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EVALUATION OF TITANIUM ULTRALIGHT MANUAL WHEELCHAIRS USING 

ANSI/RESNA STANDARDS 

Hsin-yi Liu, BS 

University of Pittsburgh, 2008 

 

A series of commercially available titanium ultralight wheelchairs were tested using 

ANSI/RESNA testing procedures, and their durability was compared with previously tested 

aluminum ultralight wheelchairs and light-weight wheelchairs.  Three of each of the following 

titanium wheelchairs were tested: Invacare-TopEnd, Invacare-A4, Quickie-Ti, and TiLite-ZRA.  

The Quickie-Ti wheelchairs had the most forward and rearward center of gravity adjustability.  

All of the titanium wheelchairs passed the forward braking effectiveness test, but two chairs of 

each model tipped backward before the platform inclining to 7 degree in the rearward braking 

effectiveness test.  All titanium wheelchairs passed the impact strength tests, but two failed in the 

static strength tests: two Invacare-TopEnd wheelchairs and one Invacare-A4 wheelchair failed 

due to deformation of the armrest mounting plates, and the handgrips of the TiLite-ZRA 

wheelchairs slid off the push handles.  Two Invacare-A4 and one Invacare-TopEnd successfully 

completed the double drum and curb drop tests, but the remaining 9 wheelchairs failed 

prematurely.  No significant differences were found in the number of the equivalent cycles or the 

value among the four models.  The titanium ultralight wheelchairs had less equivalent cycles and 

value than the aluminum ultralight wheelchairs that were tested in a previous study.  The failure 

modes in the static strength tests and the fatigue tests were consistent within the model, and 
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revealed important design issues for each model.  Our results suggest that manufacturers need to 

perform more careful analyses before commercializing new products. 
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1.0 INTRODUCTION 
 

 

Choice of a suitable wheelchair requires serious consideration.  The U.S. Food and Drug 

Administration (FDA) recommends testing of wheelchairs using American National Standards 

Institute (ANSI) / Rehabilitation Engineering and Assistive Technology Society of North 

America (RESNA) testing standards [1] to assess performance, safety and estimate life 

expectancy of a wheelchair.  Results from ANSI/RESNA standard tests are a source of 

information about technical quality, performance, and allow comparison of results across devices.  

The content of the standard tests covers many aspects that would affect wheelchair usage and 

selection, such as dimensions, static stability, braking effectiveness, strength, and durability.  

Dimensions, weight, and turning radius clue consumers whether a wheelchair will fit in their 

home, working environments, and transportation means.  Wheelchair performances in the static 

stability tests reveal the estimated behavior of the wheelchair on an incline.  The results indicate 

how the stability of the wheelchair is effected by adjustment of the axle and other components.   

It is difficult to tell the strength and durability from the retail advertisements and user manuals.  

Although medical insurers’ prescription guidelines typically require a 3-5 year duration before a 

replacement wheelchair will be covered, previous research shown that the predicted life 

expectancy of some wheelchairs is significantly less [2-7].  Premature failure of the wheelchairs 

could potentially injure the users, and may require them to pay for replacements, which can cost 

several thousand dollars.  According to Smith et. al [2], wheelchair users expect wheelchairs to 

improve their quality of life and help them maintain or achieve a desired level of mobility.  Users 

 1



expect their wheelchairs be comfortable, easy to propel, safe, and good-looking [2].  In a survey 

of wheelchair users with amyotrophic lateral sclerosis, the most desirable features of manual 

wheelchairs were a light-weight frame and a small turning radius [3].  Comfortable propulsion 

and support, light-weight, and small dimensions are very important features, especially for active 

manual wheelchair users [4, 5].  A lighter wheelchair has lower rolling resistance, which reduces 

the forces required to propel a wheelchair.  Thus, lighter wheelchairs are suggested for 

preventing upper limb function of manual wheelchair users[6].  Developing a lighter and a more 

functional wheelchair is a goal for the design of many manual wheelchairs.  The titanium 

wheelchair is a product in response to this goal. 

ANSI/RESNA standard tests provide specific testing protocols to evaluate performance and 

durability of wheelchairs, and serve as a universal platform for data collection and comparison.  

There are reports using ANSI/RESNA standards to evaluate aluminum ultralight wheelchairs, 

and steel light-weight wheelchairs.  Ultralight weight wheelchairs lasted more than five times as 

long as light-weight wheelchairs before catastrophic failures occurred during fatigue tests [7, 8].  

However, ultralight wheelchairs experienced more repairable component failures, such as bolt or 

caster stem failures and screws loosening.  Although replaceable component failures did not 

damage frame integrity, multiple component failures require frequent maintenance and may 

place the user in hazardous situations.  

Many ultralight wheelchairs have titanium frames and/or components.  Since titanium has a 

higher strength-to-weight ratio than aluminum, if engineered correctly, it could preserve the 

strength of the wheelchair frame, while lowering the weight.  Conventional wisdom in our 

wheelchair clinic has been that people who use titanium chairs benefit from their highly durable 

and light-weight properties, although no standard test results of titanium wheelchairs has been 
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reported in the literature.  Our goal in this study, similar to prior works in this area, was to test a 

series of commercially available titanium rigid frame wheelchairs using ANSI/RESNA testing 

procedures.  The standard test to determine brake effectiveness according to International 

Standards Organization (ISO) was incorporated in this study [9] since there is no brake 

effectiveness test for manual wheelchairs in the current version of ANSI/RESNA standards.  We 

hypothesized that these titanium wheelchairs would be in compliance with ANSI/RESNA 

standards, and that they would be more durable than previously tested aluminum ultralight 

wheelchairs and light-weight wheelchairs.  
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2.0 METHODS 
 

 

2.1 STUDY WHEELCHAIRS 

 
Twelve titanium rigid frame wheelchairs representing four models (Figure 1) from three 

manufacturers were tested using ANSI/RESNA wheelchair standard tests in this study.  They 

were the most popular titanium ultralight rigid frame wheelchairs prescribed in the Center of 

Assistive Technology of the University of Pittsburgh Medical Center. They were ordered with 

the same seat dimensional specifications and their standard components respectively.  Due to the 

cost and time to test wheelchairs, we only tested three wheelchairs for each model. 
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Figure 1.  Four models of the titanium ultralight wheelchairs in this study.  a. Invacarea-TopEnd, 

b. Invacarea-A4, c. Quickieb-Ti, and d. TiLitec-ZRA. 
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2.2 STANDARD TESTING PROCEDURE 

 

2.2.1 General 

 

We completed the whole battery of the manual wheelchair standard tests of ANSI/RESNA, and 

assessed brake effectiveness using ISO standard tests.  This paper focuses on the test results of 

Static Stability, Brake Effectiveness, Static, Impact, and Fatigue Strength.  The dummy used in 

this study was built according to the requirements of ANSI/RESNA standards.  

