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ESSAYS ON DYNAMIC MATCHING MARKETS

Morimitsu Kurino, PhD

University of Pittsburgh, 2009

The static matching models have been applied to real-life markets such as hospital intern

markets, school choice for public schools, kidney exchange for patients, and on-campus hous-

ing for college students. However, these markets inherently involve dynamic aspects. This

dissertation introduces dynamic frameworks into representative matching models - two-sided

matching markets and house allocation problems, and obtained policy implications that can-

not be captured by static models.

The first two essays are devoted to two-sided matching models in which two-sided match-

ing interactions occur repeatedly over time, such as the British hospital intern markets. In

the first essay, we propose a concept of credible group stability and show that implementing

a men-optimal stable matching in each period is credibly group-stable. The result holds

for a women-optimal stable matching. Moreover, a sufficient condition for Pareto efficiency

is given for finitely repeated markets. In the second essay, we examine another notion of

one-shot group stability and prove its existence. Moreover, we investigate to what extent

we can achieve coordination across time in the infinite horizon by using the one-shot group

stability.

The third essay focuses on the house allocation problem - the problem of assigning

indivisible goods, called “houses,” to agents without monetary transfers. We introduce an

overlapping structure of agents into the problem. This is motivated by the following: In the

case of on-campus housing for college students, each year freshmen move in and graduating

seniors leave. Each students stays on campus for a few years only. In terms of dynamic

mechanism design, we examine two representative static mechanisms of serial dictatorship
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(SD) and top trading cycles (TTC), both of which are based on an ordering of agents and

give an agent with higher order an opportunity to obtain a better house. We show that for

SD mechanisms, the ordering that favors existing tenants is better than the one that favors

newcomers in terms of Pareto efficiency. Meanwhile, this result holds for TTC mechanisms

under time-invariant preferences in terms of Pareto efficiency and strategy-proofness. We

provide another dynamic mechanism that is strategy-proof and Pareto efficient.
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1.0 INTRODUCTION

Matching theory is a name referring to research areas that explicitly takes care of indivisibil-

ity in economic models. Indivisibility refers to goods such as jobs, dormitory rooms, seats in

public schools and so on that are available only in discrete units. Matching (who is matched

with whom or what goods) is determined through decentralized markets or a centralized

clearinghouse. For commodities, the price is usually enough to induce an efficient matching

(allocation), but many markets do not clear by price alone. In fact, in some labor markets,

employers do not hire people who want to work at a given wage, but rather interview appli-

cants carefully to find the best one. In addition, for some goods such as transplant organs for

patients or seats in public schools, it is actually illegal to set prices for such transactions even

though there are possible gains from trade. Finally, universities use various procedures to

assign dormitory rooms to college students, each of which has different policy implications.

Matching theory has been extensively studied so that we can now apply the results to

real-life markets such as American, British, and Japanese entry-level medical labor markets,

school choice in New York and Boston, and kidney exchange for patients. However, the

theory still needs to be further explored to understand strategic behavior in decentralized

matching markets and dynamic interactions. In this dissertation, we focus on the dynamic

aspects of the theory.

Two-sided matching models and house markets are the representative models in the

matching theory. Gale and Shapley (1962) introduced the former in which agents are divided

into two sides and each agent has preferences over those on the other side, and a suitable

solution concept of stability. They also showed that a stable matching always exists and

proved this result through a simple algorithm known as the deferred acceptance algorithm.

On the other hand, Shapley and Scarf (1974) together with Gale introduced the latter that
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is an allocation and exchange of indivisible goods, conventionally called houses. The housing

market consists of agents each of whom owns a house. They showed that such a market

always has a strict core matching which is reached by a simple algorithm, called Gale’s

top trading cycles algorithm. The link between the two models were later discovered and

explored by Balinski and Sönmez (1999), Ergin (2002), and Abdulkadiroğle and Sönmez

(2003), among others.

This dissertation introduces a new dynamic framework for each of the two matching

models, and provides theoretical explanations for observations seen in real-life markets that

cannot be captured by a static framework. Previous studies exclusively focus on static

models.

In developing the dynamic frameworks, we closely look at real-life markets. In the first

two essays, presented in chapter 2 and 3, we build dynamic two-sided matching markets

whose motivation is from the British entry-level medical labor markets. These markets in-

volve graduating medical students and teaching hospitals. Students seek residency positions

for both medical and surgical programs of hospitals - they have one for the first six months

and another for the next six months. Teaching hospitals fill positions in both of these periods.

The matching interaction repeats twice, and thus involves dynamics. However, this market

has been modeled as a “static” models (Roth, 1991). A special clearinghouse based on the

Gale and Shapley’s deferred acceptance algorithm has been successfully used for the last

forty years although it may involve dynamic instability. In chapter 3, we provide theoretical

support for the use of the Gale and Shapley’s algorithm by developing a new solution concept

of credible group stability. In the second essay, presented in chapter 3, we investigate another

solution concept of one-shot group stability which is introduced by Cobae, Temzelides, and

Wright (2003) in the framework of random matching models of money.

In the third essay, presented in chapter 4, we develop a house allocation problem with

a special dynamic structure of overlapping agents. This is motivated by on-campus housing

assignment for college students. Each year freshmen move in and graduating seniors leave.

Each student stays on campus for a few years only. In general, students are overlapping.

A housing office, or a mechanism designer, needs to find a mechanism to assign houses to

agents. Many universities in the United States use a variant of random serial dictatorship
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mechanism to allocate dormitory rooms. This mechanism randomly orders the agents and

then run the serial dictatorship (SD) mechanism in which the first agent in the order is

assigned her top choice, and the next agent is assigned her top choice among the remain-

ing rooms, and so on. In real-life markets, the ordering is not entirely random, but rather

depends on seniority. That is, existing tenants are favored over newcomers. This is used

in Northwestern University, the University of Michigan, and the University of Pittsburgh,

among others. The exiting literature takes the orderings as given and cannot justify the

seniority-based mechanisms. We show that seniority-based serial dictatorship mechanism

performs well in terms of Pareto efficiency. In addition, we investigate another static mech-

anism of top trading cycles mechanism (TTC) (Abdulkadiroğle and Sönmez, 1999) which

is based on the Gale’s top trading cycles algorithm and the serial dictatorship mechanism.

This mechanism maintains the same properties of Pareto efficiency and strategy-proofness

as the SD mechanism has, yet restores the individual rationality that the SD mechanism

lacks in the sense that existing tenants are guaranteed to obtain a house that is at least

as good as her occupied house. Under some mild preference restrictions, we show that the

seniority-based TTC mechanism performs well in terms of Pareto efficiency and strategy-

proofness. Moreover, we propose a new dynamic mechanism which is Pareto efficient and

strategy-proof.
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2.0 CREDIBILITY, EFFICIENCY, AND STABILITY: A THEORY OF

DYNAMIC MATCHING MARKETS

2.1 INTRODUCTION

Much of economic life involves two-sided matching that often spans a long horizon. Exam-

ples include most teacher-student interactions such as music lessons, business relationships

between firms, and hospital-intern markets.

For example, consider music lessons organized by an institution such as City Music Center

of Duquesne University in Pittsburgh, PA.1 The Center’s teachers have preferences over

students they would like to teach, and students have preferences over teachers. Moreover,

to better play a musical instrument, students have to spend many years taking lessons, and

thus they need to be involved in long-term relationships. Hence, this is a dynamic two-sided

matching market.

For another example, consider British entry-level medical labor markets. These markets

involve graduating medical students and teaching hospitals. Students seek residency posi-

tions for both medical and surgical programs of hospitals—they have one for the first six

months and another for the next six months. Teaching hospitals fill positions in both of

these periods. In each period, the market is a many-to-one matching interaction, since stu-

dents accept at most one hospital and hospitals accept many students. Moreover, since this

interaction repeats twice, it is a dynamic many-to-one matching market with two periods.

However, it has been modeled as a “static” matching market (See Roth (1991)).

Until now, although static relationships have been extensively studied in matching mar-

1Tuition does not play a decisive role in matching, because the tuition is not differentiated by teachers
or students.
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kets (cf. Roth and Sotomayor (1990) and Roth (2002)), there has been almost no attempt

to analyze dynamic relationships.2 We introduce a new framework to analyze two-sided

dynamic interactions: Time is discrete with either finite or infinite horizon. There are two

finite disjoint sets of agents. Each agent is supposed either to be matched with those in the

opposite set or to be unmatched in each period. There are no frictions: agents do not have

to commit themselves to their prior partners and can freely change partners at any period.

Each agent has a time-separable utility function over those in the opposite set and being

unmatched in each period. The preferences may vary across periods.

In a related paper, Damiano and Lam (2005) consider the finite horizon model where the

preferences are constant across time with a discount factor; that is, finitely repeated matching

markets. While this is a useful benchmark, it can be unrealistic for some applications. For

example, in the example of the music lessons discussed above, as students’ skills improve,

they prefer teachers with different skills. Violin teachers may not value students who did

not learn the piano in the past. That is, their current preferences may depend on the past

matchings. Moreover, Damiano and Lam (2005) assume that agents choose an outcome

path, or a sequence of matchings but not a contingent plan based on realized matchings.

This is restrictive, because agents can change prior partners at any time. In this paper, we

consider a contingent plan called a “dynamic matching.” The problem in dynamic matching

markets is to analyze what kinds of matchings might arise in each period under a dynamic

matching.

In static settings, it has been shown that a property known as “stability” is central to

determining whether static matchings will be sustainable in real-life applications (cf. Roth

(1984, 1991, 2002)). Stability (Gale and Shapley, 1962) requires that (1) no individual would

rather stay unmatched than continue with her current partner, and (2) no pair of individuals

such as a teacher and a student or a hospital and an intern, would prefer each other to

their current partners. Two stable matchings have attracted much attention in real-life

applications as well as in theoretical work: “hospital-optimal” and “intern-optimal stable”

matchings in the case of hospital-intern markets, where the former (the latter) is the best

2See recent exceptions: Damiano and Lam (2005) and Kurino (2009a) for two-sided matching markets,
and Abdulkadiroğlu and Loertscher (2007), Bloch and Cantala (2008), Kurino (2009b) and Ünver (2007) for
house allocation problems.
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stable matching for hospitals (interns) which is at the same time the worst stable matching

for interns (hospitals). For example, several regional markets in the aforementioned British

markets use “hospital or intern optimal (statically) stable” mechanisms in their centralized

matching process, although the markets are dynamic. As Roth (p430, 1991) noted, this static

stable mechanism may produce a “higher-order” instability regarding dynamic aspects. In

fact, as we will show in Examples 2 and 3, such matchings need not create “dynamically

stable” or even “Pareto efficient” outcomes. However, these centralized clearinghouses have

been successfully used for the last forty years in Britain. This creates a puzzle: Why is

implementing a hospital-optimal or intern-optimal (statically) stable matching so robust in

the British markets? This paper provides a theoretical explanation for the robustness.

In this paper, we are concerned with one-to-one matching markets, conventionally called

marriage markets (Gale and Shapley, 1962). In a marriage market there are, so called, “men”

and “women,” each of whom can be matched with at most one partner of the opposite sex.

Although we do not deal with many-to-one matching markets such as hospital-intern and

teacher-student markets, conceptual tools and insights developed in this paper can be applied

to such markets. The aforementioned British markets have been modeled as many-to-two

matching markets (Roth, 1991). The hospital or intern-optimal stable matchings correspond

to “men or women-optimal stable” matchings in marriage markets.

Traditionally, the cooperative solution concept known as the “core” has been used in

analyzing such markets. We begin by pointing out that coalitional deviations considered in

the definition of the core are restrictive in dynamic matching markets. Taking into account

more general deviations, we propose a definition of (dynamic) group stability that is stronger

than the core. An outcome path, or a sequence of matchings, is in the core if no deviating

coalition, by choosing another outcome path only among themselves, can make each agent

strictly better off. In other words, after the deviation in the first period, agents in a deviating

coalition must be matched with each other from the beginning to the end, and are not allowed

to be matched with agents outside the coalition. This notion of a deviation is restrictive.

We propose another concept that allows for more general deviations than those permitted

in the core, since in the dynamic relationships we explore, we assume that agents are free

to sequentially form new partnerships whenever they want. We define “(dynamic) group
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stability” by requiring a dynamic matching to be immune against group deviations that do

not force agents to be matched within the group during all periods.3 However, a group

stable dynamic matching may not always exist (cf. Examples 2 and 3). This means that a

dynamic matching consisting only of men-optimal stable matchings may not be group stable

in a dynamic setting. We then introduce a new dynamic stability concept called “credible

group stability,” and show that such a dynamic matching is justified. That is, we show in

Proposition 4 that the dynamic matching that assigns a men-optimal stable matching in

each period is “credibly group-stable.” Similarly, the result holds for women-optimal stable

matchings. The hospital-optimal (or intern-optimal) stable mechanism in the aforementioned

British markets turns out to be credibly group-stable if we translate it to marriage markets.

Closely looking at possible group deviations from a dynamic matching, we notice that

some of them may not be defensible in a certain way. Even if a group benefits by reorganizing

its match, some members may have an incentive to deviate further by matching with the other

agents inside or “outside” the group. In this case, we say that such group deviations are not

“defensible.” A “credibly-group stable” dynamic matching is immune against any defensible

group deviations, and individually rational (i.e. no agent would rather stay unmatched than

her current mate).

Our results on credible group stability have significant policy implications. Since a men-

optimal (women-optimal) stable matching is favorable to men (women) but not to women

(men), we can think of two compromises: 1) choose men-optimal and women-optimal stable

matchings alternately, 2) choose a median stable matching in each period that is neither

men-optimal nor women-optimal stable. However, both of compromises may not be credibly

group-stable (cf. Example 5). Moreover, static many-to-many markets can be alternative to

dynamic markets under restricted preference domains. Konishi and Ünver (2006) show that

in a many-to-many market, the set of pairwise stable matchings is equivalent to the set of

“credibly group-stable” matchings (their notion of credibility is different from ours) under

reasonable preference domains. That is, a stable matching other than hospital-optimal (or

student-optimal) ones is supported by their credible group-stability but may not be supported

3The word “group” is used as a synonym of coalition that is a collection of agents. The use depends on
which solution concept is used. Coalition is used for the characteristic function approach such as the core,
while group is for the non-characteristic function approach such as group stability.
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by our notion of credibility (cf. Example 5).

The second question we explore is on Pareto efficiency. This question does not arise

in a static stable mechanism, since a stable matching is always Pareto efficient in a static

market. However, this is not true even for finitely repeated markets (cf. Example 2). Hence,

we look at finitely repeated markets and examine whether a credibly group-stable dynamic

matching that involves a men-optimal (or women-optimal) stable matching in each period is

Pareto efficient. We then introduce a condition, called the “regularity condition,” and show

in Theorem 3 and Corollary 1 that under this condition, such dynamic matchings are also

Pareto efficient.

2.1.1 Related literature

In a closely related paper, Damiano and Lam (2005) consider finitely repeated marriage mod-

els. They propose variants of “core”-like solution concepts by taking into account dynamic

commitment and credible deviations. Their model studies exclusively “repeated” markets in

which preferences are “time independent.” Our model explores “dynamic” relationships that

may have changes of preferences as in several real-life markets. That is, the dynamic mar-

kets are “time dependent.” In this sense, our model incorporates theirs. In the framework

of random matching models of money (Kiyotaki and Wright, 1989), Corbae, Temzelides and

Wright (2003) consider endogenous matching by using a solution concept that is immune to

one-shot pairwise deviations. The companion paper (Kurino, 2009a) examines this solution

concept in our framework. In addition, Abdulkadiroğlu and Loertscher (2007), Bloch and

Cantala (2008), Kurino (2009b) and Ünver (2007) study another dynamic matching model

of house allocation. Roth and Vande Vate (1990) study a static market to see how, starting

from an arbitrary matching, decentralized dynamic process reaches stable matchings.

British medical markets have been modeled as a static many-to-two matching market in

that medical students look for two positions and hospitals fill many positions (Roth, 1991).

This suggests that static many-to-many markets can be used for a dynamic market. However,

this modeling involves strong preference restrictions. For many-to-many matching markets,

see Sotomayor (1999), Echenique and Oviedo (2006) and Konishi and Ünver (2006).
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In a static setting, the matching literature uses group stability instead of the core as a

solution concept because the deviation considered in the definition of the core is not realistic.

In other words, the non-characteristic function approach is used to define group stability.

For example, see Roth and Sotomayor (1990) for many-to-one matching markets and the

papers listed in the previous paragraph for many-to-many matching markets. This approach

is also used in network games (Jackson and Wolinsky, 1996).

The credibility problem for deviating coalitions has been studied in both static and

dynamic settings. In a static setting, the various bargaining sets have been proposed for

games in coalitional form since Aumann and Maschler (1964). The idea is to consider an

objection to an outcome by a coalition, and a justified objection in which some member

of the coalition can not form a counterobjection consisting of members insider or outside

the coalition. An outcome in the bargaining set has no justified objections. Zhou (1994)

introduces the new bargaining set. Klijn and Massó (2003) apply Zhou’s definition to the

marriage model. Moreover, they introduce weak stability and investigate the relation with the

bargaining set. These two concepts allow members of a deviating coalition to deviate further

by matching with agents inside or outside the coalition. We follow the same approach. In

fact, weak stability coincides with credible pairwise stability in a static setting that is a special

case of our credible group stability in dynamic settings. On the other hand, Konishi and

Ünver (2006) require a deviating coalition to have no further pairwise deviation within the

coalition in their definition of credible group stability in many-to-many matching problems.

Turning to other approaches in a static setting, Bernheim et al. (1987) propose the concept of

coalition-proof Nash equilibrium for normal form games. Ray (1989) defines the cooperative

analogue of this approach called modified core. These concepts require a deviating coalition

to have no further deviations within the coalitions, where the further deviations satisfy

the same requirement. In the same spirit, Bernheim et al. (1987) define perfect coalition-

proofness for extensive form games. Damiano and Lam (2005) define the cooperate analogue

of self-sustaining stability for finitely repeated matching markets.
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2.2 THE MODEL

2.2.1 Preliminaries: static marriage markets

We define a static (marriage) market as a triple (M,W, {ui}i∈I). By a static market, we

always mean a static marriage market. The set I := M ∪W of agents is divided into two

finite disjoint subsets M and W . M is the set of men and W is the set of women. Note that

|M | 6= |W | in general. Generic agents are denoted by i ∈ I, while generic men and women

are denoted by m and w, respectively. Man m’s utility function is um : W ∪ {m} → R,

and woman w’s utility function is uw : M ∪ {w} → R. Woman w is acceptable to man

m if um(w) ≥ um(m), and similarly for m. An agent is said to have strict preferences

if he or she is not indifferent between any two choices. We assume throughout the chapter

that all agents have strict preferences. In this market, each agent is either matched with

another agent of the opposite sex or is unmatched. An outcome is a matching defined by

a bijection µ : M ∪W → M ∪W such that for each i ∈ I, (µ ◦ µ)(i) = i, and if µ(m) 6= m

then µ(m) ∈ W , and if µ(w) 6= w then µ(w) ∈ M . Fixing M and W , let M be the set

of all matchings. If µ(i) = i, agent i is said to be unmatched, and denote this pair by

(i, i). If µ(m) = w, equivalently µ(w) = m, then w is said to be matched with m, and

denote this pair by (m,w). For notational simplicity, we often use ui(µ) instead of ui(µ(i)).

A matching µ is individually rational if each agent is acceptable to his or her partner,

i.e., ui(µ) ≥ ui(i) for each agent i in I. Given a matching µ, a pair (m,w) blocks µ if they

are not matched with each other in µ but prefer each other to their matched partners in µ,

i.e. um(w) > um(µ) and uw(m) > uw(µ).

Definition 1 (Gale and Shapley (1962)). A matching µ is called (statically) stable if

it is individually rational, and is not blocked by any pair (m,w) in M ×W .

The adverb “statically” is omitted if there is no confusion. Moreover, Gale and Shapley

(1962) prove the existence of stable matchings:

Theorem 1 (Existence: Gale and Shapley (1962)). A stable matching exists for each

static market. In particular, when all agents have strict preferences, there always exist a men-

optimal stable matching (that every man likes at least as well as any other stable matching)
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and a women-optimal stable matching.

2.2.2 Dynamic marriage markets

We consider a dynamic (marriage) market in which one-to-one matching interactions

occur repeatedly over time. By a dynamic market, we always mean a dynamic marriage

market. Time is discrete with either finite or infinite horizon. We denote the horizon by

T . T < ∞ stands for a finite horizon, while T = ∞ stands for infinite horizon. In this

market, there are fixed sets of M and W , where M and W are disjoint and finite. In general,

|M | 6= |W |. Each agent is supposed either to be matched with at most one agent of the

opposite sex or to be unmatched at each period t = 0, · · · , T . There are no frictions: agents

do not have to commit themselves to their prior partners and can freely change partners at

any period. Each agent has a time-separable utility function over those of the opposite sex

and being unmatched. Man m’s utility function at period t is given by utm : W ∪ {m} → R,

while woman w’s utility function is utw : M ∪ {w} → R. We assume throughout the chapter

that all agents have strict preferences in each period. An outcome path is a sequence of

matchings in M, denoted by µ := {µt}Tt=0. Given an outcome path µ = {µt}Tt=0, agent i’s

utility function is given by

Ui(µ) :=
T∑
t=0

uti(µ
t),

where for notational simplicity we use uti(µ
t) instead of uti(µ

t(i)). We assume that for an

infinite horizon case, Ui(µ) is well-defined for any outcome path µ. Each agent knows his

or her utility functions as well as those of the other agents. The above structure is common

knowledge. Thus, a dynamic market is a triple (M,W, {uti}i∈I,t=0,··· ,T ). Looking at period t,

(M,W, {uti}i∈I) is a static market, called a period t (marriage) market. If we do not need

to specify the period, we call it a constituent (marriage) market. A dynamic market

is called a repeated (marriage) market if for each agent i ∈ I there is a discount factor

δi ∈ (0, 1] and a utility function ui such that uti = δtiui for each period t = 0, · · · , T .

11



2.3 DYNAMIC GROUP STABILITY

2.3.1 Core and dynamic group stability

In this dynamic market, the problem is which matchings might arise in each period. In other

words, which outcome paths4 will result from interaction among agents? The core5 gives an

answer:

Definition 2. 1. An outcome path µ = {µt}Tt=0 is in the core if no coalition blocks it, i.e.

there is no coalition A and outcome path µ̂ = {µ̂t}Tt=0 such that

(a) µ̂t(i) ∈ A, for each t = 0, 1, · · · , T and for each i in A, and

(b) Ui(µ̂) > Ui(µ), for each i in A.

2. It is individually rational if for each i in I, Ui(µ) ≥
∑T

t=0 ui(i).

We will point out that the core is unrealistic by examining deviations that the core

concept considers, and then consider a newly defined deviation to define group stability.6

Let’s examine the core more closely. Condition (a) in Definition 2 requires that after a

coalition deviates from µ, all agents in the coalition must be matched only among themselves

“from the beginning to the end.” On the other hand, condition (b) says that each agent in

A is strictly better off in µ̂ than in µ.

