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The hand has evolved to allow specialized interactions with our surroundings that define much of 

what makes us human. Comprised of numerous joints allowing 23 separate degrees-of-freedom 

(DoFs) (joint motions) of movement, the hand and wrist are exceedingly complex. In order to 

better understand the constraints and principles underlying the neural control of the hand, we 

have carried out a series of neurophysiological experiments with monkeys performing a variety 

of reaching and grasping tasks. This work uses linear regression and low dimensional analysis to 

probe the neural representation of hand kinematics. 

 We find that the kinematics of the three wrist DoFs (flexion, abduction and rotation) are 

rashly independent from hand-shape DoFs, and are considered separately. With respect to the 

wrist DoFs, we show that the firing patterns of individual motor cortical cells are more linearly 

related to joint position than joint angular velocity. Using tuning functions from multivariate 

linear regressions, the firing rates from a population of cells accurately predicted three DoFs of 

wrist orientation. We used principal components analysis to simplify the complex kinematics of 

the hand. Although the majority of the variability in hand kinematics can be explained with a 

small number (~7) of characteristic hand shapes (synergies), we find that these synergies do not 

capture the majority of neural variability. Both higher-order and lower-order synergies are well 

represented in the neural data. Although the kinematic synergies do not fully characterize neural 

firing, they can be utilized to simplify hand shape decoding. Using an optimal linear estimator, 
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we predicted the average wrist and hand shape from the firing rates of 327 motor cortical cells 

with an accuracy as high as 92%.  

 

Individual motor cortical neurons are not well correlated with single joint variables; 

rather, they correlate with a number of joints in a complex way. This work provides evidence 

that hand movements are likely controlled through an intricate network of motor systems, of 

which motor cortical neurons contribute by making fine adjustments to a basic substrate. Further 

understanding of the control system will be gained by establishing a model that captures both the 

hand kinematic and neural variability.  
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1.0  INTRODUCTION AND BACKGROUND 

The primate hand has evolved to allow specialized interactions with our surroundings that define 

much of what makes us human. The movements in which we use our hands, the neural control of 

these behaviors, and our hands themselves are exceedingly complex. The primate hand is a 

system containing 27 bones, 18 joints, and 39 intrinsic and extrinsic muscles [1] with a potential 

for over 20 joint motions for hand shaping [2]. Movement of the fingers requires a coordinated 

interplay of both extrinsic and intrinsic muscles [3, 4, and 5]. Detailed analytical investigations 

into these movements have only recently begun.  Fortunately, recent methods that detail hand 

movement and new analytical techniques for extracting these details from recorded neural 

activity allow us to gain initial insight into some of the principles used to generate these 

behaviors 

 

Compelling arguments, based on a sparse fossil record, show that the human hand has 

evolved from an effector used primarily in arboreal locomotion to one used for tool 

manipulation.  The length, strength and mobility of the thumb, the abduction of the fifth digit and 

the structure of the bones at the base of the fingers are thought to be factors that evolved to make 

it possible for hands to cup objects with enough strength to manufacture prehistoric stone tools 

[6, 7]. Our early hominid ancestors adapted the ability to throw stones and swing clubs at their 

adversaries. It was these actions that gave them an evolutionary advantage for millions of years 



 2 

[8]. The manipulation of stones for throwing and sticks for clubbing made upright posture 

advantageous, later giving rise to habitual bipedalism in humans [9]. Our ancestors depended on 

binocular depth perception to shape the hand for object accommodation and accurate hand 

placement. The acquisition of these skills was correlated with a simultaneous evolution of the 

musculoskeletal and nervous systems which can be described by studying the structure and 

control of the hand. 

 

Because of the limited fossil record, and its inability to detail neurophysiology, 

investigators have concentrated on living primate phylogeny [10, 6, 11, 12, 13, and 14]. Starting 

with tree shrews, prosimians and lemurs, proceeding through new world monkeys (marmoset, 

squirrel, capuchin and spider), to old world monkeys (macaque, baboon and colobus), all the way 

to gibbons, apes (orangutan, chimpanzee and gorilla) and culminating with humans, there is a 

clear progression of hand structure. Hollow claws become flattened nail with a concomitant 

enlargement of the fleshy glabrous finger pads with tactile sensory apparatus. The thumb 

becomes more mobile. This is clear, for example, in the differences between apes and humans 

“power grip” [6, 12 and 13]. Chimpanzee’s (anatomically most similar hand to humans) utilize a 

‘hook grip’ of four flexed fingers [11, 15] while humans use a ‘finger-active palm squeeze’ that 

relies on activation of powerful thumb musculature. The human grip allows for the thumb to 

wrap around and squeeze an object to the palm. Therefore, humans are able to stabilize tools, 

which are used as an extension of the hand and forearm [16].  

 

Comparative anatomy of living primates shows that cortical development is correlated 

with the visual, tactile and motor behaviors associated with complex hand movement [17].  
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Specifically, the “least automatic” dexterous movements of the hand during exploration and 

manipulation of objects are thought to signify essential human behavior at the pinnacle of 

evolution. Historically, the importance of neural control as a limitation to the dexterity of the 

hand has been emphasized.  

 

The function of the corticospinal projections for dexterous behavior comes mostly from 

studies in which the medullary pyramids were sectioned in macaques [18, 19, and 20]. The 

animals tolerate the lesion well.  “An hour or so after completion of the operation the animal can 

usually sit up; after 24 hours it begins to take food, and by the end of a week it is fully recovered 

except for the specific effects of the lesion” [18]. In general, the recovered animals’ gross 

movements appear normal.  They climb and swing with minimal deficits. With unilateral 

sections there is a flaccid paralysis on the contralateral side with a deficit in prehension.  The 

ability to move the fingers independently and oppose the thumb is lost.  Instead, grasping entails 

a cupping motion seen in infants or phylogenetically lower primates - suggesting a control 

reversion. These deficits were permanent, with the conclusion that the corticospinal tract is 

essential for dexterous control of the hand.   

 

Human grasping has a characteristic ontogenetic development [21].  Before grasping can 

take place, reaching must be mastered. This begins in four to five month-old infants, but 

regulated grasping takes another four to five months. Early grasping is driven primarily by tactile 

and proprioceptive reflexes with crude closing of all the fingers. This reflex becomes less 

prominent by the tenth month. This coincides with increased independent finger movement. As 

humans progress through adulthood their grasp changes from crude closing to a highly adaptable 



 4 

end effector. These actions have been examined by investigations focusing on both complex and 

simplified grasping movements. 

 

In the early 90's, Schieber began a series of studies to examine the role of motor cortical 

cells in the control of individual finger movements [22, 23].  In his investigations a 

manipulandum was built to isolate each finger, and animals were trained to flex or extend a 

single specific finger when cued. It was found, using sensitive strain gauges that the non-

instructed fingers moved as well [11, 24]. Thus demonstrating the monkeys’ limited ability to 

make individuated finger movements. 

   

When motor cortical units were recorded during individual finger movements [25], it was 

found that most were modulated with multiple fingers. The neurons active with different finger 

movements overlapped extensively in their cortical location. It was concluded that a widespread 

population of neurons were active for a particular movement [26, 27]. It has been known for 

years that motor cortical neurons projecting to different muscles are intermingled on the cortical 

surface [17], that a given cortical neuron projects to multiple muscles [28] and a given muscle is 

innervated by neurons spread over a large portion of motor cortex. This organization and the 

need to activate multiple muscles for individuated finger movements, means that neuronal 

populations direct finger movements through widespread networks [29].  

 

The lack of completely independent finger movements is also true of humans.  Even in 

skilled movements such as typing and piano playing, multiple fingers move together [30, 31, 32].  

It was these studies that first described the hand in terms of “degrees of freedom” (DoFs) in 
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which specific rotations around each joint were specified.  Digits two through four each have 

four DoFs– rotation around the proximal (PIP) and distal interphalangeal (DIP), and the 

metacarpophalangeal (MP) joints as well as ab-adduction at the MP.  The thumb has four DoFs 

(flexion-extension at the IP, MP and carpometacarpal (CMC) joints, ab-adduction CMC joint 

[33].  Ascribing a precise number of DOFs to the hand is difficult, as many bones in the palm of 

the hand are mobile. This mobility aids the hand in cupping and opposition.  However, the hand 

is generally considered to have “more than 20 degrees” of freedom.   

 

Napier [6] divided hand movements into prehensile and non-prehensile categories.  

Prehension is the most common type of hand movement [29] and is only found in mammals. 

This evolution was driven by arboreal locomotion, infants clinging to their parents, and the 

necessity to reach for food [34]. The reach-to-grasp motion is characterized by an open hand 

early in the reach that continuously changes shape to approximate the grasped object. The 

coordination of the finger movements during grasp has been the focus of many investigations.  

 

Studies have shown that static grasp posture can be described using a small number of 

postural synergies [35, 36, 37]. These synergies can be defined as a spatial configuration or 

“primitives” of the hand shape that is common across various tasks. Using principal component 

analysis, only three components were needed to describe approximately 90% of the variance, 

with the first two components explaining approximately 84% [35]. This work focused on the 

end, or static phase, of grasping while the object was in contact with the hand. The authors 

concluded that there were a few general patterns of coordination for coarse control of hand 

shape.  More sophisticated control of individual fingers was thought to be represented in the 



 6 

higher-order components which were not combined in any regular pattern [37]. The presence of 

postural synergies describing hand movement throughout the reach was not investigated, yet the 

results suggest a common strategy exists. 

  

More recent work has shown that modulation of hand shape that begins prior to 

movement and continues to object contact can be modeled with a few postures [1]. These 

findings expand and confirm the results that hand shape evolves gradually throughout movement 

[36, 38, 39, 40, and 41]. More importantly, this work illustrates that the entire reach-to-grasp 

movement can be described using a small number of variables.  

 

These correlation functions may represent a simplifying strategy utilized by the motor 

cortex. The controller may direct the hand with a reduced the number of descriptors and thereby 

reduce the complexity of the control problem [35, 42, 43]. 

 

Monkeys have similar reach characteristics as humans [41, 44, and 45].  They preshape 

their hands during reaching and scale their aperture for object size in an object- and accuracy- 

specific manner. The previously mentioned psychophysics studies used human subjects. 

Examining similar patterns of coordination Mason et al. [46] also carried out these experiments 

in monkeys. Monkeys reached to grasp and squeeze sixteen different regular solids to exert a 

specified force on the object in the absence of vision. Singular value decomposition applied to 

the marker data showed that the first component accounted for more than 90% of the variance 

and the second explained about 5%. This shows that the fingers moved in a stereotypical manner 

across many objects. Furthermore, there is no relationship between the eigenvectors and the 
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squeeze-force applied to the objects. The authors concluded that hand shape was independent of 

the applied force.  These results, in the absence of vision, were interpreted as evidence that hand 

shaping takes place as feed-forward operation.  

 

A more recent study, [47] blindfolded human subjects and had them perform a haptic 

exploration task of 50 different objects. The authors compared the patterns of coordination found 

during haptic exploration with a grasping task under visual guidance.  As expected the haptic 

behavior required more eigenvectors (7) to explain 90% of the variance than the earlier studies. 

Nine eigenvectors were consistent across subjects.  As with the other studies, the first component 

was dominated by the MCP joints which were used to open and close the hand. The third and 

fourth components were dominated by thumb movement. This may be reflective of the wider 

range of hand postures required for this task. The components derived from the search task could 

be used to reconstruct the hand shapes of the reach-to-grasp task as well.  In constructing a 

particular movement, only a few components were needed.  This suggests that there were object-

specific sub-spaces.  This only becomes evident when the task space is rich enough to generate 

many coordination patterns.  This is also consistent with earlier studies suggesting that there was 

a dichotomy of control where there were basic patterns for crude control combined with higher-

order patterns for more complex control.   

 

In order to better understand the constraints and principles of organization used for 

controlling the hand, we have carried out a series of studies describing both the detailed 

kinematics of the hand and of motor cortical activity as monkeys reach and grasp a variety of 

objects.  Monkeys were trained to make these movements in a consistent way as objects were 
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presented in different locations and orientations with the objective of sampling a wide variety of 

hand shapes and orientations.  The complex nature of this study will provide insight into how 

individual motor cortical cells modulate as a function of natural movements of the wrist, hand 

and fingers.  

1.1 PROSTHETICS AND CLINICAL SIGNIFICANCE 

Motor restorative prosthetics is an active area of research intended to assist patients with limited 

or no ability to move. Two broad categories of patients can be assisted by these devices. The first 

group of patients are those with limited interactive capacity (i.e. brain stem strokes and late 

stages of amyotrophic lateral sclerosis). These patients may benefit from rudimentary brain 

computer interfaces [48, 49, 50, and 51] and categorical based neural prosthetics [52]. The 

second group includes those patients with communicative capacity, but decreased volitional 

movements. For example, patients with spinal cord injury (SCI) (between 200 – 400,000) and 

patients with amputations [53].  

 

Neurophysiology research has provided the fundamentals for motor restorative 

prosthetics research for more than 30 years [54–64]. Early researchers showed that arm 

movements can be predicted from populations of motor cortical cells [55, 61]. Researchers have 

since used spiking activity from populations of motor cortical cells to control prosthetic devices 

[65-71]. Compared to the natural arm, current motor restorative devices have a limited number of 

simultaneously controlled DoFs. The current work provides a set of basic findings that can 
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develop into an extraction algorithm for control of a complex motor restorative system that 

directs wrist and hand movements from populations of motor cortical cells. 
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2.0  METHODS 

This chapter provides an overview of the behavioral setup (2.1), kinematic data collection (2.2), 

joint angle calculations (2.3), surgical procedure (2.4), neural recordings (2.5) and experimental 

details (2.6). 

2.1 BEHAVIORAL SETUP 

This experimental setup was designed to study reach-to-grasp movements, with an emphasis on 

the hand and wrist degrees-of-freedom (Figure 1). 
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Figure 1. Representation of the behavioral setup.  

The blue and white robotic arm was used to present objects. The restraint chair is shown in black on a 

frame separate from the robot. The black boxes mounted to the walls and ceiling represent cameras around the room. 

 

  A monkey was placed into a restraint chair in front of a Denso industrial robotic arm. A 

custom-made glove with reflective markers was secured to the monkey’s hand. The hand 

markers were tracked using a Vicon® passive motion tracking system. There were 12 cameras 

(only six shown in Figure 1) situated in a half circle in front of the monkey, a configuration 

optimized to track positions from all sides of the hand. A camera reconfiguration occurred 

depending if the left or right hand was being tracked. The cameras had infra-red light emitting 

diodes around the perimeter of the lens. The light emitted from each camera hit a retro-reflective 
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marker situated on the monkey’s hand. Using the 2-D gray scale image of a marker tracked by at 

least two cameras, the Vicon system reconstructed the 3-D position.  

  

Each glove that the experimenter placed on the monkey’s hand was custom-made for 

each monkey from a template tracing. The glove was made of a stretch black lycra which 

ensured a tight fit and reflective markers were sewn on. The area of the glove with the majority 

of the markers (19 out of 23) was about 10 cm long by 5 cm wide. 

 

 

Figure 2.  Motion tracking glove.  

Picture of a motion tracking glove made for the right hand of monkey V. The lycra material was sewn 

together with flexible thread. Reflective markers were located at all the inter-joint segments of the fingers and 

thumb. Three markers formed a plane on the palm, and four markers made a forearm plane. There were twenty three 

3mm markers on each glove. 

 

The Denso robot used in this experiment had six degrees-of-freedom, four air solenoids, 

and ten electrical connections that passed from the base to the end-effector. The robot was able 
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to present objects at different x, y, and z positions with varying orientations. The robot effector 

was fitted with an ATI QC-11 master tool changer with a ten contact electrical module for 

interfacing with the tool (Figure 3). Each tool was attached to an ATI QC-11 slave tool changer 

(Figure 3). The robot picked up many different tools by pneumatically driving a piston located in 

the master.  

 

 

 

Figure 3. Tool changing mechanism for object presentations.  

The left panel shows the master portion of the tool changer. The white rectangle to the upper left houses ten 

electrical connections. The silver component in the middle of the master is the pneumatic piston. The right panel 

shows the slave portion of the tool changer. Each object was mounted to a single slave. 

 

A computer with custom software controlled the Denso robot arm in real-time, ran the 

state based behavioral program, and sent behavioral cues to the monkey through a Digital I/O 

card.  
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Figure 4.  Progression of a reach-to-grasp trial.  

Pictorial representation of a reach-to-grasp trial.  

 

A trial started with a short inter-trial interval from the trial before (Figure 4). During this 

time the lights in the room were off, and the monkey placed its hand on a start pad situated in a 

rest position. With the queue of the hand on the start pad the robot presented the tool at a 

specified target position. If the hand lifted off the start button before the Hold A time (time that 

the monkey had hand on start pad) expired, the trial was a failure. If the hand stayed on the start 

pad for the entire Hold A period (between 400-1000ms) the lights in the room turned on. The 

Lights On cue was the go signal for the monkey. At the start of go was the first time the monkey 

visualized the target location and orientation. After the lights turned on there was a short reaction 

time (250ms) for the monkey to lift the hand off the start pad. If the reaction time was exceeded 

Hold Reaction Inter-trial 

Reward Reach Grasp
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the trial was a failure. However, if the monkey lifted its hand from the start pad before the 

reaction time expired, it had 750 ms to reach the object. If the monkey did not move fast enough 

the trial was a failure. The Hold B portion of the trial started when enough pressure was placed 

on all sensors to pass a predetermined force threshold. Hold B continued for a random time 

between 400-700ms. If the pressure applied to the sensors exceeded threshold for the entire Hold 

B period, the monkey received a liquid reward. If an unsuccessful trial occurred at any portion of 

the above sequence, the robot moved back to the home position. If the trial was successful the 

presentation was removed from a selection matrix; if unsuccessful the presentation was 

maintained.  

 

Force Sensing Resistors (FSR’s) were placed on the objects to detect grasping pressure. 

A FSR is a simple variable resistor that changes resistance as a function of pressure. Change in 

resistance was recorded as a change in voltage from zero to five volts using an analog input card. 

Zero volts indicated an applied pressure above the sensors maximum detection, and five volts 

indicated no pressure. The FSR signal was filtered using a 6Hz lowpass butterworth filter to 

remove high frequency noise produced from the robot motors. The FSR’s were placed on 

multiple sides of the objects in order to maintain consistent grasps across days, and remove the 

monkey’s ability to get rewarded for non-grasping behavior. For example, the small handle 

(Figure 20) had FSR’s on two sides of the cylinder so the monkey had to squeeze the handle for 

a reward. Both force sensors had to register a voltage reading below a set threshold for the 

monkey to be rewarded.  
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The randomized Trial Selection Matrix included all target positions and orientations for a 

session (Table 2). A group of target positions for an object was called a block. A Set referred to a 

single presentation of all objects. The Set Matrix was equivalent to multiplying a set x 5, so we 

could sample each object presentation five times in a session. This matrix contained all the 

presentations for a single session, but in a non-randomized order. The matrix was randomized 

with a number of permutations. The number was generated from Matlab using the computer start 

time as a seed. This ensured that the monkey could not learn the object presentation order over 

days.  During the course of the task if a trial was successful the target and presentations were 

removed from the Trial Selection Matrix; if unsuccessful it was maintained. This technique 

allowed for object randomization throughout a session and repetition of only the unsuccessful 

object orientations.  