 

2.2.2 Static Stability  

 

The wheelchairs were tested in their most and least stable configurations (forward and rearward 

directions) in the Static Stability Tests (§1 in ANSI/RESNA Wheelchair Standards).  A 100 kg 

dummy was loaded into the test wheelchairs.  The wheelchair was secured on a platform using 

straps without interfering with tipping movement.  An engineer increased the platform angle 

slowly and recorded the angle when the front casters lifted from the platform just enough for a 

piece of paper to pass between the casters and platform.  In the rearward stability tests with the 

rear wheels locked, locking was implemented using parking brakes or securing the wheels with 

straps that limited the rolling motion of the wheel relative to the frame.  In the other portions of 

the static stability tests, blocks or brackets that would not impede the rolling motion of the 

wheels were used to stop the wheelchair from rolling downhill.  
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The least stable position in rearward direction was acquired by moving the rear-wheel axle 

forward, reclining the backrest backward, and increasing the front seat height by adjusting the 

caster position.  We went for the extremely least stable position since there was no indication or 

limitation on the wheelchairs or in the users’ manuals.  Most of the wheelchairs in their least 

stable setting tipped backward on a horizontal plane with the dummy loaded.  Although these 

extremely unstable positions in rearward direction were not realistic wheelchair setting, we still 

proceeded and recorded the tests because the purpose of having the standardized tests is to reveal 

actual properties of a wheelchair.  To address this, we modified the testing procedure by placing 

the wheelchair facing downhill on the level platform and securing it with straps to prevent it 

from tipping over completely (a. in Figure 2).  The slope was then increased, and the angle was 

recorded when the front casters touched the platform (b. in Figure 2).  The reading was a 

negative number.  
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Figure 2.  Rearward stability test with the wheelchair in the least stable configuration and rear 

wheels locked.  All of the rearward stability tests with the wheelchairs in their least stable 

settings had the same modified testing method.  The wheelchair was placed facing downhill and 

secured by straps to prevent it from tipping over completely, while gradually increasing the angle 

until the front casters touched the platform (a.).  The angle was recorded when the front casters 

touched the platform (b.). 

 

2.2.3 Braking Effectiveness 

 

In the Braking Effectiveness Tests (§3 in ISO Wheelchair Standards), we kept the wheelchairs in 

the same setting as when they came out of the box (the axle was in the most rearward setting), 

loaded them with a 100 kg dummy, and engaged the rear brakes.  The tests were performed on 

the same platform as in the static stability tests.  While increasing the slope of the platform, the 

angle was recorded when the wheelchair started to slide downhill.  The wheelchair was tested in 

its forward and rearward orientation.  Since the steepest slope that fulfills the requirement of 

Americans with Disabilities Act (ADA) is 7º (1:8) with a maximum rise of 75 mm (3 inches) for 
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existing building and facilities, we expected that the wheelchair should be able to stay stationary 

on a 7º slope. 

 

2.2.4 Static, Impact and Fatigue Strength Test (Durability Testing)  

 

Static, Impact and Fatigue Strength Tests (§8 in ANSI/RESNA Wheelchair Standards) evaluate 

the strength of the wheelchair structure by applying different types of loads on specific 

components.  A pneumatic ram was used to apply static force to the footrest, armrests, and 

tipping levers (if present) according to the standard.  Impact force was applied using a pendulum 

on several components of the wheelchairs (footrest, caster wheels, push-rim) prone to impact 

objects.  Any permanent deformation or component failure was considered a failure as denoted 

in the standards.  

Fatigue strength was evaluated by the double-drum and curb-drop tests.  The wheelchair 

was loaded with a 100 kg dummy during the tests.  In the double-drum test (DDT), the position 

of the drive wheels was set at the mid-axle position according to the requirements in the 

standards.  Because these titanium wheelchairs were unstable in this position, we set the rear axle 

in the most rearward position horizontally and in the mid-position vertically (which was how it 

arrived from the supplier).  Other wheelchair settings were set according to the requirements in 

the standard.  The leg length of the dummy was adjusted to fit the wheelchair dimension, and the 

feet were fixed on the footrests.  The dummy’s trunk and legs were secured to the wheelchair, 

although hip-joint motion was preserved through a spring-loaded damper system to allow 

physiologic-like motion during the testing.  According to the standard, the dummy was 

positioned centrally on the seat.  Generally, the weight of both legs is 32% of bodyweight [10].  
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Individual who are 6 months post spinal cord injury may lose 15% to 46 % of muscle cross-

sectional areas over lower extremities [11].  We kept weight loading on the front casters 

carefully within 20-25% of the total weight including the dummy and the wheelchair to 

approximate the influence by the occupant’s bodyweight and the weight of the wheelchair and 

prevent over loading onto the casters.  This was achieved by adjusting the location of the dummy 

anteriorly or posteriorly.  The 12-mm-high slats on the drum simulate sidewalk cracks, door 

thresholds, potholes and other small obstacles on the rolling surface.  Two clamps attached to the 

axle of the rear wheels held the position and balance of the wheelchair on the double drum 

machine, but allowed vertical movement without appreciable sideward drifting (Figure 3).  The 

rear drum runs with the speed of 1 meter/sec, and the front drum turns 7% faster to vary the 

frequency of when the front and rear wheels encounter the slats.  A wheelchair that completed 

200,000 cycles on the test machine was considered passing the DDT.   

 

 

 

Figure 3.  Setting of the double drum test.  The two clamps attaching the axle of the rear wheels 

held the position and balance of the wheelchair on the double drum machine, but allowed vertical 

movement without appreciable sideward drifting. 
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Only the wheelchair that passed the DDT would continue the curb-drop test (CDT).  In 

the CDT, the wheelchair was dropped freely from a 5 centimeter height repetitively onto a 

concrete floor to simulate a wheelchair going down small curbs.  A wheelchair passes the 

wheelchair standard tests when it survives 200,000 cycles in the DDT and 6,666 cycles in the 

CDT without harmful damage [1].  The intensity of the fatigue tests mimics 3 to 5 years of daily 

use[12].  We repeated the fatigue tests until each wheelchair had permanent damage to reveal the 

exact survival life.  For the purpose to compare the fatigue life, the following formula was used 

to compute the equivalent number of cycles [7, 13, 14]: 

Total Equivalent Cycles (EC) = ( Double-Drum Tester Cycles) + 30×( Curb-Drop Tester Cycles) 

------------------------------------------------------------------------------------------------------------

[Equation 1] 

The EC counts the number of cycles before the occurrence of the Class III failure in the 

Fatigue test.  A wheelchair that obtained an equivalent cycle of 400,000 cycles was denoted as 

passing the minimum requirements of the standard. 

The severity of the failure was classified into three levels.  Any failures that could be 

repaired by the user or any untrained personnel such as tightening screws or bolts or inflating the 

tires was counted as a Class I failure.  Class II failures need to be repaired by a wheelchair or 

bicycle technician, such as replacing tires or spokes and doing complex adjustments [12].  

Permanent damage of the frame or any failure that would put the user in a hazardous situation 

was counted as Class III failures in this study.  In a previous ultralight wheelchair comparison 

study, three bolt failures were considered a Class III failure [7].  Multiple minor failures were not 

counted as a Class III failure in this study to prevent premature discontinuation that would 

 11



shelter the durability of the main frame and structure.  All the failures were recorded to disclose 

the frequency and complexity of the repairs needed for each wheelchair. 

 

2.3 COST EFFECTIVENESS 

 

It is meaningful to know the cost effectiveness of a wheelchair.  The cost-effectiveness of our 

test wheelchairs was compared using the value derived from normalizing the number of 

equivalent cycles by the retail price of the wheelchair (cycles/$).  The higher the value, the more 

cost-effective the wheelchair is deemed to be [8]. 

 

2.4 DATA ANALYSIS 

 

Primary analysis for static stability, braking effectiveness, equivalent cycle, and cost 

effectiveness were done by Kruskal-Wallis followed by Mann Whitney U tests as a univariate 

analysis with levels of significance of p < .05.  Non-parametric statistical methods were used 

because the data were not normally distributed and the sample size was small [15]. 

Survival analysis using the Kaplan Meier method was used to compare cumulative survival 

rate [13] of titanium, ultralight, light-weight, and depot wheelchairs.  A class III failure was 

defined as  the terminal event in each group of wheelchairs [13]. 
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3.0 RESULTS 

 

 

The general features of the wheelchairs are presented in Table 1.  All the chairs were rigid frame 

with one pieced footrests.  