Condition (a) is clearly restrictive. We can think of situations in which agents are

matched among themselves for only “several” periods, while still being matched with the old

partners at other dates. The following example illustrates this point.

Example 1. Consider a two-period dynamic market with M = {m1,m2} and W = {w1}.

The constituent markets are illustrated in Figure 1, while the total utilities depending on

the outcome paths are shown in Figure 2. In Figure 1, the nodes represent the agents, the

lines (or no line) represent matches (or no match). The number attached to a node stands

for the utility from the match. In this market, there are two outcome paths in the core:

µ1 := (µa, µb) and µ2 := (µb, µb) the latter of which is indicated by circles in Figure 2.

4Damiano and Lam (2005) call an outcome path a matching plan.
5In general, the core may be empty in our model. An example is given in APPENDIX A.
6This kind of approach has been taken in the matching literature, as we discussed in section 2.1.1.
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Figure 1: Constituent marriage markets in Example 1

Consider why µ2 is in the core. We can see that it is individually rational and that no grand

coalition blocks it. Consider the coalition {m1, w1}. The outcome paths this coalition can

achieve are (µa, µa), (µa, µc), and (µc, µa). Agents (m1, w1) obtain (1, 1), (2, 2) and (−1,−1)

instead of (0, 3), respectively. However, given that µb is chosen at period 1, the pair (m1, w1)

has an incentive to be matched (i.e. the resulting matching is µa) in period 0 and µb in period

2. Then, (m1, w1) gets (2, 4) instead of (0, 3). Our point is that, instead of requiring that a

coalition should be matched only among themselves from the beginning to the end, it may

be more appropriate to think that deviators are matched among themselves in only several

periods, while still being matched with the old partners in other periods if this results in a

superior outcome. We consider these kinds of deviations in the definition of a new solution

concept of dynamic group stability.

Once we allow this kind of deviation, agents become concerned with a contingent plan

based on histories of matchings instead of an outcome path. The contingent plan is called a

dynamic matching.7 Now we are away from a characteristic function approach,8 so we use a

“group” instead of a coalition for the name of a collection of agents. Our goal is to define

dynamic group stability which is “stable” against “group deviations” described above. We

7Corbae, Temzelides and Wright (2003) also consider this kind of contingent plan.
8Non-characteristic function approaches have been widely used in the many-to-one, many-to-many match-

ing problems and network games, as we discussed in section 2.1.1.
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Figure 2: Total utilities in Example 1

need to introduce some new notions:

A history at period t, t ≥ 1, is ht := (µ0, µ1, · · · , µt−1) ∈Mt, and h0 := ∅ is the history

at the start of the market. Let Ht be the set of all histories at period t, i.e. Ht =Mt. The

set of all histories is H := ∪Tt=0Ht.

Definition 3. A dynamic matching is a function φ : H → M. Moreover, it is called

history-independent if in each period, a matching specified by the dynamic matching is

independent of histories, i.e., for each t = 0, 1, · · · , T and for each ht, h̃t in Ht, φ(ht) = φ(h̃t).

Note that history independence means that matching in each period is a function of

the calender time alone, and that matchings need not be constant across periods. A dy-

namic matching φ induces a unique outcome path µ(φ) := {µt(φ)}Tt=0 recursively as follows:

µ0(φ) := φ(∅), for t ≥ 1, µt(φ) := φ(µ0(φ), · · · , µt−1(φ)). Given φ, each agent i’s utility

function is obtained as Ui(φ) := Ui(µ(φ)).

We are interested in whether a given dynamic matching is “stable” (in some sense)

against group deviations. To this end, when some group deviates at some history from a given

dynamic matching, we must specify how the outsiders respond to the group deviation. This is

because the payoffs that agents within the deviating group obtain depend on the outsiders’

behavior through the change in histories. In this regard, we make a simple assumption

that the outsiders who were matched with agents in the group before the deviation become

14



Figure 3: Possible static group deviations by {m1, w1, w2}

unmatched, and the other outsiders are matched with the same partners as before. With

this in mind, we begin to describe how a matching changes in response to a group deviation.

Definition 4. 9 Given a matching µ, a (static) group deviation from µ is a pair (A, µ̂)

consisting of a group A and a matching µ̂ such that

(a) for each i in A, µ̂(i) ∈ A,

(b) for each i, j in I \ A, if µ(i) = j, then µ̂(i) = j, and

(c) for each i in A and for each j in I \ A, if µ(i) = j, then µ̂(j) = j.

The adjective “static” is omitted when there is no confusion. Condition (a) requires

that deviating agents in A should be matched with each other. Condition (b) requires that

agents outside the group A should be matched according to µ, while condition (c) requires

that any agent who was a partner of an agent outside A should be unmatched under µ̂.

Consider the example illustrated in Figure 3, where all of group deviations from µ0 by the

group A := {m1, w1, w2} are illustrated. Consider a matching µ̂1. Condition (a) is satisfied,

since m1 is matched with w1 and w2 is unmatched; condition (b) is satisfied, since m3 and w3

remain matched; condition (c) is satisfied, since m2 who was matched with w2 in A becomes

9A special case of pair deviations (the group consisting of one man and one woman) coincides with the
one considered by Roth and Vande Vate (1990) where a new matching µ̂ is obtained from µ by satisfying
the blocking pair. The basic idea is also the same as Corbae, Temzelides and Wright (2003). In addition,
this notion is different from enforcement used to define a bargaining set in Klijn and Massó (2003).
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unmatched.

Definition 5. Given a dynamic matching φ, a (dynamic) group deviation from φ is a

pair (A, φ̂) consisting of a group A and a dynamic matching φ̂ such that there is a subset H′

of H,

(a) for each h in H′, a pair (A, φ̂(h)) is a static group deviation from a matching φ(h), and

(b) for each h in H \H′, φ̂(h) = φ(h).

Moreover, it is called history-independent if in each period, a matching inside the group

A is history-independent, i.e., for each t = 0, · · · , T , for each ht and h̃t in Ht, if ht is in H′,

then h̃t is in H′ and φ̂(ht)|A = φ̂(h̃t)|A.

In the dynamic group deviation (A, φ̂) from φ, at histories h in H′ agents in A reorganize

their match within A and the others remain matched at φ(h). In the remaining histories all

agents are matched at φ(h) and possibly matched with agents outside A, which makes our

dynamic group deviation different from deviations permitted in the core. In addition, if a

dynamic group deviation is history-independent, the matching consisting only of agents in

A is a function of calender time alone and need not be constant across periods. However,

matchings of the agents outside A can be different across histories in a given period, so φ̂

need not be a history-independent dynamic matching. If the original dynamic matching φ

is history-independent and a dynamic group deviation (A, φ̂) from φ is history-independent,

then φ̂ is history-independent by the definition of static group deviation. The adjective

“dynamic” is omitted when there is no confusion. For an example, consider a dynamic

matching φ specifying µ0 at each history in the repeated market of the constituent market

depicted in Figure 3. One possible group deviation φ̂ by {m1, w1, w2}

φ̂(h) = µ1 if h = ∅,

= µ2 if h = µ3,

= µ0 otherwise.

For convenience, the group deviation is called pairwise if it consists either of an indi-

vidual or of a pair of one man and one woman.
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A group A is said to block the dynamic matching φ (via φ̂) if (A, φ̂) is a dynamic group

deviation from φ and Ui(φ̂) > Ui(φ) for each i in A. Now we are ready to introduce our

concept:10

Definition 6.

1. A dynamic matching φ is (dynamically) group-stable if no group blocks it; i.e., if

there is no group deviation (A, φ̂) from φ such that UA(φ̂) > UA(φ).

2. A dynamic matching φ is individually rational if its outcome path is individually

rational.

3. In the special case of a static market (i.e. T = 0), a matching µ is called (statically)

group-stable if it is dynamically group-stable.

4. Moreover, if we consider only pairwise deviations, it is called (dynamically) pairwise-

stable.

Note that a dynamic market with horizon T = 0 is a static market.

Lemma 1. For a static market, the following are equivalent:

(a) A matching is stable.

(b) It is in the core.

(c) It is statically group-stable.

For the equivalence of (a) and (b), see Theorem 3.3 in Roth and Sotomayor (1990). To

show the equivalence of (b) and (c), observe that in both concepts only a deviating group

matters but not the outsiders in a static setting.

Proposition 1. If a dynamic matching is group stable, then its outcome path is in the core.

The converse is not always true.

The proof of the first part is in APPENDIX A. For the latter part, see Examples 2 and

3 in the next subsection. In addition, we may not have a group stable dynamic matching,

as shown in the next subsection. However, if we restrict our attention to repeated markets,

Proposition 2 can guarantee the existence of pairwise stable dynamic matching.

10The term “group stability” used in many-to-one or many-to-many matching problems is different from
ours, although we adopt the same approach of non-characteristic function. See section 2.1.1.
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Proposition 2 (Existence of a pairwise stable dynamic matching in “repeated”

markets). There exists a pairwise stable dynamic matching for each finitely or infinitely

repeated market.

Picking a stable matching in the constituent market, consider a dynamic matching as-

signing this stable matching everywhere. Individuals and a pair of a man and a woman

cannot block this dynamic matching, since it assigns a stable matching everywhere and the

constituent market is repeated. Thus, the dynamic matching is pairwise stable.

We make three remarks. First, we do not need strict preferences for this proposition to

hold. Second, if a matching is not pairwise but group stable, there may be no group stable

dynamic matching (cf. Example 2 in the next subsection). Finally, if we have a “dynamic”

market, there may be no pairwise stable dynamic matching (cf. Example 3 in the next

subsection.).

Before considering some examples, it is useful to characterize dynamic group stability.

First, consider a dynamic market with finite horizon (M,W, {uti}i∈I,t=0,··· ,T ). At history ht ∈

H, the sub-dynamic (marriage) market is a dynamic market (M,W, {uτi }i∈I,τ=t,··· ,T ).

Given a dynamic matching φ for the original market, define a continuation dynamic

matching to be a function φ|ht : MT−t+1 → M given by φ|ht(hτ ) = φ(hthτ ) for each

hτ ∈MT−t+1.

Turning to the infinite horizon case (T = ∞), at history ht ∈ H, the sub-dynamic

(marriage) market is (M,W, {uτi∈I,τ=t,··· ,∞}). Given a dynamic matching φ for the original

market, define a continuation dynamic matching to be a function φ|ht : H →M given

by φ|ht = φ(hthτ ) for each hτ ∈ H. Now we are ready to state:

Lemma 2 (Partial characterization of group stable dynamic matchings). Consider

a dynamic market with finite or infinite horizon. If there is a group stable dynamic matching

φ, then for each history h on the outcome path, the continuation dynamic matching φ|h is

group stable in the sub-dynamic market starting at h.

The proof is straightforward and so we omit it.
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2.3.2 Examples

Example 1 (Continued). The outcome path µ2 := (µb, µb) was in the core, and is supported

by the following group stable dynamic matching:

φ(h) = µa if h = µa,

= µb otherwise.

However, the dynamic matching specifying µb at each history cannot be group stable, as we

discussed before. Thus, we need to consider history-dependent contingent plans.

Example 2. (The core is nonempty but there is no group stable dynamic matching)

Figure 4: The constituent market in Example 2

Consider a twice repeated market with no discounting whose constituent market11 is

depicted in Figure 4. Here M = {m1,m2} and W = {w1, w2}. There are seven possible

matchings, but only three of them are depicted. Note that the matching µM is man-preferred

but unstable, µW is woman-preferred but unstable, and µU is uniquely stable.

First, it can be verified that outcome paths (µM , µW ) and (µW , µM) are in the core. Next,

we show that there is no group stable dynamic matchng. Suppose for a contradiction that

there is a group stable dynamic matching φ. Let {µ0, µ1} be its outcome path. It follows

from Lemma 2 that µ1 = µU , since µU is a unique stable matching in the constituent market.

There are two cases to consider. Suppose µ0 6= µU . Then, there exists at least one agent

i who obtains the payoff of −1 in period 0. In total, his or her payoff is −1 under φ. All

11This example is from Damiano and Lam (2005).
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agents can be unmatched in both periods, which provides a return of 0. Thus, agent i blocks

φ. This contradicts that φ is group stable. On the other hand, suppose µ0 = µU . Since

φ(µU) = µU , each agent gets the payoff of 0. However, the group I ≡ {m1,m2, w1, w2} can

make a deviation φ′ such that φ′(∅) = µM and φ′(µM) = µW . Then, each agent’s payoff is 4.

So, the group I blocks φ via φ′. In any case, some group blocks φ. This is a contradiction.

Example 3. (The core is nonempty but there is no pairwise stable dynamic matching)

Figure 5: Constituent markets and total utilities in Example 3

Consider a two-period dynamic market12 depicted in Figure 5. Here, there are man m

and woman w. Unlike the previous example, preferences vary across periods. In each period,

the matching µU (unmatched) is stable, while the matching µT (together) is not stable. It

can be verified that the outcome path (µT , µT ) is in the core. Similarly to the previous

example, we can show by contradiction that there is no pairwise stable dynamic matching.

12This is adapted from an example in footnote 5 in Corbae, Temzelides and Wright (2003).

20



2.4 CREDIBLE GROUP STABILITY

2.4.1 Definition

The question on the robustness of clearinghouses in the British medical markets which we

raised in section 2.1 can now be restated: What kind of stability concept supports a history-

independent dynamic matching assigning a men-optimal stable matching in each period? We

saw in the previous section that dynamic group stability does not always work. Remember

that we consider all group deviations in the definition of dynamic group stability. Some of

them may not be defensible in the sense that some members of the deviating group have an

incentive to reorganize their match inside or outside the group which makes all of the agents

strictly better off. We develop the concept of defensibility, and then that of credible group

stability as immunity against defensible group deviations.

Figure 6: The preferences in the constituent market in Example 4

Example 4. Consider a two-period dynamic market with M = {m1,m2,m3} and W =

{w1, w2, w3}. Constituent markets are illustrated in Figure 6, where the utilities of being

unmatched for all agents are 0 in both markets. The payoffs depending on outcome paths
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Figure 7: The total utilities in Example 4: The thick arrows stand for a deviation by

{m1,m2, w1, w2}, and the dotted arrow indicates further deviation by {m3, w1}

are calculated in Figure 7. Note that the figures do not include all possible matchings. In

period 0 market there is a unique stable matching µ1,
13 while in period 1 market µ1 and µ2

are men-optimal and women-optimal stable matchings, respectively.

In this market, the dynamic matching φ specifying the men-optimal stable matching µ1

in both periods is not group stable, because the group A := {m1,m2, w1, w2} blocks it via the

history-independent dynamic matching φ̂ which specifies µ2 everywhere. This is illustrated

in Figures 6 and 7 by thick circles and arrows.

Consider the possibility of further deviations for the group deviation (A, φ̂). As we can

see, no matter how the group A reorganizes its match inside the group, no agent in A can

be better off. Note that if we restrict the market to the group A, µ2|A is a men-optimal

stable matching in period 0 and women-optimal stable matchings in period 2, although it is

not even stable in the original market for period 0. The coordination of men-optimal and

women-optimal stable matchings in the restricted markets makes all agents in A better off

13We implicitly assume that u0
m2

(w3) < u0
m2

(w2) so that we have a unique stable matching.
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and has no further deviation within the group. In this sense, the group deviation (A, φ̂) is

credible, and so the dynamic matching φ is not immune to such credible group deviations.

However, closely looking at the group deviation, we notice that woman w1 in A can be

better off with m3 in period 0 who is “outside” the deviating group A, keeping the matching

at period 1 fixed (This is illustrated in Figures 6 and 7 by dotted circles and arrows). That is,

the group {m3, w1} blocks φ̂ via the history-independent dynamic matching φ̄ which specifies

µ3 and µ2 in periods 0 and 1, respectively. We say that a group deviation is defensible if

some members of the group have no further profitable deviation by matching with agents

inside or outside the group. Although it is credible in the sense of the previous paragraph,

the group deviation (A, φ̂) is not defensible. We consider only defensible deviations in the

solution concept which we define next.

With this example in mind, we formalize the concept.

Definition 7. Given a dynamic matching φ, a group deviation (A, φ̂) from φ is defensible

if

(a) it is history-independent, and

(b) there is no group deviation (B, φ̄) from φ̂ with A ∩ B 6= ∅ such that Ui(φ̄) > Ui(φ̂) for

each i in B.14

Any members in a defensible group deviation cannot reorganize their match inside or out-

side the group via a history-independent group deviation which makes all agents strictly bet-

ter off. It may seem strong to require a defensible group deviation to be history-independent,

but this condition would be acceptable if we consider complexity of contingent plans. Using

this defensibility, we introduce the notion of credible group stability:

Definition 8. 1. A dynamic matching φ is credibly group-stable if it is individually

rational, and there is no defensible group deviation (A, φ̂) such that Ui(φ̂) > Ui(φ) for

each i in A.

14Even if we require the group deviation (B, φ̄) to be history-independent, all of our results are not affected.
In this case, since the set of the modified defensible group deviations is larger than that of the original one,
the set of credibly group-stable dynamic matchings that use the modified defensibility is smaller than that
of the original one.
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2. If A is pairwise in the above definition, the the credible group stability is called credible

pairwise stability.

In other words, a credibly group-stable dynamic matching is individually rational and

immune against profitable and defensible group deviations. In a static market, our credible

pairwise stability coincides with weak stability15 introduced by Klijn and Massó (2003). The

idea of our credible group stability is similar to the bargaining set.16

Lemma 3. In a static market,

(a) a stable matching is credibly group-stable,

(b) a credibly group-stable matching is not always stable, and

(c) a credibly pairwise-stable matching is not always credibly group-stable.

The first statement is obvious, since a stable matching is group stable by Lemma 1. For

the rest, examples are given in APPENDIX A. Hence, credible group stability is strictly

stronger than credible pairwise stability, and strictly weaker than stability.

The following proposition is the key in proving the existence of credible group stability

for dynamic markets. The proof is in APPENDIX A.

Proposition 3. In a static market, for each stable matching µ, if a group deviation (A, µ̂)

from µ is defensible, then µ̂ is stable.

2.4.2 Existence

Theorem 2 (Existence). For every dynamic market with either finite or infinite horizon,

there exists a credibly group-stable dynamic matching.

Consider any dynamic market with either finite or infinite horizon. From Theorem 1,

there exist a men-optimal stable matching and a women-optimal stable matching in each

period market. Then, we have either a history-independent dynamic matching assigning a

15See Definition 27 and Proposition 7 in the Appendix for the definition and the proof, respectively.
16The definition of our group deviation is different from that of enforcement which is used to define the

Zhou’s bargaining set as formalized by Klijn and Massó (2003) for a marriage model, and thus there is no
obvious relationship between our credible group stability and the bargaining set. However, Klijn and Massó
(2003) that the set of weakly stable and weakly efficient matchings coincides with the bargaining set. Hence,
the set of credible pairwise stable and weakly efficient matchings coincides with the bargaining set.
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men-optimal stable matching in each period or the one assigning a women-optimal stable

matching in each period. Theorem 2 follows by showing that both are credibly group-stable:

Proposition 4. In a dynamic market with finite or infinite horizon, a history-independent

dynamic matching assigning a men-optimal stable matching in each period is credibly group-

stable. Similarly, the result holds for a women-optimal stable matching.

Proof. Pick a men-optimal stable matching µtM in each period t market. Let φ be a history-

independent dynamic matching with φ(ht) = µtM for each ht in H. We show that φ is

credibly group-stable. First, since each µtM is individually rational in the corresponding

period market, φ is individually rational. Next, fix a defensible group deviation (A, φ̂) from

φ. Denote the outcome path of φ̂ by (µ̂0, µ̂1, · · · , µ̂T ). We need to show that Ui(φ) ≥ Ui(φ̂)

for some i in A.

Note that from the definition of dynamic group deviation, for each t = 0, · · · , T ,

either µ̂t = µtM or (A, µ̂t) is a static group deviation from µtM . (2.1)

There are two cases to consider: First, consider the case where some man m is in A.

Step 1: Show that for each t = 0, · · · , T , either µ̂t = µtM , or µ̂t is stable in period t market.

Suppose for a contradiction that for some period t, µ̂t 6= µtM and µ̂t is not stable. Then, it

follows from (2.1) that (A, µ̂t) is a static group deviation from µtM . By Proposition 3, (A, µ̂t)

is not defensible. Thus, there exists a static group deviation (B, µ̄t) from µ̂t with A∩B 6= ∅

such that uti(µ̄
t) > uti(µ̂

t) for each i inB. Consider the following history-independent dynamic

matching:

φ̄(hτ ) = µ̂τ if τ 6= t,

= µ̄t if τ = t.

Since dynamic matching φ is history-independent and dynamic group deviation (A, φ̂) is

also history-independent, the dynamic matching φ̂ is history-independent. This implies that
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(B, φ̄) is a dynamic group deviation from φ̂. Then, the outcome path of φ̂ is (µ̂0, · · · , µ̂T ),

while the outcome path of φ̄ is (µ̂0, · · · , µ̂t−1, µ̄t, µ̂t+1, · · · , µ̂T ). Thus,

Ui(φ̄) =
∑
τ 6=t

uτi (µ̂
τ ) + uτi (µ̄

t) >
T∑
τ=0

uτi (µ̂
τ ) = Ui(φ̂) for each i in B.

This contradicts the assumption that the group deviation (A, φ̂) from φ is defensible. This

completes the proof of Step 1.

Step 2: Show Um(φ) ≥ Um(φ̂). Since µtM is a men-optimal stable matching in period t

market, it follows from Step 1 that

either utm(µtM) = utm(µ̂t) or utm(µtM) ≥ utm(µ̂t).

This implies

Um(φ) ≡
T∑
t=0

utm(µtM) ≥
T∑
t=0

utm(µ̂t) ≡ Um(φ̂).

This completes the proof of Step 2.

Next, consider the case where A consists only of women. Fix w ∈ A and period t. Then,

if (A, µ̂t) is a static group deviation from µtM , all women in A are unmatched. Thus, from

(2.1), either µ̂t = µtM or w is unmatched at µ̂t. Since µtM is individually rational in the period

t market, either utw(µtM) = utw(µ̂t) or utw(µtM) ≥ utw(w) ≡ utw(µ̂t). Thus, Uw(φ) ≥ Uw(φ̂).

Therefore, we proved that for each defensible group deviation (A, φ̂) from φ, Ui(φ) ≥

Ui(φ̂) for some i in A. Hence, φ is credibly group-stable.
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2.4.3 Policy implications

Because a men-optimal (women-optimal) stable matching is favorable to men (women) but

not to women (men), we can think of two compromises in market design. The first is a

mechanism that always selects men-optimal and women-optimal stable matchings alternately.

The second is a mechanism that always selects a median stable matching in each period which

is neither men-optimal stable nor women-optimal stable. The question is: Is such a dynamic

matching always credibly group-stable? The following example indicates that it is not.