2.2 KINEMATIC DATA COLLECTION 

Kinematic data was collected from the hand and wrist. The three wrist DoFs and 20 hand DoFs 

were tracked using a Vicon Mx® reflective motion tracking system. The small size of the hand 

(10cm by 5cm), and fast movements with the hand in many orientations, increased the difficulty 

of acquiring kinematic data. One limitation with passive motion tracking systems is the ability to 

uniquely identify each marker without each marker having a unique identity (i.e. differing light 

emitting frequencies in wired motion-tracking systems). The passive systems are plagued with 

non-contiguous segments of data.  
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Differentiating one marker from another and tracking non-contiguous markers has 

traditionally been difficult when using reflective based motion-tracking systems. When a marker 

goes out of view, the trajectory becomes broken, thus the marker cannot be labeled based on the 

prior frame, and the data is lost. In order to overcome this problem, we partnered with Vicon to 

develop a modeling system that utilized information about hand kinematics. Software of a 

kinematic model that mimicked the anatomy of the hand was created. This first estimation was a 

general model that described the relationship between markers, joints and segments (bony 

structures between joints). The general model was only specific for our marker placement, not 

unique per monkey, and could be scaled per subject. This anatomical description of markers was 

called an uncalibrated model. A calibration procedure was necessary to label 3-D data in real-

time.  

 

The calibration procedure started by collecting a ‘range of motion data file’ (2,000-3,000 

frames) while the monkey grasped an object in a set number of orientations. After reconstructing 

the 3-D marker data and ensuring the data was contiguous, the experimenter applied labels to a 

single frame of the 3-D data. The user would visually progress the captured movements, making 

sure to correct any labeling errors. After a marker correction, the model was adjusted using 

proprietary algorithms to best fit the motion over the entire file. During this process, the centers 

of joint rotation, and model marker positions were adjusted. Upon completion of the calibration 

procedure, an updated model was created with accurate parameters corresponding to kinematics 

of the monkey hand. 
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Due to difficulty tracking small subjects with fast movements, these procedures were not 

enough to ensure accurate joint angle reconstruction. In a complete session the hand was 

continuously tracked over an hour. It was not realistic that the accuracy of the calibrated model 

would be the same just after calibration as it would be 45 minutes into the session. This was 

accentuated by the fact that the monkey glove worked more distally throughout the session. In 

light of this, we created a more accurate joint angle calculation procedure that allowed for slight 

changes to occur without decreasing joint angle accuracy (Section 2.3.3). To ensure accurate 

joint reconstruction a separate procedure was created to correct missing and mislabeled markers 

(Section 2.3.1). 

2.3 ESTIMATING JOINT ANGLES 

A common strategy for joint angle calculations is to estimate the angle from markers placed on 

segments, i.e. on the bony portion connecting two joints [72]. Using this method the markers are 

translated with an offset equal to the distance from the bone center. This measurement is prone to 

error due to difficulty in assessing boney centers without the assistance of an X-ray. In this study 

we have adopted a technique to calculate joint angles from joint centers that is less prone to 

marker-offset error. This algorithm consisted of correctly labeling marker data (2.3.1), joint 

center estimations (2.3.2), and joint angle calculations (2.3.3).  
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2.3.1 Model Labeling 

After the kinematic model was calibrated (detailed in Section 2.2) the majority of markers were 

labeled correctly. However, during small portions of the task the model made labeling errors. 

Without correct model labeling, joint center estimates and joint angles are not accurate.  

 

We produced many algorithms to automatically correct mislabeled markers. However, all 

algorithms failed at unpredictable points in the data set. Each algorithm relied on inflexible 

cutoffs to judge data quality. A high cutoff produced too many false negatives, and a low cutoff 

gave too many false positives. These automated correction algorithms did not produce reliable 

results with simple cutoff adjustments. Because of these difficulties, an algorithm was created to 

allow the experimenter to quickly visualize and manually edit the marker data (Grasp Viewer).  

  

Kinematic data labeling was more reliable using a visual based marker label correction 

system compared to the automated algorithms. The 3-D marker data from the Vicon system was 

loaded into the Grasp Viewer. According to the Vicon system this data was supposed to be 

labeled correctly, however this was rarely the case. To ensure correct data labeling the viewer 

started at the beginning of the data set (Figure 5), and would play to the end. The progression 

could be stopped by the user if a model appeared mislabeled (Figure 6). The labeling was 

corrected by a mouse click on the markers through an appropriate labeling sequence defined by 

the marker set. If a particular model error continued to occur multiple times throughout a single 

session the algorithm would automatically apply previous corrections, and provide these as 

options to the user. This time intensive model correction method took advantage of the 

experimenter’s knowledge of the hand model and guaranteed accurate labeling.  
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Figure 5.  Marker data displayed in the grasp viewer.  

This graphic shows a single frame of the left hand centered on a marker placed over the first metacarpal 

with the hand in a slightly pronated position. This orientation gave an optimal viewing angle to detect the most 

frequent labeling errors.  
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Figure 6.  Marker data correction in Grasp Viewer.  

The top panel displays a single frame detected as being mislabeled. The mislabeling error in this case is 

with the second interphalangeal marker and the third distal marker. This error creates a scenario that we referred to 

as a crossed finger. The lower panel shows the same frame as the top panel after correction of the labeling error 

using the marker-based clicking system.   
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2.3.2 Calculating Joint Angles 

 

Figure 7.  Segment marker placement.  

The graphic represents ideal placement of markers for a single finger. There are two markers per segment. 

In this illustration the green ellipses represent the joints, the dark gray between the joints represents the segments, 

the small gray circles represent the markers, and the red lines indicate the vectors used to calculate joint angles.  

  

Calculating joint angles is a straight-forward process, and can be done with a simple 

equation (Equation 1) if there are two markers per segment (Figure 7).  

 

( )BA ⋅=Θ −1cos   

(1) 

Equation 1 is the fundamental procedure we applied to our joint angle calculations, but 

many processing steps took place before we could calculate the correct A and B vectors. In the 

previous example (Figure 7) A and B are explicitly defined by the marker set because there are 

two markers per segment. However, in our experiment the vectors A and B cannot be directly 
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defined from markers. The monkey’s finger segments were not large enough to accommodate 

more than one 3mm marker per segment. To overcome this obstacle a review of current joint 

angle calculation techniques was necessary, the results of which are detailed below. 

 

 There have been several methods used to calculate joint angles with two markers per 

segment [72]. One intuitive technique (Figure 7) tends to generate a poor estimate of absolute 

angle. This is a result of assuming the modeled segments are rectangular. The proximal half of 

the segment is larger than the distal. When the angle is calculated directly from the marker set, 

even with two markers per segment, there is an accumulating error correlated with the change in 

radius of the proximal to distal portions (Figure 8). Researchers have accounted for the change in 

segment radius by translating the calculations of vectors A and B (Figure 8) with a continuous 

offset [73].  

 

  

 

Figure 8.  Joint angle calculations - two markers per segment.   

The left panel illustrates how error propagates down the segment if the joint angle is calculated directly 

from the markers with no offset. The solid lines are vectors used directly from the marker set. The dotted lines show 

how this relates to joint centers. The right panel displays how this error can be corrected by applying an offset based 

on the changing segment radius.  
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In our marker set the distance between joints was so small that only one marker could be 

placed between each joint. If the markers are used to calculate vectors A and B in a one marker 

per segment situation, the joint angle calculation error is obvious (Figure 9). The calculated 

angles would have a complex relationship between multiple joints, with no clear correlation to 

joint angles.   

 

  

 

Figure 9. Joint angle calculations - one marker per segment.  

The left panel shows what happens if vectors A and B are calculated directly from a single marker per 

segment data set. The right panel illustrates how we achieved accurate joint angle calculations. The blue dotted line 

shows the relationship between the center of the marker and the joint center. After this relationship is established the 

vectors A and B are calculated directly from joint centers, not markers. 

 

To establish the proper A and B vectors, we used marker movement to estimate joint 

centers (discussed further in section 2.3.3). We used Equation 1 for joint angle estimations after 

vectors A and B were calculated from joint centers. This angle was not dependent on changes in 
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the radius of the segment, low frequency movement of the markers relative to the segment, and 

did not necessitate multiple markers per segment.  

2.3.3 Joint Center Estimations 

  

 

Figure 10. Simplified joint center estimation.  

Both the left and right panels show examples of estimating a center of rotation based on the movement of a 

single marker.  The left panel shows the data acquired from the movement of a point if 360 degrees of rotation 

occurred around a single axis. The right panel illustrates a more complicated problem of estimating a center when 

the data acquired is from a small portion of the arc. The right panel is a more accurate interpretation of our data set. 

 

An algorithm that recursively estimated joint centers based on the most recent 5,000 frames of 

movement data was developed. The underlying principle behind this algorithm is similar to that 

of a two dimensional pendulum, where the only data is that of the pendulum endpoint and the 

desired variable is the attachment point of the pendulum (or the center). In the simplest case the 

pendulum swings 360 degrees around a circle. The data points could be averaged to produce a 
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fair estimation of the center of rotation (Figure 10). This basic example can be expanded to a 

pendulum that only moves through a small arc. If each data point of the pendulum is plotted, the 

arc forms only a portion of a circle. No simple mechanism exists to determine this center of 

rotation (Figure 10). If this example is expanded from two dimensions to three dimensions, the 

movement of the marker no longer forms a simple arc but moves over the surface of a sphere 

(Figure 11). In this example a unique position in 3-D exists such that the distance from the joint 

center and the marker are constant for all data points. The method we use to find this unique 

three-dimensional position was to minimize the variance of the radius estimation in a sliding 

window (5,000 frames). The least squared error approach was performed on marker data re-

sampled to an even distribution of points on a sphere that covered the full range of original data 

(Figure 11). This re-sampling minimized the effects of erroneous marker positions, and provided 

a stable platform for joint center estimation. 

 

  

 



 27 

 

Figure 11. Re-sampled marker data used for joint center estimation.   

The green data points illustrate actual marker locations in 3-D space. The blue x’s indicate the positions of 

these data points after re-sampling. The sphere shows the data points projected onto the surface of a joint. The center 

of the sphere is the joint center used in joint angle calculations. 

 

An additional feature of this technique is our ability to continually update the estimate of 

joint centers throughout the session. Glove movement changes the relationship between joint 

centers and marker positions. This causes a building error in joint angle calculations as a function 

of time. The iterative technique takes into account the possibility of marker shifts and adjusts 

joint center estimates to accurately fit data over the entire session.  
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2.4 SURGICAL PROCEDURE 

The neural recording equipment was implanted in two phases. The first phase was the 

implantation of head holding posts and chamber surround. The chamber surround was a solid 

piece of titanium machined to the shape of an oval ring with ten feet extending from the base of 

ring (designed and manufactured by George Fraser). Each foot of the chamber surround had two 

countersunk screw holes giving a total of 20 skull fixation points (Figure 12). The feet were 

surgically form fitted to the skull, and the surround was a clamping ring for the recording 

chamber (Figure 12). The feet became overgrown by bone over many months after implantation. 

For stability purposes, the initial post and chamber surround implant surgery typically occurred 

early in the monkey-training phase.  
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Figure 12. Chamber surround.  

Left panel shows a picture of two chamber surrounds with plastic inserts (a quarter is shown to the right of 

the chamber surround for size reference). The right panel shows the chamber surround fixated to a plastic Rhesus 

skull. The ten stabilizing feet are anchored to the skull with stainless steel screws. On the chamber surround there 

are two protrusions on the long axis of the ellipse. These two protrusions contain set screws that clamp the surround 

circumferentially around the recording chamber. 

 

Prior to surgery the monkey was given intra-muscular injections of Ketamine, Diazepam, 

and Cefazolin. The rhesus monkeys’ in this experiment were typically 6-10kg males between 

five and eight years old. The head and dorsal portion of the neck were shaved, and the collar 

removed before entering the surgical suite. After endotracheal intubation the animal was 

connected to a ventilator and respirated with gas anesthetic (Isoflorane). The ventilator settings 

were adjusted to maintain a SpO2 of 95%. An intravenous catheter was placed in the saphenous 

or popliteal veins to continuously administer saline and to act as access in case of an emergency. 

A rectal thermometer monitored the temperature throughout the procedure. A bear hugger was 

adjusted based on the temperature reading from the rectal probe. The animal was placed in a 

five-point stereotaxic frame mounted to a surgical table. A pulse-oximeter was placed on the lip, 
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finger or ear of the animal. The animal’s head was prepared with betadine scrub and alcohol for 

sterility prior to incision. The surgical field was covered in sterile drapes. Sterile technique was 

used throughout the entire procedure. 

 

The first portion of this procedure was to implant the head post base. Three separate 

small incisions were made. The first was midline just above the brow, the second and third were 

symmetrically located just medial and posterior to the auricles. The fascia and temporalis muscle 

were stripped from the skull. The posts were implanted using self-tapping titanium KLS-Martin 

bone screws. The skin was closed over the head post base with 4-0 prolene. The three bases 

formed a triangle with the apex toward the nose of the monkey. After completion of the head 

post base installation one large u-shaped incision was made to create an opening for two 

chamber surrounds. This u-shaped incision created a skin flap with intact posterior and posterior-

lateral blood supply. The flap was later closed, covering the chamber surround. This minimized 

early infection, protected the bone screws, and provided time for the bone to grow over the feet 

and screws. 

 

The fascia and temporalis muscles were separated from the skull and the feet of the 

chamber surrounds were manipulated to approximate the curvature of the skull. The exact 

positioning of the chamber surround (centered over hand area of motor cortex) was measured 

using stereotaxic coordinates calculated from an MRI. Each foot was secured to the skull with 

stainless-steel bone screws. A temporary insert was placed in the chamber surround (Figure 13). 
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Figure 13. Implantation of chamber surrounds and head posts.  

Picture from surgery of bilateral chamber surround and head post installation. Notice the proximity of the 

chamber surrounds to midline, and how the feet were adjusted to accommodate the posts of the contralateral 

hemisphere chamber surround. The photo was taken at the front of the animal. The posterior skin flap, seen reflected 

onto the blue drape, was composed of skin and fascia.  

 

Before the incisions were closed, the temporary inserts were removed and silicon rubber 

was injected into the recording chamber space. After the silicon rubber set the mold was 

removed and the inserts were replaced. The silicon rubber served as a template for the curvature 

of the skull relative to the chamber surround. The mold was analyzed with a micromanipulator to 

determine the skull curvature. The relationship between the chamber surround and skull was 

incorporated into manufacturing of the recording chamber to minimize cerebrospinal fluid 

leakage. 
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In the second surgical procedure we implanted the recording chamber inside the 

surround. During this procedure the animal was prepared in the same manner as the first. A 

single incision was made over the chamber surround and the skin was reflected. A craniotomy 

was performed leaving a 2 mm ridge of bone around the inside of the chamber surround. An o-

ring was placed on the bone ridge, and the recording chamber was placed on top of the o-ring. 

Pressure was applied to the recording chamber as the clamping screws were tightened. The 

combination of the custom profiled chamber, o-ring, and chamber surround provided a secure, 

water-tight fit to the skull. The procedure was completed with a 4.0 prolene purse string closure 

to secure the skin to the recording assembly. All procedures were performed in accordance with 

the guidelines set forth by the Institutional Animal Care and Use Committee of the University of 

Pittsburgh. 

2.5 NEURAL DATA PROCESSING 

2.5.1 Neural Recording 

The electrodes used in these experiments were fabricated within our laboratory (Laurel K. Sinko 

and Ingrid Albrect). The raw materials were purchased from Thomas Recording and assembled 

throughout the course of the experiment. The electrodes were made of tungsten wire with glass 

insulation. The end of the electrode was beveled to a sharp tip to allow for dural penetration. The 

impedance of the electrodes was between 0.75 MΩ-1.5 MΩ. They were loaded into a five-

channel Thomas Recording Mini-Matrix system. The Mini-Matrix had a motor per electrode 

with separate electrode guide tubes that protruded from the housing. The electrodes were bonded 
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to a 15 mm piece of silicon tubing that was clamped to a monofilament. The monofilament was 

wrapped around the motor head. A push button controller, or software system, located outside 

the recording room, controlled the motors. As the motors turned, the silicon tubing relaxed, 

producing a continuous predictable electrode driving force. After clamping the drive to the 

chamber, the electrodes were lowered through the dura at 4µm per second. After dural 

penetration, electrode advancement was halted and was left to stabilize for one hour. All 

recordings (Table 1) were made from the contra-lateral motor cortex of arm movement at depths 

between 3,000-12,000 microns. An illustration of electrode penetrations is shown in Figure 14. 

 

Figure 14. Penetration sites in relation to central sulcus.  

Graphical representation of electrode penetration sites in relation to the central sulcus over 11 months of 

neural recording. Recording sites from three hemispheres and two monkeys have been projected onto the left 
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hemisphere. The green oval represents the recording chamber, and the blue rectangle shows the area of focused 

neural recording. The expanded Figure shows the electrode penetration sites, each dot represents a single electrode. 

PS = principal sulcus, AS = Arcuate sulcus, CS = Central Sulcus, IPS = intraparietal sulcus. 

 

A 16-channel Tucker Davis Technologies (TDT) Pentusa recording system was used to 

digitize and display spike waveforms, timestamp neural data, and synchronize the kinematic 

data. The waveform data was sorted in real-time, and the waveform snippet data was stored for 

offline analysis. The timestamp data was buffered by a program written to interact with the 

behavioral paradigm. The TDT program received a “start buffer” message from the behavioral 

computer at the beginning of the Hold A (section 2.1) and a “stop buffer” message when a 

reward was given, or a trial failed. In the first hemisphere the retrieval movement data was not 

collected. This was later modified so the “stop buffer” message was sent when the Hold A start 

time occurred. Thus, the reach and retrieval data from the second two hemispheres were 

available for analysis. 
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Table 1. Sample of the files and number of cells recorded. 

Table showing 89 different recording sessions that correlate with 438 cells, of which 327 were used in 

analysis. Only the cells that were both recorded for the entire session, and correlated with grasping kinematics are 

shown. 
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2.5.2 Fractional-interval firing rates 

The analysis of motor cortical activity was approached with a rate code model. The classical 

approach to calculating firing rates is to first determine a bin size. The bin is a window of time 

over which the spiking activity will be considered one unit. As the bin size increases so does the 

probability of spiking activity to occur in that bin, the contrary is also true. There is an offset in 

time between motor cortical spiking activity and movement, i.e. lag. The average lag for all cells 

in this experiment was calculated by determining the max correlation between spiking and joint 

position for nine different time offsets (300, 250, 200, 150, 100, 50, -100, -200,-300). Those that 

had a peak correlation with a negative lag were considered to be sensory and were discarded in 

analysis. The best average time lag for all the cells recorded was 150ms. This average lag was 

applied to all cells early in data processing. 