 

Table 1:  Overall Dimension and Feature of Titanium Wheelchairs 
 
 Invacare-

TopEnd 
Invacare-A4 Quickie-Ti TiLite-ZRA 

Manufacturer Invacare Invacare Sunrise Medical TiLite 
Rear Wheels and 
Size 

Sunrims CR20 
/610mm  

SW6000 Sunrims 
/610mm 

SW6000 Sunrims 
/610mm 

Sunrims CR20 
/610mm 

Tires and 
Recommend 
Pressure 

PR1MO V-
TRAK/ 100 psi 

(37-540) Pneumatic 
Tire Primo V-Trac 
Knobby / 75psi 

(37-540) Pneumatic 
Tire Primo V-Trac 
Knobby / 75psi 

PR1MO V-TRAK/ 
100 psi 

Caster Diameter 
(mm) 

80 80 80 80 

Mass (kg) 9.1 11.3 9.1 9.1 
Overall Length 
(mm) 

797 827 820 807 

Overall Width 
(mm)  

632 643 603 587 

Seat Angle (º) 10.3 7.6-11.8 8.5-23.6 4.9-18.7 
Backrest Angle (º) 14.0 2.1-14.6 5.2-22.2 2-21.3 
Horizontal 
Location of Rear 
Wheel Axle (mm) 

16.7-106.3 26.7-154.3 28.0-140.7 15.5-143.0 

Horizontal Location of Rear Wheel Axle is the horizontal distance between the rear wheel axle 

and the intersection of the references of the backrest and seat plane according to the 

ANSI/RESNA Standards. All the horizontal rear wheel locations were forward from the 

intersection of the backrest and seat plane.   
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3.1 STATIC STABILITY 

 

The average tipping angle and the standard deviation are shown in Table 2. Significant 

differences were found in two test sections: the forward stability test in the most stable 

configuration with wheels unlocked (p=.025), and the rearward stability test in the least stable 

configuration with wheels unlocked (p=.047).  The Quickie-Ti was the most stable model in the 

forward stability test with the front wheels (casters) unlocked and in the most stable setting.  The 

Invacare-TopEnd was the most stable model in the rearward stability test with the rear wheels 

unlocked and in the least stable setting. 
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Table 2: Mean Tilt Angle, Standard Deviation and Range of Tipping Angle in Static Stability 

Tests 

 

 Forward Rearward 

 Front Wheel Unlocked Rear Wheel Locked Rear Wheel Unlocked 

Model Least 
Stable 

Most 
Stable Range Least 

Stable 
Most 
Stable Range Least 

Stable 
Most 
Stable Range 

Invacare-
TopEnd 

25.70± 
0.61 

26.90± 
1.50 

1.20± 
0.98* 

-1.27± 
3.85 

10.93± 
0.23 

12.20± 
3.85* 

1.00± 
7.28* 

20.33± 
1.08 

19.33± 
8.35* 

Invacare-A4 24.20± 
1.77 

31.97± 
1.06 

7.77± 
1.55 

-16.90± 
8.18 

10.63± 
2.89 

27.53± 
5.37 

-14.97± 
2.88 

20.93± 
4.74 

35.90± 
5.96 

Quickie-Ti 20.93± 
1.82 

34.33± 
0.29* 

13.40± 
1.55* 

-11.90± 
1.61 

14.57± 
2.15 

26.47± 
2.90 

-21.70± 
6.01 

27.07± 
2.18 

48.77± 
4.31* 

TiLite-ZRA 21.97± 
0.38 

31.43± 
1.72 

9.47± 
1.60 

-10.97± 
2.71 

10.10± 
1.31 

21.07± 
1.44 

-17.50± 
3.12 

18.27± 
3.09 

35.77± 
1.32 

Range is the difference in the tipping angle between most stable and least stable configurations. 

*The result is significantly different from the other models. 
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The ANSI/RESNA wheelchair standards indicate to move the rear wheel position forward 

when conducting the forward stability test with least stable setting.  When testing this group of 

titanium wheelchairs, the mid-position of the rear wheel axle was considered the least stable 

setting (a. in Figure 4) since the wheelchair would tip “backwards” if we moved the axle further 

forward (b. in Figure 4). 

 

 

 

Figure 4. Position of the rearwheel axle in the forward stability tests. The mid-position of the rear 

wheel axle was considered the least stable setting (a) since the wheelchair would tip “backwards” 

if we moved the axle further forward (b). 

 

The range in the last column of each section in Table 2 is the difference between the least 

and most stable tipping angle that indicates the adjustable variability of the center of gravity for a 

wheelchair.  Significant differences were found among the four models in the forward direction 

with rear wheels unlocked (p=.019), the rearward direction with rear wheels locked (p=.025) and 
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the rearward direction with rear wheels unlocked (p=.025).  The Invacare-TopEnd had the least 

range in the forward and rearward stability tests.  The Quickie-Ti wheelchairs had the largest 

range in the forward and rearward stability tests with rear wheels unlocked.  Difference of the 

tipping angle between the least and most stable wheelchair settings can give users and clinicians 

a general idea how much the center of gravity can be adjusted for the specific type of wheelchair 

(Table 2, range column). 

 

3.2 BRAKING EFFECTIVENESS 

 

The sliding angles in the braking effectiveness tests (forward and rearward) are shown in Table 

3.  No significant differences were found among the four models in the forward or rearward 

directions.  Table 3 showed the individual data to reveal the performance of each wheelchair.  

All of the wheelchairs passed the forward braking test.  Every chair in this study tipped 

backward without sliding in the rearward braking effectiveness test, and two chairs of each 

model tipped prematurely before the platform inclining to 7 degree. 
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Table 3: Sliding Angle in the Braking Effectiveness Tests 
 
 Invacare-TopEnd Invacare-A4 Quickie-Ti TiLite-ZRA 

Wheelchair ID 03 04 05 06 11 12 07 08 09 01 02 10 
Sliding Angle in 
Forward Brake 

Effectiveness Test 
19.5 17.1 21.2 35 14.4 17.2 25.1 10 12.8 12 14 8.3 

Sliding Angle in 
Rearward Brake 

Effectiveness Test 
12.4 5.4* 4.2* 15 6.1* 3.1* 3.4* 9.4 5.6* 10 6.5* 5.9*

* The wheelchair tipped backward before the platform inclining to 7 degree.  

 

3.3 IMPACT AND STATIC STRENGTH TESTS 

 

All titanium wheelchairs passed the impact strength tests.  There were two types of failure in the 

static strength tests.  Two Invacare-TopEnd wheelchairs and one Invacare-A4 wheelchair failed 

due to deformation of the armrest mounting plates after a 760N downward force was applied on 

the armrests.  This caused the undamaged removable armrests to bow outward which would 

impede the propulsion movement of the hands (a. in Figure 5).  All of the handgrips of the TiLite 

wheelchairs slid off the push handles when a 750N backward pulling force was applied to the 

handgrips (b in Figure 5). 
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Figure 5. Two failures in the static strength tests. Picture a. shows the position of the armrest 

deviated due to the permanent deformation of the armrest mounting piece after a 760N 

downward force was applied on the armrest of an Invacare-TopEnd. The shifted location of the 

armrest would impede the propulsion movement of the hands. Picture b. shows that the handgrip 

slid off the handle after a 750N force was applied to pull the handgrip of a TiLite wheelchair 

backward. 

 

3.4 FATIGUE STRENGTH TESTS (DURABILITY TESTING), EQUIVALENT 

CYCLES, AND COST EFFECTIVENESS 

 

No significant differences were found in the number of the ECs among the four models.  The 

Invacare-A4 had the highest number of mean equivalent cycles, and the TiLite-ZRA had the 

lowest number of ECs.  The ECs and cost-effectiveness (in terms of value) of each model are 

shown in Table 4.  Only four titanium wheelchairs out of twelve met the 200,000 cycle 

 19



requirement for the DDT.  Two Invacare-A4 and one Invacare-TopEnd passed the wheelchair 

standard (Figure 6) (i.e. successfully completed the DDT and CDT).  The titanium ultralight 

rigid frame wheelchairs had significantly less ECs than the aluminum ultralight folding 

wheelchairs (p< .001), but their ECs were not significantly different from those of the 

lightweight steel wheelchairs (p= .569).    