Example 5. Consider a two-period dynamic market whose constituent markets are depicted

in Figure 8, where utility values of being unmatched are 0. µM and µW indicate men-optimal

and women-optimal stable matchings, respectively. In addition, µS denotes another stable

matching in Figure 8.

Figure 8: Constituent markets in Example 5

Case 1: A history-independent dynamic matching φ consisting only of µS is not credibly

group-stable.

Consider a history-independent group deviation (A, φ̂) from φ where A = M ∪W , and φ̂

assigns µW and µM to period 0 and 1, respectively. All agents in A are better off in φ̂ than

in φ. We show that (A, φ̂) is defensible. Suppose for a contradiction that there is a group

deviation (B, φ̄) from φ̂ with B ∩ A = B 6= ∅ such that Ui(φ̄) > Ui(φ̂) for each i in B. Note

that each man obtains the payoff of 9 and each woman obtains that of 8 at φ̂, and no agent

27



in B is not unmatched at φ̄ in each period. So, B includes matched pairs at φ̄. We have

three cases to consider: First, if m1 is in B, since he has the payoff more than 9 at φ̄, he

is either matched with w1 in both periods, or matched with w2 and w1 in periods 0 and 1,

respectively. In the former case, w1 is in B but gets the payoff of 4 at φ̄ that is less than 8.

A contradiction. In the latter case, w2 is in B, and cannot get the payoff more than 8 at φ̄.

A contradiction. Similarly, we can obtain a contradiction for the other two cases where m2

is in B or m3 is in B. Thus, (A, φ̄) is defensible. Thus, φ is not credibly group-stable.

Case 2: A history-independent dynamic matching φ consisting of µM in the first period and

µW in the second period is not credibly group-stable.

Consider the same group deviation (A, φ̂) from φ as Case 1. All agents in A are better off

in φ̂ than φ. Since (A, φ̂) is defensible as we verify in Case 1, φ is not credibly group-stable.

2.5 PARETO EFFICIENCY IN FINITELY REPEATED MARKETS

In a static market, since any stable matching is in the core from Lemma 1, it is weakly

Pareto efficient. Thus, the question of welfare does not arise in a static stable mechanism.

However, as we saw in Example 2, a history-independent dynamic matching assigning a

unique statically stable matching in each period is credibly group-stable, but not Pareto

efficient even in a finitely repeated market. In this section, we investigate Pareto efficiency

in finitely repeated markets. Whether an outcome path consisting of stable matchings is

Pareto efficient depends on preferences of agents in constituent markets. To examine Pareto

efficiency, we introduce a condition, called regularity, for a static market.

2.5.1 Regularity condition for static markets

To introduce the regularity condition, we define a restricted market (M̃, W̃ , ũ), denoted

by (M̃ ∪ W̃ ), of a static market (M,W, u) to be a static market such that M̃ ⊂M , W̃ ⊂ W ,

ũm is a restriction of um to W̃ ∪ {m} for each m ∈ M̃ , and ũw is a restriction of uw to
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M̃ ∪{w} for each w ∈ W̃ . Moreover, throughout this section, a pair (i, j) means that either

i belong to the opposite sex of j or i = j.

Definition 9. Given a matching µ with the number N of pairs formed in µ, a static market

has regularity for µ if there is a sequence {(ik, µ(ik))}Nk=1 of pairs formed in µ (called a

regular sequence for µ) such that

(a) for k = 1, i1’s most preferred mate is µ(i1) in a restricted market M ∪W ,

(b) for k ≥ 2, ik’s most preferred mate is µ(ik) in a restricted market (M ∪W )\{il, µ(il)}k−1
l=1 .

In a regular sequence {(ik, µ(ik))}Nk=1 for µ, agent i1’s partner at µ is µ(i1) who is the best

partner to i1 among all agents. Removing this pair (i1, µ(i1)) from the market, agent i2’s

partner at µ is µ(i2) who is the best partner to i2 among all agents except the pair (i1, µ(i1)).

Removing the pairs (i1, µ(i1)) and (i2, µ(i2)) from the market, we repeat the same procedure

until no agent is left.

As an example, consider the Example 2. The constituent market has regularity for µM ,

µW but not for µS. As a regular sequence for µM , take i1 = m1 and i2 = m2.

Lemma 4. (1) If a static market has regularity for a matching µ, then µ may not be stable.

(2) If a matching is stable in a static market, then the market may not have regularity for

it.

In the constituent market of Example 2, the matching µM satisfies regularity, but is not

stable. On the other hand, the matching µU is stable but does not satisfy regularity. In a

special class of markets with acceptability and |M | = |W |, the regularity condition is clearly

equivalent to a sufficient condition for a unique stable matching identified by Eeckhout

(2000). Thus, in this class, if a static market has regularity for a matching µ, then µ is

uniquely stable.

2.5.2 Finitely repeated markets

An outcome path µ is Pareto efficient if there is no other outcome path µ′ such that

Ui(µ
′) ≥ Ui(µ) for each i in I with strict inequality for some i in I.

Theorem 3 (Pareto efficiency). In a finitely repeated market, if a matching µ∗ satisfies
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regularity in the constituent market, then an outcome path consisting of the matching µ∗ is

Pareto efficient.

Proof. Let (M,W, {ui}i∈I) be a constituent market. Let the outcome path µ∗ := (µ∗, µ∗, · · · , µ∗).

Take any outcome path µ := (µt)Tt=0 that is different from µ∗. We show that there exists an

agent i ∈ I such that Ui(µ
∗) > Ui(µ).

Take a regular sequence {ik, µ∗(ik)}Nk=1 of pairs for µ∗. TakeM(i) := {µ ∈M|(i, µ∗(i)) 6∈

µ}. We choose a particular agent iK among {ik}Nk=1 in the following way:

Step 1: If there exists t = 0, · · · , T such that µt ∈M(i1), then set iK = i1. Otherwise, go to

the next step.

Step k: If there exists t = 0, · · · , T such that µt ∈ M(ik), then set iK = ik. Otherwise, go

to the next step.

This procedure stops after at most N steps. In addition, we can choose such an agent

iK . Otherwise, we would have a contradiction that µ∗ = µ.

To show that UiK (µ∗) > UiK (µ), it is sufficient to show that for each µt ∈ M(iK),

uiK (µ∗) > uiK (µt). Note that for each µt ∈M \M(iK), uiK (µ∗) = uiK (µt).

Fix µt ∈ M(iK), i.e., (iK , µ
∗(iK)) 6∈ µt. Because of the procedure of finding iK , agents

in {ik, µ∗(ik)}K−1
k=1 are matched with each other, and thus agent iK is not matched with any

mate in {ik, µ∗(ik)}K−1
k=1 . By regularity and strict preferences, agent iK ’s most preferred mate

in the restricted market (M ∪W ) \ {ik, µ∗(ik)}K−1
k=1 is µ∗(iK), and thus uiK (µ∗) > uiK (µt).

Corollary 1. In a finitely repeated market, if a stable matching µ∗ satisfies regularity, then

an outcome path consisting the matching µ∗ is Pareto efficient.

Any outcome path consisting of the men-optimal (or women-optimal) stable matching of

the constituent market can be supported via credible group stability by Theorem 2. However,

in the Example 2, such an outcome path consisting only of µU is not Pareto efficient, and

the regularity condition is not satisfied. Together with the following example, a partial

converse17 of the Corollary 1 may hold:

17Conjecture of a partial converse: If a static market does not have regularity for a stable matching µ,
there is a period T such that in the T times repeated market, an outcome path consisting of µ is not Pareto
efficient.
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Example 6. (An example for the partial converse of Corollary 1.) Consider a three-times

repeated market with M = {m1,m2,m3,m4}, W = {w1, w2, w3, w4} and the following pref-

erences18 with no discounting:

m1 m2 m3 m4 w1 w2 w3 w4

w3 (6) w4 (6) w1 (6) w3 (6) m2 (6) m1 (6) m2 (6) m3 (6)

w1 (2) w2 (2) w3 (2) w4 (2) m1 (2) m2 (2) m3 (2) m4 (2)

w2 (1) w3 (1) w2 (1) w2 (1) m3 (1) m3 (1) m4 (1) m1 (1)

w4 (0) w1 (0) w4 (0) w1 (0) m4 (0) m4 (0) m1 (0) m2 (0)

The numbers in parentheses indicate utilities. Each agent is acceptable to all those of

the opposite sex. Note that there is a unique stable matching µ∗ = {(m1, w1), (m2, w2),

(m3, w3), (m4, w4)} and the constituent market does not have regularity for µ∗. Consider

three matchings µ0 = {(m1, w2), (m2, w1), (m3, w4), (m4, w3)}, µ1 = {(m1, w3), (m2, w4),

(m3, w1), (m4, w4)} and µ2 = {(m1, w2), (m2, w3), (m3, w1), (m4, w4)}. Then, total utili-

ties are calculated as follows:

Total utilities m1 m2 m3 m4 w1 w2 w3 w4

Ui(µ
∗, µ∗, µ∗) 6 6 6 6 6 6 6 6

Ui(µ
0, µ1, µ2) 8 7 12 10 8 14 7 8

Thus, the outcome path consisting only of µ∗ is not Pareto efficient.

2.6 CONCLUSION

Some real-life dynamic matching markets use a mechanism that finds a men-optimal or

a women-optimal stable matching. Our result shows that this approach does not create

instability in a dynamic setting. Therefore, this approach is justified.

18This example for ordinal preferences is from Example 2 in Eeckhout(2000), which Ahmet Alkan suggests.
We attach utility values so that the claim holds.
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3.0 A NOTE ON ONE-SHOT GROUP STABILITY IN DYNAMIC

MATCHING MARKETS

3.1 INTRODUCTION

In the previous chapter, we introduced a new dynamic framework of dynamic matching

markets with either a finite horizon or an infinite horizon in order to analyze two-sided

matching interactions that occur repeatedly over time. Moreover, we introduce two solution

concepts of dynamic group stability and credible group stability. However, both concepts

assume that agents can perfectly coordinate a contingent plan depending on the realized

matchings, called a dynamic matching. While this is appropriate for a short horizon, it can

be demanding for a long horizon.

In this chapter, we study another solution concept, called one-shot group stability, for

the same model as chapter 2. This concept is first introduced by Corbae, Temzelides and

Wright (2003) in the context of random matching model of money (Kiyotaki and Wright,

1989). In this concept, at each history, a group of agents take the future matching as given

and consider a possibility of profitable deviation on this history. A one-shot group-stable

dynamic matching is immune against this kind of one-shot group deviations.

Although this concept is myopic, it would be appropriate to analyze the situation where

agents are not sure when interactions end. For an example, consider music lessons organized

by an institution such as City Music Center of Duquesne University in Pittsburgh, PA.1

The Center’s teachers have preferences over students they would like to teach, and students

have preferences over teachers. To better play a musical instrument, students have to spend

1See http://www.cmcpgh.org. Tuition does not play a decisive role in matching, because the tuition is
not differentiated by teachers or students.
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many years taking lessons, and thus they need to be involved in long-term relationships.

Hence, this is a dynamic two-sided matching market. On the other hand, students may have

preferences over future matchings, but may not be sure when they quit. Myopic solution

concepts capture this kind of dynamic matching.

Moreover, in the context of mechanism design, a clearinghouse may not be able to set up

a mechanism in which she asks all agents about their preferences on matchings over the entire

period. Instead, she sets up a dynamic mechanism where at each period she determines the

current matchings based on both the agents’ report on their current preferences and the

past matchings. When the number of agents is large, it would be harder for participants

to coordinate the future matchings. This is one of the cases where one-shot group stability

is appropriate. In addition, it is important to examine to what extent we can achieve a

coordination across time with one-shot group stability.

This chapter first proves the existence of one-shot group stability, and the next we ex-

amine to what extent we can achieve a coordination across time under infinite horizon by

using the one-shot group stability.

3.1.1 Related literature

In chapter 2, we observe that there may not always exist a group stable dynamic matching.

Thus, we provide the notion of credible group stability2 and show its existence by showing

that implementing a men-optimal stable matching in each period is credibly group-stable.

This existence result needs the assumption that the underlying period preference is strict,

since this assumption guarantees the existence of the men-optimal stable matching. However,

we do not assume the strict preference in this paper. Under this general condition, we prove

the existence of one-shot group stability.

The most closely related paper is Corbae, Temzelides and Wright (2003). They propose

a solution concept corresponding to one-shot pairwise stability in this paper. They focus on

applications of directed matching to monetary theory and do not deal with the characteriza-

tion and existence problems. Variants of core in repeated matching markets are extensively

2A credible group-stable dynamic matching is individually rational and immune to any defensible group
deviations with an appropriate definition of defensibility.
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studied by Damiano and Lam (2005).

3.2 THE MODEL

3.2.1 Preliminaries: static marriage markets

We define a static (marriage) market as a triple (M,W, {ui}i∈I). By a static market, we

always mean a static marriage market. The set I := M ∪W of agents is divided into two

finite disjoint subsets M and W . M is the set of men and W is the set of women. Note that

|M | 6= |W | in general. Generic agents are denoted by i ∈ I, while generic men and women

are denoted by m and w, respectively. Man m’s utility function is um : W ∪ {m} → R, and

woman w’s utility function is uw : M ∪ {w} → R. Woman w is acceptable to man m if

um(w) ≥ um(m), and similarly for m. An agent is said to have strict preferences if he or

she is not indifferent between any two choices. Unlike chapter 2, agents may not have a strict

preference. In this market, each agent is either matched with another agent of the opposite

sex or unmatched. An outcome is a matching defined by a bijection µ : M ∪W →M ∪W

such that for each i ∈ I, (µ ◦ µ)(i) = i, and if µ(m) 6= m then µ(m) ∈ W , and if µ(w) 6= w

then µ(w) ∈M . Fixing M and W , let M be the set of all matchings. If µ(i) = i, agent i is

said to be unmatched, and denote this pair by (i, i). If µ(m) = w, equivalently µ(w) = m,

then w is said to be matched with m, and denote this pair by (m,w). For notational

simplicity, we often use ui(µ) instead of ui(µ(i)). A matching µ is individually rational if

each agent is acceptable to his or her partner, i.e., ui(µ) ≥ ui(i) for each agent i in I. Given

a matching µ, a pair (m,w) blocks µ if they are not matched with each other in µ but prefer

each other to their matched partners in µ, i.e. um(w) > um(µ) and uw(m) > uw(µ).

Definition 10 (Gale and Shapley (1962)). A matching µ is called (statically) stable

if it is individually rational, and is not blocked by any pair (m,w) in M ×W .

The adverb “statically” is omitted if there is no confusion. Moreover, Gale and Shapley

(1962) prove the existence of stable matchings:
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Theorem 4 (Existence: Gale and Shapley (1962)). A stable matching exists for each

static market.

See Roth and Sotomayor (1990) for a comprehensive account on static markets.

3.2.2 Dynamic marriage markets

We consider a dynamic (marriage) market in which one-to-one matching interactions

occur repeatedly over time. By a dynamic market, we always mean a dynamic marriage

market. Time is discrete with either a finite horizon or an infinite horizon. We denote the

horizon by T . T <∞ stands for a finite horizon, while T =∞ for an infinite horizon. In this

market, there are fixed sets of M and W , where M and W are disjoint and finite. In general,

|M | 6= |W |. Each agent is supposed either to be matched with at most one agent of the

opposite sex or to be unmatched at each period t = 0, · · · , T . There are no frictions: agents

do not have to commit themselves to their prior partners and can freely change partners at

any period. Each agent has a time-separable utility function over those of the opposite sex

and being unmatched. Man m’s utility function at period t is given by utm : W ∪ {m} → R,

while woman w’s utility function is utw : M ∪{w} → R. Unlike chapter 2, we do not assume

that all agents have strict preferences in each period. An outcome path is a sequence of

matchings in M, denoted by µ := {µt}Tt=0. Given an outcome path µ = {µt}Tt=0, agent i’s

utility function is given by

Ui(µ) :=
T∑
t=0

uti(µ
t),

where for notational simplicity we use uti(µ
t) instead of uti(µ

t(i)). We assume that for an

infinite horizon case, Ui(µ) is well-defined for any outcome path µ. Each agent knows his

or her utility functions as well as those of the other agents. The above structure is common

knowledge. Thus, a dynamic market is a triple ΓT := (M,W, {uti}i∈I,t≥0). Looking at period

t, (M,W, {uti}i∈I) is a static market, called a period t (marriage) market. If we do not

need to specify the period, we call it a constituent (marriage) market. A dynamic market

is called a repeated (marriage) market if there is a common discount factor δ ∈ (0, 1)
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such that for each agent i ∈ I and there is a utility function ui such that uti = (1 − δ)δtui.

That is,

Ui(µ) = (1− δ)
T∑
t=0

δtui(µ
t)

3.2.3 Dynamic group stability

Here we summarize basic definitions and results from chapter 2.

A dynamic matching is a contingent plan based on histories of realized matchings.

Formally, a history at period t, t ≥ 1, is ht := (µ0, µ1, · · · , µt−1) ∈ Mt, and h0 := ∅ is the

history at the start of the market. Let Ht be the set of all histories at period t, i.e. Ht =Mt.

The set of all histories is H := ∪Tt=0Ht. Then, a dynamic matching is defined to be a function

φ : H →M. Moreover, it is history-independent if in each period, a matching specified

by the dynamic matching is independent of histories, i.e., for each t = 0, 1, · · · , T and for

each ht, h̃t in Ht, φ(ht) = φ(h̃t). Note that history independence means that matching in

each period is a function of the calender time alone, and that matchings need not be constant

across periods.

A dynamic matching φ induces a unique outcome path µ(φ) := {µt(φ)}∞t=0 recursively

as follows: µ0(φ) := φ(∅), for t ≥ 1, µt(φ) := φ(µ0(φ), · · · , µt−1(φ)). Given φ, each agent i’s

utility function is obtained as Ui(φ) := Ui(µ(φ)).

Definition 11. Given a matching µ, a (static) group deviation from µ is a pair (A, µ̂)

consisting of a group A and a matching µ̂ such that

(a) for each i in A, µ̂(i) ∈ A,

(b) for each i, j in I \ A, if µ(i) = j, then µ̂(i) = j, and

(c) for each i in A and for each j in I \ A, if µ(i) = j, then µ̂(j) = j.

In a static market, the adjective “static” is omitted when there is no confusion. Condition

(a) requires that deviating agents in A should be matched with each other. Condition (b)

requires that agents outside the group A should be matched according to µ, while condition

(c) requires that any agent who was a partner of an agent outside A should be unmatched

under µ̂.
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Definition 12. Given a dynamic matching φ, a (dynamic) group deviation from φ is a

pair (A, φ̂) consisting of a group A and a dynamic matching φ̂ such that there is a subset H′

of H,

(a) for each h in H′, a pair (A, φ̂(h)) is a static group deviation from a matching φ(h), and

(b) for each h in H \H′, φ̂(h) = φ(h).

In the dynamic group deviation (A, φ̂) from φ, at histories h in H′ agents in A reorganize

their match within A and the others remain matched at φ(h). In the remaining histories

all agents are matched at φ(h) and possibly matched with agents outside A. The adjective

“dynamic” is omitted when there is no confusion.

A group A is said to block the dynamic matching φ (via φ̂) if (A, φ̂) is a dynamic group

deviation from φ and Ui(φ̂) > Ui(φ) for each i in A.

Definition 13.

1. A dynamic matching φ is (dynamically) group-stable if no group blocks it; i.e., if

there is no group deviation (A, φ̂) from φ such that Ui(φ̂) > Ui(φ) for each i in A.

2. In the special case of a static market (i.e. T = 0), a matching µ is called (statically)

group-stable if it is dynamically group-stable.

Lemma 5. For a static market, the following are equivalent:

(a) A matching is stable.

(b) It is in the core.

(c) It is statically group-stable.

3.3 ONE-SHOT GROUP STABILITY

3.3.1 Definition

We first formalize one-shot group deviation and use it to define one-shot group stability.

Definition 14. Given a dynamic matching φ, a one-shot group deviation from φ is a

pair (A, φ′) of a group A and a dynamic matching φ′ such that there exists a history h̃ ∈ H
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with φ′(h̃) 6= φ(h̃) and φ′(h) = φ(h) for each h 6= h̃ in H.

Consider a one-shot group-deviation from a given dynamic matching φ where at only

one deviating history ht agents consider a group deviation in the period t market. At

this history, agents evaluate their current partner in the future matchings as well as the

current one. At the history ht, agents face a dynamic market starting from ht, which we

call a sub-dynamic (marriage) market Γ(ht) := (M,W, {uτi }i∈I,τ=t,··· ,T ). To evaluate the

given dynamic matching φ, agents consider a dynamic matching starting from ht, called a

continuation dynamic matching φ|ht . Formally, for a finite horizon case, it is a function

φ|ht : MT−t+1 → M given by φ|ht(hτ ) = φ(hthτ ) for each hτ in MT−t+1. For an infinite

horizon case, it is a function φ|ht : H →M given by φ|ht(hτ ) = φ(hthτ ) for each hτ ∈ H.

Given a dynamic matching φ, a group A is said to one-shot block φ (via φ′) if (A, φ′) is

a one-shot group-deviation from φ such that at the history h̃t with φ′(h̃t) 6= φ(h̃t), Ui(φ
′|h̃t) >

Ui(φ|h̃t) for each i in A.

Definition 15. A dynamic matching is one-shot group-stable if no group one-shot

blocks it, i.e. there is no one-shot group deviation (A, φ′) from φ such that at history h̃t with

φ′(h̃t) 6= φ(h̃t), Ui(φ
′|h̃t) > Ui(φ|h̃t) for each i in A.

This one-shot group stability is similar in spirit to the “equilibrium” considered in Corbae,

Temzelides and Wright (2003), although they do not prove the existence. In the world of

one-shot group-stability, agents and groups are myopic at all histories in the sense that at

each history they take the future matchings as given and think about the current matching

whose payoff depends not only on the current one but also the future matchings resulting

from the current choice.

3.3.2 Characterization by networked (marriage) markets

We provide a tractable method of checking one-shot group stability by using the following

notion.

Definition 16. A networked (marriage) market3 is a triple (M,W, {vi}i∈I), where

3This kind of model was first considered by Sasaki and Toda (1996). They called it a matching problem
with externalities.
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vi :M→ R for each i ∈ I.

The difference from a static marriage market is that the domain of the payoff function

vi is the set M of all matchings. In other words, an agent’s preference over those of the

opposite sex depends not only on his or her partner but also on the partners of the others.

Next, we define a solution concept, called stability∗. In general, when a pair of a man

and a woman consider divorcing their current partners and to be matched with each other,

they need to form expectations on how the other agents, including their former partners, will

behave. We use the group deviation as introduced in Definition 11. Given a group deviation

(A, µ′) from µ, the expectation of group A after deviation is expressed by µ′. A group A is

said to block µ (via µ′) if there is a group deviation (A, µ′) from µ such that vi(µ
′) > vi(µ)

for each i in A.

