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ESTIMATING THE PRICE OF PRIVACY IN LIVER TRANSPLANTATION

Burhaneddin Sandıkçı, PhD

University of Pittsburgh, 2008

In the United States, patients with end-stage liver disease must join a waiting list to be

eligible for cadaveric liver transplantation. However, the details of the composition of this

waiting list are only partially available to the patients. Patients currently have the prerog-

ative to reject any offered livers without any penalty. We study the problem of optimally

deciding which offers to accept and which to reject. This decision is significantly affected

by the patient’s health status and progression as well as the composition of the waiting list,

as it determines the chances a patient receives offers. We evaluate the value of obtaining

the waiting list information through explicitly incorporating this information into the deci-

sion making process faced by these patients. We define the concept of the patient’s price of

privacy, namely the number of expected life days lost due to a lack of perfect waiting list

information.

We develop Markov decision process models that examine this question. Our first model

assumes perfect waiting list information and, when compared to an existing model from

the literature, yields upper bounds on the true price of privacy. Our second model relaxes

the perfect information assumption and, hence, provides an accurate representation of the

partially observable waiting list as in current practice. Comparing the optimal policies asso-

ciated with these two models provides more accurate estimates for the price of privacy. We

derive structural properties of both models, including conditions that guarantee monotone

value functions and control-limit policies, and solve both models using clinical data.

We also provide an extensive empirical study to test whether patients are actually making

their accept/reject decisions so as to maximize their life expectancy, as this is assumed in our
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previous models. For this purpose, we consider patients transplanted with living-donor livers

only, as considering other patients implies a model with enormous data requirements, and

compare their actual decisions to the decisions suggested by a nonstationary MDP model

that extends an existing model from the literature.

Keywords: Markov decision processes, partially observable Markov decision processes, struc-

tured optimal policies, value of information, price of privacy, organ transplantation, med-

ical decision making, health care treatment.
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1.0 INTRODUCTION

Health care is the largest industry in the United States and continues to grow. The share

of health care spending in the U.S. gross domestic product has increased from 5% in 1960

to 16% in 2004, and it is projected to increase to 18.7% in 2014 [35]. Furthermore, it is

estimated that the population of Americans aged 65 or older will double by the year 2030,

forming about 20% of the U.S. population [53]. This aging population will result in increased

demand for health services and more economic challenges as the cost of providing health care

for older adults is 3-5 times greater than that for someone younger than 65 [53].

Operations Research (OR) techniques have been applied to a wide variety of problems

in health care. Early surveys of the OR applications in health care are provided in [54,

134] and a recent survey is given in [23]. Historically, most applications have considered

logistical issues in health care including hospital capacity planning (particularly, planning bed

requirements) [57, 107], personnel (particularly, nurse) scheduling [78, 80, 97, 161], operating

room scheduling [162], staffing emergency departments [158], and locating ambulances [22,

46] and other emergency service facilities [77, 152].

Recently, OR literature has considered public policy questions related to health care as

well as optimizing treatment plans for individual patients. Examples of those applications

focusing on health care related public policy questions include drug policy evaluation [29, 30,

42, 153], pediatric immunization [129], vaccine selection [175], control of infectious diseases

[14, 16, 86, 115], bioterrorism [81], and organ transplantation policy evaluation [40, 41, 69,

111, 116, 146, 177, 180, 181]. Finally, examples of those applications focusing on therapeutic

optimization problems include optimally deciding which organs to transplant [1, 4, 6, 5, 39],

drug infusion plans [72], treatment of ischemic heart disease [63], cancer treatment planning

[84, 85, 96, 110, 118, 133], and evaluation of screening policies for disease detection [21, 94].
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This dissertation focuses on liver transplantation. The first successful solid organ trans-

plant was a kidney transplant between living twin brothers that took place in 1954, whereas

the first successful liver transplant was performed from a cadaveric donor in 1967 [73, 105].

The advances in medical science and technology currently allows the transplantation of var-

ious kinds of solid organs such as liver, kidney, heart, lung, pancreas, and intestine as well

as tissues, cells, and fluids such as stem cells, bone marrow, blood transfusion, blood vessels,

heart valve, bone, and skin.

End-stage liver disease (ESLD), which includes diseases such as cirrhosis and hepatitis, is

the 12th leading cause of death in the United States [98], in large part because transplantation

is the only available therapy for ESLD patients. Medical science and technology are still years

away from finding alternative therapies for ESLD. Despite this lack of alternative therapies,

efforts to increase the number of available organs for transplantation have only modest effect

on the widening gap between the demand and supply for such organs [101].

Fortunately, transplantation is found to be a highly effective treatment in improving the

length of life as indicated by the patient survival rates in Figure 1.1. The 10-year survival

rate from cadaveric donors approaches 60%. Survival rates from living donors are slightly

higher than that of the cadaveric donors. Furthermore, it has been demonstrated that

transplant recipients display statistically significant improvements in physical functioning,

mental health, social functioning, and overall quality of life [43].

Currently, there are two sources for a liver transplant: living donors and cadaveric donors.

Originally developed for pediatric patients in 1989 [38, 105], living-donor liver transplantation

is currently being offered to adult patients as well. It involves taking advantage of the

regenerative capability of healthy liver cells so that the entire lobe or part of a lobe of the

healthy liver is removed from the donor and placed in the diseased recipient’s body. In most

cases, both livers grow back to their regular size and function normally in a few weeks [100].

More than 96% of over 87,000 liver transplants since 1988 are from cadaveric donors

[106]. Moreover, liver transplants from living donors have decreased in the U.S. since 2001,

when it reached an all time high of 522 [106], mainly due to post-operative complications

to the donor [24], which is coupled with the highly publicized death of a living donor from

New York. There is an estimated 0.2% mortality rate for adult living donors [114].
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Figure 1.1: Patient survival rates from liver transplantation [66]

As a result, the vast majority of ESLD patients join a waiting list of patients who are

eligible for transplantation from cadaveric livers. As seen in Figure 1.2, the disparity between

the demand for and supply of cadaveric livers is large, which results in significant waiting

times and large number of patient deaths while waiting. Indeed, there are currently about

17, 000 patients on the liver transplant waiting list and, over the last 12 years, this list has

grown by approximately 1,000 patients per year [106]. The size of the waiting list seems to

have stabilized due to new allocation policies that, in 2001, incorporated the MELD scoring

system (see Section 1.1). Unfortunately, demand still far exceeds the supply. Furthermore,

about 13.21% of the recovered livers from cadaveric donors are not transplanted [66]1 due to

various reasons including excessive cold ischemia time (the duration during which the organ

is left without any blood flow, which is the primary determinant of the viability of the organ;

the shorter the cold ischemia time the better.) Approximately 1,800 patients die each year

while waiting for a liver transplant and about 500 patients get removed from the waiting list

1The data and analyses reported in the 2007 Annual Report of the U.S. Organ Procurement and Trans-
plantation Network and the Scientific Registry of Transplant Recipients have been supplied by UNOS and
Arbor Research under contract with HHS. The authors alone are responsible for reporting and interpret-
ing these data; the views expressed herein are those of the authors and not necessarily those of the U.S.
Government.
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Figure 1.2: Recent trends in US liver transplantation (1997-2006) [66]

because they are considered too sick to be transplanted [66]. By the end of 2006, 64.1% of

all active patients on the waiting list had been waiting for at least 1 year and 46.6% had

been on the list for at least 2 years [66]. All of these facts motivate the need for research on

better management of these scarce resources.

There have been several reports indicating that patients who are most likely to benefit

should be given priority so that the use of the donated livers is maximized [101]. UNOS

Ethics Committee [155] notes that “Because donated organs are a severely limited resource

the best potential recipients should be identified. The probability of a good outcome must

be highly emphasized to achieve the maximum benefit for all transplants.” The problem of

optimally using the donated organs have been analyzed from two perspectives. The societal

perspective looks at the entire system and designs an allocation mechanism to optimize an

objective or combination of objectives such as minimizing refusals and maximizing aggregate

benefit to all patients. The patient’s perspective, on the other hand, considers individual

patients separately and optimizes the organs to accept and reject for each patient under a

fixed allocation mechanism.
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Looking at the problem from an individual patient’s perspective, this dissertation as-

sumes that the available patient prioritization policy is fixed and helps the patient make

a selection among offered livers to maximize the benefit to herself. The waiting list char-

acteristics has significant impact on this optimization problem, as the composition of the

waiting list determines the priorities of the patients each time an organ becomes available

for transplantation. This dissertation makes explicit use of the waiting list knowledge in

optimizing the accept/reject decision problem from a patient’s perspective.

1.1 LIVER ALLOCATION SYSTEM

Organ Procurement and Transplantation Network (OPTN) is an umbrella establishment

charged by federal legislation to develop and implement an equitable system for organ allo-

cation in the US and to compile data from US transplant centers. The United Network for

Organ Sharing (UNOS) is the sole administrator of this network since its establishment.

The liver allocation system divides the country into 11 mutually exclusive geographic

areas, called regions. These regions are further divided into smaller mutually exclusive

subgroups, called the donation service areas of Organ Procurement Organizations (OPOs).

Currently, there are about 60 OPOs serving unique areas of varying sizes, population densi-

ties, donation rates, and transplantation activities. UNOS handles all its activities through

these OPOs.

UNOS uses slightly modified allocation policies for adult and pediatric liver patients.

This dissertation focuses only on adult patients, therefore we provide a brief overview of the

adult liver allocation algorithm (see [156] for more details of this algorithm).

When a cadaveric liver becomes available, UNOS uses the algorithm depicted in Figure

1.3 to prioritize the patients on the waiting list. This algorithm divides the patients into three

categories in terms of geography: local patients, regional patients, and national patients.

Local patients are those that are registered to the system from the same donation service

area as the harvested organ2. Regional patients are those that are outside of the harvesting

2We will use ‘harvesting OPO,’ or shortly ‘OPO,’ throughout the rest of the dissertation to mean the

5



Figure 1.3: UNOS liver allocation policy

OPO but within the same region as the harvesting OPO. Finally, national patients are those

remaining outside the harvesting region. This algorithm also divides the patients into two

categories in terms of disease severity: Status 1 patients and MELD (Model for End-stage

Liver Disease) patients. Status 1 patients are defined to be fulminant liver disease patients

who have a life expectancy of less than a week without a transplant. MELD patients are

those patients that are assigned a MELD score to measure the severity of the disease. UNOS

restricts MELD scores to be integers ranging between 6 and 40, where a higher score indicates

more severe disease. MELD scores are simply calculated by a regression equation that uses

three lab test results (i.e., bilirubin, INR, and creatinine) from the patient. A patient’s

MELD score can go up or down over time depending on the status of her disease. We

should also note that the MELD scoring system used by UNOS is slightly modified from the

originally proposed formula [79, 174].

When a liver arrives, it is first offered to local-Status 1 patients. If no one is found in this

category, the search is expanded to Status 1 patients in the region. If the liver is still not

transplanted in this category, the algorithm goes back to the local area looking for MELD

patients with a MELD score of at least 15. And the search continues as depicted by the

arrows in Figure 1.3 until some patient accepts the offer or the liver is discarded. Within

each MELD box in Figure 1.3, organs are offered to patients in decreasing MELD score,

where ties are broken first by blood type compatibility and then by the cumulative waiting

time of patients at their current or higher MELD scores.

donation service area of the OPO harvesting the organ.

6



UNOS considers the final decision of whether or not to use the offered liver to be “the

prerogative of the transplant surgeon and/or the physician responsible for the care of the

patient” [156]. Therefore, patients reject offers without any penalty. As a result, a rejecting

patient has full access to future offers and her history of rejections does not affect her priority

for the new offers. Indeed, despite the scarcity of donated organs, almost half of the liver

offers are rejected by the first surgeon to whom the offer is made [70]. In another analysis,

Alagoz [2] reports that 60% of all liver offers are rejected.

As Howard [70] reports, surgeons reject low quality organs for healthy patients in the

hope that they may receive a better organ offer in the future. Several characteristics of the

donor may affect the perceived quality of the donated organ such as length of intensive care

unit stay and antecedents of hypertension [37]; existence and degree of steatosis [123]; race,

height and involvement in a cerebravascular accident [50]; and age, race, blood type and

gender [117].

1.2 PROBLEM STATEMENT AND CONTRIBUTIONS

The optimization of the accept/reject decision problem described in Section 1.1, within the

confines of the current allocation system, is the focus of this dissertation. We assume that

the decision making process is joint between the patient and an agent (such as the patient’s

physician and/or surgeon) who acts in the patient’s best interest. However, for expositional

simplicity, we refer the decision-maker as the patient throughout the rest of the dissertation.

In solving this optimization problem, we are particularly interested in the objective of

maximizing the patient’s expected total discounted life. We leave the consideration of other

objectives for future research. Discounting future health outcomes is a standard practice

in medical decision making. A detailed discussion of the issues related to discounting is

provided in [2, 130] and references therein.

Several researchers consider the organ accept/reject problem. Section 2.3.2 provides more

detailed discussion of this literature. Most of this literature makes unrealistic assumptions

such as patient health does not change over time, each organ may be offered to at most
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one patient, new patients do not arrive, listed patients do not die, all patients are homoge-

neous, organ quality does not deteriorate, and all patients have the same pre-transplant life

expectancy. This dissertation relaxes each of these assumptions.

The solution to this optimization problem depends on three main factors: the patient’s

current and future health, the quality of the offered liver, and the prospects of receiving future

offers. The prospects of receiving future offers are heavily influenced by the composition of

the waiting list. This includes the characteristics of the specific patient under consideration

as well as those of the other patients on the waiting list.

Historically, much of the relevant information about the patients on the waiting list has

been hidden. While this practice ensures some level of confidentiality, it also forces patients

to make accept/reject decisions with incomplete information. To alleviate this problem,

UNOS now publishes coarse (yet still incomplete) descriptions of the waiting list on their

website [157]. More detail about this coarse waiting list descriptions is given in Section 4.1.

A partial description of the waiting list, however, still results in some loss to the patient

since this lack of knowledge may result in suboptimal decisions. We call this loss due to

incomplete rank knowledge the patient’s price of privacy. We define this quantity to be the

number of life days gained by the patient when she acts optimally based on full knowledge of

the waiting list, as opposed to her optimal actions under the current allocation system. This

quantity may also be interpreted as the value of obtaining rank information. We leverage our

model analysis to provide quantitative estimates of this price of privacy in terms of overall

life expectancy. That is, we do not advocate any particular change in the privacy policy;

rather, we wish to quantify the costs of this privacy to the patient.

In order to estimate a patient’s price of privacy, we develop two Markov decision pro-

cess models that explicitly use the waiting list information while optimizing the patient’s

accept/reject decision problem. The first of these models considers completely observable

waiting list, whereas the second model considers partially observable waiting list as in the

current system. We compare the results of these two models to obtain our estimates for a pa-

tient’s price of privacy. Finally, to assess how MDP based optimization models perform, we

conduct an extensive empirical study comparing the results of the model-suggested decision

rules to the actual decisions made by real patients. In this empirical analysis, we restrict our
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study to patients transplanted with living donors only. The main reason for this limitation

is the unavailability of real data for patients transplanted with cadaveric donors that would

reveal the decisions made by patients at various rank states.

1.3 OVERVIEW OF THE DISSERTATION

The remainder of this dissertation is organized as follows. Chapter 2 discusses the relevant

literature, including key results for completely and partially observable Markov decision

processes (MDPs) and their applications in medical decision making. Chapter 3 describes

and presents the results of an MDP formulation for the accept/reject decision problem faced

by liver patients under a completely observed waiting list, assuming that the liver allocation

system is in equilibrium and this equilibrium will not change upon completely revealing

waiting list information. We explore structural properties of this model and present detailed

numerical study parameterized with clinical data along with our preliminary estimates for

patients’ price of privacy. Chapter 4 extends the MDP formulation of Chapter 3 to model

the partial information availability in the current allocation system. We explore structural

properties and solve this model using clinical data to obtain more precise estimates of a

patient’s price of privacy. Chapter 5 considers the issue of whether patients behave according

to their optimal policies, as our price of privacy estimates in the previous two chapters

assume. We introduce a nested MDP model for this purpose and present the results of an

empirical study, in which the actual decisions of real patients are compared to the decisions

suggested by the nested MDP model. Finally, the dissertation concludes in Chapter 6 by

summarizing and discussing our results and limitations along with possible extensions for

future research.
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2.0 LITERATURE REVIEW

In this chapter, we briefly discuss the related literature to our study. Sections 2.1 and 2.2

provide an overview of Markov decision processes (MDPs) and partially observable MDPs,

respectively. In Section 2.3, we review the MDP applications in medical decision making as

well as other mathematical models applied to organ transplantation. Finally, in Section 2.4,

we review other related literature.

2.1 MARKOV DECISION PROCESSES

In this section, we provide a brief overview of completely observable Markov decision pro-

cesses (MDPs). We content ourselves with listing basic definitions and results without proofs.

More extensive treatment of the subject is provided in classical books [18, 112].

We are concerned with sequential decision making problems under uncertainty where

there is a need to make decisions at discrete time points T = {1, . . . , N}, called decision

epochs, throughout the lifetime of the system under consideration. Note that N need not

be finite. At any given decision epoch t, the system occupies a state s in the state space

S. We assume that the actual state of the system, s, is completely known to the decision

maker when a decision is to be made. We relax this assumption in Section 2.2. The decision

maker has control over the system by modifying its trajectory through choosing an action

a from the action space As at each decision epoch t. We assume that S and As are both

discrete. Uncertainty in the system is governed by its probabilistic evolution. That is, when

the system is in state s at decision epoch t and the decision maker chooses action a, the state

of the system at the next decision epoch t + 1 is determined by the transition probability
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distribution Pt{·|s, a}. The fact that the next state of the system is only dependent on the

current state and action is called the Markovian property of the process. Furthermore, as

a result of choosing action a while the system is in state s at decision epoch t, the decision

maker receives an immediate reward, rt(s, a). A more general reward function, rt(s, a, s′),

may be defined when the rewards are dependent not only on the current state and action

pair (s, a) but also on the next state s′. However, for all practical purposes, this reward

definition does not complicate our model as we can take its expected value by computing

rt(s, a) =
∑
s′∈S

rt(s, a, s′) · Pt{s′|s, a}.

Note that we can add more generality to our model by allowing the state space S and the

action space As for all s ∈ S depend explicitly on t. This generalization would not affect

the theory and the results, and, therefore, we remove the time index from these pieces of

the model. The collection of objects {T,S,As, Pt{·|s, a}, rt(s, a)} is referred to as a Markov

decision process.

A decision rule is simply a prescription for choosing actions throughout the lifetime of

the system. A decision rule dt at decision epoch t is Markovian if the prescribed action

choice is dependent only on the current system state, whereas a history-dependent decision

rule prescribes actions that depend on the entire history of the system, which includes all

the (state,action) pairs realized up until the current decision epoch. The number of possible

histories can indeed be huge, therefore we are interested in conditions that guarantee the

existence of Markovian decision rules that are optimal.

A decision rule is called deterministic if it prescribes to choose an action with certainty

(i.e., with probability 1) for each state, whereas a randomized decision rule prescribes a non-

degenerate probability distribution over the set of possible actions for at least one state. Note

that a probability distribution is degenerate if it accumulates all of its mass onto a single

element in its support. Due to its simplicity, we prefer an optimal deterministic decision

rule over an optimal randomized decision rule. Indeed, it can be shown that if the state

and action spaces are finite, and the states are completely observable, then there exists a

deterministic Markovian decision rule that is optimal [112].

11



A policy δ specifies which decision rule to use at each decision epoch t, that is, δ =

(d1, d2, . . . , dN−1). A policy is called stationary if it specifies the same decision rule at each

decision epoch (i.e., δ is stationary if dt = d for all t ∈ T ). It can be shown that for an

infinite-horizon MDP (i.e., N = ∞), if the state and action spaces are finite, and the states

are completely observable, then there exists a stationary policy that is optimal [112].

Among the exponential number of available policies, we would like to choose one that

maximizes the expected total discounted reward

IE

[
N−1∑
t=0

λtrt(s, a)

]
(2.1)

where 0 ≤ λ < 1 is the discount rate. If λ = 1 in equation (2.1), it is called the expected

total reward criterion. Other optimality criteria include average reward criterion [112].

In finite-horizon problems (i.e., N < ∞), any choice for λ ∈ [0, 1] does not affect any

theoretical results, but might affect the decision maker’s preference for policies. Furthermore,

the expected total reward and the average reward criteria give the same optimal policies

in finite-horizon problems [112]. Therefore, we omit λ and let u∗t (s) be the optimal value

function in state s when there are N−t decision epochs left until the end of the horizon. The

optimal value function that maximizes the expected total reward for finite-horizon problems

can be computed by recursively solving the following Bellman equations:

u∗t (s) = max
a∈As

{
rt(s, a) +

∑
s′∈S

Pt{s′|s, a} · u∗t+1(s
′)

}
for t = 1, . . . , N − 1; s ∈ S (2.2)

with boundary conditions

u∗N(s) = rN(s) for s ∈ S, (2.3)

where rN(s) represent the terminal rewards received when the process is in state s at the end

of the planning horizon. The optimal action a∗t at each stage t = 1, . . . , N−1 is chosen as the

argument a ∈ As that maximizes the right-hand side of equation (2.2). Backward induction

algorithm provides an efficient method for solving the optimality equations (2.2)-(2.3).
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For an infinite-horizon problem, an optimal stationary Markovian policy that maximizes

the expected total discounted reward can be found by solving the following recursive equa-

tions:

v∗(s) = max
a∈As

{
r(s, a) + λ ·

∑
s′∈S

P{s′|s, a} · v∗(s′)

}
for s ∈ S, (2.4)

where v∗(s) is the optimal value function in state s. The optimal action a∗ is chosen as

the argument a ∈ As that maximizes the right-hand side of equation (2.4). Value iteration,

policy iteration, and linear programming are typical algorithms used for solving the optimality

equations (2.4).

The literature on Markov decision processes and its applications is huge. Classical books

by Bellman [15] and Howard [71] discuss early developments in this field. More recent

developments in the subject with detailed solution algorithms and comprehensive lists of

MDP applications can be found in [8, 18, 49, 52, 65, 112, 171]. Typical application ar-

eas include inventory control [32, 109, 125], queuing control [140, 144, 160], finance [127],

communication networks [9], machine maintenance [31, 128], and medical decision making

[1, 4, 72, 86, 92, 131]. We discuss MDP applications in health care in greater detail in Section

2.3.1

2.2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

In this section, we provide a brief overview of partially observable Markov decision processes

(POMDPs). We content ourselves with listing basic definitions and results without proofs.

More extensive treatment of the subject is provided in [17, 26, 99] and the references therein.

Many real-life problems does not allow the decision maker to completely observe the

state of the system under consideration, in which case the completely observable MDP

model of Section 2.1 no longer applies. The seemingly innocent relaxation of the assumption

of complete observability to partial observability comes at a significant cost in complexity.

A POMDP model shares all the parameters of an MDP model, namely, T , S, As,

Pt{·|s, a}, and rt(s, a). A state s ∈ S in the POMDP model is usually referred to as a

core state to distinguish it from a belief state (to be defined later). We relax the completely
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observable system state assumption of an MDP model with partially observable system state.

As a result of this relaxation, we add two more parameters to a POMDP model: (i) a set of

observations, Z, that is produced by the system and is accessible to the decision maker, and

(ii) a set of observation probabilities, Ot{·|s, a}, that gives probabilistic information about

accessing observations. Specifically, Ot{z|s, a} denotes the probability of receiving observa-

tion z at time t, while the system actually occupies core state s at time t upon taking action

a at time t− 1. Finally, the immediate rewards can be defined in a more general fashion as

a function of the current state and action pair, (s, a), as well as the state and observation

pair in the next decision epoch, (s′, z′). This generalization, again, does not complicate our

model as we can take its expected value by computing

rt(s, a) =
∑
s′∈S

∑
z′∈Z

rt(s, a, s′, z′) ·Ot{z′|s′, a} · Pt{s′|s, a}.

The collection of objects {T,S,As,Z, Pt{·|s, a}, rt(s, a), Ot{·|s, a}} is referred to as a

partially observable Markov decision process. For notational convenience, we let A = ∪s∈SAs

and drop the time index t from our discussions.

As in Section 2.1, we are interested in finding the optimal policy, but any policy mapping

the core states into actions (i.e., Markovian with respect to core states) would not have any

meaning in practice, as core states are not accessible to the decision maker. Extrapolating the

Markovian idea to define a policy that maps observations to actions produces a legitimate

policy, but can perform very poor as such policies may not be within the set of optimal

policies for some problems [76]. Research considering policies defined over finite histories of

the process revealed that such policies may be arbitrarily poor [170]. It turns out that the

optimal policy of a POMDP requires remembering the entire history of the process.

Although it may not be possible to record the entire history of a process, all the infor-

mation available in this history can be captured by a summary statistic, referred to as the

belief state or information state. It can be shown that a belief state is a sufficient statistic

for the entire history of the process [12, 145]. A belief state, π, is simply defined to be a

probability distribution over the set of core states, S, where the sth component of π, de-

noted πs, represents the probability of being in core state s ∈ S. Let Π(S) be the set of all

probability distributions over the set S.
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Since we will use belief states to write optimality equations, we need to know how to

make transitions among belief states. For this purpose, let π be a belief state on-hand at

time t and z′ be the observation received in the next decision epoch t+1 upon taking action

a at time t. The jth component of the updated belief state π′, denoted π′j, can be computed

by

π′j(π, a, z′) =

∑
s∈S πs · P{j|s, a} ·O{z′|j, a}∑

j′∈S
∑

s∈S πs · P{j′|s, a}O{z′|j′, a}·
. (2.5)

which is derived using Bayes’ formula and simple probability arguments.

For finite-horizon problems (i.e., N < ∞), the search for an optimal policy can be

restricted to Markovian policies defined over the belief space, Π(S), [12, 87], and the optimal

value function can be found by solving the following set of recursive equations [26, 87]:

u∗t (π) = max
a∈A

{
r(π, a) +

∑
s∈S

∑
s′∈S

∑
z′∈Z

πs · P{s′|s, a} ·O{z′|s′, a} · u∗t+1(π
′)

}
for t = 1, . . . , N − 1; π ∈ Π(S) (2.6)

with boundary conditions

u∗N(π) =
∑
s∈S

πs · rN(s) for π ∈ Π(S), (2.7)

where r(π, a) =
∑

s∈S πsr(s, a). Note that π′ in equation (2.6) is also dependent on the

current belief state π as well as the observation z′ and action a, however this dependency is

suppressed for notational clarity.

For infinite-horizon problems (i.e., N = ∞), given a discount rate λ ∈ [0, 1), the search

for an optimal policy can be restricted to stationary Markovian policies defined over the

belief space, Π(S), [19, 87], and the optimal value function that maximizes the expected

total discounted reward can be found by solving the following set of recursive equations

[26, 99]:

v∗(π) = max
a∈A

{
r(π, a) + λ

∑
s∈S

∑
s′∈S

∑
z′∈Z

πsP{s′|s, a}O{z′|s′, a}v∗(π′)

}
, for π ∈ Π(S). (2.8)

Note again that π′ in equation (2.8) is a function of current belief state π as well as the obser-

vation z′ and action a as seen in equation (2.5), however, these dependencies are suppressed

for notational clarity.
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Partially observable systems have been studied at least since 1960s. Drake [44] provides

the first explicit POMDP model. The first exact algorithm for solving POMDPs is Sondik’s

one-pass algorithm [141]. The main complication in solving the dynamic programming re-

cursion for a POMDP problem is the fact that the belief space is a continuum. This means

we essentially have infinitely many equations with potentially infinite number of variables in

the optimality equations. A key result that resolves this complication is provided by Sondik

[137, 141], who proves that the optimal value function for a POMDP is piecewise linear

and convex for every finite decision epoch, and can be approximated arbitrarily closely by

a piecewise linear and convex function over an infinite horizon. This key result allows the

computation of the value function over the entire belief space in a finite time, however the

complexity of the value function (i.e., the number of linear segments of the function) can grow

exponentially with the number of dynamic programming steps performed [63]. Sondik’s two-

pass algorithm [142] determines the optimal policy of infinite horizon discounted POMDPs

and solves a problem with 2 states, 2 actions, and 2 observations using this method. White

[164] extends Sondik’s one-pass algorithm to finite-horizon partially observable semi-Markov

decision processes. Hansen [58] proposes a new policy iteration algorithm for POMDPs that

represents a policy as a finite-state controller and is found to be more efficient than Sondik’s

algorithms. He reports that his policy iteration algorithm is, on the average, 40-50 times

faster in finding the optimal solution compared to the value iteration algorithm. He does not

report which problems he tested his algorithm. Several other exact algorithms have been

proposed for solving POMDPs, most notably Cheng’s relaxed region and linear support al-

gorithms [33], as well as the witness algorithm [26, 27] and the variations of the incremental

pruning algorithm [26, 28]. Interested readers are referred to [26, 90, 182] for detailed surveys

of available algorithms.

