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MODELING DISEASE MANAGEMENT DECISIONS FOR PATIENTS

WITH PNEUMONIA-RELATED SEPSIS

Jennifer E. Kreke, PhD

University of Pittsburgh, 2007

Sepsis, the tenth-leading cause of death in the United States, accounts for more than $16.7

billion in annual health care spending. A significant factor in these costs are unnecessar-

ily long hospital lengths of stay, which stem from the lack of optimal hospital discharge

policies and the inability to assess a patient’s true underlying health state effectively. Re-

searchers have explored ways of standardizing hospital discharge policies by comparing vari-

ous strategies, but have not been able to determine optimal policies due to the large number

of treatment options.

Furthering the state of research into decisions made in the management of patients

with sepsis, this dissertation presents clinically based optimization models of pneumonia-

related sepsis that use patient data to model disease progression over time. Formulated

using Markov Decision Process (MDP) and Partially Observable Markov Decision Process

(POMDP) techniques, these models consider the clinician’s decisions of when to test for

additional information about the patient’s underlying health state and when to discharge

the patient from the hospital.

This work utilizes data from the Genetic and Inflammatory Markers for Sepsis (Gen-

IMS) study, a large multi-center clinical trial led by the University of Pittsburgh School of

Medicine. A key aim of the GenIMS trial is to demonstrate that the levels of certain cytokines

are predictors of patient survival. Utilizing these results, the models presented in this dis-

sertation consider the question of when to test for cytokine levels using testing procedures

that may be costly and inaccurate. A significant result of this dissertation demonstrates
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that testing should be performed when a clinician is considering the decision to discharge

the patient from the hospital.

This study characterizes optimal testing and hospital discharge policies for multiple prob-

lem instances. In particular, multi-region control-limit policies are demonstrated for specific

patient cohorts defined by age and race. It is shown that these control-limit policies depend

on the patient’s length of stay in the hospital. The effects of testing cost and accuracy on

the optimal testing and discharge policies are also explored. Finally, clinical interpretations

of the optimal policies are provided to demonstrate how these models can be used to inform

clinical practice.

Keywords: Markov decision processes, partially observable Markov decision processes, med-

ical decision making, sepsis.
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1.0 INTRODUCTION

1.1 CURRENT SEPSIS MANAGEMENT OPTIONS

Sepsis results from an overwhelming inflammatory response to infection. Under normal cir-

cumstances, the human body mounts a potent, complex immunologic response when invaded

by a pathogen, ensuring adequate protection against infection. For some patients, however,

a deficient immunologic defense may allow infection to become established. On the other

hand, an excessive or poorly regulated response may actually harm the body [117]. By

overproducing or producing the wrong proportions of inflammatory and anti-inflammatory

molecules (also known as cytokines), the body may negatively impact one or more of its

organ systems, leading to organ dysfunction and possibly death. This serious condition,

sometimes referred to as severe sepsis, septic shock, or septicemia, is the tenth leading cause

of death in the United States, as illustrated in Table 1.1.

Researchers continue to explore ways of reducing patient mortality through improving

treatment efficacy at all stages of the disease, yet current therapy options are still mainly

ad-hoc [53] and highly depend on the severity of the disease [117]. Initially, antibiotics may

be used to treat the underlying infection; however, factors such as polymicrobial infections

and antimicrobial-resistant organisms make prompt diagnosis and treatment of infection

difficult [37]. If the administered antibiotics are ineffective, organ support therapies such as

fluid replacement, mechanical ventilation, and blood transfusions, may be needed to prevent

organ failure.

In addition to support treatments, researchers are investigating means by which to control

the body’s inflammatory response. Despite considerable advances in medicine, researchers

still do not have a complete understanding of sepsis at the molecular level [117]. Though
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Table 1.1: Leading Causes of Death, 2003 [54]

Rank Cause of Death Number Percent of

Total Deaths

· · · All Causes 2,448,288 100.0

1 Diseases of the Heart 685,089 28.0

2 Malignant neoplasms 556,902 22.7

3 Cerebrovascular diseases 157,689 6.4

4 Chronic lower respiratory diseases 126,382 5.2

5 Accidents (unintentional injuries) 109,277 4.5

6 Diabetes mellitus 74,219 3.0

7 Influenza and pneumonia 65,163 2.7

8 Alzheimer’s disease 63,457 2.6

9 Nephritis, nephrotic syndrome,

and nephrosis 42,453 1.7

10 Septicemia 34,069 1.4

11 Intentional self-harm (suicide) 31,484 1.3

12 Chronic liver disease and cirrhosis 27,503 1.1

13 Essential (primary) hypertension

and hypertensive renal disease 21,940 0.9

14 Parkinson’s disease 17,997 0.7

15 Assault (homicide) 17,732 0.7

· · · All other causes 416, 932 17.0
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many studies using cells and animals have greatly improved knowledge of the pathophysiology

of sepsis, it is still not clear what factors are advantageous or deleterious in the progression

of sepsis within an individual. As a result, experimental medications aimed at controlling

the body’s inflammatory response have had limited success [15, 16, 77, 119].

1.2 GENETIC AND INFLAMMATORY MARKERS FOR SEPSIS

(GENIMS)

In an attempt to learn more about sepsis, research efforts such as the GenIMS trial led by

the Department of Critical Care Medicine at the University of Pittsburgh and funded by

the National Institutes of Health [45], are trying to understand the body’s inflammatory

response at a molecular level. The work presented in this dissertation utilizes data obtained

through the GenIMS study, which is the largest study to date of this kind.

The study of specific patient populations has been suggested as a way to improve the value

of results from clinical trials of novel anti-sepsis strategies [6]. For this reason, the GenIMS

study chose to focus on pneumonia, the leading cause of sepsis [91]. Further restricting

the cohort, the study includes only those patients who are admitted to the hospital with

pneumonia (i.e., community-acquired pneumonia). The main goal of the GenIMS study is to

determine the extent to which specific genetic, inflammatory, and clinical factors influence the

development of infection and progression to sepsis, organ dysfunction and death. This goal is

achieved through three specific aims: (1) to determine whether specific DNA polymorphisms

for key inflammatory molecules are associated with the risk of developing pneumonia and

progressing to severe sepsis, septic shock, organ dysfunction, and death, (2) to investigate

the relationships among specific DNA polymorphisms, inflammatory molecule expression,

and clinical course and outcome in infection and sepsis, and, (3) to develop and evaluate

clinical decision tools that include genetic and inflammatory response information.

The work presented in this dissertation extends Aims (2) and (3) by developing and

solving optimization models that consider decisions made sequentially and dynamically in

the care of sepsis patients. Due to the complexity of the disease and its treatment, this work
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chooses to focus on decisions made in two areas of sepsis management: cytokine testing

and hospital discharge policies. These decisions are key disease management problems that

regularly impact sepsis treatment. In particular, this dissertation investigates the questions

of when to test for patient cytokine levels and how the information can be used to optimally

discharge patients from the hospital.

1.3 PATIENT-SPECIFIC HOSPITAL DISCHARGE POLICIES

All models presented in this dissertation are parameterized via patient-based information

obtained through the GenIMS trial to model the clinician’s decision-making process for the

treatment of patients with severe sepsis. In particular, these models focus on developing

standard decision-making policies that can provide clinical guidelines for patient treatment.

For example, the last decision a clinician makes during sepsis treatment is when to discharge

a patient from the hospital.

Evidence has shown that the discharge decision is rarely made using patient-based stan-

dards [50]. With the annual costs associated with severe sepsis exceeding $16.7 billion in the

United States [7], it is highly desirable to avoid unnecessary days in the hospital. Yet, de-

spite attempts to decrease costs by reducing hospital length of stay [41, 78], concerns about

the morbidity and mortality associated with premature hospital discharge have resulted in

substantial differences in length of stay between and within institutions [21, 42]. These differ-

ences suggest that decisions are made in an ad-hoc fashion, often due to physician intuition

and clinical uncertainty [17, 78].

Recent studies have focused on standardizing discharge procedures to reduce cost without

increasing the risk of patient morbidity and mortality. In an attempt to develop patient-

based discharge policies, these studies have explored modeling techniques that consider the

cost-benefit tradeoff underlying the discharge decision. For example, Clermont et al. [24]

developed a dynamic microsimulation model to predict various outcomes for critically ill

patients, including day of discharge from the intensive care unit (ICU). While this model

can be used as a predictive tool, it does not provide patient-specific optimal discharge policies.
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Similarly, Halm et al.[50] used statistical modeling to measure the time to clinical stability

in patients with community-acquired pneumonia. The authors discuss how their results can

be used to improve the efficiency of in-patient management by providing an evidence-based

estimate for optimal length of stay. These estimates, however, cannot be easily translated

into health-based discharge policies.

This dissertation extends these and other previous modeling efforts by presenting a model

and analysis of the hospital discharge decision using a Markov decision process (MDP)

approach. Historically, MDPs [13, 89] have been applied in areas such as inventory control

[29, 56] and production planning [14], but have recently seen increased application in medicine

[98], including organ transplantation [3] and HIV therapy planning [100]. Within the limits

of its assumptions, MDPs provide optimal decision policies. In addition, MDPs can more

efficiently evaluate a larger number of policy alternatives than other modeling techniques

used in sepsis research to date, such as statistics [62], Markov modeling [91], and simulation

[22, 24].

1.4 USING CYTOKINE INFORMATION TO IMPROVE PATIENT

SURVIVAL

A key aim of the GenIMS investigation is to demonstrate that the levels of certain cytokines

are strongly correlated with patient survival. It has been discovered that in some cases, a

patient may appear to be well, but the patient’s cytokine levels indicate that the patient

has a higher probability of death should the patient be discharged from the hospital than if

the patient were to remain in the hospital receiving standard treatment [63]. Assuming that

cytokines are correlated with patient survival, it is clear that knowing the levels of these

cytokines will change how the clinician makes decisions, for example, when to discharge the

patient from the hospital.

The decision of when to test for cytokine information is not obvious for several reasons.

First, the test may be costly both from an economic standpoint and in terms of the time

spent by the clinician in performing the test and analyzing the results. Given this cost, the
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clinician may not want to order a test in each time period leading to periods of time when no

test results are received. Secondly, the testing procedure may be inaccurate. For example,

the test results may have an associated measurement error. Even when the measured test

results are accurate, there may be an error associated with how the clinician interprets the

results with respect to the patient’s true underlying health state. Each of these situations

creates an environment of partial observability, in that the patient’s underlying true health

state is not known with certainty by the clinician.

This dissertation presents a Partially Observable Markov Decision Process (POMDP)

model [81, 82, 103] to explore how testing decisions influence the hospital discharge decision.

POMDPs extend the modeling framework of the MDP by allowing the current state of the

patient to be partially observable. In this case, the true underlying health state can only be

observed through a testing procedure that may have associated error and cost.

POMDPs have been previously applied to medical decision making questions in the areas

of heart disease treatment [51, 85], efficient dosage policies for medical drug therapy [55],

and breast cancer treatment [57], but this is the first study to utilize patient-based data

from a large scale clinical trial to develop optimal policies that can inform clinical decision

making guidelines.

1.5 GENERAL PROBLEM STATEMENT

The cytokine testing and hospital discharge decisions made in the management of a patient

with sepsis can be described more formally as follows.

A patient is admitted to the hospital. At some point at or after hospital admission,

the patient is suspected of having developed sepsis. Once suspected of having sepsis, the

clinician then treats the patient following some general treatment process or strategy. The

data used in this study consider only those patients that are suspected of having sepsis,

based on a variety of criteria utilized by the GenIMS investigator team. This dissertation

does not consider issues related to the diagnosis of sepsis.
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Treatment decisions are made based upon the patient’s current health state, which is

comprised of completely and partially observable elements. Completely observable elements

of the patient’s health state can be directly observed by the clinician. Partially observable

elements, however, are not directly observable, usually because they can only be obtained

through testing procedures that have associated costs and degrees of accuracy.

It is assumed that at regular intervals during the treatment process, the clinician must

make decisions about patient care. Due to the complexity of the disease and resulting

treatment options, this dissertation considers only a subset of the decisions made during

the treatment process, namely, when to order various tests for more information about the

patient’s underlying health state and when to discharge the patient from the hospital. It is

assumed that all other decisions follow the “standard care” process, although as has already

been discussed, opportunities exist throughout sepsis treatment for the standardization of

treatment policies.

At each decision point the clinician can readily observe various completely observable

elements of the patient’s health state. If tests were ordered previously, the clinician may also

have test results to observe. Based on this information, the clinician then chooses either to

discharge the patient from the hospital or to keep the patient in the hospital for continued

treatment. If the clinician chooses to keep the patient in the hospital, then the clinician can

also choose, for a cost, to order one or more tests to obtain additional information about the

partially observable elements of the patient’s health state. It is assumed that the test results

are received at the beginning of the next time period and are therefore available before the

next decision is made.

The clinician’s goal at each decision point is to maximize the patient’s expected survival

over a finite observation horizon. Since sepsis is an acute, short-term disease, patient death

due to sepsis usually occurs within 90 days of hospital admission. As a result, the models

presented in this dissertation measure the value of a decision policy in terms of a patient’s

90-day expected survival as measured from hospital admission. Sepsis treatment typically

occurs over an even shorter treatment horizon. As observed in the GenIMS study, treatment

rarely last longer than 30 days; therefore, the models considered in this dissertation utilize

a treatment horizon of 30 days.
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1.6 DISSERTATION AIMS

This dissertation models this general problem as a POMDP. Due to the complexity of analyz-

ing and solving large-scale POMDPs [18, 103], this dissertation then considers two simplified

model variants. For each of these model variants, the model structure and optimal poli-

cies are analyzed and computational experiments are conducted using patient data from the

GenIMS trial. The overall goal of this dissertation is to provide insight into decision making

strategies for the management of patients with sepsis. In addition, the insight gained from

the application of these novel modeling techniques to the field of medical decision making

will further the roles of industrial engineering and operations research in formalizing deci-

sion making strategies in clinical practice. These goals are further described in the following

sections.

1.6.1 Gaining insight into optimal policy structure

In addition to formulating the clinician’s hospital discharge and testing decisions, the dis-

sertation investigates the mathematical structure of these models.

For example, one goal of this dissertation is to characterize non-stationary optimal poli-

cies for the hospital discharge problem. A non-stationary control-limit policy takes the fol-

lowing form: treat the patient in the hospital until the patient’s health improves and reaches

a time-dependent control limit state, then discharge the patient from the hospital. These

types of policies are appealing since they are easy to understand and can be implemented

as part of a general discharge strategy. In addition to defining optimal policies, properties

of the input parameters and other model components are also evaluated.

Another goal of this dissertation is to explore the impact of test cost and accuracy on

testing and discharge decisions. In particular, the effects of increasing test accuracy and

decreasing test costs on the decision of when to test for additional cytokine information will

be used to motivate the need for more accurate and less expensive testing methods.

From a research perspective, these structural properties provide mathematically interest-

ing insights into a new application of the MDP and POMDP modeling methodologies. From
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an application standpoint, the results help to provide structure to a decision making strategy

that is mainly ad-hoc in practice. As will be discussed in later chapters, these results are

particularly interesting in that they suggest that standard policies are possible. Even though

the models are fairly simplistic from a clinician’s viewpoint, they provide a starting point for

future analysis. These policy structures suggest baseline strategies to inform future policy

decisions within the medical decision making community.

1.6.2 Calibrating complex models with actual patient data

This dissertation also uses patient data from the GenIMS trial to solve various problem in-

stances based on a variety of patient characteristics. It will be shown that the optimal policies

for many problem instances are similar to control-limit type policies. For the POMDP in-

stances, the results pertaining to changes in test cost and accuracy are also validated. While

the specific results are not yet at the level that can be directly implemented in practice, they

do validate many of the results that are shown through the structural analysis. A comparison

of results based on varying patient cohorts is also presented.

From a stochastic optimization research perspective, computational experiments demon-

strate the effectiveness of using the MDP and POMDP modeling techniques to determine

optimal policies for clinical decisions made in the treatment of patients with sepsis. From

an application perspective, computational experiments tie the mathematical models back to

the underlying clinical problem by presenting concrete examples of input parameters and

resulting optimal policies. As will be seen for each instance tested, the optimal policy can

be translated into an actual optimal decision that should be made for each possible state

and stage. This information is particularly useful when explaining the model structure and

results to the medical community in general and to the clinicians that actually make these

treatment decisions in practice.
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1.7 DISSERTATION ORGANIZATION

The remainder of this dissertation is organized as follows: Chapter 2 reviews the literature

concerning the current state of medical decision making in general and as related to sepsis

research in particular. Background information on the modeling methodologies used through-

out this dissertation is also provided. Chapter 3 then presents a formulation of the general

model as presented in the problem description. An overview of the model, its variants, and

its relationship to the remainder of the dissertation are discussed. Chapter 4 then presents a

simplified variant of the general model in which the hospital discharge decision is considered

in an MDP model that uses the Sepsis-related Organ Failure Assessment (SOFA) score to

describe the patient’s completely observable health state. Chapter 5 extends this model with

another simplified variant of the general model in which both the hospital discharge decision

and the cytokine testing decision are considered in a POMDP model that uses the value of

a single cytokine to describe the patient’s observable health state. In both Chapters 4 and

5, structural results of the model formulations and computational experiments utilizing the

GenIMS data are presented and discussed. Chapter 5 also discusses heuristic approaches

for combining the results from the MDP and POMDP models to develop more complex

SOFA- and cytokine-based testing and discharge policies. Finally, Chapter 6 discusses the

contributions of this dissertation from both the medical application and the methodological

research perspectives and provides directions for future research.
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2.0 LITERATURE REVIEW

2.1 CURRENT METHODS IN SEPSIS MODELING

Until recently, clinical trials aimed at assessing the efficacy of treatment options for sepsis

have met with limited success due both to trial design [6] and treatment options [20]. By

the year 2000 there were over thirty large randomized controlled trials (RCTs) of novel anti-

sepsis strategies that failed to demonstrate any clinical impact [6]. Since then, numerous

other RCTs have met with the same fate [25, 53]. Due to the complexity of the disease, RCTs

have been unable to adequately compare the virtually limitless management possibilities.

These failures provide strong evidence of the need for advanced modeling techniques that

allow for the evaluation of a large number of treatment decisions made over time without the

need for large RCTs. With the advent of clinical studies like GenIMS, aimed at gathering

data concerning the underlying progression of the disease, the use of mathematical modeling

techniques to analyze and interpret therapeutic options has become increasingly important.

Mathematical modeling serves to extend current research efforts by providing the capability

to analyze both current and new treatment strategies.

Many clinical researchers have begun to develop models to compare available manage-

ment options [33] based on clinical data from large-scale trials like GenIMS. These studies

are aimed at assessing the effectiveness of various anti-sepsis treatments and strategies and

demonstrating a relationship between one or more clinical, biological, inflammatory, and

genetic factors and patient survival. The models presented in this dissertation extend these

efforts by allowing for the implicit comparison of virtually all decision options to determine

the optimal strategy.
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This section both reviews the literature surrounding sepsis modeling as well as presents

the current state of medical decision making methodology including cost-effectiveness analy-

sis, decision trees, influence diagrams, Markov modeling, Bayesian analysis, simulation anal-

ysis, and Monte Carlo simulation. Relevant studies involving other medical decision making

questions are discussed as needed to describe the application of a specific methodology. Most

importantly, the motivation for the modeling techniques used in this dissertation, namely

Markov decision processes and partially observable Markov decision processes, is presented.

Since the models presented in this dissertation are the first applications of these techniques

to questions in sepsis management, applications of these methods to other areas in medical

decision making are also reviewed.

2.1.1 Cost-effectiveness analysis

Cost-effectiveness analysis (CEA) [48, 86] is a commonly used analysis technique that in-

volves the calculation and comparison of the costs and effects of various disease management

options. The relative cost-effectiveness of each option can then be assessed by calculating

and comparing their respective incremental cost-effectiveness ratios. In the area of sepsis

research, Wang et al. [115] conducted a cost-effectiveness analysis to compare the use of var-

ious treatments in the management of sepsis. The authors concluded that the epidemiology

of the disease state is an important factor in cost-effectiveness analysis and recommended an

infection-specific approach to modeling treatment options in sepsis. Burchardi and Schnei-

der [16] compared intensive care unit (ICU) care versus non-ICU care for the treatment of

patients with sepsis. They also investigated the cost-effectiveness of potential new therapies

and concluded that new therapies should be directed at patients that are the most likely to

benefit from the costly intervention. Both of these studies demonstrate the ability of cost-

effectiveness analysis to compare known treatment strategies and possibly suggest direction

for new research. However these studies cannot be used to suggest what these new strategies

should be.
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2.1.2 Decision trees and influence diagrams

To evaluate the effects of a particular disease management strategy, medical decision makers

often employ graphical analysis techniques such as decision trees [86] and influence diagrams

[33]. Decision trees use a logical, cause-and-effect framework to depict possible decision

choices and all possible outcomes for each choice. The outcomes can be deterministic or

based upon a known probability distribution. Marchetti et al. [76] used a decision tree

framework to demonstrate that a combined prophylactic splenectomy and cholecystectomy

provides a substantial gain in quality-adjusted life expectancy in certain patient cohorts

as compared to the no surgery option in the treatment of patients with mild hereditary

spherocytosis.

Unfortunately, as the number of possible decisions increases, the decision framework can

become unmanageable and difficult to analyze. This problem occurs, in particular, when a

decision or series of decisions must be made sequentially throughout time with the effects

of earlier decisions influencing later decisions. The MDP framework discussed in the next

section will improve this framework, even though it too suffers from what has become known

as the “curse of dimensionality” [12], though at a much later stage than the decision tree.

While a decision tree describes the causes and effects of decisions made in a specific

management strategy, an influence diagram is a network with directed arcs and no cycles

that is used to show relationships between random variables and possible decisions. Unlike

in a decision tree, where the probability distributions that characterize the effects of making

a particular decision are necessary to evaluate a decision policy, the influence diagram can

actually be used to gain insight into the value of the transition probabilities themselves. This

technique, however, requires an in-depth understanding of the relationships between variables

that comprise the system under analysis. In the field of sepsis treatment, researchers are

still working to develop a fundamental understanding of the disease [53]. A specific aim of

the GenIMS study is to “investigate the relationships among specific DNA polymorphisms,

inflammatory molecule expression, and clinical course and outcome in infection and sepsis.”