Definition 17. In a networked market, a matching µ is (statically) group-stable∗ if no

group blocks it, i.e. there is no group deviation (A, µ′) from µ such that vi(µ
′) > vi(µ) for

each i in A.

This solution concept is the same as strong stability in network games as defined by

Dutta and Mutuswami (1997). Note that if in a networked market ∀i ∈ I,∀j ∈ I,∀µ ∈ M

with µ(i) = j, vi(µ) is constant, the networked market boils down to a static market.

Lemma 6. If a networked market is a static market, both group stability∗ and group stability

coincide.

The proof follows directly from the definitions. The intuition is that the only difference

in the solution concepts is on how a deviating group thinks about the outsiders’ behavior,

but in a marriage market it does not matter to the deviating group. Because of this lemma,

we do not distinguish between group stability∗ and group stability.

Fix a dynamic matching φ and a history ht. We define the induced networked (mar-

riage) market Γ̃(ht, φ) := (M,W, {vi}i∈I) such that

vi(µ) := uti(µ) + Ui(φ|ht,µ)

for each i ∈ I. Now we can state a useful lemma. The proof is in APPENDIX B.
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Lemma 7. A dynamic matching φ is one-shot group-stable if and only if for each history

h ∈ H, the matching φ(h) is statically group-stable in its induced networked market Γ̃(h, φ).

3.3.3 Existence and characterization

We demonstrate the existence of one-shot group-stable dynamic matchings for every dy-

namic market. To describe a class of one-shot group-stable dynamic matchings, a history-

independent dynamic matching is useful in the sense that each induced networked market is

simplified:

Lemma 8. For each history-independent dynamic matching φ, for each t ≥ 0, and for each

ht ∈ Ht, the induced networked market Γ̃(ht, φ) is a static marriage market equivalent to the

period t market.

The proof is in APPENDIX B.

Corollary 2. Let φ be a history-independent dynamic matching. Then, φ is one-shot group-

stable if and only if for each period, it specifies a statically stable matching of the correspond-

ing period market.

See APPENDIX B for the proof. Thus, we can fully characterize a history-independent

one-shot group-stable dynamic matching in terms of constituent markets.

Theorem 5 (Existence). A one-shot group-stable dynamic matching always exists for every

dynamic market.

Proof. Consider a history-independent dynamic matching which assigns a statically group-

stable matching in the corresponding market for each period. Such a dynamic matching

exists by Theorem 4. It follows from Corollary 2 that this is one-shot group-stable.

Note that we do not need strict preferences for this existence theorem. The same tech-

nique can be applied to the other dynamic matching markets such as many-to-one, many-to-

many, and roommates matching markets as long as a static market has a stable matching.

Corollary 3. In a dynamic market under finite horizon, if each of its constituent markets

has a unique stable matching, then there is a unique one-shot group-stable dynamic matching.
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A question that we can ask from Corollary 3 is that, when the constituent market involves

more than one stable matching, do we have an unstable matching on the outcome path of

a one-shot group-stable dynamic matching? The next proposition says Yes. The proof is in

APPENDIX B.

Proposition 5. In a finitely repeated market, a one-shot group-stable dynamic matching

may have a statically unstable matching of a constituent market on the outcome path.

3.4 COORDINATION

Looking at Example 1, we can see that under finite horizon, a one-shot group-stable dynamic

matching may not be group stable, i.e. a coordination failure across time. This section

investigates to what extent a one-shot group-stable dynamic matching can achieve such a

coordination.

3.4.1 Repeated marriage markets

Consider an infinitely repeated market of a static market (M,W, {ui}i∈I). The set of static

market payoffs generated by matchings in M is

F := {u(µ) ∈ R|I||µ ∈M}.

The set of feasible payoffs,

F † := coF ,

is the convex hull of F . A payoff vector w = (w1, · · · , w|I|) is individually rational if

wi > ui(i) for each i ∈ I. In addition, a payoff vector w = (w1, · · · , w|I|) is group-rational

if there exists a stable matching µ such that for each i ∈ I, wi > ui(µ). Obviously, any

group-rational payoff is individually rational. Let

F∗(µ) := {w ∈ F †|wi > ui(µ),∀i ∈ I},
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for a matching µ ∈M. The set of feasible and group-rational payoffs is given by

F∗ := ∪{F∗(µ)|µ is stable}.

Lemma 9. Suppose that F∗(µ) is nonempty for some stable matching µ. Then,

(1) there is no matching µ′ such that u(µ′) ∈ F∗(µ), and

(2) |I| ≥ 3.

The proof is in Appendix B.

Figure 9: Constituent markets in Example 6

Example 6. Consider the twice repeated market with no discounting whose constituent

market is depicted in Figure 9. Here the set of group-rational payoffs is strictly smaller than

that of individually rational ones, as shown in Figure 10. The question is whether or not we

can sustain a group-rational payoff as a result of one-shot group-stable dynamic matching.

The answer is affirmative, and is developed from now on in the general setting. To this end,

we need the following lemma.

Lemma 10 (Lemma 2 in Fudenberg and Maskin (1991) or Lemma 3.7.2 in Mailath and

Samuelson (2006)). For any ε > 0 there exists δ < 1 such that for all δ ∈ (δ, 1) and every

w ∈ F † there is a sequence of matchings whose discounted average payoffs are w, and whose

continuation payoffs at each time t are within ε of w.
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Figure 10: Individually and rational payoffs in Example 6

This lemma is intended for infinitely repeated games under perfect monitoring. Since

it does not involve an equilibrium concept, we can get Lemma 10 by replacing the action

profile by the matching.

The following theorem informally says that any group-rational and feasible payoff of

a static market can arise as a result of one-shot group-stability of the infinitely repeated

market if agents are sufficiently patient. The importance of this theorem comes from the

fact that one-shot group-stability is seen as myopic decision-making (See the paragraph after

Definition 15) but still can achieve any group-rational payoff under infinite horizon.

Theorem 6. Consider an infinitely repeated market. Then, for each payoff w in F∗, there

exists δ < 1 such that for each δ ∈ (δ, 1), there exists a one-shot group-stable dynamic

matching with payoff w.

Proof. Let w ∈ F∗. Then, there exists a stable matching µ̂ in the constituent market such

that for each i ∈ I, wi > ui(µ̂). Take εi := wi − ui(µ̂) > 0 for each i, and ε := min{εi|i ∈

I} > 0. It follows from Lemma 10 that there exists δ′ < 1 such that for each δ ∈ (δ′, 1),

there exists µ = {µt}∞t=0 such that U(µ) = w and whose continuation payoffs at each period

t are within ε of w.
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Consider the following trigger type of dynamic matching φ:

φ(ht) = µt if ht = (µ0, · · · , µt−1),

= µ̂ otherwise.

We show that this φ is one-shot group-stable. From Lemma 7, it suffices to show that for

each history ht ∈ H, the matching φ(ht) is group stable in the induced networked market

Γ̃(ht, φ). Take any ht ∈ H. There are two cases to consider. First, consider the case where

ht is off the outcome path. Then the continuation dynamic matching φ|ht assigns µ̂ to

each history, and thus is history-independent. It follows from Lemma 8 that the induced

networked market is equivalent to the constituent market. Therefore, since µ̂ is a stable

matching in the constituent market, the matching φ(ht) = µ̂ is group stable in the induced

networked market.

Next, consider the case where the history ht is on the outcome path, i.e., ht = (µ0, µ1, · · · , µt−1).

Let K := max{ui(µ)|i ∈ I, µ ∈M}. First, show that

∃δ > δ′,∀δ ∈ (δ, 1),∀i ∈ I, Ui(φ|ht) ≥ (1− δ)K + δui(µ̂). (3.1)

Take any i ∈ I. Since wi − ui(µ̂) ≡ εi ≥ ε > 0 and |Ui(φ|ht)− wi| < ε,

Ui(φ|ht)− ui(µ̂) = Ui(φ|ht)− wi + wi − ui(µ̂) > −ε+ ε = 0. (3.2)

Also,

K − ui(µ̂) ≥ 0. (3.3)

It follows from (3.2), (3.3) and the Archimedean property that there exists δi such that for

each δ ∈ (δi, 1),

Ui(φ|ht)− ui(µ̂) > (1− δ)(K − ui(µ̂)). (3.4)

Setting δ := max{δ1, · · · , δ|I|, δ′} and arranging (3.4) leads to the desired equation (3.1).

Next, show that µt is group stable in the induced networked market. Let (A, µ′) be a

group deviation from µt. Then, equation (3.1) implies that for each δ ∈ (δ, 1) and each i ∈ I,

vi(φ(ht)) ≡ Ui(φ|ht) ≥ (1− δ)ui(µ′) + δui(µ̂) = (1− δ)ui(µ′) + δUi(φ|ht,µ′) ≡ vi(µ
′).

Thus, the group A does not block µt, and so µt is group stable.

44



3.4.2 Dynamic marriage markets

Now we turn to a dynamic market. Because preferences can vary across periods, a direct

application of notions developed in repeated markets is not possible. However, we make the

similar notations and definitions. The set of feasible payoffs is

F † := {U(µ) ∈ R|I||µ is an outcome path}.

Definition 18. A payoff vector w ∈ F † is group-rational if there exist outcome paths

µ := {µt}∞t=0 and µ̂ := {µ̂t}∞t=0 with w = U(µ) such that

(a) for each t ≥ 0, µ̂t is stable in the period t market,

(b) for each t ≥ 0 and for each i ∈ I,
∑∞

τ=t u
τ
i (µ

τ ) ≥
∑∞

τ=t u
τ
i (µ̂

τ ).

Also, the outcome path µ is called a group-rational outcome path.

Theorem 7. Consider a dynamic market under infinite horizon. Suppose that a payoff w is

group-rational. Then, there exists a one-shot group-stable dynamic matching with payoff w.

Proof. Suppose that a payoff w is group-rational. Take outcome paths µ with w = U(µ)

and µ̂ that satisfy conditions (a) and (b) in Definition 18. Consider the following trigger

type of dynamic matching φ:

φ(ht) = µt if ht = (µ0, · · · , µt−1)

= µ̂t otherwise.

We show that φ is one-shot group-stable. From Lemma 7, it suffices to show that for each

history ht, the matching φ(ht) is group stable in the induced networked market Γ̃(ht, φ). Fix

ht ∈ H. There are two cases to consider. First, consider the case where ht is off the outcome

path. Then the continuation dynamic matching φ|ht assigns µ̂t+τ for each history hτ , and

thus is history-independent. It follows from Lemma 8 that the induced networked market is

equivalent to the period t market. Thus, since µ̂t is group stable in the period t market by

the condition (a) in Definition 18 and Lemma 5, it follows from Lemma 6 that the matching

φ(ht) = µ̂t is group stable in the induced networked market.
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Next, consider the case where the history ht on the outcome path, i.e., ht = (µ0, µ1, · · · , µt−1).

We show that µt is group stable in the induced networked market. Let (A, µ′) be a group-

deviation from µt. First, there exists i in A such that uti(µ̂
t) ≥ uti(µ

′). Otherwise, the group

A blocks µ̂t via µ′ in the period t market, which contradicts that µ̂t is group stable in the

period t market. Together with this claim, the condition (b) in Definition 18 implies that

vi(φ(ht)) ≡ uti(µ
t) + Ui(φ|ht,µt) =

∞∑
τ=t

uτi (µ
τ )

≥
∞∑
τ=t

uτi (µ̂
τ ) = uti(µ̂

t) +
∞∑

τ=t+1

uτi (µ̂
τ )

≥ uti(µ
′) + Ui(φ|ht,µ′) ≡ vi(µ

′).

To obtain the last inequality, we use uti(µ̂
t) ≥ uti(µ

′) and Ui(φ|ht,µ′) =
∑∞

τ=t u
τ
i (µ̂

τ ). There-

fore, the group A cannot block µt via µ′ in the induced networked market, and thus µt is

group stable in the market.

3.5 CONCLUSION

We have proven the existence of a one-shot group stable dynamic matching, and provided a

tractable method of using induced networked markets. In addition, we have shown how it

can achieve coordination in an infinite horizon case.
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4.0 HOUSE ALLOCATION WITH OVERLAPPING AGENTS: A

DYNAMIC MECHANISM DESIGN APPROACH

4.1 INTRODUCTION

The static allocation problem1 of assigning indivisible goods, called “houses,” to agents with-

out monetary transfers has been extensively studied and applied to real-life markets such as

on-campus housing for college students (cf. Abdulkadiroğlu Sönmez, 1999; Chen and Sönmez

2002; Guillen and Kesten 2008), kidney exchanges for patients (Roth, Sönmez, and Ünver

2004), and school choice for U.S. public schools (cf. Abdulkadiroğlu and Sönmez, 2003).

Until now, there has been little attempt to analyze dynamic house allocations problems.2

Considering dynamic aspects enables us to explain aspects of the allocation problem that

cannot be captured by static models. For example, in the case of on-campus housing for

college students, each year freshmen apply to move in and graduating seniors leave. Each

student stays on campus for a few years only. A student is a “newcomer” in the beginning and

then becomes an “existing tenant.” In general, students are overlapping. In this structure, it

is not always dynamically Pareto efficient to have a static Pareto efficient allocation in each

period.

To illustrate this point, suppose in the first period t = 1, there is one agent a0, called

an initial existing tenant,3 who came before the market starts and lives only in this period.

Moreover, in each period t ≥ 1, one agent at comes to live in a house in periods t and t+ 1.

1See Sönmez and Ünver (2008) for a recent survey.
2See recent exceptions: Abdulkadiroğlu and Loertscher (2007), Bloch and Cantala (2008), and Ünver

(2009).
3Throughout this paper, the terminology “existing tenants” indicates the agents who came to the market

in the previous period. It does not always mean that they have property rights for houses, unlike the ones
used by Abdulkadiroğlu and Sönzme (1999).
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In each period t, there is an existing tenant at−1 who came in the previous period, and a

newcomer at. There are two durable houses h1 and h2 available. Each agent prefers h1 to

h2, and (h2, h1) to (h1, h2).
4 Consider the allocation:

t = 1 t = 2 t = 3 t = 4 · · ·

a0 h2

a1 h1 h2

a2 h1 h2

a3 h1 h2

...
...

...

In each period, an existing tenant is assigned h2 and a newcomer is assigned h1. This

allocation is Pareto efficient for each period’s static market. However, consider an infinite

exchange between an exiting tenant and a newcomer in each period where an existing tenant

exchanges her house h2 for the newcomer’s house h1. As a result, the initial existing tenant

is assigned h1, and each of the other agents is assigned (h2, h1). This new allocation is

preferred to the original by every agent. Thus, the original allocation is not dynamically

Pareto efficient.

Many universities in the United States use a variant of the random serial dictatorship

mechanism to allocate dormitory rooms.5 This mechanism randomly orders the agents and

then applies the serial dictatorship (SD) mechanism: the first agent is assigned her top

choice, and the next agent is assigned her top choice among the remaining rooms, and so

on. This ordering is not entirely random, but rather depends on seniority. That is, existing

tenants are favored over newcomers.

In the previous example, consider period orderings which order a newcomer at as the

first and an existing tenant at−1 as the second in each period. Running an SD mechanism

in each period, we obtain the same allocation as indicated in the previous table. As we saw,

this outcome is not dynamically Pareto efficient. On the other hand, consider other period

4 For example, (h2, h1) is a consumption path where an agent consumes house h2 in the first period,
and h1 in the next. Note that this preference violates the discounted utility model. However, considering
a critique of the discount utility model as reviewed by Frederick, Lowenstein, and O’Donoghue (2002), we
allow for any strict preference relation on {h1, h2} × {h1, h2} in this paper. See footnote 15 for a further
discussion.

5We will list some of real-life examples later in this section.

48



orderings that order an existing tenant first, and a newcomer next. The allocation by the

SD mechanism with orderings that favor existing tenants over newcomers Pareto dominates

the original, and is dynamically Pareto efficient. That is, the ordering based on seniority

performs well in terms of Pareto efficiency.

The subject of this paper is to present a new dynamic framework for a house allocation

problem by considering overlapping agents,6 and to analyze the impact of orderings on Pareto

efficiency and strategy-proofness.7 To our knowledge, the existing literature takes orderings

as given, and we are the first to examine the importance of seniority-based mechanisms.

Our model extends the standard overlapping generations (OLG) models8 to a house

allocation problem. Time is discrete and lasts forever. There are a finite number of durable

houses that are collectively owned by some institution, say a housing office. In each period, a

finite number of newcomers arrive and then stay for a finite number of periods, T , while the

oldest agents leave the market. Each agent consumes one house in each period. Each agent

has a time-separable preference over houses that spans T periods, consisting of T period

preferences. Her given preference does not vary across time. That is, her type is drawn as a

preference when she arrives, but her type does not change over time. However, we do allow

period preferences to vary across periods. Only initial existing tenants who arrived before

the market starts may have endowments. In this environment, a housing office needs to find

a mechanism to allocate houses to agents. Unlike in a static model, the office is not able to

elicit the preferences of agents who will arrive in the future. In each period, the office assigns

houses to agents present in the market, and may assign property rights for the future as

well as the current assignment. Thus, the office takes into account the previous assignments

in order to determine a current assignment. Hence, the office faces a dynamic mechanism

design problem.

We study two dynamic mechanisms. The first is a spot mechanism where in each period

a housing office asks agents present in that period about the current period preference, and

not the preference over all time periods. In particular, we look at spot mechanisms with

6Block and Cantala (2008) independently consider a similar model to ours. One of the difference is that in
their model only one agent arrives in each period. See the Related literature section for a further discussion.

7By strategy-proofness, all agents find it best to report true preferences.
8See Samuelson (1958), or Ljungqvist and Sargent (2004).
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or without property rights transfer: In a spot mechanism with property rights transfer, the

houses occupied by the oldest agent become vacant in the next period, but those occupied

by the other agents become their endowment. On the other hand, a spot mechanism without

property rights transfer has no such transfer. Another dynamic mechanism is a futures

mechanism in which each new agent is asked to reveal her preference over all time periods

when she arrives.

At any point of time, our spot mechanism without property rights transfer resembles

a house allocation problem (Hylland and Zeckhauser, 1979). A random serial dictatorship

(RSD) (static) mechanism has been widely studied (Abdulkadiroğlu and Sönmez, 1998).

Some colleges such as Davidson College, Lafayyett College, and St. Olaf College use a

seniority-based RSD spot mechanism on the condition that all students are forced to par-

ticipate in the mechanism every year. As we saw in the previous example, in an SD spot

mechanism (period orderings are given each period), period orderings that favor existing ten-

ants induce a Pareto efficient allocation (Theorem 9). On the other hand, period orderings

that favor newcomers do not always induce a Pareto efficient allocation (Theorem 10).

Although it is simple, Pareto efficient, and strategy-proof (Svensson, 1994), the RSD

mechanism is rarely used. Rather, many universities use a modified version of this mecha-

nism, called a RSD mechanism with squatting rights, where existing tenants either keep their

current rooms, or give up them and participate in the RSD mechanism. The main reason9 is

that universities want to keep students on campus, which makes the universities financially

less risky. This seniority-based mechanism is used in Northwestern University, University of

Michigan, and the University of Pittsburgh, among others. Students in these colleges can

choose stay off-campus. Even colleges that require all students to live on campus use this

seniority-based mechanism; for example, Godrdon College, Guilford College, Lawrence Uni-

versity. Although it is ex ante individually rational, this mechanism is not Pareto efficient

(Abdulkadiroğlu and Sönmez, 1999), and not ex post individually rational (Some students

9James Earle, Assistant Vice Chancellor for Business at the University of Pittsburgh, gave me the following
official reason: The goal of the Department of Housing is first and foremost, customer satisfaction. By
allowing students the opportunity to retain a room they like, we are guaranteeing the satisfaction of these
returning customers. Furthermore, if these students were forced out of their room, they could not only
become a dissatisfied customer, if they then get a room they don’t like, but they could also decide to live off
campus and become someone else’s customer. Why risk the loss of revenue, when you have the potential to
have a satisfied customer simply by allowing them to retain their room?
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who participate in the RSD mechanism may get a worse room than their previously owned

one.).

The RSD mechanism with squatting rights motivates us to introduce a spot mechanism

with property rights transfer where, in each period, the houses occupied by the oldest agents

become vacant in the next period, but those occupied by the other agents are inherited

as property rights or endowments in the next period. At any one point of time, this spot

mechanism resembles a static house allocation problem with existing tenants (Abdulkadiroğlu

and Sönmez, 1999) in which there are newcomers (agents with no endowments) and existing

tenants (agents with endowments). In a static context, since the SD with squatting rights

is not Pareto efficient, Abdulkadiroğlu and Sönmez (1999) propose a mechanism based on

the top trading cycles (TTC) mechanism (Shapley and Scarf, 1974), referred to as AS-

TTC mechanism. This mechanism restores Pareto efficiency that the RSD mechanism with

squatting rights lacks, while satisfying individual rationality and strategy-proofness.

We introduce a notion of acceptability in which each agent is made weakly better off as

time goes on. This corresponds to the situation, in a spot mechanism with property rights

transfer, where the static mechanism in each period is individually rational. Thus, it can

be seen as a counterpart of individual rationality in a static problem. As we mentioned, in

order to keep students on campus, many universities give property rights to students. In

this sense, the acceptability is desirable for dynamic mechanisms. However, we prove an

Impossibility Theorem where there is no dynamic mechanism that is Pareto efficient and

acceptable (Theorem 8).

Any SD spot mechanism is not acceptable, since all houses that an existing tenant

weakly prefers to their previously occupied one can be obtained by agents with higher order.

However, since an AS-TTC static mechanism is individually rational, we consider a TTC spot

mechanism in which an AS-TTC static mechanism is run each period in a spot mechanism

with property rights transfer. Since an AS-TTC mechanism is individually rational, a TTC

spot mechanism is acceptable. However, by the Impossibility Theorem, this spot mechanism

is not Pareto efficient.10 We restrict the preference domain to time-invariant preferences

10Note that in the general preference domain a TTC spot mechanism is not dynamically but statically
Pareto efficient. An SD mechanism with squatting rights is not even statically Pareto efficient.
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where each agent has preference consisting of identical period preferences. We emphasize

that this is not just a repetition of an AS-TTC static mechanism but has two distinct

features. First, we have entry and exit of agents with different preferences in each period.

Second, endowments or property rights are endogenous. Under time-invariant preferences,

we show that period orderings that favor existing tenants perform better than the ones that

favor newcomers in terms of Pareto efficiency and strategy-proofness (Theorems 12, 13, 14

and 15).

Finally, we propose a serial dictatorship (SD) futures mechanism which is based on

orderings of agents. We show that it is strategy-proof and Pareto efficient.

4.1.1 Related literature

There is an extensive literature on static house allocation problems. See Sönmez and Ünver

(2008) for a recent and comprehensive survey.