The manufacturer suggested retail price of Invacare-TpoEnd was $3,218, Invacare-A4 was 

$2,875, Quickie-Ti was $2,995, and TiLite-ZRA was $2,695.  The prices were for the 

configuration of the wheelchairs tested in this study. The Invacare-A4 had the highest value and 

the TiLite-ZRA had the lowest value (Table 4), but no significant differences were found among 

the four models.  Compared with previous tested aluminum ultralight folding and steel 

lightweight wheelchairs, these titanium wheelchairs had significantly less value (p< .001 and 

.006 respectively).  

 

Table 4: Mean Equivalent Cycles and Mean Value of the Titanium Manual Wheelchairs 
 

Titanium MWC Mean Equivalent Cycles 
± Standard Deviation 

Mean Value (cycles/$) ± 
Standard Deviation 

Invacare-TopEnd 218,945.7±186,128.9 68.0±57.8 

Invacare-A4 390,097.7±191,420.4 135.7±66.6 

Quickie-Ti 224,732.7±151,797.9 75.0±50.7 

TiLite-ZRA 152,249.3±57,929.4 56.5±21.5 
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Figure 6. Equivalent cycles of each wheelchair in the fatigue tests.  The horizontal line at 

200,000 cycles indicates the required testing cycles in the double drum test.  The second at 

400,000 cycles represents the minimum requirement in the ANSI/RESNA wheelchair standard. 

 

Numbers of Class I and II failures occurring before permanent damage are shown in Figure 

7.  Wheelchairs No.05, 06, and 08 had no Class I or Class II failures before the permanent frame 

failure occurred.  The Invacare-A4 wheelchair No.11 and TiLite-ZRA wheelchair No.10 (TiLite-

ZRA-10) experienced the highest number of failures (four times) before the final Class III 

failure.  Three of the Class II failures of the TiLite-ZRA-10 were the spokes of the rear wheel, 

not a frame failure.  If the wheel failures were not counted, eight wheelchairs experienced only 
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one or zero class I or class II failure before catastrophic frame failures occurred.  Each minor 

(class I and II) and the permanent (class III) failure are listed in Table 5.  The failure mode was 

relatively consistent within the model of the titanium wheelchair.  
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Figure 7. Numbers of Class I and Class II Failures before the Class III failure occurring during 
the Fatigue Tests 
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Table 5: Failure Mode in the Fatigue Tests 
 

Wheelchair Class I and II Failures Class III Failures 
Invacare-

TopEnd-03 
Right rear wheel axle screw slid out. 
Backrest upholster was worn out. Both backrest canes fractured. 

Invacare-
TopEnd-04 Right rear wheel axle screw slid out × 3 times. Both backrest canes fractured. 

Invacare-
TopEnd-05  Left backrest cane fractured. 

Invacare-A4-
06  

Right caster stem fractured. 
The frame fractured through the screw hole at 
the midway of the seat on right side. 
Both rear wheels could not be taken off from the 
quick release axle. 

Invacare-A4-
11 

Footrest slid down. 
Rear wheel axle slid forward. 
Footrest left suspension tube fractured. 
Left rear wheel axle slid out. 

Right frame tube fractured at the screw hole for 
the mounting piece between the backrest and 
seat. 

Invacare-A4-
12 

Seat sling detached from the frame. 
Footrest slid down × 2 times. 

Right frame tube fractured at the screw hole for 
the mounting piece between the backrest and 
seat. 

Quickie-Ti-07 Left caster screw loosened. Left frame tube fractured at the first screw hole 
of the seat. 

Quickie-Ti-08  
Frame tube fractured at the left first screw hole 
and was torn at the right second screw hole of 
the seat. 

Quickie-Ti-09 Right caster screw loosened. Left frame tube fractured at the second screw 
hole of the seat. 

TiLite-ZRA-
01 Plastic plate of the footrest chipped. Right frame tube fractured at the first screw hole 

of the seat. 

TiLite-ZRA-
02 Plastic plate of the footrest chipped. 

Right frame tube fractured at the first screw hole 
of the seat. 
Right rear wheels could not be taken off from 
the quick release axle. 

TiLite-ZRA-
10 

Eight spokes of right rear wheel detached 
sequentially. 
Plastic plate of the footrest chipped. 

Right frame tube fractured at the first screw hole 
of the seat. 
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4.0 DISCUSSION 

 

 

4.1 GENERAL 

 

Lighter weight and more compact dimensions can improve the maneuverability and 

transportability of a wheelchair [5].  This group of titanium rigid frame wheelchairs tends to have 

smaller dimensions and lighter weight than those of the wheelchairs with swing away footrests of 

the same seat dimensions.  The titanium wheelchairs are expected to increase convenience and 

efficiency in daily living.  However, the general features do not endorse that this group of 

titanium wheelchairs are the best choice for manual wheelchair users.  There are multiple factors 

that affect satisfaction and usage of wheelchairs [4, 16]. 

The results of this study rejected our previous hypotheses that these titanium wheelchairs 

would be in compliance with ANSI/RESNA standards and more durable than previously tested 

aluminum ultralight wheelchairs and light-weight wheelchairs.  Discussions according to the 

sections in the standard tests were provided as follows.  
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4.2 STATIC STABILITY 

 

This group of titanium wheelchairs with rigid frames had a greater difference in tipping angles 

between the least and most stable settings in each stability test compared with the aluminum 

ultralight wheelchairs in our previous study [7].  The aluminum wheelchairs of folding frames 

with X bars and swing away footrests had the center of gravity in a more forward position 

compared to the rigid frame wheelchairs.  The lower limb position of the dummy on the 

wheelchair may also make the testing results different from the previous study.  In this study, the 

knees of the dummy were more flexed compared with the setting in our previous test with the 

aluminum ultralight wheelchairs.  This position shifted the center of gravity backward and 

thereby decreased the rearward stability.   

Although the setting of having negative tipping angles is not practical in real life, the 

result indicates that this group of wheelchairs had great variability in the adjustment of the center 

of gravity of the user/wheelchair system, relative to the axle position.  Our results suggested that 

the stability of this group of rigid frame wheelchairs may change significantly by moving the 

axle position subtly.  Suppliers and clinicians should check and adjust the rear wheel axle with 

caution, especially when providing service to novice users with this group of wheelchairs. 
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4.3 BRAKING EFFECTIVENESS 

 

The wheelchairs in this study stayed stationary in forward direction on the slope which was 

steeper than the maximum incline degree of a slope required by ADA.  However, most of the 

wheelchairs tipped on the slope less than 7º in the rearward braking effectiveness test.  The frame 

design and the lower limb position of the dummy did play an important role in affecting rearward 

stability as we have discussed above.  The compact size of the wheelchairs with rigid frames 

increases their maneuverability but decreases rearward stability.  Users have to effectively adjust 

trunk posture (i.e. leaning into the slope) to compensate for displacement of the center of gravity 

when pushing any wheelchair of these four models uphill.  Novice users should be taught to lean 

forward when pushing up a slope and lean into the backrest when rolling down a slope. 

 

4.4 IMPACT AND STATIC STRENGTH TESTS 

 

Although the three Invacare wheelchairs that failed in the static strength test on armrests were 

still usable, the compromised material strength of the mounting plate could cause a catastrophic 

failure (a. in Figure 5).  The TiLite wheelchairs had similar mounting mechanism for the armrest 

as the Invacare wheelchairs, but they had a stronger structure with double plates to support an 

armrest bar, which may be why they passed this portion of the standards.  