 

In the current experiment we analyzed firing rate activity as a function of dynamic 

processes. The dynamics of reach-to-grasp occur in 500ms, on average. For a pyramidal cell in 

the motor cortex, a high spiking rate is considered to be 100-150 Hz. Based on this, we would 

expect to record 50-75 spikes in a single reach-to-grasp for a cell with a high firing rate. When 

the bin size is decreased to 30ms, to better analyze the cells correlation to task epochs, the 

average expected rate decreases to three to four spikes per bin. In order to obtain a less sparse 

representation of firing rate per bin we utilized a fractional inter-spike interval (ISI) method to 

calculate firing rates.  
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Figure 15. Fractional interval spike rates.  

Top panel shows an example cell that spikes seven times during an epoch. The black vertical lines show the 

digital representation of an action potential. The red curves highlight the inter-spike interval (ISI). The lower panel 

shows how fractional intervals are used to calculate a firing rate. The green rectangles represent time bins. The blue 

portion of the spike train is used for example calculation of firing rate. The fraction of the ISI that occurs in a bin is 

labeled fractional weight. The fractional spikes occurring in a single bin are calculated by adding the fractional 

weights in that bin.  

 
Figure 15 shows an illustration of fractional interval spike rates for an example cell over 

three bins. The inter-spike interval (ISI) is calculated. The fraction of ISI that occurs within a bin 
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is called a fractional weight. The number of spikes per bin is calculated by adding these 

fractional weights. The spikes per bin divided by the bin size gives the firing rate. If not 

otherwise specified, it is the fractional-interval rate calculated over 30ms bins used throughout 

all the analysis. 

2.5.3 Kinematic and Neural data processing 

Processing of the kinematic and neural data in preparation for neural predictions focused on 

kinematic alignment and binning data across many days. A session of reach-to-grasp data 

consisted of 23 DoFs of joint angle data, and at most 11 individual motor cortical cells. The 

collection of neural data continued over 11 months with a 5-channel Mini Matrix system. This 

recording method made it relatively easy to isolate individual motor neurons; however it was 

impossible to collect firing rates from large simultaneously recorded populations of cells. 

 

The first step in the alignment procedure was to separate neural and kinematic data as a 

function of object presentation. This created 64 groups, one per unique object presentation. This 

decreased the overall variability in kinematic data per day, but combining data over many days 

still produced a large variability per joint (Figure 16). In this figure each tracing represents a 

single velocity trajectory for a joint, and zero (vertical green line) represents the start of the 

movement. The raw trajectories all have a different number of samples.  
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Figure 16. Trajectories across days 

Each plot in the right figure represents a different DoF. An illustration of the hand is shown in the left panel 

for comparison. The blue joints are 1-DoF flexion joints, the red are 2-DoF flexion/abduction joints. All of the blue 

trajectories were combined over many days when the animals grasped the small handle in the horizontal 

presentation. The first column shows the angles for the joints of the thumb. Columns 2 through 5 correspond to the 

1st, 2nd, 3rd, and 4th fingers respectively. The bottom row shows the flexion MCP joints of the fingers. Moving up the 

rows: the abduction angles of the fingers, the PIP angles, and the DIP angles. The figure of the hand on the left can 

be overlaid onto the trajectory plots for easy interpretation. 

 

Combining just those trajectories for a single object presentation across days would 

produce a kinematic data set with such a large standard deviation that the mean would not be an 

accurate characterization of the data. We have separated a single joint from the population to 

better understand the normalization procedure (Figure 17). 
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Figure 17. MCP1 flexion over many days 

Each blue trace in this figure represents the movements from the beginning to the end of each trial. The 

zero time corresponds to the start of movement recorded by the behavioral computer.  

 

We normalized the temporal variability by re-sampling each trajectory to only have 100 

data points (Figure 18 A).  
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Figure 18. Hand angle and velocity 

Figure A shows a 100 point joint angular velocity trajectory for all 20 DoFs. Each colored trajectory 

represents a different joint. Figure C shows a joint angular velocity smoothed trajectory. The black trajectory is the 

raw velocity data calculated for the first finger DIP joint. The red line, the smoothed trajectory, was created using a 

10 sample box filter. The absolute value of velocity tracings of 20 different joints in a single trial is shown in Figure 

B. Figure D is the sum of the curves in Figure B. This is the sum hand velocity over a trial. 

 

The initial alignment procedure was to normalize both the joint angle and joint angular 

velocity trajectories to 100 samples. The angular velocity was calculated from the instantaneous 

difference between measurements. Figure 19 shows twenty joint tracings over a single trial 

normalized to 100 samples. The zero sample number in this data corresponds to the end of hold 

A, and the end sample represents 150 ms before object touch was detected. The joint angular 

velocity trajectories were smoothed using a 10 sample box filter (Figure 18C). The absolute 

value of the joint angular velocity trajectories for the 20 DoFs (Figure 18B), were summed to 

C 

D B 

A 
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produce a single curve corresponding to the total finger velocity for a trial. This method 

decreased the complexity of hand shaping to a single velocity curve. The peak of the velocity 

curve (Figure 18D) was called the maximum hand shape velocity, only used to define epochs of 

the reach. Ten percent of the maximum was used as a cutoff to analyze the start and stop of hand 

shaping.  

 

 In this step each grasp is still a unique entity, and no combining over days has occurred. 

A goal of combining this data over many days was to select a summation method that would 

produce a set of trajectories with minimal variability. In this way the mean will be an accurate 

representation of the data set. The trials for each object presentation (see section 4.1) were 

separated under premise that the variability is less for one object presentation than the variability 

across presentations. 
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Figure 19. Aligned joint velocity tracings  

Each plot represents a different DoF. All of the trajectories are combined across days when the animals 

grasped the small handle in the horizontal presentation position. The first column shows the angles for the joints of 

the thumb. Columns 2 through 5 correspond to the 1st, 2nd, 3rd, and 4th fingers respectively. The bottom row shows 

the flexion joints of the fingers and thumb. Moving up the rows: the abduction angles of the fingers and thumb, the 

PIP angles, and the DIP angles. 

 

All the trajectories corresponding to a specific object presentation were combined by 

aligning the peak hand shaping velocities. This created 64 different data sets, one per object 

presentation. The number of trials that correspond to a single object presentation in each data set 

varied between 267 and 445, this variability was secondary to difficulty tracking the hand when 

certain objects were presented (especially monkey B). A perfectly recorded object grasp could 

have 445 trajectories in this analysis (89*5). The recording was completed over 89 recording 

sessions. 327 cells were used from all the sessions.  
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The neural data went through the same alignment procedure. The corresponding bin size 

necessary to normalize the kinematic trajectories was used to calculate a 100 bin firing rate 

vector for each movement. The lag between firing and movement was maintained at 150ms 

average for all cells. The neural data across bins corresponding to a presentation were averaged. 

In this way each neuron was represented by an average 100 bin firing rate vector per 

presentation. The number of data samples fit with linear regressions was on the magnitude of 

2,500-5,000 data points.   

2.6 EXPERIMENTAL DETAILS 

The goal of this work was to correlate orientation and hand shape kinematics with single unit 

motor cortical activity. A single object was presented at seven orientations (horizontal/straight, -

60 degrees roll, 60 degrees roll, -60 degrees pitch, 60 degrees pitch, -60 degrees yaw, 60 degrees 

yaw) to test wrist orientation. Ideally these targets would have also been presented in a four 

target (up left, up right, down left, down right) center out task, to analyze arm velocity. The 

Denso robot and tool changers used in this study only have a 12 object capacity. If all of these 

features were to be studied per cell, it would constitute 12 objects * 4 locations * 7 orientations * 

5 repetitions = 1,680 trials. This would allow for analysis of all interactions between wrist 

orientation, hand shape and arm translation to be explored.  

 

Due to time constraints of acquiring neural recordings from individual motor cortical 

cells 1,680 trials per session was not realistic. With the limited number of trials per session, we 

focused on hand shape and wrist orientation. Thus all objects and seven orientations were 
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presented at the center of the monkey’s work space. This allowed for all second order 

interactions between orientation and hand shape to be explored. The number of objects used 

during this study was based on results from the kinematic data (see section 3.1). The final object 

set comprised of ten objects depicted in Figure 20. 

 

Figure 20. Graphical representation of objects.  

This illustration shows the ten objects used in the reach-to-grasp experiment. The number listed below the 

name of the object is used as a reference throughout the remainder of the text. The portion of the object that the 

monkey interacted with is shown in red. The lower portion of each object, the circular portion with prongs extending 

from the interior, is the tool changer attachment. 

4 3 2 1 5 

9 8 7 6 10 
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3.0  KINEMATIC ANALYSIS AND GRASP SYNERGIES 

The primate hand is a complex system containing 27 bones, 18 joints, and 39 intrinsic and 

extrinsic muscles [74, 75] with a potential for over 20 degrees-of-freedom for hand shaping [37]. 

Movement of the fingers requires a coordinated interplay of both extrinsic and intrinsic muscles 

[3, 4, and 5]. In this section, the kinematics of reach-to-grasp movement will be analyzed using 

dimensionality reduction techniques for two reasons. The first is the possibility that the brain 

takes advantage of finger correlations to build a lower-dimensional controller to simplify the 

neural grasp controller. Secondly, from a prosthetics standpoint, attempting to control a robot 

with 23 independent DoFs with a neural signal could be incredibly difficult and completely 

unnecessary for accurate and anthropomorphic hand movements. In light of this, we will to 

explore lower dimensional models to come up with a better grasp control scheme for prosthetics. 

 

There are numerous methods that one can utilize to simplify grasping movements. Two 

general approaches used are bottom-up and top-down. The bottom-up approach elucidated 

individual components to construct models that encompass the entire hand. Other researchers 

have adopted a top-down approach to study the hand as a unit. These studies focused on 

establishing a set of principles that describe the variability in hand grasping shape with few 

variables [1, 35, and 76]. In these experiments, humans were presented with objects of various 

shapes and joint parameters were recorded while the hand was grasping. A few problems were 
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highlighted in these early studies. The first was the need to acquire data from many 

simultaneously moving, closely-spaced DoF. The second was the necessity to elicit many 

different hand shapes so the entirety of grasping space was well represented in the data set (both 

are further discussed in section 3.1.1 and 3.1.2). In the past, these issues have constrained the 

collected data. In the current work, we have meticulously addressed these problems with the 

intent of collecting copious, accurate data. 

 

Researchers have used various methods to acquire real-time movement parameters from 

their subjects. Some of these methods include magnetic coils, potentiometers across joints, active 

light emitting diodes and passive reflective markers. Many systems have been commercially 

created from these technologies for specific experimental designs (Gait, Eye tracking, Data 

Gloves). However, no such system exists for studying grasping movements of monkeys. In many 

of the previously mentioned grasping experiments, the limitations of the data collected were 

secondary to technological constraints that caused researchers to sacrifice the number of DoFs 

measured simultaneously from the hand during grasping [1, 35, and 76]. In the present study, we 

implemented a passive recording system capable of streaming real-time three-dimensional 

marker data from multiple sources and developed our own algorithms for processing these data 

(Figure 21).  
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Figure 21. Continuous real-time joint angle data 

This plot shows continuous measurements collected from 20 DoFs recorded during the reach-to-grasp task. 

The y-axis indicates an angle automatically calculated by the system, the x-axis indicates the frame number. In this 

section a frame number is a 5ms increment of time in which the motion tracking system samples data from all hand 

markers.  

 

As mentioned above, measuring high resolution joint angles of the hand has been a 

challenging problem (Highlighted in section 2.3.2). One study used a large data glove with 

imbedded strain gauges to estimate joint angles [35], but this cannot be used in the small frame 

of a rhesus monkey hand. Other researchers have used systems similar to ours but with 

differences in marker placement and less sophisticated angle calculation algorithms [1]. We have 

found that details such as the marker placement relative to a joint/segment are an important 

factor contributing to joint angle estimation error (Section 3.1).  
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3.1 OBJECT SELECTION 

To generalize our findings, we chose a set of objects that elicited a wide range of grasps.  Two 

factors constrained the number of objects we could use.  First, the robot that presented the 

objects only had space for a limited number of objects.  Second, the time allotted per session was 

limited by our ability to maintain isolation of the recorded unit. These two factors made object 

selection a critical design factor. In our case, the object set must elicit a wide variety of grasp 

shapes with a minimal number of different objects. 

 

The objects in this study were chosen through an iterative process. Object selection was 

governed by the desire to elicit the largest excursion for each joint using the fewest number of 

objects. A literature review was performed to identify common hand shapes and common object 

features that elicited these shapes. We concluded this analysis by constructing a list of 24 

objects. These objects were machined from acrylic and presented to the monkey while its hand 

was being tracked with a Vicon® motion capture system. The object presentations were 

consistently and systematically put forth with an industrial robotic arm. 

 

The notion of how a certain object feature alters monkey hand configuration is a difficult 

variable to quantify. In light of this, we created a metric to determine the importance of each 

object in the data set; cost of removal (Figure 22). This cost is defined as the percentage of 

unique angles lost when an object is removed from the set. With high percentages a large portion 

of unique joint angles in the data set will be lost. In the first iteration of object selection, each 

object was presented to the monkey. The “unique joint angles” were calculated for each object. 

Unique angles are defined as those that are specific to a single object presentation (Figure 22). 
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For instance, the joint angles recorded for an object that is very different from all other objects 

will produce a high number of unique angles. This number of unique angles is then divided by 

the total number of angles. This fraction is transformed into a percentage and labeled as the cost 

variable. An example of this process can be seen in joint DIP2. All of the joint angles measured 

during object 4 presentation are unique compared to other objects. This is displayed in Figure 22 

as the diamond for object 4 that is separate from the others for that joint. This object has a high 

cost of removal for the DIP2 joint. The two objects (3-blue and 4-orange) with the highest 

overall cost have been highlighted with large numbers.  

 

 

Figure 22. Joint angle excursion as a function of object. 

Each of the DoFs was labeled on the y-axis. The x-axis represents the joint angles measure. Each diamond 

corresponds with a different object. When a diamond is separated from all other diamonds, this indicates an object 

has a high cost. The line through each diamond is the mean joint angle. The apices of the diamonds show the min 

and max angles measured for the numbered object. Objects three and four have been labeled to show the two objects 

with the highest cost. 
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After the first iteration of this process was completed, 11 objects, all with costs less than 

4%, were removed from the original 24 object list.  
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Figure 23. Cost analysis for original and final object set.  

Figure A shows the cost values calculated for the original 24 objects. An arbitrary cutoff value of 4% cost 

was used to determine which objects would be continued to the next iteration. In this graph the x axis is the object 

number and the y axis is the cost in percentage of unique angles that would be lost from the data set if this object 

were removed. Figure B shows a similar plot for the final ten objects used in the reach-to-grasp task.  

 

B 

A 
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 This process was continued through several iterations. With each iteration fewer objects 

were removed from the data set and the remaining objects were slightly reconfigured to correct 

for problems encountered in the previous iteration. The final set of ten objects was chosen 

through four iterations of this process (Figure 23). Objects were not removed in all iterations 

because the objects were slightly reconfigured to produce larger joint excursions. The final set of 

objects (Figure 20) was not merely ten objects from the original object set. The final objects 

consisted of those that had the largest number unique joint excursions, or the largest cost, 

associated with them.  

3.2 JOINT ANGLE ACCURACY  

 

Marker placement can be a process that is both mundane and challenging. The small monkey 

hand makes marker confusion by the reconstruction algorithm more common than with large 

segments, and placement more critical for accurate joint angle reconstruction. If a segment is 

large enough to accommodate multiple markers (a.k.a. Femur), the placement process is rather 

simple because multiple markers can be located on each segment. For accurate joint angle 

reconstruction the markers should span the entire length of the segment. For example, with a 

long segment like the femur, many markers can be placed along its axis with at least one near the 

knee and another near the hip. This will minimize marker clustering and maximize the measured 

span of the segment. Most of the bones in a monkey hand, however, are too small to 

accommodate multiple markers that can be tracked individually by the cameras.  
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Some researchers have solved this problem by placing a single marker over the joint in 

question [1]. In this work, the researchers used the absolute marker positions to calculate joint 

angles. Others, applying a similar technique, used an offset to estimate joint centers [73]. In these 

studies the researchers used a simple offset to estimate the joint center from the absolute marker 

location. In the current study, we used a single marker placed in the middle of the segment and a 

sophisticated algorithm to calculate joint centers from marker positions. Each of these techniques 

has its unique benefits and problems. 

 

  
 

Figure 24. Marker movement with markers placed directly above a joint.  

In both illustrations the green ellipses are joints, the dark gray portions between the ellipses are bony 

segments and the blue circles above the joints are markers. The number of green ellipses per joint corresponds to the 

number of DoFs for that joint. In this graphic the markers are placed directly on top of the joint in some default 

posture. The left panel shows a finger in the default position. The right panel shows the same graphic when the 

finger is in a flexed position. Based on the degree of flexion the marker moves in a non-linear way around the joint 

(shown as the light blue circles relative to the dark blue circles). This non-linear marker movement creates joint 

angle estimation error that is difficult to account for. We estimated using a human model and a goniometer that 

when using this technique to calculate joint angles create 15-20 degrees of joint angle error.  
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One strategy utilized to measure joint kinematics of the hand in the past has been to place 

the markers directly over the joint of interest [1] (Figure 24 and 25). When this marker 

placement was utilized the joint angle calculations were done in two ways.  

 

  
  

 

Figure 25. Joint angle calculation and graphic of joint angle error estimation.  

The same color scheme has been used as the previous Figure. The red arrow indicates the vectors 

calculated between each marker. These graphics show the simple vectors used for joint angle calculation. The right 

panel shows how the marker movement and vectors used from the marker data can give a poor estimation of joint 

angle. 

 

In one method, vectors are drawn between three adjacent markers (middle marker over 

joint center) and the joint angle is the angle between these adjacent vectors. This is the simplest, 

but most error-prone method for single marker segments. Unfortunately, locating the markers 

precisely over the joint centers is very difficult and leads to error in the angle calculation. The 

primary component of marker position error is that skin over the joints move nonlinearly as a 

function of joint angle. Furthermore, the relative position of the skin over a particular joint 

depends on the position of the other joints in series.  For example, flexing the MCP joint will 
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tighten and shift the skin over both the PIP and DIP joints.  Because the marker position error 

exhibits complicated interactions across joints, it can be difficult to compensate in reconstruction 

algorithms.  Using a goniometer, we estimated that the shifting skin can cause 15-20 degrees of 

error in joint angle measurements, when the markers are located on top of the joints in human 

subjects. Although it is easy to implement, this approach is prone to large errors in joint angle 

estimation. 

 

An attempt to address this problem was made by applying a continuous offset function to 

the marker data. This function accounts for the changing proximal to distal segment profiles but 

does not address the error caused by the second and third issues above. This method uses a 

relatively simple measurement of proximal to distal segment width and applies this as a 

continuous offset function. Another benefit of this method is that joint angle calculations are 

determined from joint centers rather than marker positions. Unfortunately this also adds 

unnecessary error to the joint angle calculation by placing the markers directly over the joints. 