Given that the current state of the art can solve POMDP problems with only a few states

using the exact algorithms [58, 91], grid-based approximations became a natural and widely

used technique to find approximate solutions. Finite-grid algorithms find approximate values

to the optimal value functions by sampling a finite number of points, called the grid, from the

continuous belief space and using interpolation to find the values of those belief points in the

belief space that are not placed in the grid. Several variations exist in the literature. Lovejoy
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[89] describes a fixed-resolution regular grid that samples points from the belief simplex in

regular intervals and does not vary these points throughout the rest of the iterations. The

advantage of this method is its efficient interpolation, whereas the obvious disadvantage is

the exponential growth in the size of the grid as the number of core states or the resolution

of the grid increase. Hauskrecht [61, 62] and Brafman [20] describe a variable-resolution

non-regular grid method that samples points from the belief simplex in non-regular intervals

and adds/removes to/from the grid over iterations as perceived necessary by heuristic rules.

The advantage of this method is its more economic use of grid points in approximating

the value function, whereas its disadvantage is inefficient interpolation times. Zhou and

Hansen [183] describes a variable-resolution regular grid method that attempts to combine

the strengths of the previous two methods. We describe a fixed-resolution non-regular grid

method in Section 4.4.2, where we take advantage of a special structure of our problem.

Interested readers are referred to Lovejoy [90] and Zhou and Hansen [183] for further details

on grid-based methods.

Several researchers explore conditions that ensure structured optimal policies and value

functions. Ross [120] considers a Markovian deteriorating process with 2 states, 3 actions,

and costly imperfect information. He shows conditions under which the optimal policy has

the monotonic at-most-four-region (AM4R) structure. Rosenfield [119] extends the results

in [120] to more than 2 finite states. White [166] proves similar results under less restrictive

conditions. Albright [7] considers a 2-state POMDP and derives conditions that guarantee

optimal value functions and optimal policies to be monotone in the belief states. White

[167] considers a machine replacement problem with two actions, where one of the actions

puts the system in a state as good as new. He provides sufficient conditions for this prob-

lem that guarantee the existence of monotone optimal policies and value functions with

respect to stochastically ordered belief states. White [169] considers single-stage partially

observed problems and provides sufficient conditions for the optimal policy to be monotone

on stochastically ordered belief states. White [168] provides conditions that guarantee the

existence of monotone optimal policies for completely observed and completely unobserved

POMDPs. Lovejoy [87] considers a general discrete-time, finite POMDP problem and uses

the monotone likelihood ratio (MLR) partial order to show that the optimal value function
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is monotone. Maillart [93] considers a maintenance optimization problem with condition

monitoring and derives conditions under which the optimal value function is monotone with

respect to MLR-ordered belief states when observations yield perfect information about the

system conditions under which the optimal policy has AM4R structure. For further details

on structural analysis, we refer the reader to references cited above and to the survey article

by Monahan [99], as well as references therein.

Finally, typical application areas of POMDPs include machine maintenance and replace-

ment [47, 93, 120, 165, 166, 167], inventory control [154], inspection of structural units such

as paved roads, bridges, and buildings[48], network troubleshooting [151], search for a mov-

ing object [45, 108], medical diagnosis and treatment [67, 63, 72, 74, 94], health care systems

analysis [138], human learning and instruction [135], optimal design of questionnaires when

the answers are not truthful [163], optimal teaching strategies [136], and fisheries [83]. We

refer the reader to [25, 99] for a more detailed review of POMDP applications. applications

survey

2.3 APPLICATIONS IN MEDICAL DECISION MAKING

In this section, we summarize various applications in medical decision making. In Section

2.3.1, we consider MDP and POMDP models applied to health care problems. In Section

2.3.2, we describe mathematical models used in organ transplantation modeling.

2.3.1 MDP applications in health care

The material in this section is mostly from Schaefer et al. [126]. Lefevre [86] uses a infinite-

horizon continuous-time MDP model for the problem of controlling an epidemic in a closed

population. The state of the system is chosen to describe the number of infected people in

the population. The decision maker control the system by deciding the number of people

to quarantine and by the amount of medical treatment to apply to the infected population.

The optimality criterion used is the minimization of the expected total discounted costs.

18



Magni et al. [92] uses a discrete-time MDP model to decide on therapy for mild hereditary

spherocytosis. The state of patients is described through the severity of gallstones and the

state of the spleen. They consider objective of maximizing the patient’s quality-adjusted

life years, where they used published mortality rates and previous studies to estimate the

quality-of-life utilities as well as the transition probabilities among different states.

Shechter et al. [131] use an infinite-horizon discrete-time MDP model for the effective

management of the HIV therapy planning. They specifically consider the optimal initiation

time of highly-active antiretroviral therapy (HAART)for HIV care. They use prognostic

variables such as patient’s CD4 count in her blood as the state of their model. They use

clinical data to estimate transition probabilities among various states and to estimate patient

survival. They consider the objective of maximizing the total expected reward to the patient.

They solve their model for a variety of patients and employ sensitivity analysis on various

parameters of the model. Their main policy implication is that it is optimal to initiate

therapy in each CD4 count.

Hu et al. [72] uses a POMDP model for the problem of choosing an appropriate drug

infusion plan for administering anesthesia. The partially observable states of their model

include patient parameters such as anesthesia concentration in the blood and clearance rate

of a given drug. They use heuristics to implement numerical solutions for their model.

Hauskrecht and Fraser [63] develop a POMDP model for the management of patients with

ischemic heart disease, a disease caused by an imbalance between the supply and demand of

oxygen to the heart. The states of their POMDP model consists of a mix of perfectly and

partially observable components. They generate data for their POMDP model informally

through published results in consultation with a cardiologist. They use heuristic methods

to solve the POMDP model, however the details of the heuristics are not clear nor are the

details (such as the size) of the problems solved.

Ivy [74] uses a POMDP model to develop a cost-benefit analysis of mammogram fre-

quency and treatment options for breast cancer with the objective of minimizing the total

expected cost over a patient’s lifetime. The model consisted of three states: no disease,

non-invasive breast cancer, and invasive breast cancer. Two types of exams, clinical breast

exams and mammograms, could be used to reveal further information about the partially
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observable patient state. She estimates the parameters of her model from the published

literature and characterizes the optimal decisions.

2.3.2 Models for organ transplantation

Several researchers consider the organ accept/reject problem from an individual patient’s

perspective ([1, 4, 6, 5, 39, 68, 70]) or from the society’s perspective ([40, 41, 116, 121, 147,

177, 178, 181, 180]) or from a joint perspective ([146, 147, 148]). Most of this literature

makes unrealistic assumptions such as patient health does not change over time, each organ

may be offered to at most one patient, new patients do not arrive, listed patients do not die,

all patients are homogeneous, organ quality does not deteriorate, offered organs cannot be

declined, and all patients have the same pre-transplant life expectancy. We refer the reader

to [2] for a detailed discussion of the organ transplantation literature.

A notably exception is the sequence of papers by Alagoz et al. [4, 5, 6], where they do not

make any of the assumptions listed above. Alagoz et al. [4] consider the problem of optimally

timing a living-donor liver transplant to maximize the patient’s total expected discounted

reward. They present a discrete-time infinite-horizon MDP model, in which the state of their

model is described by patient’s health status. Similar to our work, they use MELD scores in

their numerical study to represent patient’s health. They derive conditions that guarantee

control-limit optimal policies. Their computational experiments parameterized by clinical

data reveal that it is indeed optimal to delay the transplantation until patient’s MELD score

reaches a certain threshold. More details of this model is provided in Section 5.2.

Alagoz et al. [6] extend their previous living-donor model given in [4] for patients receiv-

ing cadaveric-donor livers. They present a Markov decision process (MDP) model in which

the state is described by patient health and organ quality. For each possible state, provided

an offer is made, the patient chooses to either accept or reject the offer so as to maximize

her total expected reward. Their approach captures the effects of the waiting list implicitly

through the organ arrival probabilities, which are assumed to be a function of patient health.

Under the current liver allocation policy, however, the frequency and the quality of liver offers

made to an individual patient are significantly affected by the physiology and the geographic
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location of the other patients on the waiting list. Therefore, an explicit consideration of the

waiting list information is needed, which is one of the goals of this proposal.

Alagoz et al. [5] present combined model, in which an ESLD patient waiting for a

cadaveric-donor liver also has access to a living-donor liver. They present a combined MDP

model, in which three possible actions are available to the the decision maker: accept the

cadaveric liver offer, transplant the living-donor liver, or wait for one more decision epoch.

They provide a structural analysis of this model and derive conditions under which the

optimal policy has monotonic at-most-three region structure. Their computational results

parameterized by clinical data also confirm this structure in the optimal policies.

2.4 OTHER RELATED LITERATURE

This section lists other literature that is found to be related to our study. Rather than going

into details of this literature, we point out recent survey articles whenever available.

Several researchers use queuing models to analyze organ transplant waiting lists [146,

148, 177, 180]. Most of the queuing models are concerned with kidney transplantation. We

refer to [179] for a recent review of queuing based models in kidney transplantation. However,

the liver transplant waiting list is much more complex than a simple queue [69, 156] since the

priorities assigned to patients are a function of geography and health, and this fact renders

queuing approaches to liver transplantation inappropriate.

As noted in Section 1.2, our study is concerned with the value of accessing more precise

waiting list information. Value of information analysis is recommended as particularly useful

in framing complex decision-making problems characterized by large uncertainties and high

stakes [104, 36]. The value of information literature is huge and we refer the reader to

the classical book by Raiffa and Schlaifer [113] for an introduction to the topic and to the

recent comprehensive survey by Yokota and Thompson [176] for a review of applications in

health care. Typical applications of value of information analysis in the operations research

literature include information flow in supply chains [56] and queuing systems with informed

customers [173].
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The public revelation of the waiting list information naturally gives rise to a gaming envi-

ronment, where each patient, when making their own decisions, has to consider the possible

decisions of other patients on the waiting list. To the best of our knowledge, the only organ

transplantation paper to consider such game-theoretic aspects is Su and Zenios [146]. They

model the kidney transplant waiting system as an M/M/1 queue with exponential reneging

that represents patient death. They assume a homogeneous patient population despite their

well-documented heterogeneity, which enables a detailed competitive equilibrium analysis,

and discuss the effects of different queuing disciplines such as first-come-first-served and last-

come-first-served on the system performance. They continue to acknowledge the associated

shortage with the homogenous patient population assumption by saying that “...the absence

of patient heterogeneity in our models may create suspicion about the validity of our find-

ings.” Unfortunately, such a queuing model is inappropriate for liver transplantation because

patient priorities evolve dynamically with their health, and different livers may induce differ-

ent priorities due to differences in geography and blood type. Furthermore, acknowledging

the heterogeneity of the patients leads to an intractable asymmetric multi-player non-zero-

sum stochastic game. We refer the interested reader to [102, 159] for recent reviews of the

state-of-the-art in stochastic games.

A related stream of research analyzes equilibria in queueing models. We refer the inter-

ested reader to [10, 60] for recent surveys of this literature. This stream of research focuses

on questions like when to join a queue, which queue to join when there are multiple queues,

and what priority level to purchase when different priorities are allowed. All of these ques-

tions are related to customers’ decisions at the time of their arrivals. However, in our case,

patients are prioritized at the time of an organ arrival according to the liver allocation policy.

Therefore, they do not have any choice at the time of their arrival but rather a prerogative

to refuse an organ (service) offer. Furthermore, we also allow patient priorities to change

over time and we explicitly use the rank information of the patient to make this decision.

A methodologically similar paper that models the decision making (although the customers

are not the decision makers) using rank information is [150], which formulates an MDP

model to find optimal replacement policies for a single motion picture exhibitor ignoring the

competition between theater chains. They contend with providing a numerical analysis of
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the model without attempting any structural results. In their competitive equilibrium anal-

ysis within the kidney allocation system, [146] also use the rank information of the patients

to characterize the rank-dependent threshold policies. However, these characterizations are

heavily influenced by the assumption of homogeneous patients, which we can not justify in

the context of this paper.

Recently, Hansen et al. [59] developed an exact algorithm for finite-horizon partially

observable stochastic games that combines the dynamic programming updating for POMDPs

and the iterated deletion of dominated strategies algorithm for normal form games. However,

this algorithm is tested only on small problems, which leaves the questions surrounding its

applicability for real-sized problems.
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3.0 EXPLICIT WAITING LIST MODEL

This chapter considers the problem of optimally deciding which liver offers to accept and

which ones to reject from an individual patient’s perspective. Our goal in this chapter is to

first develop and analyze a model for this problem that explicitly incorporates the waiting list

information into patient’s decision-making. Secondly, we want to use this model to estimate

patient’s price of privacy. Most of the material in this chapter is summarized in Sandıkçı et

al. [124].

As discussed in Chapter 2, several researchers consider the organ accept/reject problem.

Of this body of work, the most relevant is Alagoz et al. [6]. Their approach captures

the effects of the waiting list implicitly through the organ arrival probabilities, which are

assumed to be a function of patient health. As discussed in Chapter 1, under the current

liver allocation policy, however, the frequency and the quality of liver offers made to an

individual patient are significantly affected by the physiology and the geographic location of

other patients on the waiting list. Therefore, a model that captures the effects of the waiting

list in a more explicit fashion is needed.

Throughout this chapter, we assume that the waiting list is completely observable and,

hence, patients have perfect information about their waiting list ranks. We also assume that

patients are self-interested agents and do not explicitly consider the possible actions other

candidates may take in making their own decisions. This latter assumption, while unlikely

to hold, yields computational and analytical tractability and, hence, enables us to provide

estimates for the true price of privacy.

The rest of this chapter is organized as follows. In Section 3.1, we present the Markov

decision process model formulation. In Section 3.2, we introduce a new class of stochastic

matrices, termed CCD matrices, which facilitate the derivation of structural results in Section
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3.3. We present a detailed computational study in Section 3.4. Finally, we conclude in Section

3.5 by summarizing our results and pointing out some limitations.

3.1 MARKOV DECISION PROCESS MODEL

Consider an ESLD patient who must decide (with her physician and/or surgeon) whether

to accept or reject a liver offered for transplantation so as to maximize her total expected

discounted reward. We assume the patient makes this decision at discrete time periods. If a

liver is not offered in a particular period, then the patient is forced to ‘wait’ until the next

period. The non-trivial decision to be optimized is when there is a liver offered. If the patient

chooses to wait, then she accrues an intermediate reward which is a function of her current

health status, and faces the same problem at the next time period, provided she lives. If,

on the other hand, the patient chooses to ‘accept’ the offer, then she receives a lump-sum

terminal reward (e.g., the expected discounted post-transplant survival or quality-adjusted

survival). This terminal reward is a function of the patient’s current health status as well

as the quality of the accepted liver. By choosing to transplant an offered liver, the patient

terminates the process.

Among the organ acceptance models that consider the effect of the waiting list, Alagoz et

al. [6] implicitly models the waiting list through the organ arrival probabilities. At the other

extreme, a fully explicit model of the waiting list would track the health, location, blood

type, and waiting time of all patients in the list. Our approach balances the additional

complexity associated with incorporating information about the waiting list with practical

considerations such as model calibration and solution time.

As discussed in Chapter 1, under the current liver allocation mechanism, the priorities

assigned to patients are not only determined by the characteristics of the patients in the

waiting list but also by the characteristics of the donated liver. Therefore, even in a hy-

pothetical environment in which all the patients’ characteristics are constant and no new

patients arrive, a currently listed patient may be assigned different priorities for different

livers. For instance, the priority of a patient for a liver donated in the same geographic ser-
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Table 3.1: Patient characteristics for the hypothetical example

Patient Geographic area Blood type Expected priority Rank of expected priorities

a 1 A 1.5 1

b 1 AB 2.5 3

c 2 A 2 2

d 3 O 4 4

vice area as she is registered may be significantly different than her priority for an identical

liver donated in a different service area. Furthermore, even for two different livers donated

in the same geographic area, the patient may be assigned different priorities depending on

her blood type compatibility with the donated livers. Recall from Section 1.1 that there

are about 60 OPOs representing different geographic areas and 3 blood type compatibility

levels (i.e., identical, compatible, and incompatible). Incorporating these two factors alone

to model the rank of a patient over all possible livers would lead to a dramatic increase in

the size of the state space.

As a compromise, we define a patient’s ‘rank’ as a scalar, namely the rank of the patient

among all patients’ expected priorities, where the expectation is taken over all possible livers.

To illustrate this definition, consider a hypothetical example with 4 patients and 2 livers.

The characteristics of these patients are given in Table 3.1. Assume that both livers are

blood type A; however, Liver 1 is procured in OPO 1, whereas Liver 2 is procured in OPO

2. All else held equal, the order of patient priorities based on the current UNOS policy, from

first to last, would be a-b-c-d and c-a-b-d for Livers 1 and 2, respectively. The expected

priorities and the rank of expected priorities of these patients are as shown in the respective

columns of Table 3.1. For the sake of exposition, from now on, we use ‘rank’ to mean the

rank of the patient among all patients’ expected priorities.

We define a state, s, of the MDP model to be composed of the triplet (h, `, k), where

h is the patient’s health status, ` is the quality of the liver being offered, and k is the

rank of the patient. We assume the components of the state can take on the following
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values: h ∈ Ω = {1, 2, . . . , H}, where the quality of health is decreasing as h increases;

` ∈ Φ = {1, 2, . . . , L+1}, where the quality of the liver is decreasing as ` increases and L+1

represents no liver being offered; and k ∈ Ψ = {1, 2, . . . }, where the patient moves further

from the top of the waiting list as k increases.

For convenience, we add two absorbing states, ∆ and ∇, to represent the dead and

transplanted states, respectively. Therefore, the state space of the model becomes

S = S ′ ∪ {∆} ∪ {∇},

where

S ′ = {(h, `, k)|h ∈ Ω, ` ∈ Φ, k ∈ Ψ}.

The set of possible actions in state s ∈ S is

As =

 {W} if s = ∆ or s = ∇ or s = {(h, `, k)|` = L + 1},

{T,W} otherwise,

where ‘W ’ stands for rejecting the offer and waiting for one more period, and ‘T ’ stands for

accepting the offer and transplanting. The immediate rewards for each possible state-action

pair (s, a), such that s ∈ S and a ∈ As, is given by

r(s, a) =


0 if s = ∆ or s = ∇,

rW (h) if s ∈ S ′ and a = W,

rT (h, `) if a = T.

The patient does not accumulate any additional rewards once she is dead or transplanted.

Furthermore, a pre-transplant patient who chooses to wait for one more period receives an

intermediate reward of rW (h), which is a function of the patient’s health status only. Finally,

if the patient chooses to transplant, she receives a lump-sum reward of rT (h, `), which is a

function of both the patient’s health status and the quality of the liver being offered.

The final component of the MDP model is the transition probabilities. When the patient

chooses the transplant action, she transitions to the transplanted state, ∇, with probability
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one (i.e., P{∇|s, T} = 1 for all s ∈ S such that T ∈ As). If, on the other hand, the patient

chooses to wait, then the transition probabilities are defined as

P{s′|s = (h, `, k), W} =


p(h′, `′, k′|h, `, k) if s′ = (h′, `′, k′),

1−
∑

s′∈S′ p(h′, `′, k′|h, `, k) if s′ = ∆,

0 if s′ = ∇.

We assume the transition probabilities and rewards are stationary. We further assume

that p(h′, `′, k′|h, `, k) = H{h′|h} · K{k′|k} · L{`′|k′} for all h, h′ ∈ Ω, k, k′ ∈ Ψ, and `, `′ ∈ Φ,

where H{h′|h} is the probability that the patient’s health status will be h′ at time t + 1

given that her health at time t is h, K{k′|k} is the probability that the patient’s rank

will be k′ at time t + 1 given that her rank at time t is k, and L{`′|k′} is the probability

that the patient will be offered an organ of quality `′ at time t + 1 given that her rank

at time t + 1 is k′. We assume the transitions among health states and the transitions

among rank states are independent. Admittedly, the patient’s rank at time t + 1 depends

on her health at time t + 1. However, for analytical and computational tractability, we

choose to include the dependency on her rank at time t only. Since patient rank is the

primary indicator of patient health, an additional dependency on health would not change

the values of these probabilities significantly. Finally, we define the rank transition probability

matrix, K, as K = [K{k′|k}]∀k,k′∈Ψ, the health probability matrix, H, as H = [H{h′|h}]∀h,h′∈Ω,

and the liver offer probability matrix, L, as L = [L{`′|k′}]∀k′∈Ψ,∀`′∈Φ. We emphasize that∑
k′∈ΨK{k′|k} =

∑
`′∈Φ L{`′|k′} = 1 for all k, k′ ∈ Ψ. We interpret 1 −

∑
h′∈ΩH{h′|h} as

the probability of dying when the patient’s health is h.

Given discount rate λ ∈ [0, 1], the optimal solution to this problem can be obtained by

solving the Bellman optimality equations [112]:

v(h, L + 1, k) = rW (h) + λ
∑

(h′,`′,k′)

H{h′|h}K{k′|k}L{`′|k′}v(h′, `′, k′) ∀h ∈ Ω, k ∈ Ψ, (3.1)

and

v(h, `, k) = max
{

rT (h, `), rW (h) + λ
∑

(h′,`′,k′)

H{h′|h}K{k′|k}L{`′|k′}v(h′, `′, k′)
}

∀h ∈ Ω, k ∈ Ψ, ` ∈ Φ \ {L + 1}. (3.2)
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The value associated with the absorbing states of death and post-transplant, ∆ and ∇, is

zero by construction and these states are, therefore, excluded from equations (3.1) and (3.2).

3.2 CCD MATRICES

In this section, we introduce a new class of stochastic matrices, termed Column-wise Concave

with the maximum element of each column on the Diagonal (CCD) matrices, which facilitates

the derivation of structural results associated with the rank component (k) of the MDP model

given in Section 3.1. We start with its definition.

Definition 3.1. An n × n stochastic matrix P is called CCD (Column-wise Concave with

the maximum element of each column on the Diagonal) if, for i = 1, . . . , n− 1, it satisfies

(i) P{j|i} ≥ P{j|i + 1} for j = 1, 2, . . . , i, (3.3)

(ii) P{j|i} ≤ P{j|i + 1} for j = i + 1, . . . , n. (3.4)

This definition implies that within each column of a CCD matrix, the values are non-

decreasing up to (and including) the diagonal element, and nonincreasing after the diagonal

element. As a consequence, a necessary (but not sufficient) condition for a stochastic matrix

to be CCD is to have the maximum value within each column at the diagonal entry.

In the context of our MDP model, a CCD rank transition probability matrix implies that

the likelihood that a patient with rank i moves to a better rank j1 < i in the next period is

at least as large as the likelihood of moving to the same rank j1 from a rank that is further

down the list. On the other hand, the likelihood that a patient with rank i moves to a worse

rank j2 > i in the next period is no more than the likelihood of moving to the same rank j2

if the patient is further down the list than i.

Next, we derive several results for CCD matrices, which will be used in proving the

structural properties of our MDP model. Proposition 3.1 presents inequalities for the row

differences of a CCD matrix, which are used in proving Theorem 3.3.
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Proposition 3.1. Let f : R → R+ and g : R → R be two functions. If g(·) is nonincreasing

and P is a CCD transition probability matrix, then the following hold

(i)
∑
j≤k

[P{j|k} − P{j|k + 1}]f(j)g(j) ≥ g(k) ·
∑
j≤k

[P{j|k} − P{j|k + 1}]f(j), (3.5)

(ii)
∑
j>k

[P{j|k} − P{j|k + 1}]f(j)g(j) ≥ g(k) ·
∑
j>k

[P{j|k} − P{j|k + 1}]f(j). (3.6)

Proof. (i) If P is a CCD matrix, then the term in the square brackets on the left-hand side

of inequality (3.5) is nonnegative by definition (see equation (3.3)). Thus the coefficient of

g(j) is nonnegative for all j on the left-hand-side of (3.5), since we are given nonnegative

f(j). Furthermore, since g(j) ≥ g(k) for any j ≤ k , we can write:∑
j≤k

[P{j|k} − P{j|k + 1}]f(j)g(j) ≥ g(k)
∑
j≤k

[P{j|k} − P{j|k + 1}]f(j),

which establishes the result.

(ii) Similar to the proof in case (i).

Proposition 3.2 states that, for a given set of nonincreasing weights, the nonnegative

linear combination of the values obtained by taking the difference of any two successive rows

of a CCD matrix is always nonnegative.

Proposition 3.2. Let {zj}∞j=1 be a given sequence of nonnegative and nonincreasing num-

bers. If P is a CCD transition probability matrix, then for any given k∑
j

[P{j|k} − P{j|k + 1}]zj ≥ 0. (3.7)

Proof. Starting with the left-hand side of inequality (3.7), we find∑
j

[P{j|k} − P{j|k + 1}]zj =
∑
j≤k

[P{j|k} − P{j|k + 1}]zj +
∑
j>k

[P{j|k} − P{j|k + 1}]zj

≥
∑
j≤k

[P{j|k} − P{j|k + 1}]zk +
∑
j>k

[P{j|k} − P{j|k + 1}]zj

≥
∑
j≤k

[P{j|k} − P{j|k + 1}]zk +
∑
j>k

[P{j|k} − P{j|k + 1}]zk

= zk

{∑
j

[P{j|k} − P{j|k + 1}]
}
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= zk[1− 1]

= 0,

which establishes the result.

An alternative proof of Proposition 3.2 follows from the fact that CCD matrices have

the Increasing Failure Rate (IFR) property (see Proposition 3.3 below) and Lemma 4.7.2 of

Puterman [112].

Finally, we show how the CCD class relates to other well-known matrix classes in the

literature, namely, IFR matrices and TP2 matrices. We start by recalling the definitions of

IFR matrices and TP2 matrices.

Definition 3.2 (Barlow and Proschan [13]). An n × n stochastic matrix P is called IFR

(Increasing Failure Rate) if, for i = 1, . . . , n− 1,

n∑
j=k

P{j|i} ≤
n∑

j=k

P{j|i + 1} for k = 1, . . . , n.

Definition 3.3 (Karlin [82]). An n× n stochastic matrix P is called TP2 (Totally Positive

of order 2) if the determinants of all 2× 2 submatrices of P are nonnegative.

IFR and totally positive matrices have been extensively studied. We know that a TP2

matrix is also IFR [82] and are interested in finding any relationship between the CCD class

and these two classes. Proposition 3.3 states that every CCD matrix is also an IFR matrix.

Proposition 3.3. If P is CCD, then it is also IFR.

Proof. Let P be an n×n stochastic CCD matrix and pick an arbitrary index i ∈ {1, . . . , n}.

