predict its microstructure, which 

allows comparisons of microstructures with different length scales.  This model has two 

advantages over previous models: 

• Because it uses dimensionless parameters, the results of experiments with different length 

scales can be compared directly, 

• Because it does not consider the material properties of the sintered part, results from this 

model can be generalized to different materials and different types of materials. 

The sintering process has been used throughout history.  The ancient Egyptians sintered 

metal and ceramics as far back as 3000 B.C. [1]. Today, sintering is used to manufacture a wide 

range of products, including rocket nozzles, nuclear fuel elements, golf clubs and porcelain 

plumbing fixtures.   

1.2 The Sintering Process 

1.2.1 Driving Energy and Mass-Transport Mechanisms 

The initial powder (called a green compact) has a large surface area relative to its 

volume.  This surface area provides the driving force in sintering, which is the reduction of free 

surface energy resulting from the high surface area of the particles [4].   
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Sintering proceeds from various mass-transport mechanisms.  These can be divided into 

surface transport and bulk transport mechanisms.  In surface transport mechanisms, atoms move 

from the surface of one particle to the surface of another particle.  In bulk transport mechanisms, 

atoms move from the particle interior to the surface. Surface transport mechanisms lead to neck 

growth without shrinkage or densification, while bulk transport mechanisms result in net particle 

movement, leading to shrinkage and densification.  Densification means an increase in packing 

density, as defined in Section 1.3. 

This thesis does not provide exhaustive detail about mass-transport mechanisms during 

sintering.  For further detail, the reader is referred to references [1] and [5]. 

The surface transport mechanisms are surface diffusion and vapor transport, and the bulk 

transport mechanisms are lattice diffusion, grain boundary diffusion, and viscous flow.  In 

powders composed of different materials, chemical reactions (also called reactive processes) may 

also provide additional mass-transport mechanisms [1]. 

Different mechanisms dominate at different points in the sintering process, and different 

materials exhibit different mechanisms.  For instance, viscous flow is the dominant mechanism 

when sintering amorphous materials, while grain boundary diffusion (obviously) plays no part.  

The opposite is generally true for crystalline materials.  In liquid-phase sintering (which is not 

discussed here), viscous flow and related mechanisms play a significant role. 

Sintering may occur at atmospheric pressure, under isostatic or hydrostatic pressure.  This 

pressure-assisted sintering increases the sintering rate, reduces sintering time, and reduces 

porosity in the final part. 
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The sintering process has historically been divided into four stages.  These are described 

in Table 1 [1]. 

Table 1.  The Classic Stages of Sintering. 

Stage Process Surface Area 
Loss Densification Coarsening 

Adhesion Contact 
formation 

Minimal, unless 
compacted at 
high pressures 

None None 

Initial Neck growth Significant, up to 
50% loss 

Small at first Minimal 

Intermediate Pore rounding 
and elongation 

Near total loss of 
open porosity 

Significant Increase in grain 
size and pore size 

Final Pore closure, 
final 
densification 

Negligible 
further loss 

Slow and 
relatively 
minimal 

Extensive grain 
and pore growth 

 

A sintered part begins as a compact, which is a powder placed into a mold or die cavity.  

The green compact is low-density, inhomogeneous and porous, and generally lacking in physical 

integrity.  There is, however, a small degree of adhesion between adjacent particles.   

As the compact is heated, necks begin to form at the contacts between the particles, 

driven by the high surface energy of the particles.  See Figure 1. 

R

r

D

 

Figure 1.  Neck Formation. 
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Initial neck formation is driven by the stress gradient resulting from the different 

curvatures of the particle and the neck [5].  This is governed by the Laplace equation, namely 









+=

21

11
rr

γσ  

Where γ is the surface energy and r1 and r2 are the radii of curvatures of the two surfaces.  

In the case illustrated by Figure 1, this reduces to 







 −=

rR
11γσ  

The minus sign results because the two surfaces are curved in opposite directions.  At the 

beginning of neck growth the stress gradient is high, when the neck radius r is small, and 

decreases as the neck thickens. 

Bulk transport mechanisms result from movement of atoms along grain boundaries and 

through the lattice to the surface.  This results in an increase in the contact area between 

particles, and a corresponding increase in the total amount of grain boundary and decrease of 

surface area.  Densification results from bulk transport mechanisms.  

Sintering can be divided into three stages, which are listed in Table 1.  These are called 

initial neck growth, intermediate stage sintering and final stage sintering.  This division reflects 

differences in geometry during the sintering process; also, as stated previously, different mass-

transport mechanisms dominate during the different stages. 
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1.2.2 Initial Neck Growth 

In this initial phase of sintering, necks begin to form at the contact points between 

adjacent particles (see Figure 1).  Neck formation is driven by the energy gradient resulting from 

the different curvatures of the particles and the neck, as discussed in Section 1.2.1.  Surface 

diffusion is usually the dominant mass-transport mechanism during the early stages of neck 

growth, as the compact is heated to the sintering temperature.  

1.2.3 Intermediate Stage Sintering 

Intermediate phase sintering begins when adjacent necks begin to impinge upon each 

other.  This occurs when the quantity 3.0
2

≈
R

D  [1] (see Figure 1).  Densification and grain 

growth occur during this stage. 

The packing density and coordination number of the green packing are important during 

this stage.  A high green packing density produces rapid sintering with relatively few pores in the 

final object.  Very low green packing densities (around 40%), which are also associated with low 

coordination numbers, can lead to coarsening (increase in mean grain size) without densification 

(decrease in porosity).  In extreme cases, this may lead to open-pore structures lacking in 

structural integrity [1].  See Figure 2. 
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Figure 2.  Coarsening Resulting from Low Coordination Number. 

 
During intermediate stage sintering, grains begin to form from the individual particles, 

and the material’s final grain structure begins to develop.  Pore networks form along the grain 

boundaries. At the beginning of the intermediate stage, the pores form a network of 

interconnected cylindrical pores broken up by necks.  By the end, the pores are smoother and 

begin to pinch off and become isolated from each other.   

Bulk transport mechanisms, such as grain boundary diffusion and volume diffusion, 

dominate the sintering process during this stage.  As stated previously, these bulk transport 

mechanisms cause material to migrate from inside the particles to the surface, resulting in 

contact flattening and densification. 
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1.2.4 Final Stage Sintering 

Final stage sintering begins when most of the pores are closed.  As sintering proceeds, the 

pores, which during intermediate stage sintering form a network, have become isolated from 

each other.   

Final stage sintering is much slower than the initial and intermediate stages.  As grain 

size increases, the pores tend to break away from the grain boundaries and become spherical.  