All of the TiLite wheelchairs failed in the static strength test on handgrips.  The hazard 

will occur when an attendant is pulling the wheelchair backward with an occupant in it in order 
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to decrease the speed while moving forward or downhill on a slope.  The attendant may have the 

tendency to fall backward if the handgrips slide of the push handles.  Also, the situation may 

endanger the user who could roll away uncontrolled.  Another threatening situation may be when 

an attendant is assisting with a wheelchair user descending a curb.  The wheelchair may lose 

control or tip backward if the handgrips slide off the push handles. 

 

4.5 FATIGUESTRENGTH TESTS (DURABILITY TESTS) 

 

This group of titanium wheelchairs survived less ECs (their average EC was 246,506 ± 154,086) 

than was previously reported for aluminum ultralight wheelchairs, but their life expectancy was 

similar to that of the steel light-weight wheelchairs[7, 8].  Published results show that the 

aluminum ultralight wheelchairs lasted on average 1,009,108 ± 782,960 (n=12) equivalent 

cycles, and the light-weight wheelchairs lasted on average 187,370 ± 153,013 (n=9) equivalent 

cycles [8].  Although the results were different among manufacturers, the wheelchairs in each 

group had similar performances.  According to the survival curves (Figure 8), each step going 

down indicates a class III failure of the wheelchairs from each group.  With 400,000 equivalent 

cycles as the minimum requirement, 80% of the aluminum ultralight wheelchairs survived, but 

less than 40% of the titanium wheelchairs survived to comply with current standards.  The 

aluminum ultralight wheelchairs lasted about 4 times longer than the titanium wheelchairs, and 

had a value of about 5.4 times higher than the titanium wheelchairs.   
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Figure 8. Survival curves for the titanium, ultralight, light-weight, and depot wheelchairs from 

this and previous comparison studies [7, 8, 17].  The gray vertical line indicates 400,000 cycles 

equivalent, which indicates passing the durability standard.  

 

When the comparing the coefficient of variation (Cv = standard deviation/mean) of the 

EC, the steel lightweight wheelchairs had larger Cv (0.82) than the aluminum and titanium 

wheelchairs (0.67 and 0.66 respectively).  This result may imply that the aluminum ultralight 

folding frame wheelchairs and titanium ultralight rigid frame wheelchairs were produced under 

better quality control than the steel lightweight wheelchairs.   

In addition, this group of titanium wheelchairs exhibited less value than the aluminum 

ultralight and the steel light-weight wheelchairs (Figure 9).  The aluminum and steel lightweight 
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wheelchairs were 11 times and 3.3 times more cost-effective than the titanium wheelchairs 

respectively.     

 

 

 

Figure 9. Value (cycles/$) of the titanium, ultralight, and light-weight wheelchairs.  The final 

three columns are the average value for the three types of manual wheelchairs, respectively.  

Standard deviation was also shown in each value. 

 

All of the aluminum ultralight and light-weight manual wheelchairs were tested with 

203mm solid casters, whereas the titanium wheelchairs had 80mm solid casters.  The different 

caster size may be a contributing factor for some of the failures because larger caster diameter 
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decreases the impact forces when negotiating bumps, curbs, or holes, which may help the 

wheelchair to last longer.  

Although a smaller caster size increases the impact loaded on the frame compared with 

203mm casters on the previous tested aluminum wheelchair, it is reasonable to test these 

titanium rigid frame wheelchairs with 80mm casters.  The 80mm casters are the standard 

components of the titanium wheelchairs in this paper.  According to the clinical experience of the 

clinicians in the Center of Assistive Technology at the University of Pittsburgh Medical Center, 

most users of this group of wheelchairs were prescribed with these casters.  Additionally, there is 

no option of having 203mm casters on these wheelchairs because the footrest and likely the 

users’ feet would interfere with the free movement of these larger-sized caster wheels.  If the 

testing results of a wheelchair with its standard components are not revealed, it may be difficult 

to estimate the quality and property of the wheelchair after adjustment or with modification. 

The testing results of aluminum folding wheelchairs and titanium rigid frame wheelchair 

should be compared directly even though they had casters in different sizes.  According to the 

clinical guideline [6], manual wheelchair users are recommended to use lighter wheelchairs 

without specific recommendation of caster size.  Thus, manual wheelchair users at any level of 

injury or wheelchair skill may choose an ultralight titanium rigid frame wheelchairs tested in this 

study with 80mm casters or the ultralight aluminum folding frame wheelchairs with 203mm 

casters.  Therefore, it is important that all types of wheelchairs should be tested with their various 

components to disclose their influence on performance of the wheelchairs, and all testing results 

of different types of wheelchairs should be directly compared to provide complete information 

for the consumers. 
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The minimum requirement of the standard in fatigue tests represents the durability of 

regular use for 3 to 5 years [12].  The titanium wheelchairs in this study had an estimated 

average usable life of 1.85 to 3.08 years.  The Invacare and TiLite include a lifetime warranty 

and Quickie includes a 5-year warranty on the titanium frames.  There seems to be a large 

discrepancy between the warranty provided by the manufacturers and the testing results in this 

study.  In fact, the fatigue tests of ANSI/RESNA standards were conservative for this group of 

wheelchairs because the weight of the testing dummy (100 kg; 220 lbs) was actually less than the 

maximum weight capacity of the wheelchairs claimed by the manufacturers (113.6-136.4 kg; 

250-300 lbs). To provide more reliable information to the consumers, the manufacturers should 

disclose the testing set-up and methods to determine the durability of their products.  

 

4.6 FAILURE MODES 

 

4.6.1 Invacare-TopEnd 

 

All of the Invacare-TopEnd wheelchairs experienced fractures at the backrest canes.  In 

temperatures higher than 500°C, titanium has a high affinity for oxygen, nitrogen, and hydrogen 

[18, 19].  Contamination by gas absorption can make titanium brittle, so the welding process 

must be protected from oxidation by an inert gas shield (argon or helium) or vacuum 

environments [18, 19].  When oxidation occurs, the oxide on the interacting surface may 

generate an interference color.  On the Invacare-TopEnd-04, we found white, light blue, straw 

and gray colors in the weld vicinity on the inner surface of the fracture site (Figure 10).  The 
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colors on the inner surface were within the heat affected zone, which indicates that the titanium 

had high levels of oxygen contamination during the welding process.  The fracture surface in the 

picture is quite shiny and without plastic deformation which implies embrittlement which may 

have contributed to the fracture of the backrest cane.  

 

 

 

Figure 10. Backrest cane fracture of an Invacare-TopEnd wheelchair in the DDT.  Picture a. 

shows the condition of the failure in the DDT with the dummy on the wheelchair.  Picture b. 

shows the evidence of oxygen contamination that made the inner surface of the tube white, light 

blue, straw and gray. 

 

Although we did not find clear evidence of oxygen contamination in the other two 

Invacare-TopEnd wheelchairs, they both fractured in the same area on the backrest canes around 

the welding site connecting the backrest cross-bar (a. in Figure 11) and the top corner of the 

gusset (b. in Figure 11).  The backrest cross-bar is welded with the backrest cane on both ends to 
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increase the strength of the backrest.  The gusset serves to reinforce the structure between the 

backrest and seat.  By the anterior and posterior movement of the dummy hitting on the backrest 

during the double-drum testing, the superior area of the gusset was at the bending stress 

concentration point of the cantilever structure [20].   