 

  In order to make more accurate joint angle calculations, we placed our markers in the 

center of each segment. The skin, and therefore the markers, moves much less in this location 

(Figure 26). This center segment marker placement approach is less non-linear, but makes it 

more difficult to calculate joint angles from individual markers. Before the current work, single- 

center segment marker placement had not been used to calculate joint angles from joint center 

positions. We developed an algorithm to estimate joint centers which were then utilized to 

establish an accurate estimate of joint angles (for details see section 2.3.3). 
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Figure 26. Marker movement with inter-segmental marker placement.  

The left panel shows initial marker placement used in our experiment. There are two markers on the most 

proximal segment. This bone was the only segment large enough for two markers and was used as an anchor to 

establish the planes of movement for each finger. The more distal segments correspond to the proximal phalange, 

interphalangeal bone, and the distal phalange. The right panel shows the relative motion of the markers during joint 

flexion. Using a goniometer method we estimated that this sub-millimeter movement contributed to an error of one 

to five degrees in joint angle accuracy (as compared to 15-20 degrees in the previous example). 

 

A clear advantage of this joint center estimation is that it increases the accuracy of joint 

angle values. The inter-segmental marker placement produces less error from non-linear marker 

translation during movement. Directly calculating angles from joint centers without the necessity 

of a continuous offset function also increases joint angle accuracy. The joint centers were 

estimated over the course of a recording session in an iterative fashion using the most recent 

5,000 frames. This iterative process allowed us to account for small marker translations down the 

shaft of the finger that would occur during the course of the recording session. This was 

important for accuracy over the entire recording session.  
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In the current study monkeys wore kinematic tracking gloves. During the course of a 

single session, the glove had a tendency to slowly migrate down the monkey’s hand (1-3mm). 

The recursive nature of the center estimation procedure (detailed in Section 2.3.3) compensated 

for the marker drift. This algorithm allowed us to test the accuracy of the system and optimally 

adjust our algorithms.  

3.3 DIMENSIONALITY REDUCTION 

Recent advances in computing and data collection have generated an information overload in 

fields such as astronomy, biology, engineering and neuroscience. With high-dimensional 

datasets, it is often found that subsets of variables are unimportant for understanding the 

underlying phenomena of interest. While certain computationally expensive novel methods [77] 

can construct predictive models with great accuracy from high-dimensional data, it is still of 

interest in many applications to reduce the dimension of the original data prior to modeling of the 

data.  

3.3.1 Intuitive Kinematic Analysis  

Figure 27 shows a detailed view of the MCP1 joint during different reach-to-grasp movements. 
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Figure 27. MCP1 joint movements. 

The top panel shows an individual trial showing the MCP1 flexion/extension joint angle during a 

movement to the small handle. The vertical green line at time zero indicates the detection of button release. The 

vertical red line is the beginning of the Hold B period. The lower Figure shows the same MCP1 joint for all (both 

successful and non-successful) trials in a single session. Once again, the vertical green line indicates the go signal. A 

general trend toward extension is seen in the early phase of movement across objects in the lower Figure. This 

extension trend can be generalized to a characteristic in the early opening phase of reach. 
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These joint movements illustrate a key component of preshaping. This joint shows movement 

throughout the reach (between the green and red vertical lines) in a smooth fashion and plateaus 

at a final joint position as the hand nears the object. Another component of preshaping can be 

seen in the lower plot. All of the movements from a session contain many different objects in 

many different orientations. The monkey shows a common “default” opening posture throughout 

all objects grasped. This can be seen in the lower plot as a general trend in the negative direction 

(first finger extension) early in the movement followed by a more individualized modification of 

flexion extension. Essentially, the animal starts with a characteristic opening phase that is fairly 

constant across objects with later modification depending on the specifics of the required grasp. 

These Figures show that monkey movements have similar preshaping characteristics to those 

described previously in humans [41, 44, and 45].   

 

In the current study it was found that the monkey moves all DoFs simultaneously during 

any single reach to grasp movement, the movement was smooth, and the joint angles were 

correlated throughout the reach. The movements plotted in Figure 28 are from six presentations 

of a single object at different orientations and show a high degree of covariance between joint 

angles. The joint angle data output show that the metacarpal phalangeal (MCP) flexion, MCP 

abduction, and interphalangeal joints tend to covary (Figure 28-B, C, D, E, F). These are the 

same joints that move together when opening and closing the fist. 
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Figure 28. Correlated grasping movement.  

Joint angles for multiple joints over six consecutive trials. A group of six trials was selected from the data 

set for illustration. The data in panel A shows all the DoFs of motion tracked simultaneously throughout the reach-

to-grasp movement. Panel B shows the wrist DoFs isolated for the same six movements. This data has been 

separated by joints that have similar function across different fingers. C, D, E, and F illustrate the grouping of MCP 

flexion, MCP Abduction, DIP and PIP joints (respectively). These groupings show a basic correlation among these 

functionally similar joints. 

 

Joint correlations were tabulated in a color-coded correlation coefficient matrix (Figure 

29). The coefficients were grouped by the joint type. For instance, all the MCP flexion/extension 

A B 

C D 

E F 
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DoFs have been plotted next to each other. This is also true for the MCP abduction/adduction, 

proximal interphalangeal (PIP) joints, distal interphalangeal (DIP) joints, the wrist, and thumb 

DoFs. A high correlation is illustrated by a white square, a low correlation is shown as an orange 

square, and an anti-correlation is shown as a black square. The autocorrelation line can be seen 

as a white diagonal traveling from upper left to lower right across the figure. The clustering of 

correlation in this plot has been highlighted by a black outline around similar joints. The large 

white and yellow area in this plot indicates that the joints with similar physiologic action across 

many different fingers are correlated to one another. In other words, the fingers and individual 

joints across the fingers move together in a coordinated fashion. This Figure also shows how 

little correlation exists between the individual DoFs of the wrist and the rest of the fingers. This 

may be a natural physiologic feature or may merely be a function of the experimental design. 

The presentations of objects were selected to isolate different final wrist angles with similar hand 

postures. 
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Figure 29. Joint angle correlation matrix.  

Each box is a representation of the correlation coefficient calculated for a joint pair. The data used for this 

Figure was from the first 30 sessions of kinematic data from monkey V. The color map to the right indicates that a 

white square is a joint pair with a correlation of 1, a black square is a joint pair with a correlation of -1, and an 

orange square indicates joints that show little correlation. The joints have been arranged so those with a similar 

physiologic function across fingers are grouped together into a block of 3 or 4 (depending on the joint). The white 

diagonal in this Figure represents an autocorrelation line, and the black vertical and horizontal lines help separate the 

functional groupings. The left of the Figure shows a list of the types of joint groupings.  

 

The correlation matrix is a helpful way to visualize how joints with a similar function, on 

different fingers, are highly correlated. Figures 28 and 29 allow for some intuition that principal 

component analysis will work well in reducing the dimensionality of the grasping data. 

However, these Figures do not show what the eigenvectors are likely to be. The covariance 

matrix has been plotted (Figure 30) to give some intuition as to the likely coordinated joint 

displacement vectors from this analysis. The covariance matrix was organized in the same way 
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as the correlation matrix, but the clustering that occurs is different. Flexion of the PIP and MCP 

joints tend to have high covariance values across fingers. This would suggest that large weights 

will be placed on these joints in dimensionality reduction. 
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Figure 30. Joint angle covariance matrix.  

Each box represents the covariance of joint pairs. The joints have been arranged in a similar way as the 

previous Figure. It is evident that this highest positive covariance is within the PIP and the MCP flexion joints. This 

covariance matrix indicates that the first two eigenvectors from this data set should account for much of the variance 

in the PIP and MCP flexion joints. 
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3.3.2 Basics of Dimensionality Reduction 

This study will investigate the application of linear dimensionality reduction techniques to the 

grasping dataset. The basis of any linear dimensionality reduction technique is that each of the 

resulting components of the new variable is a linear combination of the original variables. We 

will apply principal component analysis (PCA). Which are also known as singular value 

decomposition (SVD), the Karhunen-Loeve (KL) transform, the Hotelling transform, and the 

empirical orthogonal function (EOF) method [78]. The application of PCA will reduce the 

dimension of the data by finding orthogonal linear combinations (eigenvectors) and rank them by 

the explained amount of variance in the original variables. A simple example of this is shown in 

Figure 31 illustrating how PCA can simplify this two dimensional data set.  

 

  

 

Figure 31. Dimensionality reduction example. 

Simplified example of how a two-dimensional data set that is highly correlated can be accurately 

represented by fewer variables using PCA. The left plot is 100 heights and weights plotted on a Figure. The blue line 

is the first eigenvector plotted in this two-dimensional space. Each of the variables in this plot has a large 

distribution of data points in both dimensions. The plot on the right is the same data set displayed in eigenvector 
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space. In this plot the majority of the variability in this data is captured along the first eigenvector axis. Therefore a 

large source in the variability in this two-dimensional data set can be represented by a single variable.  

 

3.3.3 Application of PCA to Grasping Data 

For illustration and ease of understanding, the following section will only refer to the static phase 

of grasping measured 50ms before the beginning of the ‘Hold B’ (detection of object contact). 

For each trial performed in this experiment, there is a single static hand shape that was dependent 

on the object and its orientation. Both are considered a single presentation, giving a total of 64 

unique presentations per session. Each presentation is repeated five times, producing a total of 

320 trials per session. Each presentation consists of 23 (20 hand + 3 wrist) joint angles, one for 

each degree of freedom. In this example, we will assume that the monkey successfully reaches 

all presentations five times. This example will be performed only with data acquired in a single 

session. Only the joints that produce hand shape are analyzed with principal component analysis, 

and those joints giving rise to orientation (wrist DoFs) are treated separately. This gives a matrix 

of joint angles that is 20 by 320… 
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where A is a joint angle matrix with J1 representing the first joint, and T1 the first trial. So J1T1 is 

the joint angle measured for joint one on the first trial. The data is normalized by subtracting the 

mean of that joint … 

MAD −=  

 (3) 

 where … 
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This normalization produces a data set with a mean of zero for each joint. Intuitively this 

means that the joints with larger changes in angle during grasping will have more influence on 

dimensionality reduction, i.e. account for more variance across all joints. The next step in PCA is 

to calculate the covariance matrix from the normalized data (D). This matrix looks like… 
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Since the data of interest has 20 dimensions the covariance matrix ( C ) is a 20x20 matrix. 

It is the eigenanalysis of this covariance matrix that is the basis for PCA, and gives matrices Z 

and E.  

AEZ ⋅=  

(6) 

Z is the matrix of scores (i.e. projection of eigenvectors). E is the rank ordered matrix of 

eigenvectors. The E matrix contains 20 orthogonal linear combinations of the original variables. 

The rank of the eigenvector is determined by the eigenvalues, or variance accounted for.  

At this step, there is no data lost, and therefore no dimensionality reduction, but the 

original data is represented in eigenvector space rather than joint angle space. The dimensionality 

reduction occurs when a few of these eigenvectors are chosen to represent the original data. In 

this example, we have chosen the number of eigenvectors that account for at least 85% of the 

variance in the original joint angle data. In the static hand shape analysis, the first seven 

eigenvectors accounted for 87% of the variance in joint angles of the hand. Thus, in the 

remaining portion of this analysis we will utilize seven eigenvectors for reconstruction. 

 

One of the benefits of using a linear dimensionality reduction technique like PCA is the 

ability to reconstruct the data from a reduced set of descriptors. In this context, a reduced number 

of eigenvectors can be used to approximate the original joint angles. This allows the user to both 

visualize how the reduced dimensional space perturbs the original data set and gives intuition of 

how the hand moves through a reduced dimensional control space. This process is illustrated in 

the following set of equations.  
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If there is no dimensionality reduction…. 

 

[ ] TEZMA *=−  

(7) 

 

where A is equal to the original joint angle matrix [20x320], Z is matrix of scores [20x320], and 

E is the rank order matrix of eigenvectors [20x20]. 

If only subsets of eigenvectors are used to describe the original joint angle data the above does 

not hold true.  

T
rr EZR ∗=  

 (8) 

where Er is a matrix [7x20] composed of the first seven eigenvectors, Zr is a matrix [320x7] of 

scores and R is a matrix [320x20] of reconstructed joint angles. The matrix R does not have the 

proper mean, so… 

MRAr +=  

       (9) 

The rA  matrix contains reconstructed values of joint angles. In this process, if all 

eigenvectors are used, rA equals A (the original joint angle matrix) because no dimensionality 

reduction has taken place. However, if only subsets of eigenvectors are used the rA matrix 

represents the hand postures through a reduced dimensional control space. With this data, the 

hand angles can be projected onto individual or a combination of eigenvectors. The max (+1) and 

min (-1) postures of the hand can be viewed in this projected eigenvector space (Figure 32). This 
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operation allows the researcher to visualize hand postures when the hand angles are created from 

only a few eigenvectors.  

 

 

Figure 32 Hand shape projections onto the first four eigenvectors. 

Visual interpretation of how the hand would move through isolated eigenvectors. Each pane represents a 

different eigenvector. For example the first eigenvector pane represents all 20 DoFs of the hand projected through 

the first eigenvector. From top to bottom these eigenvectors account for a decreasing amount of the variance in hand 

shape. 
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3.4 STATIC GRASPING SYNERGIES IN JOINT ANGLE SPACE 

Something interesting happens when a person reaches to grasp an object. The hand starts to close 

and shape to the object in a smooth continuous manner as the hand approaches the desired 

object. This natural characteristic of grasping has been termed “preshaping” [38]. Another 

feature of human grasping is that the fingers, and individual joints, move together [38, 39, 40, 41, 

and 42]. These stereotypical relationships are called postural synergies and have been well 

characterized in previous human studies [1, 35, and 76]. A fundamental question in the current 

work is whether monkeys display postural synergies during grasping movements; and if so, 

whether these synergies are similar to those of humans. Some of the differences between the 

aforementioned work and ours are that this study tests fewer objects, and we have more 

simultaneously recorded DoFs. This change in the measured DoFs is expected to impact the 

“functional” DoFs found in our postural synergies, compared to those seen in humans. The term 

“functional” is used here to describe the number of eigenvectors necessary to account for 85% of 

the variance.   

 

Are the monkey’s fingers coordinated during a reach-to-grasp task in a way that is similar 

to previous human psychophysics studies? Ours is the first detailed kinematic study of a 

monkey’s hand during this behavior. In contrast to human grasping, a monkey may show a 

prolonged transport phase followed by a separate shaping phase. We will characterize the 

coordinated action of the hand during grasping using PCA and compare these results to those 

from human studies.  
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3.4.1 What data points, and how many descriptors for PCA 

Two fundamental issues in dimensionality reduction are: Which data are included in the 

analysis- continuous vs. non-continuous, and how many dimensions are needed to describe the 

variance of the original data set? The following section describes two separate methods to 

answer both of these questions. 

 

The data selected for the analysis can have a profound impact on the eigenvectors. 

Previous work has focused on just the shape of the hand while the subject was grasping an 

object, and thus only used the data during that time point from each trial [35]. Others have been 

more interested in grasping synergies that encompass the entire reach-to-grasp movement [1, 46, 

and 47]. In this work, the researchers used all the consecutive data points collected as the input to 

PCA. This approach has two main problems, relative to our work. The first is that it is 

computationally very expensive to use all the consecutive data. A second, and more concerning 

point, is that an underlying assumption of principal components analysis is that each observation 

is independent. The time between data samples in this work is 5ms, and thus can hardly be 

considered to be independent. The challenge is then to determine the minimal number of data 

points that can be used in PCA that will fulfill its basic assumptions and still produce a lower 

dimensional space that generalizes well to the entire data set.  

 

Equation 9 shows how joint angle data can be approximated using only a subset of the 

eigenvectors. This allows us to calculate the joint angles of the hand by projecting it through 

eigenvector space to compare it to the actual hand shape at any moment in time.  
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We created a method to determine which portions of data were necessary to accurately 

characterize hand shape. By using all of the data points recorded during an overall reach-to-grasp 

movement for PCA we assumed that we would get the best approximation. This data group was 

labeled “All” (Figure 33). However, there may be a single phase of the movement that accounted 

for the majority of the variance; this may be as powerful as all of the data points. These other 

subsets are different time points in the trial, beginning (B), middle (M), end (E) and have the 

maximum separation in time. The beginning point (B) was taken to be at the end of Hold A. The 

middle point (M) was at the moment of maximum aperture, and the end point (E) was 50 ms 

before the animal grasped the object (Hold B). PCA was performed on each. Utilizing Equation 

9, the joint angle data were calculated as a projection through the eigenvectors for each data set. 

This projected hand shape data was then compared to the actual hand shape. The number of 

eigenvectors necessary to reconstruct the actual hand shape with 85% accuracy was plotted in 

Figure 33.  

 

The data for this analysis was collected over 317 sessions from data pooled using two 

different monkeys. A reconstruction accuracy of 85% was obtained using the All data set with 7 

eigenvectors. The other data subsets are then compared to the All group by calculating the 

number of eigenvectors required to reconstruct the hand shape with 85% accuracy. The 

groupings in this Figure show that if the beginning (B) or middle (M) of movement is combined 

with the end (E) of movement, the resulting subsets of data produce eigenvectors that can 

reconstruct the actual hand shape with an equal amount of accuracy as using the continuous (All) 

data. This indicates that only a portion of motion variance is captured by any single phase. The 

combinations of multiple phases are needed to characterize the entire data set. The variability of 
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joint angles in a normal trial, consisting of approximately 150 data points, can accurately be 

described by choosing two or three particular data points from a trial. 
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Figure 33. Data points used in PCA – reconstruction comparison. 

The All data set is a set using all of the continuous data points throughout the entire reach-to-grasp 

movement. B = beginning of movement / Hold A, M = maximum aperture of movement, E = end of grasp / Hold B. 

The x-axis shows the different data sets. The y-axis shows how many eigenvectors were used to reconstruct the 

actual hand shape with 85% accuracy. The All group required 7 eigenvectors, along with the groups that contained 

the END and any of the other data points (M or B).  

  

Another way of testing the resolution of reconstruction is by matching hand shape to 

object. If the objects differ from each other and the joint angles are well measured there should 

be a unique correspondence between measured hand shape and the different objects. The more 

accurate the reconstruction, the greater the number of objects identified by hand shape. We used 

a support vector machine (SVM) to help decide how many eigenvectors were “necessary” to 
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identify specific objects. This type of algorithm is used with complex data to make choices from 

many categories [79]. For example, in this data set we created an SVM to classify which object 

the monkey was grasping using joint angle data constructed from various numbers of 

eigenvectors (Figures 34 and 35). 
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Figure 34. SVM object classification using the complete joint angle data set. 