Smaller pores are eliminated, while larger pores can grow, a phenomenon called Ostwald 

ripening.  In some cases, pore growth during final stage sintering can lead to a decrease in 

density, as gas pressure in the larger pores tends to inhibit further densification. This can be 

mitigated by having the final stage sintering occur in a partial vacuum. 

1.3 Measurement Techniques 

1.3.1 Definitions 

In a sintered part or compact, packing density is the fraction of the space in the green 

compact that is occupied by the material being sintered.  A packing density of 0.79 means that 

79% of the space is occupied by the material.  The remaining space (0.21, or 21% in this 

example) is the porosity.   Packing density is sometimes called volumetric density.  The packing 

density is different from the “true” density (mass per unit volume), which is a material property.  

Packing density is a function of the geometry of the compact or sintered part.  Packing density 

may also be called volumetric density or solid volume fraction, and is abbreviated here as S
VV  

[6]. 
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In this document, the term “density” implies “packing density” unless otherwise noted.  

A detailed discussion of measurement techniques for packing density and porosity is given in 

[1].   

1.3.2 Stereology 

Stereology is a method of analyzing the structure of a three-dimensional solid from the 

information provided by a two-dimensional plane section taken through the solid.  It is a spatial 

version of sampling theory [7]. 

Structures and lengths of a solid are measured by slicing through the solid, polishing the 

exposed surface, etching it with acid and examining it under a microscope.  A number of 

techniques are used to determine the various quantities of interest.  This thesis reviews a number 

of common techniques; for a detailed study of the field of quantitative microscopy, the reader is 

referred to [8]. 

1.3.2.1 Calculating the Packing Density 

The packing density (or alternately, porosity) can be measured using a test grid, as shown 

in Figure 3 [1]. The packing density is the fraction of points in the test grid that are inside any of 

the particles, and the porosity is the fraction of points in the test grid that are not inside any of the 

particles. 
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10x10 grid
(100 points)

 
Figure 3.  Calculating the Packing Density. 

 
1.3.2.2 Calculating the Grain Size 

The pore size and grain size can be estimated using a number of different techniques.  

The random intercept method calculates the mean grain size of spherical grains by drawing a test 

line across the surface, and counting the number of intersection s per unit length of test line NL 

and the number of features per unit cross-sectional area NA: 

A

L

N
N

G
π
4

=  

This method, though simple enough, is problematic.  Because the slices are taken through 

the microstructure at random, the grain size measured this way will be smaller than the actual 

grain size.  In addition, the grains are not usually spherical.  A better measurement technique is 

to compute the mean intercept size L.  L is the ratio of the fractional density VS to the number of 

grain (or pore) intercepts per unit length: 
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L

S

N
V

L =  

This is illustrated in Figure 4 [1]. 

If grain size distribution is important, the mean intercept size can be calculated for 

multiple slices at different orientations.   

Intercept

Intercept

Intercept

Intercept

 
Figure 4.  Calculating the Mean Intercept Size. 

1.3.3 Internal Surface Area Parameters 

This analysis uses two additional parameters to characterize the microstructure.  These 

are the solid-solid surface area  and the solid-void surface area .  The solid-solid surface 

area is the contact area between adjacent particles, and the solid-void surface area is the surface 

area of the pores.  These quantities are used to define the dimensionless parameters described in 

the following section. 

SS
VS SV

VS
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1.3.4 Dimensionless Parameters 

The quantities defined in the preceding sections are dimensional (i.e., length, grains per 

unit area, etc.).  This makes it difficult to compare quantities among microstructures with 

different length scales.  It would be convenient to define dimensionless quantities, which would 

allow direct comparisons among microstructures with different length scales.  Two such 

quantities have been defined: these are the ratio of the solid-solid and solid-void surface area Ψ, 

called the surface area ratio, and the ratio of the mean grain and mean void intercepts Λ, called 

the intercept ratio [6].  These are defined by 

)2)(1( SS
V

SV
V

S
V

SV
V

S
V

SSV
SV

+−
=Λ  

and 

SV
V

SS
V

S
S

=Ψ  

Where S is the solid-void surface area,  is the solid-solid surface area, and SV
V

SS
VS S

VV  is 

the packing or volumetric density.  These quantities are used to evaluate the model described in 

Section 4.0. 
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2.0 PARTICLE PACKING 

The characteristics of the green packing are important in the sintering process.  Various 

models are considered, for mono-sized particles, binary mixtures and continuously distributed 

particle sizes, and for spherical and non-spherical particles. 

2.1 Particle Shapes 

In nature, particles are never exactly spherical.  However, geometrically, spheres are the 

easiest particle shape to model, as they can be defined by a minimum number of parameters 

(coordinates of center plus radius), and are symmetrical and isotropic.  Smith and Midha [9] have 

employed an approach in which individual particles are constructed as an agglomeration of 

spheres, while Nandakumar et al [10] have modeled cylindrical particles. However, spheres are 

still the preferred shape for most models.  Non-spherical particles are difficult to model 

geometrically; for instance, if flakes (coin-shaped particles) or rods (cylindrical particles) are 

used, their orientation as well as their location must be considered.  This vastly increases the 

amount of computing time required to model the packing, and was not considered feasible for 

this project.  The following discussion considers only spherical particles. 

The highest theoretical packing density of mono-sized spherical particles occurs with a 

close-packed arrangement, either a hexagonal-close-packed (hcp) or a face-centered cubic (fcc) 

configuration.  The theoretical packing density for these configurations is 0.74 [11].  Actual 

packing densities are usually lower.  The highest theoretical coordination number also occurs in 

an hcp or fcc configuration, with coordination numbers of 12 [11].   
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2.2 Particle Size Distributions 

Particle size distribution has a significant effect on the sintering process and on the 

microstructure of the sintered part [12-14].  A wider distribution of particle sizes produced a 

higher green density and faster sintering in both ceramics (alumina) [15] and metals (tungsten) 

[13].  Ting and Lin [16, 17] have found that sintering kinetics in alumina depend on the initial 

particle distribution. 

Three different types of particle size distribution are discussed in the literature.  These are 

mono-dispersed spheres, binary mixtures of spheres, and spheres following a continuous log-

normal distribution.   