Additionally there is a hole at the intersection of the backrest and the backrest cross-bar 

(b. and c. in Figure 11).  This hole is purposely applied for inserting the gas flow to prevent the 

oxygen contamination from welding, but one of the backrest canes fractured at the hole (c. in 

Figure 11).  Discontinuity in metal acts as a stress riser that decreases the strength of the 

material.  The other three fractured backrest canes were broken at the superior edge of the weld 

area at the cross-bar.  Although the weld at this site is quite thin compared with the gusset and 

has less chance to destroy the physical properties of the titanium, the backrest cane tended to 

break along the upper rim of the weld circle with the cross-bar.  Heat treatment from welding 

likely decreased the strength of the titanium cane.   

The Invacare-TopEnd had the same wall thickness of the backrest cane as the Quickie-Ti 

and TiLite-ZRA (1.27mm), and was slightly thinner than the Invacare-A4 (2.29mm) (Table 6).  

Yet, the Invacare-TopEnd was the only model where all chairs fractured at the backrest canes.  

The four factors - the cantilever structure of the backrest, one weld area for the backrest cross-

bar on the backrest, a second weld area for the gusset on the backrest, and the hole for inserting 

the gas shield - all contributed to weaken the structure.  Only the depot wheelchairs in our 

previous comparison study had similar failure as the Invacare-TopEnd [17]. 
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Figure 11. The structure nearby the fracture site of the Invacare-TopEnd wheelchairs.  Picture A. 

shows the geometry relationship of the backrest cross-bar (a.) and reinforcing gusset (b.) with the 

backrest cane.  B shows the position of the hole for inserting the gas shield.  C shows one of the 

back rest cane fractured right at the gas insert hole. 
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Table 6: Dimension of the Frame Tubes and Backrest Canes 
 

 Frame Tube Backrest Cane 

Unit: mm 
Diameter Thickness 

Outer 
Diameter of 

Footrest Tube 
Diameter Thickness 

Invacare-
TopEnd 25.65 1.27 22.35 25.65 1.27 

Invavare-
A4 25.65 1.27† 19.05 25.65 2.29 

Quickie-
Ti 25.65 1.27 19.05* 25.65 1.27 

TiLite-
ZRA 31.75 1.52 19.05 25.65 1.27 

* The inner diameter of the clamp for the footrest of the Quickie-Ti is 19.05mm. 

† The thickness of the tube at the seat plane of the Invacare-A4 is 1.02mm.  

 

We found that an Invacare-TopEnd wheelchair had different types of screws on the two 

front casters.  Although the structural strength was not affected, this finding suggests a possible  

quality control problem.  

 

4.6.2 Invacare-A4 

 

The Invacare-A4-06 fractured at the right caster stem and the middle of the right tube in the seat 

plane in the first round of the double-drum test (Figure 12).  The caster stem is steel.  From the 

pictures b. and c. in Figure 12, the beach marks can be seen on the fracture surface that indicate 

the occurrence of metal fatigue [21, 22].   
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Figure 12. Caster stem fracture of an Invacare-A4 wheelchair.  Picture a. shows the location of 

caster stem fracture. Pictures b. and c. show the fracture surface, and the arrows indicate the start 

of crack that eventually developed as fatigue fracture. 

 

Around the fracture at the middle of the right seat frame of the Invacare-A4-06 (Figure 

13), there were three holes at the superior, medial and lateral sites around the same location of 

the tube.  The fracture line passed through the two holes on the medial and lateral side.  In the 

drawing with translucent pattern in Figure 14, Circle a. indicates the fracture site at the frame of 

the Invacare-A4-06.  The proximity of the holes in Circle a. decreased the strength of the 

structure.  
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Figure 13. Fracture at the middle of the tube in the seat plane of an Invacare-A4.  Picture a. 

shows the medial view, and Picture b. shows the lateral view.  The fracture lines in Picture a. and 

b. were connected with each other. 

 

 

 

Figure 14. The left frame of the Invacare-A4 showing the locations of screw holes on the tube in 

the seat plane.  Circle a. indicates the fracture site at the middle of the seat plane of the Invacare-

A4 wheelchair with a caster stem fracture.  Circle b. indicates the fracture site of the other two 

Invacare-A4 wheelchairs which went into the 2nd round of the DDT.  
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Both of the Invacare-A4 wheelchairs which passed the first round of the fatigue tests but 

failed in the 2nd round of the double drum test had fractures around the screw holes of the 

mounting plate between the backrest and seat frame and the screw holes for the seat sling (Figure 

15).  In addition to the screw holes for the seat sling (5 holes on the top of the tube) and the 

mounting pieces of the backrest (2 on the medial side and 2 on the lateral side) (circle b. in 

Figure 14), there are four more holes on the side (2 on the medial side and 2 on the lateral side) 

for the mounting bracket of the T-shaped armrest (circle a. in Figure 14).  Although the Invacare-

A4 was the model which had the most equivalent cycles among the four models of titanium 

wheelchairs, the aluminum ultralight wheelchairs performed much better in the fatigue tests in 

the previous ultralight wheelchair comparison study, where 6 of the 12 wheelchairs passed the 

second round of the fatigue testing [7].  

 

 

 

Figure 15. Fracture lines (arrows) around the screw holes for the mounting plate between the seat 

plane and backrest of an Invacare-A4 wheelchair. 
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The footrests of the two of the Invacare-A4 wheelchairs repeatedly slid down during the 

double drum test.  The Invacare-A4 and TopEnd footrest tube is clamped by only a set screw (c. 

in Figure 16).  Compared with the Invacare-TopEnd, the A4 had larger discrepancy in the 

diameter between the tube of the footrest and the outer piece of the main frame (Table 6) so that 

its footrest slid down easily under the weight of the dummy’s legs during the double drum test.  

The set screw carved notches on the vertical footrest tube after repeatedly sliding (b. in Figure 

16).  Although this mounting mechanism of the footrest would not affect the integrity of the 

main frame, the unanticipated repositioning of the footrest can be inconvenient and potentially 

injurious.  

 

 

 

Figure 16. Footrest of an Invacare-A4 wheelchair.  Picture a. shows the general structure of the 

footrest.  Picture b. shows the scratch by the set screw on the vertical footrest bar.  Picture c. 

shows the structure of the clamp and the set screw. 
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4.6.3 Quickie-Ti and TiLite-ZRA  

 

The Quickie-Ti and TiLite-ZRA wheelchairs had the same type of failures, either at the first or 

second screw holes near the front of the seat sling which are used to mount the sling to the frame 

(Figure 17).  Both models use a cantilever frame (Figure 18A).  Comparing with a box frame 

(Figure 18B), a cantilever frame does not have the lower longitudinal tubes.  When running on 

the double drum machine, the slat on the drum applied a force (a. in Figure 18A) to the frame 

when impacting the casters.  The force (a. in Figure 18A) produced a bending torque (b. in 

Figure 18A) and tended to bend the front vertical part of the frame rearward.  The bending torque 

transmitting to the corner of the frame would compress the lower part of the tube (c. in Figure 

18A) and extend the upper part of the tube (d. in Figure 18A).  The first and second screw holes 

on the upper part of the tube were just rearward to the frame bend and acted as a stress 

concentration.  Therefore, the fracture occurred inevitably at the first or second screw hole on the 

seat tubes.   

The TiLite-ZRA and Quickie-Ti had the same frame design and similar locations of the 

screw holes on the seat tubes resulting in identical failure modes.  The frame tube of the TiLite-

ZRA had a greater wall thickness and larger diameter than the other models (Table 6).  Even so, 

the location of the screw holes decreased the durability of the wheelchair as shown in the results 

of the fatigue tests.   

In the box frame design (Figure 18B), the lower longitudinal tube helped to distribute the 

force transmitted to the casters (c. in Figure 18B).  This decreased the bending torque on the 
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frame (b. in Figure 18B).  The Invacare-A4 had screw holes near the corner of the front frame as 

well, but the lower stresses helped protect the chair from failure at these stress concentration 

locations.  There are alternative ways to fix the seat sling onto the frame other than using screws.  

