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Ji Young Song, PhD 
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Lung cancer is the leading cause of cancer death in the United States.  However, few new and 

effective treatments are available for lung cancer.  A comprehensive understanding of the 

multiple signaling pathways that lead to tumor growth is a prerequisite for more effective and 

targeted cancer treatments.  The purpose of this research was to investigate the relationship 

between proteins [hepatocypte growth factor (HGF), c-Met, and estrogen receptor-beta (ER-beta)] 

and gene expression of ER-beta (ESR2) and lung cancer survival along with identifying 

meaningful expression patterns of seven biomarkers [HGF, c-Met, ER-alpha, ER-beta, 

progesterone receptor (PR), aromatase, and epidermal growth factor receptor (EGFR)].  

We used immunohistochemistry to quantify the expression of seven proteins in primary 

lung tumor tissues from the Lung Cancer Specialized Program of Research Excellence substudy 

(N=204).  The generalized linear mixed model approach, which controlled for sample type 

(tissue microarray vs. whole-section), showed high HGF expression associated negatively with 

advanced cancer stage (Pglobal=0.05) and positively with smoking (Pglobal=0.14).  After 

accounting for stage and other factors, neither HGF nor c-Met expression predicted survival.   

Using a cluster algorithm, two groups were identified: (Cluster 1: high expression of ER-

alpha ER-beta, cytoplasmic PR, EGFR, and aromatase; Cluster 2: high expression of HGF, c-

Met, and nuclear PR).  Two lung cancer subgroups exhibiting dissimilar 7-protein IHC 
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expression patterns were similar in terms of host and tumor characteristics and in terms of 

overall survival (log rank test: p=0.69). 

Among 22 htSNPs of ESR2 gene, we have identified that rare allele of rs1256061 is 

associated with the maximum ER-beta expression among patients with adenocarcinoma, but not 

with squamous cell carcinoma. 

The results of this research enhanced the knowledge of the role of HGF and c-Met on 

lung cancer survival and also suggested that the relationship between genetic variation of ESR2 

gene and protein expression may differ by lung cancer histology. Understanding the roles, the 

expression patterns, and the genetic of steroid hormones, growth factors and their receptors in 

lung cancer is of great public health significance because it may enable biologically directed and 

individually tailored treatment and their possible use as biomarkers for early detection and 

prevention. 
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1.0  INTRODUCTION 

Lung cancer is the leading cause of cancer death in men and women the United States.  160,390 

deaths are estimated in the United Stated in 2007 from lung cancer.  However, epidemiology of 

male and female lung cancer differs.  More women have died each year from lung cancer than 

from breast cancer since 1987.1   Also, even though male lung cancer mortality has declined 

significantly by about 1.9% per year during 1991-2003, female death rates are approaching a 

plateau after continuously increasing for several decades.1,2  It is well known that smoking is the 

major cause of lung cancer.  85% to 90% of all lung cancer patients have smoked cigarettes at 

some time in their lives.3  However, lung cancer also occurs in non-smokers and not all smokers 

get lung cancer.  Interestingly, nonsmokers diagnosed with lung cancer are predominately 

women.4  

Gender differences in lung cancer susceptibility and prognosis are shown in many 

epidemiological studies.  According to Surveillance Epidemiology and End Results (SEER) 

Statistics Review 1975-2005 from National Cancer Institute, women have a higher 5-year 

relative survival rate than men during recent 25 years (18.2 vs. 13.5).1  Prognostic factors 

uniquely associated with female lung cancer may create new therapeutic opportunities.  

Identifying prognostic markers is critical because the 5-year survival rate for patients with all 

stages of lung cancer combined is only 15.7% and the 5 year survival rate for both men and 

women increased only 3% since 1975.1   
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Growth factors and their receptors are attractive targets for cancer therapy due to their 

involvement in cell division and cell survival which may contribute the imbalance in malignant 

cells through the signaling pathways.5  Among many growth factors and their receptors, the 

hepatocypte growth factor (HGF) and its only known receptor, c-Met, are known to be  

promising targets for cancer therapy by its multiple biological functions such as cell 

proliferation, motility, angiogenesis (blood vessel formation), and morphogenesis.6  HGF is a 

multifunctional cytokine and mainly detected in epithelial cells.7  HGF is the ligand for the c-Met 

protein, a tyrosine kinase receptor which constitutively activated by mutations and expressed by 

both epithelial and endothelial cells.5  Also HGF and/or c-Met is overexpressed in many human 

cancers such as breast, prostate, and lung.8-10  Previous studies showed that overexpression of 

HGF and/or c-Met is associated with the poor prognosis of non-small-cell lung cancer (NSCLC) 

patients.11-13  Also, Chen and colleagues found that overexpression of HGF has significant 

correlation with cigarette smoking and tumor stages.14  Since women and younger lung cancer 

patients who have weaker association with smoking exposure develop adenocarcinoma (subtype 

of NSCLC) more often, HGF/c-Met in the lung tumor tissue may be a clue to the prognostic 

difference in gender and histological subtypes.15  Despite the need and potential use of HGF and 

its receptor as the prognostic biomarker for lung cancer, only a few epidemiological studies were 

conducted.    

These reasons, the purpose of the present research is as follows: 1) to identify factors 

associated with HGF and c-Met immunohiotochemistry (IHC) expression in lung tumor tissue, 

2) To examine association between HGF and c-Met IHC expression and lung cancer survival, 3) 

to identify meaningful expression patterns of seven biomarkers [HGF, c-Met, ERα, ERβ, PR, 

aromatase, and EGFR], and 4) to examine the association between subjects ESR2 genotype and 
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ER beta tumor IHC expression in patients with lung cancer.  The following literature review 

presents an overview of lung cancer epidemiology and known risk factors for lung cancer.  A 

more detailed background on HGF/c-Met biology and human genetic of ESR2 as they relate to 

lung cancer is also provided. 

1.1 SPECIFIC AIMS 

In this dissertational research, I aimed to determine the relationship between protein (HGF, c-

Met, and ER-beta) and gene marker expression (ESR2) and lung cancer survival and to identify 

meaningful expression patterns of seven biomarkers [HGF, c-Met, ERα, ERβ, PR, aromatase, 

and EGFR].  To accomplish this goal, I proposed three discrete, but related projects (below): 

1.1.1 Project 1:  HGF AND c-Met:  Immunohistochemical expression and lung cancer 

survival  

1.1.1.1 Specific Aim 1 

Using data from the Lung and Thoracic Malignancies Program (LTMP) Tissue and Blood Bank 

[subjects consented from Genetic Markers of Lung Malignancy (a.k.a., the Carinal Biopsy 

Study)] and tissue microarray and whole section experiment using IHC detection method, Project 

#1investigated if HGF/c-Met can be a strong and independent predictor of survival in lung 

cancer.  As a primary specific aim in Project #1, I examined the relationship of HGF/c-Met 

expression in tumor lung issue with the clinical parameters (smoking, gender, histology, and 

disease stage) of subjects with lung cancer and other lung cancer risk factors.  I explicitly and 
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statistically tested the alternative hypothesis (HA) of difference in the prevalence of high HGF/c-

Met expression in lung tumor tissue between “histological types” of lung cancer, between 

“smoker and non-smoker”, and between “men and women” against the null hypothesis (H0) of 

no difference in the prevalence of high HGF/c-Met expression in lung tumor tissue between 

“histological types” of lung cancer, between “smoker and non-smoker”, and between “men and 

women”. 

1.1.1.2 Specific Aim 2 

As a second specific aim in project #1, I evaluated the association between HGF/c-Met 

expression in tumor lung tissue and lung cancer survival rate and impact HGF/c-Met expression 

level by gender on lung cancer prognosis.  Under the retrospective cohort study design, Project 

#1 explicitly and statistically tested the alternative hypothesis (HA) of difference in survival rate 

of lung cancer patients between HGF/c-Met expression levels in tumor lung tissue against the 

null hypothesis (H0) of no difference in the survival rate of lung cancer patients between high 

and low HGF/c-Met expression in tumor lung tissue.  Additionally, the stratified test was 

performed to test the alternative hypothesis (HA) of difference in the hazard ratio of lung cancer 

patients between subjects with and without high HGF/c-Met expression by tumor lung tissue 

between men and women against the null hypothesis (H0) of no difference in the hazard ratio of 

lung cancer patients between subjects with and without high HGF/c-Met expression by tumor 

lung tissue between men and women. 
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1.1.2 Project 2:  Validation study of Immunohistochemical expression patterns involving 

seven lung tumor markers 

1.1.2.1 Specific Aim 1 

Using data from the Lung and Thoracic Malignancies Program (LTMP) Tissue and Blood Bank 

[subjects consented from Genetic Markers of Lung Malignancy (a.k.a., the Carinal Biopsy 

Study)] and immunohistochemical expression, Project #2 investigated the inter-correlation 

among seven biomarkers: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), 

epidermal growth factor receptor (EGFR), hepatocyte growth factor (HGF), c-Met, aromatase, 

and progesterone receptor (PR).  As a primary specific aim for this project, I evaluated the 

strength and direction of the relationship (correlation) of immunohistochemical expression in 

lung tumor tissue of seven markers.  Also, I identified meaningful expression patterns involving 

these seven interesting and relevant proteins by using a cluster algorithm. I compared the 

identified clusters according to personal host characteristics, tumor stage and histology, and 

survival.   

1.1.3 Project 3:  ESR2 polymorphisms and estrogen receptor beta expression in lung 

tumors 

Using data from the Lung and Thoracic Malignancies Program (LTMP) Tissue and Blood Bank 

[subjects consented from Genetic Markers of Lung Malignancy (a.k.a., the Carinal Biopsy 

Study)] and the IHC expression of ERβ in lung tumors and the genotyping results of the estrogen 

receptor beta gene (ESR2), Project #3 determined if there an association between polymorphisms 

in ESR2 and the protein expression of ERβ in terms of lung cancer survival.   



6 

1.1.3.1 Specific Aim 1 

As a primary specific aim in project #3, I examined the relationship of both cytoplasmic and 

nuclear ERβ protein expression in lung tumors with the clinical parameters (smoking, gender, 

histology, and disease stage) of lung cancer patients and other lung cancer risk factors in order to 

evaluate if protein expression of ERβ can be a strong and independent predictor of lung cancer 

survival.  I explicitly and statistically tested the alternative hypothesis (HA) of difference in the 

median Allred scores of ERβ expression in lung tumor tissue between “histological types” of 

lung cancer, between “smoker and non-smoker”, and between “men and women” against the null 

hypothesis (H0) of no difference in the median Allred scores of ERβ expression in lung tumor 

tissue between “histological types” of lung cancer, between “smoker and non-smoker”, and 

between “men and women”. 

1.1.3.2 Specific Aim 2 

I assessed the association between the polymorphisms in ESR2 gene and the ERβ expression 

status in lung tumor tissue.  I explicitly and statistically tested the alternative hypothesis (HA) of 

difference in prevalence of polymorphisms in ESR2 gene between high and low ERβ expression 

against the null hypothesis (H0) of no difference in prevalence of polymorphisms in ESR2 gene 

between high and low ERβ expression status. Also, I examined whether there are histological 

types differences in the relation of the polymorphisms in ESR gene with ERβ expression in lung 

tumor tissue among study groups.  Therefore, I additionally tested the alternative hypothesis (HA) 

of difference in the distribution of the ER β expression among the polymorphisms in ESR2 gene 

against the null hypothesis (H0) of no difference in the distribution of the ER β expression among 

the polymorphisms in ESR2 gene stratified by two major histological types (adenocarcinoma and 

squamous cell carcinoma) of lung cancer. 
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2.0  LITERATURE REVIEW 

2.1 EPIDEMIOLOGY OF LUNG CANCER 

It is predicted that 213,380 American will have been diagnosed with lung and bronchus cancer in 

2007 alone.1
 
 Lung cancer is the second most commonly diagnosed cancer among men and 

women in the United States and accounts for 15% of all cancers in both men and women 

(excluding non-melanoma skin cancers and in situ cancers).1
 
 Among U.S. lung cancer ranks first 

in terms of cancer mortality in both men and women with 160,390 lung cancer deaths predicted 

for 2007.1  
 
Lung cancer deaths account for 29% of the burden of cancer mortality in the U.S. (31% 

for men and 26 for women).1  Since 1990, the age-adjusted lung cancer death rate in men has 

been decreasing. However, mortality rate in women from lung cancer has increased more than 

two times in recent 25 years1,2  According to Surveillance Epidemiology and End Results 

(SEER) Statistics Review 1975-2005 from National Cancer Institute, the percentage of women 

surviving at least five years after diagnosis has been higher than that of men during recent 25 

years (18.2 vs. 13.5).1  The percentage of men and women surviving at least five years after 

diagnosis is only 15.7% and has increased only 3% since 1975.1  49.5% of men and women with 

5-year survival have localized disease.1 

Lung cancer has two major histological types:  small-cell lung cancer, and nonsmall-cell 

lung cancer.  Non-small-cell lung cancer (NSCLC) is the major form of lung cancer which 
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accounts for 84.7% of invasive lung cancer in 2001-2005 and classified into three histologic 

types: adenocarcinoma, squamous cell carcinoma, and large cell carginoma.1  The proportional 

occurrence of these histological subtypes differs significantly between men and women.1  

Adenocarcinoma is currently the most common histological subtype in both men (33.3%) and 

women(40.4%), and women have proportionally more adenocarcinoma and less squamous cell 

carcinoma compared to men.1   

Cigarette smoking is the most important risk factor for lung cancer.  85% to 90% of all 

lung cancer patients have smoked cigarettes at some time in their lives.3  However, lung cancer 

also occurs in non-smokers and not all smokers get lung cancer.  Interestingly, nonsmokers 

diagnosed with lung cancer are predominately women (3 female: 1 male ratio in never smoker 

lung cancer patients) and the highest proportion of non-smoker with lung cancer developed 

adenocarcinoma.4  Other risk factors for lung cancer are secondhand smoke, radon, asbestos, 

radiation, and a history of tuberculosis.1  Genetic factors along with environmental factors play a 

role in lung cancer development at a younger age.1 

2.2 HGF AND C-MET 

2.2.1 Biology of HGF and c-met 

Hepatocyte growth factor (HGF) was first discovered in the late 1980s.16,17  HGF is a mainly 

paracrine growth factor that is secreted by fibroblasts in the lung and acts upon the c-Met 

receptor expressed by both epithelial and endothelial cells.5,18  HGF is the ligand for the c-Met 

protein, a tyrosine kinase receptor and this ligand-receptor pair initiate signaling pathways 
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promoting proliferation, survival, angiogenesis, and invasion.5   Since HGF has multiple 

biological functions, it is known to be a promising target for cancer therapy.6  HGF is found 

many organs including the mammary gland, lung, kidney, and liver and HGF and/or c-Met is 

overexpressed in many human cancers such as breast, prostate, and lung.8-10,18       

2.2.2 HGF and c-Met protein expression and human cancer 

Many human cancer exhibit overexpression of HGF and/or c-Met.8-10,18  Previous studies showed 

that overexpression of HGF and/or c-Met is associated with the poor prognosis of NSCLC 

patients.11-13  Also, Chen and colleagues found that overexpression of HGF has significant 

correlation with cigarette smoking and tumor stages.14  In vitro, nicotine upregulated HGF 

expression in lung cancer tissue and authors suggest that cigarette smoking may play a key role 

in promoting tumor progression via activation of HGF expression in tumor cells in patients with 

NSCLC.14  Since women and younger lung cancer patients who have weaker association with 

smoking exposure develop adenocarcinoma (subtype of NSCLC) more often, HGF/c-Met in the 

lung tumor tissue may be a clue to the prognostic difference in gender and histological 

subtypes.15   
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Table 2-1  Studies for protein expression level of HGF and c-Met and lung cancer survival 

Authors Biomarker Laboratory 
Assay 

Participants Mean 
 Follow-up 

time 

Results Conclusion 

Siegfried, 
Weissfeld et al. 
199713 

HGF Western blot[1] Total N=56 
NSCLC 
[ADC=47, 
ASC=3, 
BAC=3, 
SCC=3] 

• 29  months 
for censored 
 

• No significant association between ir-HGF 
and other clinical parameters [age (p=0.33), 
stage (p=0.20), smoking history (p=0.56), 
gender (p=0.43), histological groups 
(p=0.76)]. 