2.2.1 Mono-Dispersed Spheres 

Packings of mono-dispersed spheres, while not representative of real-life particle packing 

situations, are the easiest to model.  Such packings can be modeled at a macroscopic scale, using 

ball bearings or similar objects, allowing a computer model of such a packing to be checked 

against an experimental model [18].  However, this model, besides not being very representative 

of a real packing, does not produce high packing densities; Smith and Midha [19] report that 

packing densities in excess of 0.64 cannot be achieved with a random mono-dispersed packing, 

despite the higher theoretical packing densities of close-packed arrangements.  Smith and Midha 

define a random packing as “an arrangement of spheres which has as high a fractional density as 

possible without the formation of long-range order within the assembly, such as a face-centered 

cubic arrangement.”  Their experimental results with a vibrated powder of mono-sized bronze 

spheres of diameters 850 – 853 µm bear this out.  Matheson [18] also reports that a shaken stack 

of ball bearings packs to a density of 0.6366. 
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This low packing density is a result of the fact that a random mono-dispersed packing 

will tend to form bridging structures, as shown in Figure 5 [11].  The highest particle in this 

example is gravitationally stable, but it is not in the lowest-energy configuration available to it, 

because the particles supporting it do not permit it to move down. This leaves a large gap 

beneath it. 

 

Figure 5.  Formation of Bridging Structures in a Random Packing. 

2.2.2 Binary Mixtures 

If smaller particles are introduced into a packing of mono-dispersed particles, it becomes 

a binary mixture.  The smaller particles serve to fill the inter-particle gaps in the original packing 

and increase the overall packing density, as shown in Figure 6.  In order to do this, the new 

particles must be significantly smaller than the original particles, small enough to fit in the pores 

left among the larger particles.  Smith and Midha [19] report that packing density increases for 

particle size ratios greater than 2. 
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Figure 6.  Binary Mixture of Powders. 

Binary mixtures overcome some of the limitations of mono-dispersed packings, and 

sinter more efficiently; that is, there is less variation in pore sizes and the pores are distributed 

more uniformly throughout the sintered part [20].  However, they still do not represent a realistic 

packing arrangement.  According to German [21], most particle powders obey a log-normal 

distribution.  

2.2.3 Log-Normal Distribution 

Spherical particles obeying a log-normal distribution are defined by [22] 

2

2))(ln(

2

2
1)( σ

µ

πσ

−−

=
r

e
r

rP  
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Where r is the radius of the sphere, σ is the standard deviation and µ is the mean of the 

distribution.  The particles used to model the sintering process in this analysis follow a log-

normal distribution.  Patterson et al [12, 13] have examined a number of log-normal 

distributions, and found that distributions with larger values of σ tended to densify more rapidly. 

Refer to Appendix B for more information about the log-normal distribution and its 

applicability to particle packing models. 

2.3 Particle Packing Models 

Particle packing models involve more than the selection of an appropriate size 

distribution.  The mechanics of arranging the particles must be considered as well.  The 

relationship between green densities and sintering have been studied by Zheng and Reed [23].  

The properties of the green compact are critical to the final microstructure of the sintered part, so 

a great deal of attention was given to the selection of a suitable particle packing model.  Most 

sintering models use ordered arrays of spheres or polyhedra [1]; this model uses a random 

arrangement.   

Regardless of the particle size distribution, computer models of particle packing can be 

divided into several categories.  Particles can be deliberately stacked in an array, they can be 

dropped from a height, or they can be generated randomly in a selected volume and rearranged to 

a stable non-overlapping configuration.   

In the “dropping” model, individual particles are dropped from a height into a virtual 

container.  When the particle contacts another particle, it can either roll off it until it reaches 

some suitable minimum height, or settle into a stable configuration where it lands.  This 

approach is described by Edwards [24] for both mono-dispersed and poly-dispersed spheres, and 
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Nandakumar [10] discusses it for mono-dispersed spherical and cylindrical particles.  In the 

“stacking” model, individual particles are generated in specific locations relative to each other, to 

form a stable array.  This approach is described by Krishnan [25] for log-normally distributed 

particles.  Finally, in the “random generation” model, all particles are generated in a volume of 

space, then rearranged to form a stable, non-overlapping array.  This approach is described by 

Nolan and Kavanagh for mono-dispersed and log-normally distributed particles [11, 26]. 

The “dropping” model has the advantage of most closely replicating the physical process 

of pouring a powder into a mold.  Computationally, however, it is a dynamic process and is 

therefore harder to model, requiring that particle movement be taken into account.  The 

“stacking” model will create a very nice packing; however, it lacks randomness. 

The “random generation” model, which was chosen for this simulation, produces a well-

mixed packing.  It also has the advantage of considering the packing as static at each step of the 

rearrangement, which eliminates some of the problems with the dynamic approach described 

above.  The rearrangement can be achieved in one of two ways: 

1. Start with the particles far apart (not touching at all), and move them closer together. 

2. Start with the particles close together (overlapping), and move them apart. 

The second option was chosen for this model.   The overlapping particles are pushed 

apart with a force proportional to the overlap.  The advantage of this approach is that relatively 

little particle movement is required to produce a stable close packing.  It also ensures that the 

packing remains in the same region of space after rearrangement.  This is convenient when 

selecting a Representative Volume Element (RVE), as described in Section 4.2.  This is 
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explained in further detail in [26].  Details of the rearrangement algorithms are given in 

Appendix A. 
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3.0 PREVIOUS SINTERING MODELS 

Much work has been done in developing sintering models.  According to Exner [27], 

modern attempts to quantitatively define the sintering mechanisms date from the 1940s.  Since 

that time, many aspects of sintering kinetics, geometry and driving forces have been worked out.  

A review of the history of sintering models is provided by [27]. 

Some attempts have been made to predict the final microstructure based on the geometric 

properties of the initial packing.  Aigeltinger and DeHoff [3] have attempted to describe the 

microstructural pathways (path of microstructural change) in terms of geometric properties of 

features of the sintered microstructure.  They examined topological properties, including pore-

solid interface, and metric properties, including solid-void fraction and total curvature of the 

pore-solid interface.  The process was used to study sintering in three different copper powders: 

two spherical powders and a dendritic powder.  The results for the two spherical powders were 

qualitatively similar, suggesting that the two powders follow paths that are qualitatively similar, 

differing only in scale. 

This model has the advantage of not making simplifying assumptions about the geometry 

or the microstructure.  However, measuring the topological properties in this model is a very 

labor-intensive process, requiring that the experimenters take a large number of closely-spaced 

sections through the part and compare them. 

A geometric model developed by Slaughter and Nettleship [6, 28, 29] attempts to predict 

the final microstructure of a sintered part using dimensionless parameters. 
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Slaughter [6] defines the nondimensional parameters Λ and Ψ, which are defined in 

Section 1.3.4.  These parameters allow microstructures with different length scales to be 

compared.  This facilitates comparisons between models and experimental data.  The use of these 

parameters is illustrated in [6] for a number of different packing models, and for experimental 

data.  This model was later extended by Krishnan [25] to a distributed packing. 
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4.0 DESCRIPTION OF MODEL 

This model hypothesizes that the final microstructure of a sintered part can be predicted 

from its geometric properties.  Eventually, such a model could allow the final shape of a sintered 

part to be predicted from the geometry of its green packing. 