For example, the Invacare-TopEnd Terminator Everyday Rigid Wheelchair uses Velcro straps to 

attach the seat sling [23], which may have ameliorated the premature failures 

 

 

 

Figure 17. Fracture in the frame tube of the wheelchair having cantilever structure along the seat 

plane to footrest.  Picture a. is the fracture of a Quickie-Ti chair at the second screw hole on the 

left front frame.  Picture b. is the fracture of a TiLite-ZRA chair at the first screw hole on the 

right front frame. 
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Figure 18. Structure comparison between the cantilever frame (A.) and box frame (B.).  For both 

types of the frames, the force (a.) created a torque (b.) that tended to bend the front vertical part 

of the frame.  In the cantilever frame, the force transmitting to the frame tube compresses the 

lower part of the tube (c. in A) and stretches the upper part of the tube (d. in A).  The first and 

second screw holes on the upper part of the tube are a stress concentration and contributed to 

premature failure.  The box frame has lower longitudinal tubes which help to distribute the stress 

(c. in B) from the force a. thus decreasing the bending torque at the vertical front part of the 

frame. 

 

Titanium alloys have 44-66 MPa-m½ plane strain fracture toughness (KIC) higher than 

aluminum alloys (29 MPa-m½) [22].  Fracture toughness is the resistance of the metal to brittle 

fracture when a crack is present.  The metal with lower KIC is more vulnerable to brittle fracture.  

(The actual fracture toughness of a specimen with the thickness less than a critical value, which 

reflects the condition in this paper, should be evaluated with plane stress.  Yet, plane strain is 

most frequently cited when comparing fracture toughness.)  On the other hand, titanium has a 
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higher yield strength 910 MPa than Aluminum (505 MPa) [22].  To withstand the same bending 

force as the frame tube of most wheelchairs in this study (the tube diameter is 25.65mm, and 

wall thickness is 1.27mm), an aluminum tube of the same outer diameter has to have the least 

wall thickness of 2.73 mm.  Therefore, the volume of an aluminum tube has to be at least 2.02 

times more than the titanium tube.  (The information above was calculated according to the 

formula: bending stress of a tube = (Force × Length) / (I / (0.5×OD)), I = π×(OD4 – ID4) / 64, 

OD=outer diameter, ID=inner diameter.)   Although titanium has desirable mechanical 

properties, titanium is 1.6 times heavier than aluminum per unit volume, which makes an 

aluminum tube from the calculation above weights 1.3 times heavier than a titanium tube.  

Balance between the total weight of the product and the structural strength needed to insure the 

durability of wheelchair usage should be considered carefully.  Based on our results, frame 

design, caster size, and the quality of welding process are also contributing factors that would 

affect the durability of a wheelchair.  Manufacturers and designers need to evaluate titanium 

wheelchair designs in greater detail in order to understand the impact of material choices, 

structural design and manufacturing process on the strength, durability, and function of the 

wheelchair. 

 

4.7 LIMITATIONS 

 

First, the sample size is a limitation of this study.  We would have to test 12-60 wheelchairs of 

each model to have statistical power of 0.8 according to the testing results in this study. It is not 

realistic to spend the time span and the money to test the required amount of wheelchairs.   
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Second, a testing dummy can not precisely simulate a real wheelchair user.  A real 

wheelchair user could adjust postures dynamically and avoid the situation that may endanger 

him/herself or the wheelchair.  For example, repeated impact from the dummy’s trunk during the 

fatigue tests may not occur in real situations with this group of wheelchairs. It is not uncommon 

for some users to hang their backpacks on backrests which may also develop bending stress on 

the backrests. Moreover, the testing dummy weights (100 kg; 220 lbs) less than the maximum 

weight capacity of the wheelchairs (113.6-136.4 kg; 250-300 lbs) in this study.  Therefore, the 

standard fatigue tests are conservative for these wheelchairs. Although the test dummy does not 

completely mimic a real wheelchair user completely, the general physical properties of the 

dummy is actually producing less stress on the wheelchairs than the manufacturers claim their 

wheelchairs will be able to sustain.   

Another limitation is that ANSI/RESNA standard tests were originally designed to test 

K0001 wheelchairs ten years ago, thus the original requirements may not reflect the demand on 

the technology and manufacturing quality of today’s K0005 wheelchairs.  Regardless, we expect 

that due to wheelchair skills training and lighter-weight wheelchairs, the devices are subjected to 

very rigorous activity and abuse.  Additionally, because ANSI/RESNA is an industry standard, 

and evolves according to the standards development and revision process, it is important to 

continue to use them and report results, even if they are subject to criticism. 

Finally, we could only draw general results from standard tests. The information was not 

enough to thoroughly discriminate the specific causes or mechanisms attributed to the vital 

failures in the fatigue tests.  Therefore, future studies are needed to address this issue. 
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4.8 FUTURE WORK 

 

4.8.1 Mechanical Engineering of Wheelchair Design 

 

Durability and Fatigue Failure Mode 

The results of this study revealed controversial failure modes in the fatigue tests of titanium 

wheelchairs. Multiple factors were present within each titanium wheelchair design, including 

caster sizes, frame structures, and welding locations.  The impact of each factor is difficult to 

distinguish.  In order to verify the impact of each factor, we have begun testing a series of 

aluminum wheelchairs with similar frame designs.  By comparing the variances within 

equivalent cycles of each model and the aluminum wheelchair study, we hopefully will reveal 

some of the quality control issues.  More practical guidelines for interpreting the test results of 

the ANSI/RESNA standards should be developed to promote good quality control in 

manufacturing.   

 

Static Stability 

Adjustability of the center of gravity was an interesting outcome in this study. Wheelchair users 

are encouraged to have the rear wheel axle as forward as possible to improve propulsion 

efficiency and prevent repetitive injuries [24, 25].  Titanium wheelchairs have a large range that 

the rear wheel axle can be adjusted forward, but there is no detailed instruction in users’ 

manuals, and the adjustment range in the forward direction is too large.  In the most forward 
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position, the wheelchair is too tippy for anyone to use.  As tips and falls in the backward 

direction are common adverse events among manual wheelchair users[26], there is the need for 

developing a model to determine a proper position of the rear wheel axle.  There needs to be a 

better understanding of the balance between maximizing propulsion ergonomics and maintaining 

rearward stability by adjusting the rear wheel axle.  The manufacturers should provide clearer 

instruction about setting the axle position.  A wheelchair should have a structural stop to prevent 

the rear axle from moving forward out of the safe range during axle adjustment.  

In 1999, Kirby and Dupuis conducted a study applying the ISO wheelchair standards 

testing method to clinically measure the static rearward stability of occupied wheelchairs [27].  

They concluded that employing the ISO testing method in the clinical setting was practical.  

However, the stability of the system may change according to different wheelchair frames and 

body positions.  Although the study reported cutoff tipping angles to define if the wheelchair 

setting was stable, the authors did not recommend the use of the cutoff values in the clinical 

setting.  Besides the measured rearward stability, there are more factors, such as wheelchair 

users’ skill, strength, trunk control, and weight distribution in a chair, which increase the risk of 

tipping accidents.   

Information on the stability of occupied wheelchairs needs to be updated.   A shorter 

method with less equipment to evaluate stability in the clinic would be a valuable tool.  

Currently, the equipment to conduct the ISO static stability tests may not be available in the 

clinic.  Additionally, safety is an issue while performing the tests with real clients on a tilted 

platform.   Although the relationship between the rear wheel axle position and the tipping angle 

can be calculated using real wheelchairs and wheelchair users [28], developing a computer 

model to generate a suggested rear wheel axle position may be a more efficient method to benefit 
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clinicians and wheelchair users.  In the meantime, the correlation between the users’ opinion 

about their wheelchair stability as compared to wheelchair settings as suggested by research 

results needs to be investigated. 