• Low ir-HGF showed significantly better 
overall survival compared with elevated ir-
HGF survival (p=0.03, log-rank test). 

• In Cox model, risk continuously increases 
as ir-HGF (as a continuous variable) 
increases (RR=4.11 for ir-HGF level 70 vs. 
level 5) 

Elevated ir-HGF is 
a negative 
prognostic indicator 
in NSCLC. 

Siegfried, 
Weissfeld et al. 
199818 

HGF Western blot[1] Total N=56 
NSCLC 
[ADC=47, 
ASC=3, 
BAC=3, 
SCC=3] 

• 29 months 
for censored 

• 12.2 months 
for deceased 

 

• Elevated HGF is associated with poor 
disease-free and overall survival (p=0.01, 
log-rank test and Wilcoxon test for disease-
free survival). 

• Elevated HGF with stage I had a worse 
survival than low HGF with high stage. 

• In a multivariate Cox analysis, RR=10 for 
HGF greater than 100 units vs. HGF level 
of 1 unit. 

HGF is a negative 
prognostic indicator 
in lung cancer. 

Siegfried, 
Luketich et al. 
200415 

HGF Western blot[1] Total N=59 
NSCLC 
[ADC=48, 
ASC=6, 
BAC=5] 

• 61 months 
for censored 

 

• No significant association between HGF 
levels and other variables (age, gender 
nodal status, stage, smoking history). 

• In multivariate Cox analysis, high-HGF 
group is statistically significant associated 
with poor survival (RR=2.2 for all-cause 
survival, 3.0 for lung cancer survival, and 
3.3 for disease-free survival). 

HGF is a negative 
prognostic indicator 
at all stages of 
disease for 
adenocarcinoma. 
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Table 2-1  (continued) 

Ichimura, 
Maeshima et al. 
199611 

• c-Met 
• HGF (only 

with 11 cell 
lines) 

• Western 
blot[2] 

• IHC used 
only to 
confirm c-
Met[2][3] 

Total N=104 
NSCLC 
[ADC=47, 
SCC=52, 
Others=5] 

• No mean 
follow-up 
reported 

• survival 
curve with 4 
years follow-
up after 
surgery 

• Adenocarcinoma with high c-Met protein 
expression showed worse outcome than 
those without c-Met expression (p<0.01). 
[KM method used for survival based on 
western blot analysis alone] 

• c-Met is more frequently expressed in ADC 
than in SCC. 

• Strong intensity of c-Met is more 
frequently expressed  in the higher stage. 

• IHC results were identical with western 
blot in most cases, but 17 tumors (16.3%) 
showed a discrepancy. 

c-Met is closely 
related to 
progression of  
adenocarcinomas of 
lung. 

Takanami, 
Tanana et al. 
199612 

• c-Met 
• HGF 

IHC[6][7] 
 

Total N=120 
ADC 

• No mean 
follow-up 
reported 

• survival 
curve with 5 
year follow-
up 

• The prognosis was significantly worse in 
the HGF-positive or c-Met-positive patients 
than in the negative patients. 

• c-Met had a significant effect on the 
prognosis, whereas HGF did not. (based on 
multivariate analysis) 

• No significant relationship between 
clinicopathology and HGF expression. 

• Significant relationship between stage and 
c-Met expression (p>0.05). 

• c-Met expression 
is an independent 
poor prognostic 
marker in ADC. 

• HGF tumor 
expression in 
ADC was a poor 
prognostic marker, 
but only in 
univariate analysis 
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Table 2-1  (continued) 

Masuya, Huang 
et al. 20046 

• c-Met 
• HGF  

IHC[2][4] 
 

Total N=88 
NSCLC 
[ADC=46, 
SCC=29, 
LCC=13] 

• 49.8 ±36.1 
months for 
all patients 

 

• Frequency of intratumoral c-Met-negative 
tumors was significantly higher for less 
advanced stages (p=0.0169).  

• Intratumoral c-Met status is a significant 
factor for predicting the prognosis of 
NSCLC patients (RR=2.642, p=0.0029) 

• None of the carcinomas were stromal c-
Met-positive. 

• Survival rate of patients with intratumoral 
c-Met positive tumours were significantly 
lower than for patients with c-Met negative 
tumours (p=0.0095) 

• No significant difference in survival among 
patients in relation to intratumoral and 
stromal HGF status. 

• c-Met expression 
is a negative 
prognostic factor 
for NSCLC 
patients. 
 

Nakamura, Niki 
et al. 200719 

• c-Met 
• HGF 

IHC[5] 
 

Total N=130 
ADC 
[papillary=62, 
acinar=5, 
solid=21, 
BAC=15, 
mixed=27] 

• No mean 
follow-up 
reported 

• survival 
curve with 
80 months 
follow-up  

• High levels of c-Met expression correlated 
with higher pathological stage(≥IIIA) 
(p=0.006). 

• No siginificant differences in survival 
among cases grouped according to their 
expression of HGF, c-Met and phosphor-c-
Met. [Only Kaplan-Meir method used] 

• Neither HGF nor 
c-Met expression 
are associated with 
survival of lung 
adenocarcinoma 
patients. 

Abbreviations:  NSCLC=non-small cell lung cancer, ADC=adenocarcinomas, ASC=adenosquamous carcinomas, BAC=bronchiole-alveolar carcinomas, 
SCC=squamous cell carcinomas, LCC=large-cell carcinomas, RR=relative risk, IHC=Immunohistochemistry, ir=immunoreactive 
[1] a goat polyclonal anti-HGF antibody (R&D systems, Minneapolis, MN) 
[2] a rabbit polyclonal anti-human c-met anti-body (SC-10, Santa Cruz Biotechnology, Inc., Delaware, CA) 
[3] anti-c-met antibody (#18321, IBL Laboratories) 
[4] a rabbit polyclonal antibody against HGF (SC-7949, Santa Cruz Biotechnology INC., Santa Cruz, CA) 
[5] a rabbit polyclonal anti-HGF-α and rabbit polyclonal anti-c-Met antibodies (IBL, Gunma, Japan)  
[6] a rabbit antihuman HGFα polyclonal antibody (#18131, Immune Biotechnology Lab., Fujioka, Gumma, Japan) 
[7] a rabbit antihuman Met polyclonal antibody (SC-28, Santa Cruz Biotechnology INC., Santa Cruz, CA) 
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2.3 ESTROGEN RECEPTOR-BETA 

2.3.1 Human genetics of ESR2 

The official (HUGO) name of estrogen receptor beta is estrogen receptor 2 (ER-beta).  The 

official symbol is ESR2.  The aliases of this gene are Erb, ESRB, ESTRB, NR3A2, ER-BETA, 

and ESR-BETA.  In the human genome, the ESR2 gene is located on chromosome 14, band 

q23.2.  The size of the entire coding sequence (introns and exons) of ESR2 gene is approximately 

61.2 kilobases.  There are 8 exons in the human ESR2 gene.  Also, there are 2 additional 

untranslated exons, 0N and 0K, in the 5’ region and an exon at the 3’ end.  It measures 468 bases 

at the 5’ untranslated region (UTR), and 108 bases at the 3’ UTR.20,21  The total number of amino 

acids in ESR2 gene (residue/ translational length) is 530.22   

Since ESR2 is a member of the nuclear receptor superfamily, it has common structural 

characteristics of this family including five distinguishable domanins named the A/B, C, D, E, 

and F, respectively.23,24  The A/B domain is the N-terminal domain which is the most variable 

region and normally contains a transactivation domain that can interact directly with factors of 

the transcriptional machinery.25  The C domain is the DNA binding domain which involved in 

specific DNA binding and the transactivation capacity of the receptor.24,25  The D domain is 

referred as the hinge domain since it works as a flexible hinge between ligand binding domain 

and the DNA binding domain.  The E domain is the ligand binding domain since it contains 

different sets of amino acids that bind to different ligands.  Even though ERα and ERβ are the 

subtypes of estrogen receptors, these receptor subtypes only shares only 55% of the amino acids 
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sequence for the ligand binding domain.  This may results in different affinities of ligand binding 

between ERα and ERβ.25   The functions of F domain remain undefined.24 

There are five full-length transcripts due to alternative splicing in the human ESR2 

gene.24  ERβ1 is a full-length isoform of human ERβ protein with 530 amino acids and a 

molecular weight of 59.2 KDa translated from 8 exons.  Other full-length ERβ2-5 are translated 

from same sequences with ERβ1 from exon 1 to exon 7 but a unique C-terminus, where the 

amino acids corresponding to exon 8.26,27   

The ESR2 gene has been related to those diseases such as Alzheimer's disease in women, 

breast cancer, bone mineral density, ovarian cancer, coronary artery disease, and prostate cancer 

(Table 2-2).  However, there are no mutations known to cause any specific phenotypes or disease 

at this point.  ESR2 gene product is expressed in human tissues or cells from vascular 

endothelium and regions of the brain, retina, thyroid, lung, bladder, ovary (granulose cells), 

breast, colon, bone marrow, prostate (epithelium), and white blood cell.28  The general function 

of the ESR2 includes estrogen receptor activity, lipid binding, metal ion binding, protein binding, 

receptor antagonist activity, sequence-specific DNA binding, steroid binding, transcription 

coactivator activity, transcription factor activity, and zinc ion binding.  It is involved in the 

estrogen receptor signaling pathway.29 

2.3.2 ESR2 expression in adult lung tissue 

It is important to know whether or not normal adult lung tissue expresses ESR2.  I hypothesize 

estrogen mediated sex-related differences in lung cancer risk and lung cancer related outcomes.  

Since women make more estrogen than men, estrogen may explain male-female differences in 

lung cancer. Moreover, I believe that the ESR2 gene product (ERβ) is the biological factor 
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primarily for mediating these effects. It is hard to accept these notions, unless it can be shown 

that normal lung tissue and/or lung cancer tissue expresses ESR2. 

Soon after cloning ESR2, the discoverers of ESR2 examined ESR2 expression in normal 

human tissues “obtained after surgery performed for different reasons”.28  Using four different 

ESR2 oligonucleotide probes, in situ hybridization detected ESR2 mRNA in lung parenchyma 

and pulmonary blood vessels. Taylor et al. (2000) studied “normal human tissue samples 

obtained from adult human cadavers post mortem or from patients at the time of surgery for 

various pathological conditions”.30  Immunohistochemistry with two polyclonal rabbit anti-rat 

ERβ antibodies, one against N-terminal and a second against C-terminal sequences, showed 

nuclear ERβ expression in bronchiolar columnar epithelial, intermediate, basal, and smooth 

muscle cells.  Omoto et al. (2001) studied histologically normal lung tissue obtained at surgery 

from 35 lung cancer patients. In every case, staining with an anti-ERβ chicken IgY polyclonal 

antibody showed nuclear ERβ expression in more than a quarter of normal bronchial epithelial 

cells.31 

Fasco et al. (2002) studied normal (uninvolved) and malignant (involved) lung tissues 

obtained surgically from 26 patients with stage I or II lung cancer.32  Reverse transcription-

polymerase chain reaction (RT-PCR) detected ESR2 transcripts in uninvolved lung tissue from 

nine (35%) of the 26 lung cancer patients.  Mollerup et al. (2002) studied normal (adjacent-to-

tumor) lung tissue obtained at surgery from 46 non-small cell lung cancer patients.33  In every 

instance, quantitative RT-PCR detected ESR2 mRNA (mean optical densitometry units relative 

to GAPDH ± standard deviation, 1.06±0.81 in women and 1.16±0.77 in men).   

At the University of Pittsburgh Cancer Institute, Stabile et al. (2002) studied six normal 

lung fibroblast cell lines and three primary bronchial epithelial cell cultures produced from upper 
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airway biopsies obtained from lung cancer patients at the time of surgery.34  In every instance, 

RT-PCR detected ESR2 mRNA. In addition, Western analysis with a rabbit polyclonal anti-ERβ 

antibody (PanVer, Madison, WI) directed against the C-terminus (amino acids 512-530) of ERβ 

detected the full length (59kDa) ESR2 protein product.  Finally, Schwartz et al. (2005) used the 

MCA-1974S antibody (Serotec, Oxford, UK), directed against the C-terminus of ERβ1, to stain 

ten normal lung tissue samples obtained at autopsy of patients without history of cancer.35  Using 

a conservative threshold (at least weak (1+) staining of at least 10% of cells), these investigators 

observed “lung bronchus tissue” ERβ expression in 2 (20%) of ten samples.  

Four of the seven studies cited used normal appearing lung tissue harvested from lung 

cancer patients.  Nevertheless, the published literature permits the assertion that ESR2 expression 

has been observed in normal lung tissue from adult humans.  If ESR2 is expressed in normal lung 

tissue, we can speculate that specific genotype (polymorphism) of ESR2 may produce higher 

ERβ protein in normal lung tissue.  In that case, subjects with ERβ overexpression in normal 

lung may be predisposed to lung cancer and ERβ overexpression or underexpression in lung 

tumor tissue may exert antitumoral effects.  However, if the normal tissues are from the lung 

cancer patients, we cannot make any assumption on the role of the ERβ expression for the tumor 

development in normal lung tissue.  Therefore, in this project, the tumor tissues from lung cancer 

patients were used to measure ERβ protein expression status and genotype variants of ESR2 gene. 

2.3.3 ER-beta (ERβ) protein expression and lung cancer 

ERβ, a second isoform of ER, was discovered in 1996.20  Until the discovery of the ERβ, the 

estrogen receptor studies could not distinguish between ERα and ERβ.  Nuclear ERβ positivity 

was presented in 61% of lung tumor tissue and 20% of normal lung tissue sample by using 



17 

immunohistochemistry.35   A study demonstrated the survival differences between gender: 

women with ERβ expression in tumor tissue had a increase in mortality, whereas men with ERβ 

expression had a significant reduction (55%, p=0.04) in mortality compared with those with ERβ 

negative tumors.35  Overexpression of ERβ was significantly more frequent in tumors occurring 

in lung cancer patients without smoking history (53.5%) than in those with smoking history.36  It 

is found that ERβ overexpression is statistically significant favorable prognostic indicator for 

lung cancer patients.36  Kawai and the colleagues found that absence of ERβ expression is 

correlated with poorer overall survival and can be an independent factor predictive of poor 

disease outcome of non-small cell lung cancer patients (hazard ration, 1.9; 95% confidence 

interval, 1.1-3.4; p=0.0264).37  These studies investigating the expression of ERβ in lung cancer 

were conducted by using immunohistochemical staining method.  Based on the study findings, 

ERβ protein expression status can be a potential biomarker identifying patients at high risk.  