This model is an attempt to build on the work done previously by Slaughter, Nettleship 

and Krishnan, as described in Section 3.0. The model used for this thesis considers only the 

geometric properties of the packing.  It treats the packing as an array of spherical particles whose 

radii obey a log-normal distribution.   

One drawback to Krishnan’s model is that the packing density of the green compact is 

low, on the order of 40%.  As described in Section 2.2, this is low even for a mono-dispersed 

packing.  The current model creates an initial packing with a much higher green density, on the 

order of 65%. 

The model proceeds in three stages: generating the initial packing, rearranging it into a 

stable, non-overlapping configuration, and densifying it.  The algorithms used to generate, 

rearrange, densify and measure the packing are described in detail in Appendix A. 

4.1 Initial Packing and Rearrangement 

The initial packing and rearrangement is based on work previously done by Nolan and 

Kavanagh [11, 26].  The packing and rearrangement algorithm is the one described as “random 

generation” in Section 2.3. The particles are spherical, and the radii are log-normally distributed 

with a mean µ = 0.0026 and a standard deviation σ = 0.0016*.  These values were chosen for two 

                                                 
* All units used to describe the model are based on arbitrary distance units (e.g., length, length squared, etc.) unless 
otherwise noted. 
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reasons.  First, as the model was being developed, it was decided to model relatively small 

particles.  A maximum length scale for the total packing (that is, the Representative Volume 

Element) of one was chosen.  This choice was arbitrary; it was based more on mathematical 

elegance than any physical basis.  However, because the quantities being examined in the 

analysis are dimensionless, other values could be chosen.  The concept of the Representative 

Volume Element is discussed in Section 4.2.  Second, Nolan and Kavanagh [26] define the 

dimensionless absolute standard deviation as (σ/µ).  They found that packings with a high 

absolute standard deviation packed more efficiently.  Good results were seen for values of (σ/µ) 

around 6; the absolute standard deviation for this packing is 0.62.   

The initial packing and rearrangement proceeds as follows.  A number of particles are 

generated in space.  The nearest neighbors of each particle are identified, and the packing 

statistics (mean overlap among all particles, mean coordination number, fraction of particles in a 

gravitationally stable arrangement) are computed. 

To rearrange the packing, the program considers each particle in turn.  It computes the 

overlap between it and its neighbors, and moves it in such a way as to minimize the overlap.  The 

particle may be moved by simple translation, by rolling it around its neighbors, or by a 

combination of these mechanisms.  At each step, the packing statistics are recomputed.  This 

rearrangement proceeds until the mean overlap of the packing is below a selected value (one-

sixth of the mean particle radius) and the fraction of particles in a gravitationally stable 

configuration is above a selected value (75%).  This is explained in further detail in Appendix A. 
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4.2 Selection of Representative Volume Element (RVE) 

Once the packing has been rearranged, most of the particles are clustered around the 

origin, as shown in Figure 7.  The particles are densely packed around the origin; in regions far 

from the origin, the packing is less dense.  In order to ensure that the model represents a dense 

packing, a Representative Volume Element (RVE) is selected.  Physically, this RVE represents 

an arbitrarily selected volume within the sintered part.  The RVE used in this model is spherical.  

All particles completely enclosed within the RVE are considered, as are all partially-enclosed 

particles.  For the partially-enclosed particles, only the fraction of the particle within the RVE is 

considered in the calculation. 

The initial intention of this model was to generate a packing that would fill up a spherical 

Representative Volume Element whose radius was unity.  As the model’s development 

progressed, however, it became clear that this would require an enormous number of particles (in 

excess of a thousand), and the rearrangement of this packing would take an excessively long 

time. 
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Figure 7.  Selection of Representative Volume Element (RVE). 

The model started with 300 particles.  The RVE includes 221 particles, and has a radius 

of 0.3099. 

4.3 Densification 

The packing was “densified” by increasing the radii of all particles by the same 

percentage (generally in 0.5% increments), and computing the packing density, solid-solid 

surface area, solid-void surface area and mean coordination number.  No rearrangement occurred 

after the “densification” process started. 

The packing density is computed by determining, using Monte Carlo integration 

techniques, what fraction of the Representative Volume Element is occupied by particles.  The 

solid-void surface area is computed for each particle, also using Monte Carlo integration 
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techniques, how much of its surface area is not inside other particles.  The solid-solid surface 

area is computed by identifying the intersections between adjacent particles and computing their 

surface areas.  The mean coordination number is computed by averaging the number of 

neighbors for each particle.   

One feature of this model is that it treats sintering as a continuous process, rather than 

breaking it up into the stages described in Section 1.2.  This eliminates some of the interpolations 

that would be needed if the model broke the sintering process up into stages. 

4.4 Computer Software and Hardware 

MATLAB® (for Matrix Laboratory) is a high-performance programming language and 

user environment for technical computing.  It is particularly well-suited for computationally-

intensive problems such as this one. 

The core of the MATLAB® product is MATLAB® itself, including a program called 

Simulink, which simulates dynamic systems, and a number of optional extensions, called 

toolboxes.  Some toolboxes are offered by The MathWorks®, the publisher of MATLAB®; 

others are written in MATLAB®’s programming language by other MATLAB® users.  This 

application uses a toolbox called the Geometric Bounding Toolbox (GBT), which performs 

operations on polyhedra and ellipsoids.  GBT is capable of defining and manipulating higher-

order shapes, although this particular feature is not needed for this application.  GBT was 

selected because it allows for mathematically compact definitions of complex shapes [30]. 

MATLAB® allows the model to be refined and extended easily.  MATLAB®’s 

programming language is easy to learn, so future researchers will have little difficulty in working 
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with the model.  The model created by Krishnan, which provided good results, was inflexible 

and could not be modified and refined as needed. 

The student version of MATLAB® was used for this application (version 5.3).  There are 

no fundamental differences between the student version of MATLAB® and the professional 

version; the student version of Simulink, which was not used for this model, has significant 

functional differences.  The programming was done on a Gateway computer using a Pentium 4 

CPU operating at 1.4 GHz, running Microsoft Windows Millennium Edition. 
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5.0 RESULTS 

The results are shown on the following pages.  The intermediate stage model and the data 

for the 0.17 µm and 0.4 µm alumina are taken from [6], and the  Krishnan model data are taken 

from [25]. 