Initially consider the first set of inequalities, (3.3), for the given i that must hold for a

CCD matrix. Summing these inequalities for j = 1 to i2, where i2 = 1, . . . , i, we obtain

i2∑
j=1

P{j|i} ≥
i2∑

j=1

P{j|i + 1} for i2 = 1, . . . , i,

⇒ 1−
n∑

j=i2+1

P{j|i} ≥ 1−
n∑

j=i2+1

P{j|i + 1} for i2 = 1, . . . , i,
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⇒
n∑

j=i2+1

P{j|i} ≤
n∑

j=i2+1

P{j|i + 1} for i2 = 1, . . . , i,

⇒
n∑

j=k

P{j|i} ≤
n∑

j=k

P{j|i + 1} for k = 2, . . . , i + 1. (3.8)

Now consider the second set of inequalities, (3.4), for the given i that must hold for a

CCD matrix. Summing these inequalities for i1 through j = n, where i1 = i + 2, . . . , n, we

obtain
n∑

j=i1

P{j|i} ≤
n∑

j=i1

P{j|i + 1} for i1 = i + 2, . . . , n. (3.9)

Finally, combining results (3.8) and (3.9), we obtain

n∑
j=k

P{j|i} ≤
n∑

j=k

P{j|i + 1} for k = 2, . . . , n. (3.10)

In addition, since both sides of the inequality in (3.10) are equal to 1 when k = 1,

we conclude that the inequality holds for k = 1, . . . , n, which is the definition of an IFR

matrix.

Remark 3.1 states that not every IFR matrix is CCD .

Remark 3.1. If P is IFR, then it is not necessarily CCD as indicated by the following

example. Consider the following stochastic matrix.

P =


0.8 0.1 0.1

0.7 0.1 0.2

0.5 0.2 0.3

 .

P is IFR, but it is not CCD because the maximum element of the second column does not

appear on the diagonal entry.

Having proved that CCD is a stronger condition than IFR, we now investigate how

CCD is related to TP2. Proposition 3.4 shows that CCD and TP2 conditions are equivalent

for 2 × 2 matrices. However, the answer remains ambiguous for matrices of larger size, as

indicated in Remark 3.2.

Proposition 3.4. For a 2× 2 stochastic matrix P , P is CCD ⇔ P is TP2 ⇔ P is IFR.
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Proof. Let P be given as

P =

 a 1− a

b 1− b

 ,

where 0 ≤ a, b ≤ 1. First, assume P is CCD . Then a ≥ b must hold. Therefore, |P | =

a(1 − b) − b(1 − a) = a − b ≥ 0, which implies P is TP2. Next, assume P is TP2. Then

|P | = a(1− b)− b(1− a) = a− b ≥ 0 must hold. Therefore, a ≥ b, which implies P is CCD .

This completes the proof for the equivalence of the CCD and TP2 conditions.

Finally, assume P is IFR. Then 1−a ≤ 1− b must hold. Therefore, a ≥ b, which implies

P is CCD . Combining this result with that of Proposition 3.3 completes the proof for the

equivalence of the CCD and IFR conditions.

Remark 3.2. For n > 2, if P is CCD (TP2), then it is not necessarily TP2 (CCD) as

indicated by the following examples.

First, it is easily verified that the following matrix is CCD

P =


0.9 0.1 0.0

0.6 0.2 0.1

0.4 0.1 0.5

 ;

however, it is not TP2, since the lower left 2× 2 submatrix has a negative determinant.

Second, the following TP2 matrix is not CCD, since the maximum element in the second

column is not on the diagonal.

P =


0.4 0.4 0.2

0.3 0.3 0.4

0.2 0.3 0.5

 .
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3.3 STRUCTURAL RESULTS

In this section, we establish several structural properties of the MDP model formulated in

Section 3.1. Specifically, we identify conditions on the parameters that guarantee structured

value functions and optimal policies. In addition to their analytical elegance, such results

may provide deeper insight into the overall problem and help devise computationally faster

solution approaches.

The following assumptions hold throughout this section:

(AS1) rW (h) is nonincreasing in h;

(AS2) rT (h, `) is nonincreasing in both h and `.

AS1 implies that the intermediate reward of waiting does not increase as the patient de-

teriorates. Similarly, AS2 implies that the post-transplant reward does not increase as the

patient deteriorates and/or the quality of the liver degrades.

Theorem 3.1 establishes the intuitive fact that it is always better to be offered a higher

quality organ.

Theorem 3.1. v(h, `, k) is monotonically nonincreasing in ` for any h ∈ Ω and k ∈ Ψ.

Proof. For any given h, k, and l, consider two possible cases. If a(h, k, l + 1) = T , then

v(h, k, l + 1) = rT (h, l + 1) ≤ rT (h, l) ≤ v(h, k, l) by assumption AS2 and equation (3.2). If,

on the other hand, a(h, k, l + 1) = W , then

v(h, k, l + 1) = rW (h) + λ
∑
h′

∑
k′

∑
l′

H{h′|h} · K{k′|k} · L{l′|k′} · v(h
′
, k

′
, l

′
)

≤ v(h, k, l),

where the last inequality follows from equation (3.2). This completes the proof.

Similar to the definition given in [6], we define a liver-based control-limit optimal policy

to be a policy among the optimal policies that, for a given health state, h, and rank, k,

distinguishes a critical liver state `∗ and prescribes ‘transplant’ for all livers ` ≤ `∗ and ‘wait’

for all livers ` > `∗. Theorem 3.2 shows that assumptions AS1 and AS2 are sufficient for the

existence of a liver-based control-limit optimal policy.
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Theorem 3.2. There exists a liver-based control-limit optimal policy for all h ∈ Ω and

k ∈ Ψ.

Proof. For any given liver quality ` < L, it suffices to prove that if a∗(h, ` + 1, k) = T , then

a∗(h, `, k) = T for all h ∈ Ω and k ∈ Ψ. For any given h ∈ Ω and k ∈ Ψ, if a∗(h, `+1, k) = T ,

then

v(h, ` + 1, k) = rT (h, ` + 1)

≥ rW (h) + λ
∑
h′

∑
k′

∑
`′

H{h′|h} · K{k′|k} · L{`′|k′} · v(h′, k′, `′).

Since v(h, `, k) = max{rT (h, `), rW (h)+λ
∑

h′
∑

k′
∑

`′ H{h′|h}K{k′|k}L{`′|k′}v(h′, k′, `′)}

and AS2 implies rT (h, `) ≥ rT (h, ` + 1) for ` = 1, . . . , L − 1, we find v(h, `, k) = rT (h, `).

Therefore, a∗(h, `, k) = T for any h ∈ Ω and k ∈ Ψ.

An immediate result of Proposition 3.1 is Corollary 3.1.

Corollary 3.1. If K is a CCD matrix and v(h, `, k) is nonincreasing in k for any h ∈ Ω

and ` ∈ Φ, then the following hold

(i)
∑

`′

∑
k′≤k

[K{k′|k} − K{k′|k + 1}]L{`′|k′}v(h′, `′, k′)

≥
∑

`′

v(h′, `′, k)
∑
k′≤k

[K{k′|k} − K{k′|k + 1}]L{`′|k′},

(ii)
∑

`′

∑
k′>k

[K{k′|k} − K{k′|k + 1}]L{`′|k′}v(h′, `′, k′)

≥
∑

`′

v(h′, `′, k)
∑
k′>k

[K{k′|k} − K{k′|k + 1}]L{`′|k′}.

Theorem 3.3 states that a patient’s maximum expected total discounted reward does not

increase as her rank deteriorates. The condition on L simply states that patient’s chance of

receiving a liver offer does not increase as her rank deteriorates.

Theorem 3.3. If K is CCD and L{`|k} is monotonically nonincreasing in k ∈ Ψ for all

` 6= L + 1, then v(h, `, k) is monotonically nonincreasing in k ∈ Ψ for any h ∈ Ω and ` ∈ Φ.
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Proof. (by induction on the steps of the value iteration algorithm)

We prove the theorem for ` 6= L+1 and note that the proof for ` = L+1 follows similarly.

If we can show that the value functions at each iteration of the value iteration algorithm

are monotonically nonincreasing in k ∈ Ψ for given h ∈ Ω and ` ∈ Φ, then the result

holds by the convergence of value iteration. Let vi(h, `, k) be the value associated with state

(h, `, k) ∈ S at the ith iteration of the value iteration algorithm and assume, without loss of

generality, that the algorithm starts with a value of 0 for each state, i.e., v0(h, `, k) = 0 for

all (h, `, k) ∈ S.

It is clear that v1(h, `, k) is constant and therefore nonincreasing in k ∈ Ψ for all h ∈ Ω

and ` ∈ Φ.

Next, assume, as the induction hypothesis, that for a given h ∈ Ω and ` ∈ Φ, vi(h, `, k) ≥

vi(h, `, k + 1) for all k ∈ Ψ for iterations i = 2, . . . , n.

By equation (3.2)

vn+1(h, `, k) = max
{

rT (h, `);

rW (h) + λ
∑
h′

∑
k′

∑
`′

H{h′|h}K{k′|k}L{`′|k′}vn(h′, `′, k′)
}

(3.11)

and

vn+1(h, `, k + 1) = max
{

rT (h, `);

rW (h) + λ
∑
h′

∑
k′

∑
`′

H{h′|h}K{k′|k + 1}L{`′|k′}vn(h′, `′, k′)
}

. (3.12)

If an+1(h, `, k + 1) = T , then vn+1(h, `, k + 1) = rT (h, `) ≤ vn+1(h, `, k).

If an+1(h, `, k + 1) = W , then by equations (3.11) and (3.12)

vn+1(h, `, k)− vn+1(h, `, k + 1)

≥ λ
∑
h′

H{h′|h}
{∑

k′

∑
`′

[K{k′|k} − K{k′|k + 1}]L{`′|k′}vn(h′, `′, k′)
}

= λ
∑
h′

H{h′|h}
{∑

`′

∑
k′≤k

[K{k′|k} − K{k′|k + 1}]L{`′|k′}vn(h′, `′, k′)

+
∑

`′

∑
k′>k

[K{k′|k} − K{k′|k + 1}]L{`′|k′}vn(h′, `′, k′)
}

. (3.13)
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Since vn(h′, `′, k′) is nonincreasing in k′ ∈ Ψ for all h′ ∈ Ω and `′ ∈ Φ, by the induction

hypothesis, and the fact that K is CCD , Corollary 3.1 implies that inequality (3.13) is

preserved if we replace vn(h′, `′, k′) by vn(h′, `′, k) for all (h′, `′, k′). Making this substitution

and rearranging yields

vn+1(h, `, k)− vn+1(h, `, k + 1)

≥ λ
∑
h′

H{h′|h}
{ ∑

`′ 6=L+1

vn(h′, `′, k)
∑
k′

[K{k′|k} − K{k′|k + 1}]L{`′|k′}

+ vn(h′, L + 1, k)
∑
k′

[K{k′|k} − K{k′|k + 1}]L{L + 1|k′}
}

.

Employing the identity L{L + 1|k′} = 1−
∑

`′ 6=L+1 L{`′|k′} yields

vn+1(h, `, k)− vn+1(h, `, k + 1)

≥ λ
∑
h′

H{h′|h}
{ ∑

`′ 6=L+1

vn(h′, `′, k) ·
∑
k′

[K{k′|k} − K{k′|k + 1}]L{`′|k′}

− vn(h′, L + 1, k)
∑
k′

[K{k′|k} − K{k′|k + 1}]
∑

`′ 6=L+1

L{`′|k′}

+ vn(h′, L + 1, k)
∑
k′

[K{k′|k} − K{k′|k + 1}]
}

.

Eliminating the final term in the right-hand-side of the last inequality since it is always

0 and rearranging yields

vn+1(h, `, k)− vn+1(h, `, k + 1)

≥ λ
∑
h′

H{h′|h}
{ ∑

`′ 6=L+1

[
vn(h′, `′, k)− vn(h′, L + 1, k)

][∑
k′

[K{k′|k} − K{k′|k + 1}]L{`′|k′}
]}

.

Now λ ≥ 0, H{h′|h} ≥ 0 for all h, h′ ∈ Ω, and vn(h′, `′, k) − vn(h′, L + 1, k) ≥ 0 for

all h′ ∈ Ω, `′ ∈ Φ, and k ∈ Ψ, by Proposition 3.1. Furthermore, since K is CCD and L is

nonincreasing in k′ ∈ Ψ for fixed `′ 6= L + 1, Proposition 3.2 implies that
∑

k′ [K{k′|k} −

K{k′|k + 1}]L{`′|k′} ≥ 0 for all `′ 6= L + 1. Therefore, vn+1(h, `, k) − vn+1(h, `, k + 1) ≥ 0,

which completes the proof.

We need the following technical result, before we present our main result concerning the

structure of the optimal policy.
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Lemma 3.1. Let ϕ(k
′
) =

∑
h′
∑

l′ H{h
′|h}L{l′|k′}vn(h

′
, k

′
, l

′
). If K is CCD and L{l|k} is

monotonically nonincreasing in k, then ϕ(k) is also nonincreasing in k.

Proof. For any k′ ∈ Ψ,

ϕ(k
′
)− ϕ(k

′
+ 1)

=
∑
h′

∑
l′

H{h′|h}L{l′|k′}v(h
′
, k

′
, l

′
)−

∑
h′

∑
l′

H{h′|h}L{l′|k′
+ 1}v(h

′
, k

′
+ 1, l

′
)

=
∑
h′

{
H{h′|h}

∑
l′

[
L{l′|k′}v(h

′
, k

′
, l

′
)− L{l′|k′

+ 1}v(h
′
, k

′
+ 1, l

′
)
]}

=
∑
h′

{
H{h′|h}

[ ∑
l′ 6=L+1

[
L{l′|k′}v(h

′
, k

′
, l

′
)− L{l′|k′

+ 1}v(h
′
, k

′
+ 1, l

′
)
]

+ L{L + 1|k′}v(h
′
, k

′
, L + 1)− L{L + 1|k′

+ 1}v(h
′
, k

′
+ 1, L + 1)

]}

≥
∑
h′

{
H{h′|h}

[ ∑
l′ 6=L+1

[
L{l′|k′}v(h

′
, k

′
, l

′
)− L{l′|k′

+ 1}v(h
′
, k

′
, l

′
)
]

+ L{L + 1|k′}v(h
′
, k

′
, L + 1)− L{L + 1|k′

+ 1}v(h
′
, k

′
+ 1, L + 1)

]}

where the last inequality follows since v(h
′
, k

′
+ 1, l

′
) ≤ v(h

′
, k

′
, l

′
) by Theorem 3.3 and

L{l′|k′
+1} is nonnegative. Similarly, L{L+1|k′

+1} is nonnegative and v(h
′
, k

′
+1, L+1) ≤

v(h
′
, k

′
, L + 1) by Theorem 3.3, therefore we can write

ϕ(k
′
)− ϕ(k

′
+ 1)

≥
∑
h

′

{
H{h′|h}

[ ∑
l′ 6=L+1

[
L{l′|k′}v(h

′
, k

′
, l

′
)− L{l′|k′

+ 1}v(h
′
, k

′
, l

′
)
]

+ L{L + 1|k′}v(h
′
, k

′
, L + 1)− L{L + 1|k′

+ 1}v(h
′
, k

′
, L + 1)

]}

=
∑
h′

{
H{h′|h}

[ ∑
l′ 6=L+1

v(h
′
, k

′
, l

′
)
[
L{l′|k′} − L{l′|k′

+ 1}
]

+ v(h
′
, k

′
, L + 1)

[
L{L + 1|k′} − L{L + 1|k′

+ 1}
]]}

38



=
∑
h′

{
H{h′|h}

[ ∑
l′ 6=L+1

v(h
′
, k

′
, l

′
)
[
L{l′|k′} − L{l′|k′

+ 1}
]

+ v(h
′
, k

′
, L + 1)

[
1−

∑
l′ 6=L+1

L{l′|k′} − 1 +
∑

l′ 6=L+1

L{l′|k′
+ 1}

]]}

=
∑
h′

{
H{h′|h}

[ ∑
l′ 6=L+1

[
L{l′|k′} − L{l′|k′

+ 1}
][

v(h
′
, k

′
, l

′
)− v(h

′
, k

′
, L + 1)

]]}

Finally, H{h′|h} is nonnegative for all h
′

by definition; L{l′|k′} ≥ L{l′|k′
+ 1} for all

l
′ 6= L + 1 and k

′
by assumption ; and v(h

′
, k

′
, l

′
) ≥ v(h

′
, k

′
, L + 1) for all l

′
by Theorem 3.1.

Therefore, ϕ(k
′
)− ϕ(k

′
+ 1) ≥ 0 and the proof is completed.

The main result on the structure of the optimal policy is given in Theorem 3.4, which

establishes conditions under which there exists a rank-based control-limit optimal policy.

Analogous to a liver-based control-limit optimal policy, a rank-based control-limit optimal

policy is an optimal policy that prescribes, for a given health state, h, and a liver quality,

`, ‘wait’ if the rank of the patient is below some threshold rank k∗ and ‘transplant’ for all

ranks greater than k∗.

Theorem 3.4. If K is CCD and L{`|k} is monotonically nonincreasing in k ∈ Ψ for all

` 6= L + 1, then there exists a rank-based control-limit optimal policy.

Proof. (by contradiction) An alternative proof of this theorem can be found in Sandıkçı et

al. [124].

We want to prove that given h and l, a(h, k, l) = T for any k implies that a(h, k
′
, l) = T

for all k
′ ≥ k. Consider any rank k ∈ Ψ and assume otherwise, i.e., assume a(h, k, l) = T

but a(h, k + 1, l) = W uniquely. This, respectively, implies that

v(h, k, l) = rT (h, l)

≥ rW (h) + λ
∑
h′

∑
k′

∑
l′

H{h′|h} · K{k′|k} · L{l′|k′} · v(h
′
, k

′
, l

′
)

and

v(h, k + 1, l) = rW (h) + λ
∑
h′

∑
k′

∑
l′

H{h′|h} · K{k′|k + 1} · L{l′|k′} · v(h
′
, k

′
, l

′
)

> rT (h, l).
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Then these two together imply that

rT (h, l)− rT (h, l)

> λ

{∑
h′

∑
k′

∑
l′

H{h′|h}K{k′|k}L{l′|k′}v(h
′
, k

′
, l

′
)

−
∑
h′

∑
k′

∑
l′

H{h′|h}K{k′|k + 1}L{l′|k′}v(h
′
, k

′
, l

′
)

}

= λ

{∑
k′

K{k′|k}

[∑
h′

∑
l′

H{h′|h}L{l′|k′}v(h
′
, k

′
, l

′
)

]

−
∑
k′

K{k′|k + 1}

[∑
h′

∑
l′

H{h′|h}L{l′|k′}v(h
′
, k

′
, l

′
)

]}

= λ

{∑
k′

K{k′|k} · ϕ(k
′
)−

∑
k′

K{k′|k + 1} · ϕ(k
′
)

}

= λ

{∑
k′≤k

K{k′|k} · ϕ(k
′
) +

∑
k′>k

K{k′|k} · ϕ(k
′
)−

∑
k′≤k

K{k′|k + 1} · ϕ(k
′
)

−
∑
k′>k

K{k′|k + 1} · ϕ(k
′
)

}

= λ

{∑
k′≤k

[
K{k′|k} − K{k′|k + 1}

]
ϕ(k

′
) +

∑
k′>k

[
K{k′|k} − K{k′|k + 1}

]
ϕ(k

′
)

}
(3.14)

Now, since K is CCD by assumption and ϕ(k) is nonincreasing in k by Lemma 3.1,

Proposition 3.1 applies and implies that if ϕ(k
′
) is replaced by ϕ(k) for all k

′
in the right-

hand-side of inequality (3.14), then the result will be no bigger than the original. That

is,

0 = rT (h, l)− rT (h, l)

> λ

{
ϕ(k)

∑
k′≤k

[
K{k′|k} − K{k′|k + 1}

]
+ ϕ(k)

∑
k′>k

[
K{k′|k} − K{k′|k + 1}

]}

= λϕ(k)
∑
k

′

[
K{k′|k} − K{k′|k + 1}

]
= 0,

which is a contradiction. Therefore, a(h, k + 1, l) cannot be ’W’.
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Before we proceed with the results associated with the health component (h) of the MDP

model, we provide a technical lemma that is used in the proof of Theorem 3.5. For notational

convenience, we denote the dead state, ∆, as H +1 in the remainder of this section. Let the

(H +1)× (H +1) augmented health transition probability matrix Ĥ, where the first H states

of this matrix represent the health states and the last state represents death, be given by

Ĥ =

 H (I −H)e

0 1

 ,

where I is the H ×H identity matrix and e is an H × 1 vector of ones.

Lemma 3.2. Let Ĥ be an IFR transition probability matrix and v(h, `, k) be a nonincreasing

function of h ∈ Ω for any k ∈ Ψ and ` ∈ Φ. Then the following hold for all h ∈ Ω

(i)
∑
h′≤h

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(h′, `′, k′)
]}

≥
[∑

k′

∑
`′

K{k′|k}L{`′|k′}v(h, `′, k′)
]∑

h′≤h

[
Ĥ{h′|h} − Ĥ{h′|h + 1}

]
, (3.15)

(ii)
∑
h′>h

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(h′, `′, k′)
]}

≥
[∑

k′

∑
`′

K{k′|k}L{`′|k′}v(h + 1, `′, k′)
]∑

h′>h

[
Ĥ{h′|h} − Ĥ{h′|h + 1}

]
. (3.16)

Proof. (i) Starting with the left-hand-side of inequality (3.15), we can write:∑
h′≤h

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(h′, `′, k′)
]}

=
[
Ĥ{1|h} − Ĥ{1|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(1, `′, k′)
]

+
h∑

h′=2

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(h′, `′, k′)
]}

≥
2∑

h′=1

[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(2, `′, k′)
]

+
h∑

h′=3

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(h′, `′, k′)
]}

,

where the last inequality follows from the fact that Ĥ IFR implies Ĥ{1|h}−Ĥ{1|h+1} ≥ 0,

K{·} and L{·} are nonnegative, and v(1, `′, k′) ≥ v(2, `′, k′). Repeating this argument (i.e., Ĥ
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IFR implies
∑2

h′=1[Ĥ{h′|h}−Ĥ{h′|h+1} ≥ 0, K{·} and L{·} are nonnegative by definition,

and v(2, `′, k′) ≥ v(3, `′, k′)) yields:

∑
h′≤h

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(h′, `′, k′)
]}

≥
[∑

k′

∑
`′

K{k′|k}L{`′|k′}v(3, `′, k′)
] 3∑

h′=1

[
Ĥ{h′|h} − Ĥ{h′|h + 1}

]
+

h∑
h′=4

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}v(h′, `′, k′)
]}

.

Continuing in this manner until v(h − 1, `′, k′) is replaced by v(h, `′, k′) establishes the

result.

(ii) Similar to the proof in case (i).

Theorem 3.5 presents the conditions under which the value function is monotone in

patient health for fixed rank and liver quality.

Theorem 3.5. If Ĥ is IFR, then v(h, `, k) is monotonically nonincreasing in h for any

k ∈ Ψ and ` ∈ Φ.

Proof. (by induction on the steps of the value iteration algorithm)

We prove the theorem for ` 6= L+1 and note that the proof for ` = L+1 follows similarly.

Let vi(h, `, k) be the value associated with state (h, `, k) ∈ S at the ith iteration of the

value iteration algorithm and assume, without loss of generality, that the algorithm starts

with a value of 0 for each state, i.e., v0(h, `, k) = 0 for all (h, `, k) ∈ S. It is clear, by

assumptions AS1 and AS2, that the result holds for iteration 1. Given that vn(h, `, k) ≥

vn(h+1, `, k), we must show vn+1(h, `, k) ≥ vn+1(h+1, `, k). Since v(H +1) = 0, by equation

(3.2)

vn+1(h, `, k) = max
{

rT (h, `);

rW (h) + λ
∑
h′

∑
k′

∑
`′

Ĥ{h′|h}K{k′|k}L{`′|k′}vn(h′, `′, k′)
}

(3.17)
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and

vn+1(h + 1, `, k) = max
{

rT (h + 1, `);

rW (h + 1) + λ
∑
h′

∑
k′

∑
`′

Ĥ{h′|h + 1}K{k′|k}L{`′|k′}vn(h′, `′, k′)
}

. (3.18)

If an+1(h + 1, `, k) = T , then vn+1(h + 1, `, k) = rT (h + 1, `) ≤ rT (h, `) ≤ vn+1(h, `, k).

If an+1(h + 1, `, k) = W , then by equations (3.17) and (3.18),

vn+1(h, `, k)− vn+1(h + 1, `, k)

≥ rW (h)− rW (h + 1) + λ
∑
h′

Ĥ{h′|h}
{∑

k′

∑
`′

K{k′|k}L{`′|k′}vn(h′, `′, k′)
}

−λ
∑
h′

Ĥ{h′|h + 1}
{∑

k′

∑
`′

K{k′|k}L{`′|k′}vn(h′, `′, k′)
}

≥ λ
∑
h′

{[
Ĥ{h′|h} − Ĥ{h′|h + 1}

][∑
k′

∑
`′

K{k′|k}L{`′|k′}vn(h′, `′, k′)
]}

. (3.19)

Since Ĥ is IFR by assumption, K{·} and L{·} are nonnegative by definition, and

vn(h′, `′, k′) is nonincreasing in h′ ∈ Ω for all k′ ∈ Ψ and `′ ∈ Φ, Lemma 3.2 implies

that inequality (3.19) is preserved if we replace vn(h′, `′, k′) by vn(h, `′, k′) for all (h′, `′, k′).

Therefore,

vn+1(h, `, k)− vn+1(h + 1, `, k)

≥ λ
[∑

k′

∑
`′

K{k′|k}L{`′|k′}vn(h, `′, k′)
]∑

h′

[
Ĥ{h′|h} − Ĥ{h′|h + 1}

]
.

The result follows because
∑

h′ [Ĥ{h′|h} − Ĥ{h′|h + 1}] = 0.

Analogous to a liver-based or a rank-based control-limit optimal policy, a health-based

control-limit optimal policy is defined as an optimal policy that prescribes, for a given rank

state, k, and a liver quality, `, ‘wait’ in all health states up to (and including) a threshold

health state h∗ and ‘transplant’ in all health states greater than h∗. Given the result of

Theorem 3.5 and similar conditions to the conditions of Theorem 3 in [4], it can easily be

shown that there exists a health-based control-limit optimal policy. We present Theorem 3.6

without a proof.
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Theorem 3.6. If Ĥ is IFR and H and rT (h, `) satisfy the following:

H∑
h′=j

H{h′|h} ≤
H∑

h′=j

H{h′|h + 1} for j = h + 1, . . . , H, and h = 1, . . . , H, (3.20)

and for any given `

rT (h, `)− rT (h + 1, `)

rT (h, `)
≤ λ

[
H{H + 1|h + 1} −H{H + 1|h}

]
for h = 1, . . . , H − 1, (3.21)

then there exists a health-based control-limit optimal policy for all ` ∈ Φ and π ∈ Π(Ψ).

3.4 COMPUTATIONAL STUDY

In this section, we present numerical results driven by clinical data. Section 3.4.1 discusses

the parameter estimation process for the MDP model formulated in Section 3.1 and presents

a numerical example for a patient with Hepatitis B. Section 3.4.2 discusses the concept of

price of privacy in greater detail and presents the results of a numerical study for 200 ESLD

patients.

3.4.1 Parameter estimation and an example

In our computational experiments, we define each period to be one day and consider the

objective of maximizing the patient’s total expected remaining lifetime. Therefore, we set

rW (h) = 1 for all h ∈ Ω and estimate the patient specific total expected post-transplant life

days, rT (h, `) for all h ∈ Ω and ` ∈ Φ, using the post-transplant survival model of Roberts

et al. [117].

As discussed in Section 1.1, adult ESLD patients are classified by disease severity into

Status 1 patients and MELD patients. We only consider MELD patients in this study since

there are typically fewer than a dozen Status 1 patients nationwide at a given time. In the

allocation mechanism, each MELD patient has an integer-valued MELD score between 6

(healthiest) and 40 (sickest). However, due to sparsity of the available data, we represent

patient health (h) by MELD scores aggregated in groups of two. Since the natural history
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of ESLD depends on the type of diagnosis, we estimate different H matrices for different

disease groups using the natural history model of Alagoz et al. [3].