2.3.4 ESR2 gene variants and disease association studies 

Three frequently studied ESR2 genetic variants are (1) rs1256049 [RsaI]: a silent G1082A SNP 

in exon 6 (ligand binding domain), (2) rs4986938 [AluI]:  A1730G SNP in the 3′ -untranslated 

region of exon 8, and (3) CA dinucleotide repeat polymorphism in intron 5 (Table C-1).  The 

inheritance of one or another of these three specific ESR2 genetic variants has been studied in 

relation to cancers of the colon or rectum 38, endometrium 39, ovary 40, testis 41, prostate 42-44, and 

breast.45-53  

From an OVID Medline literature search (see page140), sixteen articles investigated the 

association between ESR2 genetic variants and human cancer are identified and evaluated (Table 

2-2).  Only one out of four studies showed the association between ESR2 SNP variants and 
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prostate cancer risk:  rs29877983 located in the promoter region was significantly associated 

with prostate cancer risk (OR=1.22, 95% CI=1.02–1.46) and with localized carcinomas 

(OR=1.33, 95% CI=1.08–1.64).54   The one available study on ESR2 gene and colon and rectal 

cancer showed that G allele of rs1256049 is associated with increased risk of rectal cancer 

among the total population if diagnosed before 60 years of age (OR, 1.68; 95% CI, 1.02-2.79).38  

Seven out of nine breast cancer studies found statistically significant association between breast 

cancer and either single variants or haplotypes or CA repeat of ESR2 (Table 2-2).  However, only 

two of them showed the association with single variants of ESR2:  (1) rs8018687 (*5772G) and 

rs4986938 (*38A) are associated with breast cancer risk in women with benign breast disease51, 

and (2) C(14206)T and rs1256054 are associated with breast in postmenopausal women.46 

Many studies investigated the relationships between single nucleotide polymorphisms 

(SNPs) in the human ESR2 gene and non-cancer disease.  ESR2 polymorphisms are significantly 

associated with bone mass in both men and women.55  Caucasian women with the TC genotype 

for ESR2 rs1256030 had lower LS-BMD than did those with the CC genotype (P=0.02).56  Wang 

firstly detected significant association of ESR2 with hip fractures (rs960070: P=0.0070, 

OR=1.43, 95%CI: 1.10-1.86) and this findings are also supported by haplotype analyses.57   

A nested case-control study with Spanish population showed that rs1271572 SNP T 

variant of ESR2 was significantly more common in patients who developed myocardial 

infarction (P < 0.001).  Assuming a dominant model of inheritance, the association remained 

statistically significant in men [odds ratio (OR) 1.65, 95% CI 1.18-2.30; P = 0.003) but not in 

women (P = 0.754).58  The rs1256030 and rs1256065 SNP of ESR2 were associated with HDL 

cholesterol concentrations in Chinese women (P=0.05).59  Single variants in the ESR2 gene is 

associated with an increased risk of Alzheimer’s disease in women (OR=1.87, 95% CI=1.21-
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2.90), whereas it does not contribute to the disease susceptibility in men.60  It is interesting to 

observe that the relationship between variations in ESR2 gene and diseases may differ by gender. 
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Table 2-2  ESR2 genetic variants and cancer studies 

Author Cancer Associated Variants studied Results 

Thellenberg-
Karlsson, 
Lindstrom et 
al. 200654 

Prostate Yes 28 single nucleotide 
polymorphisms (SNP) spanning 
the entire ERbeta gene from the 
promoter to the 3'-untranslated 
region 

only one polymorphism (rs29877983) located in the promoter region 
was significantly associated with PC risk (OR=1.22, 95% CI=1.02–1.46) 
and with localized carcinomas (OR=1.33, 95% CI=1.08–1.64). 

Chen, Kraft et 
al. 200743 

Prostate Yes Four haplotype tags (rs3020450, 
rs1256031, rs1256049(RsaI), 
rs4986938(AluI)) 

No association between the four tag SNPs in ESR2 and PC risk.  
However, we observed that men carrying two copies of one of the 
variant haplotypes (TACC) had a 1.46-fold increased risk of prostate 
cancer (99% confidence interval, 1.06-2.01) compared with men 
carrying zero copies of this variant haplotype. 

McIntyre, 
Kantoff et al. 
200744 

Prostate No CA repeat polymorphism in 
intron 5 of ESR2 

Unassociated with prostate cancer 

Nicolaiew, 
Cancel-Tassin 
et al. 200961 

Prostate No Eleven polymorphisms: four in 
the coding region 
(rs1256049(RsaI), two in 
introns(rs944050), and five in 
the 3'UTR (rs4986938(AluI), 
rs928554 and rs28440970) 

No association between those polymorphisms and PC risk 

Leigh Pearce, 
Near et al. 
200840 

Ovary Yes Five htSNPs (rs4986938(AluI), 
rs944046, rs1256049(RsaI), 
rs1256031, rs3020450) 

No significant association between the five htSNPs and ovarian 
cancer.  However, Haplotype D (CACAC) increased risk of invasive 
clear cell ovarian cancer (odds ratio, 3.88; 95% confidence interval, 
1.28-11.73; P = 0.016). Haplotype D possibly associated with ovary 
cancer 

Setiawan, 
Hankinson et 
al. 200439 

Endometrium No rs1256049(RsaI), rs1271572, CA 
repeat 

Unassociated with endometrial cancer:  rs1256049 (OR = 1.2; 95%CI: 
0.7-2.3), rs1271572 (OR = 0.8; 95%CI: 0.5-1.1) and CA repeat (22 
repeat allele versus > or = 22 repeat allele, OR = 1.1; 95%CI: 0.7-1.7) 
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Table 2-2  (continued) 

Slattery, 
Sweeney et 
al. 200538 

Colon Yes rs1256049 (RsaI) and CA repeat No association with risk of colon and rectal cancer.  However, G allele 
of rs1256049 associated with increased risk of rectal cancer among 
the total population if diagnosed before 60 years of age (OR, 1.68; 
95% CI, 1.02-2.79).  Having two 25 or more CA repeats in ERß was 
associated with an increased relative risk of colon cancer in women 
[odds ratio (OR), 2.13; 95% confidence interval (95% CI), 1.24-3.64] 
but not in men 

Maguire, 
Margolin et 
al. 200548 

Breast Yes rs1256049(RsaI), 
rs4986938(AluI), and rs928554 
(Cx+56 A-->G) 

No overall association for any of the SNPs studied.  However, One 
haplotype possibly associated with sporadic breast cancer(OR = 3.0, p 
= 0.03) 

Tsezou, Tzetis 
et al. 200852 

Breast Yes Repeat polymorphisms c. 
1092+3607(CA)(10-26) 

Associated with breast cancer 

Breast and 
Prostate 
Cancer 
Cohort 
Consortium, 
Cox et al. 
200853 

Breast Yes Four htSNPs:  rs4986938(AluI), 
rs1256049(RsaI), rs1256031, 
rs3020450 

None of the SNPs were independently associated with breast cancer 
risk; one haplotype possibly associated (OR 1.17, 95% CI 1.07-1.28, p = 
0.0007) 

Gallicchio, 
Berndt et al. 
200651 

Breast Yes rs4986938(AluI,G1730A), 
rs8018687, rs928554, A5696G 
(no rs number) 

ESR2 rs8018687 (*5772G), rs4986938 (*38A) associated with breast 
cancer risk in women with benign breast disease 

Gold, Kalush 
et al. 200447 

Breast Yes 8 SNPs (rs1152579, rs1255998, 
rs1256030, rs1256049 (RsaI, 
G1082A), rs1271572, rs4986938 
(AluI, G1730A),rs928554, 
E2Ex4CorT) 

Several ESR2 haplotypes associated with breast cancer risk 
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Table 2-2  (continued) 

Zheng, Zheng 
et al. 200346 

Breast Yes eight sequence variants 
rs1271572, G(-11943)A, T(-
11891)C, C(14206)T, 
rs1256049(RsaI), rs1256054, 
A(50766)G, G(50995)A 

C(14206)T and rs1256054 associated with breast in postmenopausal 
women 

Iobagiu, 
Lambert et al. 
200649 

Breast No CA repeat Unassociated with breast as single variant, possibly associated in 
combination with other ESR1 or AR repeat polymorphisms 

Georgopoulos
, Adonakis et 
al. 200650 

Breast No rs1256049(RsaI) and 
rs4986938(AluI) polymorphisms 

Unrelated endometrial pathology in Tamoxifen treatement women or 
the stage of breast cancer 

Forsti, Zhao 
et al. 200345 

Breast No six studied polymorphisms: 
rs1256049 (RsaI, G1082A),  
rs4986938 (AluI, G1730A), 
(Nt805(del21), G864A, A1505-
4G, CA repeat in intron 5 

No association 
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2.4 SIGNIFICANCE 

It is estimated that 160,390 people died due to the  lung cancer in 2007 in U.S alone.1  However, 

the percentage of surviving at least five years after lung cancer diagnosis has increased only 3% 

since 1975.1  Also, men and women have different proportion of histological subtype of lung 

cancer: women have proportionally more adenocarcinoma and less squamous cell carcinoma 

compared to men.1   

There is only few effective treatment options are available for lung cancer patients. 

Therefore, understanding of gender difference in cancer development and susceptibility may lead 

to innovative therapeutic approaches.  It is also important to understand the action of as growth 

factors and hormone receptors because not only their biological function which may be a clue to 

the prognostic difference in gender and histological subtypes but also their potential clinical 

implication as an indicator for the selection of appropriate treatment.   

It is also important to investigate the inter-correlations among biomarkers because it may 

provide enhanced insight and understanding of the complexity of molecular mechanisms.  

Although strong experimental evidence suggests that ESR2 play a role in carcinogenesis, the 

results of epidemiologic investigations are less persuasive.  For example, a few polymorphic 

variants of the ESR2 gene have been associated with an increased risk of common cancers like 

prostate, colorectal, and breast cancers in some studies (Table 2-2).   In addition, no study we are 

aware of has yet examined the association between ESR2 gene polymorphisms, ERβ protein 

expression status and lung cancer risk and survival.  



24 

3.0  HGF AND C-MET: IMMUNOHISTOCHEMICAL EXPRESSION AND LUNG 

CANCER SURVIVAL 

To be submitted for publication 

 

Ji Young Song,
1
 Jill Siegfried,

3
 Brenda Diergaarde,

1
 Stephanie Land,

2
 Robert Bowser,

4
 Laura 

Stabile,
3
 Sanja Dacic,

4
 Rajiv Dhir,

4
 Joel L. Weissfeld

1
 

  

1
Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 

Pittsburgh, Pennsylvania  

2
Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 

Pittsburgh, Pennsylvania  

3
Department of Pharmacology and Chemical Biology, School of Medicine, University of 

Pittsburgh, Pittsburgh, Pennsylvania  

4
Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 

Pennsylvania  

 

 

This work was supported in part by National Institutes of Health grant P50 CA090440 SPORE in 
Lung Cancer and R25 CA057703 Education Programs in Cancer Prevention. 
 
 
Abbreviations Used: HGF, hepatocyte growth factor; IHC, immunohistochemistry; OS, overall 
survival; TMAs, tissue microarrays 



25 

3.1 ABSTRACT 

Background: Previous studies have shown association between the lung tumor expression of 

hepatocyte growth factor (HGF) and factors (smoking and advanced stage) related to lung cancer 

outcome. These observations motivated a direct study of lung cancer survival association with 

the lung tumor expression of HGF and its receptor (c-Met). 

Methods: We used immunohistochemistry (IHC) to measure HGF and c-Met expression in 

primary lung tumor tissue semi-quantitatively from n=180 patients, including n=115 represented 

as multiple cores on tissue microarrays (TMA) and n=65 represented as single whole tissue 

sections. We used sample type-specific (TMA vs. whole section) Allred score median cutpoints 

to distinguish high expression from low expression. To identify baseline factors related to HGF 

and c-Met expression, we used a generalized linear mixed model (GLIMMIX) approach, which 

controlled for sample type (TMA vs. whole section) and accounted for the correlated nature of 

the TMA core-level data. We used Cox (proportional hazards) regression to evaluate survival 

associations with expression. All models included factors for age, smoking, stage, sex, race, and 

histology. 

Results: 43.8% and 44.1% of lung tumors showed high HGF and c-Met expression, respectively. 

GLIMMIX showed borderline significant associations between high HGF expression and stage 

[Odds Ratios (OR) relative to stage IA: stage IB 0.66 (95% confidence interval 0.28-1.58), stage 

II 1.26 (95% CI 0.47-3.39), and stage III/IV 0.43 (95% CI 0.19-0.98), Pglobal(Type III)=0.05] and 

between high HGF expression and smoking [(OR relative to never smoker: active smoker 2.35 
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(95% CI 0.74-7.43) and ex-smoker 3.08 (95% CI 0.99-9.57), Pglobal(Type III)=0.14].  Neither 

HGF [Hazard Ratio (HR) 0.87, (95% CI 0.59-1.29)] nor c-Met expression [HR 1.06, (95% CI 

0.71-1.58)] predicted survival. Associations between high expression and survival were 

statistically similar in men and women. 

Conclusion: HGF immunochemical expression in lung tumor correlates positively with smoking 

(an observation consistent with previous reports) and negatively with advanced cancer stage (an 

observation contrary to previous reports). After accounting for stage and other factors, neither 

HGF nor c-Met expression predicted survival. 

3.2 INTRODUCTION 

Lung cancer accounts for 29% of U.S. cancer deaths (31% for men and 26% for women).  

Female lung cancer mortality has increased more than two-fold in the last 25 years [1, 2]. 

Hepatocyte growth factor (HGF), first discovered in the late 1980s [3, 4] is a paracrine 

growth factor secreted by lung fibroblasts.  Lung epithelial and endothelial cells express c-Met, a 

only known tyrosine kinase receptor of HGF [5, 6].  HGF c-Met ligand receptor binding initiates 

signaling pathways that promote cell proliferation, migration, survival, angiogenesis, and 

invasion [6].  These biological functions make the HGF c-Met pathway a promising cancer 

therapy target [7]. 

Some studies show association between HGF and/or c-Met expression and poor 

prognosis after diagnosis of non-small cell lung cancer (NSCLC) [8-10].  NSCLC accounted for 

84.7% of 2001-2005 U.S. lung cancer cases[1].  Adenocarcinoma, the most common histological 
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NSCLC, is proportionally more common in women than men [1] and in never smokers than ever 

cigarette smokers [11]. 

Chen and colleagues found that overexpression of HGF has significant correlation with 

cigarette smoking and tumor stages [12].  In vitro, nicotine upregulated HGF expression in lung 

cancer tissue and authors suggest that cigarette smoking may play a key role in promoting tumor 

progression via activation of HGF expression in tumor cells in patients with NSCLC [12].  Since 

women and younger lung cancer patients who have weaker association with smoking exposure 

develop adenocarcinoma (subtype of NSCLC) more often, HGF/c-Met  in the lung tumor tissue 

may be a clue to the prognostic difference in gender and histological subtypes [13].  The purpose 

of this study is to investigate the association between the expression of HGF/c-Met and risk 

factors, including sex, smoking status, and histology group, and to elucidate the prognostic 

significance of HGF/c-Met immunochemical expression in the tumor lung. 

3.3 METHODS 

3.3.1 Study Population 

The study population included n=203 subjects age 21 years and older who received surgery at a 

University of Pittsburgh Medical Center hospital for the staging or treatment of pathologically 

confirmed primary lung cancer. We assembled risk factor, tumor, and follow-up information 

from several sources, including outpatient paper charts, inpatient and outpatient electronic 

medical records, hospital-based cancer registries, and Social Security Death Index database 

searches. The research used formalin-fixed and paraffin-embedded tissue specimens, processed 
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as tissue microarray (TMA) cores (n=126 subjects) or as whole tissue sections (n=77 subjects).  

Data analyses included 180 subjects (115 of 126 on TMA and 65 of 77 on whole sections) with 

non-missing lung tumor expression data and with known survival outcome. The University of 

Pittsburgh Institutional Review Board approved subject recruitment and tissue use protocols. 

3.3.2 Laboratory Methods 

TMA construction included three 0.6mm diameter lung tumor cores per subject with 

examination of hematoxylin- and eosin-stained sections to verify malignant content.  

Preparations for immunohistochemisty (IHC) included deparaffinization and hydration with 

xylene and ethanol, heat induced antigen retrieval with 10mM citrate buffer at pH 6, quenching 

endogenous peroxidase with 3% hydrogen peroxide for 5 min at room temperature, and blocking 

with non-immune normal serum for 5-20 min at room temperature.  HGF staining used anti-HGF 

(AB-294-NA, R&D Systems) at 1:200 dilution in PBS and EnVision™ reagents (DAKO Corp., 

Carpinteria, CA). c-Met staining used anti-c-Met (SC-10, Santa Cruz) at 1:150 dilution in PBS 

and the MACH 4 Universal HRP-Polymer Kit with DAB (Biocare Medical, LLC. Concord, CA).  

Final steps consisted of incubation with diaminobenzidine (DAB) chromogenic substrate at room 

temperature for 5-10 min and counterstaining with hematoxylin for 2-2.5 min. Breast cancer 

tissue, with and without the application of primary antibodies, were used as positive and negative 

IHC controls. 

The study lung pathologist (S.D.) assessed each TMA core and whole section for 

percentage of tumor cells stained and for intensity of staining.  Scoring for the percentage of 

tumor cells stained used a six-level ordinal scale (0 to 5, respectively, for no cells stained, 0-1% 
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cells stained, 2-10% cells stained, 11-33% cells stained, 34-66% cells stained, and 67-100% cells 

stained).  Scoring for intensity of staining used a four-level ordinal scale (0 to 3, respectively, for 

no, weak, moderate, and strong staining).  Data analyses used a semi-quantitative measure of 

IHC expression in terms of the Allred score (range 0 to 8), the sum of the percentage and 

intensity scores [14]. 