Figure 8 shows the relationship between packing density and densification.  As explained 

in Section 4.3, densification is simulated by increasing the radii of all particles by the same 

percentage, in 0.5% increments.  The origin of the plot, at which densification is zero, represents 

the initial packing. 

Figure 9 shows the solid-void area versus packing density.  This graph shows that  

decreases with increasing density; however, a slower rate of decrease is expected.  In fact, the 

computed value of  goes to zero at a packing density of about 93%, indicating a problem 

with the model in this area.  This is discussed further in Section 6.0. 

SV
VS

SV
VS

Figure 10 shows the relationship between the solid-solid surface area and the packing 

density.   increases steadily with increasing density, then begins to level off at a packing 

density of about 95%. 

SS
VS

Figure 11and Figure 12 show the model results for the intercept ratio Λ and the surface 

area ratio Ψ, respectively, and compare them to results from Krishnan’s model and to 

experimental results.  The current model shows little agreement with previous models and with 

experimental data, except at lower packing densities (below 70%).  This is a result of the 

behavior of the solid-void surface area, as shown in Figure 9. 
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Figure 8.  Packing Density versus Densification. 
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Figure 9.  Solid-Void Surface Area versus Packing Density. 
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Figure 10.  Solid-Solid Surface Area versus Packing Density. 
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Figure 11.  Intercept Ratio Λ versus Packing Density. 
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Figure 12.  Surface Area Ratio Ψ versus Packing Density. 
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6.0 DISCUSSION 

The current model shows poor agreement with previous models and with experimental 

data.  This is largely due to problems with the solid-void surface area calculation. 

As shown in Figure 9, the solid-void surface area falls off very rapidly, and reaches zero 

at a packing density of 93%.  Logically, the solid-void surface area would be expected to 

decrease linearly, and reach zero at a packing density of 100%.  An examination of the model 

suggests that the method used to compute the solid-void surface area may be at fault. 

The solid-void surface area for each particle is computed as follows.  A set of N data 

points is generated at random on the surface of the particle.  Each point is defined in terms of its 

spherical coordinates local to the particle (R, φ, θ) and has an incremental area unit dA 

associated with it.  The number of points is proportional to the square of the radius; in this case, 

10,000R2 points are generated on each particle.  Each data point is examined against the 

particle’s neighbors.  If the data point is not located inside any of the neighboring particles, it 

forms part of the solid-void surface.  If this is the case, the value of counter j is incremented by 

sin θ.  Sin θ is used (instead of unity) to ensure that particles at the poles (where sin θ = 0) are not 

weighted more heavily than particles at the equator (where sin θ = 1). 

Once all data points have been examined, the solid-void surface area for the particle is 

calculated: 

i
ii N

jRSV 222π=  
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Where Ri is the radius of the ith particle, and Ni is the total number of data points 

examined.  The quantities SVi are stored in an array.  Once all particles have been considered, 

the total solid-void surface area is computed by summing all the values of SVi. 

Monte Carlo integration is a technique that requires an exceptionally large number of 

data points to converge.  It is possible that 10,000R2 data points on the surface of each particle is 

insufficient.  However, a few trial runs with larger numbers of data points indicate that this is not 

the case.  In these trials, using 10,000 data points yielded results that were different by less than 

10%.  Furthermore, using more data points did not, in general, increase the calculated solid-void 

surface area; at some densities, the solid-void surface area calculated with more data points was 

actually lower. 

This fact leads to the conclusion that Monte Carlo integration is not a suitable method for 

computing the solid-void surface area, at least for the packing under investigation.  A purely 

geometric method may need to be employed.  This would involve checking the intersection 

between the particle under consideration and each of its neighbors, computing the distance 

between centers, computing the area of the spherical cap created by the intersection, and 

subtracting that surface area from the total surface area of the particle. 

The solid-solid surface area increases almost linearly with packing density, and then 

begins to level off at a packing density of around 95%.  This reduction results from the fact that, 

as smaller particles are absorbed by larger ones, the solid-solid surface area computed by the 

algorithm is actually smaller than the surface area of the plane through the smaller particle’s 

center.  See Figure 13.  At a packing density of 95%, none of the particles has been completely 

35 



 

absorbed by any others.  Physically, this is analogous to grain growth, which occurs during final 

stage sintering. 

Line representing solid-solid surface area.
Note that it is shorter than the diameter of the
smaller circle.

 

Figure 13.  Solid-Solid Surface Area Between Two Particles. 
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7.0 CONCLUSIONS 

The results from this simulation are disappointing.  The problems with the model are 

described in the previous section.  However, the model presents some positive features.  It 

generates a close packing, and can be extended to model other sintering conditions.   

Once the problems with the calculation of the solid-void surface area have been 

addressed, this model may prove valuable in predicting the microstructural properties of a 

sintered part based on its geometric properties. 
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8.0 DIRECTIONS FOR FUTURE RESEARCH 

The model created for this thesis has many advantages.  MATLAB® is a powerful and 

easy to use programming language, with many built-in functions and a great deal of flexibility.  

Modifying and extending the model is therefore simplified. 

Improvements to the model can be made in several areas.  First, as noted in Section 6.0, 

the method for computing the solid-void surface area needs to be improved.  A possible solution 

to this problem is outlined in Section 6.0.  The particle packing model can also be improved, as 

discussed in Section 8.1 below.  Finally, different sintering conditions (pressure assisted 

sintering, particle movement during sintering, etc.) can be added to the model, as discussed in 

Section 8.2 below. 

8.1 Refining the Particle Packing Model 

Some problems with the particle packing model were identified during its development.  

Some difficulty was experienced in getting a close-packed compact when rearranging the 

particles.  It is believed that a combination of the following modifications may facilitate getting a 

close packing: 

• Modifying the initial distribution of particle centers, 

• Refining the rearrangement geometry (particle movement during rearrangement). 

Increasing the number of particles may also assist in getting a close packing.  This was 

attempted only on a limited basis, as the particle rearrangement algorithm required a lot of 

computer time. 
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The current model also fails to take any account of the pore size distribution, which may 

play a significant role in the evolution of the microstructure.  Zheng and Reed [23] found that 

there is a critical ratio of pore size to mean particle size.  Pores smaller than this critical ratio 

were completely eliminated during sintering, while pores larger than the critical ratio were not.  

This is an area that was not explored in the course of this research; however, algorithms for 

measuring pore size and pore size distribution exist [31]. 