The above plot illustrates objects the SVM classified as a function of the actual object based on using all 20 

eigenvectors. The 20 DoFs used in this analysis excluded the wrist DoFs. The color bar on the right of the Figure 

shows how successful the classifier was as a color-coded percentage. The line of unity from upper left to lower right 

in the plot indicates that the classifier most often chose the correct object based on joint angles used from 20 

eigenvectors. The accuracy obtained from this data set was 98%. Showing that the measured joint angles and object 

variability were adequate for specific matching. 
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Figure 35. SVM Classification based on the first eigenvector. 

The data used by the classifier was based on the joint angles reconstructed with the first eigenvector. The 

accuracy obtained was only 45% compared to 98% in the Figure 34. 

 

As expected, accuracy of classification using all 20 eigenvectors by the SVM was 98% 

(Figure 34). Since there was no data reduction in this technique, this is merely a validation of the 

classifier and the methods used to produce the joint angle data sets. A similar method can be 

used to look at the accuracy of classification from all 20 DoFs projected through the first 

eigenvector (Figure 35). The accuracy of this method was 45%. A comparison of classification 

accuracy as a function of number of eigenvectors used can be seen in Figure 36. In this Figure 

two components have been combined. Object classification was completed using different data 

subsets as well as differing numbers of eigenvectors. It can be seen that the best classification 

was obtained using data taken from just before the object was touched (green), and that this 

curve plateaus after just five eigenvectors.  
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Figure 36. Object classification from eigenvectors. 

On the y-axis is the percent accuracy from the SVM for classifying which object was being grasped based 

on joint angle data. The x – axis shows the number of eigenvectors used to create the joint angle data for object 

classification. The green line shows data used from only the end of movement, the blue line shows data used from 

only the beginning of movement, and the red line shows joint angle data from only the middle (Max Aperture) 

portion of the movement.  

 

The two topics highlighted in this section detail the data selection, and the “necessary” 

number of eigenvectors required to accurately describe the variance in the original data set. 

Interestingly, two different results were obtained concerning the number of eigenvectors used. 

The results obtained from object classification showed that the first five eigenvectors were 

required to accurately classify the object grasped. The generalization of data subsets analysis 

showed that seven eigenvectors are necessary to describe 85% of the variance in the original 

joint angle data. Even though previous researchers have used SVM to justify the number of 

reduced dimensions necessary [79] we have adopted seven eigenvectors for the current work. 
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The cut off of 85% of the variance captured was criteria used by previous researchers [35, 46, 

47], and the variance of joint angle data explained is more critical to the current work than object 

classification. 

3.4.2 Postural Synergies 

In the previous section data were presented showing correlation between joint angles during 

grasping (Figures 28 – 30). The results suggest that the “functional DoFs” are fewer than those 

determined anatomically. PCA was used to investigate the dimensionality reduction, and 

determine the DoFs necessary to describe the majority of movement variation in this reach-to-

grasp task.  

 

The data used in PCA were the joint angle data calculated at three different time points in 

each trial based on the results presented in section 3.3.2. Figure 37 illustrates these time points 

for a single joint (MCP 2 Flexion Joint) during all trials recorded from that joint in a single 

session across all objects. The three sections of the trial are the start, max aperture, and end grasp 

phases. In this way each trial contributed three observations for each joint. There was no further 

averaging of observation by target presentation in this analysis. This type of data structure 

provides a large data set that generalizes well to the entire movement.  
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Figure 37. Angle data used in PCA. 

Data from a single session used in PCA for the MCP2 Flexion/Extension degree of freedom. The y-axis 

shows the joint angle, and the x-axis is the sample number. The black portion of the graph is joint angle data taken 

from the beginning (End of Hold A) of the trial, the red portion of data is from the middle (Maximum Aperture) 

portion of the move, and the blue data points are from the end (Start of Hold B) portion of the trial. These represent 

non-contiguous data points throughout many different trials across all objects. 

 

An identical data vector (as shown in Figure 37) was made for each joint. This expanded 

data vector was created from 317 sessions and included 96,685 trials. Principal component 

analysis was performed, for both monkey V and monkey B, on this joint angle data matrix (for 

details on applying PCA to grasping data see section 3.2.1). Figure 38 shows the percentage of 

joint angle variance explained by each eigenvector.  
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Figure 38. Joint angle variance explained from first 9 eigenvectors. 

The y-axis is the percent of joint angle variance explained and the x-axis shows the number of eigenvectors 

added. The smooth blue curve in the plot represents the cumulative sum of the variance explained throughout the 

addition of orthogonal eigenvectors. The 85% variance explained threshold is crossed by adding the 7th eigenvector. 

Therefore at least seven eigenvectors are necessary to describe greater than 85% of the variance in joint angle data. 

 

For both subjects it was necessary to include the first seven eigenvectors to account for at 

least 85% of the variance in the data. This high number of eigenvectors is in stark contrast to the 

two eigenvectors used to account for a similar amount of variance as in the Santello study [35]. 

This contrast can be accounted for by design differences between the two studies. One reason 

could be that wider ranges of grasping postures were used than those in the earlier psychophysics 

studies. Another is that the trial-to-trial variability in this data set is much higher than in the 

previous work. The number of DoFs measured in the current study is much higher (23) than in 

the previous work (15). The different DoFs between the two studies are the abduction / adduction 

movements of the fingers.  
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In order to visualize hand shape features corresponding to higher order eigenvectors, a 

correlation analysis was performed between actual and reconstructed angle data grouped by joint 

across fingers (Figure 39). The overall hand reconstruction correlation is shown as an average, 

the purple dashed curve. This line shows that in order to obtain a correlation coefficient of 0.85 

seven eigenvectors are necessary, similar to the earlier analysis. The other curves in Figure 39 

represent the grouped joint correlations.  
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Figure 39. Correlation between actual and reconstructed joint angle data. 

The y-axis is the correlation coefficients between actual and eigenvector reconstructed joint angle data. The 

x-axis shows the number of eigenvectors used during the projection. There are six different curves on this plot. All 

of which converge at an r-value of 1 when using 20 eigenvectors. The dashed line is the overall correlation using all 

joints for comparison, and all joints for projection. The blue curve is the correlation data obtained from using only 

the Thumb DoFs for projection and comparison. The green is the MCP abduction/adduction DoFs, red is the MCP 

flexion/extension DoFs, black is the PIP DoFs, and the light blue is the DIP DoFs. This separated correlation plot 

shows that the variability accounted for by adding eigenvectors beyond two or three is mainly capturing the 

variability of the MCP abduction/adduction DoFs. 
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The plot of reconstruction correlation against the number of eigenvectors shows which 

features of the grouped data are captured by the different eigenvectors. The only joint group that 

can be predicted by the 1st eigenvector corresponds to the thumb, as it gives a reconstruction 

match of 64%. Similarly the correlation for MCP Flexion and PIP is governed by the 2nd 

eigenvector, while DIP flexion requires 2nd and 3rd eigenvectors.  

 

In contrast to the groups of joints well represented in the early eigenvectors, 

dimensionality reduction does not apply well to finger adduction. This feature does not correlate 

with the other features of hand shape in a consistent manner. This might be expected for the kind 

of precision expected in the “least automatic” movements of the hand indicative of the flexibility 

needed for adapting the hand to fine features of object shape. Finger adduction is characteristic 

of the human hand and is a feature of hand cupping thought to be essential in human evolution 

toward tool use [16]. 

 

Using the first three eigenvectors for reconstruction the correlation for the thumb DoFs is 

0.64, the MCP Flexion DoFs are 0.83, the PIP DoFs are 0.82, the DIP DoFs are 0.7, and the 

MCP Abduction DoFs are 0.29. This analysis shows that a major difference between the number 

of eigenvectors necessary to describe a large portion of the variance in hand grasping data 

between the current and previous studies can be accounted for by a difference in the recorded 

DoFs. These DoFs appear to be specifically the abduction/adduction joints of the fingers. 

Suggesting that if a control system is to be created for a hand that does not have 

abduction/adduction finger DoFs, or the experimenter does not regard these DoFs as important, 
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accurate hand reconstruction may be accomplished using the first three to four eigenvectors 

instead of the first seven.  

3.5 DISCUSSION 

Monkeys’ move their hand in a coordinated fashion throughout a reach-to-grasp behavior that 

closely approximates that of humans. These complex hand shapes were investigated by creating 

an object set, optimized by a cost function that sampled a wide range of the possible joint angle 

space. In order to investigate the complex coordination of many joints we performed a linear 

dimensionality reduction technique (PCA) to the hand shape kinematics. This technique 

produced a reduced set of grasping patterns (synergies / eigenvectors) that accounted for much of 

the variability in the kinematic data. The 1st eigenvector corresponded to a general opening and 

closing of the hand, which included much of the thumb variability. Movement along the 2nd and 

3rd and 4th eigenvectors were a complex relationship between the DIP, PIP and MCP abduction 

joints of the fingers. 

 

 Many methods exist to validate the number of eigenvectors required to adequately 

describe a data set. One such method is to plot the sum of the variance accounted for against an 

accumulating number of eigenvectors (Figure 38) and simply pick the asymptote on the curve. 

As was true with similar data sets [1, 35, 46, 47], this variance explained curve had no definable 

asymptote. In light of this, we adopted three different approaches to determine the appropriate 

number of synergies.  
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With similar data sets researchers have chosen the number of eigenvectors required to 

explain 85% of the variance in the data. In our study we required seven eigenvectors to describe 

85% of the variance in hand shape. A second method was to apply a linear classifier (support 

vector machine (SVM)) to pick which object was grasped based on a set of reconstructed joint 

angles using a differing number of eigenvectors. This analysis showed that eight eigenvectors are 

necessary to predict the objects 85% of the time from joint angles, and also showed that a 

considerable amount of information that allows for object differentiation is present very early in 

the reach. 

 A third analysis looked at what was gained by adding each additional eigenvector, in terms 

of hand shape reconstruction accuracy. In this investigation we separated the joints based on 

physiologic groupings. For instance, all the thumb joints were relegated to one group, while 

another group consisted of the MCP flexion joints of the fingers, a third included the PIP joints, a 

fourth the DIP joints, and the final grouping contained the MCP abduction joints of the fingers. 

This analysis showed that only a few synergies (~4) are necessary to capture the variability of 

many joints, and the majority of variability accounted for by higher-order eigenvectors occurs 

about the MCP abduction joints of the fingers.  
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4.0  CORRELATION BETWEEN SPIKING ACTIVITY IN MOTOR CORTEX AND 

WRIST DOFS 

The correlation between motor cortical spiking activity and wrist movement is important in both 

science and medicine. Neural controlled motor restorative devices are rapidly growing in 

popularity, and becoming increasingly useful for patients with every successful new application. 

A limitation of the current technology is the number of simultaneously controlled degrees DoFs. 

The most advanced neural controlled robotic arm utilizes four simultaneously guided DoFs; x, y, 

z of the endpoint of the wrist, and 1-D gripper signal [71]. Ability to control the three dimensions 

of wrist orientation with a neural signal would be a major advancement. 

  

In this chapter we present the relationship between motor cortical firing and wrist 

orientation. We start with a section on wrist kinematics and show that the relationship among 

wrist DoFs change as a subject learns the reach-to-grasp task.  This section is followed by an 

analysis of the relationship between motor cortical firing and individual, and then multiple, wrist 

DoFs. The last section in this chapter highlights a prediction equation that uses firing rates from 

populations of motor cortical cells to simultaneously predict the three DoFs of wrist orientation. 
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4.1 WRISTDATA OVERVIEW 

Joint angles corresponding to the wrist have been separated from the finger data based on the 

initial findings from the correlation analysis across joints. Figure 24 shows little correlation 

amongst wrist DoFs. As mentioned in earlier chapters, this may be a phenomenon based on 

physiology or merely a result of the experimental design. 

 

The wrist DoFs were isolated in the design of this experiment by presenting the same 

object at the same x, y, z end-point with multiple orientations. For ease of notation, we call a 

particular object/orientation combination a presentation.  The orientation positions (shown in 

Table 2) were chosen to elicit different wrist postures from the monkey while maintaining a 

consistent grasp. Because some objects have rotational symmetry, not all objects were presented 

at each orientation: in particular, Presentations 1 and 3 from Table 2 were not performed for the 

Button, Small and Large Cones. A session constituted five successful completions of each 

presentation, yielding a total of 320 successful reach-to-grasp trials per session. 
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Table 2. Object names and orientations. 

The seven presentations listed in the right column were used for Objects 2, 3, 4, 5, 7, 8. Objects 1,9,10 are 

rotationally symmetric, so we did not combine them with orientations 1 and 3. 

 

 

 

The presentations listed in Table 2 are represented graphically in Figure 40, which shows 

the “small handle” object from the monkey perspective. The object is highlighted by red.  
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Figure 40. Object orientations. 

This is an illustration of the object orientations listed in Table 2 using the small handle for demonstration. 

The orientations are named with respect to the intended monkey wrist movement. For example the flexion 

orientation is extension of the object by the robot that requires wrist flexion for a reward. 

 

The different object orientations force the subject to use nearly the entire physiologic 

range of wrist motion. We measured the physiologic range of the wrist DoFs with a goniometer. 

This experiment entailed two researchers collecting goniometer data from a monkey. The 

goniometer data was recorded at the maximum and minimum of each wrist DoF. These data 

were compared to joint angle data collected from multiple sessions using the 3-D motion 

tracking system (Figure 41). This analysis shows that orientations selected cause the monkey to 
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use almost the entire range of wrist joint movement. The one DoF that does not come close to the 

joint maximum is the rotation. The extreme of supination is when the palm is pointing up. We 

could not track markers in these reverse postures. 

 

 

 

Figure 41.  Possible wrist DoFs range and actual. 

Top row shows the three wrist DoFs against the physiologic range of that joint. The joint range was elicited 

from the monkey using passive movement and a goniometer for measurement. The bottom row shows the active 

ranges of joint angle data for the wrist DoFs across all object presentations.  

 

4.1.1 Wrist Kinematics – Isolated Degrees of Freedom 

In earlier chapters the finger kinematic data were detailed with a focus on dimensionality 

reduction. Wrist kinematics are separated from the dimensionality reduction of finger kinematics 

for two reasons. First, the wrist has few DoFs. There is likely little gained by describing these 

DoFs with fewer dimensions. In this study the wrist is considered to have three DoFs: yaw, pitch 

and role, corresponding to abduction, flexion, and rotation, respectively. While the physiologic 

location of the rotational DoF is at the elbow, the end effect is rotation of the wrist/hand; for this 

reason, we have considered this a wrist DoF. The second reason for separating the wrist from 
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hand DoFs is that the analysis of hand kinematics focuses on hand shape, which is not 

necessarily changed with wrist movement.  

  

 A critical feature to the concept of preshaping is that the hand is continuously guided in a 

smooth fashion from a beginning to an end posture. This smooth movement occurs throughout a 

reach that progresses to a final posture that closely approximates the desired object [36, 38, and 

39]. It is possible that the monkey shows continuously progressive movements of the fingers that 

match the desired object, but make sharp transitions with regards to wrist movement. It can be 

seen from Figures 42 and 43 that the wrist DoFs show similar characteristics already highlighted 

in the finger kinematics section.  
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Figure 42. Wrist angles over consecutive trials. 

The Angle tracings show three wrist DoFs recorded simultaneously over six presentations of the small 

handle in the same orientation. The frame number refers to a kinematic data sample. Each frame number is separated 

by 5 ms. The six trials have been spliced together with the end of one trial and the beginning of another separated by 

a blank space. 
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The wrist angle tracings shown in Figure 42 illustrate the wrist DoFs over six consecutive 

trials. Over many movements the monkeys display certain angle and velocity characteristics. The 

monkey has a starting posture that is slightly flexed, adducted and generally has a neutral 

rotational component. The wrist progresses from this starting posture to a final posture through a 

section that shows a rapid change in angle. It can also be seen from these joint angle plots that 

the variance in wrist orientation is not uniform across different regions of the movement. The 

largest amount of variance in both wrist angle and hand shape, shown earlier, occurs during the 

grasping phase of the task.  
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Figure 43. Wrist DoFs - single and multiple presentations. 

Three rows starting from the top represent flexion, adduction and rotation DoFs of the wrist. The left 

column of Figures shows individual presentations, and the right column shows the corresponding wrist DoFs for all 

the trials in a session. The plots are aligned at the end of Hold A.  

 

The monkeys display characteristic joint angular velocity profiles. In Figure 44, many 

joint angular velocity tracings from 100 sessions, across all objects, have been overlaid onto the 

same plot. All trials were reconfigured to have a uniform length of 100 samples. The average 

length of the trajectories was 203 samples ± 42 (mean ± SD). The trials have been aligned on the 

D C 

E F 

B A 
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maximum or minimum velocity for best alignment. The trials were made uniform before the 

alignment procedure to preserve the maximum or minimum velocity relationship to the start and 

end of the trials. Positive velocities for flexion and abduction occur when the joint travels in the 

named direction. For example, a negative wrist flexion velocity occurs when the monkey extends 

the wrist. Wrist rotation has been defined so that positive denotes pronation and negative denotes 

supination. The aligned joint angular velocity profiles show that the wrist DoFs have a 

characteristic joint angular velocity profile across all objects. As shown in the joint angle 

analysis (Figure 44), the majority of wrist angular velocity variability occurs in the second phase 

of the reach when the hand is close to the object. 
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Figure 44. Aligned wrist angular velocities over many trials. 

The Figures A, B, and C show wrist angular velocity plots for the flexion, abduction and rotational DoFs, 

respectively. The flexion and rotational DoFs plots are aligned by the min (most negative) angular velocity. The 

abduction DoFs plot is aligned by the max velocity.  
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The interaction of wrist joint angular velocity and joint angle is shown in Figure 45. The 

generalized diamond shape in this Figure shows that maximum velocity is achieved in the middle 

of the joint range.  
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Figure 45.  Wrist flexion joint angular velocity vs. joint angle. 

This Figure shows the wrist joint angle plotted against the wrist joint angular velocity.  

 

4.1.2 Wrist Kinematics – Joint Correlations 

The previous section focused on the wrist DoFs as isolated entities. This section will explore the 

correlations amongst the wrist DoFs.  
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The correlation analysis in Figure 29, section 3.3.1 shows that the wrist DoFs are not 

highly correlated with one another. The data used in this analysis was taken from the early 

training sessions for both monkeys, before neural data was recorded.  We repeated this analysis 

for data taken in conjunction with neural data, when the monkeys are considered to be over-

trained on the task.  A three-dimensional plot was generated to show the wrist DoFs over these 

two periods of training (Figure 46). The early data is the first 30 days of training. The late 

training data was from the last 50 days of recording. Figures A and B show the post-training data 

in two different orientations: an orientation corresponding to the maximum distribution of data 

points (Figure A), and an orientation rotated 150 degrees around the upright axis of the plot, 

highlighting the minimal distribution of data points (Figure B). The combination of these Figures 

shows that a plane exists which describes a majority of the variance in wrist angle data. Similar 

plots (Figures D and C) have been generated for the early-training data, viewed from the same 

orientations. There are clear qualitative differences in the distributions of points in the two plots, 

indicating that training had a major effect on wrist DoFs correlations. 
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Figure 46. Wrist angle correlations as a function of training. 