This information will be useful in constructing an influence diagram of sepsis as part of

future research efforts.
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As the relationships between patient health states become more complicated, influence

diagrams will often employ Bayesian methods to capture conditional probability distribu-

tions between random variables. Spiegerlhalter presented graphical Bayesian methods that

are basically complex influence diagrams [108]. Computational methods were also discussed.

Computational methods for using influence diagrams as input to more advanced modeling

techniques also exist [73, 99]. In particular, Magni and Bellazzi [73] developed a software

package called DT-Planner that used an “influence view” to depict the probabilistic rela-

tionships between variables that is then used to specify an MDP formulation of the model.

2.1.3 Markov modeling

Extending the capabilities of decision trees and influence diagrams, a common structure used

to calculate the effects of a particular disease management option is the Markov model [83,

107]. Markov modeling is a decision-analytic technique in which all of the relevant conditions

in a particular problem are represented as a set of states that are mutually exclusive and

exhaustive. Patients (or portions of an entire cohort of patients) move through the model

according to probabilities that govern how likely it is to transition from one state to another.

The long-term behavior of the model provides insight into the expected behavior of the

patient or group of patients under the current system as modeled. For more information on

the general application of Markov models to medical decision making, the reader is referred

to Sonnenberg and Beck [107].

Markov modeling has been used to understand the progression of sepsis in patients.

Rangel-Frausto et al. [92] conducted a nine-month prospective cohort study, using their

results to develop a Markov model of the natural history of sepsis. This model has the ability

to predict the probability of movement to and from varying stages of sepsis (sepsis, severe

sepsis, and septic shock) and can be used to predict the reduction in end-organ dysfunction

and mortality resulting from the use of increasingly effective antisepsis agents. Bauerle et al.

[11] developed a three-state (well, septic, and dead) Markov model to describe the course of

the disease in critically ill patients. They used this model to develop risk profiles of various

patient groups, allowing for the comparison between age- and gender-specific survival rates.
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In addition to the study of sepsis, Markov modeling has been used in other areas of med-

ical decision making, such as the study of patient preferences for various treatment options.

For example, Ahn and Hornberger [1] developed a Markov model to asses organ quality from

the patient’s perspective in the allocation of organs for transplant to patients with End-Stage

Renal Disease (ESRD). In their paper, Ahn and Hornberger presented a decision model that

considers patient preferences for specified health states that then influence the patients’ de-

cisions about which organ are acceptable for transplantation. The authors demonstrated

that patients with favorable health characteristics can afford to be more selective about the

quality of the transplant organ whereas less healthy patients may be inclined to select a

lower-quality organ. In another interesting application of Markov modeling, Kao [60] pre-

sented a semi-Markov process model that looks at patient paths through the hospital based

on various arrival rates to determine care requirements based on patient characteristics. The

semi-Markov nature refers to the incorporate of time into the state description, since patient

length of stay in the hospital was seen to be a significant factor in care requirements.

2.1.4 Simulation

In recent years, simulation has become a popular and commonly used modeling method in

medical decision making. Simulation analysis [68] is a method by which logical rules are used

to replicate, or imitate, a system in order to gain understanding and insight into how that

system behaves. For example, Clermont et al. [24] developed a dynamic microsimulation

model to predict various outcomes for critically ill patients, including day of discharge from

the intensive care unit (ICU). While this model can be used as a predictive tool, it does

not provide patient-specific optimal discharge policies. Similarly, Saka et al. [96] developed

a simulation model of sepsis in order to study the rates of hospital discharge and patient

death based on the patient’s changing health state over time as well as static variables such

as age and race. The authors calibrated the model with clinical data from the GenIMS

trial. As will be discussed in future chapters, the work presented in this dissertation extends

this simulation model by modeling the clinician’s decision making process and how it affects

the patient’s health state transitions. Other simulation models in the medical literature
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can be found in the areas of critical care medicine [67], HIV modeling [102, 104], organ

transplantation [66, 96, 101], and infectious disease modeling [70].

Monte Carlo simulation [68] is a specific simulation tool that considers a static framework,

or a system in which the passing of time does not need to be explicitly modeled. Similar

to Markov modeling, the model consists of possible states with transition probabilities that

govern how patient transitions between these states. In a Monte Carlo simulation, however,

patients are sent through the model one at a time and random numbers are used at each

transition point to determine how the patient transitions through the model. Studying

the results for large cohorts of patients lends insight into the functioning of the system. For

example, Su et al. [111] developed a Monte Carlo simulation model to compare various organ

allocation policies for kidney transplantation to study the effects of incorporating patient

preferences into the allocation policy. Related works by these authors include [120, 121].

Cost-effectiveness analysis, decision trees, Markov modeling, and simulation are effective

methods of evaluating and comparing specific management options, but they cannot be

used to compute an optimal management strategy comprised of dynamic decisions made

throughout time. Even using these methods to evaluate a large number of management

options can become computationally prohibitive.

2.1.5 Motivation for advanced techniques

This dissertation extends current research efforts in the study of sepsis treatment by utilizing

an modeling technique called the Markov decision process (MDP) to consider not only the

stochastic progression of the disease, but the resulting effects of sequential decisions made

throughout time as well. MDPs extend the framework of the Markov process model by

introducing a control process that directly influences how a patient transitions between

states. The solution to an MDP is an optimal decision making policy that can be used to

inform clinical practice, not merely an evaluation of a few pre-defined policies. Section 2.2

describes the MDP modeling structure in more detail.

This dissertation presents the first MDP model to consider decisions made in the treat-

ment of sepsis. MDPs, however, have been successfully applied to medical decision making
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questions in the areas of organ transplantation [3, 4, 26], hereditary spherocytosis treat-

ment [74], and the control of infectious disease epidemics [69]. A general review of MDPs in

medicine is provided in [98].

Alagoz et al. [3] presented an MDP model that addresses the clinical question of when

to conduct a living donor liver transplant in order to maximize the patient’s life expectancy

(or quality-adjusted life expectancy). The authors presented clinically intuitive conditions

on the input parameters that ensure that the optimal policy will be of a particular type.

Computational results using patient-based data were included to support these policies for

specific patient cohorts. In [4], Alagoz et al. extended their earlier work by modeling

the patient’s choice between a living donor transplant and a cadaveric liver transplant in

addition to the clinician’s decision of when to conduct the transplant procedure. Structural

results demonstrated specific policy types, which were confirmed through computational

experiments using clinical data. Another liver transplant study by these authors is [2].

David and Yechiali [26] used an MDP to model the decision of whether to accept or

reject a kidney transplant offer. The authors considered how the length of the patient’s time

under medical care affects the optimal policy. Various organ offer rates were tested and a

numerical example using clinical data was interpreted in the context of the model.

Magni et al. [74] demonstrated the improvements that the MDP offers over traditional

modeling approaches such as decision trees and influence diagrams, mainly in its ability to

consider dynamic, sequential decisions. They presented an MDP model of when to perform

prophylactic surgery in patients with mild hereditary spherocytosis. Using data from the

literature and clinical expertise, the authors modeled the dynamic progression of the disease

and used this understanding of the disease to solve both their MDP model as well as a

traditional static model. Comparing model results, they were able to demonstrate significant

gains in patient quality-adjusted life days by delaying surgery in some cases according to the

MDP optimal policy versus the static policy.

Lefevre [69] modeled the spread of an infectious disease in a closed population. The

continuous-time Markov decision process considered decisions such as quarantining section

of the population and implementing medical care programs to control the spread of the

disease. In addition to presenting the model formulation, Lefevre analyzed the dependence of
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the optimal policy on the input parameters and provided conditions on the input parameters

that ensure that the optimal quarantine and medical program levels do not increase as the

size of the infected population increases.

Markov decision problems are based upon the assumption that the current state is com-

pletely observable, i.e., all information about the state can be observed or known with

complete certainty. The partially observable Markov decision process (POMDP) [13, 82], a

generalization of the MDP, relaxes this assumption and allows the model to consider patient

health states that can only be observed through an inspection or testing procedure. This

state, therefore, is said to be partially observable because the observation procedure is either

inaccurate (due to testing and/or test interpretation error) or costly (and therefore it may

not be performed at every decision point). The POMDP framework, described in detail

in Section 2.3, describes the patient health state not by the values of the patient variables

themselves; rather, the state is described as the clinician’s belief in what the variables are,

which is based upon the values of the observations received up until the current point. While

this framework is much more general than the MDP, its data requirements make it difficult

to obtain practical results.

This dissertation is the first work to utilize POMDPs in the study of sepsis management.

It is also one of the first studies to use patient-based data to derive optimal decision policies

in the hopes of informing clinical practice. POMDPs have been previously applied in other

areas of medical decision making, such as ischemic heart disease treatment [51], congenital

heart disease treatment [85], efficient dosage policies for medical drug therapy [55], and

breast cancer treatment [57].

Hauskrecht and Fraser [51] presented a POMDP model for the management of patients

with ischemic heart disease. The authors constructed a hierarchical Bayesian belief network

based on data from the literature and clinical expertise to represent the disease dynamics.

Their work demonstrated the ability of the modeling framework to provide clinical insight,

but they discussed issues with increasing computational complexity as the model size in-

creases.

As in [51], Peek [85] presented an influence diagram to describe the underlying relation-

ships between state variables in patients with ventricular septum defect, a disorder with
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characteristics for congenital heart disease. The author utilized this diagram to construct a

POMDP model that considers the various treatment decisions such as when to perform a

chest X-ray and when to perform surgery. While the model captured many aspects of the

disease and its treatment, the author does not present structural policy results or solutions

obtained from clinical data.

Hu et al. [55] presented a POMDP model to determine efficient dosage policies from

medical drug therapy. Specifically, they considered the effects of various information gath-

ering policies, such as myopic policies and active learning policies. Computational results

were presented to compare policy types and a passive information gathering strategy was

suggested for use in clinical practice.

The work presented in this dissertation investigates questions in sepsis management using

both MDPs and POMDPs. In addition to presenting the model formulation, the models are

solved using patient-based data obtain from the GenIMS trial. Model results are interpreted

and general policy recommendations are presented to inform clinical practice. The main

contribution of this work is its ability to provide insight based on an analysis of model

structure and results calculated from patient-based data.

Unfortunately, while the models discussed in this review have made great strides in

presenting and motivating the use of these frameworks and in demonstrating the complex-

ity they can incorporate, the models have not led to implementable results, largely due

to insufficient data availability. As additional data become available, many of the models

and techniques in the literature will prove to be increasingly valuable to clinical practice.

To begin to bridge the gap between theory and practice, the model presented in this dis-

sertation attempts to incorporate sufficient complexity to capture the dynamic nature of

disease progression, while still allowing for solutions to be obtained with available data. The

next sections provide background information on the mathematical structure of MDPs and

POMDPs before moving on to present the general model.
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2.2 MARKOV DECISION PROCESSES

The Markov decision process [12, 13, 89] is a general modeling technique used to formulate

a problem involving sequential decisions made over time. The objective is to maximize a

reward function that quantifies the effects of all possible outcomes of these decisions. A

basic MDP model has two main features: a discrete-time dynamic and stochastic system

that underlies the entire problem and a reward function that is additive over time.

The underlying dynamic system describes how the system changes as decisions are made

at discrete points in time called stages. At each stage, the decision maker observes the state

of the system and chooses one action from the set of all actions available at that specific

point in time. Based on the state and action chosen, the decision maker receives some reward

and then the system’s state changes based on specified transition probabilities. A policy is a

decision rule that tells the decision maker which action to take when a patient is in a given

state at a given time. The value of this decision rule is calculated through the value function.

The optimal policy is the policy that maximizes the total expected reward received by the

decision maker; or, in other words, the policy that maximizes the value function for each

starting state.

A basic assumption of the Markov decision process is that the state is Markovian. In

other words, the current state in the model is assumed to capture all information necessary to

make a decision moving forward. While this assumption may seem unreasonable, the state

description can be altered to incorporate any historical information that may be needed

when making a decision in the current stage. Unfortunately, data requirements necessary

for the solution of the model increase exponentially with the size of the state space, which

is often referred to as the “curse of dimensionality” [12]. These issues will be discussed in

more detail as they related to the models presented in later chapters.

The definition of stages allows for the separation of the class of MDPs into finite- and

infinite-horizon problems. In finite-horizon problems, rewards are received over a finite num-

ber of stages while infinite-horizon problems allow for the accumulation of rewards over an

uncertain or indefinite horizon. The models presented throughout this dissertation are finite-

horizon problems, though finite-horizon problems can be reformulated as infinite-horizon
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problems through a standard augmentation of the state with the stage [32]. A general

description of a finite-horizon problem is provided.

Following a modified version of the notation from Puterman [89], let N be the time-

horizon and let S be the defined state space of the MDP. For every stage t and state st ∈ S,

let the set of feasible decisions or actions be A(st), where for every action at ∈ A(st), the

decision maker receives reward rt(st, at). It is assumed that the rewards are bounded and

that S and A(st) are discrete and finite. A transition from state st to state st+1 when action

at ∈ A(st) is chosen occurs with probability pt(st+1|st, at).

Let a policy d = {d1, d2, . . . , dN} be a sequence of decision rules, where a decision rule dt

is a function mapping states into actions at stage t such that dt(st) ∈ A(st). The application

of such a policy induces a Markov chain where Xt is the state of the system at stage t and

Yt is the action chosen in state Xt, so that Yt = dt(Xt).

The objective of an MDP is to find an optimal policy d∗ that maximizes one of three

criteria: the total expected reward, the total discounted expected reward, or the average

reward per stage. The total expected reward criterion is often used when the reward received

in later stages of the model has the same value as those received in earlier stages, which is

often the case for finite-horizon problems with a short time horizon. This criterion is used in

the models presented in this dissertation as the time horizon is relatively short as compared

to the lifetime of the patient.

In infinite-horizon problems, particularly those that consider decisions that may take

place very far in the future, the total discounted expected reward criterion is used to give

more importance to decisions made in the near future than those made at a later point in

time. For more information on the total discounted expected reward criterion, the reader is

referred to [13, 95]. Studies, such as [38], have also explored the effects of various weighting

mechanisms for discrete time, infinite horizon MDPs.

For infinite-horizon applications where discounting is inappropriate and there is no nat-

urally occurring cost-free state the system eventually enters, then the total expected reward

criterion may not be applicable because the total cost is not guaranteed to be finite. In such

cases, it is often advisable to use the average reward per stage criterion [13].
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The total expected reward criterion is further explained as it will be used in the models

presented throughout this dissertation. Let V d
t (st) represent the total expected reward when

policy d is used and the system starts in state st where,

V d
t (st) =

N∑
t=1

rt(Xt, Yt).

Under the assumptions of bounded rewards and finite S and A(st), V d
t (st) exists for each

d ∈ DMD, the set of all deterministic, Markovian policies [89]. Let V ∗
t (st) denote the optimal

total expected reward for each state st ∈ S where,

V ∗
t (st) = max

d
V d

t (st).

Then, by the principle of optimality [89], V ∗
t (st) can be found by solving the standard set of

optimality equations, also known as the Bellman equations [12]:

V ∗
t (st) = max

at∈A(st)

rt(st, at) +
∑

st+1∈S

pt(st+1|st, at)V
∗
t (st+1)

 , for t = 1, . . . , N − 1, and

V ∗
t (sN) = rN(sN), for all sN ∈ S.

2.2.1 MDP structural results from the literature

Each proposed model in this dissertation is formulated as an optimal stopping problem with

ordered states. Optimal stopping problems are discussed in greater detail in Section 2.4. In

this problem, the decision maker can either decide to continue or to stop the process based

on the current state of the system. A general description of the optimal stopping problem

with a completely observable state space can be found in [31, 34].

Assuming an ordering on the state space, the most significant result for an optimal

stopping problem is to demonstrate that the optimal policy is of control limit type. Using

the notation introduced at the beginning of Section 2.2, a control limit policy [89] is composed

of decision rules, dt(st), of the form:

dt(st) =

 a1 st < s∗t

a2 st ≥ s∗t .
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This equation says that if the value of the state at time t is less than some value s∗t , which

may or may not be time-dependent, then the optimal action is a1. Otherwise, the optimal

action is a2. Bertsekas [13] shows several optimal stopping problem applications (e.g. asset

selling, purchasing with a deadline) for which the optimal policy is of control limit type.

Puterman [89] presents general conditions for the existence of a control limit policy,

which include:

1. Inductively showing that the optimal value functions from t onward are nonincreasing or

nondecreasing in the state, and

2. then showing that the value function itself is superadditive or subadditive.

These conditions are further discussed in Chapter 4 as they relate to the models presented

in this dissertation. Examples of control limit policies can be found in [13, 89]. In addition to

satisfying these general conditions, application-specific conditions have been demonstrated

in the literature. For example, Alagoz et al. [3] provide clinically realistic conditions under

which it is optimal to perform a living donor liver transplant.

2.2.2 MDP solution procedures

The separability of the MDP decisions allows for the decomposition of the above problem

into smaller related subproblems. As a result, such decisions can be solved using a simple

backward induction algorithm [89], which is presented in Appendix C. Backward induction

is used to solve the MDP models presented in this dissertation. A variety of techniques exist

for solving infinite-horizon problems, including value iteration, policy iteration, or modified

policy iteration [13, 89].

An MDP can also be converted to an equivalent linear program and solved using standard

linear programming techniques [28, 32, 75]. This solution method also has advantages from a

modeling perspective in that it allows for the incorporation of constraints [5, 52]. Simulation

can be used to determine suboptimal decision policies, particularly for the case of Semi-

Markov models in which the underlying stochastic process cannot be characterized by the

Markov chain alone [49].
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The Markov decision process extends commonly used methodologies such as Markov

modeling and simulation in that it can be used to compute optimal policies rather the

merely evaluate a prespecified policy. One potential disadvantage of the MDP is that it

assumes that the state of the system is completely observable at each decision point. In

many applications in medicine, this is often not the case as the clinician observed available

information and then tries to determine the patient’s true underlying health state from this

observed information. Partially observed Markov decision processes, as discussed in the next

section, incorporate a partially observable state space and an observation process to more

accurately model these types of situations.

2.3 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

The POMDP generalizes the MDP structure in that the patient’s state is no longer required

to be fully observable. As a result, the basic POMDP model includes an observation process

in addition to the discrete-time dynamic and stochastic system and additive reward function

that comprise a standard MDP. This observation process relates information that can be

readily observed by the decision maker to the true system state through a known probability

distribution.

The structure of a POMDP includes the five basic components of an MDP: stages, states

(also referred to as core states), actions, transition probabilities, and rewards. In addition,

a POMDP includes observed states (or information states), which describe the information

about a patient that a clinician can directly observe (such as test results); a belief vector,

which describes the probability that a patient is in a given core state given the patient’s

current observed state; and observation probabilities, which relate the observation states to

the core states. The observation probabilities in the context of the models presented in this

dissertation can also be described as test error (or test interpretation error).

Recalling the notation from the previous section, N represents the time-horizon and S

represents the defined core state space of the POMDP. A key difference between the MDP

and the POMDP is that the core state st cannot be directly observed by the decision maker.
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Define O as the set of observed states. The probability of observing state ot+1 ∈ O given that

the underlying core state is st, zt(ot+1|st, at), depends both on the probabilistic relationship

between ot+1 and st, called the observation probability, as well as the action chosen. Since

the observation process may have an associated cost or error, the decision maker may not

choose to make an observation in every stage. As a result, let πt(st) denote the decision-

maker’s belief that the patient is in core state st at stage t. Let πt denote the belief vector

that defines the probability distribution over all st ∈ S, where Π defines the set of all possible

belief vectors.

Using an initial estimate of the probability distribution over the true core states (called

the prior distribution), the current observation of the patient, knowledge of the last action

taken, and a distribution for the observation error (test error) if an observation (test result)

was just received, Bayesian updating is used to form new estimates of the core states (called

the posterior distribution). In other words, the following updating function is used to update

πt(st) to πt+1(st+1):

U(πt+1(st+1)|ot+1, at, πt(st)) ≡ πt+1(st+1)

=
z(ot+1|st+1, at)

∑
st∈S pt(st+1|st, at)πt(st)∑

st+1∈O z(ot+1|st+1, at)
∑

st∈S pt(st+1|st, at)πt(st)
.

It has been established that πt summarizes all of the information necessary for making a

decision as stage t [13, 106]. For every stage t and belief vector πt ∈ Π, let the set of feasible

decisions or actions be A(πt). Note that the MDP in which the core state was completely

observable was defined on a finite state space. Since the core process must now be observed

through an observation process, the POMDP can be defined as an equivalent MDP on an

uncountable state space defined by the set of all possible belief vectors.

For notational convenience, define the probability of receiving observation ot+1 at time

t + 1 given that the belief vector was πt at time t as γt(ot+1|πt, at), where

γt(ot+1|πt(st), at) =
∑

st+1∈O

z(ot+1|st+1, at)
∑
st∈S

pt(st+1|st, at)πt(st).

For every action at ∈ A(πt) define a reward function rt(st, at) that describes the imme-

diate reward received when action at is taken at time t when the system is in core state
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st. The resulting reward function rt(πt(st), at) can then be calculated as rt(πt(st), at) =∑
st∈S rt(st, at)πt(st).

As in the MDP, let a policy d = {d1, d2, . . . , dN} be a sequence of decision rules, where a

decision rule dt is a function mapping states into actions at stage t such that dt(πt) ∈ A(πt).

The application of such a policy induces a Markov chain where Xt is the state of the system

at stage t and Yt is the action chosen in state Xt, so that Yt = dt(Xt).

Let V d
t (πt) represent the total expected reward when policy d is used and the system

starts in belief state πt where, V d
t (πt) =

∑N
t=1 rt(Xt, Yt). Let V ∗

t (πt) denote the optimal total

expected reward for each state πt ∈ Π where,

V ∗
t (πt) = max

d
V d

t (πt) for all πt ∈ Π.