We also follow the liver quality classification scheme of Alagoz et al. [6], which considers

14 liver qualities as determined by the age, race, and gender of the donor [117]. Detailed

descriptions of the liver quality assignment scheme and the estimation of rT (h, `) are provided

in Alagoz et al. [6].

To estimate K and L we use the national liver allocation model of Shechter et al. [132],

which simulates the evolution of the waiting list under various liver allocation policies for

the United States based on clinical data. We resort to this simulation model to collect rank

information, which is not available in any form from any of the clinical resources. Tracking

the rank of a patient in the nationwide waiting list would result in enormously large K

and L matrices given that the waiting list contains over 15,000 patients. Moreover, the vast

majority of offers are made to patients in the same geographic area as the donated liver, since

the allocation mechanism exhausts the local geographic area before considering other areas.

Therefore we simulate the national waiting list, but track the rank of the patients within the

geographic area where they are registered. Since OPOs represent different populations, for

each OPO we estimate different K and L matrices of varying sizes depending on the size of

the geographic area served by the OPO. For notational convenience, we drop the dependency

on OPOs in the following discussion.

We use 30 independent replications of the simulation to estimate K and L. Shechter et

al. [132] also used 30 replications for their simulation model and found that the simulation

output closely matches UNOS data for several important statistics such as number of new

patients listed, number of cadaveric donors, number of transplants, median waiting time for

a transplant, and 1-year survival rates for patients and organs after receiving the transplant.

To estimate L, for each OPO, we count the number of offers each rank receives during the

simulation, provided a liver is donated, and transform these counts into probabilities by

computing the relative frequencty of each count. Let f(k) represent the probability that

a rank k patient in an arbitrary OPO receives an offer given that a liver is offered in her

OPO. When a liver is offered in an OPO, the patient having the highest priority in this

OPO receives this offer and depending on her decision the liver may be offered to the patient
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with the second highest priority and so on. Therefore, we assume that f(1) = 1 and f(k)

is monotonically nonincreasing in k. The second step in estimating each L matrix involves

augmenting f(k) to distinguish between liver qualities. To do so, we fit an exponential

function of the form exp(−θk) to f(k) using ordinary least squares. Then, to ensure that

higher quality livers are accepted earlier, we perturb θ to obtain f̃(k, `), the probability that

a rank k patient receives a donated liver of quality ` given that this liver is offered in her

OPO. In doing so, we assume that the probability that a rank k patient receives an average

quality liver is at most twice that of the highest quality liver (i.e., ` = 1) and is at most 2/3

of the probability of receiving the lowest quality liver (i.e., ` = 14). Specifically, we obtain

the perturbed θ values, θ`, by

θ` =

 θ(1 + 1/`) if ` = 1, . . . , 7,

θ(1− 0.05(`− 7)) if ` = 8, . . . , 14.

For a typical OPO, Figure 3.1 shows the original f(k) as estimated from the simulation

and the best exponential fit to f(k) as discussed above (r2 = 0.9991 for this fit). Figure 3.2

shows the resulting f̃(k, `) functions for ` = 1, . . . , 14. Next, we assume that liver arrivals in

each OPO follow a Poisson process such that the probability that there is a liver offer in this

OPO during an arbitrary day is given by α, where α is estimated using data obtained from

UNOS [157]. Lastly, let γ(·) be the organ quality distribution of an arriving liver, which we

obtain from the simulation by counting the number of liver offers of each quality. Then,

L{`|k} = α · γ(`) · f̃(k, `) for all ` 6= L + 1, k ∈ Ψ, and

L{L + 1|k} = 1−
∑
`∈Φ

L{`|k} for all k ∈ Ψ.

Even within an OPO, the number of rank states can be as large as a few thousand for

OPOs serving large populations, which may yield computationally intractable problems. For

this reason, for each OPO, we aggregate the rank states into 30 new rank states, which is

found to be computationally tractable for the numerical study presented in Section 3.4.2,

using the original f(k) estimates in the following manner. Given a number of original rank

states, we start from rank 1 and consolidate the first j ranks, where j is the maximum

number of ranks such that the difference between the average function value over these j
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Figure 3.1: Liver offer probabilities as a function of rank given there is an offer for OPO ‘A’

Figure 3.2: Liver offer probabilities as a function of rank given there is an offer of some

quality for OPO ‘A’

47



Figure 3.3: Aggregated rank information for OPO ‘A’

states and the function value at the (j + 1)st state (e.g., (1/j)
∑j

i=1 f(i)− f(j + 1)) is larger

than some predetermined threshold. The threshold is found by line search so as to guarantee

30 final rank states. We then repeat this process starting from the (j + 1)st rank and so

on. Figure 3.3 depicts the approximation generated by this aggregation scheme for a typical

OPO. Note that this OPO originally has 615 rank states. The first 7 original rank states

remain unaggregated, the next 2 form rank 8 and so on.

To estimate the corresponding 30 × 30 K matrix for each OPO, we count the number

of transitions during the simulation from each rank to every rank. We then transform these

counts into transition probabilities by dividing each count by its row sum. Finally, we

average the resulting transition probabilities across replications. Across all estimates of K,

the maximum standard error of the point estimates varies between 0.1245% and 0.3682%

with an average of 0.1844% and a standard deviation of 0.0448%. Similarly, the maximum

standard error of the point estimates in L varies between 0.0684% and 0.3616% with an

average of 0.1594% and a standard deviation of 0.0709%.

Finally, we assume an annual discount rate of 0.97, which translates into a daily discount

rate (λ) of 0.999917.
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Figure 3.4: Control-limit optimal policy in all parameters for a 50-year old patient with

Hepatitis B
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Given these parameter estimates, Figure 3.4 depicts the optimal policy, which exhibits

control-limit structure in all components, for a 50-year old female patient in OPO ‘B’ with

Hepatitis B. In Figure 3.4, liver quality 15 represents the ‘no liver offer’ case. As shown in

Figure 3.4, the optimal action varies across liver quality and health as measured by MELD

score. If the patient is at the top of the list and has a MELD score of 20, then the optimal

policy prescribes ‘transplant’ for a liver of quality 1 and ‘wait’ otherwise. This is an example

of a liver-based control-limit optimal policy. Similarly, if the patient is at the top of the list

and receives a liver offer of quality 2, then the optimal policy prescribes the ‘wait’ action if

her MELD score is below 25 and the ‘transplant’ action otherwise. This is an example of a

health-based control-limit optimal policy. Figure 3.4 further shows that the optimal action

varies significantly by rank as well. The ‘Transplant’ region is smallest when the patient

is at the top of the list and gradually grows as her rank deteriorates. In other words, the

patient is more selective if she is at the top of the list and becomes less selective if her rank

decreases. For instance, when the patient’s MELD score is 20 and she is at the top of the

list, she rejects all liver offers of quality ` ≥ 2 and accepts only the highest quality liver.

However, at the same MELD score, if she is at the bottom of the list, she rejects only liver

offers of quality ` ≥ 12 and accepts all liver offers of quality ` < 12, which is an example of

a rank-based control-limit optimal policy.

We randomly generate 200 test problems using the simulation model of Shechter et al.

[132]. In all of these 200 instances, assumptions (AS1) and (AS2) are satisfied by the reward

estimates rW (h) and rT (h, l), and the conditions on L in Theorems 3.3 and 3.4 are satisfied

by the parameter estimates. However, the CCD condition on the K matrix is not always

satisfied, although violations are not large. To quantify the magnitude of the violation of

the CCD condition, we define the following metric:

ε =
∑
k′

εk′

where

εk′ =


∑

k′ max
{
0,K{k′|k} − K{k′|k + 1}

}
for k′ = 1, . . . , k − 1,∑

k′ max
{
0,K{k′|k + 1} − K{k′|k}

}
for k′ = k, k + 1, . . . .
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Intuitively εk′ measures the maximum non-negative difference in moving to a particular rank

k′ from any two successive ranks. Note that ε depends on the geographic area. Across all

the estimates of K for each of the OPOs, ε varies between 0.001838 and 0.005425 with an

average of 0.003332 and a standard deviation of 0.000806. Given the monotonicity of the

value function in k and the rank-based control-limit optimal policy in all of the 200 test

instances, we conclude that the results of Theorems 3.3 and 3.4 are fairly robust to small

violations of the CCD requirement for the K matrix. We refer the reader to Alagoz et al.

[4] for a discussion of violations on the Ĥ matrix.

3.4.2 Estimating the price of privacy

The societal price of privacy is the aggregate benefit that society would accrue if the waiting

list were made transparent. An estimate for the true price of privacy would be obtained by

comparing a system (in which every patient has partial rank information as in the current

allocation system and behaves optimally with this information) to a benchmark system (in

which every patient has full rank information and behaves optimally). Our current model

is unable to provide an exact value for the societal price of privacy since if the waiting list

were to become transparent, the organ offer probabilities would change substantially as the

allocation system moved to a new equilibrium, thus making precise parameter estimation

using existing data impossible. Rather, due to difficulties in identifying an equilibrium in

either of these systems, we focus on a special case where only one patient, who is provided

the waiting list information, is considered. As a result, the quantities we provide can be

viewed as estimates for the true values. We define the patient’s price of privacy (PPoP)

as the number of life days gained when she acts optimally based on full knowledge of the

waiting list, as opposed to her optimal actions under the current allocation rules.

We provide an estimate of the PPoP by comparing the explicit waiting list model

(EWLM) of Section 3.1 to the implicit waiting list model (IWLM) of Alagoz et al. [6].

More specifically, let πa be an optimal IWLM policy and πE be an optimal EWLM policy

for the same patient. For any given h ∈ Ω and ` ∈ Φ, define

πI(h, `, k) = πa(h, `) for all k ∈ Ψ.
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This policy πI may be viewed as the projection of the optimal IWLM policy onto the EWLM

state space. Intuitively, if the patient does not have any rank information and solves IWLM,

then her optimal actions as prescribed by this model should be same for each (h, `) pair

regardless of her rank, k. Let the benefit of using policy πE over policy πI in state (h, `, k) ∈

S ′ be given by:

vπE(h, `, k)− vπI (h, `, k),

where vπE(h, `, k) and vπI (h, `, k), respectively, is the total expected discounted reward for

state (h, `, k) associated with policy πE and πI .

Proposition 3.5 establishes that the benefit of using policy πE over policy πI is nonneg-

ative in every state, which implies that an optimal policy recommended by IWLM may not

provide the true optimal policy for the EWLM. The proof is obvious and omitted.

Proposition 3.5. b(h, `, k) ≥ 0 for all h ∈ Ω, ` ∈ Φ and k ∈ Ψ.

Finally, let b be a probability distribution over the rank states Ψ. This probability

distribution b is interpreted as the patient’s probabilistic belief about her possible ranks (i.e.,

the ith component of the vector b, bi, indicates the probability that the patient believes her

rank is i). We estimate patient-specific b vector as a function of patient’s OPO and listing

MELD score using the simulation model of Shechter et al. [132].

We provide an estimate of a patient’s price of privacy ratio (i.e., the ratio of the patient’s

price of privacy to her optimal reward under the current allocation rules) using the following

formula

ρ =

∑
k∈Ψ bk ·

[
vπE(h̃, L + 1, k)− vπE(h̃, L + 1, k)

]
∑

k∈Ψ bk · vπI (h̃, L + 1, k)
, (3.22)

where h̃ is the patient’s health at the time of her registration to the waiting list. This metric

measures the improvement associated with using the optimal EWLM policy over the optimal

IWLM policy as a fraction of the optimal value of being in state (h̃, L + 1, k) and takes a

weighted sum of the improvements over all rank states k ∈ Ψ with weights being bk. We

choose state (h̃, L + 1, k) because a patient rarely receives a liver offer on the day she joins

the list. The quantity given by equation (3.22) provides an estimate of the true PPoP ratio

partly because of the fact that IWLM does not model the partial information availability in

the current liver allocation system. Also note that Sandıkçı et al. [124] uses a special case
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of the formula provided in equation (3.22), where they set bK = 1 and bk = 0 for k 6= K (K

being the last possible rank).

Consider, for example, the patient whose optimal policy is depicted in Figure 3.4. The

estimate of her price of privacy ratio, as computed using equation (3.22), is 9.11%, which

corresponds to 146.5 additional expected life days. Figure 3.5 adds the projected optimal

IWLM policy to Figure 3.4 for the same patient. First note that, by construction, the optimal

action of this projected policy does not vary across rank states. Furthermore, although the

trends are same, the control limits h∗ and `∗ of the projected policy do not always coincide

with those of the optimal EWLM policy. In other words, `∗ is nondecreasing in h for fixed

k in both policies, however they do not always coincide. Similar observations apply for h∗.

We compute the estimate ρ for the true PPoP ratio for each of the 200 patients we have

generated. Figure 3.6 presents a histogram of the ρ values for all 200 patients. The ρ values

range between 0.31% and 15.57%, with a median value of 4.59%, an average value of 5.22%,

and a standard deviation of 3.82%.

Table 3.2 presents the descriptive statistics associated with the estimated PPoP ratios

for the sampled patients in different disease groups; Table 3.3 presents these statistics by

age range; and Table 3.4 presents these statistics by geographic area. We observe that the

mean ρ values for patients in disease groups 1 and 4 and for those in disease groups 2 and 3

are close to each other. However, the mean ρ for patients in disease groups 1 and 4 is more

than 25% higher compared to that for patients in disease groups 2 and 3. Patients in disease

groups 1 and 4 have the best post-transplant survival (e.g., 10-year survival is approximately

75%), whereas patients in disease groups 2 and 3 have much poorer post-transplant survival

(e.g., 10-year survival is approximately 60%). Therefore, it appears that the price of privacy

ratio declines as the benefit of transplantation declines.

The mean ρ for patients younger than 20 and older than 70 is about 40% less than that

for patients in the remaining age groups. Although we do not observe any major difference

in the mean ρ values for patients in the remaining age groups, the results indicate a general

decrease in the price of privacy ratio as age increases. Because elderly patients have shorter

post-transplant survival, this observation further supports the hypothesis that a patient’s

price of privacy ratio decreases with decreased post-transplant survival.
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Figure 3.5: Comparison of EWLM and IWLM optimal policies
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Figure 3.6: Histogram of the estimate for patient’s price of privacy ratio for 200 patients

generated from simulation

As seen in Table 3.4, Regions 6-11 serve significantly larger populations than those served

by regions 1-5. The mean ρ for patients registered in OPOs serving larger populations is

observed to be about 3.5 times the mean ρ for patients registered in OPOs serving smaller

populations. This result is intuitive, because as the size of population served in a geographic

area increases the liver offer probability differs significantly across ranks.

Finally, we also perform sensitivity analysis on ρ to understand the effect of the number

of states used in our computations. Specifically, we picked 3 levels for the number of health

states (H = 4, 9, 18), 2 levels for the number of liver qualities (L = 4, 14), and 3 levels

for the number of rank states (K = 10, 12, 30). Table 3.5 summarizes the results of this

analysis. As expected, we observe a slightly decreasing trend in average ρ values as we

aggregate more rank states in our model. For instance, when H = 4 and L = 4 average ρ

decreases from 5.21% at K = 30 to 4.32% at K = 12 and further down to 4.08% at K = 10.

Similarly, simultaneously increasing H and L while keeping K constant also tends to increase

the average ρ values.
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Table 3.2: Descriptive statistics for estimated PPoP ratio (ρ) by disease group

Disease group # of patients Min Max Median Mean Standard deviation

1 81 0.31% 15.01% 4.82% 5.61% 4.34%

2 71 0.47 11.53 4.35 4.79 2.96

3 22 0.75 10.36 2.88 3.85 2.82

4 26 0.60 15.57 6.34 6.36 4.55

ALL 200 0.31 15.57 4.59 5.22 3.82

Disease group 1 includes primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver

disease, and autoimmune disorders; disease group 2 includes Hepatitis B and C viruses; disease

group 3 patients have acute liver failure; and disease group 4 patients have metabolic disorders

(e.g., glycogen storage disease types I and II, and Gaucher’s disease.)

Table 3.3: Descriptive statistics for estimated PPoP ratio (ρ) by age group

Age group # of patients Min Max Median Mean Standard deviation

Age < 20 5 1.27% 5.38% 2.05% 2.66% 1.73%

20 ≤ Age < 30 8 1.09 11.78 4.46 5.27 4.06

30 ≤ Age < 40 34 0.31 15.57 4.95 5.78 4.09

40 ≤ Age < 50 54 0.73 14.56 6.02 5.96 3.32

50 ≤ Age < 60 56 0.35 14.50 3.92 4.76 4.09

60 ≤ Age < 70 39 0.40 15.01 4.18 4.84 4.01

Age ≥ 70 4 1.43 6.04 3.83 3.78 2.08

ALL 200 0.31 15.57 4.59 5.22 3.82
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Table 3.4: Descriptive statistics for estimated PPoP ratio (ρ) by geographic area

Region ID # of patients Min Max Median Mean Standard deviation

1 2 0.47% 0.60% 0.53% 0.53% 0.10%

2 6 0.64 2.91 0.88 1.18 0.86

3 8 0.40 2.34 1.33 1.28 0.70

4 7 0.44 3.70 1.47 1.84 1.18

5 6 0.31 5.40 2.25 2.55 2.15

6 20 0.72 7.68 3.09 3.11 1.96

7 25 1.41 9.18 4.18 4.66 2.26

8 28 0.55 15.01 5.77 5.18 3.76

9 34 0.54 15.57 5.01 6.33 5.30

10 15 1.76 10.66 5.51 6.71 2.89

11 49 0.59 12.14 8.35 7.32 3.12

ALL 200 0.31 15.57 4.59 5.22 3.82

Table 3.5: Effect of Number of states on ρ estimates

H L K Median Average Standard deviation

4 4 10 2.64% 4.08% 3.99%

4 4 12 2.88 4.32 4.08

4 4 30 4.04 5.21 4.54

9 4 10 2.68 3.89 3.78

9 4 12 3.03 4.12 3.87

9 4 30 4.12 4.97 4.29

18 14 10 2.92 5.25 5.57

18 14 12 3.13 5.41 5.58

18 14 30 4.19 6.08 5.77
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3.5 CONCLUSION

We develop an MDP model to optimize the accept/reject decision faced by ESLD patients.

This model explicitly considers waiting list effects by augmenting the state space of the

implicit waiting list model studied by [6]. We derive conditions under which the optimal value

function is monotone in each dimension of the state space, namely, health, liver quality, and

rank, and conditions under which control-limit optimal policies exist for each dimension. In

establishing these results, we define a new class of stochastic matrices, termed CCD matrices,

and explore its relationship to well known classes of matrices (i.e., IFR and TP2 matrices).

Computational experiments parameterized by clinical data reveal that complete knowledge

of the composition of the waiting list significantly affects the optimal policy. In particular,

a patient is much more selective if she knows that she is near the top of the waiting list and

becomes gradually less selective as her position deteriorates.

We solve our explicit waiting list model for 200 randomly generated patients. Although

the conditions of Theorems 3.3 (monotonicity in rank) and 3.5 (monotonicity in health) are

not always satisfied, in all 200 cases the value function is monotone in each component of

the model (i.e., h, `, and k.) This result suggests that the monotonicity of the value function

is robust to small violations of the CCD condition on the rank transition probability matrix,

as well as the IFR condition on the augmented health transition probability matrix. In all

of our computational experiments, the conditions of Theorem 3.2 hold, and therefore we

find the optimal policy to be of liver-based control-limit type. Although the CCD condition

of Theorem 3.4 is not always satisfied, the magnitudes of the violations are not significant,

and, as a result, the optimal policy always has a rank-based control limit in our experiments.

However, for some patients, the optimal policy does not have a health-based control limit.

As noted by [6], as the patient deteriorates, the rate of increase in the probability of receiving

higher quality liver offers may be sufficiently high so that she rejects low-quality livers that

she would have accepted in better health in anticipation of higher-quality liver offers.

We use our explicit waiting list model to estimate a patient’s price of privacy, which is

incurred due to suboptimal decision making from a lack of complete waiting list information.

By comparing the results of our model to those of the implicit waiting list model of [6],
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we provide a quantitative estimate for a patient’s price of privacy. Our computational

experiments reveal that this quantity varies significantly by the particular etiology of ESLD.

Indeed, although the majority of the patients would realize a less than 6% increase in total

expected remaining lifetime by having complete information about the waiting list, there

are patients in our study who realize improvements as high as 15%. In particular, patients

diagnosed with diseases that yield shorter post-transplant survivals tend to have a smaller

price of privacy ratio. Similarly, the price of privacy ratio tends to be smaller for older

patients, who typically have shorter post-transplant survivals. Furthermore, our results

indicate that patients registered in OPOs serving larger populations experience a higher

price of privacy ratio. Finally, we have numerically confirmed, by solving different state

aggregations, that the values we find may be underestimating the true price of privacy

bound.

It is conceivable that patients registered at transplant centers that have a large market

share in a geographic location may know (through their physicians) more than the revealed

coarse descriptions about the waiting list. They may even be able to identify the precise

ranks of the patients registered in the same location. The price of privacy for patients listed

in such centers may be significantly smaller than what is suggested by our numerical study.

We emphasize that the estimate we provide for a patient’s price of privacy can be further

refined by incorporating the partially observable nature of the waiting list under the current

liver allocation system. In Chapter 4, we model this partial information availability and

compare it with EWLM to obtain better estimates of the price of privacy.

Throughout this chapter, we have suppressed the competition among patients when mak-

ing their own decisions. However, a more realistic model should incorporate this competition

and characterize the emerging equilibrium. This is an extremely challenging task as complete

equilibrium analysis would require analyzing an asymmetric stochastic game with thousands

of players each with non-zero-sum rewards. Unfortunately, describing all the equilibria of

such a large-scale asymmetric stochastic game is well beyond the current state of the art. The

three most important questions to be answered in stochastic games are existence, unique-

ness, and computation of equilibrium. It can be shown that an equilibrium does exist, since

every finite (i.e., finite state space and finitely many players with finite action space for

59



each player) discounted stochastic game has an equilibrium among the stationary strategies

[143]. However, proving the uniqueness and computation of equilibria are more difficult. It

is well known that there is a vast number equilibria for many normal-form games [95] and

for stochastic games as well [64]. Even the extremely simplifying assumption of symmetry

does not exclude the existence of other equilibria [55, 146].

Current literature that analyze competitive equilibrium makes such unrealistic assump-

tions (e.g., homogeneous patient population assumption in [146]). A methodologically similar

paper to [146] is Altman and Shimkin [11], which analyzes the competitive equilibrium in

a processor sharing system. They explicitly note the following: “In the sequel we shall take

special interest in equilibrium policies that are symmetric, namely the decision rules of all

customers are identical. Such policies are natural here, since the specifications of all cus-

tomers are the same, and they all face the same decision problem.” However, acknowledging

the well documented heterogeneity of the patients in liver transplantation yields intractable

asymmetric game. Analysis of such a large-scale game-theoretic model is left for future

research.
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4.0 PARTIALLY OBSERVABLE WAITING LIST MODEL

In computing our estimate for a patient’s price of privacy in Chapter 3, we compared the

value associated with the optimal policy of the EWLM to the value associated with the

optimal policy of the IWLM. However, the IWLM does not use all the information available

to the patient under the current liver allocation system. Replacing the IWLM with a model

that better represents the available information in the current system would provide a better

estimate for a patient’s price of privacy. A natural formulation using this information, which

only provides partial knowledge about the waiting list, is a partially observable Markov

decision process (POMDP) model.

Our goal in this chapter is to first develop and analyze a partially observable waiting list

model (POWLM) for the purpose of optimizing the accept/reject decisions of an end-stage

liver disease patient. Secondly, we want to use this model in conjunction with the explicit

waiting list model of Chapter 3 to provide better estimates of the patient’s price of privacy.

The remainder of this chapter is organized as follows. In Section 4.1, we review the

information that is available under the current system. In Section 4.2, we present the details

of the partially observable waiting list model. We derive structural results for this model in

Section 4.3, which is followed by computational study in Section 4.4. Finally, we summarize

our results and draw some conclusions in Section 4.5.

4.1 WHAT IS PARTIALLY OBSERVED IN THE CURRENT SYSTEM?

The current UNOS liver allocation system allows patients to retrieve partial information

about the liver transplant waiting list through UNOS’s website [106]. This information may
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Table 4.1: Snapshot of the liver waiting list for the OPO serving Pittsburgh [106]

Disease severity Number of registrations

MELD ≤ 10 152

11 ≤ MELD < 19 157

19 ≤ MELD < 25 45

MELD ≥ 25 33

ALL 387

help each patient to have better estimates of their respective ranks in the waiting list than

the one assumed in the IWLM.

As an example, Table 4.1 presents a recent (condensed) snapshot of the liver transplant

waiting list for the OPO labeled PATF-OP1, which serves the greater Pittsburgh area.

Assuming a liver has been harvested from this OPO at the time of this snapshot (or shortly

after during which the snapshot characteristics did not change), it is possible to determine a

range of possible ranks for any patient. For instance, if the patient has a MELD score of 30,

then she can be no lower than 33rd on the prioritized waiting list. If, on the other hand, the

patient’s MELD score is 18, then her rank could be as high as 78 or as low as 235. However,

the patient cannot precisely pinpoint her rank within the given ranges.

Since blood type and waiting time are also part of the UNOS prioritization algorithm as

described in Chapter 1, it is tempting to conclude that these pieces of information, which

are also observable through UNOS’s website, would enable the patient to better assess her

rank. However, this conjecture is not true in general. Such blood type and waiting time

information may only be useful if the patient’s MELD score is equal to one of the end points

of a MELD partition. Table 4.2 provides an expanded version of the waiting list snapshot

given in Table 4.1. If, for instance, the patient’s MELD score is 30 (or anything strictly

between 25 and 40), then blood type and waiting time information provided in Table 4.2

would not add anything to her knowledge about her rank (i.e., all she knows is she is no

lower than 33rd on the prioritized waiting list). If, however, her MELD score is 40 (the
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Table 4.2: Expanded snapshot of the liver waiting list for the OPO serving Pittsburgh [106]

MELD ABO
Days waited

< 30 30-89 90-179 180-364 365-729 730-1094 1095-1824 ≥ 1825 ALL

≤ 10

O 1 4 3 11 17 11 8 14 69
A 3 5 8 6 16 9 11 10 68
B - - - 1 3 3 1 3 11

AB - - 2 - 1 1 - - 4
ALL 4 9 13 18 37 24 20 27 152

11− 18

O 4 9 10 8 18 10 13 7 79
A 4 8 9 13 15 9 4 4 66
B - 3 1 4 2 - - 1 11

AB - 1 - - - - - - 1
ALL 8 21 20 25 35 19 17 12 157

19− 24

O 3 4 4 3 2 1 4 1 22
A 5 3 3 1 1 3 1 - 17
B - 2 1 1 - - - - 4

AB 2 - - - - - - - 2
ALL 10 9 8 5 3 4 5 1 45

≥ 25

O 1 3 3 7 4 1 - - 19
A - 1 1 3 - 1 2 - 8
B - 1 - 1 1 - - - 3

AB - - - 3 - - - - 3
ALL 1 5 4 14 5 2 2 - 33
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upper end point of the last MELD partition) and she knows that her blood type (say, type

A) is identical to the donated liver (which is revealed when the liver is offered), then this

information along with the waiting time information may help the patient narrow her rank

knowledge. If, say, this patient has been waiting for about 10 months on the waiting list,

then she can narrow her rank down to top 6 (3 + 1 + 2) on the prioritized waiting list. Our

model described in Section 4.2 is general enough to handle such observations. However, we

will restrict our observations to only patient’s health status as measured by her MELD score

in our computational study.

In addition to the information provided on UNOS’s website, patients can also attain

partial information about their waiting list rank by other means including the history of

offers they have received and the information they may obtain through their physicians. For

instance, not receiving any liver offers for a certain period may indicate that patient’s rank

is low. Furthermore, based on their expert opinion and knowledge of the characteristics of

other patients in their transplant center, some physicians may be able to guess more precise

estimates about their patient’s possible ranks. Our model described in Section 4.2 is also

general enough to capture such information. However, since these information are subjective

and hard to obtain, we will restrict ourselves to the information published on UNOS’s website

in our computational study.