8.2 Simulating Different Sintering Conditions 

Once a close packing has been achieved, refinements can be made to the densification 

part of the model.  For instance, a real compact experiences some particle movement during 

sintering.  This could be integrated into the rearrangement algorithm, by allowing particle 

rearrangement between densification steps.  Pressure sintering (hydrostatic or isostatic) could 

also be simulated.  This could be done by allowing particle rearrangement between densification 

steps, and imposing a preferred direction of movement, either towards the center of the packing 

(for hydrostatic pressure) or downwards (for isostatic pressure).  These refinements would 

improve the model’s ability to predict microstructural pathways during sintering, and eventually 

to help predict the finished shape of a sintered product. 
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APPENDIX A 
 
 
 

SIMULATION CODE DESCRIPTION AND ALGORITHMS 



 

The code for the simulation was based on a particle packing routine described by Nolan 

and Kavanagh [11, 26].  The algorithms for their routine, which was originally written in Pascal, 

were modified and rewritten in MATLAB® for this application. 

The simulation proceeds in three stages.  In the first stage, an initial packing is generated, 

and certain parameters (nearest neighbors, packing density, overlap, etc.) are computed and 

stored.  The second stage consists of rearranging the packing to minimize overlap and maximize 

stability.  The third stage consists of expanding (densifying) the packing and computing its 

geometric and stereological properties. 

Following are verbal descriptions of each section of the code.  For sections for which a 

verbal description is insufficient, a flowchart showing the algorithm is provided. 

Generating the Initial Packing 

Generate 

This routine generates a random packing of spherical particles.  There are NumSpheres 

particles, each with a center c and radius r.  The particle definitions are stored in a 4 x 

NumSpheres array called Particle.  Each row of Particle is structured as [x y z r], where x, y and 

z are the Cartesian coordinates of the center of the particle, and r is the radius.  The spheres are 

generated within a unit sphere.  A sphere is used (instead of some other shape) because it avoids 

edge effects, and because it is isotropic.  NumSpheres is entered by the user. 

The particles are initially generated around the origin of the unit sphere (that is, particle 

centers are normally distributed with 0̂),,( =zyx ), instead of uniformly throughout the unit 
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sphere.  This allows a high initial degree of overlap and contact among the particles, which 

allows the packing to be rearranged more effectively.  See “Rearranging the Particles” below. 

Reduce 

The initial packing created by generate places particles randomly in space.  Some 

particles will be completely inside other particles, and some will be outside the unit sphere 

selected as the volume in which the packing is generated.  This routine eliminates particles that 

are completely inside other particles and particles lying completely outside the unit sphere. 

Findlocal 

This routine computes an array called touch.  The touch array is structured as follows.  

Each row represents one particle from the Particle array (i.e., the first row represents the first 

particle, the second row represents the second particle, etc.)  The number in the first column 

indicates how many particles are in contact with that particle.  For instance, the number “8” in 

the third row indicates that there are eight particles in contact with the third particle in the 

Particle array.  The numbers in the 2nd through nth columns are the numbers of the contacting 

particles.  In this example, the third particle is in contact with eight other particles: the first, 

fourth, sixth, 10th, 17th, 22nd, 37th, and 62nd.  See Figure 14. 

The Findlocal routine finds up to 12 particles within one-half the mean particle radius of 

each particle. 
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8 1 4 6 10 17 22 37 62 0

Total number of particles in contact with the third particle

The numbers of the contacting particles

Remaining columns are zero

4 3 7 18 29 0 0 0 0 0

 
Figure 14.  Layout of the touch Array. 

 
Density 

The Density routine computes the packing density of the particles, as described in 

Appendix C.  The algorithm for this routine is shown in Figure 21. 

Packstat 

Packstat computes the packing statistics for the particle arrangement.  These statistics 

include the separation and/or degree of overlap between adjacent particles, the mean 

coordination number of the arrangement, and the fraction of particles that are in a gravitationally 

stable configuration.  A particle is gravitationally stable if it is supported from underneath by 

three other particles. 
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Rearranging the Particles 

The packing generated above is not close-packed.  The particles are placed in space at 

random; many of them overlap, while some are not in contact with any other particles.  The 

purpose of the rearrangement is to shift the particles around to minimize overlap and maximize 

stability.  The Rearrange routine loops as long as the mean overlap is more than one-sixth the 

mean particle radius, and the fraction of particles in a gravitationally stable configuration is less 

than 75%.  The algorithm for this routine is given in Figure 19. 

Subregion 

After the packing is rearranged, most of the particles are clustered around the origin, as 

shown in Figure 15.  This produces a very low packing density within the unit sphere, as most of 

the space in the unit sphere is empty.  Therefore, a representative volume, or subregion, of the 

original packing is selected.  This new subregion has a radius, RegionRadius, equal to the mean 

of the particle radii.  Most of the particles are located in this subregion.  The packing parameters 

and touch array are recomputed for the subregion.  From this point, only the subregion is 

considered.  This process eliminates the need to fill a large volume with particles, which would 

significantly increase computation time. 
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Figure 15.  Location of Particles after Rearrangement. 

 
Solidsolid 

The solid-solid surface area between two overlapping spheres is a circle, as shown in 

Figure 16.  The area of this circle, whose radius is a, is given by πa2, where 

222222 )(4
2
1 RrdRd
d

a +−−= , R and r are the radii of the larger and smaller spheres, 

respectively, and d is the distance between the particle centers. 
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Figure 16.  Intersection Between Two Spheres. 

 
The situation is more complex when more than two spheres overlap at a point in space.  

Physically, this is roughly equivalent to the point at which the necks begin to impinge on each 

other.  The problem can be illustrated in two dimensions with three overlapping circles.  See 

Figure 17. 

1
2

3

Segment 1-2

Segment 2-3

Segment 1-3

 

Figure 17.  Intersection of Three Circles. 
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To compute the total contact length among circles 1, 2 and 3 (analogous to the total 

contact area among three spheres), one needs to consider parts of line segments 1-2, 1-3 and 2-3: 

 

Figure 18.  Total Contact Length for Three Circles. 

 
The dotted line segments in Figure 18 must be removed from the calculation.  While this 

is simple enough in this example, it becomes very complicated in three dimensions, especially 

with more than three particles. 

The Geometric Bounding Toolbox (GBT), mentioned elsewhere in this thesis, includes a 

routine that computes the contact area of multiple contacting spheres in space.  Results from this 

routine were compared with results computed geometrically from 2- and 3-particle systems, 

which are relatively simple to compute geometrically.  The results returned by the GBT were 

within 1% of the geometrically calculated results. 