A dynamic house allocation problem can be classified depending on how and when agents

arrive and exit. But with the deterministic arrival and exit of agents, Bloch and Cantala

(2008) independently consider a model similar to ours. There are several differences that

distinguish our work from theirs. First, in their model only one agent enters and exits the

market in each period, while our model allows for any finite number of agents to enter and

exit. Second, in their model the type of an entering agent is drawn as a period preference but

does not vary as time goes on, while in our model we allow period preferences to vary across

periods. Third, their preference domain is more restricted than ours. They consider two

cases: 1) all agents have identical preferences, and 2) agents have heterogenous preferences

but the surpluses from matchings are supermodular. They analyze a Markovian assignment

mechanism with property rights transfer that is acceptable. Their seniority-rule corresponds

to our constant SD spot mechanism favoring existing tenants (to be defined in chapter 4) in a

specific environment as described above. However, they do not look at how static mechanisms

such as a serial dictatorship mechanism or a TTC mechanism behave in a dynamic setting.

They characterize the independent convergent rule when agents are homogenous, but do not

consider incentive issues.
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Ünver(2009) studies a dynamic mechanism design with an application to kidney exchange

for patients (Roth, Sönmez, and Ünver, 2004) in which agents arrive stochastically. However,

our dynamic model cannot be applied to kidney exchange for two reasons. First, a patient

with live donors (i.e. an agent with an endowment) arrives in each period, while in our model

only initial existing tenants may have endowments. Second, kidney patients immediately

leave the market once their exchange is done, but our model does not allow for this.

Additionally, Abdulkadiroğlu and Loertscher (2007) consider in a dynamic problem with-

out the arrival and exit of agents and with two periods in which each agent’s type is drawn

in each period. They also introduce a dynamic mechanism that depends on the first pe-

riod allocation, and examine efficiency and optimal dynamic mechanisms. Similarly, the

case of multiple-type (static) housing markets, where multiple types of indivisible goods are

traded and endowments are given, can be seen as a dynamic house allocation problem with

finite horizon the length of which is the same as the number of types. Konishi, Quint and

Wako (2001) obtain a negative result in which there is no mechanism that is Pareto efficient,

individually rational, and strategy-proof.

Although there are almost no papers on the ordering of agents in a mechanism, Sönmez

and Ünver (2005) show that a stochastic AS-TTC mechanism favoring newcomers is equiv-

alent to the core-based mechanism in a static house allocation with exiting tenants.

Finally, there is a growing literature on dynamic mechanism design with monetary trans-

fers. For example, see Athey and Segal (2007), and Gershkov and Moldovanu (2009).

4.2 THE MODEL

4.2.1 A dynamic problem

Time is discrete, starts at t = 1 and lasts forever. There is a finite set, Ĥ, of indivisible

goods, called houses, which are collectively owned by some institution (say a housing office.).

The houses are perfectly durable in that they can be used in each period. The number of

available houses is fixed throughout time.
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Agents live in houses for T periods, where T ≥ 2 is finite.11 An agent who came before

the model starts is called an initial existing tenant.12 In particular, an initial existing

tenant who came at period τ ≤ 0 is called a newcomer in period τ , and lives in one

house in each period from period 1 to τ + T − 1. For example, an oldest agent in period

1 is a newcomer in period 2 − T , and lives in a house only in period 1. In each period

t ≥ 1, newcomers arrive to live in a house in every period from period t to t + T − 1. Each

such agent is called a newcomer in period t. The number of newcomers in each period

t ≥ 2−T is finite, and is denoted by n. Let N(t) := {at1, at2, · · · , atn} be the set of newcomers

in period t ≥ 2−T .13 Table 4.2.1 shows the demographic structure of our model. Note that

there are both an infinite number of periods and an infinite number of agents in this model.

This “double infinity” is the major source of the theoretical peculiarities of the OLG model

(Shell, 1971).

In each period t ≥ 1, agents in the market are newcomers in periods t − T + 1, t + T +

1, · · · , t−1, t. Agents who came before period t are also called existing tenants in period

t. That is, they are newcomers in periods t − T + 1, · · · , t − 1. Let E(t) be the set of all

existing tenants in period t. Thus, E(t) ≡ ∪{N(τ) : t− T + 1 ≤ τ ≤ t− 1} and E(1) is the

set of all initial existing tenants. Moreover, let A(t) := N(t) ∪ E(t) be the set of all agents

present in period t ≥ 1. Note |A(t)| = nT . We assume that the number of houses is equal

to the number of agents present in each period; that is, |Ĥ| = |A(t)| = nT . Throughout this

paper, we fix the sets Ĥ and A(t) for each t ≥ 1.

For notational simplicity, we introduce a virtual house, h0, which can be assigned to

any number of agents. Later we will need to keep track of property rights or endowments

assigned in each period. The virtual house will be used to assign no endowment to agents.

Let H := Ĥ ∪ {h0}. To distinguish houses in Ĥ from the virtual house, we call a house in

Ĥ a real house.

A period t matching, µ(t), is an assignment of houses to agents in A(t) such that

each agent is assigned one (real or virtual) house and only the virtual house h0 can be

11If T = 1, then our model has a different static model in each period, so there is no dynamic issue. Thus,
we exclude T = 1.

12See footnote 3.
13A variable indexed by (t) is defined only in period t.
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assigned to more than one agent in period t ≥ 1. For each a in A(t), we refer to µa(t)

as the period t assignment of agent a under µ(t). Let M(t) be the set of all period t

matchings. A matching plan is a collection of period t matchings from period 1 on, denoted

by µ := {µ(t)}∞t=1. For each a in A(t), we refer to µa := (µa(t), µa(t+ 1), · · · , µa(t+ T − 1))

as the assignment of agent a under µ. Let M be the set of all matching plans.

Each initial existing tenant, a, in N(t) has a strict preference relation, Ra, on the product

HT+t−1. In other words, Ra is a linear order over HT+t−1.14 Given assignments µa and µ̂a,

µaRa µ̂a means that agent a weakly prefers µa to µ̂a, and µa Pa µ̂a means that agent a

strictly prefers µa to µ̂a under Ra. On the other hand, a newcomer in period t ≥ 1 has a

strict preference relation, Ra, on the product HT . In addition, we assume that each agent

has a time-separable preference defined as follows:15

Definition 19. A preference, Ra, of newcomer a in period t ≥ 1 is time-separable if for

each τ = t, · · · , T + t − 1, there exist strict preferences Ra(τ) on H such that for any two

assignments µ1
a and µ2

a on HT ,

if ∀τ = t, · · · , t+ T − 1, µ1
a(τ)Ra(τ)µ2

a(τ) and ∃τ̂ , µ1
a(τ̂)Pa(τ̂)µ2

a(τ̂), then µ1
a Pa µ

2
a.

The above definition is similarly defined for initial existing tenants. Moreover, Ra(τ) is

called a period τ preference. A preference is called time-invariant if all period prefer-

ences are identical.

The time-separability condition means that preferences between houses in the same pe-

riod do not depend on the assignment of houses in the other periods. Moreover, we assume

that the virtual house is the worst choice for any period preference of each agent.

We write µaRa µ
′
a as µRa µ

′ when no confusion arises. Let Ra be the set of all preference

relations of agent a, and R :=
∏
{Ra : a ∈ A} be the set of all preference profiles. Let Ra(τ)

14A linear order is a complete, reflexive, transitive, and antisymmetric binary relation.
15As we discussed in the Introduction, our assumption of time-separable strict preference violates the

discounted utility (DU) model in two ways. Even if her preference is time-invariant, an agent may prefer
improving path of houses over declining paths, which violates the DU model. If not so, a period preference in
some period may be affected by houses experienced in prior or future periods, which violates the independence
assumption of the DU model. We do not go into details of experimental results on the validity of these
assumptions. See Frederick, Lowenstein, and O’Donoghue (2002), especially section 4.2.4 and 4.2.5, for
further discussions.
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be the set of all period τ preferences of agent a, and R(τ) :=
∏
{Ra(τ) : a ∈ A(τ)} be the

set of all period preference profiles for agents present in period τ .

An endowment profile is expressed by a matching plan e := {ea}a∈A ∈ M. An

endowment of each agent except the initial existing tenants consists only of the virtual

house. We consider two cases: 1) each initial existing tenant has an endowment consisting

only of the virtual house, 2) each initial existing tenant has the right to live in one real

house only in period 1; that is, ea = (h, h0, · · · , h0) for some real house h and for the virtual

house h0. A house allocation problem with overlapping agents or simply, a dynamic

problem is expressed by (A,H,R, e). The first case (second case) in the above is called

a dynamic problem without endowments (with endowments). The problem with

endowments is considered for a specific mechanism.16 Unless stated explicitly, a dynamic

problem is either with or without endowments. Throughout this paper, we fix A, H.

As we discussed in the Introduction, instead of the pure RSD mechanism, many univer-

sities introduce squatting rights in that existing tenants have the right to extend their lease

in order to make on-campus housing more attractive. This motivates the following:

Definition 20. In a dynamic problem without endowments, a matching plan {µ(t)}∞t=1 is

acceptable if each agent is better off as time goes on. That is:

1. ∀t if 2− T ≤ t ≤ 0, ∀a ∈ N(t), ∀τ = t+ 1, · · · , t+ T − 1, µ(τ)Ra(τ)µ(τ − 1), and

2. ∀t ≥ 1, ∀a ∈ N(t), ∀τ = t+ 1, · · · , t+ T − 1, µ(τ)Ra(τ)µ(τ − 1).

For a dynamic problem with endowments, it is acceptable if the above conditions hold and

each initial existing tenant is assigned a house that is at least as good as her endowment in

period 1, i.e., ∀a ∈ E(1), µ(1)Ra(1) e(1).

The first condition is for initial existing tenants, and the second is for the other agents.

A matching plan is Pareto efficient (PE) if there is no other matching plan that makes

all agents weakly better off and at least one agent strictly better off.

16The specific mechanism is a spot mechanism with property rights transfer.
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4.3 DYNAMIC MECHANISMS

At any given time, the housing office is not able to ask newcomers who will arrive in the

future about their preference. In order to reflect preferences, the office cannot determine the

houses from the beginning to the future at once. Instead, it determines the assignment in

each period. This feature brings about new aspects for mechanism design problems. First,

message spaces can take many forms even if we focus on direct mechanisms. For example,

in each period, the office can ask an agent about her corresponding period preference or

her entire preference. Second, in each period, the office can assign not only the houses for

the current period but also houses for the future. Finally, in any given period, some of the

houses are already assigned, and thus the office has to take into account this past assignment

in order to decide on the current assignment.

Generally, for a dynamic problem with or without endowments, a dynamic mechanism

is a function Π : R →M that determines a matching plan for each preference profile. A dy-

namic mechanism is acceptable if it always selects an acceptable matching plan. Moreover,

it is Pareto efficient if it always selects a Pareto efficient matching plan.

We restrict attention to two dynamic mechanisms. The first is a spot mechanism where,

in each period, the office asks each agent present in the period to reveal her corresponding

period preference. We also consider a futures mechanism. In the first period the office

asks all agents present in this period (i.e. initial existing tenants and newcomers in period 1)

about their preference. In subsequent periods, the office asks newcomers about their entire

preference.

4.3.1 Spot mechanisms

We formally define a spot mechanism by introducing the concepts of a static problem and a

static mechanism.
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4.3.1.1 Static mechanisms Fix a dynamic problem with or without endowments, (A,H,R, e).

Consider a period t ≥ 1. A period t static problem is defined as (D(t), U(t), H,R(t), e(t)).17

An agent a in D(t) is called an endowed agent and occupies a real house, ea(t), while an

agent in U(t) is called an unendowed agent and does not have the right to live in any real

house. A real house is called vacant if it is not occupied by any endowed agent.

In such models, if D(t) = ∅ and U(t) = A(t), a static problem is a house allocation

problem (Hylland and Zeckhauser, 1979). If D(t) = A(t) and U(t) = ∅, it is a housing

market (Shapley and Scarf, 1974). Finally, if D(t) 6= ∅, U(t) 6= ∅, and D(t)∪U(t) = A(t), it

is a house allocation problem with existing tenants (Abdulkadiroğle and Sömez, 1999).

Except for a house allocation problem where there is no endowed agent, a matching is

individually rational if no endowed agent strictly prefers her endowment to her assignment.

A matching is Pareto efficient if there is no other matching that makes all agents weakly

better off and at least one agent strictly better off.

A period t static mechanism determines a period t matching for each of both a period

preference profile and an endowment profile. That is, it is a function γt : R(t) ×M(t) →

M(t). It is denoted by γt(R(t), e(t)) for each period preference profile, R(t), and each

endowment profile, e(t). A period t static mechanism is individually rational (Pareto

efficient) if it always selects an individually rational (Pareto efficient) period t matching.

In addition, it is strategy-proof if truth-telling is a dominant strategy in its associated

preference revelation game.

4.3.1.2 Spot mechanisms without property rights transfer In this section, we con-

sider a spot mechanism without property rights transfer. To make the mechanism consistent

with the problem, we look only at a dynamic problem without endowments.

In this mechanism, D(t) = 0 and U(t) = A(t) for each t ≥ 1, we always have a static

house allocation problem in each period. This motivates the following definition:

Definition 21. Given a sequence of static mechanisms {γt}∞t=1, a spot mechanism with-

out property rights transfer, Π : R → M with R 7→ Π(R) := (Π(R; 1),Π(R; 2), · · · ) ∈

17Recall that a variable indexed by (t) is defined only in period t.
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M, is obtained through static mechanisms as follows: for each period t ≥ 1,

Π(R; t) := γt(RA(t)(t), e(t)),

where all e(t)’s consist of the virtual house.

4.3.1.3 Spot mechanisms with property rights transfer Unlike in the previous

mechanism, we consider the transfer of property rights in either a dynamic problem with

or without endowments in a spot mechanism. In each period, the houses occupied by the

oldest agents become vacant in the next period, but those occupied by the other agents are

inherited as property rights or endowments in the next period.

In a dynamic problem with endowments, we have ∀t ≥ 1, D(t) = E(t). That is, endowed

agents are the existing tenants. On the other hand, in a dynamic problem without endow-

ments, we have D(1) = ∅ and U(1) = A(1), but ∀t ≥ 2, D(t) = E(t). In other words, in the

first period, there is no endowed agent, but endowed agents are the existing tenants from

the second period on. Each agent has a strict period preference, R(t). We let e(t) denote

the endowment profile.

Definition 22. Given a sequence of static mechanisms {γt}∞t=1, a spot mechanism with

property rights transfer, Π : R →M with R 7→ Π(R) := (Π(R; 1),Π(R; 2), · · · ) ∈M, is

obtained through static mechanisms as follows: for each preference profile R in R,

1. In period 1,

Π(R; 1) ≡ µ(1) := γ1 (R(1), e(1)) .

2. In period t ≥ 2, set ê(t) :=
(
µE(t)(t− 1), eN(t)(t)

)
,

Π(R; t) ≡ µ(t) := γt (R(t), ê(t)) .
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A spot mechanism is thus defined by using a sequence of static mechanisms. The link

between the period t − 1 static mechanism and the period t static mechanism is made

possible through the endogenous endowment ê(t) for t ≥ 2. This makes it different from

just a repetition of a static mechanism. In each period, the current period mechanism

depends on the previous mechanism through the assigned endowment. More precisely, in

period 1, the office faces a period 1 static market whose endowment corresponds to e(1)

from the original dynamic problem. The office asks each agent a present in period 1 about

her period 1 preference, Ra(1). Based on the reported period preference profile, R(1), and

the endowment, e(1), the office determines a period 1 matching Π(R; 1) ≡ µ(1) through

the period 1 static mechanism, γ1(R(1), e(1)). In the next period, t = 2, each agent a

who is still in the market (i.e., in E(2)) has the right to live in the previously assigned

house, µa(1). The agents’ endowment profile is µE(2)(1). Newcomers in period 2 have the

virtual endowment. Their endowment profile is eN(2)(2). Thus, we have an endowment

profile ê(2) := (µE(2)(1), eN(2)(2)) for the period 2 static market. Based on the reported

period 2 preference profile, R(2), and the endowment, ê(2), the office determines a period 2

matching Π(R; 2) ≡ µ(2) through the period 2 static mechanism, γ2(R(2), ê(2)). Repeating

this process produces the matching plan Π(R) ≡ {µ(t)}∞t=1.

4.3.2 Strategy-proofness

Definition 23. A spot or futures mechanism Π : R →M is strategy-proof if

∀a in A, ∀R in R, ∀R′a in Ra, Π(Ra, R−a)Ra Π(R′a, R−a).

Given a spot mechanism, agents face an extensive form with simultaneous moves. We

are interested in whether they reveal their true period preferences in each period static

mechanism. In any given period, revealing the true period preference for an agent does

not depend on history, but rather on that period alone. Implicit in the above definition is

the restriction of our attention to a class of history-independent strategies. That is, a spot

mechanism is strategy-proof if, for each agent, her history-independent strategy of revealing
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her true period preferences in weakly better than any other history-independent strategy,

regardless of the history-independent strategies of the other agents.18

On the other hand, a futures mechanism is strategy-proof if truth-telling is a weakly

dominant strategy for each agent.

4.3.3 Impossibility result

In this section, we begin with a negative result. We will investigate positive results in later

sections. First, we search for a dynamic mechanism that is Pareto efficient and strongly

individually rational. The following result rules out the existence of such a mechanism.

Theorem 8. Consider a dynamic problem with or without endowments. Suppose there are

at least three newcomers in each period who live for at least three periods. Then, there is no

dynamic mechanism that is Pareto efficient and acceptable.

Proof. First, we consider a dynamic problem without endowments. Consider the case where

there are three newcomers: at1, a
t
2, and at3 in each period t ≥ −1. Agents live for three

periods. In each period, there are nine agents at−2
i , at−1

i and ati for i = 1, 2, 3. There are nine

real houses h1, · · · , h9. Newcomers in period 1 have preferences satisfying:

a1
1 a1

2 a1
3

Ra(1) Ra(2) Ra(3) Ra(1) Ra(2) Ra(3) Ra(1) Ra(2) Ra(3)

h1 h1 h3 h3 h3 h2 h2 h1 h3

h3 h3 h2 h1 h1 h1 h3 h3 h2

h2 h2 h1 h2 h2 h3 h1 h2 h1

Moreover,

18In the definition of strategy-proofness in a static mechanism, truth-telling is a weakly dominant strategy
for each agent. However, to our knowledge, there is no existing definition of strategy-proofness investigated
in our dynamic setting. Instead of requiring truth telling to be a weakly dominant strategy for each agent,
we introduce a weaker notion by looking at a class of history-independent strategies in a spot mechanism.
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a1
1 a1

2 a1
3

Ra Ra Ra

(h, h2, h3) (h, h2, h2) (h, h1, h2)

(h, h1, h2) (h, h3, h1) (h, h1, h1)

(h, h1, h1) (h, h2, h3)

(h, h3, h1)

(h, h2, h2)

where h can be any real house. In the above tables, each column stands for a corresponding

preference from best to worst. For example, the period 2 preference Ra(2) of agent a1
1 is

h1 Pa(2)h3 Pa(2)h2. In addition, for each other agent in {A(1)∪A(2)∪A(3)}\N(1), houses

h1, h2, and h3 are less preferred to the other houses in each period.

Seeking a contradiction, suppose there exists a Pareto efficient and acceptable matching

plan µ ≡ {µ(t)}∞t=1. First, by Pareto efficiency, we can find possible matching plans µ|N(1)

restricted to N(1). Next, we show that there is no matching plan restricted to N(1) among

those that satisfy acceptability.

First, in each period t = 1, 2, 3, Pareto efficiency and time-separable preferences im-

ply that newcomers in period 1 are assigned houses among h1, h2 and h3. Next, it fol-

lows from Pareto efficiency and time-separable preferences that, for t = 1, 2, 3, each pe-

riod matching µ(t)|N(1) restricted to N(1) is Pareto efficient in the period t static market

({a1
1, a

1
2, a

1
3}, {h1, h2, h3}, {Ra1

i
(t)}i=1,2,3) restricted to N(1) . We can find all of such match-

ings for µ(1)|N(1), µ(2)|N(1), and µ(3)|N(1) as follows:

µ(1)|N(1) µ(2)|N(1) µ(3)|N(1)

a1
1 h1 h1 h1 h2 h3 h1 h2 h3 h3

a1
2 h3 h2 h3 h3 h2 h2 h1 h1 h2

a1
3 h2 h3 h2 h1 h1 h3 h3 h2 h1

The table above indicates the possible period matchings of each µ(t)|N(1). For example,

µ(2)|N(1) has four possible matching plans (each column stands for a matching plan).

Now, we consider the possible Pareto efficient matchings satisfy a combination of µ(1)|N(1),

µ(2)|N(1), and µ(3)|N(1), as listed in the table above. Using acceptability, we can find three
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possible matching plans µ1|N(1), µ
2|N(1) and µ3|N(1) restricted to N(1):

µ1|N(1) µ2|N(1) µ3|N(1)

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

a1
1 h1 h1 h3 h1 h1 h1 h1 h1 h2

a1
2 h3 h3 h1 h3 h3 h2 h3 h3 h1

a1
3 h2 h2 h2 h2 h2 h3 h2 h2 h3

Now, we show that each of the above is not Pareto efficient. To show that the matching

plan µ1|N(1) is not Pareto efficient, consider an exchange between agents a1
2 and a1

3 in periods

2 and 3. This exchange Pareto dominates µ1|N(1), since agent a1
2 prefers (h3, h2, h2) to

(h3, h3, h1) and agent a1
3 prefers (h2, h3, h1) to (h2, h2, h2).

Next, to show that the matching plan µ2|N(1) is not Pareto efficient, consider an exchange

between agents a1
1 and a1

3 in periods 2 and 3. This exchange Pareto dominates µ2|N(1), since

agent a1
1 prefers (h1, h2, h3) to (h1, h1, h1) and agent a1

3 prefers (h2, h1, h1) to (h2, h2, h3).

Finally, to show that the matching plan µ3|N(1) is not Pareto efficient, consider an ex-

change between agents a1
1 and a1

3 in periods 2 and 3. This exchange Pareto dominates µ3|N(1),

since agent a1
1 prefers (h1, h2, h3) to (h1, h1, h2) and agent a1

3 prefers (h2, h1, h2) to (h2, h2, h3).

Therefore, we have a contradiction.

For the other case, we can include the previous case to obtain the result. The detailed

procedure is in the Appendix.

4.4 SERIAL DICTATORSHIP (SD) SPOT MECHANISMS

In this section, we consider a spot mechanism without property rights transfer.

4.4.1 Definition

Since all of the mechanisms examined in this paper are based on an ordering of agents, here

we introduce various types of orderings. Given a set B ⊂ A of agents, an ordering in B is
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a linear order, denoted by fB. We often denote it as the ordered list:

fB := (b1, b2, · · · , bm) if and only if b1 fB b2 fB · · · fB bm.

We say that b1 is the first agent in B, b2 is the second agent in B and so on. In addition,

agent a has higher order than agent b if a fB b. Specifically, we look at two kinds of

orderings. The first is a period t ordering, fA(t), which is an ordering of A(t), the set of all

agents present in period t ≥ 1. The second is cohort orderings fE(1) and fN(t) for t ≥ 1,

where fE(1) is an ordering of E(1) which is the set of all initial existing tenants, while fN(t)

is an ordering of N(t) which is the set of all newcomers in period t ≥ 1.