4.2 PARTIALLY OBSERVED MARKOV DECISION PROCESS MODEL

In this section, we formulate a discrete-time partially observed Markov decision process

model that exploits the partially observable rank information in optimizing the accept/reject

decision problem faced by an end-stage liver disease patient.

The set of core states, S, of our POMDP is the same as the set of states in the EWLM

given in Section 3.1. Furthermore, the POMDP model also uses the same action sets, As

for s ∈ S, rewards, r(s, a) for s ∈ S, a ∈ As, and state transition probabilities, P{s′|s, a} for

s, s′ ∈ S, a ∈ As, as in the EWLM. For notational convenience, let A =
⋃

s∈S As.
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As for the observations, we assume that a patient can completely observe her health

and the quality of the offered liver, but she may not directly know her rank. (Note that

this assumption is not restrictive as our structural results would be valid if we allow health

and liver states to be partially observed as well.) However, she can obtain probabilistic

information about her rank through UNOS’s website. Therefore, the best a patient can do

is to observe a signal z that gives a probabilistic information about the actual state s. We

define the set of possible observations as

Z = Z ′ ∪ {∆} ∪ {∇},

where ∆ and ∇, respectively, represent the dead and transplanted states, and

Z ′ = {(h, `, y)|h ∈ Ω, ` ∈ Φ, y ∈ Υ},

where Ω and Φ are, respectively, the sets of completely observable health and liver states as

defined in Section 3.1, and Υ = {Y1, Y2, . . . , Yp} is the observation set associated with the

partially observable rank state, where p is the number of observations one could realize at

any point in time.

The special structure of the current system, as discussed in Section 4.1, dictates that

an observation Yi (i = 1, . . . p) is a range of rank states induced by Ωi, which denotes the

set of health states included in partition i. More formally, (i) Yi ⊆ Ψ for i = 1, . . . , p; (ii)

Yi ∩ Yj = ∅ for any i 6= j, and (iii) ∪iYi = Ψ, where Ψ is the set of rank states as defined

in Section 3.1. For instance, considering the waiting list in Table 4.1, Ω1 = {6, . . . , 10} ⇒

Y1 = {236, . . . , 387}, Ω2 = {11, . . . , 18} ⇒ Y2 = {79, . . . , 235}, Ω2 = {19, . . . , 24} ⇒ Y3 =

{34, . . . , 78}, and Ω4 = {25, . . . , 40} ⇒ Y4 = {1, . . . , 33}. Furthermore, a patient observes Yi

if and only if her health h is in partition Ωi (i.e., P{y = Yi} = 1 ⇔ h ∈ Ωi for i = 1, . . . , p.)

We define the observation probabilities (i.e, the probability of observing z′ when the core

state is s′ at time t + 1 and action a was taken at time t), denoted O{·}, as follows. When

the transplant action was taken, we observe ∇ with probability one (i.e., O{∇|∇, T} = 1).

When the wait action was taken and the patient dies in the next period, ∆ is observed with
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probability one (i.e., O{∆|∆, W} = 1). When the wait action was taken and the patient

survives the next time period, the observation probabilities for each (h, `) are defined as:

O{Yi|k,W} =

 1 if h ∈ Ωi, k ∈ Yi,

0 otherwise
for i = 1, . . . , p.

It is clear that all the parameters associated with the observations (i.e., Yi, Υ, and O{·})

are actually non-stationary, because the liver transplant waiting list is dynamic over time.

That is, from this time point to the next, new patients may be registered to the list, existing

patients may move out of the list due to death or being transplanted or other medical

complications, and the disease severity of the existing patients may change. Therefore, the

size of the waiting list and, more importantly, the sets Yi (i = 1, . . . , p) will change over time,

which implies that the observation probabilities will also change over time.

The non-stationary observation parameters would not add any complication to our con-

ceptual model, however, for the sake of notational clarity, we do not attach a time index

to Yi, Υ, or O{·}. Furthermore, in our computational study, for the purposes of numeri-

cal tractability, we will assume a stationary process and use time-homogeneous observation

probabilities, which we compute as a long-run time average of the realized observation prob-

abilities. More details about this estimation are provided in Section 4.4.1.

Our modeling framework is also flexible enough to allow varying number of observations

over time, however, again for notational convenience, we do not attach a time index to p.

In our computational study, we interpret p as the number of partitions across MELD scores

and we assume it to be fixed over time, which exactly represents the current UNOS liver

allocation system. Furthermore, we will take p = 4 in our computational study, since the

current system reveals the waiting list information by aggregating the MELD scores into 4

partitions.

In summary, the system is actually occupying the core state (h, `, k), ∆, or ∇, but the

patient only observes (h, `, y), ∆, or ∇, where y represents the ranges of ranks she could

possibly occupy.

Finally, note that in this representation, we are restricting our observations to the in-

formation retrieved through UNOS’s website. Any other information, such as physician’s
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informed opinion about the patient’s possible ranks, can be handled by virtually no change

in our model.

4.2.1 Belief states

We have noted in Section 2.2 that any POMDP model can be transformed into an equivalent

(completely observed) MDP with an enlarged state space (i.e., the space of probability

distributions over the core states), which is known as the belief space. Any element of the

belief space is referred to as a belief state.

Recall that the state space of our model is a mix of completely and partially observable

states: the perfectly observable components of our state space are patient’s health and liver

quality whereas the partially observable component is patient’s rank. It is actually not

obvious what the appropriate belief vector definition would be under such a hybrid state

space: should it be a probability distribution over the entire state space, S, or only over the

partially observable component, Ψ, of the state space? To answer this question, we will start

with a belief vector definition over the entire state space and show that all the information

available in this belief state can be summarized in a smaller belief state defined over only

the partially observable components of the state space.

To start with, let η be a belief state defined over the entire state space S. First note

that η must satisfy the following: given h ∈ Ω, ` ∈ Φ, if η(h,`,k) > 0 for some k ∈ Ψ,

then η(h′,·,·) = 0 for all h′ 6= h and η(·,`′,·) = 0 for all `′ 6= `. This statement says that a

legitimate belief state cannot assign positive probabilities to two different states which differ

in perfectly observable components. This observation actually provides the first hint as to

the sufficiency of a belief state defined only on the partially observable portion of the hybrid

space S.

We are now interested in updating this belief state using Bayes’ rule. We have noted

in Section 2.2 that the updated belief state is a function of the current belief state, the

action taken during this decision epoch, and the observation received at the beginning of

the next decision epoch. Let a be the action taken during this decision epoch and z′ be the

observation received at the beginning of the next decision epoch.
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If a = T , then z′ = ∇ with probability 1 and the updated belief state η′ is given by

η′s =

 1 if s = ∇,

0 if otherwise.

If, on the other hand, a = W and z′ = ∆, then the updated belief state η′ is given by

η′s =

 1 if s = ∆,

0 if otherwise.

Finally, if a = W and z′ = (h̃, ˜̀, ỹ), then the updated belief state η′ is given by

η′s =

 P{h̃, ˜̀, k̃|η, a, z′} if s = (h̃, ˜̀, k̃),

0 if otherwise,
for k̃ ∈ Ψ,

where P{h̃, ˜̀, k̃|η, a, z′} is the probability of being in state (h̃, ˜̀, k̃) given that the current

belief is η, action a = W is taken, and observation z′ = (h̃, ˜̀, ỹ) is received. This expression

shows that, if we have observed (h̃, ˜̀) at the beginning of the new decision epoch, the updated

belief state η′ will distribute all its mass across states (h, `, k) such that h = h̃ and ` = ˜̀.

Therefore, it would be sufficient to define a belief state over only the partially observable

component k ∈ Ψ.

Let (ĥ, ˆ̀) = {(h, `)|h ∈ Ω, ` ∈ Φ, η(h,`,k) > 0 for at least one k ∈ Ψ} (i.e., ĥ and ˆ̀,

respectively, records the perfectly observable health and liver state for which the current

belief state assigns a positive probability.)

Also let π be a K × 1 vector, where the kth component holds the probability of being

in rank state k ∈ Ψ. That is, we have just introduced the belief state that is defined only

over the partially observable rank states, which we will use frequently after this point. For

any given (ĥ, ˆ̀), define πk = η(ĥ,ˆ̀,k) for k ∈ Ψ.
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Consider P{h̃, ˜̀, k̃|η, a, z′}. Since a = W for this probability, we will drop it from our

derivations for notational clarity. Substituting z′ = (h̃, ˜̀, ỹ) and using the definition of

conditional probability twice we obtain

P{h̃, ˜̀, k̃|η, a, z′} =
P{k̃, η, h̃, ˜̀, ỹ}
P{h̃, ˜̀, ỹ, η}

=
P{ỹ|η, h̃, ˜̀, k̃} · P{h̃, ˜̀, k̃,η}

P{h̃, ˜̀, ỹ, η}

=
P{ỹ|η, h̃, ˜̀, k̃} · P{h̃, ˜̀, k̃|η}

P{h̃, ˜̀, ỹ|η}
, (4.1)

where we have used the identity P{h̃,˜̀,k̃,η}
P{h̃,˜̀,ỹ,η} = P{h̃,˜̀,k̃|η}

P{h̃,˜̀,ỹ|η} in writing equation (4.1). Noting that

P{ỹ|η, h̃, ˜̀, k̃} = O{ỹ|k̃} since the probability of observing ỹ is only dependent on the rank

state and conditioning on (h, `, k) to find P{h̃, ˜̀, k̃|η}, we can re-write equation (4.1) as

P{h̃, ˜̀, k̃|η, a, z′} =
O{ỹ|k̃} ·

∑
h

∑
`

∑
k P{h̃, ˜̀, k̃|η, h, `, k}P{h, `, k, |η}
P{h̃, ˜̀, ỹ|η}

. (4.2)

We can replace P{h̃, ˜̀, k̃|η, h, `, k} in the numerator of the right-hand side of equation

(4.2) with P{h̃, ˜̀, k̃|h, `, k}, because we are given that the current state is (h, `, k) and hence

the probability distribution η over these states becomes redundant. Furthermore, since

P{h, `, ·|η} = η(h,`,·) = 0 when h 6= ĥ or ` 6= ˆ̀, we can simplify equation (4.2) as

P{h̃, ˜̀, k̃|η, a, z′} =
O{ỹ|k̃} ·

∑
k P{h̃, ˜̀, k̃|ĥ, ˆ̀, k} · η(ĥ,ˆ̀,k)

P{h̃, ˜̀, ỹ|η}
. (4.3)

Conditioning on (h, `, k) for the current state and on (h′, `′, k′) for the state in the next

decision epoch, we can write the term in the denominator of equation (4.3) as

P{h̃, ˜̀, ỹ|η} =
∑
h′

∑
`′

∑
k′

∑
h

∑
`

∑
k

P{h̃, ˜̀, ỹ|η, h, `, k, h′, `′, k′}P{h, `, k, h′, `′, k′|η}

=
∑
h′

∑
`′

∑
k′

∑
h

∑
`

∑
k

P{h̃, ˜̀, ỹ|h′, `′, k′}P{h, `, k, h′, `′, k′|η} (4.4)

=
∑
k′

∑
h

∑
`

∑
k

P{h̃, ˜̀, ỹ|h̃, ˜̀, k′}P{h, `, k, h̃, ˜̀, k′|η} (4.5)

=
∑
k′

∑
h

∑
`

∑
k

O{ỹ|k′}P{h, `, k, h̃, ˜̀, k′|η} (4.6)

=
∑
k′

∑
h

∑
`

∑
k

O{ỹ|k′}P{h̃, ˜̀, k′|h, `, k,η}P{h, `, k|η} (4.7)

=
∑
k′

O{ỹ|k′} ·
∑

k

P{h̃, ˜̀, k′|h, `, k} · η(ĥ,ˆ̀,k) (4.8)
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Equation (4.4) follows since P{h̃, ˜̀, ỹ|η, h, `, k, h′, `′, k′} = P{h̃, ˜̀, ỹ|h′, `′, k′}; equation (4.5)

follows from the fact that P{h̃, ˜̀, ỹ|h′, `′, k′} = 0 when h′ 6= h̃ or `′ 6= ˜̀; equation (4.6)

follows since the probability of observing ỹ is only dependent on the rank states; equation

(4.7) follows since P{h, `, k, h̃, ˜̀, k′|η} = P{h̃, ˜̀, k′|h, `, k,η}P{h, `, k|η}; and equation (4.8)

follows from the fact that P{h, `, k|η} = η(h,`,k) = 0 when h 6= ĥ or ` 6= ˆ̀.

Substituting equation (4.8) back into equation (4.3), we obtain our main formula for

updating a given belief state η:

η′
(h̃,˜̀,k̃)

= P{h̃, ˜̀, k̃|η, a, z′} =
O{ỹ|k̃} ·

∑
k P{h̃, ˜̀, k̃|ĥ, ˆ̀, k} · η(ĥ,ˆ̀,k)∑

k′ O{ỹ|k′} ·
∑

k P{h̃, ˜̀, k′|h, `, k} · η(ĥ,ˆ̀,k)

. (4.9)

where ĥ and ˆ̀ are, respectively, the health and liver states for which the current belief state

η assigns positive probabilities.

We can re-write the belief state updating formula (4.9) for belief vector π, which is

defined over the partially observed rank states only:

π′
k̃

=
O{ỹ|k̃} ·

∑
k P{h̃, ˜̀, k̃|ĥ, ˆ̀, k} · πk∑

k′ O{ỹ|k′} ·
∑

k P{h̃, ˜̀, k′|ĥ, ˆ̀, k} · πk

. (4.10)

As a final step, we can further simplify the belief state updating formula given in equa-

tion (4.10) using the special structure of our core state transition probabilities. Using

P{h̃, ˜̀, k̃|ĥ, ˆ̀, k} = H{h′|h} · K{k′|k} · L{˜̀|k′} in (4.10), we obtain

π′
k̃

=
O{ỹ|k̃} · L{˜̀|k̃} ·

∑
kK{k̃|k} · πk∑

k′ O{ỹ|k′} · L{˜̀|k′} ·
∑

kK{k′|k} · πk

. (4.11)

where we have assumed H{h̃|ĥ} 6= 0 in obtaining equation (4.11). This assumption is needed

for π′ to be well defined. In other words, if H{h̃|ĥ} = 0, then π′
k̃

= 0
0
. We should further

note that this assumption makes perfect intuitive sense and is not restrictive. To explain

this, assume the system is in state (h, `, k) and the decision maker chooses action a while

in this state. As a result of this action, assume the decision maker observed (h̃, ˜̀, ỹ) at

the beginning of the next decision epoch. If this is the case, then there must be a nonzero

transition probability from h to h̃ since health component of the state space is perfectly

observable, otherwise the decision maker should not have have observed h̃.
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We should also note that equation (4.11) reveals that the decision maker actually receives

two pieces of information regarding her rank at every decision epoch: (i) the partition ỹ,

and (ii) the liver offered ˜̀. If, for instance, there were no organ offers today, that would

suggest that the patient’s rank is lower than what it would be if there was an organ offer.

We perform a single Bayesian update based on both pieces of information.

4.2.2 Optimality equations

The optimal solution to this problem can be obtained by solving the Bellman optimality

equations. We will start writing these equations for the larger belief vectors η and derive

the equivalent optimality equations for the smaller belief vectors π, which we will use in our

computational study.

We first start with the definition of a probability simplex.

Definition 4.1. Given a set X with n elements, the n-dimensional probability simplex defined

over X, denoted Π(X), is the set of all probability mass functions on X, i.e,

Π(X) =

{
π ∈ Rn :

n∑
i=1

πi = 1, πi ≥ 0 ∀i

}
.

Let λ ∈ [0, 1] be the discount rate. Substituting the parameters of our partially observable

waiting list model into the generic optimality equation (2.8), we find for η ∈ Π(S)

v(η)

= max

{ ∑
(h,`,k)∈S

η(h,`,k)rT (h, `);
∑

(h,`,k)∈S

η(h,`,k)rW (h) +

λ ·
∑

(h,`,k)∈S

∑
(h′,`′,k′)∈S

∑
(h̃,˜̀,ỹ)∈Z

η(h,`,k)P{(h′, `′, k′)|(h, `, k)}P{(h̃, ˜̀, ỹ)|(h′, `′, k′)} · v(η′)

}

= max

{
rT (ĥ, ˆ̀); rW (ĥ) +

λ ·
∑
k∈Ψ

∑
(h′,`′,k′)∈S

∑
(h̃,˜̀,ỹ)∈Z

η(ĥ,ˆ̀,k)P{(h
′, `′, k′)|(ĥ, ˆ̀, k)}P{(h̃, ˜̀, ỹ)|(h′, `′, k′)} · v(η′)

}
(4.12)
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= max

{
rT (ĥ, ˆ̀); rW (ĥ) +

λ ·
∑
k∈Ψ

∑
(h′,`′,k′)∈S

∑
ỹ∈Υ

η(ĥ,ˆ̀,k)P{(h
′, `′, k′)|(ĥ, ˆ̀, k)}O{ỹ|k′} · v(η′)

}
(4.13)

where equation (4.12) follows from the fact that η(h,`,k) = 0 when h 6= ĥ or ` 6= ˆ̀and equation

(4.13) follows since P{(h̃, ˜̀, ỹ)|(h′, `′, k′)} = 0 when h′ 6= h̃ or `′ 6= ˜̀.

The optimality equations for the smaller dimensional belief vectors π ∈ Π(Ψ) are ob-

tained by replacing η by (h, l, π):

v(h, `, π) = max
{

rT (h, `); rW (h) +

λ ·
∑

k

∑
h′

∑
`′

∑
k′

∑
y′

πk · P{(h′, `′, k′)|(h, `, k)} · O{y′|k′} · v (h′, `′, π′)
}
(4.14)

Note that, in optimality equation (4.14), the new belief vector π′ is a function of the ob-

servation (h′, `′, y′) and the current belief vector π, but this dependency is suppressed for

notational clarity.

4.3 STRUCTURAL PROPERTIES

In this section, we derive some structural properties of the model developed in Section 4.2.

The following corollaries follow directly from the results in Section 3.3 and have identical

interpretations as their analogs in Section 3.3.

Corollary 4.1. v(h, `, π) is monotonically nonincreasing in ` for any given h ∈ Ω and

π ∈ Π(Ψ).

Corollary 4.2. There exists a liver-based control-limit optimal policy for all h ∈ Ω and

π ∈ Π(Ψ).

Corollary 4.3. If Ĥ is IFR, then v(h, `, π) is monotonically nonincreasing in h for any

` ∈ Φ and π ∈ Π(Ψ).
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Corollary 4.4. If Ĥ is IFR and H and rT (h, `) satisfy the following:

H∑
h′=j

H{h′|h} ≤
H∑

h′=j

H{h′|h + 1} for j = h + 1, . . . , H, and h = 1, . . . , H, (4.15)

and for any given `

rT (h, `)− rT (h + 1, `)

rT (h, `)
≤ λ

[
H{H + 1|h + 1} −H{H + 1|h}

]
for h = 1, . . . , H − 1, (4.16)

then there exists a health-based control-limit optimal policy for all ` ∈ Φ and π ∈ Π(Ψ).

Now our goal is to prove the monotonicity of the value function in π for some fixed h ∈ Ω

and ` ∈ Φ. Since π’s do not necessarily have a natural order, we need to first find a way to

order these belief states.

We start with the definition of monotone likelihood ratio order [51, 88, 172], which is

used in comparing probability distributions, and the definition of a totally positive matrix

[82], which is frequently used in reliability theory. One limitation of the monotone-likelihood

ratio order is that it is not exhaustive (i.e., we may not be able to order all the points in a

probability simplex using this order, rather it will be only a subset of probability distributions

that can be ordered using this partial order).

Definition 4.2 (Ferguson [51]). Let X be a completely ordered finite set with n elements.

Given two vectors π1 and π2 in Π(X), π1 is greater than π2 in monotone likelihood ratio

(MLR) partial order, denoted π1 �LR π2, if

π1
i π

2
i′ ≥ π1

i′π
2
i for i ≥ i′ in X.

Definition 4.3 (Karlin [82]). A transition probability matrix P = [pij] is Totally Positive of

order 2 (TP2) if

pijpi′j′ ≥ pij′pi′j for i ≤ i′, j ≤ j′.
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Lovejoy [88] also studied the structural properties of a general POMDP model and derived

conditions under which the optimal value function is monotone with respect to MLR-ordered

belief states. He further presented conditions under which the optimal policy is monotone

for the machine replacement problem presented in White [167] and conditions under which

the optimal policy of a general POMDP problem is bounded by a monotone function. Our

results differ from his results in several aspects. First, our model consists of a hybrid state

space, whereas his model is only composed of partially observed state space. Second, the

observations as well as the liver offer probabilities in our model provides some information

to the decision maker as indicated by equation (4.11) and discussion surrounding it, whereas

the decision maker in Lovejoy’s model is only informed by the observations. As a result, in

proving monotonicity of the value function, the conditions in [88] require the entire core state

transition probability matrix to be TP2, whereas we only require the K matrix to be TP2.

We find that our conditions will be sufficient for the conditions presented in [88]. Finally,

the conditions presented in [88] for the existence of a monotone function that provides a

bound for the optimal policy are more strict than the conditions that guarantee monotone

value function, whereas we show that the same set of conditions guarantee monotonicity for

the value function and the optimal policy.

Lemma 4.1 shows that, when the rank transition probability matrix, K, is TP2, the belief

states preserve the MLR-partial order upon conditioning on the new information.

Lemma 4.1. If K is TP2, then π1 �LR π2 in Π(Ψ) implies π′(π1) �LR π′(π2).

Proof. For convenience, we reiterate the belief state updating formula (4.11) for the given

belief vectors π1 and π2 in Π(Ψ).

π′
k̃
(πi) =

P{ỹ|k̃} · L{˜̀|k̃} ·
∑

kK{k̃|k} · πi
k∑

k′ P{ỹ|k′} · L{˜̀|k′} ·
∑

kK{k′|k} · πi
k

i = 1, 2. (4.17)

If π1 �LR π2, then, by definition,

π1
j · π2

i − π1
i · π2

j ≥ 0 for j ≥ i in Ψ. (4.18)

If K is TP2, then, by definition,

K{k1|j} · K{k2|i} − K{k2|j} · K{k1|i} ≥ 0 for k1 ≥ k2, j ≥ i in Ψ. (4.19)
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Inequalities (4.18) and (4.19) together imply, for k1 ≥ k2 in Ψ,

0 ≤
K∑

i=1

K∑
j=i

[K{k1|j} · K{k2|i} − K{k2|j} · K{k1|i}]
[
π1

j · π2
i − π1

i · π2
j

]
=

K∑
i=1

K∑
j=i

K{k1|j}K{k2|i}π1
j π

2
i +

K∑
i=1

K∑
j=i

K{k2|j}K{k1|i}π1
i π

2
j

−
K∑

i=1

K∑
j=i

K{k1|j}K{k2|i}π1
i π

2
j −

K∑
i=1

K∑
j=i

K{k2|j}K{k1|i}π1
j π

2
i

=
K∑

i=1

K∑
j=i

K{k1|j}K{k2|i}π1
j π

2
i +

K∑
m=1

m∑
n=1

K{k2|m}K{k1|n}π1
nπ

2
m

−
K∑

i=1

K∑
j=i

K{k1|j}K{k2|i}π1
i π

2
j −

K∑
m=1

m∑
n=1

K{k2|m}K{k1|n}π1
mπ2

n (4.20)

=
K∑

i=1

K∑
j=1

K{k1|j}K{k2|i}π1
j π

2
i −

K∑
i=1

K∑
j=1

K{k1|j}K{k2|i}π1
i π

2
j

=

(
K∑

j=1

K{k1|j}π1
j

)(
K∑

i=1

K{k2|i}π2
i

)
−

(
K∑

j=1

K{k1|j}π2
j

)(
K∑

i=1

K{k2|i}π1
i

)
,

where we have changed the indices of the summations for the second and fourth terms in

equation (4.20) and used algebraic manipulations in the rest.

To have π′(π1) �LR π′(π2), the following must hold for k1 ≥ k2 in Ψ:[
P{ỹ|k1} · L{˜̀|k1} ·

∑
k

K{k1|k} · π1
k

]
·

[
P{ỹ|k2} · L{˜̀|k2} ·

∑
k

K{k2|k} · π2
k

]

≥

[
P{ỹ|k2} · L{˜̀|k2} ·

∑
k

K{k2|k} · π1
k

]
·

[
P{ỹ|k1} · L{˜̀|k1} ·

∑
k

K{k1|k} · π2
k

]
,

which holds if[∑
k

K{k1|k} · π1
k

]
·

[∑
k

K{k2|k} · π2
k

]
≥

[∑
k

K{k2|k} · π1
k

]
·

[∑
k

K{k1|k} · π2
k

]
. (4.21)

This completes the proof.

Before we present our main results in this section, we also need the definition of stochas-

tically ordered vectors and results associated with such vectors.
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Definition 4.4. Let X be a completely ordered finite set with n elements. Given two vectors

π1 and π2 in Π(X), π1 is stochastically greater than π2, denoted π1 �S π2, if

n∑
i=k

π1
i ≥

n∑
i=k

π2
i for k = 1, . . . , n.

An important result for stochastically ordered vectors is given in Lemma 4.2.

Lemma 4.2. If X is a countable, completely ordered set, and π1 and π2 are elements of

Π(X), then π1 �S π2 implies
∑n

i=1 π1
i fi ≤

∑n
i=1 π2

i fi for every nonincreasing sequence

{fi}i∈X.

Proof. Define fn+1 ≡ 0. Then

n∑
i=1

fi · π1
i =

n−1∑
i=0

[fn−i − fn−i+1] ·
n−i∑
j=1

π1
j

≤
n−1∑
i=0

[fn−i − fn−i+1] ·
n−i∑
j=1

π2
j (4.22)

=
n∑

i=1

fi · π2
i

where inequality (4.22) follows from the definition of stochastically ordered vectors and we

have used algebraic manipulations in the rest of the derivation.

Recall the definition of an IFR transition probability matrix from Section 3.2 (Definition

3.2). If we denote the ith row of a transition probability matrix P by πi, then we can

characterize an IFR matrix as follows: P is IFR if and only if πi �S πj for all i ≥ j.

Similarly, we can characterize a TP2 matrix as follows: P is TP2 if and only if πi �LR πj

for all i ≥ j.

The linkage between the stochastic order (�S) and MLR-order (�LR) is given in Lemma

4.3, which shows that MLR-order is a stronger condition than the stochastic order.

Lemma 4.3. If π1 �LR π2, then π1 �S π2.

Proof. See Rosenfield [119].

Lemma 4.4 provides sufficient conditions under which the Bayesian updates yield MLR-

ordered beliefs with respect to the observation y′.
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Lemma 4.4. If O is TP2, then π′(π, h′, l′, y′) is MLR-nondecreasing in y′.

Proof. For any given h′ ∈ Ω and `′ ∈ Φ, π′(π, h′, l′, y′) is MLR-nondecreasing in y′ if and

only if

π′(π, h′, l′, y′) �LR π′(π, h′, l′, y′′) for y′ ≥ y′′ ∈ Υ

⇔ π′i(π, h′, l′, y′) · π′j(π, h′, l′, y′′) ≥ π′j(π, h′, l′, y′) · π′i(π, h′, l′, y′′) for i ≥ j ∈ Ψ

⇔ O{y′|i}L{`′|i}
∑

kK{i|k}πk∑
k′ O{y′|k′}L{`′|k′}

∑
kK{k′|k}πk

· O{y′′|j}L{`′|j}
∑

kK{j|k}πk∑
k′ O{y′′|k′}L{`′|k′}

∑
kK{k′|k}πk

≥ O{y′|j}L{`′|j}
∑

kK{j|k}πk∑
k′ O{y′|k′}L{`′|k′}

∑
kK{k′|k}πk

· O{y′′|i}L{`′|i}
∑

kK{i|k}πk∑
k′ O{y′′|k′}L{`′|k′}

∑
kK{k′|k}πk

⇔ O{y′|i} · O{y′′|j} ≥ O{y′|j} · O{y′′|i} for i ≥ j ∈ Ψ,

which holds if O is TP2.