Plot a, b, c, and d show the three DoFs of wrist orientation plotted against one another in a 3 dimensional 

plot. Figure A and B show the maximum and minimum distribution for the data during the neural recording portion 

of the experiment. Figure B is 150-degree rotation around the upright axis. Figures C and D are similar to Figures A 

and B, except this data was taken from the first 30 days of training.  

 

A joint-pair matrix was created for the wrist DoFs to calculate joint correlations. The 

wrist joint pairs are as follows: Flexion-Abduction, Flexion-Rotation, and Abduction-Rotation. 

For illustration purposes the joint-pair matrices for post-training data have been plotted in Figure 

47.  This Figure shows a strong negative correlation between the flexion and abduction DoFs, a 

A B 

D C 
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strong positive correlation between flexion and rotation DoFs, and a weak correlation between 

the abduction and rotation DoFs. These correlations are calculated across all presentations of all 

objects. The joint pair correlations (r) for the early and late training data have been displayed in 

Table 3. The early training trials are from the first 30 sessions of kinematic data recorded from 

monkey V and B. The Late Trials are data from the last 50 sessions from monkeys V and B. 

Between these two sets of data the monkeys had 212 training sessions (monkey V), and 134 

training sessions (monkey B). 
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Figure 47.  Wrist DoFs paired correlation. 

 Figure A shows Flexion vs. Abduction, B shows Flexion vs. Rotation and C shows Abduction vs. 

Rotation. The Figure panes are a visual representation to the joint pair correlations shown in Table 3.  

 

A 

B 
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Table 3. Wrist DoFs paired correlation. Early versus late training. 

The early training trials show a correlation with similar orientation to the late trials; however the 

magnitudes are much less.  

 

Paired DoFs Early Training Trials Late Trials 

Flexion – Abduction - 0.42 - 0.78 

Flexion – Rotation 0.36 0.80 

Abduction – Rotation -0.27 -0.34 

 

 

The progression of change in correlation across training days can be seen in Figure 48. 

This progression of correlation between wrist DoFs is consistent amongst the two monkeys 

studied. The correlation change is not associated with a similar change in success rate, movement 

time or total trial time, as all three of these variables were consistent throughout early and late 

training. For monkey V the placement of force sensors changed early in training, however the 

force sensor placement was consistent for monkey B. The only task related variable that appears 

related to the correlation change is the number of completed trials (Figure 49). This may be a 

strategy that the monkey adopted to reduce the overall energy expenditure per reward, allowing 

the animal to complete more trials without fatigue.  

 

This data also suggests that the wrist DoFs are not naturally correlated: the correlation 

seen in the post-training plots is induced by the training. This is another reason to separate the 

wrist DoFs from the finger kinematic data; we are more interested in studying natural kinematic 

correlations than training-induced correlations.   
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Figure 48. Wrist DoFs correlation over training sessions. 

Plots A, C, and E are from monkey V. Plots B, D, and F are from monkey B data. Both monkeys show 

similar correlation throughout the early and late training. Note for consistency the r-values are reversed in A, B, E, 

and F. 
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Figure 49. Number of trials completed per day. 

This bar plot shows the average number of trials completed for monkeys V and B over the course of the 

experiment. Each training session on the x-axis corresponds to the average of ten sessions. monkey V had more 

training sessions than monkey B. The last seven values in this plot are averages from monkey V. 

4.2 INDIVIDUAL DEGREE OF FREEDOM TUNING 

The firing of a motor cortical cell has been shown to be correlated with many movement 

variables. In an early study, Evarts trained a monkey to flex its wrist against a load until the 

device hit a mechanical stop. He found that motor cortical cell firing was correlated with force, 

the change in force, and displacement of the wrist [80]. Humphrey later modified this paradigm 

and found that motor cortical cell activity was related to force, velocity, position and the change 

in force [81]. Later, Georgopoulos trained a monkey to move a manipulandum between a center 

target and eight peripheral targets (the center-out task). These studies showed that a population 

of motor cortical neurons was highly correlated to arm translational velocity [54, 55].  
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The relationship between motor cortical firing and wrist movements has been studied by 

a number of investigators [82]. Kakei et al. investigated if the primary cortex encoded low-level 

parameters like muscle force, or more abstract parameters like hand path. They found that both 

“muscles” and “movements” are strongly represented in M1. In a later study, authored by Wang 

et al., the researchers studied the motor cortical representation of both hand translation and 

rotation. In this study, single-unit activity was recorded from monkeys while they performed a 

"center-out with rotation" task. When reaching for a target, subjects had to match four separate 

kinematic parameters: three-dimensional location and one-dimensional orientation of the target. 

This study demonstrated that both hand translation and rotation could be decoded simultaneously 

from a population of motor cortical neurons [83].  

 

In the following section we will explore the possibility that the firing rates of motor 

cortical cells are linearly correlated with individual, and multiple wrist DoFs during natural 

reach-to-grasping movements. It is of interest in this study to determine which wrist kinematic 

variables are best correlated to motor cortical firing so an efficient decoding algorithm may be 

constructed from natural neurophysiogical phenomena. 

 

The cells selected for this analysis were those with an R2 greater than 0.1 in a 

multivariate linear regression between averaged firing rate data over an entire trial and average 

wrist angles over an entire trial. These are the cells used in the decoding section (4.4). However, 

in order to conserve the dynamic relationship between firing and joint variables, the individual 

cell analysis is based on binned data. 
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4.2.1 Motor cortical spiking correlation between position and velocity variables 

The position variable in this experiment is joint angle. An example of how a motor cortical cell 

varies with wrist angle is shown in Figure 50. Fractional interval rate calculation (detailed in 

Section 2.5.2) over 30ms bins were used to calculate the firing rate of a cell. This Figure shows a 

cell that increases firing with wrist extension and decreases firing with wrist flexion. A linear 

regression using this data returns an R2 of 0.3. 
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Figure 50. Motor cortical cell firing- wrist flexion angle. 

Scatter plot of monkey V cell 2a session 483 firing as a function of wrist flexion angle. On the x-axis is 

wrist flexion angle and on the y-axis is the firing rate. 

 

The velocity is the instantaneous joint angular velocity (deg/sec) calculated in 30ms bins 

from the position data. An example of the change in a motor cortical cell firing with respect to 

joint angular velocity is shown in Figure 51. The wrist DoF in this example is abduction. A 
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change in the direction of abduction is a positive velocity, while a change toward adduction is a 

negative velocity (R2 0.44).  
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Figure 51. Motor cortical cell firing- with abduction velocity. 

Scatter plot of Cell 5a from session 485 with respect to wrist abduction velocity.  

 

A linear regression was used to calculate the correlation between firing rate and joint 

variables in the above Figures. The regression equation used was … 

 

wwZbbf
vv

+= 0  

(10) 

where b is a vector of regression coefficients, Z
v

 is a vector of wrist angles or velocity, and f
v

is 

a firing rate vector in spikes per second. The subscript w  is changed depending on the wrist DoF 

in question (flexion, rotation, or abduction). 
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Equation 10 was used to calculate the correlation between cells firing rate and each wrist 

DoF for position and velocity. A comparison of the correlation coefficients obtained in these 

linear regressions can be seen in Figure 52. The blue line in this plot represents a unity line. If 

both variables are equally related to motor cortical cell firing this line will evenly split the 

distribution. In this plot the distribution of points around the unity line does not qualitatively give 

the impression that the population of cells is more correlated with wrist position or velocity. 
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Figure 52. Angular velocity R2 vs. angle R2. 

Each point represents a cells R2 between joint angular velocity and joint angle for the three independent 

linear regressions. The blue line is a unity line.  

 

 The distribution of the difference in correlation coefficients between position and 

velocity is shown in Figure 53. The mean of these distributions is only slightly positive for the 

three wrist DoFs, slightly more for rotation. This minimal shift indicates that the neural 

population may be slightly more correlated with wrist angle; however this is not clear evidence.   
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Figure 53. Position and velocity correlation difference histograms. 

Plots A, B, and C show a distribution of the correlation difference for wrist flexion, abduction and rotation 

DoFs. The x-axis values in this Figure are created by subtracting the joint angular velocity R2 from the joint angle 

R2.  
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The correlation coefficients shown in this analysis were all calculated as independent 

linear regressions. It is possible that the addition of coefficients in a multiple linear regression 

will produce more definitive results. 

4.3 MULTIPLE DEGREE OF FREEDOM TUNING 

The previous sections have focused on motor cortical correlations with individual wrist DoFs 

utilizing Equation 10. The expansion of this single dimensional linear regression to a 

multivariate linear fit is shown below.  

 

rraaffi ZbZbZbbf
vvvv

+++= 0  

(11) 

where … 

  if
v

 =  firing rate vector for unit i, in spikes per second. 

 b
v

 =   vector of regression coefficients for unit i. 

 fZ
v

=  vector of wrist flexion  

 aZ
v

=  vector of wrist abduction 

 rZ
v

=  vector of wrist rotation  

The vectors fZ
v

, aZ
v

, and rZ
v

 can be comprised of either wrist angles or wrist angular velocities. 
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The R2 values obtained from Equation 11 using position variables are shown in Figure 

54. It can be seen from Figure A that the motor cortical firing activity is linearly related to 

multiple wrist DoFs. The distribution has a maximum R2 of 0.32, and a mean R2 of 0.078. Panels 

B, C, and D show the distribution of regression coefficients fb , ab , and rb  respectively in (Hz / 

Degree). The minimum of these distributions is -1.5, the maximum is 1.5 and the means are -

0.0263, -0.0239, and -0.0099.  
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Figure 54. Position histograms. 

Figure A shows the distribution of R2 values obtained from the multiple linear regressions of spike rates 

and wrist angles. Figures B, C, and D show the distribution of coefficients in (Hz / Degree) obtained from these 

regressions. Figure B corresponds with flexion, C – abduction, and D – rotational DoFs. 
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Figure 55 shows a similar set of plots corresponding to wrist angular velocity. These regressions 

were performed with the same spiking activity; however the independent variables were changed 

from position to velocity. The maximum R2 in these regressions was 0.45, the average was 

0.044. Panels B, C, and D show the distribution of regression coefficients fb , ab , and rb  

respectively in (Hz / Degree/sec). The minimum of these distributions is -0.15, the maximum is 

0.15 and the means are 0.0019, -8.0437e-005, -0.0039.  
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Figure 55. Velocity histograms. 

Figure A shows the distribution of R2 values obtained from the multiple linear regressions of spike rates 

and wrist angular velocity. Figures B, C, and D show the distribution of coefficients ( Hz / Deg/sec) obtained from 

these regressions. Figure B corresponds with flexion, C – abduction, and D – rotational DoFs. 

 

In linear regression, the size of the coefficient for each independent variable represents 

the size of the effect that variable has on the dependent variable. The coefficient value indicates 

how much the dependent variable is expected to increase when the independent variable 

increases by one if all other variables are held constant. The sign of the coefficient represents the 

direction of this effect. In the current analysis the scale of the coefficients for position is ten 

times larger than that for velocity. This does not indicate that the effect of change in position on 

firing rate modulation is ten times the effect of velocity. This does indicate that a change in one 

degree has a larger affect on the firing rate than a change in one degree per second.  
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In order to better understand if the motor cortical population is more linearly correlated to 

wrist positional or velocity variables we compared the R2 values from the multivariate 

regressions. Figure 56 shows two plots comparing velocity and positional multi-dimensional 

regression correlations. Figure A shows a histogram of the difference between velocity R2’s and 

position R2’s. The positive skew to the distribution indicates that the motor cortical population is 

more correlated to multiple wrist angles than angular velocities. Figure B shows the R2 values for 

position plotted directly against the velocity R2’s with a unity line for easy comparison. The 

points below the unity line represent those cells that are more tuned to wrist position than wrist 

angular velocity. 
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Figure 56. Position correlation histograms. 

Figure A shows the distribution of Position minus Velocity R2’s obtained from the multiple linear 

regressions between all three wrist DoFs and spiking activity. Figure B shows the R2 values plotted directly against 

one another. In this Figure the number of data points corresponds to the number of motor cortical cells. 

 

  

A 
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To assess the linearity of the population as it relates to the wrist position, we analyzed the 

firing rate as a function of the predicted firing rate from Equation 11. Figure 57 shows the 

distribution of correlation coefficients for predicted firing rates from the linear fit with the actual 

firing rates. If the three-degree of freedom fit presented above (Equation 11) fully accounted for 

all the variance in spiking activity the predicted and actual spike rates would be equal (r = 1). If 

the spiking activity was not at all linearly related to the three wrist angles, the correlation would 

be zero. The average correlation between predicted and actual firing rates is 0.25. 
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Figure 57. Firing rate versus predicted firing rate. 

This Figure shows the distribution of correlation coefficients for the relationship between firing rates 

predicted from the linear 3 DoFs wrist angle fit and the actual rates recorded in the reach-to-grasp task. 
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4.4 PREDICTING WRIST JOINT ANGLE FROM POPULATIONS OF MOTOR 

CORTICAL CELL SPIKING ACTIVITY 

Decoding algorithms are used in motor restorative prosthetics that direct the movement of 

artificial devices from the activity of central nervous system cells. In order to transform the 

previous analysis into the basis of a decoder we will progress from individual cell analysis to 

populations.  

 

The cells included in this analysis were chosen based on the following criteria. The 

neural recording was labeled as “stable”, they were determined to be well isolated, they had an 

R2 that was greater than 0.1 from a multiple linear regression with averaged firing rates and 

averaged wrist angles. Using this criterion, 199 cells were included in the population. The 

correlation between the averaged cells firing rate and average wrist pronation/supination is 

shown in Figure 58. 
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Figure 58. R2 distribution for cells used for wrist predictions. 

This Figure shows the distribution of R2’s for the population of cells used to predict wrist orientation.  

 

The preferred direction vector (pd) presented by Georgopoulos [54] describes the 

direction of arm movement, in Cartesian coordinates, that is correlated with a motor cortical 

cell’s maximal firing rate. A similar operation has been performed in this work, however the pd 

is the wrist orientation associated with maximal firing.  

  

A preferred wrist orientation vector (i.e. normalized regression coefficients from 

Equation 11) was obtained for each cell in the population. These vectors are shown in a single 

distribution in Figure 59.  
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Figure 59.  Three dimensional wrist angle preferred direction vectors. 

This plot shows a graphical representation of the population of preferred direction vectors. The angle DoFs 

have all been normalized to a unit length.  

 

If these unit vectors were perfectly uniform, the length of the summed vector would equal 

zero. The resultant length of the sum of the population of pd’s in our population is 9.05. The 

population is not perfectly uniform, but the pd’s in the analysis are sampled from only a small 

portion of motor cortical cells. The question becomes; can we assume that the larger population 

of motor cortical cells would have pd’s that form a truly uniform distribution? 

 

   Using a bootstrapping method, we compared the sum of the pd’s in our population with 

the sum of unit vectors drawn from a uniform distribution (Figure 60). The bootstrap method 
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created 1,000 unique populations of unit vectors, 200 in each population. For comparison, a 

vector length calculation was performed by summing the unit vectors in all populations. The 

length of the vector was used as a measure of non-uniformity. A longer summed vector 

correlated with a less uniform distribution. The vector distributions were created by… 

[ ]1,1~ −UnifZ
v

 

[ ]piUnif 2,0~Θ
v

 

21 iZr
v

−=  

[ ]iiii ZrrV ),sin(),cos( Θ×Θ×=
v

 

(12) 

where …   

 Z
v

= a vector containing 200 randomly selected points between -1 and 1. 

 Θ
v

= a vector containing 200 randomly selected angles between zero and two pi. 

 r = a scaling factor to maintain a unit vector. 

 V
v

= 200 unit vectors created from a spherically uniform population. 
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Figure 60.  Uniformity of preferred directions. 

The top panel of this figure shows an example of the distributions calculated from the equations above. 

Each dot represents the end-point of a unit vector on a sphere. The bottom panel shows the distribution of vector 

lengths calculated from the sum of the unit vectors. The length of the summed pd vector is shown in blue.   
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The length sum of the pd’s in our population compared to those drawn from uniform 

distributions is shown in Figure 60. The measure of uniformity for the population of pd’s is 

within the expected range. The pd’s calculated from our population of cells likely represent just a 

small sample of pd’s from a larger uniform population.  

  

The multiple linear regression equation presented in the previous section can be 

transformed with simple algebra for prediction with an optimal linear estimator (OLE) [84, 85, 

86]. Equation 11 can be rewritten as… 

 

Zbbf ii

vv
⋅=− 0  

(13) 

where … 

if  is a firing rate for cell i 

0b is the baseline firing rate for cell i 

b
v

is the vector of regression coefficients, [1x3] 

Z
v

is a vector of predictor variables, [3x 1] 

 

   …given the regression coefficient vector ( ib
v

) for each cell…  

tt ZBbf
vvv

⋅=− 0  

(14) 
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f
v

 = firing rate vector for n cells at time t, [n x1] 

0b
v

 = a vector of baseline firing rates, [n x1] 

B = 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

rnanfn

raf

raf

bbb

bbb

bbb

,,,

,2,2,2

,1,1,1

,,
....,....,....,....,

,,

,,

 a [n x 3] matrix of regression coefficients 

Z
v

 = a vector of the wrist angles at time t. [3 x 1]. 

 

…the prediction equation is … 

)()(ˆ
0

1 bfBBBZ t
TT

t

vvv
−⋅⋅= −  

(15) 

…where … 

 tẐ
v

 = prediction of wrist angles at time t. [3 x 1]. 

 TB = the transpose of the coefficient matrix 

 

The more linearly correlated cells used in this decoder, the more accurate the prediction. 

During real-time decoding experiments, researchers have the ability to record from several dozen 

individual neurons at any single moment in time. In this experiment the maximum number of 

cells recorded simultaneously was 11. In order to obtain an adequate number of cells while 

minimizing the variance across many days we utilized average firing rates and average angles for 

a presented object and orientation. Thus all the cells recorded are combined and treated as if they 

were recorded simultaneously. The results from the prediction can be seen in Figure 61. This 
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Figure shows the predicted wrist angle and the actual wrist angle for an average object 

presentation of the small rectangle in the extension position.  
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Figure 61. Predicted versus actual wrist orientation. 

The figure shows predicted vs. average wrist orientation for the three wrist DoFs. The average firing rates 

and wrist angles are calculated for small rectangle in the extension presentation. The solid lines are the actual, and 

the dotted lines are the predicted. The green curve shows the abduction, red the flexion, and blue the rotational DoF. 

The correlation coefficients for the three curves are 0.89 (green), 0.92 (red), and 0.84 (blue) respectively.  

 

 The wrist orientation predictions from motor cortical firing rate shown above were 

accomplished by using all the cells in the population and average angle data for presentation of 

the small rectangle in the extension position. This was not a cross validated prediction. For cross 

validation we chose a 70/30 split for training and testing data. 70% of the original kinematic and 

firing rate data was used for training, and the remaining 30% was used for testing. The data 

removed from the training sets are equivalent to removing an object presentation and the 
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corresponding firing rates. The training data was used to calculate the coefficient matrix 

(Equation 14). The testing data included the spike rates for those presentations not included in 

the training data. The cross validation was using testing spike rates to predict average wrist 

angles for targets not included in the calculation of the coefficients. We applied this analysis to 

100 different 70/30 repetitions (separate draws of the training and testing data). The comparison 

between the actual and predicted wrist orientations for the testing data set is shown in Figure 62.  