As shown in [82, 103], V ∗
t (πt) satisfies the following recursion:

V ∗
N(πN) = rN(πN),

V ∗
t (πt) = max

{
rt(πt, at) +

∑
ot+1∈O γt(ot+1|πt(st), at)V

∗
t+1[U(πt+1|ot+1, at, πt(st))].

}

for all πt ∈ [0, 1].

POMDP models present a great challenge as they are in general more difficult to analyze

than their MDP counterparts and their data requirements are significantly greater. The

optimal policies of the more general models typically lack structure and the added uncer-

tainty in the problem due to the incorporation of partial observability results in additional

computational difficulties.

2.3.1 POMDP structural results from the literature

Monahan [81] considers partial observations and presents a general model of the optimal

stopping problem where complete information can be purchased by testing. Unlike the

completely observable optimal stopping problem referred to in Section 2.2.1, Monahan is

able to demonstrate through an example that the optimal policy for this case may not have

special structure. In particular, he shows that control-limit policies may not exist, the set

of states for which it is optimal to purchase information (test) may not be convex, and
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the optimal policies may not be monotone. In previous work, Monahan [79, 80] shows the

optimal policy to be well structured for specific cases of the finite horizon partially observable

stopping problem such as under conditions of perfect observability and complete uncertainty.

Monahan [82] explores the effects of partial observability on the optimal solution. Chap-

ter 5 expands his results by exploring the effects of test cost and accuracy on the optimal

decisions of when to test for cytokine levels and when to discharge the patient from the

hospital.

In a more general paper, Smallwood and Sondik [103] show that for any finite-horizon

POMDP, the optimal value function, Vn(π), is piecewise linear and convex. Define N as the

total number of decision periods and n as the number of decision periods remaining. Let πi

be the probability that the current internal state of the system is i, where the belief vector

is π = [π1, . . . , πN ].

Theorem 2.3.1 (Smallwood and Sondik (1973)) Vn(π) is piecewise-linear and convex, and

can thus be written as

Vn(π) = max
k

[
N∑

i=1

αk
i (n)πi

]

for some set of vectors αk(n) = [α
k(n)
1 , . . . , α

k(n)
N ], k = 1, 2, . . ..

This result demonstrates that the state space can be partitioned into a finite number of

convex regions within which the value function is linear. Smallwood and Sondik use this

partitioning in an algorithm for solving finite-horizon POMDPs as will be discussed in the

following section.

2.3.2 POMDP solution procedures

POMDPs are in general more difficult to analyze than their MDP counterparts. The standard

approach to solving POMDPs involves transforming the POMDP into an equivalent, fully

observable MDP, over all possible probability distributions on the original core state space

[9, 105]. The continuous state space of the resulting MDP is computationally difficult to

handle, resulting in limited and complicated solution algorithms [72].
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Feasible numerical methods often involve reducing the infinite number of possible states

of the system to a finite grid of points [71]. As stated previously, Smallwood and Sondik [103]

show that for a finite-horizon problem, the optimal value function is piecewise linear and

convex. Thus, the state space can be partitioned into a finite number of convex regions within

each of which the value function is linear. Unfortunately, these regions must be reconstructed

at each iteration of their proposed algorithm. Not only is the additional computational effort

significant, but the number of regions necessary for an exact solution can grow exponentially

with time.

Sondik’s One-Pass algorithm [103] is the basis for the majority of the algorithms in the

artificial intelligence literature to-date. The algorithm proceeds from an arbitrary belief

point, constructs a set of vectors that describe the optimal value function based on that

point, and then determines the set of constraints over the belief space where that vector is

guaranteed to be dominant. Linear programming is then used to define points for the next

iteration of the algorithm as it proceeds to calculate the value function for the next stage.

The number of vectors generated to describe the value function from one stage to the next

can become prohibitively large as the state space and time horizon increase. In addition, the

data structures used to store the vector information can be cumbersome.

More recent algorithms have explored dominance criteria and pruning mechanisms to

reduce the number of vectors needed to completely describe the value function. Examples

include Cheng’s Linear Support algorithm [18] and Littman et al.’s Witness algorithm [18].

For an in-depth review of these and other POMDP solution procedures, the reader is re-

ferred to Cassandra [18]. While the artificial intelligence community continues to research

efficient algorithmic procedures, current algorithms require an in-depth understanding of

data structures and computer programming for successful implementation.

The overwhelming computational burden associated with solving POMDPs demonstrated

Sondik’s One-Pass algorithm and more recent algorithms [106, 118] precludes their appli-

cation to problems of practical size [84]. As a result, many heuristics and approximation

methods for solving POMDPs have been proposed [18, 72]. For example, Lovejoy [71] pro-

poses an approximation method that applies a bounding procedure to the Smallwood and

Sondik algorithm, allowing for the solution of larger problems. Platzman [88] proposes an
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approximation method where decisions are made based on a finite memory of the most re-

cent decisions and observations. Yet, he notes that this memory can grow prohibitively

large before the approximation is acceptable. Kakalik [59] and Eckles [35] discuss using an

approximate value function based upon linear interpolation between fixed, discrete points in

the continuous state space, but do not present results. Sondik [105] later provides bounds

for Eckles’ method.

A full-scale implementation and comparison of existing complex algorithmic methods is

outside the scope of this dissertation. Rather, a heuristic approach is proposed and used

to solve the POMDP model presented in Chapter 5. This heuristic takes advantage of the

fact that the POMDP models presented in this dissertation are formulated as MDPs with

a continuous state space. The heuristic first discretizes the belief vector and then incorpo-

rates the updating function into the standard backward induction algorithm as described in

Appendix C. One area for future research would be to further explore existing exact and ap-

proximate solution procedures in conjunction with researchers from the artificial intelligence

community, utilizing the available GenIMS data.

2.4 OPTIMAL STOPPING PROBLEMS

Both the MDPs and the POMDPs described in this dissertation can be formulated as optimal

stopping problems [31]. In an optimal stopping problem, a decision maker views rewards

sequentially at discrete points in time. In the MDP, the decision maker can either accept

the reward (i.e., choose to discharge the patient and “receive” the patient’s current expected

survival) or reject the reward (i.e., keep the patient in the hospital for one more time period).

In the POMDP, before accepting or rejecting the current reward, the decision maker may

purchase information regarding its true value. Once the gathering of information regarding

the current reward has ended, the decision maker must either decide to accept the current

expected reward, thus ending the decision process, or to reject the current expected reward,

pay a fixed continuation cost (which in the models presented in this dissertation could

represent the additional day of survival in the hospital as well as the costs of care, the
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risk of nosocomial infection, or even the patient’s quality of life), and then imperfectly view

the expected reward in the next time period. In either the MDP or the POMDP case, the

decision makers face the same problem at each decision point. The objective of the optimal

stopping problem is to determine a decision rule that indicates which action to take (continue

or stop), based on the information available at each decision point to maximize the total

expected reward.

A classic optimal stopping problem is the secretary problem [43, 44]. In its simplest form,

the secretary problem has the following features [44]. There is a single secretarial position

available and the total number of applicants for this position, n, is known. The applicants

are interviewed sequentially in a random order. These applicants can be ranked in order

from best to worst, without ties, but the decision to accept or reject the current candidate

can only be made based on the relative ranks of the candidates viewed so far.

The decision maker wants to choose the very best applicant for the position, but once an

applicant is rejected, she cannot later be accepted. It has been shown that the optimal policy

for this case is of the following form. For large n, it is optimal to wait until approximately

37% of the applicants have been interviewed and then to select the next relatively best

candidate [44, 46]. Therefore, if the best candidate was in the first 37%, then the optimal

solution will be to choose the nth candidate.

There are many applications of this problem. It was first proposed by Cayley [19] in the

context of determining an optimal policy for playing the lottery. Other applications include

hypothesis testing [8, 113, 114], asset selling [13, 61, 89], and purchasing call options [89].

Considering the decision problem of when to discharge a patient from the hospital can also

be considered in the context of the secretary problem. In this case, there are a fixed number

of days on which the patient can be released from the hospital. Associated with each of

these days is a stochastic reward. The decision maker sequentially views these rewards and

must choose to accept them (discharge the patient) or reject them (keep the patient in the

hospital). Once the decision maker rejects a reward, the decision maker cannot later accept

it (i.e., the decision maker cannot go back and release a patient on a previous day).

Extensions of the simple secretary problem include considering correlations between the

ranks of sequential candidates [13], retaining the option to accept past candidates [13, 39],
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and the incorporation of partial information [79, 80, 81, 87, 97, 109, 110]. This last case is

of particular interest as the clinician’s problem can also be formulated as a POMDP.

Of the literature reviewed, the most relevant case is that presented by Monahan [81]

who considers partial observations and presents a general model of the optimal stopping

problem where complete information can be purchased by testing. His model assumes that

the time required to perform the test procedure is instantaneous and that multiple tests can

be performed before making a decision at any decision point. The POMDP models presented

in this dissertation consider not only which tests to order, but when they should be ordered.

Unlike in the completely observable optimal stopping problem, Monahan is able to

demonstrate through an example that the optimal policy for this case may not have special

structure: control-limit policies may not exist, the set of states at which it is optimal to

purchase information may not be convex, and the optimal policies may not be monotone.

However, Monahan has also shown the optimal policy to be well structured for specific cases

of the partially observable stopping problem, such as under conditions of perfect observability

and complete uncertainty [79, 80].

2.5 MACHINE MAINTENANCE AND REPLACEMENT PROBLEMS

The POMDP models formulated to address the management of severe sepsis have some

similarities to problems found in the machine maintenance literature; however, the differences

between the problem structures are also readily apparent.

The general form of the machine maintenance problem can be described as follows [36,

64, 94]. A production process produces items at the beginning of distinct time periods. It is

supposed that at any time point the production process may be in any one of a countable

number of states and that the quality of the item produced is a function of this underlying

state. It is also supposed that the state of the process at any time point is not known and

can only be determined by sampling the item produced. A cost is associated with sampling

the item. This cost may be a function of the current state. The purpose of sampling is not

to replace a poor item with a good one, but rather to check the manufacturing process.
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At each time point, the decision maker selects an action from the set of possible actions

including: replacement, repair, sampling (inspection), and do nothing. The decision maker

would like to know the decision rule that minimizes total expected cost.

While the machine maintenance problem includes elements of partial observability where

testing (inspection) must be performed to gain information about the system, which is similar

to the sepsis management POMDP, other aspects of the problem greatly differentiate it from

this model. Most importantly, machine maintenance typically deals with a system that is

deteriorating. In contrast, the clinician is maintaining a system (patient health) that may be

deteriorating, improving, or staying the same. The set of possible actions also differs in that

the clinician does not consider repair (as the models to be described only consider testing

and discharge decisions at this time, not treatment decisions).

Derman [30] does not consider repair and demonstrates optimal inspection schedules for

equipment whose life is of a random length. However, the assumed deterioration of the

system plays a key role. In addition, replacement of the equipment returns the system to

its original new state. It is difficult to draw parallels between the replacement action and

the patient discharge action because the problems have differing objectives. The objective

of the models present in this dissertation is to maximize total expected life for an individual

patient over a finite horizon while the machine maintenance problem considers minimizing

the total cost of a production system over an infinite horizon.
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3.0 MODELING TESTING AND HOSPITAL DISCHARGE DECISIONS

(GENERAL MODEL)

As presented in the problem description in Chapter 1, the general model considers a patient

that at some point at or after hospital admission is suspected of having developed sepsis. This

model assumes that this patient is treated according to standard care while simultaneously

considering a subset of decisions made by the clinician in the treatment of this patient.

More specifically, the general model considers the clinician’s decision problem of when

to test for additional information about a patient’s health state in addition to the decision

problem of when to discharge the patient from the hospital in order to maximize the patient’s

expected survival over a finite horizon as measured from hospital admission. The model is

formulated as a finite-horizon POMDP, where the patient’s health state is characterized by

two vectors pertaining to completely and partially observable health state information. It

is assumed that throughout the patient’s stay in the hospital, the patient is being treated

according to standard methods of care.

At each stage before a decision is made, the clinician first observes the patient’s com-

pletely observable health state and the results of any tests that were ordered in the previous

stage. Based on these observations, the clinician then either decides to discharge the patient

from the hospital or to keep the patient in the hospital for one more stage. If the clinician

decides to keep the patient in the hospital, then the clinician must also decide whether or not

to order any tests to obtain additional information about the patient’s partially observable

health state variables. If a set of tests are ordered, their results are not known until the

beginning of the next time period.

The following model formulation can be used to determine the optimal action and re-

sulting expected survival over the remainder of the specified finite observation horizon for
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a patient at any stage in the patient’s treatment, based on the patient’s observable health

variables and the clinician’s belief as to what the patient’s partially observable health state

variables are based on previous test results and the patient’s current completely observable

health state. First, the following assumptions are made for this general model and all model

variants presented in this dissertation.

3.1 ASSUMPTIONS

Assumption 3.1.1 Markov property: It is assumed that the patient’s health variables

are Markovian in that their values at a specific decision epoch only depend on the patient’s

state and the action taken at the previous decision epoch.

Future research could consider expanding the state description to include additional history.

Assumption 3.1.2 Finite horizon: A finite-horizon model is utilized to facilitate the in-

corporation of time-dependent factors into the model. The model incorporates both a decision

horizon and an observation horizon. The decision horizon is used to reflect the short treat-

ment horizon associated with acute diseases like sepsis. The observation horizon considers

the time post-discharge during which death can be attributed to sepsis. Both of these horizons

are demonstrably finite and short.

Assumption 3.1.3 Finite, discrete state space: All patient health variables can be

represented as finite, discrete values.

Although many variables may appear to be continuous, they are often discretized naturally

in practice as a result of the measurement techniques used to assess their value.

Assumption 3.1.4 Testing delay: It is assumed that all test results are received at the

beginning of the stage immediately following the stage when the test(s) were ordered. There-

fore, if one or more tests are ordered, the patient cannot be discharged until the next time

period or later.
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Assumption 3.1.5 Test independence: It is assumed that the results of a test for a

particular health variable are only dependent on the true value of that health variable and are

independent of the true and observed values of all other health variables.

3.2 GENERAL MODEL FORMULATION

The following notation is used:

• N = {1, 2, . . . , N}: discrete stages at which a decision must be made by the clinician. If

a patient has not died and has not been discharged by stage N , it is assumed that the

patient is discharged at stage N . This dissertation defines a stage as one day; however,

the model is flexible enough to consider smaller time intervals (hours, for example) as

the data for solving such a model become available. Let t denote the current stage in

the model.

• T : the observation horizon, as measured from admission to the hospital, in which a

patient’s death is attributable to sepsis.

• ht: a vector describing the completely observable components of the patient’s health at

stage t. Let H be the set of all possible realizations of ht. The ordered elements of H

are represented as 1, 2, . . . , H, H + 1, where H + 1 represents the patient being dead and

is an absorbing state.

• yt: a vector describing the true values of the partially observable components of the

patient’s health at stage t. Let Y be the set of all possible realizations of yt. The ordered

elements of Y are represented as 1, 2, . . . , Y .

• δt: the set of tests ordered at time t. Let ∆ be the set of all possible combinations of

available tests, including ∅.

• c(δt): a scalar representing the cost of ordering test set δt at stage t (converted to patient

life days using methods from cost-effectiveness analysis [47]).

• ot+1: a vector describing the observed values of the partially observable components of

the patient’s health at stage t + 1 for tests ordered in stage t. Let O be the set of all
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possible realizations of ot+1. The ordered elements of O are represented as 1, 2, . . . , O. If

no tests were ordered in stage t, then ot+1 = ∅.

• at: the action chosen at stage t. Possible actions are to discharge the patient from the

hospital (D) or to continue treating the patient in the hospital according to standard

methods of care and order test set δt ∈ ∆ (Cδt). Note that the option to order no tests (∅)

is contained in ∆. Recall the assumption that when tests are ordered, the test results are

received at the beginning of the next period before the next decision is made. Therefore,

the patient cannot be discharged before the next period.

• ft(ht, yt, D): the expected (T − t)-day survival (in patient life days) of a patient that is

discharged from the hospital at stage t with completely observable health vector ht and

partial observable health vector yt.

• rt(ht, πt, D): the expected (T − t)-day survival (in patient life days) of a patient that is

discharged from the hospital at stage t with completely observable health vector ht and

belief vector πt, where rt(ht, πt, D) =
∑

yt∈Y ft(ht, yt, D)πt(yt).

• ft(ht, yt, Cδt): the expected reward (in patient life days) received for keeping a patient

with completely observable health vector ht and partially observable health vector yt at

time t in the hospital for one more stage and ordering test set δt.

• rt(ht, πt, Cδt): the expected reward (in patient life days) received for keeping a patient

with completely observable health vector ht and belief vector πt at time t in the hospital

for one more stage and ordering test set δt, where rt(ht, πt, Cδt) =
∑

yt∈Y ft(ht, yt, Cδt)πt(yt).

• fN(hN , yN): the expected (T −N)-day survival (in patient life days) of a patient that is

discharged from the hospital at stage N with with completely observable health vector

hN and partially observable health vector yN .

• rN(hN , πN): the expected (T −N)-day survival (in patient life days) of a patient that is

discharged from the hospital at stage N with with completely observable health vector

hN and belief vector πN , where rt(hN , πN) =
∑

yN∈Y fN(hN , yN)πN(yN).

• pt(ht+1, yt+1|ht, yt, at): the joint probability that the true values of the patient’s com-

pletely observable and partial observable heath vectors are ht+1 and yt+1, respectively,

at stage t + 1 given that their respective values were ht and yt and action at was chosen

at stage t.
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• z(ot+1|yt+1, at): the probability of observing test results ot+1 at stage t+1 given that the

patient’s true partially observable health vector is yt+1 and action at was chosen at stage

t.

• πt: the belief vector. Let Πt denote all possible realizations of πt, where Π1 = Π2 =

. . . = ΠN = Π. Let πt(yt) denote the component of the belief vector corresponding to

the probability that the patient’s true partially observable health vector is yt ∈ Y at

stage t.

• βt(ht+1|ht, πt, at): the probability of observing completely observable health state ht+1 at

time t + 1 given that at time t, the patient’s completely observable health state was ht,

the belief vector was πt, and action at was chosen, where

βt(ht+1|ht, πt, at) =
∑

yt+1∈Y

∑
yt∈Y

pt(ht+1, yt+1|ht, yt, at)πt(yt). (3.1)

• γt(ot+1|ht, πt, at): the probability of receiving observation vector ot+1 at time t + 1 given

that the patient’s true completely observable health state was ht, the belief vector was

πt, and action at was chosen at time t, where

γt(ot+1|ht, πt, at) =
∑

yt+1∈Y
z(ot+1|yt+1, at)

∑
ht+1∈H

∑
ht∈H

∑
yt∈Y

pt(ht+1, yt+1|ht, yt, at)πt(yt).(3.2)

• U(πt+1|ot+1, ht+1, πt, at): the updating function used to update the belief vector πt+1

based on ot+1, the observation vector at stage t + 1, ht+1, the patient’s completely ob-

servable health vector at stage t + 1, πt, the belief vector at stage t, and at, the action

chosen at time t. Let U(πt+1(yt+1)|ot+1, ht+1, πt, at) denote the updating function used

to update component yt+1 of the belief vector, where

U(πt+1(yt+1)|ot+1, ht+1, πt, at) (3.3)

=
{

z(ot+1|yt+1,at)
∑

ht+1∈H

∑
ht∈H

∑
yt∈Y

pt(ht+1,yt+1|ht,yt,at)πt(yt)

γt(ot+1|ht,πt,at)
.

• Vt(ht, πt): the value function used to calculate the total expected reward (in patient life

days) at stage t when the patient’s truly observable health state is ht and the belief

vector is πt, where V ∗
t (ht, πt) denotes the optimal value function value.
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• A∗
t (ht, πt): the set of optimal actions at stage t when the patient’s truly observable

health state is ht and the belief vector is πt, where a∗t (ht, πt) ∈ A∗
t (ht, πt) is an action

that maximizes the value function Vt(ht, πt).

After action at is taken at stage t, an immediate expected reward rt(ht, πt, at) is received.

If at = D, the patient is discharged from the hospital and receives an expected reward,

rt(ht, πt, D). If at = Cδt , the patient remains in the hospital and receives an expected reward

rt(ht, πt, Cδt). At the same time the clinician orders test set δt, the results of which will be

received at the beginning of the next stage. After receiving the immediate expected reward,

the patient’s completely and partially observable health vectors transition to new values. At

the beginning of the next stage, if the patient has not died then the patient’s completely

observable health state and the results of any test ordered at stage t are observed by the

clinician.

Based on this information, each component of the belief vector, πt, is updated from stage

t to stage t + 1 using the updating function, U(πt+1|ot+1, ht+1, πt, at) as described in (3.3).

Note that if one or more tests were ordered at stage t, then the resulting observation vector,

ot+1, which denotes the values of the test results received at the beginning of stage t+1, are

used when updating the belief vector πt to πt+1, before a decision is made in stage t + 1.

Let the optimal value function, V ∗
t (ht, πt), be the total expected reward for time t onward

for a patient with completely observable health vector ht and belief vector πt at time t.

V ∗
t (ht, πt) can then be defined recursively as follows.

V ∗
N(hN , πN) = rN(hN , πN), for all πN ∈ Π and hN = 1, . . . , H, (3.4)

V ∗
t (ht, πt) = max


rt(ht, πt, D),

rt(ht, πt, Cδt)− c(δt) +
∑

ht+1∈H βt(ht+1|ht, πt, at)

·∑ot+1∈O γt(ot+1|ht, πt, at)V
∗
t+1(ht+1, U(πt+1|ht+1, ot+1, πt, at)),

for all πt ∈ Π, ht = 1, . . . , H, and t = 1, . . . , N − 1, and

V ∗
t (H + 1, πt) = 0, for all πt ∈ Π and t ∈ N . (3.5)

This model is the most general problem considered in this dissertation. However, due to

the data requirements needed to solve even a modestly sized MDP or POMDP, simplified
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variants of this general model were developed to further explore both structural properties of

the model and computation experiments using patient-based data from the GenIMS study.

These variants are described in the following section.