Lemma 4.5 provides sufficient conditions under which the Bayesian updates yield MLR-

ordered beliefs with respect to the observation `′.

Lemma 4.5. If L{`, k} is monotonically nonincreasing in k ∈ Ψ for all ` 6= L+1, then, for

any h′ ∈ Ω and y′ ∈ Υ,

π′(π, h′, L + 1, y′) �LR π′(π, h′, `′, y′) for `′ 6= L + 1.

Proof. For any given h′ ∈ Ω, y′ ∈ Υ, and ` 6= L + 1,

π′(π, h′, L + 1, y′) �LR π′(π, h′, `′, y′)

⇔ π′
i(π, h′, L + 1, y′) · π′

j(π, h′, `′, y′) �LR π′
j(π, h′, L + 1, y′) · π′

i(π, h′, `′, y′) for i ≥ j ∈ Ψ

⇔ O{y′|i}L{L + 1|i}
∑

kK{i|k}πk∑
k′ O{y′|k′}L{L + 1|k′}

∑
kK{k′|k}πk

· O{y′|j}L{`′|j}
∑

kK{j|k}πk∑
k′ O{y′|k′}L{`′|k′}

∑
kK{k′|k}πk

≥ O{y′|j}L{L + 1|j}
∑

kK{j|k}πk∑
k′ O{y′|k′}L{L + 1|k′}

∑
kK{k′|k}πk

· O{y′|i}L{`′|i}
∑

kK{i|k}πk∑
k′ O{y′|k′}L{`′|k′}

∑
kK{k′|k}πk

⇔ L{L + 1|i} · L{`′|j} ≥ L{L + 1|j}L{`′|i} for i ≥ j ∈ Ψ,
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which is always true since

L{`′|j}
L{`′|i}

≥ 1 ≥ L{L + 1|j}
L{L + 1|i}

for i ≥ j ∈ Ψ.

This completes the proof.

Lemma 4.6. For any given k′ ∈ Ψ, let

Ak′ =
∑
h′

∑
`′

∑
y′

H{h′|h}L{`′|k′}O{y′|k′}vi (h′, `′, π′(π, h′, `′, y′)) .

If O is TP2, L{`, k} is monotonically nonincreasing in k ∈ Ψ for all ` 6= L + 1, and

vi (h′, `′, π′(π)) is MLR-nonincreasing in π, then Ak′ is nonincreasing in k′.

Proof. For k′ ≤ k′′ ∈ Ψ,

Ak′ − Ak′′

=
∑
h′

∑
`′

∑
y′

H{h′|h}L{`′|k′}O{y′|k′}vi (h′, `′, π′(π, h′, `′, y′))

−
∑
h′

∑
`′

∑
y′

H{h′|h}L{`′|k′′}O{y′|k′′}vi (h′, `′, π′(π, h′, `′, y′))

=
∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h}L{`′|k′}O{y′|k′}vi (h′, `′, π′(π, h′, `′, y′))

+
∑
h′

∑
y′

H{h′|h}O{y′|k′}vi (h′, L + 1, π′(π, h′, L + 1, y′))

−
∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h}L{`′|k′}O{y′|k′}vi (h′, L + 1, π′(π, h′, L + 1, y′))

−
∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h}L{`′|k′′}O{y′|k′′}vi (h′, `′, π′(π, h′, `′, y′))

−
∑
h′

∑
y′

H{h′|h}O{y′|k′′}vi (h′, L + 1, π′(π, h′, L + 1, y′))

+
∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h}L{`′|k′′}O{y′|k′′}vi (h′, L + 1, π′(π, h′, L + 1, y′)) (4.23)

=
∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h}vi (h′, `′, π′(π, h′, `′, y′)) [L{`′|k′}O{y′|k′} − L{`′|k′′}O{y′|k′′}]

+
∑
h′

∑
y′

H{h′|h}vi (h′, L + 1, π′(π, h′, L + 1, y′)) [O{y′|k′} − O{y′|k′′}]

−
∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h}vi (h′, L + 1, π′(π, h′, L + 1, y′))

· [L{`′|k′}O{y′|k′} − L{`′|k′′}O{y′|k′′}]
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=
∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h} ·
[
vi (h′, `′, π′(π, h′, `′, y′))− vi (h′, L + 1, π′(π, h′, L + 1, y′))

]
· [L{`′|k′}O{y′|k′} − L{`′|k′′}O{y′|k′′}]

+
∑
h′

∑
y′

H{h′|h} · vi (h′, L + 1, π′(π, h′, L + 1, y′)) · [O{y′|k′} − O{y′|k′′}] , (4.24)

where we have used the identity L{L + 1|k′} =
∑

`′ 6=L+1 L{`′|k′} in writing equation (4.23).

Since O is TP2 by assumption, Lemma 4.4 implies that π′(π, h′, L + 1, y′) is MLR-

nondecreasing in y′, which along with the monotonicity assumption of vi(·) implies that

vi (h′, L + 1, π′(π, h′, L + 1, y′)) is MLR-nonincreasing in y′. This result taken together with

O being TP2 and H{h′|h} ≥ 0 for all h, h′ yields, by Lemmas 4.2 and 4.3, for k′ ≤ k′′ ∈ Ψ,

∑
h′

∑
y′

H{h′|h} · vi (h′, L + 1, π′(π, h′, L + 1, y′)) · [O{y′|k′} − O{y′|k′′}] ≥ 0. (4.25)

Using similar arguments along with Lemmas 4.4, 4.5, and Corollary 4.1, we find

∑
h′

∑
`′ 6=L+1

∑
y′

H{h′|h} ·
[
vi (h′, `′, π′(π, h′, `′, y′))− vi (h′, L + 1, π′(π, h′, L + 1, y′))

]
· [L{`′|k′}O{y′|k′} − L{`′|k′′}O{y′|k′′}] ≥ 0. (4.26)

Combining inequalities (4.25) and (4.26) into (4.24) yields

Ak′ − Ak′′ ≥ 0 for k′ ≤ k′′ ∈ Ψ,

which completes the proof.

Lemma 4.7. If K and O are TP2, L{`, k} is monotonically nonincreasing in k ∈ Ψ for

all ` 6= L + 1, and vi (h′, `′, π′(π)) is MLR-nonincreasing in π, then
∑

k′ K{k′|k}Ak′ is

nonincreasing in k.

Proof. Since K is TP2, its rows are in increasing MLR-order. Furthermore, Ak′ is nonin-

creasing in k′, by Lemma 4.6, which along with Lemmas 4.2 and 4.3 implies

∑
k′

K{k′|i}Ak′ ≤
∑
k′

K{k′|j}Ak′ for i ≥ j ∈ Ψ. (4.27)

This completes the proof.
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Our main result on the structure of the value function is given in Theorem 4.1, which

states that the optimal value function is monotone with respect to the belief states that are

in MLR order if the rank transition probability matrix is TP2.

Theorem 4.1. If K and O are TP2, and L{`, k} is monotonically nonincreasing in k ∈ Ψ

for all ` 6= L + 1, then v(h, `, π) is MLR-nonincreasing in π for any h ∈ Ω and ` ∈ Φ.

Proof. For convenience, let, for any given h ∈ Ω and ` ∈ Φ,

f i+1 (π) = rT (h, `), and

gi+1 (π) = rW (h)

+λ ·
∑

k

∑
h′

∑
`′

∑
k′

∑
y′

πk · P{h′, `′, k′|h, `, k} · O{y′|k′} · vi (h′, `′, π′(π)) (4.28)

for i = 0, 1, 2, . . ., and f(π) and g(π), be, respectively, the same things without the super-

scripts i and i + 1. We can now re-write the optimality equation (4.14) as

v(h, `, π) = max {f(π), g(π)} .

Since the maximum of nonincreasing functions is itself nonincreasing, it suffices to show

that g (π) is MLR-nonincreasing in π, as f(π) is trivially nonincreasing in π. We do so

by induction on the steps of the value iteration algorithm. To start with, let vi (h, `, π) be

the value of state (h, `, π) at the ith iteration of the algorithm and assume, without loss of

generality, that v0 (h, `, π) = 0 for all h, `, and π. Therefore, g1 (π) = rW (h) for all π, which

is trivially MLR-nonincreasing in π.

As induction hypothesis, assume vi (h, `, π) is MLR-nonincreasing in π for iterations

i = 1, 2, . . . , n. Using the result of Lemma 4.1 along with the induction hypothesis, we find,

for π1 �LR π2

vi
(
h′, `′, π′(π1)

)
≤ vi

(
h′, `′, π′(π2)

)
for i = 1, . . . , n. (4.29)
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Since the coefficients λ, πk, P{h′, `′, k′|h, `, k}, and O{y′|k′} are all non-negative in equa-

tion (4.28), replacing vi (h′, `′, π′(π1)) with vi (h′, `′, π′(π2)) for gi+1(π1) we obtain

gi+1
(
π1
)

≤ rW (h) + λ ·
∑

k

∑
h′

∑
`′

∑
k′

∑
y′

π1
k · P{h′, `′, k′|h, `, k} · O{y′|k′} · vn

(
h′, `′, π′(π2)

)
= rW (h) + λ ·

∑
k

π1
k ·
∑
h′

∑
`′

∑
k′

∑
y′

P{h′, `′, k′|h, `, k} · O{y′|k′} · vn
(
h′, `′, π′(π2)

)
= rW (h) + λ

∑
k

π1
k

∑
k′

K{k′|k}
∑
h′

∑
`′

∑
y′

H{h′|h}L{`′|k′}O{y′|k′}vn
(
h′, `′, π′(π2)

)
= rW (h) + λ ·

∑
k

π1
k ·
∑
k′

K{k′|k} · Ak′ (4.30)

where

Ak′ =
∑
h′

∑
`′

∑
y′

H{h′|h}L{`′|k′}O{y′|k′}vn
(
h′, `′, π′(π2)

)
. (4.31)

But
∑

k′ K{k′|k}Ak′ is nonincreasing in k, by Lemma 4.7, which along with Lemmas 4.2

and 4.3 implies

∑
k

π1
k ·
∑
k′

K{k′|k} · Ak′ ≤
∑

k

π2
k ·
∑
k′

K{k′|k} · Ak′ for π1 �LR π2. (4.32)

Using inequality (4.32) in (4.30), we find, for π1 �LR π2,

gi+1
(
π1
)
≤ rW (h) + λ ·

∑
k

π2
k ·
∑
k′

K{k′|k} · Ak′

= gi+1
(
π2
)

for i = 1, . . . , n,

which implies

vn+1
(
h, `, π1

)
≤ vn+1

(
h, `, π2

)
.

This completes the proof.

Our main result on the structure of the optimal policy is given in Theorem 4.2, which

proves the existence of a control-limit optimal policy among MLR-ordered belief states.
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Figure 4.1: Control-limit optimal policy with respect to MLR-ordered belief vectors

Theorem 4.2. If K and O are TP2, and L{`, k} is monotonically nonincreasing in k ∈ Ψ

for all ` 6= L + 1, then there exists a threshold belief vector π∗ such that the optimal action

a∗ =

 W if π �LR π∗,

T if π �LR π∗.

Proof. The result follows (See Figure 4.1) since f(π) is constant for all π and g(π) is MLR-

nonincreasing in π by the result of Theorem 4.1.

4.4 COMPUTATIONAL STUDY

In this section, we discuss and present the results of a grid-based computational study for

the model given in Section 4.2. For this purpose, we only need to estimate the observation

probability matrix to solve the POMDP model, since the rest of the parameters can be taken

from the input data to the EWLM.
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4.4.1 Estimating the observation probabilities

We have noted in Section 4.2 that the observation probabilities are indeed time-dependent

due to the dynamic behavior of the liver transplant waiting list. However, to overcome

the numerical problems associated with this non-stationarity, we will use time-homogeneous

observation probabilities in our computational study.

We assume that the liver allocation system is in steady-state and let Θ be the random

variable that denotes the stationary observation probability matrix. Then the dynamic

behavior of the waiting list can be modeled by taking the expected value of Θ. We estimate

this expectation using the national liver simulation model of Shechter et al. [132], in which

we keep track of all the MELD partitions and take a long-run average of the observation

probability matrices induced by these partitions as

O = lim
T→∞

1

T

T∑
t=1

Ot,

where Ot is the observation probability matrix at time t, O is the time-homogeneous ob-

servation probability matrix, and the average is taken as the usual component-wise matrix

operation. Since OPOs represent different populations, we estimate OPO specific observa-

tion matrices, however, for notational convenience we drop the dependency on OPOs as we

did in Section 3.4.1 in all of our discussions.

As an example of this estimation process, assume that there are 65 patients registered

in a particular OPO at some arbitrary point in time. Let the MELD partitions be as given

in the UNOS’s website, i.e., Ω1 = {6, . . . , 10}, Ω2 = {11, . . . , 18}, Ω3 = {19, . . . , 24}, and

Ω4 = {25, . . . , 40}. For a particular type of locally harvested organ, assume the Yi’s appear

as:

Y1 = {1, . . . , 10}, Y2 = {11, . . . , 18}, Y3 = {19, . . . , 35}, Y4 = {36, . . . , 65}.

This partition will induce an observation probability matrix, say O1, as in Figure 4.2(a).

Let’s further assume that from this time period to the next, the patient at the top list dies,

the 2nd patient from the top of the list is transplanted and removed from the list, 1 new

patient joined the list with a MELD score less than 10, the patient with rank 20 suddenly

got severely sick and her MELD score jumped to 32, and 4 of the patients with MELD scores
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less than 10 now have MELD score 15. Therefore, the Yi’s in the next time period would

appear as:

Y1 = {1, . . . , 9}, Y2 = {10, . . . , 17}, Y3 = {18, . . . , 37}, Y4 = {38, . . . , 64}.

This new partition will induce an observation probability matrix, say O2, as in Figure 4.2(b).

Over these two time periods, we would estimate the time-homogeneous observation proba-

bility matrix by O = (O1 +O2)/2, which would be as in Figure 4.2(c).

4.4.2 Grid-based solution methodology

The POMDP model has infinitely many states since the belief space is the entire probability

simplex over the core states. Evaluating this belief space in its entirety suffers from compu-

tational intractability. Indeed, the current state of the art in POMDP literature can exactly

solve problems with only a few core states [58, 91]. Therefore, we provide a grid-based so-

lution methodology that samples from the entire belief space to approximate the optimal

solution to our problem. This approach comes with two natural questions: (i) how to build

a good grid, and (ii) how good is the resulting approximation.

4.4.2.1 Building the grid In this section, we discuss three alternative ways of building

our grid.

One obvious way is to use what the literature refers to as a fixed-resolution uniform

grid approach [89, 183]. This approach fixes the number of possible probability values that

each dimension of the sampled belief vector can take. The obvious disadvantage with this

approach is the need for an enormous number of sampled points as the dimension of the

probability simplex grows. To see this growth, let

k = # of possible probability values in each dimension of the sampled belief vector

m = # of core states, and

F (m, k) = # of belief vectors to be sampled for given m and k.
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(a) O1 (b) O2 (c) Final observation matrix

Figure 4.2: An example of estimating time-homogeneous observation probabilities
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Once m and k are given, the total number of belief vectors to be sampled can be determined

by the following recursive formula

F (m, k) = F (m, k − 1) + F (m− 1, k)

with the boundary conditions

F (m, 1) = 1,

F (2, k) = k.

Possible values for m and k are positive integers starting from 2. Table 4.3 lists the

number of belief vectors to sample under the uniform grid approach for m ≤ 30 and Figure

4.3 displays the same data for m ≤ 100. Although generating such a grid is very easy,

the need for an enormous number of sample points forces us to search for alternative grid

generation ideas.

A second approach for generating a grid is to generate a uniform random grid from the

probability simplex. The obvious advantage of this approach is that we have the control of

choosing how many points to sample, whereas the sample size was dictated by the resolution

parameter (k) in the first approach.

When the number of core states (m) of the POMDP model is 2, this sampling can be done

through generating Uniform[0,1] random numbers. However, when m ≥ 3, uniform sampling

from the probability simplex turns out to be nontrivial. The naive approach of sampling n

Uniform[0,1] numbers (denoted ui for i = 1, . . . , n) and then dividing each by the sum of

the sampled values (
∑

i ui) does not generate a uniform sample over the probability space

[26]. This approach produces points mostly from the center of the simplex and gradually less

points from corners and borders of the simplex. Figure 4.4(a) shows 20,000 points generated

using this naive approach when m = 3. The main reason for such a behavior is summarized

in the following observation: “if one of ui (i = 1, . . . , n) is large (say, for instance, close to

1), then the probability that
∑

i ui exceeds 1 is very high. Once this happens, normalization

causes each ui for the given sample point to be decreased by a fraction of
∑

i ui.” Similar

observation holds for the symmetric case (
∑

i ui < 1), for which each ui are inflated by a
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Table 4.3: Number of belief vectors to sample using the uniform grid approach

k
2 3 4 5 6 7 8 9 10 11

m

2 2 3 4 5 6 7 8 9 10 11
3 3 6 10 15 21 28 36 45 55 66
4 4 10 20 35 56 84 120 165 220 286
5 5 15 35 70 126 210 330 495 715 1,001
6 6 21 56 126 252 462 792 1,287 2,002 3,003
7 7 28 84 210 462 924 1,716 3,003 5,005 8,008
8 8 36 120 330 792 1,716 3,432 6,435 11,440 19,448
9 9 45 165 495 1,287 3,003 6,435 12,870 24,310 43,758
10 10 55 220 715 2,002 5,005 11,440 24,310 48,620 92,378
11 11 66 286 1,001 3,003 8,008 19,448 43,758 92,378 184,756
12 12 78 364 1,365 4,368 12,376 31,824 75,582 167,960 352,716
13 13 91 455 1,820 6,188 18,564 50,388 125,970 293,930 646,646
14 14 105 560 2,380 8,568 27,132 77,520 203,490 497,420 1,144,066
15 15 120 680 3,060 11,628 38,760 116,280 319,770 817,190 1,961,256
16 16 136 816 3,876 15,504 54,264 170,544 490,314 1,307,504 3,268,760
17 17 153 969 4,845 20,349 74,613 245,157 735,471 2,042,975 5,311,735
18 18 171 1,140 5,985 26,334 100,947 346,104 1,081,575 3,124,550 8,436,285
19 19 190 1,330 7,315 33,649 134,596 480,700 1,562,275 4,686,825 13,123,110
20 20 210 1,540 8,855 42,504 177,100 657,800 2,220,075 6,906,900 20,030,010
21 21 231 1,771 10,626 53,130 230,230 888,030 3,108,105 10,015,005 30,045,015
22 22 253 2,024 12,650 65,780 296,010 1,184,040 4,292,145 14,307,150 44,352,165
23 23 276 2,300 14,950 80,730 376,740 1,560,780 5,852,925 20,160,075 64,512,240
24 24 300 2,600 17,550 98,280 475,020 2,035,800 7,888,725 28,048,800 92,561,040
25 25 325 2,925 20,475 118,755 593,775 2,629,575 10,518,300 38,567,100 131,128,140
26 26 351 3,276 23,751 142,506 736,281 3,365,856 13,884,156 52,451,256 183,579,396
27 27 378 3,654 27,405 169,911 906,192 4,272,048 18,156,204 70,607,460 254,186,856
28 28 406 4,060 31,465 201,376 1,107,568 5,379,616 23,535,820 94,143,280 348,330,136
29 29 435 4,495 35,960 237,336 1,344,904 6,724,520 30,260,340 124,403,620 472,733,756
30 30 465 4,960 40,920 278,256 1,623,160 8,347,680 38,608,020 163,011,640 635,745,396

Figure 4.3: Number of belief vectors to sample using the uniform grid approach
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(a) Naive algorithm (b) Suresh’s algorithm

Figure 4.4: Random sampling from the probability simplex

factor of (
∑

i ui)
−1. Therefore, we see fewer points sampled from the vertices and edges of

the probability simplex.

An algorithm for generating a uniform random sample from a probability simplex is

suggested in [139]. An alternate view of the same algorithm is presented in [149]. This

algorithm behaves exactly like the naive algorithm with a small exception: sample n random

numbers from exponential distribution with parameter 1 and divide each by the sum of the

sampled values. Figure 4.4(b) shows 20,000 points generated using this algorithm.

We are still not satisfied with the uniform random sampling approach despite its obvious

advantage of controlling the number of points to be sampled. The main reason is that we do

not want to sample points of little value. A sample point u has little value if the probability

of reaching that particular point u is negligibly small. In other words, if the stochastic

process is going to reach to this particular belief state u very rarely, then we do not want to

spend our limited resources on this state since the contribution of this state will be negligible.

For our partially observed waiting list model given in Section 4.2, a belief point that as-

signs positive probabilities to rank states k1 and k2 (k1 < k2) while assigning zero probability

for all ranks j, where k1 < j < k2, has little value, because it is practically impossible for a
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patient to think that she could be in ranks k1 and k2 but not in between. This observation

builds the backbone of our third approach for generating a grid.

The third grid generation approach, which we call the fixed-resolution non-uniform grid,

is similar to the previous two approaches in keeping the number of grid points to be fixed

over time. However, rather than sampling the points in regular intervals as in the fixed-

resolution uniform grid approach or sampling the points randomly as in the random grid

approach, this approach samples the points in such a way that the positive probabilities in

the sampled belief vector are not interleaved with any zeros. For instance, if we have 5 core

states, the vector

[0 1/3 1/3 1/3 0]T

is a valid sample under this approach, however, the vector

[1/3 0 1/3 1/3 0]T

is not a valid sample under this approach, whereas it is acceptable under fixed-resolution

uniform grid approach.

More formally, let q be a positive integer representing the resolution of the grid and

m be the number of core states. (Note that the resolution parameter q also controls the

maximum number of consecutive positive entries in a sample point.) The fixed-resolution

non-uniform grid approach selects vectors from the associated probability simplex that satisfy

the following:

1. the strictly positive values in the vector are not interleaved by any zeros, and

2. all the values in the vector are non-negative integer multiples of 1/q.

For instance, when m = 5 and q = 3, the grid generated by the fixed-resolution non-

uniform grid approach would look like as in Figure 4.5. Note that there are a total of 16

belief points in this grid. In general, the following expression provides a formula to determine

the number of sample points needed, G(m, q), with this approach for arbitrary m and q:

G(m, q) =

min{q−1,m}∑
i=0

(
q − 1

i

)
· (m− i).

Table 4.4 lists the number of belief vectors to sample under the non-uniform grid approach

for m ≤ 30 and Figure 4.6 displays the same data for m ≤ 100.
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( 1/3 1/3 1/3 0 0 ),

( 0 1/3 1/3 1/3 0 ),

( 0 0 1/3 1/3 1/3 ),

( 2/3 1/3 0 0 0 ),

( 0 2/3 1/3 0 0 ),

( 0 0 2/3 1/3 0 ),

( 0 0 0 2/3 1/3 ),

( 1/3 2/3 0 0 0 ),

( 0 1/3 2/3 0 0 ),

( 0 0 1/3 2/3 0 ),

( 0 0 0 1/3 2/3 ),

( 1 0 0 0 0 ),

( 0 1 0 0 0 ),

( 0 0 1 0 0 ),

( 0 0 0 1 0 ),

( 0 0 0 0 1 ).

Figure 4.5: Example grid points sampled via non-uniform grid approach (m = 5, k = 3)

4.4.2.2 Bounds on the optimal value function In this section we derive some bound-

ing inequalities using the optimal POWLM value function, the grid-based approximate

POWLM value function, and the optimal EWLM value function. We choose to condider

generic models in this section to show that the results are not restricted to the specific

model presented in Section 4.2.

Without loss of generality, we assume that the state space is solely composed of partially

observable component (note that this assumption is only for notational clarity.) With some

abuse of notation, we use the following throughout the rest of this section:

S = core state space,

m = number of elements in S,

Π(S) = the probability (belief) simplex defined over S,

Z = observation space,

π = belief state (i.e., probability distribution over core states),

bt = sampled belief point t in the grid,

90



Table 4.4: Number of belief vectors to sample using the non-uniform grid approach

q
1 2 3 4 5 6 7 8 9 10

m

2 2 3 4 5 6 7 8 9 10 11
3 3 5 8 12 17 23 30 38 47 57
4 4 7 12 20 32 49 72 102 140 187
5 5 9 16 28 48 80 129 201 303 443
6 6 11 20 36 64 112 192 321 522 825
7 7 13 24 44 80 144 256 448 769 1,291
8 8 15 28 52 96 176 320 576 1,024 1,793
9 9 17 32 60 112 208 384 704 1,280 2,304
10 10 19 36 68 128 240 448 834 1,536 2,816
11 11 21 40 76 144 272 512 960 1,792 3,328
12 12 23 44 84 160 304 576 1,088 2,048 3,840
13 13 25 48 92 176 336 640 1,216 2,304 4,352
14 14 27 52 100 192 368 704 1,344 2,560 4,864
15 15 29 56 108 208 400 768 1,472 2,816 5,376
16 16 31 60 116 224 432 832 1,600 3,062 5,888
17 17 33 64 124 240 464 896 1,728 3,328 6,400
18 18 35 68 132 256 496 960 1,856 3,584 6,912
19 19 37 72 140 272 528 1,024 1,984 3,840 7,424
20 20 39 76 148 288 560 1,088 2,112 4,096 7,936
21 21 41 80 156 304 592 1,152 2,240 4,352 8,448
22 22 43 84 164 320 624 1,216 2,368 4,608 8,960
23 23 45 88 172 336 656 1,280 2,496 4,864 9,472
24 24 47 92 180 352 688 1,344 2,624 5,120 9,984
25 25 49 96 188 368 720 1,408 2,752 5,376 10,496
26 26 51 100 196 384 752 1,472 2,880 5,632 11,008
27 27 53 104 204 400 784 1,536 3,008 5,888 11,520
28 28 55 108 212 416 816 1,600 3,136 6,144 12,032
29 29 57 112 220 432 848 1,664 3,264 6,400 12,544
30 30 59 116 228 448 880 1,728 3,392 6,656 13,056
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Figure 4.6: Number of belief vectors to sample using the non-uniform grid approach

G = the grid formed by the sampled belief points bt,

N = number of elements in G,

a = action taken by the decision maker,

A = action space,

pa
ij = probability of transiting from state i at time t to state j at time t + 1 upon

taking action a, i, j ∈ S, a ∈ A,

qa
jk = probability of receiving observation k while the state is j at time t and action a

was taken, j ∈ S, k ∈ Z, a ∈ A,

r(i, a) = the immediate reward associated with taking action a in state i, i ∈ S, a ∈ A,

u∗(·) = the optimal value function of the MDP model,

v∗(·) = the optimal value function of the POMDP model,

v̂(·) = the approximate value function of the POMDP model based on the grid,

λ = discount rate.
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For the sake of completeness, we repeat the optimality equations for an MDP model

u∗(i) = max
a∈A

{
r(i, a) + λ

∑
j∈S

pa
iju

∗(j)

}
for i ∈ S, (4.33)

and for a POMDP model

v∗(π) = max
a∈A

{
r(π, a) + λ

∑
i∈S

∑
j∈S

∑
k∈Z

πip
a
ijq

a
jkv

∗(π′)

}
for π ∈ Π(S), (4.34)

where r(π, a) =
∑

i∈S πir(i, a). Note that π′ in equation (4.34) is also dependent on the

current belief state π as well as the observation k and action a, however this dependency is

suppressed for notational clarity.

We also recall the Bayesian updating formula for belief states.

π′j =

∑
i∈S πip

a
ijq

a
jk∑

i∈S
∑

j∈S πipa
ijq

a
jk

. (4.35)

We assume that the grid G includes the extreme points of the probability simplex Π(S).

That is, we assume that the unit vectors ei are included in the grid (note that ei is a

probability distribution that accumulates all its mass on i). Therefore, any belief point π

can be written as a convex combination of the points in G, that is

π =
N∑

t=1

αtb
t, (4.36)

where αt ≥ 0 for t = 1, . . . , N and
∑N

t=1 αt = 1.