A serial dictatorship (SD) spot mechanism is a spot mechanism without property

rights transfer in which each period static mechanism is a serial dictatorship (SD) static

mechanism. An SD period t static mechanism is based on a period t ordering, fA(t), and is

defined as follows. Take any period t ordering, fA(t). Fix a preference profile, R(t), and an

endowment profile, e(t). The first agent gets her top choice, the second agent gets her top

choice among houses excluding the one assigned to the first agent. The kth agent gets her

top choice among houses excluding those assigned to all agents with higher order than her.

It is known that an SD static mechanism is strategy-proof and Pareto efficient (Svens-

son, 1994). Note that an SD static mechanism is independent of endowments, that is,

γt(R(t), e(t)) = γt(R(t), ê(t)), ∀R(t) ∈ R(t), ∀e(t), ê(t) ∈ M(t). As a result, an existing

tenant is not guaranteed to obtain a house that is at least as good as her occupied house in

the previous period. Hence, an SD spot mechanism is not acceptable.

4.4.2 Strategy-proofness

We know that an SD static mechanism is strategy-proof and Pareto efficient. The question

is whether these properties hold for an SD spot mechanism.

Proposition 6. In a dynamic problem without endowments, an SD spot mechanism is

strategy-proof.
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Proof. An SD spot mechanism has no transfer of property rights and consists of SD static

mechanisms, and thus each SD period mechanism is independent of the past assignments.

Hence, we have the desired result.

4.4.3 Pareto efficiency: some positive results

In a simple example in the Introduction, we demonstrated Pareto efficiency of an allocation

induced by an SD spot mechanism favoring existing tenants. In this subsection, we study

under what kind of period orderings the induced SD spot mechanism can achieve Pareto

efficiency. To this end, we introduce the following:

Definition 24. 1. A period t ordering fA(t) favors existing tenants if, in period t,

each existing tenant has higher order than any newcomer in fA(t). Moreover, it favors

newcomers if, in period t, each newcomer has higher order than any existing tenant in

fA(t).

2. A sequence of period orderings favors existing tenants (newcomers) if, in each

period t, a period t ordering favors existing tenants (newcomers).

An SD spot mechanism induced by a sequence of period orderings favoring existing

tenants (newcomers) is called a SD spot mechanism favoring existing tenants (new-

comers).

Definition 25. A sequence of period orderings is constant if the relative ranking of agents

is the same across periods. That is, if an agent, a, has higher order than another agent, a′,

in some period, then a has higher order than a′ in any other period when they are in the

market.

An SD spot mechanism induced by a constant sequence of period orderings is called a

constant SD spot mechanism. Now, we can state one of the main positive results.

Theorem 9. In a dynamic problem without endowments, a constant SD spot mechanism

favoring existing tenants is Pareto efficient.

Before proving the theorem, we explore the relation between the period orderings and the

cohort orderings for a given constant sequence of periods orderings favoring existing tenants.
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The following example illustrates this.

Example. Consider a situation where there are two newcomers, at1 and at2, in each period

t ≥ −1. Agents live for three periods. Then, E(1) = {a−1
1 , a−1

2 , a0
1, a

0
2}, N(t) = {at1, at2}, and

A(t) = N(t− 2)∪N(t− 1)∪N(t). Take a sequence {fA(t)}∞t=1 of period orderings such that

fA(1) =
(
a0

1, a
−1
1 , a0

2, a
−1
2 , a1

1, a
1
2

)
,

fA(2) =
(
a0

1, a
0
2, a

1
1, a

1
2, a

2
1, a

2
2

)
,

fA(3) =
(
a1

1, a
1
2, a

2
1, a

2
2, a

3
1, a

3
2

)
.

Notice that this sequence is constant and favors existing tenants. We can take the following

cohort orderings:

gE(1) = (a0
1, a

−1
1 , a0

2, a
−1
2 ),

gE(1)|A(2) = (a0
1, a

0
2),

gN(t) = (at1, a
t
2), for each t = 1, 2, 3.

Notice that

fA(1) = (gE(1), gN(1)),

fA(2) = (gE(1)|A(2), gN(1), gN(2)),

fA(3) = (gN(1), gN(2), gN(3)).

The corresponding cohort orderings are denoted by using f instead of g.

In summary, we have the following lemma (the proof is straightforward).

Lemma 11. Given a constant sequence {fA(t)}∞t=1 of period ordering favoring existing ten-

ants, there are corresponding cohort orderings fE(1) and {fN(t)}t≥1 such that

fA(t) = (fE(1)|A(t), fN(1), · · · , fN(t)), ∀t = 1, · · · , T − 1, and

fA(t) = (fN(t−T+1), · · · , fN(t)), ∀t ≥ T.

Now we are ready to prove Theorem 9.
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Proof of Theorem 9. Let {fA(t)}∞t=1 be given. From Lemma 11, let a sequence (fE(1), {fN(t)}∞t=1)

give the corresponding cohort orderings. Let µ = {µ(t)}∞t=1 be a matching plan generated

by a constant SD spot mechanism for some arbitrary preference profile R. To find a contra-

diction, suppose some matching plan ν Pareto dominates µ. Then,

∀a ∈ A, νRa µ and ∃b ∈ A, νPb µ.

Since A = E(1) ∪ (∪∞t=1N(t)), either b ∈ E(1) or b ∈ N(t) for some t ≥ 1. We consider two

cases:

Case 1: b ∈ E(1).

Take an agent c ∈ E(1) who has the highest order among agents in {b ∈ E(1) : ν Pb µ} with

respect to fE(1). Then, since preferences are strict, it follows that

∀a ∈ E(1) who has higher order than c in fE(1), νa = µa. (4.1)

Let τ ≤ 0 such that c ∈ N(τ). Now it is sufficient to show ∀t = 1, · · · , T − 1 + τ ,

µ(t)Rc(t) ν(t). It then follows from time-separable preferences that µRc ν, which is a contra-

diction. For each period t, for an SD static mechanism, given Lemma 11 and (4.1), we have

that there is no room for agent c to be strictly better off than µc(t). Hence, µ(t)Rc(t) ν(t).

Case 2: b 6∈ E(1) and b ∈ N(t), for some t ≥ 1.

Take the smallest τ ≥ 1 such that ∃b ∈ N(τ) with ν Pb µ. Choose an agent c ∈ N(τ) who

has the highest order among agents in {b ∈ N(τ) : ν Pb µ} with respect to fN(τ). Then, it

follows from strict preferences that

∀a ∈ E(1) ∪
(
∪τ−1
t=1N(t)

)
, νa = µa, and

∀a ∈ N(τ) who has higher order than c in fN(τ), νa = µa. (4.2)

Now, it is sufficient to show that ∀t = τ, · · · , τ + T − 1, µ(t)Rc(t) ν(t). It then follows from

time-separable preferences that µRcν, which is a contradiction. For each period t, for an SD

static mechanism, given Lemma 11 and (4.2), we have that there is no room for agent c to

be strictly better off than µc(t). Hence, µ(t)Rc(t) ν(t).
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4.4.4 When is an SD spot mechanism undesirable?

As we saw in the Introduction, Pareto efficiency depends on the ordering structure.

Theorem 10. In a dynamic problem without endowments, an SD spot mechanism favoring

newcomers is not Pareto efficient even under time-invariant preferences.

Here time-invariant preferences mean that each agent has a time-invariant preference.

Proof. Suppose agents have time-invariant preferences and live for T periods. Fix a sequence

of period orderings that favors newcomers. Pick the first agent in fA(t) among newcomers in

period t ≥ 1. Each agent a has the same time-invariant preference, where a house h1 is her

top choice, such that

(k1, h1, µ
t+2
a )Pa(h1, k2, µ

t+2
a ) ∀k1, k2 6= h1, (4.3)

where µt+2
at is any assignment of agent at from period t + 2 to t + T − 1. Then, an SD

mechanism favoring newcomers assigns houses (without parentheses below) to agents at,

t ≥ 1, as follows.

t = 1 t = 2 t = 3 t = 4 · · ·

a1 h1 k1 (h1) · · ·

a2 h1 (k1) k2 (h1) · · ·

a3 h1 (h2) k3 (h1) · · ·
...

...
...

Here {kt}∞t=1 is some sequence in the set {h2, · · · , hT}. Consider an infinite exchange of

houses h1 and kt−1 between the existing tenant at−1 and the newcomer at for t ≥ 2, keeping

the assignments of the other agents be the same. This exchange is shown as houses inside

the parentheses on the above table. It follows from (4.3) that the resulting allocation Pareto

dominates the induced matching plan.
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4.5 TOP TRADING CYCLES (TTC) SPOT MECHANISMS

In this section, we consider a spot mechanism with property rights transfer for a dynamic

problem with or without endowments.

4.5.1 Definition

In a spot mechanism with property rights transfer, we have a house allocation problem with

existing tenants in each period. As an example, a random serial dictatorship mechanism with

squatting rights is widely used in on-campus housing for college students. In a static setting,

a deterministic serial dictatorship mechanism with squatting rights is not Pareto efficient.

To restore Pareto efficiency while satisfying individual rationality and strategy-proofness,

Abdulkadiroğlu and Sönmez (1999) propose a mechanism referred to as Abdulkadiroğlu

and Sönmez’s top trading cycles (AS-TTC) static mechanisms: Fix a period t

ordering, fA(t). For any announced preference profile, R(t), and an endowment profile,

e(t), the AS-TTC static mechanism selects a matching through the following AS-TTC

algorithm:

Assign the first agent her top choice, the second agent her top choice among the remaining

houses, and so on, until an agent a demands house ha′ of an endowed agent. If at that point

the endowed agent whose house is demanded is already assigned a house, then do not disturb

the procedure. Otherwise modify the remainder of the ordering by inserting the agent in

question to the top and continue the procedure. Similarly, insert any endowed agent who is

not already served at the top of the line once her house is demanded. If at any point a loop

forms, it is formed by exclusively endowed agents and each of them demands the house of

the endowed agent next in the loop. (A loop is an ordered list of agents, (a1, a2, · · · , ak),

where agent a1 demands the house of agent a2, agent a2 demands the house of agent a3, · · · ,

agent ak demands the house of a1.) In such cases, remove all agents in the loop by assigning

them the houses they demand and proceed.

Theorem 11 (Abdulkadiroğlu and Sönmez, 1999). For any ordering, fA(t), the induced AS-

TTC static mechanism is Pareto efficient, individually rational, and strategy-proof in a static
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problem.

Note that, from the above procedure, any AS-TTC static mechanism is individually ra-

tional. This is because an endowment of an endowed agent will not be assigned to another

agent before this endowed agent is assigned a house. If another agent demands the endow-

ment of this endowed agent, she will be promoted to the top of the ordering. While at the

top of the ordering, if there is no house available better than her endowment, then existing

tenants demand her own house. At this point, a trivial loop consisting of this agent will

form, and she will leave and be assigned at worst her own endowment.

A top trading cycles (TTC) spot mechanism is a spot mechanism with property

rights transfer in which each period static mechanism is an AS-TTC static mechanism, given

a sequence of period orderings. Clearly, this TTC spot mechanism is acceptable, since an

AS-TTC static mechanism is individually rational in each period.

4.5.2 Strategy-proofness: some positive results

We know from Theorem 11 that an AS-TTC static mechanism satisfies individual rationality,

strategy-proofness, and Pareto efficiency. Because acceptability, which can be seen as a

counterpart of individual rationality, always holds for a TTC spot mechanism, the question

is whether these properties hold in our dynamic problem. By Impossibility Theorem 8, a

TTC spot mechanism is not Pareto efficient in general. To answer the above question, we

restrict the preference domain to time-invariant preferences. Throughout this section below,

we assume that each agent has a time-invariant preference.19 We emphasize that this is not

just a repetition of an AS-TTC static mechanism for a corresponding static problem. There

are two features that differ from a static problem. First, we have both entry and exit of

different agents in each period. Second, the endowment is endogenous. One of our main

positive results is the following.

Theorem 12. Consider a dynamic problem with endowments and time-invariant prefer-

19Under this assumption, it is sufficient in a spot mechanism that the housing office asks each agent about
her period preference, not in all periods, once when she arrives. However, we can allow the office to do so in
each period. For the definition of strategy-proofness, we take the latter approach. Since the latter is stronger
than the former in the definition, all results are not affected.
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ences. Then, a constant TTC spot mechanism favoring existing tenants is strategy-proof

among all agents except initial existing tenants. It can be manipulated by initial existing

tenants, provided there are at least three newcomers in each period who live for at least three

periods.

Before proving the theorem, we review some of the new concepts stated in Theorem 12.

We say that a spot mechanism Π : R →M is strategy-proof among all agents except

initial existing tenants if for each agent a who is not an initial existing tenant, ∀R ∈ R,

R′a ∈ Ra, Π(Ra, R−a)Ra Π(R′a, R−a). As in strategy-proofness, we restrict attention to a

class of history-independent strategies.

To prove the theorem, we introduce some additional concepts of effective ordering intro-

duced by Sönmez and Ünver (2005). For each ordering fA(t), the AS-TTC algorithm assigns

houses in one of two possible ways:

1. There is a sub-order (a1, · · · , ak) of agents where a1 demands the house of a2, a2 demands

the house of a3, · · · , agent ak−1 demands house of ak, and ak demands any available house.

We call such a sub-order a serial-order (S).

2. There is a sub-order (a1, · · · , ak) of endowed agents where a1 receives ak’s house, ak

receives ak−1’s house, · · · , a2 receives a1’s house. Recall that we call such sub-order a

loop-order (L).

For a given ordering, fA(t), construct the effective ordering, et, as follows: Run the

AS-TTC algorithm and order agents in the order their assignments are finalized. When there

is a loop-order, order these agents as in the loop-order.

Note that a matching produced by an AS-TTC algorithm with the effective ordering

yields the same outcome produced by an SD static mechanism induced by this effective

ordering. Also note that the effective ordering is endogenous, depending on preferences and

the exogenous ordering fA(t).

We now examine how effective orderings behave under time-invariant preferences for a

constant sequence of period orderings favoring existing tenants. Fix a preference profile

R and a constant sequence {fA(t)}∞t=1 of period orderings that favors existing tenants. Let

(fE(1), {fN(t)}∞t=1) be a sequence of its corresponding cohort orderings. For convenience, we
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use

fN(t) := (at1, a
t
2, · · · , atn)

for each t ≥ 1. Observe that in period 1,

e1 =

 E(1)︷ ︸︸ ︷
X, · · · , X︸ ︷︷ ︸

initial existing tenants

,

N(1)︷ ︸︸ ︷
S︸︷︷︸
a1
1

, S︸︷︷︸
a1
2

, · · · , S︸︷︷︸
a1
n

 =

 E(1)︷ ︸︸ ︷
X, · · · , X, fN(1)

 ,

where X is either S or L. Recall that S stands for a serial-order and L for a loop-order.

That is, initial existing tenants are before newcomers, since newcomers do not have any

endowment and the ordering fA(1) favors existing tenants. Moreover, because each newcomer

has no endowment, she will point to an available house and form a serial-order consisting of

herself.

Now, consider period 2. First, existing tenants in period 2 (who are in E(2)) have

higher order than newcomers in the effective ordering e2. Second, in period 1, initial existing

tenants prefer their assignment to those assigned to agents in N(1). Since their assignment

becomes an endowment in period 2, it follows from time-invariant preferences that initial

existing tenants never point to the houses of agents in N(1) in the algorithm. This implies

that initial existing tenants have higher order than agents in N(1) in e2. Third, since period

orderings are constant, agent a1
1 never points to agent a1

i (i ≥ 2), but points to her own

house or an available house. The same applies for other agents in N(1). In summary,

e2 =


E(2)︷ ︸︸ ︷

E(1)∩A(2)︷ ︸︸ ︷
X, · · · , X︸ ︷︷ ︸

initial existing tenants

,

N(1)︷ ︸︸ ︷
X︸︷︷︸
a1
1

, · · · , X︸︷︷︸
a1
n

,

N(2)︷ ︸︸ ︷
S︸︷︷︸
a2
1

, · · · , S︸︷︷︸
a2
n

 =

 E(1)∩A(2)︷ ︸︸ ︷
X, · · · , X, fN(1), fN(2)

 .

That is, each existing tenant in N(1) forms either a trivial loop-order consisting of herself,

or a serial order in which all agents in the serial-order receive a better house than their

assignment received in period 1. On the other hand, each newcomer forms a serial-order

consisting of herself in the algorithm, because she does not have any endowment.
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Repeating this process, in period τ = 2, · · · , T − 1,

eτ =


E(τ)︷ ︸︸ ︷

E(1)∩A(τ)︷ ︸︸ ︷
X, · · · , X︸ ︷︷ ︸

initial existing tenants

,

N(1)︷ ︸︸ ︷
X︸︷︷︸
a1
1

, · · · , X︸︷︷︸
a1
n

, · · · ,
N(τ−1)︷ ︸︸ ︷

X︸︷︷︸
aτ−1
1

, · · · , X︸︷︷︸
aτ−1
n

,

N(τ)︷ ︸︸ ︷
S︸︷︷︸
aτ1

, · · · , S︸︷︷︸
aτn

 ,

=

 E(1)∩A(τ)︷ ︸︸ ︷
X, · · · , X, fN(1), · · · , fN(τ−1), fN(τ)

 .

Similarly, in period τ ≥ T ,

eτ =


E(τ)︷ ︸︸ ︷

N(τ−T+1)︷ ︸︸ ︷
X︸︷︷︸

aτ−T+1
1

, · · · , X︸︷︷︸
aτ−T+1
n

, · · · ,
N(τ−1)︷ ︸︸ ︷

X︸︷︷︸
aτ−1
1

, · · · , X︸︷︷︸
aτ−1
n

,

N(τ)︷ ︸︸ ︷
S︸︷︷︸
aτ1

, · · · , S︸︷︷︸
aτn

 ,

=
(
fN(τ−T+1), · · · , fN(τ−1), fN(τ)

)
.

Now we are ready to prove Theorem 12.

Proof of Theorem 12. Fix a preference profile, R. Consider any agent, a, who is not

an initial existing tenant. Consider any other preference, R̂a. Let µ := {µ(t)}∞t=1 and

µ̂ := {µ̂(t)}∞t=1 be matching plans induced by a constant TTC spot mechanism favoring

existing tenants for (Ra, R−a) and (R̂a, R−a). In each period t from (R̂a, R−a), when agent a

is in the market, the effective ordering of agents who have higher order than agent a is not

affected. Thus, agent a can get a house that makes her indifferent or worse than µa(t). That

is, µa(t)Ra(t) µ̂a(t). By time-separability of preferences, µaRa µ̂a. This completes the proof

of the first part.

For the second part, suppose there are at least three newcomers in each period t ≥ 2−T .

They live for at least three periods, T . Fix a constant sequence {fA(t)}∞t=1 of period orderings

that favors existing tenants. In light of the proof of the first part, we focus on initial existing

tenants. Pick agents a2−T
i and a3−T

i , i = 1, 2, 3, such that

fA(1)|{a2−T
i ,a3−T

i : i=1,2,3} := (a2−T
1 , a2−T

2 , a2−T
3 , a3−T

1 , a3−T
2 , a3−T

3 ),

fA(2)|{a3−T
i : i=1,2,3} := (a3−T

1 , a3−T
2 , a3−T

3 ).
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Note that a2−T
i lives only in period 1, and a3−T

i lives only in periods 1 and 2, i = 1, 2, 3.

Period preferences satisfy the table on the left hand side (from best to worst):

a2−T
1 a2−T

2 a2−T
3 a3−T

1 a3−T
2 a3−T

3 a

h1 h5 h3 h6 h1 h1 h

h4 h2 h2 h3, h4, h5

h6 h1, h2, h6

a3−T
2

h1

h6

where h is any real house other than houses h1 to h6, and a is an agent except a2−T
i , a3−T

i ,

i = 1, 2, 3. The above table means that agent a prefers h to any of h3, h4, h5, and prefers any

of h3, h4, h5 to any of h1, h2, h6. Moreover, the a3−T
2 ’s preference satisfies

(h6, h1)Pa3−T
2

(h2, h2),

Endowments are indicated with the parentheses in the first column on Table 2. We will

see that a3−T
2 manipulates the mechanism by reporting the preference described on the right

hand side of the above table.

At period 1, whether a3−T
2 manipulates or not, any agent a, who is not a2−T

i , a3−T
i i =

1, 2, 3, never points to houses h1 to h6 in an AS-TTC algorithm. Thus, we concentrate on

a restricted static market consisting of agents a2−T
i , a3−T

i , i = 1, 2, 3 and houses h1 to h6 in

the algorithm. The procedures to obtain period 1 matchings are illustrated in Figure 11.

In the next period t = 2, a3−T
1 owns h4, and a3−T

2 , a3−T
3 own h2, h6. In an AS-TTC

algorithm, whether a3−T
2 manipulates or not, any agent who are not a3−T

1 , a3−T
2 , a3−T

3 never

points to h1, h2, h6. Thus, the first agent among a3−T
1 , a3−T

2 , a3−T
3 who points a house is

a3−T
1 by either being pointed by the other agent or not. The procedure after a3−T

1 has an

opportunity to choose a house is depicted in Figure 12.

The resulting assignments for agents a2−T
i , a3−T

i , i = 1, 2, 3 are described in Table 2.

Thus, a3−T
2 obtains an assignment (h6, h1) from lying, while she obtains a worse assignment

(h2, h2) from truth-telling.

Finally, consider why agent a3−T
2 manipulates the mechanism. Given that agent a3−T

1

points to h6 in t = 2 and an agent whose assigned house is assigned h6 in t = 1 and becomes

an endowment in t = 2 can be upgraded in t = 2, agent a3−T
2 lies so that she can obtain a

worse house, h6, in t = 1, but a better house, h1, at t = 2.
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We state two corollaries:

Corollary 4. Consider a dynamic problem with endowments and time-invariant preferences.

Suppose each agent lives for two periods. Then, a constant TTC spot mechanism favoring

existing tenants is strategy-proof.

Proof. Initial existing tenants live for only one period. Since the static mechanism is strategy-

proof, truth-telling is a dominant strategy for each initial existing tenant.

Corollary 5. Consider a dynamic problem without endowments and with time-invariant

preferences. Then, a constant TTC spot mechanism favoring existing tenants is strategy-

proof.

Proof. Note that the induced effective ordering takes the same form for agents, except initial

existing tenants as the one in a dynamic problem with endowments. Thus, consider an

induced effective ordering eτ |E(1)∩A(τ) restricted to initial existing tenants for each period

τ = 1, · · · , T − 1. Similar arguments to the above lead to eτ |E(1)∩A(τ) = fE(1)|A(τ). Using the

same logic as Theorem 12, we can conclude that the history-independent strategy of true

period preferences is weakly better off than any other history-independent strategy for each

initial existing tenant.

4.5.3 How can a TTC spot mechanism be manipulated by agents who are not

initial existing tenants?