3.3 SIMPLIFIED MODEL VARIANTS

Chapter 4 considers the most simplified variant of the general model in which the patient’s

health state is described by a single, completely observable variable, the patient’s Sepsis-

related Organ Failure Assessment (SOFA) score. This score considers many aspects of the

patient’s health state and is therefore an appropriate measure of completely observable pa-

tient health. This model is general enough to consider any single measure of patient health

in future research.

Chapter 5 extends Chapter 4 by considering a partially observable patient health state.

Similar to the previous chapter, however, the patient health state is still confined to a single

health variable, the value of a single cytokine level. Since the interactions between cytokines

are still under investigation and have not been completely analyzed for statistical dependen-

cies, it is not possible at this time to develop a more sophisticated POMDP model utilizing

multiple cytokine values. Also, due to the extensive data requirements needed to calcu-

late joint probability distributions for a multi-state model, exact solutions to a SOFA- and

cytokine-based model were not explored as part of this dissertation. Chapter 5 does, however,

explore heuristic approaches to developing SOFA- and cytokine-base decision policies.

Note that the MDP model presented in Chapter 4 is general enough to also consider

a cytokine-based MDP model. This is not explored in this dissertation, however, because

it will not provide clinically useful results. Similarly, while the POMDP model presented

in Chapter 5 is general enough to consider a SOFA-based POMDP, this model was not

considered because of its lack of clinical relevance.
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3.4 MODELING TEST ACCURACY

The general model and the simplified POMDP model presented in Chapter 5 utilize an

observation process that updates the clinician’s belief of the patient’s true health state based

on the values of one or more test results.

In both models, the clinician does not know the patient’s true health state with complete

certainty for at least one of two reasons. First, if the clinician decides not to order tests in

a given period, then the clinician will not have any information on the patient’s partially

observable health state, causing uncertainty. Second, even if the clinician orders a test and

observes its result, there may be error associated with the result.

Test error can be interpreted in two different ways. First, the result itself may be inac-

curate from a measurement standpoint. Accuracy in this case refers to the sensitivity and

specificity of the test. Alternatively, the interpretation of the test results may be inaccu-

rate. In other words, even if the test result is numerically correct, the interpretation of the

numerical result may not be completely accurate.

Since a test result may not be received in every stage and the test results that are

received may either be inaccurate themselves or interpreted inaccurately, the models use

a belief vector to describe a probability distribution over the possible true patient health

states, which corresponds the the clinician’s belief that the patient’s true health is in each

of the possible states. The model utilizes an observation probability matrix to relate the

observed values to the underlying health state. Then, using an initial estimate of the belief

variable, the current test results, and knowledge of the last action taken, Bayesian updating

is used to form a new estimate of the belief vector. The clinician’s decision is made based

on the value of this belief vector at each decision point.

The model presented in Chapter 5 considers the accuracy of cytokine testing from the

measurement perspective. Therefore, test error refers only to the inaccuracy between re-

ceiving a test result and it relationship to the true value of the patient’s cytokine level. A

more accurate model of testing inaccuracy would consider the clinician’s interpretation er-

ror in terms of translating the actual cytokine level to the underlying patient health state.

Unfortunately, the true relationship between these cytokine levels and the patient’s true
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underlying health state is not understood well enough to model this relationship, which is

needed in order to incorporate interpretation error into the model. As these relationships

are better understood, future research could consider interpretation error as an extension of

the models presented in this dissertation.

3.5 QUANTIFYING TESTING COST

Testing for cytokines has not yet been quantified in the literature as this is a new procedure

that has not yet been incorporated into standard practice. The cost of testing should include

not only the cost of the materials needed to perform the test and process the test results,

but also the time spent administering the test and reviewing and interpreting the results.

One could even consider the quality of life implications associated with frequent testing.

The focus of this dissertation is to investigate general testing and hospital discharge

strategies. Since testing cost is an important factor in these decisions, but has not yet been

quantified, the computational experiments presented in Section 5.4 provide results for a range

of testing costs. The reward function is calculated in units of patient life days; therefore,

the testing cost utilized in the problem instances is also represented in patient life days. To

convert actual dollars to life days, one could use a standard dollars-to-life days conversion

rate, as is commonly done in cost-effective analysis [48].

41



4.0 MODELING HOSPITAL DISCHARGE POLICIES WITHOUT

CONSIDERING TESTING DECISIONS (A MARKOV DECISION PROCESS

APPROACH)

A simplified variant of the general model presented in Chapter 3, this model considers the

clinician’s decision problem of when to discharge an individual patient from the hospital

in order to maximize that patient’s expected survival over a finite observation horizon as

measured from hospital admission, where common values of this observation horizon include

30, 60, and 90 days [27, 90, 116]. The problem is formulated as a finite-horizon Markov

decision process to capture time dependencies among state transitions and rewards. In

addition to only considering the discharge decision, this model also assumes that a single

measure of patient health characterizes the health state and standard methods of care guide

patient treatment throughout the patient’s hospital stay. Therefore, at each decision point,

the clinician can choose either to continue treating the patient in the hospital with standard

care or to discharge the patient from the hospital. It is assumed that decisions are made at

the end of each time period. The work presented in this Chapter has been submitted for

publication [65].

4.1 MDP NOTATION

The following notation is used:

• N = {1, 2, . . . , N}: discrete stages at which a decision is made by the clinician, where

N is the treatment horizon. If a patient has not died and has not been discharged by
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stage N , it is assumed the patient is discharged at stage N . The finite-horizon model

captures time dependencies among state transitions, where the value of N depends on

the input data for computational experiments. This dissertation defines a stage as one

day; however, as the data for solving such a model become available, the model is flexible

enough to consider smaller time intervals (hours, for example).

• T : the observation horizon, as measured from admission to the hospital, in which a

patient’s death is attributable to sepsis.

• h: the patient’s health state vector. Let H be the set of all possible realizations of h in

order of decreasing health. The ordered elements of H are represented as 1, 2, . . . , H, H +

1, where H + 1 represents the patient being dead and is an absorbing state.

• at: the action taken at time t. The possible actions are to continue treating the patient

in the hospital (C) and to discharge the patient from the hospital (D).

• rt(h,D): the expected (T − t)-day survival (in patient life days) of a patient that is

discharged from the hospital on day t in health state h.

• rt(h,C): the expected reward (in patient life days) received for deciding at stage t to

keep a patient in health state h in the hospital for one more stage. This model uses an

expected reward for continuing of one day for all stages and states.

• rN(h): the expected (T − N)-day survival (in patient life days) of a patient that is

discharged from the hospital at stage N in health state h.

• pt(j|h, a): the probability that the patient’s health state is j in stage t+1 given that the

patient’s health state is h in stage t and action a is chosen. Note that the process will

terminate with reward rt(H + 1, C) = 0 if a patient transitions to the dead state or with

reward rt(h,D) if action D is chosen.

• Vt(h): the value function used to calculate the total expected reward (in patient life days)

for stage t onward when the system is in state h, where V ∗
t (h) denotes the optimal value

function value. Thus, V ∗
1 (h) will be the optimal total expected T − 1-day survival (in

days) of a patient that has just been admitted to the hospital in state h.

• A∗
t (h): the set of optimal actions at stage t when the system is in state h, where a∗t (h) ∈

A∗
t (h) is an action that maximizes the value function Vt(h).
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4.2 MDP MODEL FORMULATION

This problem can be formulated as the following optimality equations:

Vt(h) = max

rt(h,D), rt(h,C) +
H+1∑
j=1

pt(j|h,C)Vt+1(j)

 (4.1)

for h = 1, . . . , H and t = 1, . . . , N − 1,

VN(h) = rN(h), for h = 1, . . . , H, (4.2)

Vt(H + 1) = 0, for t = 1, . . . , N. (4.3)

The next section discusses the structure of the optimal value function in addition to present-

ing clinical conditions under which optimal non-stationary control-limit policies exist.

4.3 ANALYZING OPTIMAL HOSPITAL DISCHARGE POLICY

STRUCTURE FOR THE MDP MODEL

The mathematical framework of the MDP model allows for the analysis of the structure of

the model parameters and its optimal solution, providing insight into results that can be

expected in practice. For example, this section demonstrates the monotonicity of the value

function as formulated in (4.1) through (4.3). It will be demonstrated that as a patient

becomes sicker, the patient’s (T − t)-day expected survival does not increase. Conditions for

the existence of an optimal non-stationary control-limit policy are also presented. Relevant

proofs are included in the Appendix. First, the following definitions are provided.

4.3.1 Definitions

Definition [10] The N ×N transition probability matrix P (t), with entries [P (t)]hj, is said

to be IFR (Increasing Failure Rate) if the rows of P (t) are in increasing stochastic order,

that is, z(h) =
∑N

j=k[P (t)]hj is monotonically increasing in h for k = 1, . . . , N .
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Definition [89] Let X and Y be partially ordered sets and g(x, y) a real-valued function on

X × Y . The function g is said to be superadditive if for x+ ≥ x− in X and y+ ≥ y− in Y ,

g(x+, y+) + g(x−, y−) ≥ g(x+, y−) + g(x−, y+).

If the reverse inequality holds, the function is said to be subadditive.

The following assumptions are later verified in Section 4.4.4 for each of the problem

instances presented in Section 4.4.3.

4.3.2 Additional assumptions for the MDP model

Assumption 4.3.1 The patient health transition probability matrix P (t), with entries [P (t)]hj =

pt(j|h,C), is IFR for all t ∈ N .

Assumption 4.3.1 implies that for two patients in health states h and h+1, respectively, the

patient in health state h+1 is more likely to transition to a health state worse than h in the

next stage. In other words, sicker patients are more likely to progress to being even sicker

than are healthier patients.

Assumption 4.3.2 The reward function rt(h,D) is nonnegative and monotone decreasing

in h for all t ∈ N . It follows that the reward function rN(h) is also nonnegative and

monotone decreasing in h since a patient that has not died or been discharged by stage N

must be discharged at stage N .

Assumption 4.3.2 says that sicker patients have worse survival after discharge than healthier

patients.

Assumption 4.3.3 The reward function rt(h,C) is monotone decreasing in h for all t ∈ N .

Assumptions 4.3.2 and 4.3.3 imply that as a patient’s health degrades, the value of remaining

in the hospital for one additional day and the patient’s expected (T − t)-day survival after

discharge on day t do not increase.
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4.3.3 Mathematical structure of optimal hospital discharge policies

Under these assumptions, it can be shown that the optimal value function, V ∗
t (h), is mono-

tonically decreasing in h. First, two supporting lemmas are introduced.

Lemma 4.3.4 (Adapted from Lemma 1 in [3]) Given Assumption 4.3.1 and a function,

V ∗
t+1(h), that is monotone decreasing in h, the following inequalities hold for h = 1, . . . , H

and t = 1, . . . , N − 1,

h∑
j=1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j) ≥

h∑
j=1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(h), (4.4)

H+1∑
j=h+1

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(j) ≥

H+1∑
j=h+1

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(h+1). (4.5)

Proof For inequality (4.4): Assumption (4.3.1) requires that

h∑
j=0

pt(j|h) ≥
h∑

j=0

pt(j|h + 1)

for h = 0 . . . , H. Therefore,

h∑
j=0

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

= [pt(0|h,C)− pt(0|h + 1, C)]V ∗
t+1(0) +

h∑
j=1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

≥ [pt(0|h,C)− pt(0|h + 1, C)]V ∗
t+1(1) +

h∑
j=1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j) (4.6)

= [pt(0|h,C)− pt(0|h + 1, C)]V ∗
t+1(1) + [pt(1|h,C)− pt(1|h + 1, C)]V ∗

t+1(1)

+
h∑

j=2

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

= [pt(0|h,C) + pt(1|h,C)− pt(0|h + 1, C)− pt(1|h + 1, C)]V ∗
t+1(1)

+
h∑

j=2

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

≥ [pt(0|h,C) + pt(1|h,C)− pt(0|h + 1, C)− pt(1|h + 1, C]V ∗
t+1(2)

+
h∑

j=2

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j), (4.7)
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where (4.6) follows because pt(0|h,C) ≥ pt(0|h+1, C), by Assumption (4.3.1), and V ∗
t+1(0) ≥

V ∗
t+1(1), by the initial assumption on V ∗

t+1(h). Similarly, (4.7) holds because pt(0|h,C) +

pt(1|h,C) ≥ pt(0|h + 1, C) + pt(1|h + 1, C) and V ∗
t+1(1) ≥ V ∗

t+1(2). The result follows when

the same procedure is applied for j = 2, . . . , h.

For inequality (4.5): Assumption (4.3.1) requires that

H+1∑
j=h+1

pt(j|h,C) ≤
H+1∑

j=h+1

pt(j|h + 1, C)

for h = 0, . . . , H. Therefore,

H+1∑
j=h+1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

= [pt(H + 1|h,C)− pt(H + 1|h + 1, C)]V ∗
t+1(H + 1) +

H∑
j=h+1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

≥ [pt(H+1|h,C)−pt(H+1|h+1, C)]V ∗
t+1(H)+

H∑
j=h+1

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(j) (4.8)

= [pt(H + 1|h,C)− pt(H + 1|h + 1, C)]V ∗
t+1(H) + [pt(H|h,C)− pt(H|h + 1, C)]V ∗

t+1(H)

+
H−1∑

j=h+1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

= [pt(H + 1|h,C) + pt(H|h,C)− pt(H + 1|h + 1, C)− pt(H|h + 1, C)]V ∗
t+1(H)

+
H−1∑

j=h+1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

≥ [pt(H + 1|h,C) + pt(H|h,C)− pt(H + 1|h + 1, C)− pt(H|h + 1, C)]V ∗
t+1(H − 1)

+
H−1∑

j=h+1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j), (4.9)

where (4.8) follows because pt(H +1|h,C) ≤ pt(H +1|h+1, C), by Assumption (4.3.1), and

V ∗
t+1(H) ≥ V ∗

t+1(H + 1), by the initial assumption on V ∗
t+1(h). Similarly, (4.9) holds because

pt(H +1|h,C)+pt(H|h,C) ≤ pt(H +1|h+1, C)+pt(H|h+1, C) and V ∗
t+1(H−1) ≥ V ∗

t+1(H).

The result follows when the same procedure is applied for j = h + 1, . . . , H − 1.

Lemma 4.3.5 (Adapted from Lemma 2 in [3]) Given Assumption 4.3.1 and a function,

V ∗
t+1(h), that is monotone decreasing in h for t = 1, . . . , N − 1,

∑H+1
j=1 pt(j|h,C)V ∗

t+1(j) ≥∑H+1
j=1 pt(j|h + 1, C)V ∗

t+1(j) for h = 1, . . . , H and t = 1, . . . , N − 1.
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Proof Note that
H+1∑
j=0

pt(j|h,C)V ∗
t+1(j)−

H+1∑
j=0

pt(j|h + 1, C)V ∗
t+1(j)

=
h∑

j=0

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j) +

H+1∑
j=h+1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j)

≥
h∑

j=0

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(h)+

H+1∑
j=h+1

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(h+1) (4.10)

=
h∑

j=0

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(h)+

 H+1∑
j=h+1

pt(j|h,C)−
H+1∑

j=h+1

pt(j|h + 1, C)

 V ∗
t+1(h+1)

=
h∑

j=0

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(h)

+

1−
h∑

j=0

pt(j|h,C)

−

1−
h∑

j=0

pt(j|h + 1, C)

 V ∗
t+1(h + 1)

=
h∑

j=0

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(h)−

h∑
j=0

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(h + 1)

= [V ∗
t+1(h)− V ∗

t+1(h + 1)]
h∑

j=0

[pt(j|h,C)− pt(j|h + 1, C)], (4.11)

where (4.10) follows from Lemma 4.3.4. Following from the monotonicity assumption on

V ∗
t (h) and Assumption (4.3.1), V ∗

t+1(h) − V ∗
t+1(h + 1) and

∑h
j=0[pt(j|h,C) − pt(j|h + 1, C)]

are nonnegative. Therefore, the quantity in (4.11) is also nonnegative and the desired result

follows.

Theorem 4.3.6 Under Assumptions 4.3.1, 4.3.2, and 4.3.3 for h = 1, . . . , H, V ∗
t (h) ≥

V ∗
t (h + 1) for all t ∈ N .

Proof (By induction)

From Assumption 4.3.2 it follows that V ∗
N(h) ≥ V ∗

N(h+1) since V ∗
N(h) = rN(h) for all h ∈ H.

Now suppose that V ∗
n (h) ≥ V ∗

n (h + 1) for h = 1, . . . , H and for n = t + 1, . . . , N − 1. It

remains to show that V ∗
t (h) ≥ V ∗

t (h + 1) for h = 1, . . . , H. Note that

V ∗
t (h) = max

rt(h,D), rt(h,C) +
H+1∑
j=1

pt(j|h,C)V ∗
t+1(j)

 , and (4.12)
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V ∗
t (h + 1) = max

rt(h + 1, D), rt(h + 1, C) +
H+1∑
j=1

pt(j|h + 1, C)V ∗
t+1(j)

 . (4.13)

If V ∗
t (h + 1) = rt(h + 1, D), then by definition of V ∗

t (h) and Assumption 4.3.2, V ∗
t (h) ≥

rt(h,D) ≥ rt(h + 1, D) = V ∗
t (h + 1) and the result follows. Otherwise,

V ∗
t (h)−V ∗

t (h+1) ≥ rt(h,C)− rt(h+1, C)+
H+1∑
j=1

pt(j|h,C)V ∗
t+1(j)−

H+1∑
j=1

pt(j|h+1, C)V ∗
t+1(j)

≥
H+1∑
j=1

pt(j|h,C)V ∗
t+1(j)−

H+1∑
j=1

pt(j|h + 1, C)V ∗
t+1(j) (4.14)

where (4.3.3) follows from the value functions (4.12) and (4.13) and the inequality (4.14)

follows from Assumption 4.3.3. Following from the induction assumptions and Lemma 4.3.5,

(4.14) is nonnegative and the desired result follows.

This result demonstrates the intuitive conclusion that as a patient’s health degrades, the

patient’s expected T -day survival does not improve.

In addition to showing that structure exists for the model value function, it is also desir-

able to extend these results by demonstrating structure for the resulting optimal solution.

Of particular interest for this type of model is to demonstrate the existence of a control-limit

policy.

Theorem 4.3.7 presents a general condition for the existence of a control-limit policy.

Theorem 4.3.7 There exists an optimal non-stationary control-limit policy in h if

rt(h,D)−rt(h+1, D) ≥ rt(h,C)−rt(h+1, C)+
H+1∑
j=1

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(j), (4.15)

for h = 1, . . . , H and t = 1, . . . , N −1. In other words, for each t ∈ N there exists a state h∗t

(the control limit) such that a∗t (1) = · · · = a∗t (h
∗
t − 1) = D and a∗t (h

∗
t ) = a∗t (h

∗
t + 1) = · · · =

a∗t (H + 1) = C.
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Proof (By contradiction)

Recall that

V ∗
t (h) = max

rt(h,D), rt(h,C) +
H+1∑
j=1

pt(j|h,C)V ∗
t+1(j)

 . (4.16)

For a fixed value of t, assume that for some h, a∗t (h) = C. Now suppose that a∗t (h + 1) = D.

This implies that

rt(h,D) ≤ rt(h,C) +
H+1∑
j=1

pt(j|h,C)V ∗
t+1(j) (4.17)

and

rt(h + 1, D) > rt(h + 1, C) +
H+1∑
j=1

pt(j|h + 1, C)V ∗
t+1(j).

Therefore,

rt(h,D)−rt(h+1, D) < rt(h,C)−rt(h+1, C)+
H+1∑
j=1

[pt(j|h,C)−pt(j|h+1, C)]V ∗
t+1(j), (4.18)

which contradicts Condition (4.15). Therefore, a∗t (h+1) must equal C, completing the proof.

Condition (4.15) can be interpreted as follows: the marginal decrease in a patient’s (T − t)-

day expected survival in sequential health states must be no less than the marginal decrease

in a patient’s immediate reward received for remaining in the hospital for one more day plus

the total expected reward for the remaining time the patient is in the hospital.

Note that Condition (4.15) implies that in order for a control-limit policy to exist, the

function

wt(h, a) = rt(h, a) +
H+1∑
j=1

pt(j|h, a)V ∗
t+1(j),

must be superadditive for h and a, where h has the natural ordering 1, 2, . . . , H + 1 and

C ≥ D. The traditional method of demonstrating that wt(h, a) is superadditive is to

show that both rt(h, a) and
∑H+1

j=1 pt(j|h, a)V ∗
t+1(j) are superadditive. Proposition 4.3.8

demonstrates that rt(h, a) is superadditive; unfortunately, Proposition 4.3.9 shows that∑H+1
j=1 pt(j|h, a)V ∗

t+1(j) is subadditive.
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Proposition 4.3.8 The function, rt(h, a), is superadditive.

Proof By Assumption 4.3.2,

rt(h,D) ≥ rt(h + 1, D).

As stated in the model formulation, rt(h,C) = rt(h + 1, C) = 1, therefore,

rt(h,D) + rt(h + 1, C) ≥ rt(h,C) + rt(h + 1, D),

which is superadditive by Definition 4.3.1 and the assumed ordering of states and actions,

thus completing the proof.

Proposition 4.3.9 The function,
∑H+1

j=1 pt(j|h, a)V ∗
t+1(j), is subadditive.

Proof By Lemma 4.3.5,

H+1∑
j=1

pt(j|h + 1, C)V ∗
t+1(j) ≤

H+1∑
j=1

pt(j|h,C)V ∗
t+1(j).

By definition of the model, the process terminates if the patient is discharged. In other

words,
∑H+1

j=1 pt(j|h,D) =
∑H+1

j=1 pt(j|h + 1, D) = 0 for all h ∈ H. Therefore,

H+1∑
j=1

pt(j|h + 1, C)V ∗
t+1(j) +

H+1∑
j=1

pt(j|h,D)V ∗
t+1(j)

≤
H+1∑
j=1

pt(j|h,C)V ∗
t+1(j) +

H+1∑
j=1

pt(j|h + 1, D)V ∗
t+1(j),

which is subadditive by Definition 4.3.1 and the assumed ordering of states and actions, thus

completing the proof.
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Redefining the ordering of the states and/or actions would only reverse the superadditivity

and subadditivity of rt(h, a) and
∑H+1

j=1 pt(j|h, a)V ∗
t+1(j). Since the traditional proof will not

work for this model, it is left to demonstrate a condition under which the superadditivity

of rt(h, a) overcomes the subadditivity of
∑H+1

j=1 pt(j|h, a)V ∗
t+1(j), to result in a superadditive

wt(h, a). Theorem 4.3.10 revises Condition (4.15) by incorporating clinical knowledge to

eliminate the dependence on V ∗
t+1(h). First, ∆h is defined to be the maximum decrease

between health states h and h + 1 in a patient’s total expected reward for the remaining

time that the patient is in the hospital, where

H+1∑
j=1

[pt(j|h,C)− pt(j|h + 1, C)]V ∗
t+1(j) ≤ ∆h.