3.3.3 Statistical Analysis 

Variables used in data analyses included age at tissue collection (continuous and categorical), 

race (White, African-American), sex (women, men), smoking status (never, former, active), 

smoking dose duration among ever smokers (<50 pack-years, 50+ pack-years), pathologic stage 

group (IA, IB, IIA/IIB, III/IV), and histology group (squamous cell carcinoma, non-squamous 

non-small cell lung cancer, undifferentiated carcinoma, and small cell carcinoma). The non-

squamous non-small cell lung cancer group included adenocarcinoma, adenosquamous 

carcinoma, bronchioloalveolar carcinoma, and malignant carcinoid. The undifferentiated 

carcinoma group included large cell carcinoma and undifferentiated non-small cell lung cancer.  

Ever cigarette smokers with unknown quit status were grouped with active smokers.  For 

subjects without pathologic stage information, clinical stage information was used instead. 

We used Wilcoxon rank sum and Fisher’s exact tests to evaluate the statistical 

significance of differences according to sample type (TMA vs. whole section). Single variable 

analyses of factors related to HGF or c-Met expression used subject-specific Allred scores 

averaged across TMA cores and applied sample type-specific median cutpoints to distinguish 

between high and low expression.  Multi-variable analyses of factors related to HGF and c-Met 
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expression preserved core-level Allred data and used generalized linear mixed models (SAS 

PROC GLIMMIX) to control for sample type and account for the correlated nature of the TMA 

core-level data.  We specified a first-order autoregressive covariance structure for random core-

level effects within subject. i

Survival analyses modeled times between dates of primary surgery and dates of death, 

with survivors censored on dates last contacted alive. We used the Kaplan-Meier product limit 

estimator and the log-rank statistic to estimate survival and to evaluate the statistical significance 

of differences according to IHC expression level (subject-specific averaged Allred values above 

or below sample type-specific median cutpoints).  We used Cox proportional hazards regression 

to adjust survival for differences in age at tissue collection, sex, smoking status, and stage. 

Finally, we used standardized score process plots and Kolmogorov-type supremum tests to 

evaluate proportional hazards assumptions. 

 All models included variables for age at tissue collection, sex, 

smoking status, and stage. 

All analyses used SAS version 9.2 (SAS Institute, Inc., Cary, North Carolina) and two-

sided p-values. 

3.4 RESULTS 

Fifty one percent of the subject group were women, 9.2% African-American, and 90.8% white 

(Table 3-1).  Mean age was 66.4 years. Few were never smokers (5.8%).  Fifty-eight percent had 

adenocarcinoma, bronchioloalveolar carcinoma, or adenosquamous carcinoma.  Median Allred 
                                                 

i Statistical Analysis with the GLIMMIX Procedure Course Notes, Copyright©2009 SAS Institute Inc. Cary, NC, 
USA.: Page 2-87 
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scores were 7 for HGF and 7 for c-Met.  With Allred score greater than 7 representing high 

expression, high HGF expression was observed in 58.8% of tumors from the TMA set and in 

29.1% of tumors from the whole section set (p=0.0003).  High c-Met expression was observed in 

42.9% from the TMA set and in 53.5% from the whole section set (p=0.2532).  A Table 1-2 

footnote shows sample type-specific cutpoints used in subsequent analyses to distinguish 

between high and low expression.  Representative immunostaining of each marker is shown in 

Figure 3-1. 

Table 3-2 shows subject characteristics by HGF and c-Met expression status.  High HGF 

expression was less frequent and high c-Met expression more frequent in tumors from African-

American subjects (HGF: 28.6% African-American vs. 45.6% white; c-Met: 64.3% African-

American vs. 42.7% white). High HGF expression was more frequent in tumors from women 

(47.7%) than in tumors from men (39.8%).  Ex-smokers and active smokers more often had high 

HGF and c-Met expression than never smokers (HGF: 60.0% of ex-smokers, 46.3% of active 

smokers, versus 20.0% of never smokers; c-Met: 44.4% of ex-smokers, 45.1% of active smokers, 

versus 22.2% of never smokers).  Interestingly, only 12.5% of stage IV tumors showed high 

HGF expression (Table 3-2). 

In generalized linear mixed models (GLIMMIX) that adjusted for age, smoking, stage, 

and sex, men relative to women had 37% and 9% lower odds of high HGF and c-Met lung tumor 

expression, respectively (HGF: OR=0.63, 95% CI 0.36-1.11; c-Met: OR=0.91, 95% CI 0.52-

1.59). However, these sex-related differences were not statistically significant (Table 3-3).  High 

HGF expression was observed more often in ex-smokers (OR=3.08, 95% CI 0.99-9.57, p=0.05) 

and in active smokers (OR=2.35, 95% CI 0.74-7.43, p=0.15) than in never smokers and less 

often in stage III/IV than in stage IA (OR=0.43, 95% CI 0.19-0.98, p=0.05).  High c-Met 
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expression was much more frequent in lung tumors from African-American subjects than in lung 

tumors from white subjects (OR=2.66, 95% CI 1.07-6.59, p=0.03). Lung tumor c-Met expression 

did not differ statistically according to age, smoking status, stage, or histology group. 

Mean and median follow-up times were 5.5 years (standard deviation 0.46 years) and 3.3 

years, respectively.  Cumulative survival at one and three years was 78.1% (139 of 178) and 48.2% 

(80 of 166), respectively.  Univariate (Kaplan-Meier) analyses showed similar survival in high 

and low HGF expression (p=0.33 log-rank test; Figure 3-2) and in high and low c-Met 

expression categories (p=0.82 log-rank test; and Figure 3-3). 

In Cox proportional hazards regression models that adjusted for age, sex, stage, and 

smoking status, mortality was significantly higher in men than in women (HR=1.51, 95% CI 

1.03-2.22), higher in active smokers (HR=2.60, 95% CI 1.15-5.86) and in ex-smokers (HR=1.27, 

95% CI 0.56-2.88) than in never smokers, and higher in more advanced stage than in less 

advanced stage (Table 3-4). However, adjusted analyses still showed no statistically significant 

survival differences according to HGF or c-Met expression (HGF: HR=0.87, 95% CI 0.59-1.29; 

c-Met: HR=1.06, 95% CI 0.71-1.58). Statistically significant survival differences were not 

observed in subgroups restricted to male or female sex (Table 3-5) or in a subgroup restricted to 

non-squamous non-small cell histology (data not shown). 

3.5 DISCUSSION 

In this prospective cohort study of lung cancer patients, we found that HGF immunochemical 

expression in lung cancer was associated positively with smoking and negatively with more 
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advanced cancer stage.  A lung cancer patient who is an active smoker, for example, had 135% 

higher odds of high HGF expression compared to an otherwise similar patient without a smoking 

history. 

Out results are consistent with a previous finding of a positive association between high 

expression of HGF and cigarette smoking status, though our results did not achieve statistical 

significance [12].  Several studies have investigated the associations between the expression of 

HGF [7, 9, 10, 12, 15, 16] or c-Met [7-9, 15] in lung cancer and clinicopathological parameters.  

Chen et al., for instance, observed the correlation between the high expression of HGF in lung 

tumor and higher stage group [12]; however, others did not show any significant association 

between HGF expression in lung cancer patients and other clinical parameters such as age, stage, 

smoking history, gender, histological groups [7, 9, 10, 15, 16].  While previous studies reported 

that high level of c-Met expression was correlated with higher pathological stage, our study did 

not show any statistical associations between c-Met expression and clinical parameters, except 

race [7-9, 15]. 

Few studies in humans have investigated the association between HGF or c-Met protein 

expression in relation to lung cancer survival.  Detection of HGF or c-Met protein expression has 

been most commonly performed using Western blots [5, 8, 10, 16]; another method used is the 

immunohistochemical staining method [7, 9, 15].  Ichimura et al. also used IHC; however, just to 

confirm the results of western blot analysis for c-Met and showed 16.3% discrepancy between 

the results obtained by the two methods [8].  Depending on the method used, previous studies 

reported inconsistent findings on the prognostic significance of HGF protein expression in the 

tumor lung.  All of our previous studies were based on western blot analysis and showed that 

elevated HGF expression in tumor tissue is associated with poor survival in non-small cell lung 
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cancer patients, specifically adenocarcinoma [5, 10, 16].  All of previous studies, which used the 

IHC method, did not show the HGF expression as a significant independent prognostic marker 

for lung cancer patients [7, 9, 15].  Only one IHC method based study reported that high HGF 

expression was associated with poor clinical outcome of lung cancer patients in the univariate 

analysis, but not in a multivariate context [9].   

The contrary finding between our previous studies  [5, 10, 16], which observed poorer 

survival in patients with non-small cell lung tumors expressing more HGF, and this study, which 

has a similar study population, might due to the difference in the methods of measuring the 

protein expression in lung tumors.  Previous studies using western blot quantified the protein 

expression level in a uniformed manner; however, this study with IHC method only could 

measure the protein expression semi-quantitatively through assessing the percentage and 

intensity of tumor cells stained by a pathologist.  This semi-quantitative method of measuring 

IHC expression of marker was used in this study because there is no standardized method to 

measure IHC expression of markers objectively.   

Regardless of the methods used for protein detection, c-Met expression was a negative 

prognostic factor for lung cancer patients [7-9], except only one recent study of Nakamura and 

his colleagues [15].  Nakamura et al. performed immunohistochemical analyses on 130 patients 

with adenocarcinomas of lung, the largest sample size ever reported, and showed no significant 

differences in survival between patients in relation to expression of c-Met [15].  In our study, 

neither HGF nor c-Met expression was statistically significant biomarkers that predict the overall 

survival of lung cancer patients.  Considering the type of method utilized for protein detection, 

our study supports the previous findings on the HGF expression in relation to lung cancer 

survival. 
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One of our goals was to investigate if HGF and c-Met may be the potential factor 

which explains the gender differences in prognosis shown in many epidemiological studies. 

While in our study, men were less likely to have high expression of HGF and c-Met 

compared to women, the risk of death for men who did show a high expression of HGF was 

decreased by 31% (p=0.25) while that of women decreased by only 8% (p=0.73); the association 

between high expression and survival; however, was statistically similar in men and women.  No 

previous study evaluated the prognostic significance of HGF or c-Met protein expression in the 

tumor lung stratified by the gender. 

  A significant limitation to our study is the low statistical power due to the small sample 

size.  However, our study has the largest sample size among the previously reported studies on 

the HGF or c-Met expression in lung cancer patients.  The small sample size was problematic 

especially for investigating the association between high expression of biomarkers and risk 

factors such as smoking status, race, and histology which have disproportional distributions 

across the categories of factors.  Only 10 subjects were never smoker in this study and there are 

only 3 subjects with small cell carcinomas of lung.  Therefore, we had large 95% confidence 

intervals for the association between the risk factors and HGF and c-Met status.  A majority of 

the study population was Whites, thus these results may not apply to lung cancer patients of 

other races or ethnicities.  Interestingly, although only a small percentage of participants were 

African-American, African-American were statistically significantly associated with high c-Met 

expression in lung tumor.  Since our study only used tissues cored from tumor epithelium, not 

stroma, the stromal production of HGF could not be evaluated within lung tumors. 

The laboratory assay procedures were performed in blinded fashion to outcome-related 

information.  In this study, a multilevel generalized linear mixed model was used to control for 
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sample type and to comply with repeated measures from TMA with discrete response.  This 

model accounts the correlations among repeated IHC readings from TMA data on the same 

subject, and also for some possible heterogeneous variances among observations obtained on the 

same subject.  Through modeling the correlation among repeated measures from TMA, we could 

obtain the best linear unbiased predictions.  This statistical method used in this study is unique 

and strengthen our findings because there are no standardized method in quantifying the 

biomarker expression which can explain the results from different laboratory assays (western 

blot vs. IHC). 

Our results showed both consistent and contrary findings to previous reports in 

association between HGF and c-Met expression and the risk factors for lung cancer outcome.  In 

this study, we were not able to replicate our previous observations showing association between 

HGF expression and poor lung cancer survival [5, 10, 16], even though this study has a similar 

study population with previous studies, using immunohistochemistry to measure the protein 

expression.  Future studies should investigate the potential factors which may result 

discrepancies in the observed relations of HGF and c-Met with the prognosis of lung cancer 

patients.  In order to develop the well-defined biomarker of lung cancer prognosis, it is necessary 

to have a comprehensive understanding of various signaling pathways and the effects of genetic 

variation along with its interaction with environmental exposures.  For example, the HGF/c-Met 

pathway shares important signal intermediates such as p44/p42 MAPK, PI3K/AKT, and 

STAT with the epidermal growth factor receptor (EGFR) pathway[17, 18], which are 

already in clinical use by tyrosine kinase inhibitor (TKI)  drugs such as gefitinib and 

erlotinib.  However, the clinical response rate to EGFR-TKI treatment is different between 

lung cancers with EGFR mutations (70%) and without mutations (10%) [19].  Therefore, 
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future studies should investigate the relationships between HGF/c-Met expression and EGFR 

mutations and how such relationships might impact overall survival of lung cancer patients. 
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3.7 TABLES AND FIGURES 

Table 3-1  Subject characteristics: TMA vs. Whole section 

   Tissue source  

  All 
Whole 
section TMA  

Variable Measure n=180 n=65 n=115 p-value1 
Survival status Dead, % 68.3 69.2 67.8 0.87 
Sex Women, % 51.1 50.8 51.3 1.00 
Race African-American, % 9.2 10.2 8.7 0.79 
Age 30-59 years, % 22.2 30.8 17.4 0.13 

60-69 years, % 34.4 30.8 36.5  
70+ years, % 43.3 38.5 46.1  

Smoking status never smoker, % 5.8 6.3 5.5 0.09 
ex-smoker, % 43.4 32.8 49.5  
active smoker, % 50.9 60.9 45.0  

Smoking dose-duration 
(among ever smokers) 

<50 pack-years, % 56.3 54.4 57.4 0.74 
50+pack-years, % 43.7 45.6 42.6  

Stage IA 17.9 15.6 19.1 0.42 
IB 25.7 31.3 22.6  
IIA/B 19.6 20.3 19.1  
III 27.4 28.1 27.0  
IV 9.5 4.7 12.2  

Histology squamous cell carcinoma 33.9 33.9 33.9 0.18 
non-squamous non-small cell 57.8 63.1 54.8  
undifferentiated 6.7 1.5 9.6  
small cell carcinoma 1.7 1.5 1.7  

HGF3 High expression4, % 49.1 29.1 58.8 0.0003 
Allred, Median 7.0 6.0 7.5 <.00012 

c-Met3 High expression4, % 50.0 42.9 53.5 0.25 
Allred, Median 7.1 7.0 7.3 0.872 

1Fisher exact test, except where indicated otherwise 
2 Wilcoxon rank sum test 
3Using subject-specific Allred values averaged across TMA cores 
4Allred >7 
Whole section: 6 missing race, 1 missing smoking status, 3 missing smoking dose-duration 
(among ever smokers), 1 missing stage 
TMA: 6 missing smoking status, 2 missing smoking dose-duration (among ever smokers) 
Smoking dose duration Total N: All=163, Whole section=60 , TMA=103 

 
  



41 

Table 3-2  Frequency of high HGF and high c-Met IHC expression according to subject category 

 
HGF 

Total N=169  
c-Met 

Total N=170 
 N High (%)  N High (%) 
STATUS AT LAST CONTACT      

alive 52 53.8  53 35.8 
dead 117 47.0  117 47.9 

SEX      
women 86 47.7  88 45.5 
men 83 39.8  82 42.7 

RACE      
African-American 14 28.6  14 64.3 
White 149 45.6  150 42.7 

AGE (years)      
30-59 35 42.9  35 40.0 
60-69 57 47.4  58 48.3 
70+ 77 41.6  77 42.9 

SMOKING STATUS      
never smoker 10 20.0  9 22.2 
active smoker 82 46.3  82 45.1 
ex-smoker 70 60.0  72 44.4 