We compute the approximate value function v̂(·) associated with a belief state bi ∈ G

using a modified version of the POMDP optimality equations (4.34). When we write the

optimality equation (4.34) for a given belief state bi ∈ G, the problem will arise on the right-

hand-side as we will need the value associated with the updated belief vector, denote b′,

which is not known if b′ 6∈ G. However, we can estimate the value associated with b′ using

convex combination of the known values of the grid points bi ∈ G. That is, replacing v∗(b′)

on the right-hand-side of equation (4.34) with a convex interpolation estimate
∑N

t=1 αtv̂(bt)

yields

v̂(bi) = max
a∈A

{
r(bi, a) + λ

∑
i∈S

∑
j∈S

∑
k∈Z

bip
a
ijq

a
jk

N∑
t=1

αtv̂(bt)

}
for bi ∈ G. (4.37)
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We now derive inequalities that relate v∗(·), v̂(·), and u∗(·). We first need two important

results: the first is the fundamental result for POMDPs by Sondik [141] and the second is

the well known Jensen’s inequality [122].

Theorem 4.3. v∗(·) is piece-wise linear and convex.

Proof. See Sondik [141].

Theorem 4.4. Let f be a convex real-valued function and X be a discrete random variable.

Then

f (IE [X]) ≤ IE [f (X)] .

Proof. See Rudin [122].

Our first result is given in Theorem 4.5, which shows that the grid-based approximation,

v̂(·), provides an upper bound for the true optimal value function, v∗(·), for the POMDP

problem.

Theorem 4.5. v̂(bi) ≥ v∗(bi) for bi ∈ G.

Proof. We prove the result by induction on the steps of the value iteration algorithm. Let

v∗n(b) and v̂n(b) denote the true value and the grid-based approximate value, respectively,

for belief point b in the nth iteration of the algorithm. Initialize the algorithm with v∗0(b
i) =

v̂0(b
i) = 0 for bi ∈ G, for which the intended result holds trivially. Assume, as the induction

hypothesis, that the same inequality holds for iterations 1, 2, . . . , n. That is,

v̂n(bi) ≥ v∗n(bi) for bi ∈ G.

For iteration n + 1,

v∗n+1(b
i) = max

a∈A

{
r(bi, a) + λ

∑
i∈S

∑
j∈S

∑
k∈Z

bip
a
ijq

a
jk · v∗n (b′)

}

= max
a∈A

{
r(bi, a) + λ

∑
i∈S

∑
j∈S

∑
k∈Z

bip
a
ijq

a
jk · v∗n

(
N∑

t=1

αtb
t

)}
(4.38)

≤ max
a∈A

{
r(bi, a) + λ

∑
i∈S

∑
j∈S

∑
k∈Z

bip
a
ijq

a
jk ·

N∑
t=1

αt · v∗n
(
bt
)}

(4.39)
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≤ max
a∈A

{
r(bi, a) + λ

∑
i∈S

∑
j∈S

∑
k∈Z

bip
a
ijq

a
jk ·

N∑
t=1

αt · v̂n

(
bt
)}

(4.40)

= v̂n+1(b
i),

where we have used (4.36) in writing equation (4.38), Theorems 4.3 and 4.4 in writing

inequality (4.39), and the induction hypothesis in writing inequality (4.40).

Our second result concerns a comparison of the optimal value function for the POMDP

problem, v∗(·), with that of the MDP problem, u∗(·). A probability distribution that assigns

all its mass onto a single core state, say i, is represented by the unit vector ei and such a

belief state for the POMDP problem is practically equivalent to being in state i for the MDP

problem. We are, therefore, interested in the relationship between v∗(ei) and u∗(i). We start

with some preliminary results.

Lemma 4.8 provides a closed-form formula for the αt coefficients for finding the updated

belief state for a given unit vector ei.

Lemma 4.8. The updated belief vector π′ for the current belief vector ei (i ∈ S) is given by

π′ =
∑
t∈S

αte
t,

where

αt =
pa

itr
a
tk∑

j∈S pa
ijr

a
jk

for t ∈ S.

Proof. Applying formula (4.35) to ei yields that the tth component of the updated belief

vector π′ is

π′t =
pa

itr
a
tk∑

j∈S pa
ijr

a
jk

for t ∈ S,

from which the result follows trivially.

Lemma 4.9 provides an inequality for the optimal POMDP value function v∗(·), which

will be used proving Theorem 4.6.

Lemma 4.9.

v∗(ei) ≤ max

{
r(i, a) + λ

∑
j∈S

pa
ijv

∗(ej)

}
for i ∈ S.
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Proof. Since belief state ei assigns all its mass onto state i, equation (4.34) reduces to

v∗(ei) = max
a∈A

{
r(i, a) + λ

∑
j∈S

∑
k∈Z

pa
ijr

a
jk · v∗(π′)

}
for i ∈ S.

Using π′ =
∑

t∈S αt · et and applying Jensen’s inequality along with Theorem 4.3 on this

equation yields

v∗(ei) = max
a∈A

{
r(i, a) + λ

∑
j∈S

∑
k∈Z

pa
ijr

a
jk · v∗

(∑
t∈S

αt · et

)}

≤ max
a∈A

{
r(i, a) + λ

∑
j∈S

∑
k∈Z

pa
ijr

a
jk ·
∑
t∈S

αt · v∗
(
et
)}

for i ∈ S.

Finally, using the result of Lemma 4.8, canceling the term
∑

j∈S pa
ijr

a
jk from either side

of the fraction, and noting that
∑

k∈Z ra
tk = 1 gives

v∗(ei) ≤ max
a∈A

{
r(i, a) + λ

∑
j∈S

∑
k∈Z

pa
ijr

a
jk ·
∑
t∈S

pa
itr

a
tk∑

i′∈S pa
ii′r

a
i′k

· v∗
(
et
)}

= max
a∈A

{
r(i, a) + λ

∑
k∈Z

∑
t∈S

pa
itr

a
tk · v∗

(
et
)}

= max
a∈A

{
r(i, a) + λ

∑
t∈S

pa
it · v∗

(
et
)}

for i ∈ S,

which completes the proof.

Our second result is given in Theorem 4.6, which shows that the optimal solution for the

completely observable MDP problem provides an upper bound for its partially observable

counterpart.

Theorem 4.6. u∗(i) ≥ v∗(ei) for i ∈ S.
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Proof. We complete the proof by induction on the steps of the value iteration algorithm.

Let v∗n(ei) denote the value of state ei for the POMDP problem at the nth iteration of the

algorithm. Similarly, let u∗n(i) denote the value of state i for the perfectly observable MDP

problem at the nth iteration of the algorithm. Initialize the algorithm with v∗0(e
i) = u∗0(i) = 0

for i ∈ S, for which the intended result holds trivially. Assume, as the induction hypothesis,

that the same inequality holds for iterations 1, 2, . . . , n. That is,

u∗n(i) ≥ v∗n(ei) for i ∈ S.

For iteration n + 1, using the result of Lemma 4.9,

v∗n+1(e
i) ≤ max

a∈A

{
r(i, a) + λ

∑
j∈S

pa
ij · v∗n

(
ej
)}

≤ max
a∈A

{
r(i, a) + λ

∑
j∈S

pa
ij · u∗n(j)

}
= u∗n+1(i),

which completes the proof.

Our third result, given in Theorem 4.7, compares the optimal MDP value for a given

state i to the grid-based approximate value for the corresponding state ei and shows that

they are equal.

Theorem 4.7. u∗(i) = v̂(ei) for i ∈ S.

Proof. The proof is similar to the proof of Theorem 4.6 and is omitted.

We need one more inequality before our final result. This inequality is given in Lemma

4.10, which simply states that the convex combination of maximums is at least as much as

the maximum of the convex combinations, and will be used in proving Theorem 4.8.

Lemma 4.10. Given a set of scalars aj
i for i = 1, . . . , I, j = 1, . . . , J , and a set of non-

negative coefficients bi such that
∑I

i=1 bi = 1, the following holds

max
j

{∑
i

bia
j
i

}
≤
∑

i

bi max
j

{
aj

i

}
.
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Proof. For i = 1, . . . , I and k = 1, . . . , J ,

ak
i ≤ max

j

{
aj

i

}
.

Multiplying both sides of these inequalities by the nonnegative scalars bi, we obtain

bi · ak
i ≤ bi ·max

j

{
aj

i

}
for i = 1, . . . , I; k = 1, . . . , J.

Summing these inequalities for i = 1, . . . , I yields∑
i

bi · ak
i ≤

∑
i

bi ·max
j

{
aj

i

}
for k = 1, . . . , J,

which directly implies the intended result.

Our final result, given in Theorem 4.8, compares the grid-based approximate value for

an arbitrary grid point b to the optimal MDP values at states i ∈ S and shows that the

convex combination of the latter is at least as much as the former.

Theorem 4.8. v̂(b) ≤
∑

i∈S bi · u∗(i) for b ∈ G.

Proof. Let b′ be the updated belief vector for the given belief b. Using the unit vectors

e1, e2, . . . , em from the grid to represent the updated belief, we re-write equation (4.37) as

v̂(b) = max
a∈A

{
r(b, a) + λ

∑
i∈S

∑
j∈S

∑
k∈Z

bip
a
ijq

a
jk

∑
t∈S

αtv̂(et)

}
. (4.41)

Equations (4.35) and (4.36) together imply that

αt =

∑
i∈S bip

a
itq

a
tk∑

i∈S
∑

j∈S bipa
ijq

a
jk

for t ∈ S. (4.42)

Substituting equation (4.42) into (4.41), canceling the term
∑

i∈S
∑

j∈S bip
a
ijq

a
jk in either

side of the resulting fraction, and reorganizing the terms yield

v̂(b) = max
a∈A

{
r(b, a) + λ

∑
i∈S

bi ·
∑
t∈S

pa
it · v̂(et) ·

∑
k∈Z

qa
tk

}

= max
a∈A

{∑
i∈S

bi · r(i, a) + λ
∑
i∈S

bi ·
∑
t∈S

pa
it · v̂(et)

}
(4.43)

= max
a∈A

{∑
i∈S

bi ·

[
r(i, a) + λ

∑
t∈S

pa
it · v̂(et)

]}
,
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where, in deriving equation (4.43), we have used r(b, a) =
∑

i∈S bir(i, a) and
∑

k∈Z qtk = 1

for all k ∈ Z. Invoking the result of Theorem 4.7, we can re-write the last equation as

v̂(b) = max
a∈A

{∑
i∈S

bi ·

[
r(i, a) + λ

∑
t∈S

pa
it · u∗(t)

]}
,

≤
∑
i∈S

bi ·max
a∈A

{[
r(i, a) + λ

∑
t∈S

pa
it · u∗(t)

]}
, (4.44)

=
∑
i∈S

bi · u∗(i),

where we have applied the result of Lemma 4.10 in writing the inequality (4.44). This

completes the proof.

Corollary 4.5. v∗(b) ≤ v̂(b) ≤
∑

i∈S bi · u∗(i) for b ∈ G.

Proof. The result follows trivially from the results of Theorems 4.5 and 4.8.

4.4.2.3 Bayesian updating for the grid We have seen in Section 4.4.2.2 that for a

given a set of grid points sampled from the appropriate probability simplex, the Bayesian

updating of a belief point does not guarantee the updated point to be in the grid. This

necessitates forcing the updating to yield points within the grid in order to solve the problem

as a regular MDP.

Formally, given a grid G = {b1,b2, . . . ,bN} and an updated belief point b′, we have

represented the updated belief as a convex combination of the points in the grid (see equation

(4.36)). However, in this representation, we did not specify which grid points to use to

represent b′.

To represent any vector in an m-dimensional space, we need at most m linearly indepen-

dent vectors. Since our grid, by construction, includes all the extreme points of the belief

simplex (note that there are m such points, because we have m core states) we can always

use these points to represent any updated belief b′ that is not in the grid, as these unit

vectors will span the entire probability space. We have found in Section 4.4.2.2 that, if we

restrict our basis to the unit vectors for every updated belief, the grid-based approximate

value for a given belief b (v̂(b)) is in between the true optimal value of this belief (v∗(b)) and
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the convex combination of the optimal values of the associated completely observed MDP

(
∑

i biu
∗(i)).

However, there may be other vectors in our grid that span the updated belief b′ while,

at the same time, yielding better approximate values (better in the sense that is closer to

v∗(b)).

To find such set of vectors, let xi be the decision variable representing the α-coefficient of

the ith grid point (bi). Obviously, the following must be satisfied to have a set of bi vectors

span the updated belief:

∑
i∈G

bixi = b′,∑
i∈G

xi = 1,

xi ≥ 0 for i ∈ G.

In light of Corollary 4.5 and the above constraints, we conclude that the tightest bound

on v∗(b) through v̂(b) can be achieved by solving the following linear program:

minimize
∑
i∈G

v̂(bi) · xi

subject to
∑
i∈G

bixi = b′,∑
i∈G

xi = 1,

xi ≥ 0 for i ∈ G.

A similar linear programming formulation to find the tightest bounds is also presented in

[183].
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

0 0 0.000411 0.999589

0 0 0.006340 0.993660

0 0 0.040423 0.959577

0 0 0.192499 0.807551

0 0 0.610468 0.389532

0 0 0.944424 0.055576

0 0.000074 0.997930 0.001996

0 0.006137 0.993863 0

0 0.049697 0.950303 0

0 0.239447 0.760553 0

0 0.778042 0.221958 0

0.412087 0.587834 0.000079 0



.

Figure 4.7: An example observation matrix for OPO serving Pittsburgh (k = 12, p = 4)

4.4.3 Numerical results

In this section, we present numerical results parameterized by clinical data. We use the

same methodologies discussed in Section 3.4.1 to estimate the rewards (rW (h) and rT (h, `))

and core state transition probabilities (H, K, and L) for POWLM. We also use the same

annual discount rate (λ = 0.97). Finally, we estimate the observation probabilities (O) for

POWLM as discussed in Section 4.4.1. An example O matrix is depicted in Figure 4.7. Note

that we obtain patient-specific post-transplant rewards (rT (·)) and OPO-specific K, L, and

O matrices.

We have tested all of our instances on a 64-bit machine with 16GB of RAM, 8 parallel

Intel Xeon processors running at 2.33 GHz. The operating system is Ubuntu - a Linux-

based operating system. We have implemented the grid-based POMDP solution algorithm

(namely, the POMDP-adapted policy iteration algorithm) in C. The two major modifications

to the regular policy iteration algorithm are: (i) incorporation of the belief state updating
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for POMDPs, and (ii) approximating the value of updated beliefs that are not in the grid as

discussed in Section 4.4.2.3. In this implementation, we have used two libraries: (i) CPLEX

11.0 callable library to solve the linear programs discussed in Section 4.4.2.3, and (ii) Intel

Math Kernel Library 10.0 to solve the system of linear equations in the policy evaluation

step of the policy iteration algorithm.

Despite the computational power used, our results were affected by the curse of dimen-

sionality. To be able to solve our instances, we have aggregated the MELD scores into 4

health states (namely, ≤ 10, 11-18, 19-24, ≥ 25), the liver types into 4 qualities as deter-

mined by donor’s age (the most important factor in determining the quality of a donated

liver [117]) (namely, < 30, 30-44, 45-59, ≥ 60), and the number ranks to 12 using the same

method discussed Section 3.4.1. This setup allowed us to increase the grid resolution param-

eter q up to 7, which samples 576 points from the 12-dimensional probability simplex (see

Table 4.4). It took about 1 hour to solve each problem instance when the grid resolution

parameter is set to 7, adding up to a total of about 200 hours (about 8 days and 8 hours)

for the 200 instances solved.

4.4.3.1 Estimating the price of privacy We compute our revised price of privacy

estimates by comparing the results of the EWLM and POWLM similar to the formula given

in Section 3.4.2. For this purpose, let

u∗(h, `, k) = the optimal value of EWLM for state (h, `, k),

v̂(h, `,b) = the grid-based approximate value of POWLM for state (h, `,b).

Given an initial belief b over the possible rank states, we compute the revised estimate of a

patient’s price of privacy ratio, denoted ρ′, by

ρ′ =

∑
k∈Ψ bk · u∗(h̃, L + 1, k)− v̂(h̃, L + 1,b)

v̂(h̃, L + 1,b)
. (4.45)

where h̃ is the patient’s health at the time of her registration to the waiting list and L + 1

indicates that no liver is being offered. This estimate ρ′ provides a lower bound on the true

price of privacy ratio, because of the grid-based approximation (recall the result of Corollary
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Table 4.5: Summary statistics for ρ′ for 200 patients with various grid resolutions (q)

q Min Max Median Mean Standard deviation % change in mean

1 0.000% 0.000% 0.000% 0.000% 0.000% -

2 0.000 0.091 0.011 0.017 0.018 -

3 0.000 0.113 0.014 0.022 0.022 25.20%

4 0.000 0.223 0.041 0.055 0.046 150.54%

5 0.000 0.263 0.061 0.073 0.057 33.63%

6 −0.003 0.282 0.065 0.079 0.061 8.52%

7 0.000 0.252 0.061 0.077 0.057 −3.47%

ρ 0.013 15.123 2.883 4.319 4.078 -

4.5). The true price of privacy would be obtained if we replace v̂(·) in equation (4.45) by

v∗(·). Therefore, Corollary 4.5 implies that the true price of privacy is always non-negative.

Note that, when computing ρ′ in equation (4.45), we use the national liver simulation

model of Shechter et al. [132] to estimate initial belief b for each patient, where b’s are

assumed to be a function of health state and OPO.

We solve POWLM using the grid-based approach discussed in Section 4.4.2 for each of

the 200 patients . A summary of the descriptive statistics for various values of the grid

resolution parameter, q = 1, . . . , 7, are given in Table 4.5. When we increased the grid

resolution parameter to 8 the computational time increased to about 9 hours for the couple

of instances solved, which would have added up to about 1800 hours (75 days) if we had

solved all 200 instances. Considering the tradeoff between the computational time and the

percent change in the mean price of privacy estimates (see the last column of Table 4.5), we

have not attempted solving all 200 instances for q = 8. We have also appended the summary

statistics for ρ, the price of privacy estimate obtained by comparing the EWLM and the

IWLM solutions, from Table 3.5 to the bottom row of Table 4.5.

The first thing to note in these results is that when q = 1,
∑

k∈Ψ bk ·u∗(h, `, k) = v̂(h, `,b)

for all 200 instances, implying ρ′ = 0% for all instances. This result is as expected, because
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when q = 1, the generated grid consists only of the unit vectors ei (i = 1, . . . , 12), and,

therefore, v̂(h, `,b) =
∑

k bkv̂(h, `, ek) for any b ∈ Π(Ψ). But Theorem 4.7 dictates that

v̂(h, `, ek) = u∗(h, `, k), hence v̂(h, `,b) =
∑

k∈Ψ bk · u∗(h, `, k) for any b ∈ Π(Ψ). This

suggests that solving a POMDP problem using a grid-based approach, where the grid is

restricted to vertices of the belief simplex, would be as if treating the partially observable

state as completely observable and solving the resulting MDP problem.

The second thing to note is that the price of privacy ratios across all patients for all the

grid resolutions is negligibly small: the maximum ratio obtained is 0.282% (computed when

q = 6); the mean ρ′ across all grid resolutions is less than 0.1%. Comparing these results

to the mean ρ (4.319%) obtained by comparing the EWLM and the IWLM solutions, we

conclude that one can do significantly better by implementing the POWLM optimal policy

as opposed to the optimal policy of IWLM. In other words, one can nearly eliminate the

price of privacy by implementing the partially observed waiting list model.

A third observation from our numerical results is that we have encountered some instances

that produced negative price of privacy ratios. The −0.003% in the ‘Min’ column for q = 6 in

Table 4.5 is one such example. This happened only in 7 cases out of a total of 1,400 instances

(200 patients × 7 grid resolutions) solved, 5 of which are due to one patient These 7 negative

ratios are −0.000387%, −0.003165%, −0.000039%, −0.000374%, −0.000113%, −0.000023%,

and −0.000018%. There is no theoretical explanation for such results. We attribute them

to numerical precision used in floating-point arithmetic.

Finally, we do not expect, in general, any monotone behavior with respect to the grid

resolution parameter q, since a grid based on, say, q = 7 samples points very differently than

a grid based on, say, q = 5. However, we do expect to have monotone behavior in the results

associated with two grids, where one of the grids contains all of the points in the other grid

(for instance, a grid based on q = 4 contains all the points of a grid based on q = 2; similarly

a grid based on q = 6 contains all the points of a grid based on q = 3; and all grids contain

all the points of a grid based on q = 1.) We have encountered very few violations to this

expectation due to numerical precision, which are summarized in Table 4.6

We also test whether state aggregations have a major affect on the negligibly small price

of privacy estimates summarized in Table 4.5. For this purpose, we have included two levels
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Table 4.6: Number of instances that violated monotone behavior in q

q

1 2 3 4 5 6 7

q

1 - 0 1 2 1 2 1

2 - - NA 6 NA 3 NA

3 - - - NA NA 2 NA

4 - - - - NA NA NA

5 - - - - - NA NA

6 - - - - - - NA

7 - - - - - - -

NA: Not Appropriate for comparison

Table 4.7: Affect of state aggregations on ρ′

Mean ρ′ when q

H L K Mean ρ 1 2 3 4

4 4 10 4.079% 0.000% 0.022% 0.030% 0.063%

4 4 12 4.319 0.000 0.017 0.022 0.055

4 4 30 5.214 0.000 0.006 0.007 0.026

9 4 10 3.893 0.000 0.021 0.029 0.066

9 4 12 4.117 0.000 0.018 0.023 0.059

9 4 30 4.968 0.000 0.006 0.007 0.026
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for the number of health states (i.e., H = 4, 9), and 3 levels for the number of rank states

(i.e., K = 10, 12, 30). The results of these experiments are summarized in Table 4.7. The first

three columns in this table list down the number of health, liver, and rank states used in the

experiments. The fourth column displays the mean price of privacy estimates obtained using

formula (3.22) for the 200 hundred patients we have studied earlier. The last four columns

display the mean price of privacy estimates obtained using formula (4.45) for the same 200

patients for various grid resolution parameter (q) values. We observe that aggregating core

states does not significantly affect the price of privacy estimates. The mean ρ across all state

aggregations is on the order of 4.5%, whereas the mean ρ′ is still negligibly small.

4.5 CONCLUSIONS

This chapter considers the accept/reject decision problem faced by an end-stage liver disease

patient when partial information about the status of the patient is available. The model

presented in this chapter extends the one given in Chapter 3 by allowing the rank of the

patient to be partially observable as in the current liver transplantation system.

Our contributions with this chapter are manifold. First, we provide a partially observable

Markov decision process model with a hybrid state space. To the best of our knowledge, this

study is the first to incorporate partial information into patient’s decision making in organ

transplantation. Second, we derive structural results of this partially observable model, in-

cluding conditions under which control-limit optimal policies exist. Furthermore, we provide

a grid-based solution methodology for numerical computation and provide several bounding

inequalities relating the optimal value of the partially observable model, the optimal value

of the completely observable counterpart, and the grid-based approximate value of the par-

tially observable model. Third, we numerically solve the partially observable model for 200

patients using clinical data. Finally, we use this partially observable model to refine our

estimate of a patient’s price of privacy.

We conclude from the analysis conducted in this chapter that the optimal accept/reject

decisions of end-stage liver disease patients can change significantly depending on where they
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believe they are on the waiting list. As a result of this, a patient can do significantly better

in terms of overall life expectancy by taking advantage of the partial information available

to her through UNOS’s website when compared to ignoring this information. Since we do

not know how tight our grid-based approximation is, it is not exactly true to argue that

patients can almost completely eliminate the price of privacy by exploiting the available

partial waiting list information. However, as we have found that the maximum price of

privacy to be less than 0.3% over all grid configurations, it is highly possible that this partial

waiting list information can significantly reduce the patients’ price of privacy.

There are some limitations of the study we presented. One is that we aggregated states

in our computations for numerical tractability, which obviously affected our numerical re-

sults. It is hard to assess the direction of this effect, however it is conceivable that our price

of privacy estimates might have been larger with coarser state representations. This limita-

tion will be overcome with more computational power. We also assumed time-homogeneity

in estimating the observation probabilities for our computational study. A more realistic

study should allow these probabilities to be time-dependent. Such an implementation have

immense data requirements and computational power and we leave it for future work.

Furthermore, in our conceptual model and computational study, we did not consider any

objective other than maximizing the patient’s total expected discounted lifetime. Consid-

eration of other objectives such as quality-adjusted life expectancy or incorporation of risk

sensitivity in objectives is left for future work. Indeed, we can incorporate quality adjusted

life expectancy into our current model by including a quality-adjustment parameter and the

current structural results would not be affected by this change. However, we are not aware

of any study that reports utility weights associated with different stages of the liver disease.

It would be interesting to see how the current results would be affected if such utility weights

can be assessed. However, incorporating risk sensitivity of patients and other objectives can

change our model drastically. This area of improvement is left for future work.

Another limitation of our current work is that we neglected game issues involved in this

decision making process. An appropriate model to incorporate game into this situation would

be a partially observable stochastic game. This challenging task is left for future work.

107



5.0 EMPIRICAL ANALYSIS OF LIVER ACCEPT/REJECT DECISIONS

The price of privacy estimates we have computed in Chapters 3 and 4 are based on the

assumption that patients are making their accept/reject decisions optimally so as to maxi-

mize their life expectancy. This chapter examines that assumption by analyzing historical

liver accept/reject decisions. For this purpose, we develop a non-stationary infinite-horizon

Markov decision process (MDP) model and test its performance in an extensive empirical

study, in which we compare the decisions suggested by the model to the actual decisions

made by real patients.

In this empirical analysis, we restrict our study to patients transplanted with living-

donors only. The main reason for this limitation is the unavailability of data for patients

transplanted with cadaveric donors that would reveal the decisions made at various rank

states. In practice, most patients who end up being transplanted with living-donor livers

also join the UNOS waiting list, which is used only for prioritizing patients for cadaveric-

donor livers. In our analysis, we use a patient’s listing date to the UNOS waiting list and the

date she received the living-donor liver transplant to compute her observed pre-transplant

life. By doing so, we assume that a patient’s accept/reject decision process is initiated when

she joins the waiting list. Indeed, we are not aware of any other systematic way to compute

the observed pre-transplant life of a patient if she did not join the waiting list.

This chapter is organized as follows. In Section 5.1, we discuss our data sources and

patterns we observe in these data. In Section 5.2, we review the stationary MDP model of

Alagoz et al. [4] and compare the decisions suggested by this model to the actual decisions of

patients. In Section 5.3, we introduce the non-stationary MDP formulation and discuss com-

putational results associated with this improved model. Finally, we provide some concluding

remarks in Section 5.4.
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5.1 HISTORICAL DATA PATTERNS

We use the publicly available data provided by UNOS for our computational study. This data

set includes all the end-stage liver disease patients who have listed in the UNOS waiting list

between December 1985 and April 2007 and received a liver transplant between September

1987 and April 2007. There are a total of 84,054 liver recipients in this data set. We eliminate

all recipients transplanted with cadaveric-donor livers (80,715) and all non-adult recipients

(aged 17 or younger) transplanted with living-donor livers (1,097). These reduce our data

set to 2,242 patients. For our analysis, we need a patient’s MELD score both at the time she

listed in the waiting list and at the time she received the transplant. From the remaining

data set, we eliminate all patients who are missing at least one of these MELD scores (1,223),

leaving 1,019 patients for further analysis.

The UNOS data is very sparse between listing and transplant. Moreover, most of the

patients in the UNOS data are pre-MELD patients, rendering the use of this data set for

estimating the natural history of patients. To estimate the health transition probabilities

(i.e., the H matrix) for our model, we use a more detailed data set obtained from the

University of Pittsburgh Medical Center (UPMC), which includes only patients who joined

the UNOS waiting list through The Thomas E. Starzl Transplantation Institute at UPMC.

This data set is not publicly available and is the same data set used by Alagoz [2]. There

are a total of 3,009 patients in this data set who joined the system between 1991 and 2000.