Using this information, Theorem 4.3.10 presents a sufficient condition for the existence of a

control-limit policy that is independent of the value function, V ∗
t+1(h).

Theorem 4.3.10 There exists an optimal non-stationary control-limit policy in h if

rt(h,D)− rt(h,C)− [rt(h + 1, D)− rt(h + 1, C)] ≥ ∆h, (4.19)

for h = 1, . . . , H and t = 1, . . . , N − 1.

The proof of Theorem 4.3.10 is similar to the proof of Theorem 4.3.7 and is therefore omitted.

Unfortunately, Condition (4.19) is too restrictive for reasonable values of ∆h and does not

consistently hold for the data tested in this dissertation. The exploration of less restrictive

sufficient conditions is left to future research. The next section explores the existence of

control-limit policies for this model through various computational experiments.
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4.4 EXPLORING HOSPITAL DISCHARGE POLICIES USING

PATIENT-BASED DATA

One of the aims of this dissertation is to explore the structure of hospital decision policies

through the use of computational experiments for patients with sepsis with the hope of

being able to suggest general strategies for patient discharge. Due to the complexity of the

disease and the availability of data at this time, the model state space is defined by a single

parameter, the total Sepsis-related Organ Failure Assessment (SOFA) score. This score is a

reasonable approximation for patient health because, as will be discussed in Section 4.4.2,

this score is calculated based on the complex interactions between multiple aspects of the

patient’s health, all of which were captured as part of the GenIMS trial. The model was

solved using the standard backward induction algorithm [89] presented in Appendix C.

4.4.1 MDP data sources

The GenIMS trial data contains static and dynamic variables for 2320 patients. These pa-

tients were identified by the GenIMS investigators as potentially having community-acquired

pneumonia (CAP). Of these patients, 2032 were admitted to the hospital and went on to

develop varying degrees of sepsis. The computational experiments presented in this section

utilize a sample of 2025 patients, with seven patients being excluded from the GenIMS in-

patient cohort due to missing or irregular data. Static variables such as age and race are

provided for each patient. Dynamic health variables are available on a daily basis, where

missing data were estimated utilizing a clinically derived algorithm that combines last ob-

servation carried forward and other clinically based interpolation methods, as agreed upon

by the GenIMS investigator team [45].

4.4.2 SOFA score

The patient’s health state is represented by the total SOFA score, an integer value ranging

between 0 and 24, where 24 corresponds to the sickest health state. The score was developed

by the Working Group on Sepsis-related Problems of the European Society of Intensive
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Care Medicine to describe quantitatively the degree of organ dysfunction/failure over time

[112]. The correlation between organ dysfunction and mortality makes the SOFA score an

appropriate descriptor of patient health in a model of severe sepsis and its use is supported by

previous models of severe sepsis in the literature that have used the SOFA score to describe

patient health [24, 40].

Total SOFA is calculated based on six component scores that evaluate different organ

systems (respiratory, coagulation, liver, central nervous system, renal, and cardiac). There-

fore, even though total SOFA is a single value, the score actually captures a wide range of

patient health variables. The daily component SOFA scores and the resulting total SOFA

scores were calculated by the GenIMS investigators for all patients in the GenIMS cohort. By

capturing the time-varying nature of each patient’s SOFA scores in the transition probabili-

ties used as input to the model, the model captures the evolution of patient health through

all stages of the disease and the patient’s hospital stay.

Due to data sparseness, the 25 total SOFA score values are aggregated into four patient

health states {0,1}, {2,3}, {4,5,6,7}, {8,. . .,24}, and defined as aggregated health states 1, 2,

3, and 4, respectively. This aggregation was chosen to capture changes in the SOFA score for

those levels at which clinicians would consider the discharge decision. Scores of 8 or greater

indicate a disease severity that would make the discharge decision improbable.

4.4.3 Problem instances considering various age/race cohorts

Based on conventions in the literature [22, 23, 24, 50, 62], the values N = 30 days and T = 90

days are used. Since age and race have been determined to be significant predictors of patient

mortality [58, 62], these static variables are used to define the eleven problem instances

described in Table 4.1. The age breaks (45, 65) used to describe the instances follow the

conventions in [24]. Note that the instances are further stratified by race (Caucasian, non-

Caucasian). Due to the small sample sizes associated with non-Caucasian patients under 65

years of age, not all combinations of age and race groups could be tested with the available

data.
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Table 4.1: Description of MDP Problem Instances

Instance Sample Size Age Race Stationary During Periods

1 468 < 65 Caucasian 1-3, 4-7, 8-29

2 1158 ≥ 65 Caucasian 1-3, 4-7, 8-29

3 273 < 65 non-Caucasian 1-3, 4-7, 8-29

4 126 ≥ 65 non-Caucasian 1-3, 4-7, 8-29

5 242 < 45 all 1, 2-9, 10-29

6 499 [45, 65] all 1, 2-9, 10-29

7 1284 ≥ 65 all 1, 2-9, 10-29

8 242 < 45 all 1-3, 4-7, 8-29

9 499 [45, 65] all 1-3, 4-7, 8-29

10 741 < 65 all 1-3, 4-7, 8-29

11 1284 ≥ 65 all 1-3, 4-7, 8-29
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The far right column of Table 4.1 describes a third component of the problem instances.

Due to data sparsity, the transition probabilities and rewards are assumed to be piece-wise

constant over specific stages as defined in the far right column of Table 4.1, but are allowed

to be time-varying between the grouped stages. For example, problem instance 2 considers

Caucasian patients that are age 65 or older. By assumption, the transition probabilities and

rewards for this problem instance are stationary during stages 1 through 3, stages 4 through

7, and stages 8 through 29, but can be time-varying between stages 3 and 4 and between

stages 7 and 8. Note that there are two different groupings used to define different problem

instances, (1-3, 4-7, 8-29) and (1, 2-9, 10-29). The former is based on the clinical expertise

of the coauthors. The latter definition is similar to that used by Clermont et al. [24].

These instances provide valuable insights into the effect of hospital length of stay on the

hospital discharge decision for patients of varying age and race. These results are described

in more detail in the next section.

4.4.4 Hospital discharge policy results and clinical interpretation

Table 4.2 presents the optimal policy for problem instance 2 including the optimal value

function value and the optimal action for each stage and state. The optimal value function

value, V ∗
t (h), represents the (90 − t)-day expected survival of a patient in state h at stage

t given that the clinician chooses the optimal action in the current stage and in all stages

moving forward. For example, for a patient in aggregated health state 2 on day 5, the

optimal action is to Continue with an expected 85-day survival of 71.9 days given that the

clinician chose to keep the patient in the hospital and then act optimally in all future stages.

The optimal action to take at each stage and for each state is interpreted for problem

instance 2 as follows. During days 1, 2, and 3, it is optimal to discharge patients in aggregated

health states 1 and 2 (corresponding to a SOFA score of 0, 1, 2, or 3). For patients in all

other aggregated health states (corresponding to a SOFA score of 5 or greater), it is optimal

to keep the patient in the hospital for one additional day. During days 4, 5, and 6, it is

optimal to discharge patients in the healthiest aggregated state only (corresponding to a

SOFA score of 0 or 1) and to keep all other patients (corresponding to a SOFA score of
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2 or greater) in the hospital for one additional day. Finally, during days 7 through 29, it

is optimal to discharge all but the sickest patients and keep the remaining patients in the

hospital for one more day (corresponding to SOFA scores of 0 through 7 and then 8 through

24, respectively).

This optimal solution is a control-limit policy. It is interesting to note that the control

limit for this instance is time varying. For example, a patient that has not been discharged

by day 3 and that is in aggregated state 2 in day 4 would not be discharged under this

policy. This means that the patient was in an aggregated health state of 3 or greater in all

days prior to day 4 (or the patient would have been discharged previously). This policy is

intuitive, because patients that are sicker may need to remain in the hospital for a longer

period of time, even though they appear to improve over time. Recall that these policies are

determined as a result of the time-varying transition probabilities and rewards used as input

data to the model. These time-dependent inputs are an essential component of a robust

model of sepsis progression [24].

For days 7 through 29, only patients in the sickest health state should be kept in the

hospital, corresponding to similar results presented in the literature. For example, Halm et

al. [50] found that the median time to overall clinical stability in patients with CAP was

between 3 days for the most lenient definition of clinical stability and 7 days for the most

conservative definition. Studies looking at intensive care unit (ICU) length of stay for sepsis

patients found the median length of stay to be between 7 and 14 days [24, 93]. Given that

the current trend in research is to find ways to reduce excessively long ICU and hospital

stays, the results found through this analysis are quite promising. Therefore, while this type

of policy does not hold exactly for all stages in all problem instances, it does suggest an

easy-to-implement decision making strategy.
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Table 4.2: Optimal Solution to Problem Instance 2 (D = Discharge, C = Continue)

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 85.367 83.606 63.617 31.023 D D C C
2 84.408 82.667 61.567 28.743 D D C C
3 83.449 81.727 58.123 25.187 D D C C
4 76.947 72.695 59.095 17.014 D C C C
5 76.053 71.632 57.770 16.271 D C C C
6 75.158 70.561 56.167 14.861 D C C C
7 74.263 69.541 54.269 11.550 D D D C
8 67.739 57.245 45.556 6.415 D D D C
9 66.913 56.547 45.000 6.353 D D D C
10 66.087 55.849 44.444 6.291 D D D C
11 65.261 55.151 43.889 6.229 D D D C
12 64.435 54.453 43.333 6.167 D D D C
13 63.609 53.755 42.778 6.105 D D D C
14 62.783 53.057 42.222 6.043 D D D C
15 61.957 52.358 41.667 5.980 D D D C
16 61.130 51.660 41.111 5.918 D D D C
17 60.304 50.962 40.556 5.856 D D D C
18 59.478 50.264 40.000 5.794 D D D C
19 58.652 49.566 39.444 5.732 D D D C
20 57.826 48.868 38.889 5.670 D D D C
21 57.000 48.170 38.333 5.608 D D D C
22 56.174 47.472 37.778 5.545 D D D C
23 55.348 46.774 37.222 5.483 D D D C
24 54.522 46.075 36.667 5.418 D D D C
25 53.696 45.377 36.111 5.349 D D D C
26 52.870 44.679 35.556 5.261 D D D C
27 52.043 43.981 35.000 5.112 D D D C
28 51.217 43.283 34.444 4.749 D D D C
29 50.391 42.585 33.889 3.648 D D D C
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Table 4.3 provides a summary of the optimal action by day and state for every problem

instance. Control-limit policies are indicated in bold text. For example, control-limit policies

exist for every stage and state for problem instances 6 and 9 in addition to problem instance

2. The optimal policies for most of the other problem instances are of control-limit type for

the majority of states and stages. For example, problem instance 3 has a control-limit policy

for all days except day 29 and problem instance 11 follows this type of policy for all days

except days 5 and 6. Problem instances 5 and 8, however, vary further from the control-limit

policy structure. For instance 5, the control-limit policy structure does not hold for day 9

on and for instance 8, a control-limit type policy exists in days 1, 2, 3, and 29 only.

Table 4.4 lists how the assumptions and conditions presented in Section 4.3 hold for each

problem instance. For example, Assumption 4.3.1 does not hold for problem instance 4, while

Assumption 4.3.3 does hold for this instance. It is interesting to note that a control-limit

policy does not exist for those instances for which one or more assumptions does not hold.

Other possible reasons for the deviations from the non-stationary control-limit policy

structure appear to be attributable to both cohort sample size and definition. For example,

even though problem instance 7 has the largest sample size (1284) of all problem instances,

the patients included in this sample are not stratified by race. However, when patients are

separated by race (i.e., into problem instances 2 and 4), the new instances follow or closely

follow the control-limit policy structure. Since cohort 4 only has a sample size of 126 patients,

data sparseness may be the source of any policy deviations.
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Table 4.3: Optimal Solutions (Problem Instances 1 Through 11)

Instance Days
and Action: 1 2 3 4 5-6 7 8 9 10-26 27-28 29
1 D 1,2,3 1,2,3 1,2,3 2,3 2,3 1,2,3 1,3 1,3 1,3 1,3 1,3

C 4 4 4 1,4 1,4 4 2,4 2,4 2,4 2,4 2,4
2 D 1,2 1,2 1,2 1 1 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

C 3,4 3,4 3,4 2,3,4 2,3,4 4 4 4 4 4 4
3 D 1,2,3 1,2,3 1,2,3 1 1 1 1 1 1 1 1,3

C 4 4 4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,4
4 D 1 1 1 2,3 2,3 1,2,3 1 1 1 1 1,3

C 2,3,4 2,3,4 2,3,4 1,4 1,4 4 2,3,4 2,3,4 2,3,4 2,3,4 2,4
5 D 1,2,3 1,2,3 2,3 2,3 2,3 2,3 2,3 3 3 3 3

C 4 4 1,4 1,4 1,4 1,4 1,4 1,2,4 1,2,4 1,2,4 1,2,4
6 D 1 1 1 1 1 1 1 1,2,3 1 1 1

C 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4 4 2,3,4 2,3,4 2,3,4
7 D 2 1,2 1,3 1,3 1,3 1,3 1,3 1,2,3 1,2 1,2 1,2

C 1,3,4 3,4 2,4 2,4 2,4 2,4 2,4 4 3,4 3,4 3,4
8 D 1,2,3 1,2,3 1,2,3 3 3 3 3 3 3 3 1,2,3

C 4 4 4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 4
9 D 1,2,3 1,2,3 1,2,3 1,2 1,2 1,2,3 1 1 1 1 1

C 4 4 4 3,4 3,4 4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
10 D 1,2,3 1,2,3 1,2,3 1,2 1,2 1,2,3 1 1 1 1,3 1,3

C 4 4 4 3,4 3,4 4 2,3,4 2,3,4 2,3,4 2,4 2,4
11 D 1,2 1,2 1,2 1 1,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

C 3,4 3,4 3,4 2,3,4 2,4 4 4 4 4 4 4
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Table 4.4: Verification of Assumptions and Conditions from Section 4.2

Assumption Assumption Assumption Condition Control-limit
Instance 4.3.1 satisfied? 4.3.2 satisfied? 4.3.3 satisfied? 4.15 satisfied? Policy?
1 yes yes yes no no
2 yes yes yes no yes
3 yes yes yes no close
4 no no yes no no
5 no no yes no no
6 yes yes yes no yes
7 yes yes yes no no
8 yes no yes no no
9 yes yes yes no yes
10 yes yes yes no no
11 yes yes yes no close

4.5 CONCLUSIONS

Through mathematical analysis and computational experiments, study of this model found

that optimal hospital discharge strategies for patients with pneumonia-related sepsis tend to

follow a non-stationary control-limit type policy structure. These types of policies have an

obvious advantage in that they are easy to understand and can be used to standardize an

otherwise complicated and ad-hoc procedure. Introducing the medical community to this

type of policy structure is the first step in standardizing the hospital discharge decision.

There are limitations, however, to describing patient health by a single dimension, such

as total SOFA score. Future work will explore more complex state descriptions, such as those

that include the component SOFA scores, which are necessary before such models can inform

clinical practice. As more data become available, the model presented in this dissertation can

be used to provide increasingly accurate values for the health-based non-stationary control

limits. Clearly, additional data would help to resolve any issues with data sparseness and

would allow for the testing of additional cohort stratifications.
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For example, in addition to age and race, gender has also been cited as a key predictor

of patient mortality among patients with severe sepsis. Additional data would allow for the

testing of age, race, and gender cohorts.

The following chapter extends this model by incorporating testing decisions into the

model. In this second model, the patient health state is no longer characterized by the

SOFA score, rather the value of a single cytokine level is used as a predictor of patient

health. While a more realistic model would use both SOFA and the cytokine level, data

availability and computational complexity limit current capabilities. Chapter 5, however,

will explore heuristic methods for combining the solutions from both models.
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5.0 MODELING TESTING AND HOSPITAL DISCHARGE DECISIONS (A

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS APPROACH)

Extending the model presented in Chapter 4, this model considers the clinician’s decision

problem of when to test for cytokine information in addition to the decision problem of

when to discharge the patient from the hospital in order to maximize the patient’s expected

survival over a finite observation horizon as measured from hospital admission. The model

is formulated as a finite-horizon POMDP, where the patient’s true health state can only be

observed through an inaccurate testing procedure. As a simplified variant of the general

model presented in Chapter 3, the patient health state is represented by a single variable

that measures the value of a single cytokine level. It is assumed that throughout the patient’s

stay in the hospital, the patient is being treated according to standard methods of care. At

each decision point, the clinician can decide to continue treating the patient in the hospital

using standard care without testing (C), continue treating the patient in the hospital using

standard care and also order a cytokine test (O), or discharge the patient from the hospital

without testing (D). It is assumed that when a test is ordered, its result is not known until

the beginning of the next time period. Therefore, if a cytokine test has been ordered for a

patient, the patient will remain in the hospital for at least one more time period. The next

stage’s decision is made after the test result ordered in the previous stage is observed.

In this model, the patient’s true health state is modeled as the value of a single cytokine

level. This level can take on one of two values: low (L) or high (H). After a test is ordered,

the clinician will observe either a L or H value, which relate probabilistically to the true

underlying cytokine level through the observation probability matrix (i.e., the accuracy of

the test). A low cytokine value is correlated with a high probability of patient survival [63];

however, it does not indicate patient survival with complete certainty. This uncertainty is
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captured in the expected survival calculation used for the reward function. In the model it

is assumed that the patient’s cytokine level cannot be known without testing, testing is done

only when action O is chosen, and test results are received at the beginning of the next time

period.

5.1 POMDP NOTATION

The following notation is used:

• N = {1, 2, . . . , N}: discrete stages at which a decision must be made by the clinician,

where N is the treatment horizon. If a patient has not died and has not been discharged

by stage N , it is assumed that the patient is discharged at stage N . This dissertation

defines a stage as one day; however, the model is flexible enough to consider smaller time

intervals (hours, for example) as the data for solving such a model become available. Let

t denote the current stage in the model.

• T : the observation time horizon used to measure patient survival from hospital admission.

• yt: a scalar describing the true value of the patient’s cytokine level. It is assumed that

yt can take on one of three values: low (L), high (H), or dead.

• ot: a scalar describing the observed value of the patient’s cytokine level. If the patient

has died, then ot = dead; otherwise, if a test is ordered, it is assumed that ot can take

on one of two values: low (L) or high (H). When no test result is received, let ot = ∅.

• at: the action taken. Possible actions are to continue treating the patient in the hospital

without ordering a cytokine test (C), to continue treating the patient in the hospital

and order a cytokine test (O), or to discharge the patient from the hospital (D). It is

assumed that when a cytokine test result is ordered, the test result is received at the

beginning of the next period before the next decision is made. Therefore, the patient

cannot be discharged before the next period. If the decision is made to discharge the

patient from the hospital, the patient transitions out of the model.

• c: a scalar representing the cost of ordering a cytokine test (converted to patient life days

using methods from cost-effectiveness analysis [47]).
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• ft(yt, D): the expected (T − t)-day survival (in patient life days) of a patient that is

discharged from the hospital at stage t with true health state yt. Note that ft(dead, D) =

0.

• rt(πt, D): the expected (T − t)-day survival (in patient life days) of a patient that

is discharged from the hospital at stage t with belief variable πt, where rt(πt, D) =

ft(L, D)πt + ft(H, D)(1− πt).

• ft(yt, O): the expected reward (in patient life days) received for keeping a patient with

true health state yt at time t in the hospital for one more stage and ordering a cytokine

test. Note that ft(dead, O) = 0.

• rt(πt, O): the expected reward (in patient life days) received for keeping a patient with

belief variable πt at time t in the hospital for one more stage and ordering a cytokine

test, where rt(πt, O) = ft(L, O)πt + ft(H, O)(1− πt).

• ft(yt, C): the expected reward (in patient life days) received for keeping a patient with

true health state yt at time t in the hospital for one more stage. Note that ft(dead, C) = 0.

• rt(πt, C): the expected reward (in patient life days) received for keeping a patient

with belief variable πt at time t in the hospital for one more stage, where rt(πt, C) =

ft(L, C)πt + ft(H, C)(1− πt).

• fN(yt): the expected (T−N)-day survival of a patient that is discharged from the hospital

at stage N with true health state yt. Note that fN(dead) = 0.

• rN(πN): the expected (T − N)-day survival of a patient that is discharged from the

hospital at stage N with belief variable πN , where rN(πN) = fN(L)πN + fN(H)(1−πN).

• pt(yt+1|yt, at): the probability that the patient’s true health state is yt+1 at stage t + 1

given that at stage t, the patient’s true health state was yt, and action at was chosen. Note

that pt(dead|dead, ·) = 1 and that the process will terminate with reward ft(dead, ·) = 0

if the patient dies before the next time period.

• z(ot+1|yt+1, at): the test accuracy, i.e., the probability of observing cytokine level ot+1 at

stage t + 1 when the patient’s true cytokine level is yt+1 at stage t + 1 and action at was

chosen at stage t. Note that z(dead|dead, ·) = 1 and that z(L|dead, ·) = z(H|dead, ·) =

z(∅|dead, ·) = 0.
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• πt: the probability that the patient’s true cytokine level is low (yt = L) at stage t given

that the patient is still alive at stage t.

• γt(ot+1|πt, at): the probability of observing cytokine level ot+1 at time t + 1 given that

the belief variable was πt and action at was taken at time t, where

γt(ot+1|πt, at) =
∑

yt+1∈{L,H,dead}
z(ot+1|yt+1, at)[pt(yt+1|L, at)πt + pt(yt+1|H, at)(1− πt)].