 

4.8.2 Injury and Safety: Biomechanical Engineering and Ergonomics 

 

Transfer 

Falls are common during wheelchair transfers [29, 30].  Since these titanium rigid frame 

wheelchairs are less stable in the rearward direction compared to the box style folding frame 

wheelchairs, more information about falling and tipping accidents while using these wheelchairs 

should be disclosed and investigated.   

Manual wheelchair transfers are associated with increased risks for shoulder pain and 

injuries [31, 32].  During a transfer to or from a chair with a more forward axel position, the user 

must modify their transfer strategy in order to avoid falling or tipping. Therefore, further 

investigations are required to find alternative transfer strategies while using wheelchairs with a 

more forward axle position.  

 

Transportation 

Titanium wheelchairs are much lighter and compact.  They are expected to demand less upper 

extremity strength and less space for storing them in vehicles.  However, there is no survey or 

research to clarify the advantages of the rigid frame design for the users with private vehicles.  

The Society of Automotive Engineers J2249 and the ANSI/RESNA WC-19 wheelchair 

transportation standards recommend restraining the angles relative to the anchorage locations to 
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secure a occupant sitting the wheelchair in public transportation [33].  According to a research by 

van Roosmalen et al in 2002 [33], most wheelchair users experienced discomfort and difficulty 

when using wheelchair occupant restraint systems (WORSs) in paratransit or mass transit 

vehicles.  Wheelchairs may tip or slide while a vehicle is turning or braking even though 

wheelchairs and occupants are secured [34].  The existing limitations of WORSs in public 

transportation may decrease the usage of WORSs and threaten the safety of wheelchair users in 

motor vehicles.  The proper restraint position for ultralight rigid frame wheelchairs in public 

vehicles is unknown because the frame structure, stability, and occupants’ position are different 

from those of the traditional box folding frame wheelchairs.  The outcomes of future research on 

transportation for users of ultralight rigid frame wheelchairs should be disseminated to 

manufacturers and policy makers in order to improve the safety of wheelchair users in motor 

vehicles. 

 

4.8.3 Users’ Satisfaction 

 

Based on the clinical guidelines [6], titanium ultralight rigid wheelchairs would be  

recommended for all everyday manual wheelchair users because of their light weight design.  

Nevertheless, there are problems when using this type of wheelchair according to the wheelchair 

reviews in USA TechGuide (http://www.usatechguide.org/).  Footrests sliding down and feet 

sliding out of footrests are frequent problems. Cantilever frames are too flexible and make it 

difficult to roll over rough ground.  These chairs are not as adjustable as some users’ thought.  

Although the reviews from USA TechGuide are a good resource to know wheelchairs’ quality 

and usage, they were not analyzed using reliable and valid research methods.  More information 
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about users’ satisfaction should be collected by systematic surveys or clinical research to gain 

better understanding of how these chairs are used in everyday life.  Users’ opinions are the most 

important reference to improve wheelchair design and refine clinical guidelines. 

 

4.8.4 Development of Guidelines 

 

This study reveals the stability, design, and engineering issues of the titanium ultralight rigid 

frame wheelchair.  The information from the study and other related studies is valuable as the 

background for developing guidelines for manufactures to improve the quality of products, 

users’ safety, and comprehensive clinical recommendations for clinicians. 

   

For Manufacturers 

According to the results of this study, manufacturers and designers may not use engineering 

principles to ensure that their designs are strong enough to meet the standards.  The engineering 

flaws shown in this study are avoidable.  A formal set of guidelines should be developed to 

remind manufacturers and designers that more rigorous engineering analysis and procedures 

should be performed. 

 

For Users 

Section 6.1 includes recommendations for the users of these wheelchairs.  Information about 

choosing an appropriate wheelchair among all kinds of commercialized products and using a 

wheelchair properly are scattered and may be biased.  Comprehensive and effective guidelines 
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for wheelchair selection and usage should be developed in order to improve wheelchair users’ 

accessibility to research results and reliable professional recommendations.   

 

For Clinicians 

Recommendations for clinicians are provided in Section 6.2.  More thorough guidelines for 

interpreting and applying the testing results of the ANSI/RESNA wheelchair standards are 

needed.  The guidelines will not only benefit the clinicians in providing evidence-based 

recommendations for the users, but also increase the importance and visibility of the wheelchair 

standards. 
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5.0 CONCLUSIONS 

 

 

This group of rigid frame Titanium wheelchairs has unique features that influence the trend of 

manual wheelchair design.  Their highly adjustable rear wheel axles, ultra light-weight, and 

compact dimensions allow custom fit and adjustment for the end users to decrease physical stress 

on the user when propelling a wheelchair and increase ease of use.  This study revealed 

important design issues that need to be addressed.  Our results should remind manufactures and 

designers that each weld point, screw hole, and change in structure and frame design has its 

impact on the strength and durability of the wheelchair.  Our results indicate that the 

manufacturers need to perform more thorough analyses before commercializing new products.   
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6.0 RECOMMENDATIOONS AND CLINICAL APPLICATIONS  

 

 

According to the results from this study, some recommendations could be provided to the users 

and clinicians to use this group of wheelchairs more safely and extend their durability. 

 

6.1 FOR USERS OF RIGID FRAME TITANIUM WHEELCHAIRS  

 

1. The user should be careful when hanging a backpack on the backrest or using an 

underneath carryon, as small change of the center of gravity will compromise the 

stability, and may cause the chair to tip backward. 

2. When pushing the wheelchair on a hill, the user should lean into the slope.  For example, 

when going downhill, the user should lean backward.  The user should lean forward when 

going uphill. 

3. When using a cantilever frame wheelchair with screws to fix the seat sling, the user 

should check the first and second screw holes regularly for possible fractures. 

4. When using a box frame wheelchair with screws for fixing the seat sling and the backrest 

mounting piece, the user should check the screw holes regularly for possible fractures. 

5. When using a wheelchair with fixed (welded) backrest angle, the user should check the 

welding area regularly for possible fractures around it.  Also, you should avoid hanging 

heavy backpacks on the backrest as if add stress on the backrest cane. 
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6. If the footrest of the wheelchair is attached by a clamp or a set screw, the user should 

check and tighten the clamp or the set screw regularly to prevent the footrest from 

dropping unexpectedly. 

 

6.2 FOR CLINICIANS 

 

1. Before prescribing this group of wheelchairs to a novice user, the clinician should make 

sure that the user has acquired enough wheelchair skill to master the dynamics of stability 

of these wheelchairs. 

2. When setting up the wheelchair for the user, the clinician should check the position of the 

rear wheel axle, and make sure that the screws are tightened to fix the axle in the 

position. A small change in the rear wheel axle position would influence the stability 

significantly. After adjusting the real wheel axle, the clinician should make sure that the 

user is able to master the wheelchair on a slope. 

3. If the user is not able to maintain a “wheelie” position while going through obstacles, 

bumps, or door thresholds, you should: 

a. Educate the user about the durability of the wheelchair may be compromised as 

casters impact directly with obstacles; and 

b. Recommend to use larger casters to decrease potential damage to the frame and 

increase ease with pushing through uneven terrain and negotiation of small 

obstacles.  The user may use mini casters later when his wheelchair skills are 

good enough to pop a wheelie while negotiating obstacles. 
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4. Although the maximum weight capacity of this group of wheelchairs are around 113.6-

136.4 kg (250-300 lbs), a user weighting close to the maximum limit may not be 

appropriate to use the titanium cantilever wheelchairs because the increased weight may 

decrease the durability of the wheelchairs. 

5. The clinician should remind the user about the recommendations mentioned in the section 

6.1. 
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