Solidvoid 

This routine computes the solid-void surface area of the packing, as described in 

Appendix C.  The algorithm for the solid-void calculation is given in Figure 27 and Figure . 
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 Rearrange initial packing 

While MeanOverlap  
> MaxOverlap and  

StableCount <  
MinStable 

Contactforce 

Overlap =>  
MaxOverlap? Move 

Compute Displacement of particle  
from its original position 

Displacement >  
MinDisplacement? Local Updates touch array after  

particle displacement 

Particle on  
outside of  
packing? 

Contactforce 

Findstable 

Stable = 0 and  
Outer = 0? Roll 

Recompute Displacement 

Write particle's new coordinates to Particle array 

Packstat Recomputes  
packing statistics 

End rearrangement 

YES 

NO 

YES 

NO 

YES 

NO 

NO YES 

 

Figure 19.  Algorithm for Rearrange. 
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Contactforce
Compute the forces between 

a particle and its neighbors

Compute overlap 
distance between 
particle and each 

neighbor

Compute 
separation 

between particle 
and neighbor

Examine each 
neighboring 

particle in turn

Particles 
overlapping? NO

Distance is the overlap 
distance between a 

particle and its neighbor.  It 
is used as the magnitude 

of the force vector.

Compute force 
components Separation

rr
ForceForce neighborparticle

ii

)( −
+=

End

YES

 
Figure 20.  Algorithm for Contactforce. 
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Compute packing 
density

Generate n=100,000 
data points

Array p of 100,000 data 
points (x, y, z coordinates)

Compute distance of 
each data point from 

center of packing (origin)

Fourth column of p now 
contains distance from 

center

Sort p in order of 
distance from origin

Points farthest from origin 
are in first rows of p

While p(i) > 
RegionRadius

Delete affected 
row of p

For each 
particle in 

packing

For each data 
point p(i)

Data point inside 
particle?

Boolean 
IN = 0

NO Boolean 
IN = 1

Counter
 in = in + 1

PackingDensity = 
in/n

Recompute n

End

YES

 
Figure 21.  Algorithm for Density. 
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Move particles

Other particles 
contacting particle?

Set default move 
distance and 

direction (down)
NO

Compute move distance 
based on mean overlap 
of packing and particle's 
overlap with neighbors

YES

MoveDistance 
(ForceComponents from 
ContactForce calculation)
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magnitude of force 

vector
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ForceComponents

Compute new 
coordinates s(i) for 
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nentsForceCompoceMoveDistan

ss i
ii

*
+=

End
 

Figure 22.  Algorithm for Move. 
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Roll particle around its 
contacting particles

Define rotation 
angle based on 

mean overlap

Particle in contact with more 
than one other particle? SingleRotation

Define coordinates 
and compute 

separation from lowest 
contacting particle a

For each subsequent 
contacting particle b

Compute separation 
from contacting 

particle b

xa, Separation1

xb, Separation2

Particle b below 
particle? j = j + 1

j > 0 ? SingleRotation

DoubleRotation

NO

YES

YES

NO

NO

YES

End
 

Figure 23.  Algorithm for Roll. 
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Roll particle around 
one contacting particle

Compute coordinates 
of contact point P

Compute vector rx 
from particle to contact 

point P

Compute unit vectors 
at contact point

Locate contact point 
after rotating particle 

through RotationAngle

RotationAngle is 
from Roll procedure

Recompute center of 
particle

End
 

Figure 24.  Algorithm for SingleRotation. 
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Rotate particle around 
two contacting particles

Compute vectors from 
particle to contact points

rsxa is the vector to contact point with particle a
rsxb is the vector to contact point with particle b

Compute the 
coordinates of the 

contact points in the 
local coordinate system

xa is the coordinate for particle a
xb is the coordinate for particle b

Compute the distance 
from particle a to particle 

b
Length r12

Compute unit vectors at 
center of rotation

Compute center of 
rotation Point n

Locate contact point 
after rotating particle 

through RotationAngle

RotationAngle is 
from Roll procedure

Recompute center of 
particle

End
 

Figure 25.  Algorithm for DoubleRotation. 
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Determine whether a 
particle is in a stable 

configuration A particle is in a stable 
configuration if it is supported 

by three other particles
Initialize boolean 

variable Stable = 0

Create array of 
coordinates of three 

neighbors
Triad

Compute coordinates 
of plane passing 

through centers of 
particles in Triad

m

Compute angles of 
lines from centers of 
particles in Triad to 

center of particle

Angles form a stable 
base? Stable = 0NO

Stable = 1

YES

Identify particle's three 
neighbors

Stable = 1 ?NO

End

If there are more than three 
contacting particles, each group of 

three neighbors is considered in turn

YES

 
Figure 26.  Algorithm for Findstable. 
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Compute the solid-void 
surface area

For each particle 
SphereNumber

Define parameters of 
particle

Initialize counter j

Particle touching any 
other particles?

Entire surface of 
particle is part of 
solid-void surface

SV(SphereNumber) = 
Entire surface areaNO

Go to 
page 2

Back 
from 

page 2

n
jrerSphereNumbSV

222)( π
=

SVArea = sum of all 
terms in SV array

End

YES

 
Figure 27.  Algorithm for Solid-Void Calculation. 
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Generate n data points on 
the surface of the particle

For each data point i

Convert coordinates to global 
Cartesian coordinate system

For each contacting 
particle k in the touch 

array

Data point i inside 
particle k?

Area unit associated with 
data point i cannot be 

part of solid-void surface
YES

Boolean variable 
SURF = 1

Boolean variable 
SURF = 0

SURF = 1 ?NO

Local spherical coordinates are R, 
phi and theta; global Cartesian 

coordinates are x, y and z.

From 
page 1

This data point is not part of 
the S-V surface, so there is no 
point in checking it against the 

other contacting particles

j = j + sin(theta)

Back to 
page 1

YES

NO

Does i lie within 
subregion?

YES

NO

 
Figure 27 (continued).  Algorithm for Solid-Void Calculation. 
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APPENDIX B 
 
 
 

THE LOG-NORMAL DISTRIBUTION 
 



 

Many researchers consider that the log-normal distribution best represents the true 

particle size distribution [12, 13].  The log-normal distribution is a continuous distribution in 

which the logarithm of a variable x is normally distributed [22].  It is described by 

2

2))(ln(

2

2
1)( σ

µ

πσ

−−

=
x

e
x

xP  

Where µ is the mean of the underlying normal distribution, and σ2 is the variance of the 

underlying normal distribution.  The mean and variance of the log-normal distribution are given 

by  

2
ln

2σµµ +
= e  

and 

)1(
22 2

ln −= + σµσσ ee  

An example of the log-normal distribution is shown in Figure 28. 
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Figure 28.  The Log-Normal Distribution. 