SMOKING DOSE-DURATION 
(among ever smokers)      

<50 pack-years 83 45.8  84 47.6 
50+ pack-years 64 48.4  65 41.5 

STAGE      
IA 30 56.7  30 60.0 
IB 44 47.7  44 34.1 
IIA/B 34 55.9  34 38.2 
III 45 53.3  46 47.8 
IV 16 12.5  16 43.8 

HISTOLOGY GROUP      
squamous cell carcinoma 57 49.1  58 55.2 
non-squamous non-small cell 97 48.5  97 39.2 
undifferentiated 12 58.3  12 33.3 
small cell carcinoma 3 33.3  3 33.3 

High HGF and c-Met expression defined by subject-specific averaged Allred 
values above IHC source-specific Allred median cutpoints (HGF cutpoints: 7.5 
for TMA and 6.0 for whole section; c-Met cutpoints: 7.25 for TMA and 7.0 for 
whole section) 
Total N=Number of subjects with non-missing IHC data 
HGF: 6 missing race (33.3% high expression), 7 missing smoking status (14.3% 
high expression), 22 missing smoking dose-duration (22.7% high expression) 
c-Met: 6 missing race (33.3% high expression), 7 missing smoking status (57.1% 
high expression), 21 missing smoking dose-duration (38.1% high expression) 
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Table 3-3 Results from generalized linear mixed models (SAS PROC GLIMMIX): Adjusted odds ratios (OR) 

and 95% confidence intervals (CI) for associations between personal characteristics and high HGF and high 

c-Met IHC expression 

 HGF  c-Met 

 OR 95% CI p-value*  OR 95% CI p-value* 
SEX          

Women 1.00     1.00    
Men 0.63 0.36 1.11 0.11  0.91 0.52 1.59 0.74 

RACE           
White 1.00     1.00    
African-American 0.95 0.34 2.66 0.91  2.66 1.07 6.59 0.03 

AGE (per year of age) 1.00 0.97 1.03 0.98  1.00 0.97 1.03 0.83 
AGE (years)    0.67     0.40 

30-59 1.00     1.00    
60-69 1.43 0.63 3.24 0.39  1.69 0.76 3.74 0.20 
70+ 1.37 0.62 3.02 0.43  1.24 0.60 2.57 0.56 

SMOKING STATUS    0.14     0.91 
never smoker 1.00     1.00    
active smoker 2.35 0.74 7.43 0.15  1.25 0.32 4.82 0.74 
ex-smoker 3.08 0.99 9.57 0.05  1.33 0.35 5.13 0.67 

STAGE    0.05     0.39 
IA 1.00     1.00    
IB 0.66 0.28 1.58 0.35  0.57 0.24 1.33 0.19 
IIA/B 1.26 0.47 3.39 0.64  0.48 0.19 1.22 0.12 
III/IV 0.43 0.19 0.98 0.05  0.75 0.36 1.55 0.43 

HISTOLOGY GROUP    0.88     0.49 
non-squamous non-small cell 1.00     1.00    
undifferentiated 0.77 0.32 1.86 0.56  0.73 0.22 2.48 0.62 
squamous cell carcinoma 0.85 0.46 1.57 0.60  1.39 0.76 2.54 0.29 
small cell carcinoma 1.31 0.25 6.95 0.75  0.34 0.02 4.89 0.42 

High HGF and c-Met expression defined by subject-specific averaged Allred values above IHC source-specific Allred 
median cutpoints (HGF cutpoints: 7.5 for TMA and 6.0 for whole section; c-Met cutpoints: 7.25 for TMA and 7.0 for 
whole section) 
Every model includes terms for age (continuous), sex , smoking status, stage 
*Wald chi-square test 
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Table 3-4  Results from Cox proportional hazards regression survival models: Adjusted hazards 

ratios (HR) and 95% confidence intervals (CI) 

 HR (95% CI) p-value* 
SEX (men vs. women) 1.51 (1.03, 2.22) 0.03 
RACE (African-American) 1.42 (0.72, 2.83) 0.31 
AGE (per year of age) 1.03 (1.01, 1.05) 0.001 
AGE (years)  0.01 

30-59 1.00  
60-69 1.74 (1.00, 3.04) 0.05 
70+ 2.24 (1.34, 3.76) 0.002 

SMOKING STATUS  0.001 
never smoker 1.00  
active smoker 2.60 (1.15, 5.86) 0.02 
ex-smoker 1.27 (0.56, 2.88) 0.56 

STAGE   <.0001 
IA 1.00  
IB 1.59 (0.83, 3.06) 0.17 
IIA/B 4.39 (2.21, 8.72)  <.0001 
III/IV 4.00 (2.17, 7.36)  <.0001 

HISTOLOGY GROUP  0.29 
non-squamous non-small cell 1.00  
undifferentiated 1.73 (0.83, 3.63) 0.15 
squamous cell carcinoma 1.25 (0.82, 1.92) 0.30 
small cell carcinoma 2.38 (0.70, 8.16) 0.17 

Every model includes terms for age (continuous), sex, race, smoking 
status, stage, and histology group. 
* Wald chi-square test. 
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Table 3-5  Results from Cox proportional hazards regression: Adjusted hazards ratios (HR) and 95% confidence intervals (CI) expressing 

associations between HGF and c-Met IHC expression and survival 

 All Subjects  Women  Men 

 
 

HR (95% CI) p-value*  HR (95% CI) p-value*  HR (95% CI) p-value* 

HGF High vs. low expression 0.87 (0.59, 1.29) 0.49  0.91 (0.53, 1.56) 0.73  0.69 (0.37, 1.30) 0.25 

Per Allred unit 1.02 (0.91, 1.13) 0.79  1.02 (0.87, 1.20) 0.79  1.02 (0.88, 1.18) 0.77 

c-Met High vs. low expression 1.06 (0.71, 1.58) 0.79  0.91 (0.53, 1.58) 0.74  1.26 (0.70, 2.29) 0.44 

Per Allred unit 1.08 (0.95, 1.24) 0.25  1.07 (0.90, 1.28) 0.46  1.10 (0.90, 1.33) 0.35 

Every model includes terms for age, sex (where appropriate), smoking status, and stage. 
High HGF and c-Met expression defined by subject-specific averaged Allred values above IHC source-specific Allred median cutpoints 
(HGF cutpoints: 7.5 for TMA and 6.0 for whole section; c-Met cutpoints: 7.25 for TMA and 7.0 for whole section) 
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 Low High 

HGF 

  
1 + 1 = 2 3 + 5 = 8 

c-Met 

  
1 + 3 = 4 3 + 5 = 8 

 Intensity Score + Proportion Score = Total Score 
Figure 3-1  Representative immunohistochemical staining pattern of HGF and c-Met from whole section of lung tumor tissues.  An intensity 

score and proportion scores were added to obtain a total immunohistochemical score.  Each score is shown under the photos. 
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Figure 3-2  Kaplan Meier survival curves for high (Positive) and low (Negative) HGF expression level 

categories 
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Figure 3-3  Kaplan Meier survival curves for high (Positive) and low (Negative) c-Met expression 

level categories 
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4.1 ABSTRACT 

Background: Treatment options for lung cancer are few. Steroid hormones, growth factors, and 

their receptors are attractive therapeutic targets.  We attempted to identify meaningful expression 

patterns in lung tumors. These expression patterns may enable biologically directed and patient 

tailored treatments for lung cancer. 

Method:  We analyzed primary lung tumors for immunohistochemical (IHC) expression of the 

seven proteins:  (1) hepatocyte growth factor (HGF), (2) c-Met, (3) estrogen receptor alpha 

(ERα), (4) estrogen receptor beta (ERβ), (5) progesterone receptor (PR), (6) aromatase, and (7) 

epidermal growth factor receptor (EGFR).  We used a cluster algorithm (implemented in Cluster 

2.11, http://rana.lbl.gov/EisenSoftware.htm) to sort 175 lung tumors into two more inter-

homogenous grouped IHC expression clusters. We used the standard statistical techniques to 

compare clusters according to personal host characteristics, tumor stage and histology, and 

survival. 

Results: ERα, ERβ, cytoplasmic PR, EGFR, and aromatase expression characterized the 77 

tumors grouped into one cluster (cluster 1) and HGF, c-Met, and nuclear PR expression 

characterized the 98 tumors grouped into the second cluster (cluster 2).  Clinicopathologic 

features, including age, race, gender, smoking history, histopathology, and stage were 

statistically similar in the two clusters.  There were no significant survival differences between 

the two clusters (log rank test: p=0.6909). 

http://rana.lbl.gov/EisenSoftware.htm�
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Conclusion: Two lung cancer subgroups exhibiting dissimilar 7-protein IHC expression patterns 

were similar in terms of host and tumor characteristics and in terms of overall survival. 

4.2 INTRODUCTION 

Five year lung cancer survival, all stages, is only 15.7%. Five-year survival has improved only 

3% since 1975 [1].  Few new and effective treatments are available for lung cancer. 

Steroid hormones, growth factors and their receptors are attractive targets for cancer 

therapy because these molecules control many biological processes, including cell proliferation, 

apoptosis, motility, angiogenesis, and morphogenesis [2], [3].  For example, small-molecule 

tyrosine kinase inhibitors (TKIs) of epidermal growth factor receptor (EGFR) have entered 

clinical use for treating lung cancer.  Clinical response to EGFR tyrosine kinase inhibition differs 

for lung cancer with (70%) and without EGFR mutations (10%) [4].  The HGF/c-Met pathway 

shares signal intermediates with the EGFR pathway [5, 6].  Many human cancers, including 

breast, prostate, and lung cancer, over-express HGF or c-Met [7-9].  In some studies, HGF or c-

Met over-expression predicts poor non-small-cell lung cancer (NSCLC) prognosis [10-12].  

Immunohistochemistry (IHC) detects nuclear expression of ERβ in 61% of lung tumor and 20% 

of normal lung samples [13].  In vitro studies show cross-talk between EGFR and estrogen 

receptor pathways [14, 15].  Recently, Dr. Nose and colleagues showed correlation between ERβ 

expression and EGFR mutation in lung adenocarcinoma [16, 17].  Immunohistochemistry also 

detects aromatase in NSCLC and aromatase inhibition prevents the tumor growth in vivo [18].   
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A comprehensive understanding of the multiple signaling pathways that lead to tumor 

growth is a prerequisite for more effective and targeted cancer treatments.  This work examines 

the correlations between immunohistochemical (IHC) expression of seven protein markers, 

hepatocyte growth factor (HGF), c-Met, estrogen receptor alpha (ERα), estrogen receptor beta 

(ERβ), progesterone receptor (PR), aromatase, and epidermal growth factor receptor (EGFR), in 

tumor tissue from lung cancer patients.  We presume that protein expression patterns transmit 

fundamental information about underlying tumor biology.  Therefore, we aim to identify 

meaningful expression patterns involving these seven interesting and relevant proteins.  Lung 

cancer patient clusters based on the expression patterns of multiple markers may distinguish 

subgroups with better or worse survival.  These expression patterns may enable biologically 

directed and individually tailored treatment. 

4.3 METHODS 

4.3.1 Study Population 

The study population included n=188 persons aged 21 year-old and older who received surgery 

at a University of Pittsburgh Medical Center hospital for the staging or treatment of 

pathologically confirmed primary lung cancer. We assembled risk factor, tumor, and follow-up 

information from several sources, including outpatient paper charts, inpatient and outpatient 

electronic medical records, hospital-based cancer registries, and Social Security Death Index 

database searches. The research used formalin-fixed and paraffin-embedded tissue specimens, 
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processed as tissue microarray (TMA) cores or as whole tissue sections.  The University of 

Pittsburgh Institutional Review Board approved subject recruitment and tissue use protocols. 

4.3.2 Laboratory Methods 

TMA construction included three 0.6 mm diameter lung tumor cores per subject with 

examination of hematoxylin- and eosin-stained sections to verify malignant content.  

Preparations for immunohistochemisty (IHC) included deparaffinization and hydration with 

xylene and ethanol, heat-induced antigen retrieval with 10 mM citrate buffer at pH 6, quenching 

endogenous peroxidase with 3% hydrogen peroxide for 5 min at room temperature, and blocking 

with non-immune normal serum for 5-20 min at room temperature.  ERα, ERβ, PR, aromatase, 

EGFR, HGF, and c-Met staining used anti-ERα (HC-20, Santa Cruz), anti-ERβ (MCA1974ST, 

Serotec), anti-PR (MAB429, Chemicon International), anti-cytochrome P450 aromatase 

(MCA2077, Serotec),  anti-EGFR (E3138, Sigma Diagnostics), anti-HGF (AB-294-NA, R&D 

Systems), and anti-c-Met (SC-10, Santa Cruz).  Antibodies were diluted in PBS as follows:  

ERα: 1:200 dilution for 30 min at room temperature, ERβ: 1:20 dilution overnight at 4̊C, PR: 

1:80 dilution for 1 hour at room temperature, aromatase: 1:50 dilution overnight at 4˚C, EGFR: 

1:7,500 dilution for 30 min at room temperature, HGF: 1:200 dilution for 1 hour at room 

temperature, and c-Met: 1:150 dilution for 30 minutes at room temperature.   

ERα, ERβ, EGFR, and HGF staining used the EnVision method (DAKO Corp., 

Carpinteria, CA), PR and aromatase staining the Vector ABC method (Vector Labs, Burlingame, 

CA), c-Met staining the MACH 4 Universal HRP-Polymer Kit with DAB (Biocare Medical, 

LLC., Concord, CA).  Final steps consisted of incubation with diaminobenzidine (DAB) 
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chromogenic substrate at room temperature for 5-10 min and counterstaining with hematoxylin 

for 2-2.5 min.  IHC runs used breast cancer as positive control for ERa, ERβ, PR, HGF, and c-

Met, placenta as positive control for aromatase, and laryngeal squamous cell carcinoma as 

positive control for EGFR. Assessments for background staining eliminated the primary 

antibody.   

For each IHC assay except EGFR, the study lung pathologist (S.D.) assessed each TMA 

core and whole section for percentage of tumor cells stained and for intensity of staining.  

Scoring for the percentage of tumor cells stained used a six-level ordinal scale (0 to 5, 

respectively, for no cells stained, 0-1% cells stained, 2-10% cells stained, 11-33% cells stained, 

34-66% cells stained, and 67-100% cells stained).  Scoring for intensity of staining used a four-

level ordinal scale (0 to 3, respectively, for no, weak, moderate, and strong staining).  Data 

analyses expressed IHC expression in terms of the Allred score (range 0 to 8), the sum of the 

percentage and intensity scores.[1]  IHC scoring for EGFR expression used a simple four-level 

ordinal scale (0 (staining in less than 10% cells), 1 (light staining in more than 10% cells), 2 

(moderate staining in more than 10% cells), 3 (strong staining in more than 10% cells)).  Scores 

were averaged for the multiple cores from each patient.  For each patient, there is a nuclear score 

and a cytoplasmic score for ERα, ERβ, PR, and aromatase.  Through the IHC assay evaluation, 

we obtained the eleven IHC measures (HGF, c-Met, ERα cytoplasmic, ERα nuclear, ERβ 

cytoplasmic, ERβ nuclear, PR cytoplasmic, PR nuclear, aromatase cytoplasmic, aromatase  

nuclear, and EGFR)  derived from the initial seven proteins in lung tumors. 
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4.3.3 Statistical Analysis 

For each IHC measures, lung tumors were divided into two (low and medium-high) or three (low, 

median, and high) ordered and integer scored categories based on IHC expression scores (Table 

4-1).  Cytoplasmic and nuclear integer scores for ERα, ERβ, and aromatase, were used to form 

single combined scores for ERα, ERβ, and aromatase because of the moderate to high 

correlations observed between nuclear and cytoplasmic expression values.  We used the 

following equation to form combined scores for ERα and ERβ, combined score = 0.25*(nuclear 

integer score + cytoplasmic integer score) (Figure 4-1).  The combined aromatase score used the 

following transformation, 0.00 to indicate no cytoplasmic or nuclear expression, 0.33 to indicate 

medium cytoplasmic and no nuclear expression, 0.67 to indicate high cytoplasmic and no nuclear 

expression, and 1.00 to indicate any nuclear expression (Figure 4-1).  Therefore, the eight 

constructed markers, instead of the eleven IHC measures, were used in the statistical analyses.  