• U(πt+1|ot+1, πt, at): the updating function used to update the belief variable πt to πt+1

based on ot+1, the observation at stage t + 1, πt, the belief variable at time t, and at, the

action taken at time t.

• Vt(πt): the value function used to calculate the total expected reward (in patient life

days) at stage t when the patient is alive and in health state πt, where V ∗
t (πt) denotes

the optimal value function value.

• A∗
t (πt): the set of optimal actions at stage t when the system is in state πt, where

a∗t (πt) ∈ A∗
t (πt) is an action that maximizes the value function Vt(πt).

After action at is taken at stage t, an immediate expected reward rt(πt, at) is received.

If at = D, the patient is discharged and receives an expected reward, rt(πt, D). If at = O,

the clinician orders a cytokine test, the patient receives an expected reward rt(πt, C) (in

patient life days), and the patient’s core health state transitions to a new value, which

includes the possibility of patient death. Finally, if at = C, no test is ordered, the patient

receives an expected reward rt(πt, C) (in patient life days), and the patient’s core health

state transitions to a new value, which includes the possibility of patient death. If a patient

dies (i.e., yt+1 = ot+1 = dead), it is assumed that death occurs at the beginning of the next

stage and that the patient exits the model and does not accumulate any future rewards. If

the patient does not die, the belief variable, πt, is updated from stage t to stage t + 1 using

the updating function, U(πt+1|ot+1, πt, at), which performs the update using the observation

ot+1 from stage t + 1, where

U(πt+1|ot+1, πt, at) =


z(ot+1|L)[pt(L|L,at)πt+pt(L|H,at)(1−πt)]

γt(ot+1|πt,at)
, if ot+1 ∈ {H, L};

pt(L|L, at)πt + pt(L|H, at)(1− πt), if ot+1 = ∅.
(5.1)
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5.2 POMDP MODEL FORMULATION

Let the optimal value function, V ∗
t (πt), be the total expected reward for a living patient with

belief variable πt for time t onward. V ∗
t (πt) can then be defined recursively as follows.

V ∗
N(πN) = rN(πN), for all πN ∈ Π (5.2)

V ∗
t (πt) = max


rt(πt, D),

rt(πt, O)− c +
∑

ot+1∈{L,H} γt(ot+1|πt, O)V ∗
t+1(U(πt+1|ot+1, πt, O)),

rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C)).

(5.3)

for all πt ∈ [0, 1] and t = 1, . . . , N − 1.

The structural results presented in Section 5.3 and the computational experiments de-

scribed in Section 5.4 provide insight into the value of test accuracy and cost as they relate

to prolonging the life years of a patient. Test accuracy refers not only to the result re-

ceived through testing, but also its ability to inform correct clinical interpretation of the

true underlying health state.

5.3 ANALYZING THE EFFECTS OF TEST COST AND ACCURACY ON

CYTOKINE TESTING AND HOSPITAL DISCHARGE DECISIONS

This section presents structural results for the POMDP model pertaining to changes in test

cost and accuracy. The purpose of this analysis is to provide insight into the robustness of the

model results for a range of model parameters, as can be expected in practice. Experiments

utilizing patient-based data are presented in the following section. Relevant proofs are

provided in the Appendix. First, the following assumptions are made.
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5.3.1 Additional assumptions for the POMDP model

Assumption 5.3.1 It is assumed that ft(yt, C) = ft(yt, O) = 1 for all yt ∈ Y and for all

t ∈ N .

This assumption states that the immediate reward received for keeping the patient in the

hospital, with or without ordering a cytokine test, is one more day of patient life. Future

research could consider other reward functions, such as incorporating the cost of care.

Assumption 5.3.2 The core patient health transition probability matrix P (t), with entries

[P (t)]yj = pt(j|yt, C) = pt(j|yt, O), is IFR for all t ∈ N .

From definition 4.3.1, this assumption implies that for two patients in health states y and

y + 1, respectively, the patient in health state y is more likely to transition to a health state

worse than y in the next stage. In other words, sicker patients are more likely to progress to

being even sicker than are healthier patients.

Assumption 5.3.3 The test has accuracy ρ, i.e., z(L|L) = z(H|H) = ρ.

Through this assumption the model is restricted to consider only symmetric testing accura-

cies.

Assumption 5.3.4 Tests can be inaccurate, i.e., ρ ∈ (1
2
, 1].

This assumption implies that the test results are more likely to be correct than incorrect.

5.3.2 Mathematical analysis of the effects of testing cost and accuracy

With these assumptions, this model is similar to the model presented in Monahan [81],

but applied to a medical decision making application. This model also considers a time-

dependent terminal reward, but this difference does not impact the structural results. The-

orem 5.3.5 restates one of Monahan’s results for the finite-horizon case, which demonstrates

an ordering of the value function over πt for fixed testing cost and test accuracy. As discussed

in Section 2.3.1, a more general result was presented by Smallwood and Sondik [103].

Theorem 5.3.5 [81, 103] For any fixed ρ ∈ (1
2
, 1] and IFR transition probability matrix,

V ∗
t (πt) is continuous, nondecreasing, and convex in πt, πt ∈ [0, 1].
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Extending this result, an ordering on the value function with respect to testing cost is

demonstrated in Theorem 5.3.6. Let V ∗
t (πt, c) denote the optimal value function value at

stage t when the testing cost is c and the belief variable is πt.

Theorem 5.3.6 V ∗
t (πt, c

′) ≤ V ∗
t (πt, c

′′) for c′ ≥ c′′ and for all t ∈ N .

Proof (By induction) From (5.2) it is known that V ∗
N(πN , c′) = V ∗

N(πN , c′′) = rN(πN). As-

suming that V ∗
k (πk, c

′) ≤ V ∗
k (πk, c

′′) for k = t+1, . . . , N−1, it suffices to show that V ∗
t (πt, c

′)

≤ V ∗
t (πt, c

′′) . Following from (3.5), it follows that

V ∗
t (πt, c

′) = max


rt(πt, D),

rt(πt, O)− c′ +
∑

ot+1∈{L,H} γt(ot+1|πt, O)V ∗
t+1(U(πt+1|ot+1, πt, O), c′),

rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C), c′).

and

V ∗
t (πt, c

′′) = max


rt(πt, D),

rt(πt, O)− c′′ +
∑

ot+1∈{L,H} γt(ot+1|πt, O)V ∗
t+1(U(πt+1|ot+1, πt, O), c′′),

rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C), c′′).

The induction assumption implies that

V ∗
t+1(U(πt+1|ot+1, πt, O), c′′) ≥ V ∗

t+1(U(πt+1|ot+1, πt, O), c′) (5.4)

and

V ∗
t+1(U(πt+1|∅, πt, C), c′′) ≥ V ∗

t+1(U(πt+1|∅, πt, C), c′). (5.5)

Suppose that V ∗
t (πt, c

′) = rt(πt, D). By definition, V ∗
t (πt, c

′′) ≥ rt(πt, D) = V ∗
t (πt, c

′).

Next, suppose that

V ∗
t (πt, c

′) = rt(πt, O)− c′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), c′).

By definition,

V ∗
t (πt, c

′′) ≥ rt(πt, O)− c′′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), c′′)

≥ rt(πt, O)− c′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), c′′) (5.6)

69



≥ rt(πt, O)− c′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), c′) (5.7)

= V ∗
t (πt, c

′),

where (5.6) follows from the fact that c′ ≥ c′′ and (5.7) follows from the induction assumption

(5.4).

Finally, suppose that V ∗
t (πt, c

′) = rt(πt, C)+ γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C), c′). By def-

inition,

V ∗
t (πt, c

′′) ≥ rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C), c′′)

≥ rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C), c′) = V ∗

t (πt, c
′), (5.8)

where (5.8) follows from the induction assumption (5.5) and the desired result follows.

The ordering shown in Theorem 5.3.6 leads to Corollary 5.3.7, which shows that as the

testing cost decreases, the optimal testing region does not decrease.

Corollary 5.3.7 If it is optimal to test in state πt at stage t when the testing cost is c′, then

it is also optimal to test when the testing cost is c′′ ≤ c′.

Proof Given πt and testing cost c′, a∗t = O and (3.5) imply that

rt(πt, O)− c′ +
∑

ot+1∈{L,H}
γt(ot+1, O|πt)V

∗
t+1(U(πt+1|ot+1, πt, O)) ≥ rt(πt, D)

and that

rt(πt, O)− c′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O))

≥ rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C)).

Note that c′′ ≤ c′ implies that

rt(πt, O)− c′′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O))

≥ rt(πt, O)− c′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O)).

Therefore,

rt(πt, O)− c′′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O)) ≥ rt(πt, D)
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and

rt(πt, O)− c′′ +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O))

≥ rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C)),

and the result follows.

Corollary 5.3.7 demonstrates the intuitive result that when it is optimal to test for a given

test cost c′, then it is also be optimal to test for a lower test cost c′′ given that all other

model parameters remain the same.

Exploring the effects of test accuracy on the optimal value function value, Theorem

5.3.8 restates another result from Monahan [81] for the finite-horizon case. This result

demonstrates an ordering on the value function with respect to test accuracy. Let V ∗
t (πt, ρ)

denote the optimal value function value at stage t when the test accuracy is ρ and the belief

variable is πt.

Theorem 5.3.8 [81] V ∗
t (πt, ρ

′) ≤ V ∗
t (πt, ρ

′′) for ρ′ ≤ ρ′′ and for all t ∈ N .

Corollary 5.3.9 expands this result, which shows that as testing accuracy increases, the

optimal testing region does not decrease.

Corollary 5.3.9 If it is optimal to test in state πt at stage t when the test accuracy is ρ′,

then it is also optimal to test when the test accuracy is ρ′′ ≥ ρ′.

Proof Given πt and test accuracy ρ′, a∗t = O and (3.5) imply that

rt(πt, O)− c +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), ρ′) ≥ rt(πt, D)

and that

rt(πt, O)− c +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), ρ′)

≥ rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt, C)).

Note that following from Theorem 5.3.8, ρ′′ ≥ ρ′ implies that

rt(πt, O)− c +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), ρ′′)

≥ rt(πt, O)− c +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), ρ′).
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Therefore,

rt(πt, O)− c +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), ρ′′) ≥ rt(πt, D)

and

rt(πt, O)− c +
∑

ot+1∈{L,H}
γt(ot+1|πt, O)V ∗

t+1(U(πt+1|ot+1, πt, O), ρ′′)

≥ rt(πt, C) + γt(∅|πt, C)V ∗
t+1(U(πt+1|∅, πt)),

and the result follows.

Corollary 5.3.9 demonstrates the intuitive result that when it is optimal to test for a given

test accuracy ρ′, then it is also be optimal to test when the test result and/or interpretation

accuracy is improved.

The specific results described in Corollaries 5.3.7 and 5.3.9 are demonstrated through

the computational experiments described in Section 5.4.

5.4 USING PATIENT DATA TO CALIBRATE MODELS OF CYTOKINE

TESTING AND HOSPITAL DISCHARGE DECISIONS

The problem instances described in this section were solved using the modified backward

induction algorithm detailed in Appendix C.

5.4.1 POMDP data sources

The GenIMS trial data contains static and dynamic variables for 2320 patients that were

identified as potentially having community-acquired pneumonia (CAP). Of these patients,

2032 were admitted to the hospital and went on to develop varying degrees of sepsis. The

computational experiments presented in this section utilize a sample of 1096 patients, with

936 patients being excluded from the GenIMS in-patient cohort because they did not have

at least two consecutive days of cytokine test results. Static variables such as age and race

are provided for each patient.
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5.4.2 Interleukin-6

The following computational experiments utilize the cytokine interleukin-6 (IL-6) to repre-

sent the observed value of the patient’s health state. IL-6 has been shown to be a predictor of

severe sepsis and death through studies conducted as part of the GenIMS investigation [63].

In particular, it has been shown that elevated concentrations of this cytokine were higher for

those patients that died following severe sepsis compared to those who survived [63]. Based

on the results of this study, the problem instances tested in this dissertation considered an

IL-6 level of 5.9 pg/mL or less to be low and all levels greater than this value to be high [63].

5.4.3 Problem instances considering various testing costs and accuracy levels

Based on conventions in the literature [22, 23, 24, 50, 62, 63, 65, 96], the values N = 30

days and T = 90 days are used. Since age and race have been determined to be significant

predictors of patient mortality [58, 62], these static variables are used to define problem

instances following the conventions used in [24], [65], and [96]. Due to the sparsity of cytokine

data, problem instances were constructed for the cohort consisting of Caucasian patients age

65 and older. As additional data become available, the model can be used for other age and

race cohorts.

Due to issues with data sparsity when attempting to develop non-stationary probability

matrices, it is assumed that the transition and observation probabilities are stationary;

however, the patient’s (T−t)-day expected survival is calculated as a function of the patient’s

length of stay in the hospital. As additional controlled trials are conducted to study the role

of inflammatory markers in predicting sepsis progression and survival, the availability of

additional data will allow for the consideration of increasingly complex models, such as

those with multiple non-stationary components.

Table 5.1 defines nine problem instances by their observation probabilities and testing

costs. These instances were tested using the general model. As in Section 5.3, symmetric

test accuracies are assumed, i.e., z(L|L) = z(H|H). This dissertation focuses on how testing

accuracy in general affects the optimal policies. Further investigation into changes in test

specificity versus sensitivity is left to future research.
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Table 5.1: Problem Instances Tested Using the POMDP Model

z(L|L) c

A 1 0

B 1 0.5

C 1 1

D 0.95 0

E 0.95 0.5

F 0.95 1

G 0.90 0

H 0.90 0.5

I 0.90 1

5.4.4 Results for various testing costs and accuracy levels

Figure 5.1 displays the optimal discharge and testing policy regions for the nine problem

instances described in Table 5.1. Recall that these problem instances were all solved for

the cohort consisting of Caucasian patients age 65 and older. In Figure 5.1, the problem

instances are presented such that that test accuracy increases from bottom to top and testing

cost increases from left to right. These results are also presented in numerical form in Tables

B1, B2, and B3 in Appendix B.

Three values of test accuracy are considered: 1 (completely accurate), 0.95, and 0.9.

Three values of test cost (in life days) are considered: 0 (no cost), 0.5, and 1. Test cost

is a conversion of dollars to life days using a willingness-to-pay threshold, as done in cost-

effectiveness analysis [48]. For example, 0.5 life days would translate to $685 using a $500,000

per life year willingness-to-pay threshold value or to $1,370 using a $1,000,000 per life year

willingness-to-pay threshold.

74



Figure 5.1: Optimal Policy Regions for Each POMDP Problem Instance
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To interpret the optimal policy decision for a patient in a given health state (represented

by the current value of the belief variable) at a particular stage, the clinician would look at

the appropriate problem instance graph and first choose the current stage along the x-axis.

The clinician would next find the current value of the belief variable (i.e., the clinician’s

belief that the patient’s underlying health state is well) along the y-axis and then identify in

which of the three possible action regions these x, y coordinates fall. The lower-most region,

shaded in diagonal lines, represents the Continue region. If the coordinates fall within this

region, then the optimal action is to keep the patient in the hospital for one more day without

ordering a cytokine test. If the coordinates fall within the gray-shaded region, the testing

region, then the optimal action would be to keep the patient in the hospital for one more

day, but to also order a cytokine test. Recall that the test results will be received in the next

stage before a decision is made. Finally, if the coordinates fall in the upper-most region,

shaded white, then the optimal action is to discharge the patient from the hospital without

ordering a cytokine test.

Note that the optimal policy on day 29 is the same for each problem instance. This policy

can be interpreted as: If the belief variable is less than 0.37, keep the patient in the hospital

for one more day and then discharge on day 30; otherwise, discharge the patient from the

hospital on day 29. There is no testing region on day 29 since the model assumes that a

patient that is still in the hospital on day 30 must be discharged from the hospital. A test

result received on day 30 (for a test ordered on day 29) would not change this decision and

is therefore not necessary. Since testing is not involved at the end of the horizon, the nine

problem instances presented are the same on day 29 looking forward and therefore have the

same optimal policy. For the previous stages, however, the varying test costs and accuracies

impact the resulting policies, as can be seen in the differing optimal policies for each problem

instance for days 1 through 28. The convergence of each policy to 0.37 on day 29 can be

described as “end-of-horizon effects.”
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5.4.5 Discussion of POMDP results

To explain further, consider problem instance H, where z(L|L) = 0.9. Suppose that on day

9, the clinician believed that there was a 50% chance that the patient’s IL-6 level was low.

Based on the optimal policy illustrated in Figure 5.1, the clinician would choose to keep the

patient in the hospital for one more day and order a cytokine test. When the test result is

received at the beginning of day 10, the clinician observes the test result and makes another

decision.

Suppose that the test result observed at the beginning of day 10 indicates that the

patient’s IL-6 level is low. With this new information about the patient and with pt(L|L) =

0.81, pt(H|L) = 0.18, pt(L|H) = 0.17, and pt(H|H) = 0.82, the clinician’s new belief variable

value becomes:

U(πt+1|ot+1 = L, πt = 0.5) =
z(L|L)[pt(L|L)πt + pt(L|H)(1− πt)]

γt(L|0.5)

=
0.9[0.81 ∗ 0.5 + 0.17 ∗ 0.5]

0.491
= 0.898 ≡ 90%,

where

γt(L|0.5) = z(L|L)[pt(L|L)πt + pt(L|H)(1− πt)] + z(L|H)[pt(H|L)πt + pt(H|H)(1− πt)]

= 0.9[0.81 ∗ 0.5 + 0.17 ∗ 0.5] + 0.1[0.18 ∗ 0.5 + 0.82 ∗ 0.5] = 0.491.

Looking at the chart for instance H, day 10, and belief variable value 0.90, the optimal

decision is to discharge the patient from the hospital.

If, on the other hand, the test results observed at the beginning of day 10 had indicated

that the patient’s IL-6 level was high, then the clinician’s new belief variable value would

have become:

U(πt+1|ot+1 = H, πt = 0.5) =
z(H|L)[pt(L|L)πt + pt(L|H)(1− πt)]

γt(H|0.5)

=
0.1[0.81 ∗ 0.5 + 0.17 ∗ 0.5]

0.499
= 0.098 ≡ 10%,
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where

γt(H|0.5) = z(H|L)[pt(L|L)πt + pt(L|H)(1− πt)] + z(H|H)[pt(H|L)πt + pt(H|H)(1− πt)]

= 0.1[0.81 ∗ 0.5 + 0.17 ∗ 0.5] + 0.9[0.18 ∗ 0.5 + 0.82 ∗ 0.5] = 0.499.

Looking at the chart for instance H, day 10, and belief variable value 0.1, the optimal decision

is to keep the patient in the hospital without ordering a cytokine test. If no cytokine test is

ordered on day 10, then the updated belief variable on day 11 becomes:

U(π11|∅, 0.098) = pt(L|L)πt + pt(L|H)(1− πt)

= 0.81 ∗ 0.098 + 0.17 ∗ 0.902 = 0.233 ≡ 23%.

Note that the belief variable value increased from 0.1 to 0.23 and that the optimal decision

on day 11 in this state is to order another cytokine test.

These regions can be further explained as follows. For very low values of the belief

variable, the decision maker believes with a high probability that the patient’s cytokine level

is high and it is therefore not necessary to order a test for more information. This additional

information would not change the decision to keep the patient in the hospital, so a test

is not ordered. Similarly, for very high values of the belief variable, the decision maker is

fairly certain that the patient is healthy enough to be discharged from the hospital, and it

is therefore not necessary to order a test for more information. This additional information

would most likely not change the decision to discharge the patient from the hospital, so a

test is not ordered.

Notice that these observations are true even for the case when there is no testing cost and

no test error. The Continue and Discharge regions increase in size as the associated testing

cost increases, confirming the results of Corollary 5.3.7 in Section 5.3. These regions decrease

in size as the associated testing accuracy increases, confirming the results of Corollary 5.3.9

in Section 5.3. The center testing region is highly dependent on both the cost of ordering a

test and the accuracy of the test results. The testing region is largest for Problem Instance

A in which there is no testing cost and the test results are completely accurate. For Problem

Instance I, on the other hand, in which the testing cost is highest and the test accuracy
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is lowest, the testing region is very narrow. The testing region appears to be less affected

when only one parameter, cost or accuracy, is changed, but decreases dramatically as both

become more unfavorable.

5.5 INTERPRETING OPTIMAL POLICIES FOR CLINICAL USE

One drawback of the POMDP model formulation and model output is the difficulty in

translating the results to an applicable strategy. This stems mainly from the use of a belief

variable in the model formulation. The belief variable is updated from one stage to the

next using Bayesian updating, effectively capturing the history of patient health transitions

and observed test results in a single value. Unfortunately, the clinician often considers the

patient’s history explicitly when making a treatment decision. The single belief variable

value alone does not provide enough clinical information to the clinician to be immediately

applicable in practice.

A finite horizon model that considers 30 patient days in the hospital and three possible

test results (low, high, no test) will result in 330 (over 200 trillion) possible combinations

of test results. The belief variable allows for the use of solution techniques that avoid

enumerating each possible solution. The following tables provide some insight into the belief

variable calculation over a short time horizon of four days. In this example, it is assumed

that tests are ordered for four consecutive days and that the first test result is observed

on day 1. Assuming that the test interpretation accuracy is 0.95, Table 5.2 demonstrates

how the belief variable is updated based on all combinations of four consecutive test results,

starting with a low test result on day 1. Table 5.3 demonstrates how the belief variable is

updated based on all combinations of four consecutive test results, starting with a high test

result on day 1.
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These tables demonstrate that a change in the test result received between two consecu-

tive days significantly impacts the belief variable value. For example, even after a 3 low test

results, a single high test result will reduce the belief variable value from 0.9874 to 0.1791.

Similarly, after 3 high test results, a single low test result will raise the belief variable value

from 0.0113 to 0.8039.