 
The log-normal distribution is skewed to the left relative to a normal distribution with the 

same underlying mean and variance. 
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APPENDIX C 
 
 
 

MONTE CARLO INTEGRATION 



 

C-1 Background 
 

Monte Carlo integration is a numerical integration technique that can be used to estimate 

the value of an integral when an analytical solution cannot be found [32].  Consider the integral 

 as representing the area under the curve g(x) from a to b as shown in Figure 29.  Ω 

denotes the rectangle defined by a, b and c, as shown.   

∫=
b

a
dxxgI )(

y

x

x "HIT"

x "MISS"

Ω 

g(x)

a b

c

 

Figure 29.  Monte Carlo Integration. 

 
Let (X,Y) be a random vector uniformly distributed over the rectangle Ω with probability 

density function 





 Ω∈

−=
otherwise

yxif
abcyxf XY

0

),(
)(

1
),(  

The probability p that (X,Y) falls within the area under the curve g(x) can be written as 
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I
abc
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ofarea
xgcurveunderarea

p

b

a

−
=

−
=

Ω
=

∫  

If N independent random vectors (X1,Y1), (X2, Y2), …, (XN, YN) are generated, the 

probability p can be estimated by 

N
N

p H=ˆ  

Where NH is the number of times ; that is, the number of “hits,” as shown in 

Figure 29.  From these two equations, we can estimate the value of the integral I as 

ii YXg ≥)(

N
N

abcI H)( −≅ . 

In other words, the value of the integral I is the fraction of points that lie under the curve 

defined by g(x) multiplied by the area of the rectangle Ω.   

This thesis uses Monte Carlo integration to estimate two quantities: the packing density 

and the solid-void surface area. 

C-2 Estimation of Packing Density 

For a non-overlapping packing, the packing density can be computed exactly by adding 

up the volumes of all the particles and dividing this quantity by the volume of the region:  

3
1

3

)(Re3
4

gionRadius

r
sityPackingDen

N

i
i∑

== π .   

63 



 

However, once the packing has been expanded, neighboring particles will overlap.  Using 

the simple geometric technique just described will result in packing densities greater than unity, 

which are physically impossible.  Once the packing has been expanded, the overlapping volume 

fractions of adjacent particles need to be taken out of the calculation (see Figure 30).  This 

proved to be extremely difficult, so Monte Carlo integration was used to estimate the volumes of 

the particles. 

Part of each shaded area
 must be removed.  

Figure 30.  Overlapping Volume Fractions in the Density Calculation. 

 
A uniform random sample of N data points is generated in the interval (-RegionRadius, 

RegionRadius).  This region represents a cube of side 2*RegionRadius.  All data points in the 

sample that were outside the spherical region of radius RegionRadius were removed from the 

sample, leaving a uniform random sample of data points in the spherical region of interest.  See 

Figure 31. 
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Figure 31.  Cube with Inscribed Sphere. 

 
The program considers each data point Ni in turn, checking whether it is inside the first 

particle in the Particles array (the Geometric Bounding Toolbox, described elsewhere in this 

thesis, includes a routine for doing this).  If it is not, the program checks it against the next 

particle, and so on, until the point is inside a particle, or until it has been checked against all 

particles.  The next data point is then considered, and so on, until all N points have been 

considered. 

If the data point Ni is inside a particle, the Boolean variable IN is assigned a value of 1, 

the counter in* is incremented by one and the program moves on to the next data point.  If the 

data point Ni is not inside any of the particles, the Boolean variable IN is assigned a value of 0.  

Once all N data points have been checked against all particles, the packing density is 

estimated by 
N
insityPackingDen = .  The algorithm for this routine is given in Figure 21. 

This method was checked against the purely geometric method for several non-

overlapping packings.  It was found that an initial value of N = 100,000 data points produced a 

                                                 
* Variable names in MATLAB® are case-sensitive; IN, in and In are all different variables. 
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final value of N ≈ 52,000 data points (once the data points outside the spherical volume were 

eliminated) and generated an error relative to the geometric method of less than 1%.  Increasing 

the initial value of N to 1,000,000 data points did not improve accuracy and significantly 

increased computation time. 

C-3 Estimation of Solid-Void Surface Area 

Computing the solid-void surface area involved identifying the fraction of each particle 

that was not intersecting any of the other particles, and computing the surface area of that 

fraction.   

The surface area of a spherical segment is given in spherical coordinates by 

, with R, θ and φ defined as shown in Figure 32.  For an entire sphere, the 

limits of integration are  0  θ  π and 0  φ  2π, which reduces to the familiar .  An 

incremental area unit dA is given by , for a constant R. 

∫∫= ϕθθ ddRS sin2

24 RS π=

ϕθθ ddRdA sin2=

66 



 

Rsinθdφ

Rdθ

R

y

x

z

φ

θ

Incremental area dA

 
Figure 32.  Incremental Area in Spherical Coordinates. 

A uniformly distributed random sample of points Ni is generated on the surface of the ith 

particle.  These are generated in spherical coordinates (R,φ,θ) local to the particle.  The 

coordinates of each point are transformed into Cartesian coordinates (x’,y’,z’) local to the 

particle, and then into global Cartesian coordinates (x, y, z) (see Figure 33).  The conversion 

from spherical to Cartesian coordinates is given by 

cosφsinθRx =  
sinθinθsRy =  

θcosRz =  
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Figure 33.  Local and Global Coordinates of Points on the Surface of a Particle. 

 
Each of these data points is tested against the particles in contact with the particle under 

consideration (as given by the touch array, see Appendix A).  If the point is in one of the 

contacting particles, it is not part of the solid-void surface.  The Boolean variable SURF is 

assigned a value of 0, and the next data point on the surface is considered.  If the point is not in 

any of the contacting particles, it is part of the solid-void surface, and the Boolean variable 

SURF is assigned a value of 1.  The counter j is incremented by sinθ.  The solid-void surface for 

the ith particle is given by  

i
ii N

jRSV 222π= .   

Finally, the total solid-void surface area for the packing is given by  
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∑
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n

k
kSVSVArea

1
. 

The algorithm for the solid-void calculation is given in Figure 27. 

This method was checked against a geometric solid-void surface area calculation for 

various one- and two-particle models.  It was found that values of generated an 

error relative to the geometric method of less than 2%.  However, the solid-void surface area 

became zero at less than 100% densification.  Using more data points might overcome or 

mitigate this problem. 

2000,100 ii RN ∝
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