Remember that an SD spot mechanism is strategy-proof. This is because, in each period, it

ignores an endowment or the past assignment. On the other hand, a TTC spot mechanism

guarantees each agent a house that is at least weakly better than the previously assigned

house. This opens up the possibility of manipulation in which an agent obtains a worse

house than she can obtain in truth-telling, expecting her to be upgraded in an ordering by

being pointed out by some other agent in the next period. As we saw, a constant TTC spot

mechanism favoring existing tenants effectively excludes such a possibility. However, this is

not the case if it favors newcomers.
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Theorem 13. Consider a dynamic problem with time-invariant preferences either with en-

dowments or without endowments. Suppose there are at least two newcomers in each period.

Then, a TTC spot mechanism favoring newcomers is not strategy-proof among all agents

except initial existing tenants.

Proof. Suppose there are at least two newcomers in each period t ≥ 2−T . Agents live for T

periods. Pick two newcomers at1 and at2 in each period. Fix a sequence of period orderings

that favors newcomers. Without loss of generality, at1 has higher order than at2 in each period

t. Period preferences Rati
(t) (t = 2− T, 3− T, 2, 3; i = 1, 2) of each agent ati satisfy the table

on the left hand side (from best to worst):

a2−T
1 a2−T

2 a3−T
1 a3−T

2 a2
1 a2

2 a3
1 a3

2

h2 h3 h1 h4 h1 h1 h2 h4

h3 h2

h2

a2
1

h1

h2

h3

For the other agents, houses h1 to h4 are less preferred to any other house. Moreover, agent

a2
1’s preference satisfies

(h2, h1, µ
4
a2
1
)Pa2

1
(h3, h3, µ

4
a2
1
),

where µ4
a2
1

is any assignment of agent a2
1 from period 4 on. Unspecified preferences are

assumed to be arbitrary.

Endowments are indicated by the parentheses in the first column on the table below.

If T = 2, agents a3−T
1 and a3−T

2 are not initial existing tenants but newcomers in period

1. However, the allocations to be calculated will not be affected, even for the case without

endowments, because of preferences.

In each period, we concentrate on a static problem consisting of agents a2−T
i , a3−T

i , a2
i , a

3
i ,

i = 1, 2, since houses h1 to h4 are less preferred to any other house for each of the other

agents.

We will see that agent a2
1 manipulates the mechanism by reporting the preference de-

scribed on the right hand side of the above table.

76



t = 1 t = 2 t = 3 · · ·

a2−T
1 (h2) h2

a2−T
2 (h3) h3

a3−T
1 (h1) h1 h1

a3−T
2 (h4) h4 h4

...
...

a2
1 h3 h3 · · ·

a2
2 h2 h1 · · ·

a3
1 h2 · · ·

a3
2 h4 · · ·
...

. . .

t = 1 t = 2 t = 3 · · ·

a2−T
1 (h2) h2

a2−T
2 (h3) h3

a3−T
1 (h1) h1 h1

a3−T
2 (h4) h4 h4

...
...

a2
1 h2 h1 · · ·

a2
2 h3 h3 · · ·

a3
1 h2 · · ·

a3
2 h4 · · ·
...

. . .

The left hand side shows an allocation by the TTC spot mechanism when agent a2
1 reveals her

true preference, while the right hand side shows an allocation by the TTC spot mechanism

when a2
1 lies. Note that, whether a2

1 has higher order than a2
2 in the period 3 ordering or not,

the above assignments are not affected. The procedures to obtain each allocation for period

3 static markets are illustrated in Figure 13 in the case that a2
1 has higher order than a2

2 in

the period 3 ordering.

Thus, a2
1 obtains an assignment (h2, h1, h1, · · · , h1) from lying, while she obtains a worse

assignment (h3, h3, µ
4
a2
1
) from truth-telling, where µ4

a2
1

is some assignment of a2
1 from period

4 on.

Consider why agent a2
1 manipulates the mechanism. Given that newcomer a3

1 points to

h2 in t = 3, and an agent whose assigned house is assigned h2 in t = 2 and becomes an

endowment in t = 3 can be upgraded in t = 3, agent a2
1 lies so that she can obtain a worse

h2 in t = 2, but a better house h1 in t = 3.

The reason for the failure of strategy-proofness in the previous proof is that, provided

that a newcomer has a favorable house, by lying, an existing tenant obtains this house in

the previous period and in the next period she gets a better house by being pointed by

the newcomer. As we saw in Theorem 12, such an opportunity for all agents except initial
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existing tenants is excluded by making period orderings favor existing tenants.

To contrast a TTC spot mechanism favoring newcomers with the one favoring existing

tenants and an SD spot mechanism, see the last section of the Summary.

4.5.4 Pareto efficiency: some positive results

We now turn our attention to Pareto efficiency. We saw in the previous subsection that

strategy-proofness among all agents except initial existing tenants makes a difference between

a constant TTC spot mechanism favoring newcomers and the one favoring existing tenants.

Similarly, we introduce a weaker notion for Pareto efficiency.

Definition 26. A matching plan ν Pareto dominates another matching plan µ among

all agents except initial existing tenants if

1. {µa(t) : a ∈ A \ E(1)} = {νa(t) : a ∈ A \ E(1)} for each t ≥ 1, and

2. ∀a ∈ A \ E(1), νRa µ and ∃a ∈ A \ E(1), νPa µ.

Moreover, a matching plan is Pareto efficient among all agents except initial existing

tenants if it is not Pareto dominated by any other matching plan among all agents except

initial existing tenants.

As with strategy-proofness, a constant TTC spot mechanism favoring existing tenants is

Pareto efficient among all agents except initial existing tenants, but not Pareto efficient.

Theorem 14. Consider a dynamic problem with endowments and time-invariant prefer-

ences. Then, a constant TTC spot mechanism favoring existing tenants is Pareto efficient

among all agents except initial existing tenants, but not Pareto efficient, provided there are

at least two newcomers in each period who live for at least three periods.

Proof. For the first part, let µ = {µ(t)}∞t=1 be a matching plan generated by a constant

TTC spot mechanism favoring existing tenants for some arbitrary preference profile, R. Let

{et}∞t=1 be a corresponding sequence of effective orderings. To find a contradiction, suppose

some matching plan, ν, Pareto dominates µ among all agents except initial existing tenants.

Then,

∀a ∈ A \ E(1), νRa µ and ∃a ∈ A \ E(1), νPa µ.
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Since A \ E(1) ≡ ∪∞t=1N(t), take the smallest τ ≥ 1 such that ∃a ∈ N(τ), νPa µ. It follows

from strict preferences that

∀t ≤ τ − 1,∀a ∈ N(t), νa = µa. (4.4)

In addition, take an agent b ∈ N(τ) who has the highest order among agents in {a ∈ N(τ) :

νPa µ}. Then, it follows from strict preferences that

∀a ∈ N(τ) who has a higher order than b does, νa = µa. (4.5)

Now, it is sufficient to show that ∀t = τ, · · · , τ + T − 1, µ(t)Rb(t)ν(t), since this leads to a

contradiction, namely, that µRb ν and νPb µ. For each t = τ, · · · , τ + T − 1, it follows from

(4.4) and (4.5) that in the effective ordering et, each agent, a, ordered before agent b has

νa(t) = µa(t). Thus, the AS-TTC algorithm implies that there is no room for agent b to be

strictly better off than µb(t). Hence, µ(t)Rb(t)ν(t).

For the second part, suppose there are at least two newcomers in each period who live

for at least three periods, T . Fix a constant sequence, {fA(t)}∞t=1, of period orderings that

favors existing tenants. Pick initial existing tenants a2−T
1 , a2−T

2 , a3−T
1 , and a3−T

2 such that

fA(1)|{a2−T
1 ,a2−T

2 ,a3−T
1 ,a3−T

2 } = (a2−T
1 , a2−T

2 , a3−T
1 , a3−T

2 ), and fA(2)|{a3−T
1 ,a3−T

2 } = (a3−T
1 , a3−T

2 ).

Note that a2−T
i lives only in period 1, and a3−T

i lives only in period 1 and 2, i = 1, 2. Each

agent ati 6= a2−T
2 has an identical preference (from best to worst):

Pati(t) : h1, h2, h3.

Agent a2−T
2 ’s top choice is h4. For the other agents, houses h1 to h4 are less preferred to any

other house. Moreover,

(h2, h2)Pa3−T
1

(h3, h1) and (h3, h1)Pa3−T
2

(h2, h2).

Endowments are indicated in the first column on the table below.

The induced TTC spot mechanism produces the following assignments:
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t = 1 t = 2 t = 3 · · ·

a2−T
1 (h1) h1

a2−T
2 (h2) h4

a3−T
1 (h3) h3 (h2) h1 (h2)

a3−T
2 (h4) h2 (h3) h2 (h1)

...

Consider another matching plan in which a3−T
1 exchanges the first two periods assignments

(h3, h1) for (h2, h2) with a3−T
2 . This exchange is described by houses inside the parentheses

on the above table. This matching plan Pareto dominates the one induced by the TTC spot

mechanism.

We state two corollaries:

Corollary 6. Consider a dynamic problem with endowments and time-invariant preferences.

Suppose each agent lives for two periods. Then, a constant TTC spot mechanism favoring

existing tenants is Pareto efficient.

Proof. Pareto efficiency among all agents except initial existing tenants does not consider any

matching that involves an exchange between initial existing tenants and the other agents.

However, when agents live for two periods, initial existing tenants live for only one period.

Since a static AS-TTC spot mechanism is Pareto efficient, any other matching plan involving

such a exchange necessarily hurts the initial existing tenants. Note that this logic does not

work for the case where agents live for at least three periods. Thus, any matching plan

induced by a constant TTC spot mechanism favoring existing tenants is Pareto efficient.

Corollary 7. Consider a dynamic problem without endowments and with time-invariant

preferences. Then, a constant TTC spot mechanism favoring existing tenants is Pareto

efficient.
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Proof. The same argument applies on the induced effective ordering as the one in Corollary

5. Using the same logic used in Case 2 in the proof of Theorem 9, we obtain the desired

result.

4.5.5 When is a TTC spot mechanism undesirable?

In an example taken up in Theorem 10 that shows Pareto inefficiency in an SD spot mecha-

nism favoring newcomers, we demonstrated that an infinite exchange between existing ten-

ants and newcomers Pareto dominates a matching plan induced by the SD spot mechanism.

Looking at this example closely, we might think that acceptability precludes such an infinite

exchange. Since a TTC spot mechanism satisfies acceptability, one might conjecture that a

TTC spot mechanism favoring newcomers is Pareto efficient. However, this is not the case,

as shown in the following theorem:

Theorem 15. Consider a dynamic problem with time-invariant preferences either with en-

dowments or without endowments. Suppose there are at least two newcomers in each period.

Then, a TTC spot mechanism favoring newcomers is not Pareto efficient among all agents

except initial existing tenants.

Proof. Suppose there are at least two newcomers in each period t ≥ 2− T . They live for T

periods. Pick two newcomers at1 and at2 in each period. Fix a sequence of period ordering

{fA(t)}∞t=1 that favors newcomers. Without loss of generality, at1 is the first agent in fA(t) in

each period. Note that this sequence may not be constant; e.g., at1 may not be the first in

the subsequent periods. Period preferences satisfy: For each m ≥ 0,

a2Tm+2
1 a2Tm+2

2 a2Tm+3
1 a2Tm+3

2 a
T (2m+1)+2
1 a

T (2m+1)+2
2 a

T (2m+1)+3
1 a

T (2m+1)+3
2

h2 h2 h3 h3 h1 h1 h4 h4

h4 h2 h3 h1

h1 h4 h2 h3

h3 h1 h4 h2
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a2Tm+2
2 a2Tm+3

2 a
T (2m+1)+2
2 a

T (2m+1)+3
2

(h3, µa, h4) (µa, h1, h2) (h4, µa, h3) (µa, h2, h1)

(h1, µa, h1) (µa, h4, h4) (h2, µa, h2) (µa, h3, h3)

where µa ∈ HT−2 is an arbitrary assignment. Moreover,

a2−T
1 a2−T

2 a3−T
1 a3−T

2

h1 h2 h3 h4

h h h h

where h is an arbitrary house other than the second row in each column. In the above

tables, each column indicates the corresponding preference where an upper house is strictly

preferred to the lower one. For any other agent not specified above, houses h1 to h4 are less

preferred to any other house.

Endowments are indicated by the parentheses in the first column in Table 3. If T = 2,

agents a3−T
1 and a3−T

2 are not initial existing tenants but newcomers in period 1. However,

the allocations to be calculated will not be affected, even for the case without endowments,

because of preferences.

In each period, we concentrate on a static problem consisting of agents a2−T
i , a3−T

i ,

a2Tm+2
i , a2Tm+3

i , a
T (2m+1)+2
i , and a

T (2m+1)+3
i for i = 1, 2 and m ≥ 0, since houses h1 to h4 are

less preferred to any other house for each of the other agents.

The induced TTC spot mechanism produces the matching plan µ, where houses without

parentheses are the assignments, on Table 3. Note that this matching plan is not affected

by whether a sequence of period orderings is constant or not.

Consider an infinite exchange depicted by houses inside the parentheses in Table 3.

Clearly, the resulting allocation Pareto dominates the induced matching plan µ among all

agents except initial existing tenants.

See the last section of the Summary to contrast a TTC spot mechanism favoring new-

comers with the one favoring existing tenants and an SD spot mechanism.
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4.6 SERIAL DICTATORSHIP (SD) FUTURES MECHANISMS

In this section, we consider a dynamic problem without endowments and propose a simple

futures mechanism termed serial dictatorship (SD) futures mechanism. Fix a sequence

(fA(1), {fN(t)}t≥2) of an ordering of initial agents and an ordering of newcomers in period

t ≥ 2. For any announced preference profile, R, an SD futures mechanism finds a matching

plan by using the following algorithm.

Period 1: The first agent in fA(1) gets her top assignment (consisting of houses up to the

period when she leaves the market) under her reported preference. The kth agent in fA(1)

gets her top assignment excluding the houses assigned to all agents before her under her

reported preference. This produces the current matching and the future assignment for

agents in A(1).

Period t: Given the assignment determined in past periods, each of the existing tenant is

assigned a house according to her assignment as previously determined. The first newcomer

in fN(t) gets her top assignment excluding the houses assigned to the existing tenants under

her reported preference. A kth newcomer in fN(t) gets her top assignment excluding the

houses assigned to all existing tenants and all newcomers before this agent under her reported

preference. The procedure for newcomers generates the current matching and the future

assignment for agents in A(t).

As such, we have the following.

Theorem 16. In a dynamic problem without endowments, an SD futures mechanism is

strategy-proof and Pareto efficient, but not acceptable under the same assumptions as Impos-

sibility Theorem 8.

Proof. First, we show strategy-proofness. In period 1, the first agent in fA(1) cannot do

better by reporting any other preference, since she already receives her top assignment under

her reported preference. The kth agent in fA(1) cannot do better than reporting her true

preference, since the house distributed until the kth agent is independent of her preference

and receives her top assignment among the remaining houses. The argument for any other

period is similar.
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Next, we show Pareto efficiency. To find a contradiction, suppose for some preference

profile, R ∈ R, a matching plan Π(R) given by an SD futures mechanism is not Pareto

efficient. For notational simplicity, let µ := Π(R). Then, there exists a matching plan,

ν, that Pareto dominates µ in R. Thus, ∀a ∈ A, νaRa µa and ∃b ∈ A such that νbPb µb.

Since A ≡ A(1) ∪ (∪t≥2N(t)), agent b is either in A(1) or in N(t) for some t ≥ 2. Suppose

∀a ∈ A(1) µaRaνa. Otherwise, the proof is similar to the following and is therefore omitted.

Take the smallest t̂ ≥ 2 such that ∃b ∈ N( t̂ ) with νb Pb µb. It follows from strict preferences

that ∀a ∈ A(1), νa = µa and ∀t with 2 ≤ t ≤ t̂− 1, ∀a ∈ N(t), νa = µa. Consider an agent

b ∈ N(t̂) who has the highest order in fN(t̂) such that νbPbµb. Then, it follows from strict

preferences that for each agent a who has higher order than b, νa = µa. Thus, in the SD

futures mechanism, when it is agent b’s turn to choose, two assignments, νb and µb, are still

available. Thus, since agent b chooses µb in the SD futures mechanism, µbRbνb. This is a

contradiction.

Since the SD futures mechanism is proved to be Pareto efficient, it follows from Impos-

sibility Theorem 8 that it is not acceptable.

4.7 SUMMARY

We summarize some of our results in the tables below.

Note: AC stands for acceptability, SP stands for strategy-proofness, and PE stands for Pareto efficiency.

The mark “X” in a cell indicates that a corresponding dynamic mechanism in the first column satisfies

the corresponding properties in the first row. On the other hand, a blank cell indicates that the dynamic

mechanism does not satisfy the property. Moreover, X∗ indicates that the spot mechanism is acceptable for

a problem without endowments (See Proposition 8 in the Appendix). X∗∗ shows that it is SP (PE) for a

problem without endowments and SP (PE) among all agents except initial existing tenants for a problem

with endowments.

These results verify the desirableness of seniority-based mechanisms.
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Table 1: Demographic structures

1 2 · · · T − 1 T · · · t t+ 1 · · · t+ T − 2 t+ T − 1

a2−T
i X

a3−T
i X X
...

...
...

. . .

a0
i X X · · · X

a1
i X X · · · X X
...

. . .

at−T+1
i X

at−T+2
i X X

...
...

...
. . .

at−1
i X X · · · X

ati X X · · · X X
...

Note: The mark “X” indicates when a newcomer aτi in period τ is in the market with the corresponding

period in the first row.

Table 2: Assignments under the truthful preference (left) and the manipulated preference (right)

t = 1 t = 2 · · ·

a2−T
1 (h1) h1

a2−T
2 (h2) h5

a2−T
3 (h3) h3

a3−T
1 (h4) h4 h6

a3−T
2 (h5) h2 h2

a3−T
3 (h6) h6 h1

...
...

t = 1 t = 2 · · ·

a2−T
1 (h1) h1

a2−T
2 (h2) h5

a2−T
3 (h3) h3

a3−T
1 (h4) h4 h6

a3−T
2 (h5) h6 h1

a3−T
3 (h6) h2 h2

...
...
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Figure 11: AS-TTC algorithms in period t = 1 under the truthful preference (left) and the

manipulated preference (right). Thick arrows indicate a cycle in each step.
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Figure 12: AS-TTC algorithms in period t = 2 under the truthful preference (left) and the

manipulating preference (right). Thick arrows indicate a cycle in each step.

Figure 13: AS-TTC algorithms in period t = 3 under the truthful preference (left) and the

manipulating preference (right). Thick arrows indicate a cycle in each step.
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Table 3: Matching plans in Theorem 15

1 2 3 · · · T + 1 T + 2 T + 3 · · · 2T + 1 2T + 2 2T + 3 · · ·

a2−T
1 (h1) h1

a2−T
2 (h2) h2

a3−T
1 (h3) h3 h3

a3−T
2 (h4) h4 h4

...
...

a2
1 h2 h2 · · · h2

a2
2 h1 h1 · · · h1(h4)

a3
1 h3 · · · h3 h3

a3
2 h4 · · · h4(h1) h4(h2)
...

...

aT+2
1 h1 h1 · · · h1

aT+2
2 h2(h4) h2 · · · h2(h3)

aT+3
1 h4 · · · h4 h4

aT+3
2 h3 · · · h3(h2) h3(h1)
...

...

a2T+2
1 h2 h2 · · ·

a2T+2
2 h1(h3) h1 · · ·

a2T+3
1 h3 · · ·

a2T+3
2 h4 · · ·

...
...
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Table 4: Properties of dynamic mechanisms under “general” preferences

AC SP PE

General SD spot mechanism X

Constant SD spot mechanism favoring existing tenants X X

SD spot mechanism favoring newcomers X

TTC spot mechanism X

SD futures mechanism X X

Table 5: Properties of dynamic mechanisms under “time-invariant” preferences

AC SP PE

General SD spot mechanism X

Constant SD spot mechanism favoring existing tenants X∗ X X

SD spot mechanism favoring newcomers X

General TTC spot mechanism X

Constant TTC spot mechanism favoring existing tenants X X∗∗ X∗∗

TTC spot mechanism favoring newcomers X

SD futures mechanism X X
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APPENDIX A

EXAMPLES AND PROOFS IN CHAPTER 2

Figure 14: The preferences in the constituent market

An example of empty core. Consider a two-period dynamic market withM = {m1,m2},

W = {w1, w2, w3}. The preferences are depicted in Figure 14. In addition, the utility of be-

ing unmatched is 0 to each agent. Note that the Figure 14 just indicates the preferences for

all agents, but does not show all matchings. There are eleven possible matchings. Denote

µij by the matching in which mi is matched with wj and the other agents are unmatched.

Denote µij,kl by the matching in which mi (mk) is matched with wj (wl) and the other

agent is unmatched. µU is the matching where all agents are unmatched. In total, we have

121 = 11× 11 outcome paths. Out of them, we have 15 individual rational outcome paths:

(µ11, µ11), (µ11, µ21), (µ13, µ11), (µ13, µ13), (µ13, µ21), (µ13, µU), (µ21, µ13), (µ21, µU), (µU , µ13),

(µU , µ21), (µU , µU); (µ21, µ21), (µ21, µ22), (µ22, µ22),(µ11,22, µ11,22). The first eleven outcome

90



paths are blocked by the pair (m2, w2) via (µ22, µ22), and the last four are blocked by (m1, w3)

via (µ13, µ13).

Proof of Proposition 1. Let a dynamic matching φ be group stable. Suppose for a con-

tradiction that its outcome path µ(φ) = {µt(φ)}Tt=0 is not in the core. Then, there exist a

group A and an outcome path µ̂ := {µ̂t}Tt=0 such that Ui(µ̂) > Ui(µ(φ)) for each i in A.

Then, for each t take a matching µ̃t such that (A, µ̃t) is a static group deviation from µt(φ)

and µ̃t(i) = µ̂t(i) for each i in A. Consider the dynamic group deviation (A, φ̃):

φ̃(h) = µ̃t if h = (µ̂0, · · · , µ̂t−1)),

= φ(h) otherwise.

Then, Ui(φ̃) > Ui(φ) for each i in A. A contradiction.

Proof of equivalence between credible pairwise stability and weak stability.

Proposition 7. In a static market, a matching is credibly pairwise-stable if and only if it is

weakly stable.

Definition 27 (Klijn and Massó, 2003). Consider a static market.

1. A blocking pair (m,w) for µ is weak if there is a woman w′ ∈ W such that um(w′) >

um(w) and (m,w′) is a blocking pair for µ, or a man m′ ∈M such that uw(m′) > uw(m)

and (m′, w) is a blocking pair for µ. Here, (m,w) is a blocking pair for µ if the pair

blocks µ.

2. A matching µ is weakly stable if it is individually rational and all blocking pairs are

weak.