Pearson correlation coefficient (rho) was used to measure the correlations among protein 

expression levels for lung cancer patients with complete expression data for all eight constructed 

markers.  

Clustering of lung cancer patients was performed with Cluster software, version 2.11, 

after mean centering and normalizing IHC scoresii

                                                 

ii Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patters. 
PNAS 95(25):14863-14868, 1998; 

.  In this clustering procedure, only 175 lung 

tumors with non-missing expression information for at least six of the eight constructed markers 

were included.  We used standard Pearson correlations to express distances between observations 

and the average linkage clustering algorithm to calculate distances that involve clusters with 

http://rana.lbl.gov/EisenSoftware.htm, last accessed March 4, 2010. 

http://rana.lbl.gov/EisenSoftware.htm�
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more than one observation.  Heat map was generated with TreeView program in Cluster software 

to visualize the clusters and IHC expression of the eight constructed markers for lung cancer 

patients. 

We used Fisher’s exact tests to evaluate the statistical significance of differences between 

the last two clusters (cluster 1, n=77 vs. 2, n=98) of subjects combined by the average linkage 

clustering algorithm based on IHC expression of the eight constructed markers.  Variables used 

in analyses comparing two clusters included sample source (TMA, whole section), status at last 

contact (alive, dead), age at tissue collection (30-59, 60-69, 70+ years), race (White, African-

American), sex (women, men), smoking status (active, ex, smoker-NOS, never), smoking dose 

duration among ever smokers (1-25, 26-50, 51-75, 75+ pack-years), pathologic stage group (IA, 

IB, IIA/IIB, III, IV), and histology group (squamous cell carcinoma, non-squamous non-small 

cell lung cancer, undifferentiated carcinoma, and small cell carcinoma). The non-squamous non-

small cell lung cancer group included adenocarcinoma, adenosquamous carcinoma, 

bronchioloalveolar carcinoma, and malignant carcinoid. The undifferentiated carcinoma group 

included large cell carcinoma and undifferentiated non-small cell lung cancer.  Smokers without 

current status were categorized into active smoker group for smoking status variable.  For 

subjects without pathologic stage information, clinical stage information was used instead.   

We used the Kaplan-Meier product limit estimator and the log-rank statistic to estimate 

survival and to evaluate the statistical significance of differences between cluster groups.  

Pearson correlations, comparison between the clusters, and survival analysis used SAS version 

9.2 (SAS Institute, Inc., Cary, North Carolina) and two-sided p-values. 
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4.4 RESULTS 

The results for the eleven IHC measures in 188 lung tumors were classified into three categories 

based on the expression distribution of each IHC measures and the classification summary is 

described in Table 4-1.  Three expression levels have different but relatively similar Allred score 

ranges for each marker. The distributions of the eleven IHC measures are equally proportional 

for each levels, except nuclear aromatase (low=88.8%, medium=11.2%, and no high expression) 

and EGFR (low=69.0%, medium=13.8%, and high=17.2).  

Expression of several constructed markers was correlated (Table 4-2).  Constructed 

markers that had a strong positive correlation (p<0.0001; rho≥0.315) include the following: 

ERα/ERβ, ERα/PR cyto, ERα/EGFR, ERα/aromatase, ERβ/PR cyto, ERβ/EGFR, ERβ/c-Met, PR 

cyto/EGFR, PR cyto/aromatase, EGFR/aromatase.  PR nuclear had weak to moderate negative 

correlations with other constructed markers (rho range: -0.22 to -0.04), except with HGF 

(rho=0.27).  All others had a weak to moderate correlation. 

Data analyses included 175 subjects (119 from TMA and 56 from whole sections) with 

non-missing expression information for at least six of the eight constructed markers.  Heat map 

shows the tree view of lung cancer patient clusters based on their expression of the eight 

constructed markers which were color-coded as: green=negative expression, black=zero, 

red=positive expression, gray=missing (Figure 4-2).  First level clustering in the heat map 

grouped patients into relatively homogeneous two clusters based on expression of the eight 

constructed markers.  Cluster 1 has positive expression of ERα, ERβ, PR cytoplasm, EGFR, and 

aromatase and negative expression of HGF, c-Met, and PR nuclear.  Cluster 2 has the opposite 

expression of the eight constructed markers.   
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Subject characteristics of 175 participants according to major IHC expression categories 

(cluster 1 and 2) are shown in Table 4-3.  77 patients were grouped as cluster 1 (positive 

expression of ERα, ERβ, PR cytoplasm, EGFR, and aromatase) while 98 patients in cluster 2 

(positive expression of HGF, c-Met, and PR nuclear).  There was no difference in sample source 

(TMA vs. whole section) between cluster 1 (TMA: 66.2%) and cluster 2 (TMA: 69.4%) 

(p=0.6571).  There were no associations between cluster groups and clinicopathologic features, 

such as age, race, gender, smoking history, pathologic type and clinical stage (Table 4-3).   

Survival analysis using the Kaplan-Meier method was carried out to assess the prognostic 

significance of the clusters which are defined as sub-groups of lung cancer patients with 

relatively homogenous expressions of eight markers.  There were no significant differences in 

survival among lung cancer patients between two clusters (log rank test: p=0.6909) (Figure 4-3). 

4.5 DISCUSSION 

In this study of lung cancer patients, we evaluated the intercorrelation of IHC expression of eight 

biomarkers.  We also have identified two distinct clusters of patients based on the protein 

expression level of the eight constructed markers.  However, two clusters did not show 

statistically significant difference in patient survival.  Therefore, we fail to identify a cluster of 

the patients who are characterized by the IHC expression of the eight constructed markers and 

who have a distinct survival pattern.   

Two clusters identified in this study were characterized as positive expression of ERα, 

ERβ, PR cytoplasm, EGFR, and aromatase group (cluster 1) and as positive expression of HGF, 
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c-Met, and PR nuclear group (cluster 2).  Identified homogenous expression of the eight 

constructed markers within each cluster may be explained by their biological functions, 

interactions with other markers, and impact on survival. 

Estrogen receptors (α, β) mediate cellular response to estrogen.  It is known that ERβ 

overexpression is a favorable prognostic indicator for lung cancer patients [13, 17, 19-21], while 

ERα expression is associated with a poorer prognosis [19, 22].  Aromatase is a key enzyme for 

estrogen synthesis and was detected in non-small cell lung tumor specimens [14, 18, 23], 

suggesting the autocrine ligand-receptor mechanism of estrogen and its receptors in the lung 

tumors.  Therefore, we were not surprised to observe that both estrogen receptors and aromatase 

were grouped together as one cluster.  Mah et al. has demonstrated that aromatase expression is a 

negative prognostic factor for early-stage NSCLC [16].  Also, recently Abe et al. shows that ERβ 

and aromatase are frequently expressed together in NSCLC [24].  Positive IHC expression of 

ERα showed statistically significant association with positive expression of ERβ and PR [25].  

Also, in addition to the presence of the cross-talk between EGFR and estrogen receptors (ERs), 

recent studies demonstrated the correlation between ER-beta expression and EGFR mutations 

[17, 22].  These findings may be helpful in making medical decisions for individual cancer 

therapy since the clinical response rate to currently available EGFR- tyrosine kinase inhibitors 

treatment is different between lung cancers with EGFR mutations (70%) and without mutations 

(10%)[4].  In our study, patients in cluster 1 also had positive cytoplasmic PR expression. 

HGF is the ligand for the c-Met protein, a tyrosine kinase receptor constitutively 

activated by mutations and expressed by both epithelial and endothelial cells [2].  HGF has 

multiple biological functions such as cell proliferation, motility, angiogenesis (blood vessel 

formation), and morphogenesis [3].  Previous studies showed that c-Met expression was a 
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negative prognostic factor for lung cancer patients [3, 10, 11], except one recent study by 

Nakamura et al. [26].  While some studies used western blot analysis reported that elevated HGF 

expression in tumor tissue is associated with poor survival in non-small cell lung cancer patients 

[12, 27, 28], studies with the IHC method did not show the HGF expression as a significant 

independent prognostic marker for lung cancer patients [3, 11, 26].  It is expected that HGF and 

c-Met are expressed homogeneously among lung cancer patients due to their autocrine 

mechanism in tumor cells regardless of their impact on survival.  However, we were surprised to 

have positive expression of nuclear PR in cluster 2 groups along with HGF and c-Met since 

previous study with IHC method has reported that nuclear PR expression is a favorable 

prognostic factor for NSCLC [29].  However, Raso and colleagues did not show any association 

between the expression of estrogen receptor and nuclear PR expression and overall survival [22].  

Also, no correlations were observed in nuclear PR expression and EGFR mutation status [22]. 

These inconsistent results of nuclear PR expression with a direction of positive association 

with survival may attenuate the negative impact of HGF and c-Met and may explain no 

survival difference between the two clusters identified in our study.   

Our hypothesis for this study was that a useful prognostic marker or a set of markers for 

lung cancer patients can be developed through identifying meaningful expression patterns 

involving the seven interesting and relevant proteins.  This hypothesis was an alternative 

approach that aims to validate the results of Dr. Stabile’s recent study [30].  Dr. Stabile’s study 

utilized the survival information of lung cancer patients through the Cox proportional hazards 

model in order to identify the significant prognostic proteins.  The results showed that patients 

with high expression of cytoplasmic ERβ, aromatase, and EGFR with low PR total expression 

had a higher risk of death than the patients with the opposite protein characteristics [30].  We 
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identified a cluster of subjects (cluster 1) with similar protein expression characteristics with Dr. 

Stabile’s results, except expression of PR.  However, in terms of finding a helpful set of 

prognostic markers, our analytic approach did not to replicate Dr. Stabile’s results. 

The results of this study demonstrate that expressions of several markers were positively 

correlated, except PR nuclear expression.  Two major clusters identified in this study were based 

on IHC expression information derived from the seven proteins.  Our method, which ignores 

outcome information when grouping tumors according to IHC expression, did not identify two 

major subgroups with differing host and tumor characteristics or clinical outcomes.  However, 

two major clusters identified in this study are interesting due to the biological functions of the 

proteins composed in each cluster.  For example, the patients in the second cluster have 

relatively high expression of HGF, c-Met, and PR nuclear when compared with the others.  This 

identified cluster supports the idea that autocrine HGF-c-Met signaling plays significant roles in 

the progression of lung tumors. 

Due to multiple interactions between hormones and growth factors, it is difficult to 

predict the patient survival based on a single marker expression.  This may explain the null 

finding of our study which investigated the association between the expression of HGF/c-Met 

and lung cancer survival without accounting for the role of other related hormones and growth 

factors.  Therefore, future studies investigating the prognostic significance of a single protein 

marker in the tumor lung should consider the impact of multiple interactions between other 

relevant hormones and growth factors on overall survival of lung cancer patients through 

identifying more specific and meaningful expression patterns. 
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4.7 TABLES AND FIGURES 

 

 

Table 4-1  Immunohistochemisty results, 11 IHC measures in n=188 lung tumors 

  Expression level, Allred range  Expression level, % 
Marker n Low Medium High  Low Medium High 
HGF 169 0.0-6.2 6.3-7.9 8.0  33.7 31.4 34.9 
c-Met 170 0.0-6.5 6.6-7.7 7.8-8.0  34.1 34.7 31.2 
ERα cytoplasmic 177 0.0 0.1-6.3 6.4-8.0  27.7 36.2 36.2 
ERα nuclear 177 0.0 0.1-6.4 6.5-8.0  46.9 26.6 26.6 
ERβ cytoplasmic 176 0.0 0.1-7.0 7.1-8.0  21.0 40.9 38.1 
ERβ nuclear 176 0.0-6.5 6.6-7.9 8.0  22.7 21.0 56.3 
PR cytoplasmic 175 0.0 0.1-5.9 6.0-8.0  49.1 25.1 25.7 
PR nuclear 178 0.0 0.1-6.9 7.0-8.0  17.4 39.9 42.7 
Aromatase cytoplasmic 178 0.0 0.1-4.2 4.3-8.0  38.8 29.8 31.5 
Aromatase  nuclear 178 0.0 0.1-8.0   88.8 11.2  
EGFR 174 0.0 0.1-0.6 0.7-3.0  69.0 13.8 17.2 
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Table 4-2  Pearson correlations matrix for eight constructed markers, n=148 lung tumors with complete data 

 ERα ERβ PR cyto EGFR Aromatase c-Met HGF 
ERβ 0.63       
PR cyto 0.55 0.44      
EGFR 0.47 0.41 0.36     
Aromatase 0.32 0.21 0.36 0.38    
c-Met 0.14 0.34 0.08 0.18 0.09   
HGF 0.20 0.12 0.24 0.16 0.17 0.15  
PR nuclear -0.04 -0.22 -0.06 -0.15 -0.08 -0.15 0.27 

        
|r|≥0.162, p<0.05, |r|≥0.211, p<0.01, |r|≥0.267, p<0.001, |r|≥0.315, p<0.0001 
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Table 4-3  Characteristics of lung tumor according to major immunohistochemical expression category. 

 
Cluster 1 

Total N=77  
Cluster 2 

Total N=98 
 

p-value 
 N %  N %  

SAMPLE SOURCE      0.6571 
   TMA 51 66.2  68 69.4  
   Whole section 26 33.8  30 30.6  
STATUS AT LAST CONTACT      0.2151 
   alive 20 26.0  34 34.7  
   dead 57 74.0  64 65.3  
SEX      0.7238 
   women 38 49.4  51 52.0  
   men 39 50.6  47 48.0  
RACE      0.4350 
   African-American 8 10.8  7 7.4  
   White 66 89.2  88 92.6  
AGE (years)      0.6477 
   30-59 14 18.2  22 22.5  
   60-69 29 37.7  31 31.6  
   70+ 34 44.2  45 45.9  
SMOKING STATUS      0.2803 
   active smoker 22 30.1  38 40.0  
   ex-smoker 33 45.2  41 43.2  
   smoker, Not Otherwise Specified 10 13.7  12 12.6  
   never smoker 8 11.0  4 4.2  

SMOKING DOSE-DURATION 
(among ever smokers)      0.1512 
   1-25 pack-years 14 22.2  9 10.1  
   26-50 pack-years 26 41.3  35 39.3  
   51-75 pack-years 11 17.5  23 25.8  
   >76 pack-years 12 19.0  22 24.7  
STAGE      0.5616 
   IA 13 16.9  17 17.4  
   IB 19 24.7  23 23.5  
   IIA/B 19 24.7  16 16.3  
   III 17 22.1  31 31.6  
   IV 9 11.7  11 11.2  
HISTOLOGY GROUP       
   squamous cell carcinoma 28 36.4  30 30.6  
   non-squamous non-small cell 43 55.8  58 59.2  
   undifferentiated 5 6.5  8 8.2  
   small cell carcinoma 1 1.3  2 2.0  
HISTOLOGY GROUP      0.4863 
   squamous cell carcinoma 28 39.4  30 34.1  
   non-squamous non-small cell 43 60.6  58 65.9  
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n=177 

 
n=176 

 
n=178 

Figure 4-1  Three derived immunohistochemical measures, distribution of results for n=188 lung tumors 

1. ERα = 0.25*(ERα cytoplasmic score + ERα nuclear score) and ERβ = 0.25*(ERβ 
cytoplasmic score + ERβ nuclear score). 

2. Aromatase = 0.00 indicates no cytoplasmic or nuclear expression, Aromatase = 0.33 
indicates medium cytoplasmic and no nuclear expression, Aromatase=0.67 indicates high 
cytoplasmic and no nuclear expression, and Aromatase=1.00 indicates any nuclear 
expression. 
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Figure 4-2  Heat map for n=175 lung tumors with non-missing expression information for at 

least six of eight immunohistochemical markers.  Tumor clustering uses Cluster version 2.11, 

after mean centering and normalizing immunohistochemical scores (Eisen MB, Spellman PT, 

Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patters. PNAS 

95(25):14863-14868, 1998; http://rana.lbl.gov/EisenSoftware.htm, last accessed March 4, 2010). 