Table 5.2: Belief Variable Values (Starting With a Low Test Result on Day 1 and All Possible

Results on Days 2, 3, and 4)

day 1 result day 2 result day 3 result day 4 result
L L L H

0.95 0.9855 0.9874 0.1791
L L H L

0.95 0.9855 0.1780 0.8837
L H L L

0.95 0.1587 0.8772 0.9814
L L H H

0.95 0.9855 0.1780 0.02062
L H L H

0.95 0.1587 0.8772 0.1276
L H H L

0.95 0.1587 0.0194 0.8094
L H H H

0.95 0.1587 0.0194 0.0116
L L L L

0.95 0.9855 0.9874 0.9875
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Table 5.3: Belief Variable Values (Starting With a High Test Result on Day 1 and All

Possible Results on Days 2, 3, and 4)

day 1 result day 2 result day 3 result day 4 result
H L L H

0.05 0.8284 0.9784 0.1738
H L H L

0.05 0.8284 0.1114 0.8588
H H L L

0.05 0.0132 0.8052 0.9768
H L H H

0.05 0.8284 0.1114 0.0166
H H L H

0.05 0.0132 0.8052 0.1046
H H H L

0.05 0.0132 0.0113 0.8039
H H H H

0.05 0.0132 0.0113 0.0112
H L L L

0.05 0.8284 0.9784 0.9870

These values are further put into perspective when compared to the testing and dis-

charge control-limit values presented in Table 5.4. These testing and discharge control limits

correspond to problem instances D, E, and F , which correspond to a test accuracy of 0.95

and test costs, 0, 0.5, and 1, respectively. When comparing the values in Tables 5.2 and 5.3

to Table 5.4, consider, for example, that two low test results in a row in either Table 5.2 or

Table 5.3 will raise the belief variable value above the limit for discharging a patient for all

problem instances. Similarly, even one high test result reduces the belief variable below the

testing limit.
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Table 5.4: POMDP Control Limits (Instances D, E, and F )

day D E F
CL(T ) CL(D) CL(T ) CL(D) CL(T ) CL(D)

1 0.23 0.83 0.26 0.71 0.26 0.57
2 0.23 0.83 0.26 0.71 0.26 0.57
3 0.23 0.83 0.26 0.71 0.26 0.57
4 0.23 0.83 0.26 0.71 0.26 0.57
5 0.23 0.83 0.26 0.71 0.26 0.56
6 0.23 0.83 0.26 0.71 0.27 0.55
7 0.23 0.83 0.26 0.7 0.27 0.55
8 0.23 0.83 0.26 0.7 0.27 0.55
9 0.23 0.83 0.26 0.7 0.27 0.55
10 0.23 0.83 0.26 0.7 0.27 0.54
11 0.23 0.83 0.26 0.7 0.27 0.54
12 0.23 0.83 0.26 0.7 0.29 0.54
13 0.23 0.82 0.26 0.69 0.29 0.53
14 0.23 0.82 0.26 0.69 0.27 0.53
15 0.23 0.82 0.26 0.69 0.29 0.52
16 0.23 0.82 0.26 0.68 0.29 0.52
17 0.23 0.81 0.26 0.68 0.27 0.51
18 0.23 0.81 0.25 0.67 0.29 0.51
19 0.22 0.8 0.26 0.65 0.29 0.5
20 0.22 0.8 0.26 0.65 0.27 0.5
21 0.22 0.79 0.23 0.64 0.3 0.48
22 0.22 0.77 0.26 0.62 0.29 0.47
23 0.22 0.75 0.26 0.61 0.26 0.46
24 0.22 0.73 0.22 0.6 0.3 0.44
25 0.19 0.71 0.26 0.57 0.3 0.44
26 0.22 0.67 0.23 0.54 0.23 0.43
27 0.16 0.62 0.12 0.51 0.29 0.39
28 0.15 0.54 0.29 0.4 0.37 0.37
29 0.37 0.37 0.37 0.37 0.37 0.37
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Once a high test result is received and the belief variable value falls below the testing

limit, then the optimal action is to keep the patient in the hospital for one more stage without

ordering another test. The belief variable value is then updated according to the underlying

core state transition probabilities. Only after the belief variable value has reached the testing

limit, will another test be ordered for that patient. Figure 5.2 displays the testing and

discharge control limits, by stage, for problem instance E, corresponding to a test accuracy

of 0.95 and a test cost of 0.5. This figure also shows how the value of the belief variable is

updated from one day to the next after a high test result on day one and no further test

results. Notice that the belief variable value enters the testing region on day 3. In other

words, if a high test result was received on day 1, then the patient would be kept in the

hospital without testing on days 1 and 2. On day 3, the patient would be kept in the hospital

and another cytokine test would be ordered.

Interpreting this information from a clinical perspective, it is clear that a high test result

is a significant indication that the patient is very sick and should be kept in the hospital.

However, if the patient survives for two days following the high test result, then the patient’s

health has likely improved, and another test result should be ordered.

To generalize this result, Table 5.5 demonstrates how various values of the belief variable

πt are updated from day t to t + 1 after a high test result is received. Notice that πt+1

falls below the test threshold for all t and for all values of πt, as shown in Table 5.5. It can

therefore be concluded, that after a high test result is received, the clinic

Table 5.6 demonstrates how πt is updated from day t to t + 1 when no test result is

received, for the updated belief variable values in Table 5.5. Note that only the largest

values fall above the testing thresholds of the later days in the model, as indicated in Table

5.4.

Finally, Table 5.7 demonstrates the updating of πt+1 from day t + 1 to day t + 2 for the

updated values in Table 5.6. These values all fall above the testing thresholds for all values

of πt+1 and all days. Therefore, it is optimal to order another cytokine test when in any of

these belief variable states.

Table 5.8 shows how various values of the belief variable πt would be updated from day t

to t + 1 when a low test result is received. Notice that all updated belief variable values fall
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Figure 5.2: Belief Variable Value (After a High Test Result on Day 1 and No Further Test

Results)
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Table 5.5: Updating πt from Day t to t + 1 After a High Test Result

pit pit+1

0.10 0.02

0.20 0.02

0.30 0.03

0.40 0.04

0.50 0.05

0.60 0.06

0.70 0.08

0.80 0.10

0.90 0.14

Table 5.6: Updating πt from Day t to t + 1 When No Test Result is Received

πt πt+1

0.02 0.18

0.03 0.19

0.04 0.19

0.05 0.20

0.06 0.21

0.08 0.22

0.10 0.23

0.14 0.25
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Table 5.7: Updating πt+1 from Day t + 1 to t + 2 When No Test Result is Received

πt+1 πt+2

0.18 0.28

0.19 0.29

0.20 0.29

0.21 0.30

0.22 0.31

0.23 0.32

0.25 0.33

above the discharge threshold for all days and all values of πt. It can be concluded, therefore,

that a patient should be discharged after a low test result is observed.

Exploring the results for problem instance E has resulted in decision rules that are easy

to implement in practice. If a high test result is observed, wait one to two days, then test

again. If a low test result is observed, discharge the patient.

This approach to interpreting and implementing the POMDP model solutions can be

carried over into an interpretation of a combined SOFA and IL-6 policy based on the POMDP

results discussed in this section and the SOFA results presented for problem instance 2

(Caucasian patients, age 65 years and older) in Chapter 4.

5.5.1 Combined SOFA and IL-6 policy

This section considers an approach for utilizing the SOFA-based MDP model results in ad-

dition to the IL-6-based POMDP model results to inform clinical practice. As additional

data become available, the general model proposed in Section 3 can be used to generate op-

timal results combining completely observable elements (e.g., the SOFA score) and partially

observable elements (e.g., the IL-6 level). In the absence of these data, however, key results
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Table 5.8: Updating πt from Day t to t + 1 When a Low Test Result is Received

πt πt+1

0.10 0.85

0.20 0.89

0.30 0.92

0.40 0.93

0.50 0.95

0.60 0.96

0.70 0.97

0.80 0.98

0.90 0.98

from Chapters 4 and 5 are combined to form a general strategy for patient care using the

following heuristic approach.

An important consideration when discussing combining the SOFA score and IL-6 infor-

mation is the fact that the SOFA score is directly observable by the clinician and will be

the basis on which most decisions are made in practice. The SOFA score will be considered

before other additional information, such as the patient’s IL-6 level, when making the dis-

charge decision. For example, if a patient has a very high SOFA score, then the patient will

be kept in the hospital, even if the patient’s IL-6 level is low. Therefore, the IL-6 level does

not provide useful information unless the clinician is considering the decision to discharge

the patient from the hospital.

The following heuristic approach to a combined SOFA and IL-6 policy is proposed for

Caucasian patients age 65 and older (corresponding to MDP problem instance 2 and POMDP

problem instance E): Observe the patient’s SOFA score value following the MDP policy as

described in Table A2 in Appendix A. At the point at which the decision is to discharge

the patient, do not discharge the patient, but instead order a cytokine test. If the cytokine
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test result is low in the next stage and the patient’s SOFA score is still within the range to

discharge the patient, then discharge the patient.

If the cytokine test result is high in the next stage, then keep the patient in the hospital

for two more days. If on the second day, the patient’s SOFA score is still in the discharge

range, then order another cytokine test. Again, if the test result is low and the patient’s

SOFA score is still in the discharge range, then discharge the patient. Otherwise wait two

more days, as before, and order another cytokine test. Continue this process until the patient

either dies or is discharged from the hospital.

This policy builds off of current practice with elements of the optimal SOFA and IL-6

policies described in this dissertation. In the IL-6 model, the decision to test rather than

discharge the patient resulted in an average (90−t)-day life expectancy improvement of more

than 4 days, or an average increase of more than 6.7% (for the case of 95% test accuracy

and 0.5 days for test cost). Again, as additional data become available the general model

proposed in Section 3 can be used to measure this improvement for a combined SOFA and

IL-6 model, but it is assumed that similar improvements in patient survival can be expected

from implementing the suggested heuristic policy. Until addition data become available for

more robust modeling, these approaches help to provide structure to the current process and

begin to give insight into the interpretation of complex modeling techniques like POMDPs.

5.6 CONCLUSIONS

The results presented in this chapter demonstrate the need for inexpensive, accurate testing

procedures as well as accurate interpretation of test results. More importantly, however, is

the suggestion that even in light of completely accurate and cost-free tests, it is not optimal

to test all the time. This at first seems to be counterintuitive until one considers that

additional information is only needed if it will change the decision to discharge the patient.
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Additionally, while this model considers an individual patient’s perspective, one must

also consider the amount of time that the clinician and other health care providers spend in

administering, processing, and analyzing test results. Avoiding unnecessary tests will help

to reduce health care costs from the system perspective.

Using the results of the IL-6-based model together with the SOFA-based policies from

Chapter 4, a heuristic policy is developed utilizing testing as a qualification step for patient

discharge. As additional data become available, the general model proposed in Chapter 3

can be used to develop optimal SOFA- and IL-6-based testing and hospital discharge policies.

Until that time, the general strategies presented in this chapter will help to provide structured

strategies for utilizing new cytokine testing procedures as part of patient treatment.

From this study it is clear that the POMDP framework can be used to solve medical

decision making questions in which aspects of the patient’s health state can only be observed

through a costly or inaccurate testing procedure.
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6.0 CONTRIBUTIONS AND DIRECTIONS FOR FUTURE RESEARCH

6.1 CONTRIBUTIONS TO PATIENT CARE

Expanding upon research to date that has sought to compare various treatment alternatives,

this dissertation is the first study to address the optimization of decisions made in the man-

agement of severe sepsis. In addition, this is the first model of sepsis to consider the question

of cytokine testing, specifically its impact on expected patient survival. The GenIMS trial

is the first study of its kind to provide enough patient data to test the effects of cytokine

testing on patient survival. Using the results of this trial in an optimization model greatly

extends the impacts of this research in the medical community.

In this dissertation, novel models utilizing the MDP and POMDP methodologies that

have only recently been introduced to the medical community are presented. Not only is

the framework of these models shown to be useful for modeling medical decision making

questions in the management of sepsis, but these models are also analyzed mathematically

to uncover clinical conditions that ensure specific types of optimal solutions.

Most importantly, using data from the GenIMS study, these models are then solved for

problem instances constructed from actual patient-based data. The results are interpreted

from a clinical perspective to give recommendations on specific strategies that can be used

to inform clinical practice moving forward.

Finally, the results of both models motivate the need for additional medical research

and demonstrate that, with additional data, these modeling techniques can be used to solve

complex problems that are otherwise too difficult to analyze with common techniques used

by the medical decision making research community today.
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6.2 CONTRIBUTIONS TO STOCHASTIC OPTIMIZATION

The interesting problems found in critical care medicine, such as the management of severe

sepsis, provide the operations research community with unique applications that contribute

to the development of MDP and POMDP theory.

For the MDP model, this dissertation demonstrates clinical conditions for the existence

of control-limit policies using an approach that differs from the standard method described

by Puterman [89]. Computational experiments further illustrate these types of policies for

several problem instances.

For the POMDP models, this dissertation explores the effects of test cost and accuracy on

the optimal testing region and resulting expected patient survival. The results demonstrate

that as testing cost decreases and test accuracy increases, the optimal testing region does not

decrease. In other words, these results give further evidence for the need for less expensive,

more accurate tests. In addition, the results indicate that testing should be used as a

qualification for hospital discharge, but is not necessary if the clinician has already decided

not to discharge the patient based on completely observable factors. For example, even in

the case of no cost, completely accurate tests, it is not always optimal to test. This is because

the additional information from the test result would not change the clinician’s decision to

keep the patient in the hospital and is therefore unnecessary. It is also important to consider

the unquantified savings experienced when not performing unnecessary tests, such as an

improvement in quality of life for the patient and the additional time that the clinician can

spend with the patient, with other patients, or on other activities.

From a research perspective, it is especially beneficial to realize the applicability of

theoretical models in practical applications. It is also helpful to test these models to recognize

their weaknesses and additional opportunities for improvement. While additional data are

needed from the application perspective, the dependence on extremely large quantities of

data from the modeling perspective is also an issue.

The artificial intelligence community is already well underway with exploring methods

by which to capture disease progression by means of influence diagrams and neural networks

so that complete transition probability networks are not needed. Unfortunately, the GenIMS
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study was not far enough along to take advantage of these techniques in this dissertation.

The next section explores several future opportunities for research in this area.

6.3 DIRECTIONS FOR FUTURE RESEARCH

To further validate and gain insights into these models, future research efforts could include

the use of simulation to compare actual strategies to the policies proposed in this dissertation.

For example, Saka et al. [96] presented a simulation model that captured changes in a

patient’s SOFA score over time. The end points in this model were either patient discharge

or death. As a direction for future research, this simulation model could be used to test

the impact of the optimal SOFA-based MDP model results on patient length of stay in the

hospital. These results could then be compared to the actual length of stay in the GenIMS

trial to validate the effectiveness of the model results. Similarly, the model could be updated

to incorporate patient cytokine levels. The updated model could then be used to test the

impact of the optimal IL-6-based POMDP model result on the patient length of stay and

these results could be compared to the actual length of stay. Finally, the average length of

stay resulting from the application of each policy could be compared to assess the value of

the individual models as compared to using the proposed heuristic strategy.

As additional data become available from clinical studies like GenIMS, the models pre-

sented in this dissertation can be used to solve increasingly robust problems involving clinical

decisions in the management of severe sepsis. At the same time, modeling techniques are

being developed to capture the intricate relationships between disease parameters. These

techniques, once refined, will be able to solve, in a reasonable amount of time, increasingly

complex problems in medical decision making.

In addition to these broader directions for research, several immediate applications of

the research from this dissertation are apparent. First, these models can be used to explore

testing and discharge decisions for each cytokine collected in the GenIMS trial, IL-10 and

TNF, for example. This dissertation focused mainly on the application of the model to a

specific example, IL-6, but can also be used to explore these other variables.
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Second, as the interdependencies between the cytokine values are better understood as

a result of the statistical analysis currently being conducted by the GenIMS investigators,

the general POMDP model can be used to consider models with multiple cytokine variables.

This dissertation, due to the data requirements and availability, only considered a single

cytokine variable. However, as more of the statistical relationships are understood, the data

requirements will decrease and become more manageable.

Third, further exploration into the algorithms currently being developed in the artificial

intelligence community may uncover additional ways to solve increasing complex POMDP

models with multiple variables. These methods, combined with the increased understanding

of sepsis resulting from the GenIMS study, will also allow for the development of a more

complex model.

An investigation into conditions for the existence of control-limit policies for both the

MDP and POMDP models would be beneficial. In addition to the investigation of several

structural properties, computational results were mainly used in this dissertation to indicate

that these types of policies exists for these models. However, robust mathematical proofs

would advance the current state of research in these areas. Unfortunately, only very restric-

tive assumptions on the models, too restrictive for this type of application, are necessary.

As was already demonstrated for the MDP model, the restrictive condition did not hold for

the data tested, even though control limit type policies appeared to exist as demonstrated

through the computational results.

Finally, the exploration of other factors that influence clinical decision making, such as

the costs of care, can be incorporated into these models. Currently, the immediate reward

received for keeping a patient in the hospital is a full day of life. Considering factors such

as cost of care would reduce this reward and would likely increase the discharge region for

many if not all problem instances.

It is clear that mathematical modeling techniques such as MDPs and POMDPs are useful

to model questions in the management of sepsis. The investigation of structural properties

and the results demonstrated through computational experiments not only validate the appli-

cability of the modeling techniques, but also serve to provide clinical insight on management

strategies. It is hoped that in the future, as additional data and solution techniques become
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available, that the operations research and medical decision making research communities

will be able to work together to develop clinically robust optimization models that can be

used to inform daily decisions made by clinicians in sepsis management and in other areas

of patient treatment as well.
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APPENDIX A

MDP OPTIMAL SOLUTION OUTPUT
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Table A1: Optimal Solution to MDP Problem Instance 1

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 88.444 89.000 89.000 60.936 D D D C
2 87.370 88.000 88.000 59.567 D D D C
3 86.281 87.000 87.000 57.687 D D D C
4 85.177 86.000 86.000 54.907 C D D C
5 84.016 85.000 85.000 51.148 C D D C
6 82.823 84.000 84.000 44.295 C D D C
7 81.593 83.000 83.000 31.257 D D D C
8 78.720 73.919 60.529 18.376 D C D C
9 77.760 73.022 59.804 18.170 D C D C
10 76.800 72.124 59.077 17.963 D C D C
11 75.840 71.225 58.347 17.756 D C D C
12 74.880 70.325 57.614 17.547 D C D C
13 73.920 69.423 56.877 17.337 D C D C
14 72.960 68.519 56.135 17.125 D C D C
15 72.000 67.612 55.387 16.911 D C D C
16 71.040 66.702 54.630 16.693 D C D C
17 70.080 65.787 53.862 16.471 D C D C
18 69.120 64.865 53.080 16.245 D C D C
19 68.160 63.935 52.282 16.013 D C D C
20 67.200 62.995 51.462 15.773 D C D C
21 66.240 62.039 50.616 15.525 D C D C
22 65.280 61.060 49.739 15.268 D C D C
23 64.320 60.049 48.825 14.999 D C D C
24 63.360 58.986 47.873 14.718 D C D C
25 62.400 57.838 46.889 14.419 D C D C
26 61.440 56.544 45.903 14.081 D C D C
27 60.480 54.986 45.000 13.625 D C D C
28 59.520 52.951 44.286 12.824 D C D C
29 58.560 50.103 43.571 11.186 D C D C
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Table A2: Optimal Solution to MDP Problem Instance 2

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 85.367 83.606 63.617 31.023 D D C C
2 84.408 82.667 61.567 28.743 D D C C
3 83.449 81.727 58.123 25.187 D D C C
4 76.947 72.695 59.095 17.014 D C C C
5 76.053 71.632 57.770 16.271 D C C C
6 75.158 70.561 56.167 14.861 D C C C
7 74.263 69.541 54.269 11.550 D D D C
8 67.739 57.245 45.556 6.415 D D D C
9 66.913 56.547 45.000 6.353 D D D C
10 66.087 55.849 44.444 6.291 D D D C
11 65.261 55.151 43.889 6.229 D D D C
12 64.435 54.453 43.333 6.167 D D D C
13 63.609 53.755 42.778 6.105 D D D C
14 62.783 53.057 42.222 6.043 D D D C
15 61.957 52.358 41.667 5.980 D D D C
16 61.130 51.660 41.111 5.918 D D D C
17 60.304 50.962 40.556 5.856 D D D C
18 59.478 50.264 40.000 5.794 D D D C
19 58.652 49.566 39.444 5.732 D D D C
20 57.826 48.868 38.889 5.670 D D D C
21 57.000 48.170 38.333 5.608 D D D C
22 56.174 47.472 37.778 5.545 D D D C
23 55.348 46.774 37.222 5.483 D D D C
24 54.522 46.075 36.667 5.418 D D D C
25 53.696 45.377 36.111 5.349 D D D C
26 52.870 44.679 35.556 5.261 D D D C
27 52.043 43.981 35.000 5.112 D D D C
28 51.217 43.283 34.444 4.749 D D D C
29 50.391 42.585 33.889 3.648 D D D C

97



Table A3: Optimal Solution to MDP Problem Instance 3

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 89.000 89.000 89.000 78.496 D D D C
2 88.000 88.000 88.000 74.406 D D D C
3 87.000 87.000 87.000 69.408 D D D C
4 86.000 82.480 76.807 65.938 D C C C
5 85.000 80.926 74.468 62.215 D C C C
6 84.000 79.265 71.930 58.154 D C C C
7 83.000 77.467 69.167 53.722 D C C C
8 77.176 74.693 66.802 48.699 D C C C
9 76.235 73.742 65.865 47.967 D C C C
10 75.294 72.787 64.910 47.215 D C C C
11 74.353 71.825 63.936 46.439 D C C C
12 73.412 70.857 62.940 45.636 D C C C
13 72.471 69.881 61.920 44.802 D C C C
14 71.529 68.897 60.872 43.933 D C C C
15 70.588 67.904 59.795 43.023 D C C C
16 69.647 66.901 58.684 42.065 D C C C
17 68.706 65.888 57.537 41.050 D C C C
18 67.765 64.866 56.350 39.967 D C C C
19 66.823 63.834 55.122 38.803 D C C C
20 65.882 62.793 53.850 37.537 D C C C
21 64.941 61.746 52.537 36.143 D C C C
22 64.000 60.696 51.185 34.584 D C C C
23 63.059 59.646 49.808 32.805 D C C C
24 62.118 58.596 48.429 30.727 D C C C
25 61.176 57.536 47.095 28.233 D C C C
26 60.235 56.422 45.895 25.142 D C C C
27 59.294 55.123 45.000 21.169 D C C C
28 58.353 53.409 44.286 15.963 D C C C
29 57.412 50.867 43.571 9.095 D C D C
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Table A4: Optimal Solution to MDP Problem Instance 4