To prove the equivalence, we show that if a matching µ is individually rational,

all blocking pairs for µ are weak

⇔ there is no pairwise deviation (A, µ̂) from µ, ui(µ̂) > ui(µ) for each i in A

⇔ for each pairwise deviation (A, µ̂) from µ, if ui(µ̂) > ui(µ) for each i in A,

then (A, µ̂) is not defensible.
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The equivalence of the second and the third statements is a logical consequence. We show

the equivalence of the first and the third statements. Suppose that µ is individually rational.

First, we show the direction (⇒). Suppose that all blocking pairs for µ is weak. Let

(A, µ̂) be a pairwise deviation from µ such that ui(µ̂) > ui(µ) for each i in A. Without loss

of generality, take m ∈ A. Then, since m is in A and µ is individually rational, um(µ̂) >

um(µ) ≥ um(m). This implies that m is matched with some woman in A at µ̂. Denote

this woman by w. Then, the pair (m,w) blocks µ. We show that a pairwise deviation

(A, µ̂) = ({m,w}, µ̂) is not defensible. Since all blocking pairs are weak by our hypothesis,

without loss of generality,

∃w′ ∈ W,um(w′) > um(w), and (A.1)

(m,w′) is a blocking pair for µ. (A.2)

By the definition of pairwise deviation, either w′ ∈ A, w′ is unmatched at µ̂, or w is matched

with µ(w) at µ̂. If w′ were in A, w′ 6= w by (A.4), which would contradict that A = {m,w}. If

w′ were unmatched at µ̂, then (m,w′) ∈ µ from the definition of pairwise deviation, and thus

would contradict (A.2). Thus, w is matched with µ(w) at µ̂. Now, we consider a pairwise

deviation ({m,w′}, µ̄) with (m,w′) ∈ µ̄. Then, it follows from (A.2) that uw′(m) ≡ uw′(µ̄) >

uw′(µ) ≡ uw(µ̂). Moreover, it follows from (A.4) that um(w′) ≡ um(µ̄) > um(w) ≡ um(µ̂).

Thus, the pairwise deviation (A, µ̂) is not defensible.

Next, we show the other direction (⇐). Suppose that the hypothesis is true. Let (m,w)

be a blocking pair of µ. Then, consider the pairwise deviation ({m,w}, µ̂) from µ with

(m,w) ∈ µ̂. Then, um(µ̂) > um(µ) and uw(µ̂) > uw(µ). By our hypothesis, the pairwise

deviation is not defensible. Thus, there is a group deviation (B, µ̄) from µ̂ with {m,w}∩B 6=

∅ such that ui(µ̄) > ui(µ̂) for each i in B. Without loss of generality, take m in {m,w} ∩B.

Then,

um(µ̄) > um(µ̂) > um(µ) ≥ um(m). (A.3)

The last inequality follows from individual rationality of µ. The inequalities (A.3) imply that

m is matched with some woman at µ̄ who is in B. Denote this woman by w′. We show that

the pair (m,w′) is a blocking pair for µ. Since (m,w′) ∈ µ̄, the inequalities (A.3) imply that
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um(w′) > um(µ). Now, it is sufficient to show uw′(m) > uw(µ). By the definition of pairwise

deviation, either w′ = w, w′ is unmatched at µ̂, or w′ is matched with µ(w′) at µ̂. However,

w′ 6= w, since we have (A.3), (m,w) ∈ µ̂ and (m,w′) ∈ µ̄. Moreover, if she were unmatched

at µ̂, then it would follow from the definition of pairwise deviation that w′ is matched with m

at µ̂, that is, we would have (m,w′) in µ and µ̄, contradicting the inequalities (A.3). Hence,

w′ is matched with µ(w′) at µ̂ and thus uw′(m) ≡ uw′(µ̄) > uw′(µ̂) = uw′(µ). The inequality

holds because w′ is in B.

Lemma 3 (b). Consider a static market (Knuth, 1976) with M = {m1,m2, m3,m4}, W =

{w1, w2, w3, w4} and the following preferences:

m1 m2 m3 m4 w1 w2 w3 w4

w1 w2 w3 w4 m4 m3 m2 m1

w2 w1 w4 w3 m3 m4 m1 m2

w3 w4 w1 w2 m2 m1 m4 m3

w4 w3 w2 w1 m1 m2 m3 m4

where each column indicates the preference of an agent in the first row, all mates are accept-

able in each column, and an upper mate is strictly preferred to the lower one. Consider the

matching µ := {(m1, w1), (m2, w3), (m3, w2), (m4, w4)}. Each of boldfaced cells in the table

indicates his or her partner from this matching. This matching is not stable (for example, a

pair (m2, w1) blocks it) but individually rational. We show by contradiction that µ is credi-

bly group-stable. Suppose for a contradiction that there exists a defensible group deviation

(A, µ̂) such that uA(µ̂) > uA(µ). Note that A does not contain the agents m1, m4, w2 nor

w3, because m1, m4, w2 and w3 have the best mate in the matching µ.

First, consider the case where A is a pair. Then, since A blocks µ, A is (m2, w1), (m3, w1),

(m2, w4), or (m3, w4). If A = (m2, w1), then the pair (m3, w1) blocks µ̂. If A = (m3, w1), then

the pair (m3, w4) blocks µ̂. If A = (m2, w4), then (m2, w1) blocks µ̂. Finally, if A = (m3, w4),

then (m2, w4) blocks µ̂. Hence, the deviation (A, µ̂) is not defensible. A contradiction.

If A consists of three agents, it is not defensible since the deviation is similar to pairwise

ones. A contradiction. Thus, A = {m2,m3, w1, w4}. By the defensibility, the restriction
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µ̂|A to A is stable in the restricted market consisting of A. This implies that µ̂|A is either

{(m2, w1), (m3, w4)} or {(m2, w4), (m3, w1)}. In both cases, since m4 is unmatched at µ̂,

(m4, w1) blocks µ̂. A contradiction.

Lemma 3 (c) . Consider a static market withM = {m1,m2,m3,m4}, W = {w1, w2, w3, w4},

and the following preferences:

m1 m2 m3 m4 w1 w2 w3 w4

w1 w1 w4 w1 m3 m2 m3 m2

w4 w1 w4 m4 m3

w2 w3 m2 m4

m1

where each column indicates the preference of an agent in the first row, only acceptable

mates are listed in each column, and an upper mate is strictly preferred to the lower one.

Consider the matching µ = {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}. Each of boldfaced cells

in the table indicates his or her partner from this matching. This matching is not stable but

individually rational. All of blocking pairs are (m2, w1), (m3, w1), (m4, w1), (m2, w4), and

(m3, w4).

First, we show that µ is credibly pairwise-stable. Suppose for a contradiction that there

is a defensible pairwise deviation (A, µ̂) from µ such that uA(µ̂) > uA(µ). Then, since A is a

blocking pair, A is (m2, w1), (m3, w1), (m4, w1), (m2, w4), or (m3, w4). If A = (m2, w1), then

the pair (m3, w1) blocks µ̂. If A = (m3, w1), then the pair (m3, w4) blocks µ̂. If A = (m4, w1),

then the pair (m3, w1) blocks µ̂. If A = (m2, w4), then the pair (m2, w1) blocks µ̂. Finally,

if A = (m3, w4), then the pair (m2, w4) blocks µ̂. Thus, we have a contradiction: the pair

deviation (A, µ̂) is not defensible. Hence, µ is credibly pairwise-stable.

Next, we show that µ is not credibly group-stable. Consider the group deviation (A, µ̂)

from µ where A = {m2,m3, w1, w4}, (m2, w4) ∈ µ̂, and (m3, w1) ∈ µ̂. Note that both w1 and

w4 are matched with the best mate. Thus, the only possibility that an agent in A is strictly

better off by further deviation is that either m2 is matched with w1 or m3 is matched with

w4. w1 is worse off in the former case, while w4 is worse off in the latter case. Thus, (A, µ̂)

is defensible. Moreover, each agent in A is better off in µ̂ than in µ. Hence, µ is not credibly
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group-stable.

Proof of Proposition 3. Fix a stable matching µ and a defensible group deviation (A, µ̂)

from µ. Let B be the set of all agents outside A who are matched according to µ, and C

be the set of all agents outside A whose partner is in A. That is, agents in B (C) satisfy

condition (b) (condition (c)) in Definition 11. Note that all agents in C are unmatched at µ̂

and µ̂|B = µ|B.

First, we show that if C is empty, then µ̂ is stable. Let C be empty. Then, M∪W = A∪B.

Suppose that some agent i blocks µ̂. If i is in A, the blocking contradicts the defensibility

of (A, µ̂). If i is in B, since µ̂|B = µ|B, i blocks µ. This contradicts the stability of µ. Thus,

no agent blocks µ̂. On the other hand, suppose that some pair (m,w) blocks µ̂. If either

m ∈ A or w ∈ A, then the blocking contradicts the defensibility of (A, µ̂). If m ∈ B and

w ∈ B, then since µ̂|B = µ|B, (m,w) blocks µ. This contradicts the stability of µ. Hence,

no pair blocks µ̂. Therefore, µ̂ is stable.

Now, to show that µ̂ is stable, it is sufficient to show that C is empty. Suppose for a

contradiction that C is not empty. Without loss of generality, take a woman w0 in C ∩W .

Using the stability of µ and the defensibility of (A, µ̂), we will recursively construct an infinite

sequence {(mk, wk)}∞k=1 of distinct pairs in M ×W such that for each k = 1, 2, · · ·

(a) (mk, wk−1) ∈ µ,

(b) (mk, wk) ∈ µ̂,

(c) mk, wk ∈ A,

(d) umk(µ) < umk(µ̂),

(e) uwk(µ) > uwk(µ̂).

This contradicts the finiteness of M and W .

First, construct m1 and w1 that satisfy conditions (a) to (e). By the definition of group

deviation, w0 is matched with some man in A at µ. Denote this man by m1. Thus, (a) is

satisfied. Since w0 is unmatched at µ̂ and µ is individually rational,

uw0(m1) ≡ uw0(µ) > uw0(µ̂) ≡ uw0(w0), (A.4)

from strict preferences. If m1 were unmatched at µ̂, um1(w0) ≡ um1(µ) > um1(µ̂) ≡ um1(m1)

by strict preferences and the individual rationality of µ. Then, the pair (m1, w0) would block
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µ̂, violating the defensibility of (A, µ̂) as m1 is in A. Thus, it follows from the definition of

group deviation that m1 is matched with some woman in A at µ̂. Denote this woman by w1.

Now, m1, w1 ∈ A and (m1, w1) ∈ µ̂ so that (b) and (c) are satisfied. Note w0 6= w1. Since

w0 6= w1, it follows from strict preferences that

either um1(w0) ≡ um1(µ) > um1(w1) ≡ um1(µ̂), (A.5)

or um1(w0) ≡ um1(µ) < um1(w1) ≡ um1(µ̂). (A.6)

If the inequality (A.5) were true, then with the inequality (A.4), the pair (m1, w0) would

block µ̂, violating the defensibility of (A, µ̂) as m1 is in A. Thus, the inequality (A.6) is true

so that (d) is satisfied. Now, µ(w1) 6= µ̂(w1) ≡ m1, otherwise we would have a contradiction

that w0 = w1. Since µ is stable, it follows from the inequality (A.6) and strict preferences

that uw1(µ) > uw1(µ̂) so that (e) is satisfied. Now, {m1, w1, w0} satisfies the conditions (a)

to (e).

Suppose that we are given w0 and {(mk, wk)}K−1
k=1 which satisfy conditions (a) to (e) and

all of whom are distinct. We construct mK and wK that satisfy the conditions. First, by

our hypothesis,

uwK−1
(µ) > uwK−1

(µ̂). (A.7)

If wK−1 were unmatched at µ, then wK−1 would block µ̂ from the inequality (A.7), violating

the defensibility of (A, µ̂) as wK−1 is in A by our hypothesis. Thus, wK−1 is matched with

some man at µ. Denote this man by mK so that (mK , wK−1) ∈ µ and thus (a) is satisfied.

Since by our hypothesis wK−1 is different from w1, · · · , wK−2 and (mk, wk−1) ∈ µ for each

k = 1, · · · , K − 1, (mK , wK−1) ∈ µ implies that mK 6= m1, · · · ,mK−1, and thus m1, · · · ,mK

are distinct. If mK were not in A, then mK would be unmatched at µ̂ from the definition of

group deviation. Then, since µ is individually rational, umK (wK−1) ≡ umK (µ) > umK (µ̂) ≡

umK (mK) from strict preferences. Thus, with the inequality (A.7), the pair (mK , wK−1)

would block µ̂, violating the defensibility as wK−1 is in A by our hypothesis. Thus, mK is

in A. If mK were unmatched at µ̂, then we would violate the defensibility like before. So, it

follows from the definition of group deviation that mK is matched with some woman in A

at µ̂. Denote this woman by wK so that (mK , wK) is in µ̂ and wK is in A, and now (b) and

96



(c) are satisfied. Since m1, · · · ,mK are distinct and (mk, wk) ∈ µ̂ for each k = 1, · · · , K,

we have wK 6= w1, · · · , wK−1, and thus w1, · · · , wK are distinct. Now, because wK−1 6= wK ,

strict preferences imply that

either umK (wK−1) ≡ umK (µ) > umK (wK) ≡ umK (µ̂), (A.8)

or umK (wK−1) ≡ umK (µ) < umK (wK) ≡ umK (µ̂). (A.9)

If the inequality (A.8) were true, then with the inequality (A.7), the pair (mK , wK−1) would

block µ̂, violating the defensibility as mK and wK−1 are in A. Thus, the inequality (A.9) holds

so that (d) is satisfied. Finally, µ(wK) 6= mK as mK is matched with wK−1 6= wK at µ. This

implies from the stability of µ and the inequality (A.9) that uwK (µ) > uwK (µ̂) ≡ uwK (mK)

so that (e) is satisfied. Now, we have the desired sequence.
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APPENDIX B

PROOFS IN CHAPTER 3

Proof of Lemma 7. We prove the result for the infinite horizon case. The finite horizon

case is similar and thus the proof is omitted. Suppose that a dynamic matching φ is one-shot

group-stable. Fix ht ∈ H. Let (A, µ̂) be a group-deviation from φ(ht). Consider a one-shot

group deviation (A, φ̂) such that φ̂(ht) = µ̂ and φ̂(h) = φ(h) for each h 6= ht. Since φ is

one-shot group-stable, there exists i in A such that Ui(φ̂|ht) ≤ Ui(φ|ht). This implies

uti(µ̂) + Ui(φ̂|ht,µ̂) ≤ uti(φ(ht)) + Ui(φ|ht,φ(ht)). (B.1)

Since φ̂ is a one-shot group deviation, φ̂|ht,µ̂ = φ|ht,µ̂. Thus, (B.1) implies

vi(µ̂) ≡ uti(µ̂) + Ui(φ|ht,µ̂) ≤ uti(φ(ht)) + Ui(φ|ht,φ(ht)) ≡ vi(φ(ht)).

This means that the group A cannot block φ(ht) via µ̂ in the induced networked market

Γ̃(ht, φ), i.e., the matching φ(ht) is group stable in the induced networked market.

Conversely, consider a dynamic matching φ such that for each history h the matching

φ(h) is group stable in the induced networked market Γ̃(h, φ). Let (A, φ̂) be a one-shot

group deviation from φ with φ(ht) 6= φ̂(ht) at some history ht. Since φ(ht) is group stable

in Γ̃(ht, φ), for some i ∈ A

vi(φ(ht)) ≡ ui(φ(ht)) + Ui(φ|ht,φ(ht)) ≥ ui(φ̂(ht)) + Ui(φ|ht,φ̂(ht)) ≡ vi(φ̂(ht)). (B.2)
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Since φ̂ is one-shot group deviation, φ|ht,φ̂(ht) = φ̂|ht,φ̂(ht). Thus, (B.2) implies

Ui(φ|ht) ≡ ui(φ(ht)) + Ui(φ|ht,φ(ht)) ≥ ui(φ̂(ht)) + Ui(φ̂|ht,φ̂(ht)) ≡ Ui(φ̂|ht).

Thus, the group A cannot one-shot block φ via φ̂, and therefore φ is one-shot group-stable.

Proof of Lemma 8 . We prove the result for the finite horizon case. The infinite horizon

case is similar and thus the proof is omitted. Let (M,W, {uti}i∈I) be the period t market.

For the history hT , the claim is obvious. Fix t ≤ T − 1 and a history ht ∈ H. Since the

dynamic matching φ is history-independent, for each matching µ ∈ M, the continuation

dynamic matching φ|ht,µ induces the same outcome path, say (µ̂t+1, µ̂t+2, · · · , µ̂T ). Then, for

each i ∈ I, the continuation payoff is

vi(µ) ≡ Ui(µ, φ|ht,µ) = uti(µ(i)) + Ui(φ|ht,µ) = uti(µ(i)) +
T−t∑
τ=0

uτi (µ̂
τ )

= uti(µ(i)) + ci, where ci :=
T−t∑
τ=0

δτuτi (µ̂
τ )

Since the second term ci is independent of µ, the induced networked market Γ̃(ht, φ) is a

static market (M,W, {uti + ci}i∈I). Since static group stability concept does not depend on

any positive affine transformation of utility functions, it is equivalent to the period t market

(M,W, {uti}i∈I).

Proof of Corollary 2 . φ is one-shot group-stable if and only if ∀t ≥ 0 ∀ht ∈ Ht, φ(ht)

is group stable in the induced networked market Γ̃(ht, φ) (Lemma 7) if and only if ∀t ≥ 0

∀ht ∈ Ht, φ(ht) is group stable in the period t market (Lemma 8) if and only if ∀t ≥ 0

∀ht ∈ Ht, φ(ht) is stable in the period t market (Lemma 5).

Proof of Proposition 5 . Consider the following twice repeated market consisting of M =

{m1,m2} and W = {w1, w2}. We take δ = 1 for simplicity. The utilities are given by

w1 w2 m

um1(·) 1 2 0

um2(·) 1 0 0

m1 m2 w

uw1(·) 1 0 0

uw2(·) 0 1 0
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Then, there are seven possible matchings: µU = {m1,m2, w1, w2}, µ11 = {m1w1,m2, w2},

µ12 = {m1w2,m2, w1}, µ21 = {m2w1,m1, w2}, µ22 = {m2w2, m1, w1}, µM = {m1w2,m2w1}

and µW = {m1w1,m2w2}. Then, u(µU) = (um1(µU), um2(µU), uw1(µU), uw2(µU)) = (0, 0, 0, 0),

u(µ11) = (1, 0, 1, 0), u(µ12) = (2, 0, 0, 0), u(µ21) = (0, 1, 0, 0), u(µ22) = (0, 0, 0, 1), u(µM) =

(2, 1, 0, 0) and u(µW ) = (1, 0, 1, 1). It can be verified that µS, µ21 and µ22 are unstable and

the others are stable in the constituent market. Consider the following dynamic matching

φ:

φ(∅) = µ22

φ(h1) = µM if h1 = µ22

= µ11 otherwise.

We can verify that this dynamic matching is one-shot group-stable.

Proof of Lemma 9. Suppose that F∗(µ) is nonempty for some stable matching µ. To

show (1), suppose for a contradiction that there is a matching µ′ such that u(µ′) is in F∗(µ).

Then, µ cannot be statically stable, a contradiction. To show (2), suppose instead that

|M | = |W | = 1. Then, there are two possible matchings, say µ and µ′. Since F∗(µ) 6= ∅,

take v ∈ F∗(µ). Thus, since w ∈ F † and (1), w is a convex combination of two points u(µ)

and u(µ′) outside F∗(µ). But any convex combination of u(µ) and u(µ′) cannot be in F∗(µ),

a contradiction.
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APPENDIX C

PROOFS IN CHAPTER 4

Proof of Theorem 8. We describe the detailed procedure for the other cases in the proof

of Theorem 8. Call the case considered in the proof of the main body the Case 1-1.

Case 1-2: T > 3 and n = 3

Let Ra1
i

be the preference considered in Case 1-1 for i = 1, 2, 3. Consider the preference R̂a1
i

such that

(h1, h2, h3, h4, · · · , hT ) R̂a1
i

(ĥ1, ĥ2, ĥ3, h4, · · · , hT )⇔ (h1, h2, h3)Ra1
i

(ĥ1, ĥ2, ĥ3),

for each h1, ĥ1, h2, ĥ2, h3, ĥ3, h4, · · · , hT in H. For each other agent, houses h1, h2, h3 are less

preferred to the other houses in each period. Then, the similar argument to the Case 1-1

leads to our desired conclusion.

Case 1-3: T > 3 and n > 3

Fix T > 3 and n > 3. Agent a1
i (i = 1, 2, 3) has a preference R̄a1

i
with R̄a1

i
= R̂a1

i
where R̂a1

i

is the preference used in Case 1-2. Let a1
4, · · · , a1

n be the other agents in N(1). For agents

a1
i , i = 4, · · · , n, houses h1, h2, h3 are less preferred to the other houses in each period. Then,

the similar argument to the Case 1-1 leads to our desired conclusion.

Next, consider a dynamic problem with endowments.

Case 2-1: n = 3 and T = 3.

We look at newcomers a4
1, a

4
2, a

4
3 in period 4. Consider a preference Ra4

i
with Ra4

i
= Ra1

i
for

i = 1, 2, 3 where a1
i and Ra1

i
is the agent and her preference used in Case 1-1. For the other

101



agents, houses h1, h2, h3 are less preferred to the other houses in each period. A similar

argument to Case 1-2 or 1-3 leads to our desired result.

For the remaining cases, the same idea as in Cases 1-2 and 1-3 leads to our desired

conclusion.

Proposition 8. Consider a dynamic problem with time-invariant preferences and without

endowments. A constant SD spot mechanism favoring existing tenants is acceptable.

Proof. Suppose that an agent, a, obtains some house h at some period t. Since agents before

agent a do not prefer the house h in period t, in the next period, it follows from time-invariant

preferences that agents before agent a do not obtain this house, and thus agent a has an

option of getting house h or one of the remaining houses. Hence, agent a is weakly better

off as time goes on.
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terly Journal of Economics, 119, 457-488.

[36] Roth, Alvin E., and Marilda Sotomayor (1990) Two-Sided Matching: A Study on Game-
Theoretic Modelling. Cambridge University Press.

[37] Roth, Alvin E., and John H. Vande Vate (1990) “Random Paths to Stability in Two-
Sided Matching.” Econometrica, 58, 1475-1480.

[38] Samuelson, Paul A. (1958) “An Exact Consumption-Loan Model of Interest with or
without the Social Contrivance of Money.” Journal of Political Economy, 66, 467-482.

[39] Sasaki, Hiroo, and Manabu Toda (1996): “Two-Sided Matching Problems with Exter-
nalities.” Journal of Economic Theory, 70, 93-108.

[40] Shapley, Lloyd and Herbert Scarf (1974) “On Cores and Indivisibility.” Journal of Math-
ematical Economics. 1, 23-28.

[41] Shell, Karl (1971) “Notes on the Economics of Infinity.” Journal of Political Economy,
79, 1002-1011.
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