 

The red, green and blue lines represent the actual wrist angles for the flexion, abduction 

and rotational DoFs. The dots on each graph represent the fits prediction of naïve wrist. Figure 

63 shows the average prediction accuracy across all presentations. The data points in this plot 

were obtained by taking the average prediction for all the cross-validation sample points. The 

average correlation between actual and predicted wrist angles was 0.75, 0.735, and 0.74 for 

flexion, abduction and rotation respectively. 
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Figure 62. Cross validation of wrist decoding fit 

Plots A, B, and C show actual vs. predicted wrist angles for flexion, abduction and rotation DoFs. The solid 

lines show the actual wrist angles. The black dotted lines in each plot show the predicted angle for the testing data 

set.  

 

 

 

 

 

 

 

 

 

 

 



 125 

 

Flexion Abduction Rotation
0

0.2

0.4

0.6

0.8

1

Wrist DOF

P
re

d
ic

te
d

 v
er

su
s

   
   

A
ct

u
al

 (
r)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Predicted vs. Actual Flexion

P
re

se
n

ta
ti

o
n

s

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Predicted vs. Actual Abduction (r)

P
re

se
n

ta
ti

o
n

s

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Predicted vs. Actual Rotation (r)

P
re

se
n

ta
ti

o
n

s

 

Figure 63. Accuracy of prediction across all presentations. 

Plot A shows the prediction accuracy across all presentations. The x-axis shows flexion, abduction and 

rotational DoFs. The colored circles indicate the mean accuracy for the named DoFs. Figure B, C, and D show the 

distribution of the correlation between actual and predicted angles for the flexion, abduction and rotational DoFs.  

 

 

4.5 DISCUSSION 

The correlations between the wrist DoFs in well trained monkeys appear to non-physiologic. The 

wrist DoFs are not naturally correlated in reach-to-grasp movements. The change in these 

correlations was related to the monkey’s ability to perform more movements in a single session. 

A B 

D C 
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This was interpreted as a method to decrease the overall energy expenditure, making early 

fatigue less likely, allowing the animal to receive more rewards per day. 

 

The investigations comparing the correlation between motor cortical firing and wrist 

kinematics were performed with single and multiple variable linear fits. The single linear fit 

(Equation 10) compared the correlation between spiking activity for position and velocity 

variables. One variable was not more correlated to motor cortical spiking dynamics than another. 

Using a multivariate linear (Equation 11) fit, the populations of motor cortical cells were more 

correlated with position. This fit was used to calculate a unit vector for each cell that pointed in 

the wrist orientation corresponding to the maximal firing rate, i.e. preferred direction (pd).  

 

The correlation matrix, calculated from the multivariate linear regressions, was used in an 

optimal linear estimator to calculate a prediction of average joint angle. The correlation between 

predicted and actual average flexion, abduction and rotation angles for the small rectangle 

extension position was 0.89, 0.92 , and 0.84, respectively. The fit was cross-validated using a 

70/30 split for training and predicting. The average correlation between actual and predicted 

wrist angles across all object presentations was 0.75, 0.735, and 0.74 for flexion, abduction and 

rotation respectively. 

 

One limitation in motor restorative devices is the limited number of simultaneously 

controlled DoFs. In the past we have used a multivariate linear fit to predict the x, y, z location of 

the end-point of a robotic arm [65, 87, and 88]. We have recently added a gripper degree of 

freedom to this control scheme [71].   
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Advancing a control system beyond four DoFs cortical control would be a significant 

advancement. The results presented in this chapter show that it is feasible to use individual motor 

cortical firing activity to predict joint angles of three wrist DoFs. This decoding equation 

(Equation 14) may be expanded in the future by using real-time data collected from a large 

population of simultaneously recorded motor cortical cells. This would allow us to move beyond 

average predictions, and to study the relationship more dynamically. It is likely that a full tuning 

model including many kinematic variables, sophisticated models that take into account non-

linear relationships between spiking activity and wrist movement, will create better control for 

real-time motor restorative devices. 
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5.0  GRASPING KINEMATICS CORRELATION TO THE SPIKING ACTIVITY OF 

SINGLE MOTOR CORTICAL CELLS  

The hand has 23 DoFs across 16 joints. Motion about these joints is coordinated during grasping 

movements [38, 39, 40, and 41]. Complex grasping movements can be characterized by 

simplified patterns of joint displacement [1, 35, 46, 47, 76], as demonstrated in Chapter 3. A 

fundamental goal of this work is to better understand how firing rates in the motor cortex relates 

to changes in hand shape. The motor cortex may direct the hand by controlling many different 

kinematic variables (finger-tip force, joint velocity, joint acceleration, joint position, end-point 

velocity etc.). In this study we investigate joint angle, joint angular velocity and grasping 

synergies as they relate to changes in spiking activity. The information gained by the 

neurophysiological investigation will guide the predictive methods designed for neural 

prosthetics. 

 

From a prosthetics standpoint, attempting to control a robot with 23 simultaneous 

independent DoFs using a neural signal is nearly insurmountable. The neurophysiological results 

of the variable analysis may show that motor cortical cell do not ‘prefer’ hand synergies as a 

control signal, however this may still have utility in prosthetics. Controlling a robotic hand with 

grasping synergies, instead of individual joints, may constrain the robot to more physiologic 
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postures. It may also be completely unnecessary to control all DoFs of hand shaping for accurate 

and anthropomorphic hand movements.  

 

From a neurophysiological standpoint it has been shown that lesions of the motor cortex 

(M1) and its descending projections to the spinal cord (corticospinal tract CST) produce 

hemiparesis. This is a syndrome characterized by weakened movements that result in 

simultaneous action of all the fingers when grasping is attempted [89, 90]. Similar deficits are 

seen when reversible inactivation of monkey M1 hand region was studied [91, 92].This suggests 

that other descending pathways are capable of producing more rudimentary hand gestures. It has 

been shown from neural recordings that the firing rate of neurons in the motor cortex is 

correlated to multiple finger and wrist movements [93]. Combining these results, it suggests that 

M1 may be directing the coordination of a less complex substrate of hand movement, as opposed 

to individual muscles or joints. 

 

Based on the aforementioned studies, it is reasonable to theorize that motor cortical 

spiking activity is highly correlated with object features, individual joints, individual joint 

velocities, forces, or hand shape synergies. Spiking activity of individual cells certainly changes 

as a function of object presented (Figure 64). Firing rate modulation may not be merely a 

consequence of object features, but correlated with changes in hand shape that develop over the 

entire reach-to-grasp movement.  
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Figure 64. Object related spiking activity. 

Plot A shows the ten objects used in the reach-to-grasp task. Plots B (monkey V, Session 42, Cell 2a) and C 

(monkey B, Session 19, Cell 1b) show raster plots of single cells as a function of object. The trials for a single object 

B 

C 

A 
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have been stacked vertically into a group. The ten raster groups correspond with the ten different objects grasped in 

Figure A. Each trial is represented by a horizontal raster. Each dark vertical line, making up a raster plot, represents 

a single spike. The blue vertical lines correspond to the start of movement.  

 

In this chapter we explore the possibility that the motor cortex is correlated with more 

than general objects, or general changes in aperture [94, 95]. We focus on individual joints 

(velocity and position) and hand shape synergies to determine variables that are most correlated 

with firing rate of a single cell. In previous sections (4.4), corresponding to the wrist DoFs, we 

performed a similar analysis with independent single linear regression for all joints. Due to the 

high number of DoFs, we will make comparisons in hand shape using a multivariate approach. 

The results from this analysis will be used to predict hand shape from populations of individual 

motor cortical cells. 

 

5.1 SPIKING ACTIVITY AS A LINEAR FUNCTION OF JOINT POSITION, JOINT 

VELOCITY, AND GRASP SYNERGIES 

This analysis has been separated into three categories: position, velocity and grasp synergy. To 

accurately compare the R2 values from linear regression, we must use the same number of 

regressors.  We measured 20 DoFs involved with hand shaping. The position and velocity 

variables nicely fit into this fit, one per joint. However, to compare these variables with grasping 

synergies we reconstructed the 20 DoFs from a few eigenvectors. The first four eigenvectors 

were used for reconstruction. This selection was based on the data added per eigenvector in 
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Figure 39 of Section 3.4.2. This showed that reconstructions done using the first four 

eigenvectors correlate well to actual joint angles; >90% for the MCP flexion, DIP, PIP DoFs; 

>70% for the thumb DoFs, but only 40% for the MCP Abduction DoFs.  

5.1.1 Multiple Degree of freedom tuning 

Using multiple linear regressions we can investigate how a cell’s firing rate correlates with 

position, velocity or reconstructed joint angles. The multiple linear regression fit used for this 

analysis is:  

 

202022110 ... ZbZbZbbfi

vvvv
+++=  

(16) 

where … 

  if
v

 =  firing rate vector for unit i, in spikes per second. 

 b
v

 =   vector of regression coefficients for unit i. 

 1Z
v

 =  vector of 1st dimension 

 2Z
v

 =  vector of 2nd dimension  

20Z
v

 =  vector of N 20th dimension  

  

We analyzed 327 cells, with a constant 150ms lag between firing and kinematics, using 

Equation 16. The cells included in this analysis are those that had an R2 of at least 0.1 for a 

multivariate regression using average firing rates and average hand and wrist angles (the wrist 

DoFs are used in prediction, Section 5.2), and are not recorded in the data log as being lost at any 



 133 

time during the recording session. In the prediction section of this chapter, where a population of 

cells was needed, we used average firing rates and average kinematic variables. This established 

the criteria for cells to be included in the analysis.  

 

In the single cell analysis we used fractional interval rates calculated on 30ms bins, and 

average kinematic data over the same 30ms bin. The R2 values obtained from the multiple linear 

regressions are shown in Figures 66-68 (66-position, 67-velocity, 68-synergy reconstructed). The 

corresponding joint numbers have been shown in Figure 65. The histograms of three different R2 

distributions (position, velocity, and synergy) show that the maximum R2 in the position, 

velocity, and joint angle reconstruction was 0.65, 0.67, and 0.61 respectively. The average R2 for 

the three variables was 0.25±0.13, 0.18±0.11, and 0.20±0.12. In each figure the B plot shows 

regression coefficients for all joints of a highlighted cell (red asterisk) in plot A. The joints 

highlighted in the B plots, with red and a green circles, are shown as firing rate versus the 

highlighted joint. In general, cells are poorly tuned to a single DoF but have a strong linear 

relationship with respect to multiple joints. 
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Figure 65. Joint names and corresponding numbers. 

This figure represents the joints on a hand, and the corresponding number assigned to them in the following 

analysis. The joints are as follows 1-Thumb CMC flexion, 2-Thumb CMC abduction, 3-Thumb MP flexion, 4-

Thumb IP flexion, 5,9,13,17 – 1st ,2nd ,3rd ,4th  fingers MCP flexion, 6,10,14,19 – 1st ,2nd ,3rd ,4th fingers MCP 

abduction, 7,11,15,19 - 1st ,2nd ,3rd ,4th fingers PIP, 8,12,16,20 - 1st ,2nd ,3rd ,4th fingers DIP.  
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Figure 66. Multiple linear regressions – joint position. 

Figure A shows the distribution of R2 values from multivariate linear regression for 327 different cells with 

joint position. Figure B shows the regression coefficients for the highlighted cell in figure A (red asterisks). The x-

axis shows the joint number relative to the hand in Figure 65. Firing rate as a function of position is shown in 

Figures C and D for the joints highlighted by the red and green circles in Figure B.  
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Figure 67. Multiple linear regressions – joint angular velocity. 

Figure A shows the distribution of R2 values from a multivariate linear regression for 327 different cells to 

joint angular velocity. Figure B shows the regression coefficients for the highlighted cell in figure A (red asterisks). 

The x-axis shows the joint number relative to the hand in Figure 65. Firing rate as a function of velocity are shown 

in Figures C and D for the joints highlighted by the red and greed circles in Figure B.  
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Figure 68. Multiple linear regression – reconstructed joint angles from a few synergies. 

Figure A shows the distribution of R2 values from a multivariate linear regression for 327 different cells to 

reconstructed joint angle. Figure B shows the regression coefficients for the highlighted cell in figure A (red 

asterisks). The x-axis shows the joint number relative to the hand in Figure 65. Firing rate as a function of 

reconstructed joint angle are shown in Figures C and D for the joints highlighted by the red and greed circles in 

Figure B.  

 

The difference in R2 values for the above populations may differentiate which variable 

(position, velocity, and synergy) the motor cortical cells are more linearly tuned (Figure 69). The 

positive values in both figures indicate that on average the individual firing rates are 15% more 

linearly correlated with hand shape (position) than velocity, and on average 8% more correlated 

with hand shape than reconstructions from eigenvectors. 
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Figure 69. Difference in R2 – position, velocity and reconstructed hand shape. 

Figures A, B show the difference between position–velocity and position-synergy distributions 

respectively. Figures C and D show the R2s plotted directly against one another. Each black dot represents a cells R2 

value from a multiple linear regression with 20 DoFs. The blue line shows a line of unity.  

 

The multivariate linear regression using 30ms binned neural and kinematic data show that 

the population of motor cortical cells is more linearly correlated with joint position than other 

investigated variables. This is purely a neurophysiological observation. Attempting to control a 

robotic device using 23 independent joint angle estimates from a population of neural activity 

may be difficult and produce non-physiologic hand shapes. The synergy reconstruction 

compared favorably with the individual joint position R2 values (r = 0.92). This suggests that 

eigenvectors accurately reconstruct the hand, and that little is lost with respect to neural 

C 
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correlation when using only a few grasping synergies. It may be possible to predict complex 

grasping movements by predicting the scores of a few eigenvectors.  

5.2 PREDICTING HAND SHAPE AND WRIST ORIENTATION FROM  THE 

SPIKING ACTIVITY OF A POPULATION OF MOTOR CORTICAL CELLS 

In previous work, Wang and colleagues (2010) presented a decoding algorithm for a motor 

cortical population that predicts arm translation and hand rotation [83]. In earlier chapters we 

showed that a population of motor cortical cells could accurately estimate the average angle for 

three wrist DoFs. Similarly to Wang and colleagues, we will expand the linear fit used to 

calculate the wrist orientation tuning function to include an estimate of hand shape synergy.  

 

443322110 ZbZbZbZbZbZbZbbf rraaffi

vvvvvvvv
+++++++=  

 (17) 

where … 

  if
v

 =  firing rate vector for unit i, in spikes per second. 

 b
v

 =   vector of regression coefficients for unit i. 

 fZ
v

 =  vector of wrist flexion in degrees 

 aZ
v

 =  vector of wrist abduction in degrees 

 rZ
v

 =  vector of wrist rotation in degrees 

 1Z
v

 = scores of the 1st eigenvector 

 2Z
v

 = scores of the 2nd eigenvector 
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 3Z
v

 =  scores of the 3rd eigenvector 

 4Z
v

 = scores of the 4th eigenvector 

 

Using average firing rates for 327 cells and average kinematic variables for one target 

presentation (see Section 2.5.3) we calculated how well the response variable (firing rate of a 

cell) was linearly correlated to the seven predictor variables. The distribution of R2 values from 

the multivariate linear regression is shown in Figure 70. The cells included in this analysis were 

only those with an R2 greater than 0.1. The distribution has a mean R2 of 0.3375, a standard 

deviation of 0.129, and a maximum of 0.75. The regression coefficients from Equation 16 were 

used to build a tuning function for each cell (see below). 
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Figure 70. Distribution of correlation coefficients – entire population. 

This figure represents the R2 values obtained from Equation 16. This represents all 327 cells in the motor cortical 

population. 
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A decoding algorithm was constructed using an optimal linear estimator [84, 85, 86] to 

predict hand shape and wrist orientation. The b coefficients were obtained from equation 16 

using the averaged binned firing rate and average kinematic data per presentation (5 per session). 

The transformation of the regression equation into an optimal linear estimator for prediction is 

shown below. 

Equation 16 can be rewritten as… 

Zbbf ii

vv
⋅=− 0  

(18) 

where … 

if  is a firing rate for cell i 

0b is the baseline firing rate for cell i 

b
v

is the vector of regression coefficients, [1x7] 

Z
v

is a vector of predictor variables, [7x 1] 

 

   … given the regression coefficient vector ( ib
v

) for each cell, a population can be treated… 

 

tt ZBbf
vvv

⋅=− 0  

(19) 

 

f
v

 = firing rate vector for n cells at time t, [n x1] 

0b
v

 = a vector of baseline firing rates for n cells, [n x1] 
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 a [n x 7] matrix of regression coefficients 

Z
v

 = a vector of the seven predictor variables (wrist angles and scores) at time t. [7 x 1]. 

…where n is the number of cells (327). 

 

…the prediction algorithm becomes … 
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vvv
−⋅⋅= −  

(20) 

where … 

 tẐ
v

 = prediction of wrist angle and scores for first four eigenvectors at time t. [7 x 1]. 

 TB = the transpose of the coefficient matrix 

 

The last four components of vector tẐ
v

 is a set of scores ([1x4]) of the first four 

eigenvectors ([20x4]). Multiplying the scores with the transpose of the first four eigenvectors we 

reconstructed a 20 dimensional representation of the hand at time t.  

 

 Following this relatively simple set of equations the firing rates of a motor cortical 

population were transformed into a predicted representation of average hand shape and 

orientation. The best correlation between predicted and actual angles using the first four 

eigenvectors is shown in Figure 71 (small handle). One prediction was made for each sample in 
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the averaged 100 point trajectory. Each blue curve represents average angles for a joint. The red 

curve shows the predicted joint angles. The average correlation coefficient across all joints for 

this prediction was 0.92.  

 

 Cross-validation of this fit was performed by separating training and testing data sets 

with a 70/30 split. The split was across object presentations. There are 64 different presentations, 

40 of which were used to calculate a tuning function for each cell (training data), and the firing 

rates from the other 17 object presentations were used for prediction (testing data). This cross-

validation was done over 1,000 different iterations of testing and training data. Those sets that 

included the small handle extension presentation in the testing are shown in Figure 71B for 

comparison with the non-validated prediction. The blue trajectories in this plot are the actual 

joint angles, and the black dots represent predictions from groups of testing data. 
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Figure 71.  Predicted vs. reconstructed hand shape- small handle. 

In Figure A, the blue trajectories show the average joint angle data for presentation of the small hand in the 

extension position. The red trajectories show the predicted joint angles. Figure B shows the cross-validation of the 

trajectories in Figure A. The blue curves show the average joint angles for the small handle presented in the 

extension orientation. The black dots are the cross-validation prediction points. 