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 89.000 82.188 63.846 48.813 D C C C
2 88.000 82.735 65.670 50.940 D C C C
3 87.000 83.469 68.335 54.972 D C C C
4 83.210 86.000 71.667 64.029 C D D C
5 81.901 85.000 70.833 57.175 C D D C
6 80.519 84.000 70.000 45.807 C D D C
7 79.048 83.000 69.167 26.537 D D D C
8 76.875 70.685 56.919 2.000 D C C C
9 75.938 69.827 56.234 2.000 D C C C
10 75.000 68.968 55.546 2.000 D C C C
11 74.063 68.106 54.855 2.000 D C C C
12 73.125 67.242 54.160 2.000 D C C C
13 72.188 66.374 53.460 2.000 D C C C
14 71.250 65.501 52.752 2.000 D C C C
15 70.313 64.621 52.034 2.000 D C C C
16 69.375 63.732 51.302 2.000 D C C C
17 68.438 62.831 50.551 2.000 D C C C
18 67.500 61.912 49.775 2.000 D C C C
19 66.563 60.971 48.965 1.999 D C C C
20 65.625 59.998 48.108 1.998 D C C C
21 64.688 58.983 47.189 1.996 D C C C
22 63.750 57.911 46.185 1.992 D C C C
23 62.813 56.760 45.066 1.984 D C C C
24 61.875 55.504 43.792 1.969 D C C C
25 60.938 54.099 42.312 1.938 D C C C
26 60.000 52.487 40.560 1.875 D C C C
27 59.063 50.568 38.460 1.750 D C C C
28 58.125 48.167 35.945 1.500 D C C C
29 57.188 44.921 33.027 1.000 D C D C
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Table A5: Optimal Solution to MDP Problem Instance 5

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 89.000 89.000 89.000 68.074 D D D C
2 87.857 88.000 88.000 52.147 D D D C
3 86.865 87.000 87.000 51.490 C D D C
4 85.874 86.000 86.000 50.770 C D D C
5 84.884 85.000 85.000 49.932 C D D C
6 83.897 84.000 84.000 48.876 C D D C
7 82.913 83.000 83.000 47.415 C D D C
8 81.934 82.000 82.000 45.201 C D D C
9 80.961 81.000 81.000 41.589 C C D C
10 80.000 80.000 80.000 35.380 C C D C
11 79.000 79.000 79.000 34.951 C C D C
12 78.000 78.000 78.000 34.522 C C D C
13 77.000 77.000 77.000 34.094 C C D C
14 76.000 76.000 76.000 33.665 C C D C
15 75.000 75.000 75.000 33.236 C C D C
16 74.000 74.000 74.000 32.807 C C D C
17 73.000 73.000 73.000 32.378 C C D C
18 72.000 72.000 72.000 31.947 C C D C
19 71.000 71.000 71.000 31.515 C C D C
20 70.000 70.000 70.000 31.077 C C D C
21 69.000 69.000 69.000 30.631 C C D C
22 68.000 68.000 68.000 30.164 C C D C
23 67.000 67.000 67.000 29.656 C C D C
24 66.000 66.000 66.000 29.061 C C D C
25 65.000 65.000 65.000 28.285 C C D C
26 64.000 64.000 64.000 27.128 C C D C
27 63.000 63.000 63.000 25.173 C C D C
28 62.000 62.000 62.000 21.550 C C D C
29 61.000 61.000 61.000 14.433 C C D C
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Table A6: Optimal Solution to MDP Problem Instance 6

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 86.810 89.000 89.000 39.267 D C C C
2 87.447 82.914 70.400 23.894 D C C C
3 86.453 81.972 69.600 23.625 D C C C
4 85.459 81.028 68.800 23.337 D C C C
5 84.465 80.082 68.000 23.002 D C C C
6 83.472 79.133 67.200 22.536 D C C C
7 82.478 78.176 66.400 21.723 D C C C
8 81.484 77.211 65.600 19.980 D C C C
9 80.491 76.235 64.800 15.747 D D D C
10 75.789 60.532 48.000 13.333 D C C C
11 74.842 59.782 47.400 13.167 D C C C
12 73.895 59.033 46.800 13.000 D C C C
13 72.947 58.283 46.200 12.833 D C C C
14 72.000 57.533 45.600 12.667 D C C C
15 71.053 56.784 45.000 12.500 D C C C
16 70.105 56.034 44.400 12.333 D C C C
17 69.158 55.284 43.800 12.167 D C C C
18 68.210 54.534 43.200 12.000 D C C C
19 67.263 53.784 42.600 11.833 D C C C
20 66.316 53.034 42.000 11.667 D C C C
21 65.368 52.283 41.400 11.500 D C C C
22 64.421 51.532 40.800 11.333 D C C C
23 63.474 50.778 40.200 11.167 D C C C
24 62.526 50.022 39.600 11.000 D C C C
25 61.579 49.259 39.000 10.833 D C C C
26 60.632 48.487 38.400 10.667 D C C C
27 59.684 47.697 37.800 10.500 D C C C
28 58.737 46.873 37.200 10.333 D C C C
29 57.789 45.990 36.600 10.167 D C C C
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Table A7: Optimal Solution to MDP Problem Instance 7

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 82.154 79.876 69.406 31.069 C D C C
2 79.666 79.810 66.449 20.423 D D C C
3 78.760 78.897 65.694 19.739 D C D C
4 77.855 77.968 64.939 18.828 D C D C
5 76.950 77.001 64.184 17.582 D C D C
6 76.045 75.925 63.429 15.839 D C D C
7 75.139 74.554 62.673 13.358 D C D C
8 74.234 72.380 61.918 9.783 D C D C
9 73.329 68.015 61.163 4.586 D D D C
10 64.167 51.765 31.304 1.000 D D C C
11 63.365 51.118 30.913 1.000 D D C C
12 62.562 50.471 30.522 1.000 D D C C
13 61.760 49.824 30.130 1.000 D D C C
14 60.958 49.176 29.739 1.000 D D C C
15 60.156 48.529 29.348 1.000 D D C C
16 59.354 47.882 28.956 1.000 D D C C
17 58.552 47.235 28.565 1.000 D D C C
18 57.750 46.588 28.174 1.000 D D C C
19 56.948 45.941 27.783 1.000 D D C C
20 56.146 45.294 27.391 1.000 D D C C
21 55.344 44.647 27.000 1.000 D D C C
22 54.542 44.000 26.609 1.000 D D C C
23 53.740 43.353 26.217 1.000 D D C C
24 52.937 42.706 25.826 1.000 D D C C
25 52.135 42.059 25.435 1.000 D D C C
26 51.333 41.412 25.043 1.000 D D C C
27 50.531 40.765 24.652 1.000 D D C C
28 49.729 40.118 24.261 1.000 D D C C
29 48.927 39.471 23.870 1.000 D D C C
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Table A8: Optimal Solution to MDP Problem Instance 8

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 89.000 89.000 89.000 62.943 D D D C
2 88.000 88.000 88.000 61.823 D D D C
3 87.000 87.000 87.000 60.423 D D D C
4 86.000 86.000 86.000 58.551 C C D C
5 85.000 85.000 85.000 56.605 C C D C
6 84.000 84.000 84.000 53.317 C C D C
7 83.000 83.000 83.000 47.256 C C D C
8 82.000 82.000 82.000 35.461 C C D C
9 81.000 81.000 81.000 35.043 C C D C
10 80.000 80.000 80.000 34.624 C C D C
11 79.000 79.000 79.000 34.206 C C D C
12 78.000 78.000 78.000 33.787 C C D C
13 77.000 77.000 77.000 33.368 C C D C
14 76.000 76.000 76.000 32.949 C C D C
15 75.000 75.000 75.000 32.531 C C D C
16 74.000 74.000 74.000 32.111 C C D C
17 73.000 73.000 73.000 31.692 C C D C
18 72.000 72.000 72.000 31.271 C C D C
19 71.000 71.000 71.000 30.847 C C D C
20 70.000 70.000 70.000 30.418 C C D C
21 69.000 69.000 69.000 29.978 C C D C
22 68.000 68.000 68.000 29.516 C C D C
23 67.000 67.000 67.000 29.009 C C D C
24 66.000 66.000 66.000 28.409 C C D C
25 65.000 65.000 65.000 27.618 C C D C
26 64.000 64.000 64.000 26.436 C C D C
27 63.000 63.000 63.000 24.455 C C D C
28 62.000 62.000 62.000 20.835 C C D C
29 61.000 61.000 61.000 13.857 D D D C

103



Table A9: Optimal Solution to MDP Problem Instance 9

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 87.749 89.000 89.000 42.929 D D D C
2 86.738 88.000 88.000 39.206 D D D C
3 85.721 87.000 87.000 31.115 D D D C
4 85.196 83.795 68.800 21.923 D D C C
5 84.206 82.821 68.000 21.146 D D C C
6 83.215 81.846 67.200 19.466 D D C C
7 82.224 80.872 66.400 15.361 D D D C
8 79.311 63.490 47.953 13.667 D C C C
9 78.344 62.726 47.386 13.500 D C C C
10 77.377 61.962 46.818 13.333 D C C C
11 76.410 61.198 46.250 13.167 D C C C
12 75.443 60.434 45.681 13.000 D C C C
13 74.475 59.668 45.111 12.833 D C C C
14 73.508 58.902 44.540 12.667 D C C C
15 72.541 58.134 43.966 12.500 D C C C
16 71.574 57.364 43.389 12.333 D C C C
17 70.607 56.591 42.809 12.167 D C C C
18 69.639 55.815 42.223 12.000 D C C C
19 68.672 55.034 41.631 11.833 D C C C
20 67.705 54.245 41.028 11.667 D C C C
21 66.738 53.447 40.413 11.500 D C C C
22 65.770 52.636 39.781 11.333 D C C C
23 64.803 51.805 39.125 11.167 D C C C
24 63.836 50.945 38.442 11.000 D C C C
25 62.869 50.041 37.724 10.833 D C C C
26 61.902 49.066 36.970 10.667 D C C C
27 60.934 47.969 36.193 10.500 D C C C
28 59.967 46.648 35.443 10.333 D C C C
29 59.000 44.891 34.857 10.167 D C C C
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Table A10: Optimal Solution to MDP Problem Instance 10

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 88.321 89.000 89.000 43.525 D D D C
2 87.328 88.000 88.000 40.571 D D D C
3 86.336 87.000 87.000 34.288 D D D C
4 84.925 84.346 78.182 24.441 D D C C
5 83.938 83.365 77.273 23.517 D D C C
6 82.950 82.385 76.364 21.496 D D C C
7 81.963 81.404 75.455 16.524 D D D C
8 79.897 67.368 61.500 10.250 D C C C
9 78.923 66.551 60.750 10.125 D C C C
10 77.949 65.735 60.000 10.000 D C C C
11 76.974 64.918 59.250 9.875 D C C C
12 76.000 64.102 58.500 9.750 D C C C
13 75.026 63.285 57.750 9.625 D C C C
14 74.051 62.469 57.000 9.500 D C C C
15 73.077 61.652 56.250 9.375 D C C C
16 72.103 60.835 55.500 9.250 D C C C
17 71.128 60.018 54.750 9.125 D C C C
18 70.154 59.201 54.000 9.000 D C C C
19 69.179 58.382 53.250 8.875 D C C C
20 68.205 57.563 52.500 8.750 D C C C
21 67.231 56.740 51.750 8.625 D C C C
22 66.256 55.913 51.000 8.500 D C C C
23 65.282 55.078 50.250 8.375 D C C C
24 64.308 54.229 49.500 8.250 D C C C
25 63.333 53.353 48.750 8.125 D C C C
26 62.359 52.431 48.000 8.000 D C C C
27 61.385 51.426 47.250 7.875 D C D C
28 60.410 50.271 46.500 7.750 D C D C
29 59.436 48.851 45.750 7.625 D C D C
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Table A11: Optimal Solution to MDP Problem Instance 11

t V ∗
t (h) A∗

t (h)
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1 85.764 81.472 69.388 44.093 D D C C
2 84.800 79.617 66.126 36.006 D D C C
3 83.836 77.333 62.826 26.446 D D C C
4 77.502 76.750 59.939 14.833 D C C C
5 76.601 75.470 59.242 12.595 D C D C
6 75.700 73.598 58.545 9.542 D C D C
7 74.798 70.231 57.849 5.348 D D D C
8 68.163 56.871 44.514 1.000 D D D C
9 67.331 56.177 43.971 1.000 D D D C
10 66.500 55.484 43.429 1.000 D D D C
11 65.669 54.790 42.886 1.000 D D D C
12 64.838 54.097 42.343 1.000 D D D C
13 64.006 53.403 41.800 1.000 D D D C
14 63.175 52.710 41.257 1.000 D D D C
15 62.344 52.016 40.714 1.000 D D D C
16 61.513 51.323 40.171 1.000 D D D C
17 60.681 50.629 39.629 1.000 D D D C
18 59.850 49.935 39.086 1.000 D D D C
19 59.019 49.242 38.543 1.000 D D D C
20 58.188 48.548 38.000 1.000 D D D C
21 57.356 47.855 37.457 1.000 D D D C
22 56.525 47.161 36.914 1.000 D D D C
23 55.694 46.468 36.371 1.000 D D D C
24 54.863 45.774 35.829 1.000 D D D C
25 54.031 45.081 35.286 1.000 D D D C
26 53.200 44.387 34.743 1.000 D D D C
27 52.369 43.694 34.200 1.000 D D D C
28 51.538 43.000 33.657 1.000 D D D C
29 50.706 42.306 33.114 1.000 D D D C
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APPENDIX B

POMDP OPTIMAL SOLUTION OUTPUT
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Table B1: Optimal Solution to POMDP Problem Instances A, B, and C

t A B C
CL(T ) CL(D) CL(T ) CL(D) CL(T ) CL(D)

1 0.21 0.89 0.23 0.79 0.26 0.66
2 0.21 0.89 0.23 0.79 0.26 0.66
3 0.21 0.89 0.23 0.79 0.26 0.66
4 0.21 0.89 0.23 0.78 0.26 0.65
5 0.21 0.89 0.23 0.78 0.26 0.65
6 0.21 0.89 0.23 0.78 0.26 0.65
7 0.21 0.89 0.23 0.78 0.26 0.64
8 0.21 0.89 0.23 0.78 0.26 0.64
9 0.21 0.89 0.23 0.78 0.26 0.64
10 0.21 0.89 0.24 0.77 0.26 0.63
11 0.21 0.89 0.23 0.77 0.26 0.63
12 0.21 0.88 0.23 0.77 0.26 0.62
13 0.21 0.88 0.24 0.76 0.26 0.62
14 0.21 0.88 0.23 0.76 0.26 0.62
15 0.21 0.88 0.23 0.76 0.27 0.61
16 0.21 0.87 0.24 0.75 0.27 0.6
17 0.2 0.87 0.23 0.75 0.26 0.6
18 0.21 0.86 0.23 0.74 0.28 0.59
19 0.2 0.86 0.24 0.73 0.27 0.58
20 0.19 0.85 0.23 0.72 0.26 0.57
21 0.2 0.84 0.21 0.71 0.26 0.56
22 0.18 0.83 0.24 0.69 0.28 0.55
23 0.18 0.81 0.23 0.68 0.23 0.54
24 0.18 0.79 0.2 0.66 0.27 0.51
25 0.15 0.76 0.24 0.62 0.29 0.49
26 0.18 0.72 0.22 0.6 0.22 0.48
27 0.12 0.67 0.12 0.55 0.24 0.43
28 0.12 0.58 0.26 0.44 0.37 0.37
29 0.37 0.37 0.37 0.37 0.37 0.37
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Table B2: Optimal Solution to POMDP Problem Instances D, E, and F

t D E F
CL(T ) CL(D) CL(T ) CL(D) CL(T ) CL(D)

1 0.23 0.83 0.26 0.71 0.26 0.57
2 0.23 0.83 0.26 0.71 0.26 0.57
3 0.23 0.83 0.26 0.71 0.26 0.57
4 0.23 0.83 0.26 0.71 0.26 0.57
5 0.23 0.83 0.26 0.71 0.26 0.56
6 0.23 0.83 0.26 0.71 0.27 0.55
7 0.23 0.83 0.26 0.7 0.27 0.55
8 0.23 0.83 0.26 0.7 0.27 0.55
9 0.23 0.83 0.26 0.7 0.27 0.55
10 0.23 0.83 0.26 0.7 0.27 0.54
11 0.23 0.83 0.26 0.7 0.27 0.54
12 0.23 0.83 0.26 0.7 0.29 0.54
13 0.23 0.82 0.26 0.69 0.29 0.53
14 0.23 0.82 0.26 0.69 0.27 0.53
15 0.23 0.82 0.26 0.69 0.29 0.52
16 0.23 0.82 0.26 0.68 0.29 0.52
17 0.23 0.81 0.26 0.68 0.27 0.51
18 0.23 0.81 0.25 0.67 0.29 0.51
19 0.22 0.8 0.26 0.65 0.29 0.5
20 0.22 0.8 0.26 0.65 0.27 0.5
21 0.22 0.79 0.23 0.64 0.3 0.48
22 0.22 0.77 0.26 0.62 0.29 0.47
23 0.22 0.75 0.26 0.61 0.26 0.46
24 0.22 0.73 0.22 0.6 0.3 0.44
25 0.19 0.71 0.26 0.57 0.3 0.44
26 0.22 0.67 0.23 0.54 0.23 0.43
27 0.16 0.62 0.12 0.51 0.29 0.39
28 0.15 0.54 0.29 0.4 0.37 0.37
29 0.37 0.37 0.37 0.37 0.37 0.37
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Table B3: Optimal Solution to POMDP Problem Instances G, H, and I

t G H I
CL(T ) CL(D) CL(T ) CL(D) CL(T ) CL(D)

1 0.25 0.76 0.26 0.63 0.27 0.48
2 0.25 0.76 0.26 0.63 0.27 0.47
3 0.25 0.77 0.26 0.63 0.27 0.47
4 0.25 0.77 0.26 0.62 0.27 0.47
5 0.25 0.77 0.26 0.62 0.27 0.47
6 0.25 0.77 0.26 0.62 0.29 0.47
7 0.25 0.77 0.26 0.62 0.29 0.46
8 0.25 0.77 0.26 0.62 0.29 0.46
9 0.25 0.77 0.26 0.62 0.29 0.46
10 0.25 0.77 0.27 0.62 0.29 0.46
11 0.25 0.77 0.26 0.62 0.29 0.45
12 0.25 0.76 0.26 0.61 0.29 0.44
13 0.25 0.76 0.27 0.61 0.29 0.44
14 0.23 0.76 0.26 0.61 0.29 0.44
15 0.25 0.75 0.26 0.61 0.3 0.43
16 0.23 0.75 0.27 0.6 0.3 0.43
17 0.23 0.75 0.26 0.6 0.3 0.43
18 0.25 0.75 0.26 0.6 0.3 0.43
19 0.23 0.74 0.27 0.59 0.3 0.42
20 0.23 0.74 0.26 0.59 0.3 0.41
21 0.23 0.73 0.26 0.57 0.3 0.41
22 0.23 0.72 0.27 0.56 0.3 0.41
23 0.23 0.71 0.26 0.55 0.3 0.4
24 0.23 0.68 0.23 0.53 0.3 0.4
25 0.21 0.66 0.22 0.51 0.3 0.39
26 0.23 0.62 0.23 0.5 0.28 0.39
27 0.15 0.58 0.2 0.47 0.37 0.37
28 0.19 0.51 0.32 0.37 0.37 0.37
29 0.37 0.37 0.37 0.37 0.37 0.37
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APPENDIX C

ALGORITHMS

C.1 BACKWARD INDUCTION ALGORITHM

1. Set t = N and V ∗
t (h) = rN(hN) for all hN ∈ H.

2. Substitute t− 1 for t. For all ht ∈ H, perform steps a and b. Then go to step 3.

a. Set

V ∗
t (ht) = max

 rt(ht, D),

rt(ht, C) +
∑H+1

j=1 pt(j|ht, C)Vt+1(j).

b. Set

A∗
t (ht) = arg max

 rt(ht, D),

rt(ht, C) +
∑H+1

j=1 pt(j|ht, C)Vt+1(j).

3. If t = 1, stop; otherwise return to step 2.

The reader is referred to Puterman [89] for more information.

C.2 MODIFIED BACKWARD INDUCTION ALGORITHM

Discretize the possible belief variable values according to a specified precision, such as 0.01.

Let Π denote the set of all possible values of πt for all t ∈ N .

1. Set t = N and

V ∗
t (πt) = rN(πN) for all πN ∈ Π.
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2. Substitute t− 1 for t. For all πt ∈ Π, perform steps a and b. Then go to step 3.

a. Calculate γt(ot+1|πt) for all ot+1 ∈ {H, L} given the current value of πt.

b. Calculate U(πt+1|ot+1, πt) = πt+1 for all ot+1 ∈ {H, L, ∅} given the current value of

πt. Round the calculated value of πt+1 to the closest value contained in Π.

3. For all πt ∈ Π, perform steps a and b. Then go to step 4.

a. Set

V ∗
t (πt) = max


rt(πt, D),

rt(πt, O)− c +
∑

ot+1∈{L,H} γt(ot+1|πt)V
∗
t+1(U(πt+1|ot+1, πt)),

rt(πt, C)V ∗
t+1(U(πt+1|∅, πt)).

b. Set

A∗
t (πt) = arg max


rt(πt, D),

rt(πt, O)− c +
∑

ot+1∈{L,H} γt(ot+1|πt)V
∗
t+1(U(πt+1|ot+1, πt)),

rt(πt, C) + γt(∅|πt, at)V
∗
t+1(U(πt+1|∅, πt)).

4. If t = 1, stop; otherwise return to step 2.

The reader is referred to Monahan [82] for more information.
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