Eliminating those patients with missing observations reduces this data set to 1,997 patients.

Roberts et al. [117] classify different liver diseases into 10 groups. Alagoz [2] further

aggregates these groups into 5 categories: (1) cirrhotic diseases that include primary biliary

cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and autoimmune disorders,

(2) hepatitis infections that include hepatitis B and C viruses, (3) acute liver diseases, (4)

cancers, and (5) other liver diseases. We use the natural history model of Alagoz et al.

[3], which incorporates cubic splines to fill in missing observations in the data, to estimate

disease-specificH matrices. We omit patients in disease groups 4 and 5 due to limited sample

size in the UPMC data set. This final filter leaves 721 patients in the UNOS data set for

our analysis (387 in disease group 1, 307 in disease group 2, and 27 in disease group 3).
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Figures 5.1 and 5.2 display the distribution of MELD scores at the time of listing and

at the time of transplant, respectively, for this final cohort of 721 patients. For the entire

cohort, the average MELD score at the time of listing and at the time of transplant is 13.59

and 14.21, respectively. These averages are about the same for each of the three disease

groups.

Figure 5.3 displays scatter plots of the MELD scores at listing against the MELD scores

at transplant for each of the three disease groups and the entire cohort. It shows that

67.18% of the patients in disease group 1 are transplanted with a living-donor liver at the

same MELD score they joined the system or better (i.e., smaller). This fraction drops to

59.28% for patients in disease group 2, and to 55.56% for patients in disease group 3. Overall,

63.38% of all patients received their living-donor liver transplant at a MELD score that is

no worse than their listing MELD score. In other words, more than half of all patients’

health, as measured by the MELD scoring system, improves (or at least stays same) from

the time they are listed in the system until they receive a living-donor liver transplant. This

observation is more frequent in disease group 1 compared to disease groups 2 and 3. One

of the main reasons for such a behavior is the fact that many patients are listed during an

exacerbation of their disease, when they are acutely ill. Therapy in the hospital often makes

such patients transiently better.

Finally, Figure 5.4 displays scatter plots of the MELD scores at listing against the number

of days until transplant. It shows that, generally, the higher a patients listing MELD score

the less she waits before she receives the living-donor liver transplant. For instance, all but

3 patients with a MELD score of at least 20 received their transplants within one year after

being listed in the system (see the bottom-right plot in Figure 5.4). Furthermore, 83.22% of

all patients received their transplant within one year after listing and 95.43% received within

two years after listing.
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Figure 5.1: Distribution of MELD scores at the time of listing
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Figure 5.2: Distribution of MELD scores at the time of transplant
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Figure 5.3: Comparison of MELD scores at listing and at transplant
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Figure 5.4: Comparison of MELD scores at listing and days until transplant
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5.2 STATIONARY MARKOV DECISION PROCESS MODEL

In this section, we review the stationary Markov decision process model of Alagoz et al. [4]

for the optimal timing of living-donor liver transplantation problem.

The optimal timing of living-donor liver transplantation problem assumes that an end-

stage liver disease patient has access to a living-donor, but is ineligible or has decided not

to receive cadaveric liver offers. It further assumes that the living-donor is available for

transplantation at all times and that the donated liver is of fixed quality ` ∈ Φ. The patient

occupies a health state h ∈ Ω. The decision-maker must decide when to accept transplanta-

tion from the available living-donor so as to maximize her total expected discounted reward.

If the patient chooses to wait for one more time period, she accrues an intermediate reward

which is a function of her current health status, denoted rW (h), and faces the same problem

at the next time period, provided she lives. If, on the other hand, the patient chooses to

transplant in the current decision epoch, then she receives a terminal reward which is a

function of her current health status and the quality of the donated liver, denoted rT (h, `),

and terminates the process. A potential caveat to this model is the fact that patients si-

multaneously wait for a cadaveric-donor liver while they are optimizing the timing of their

living-donor liver transplantation. Alagoz et al. [5] present a model for such patients, how-

ever the data calibration requirements for this model is quite high. Therefore, we restrict

ourselves to the simpler model, which we present next.

Alagoz et al. [4] provide the following stationary model for this problem:

v(h) = max

{
rT (h, l); rW (h) + λ

∑
h′∈Ω

H{h′|h} · v(h′)

}
for h ∈ Ω, (5.1)

where λ ∈ [0, 1] is the discount rate. They analyze the structural properties of this model

and solve some example problems. However, they do not present any results comparing the

decisions suggested by this model to the actual decisions of patients.

We solved this stationary model for all of the 721 patients in our data set. We compared

the resulting optimal policy, for each patient, to her actual decisions and computed the

difference in patient’s life expectancy associated with these decisions. Figure 5.5 summarizes

the results.
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Figure 5.5: Actual decisions compared to decisions suggested by the stationary model
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We first investigate if the patient’s MELD score choice to receive the graft follows the

decision rule suggested by the model (see the plots on the left column of Figure 5.5). The

optimal policy suggested by the model is of control-limit type for all of the problems we have

solved. That is, it is optimal to wait for all health states up to a threshold health and to

transplant for all health states on or above the threshold. Let MELD∗ denote this threshold

health state for the optimal policy suggested by the model. Also let MELDT denote the

health state in which patient actually received the living-donor liver transplant. Our results

show that 264 patients (68.22%) from the disease group 1 cohort actually transplanted at

a MELD score lower than what is suggested by the model (see top-left plot in Figure 5.5).

These numbers for disease groups 2 and 3 are 294 (95.77%) and 23 (85.19%), respectively.

In other words, only a small fraction (less than 5%) of disease group 2 patients follow the

decision rule suggested by the model. A slightly larger proportion (about 15%) of disease

group 3 patients make decisions in line with what is suggested by the model. A larger (yet

still disappointing) proportion (more than 30%) of disease group 1 patients make optimal

decisions with respect to maximizing total life expectancy.

Next, we investigate the affect of these apparently suboptimal decisions on patients’

expected lives (see the plots on the right column of Figure 5.5). For this purpose, let ELT

denote the expected remaining life of a patient given she has been transplanted in health

state MELDT . We compute ELT by summing the observed pre-transplant life (i.e., actual

number of days patient waited from the date she listed in the system until she received her

transplant) and the predicted post-transplant life (i.e., rT (MELDT , `), where ` is the fixed

liver quality). Similarly, let EL∗ denote the expected remaining life of the patient given

she follows the optimal policy suggested by the model. We simply take EL∗ to be equal to

the value of starting in health state MELDL, the MELD score of the patient at the time

of listing, and acting optimally as suggested by the model. Our results show that 93.49%

(85.19%) of the disease group 2 (3, respectively) cohort experience shorter expected lives as

a result of suboptimal decision-making. Furthermore, although 68.22% of the disease group

1 cohort acted suboptimally, only 57.11% (221 patients) of the cohort would have lower

expected survival (see top-right plot in Figure 5.5). This perplexing result may be explained

by the fact that some patients join the waiting list with relatively higher MELD scores when
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Table 5.1: Actual decisions compared to decisions suggested by the stationary model

(MELDL ≤ 12)

Disease group Total cases
MELDT < MELD∗ ELT < EL∗

Count Percentage Count Percentage

1 181 165 91.16% 160 88.40%

2 115 109 94.78% 113 98.26%

3 15 12 80.00% 14 93.33%

they are really sick, their health improves over time with the help of medications during

which they accumulate some waiting time, and they transplant at a healthier MELD score

than they were listed. As a result, they accrue much more expected post-transplant life than

the model predicts.

We do a simple test of this hypothesis by eliminating all patients with a listing MELD

score of more than 12 (i.e., eliminate if MELDL > 12). The new results are summarized in

Table 5.1. The results associated with disease groups 2 and 3 have not changed drastically,

although they indicate a higher fraction of suboptimal behavior among the restricted cohorts

compared, respectively, to the results of the entire disease group 2 and 3 patients. Most im-

portantly, we find that a significantly larger proportion (91.16%) of disease group 1 patients

act suboptimally (compare with 68.22%) and, as a result, a significantly larger proportion

(88.40%) of this cohort have shorter expected lives (compare with 57.11%). By restricting

the cohorts to patients with a listing MELD score of at most 12, the average difference in

expected lives increased from 115 days to 412 days for disease group 1 cohort, from 793

days to 1206 days for disease group 2 cohort, and from 536 days to 784 days for disease

group 3 cohort. These numbers also show that patients who are performing better (with

respect to life expectancy) than the stationary model are those who join the waiting list

really sick. These observations motivate us to develop a non-stationary model to represent

different natural histories surrounding diagnosis, listing, and chronic disease progression.
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5.3 NON-STATIONARY MARKOV DECISION PROCESS MODEL

The non-stationary model introduced in this section is motivated by the results associated

with disease group 1 cohort and the discussion surrounding these results in Section 5.2.

Some patients join the waiting list when they are really sick and their natural history does

not follow a typical chronic progression. Rather, for a certain period, these patients usually

improve in health with the help of immediate interventions such as increased use of certain

medications. Therefore, the disease progression for these early stages of listing should be

estimated separately from the later stages, which requires a non-stationary model. This

observation naturally raises the question about the length of this early stage and the number

of such stages.

Inspired by the model of Alagoz et al. [4], we provide a more detailed non-stationary MDP

model as follows. We divide the entire decision horizon into M +1 decision intervals possibly

of different lengths. The first M intervals represent the different natural history surrounding

diagnosis and listing and the last interval represents the chronic disease progression. Let Hm

denote the health transition probability matrix in interval m = 1, . . . ,M , and let H denote

the health transition probability matrix for the last interval m = M + 1. Also let um
n (h) be

the optimal value of state h ∈ Ω at stage n for interval m = 1, . . . ,M . Similarly, let v(h) be

the optimal value of state h ∈ Ω for the last interval. Finally, let Nm denote the number of

decision epochs in interval m = 1, . . . ,M (i.e., Nm represents the length of each interval).

Given discount rate λ ∈ [0, 1], the optimal solution to the non-stationary model is found

by solving the following set of recursive equations:

v(h) = max

{
rT (h, l); rW (h) + λ

∑
h′∈Ω

H{h′|h} · v(h′)

}
for h ∈ Ω, (5.2)

and, for m = 1, . . . ,M and n = 1, . . . , Nm,

um
Nm

(h) =

 v(h) if m = M,

um+1
0 (h) if m < M,

for h ∈ Ω, (5.3)

um
n−1(h) = max

{
rT (h, l); rW (h) + λ

∑
h′∈Ω

Hm{h′|h} · um
n (h′)

}
for h ∈ Ω. (5.4)
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Note that, if M = 0 this model reduces to the stationary model of Alagoz et al. [4]

presented in Section 5.2. We solve equations (5.2)-(5.4) using backward induction on m: we

start with the last interval and proceed our way back to the first interval. Equation (5.2)

solves the optimal stopping problem for the last interval. Once the optimal values for this

interval are obtained, we take these values to be the terminal rewards of the immediately

preceding interval as given in Equation (5.3), change the current interval pointer to the

immediately preceding interval, and use these terminal rewards in optimizing the value

function for the current interval using Equation (5.4). We iterate in this manner, each

time setting the most recent optimal values for the current interval to the terminal rewards

of the immediately preceding interval, until we are done with all the intervals.

In summary, we solve M finite horizon MDP models, possibly of different lengths, for

the first M intervals and one optimal stopping problem, namely, the living-donor model of

Alagoz et al. [4], for the last interval.

For each of the 721 patients in our data set, we solved the non-stationary MDP model

several times, each time varying the parameters M and Nm. The choice of these parameters

are heavily influenced by the resulting estimates for Hm and H matrices. Increasing the

value of Nm for any particular interval m = 1, . . . ,M removes off data from all its successive

intervals, which may leave insufficient data points for these latter intervals to have meaningful

health matrix estimates. The choice of NM is especially crucial since the number of splines,

from which we estimate the health matrices, available at each time point is nonincreasing

in time and, therefore, minimum number of splines are available for the last interval M + 1.

We would like to maximize the number of splines available for the last interval to have a

meaningful H estimate while allowing as much intervals as needed to represent the different

stages of the liver disease. While we were able to allow NM = 30 days for disease groups 1

and 2, we could not allow NM > 5 days for disease group 3 as it would produce an H matrix

that would not allow any transitions to non-dead states from most of the health states.

Considering all these facts, we have tried several values for M and Nm in consultation with

clinicians.

Table 5.2 summarizes the results of solving the non-stationary model for various M and

Nm values. Note that M = 0 corresponds to the results of the stationary model given in
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Table 5.2: Actual decisions compared to decisions suggested by the non-stationary model

Disease
M Nm

Total MELDT < MELD∗ ELT < EL∗

group cases Count Percentage Count Percentage

1

0 - 387 264 68.22% 221 57.11%
1 10 387 333 86.05 311 80.36
1 15 387 333 86.05 312 80.62
1 20 387 333 86.05 314 81.14
1 30 387 335 86.56 314 81.14
2 5, 30 387 324 83.72 225 58.14
2 10, 30 387 335 86.56 302 78.04
2 15, 30 387 334 86.30 307 79.33
2 20, 30 387 335 86.56 313 80.88
2 25, 30 387 335 86.56 314 81.14
3 5, 15, 30 387 334 86.30 271 70.03
3 10, 20, 30 387 337 87.08 307 79.33

2

0 - 307 294 95.77% 287 93.49%
1 10 307 301 98.05 300 97.72
1 15 307 302 98.37 305 99.35
1 20 307 303 98.70 305 99.35
1 30 307 305 99.35 306 99.67
2 5, 30 307 304 99.02 305 99.35
2 10, 30 307 305 99.35 305 99.35
2 15, 30 307 305 99.35 306 99.67
2 20, 30 307 305 99.35 306 99.67
2 25, 30 307 305 99.35 306 99.67
3 5, 15, 30 307 305 99.35 306 99.67
3 10, 20, 30 307 305 99.35 305 99.35

3

0 - 27 23 85.19% 23 85.19%
1 5 27 27 100.00 27 100.00
2 2, 5 27 27 100.00 27 100.00
2 3, 5 27 27 100.00 27 100.00

M : number of finite horizon MDPs solved
Nm : end point(s) of the first M intervals
MELDT : MELD score in which patient actually received the transplant
MELD∗ : MELD score in which model suggests to initiate transplantation
ELT : expected life given patient transplants at MELDT

EL∗ : expected life given patient follows the policy suggested by the model
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Section 5.2. The optimal policy suggested by the non-stationary model is of control-limit

type for all the M and Nm values we have used. We first compare MELDT , the MELD

score in which patient actually received her transplant, to MELD∗, the MELD score to

initiate transplantation as suggested by the model. We observe that the percentage of disease

group 1 patients making suboptimal decisions has increased from 68.22% to about 86% after

incorporating non-stationarity into our model. However, changing the number of intervals

(M) and the number of decision epochs in each interval (Nm) did not produce significant

differences in this percentage. As a result of these suboptimal decisions, compared to the

stationary model, the percentage of disease group 1 patients having shorter life expectancies

has increased from 57.11% to about 80%. Again different choices of M and Nm did not

produce significantly different results with the exception of the configuration M = 2, N1 = 5,

N2 = 30. Figures 5.6-5.9 present scatter plots of MELD∗ versus MELDT (plots on the left

columns) for various M and Nm choices as well as scatter plots of EL∗ versus ELT (plots

on the right columns). These results suggest that a significant proportion of patients are

transplanting at a MELD score lower than what one should transplant at to maximize life

expectancy.

Incorporating non-stationarity causes dramatic changes in the results for disease groups

2 and 3 (see Table 5.2). According to these results, only at most a handful of patients are

making their transplant decisions in accordance with the non-stationary model. As a result,

almost all of the patients in these disease groups are having shorter life expectancies when

compared using the non-stationary model.

Figures 5.10-5.13 display more details about these results for disease group 2 and Figure

5.14 displays similar details for disease group 3. Looking at Figures 5.10-5.13, we notice an

odd vertical clustering of points in the scatter plots of expected lives (see plots on the right

columns), which becomes more prominent as we increase M and NM . We further notice

that there is a horizontal shift of points to the right in the scatter plots of MELD scores as

we increase M and Nm (see plots on the left columns) , implying that the model suggests

to wait until patient’s MELD score reaches really high values (e.g., above 30). Similarly,

looking at Figure 5.14 , we notice unbelievably long life expectancies (e.g., 15,000 days > 40

years) for disease group 3 patients (see plots on the right column).
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When we investigate the reason for such behaviors, we find that they are caused by poor

transition probability estimates, which dramatically overestimates patient’s survival. That

is, lack of sufficient data for disease groups 2 and 3 leaves only a few splines (hence, data

points) for latter intervals of the non-stationary model. These limited number of splines

naturally does not yield clinically plausible transition probability estimates among different

health states. In most cases, we do not observe any transition among several health states,

which exacerbates the problems when there are no transitions allowed to the death state.

This is precisely what is happening in disease groups 2 and 3 as we increase M and Nm. When

M ≥ 1, the H matrix, the transition probability matrix associated with the last interval of

the non-stationary model, significantly overestimates patient survival by not allowing patient

death in most health states. As a result, while we solve the optimal stopping problem for

the last decision interval, the model makes the patient wait to the longest extend possible

and most of the total expected reward is accumulated in this interval, which dominates the

results.

Finally, we repeat the same analysis we did at the end of Section 5.2. Since many patients

join the system with a high MELD score and improve over time, we restricted our attention

to those patients joining the system relatively healthy (i.e., with a listing MELD score of

at most 12). Intuitively, such a restriction should yield increased percentages in Table 5.2.

Table 5.3 presents these results for patients with a listing MELD score of at most 12. For

disease group 1, the percentage of patients acting suboptimally increased from 86% to about

97% and the percentage of patients having shorter expected lives increased from 80% to

about 99%. These results show the need of better non-stationary parameter estimates to

optimize the decisions of patients who join the system relatively sick and gradually improve

over time for a certain period.

5.4 CONCLUSIONS

This chapter is concerned with the issue of assessing whether patients’ actual decisions are

in line with the decisions suggested by existing stationary and enhanced non-stationary
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MDP models. A resolution to this issue would form an important step in identifying true

price of privacy, as all of our price of privacy estimates in Chapters 3 and 4 are based on

the assumption that patients are making their accept/reject decisions optimally so as to

maximize total life expectancy.

We start off with the stationary MDP model of Alagoz et al. [4] and develop a non-

stationary MDP model that uses this existing model. We test the performance of these

models in an extensive empirical study. In this empirical analysis, we only considered patients

transplanted with a living-donor liver. Our numerical results showed significant evidence

that patients actual transplant decisions do not follow their optimal policies to maximize

life expectancy. More than two-thirds of all patients actually find it attractive to proceed

with transplantation at a MELD score lower than their optimal threshold. As a result,

patients realize shorter expected total lives. This disparity may be eliminated by considering

other objectives such as maximizing quality-adjusted life expectancy or incorporating risk

preferences of patient’s into the models. It is actually an interesting research question to

investigate which objective(s) patients are optimizing when they make their decisions. This

and other related issues are left for future research.

The non-stationary model produced clinically plausible results for disease group 1 pa-

tients but not so plausible results for patients in disease groups 2 and 3. In other words,

while the idea of dividing the entire decision horizon into a few intervals to estimate different

natural histories worked well for disease group 1 patients, it backfired for disease groups 2

and 3. This backfire is mainly caused by insufficient data to estimate meaningful transition

probabilities among different health states. This limitation can be overcome by accessing

more comprehensive data sets.
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Figure 5.6: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.7: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.8: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.9: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.10: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.11: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.12: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.13: Actual decisions compared to decisions suggested by the non-stationary model
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Figure 5.14: Actual decisions compared to decisions suggested by the non-stationary model
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Table 5.3: Actual decisions compared to decisions suggested by the non-stationary model

(MELDL ≤ 12)

Disease group M Nm Total cases
MELDT < MELD∗ ELT < EL∗

Count Percentage Count Percentage

1

0 - 181 165 91.16% 160 88.40%
1 10 181 176 97.24 180 99.45
1 15 181 176 97.24 180 99.45
1 20 181 176 97.24 180 99.45
1 30 181 176 97.24 180 99.45
2 5, 30 181 175 96.69 157 86.74
2 10, 30 181 176 97.24 176 97.24
2 15, 30 181 176 97.24 178 98.34
2 20, 30 181 176 97.24 180 99.45
2 25, 30 181 176 97.24 180 99.45
3 5, 15, 30 181 176 97.24 167 92.27
3 10, 20, 30 181 176 97.24 178 98.34

2

0 - 115 109 94.78% 113 98.26%
1 10 115 113 98.26 115 100.00
1 15 115 114 99.13 115 100.00
1 20 115 114 99.13 115 100.00
1 30 115 115 100.00 115 100.00
2 5, 30 115 114 99.13 115 100.00
2 10, 30 115 115 100.00 115 100.00
2 15, 30 115 115 100.00 115 100.00
2 20, 30 115 114 99.13 114 99.13
2 25, 30 115 115 100.00 115 100.00
3 5, 15, 30 115 115 100.00 115 100.00
3 10, 20, 30 115 115 100.00 115 100.00

3

0 - 15 12 80.00% 14 93.33%
1 5 15 15 100.00 15 100.00
2 2, 5 15 15 100.00 15 100.00
2 3, 5 15 15 100.00 15 100.00

M : number of finite horizon MDPs solved
Nm : end point(s) of the first M intervals
MELDL : MELD score in which patient joined the system
MELDT : MELD score in which patient actually received the transplant
MELD∗ : MELD score in which model suggests to initiate transplantation
ELT : expected life given patient transplants at MELDT

EL∗ : expected life given patient follows the policy suggested by the model
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6.0 SUMMARY AND FUTURE RESEARCH

6.1 SUMMARY

This dissertation focuses on the decision problem faced by thousands of end-stage liver disease

patients, namely, the problem of optimally deciding which liver offers to accept and which

liver offers to reject. There is common agreement in the organ transplantation community

that these decisions are significantly affected by the composition of the waiting list, as this

composition determines the chances of receiving offers for each patient. The current liver

allocation system publishes coarse descriptions of this waiting list, from which patients may

obtain their relative chances of receiving offers.

Previous literature [6] incorporates this waiting list information into patient’s decision-

making implicitly through organ arrival probabilities. In this dissertation, we explicitly

incorporate the waiting list information into patient’s decision-making. We use Markov

decision process models for this purpose. Chapter 3 considers the situation when the waiting

list is completely observed by the decision-maker and, hence, she has perfect information

about the waiting list. Chapter 4 improves the model presented in Chapter 3 by allowing

imperfect information about the waiting list to represent the partially observable nature of

this list in the current liver allocation system. After developing the modeling framework for

both situations, we examine intuitively appealing and clinically sound structural properties

of these models such as monotone value functions and control-limit optimal policies. In

proving these structural properties, we introduce a new class of stochastic matrices, namely,

the CCD matrices, and investigate its relationship to well-known classes (e.g., IFR and

TP2 matrices) in the literature. Furthermore, for both models, we provide the results of

extensive computational experiments parameterized by clinical data. These results indicate
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that knowledge of the composition of the waiting list significantly affects the optimal policy.

In particular, a patient is much more selective if she knows that she is near the top of the

waiting list and becomes gradually less selective as her position deteriorates.

We use both of these models to estimate a patient’s price of privacy, which is incurred due

to suboptimal decision making from a lack of perfect waiting list information. By comparing

the solution of the model provided in Chapter 3 to that of the model provided in [6], we

obtain an upper bound on this price. Computational experiments reveal that this bound

is typically on the order of 5% of the maximum total discounted life expectancy incurred

without explicit consideration of the waiting list information. We also compare the solution

of the model provided in Chapter 3 to that of the model provided in Chapter 4 to obtain

more precise estimates of the price of privacy. Our grid-based solution methodology for this

comparison yields a lower bound on this privacy. Computational experiments reveal that

the maximum price of privacy ratio is less than 0.5% over all grid configurations. Although

we cannot exactly argue that patients can almost completely eliminate the price of privacy

by exploiting the available imperfect waiting list information (because we do not know how

tight our grid-based approximation is), we have found significant evidence that the partially

observed waiting list can drastically reduce this price.

Finally, we provide a detailed empirical study in Chapter 5 to assess historical liver

accept/reject decisions, as our price of privacy estimates in the previous chapters are based

on the assumption that patients are maximizing their life expectancy. We provide a non-

stationary MDP model for this purpose and compare the decisions suggested by this model

to the actual decisions of patients. We find significant evidence that majority of the patients

are making suboptimal decisions with respect to the objective of maximizing life expectancy.

6.2 LIMITATIONS AND FUTURE RESEARCH

There are several possible extensions to this dissertation. First, throughout this dissertation,

we focused on the objective of maximizing total discounted life expectancy. However, in

Chapter 5, we have found significant evidence that patients are actually not acting optimally
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with respect to this objective. Consideration of other objectives such as maximizing total

quality-adjusted life expectancy might be a better choice and is left for future research. On

a related note, it is an interesting research question to identify what objectives patients are

optimizing when they are making their accept/reject decisions.

Second, we have assumed risk-neutral patients throughout this dissertation. However, it

is true that many patients are indeed risk -averse and some patients may different preferences

as to the timing of the transplant operation [34]. Incorporation of patient-specific risk and

time preferences into the objective function, which would have enormous data requirements,

is also another area for future research.

Third, we have observed in Chapter 5 that the parameter estimates (H matrix) can

dramatically change the optimal policies and the value functions. One potential limitation

of our current computational experiments is that the parameter estimates used in these

experiments are point estimates. As more data become available, future work should include

extensive sensitivity analysis on these point estimates. Also, this limitation can potentially

be overcome by incorporating robust dynamic programming techniques [75, 103].

A fourth area for future research is related to the information partitions for the partially

observable waiting list model (POWLM). In Chapter 4, we have assumed that the waiting

list information is revealed through partitioning the MELD scores into 4 groups (6-10, 11-18,

19-24, and 25-40) as in the current UNOS allocation system. Analyzing this partitioning

scheme would be an interesting extension to our current model. How does the price of privacy

estimates are affected by changing these partitions? To this end, let p be the number of

MELD partitions and partition i include MELD scores in the range [mi
`, m

i
u] for i = 1, . . . , p,

where mi
` ≤ mi

u, mi
u < mj

` for i < j, and we take m1
` = 6 and mp

u = 40. Finally, let

Γ = {m1
` , m

1
u, m

2
` , m

2
u, . . . ,m

p
` , m

p
u} be a particular partitioning of the MELD scores and

φi(Γ) be the maximum total expected discounted life days of patient i obtained through

optimizing POWLM with partition Γ. Then, for any given p, the problem of minimizing

the price of privacy associated with imperfect waiting list information can be stated as the

following nonlinear program:
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max
∑

i

φi(Γ)

s.t. m1
` = 6

mp
u = 40

mj
` ≤ mj

u for j = 1, . . . , p

mj
u < mj+1

` for j = 1, . . . , p− 1

mj
`, m

j
u ∈ Z.

Finally, the public revelation of the waiting list information naturally gives rise to a

gaming environment, where each patient, when making their own decisions, has to consider

the possible decisions of other patients on the waiting list. Incorporation of this competition

between patients requires notoriously difficult stochastic game models. We could also think

of extending POWLM to a partially observable stochastic game model as we can imagine

such a competition also exists in the current partially observable environment. A comparison

of the results of these two stochastic game models would yield the true price of privacy for the

entire society. The difficulties associated with characterizing the optimal solutions in these

stochastic games may be remedied by a simulation based numerical study as summarized

below:

1. Set n = 0. Pick an (arbitrary) policy for each patient. Denote this strategy profile as π0.

2. Set n = n+1. Using strategy profile πn−1, simulate the waiting list dynamics to estimate

the parameters (Kn and Ln) of the MDP model provided in Chapter 3.

3. Using Kn and Ln, find the optimal policies for each patient using the MDP model. Denote

the resulting strategy profile as πn.

4. Repeat steps 2-3 until the stopping criteria is met.

This algorithm may also be used to evaluate a partially observable stochastic game model.

For this purpose, we should replace the MDP model in steps (2)-(3) with the POMDP model

provided in Chapter 4.
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