 

B 
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The trajectory predictions shown in Figure 71 were selected because it represents the best 

average prediction accuracy. Not all presentations were predicted as accurately, and not all joints 

were predicted as well as others. Figure 72 compares joint angle prediction accuracy as a 

function of object presentation. The poorest predicted objects are the button, large rectangle, 

small and large precision, and the small and large cones. Figure 73 shows the average correlation 

between predicted and actual hand shape for each joint. 
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Figure 72. Joint angle prediction correlation as a function of object presentation. 

Each dot represents the average correlation coefficient between actual and predicted joint angle across all joints for 

the designated object presentation. The legend in the upper right hand corner coordinates object and color. The 

average r-value across all objects is 0.64. 
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Figure 73. Correlation between actual and predicted hand shape. 

This figure shows the average across the 64 presentations. The overall average r value across all joints and all 

presentations was 0.64. 

 

The average correlation coefficient profile shows that the 2nd DoF for each finger, are the 

most poorly predicted. These are the MCP abduction joints for the four fingers, and the CMC 

abduction joint of the thumb. To understand why these joints are poorly predicted we compare 

these results with the earlier grasping synergies analysis for hand shaping (Figure 74). The joints 

that are poorly predicted have two similar features. They are those with a minimal amount of 

variability across many object presentations, and are poorly characterized by the first four 

eigenvectors.   
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Figure 74. Correlation between actual and reconstructed joint angles for all eigenvectors. 

The y-axis is the correlation coefficients between actual and eigenvector reconstructed joint angle data. The 

x-axis shows the number of eigenvectors used for reconstruction. The dashed line is the average correlation. The 

blue curve is the correlation data for the Thumb DoFs, green is the MCP abduction/adduction DoFs, red is the MCP 

flexion/extension DoFs, black is the PIP DoFs, and the light blue is the DIP DoFs.  

 

 In this section we showed that a population of motor cortical cells is tuned to grasping 

synergies. This population was used to predict the weighting of these synergies along with three 

wrist DOFs. The overall correlation between the average hand shape and orientation predictions 

using 327 motor cortical cells was 0.64. The prediction equations presented in this section may 

be a useful starting point for control of a motor restorative device. 
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5.3 SYNERGY CORRELATIONS WITH MOTOR CORTICAL FIRING 

We have shown that monkey grasping kinematics is well represented with only a few patterns 

(Kinematics Chapter 3). In previous sections (5.2) we also showed that the correlation between 

individual motor cortical spiking activity and these patterns of movement can be approximated 

by a linear function. We used this representation to predict hand shape from spiking activity 

(5.3). In general this worked well, however we noted a consistent pattern in the data that did not 

fit this simple model. The portion of the data with poor fits corresponded to the same portion that 

was poorly captured in the data dimensionality reduction algorithm. This suggests that the motor 

cortex may be directing hand movements using a simplified representation, and thus motivated 

the following analysis. 

 

In order to analyze preference between single joints and synergies we have transformed 

our data sets for easy comparison. All of the joint angle data, synergy data, and motor cortical 

spiking data were concatenated into three separated matrices. The data was calculated using an 

average angle over a 30ms bin, average score in the same bin, and 30ms binned fractional 

interval rates. The lag between spiking activity and kinematics was a constant 150ms. The same 

cells used for prediction in section 5.2 are included in this analysis. 

 

We analyzed the correlation between grasping synergy and joint angles as a function of 

individual cells. The initial portion of this analysis was to separate synergies from joints based on 

the rank order of R2 values from linear regressions. We calculated a rank vector for each cell. 

The best synergy was established with a separate single linear regression between the firing rate 

vector and each set of scores. The best corresponding eigenvector was placed in the first position 
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of a rank vector. Another set of regressions were performed with the best set of scores held 

constant and all other sets changed. This step consisted of 19 separate two coefficient 

regressions. The second eigenvector corresponding to the highest two coefficient R2 was placed 

in the second position of the rank vector. This iterative process was continued until all 

eigenvectors were placed in the rank vector. The individual joints were treated in a similar 

fashion. Examples of normalized individual cell R2 profiles are shown in Figure 75. The R2’s 

were normalized so that the maximum for each cell was one, and for easy comparison of profiles 

across the population.  
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Figure 75. Example R2 profiles. 

The blue line represents the R2 profile for a cell as a function of the best joints. The first joint is that with 

the highest R2, and the last joint is that with the lowest. The red curve represents the R2 profile for synergies. On the 

x-axis the number of coefficients corresponds with the number of variables included in the linear regression. Figure 

A B 

D C 
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A shows a ‘joint cell’, and Figure C shows a ‘synergy’ cell. Figure B shows a cell that does not show drastic 

changes in R2 with increasing the number of coefficients. Figure D shows a cell that shows sharp changes with the 

addition of just a few coefficients. 

 

The individual cell profiles (Figure 75) show that some cells have incremental increases 

in R2 values with an increasing number of regressors. Others show little change with number of 

coefficients, while others show sweeping changes for joint angles or synergies when just a few 

coefficients are added. Figure 75A shows and example of a ‘joint’ cell and Figure B shows an 

example of a ‘synergy’ cell. The average profile for all 327 neurons included in the analysis is 

shown in Figure 76. 
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Figure 76. Average R2 profile for all cells. 

The blue line represents the average R2 profile for joints. The red curve represents the average R2 profile 

for synergies. On the x-axis the number of coefficients corresponds with the number of variables included in the 

linear regression. 
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 If the general trend was that the best linearly correlated DoFs was a synergy, over a joint, 

this may hint that the population of cells was utilizing the synergies as a fundamental construct 

for neural control. This, however, was not the case. Although individual R2 profiles show 

differences for single joints compared to synergies, there was no significant difference across the 

population. Even though we have established that the average R2 profiles are not different, we 

have not investigated which synergies occupy the first position in the rank order vector. It is 

reasonable to believe that those joints that contribute to the majority of the variance in kinematic 

space are well represented in the neural code. This assumption would be reflected in the analysis 

by having a majority of cells with lower order synergies occupying the first position in the rank 

order R2 vector. To investigate this we looked at which synergies are the ‘winners’ (Figure 77).   
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Figure 77. Best correlated synergies. 

The top panel shows a histogram of the synergies with the highest R2 values in the linear regression. The 

lower panel shows the relationship between R2 and the best synergy. 
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The distributions of synergies that represent the first position in the rank order matrix are 

not skewed in favor of the lower order synergies. In fact, the cells that are best linearly correlated 

with higher-order synergies are equally well represented as those best correlated with lower 

order synergies (75% of population). This is surprising since the higher order synergies are often 

considered to represent complex movements and account for little variability in the joint angle 

data. This suggests that if the motor cortex is utilizing a simplifying strategy to direct hand 

shaping, it has not been captured by the eigenvectors from the kinematic data. In other words, the 

reduced dimensional kinematic space does not capture the majority of variance in the neural 

space. Another conclusion from this data is that motor neurons may be directing fine adjustments 

to complex movements versus controlling the majority of kinematic variability.  

  

 Although the population R2 profiles do not differentiate between synergies and joints, 

some of the individual cells did. In order to further investigate this, we isolated the cells with a 

large difference in the sum of the first three R2 values in the rank order matrix for both joints and 

synergies. The cutoff value used for a cell to be included in this analysis was 30% larger than the 

comparable R2 sum. For instance; the sum of the best three synergy R2s had to be 30% bigger 

than the sum of the best three joint R2’s, for a cell to be labeled a ‘synergy cell’. The same was 

true for a ‘joint cell’. This perturbation produced two data sets. One group of cells that was more 

correlated with synergies and the other more correlated with joints. The synergy data set had 30 

cells, and the joint set had 54 cells. The first three synergies corresponding to both of these data 

sets are shown in Figure 78. 
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Figure 78. Top three synergies for joint and synergy cells. 

The gray distribution shows the top three synergies for the ‘joint’ cells. The blue plot is the distribution of 

the top three synergies for the ‘synergy’ cells. 

 

 The distribution of the top three synergies from the rank order matrix shows a stark 

difference in which synergies are correlated with a ‘synergy’ cell and a ‘joint’ cell. Cells that are 

most correlated with synergies tend to prefer higher order synergies. Stated another way, cells 

that are most correlated with joints are poorly correlated with lower order synergies. However, 

the joints to which they were best related are those that are prominent in low order synergies. 

The separation of lower order and higher order synergies reflect past observation of motor 

control. 

  

 It has been hypothesized that movement is separated into two broad categories; least 

automatic and most automatic [17]. The least automatic movements are the fine/complex 

adjustments made to an underlying course ballistic behavior. This type of grasping movement is 
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only found in higher order primates. On the contrary, most automatic movements refer to those 

behaviors that are found in early primate infants and lower order species. In relation to the 

current work, the higher order synergies may represent the least automatic movements and the 

lower order synergies the most. In a closely related topic, Strick and colleagues [96] raised the 

notion that motor cortex is organized into two distinct regions based on the differential 

distribution of cortico-motorneuronal cells. These areas are called “new” and “old” motor cortex.  

“Old” motor cortex being those cells located near the precentral gyrus, while the “new” motor 

cortex consists of many cortico-motorneuronal cells in/near the anterior bank of the central 

sulcus. It is hypothesized that old M1 directs the most automated motor movements, while new 

M1 directs the least automatic. We investigated the distribution of the best synergy for cells as 

they relate to the position in recording chamber (Figure 79). A color-map was created 

progressing from blue (lower-order synergies) to red (higher-order synergies). Qualitatively it is 

difficult to assess a pattern of color as a function of recording location. However, a correlation 

becomes clear if we investigate the proximity to central sulcus (Figure 80). A significant 

(p<0.05) correlation exists between a cells likelihood of the best synergy being higher order and 

proximity to the central sulcus. There is also a significant correlation between lower-order 

synergies and a more lateral recording site, and no correlation between best joint and recording 

site.   
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Figure 79. Best synergy as a function of penetration site. 

Illustration of all penetration sites for two monkeys, and three hemispheres, overlaid onto one left 

hemisphere plot. The black diagonal line represents the central sulcus. Each circle shows an electrode penetration 

site where a cell was recorded. The sites have been color coded according to the best synergy. The color map is from 

blue to red going from lower  higher order synergies. 
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Figure 80. Best synergy as a function of chamber position. 

Figures A and B show the best synergy and joint, respectively, as a function of proximity to the central 

sulcus. Figures C and D show the medial-lateral location in the chamber as a function of best synergies and best 

joints.  

 

                                                          5.4 DISCUSSION 

The correlation between motor cortical cells’ firing rate and joint angle, velocity and synergies 

can be approximated with a linear function. This linear fit was constructed based on three wrist 

DoFs and the scores of the first four eigenvectors. The same tuning function obtained for a single 

cell can be transformed into a predictive model when using a population of cells. Even though 

A B 

D C 



 158 

individual cells are poorly tuned to a single variable, the tuning to many variables, combined 

with many cells, results in accurate prediction of hand shape. The prediction reconstructions 

show that the most poorly predicted joints are the abduction joints (CMC of the thumb and the 

MCP joints of the fingers). These also correspond with the joints most poorly characterized by 

the first few eigenvectors. If more eigenvectors were used for reconstruction the prediction 

reconstruction accuracy for these joints may have been higher. 

 

The lower dimensional representation of the hand accounts for the majority of the 

variability in the kinematic space. If the same reduced-dimensional transformation is applied to 

the neural data, we may predict that the firing rates would mostly be correlated with lower order 

synergies. This however, was not the case. Both higher-order and lower-order synergies are well 

represented in the neural data. This suggests that although we have chosen a model that reduces 

kinematic variability, it is not the model of choice to capture the majority of neural variability.  

 

 We can separate the neural data into two general types of cells; those with a higher 

correlation with a few joints, and those with a higher correlation with a few synergies. Analyzing 

the groupings of synergies showed that cells more correlated with eigenvectors tend to be 

correlated with higher-order synergies. This provides a level of support for the idea that this 

group of cells may be contributing to fine adjustments in movement (least automatic). We find 

that cells closer to the central sulcus tend to be best correlated with higher-order eigenvectors.  

 

Cells that are more correlated with higher-order synergies are by definition not correlated 

as well to the majority of variability in hand shaping. It may be that the cells associated with 
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higher-order components are coding for fine adjustments to movements accounting for little 

variability in the kinematic space. The idea that these cells are more likely to be found near the 

central sulcus supports the idea that these may be ‘new M1’ cells [96]. These cells may also 

represent just a small portion of a larger network that directs hand movement utilizing an 

undiscovered method of encoding.  
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6.0  CONCLUSIONS 

This chapter wraps up the findings from the previous three chapters. The section starts with a 

synthesis of the main findings from this work (6.1) with a focus on wrist DoFs, hand kinematics, 

and the relationship between motor cortical firing with wrist and hand movements, and 

concludes with a discussion on future work (6.2). 

6.1 SUMMARY OF MAIN CONCLUSIONS 

 

The main finding from this work is that individual motor cortical neurons are not well correlated 

with single joint variables; rather, they correlate with a number of joints in a complex way. This 

work provides evidence that hand movements are likely controlled through an intricate network 

of motor systems, of which motor cortical neurons contribute by making fine adjustments to a 

basic substrate. These conclusions accrued from analyzing a lower dimensional representation of 

hand kinematics (synergies) (3.4), neural correlation with three wrist DoF (4.0), and neural 

correlation to the aforementioned synergies (5.0). 

 

We found that the kinematics of the three wrist DoFs (flexion, abduction and rotation) 

were rashly independent from hand-shape DoFs, and were considered separately for kinematic 
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(4.1.2) and neural analysis (4.2). With respect to the wrist DoFs; in early training sessions, wrist 

angles were poorly correlated compared with late sessions. It appeared that this change was 

associated with an increase in the number of trials performed daily. It was concluded, that this 

may represent an energy conservation strategy optimizing for increasing the number of rewards 

per day. The neural correlations to these variables were treated separately based on the naturally 

uncorrelated nature of the movements (i.e. early training session). 

 

The pattern of firing of individual motor cortical cells can be approximated by a linear 

function related to change in wrist variables (4.2). Based on single DoF linear regressions, wrist 

position was better correlated to spiking activity than wrist velocity. The coefficients from 

multivariate regressions (b coefficients) were normalized to a unit vector, a preferred direction 

(pd). The length of the sum of these vectors, measure of uniformity, was not significantly 

different from the length of summed vectors drawn from a truly uniform population. This 

suggests that the cells we sampled were drawn from a population with a uniform distribution of 

pd’s, and that no single wrist DoFs is more represented in motor cortex than any other (4.4). 

 

The tuning functions constructed for 200 cells were used in an optimal linear estimator to 

predict wrist DoFs from neural firing rates. The average wrist angle prediction closely 

approximated the actual wrist angle (4.4). This simple transformation from firing rate to wrist 

angle may be implemented in future real-time decoding algorithms for neural control of a three 

DoFs robotic wrist. This achievement would nearly double the controlled DoFs of the most 

advanced motor restorative prosthetic [71]. A significant improvement beyond wrist control 

would be to also direct the DoFs of the hand. 



 162 

 

We used principal components analysis to simplify the complex kinematics of the hand 

(3.3.3). The general characteristics of hand movement, and more specifically the synergies, 

appear to be closely associated to that of humans (3.4.2). Although the kinematic synergies did 

not fully characterize neural firing, they were utilized to simplify hand shape decoding. Using an 

optimal linear estimator, we predicted the average wrist and hand shape from the firing rates of 

327 motor cortical cells with an accuracy as high as 92%.  

 

This accuracy was surprising given the relatively poor correlation of single cell activity to 

individual joints (5.1). The population of cells appeared to be more correlated with a number of 

joints in a complex way. The average prediction accuracy across all object presentations for all 

20 DoFs of hand shaping was 64% (5.2). The majority of prediction error was accounted for by a 

poor estimate of the MCP abduction DoFs. This inaccuracy was predictable based on the joint 

variability accounted for by the lower dimensional kinematic model. (3.4.2).  

 

The relatively even distribution of “best” synergies in the population suggests that the 

lower dimensional kinematic model is not the simplified representation the motor cortical system 

utilizes for directing hand movement. Further understanding of the control system will be gained 

by establishing a model that captures both the hand kinematic and neural variability. 
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6.2 FUTURE WORK 

6.2.1 Lower dimensional representation of neural data 

The lack of our ability to capture the majority of variability in the neural firing rate data by the 

synergies derived from kinematic data provides compelling evidence that we do not have an 

adequate understanding about the relationship between motor cortical firing and complex hand 

shaping. If the motor cortical system does utilize a simplified representation of the hand for 

control, it is not what we have uncovered in our experiment. It is possible that the best lower 

dimensional model is a non-linear representation of hand kinematics, or a simple linear 

transformation of the synergies in this work, or a force based model, etc. However, the number 

of possible representations that the motor system has adopted for hand control throughout 

evolution is endless. Correlating different transformations of kinematic data with neural data is 

not likely the most efficient approach, nor will it likely produce more than incremental progress 

to the current study. Applying a method that captures a lower dimensional representation of both 

kinematic and neural data simultaneously (i.e. conical correlation) is a better approach. Further 

understanding of the components that establish the structured relationship between a cell firing 

and hand movement will provide significant progress in a complex area of neurophysiology.   

6.2.2 Furthering the current study 

The current experimentation is more of a ‘first of its kind’ study, than a validation of past 

experiments. This work has provided insight into some details of high dimensional motor control 

analysis, yet has left much to be desired. In the current work kinematic data was collected 
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simultaneously with neural recordings from the motor cortex. One type of data not collected in 

this experiment is the spiking activity from arm and hand musculature. The current study has 

been expanded (Sagi Perel) to include EMG data from 16 muscles in the arm and hand along 

with hand kinematics and individual motor cortical spiking activity. We hope to further elucidate 

strategies adopted by the network of motor control systems involved with the complexities of 

grasping behavior. 

 

6.2.3 Motor restorative devices 

The predictive algorithms used in this work provide evidence that a high dimensional brain 

machine interface may be guided by the firing of population of motor cortical cells. The number 

of cells used in this work for prediction was relatively high compared to simultaneous neural 

recordings. This study also predicted average hand shapes and wrist orientations from average 

firing rates, a luxury unknown in real-time experimentation. It is difficult to extrapolate, with any 

certainty, the likely number of cells necessary for such work based on the current study.  Even 

with a large population of simultaneously recorded cells, complex control of a high DoFs neural 

controlled device is a formidable challenge. 

 

We are fortunate enough to have an active neural prosthetics program in our lab. The 

focus of this program is the neural control of complex, and high DoFs, robotic arms, wrists and 

hands. The current state-of-the-art neural controlled robotic device guides 4 independent DoFs 

[71]. A robotic arm, wrist and hand in our lab will soon have the same number of DoFs as a 

human hand. The predictive equations in this work indicate that we can direct seven independent 
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DoFs of the wrist and hand. These seven dimensions can be mapped onto a 23 DoFs robotic 

system to direct all DoFs simultaneously. Controlling a robotic hand by decoding a few 

synergies will sacrifice some ability for individuated finger movements, but may provide a 

predictable constraint on the neural decode based in physiology. 
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