We used standard Pearson correlations to express distances between observations and the 

average linkage clustering algorithm to calculate distances that involve clusters with more than 

one observation. 

 

http://rana.lbl.gov/EisenSoftware.htm�
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Figure 4-2  Heat map for n=175 lung tumors with non-missing expression information for at least six of eight 

immunohistochemical markers.
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Figure 4-3  Kaplan-Meier survival curves according to major immunohistochemical expression category, with 

77 (57 deaths) and 97 (64 deaths) in clusters 1 and 2, respectively 
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5.1  ABSTRACT 

Objective: To investigate the association between the genetic variations in the ERβ gene (ESR2) 

and ERβ protein expression in lung tumors. 

Methods: We used genetic results of 135 lung cancer patients with nuclear and cytoplasmic 

expression of ERβquantified by immunohistochemistry (IHC) on tissue microarrays (TMA) or 

on single whole tissue sections.  A total of 22 single nucleotide polymorphisms (SNPs) were 

selected using literature search, NCBI Entrez SNP, the Cancer Genome Anatomy Project (CGAP) 

SNP500Cancer Database, HapMap Project, and FastSNP.  Genotyping was done using Squenom 

iPlexGold.  The Jonckheere-Terpstra test was used to test the null hypothesis that the distribution 

of the ERβ IHC expression does not differ among genotypes of 22 htSNPs.  Unconditional 

logistic regression model was fitted to assess the association between genotype of three htSNPs 

(rs8021944, rs1256061, and rs10146204) and cytoplasmic and nuclear ER-beta expression score 

in lung tumors for all subjects. 

 Results:  Three ESR2 htSNPs (rs8021944, rs1256061, and rs10146204) were associated with 

nuclear ERβ expression. Subgroup analysis based on histological types of lung cancer suggests 

that the rs1256061 association with ERβ expression may be specific to adenocarcinoma of lung.  

Maximum ERβ expression (Allred score=8) was observed more often in tumors from patients 

with the CA or AA genotype [nuclear: Odds Ratios (OR) relative to Allred ≤ 6: 3.54 (95% 

confidence interval 1.22-10.3) and cytoplasmic: OR relative to Allred=0: 5.08 (95% CI 1.47-

17.6)] than the CC genotype at rs1256061.  Maximum ERβ expression was observed more often 

in patients with the GA or AA genotype [nuclear: OR relative to Allred ≤ 6: 3.71 (95% CI 1.31-
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10.6) and cytoplasmic: OR relative to Allred=0: 4.00, 95% CI 1.26-12.7)] than the GG genotype 

at rs10146204. 

Conclusion:  We found that individuals with at least one rare allele of two htSNPs (rs1256061 

and rs10146204) are associated with maximum expression of both cytoplasmic and nuclear ERβ 

expression in the dominant inheritance model, compared to non-carriers.  

5.2 INTRODUCTION 

ERβ, a second estrogen receptor (ER) isoform was discovered in 1996 [1].  Until the discovery 

of the ERβ, the estrogen receptor studies could not distinguish between ERα and ERβ.  Nuclear 

ER-beta positivity was present in 61% of lung tumor tissue and 20% of normal lung tissue 

sample by using immunohistochemistry [2].  A study demonstrated the survival differences 

between genders: women with ER-beta expression in tumor tissue had a increase in mortality, 

whereas men with ER-beta expression had a significant reduction (55%, p=0.04) in mortality 

compared with those with ER-beta negative tumors [2].  Overexpression of ER beta was 

significantly more frequent in tumors occurring in lung cancer patients without smoking history 

(53.5%) than in those with smoking history (36.6%, P = .004) [3]. 

ESR2 is the estrogen receptor 2 gene.  In the human genome, the ESR2 gene is located on 

chromosome 14, band q23.2.  The size of the entire coding sequence (introns and exons) of 

ESR2 gene is approximately 61.2 kilobases.  There are 8 exons in the human ESR2 gene.  Also, 

there are 2 additional untranslated exons, 0N and 0K, in the 5’ region and an exon at the 3’ end.  
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It measures 468 bases at the 5’ untranslated region (UTR), and 108 bases at the 3’ UTR [1, 4].  

The total number of amino acids in ESR2 gene (residue/ translational length) is 530 [5] .   

Although strong experimental evidence suggests that ESR2 plays a role in carcinogenesis, 

the results of epidemiologic investigations are less persuasive.  For example, a few polymorphic 

variants of the ESR2 gene have been associated with an increased risk of common cancers like 

prostate [6, 7], colorectal [8], and breast cancers [9-14] in some studies.  Only one [6] out of four 

studies showed the association between ESR2 SNP variant and prostate cancer risk:  rs29877983 

located in the promoter region was significantly associated with prostate cancer risk and with 

localized carcinomas [6, 7, 15, 16].  The one available study on ESR2 gene and colon and rectal 

cancer showed that G allele of rs1256049 is associated with increased risk of rectal cancer 

among the total population if diagnosed before 60 years of age [8].  Six out of nine breast cancer 

studies found statistically significant association between breast cancer and either single 

nucleotide variants [10, 14] or haplotypes [9, 11, 12] or CA repeat [13] of ESR2 [9-14, 17-19].  

However, only two of them showed the association with single nucleotide variants of ESR2:  (1) 

rs8018687 (*5772G) and rs4986938 (*38A) are associated with breast cancer risk in women 

with benign breast disease[10], and (2) C(14206)T and rs1256054 are associated with breast in 

postmenopausal women [14].  In addition, no study has yet examined the association between 

ESR2 gene polymorphisms and ERβ protein expression in tumor lung. 

We conducted a study of ESR2 gene polymorphisms in relation to immunohistochemical 

expression of ERβ in lung tumors.  Our hypothesis was that genetic variation in the ER-beta gene 

might alter the protein expression level of the gene in lung tumor.  In addition to 22 selected 

single nucleotide polymorphisms, we also investigated associations between ESR2 haplotypes  

and both cytoplasmic and nuclear expression. 
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5.3 METHODS 

5.3.1 Study Population 

The study population included n=204 21 year-old and older persons who received surgery at a 

University of Pittsburgh Medical Center hospital for the staging or treatment of pathologically 

confirmed primary lung cancer. We assembled risk factor, tumor, and follow-up information 

from several sources, including outpatient paper charts, inpatient and outpatient electronic 

medical records, hospital-based cancer registries, and Social Security Death Index database 

searches.  

As described in Figure 5-1, a DNA sample was obtained for 185 (90.7%) of 204 study 

subjects.  Due to lack of sufficient amounts and purity of DNA sample for genotyping, 13 

subjects were dropped and genotyping attempted for only 172 subjects.  Among 172 subjects 

genotyped, only 146 subjects had good genetic data (high call rates).  Subjects with less than four 

missing SNPs out of 18 SNPs in the first plex or with less than two missing out of 4 SNPs in the 

second plex were considered as having the high call rates.  In this study, statistical analyses were 

performed only with 135 subjects with non-missing lung tumor expression data and with good 

ESR2 genotyping data.  The research used formalin-fixed and paraffin-embedded tissue 

specimens, processed as tissue microarray (TMA) cores or as whole tissue sections in order to 

obtain the immunohistochemical expression of ERβ protein in lung tumors.  The University of 

Pittsburgh Institutional Review Board approved subject recruitment and tissue use protocols. 
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5.3.2 Single nucleotide polymorphisms (SNPs) selection methodology 

We conducted searches for known ESR2 SNPs in the human from five data sources: (1) OVID 

Medline®, (2) NCBI Entrez SNP 3 Cancer Genome Anatomy Project (CGAP) 

SNP500Cancer Database

, (3) the 

4 International HapMap Project [20], (4) the 5 FastSNP, and (5) 6

Three frequently studied ESR2 variants in relation to cancers were identified through 

OVID Medline literature search: (1) rs1256049 (RsaI): a silent G1082A SNP in exon 6 (ligand 

binding domain), (2) rs4986938 (AluI):  A1730G SNP in the 3′ -untranslated region of exon 8, 

and (3) D14S1026: a CA dinucleotide repeat polymorphism in intron 5 [22]. 

 [21]. 

A HapMap Data Rel 24/phase II Nov 08 database (NCBI build 36) query restricted to the 

CEU population (N=90 Utah residents with ancestry from northern and western Europe) 

identified 169 SNPs in chromosome 14 (position 63743506 to 63895021), a 151.5 kb genomic 

region spanning 20 kb upstream and 20 kb downstream of the estrogen receptor beta isoform 2 

(NM_001040276). 

SNP500Cancer, Entrez SNP, FastSNP, and CEU HapMap database searches identified a 

total of 1,149 SNPs according to dbSNP identifier (“rs number”), including 154 SNPs common 

to CEU HapMap and non-HapMap sources (SNP500Cancer, Entrez SNP, and FastSNP).  SNPs 

were considered as high priority SNPs if they were included in SNP500Cancer SNPs, coding 

SNPs in Entrez SNP or FastSNP, and promoter-regulator SNPs in FastSNP.  SNP500Cancer, 

                                                 

3 http://www.ncbi.nlm.nih.gov/sites/entrez 
4 http://snp500cancer.nci.nih.gov/home_1.cfm 
5 http://www.hapmap.org/ 
6 http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp 

http://www.ncbi.nlm.nih.gov/sites/entrez�
http://snp500cancer.nci.nih.gov/home_1.cfm�
http://snp500cancer.nci.nih.gov/home_1.cfm�
http://www.hapmap.org/�
http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp�
http://www.ncbi.nlm.nih.gov/sites/entrez�
http://snp500cancer.nci.nih.gov/home_1.cfm�
http://www.hapmap.org/�
http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp�
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Entrez SNP, and FastSNP database searches identified 29 high priority SNPs, including 11 CEU 

HapMap SNPs. 

5.3.3 Haplotype tag-SNP (htSNP) selection procedure 

As noted above, a HapMap search initially identified 169 CEU ESR2 Phase II SNPs. However, 

49 ESR2 SNPs had a zero minor allele frequency (MAF) in the CEU population.  The de Bakker 

pairwise Tagger algorithm [23] at an R2 = 0.80 threshold, as implemented in Haploview 4.1 [24], 

was used to select TagSNPs and the AluI SNP (rs4986938) and the RsaI SNP (rs1256049), 

identified from the literature search, and four eligible high priority SNPs (rs8006145, rs1256031, 

rs1256030, and rs3020450) were forced in the selection . Tagger selected 34 htSNPs, including 

28 SNPs within the ESR2 gene, capturing all 120 SNPs with mean R2 = 0.967. Nine of the 34 

htSNPs captured only low-frequency-low-priority SNPs (MAF < 0.05). The SNP500Cancer 

SNPs rs1256031 captured the six SNPs tagged by the adjacent SNP500Cancer SNP rs1256030. 

Therefore, in total, 25 htSNPs remained after excluding rs1256030 and the low-

frequency-low-priority SNPs. Replacing two low priority SNPs with linked alternatives, a set of 

25 htSNPs could be genotyped.  These 25 htSNPs captured 104 (87%) of the 120 CEU HapMap 

SNPs within 20 kb of ESR2 at R2 ≥ 0.80 with mean R2 = 0.961.  Due to unusual amount of white 

powder in one of the primers for rs1256031 (high priority SNP), a set of 24 htSNPs were 

genotyped on two Sequenom multi-plex panels.   
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5.3.4 Laboratory Assay 

5.3.4.1 TMA construction, immunohistochemical staining, and evaluation 

TMA construction included three 0.6mm diameter lung tumor cores per subject with 

examination of hematoxylin- and eosin-stained sections to verify malignant content.  

Preparations for immunohistochemisty (IHC) included deparaffinization and hydration with 

xylene and ethanol, heat induced antigen retrieval with 10mM citrate buffer at pH 6, quenching 

endogenous peroxidase with 3% hydrogen peroxide for 5 min at room temperature, and blocking 

with non-immune normal serum for 5-20 min at room temperature.  ERβ staining used anti-ERβ 

(MCA1974ST, Serotec) at 1:20 dilution in PBS overnight at 4̊C  and EnVision™ reagents 

(DAKO Corp., Carpinteria, CA).  Final steps consisted of incubation with diaminobenzidine 

(DAB) chromogenic substrate at room temperature for 5-10 min and counterstaining with 

hematoxylin for 2-2.5 min. Breast cancer tissue, with and without the application of primary 

antibodies, were used as positive and negative IHC controls. 

The study lung pathologist (S.D.) assessed each TMA core and whole section for 

percentage of tumor cells stained and for intensity of staining.  Scoring for the percentage of 

tumor cells stained used a six-level ordinal scale (0 to 5, respectively, for no cells stained, 0-1% 

cells stained, 2-10% cells stained, 11-33% cells stained, 34-66% cells stained, and 67-100% cells 

stained).  Scoring for intensity of staining used a four-level ordinal scale (0 to 3, respectively, for 

no, weak, moderate, and strong staining).  Data analyses expressed IHC expression in terms of 

the Allred score (range 0 to 8), the sum of the percentage and intensity scores [25].  The Allred 

scores were averaged for the multiple cores from each patient.  For each patient, there is a 

nuclear score, a cytoplasmic score, and a total score (sum of nuclear and cytoplasmic scores). 
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5.3.4.2 DNA preparation 

DNA was extracted by three different methods depending on the source of DNA available.  For 

either whole blood or tissue samples, DNA (50 subjects) was isolated by using Gentra Systems 

Inc. (Minneapolis, MN) DNA isolation kits (M.R.).  The EASY-DNA Kit 7 from Invitrogen 

Corporation (Carlsbad, CA) was used to extract DNA from frozen lung tissues of 89 subjects 

(J.S. and J.Y.S.).  Genomic DNA was also isolated from formalin-fixed and paraffin-embedded 

(FFPE) tissue specimens (33 subjects) by standard methods using the DNeasy Kit8

DNA quantity and quality was assessed using the Thermo Scientific Nanodrop

 from Qiagen 

Inc. (Valencia, CA).  DNA extraction from FFPE was performed by Clinical Genomics Facility 

of Department of Pathology at University of Pittsburgh Medical School. 

9

5.3.4.3 Genotypeing Method 

 1000 

full-spectrum UV/Vis spectrophotometer. 

Individual genotyping were performed at the University of Pittsburgh Genomics and Proteomics 

Core laboratories (GPCL) using MassARRAY® iPLEX Gold (Sequenom, Inc., San Diego, CA).  

All SNP specific and mass extend oligonucleotides were designed using Sequenom RealSNP 

(www.realsnp.com); assays were designed using MassARRAY Assay Design version 3.1 

(Sequenom, Inc., San Diego, CA). To monitor genotyping quality, a control DNA sample and a 

DNA-free ('negative') control were included, in duplicate, on every plate. 

                                                 

7 Protocol #3 from Invitrogen’s instruction manual for Easy-DNA Kit For genomic DNA isolation (Catalog no. 
K1800-01).  Version F July 21, 2003 25-0056.  (http://www.invitrogen.com/site/us/en/home.html) 
8 The extraction protocol is based on the March 2004 revision of the DNeasy Tissue Handbook supplied by Qiagen 
and modified for PET with support from Qiagen technical support. (http://www.qiagen.com/) 
9 Thermo Scientific Nanodrop (http://www.nanodrop.com) 

http://www.invitrogen.com/site/us/en/home.html�
http://www.qiagen.com/�
http://www.nanodrop.com/�
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Primer Design:  Three primers are designed for each locus of interest using 

MassARRAY Assay Design 3.1.  The two amplification primers flank the polymorphic site to 

provide for sample amplification, while the single MassExtend primer lies immediately adjacent 

to allow for allelic discrimination via single base extension.  Assay Design software determines 

how primer sets can be pooled to optimize multiplex reactions.  Mass modifications are 

incorporated in the design of the MassExtend primers to maximize the mass differential between 

primers of different loci within a given multiplex pool.  Multiplex pools can be designed for up 

to 36 loci, depending on primer compatibility for the specific loci being assayed. 

Sample Amplification:  Target loci are amplified within the samples by multiplex PCR in 

1X PCR buffer (Qiagen) containing 3.5 mM MgCl2, 25 mM dNTPs, 500 nM each forward and 

reverse amplification primer within the multiplex pool and 2.5 U HotStar Taq (Qiagen).  PCR 

conditions are: 95oC for 15 minutes for Taq activation followed by 45 cycles of 94oC for 20 

seconds, 56oC for 20 seconds and 72oC for 1 minute.  A single extension for 1 minute at 72oC 

completes the PCR reaction. dNTPs and primers are removed by incubation with 0.5 U shrimp 

alkaline phosphotase (SAP) at 37 oC for 40 minutes. SAP is inactivated by incubation at 87 oC 

for 5 minutes.   

MassExtend:  Excess MassExtend primers corresponding to the loci represented by the 

amplification primers used are pooled.  Higher mass primers are added at a higher concentration 

to adjust for signal drop off during spectra acquisition.  Single base extension is carried out in 

0.2X iPLEX buffer plus, 1X termination mix (containing mass modified termination 

nucleotides), 1X iPLEX enzyme and primers at 0.84 ºM, 1.04 ºM and 1.25 ºM as appropriate to 

the relative mass of the primer.   A double cycle amplification program performs 40 cycles of 

denaturation at 94 oC for 5 seconds followed by 5 cycles of 52oC for 5 seconds, 80 oC for 5 
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seconds, back to 94 oC for a total of 200 cycles.  A final extension at 72 oC for 3 minutes 

completes the amplification.  Clean resin and water is added to the MassExtend reaction 

products.  Samples are incubated in clean resin at room temperature with mixing for 5 minutes 

and centrifuged at 3200 x g for 5 minutes. 

NanoDispense, Spectra acquisition and analysis:  Samples are dispensed to a 

SpectraChip using the MassArray Nanodispenser according to manufacturer's instructions.  

Spectra chips are loaded into the MassArray analyzer and spectra acquired for each sample.  

MassArray Typer software uses the known mass of the MassExtend primers to identify each 

locus, and the increase caused by each distinct nucleotide to identify the alleles present in the 

sample. 

We observed 100% concordance rates in replicated samples.  Centre d’Etude du 

Polymorphisme Humain (CEPH#7038) positive controls and water negative controls were 

included in two 192 well plates as part of quality control measures.  Since two htSNPs (both 

rs1273196 and rs8018687 had 0% call rate) failed the genotyping, genetic information of only 22 

htSNPs were used in the analysis.  For 21 of 22 SNP assays we were able to obtain genotyping 

results for over 98% of study subjects with good genetic data (N=132 in plex1 and N=144 in 

plex2).  One SNP assay (rs1152589) produced a genotype result in 94.7%. 

5.3.5 Statistical Analysis 

The total number of subjects included for analysis in this study is 135 subjects.  A test for 

deviation from Hardy-Weinberg Equilibrium genotype frequencies was done for each htSNPs 

among all study subjects and Whites.  Statistical analyses used Kruskal-Wallis Test or Wilcoxon 
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rank-sum tests to evaluate the significance of differences in the clinicopathologic features for 

IHC expression scores.  The Jonckheere-Terpstra test was used to test the null hypothesis that the 

distribution of the ERβ IHC expression does not differ among genotypes of 22 htSNPs.  We 

assumed a dominant model of inheritance to evaluate the magnitude of association [Odds ratios 

(OR) and 95% confidence interval (CI)] between ESR2 genotype and ER-beta protein expression.  

For those htSNPs which showed statistically different distributions of the ERβ IHC expression 

among genotypes based on the Jonckheere-Terpstra test, unconditional logistic regression model 

was fitted to assess the association between genotype of htSNPs and cytoplasmic and nuclear 

ER-beta expression score in lung tumors for all subjects. 

Haplotype-based analyses used the Expectation-Maximization (EM) algorithm 

implemented in SAS Genetics (PROC HAPLOTYPE) to estimate group-level haplotype 

frequencies and to generate subject-level haplotype probability weights.  EM algorithm refers to 

a statistical method commonly used to estimate haplotype frequencies from genotype data where 

genetic phase is ambiguous for individuals who are heterozygous at more than one loci.10

Variables used in data analyses included age at tissue collection (continuous and 

categorical), race (White, African-American), sex (women, men), smoking status (never, former, 

active), smoking dose duration among ever smokers (1-25, 26-50, 51-75, >76 pack-years), stage 

  I then 

used logistic regression (implemented in SAS PROC LOGISTIC) to estimate independent 

associations between the haplotype probability weights and ERβ expression category.  A 

standard LD-plot was produced by Haploview for Whites.  All analyses used SAS 9.2 (SAS 

Institute, Inc., Cary, North Carolina) and two-sided p-values.  

                                                 

10 Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid 
population. Molecular Biology & Evolution. 1995 Sep;12(5):921-927. 
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group (I, II, III, IV, recurrent), and histology group (adenocarcinoma, bronchioloalveolar 

carcinoma(BAC), adenosquamous carcinoma, squamous cell carcinoma, large cell carcinoma, 

undifferentiated carcinoma, malignant carcinoid, small cell carcinoma).  In some analyses, ever 

cigarette smokers with unknown quit status were grouped with active smokers.  For subjects 

without pathologic stage information, clinical stage information was used instead. 

Sample size calculation was performed with significance level of alpha=0.05 (two-sided), 

80% power (beta=0.20), and various minor allele frequencies of ESR2 SNPs.  The sample size 

calculation was performed for both the recessive and dominant models by treating ER-beta 

protein expression as categorical variable.  The power analysis software, Power Analysis and 

Sample Size (PASS)11

5.4 RESULTS 

, were used to perform the sample size calculation.  This may provide less 

power for other hypotheses testing including stratifications by gender, histological types of lung 

cancer, and smoking history. 

Selected subject characteristics are shown in Table 5-1.  A total of 135 lung cancer patients who 

were satisfactorily genotyped and had ER-beta lung tumor expression data were included in our 

analyses.  Fifty four percent were women, 88.9% Whites, and 5.2% African-Americans (Table 

5-1).  Few were never smokers (9.6%).  Forty-eight percent had adenocarcinoma while 36.3% 

had squamous cell carcinoma of lung.  Median Allred scores were 7.0 for cytoplasmic ERβ and 

8.0 for nuclear ERβ expression.   
                                                 

11 Pass 2000 (January 21, 2005):  Hintze J. (2004). NCSS and Pass. Number Cruncher Statistical Systems. Kaysville, 
Utah. www.ncss.com  

http://www.ncss.com/�


83 

Table 5-2 shows subject characteristics by total, cytoplasmic, and nuclear ERβ expression 

scores.  African Americans have higher cytoplasmic ERβ expression than Whites (p=0.05).  

Median nuclear ERβ expression score was lower in tumors from younger (30-59 years) lung 

cancer patients than older (greater than 60 years) (p=0.01).  Interestingly, lung cancer patients 

who are dead at the last contact date had statistically significantly higher cytoplasmic ERβ 

expression score than those who are alive (p=0.03).   

Twenty two selected htSNPs were genotyped satisfactorily.  All htSNPs were in Hardy-

Weinberg equilibrium among all study subjects (p>0.05).  One htSNP (rs1256120) departed 

from HWE among White lung cancer patients (p=0.031).  Except two htSNPs (rs1273196 and 

rs8018687) failure, no other genotyping error was detected among the duplicates, corresponding 

to an estimated error rate of 0.0%. 

The distributions of nuclear ERβ IHC expression scores for all study subjects differed 

significantly among the genotypes of three htSNPs (rs8021944, rs1256061, and rs10146204) 

(Table 5-3).  The genotype of TG or GG in first SNP (rs8021944) had higher overall nuclear 

ERβ expression distribution than the wild-type TT (p=0.029).  Subjects with rare variant allele 

(CA+AA) in rs1256061 also showed significantly higher distribution of nuclear ERβ expression 

than the subjects with the wild-type CC (p=0.022).  Only one SNP (rs10146204) showed 

significant differences of distribution in both cytoplasmic and nuclear ERβ expression scores 

among genotypes [cytoplasmic (3 level comparison of GG, GA, and AA): p=0.032 and nuclear 

(2 levels of GG and GA+AA): p=0.025].  For the other 19 htSNPs, no significant difference was 

found in distribution of cytoplasmic or nuclear ERβ expression scores among genotypes. 

Subgroup analysis based on histological types of lung cancer suggests that the rs1256061 

association with ERβ expression may be specific to adenocarcinoma of lung (Table 5-4).  
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Patients diagnosed with adenocarcinoma of lung showed statistically significant associations 

between that rare variant allele (CA+AA) and high scores of both cytoplasmic and nuclear ERβ 

expression (p=0.023 and p=0.027, respectively).  But, no association was observed among 

squamous cell carcinoma patients.   

To perform logistic regression analyses for three htSNPs which showed significant 

results from the Jonckheere-Terpstra test, ERβ expression was classified into three groups based 

on the distribution of expression results in either cytoplasm or nuclear.  Cytoplasmic expression 

had three ordered categories of Allred=0 as a reference group, Allred > 0 and <8, and Allred = 8 

while nuclear expression had Allred ≤ 6 as a reference group, Allred > 6 and <8, and Allred =8.  

Increasing doses of the variant allele (A) at rs1256061 and at rs10146204 were associated with 

increased risk of having maximum nuclear ERβ expression (Allred = 8) (Table 5-5).  Maximum 

ERβ expression was observed more often in tumors from patients with the CA or AA genotype 

[nuclear: Odds Ratios (OR) relative to Allred ≤ 6: 3.54 (95% confidence interval 1.22-10.3) and 

cytoplasmic: OR relative to Allred=0: 5.08 (95% CI 1.47-17.6)] than the CC genotype at 

rs1256061 (Table 5-5).  Maximum ERβ expression was observed more often in patients with the 

GA or AA genotype [nuclear: OR relative to Allred ≤ 6: 3.71 (95% CI 1.31-10.6) and 

cytoplasmic: OR relative to Allred=0: 4.00, 95% CI 1.26-12.7)] than the GG genotype at 

rs10146204 (Table 5-5).   

Only five of the eight possible haplotypes had a frequency of ≥ 1% in White study 

subjects, based on the three selected htSNPs.  Two haplotypes (G-C-A and G-C-G) had zero 

frequency and one haplotype (G-A-G) had very low estimated frequency (0.0006).  Maximum 

nuclear ERβ expression score (Allred score=8 vs. ≤ 6) was observed more often in patients with 

the haplotype T-A-A (OR=11.43, 95% CI 1.06-123) than the haplotype T-C-G (Table 5-6).  We 
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found no additional evidence of association between ERβ expression in lung tumor and any of 

the haplotypes.   

5.5 DISCUSSION 

We investigated the association of ESR2 gene polymorphisms and the ERβ expression in lung 

tumors.  To our knowledge, this is the first study evaluating genetic variation of ESR2 gene and 

its relationship with immunihistochemical expression of nuclear and cytoplasmic ERβ in lung 

tumor.  In this study, we identified statistically significant ERβ expression associations with 

three htSNPs (rs8021944, rs1256061, and rs10146204). 

All of three identified htSNPs were not our high priority SNPs since they were included 

in SNP500Cancer SNPs, coding SNPs in Entrez SNP or FastSNP, and promoter-regulator SNPs 

in FastSNP.  One of three selected htSNPs (rs8021944) is a spectrin repeat containing nuclear 

envelope 2 (SYNE2) gene while another htSNPs (rs10146204) is not a part of ESR2 transcription 

region.  These two htSNPs could be included in our study since we used a 151.5 kb genomic 

region spanning 20 kb upstream and 20 kb downstream of the ESR2 gene to select tagger SNPs.   

In this study, two frequently studied ESR2 SNPs (rs1256049 [RsaI] and rs4986938 [AluI]) 

did not show an association with ERβ expression in lung tumors.  While the inheritance of one or 

another of these two specific ESR2 SNPs has been studied in relation to cancers of the colon or 

rectum [8], endometrium [26], ovary [27], prostate [7, 15, 28], and breast [9-12, 14, 18, 19], only 

few studies demonstrated significant association between the SNPs and cancer risk: rs1256049 

(RsaI) with increased risk of rectal cancer [8] and  rs4986938 (AluI) with breast cancer risk [10]. 
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Three identified htSNPs were in week linkage disequilibrium (LD) with one another 

(highest r2=0.24), Figure 5-2.  According to LD-plot (Figure 5-2), rs1256061 had moderate 

linkage equilibrium with rs4986938 [AluI] (r2=0.54) while rs4986938 [AluI] is also in moderate 

LD with rs8006145, the high priority (r2=0.65).  SNP (rs10146204) and rs3020450 (high priority) 

were also in moderate linkage disequilibrium (r2=0.60).  The exact functions of two htSNPs 

(rs1256061 and rs10146204) that showed significant association with ERβ expression in this 

study was not known; however, their moderate LD with frequently studied SNP and high priority 

SNPs supports the thought that they might be potentially functional. 

Logistic regression analyses revealed that increasing doses of the variant allele (A) at 

rs1256061 were associated with increased risk of having maximum nuclear ERβ expression 

(Ptrend=0.0147).  Also, htSNP (rs1256061) is associated with ERβ expression among patients 

with adenocarcinoma, but not with squamous cell carcinoma.  Its association specific to one 

histological subtype of lung cancer and the dose-response relationship with ERβ expression 

supports the causality assumption based our hypothesis: the genetic variation in the ER-beta gene 

might alter the protein expression level of the gene in lung tumor. 

Previous studies reported on nuclear ERβ expression as a favorable prognostic factor for 

lung cancer [2, 3, 29-31].  Thus, the negative association of ERβ expression with advanced 

stages of lung cancer was expected.  However, we did not observe significant association 

between stage and nuclear ERβ expression in lung tumor (p=0.16) while patients with stage IV 

had lower median scores than patients with lower stages (I-III).  

In this study, lung cancer patients who died during the follow-up had significantly higher 

cytoplasmic ERβ expression score than those who survived.  This result agrees with our previous 

report of cytoplasmic ERβ as a negative prognostic factor for lung cancer patients (not published) 
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[32].  We also evaluated the role of variant alleles of 22 htSNPs in lung cancer survival but no 

significant association was found (no data shown). 

This study had several limitations.  The small sample size was problematic especially for 

conducting haplotype analyses and subgroup analyses with specific histological groups and race.  

Therefore, we had large 95% confidence intervals for the association between ESR2 gene 

polymorphisms and immunohistochemical expression of ERβ in lung tumors.  In addition to the 

fact that all of our study subjects were lung cancer patients, who may have different genotype 

distribution from general population, the deviation of HWE observed in our study may have been 

influenced by the small size.  Also, majority of study population was Whites, thus these results 

may not apply to lung cancer patients of other races or ethnicities.  Interestingly, although only a 

small percentage of participants were African-American, African Americans had statistically 

significantly higher cytoplasmic ERβ expression than Whites. DNA samples were extracted by 

three different methods from the different types of sources such as whole blood, FFPE, and 

frozen tissue.  The call rates of genotyping results were significantly different among the 

extraction methods.  This may result the selection bias.  Since some of DNA samples were 

extracted from lung tumors, genetic variants observed in the research may not be inherited but 

acquired and influenced by environmental factors.  Also, our study may have the 

misclassification bias due to the two different methods (TMA and whole section) used for the 

IHC expression assay.  Since the IHC expression results from TMA were averaged value of the 

multiple cores, we cannot account possible heterogeneous variances among observations 

obtained on the same subject.   

In spite of these limitations, our study had strengths.  Our study did not have the observer 

bias since the genotyping procedures were performed in blinded fashion to IHC expression 
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results.  Also, in our knowledge, this is the first study investigated the relationship of genetic 

variants of ESR2 with both cytoplasmic and nuclear expressions of ERβ in lung tumors, which 

were detected by IHC method.  

In conclusion, we found that individuals with individuals with at least one rare allele of 

two htSNPs (rs1256061 and rs10146204) had statistically significant association with maximum 

expression of both cytoplasmic and nuclear ERβ expression in the dominant inheritance model, 

compared to non-carriers.  Our finding that one SNP (rs1256061) is associated with ERβ 

expression among patients with adenocarcinoma, but not with squamous cell carcinoma, 

suggests the need to perform subgroup analysis with various histological groups of lung cancer 

patients.  The genetic variants examined in this study should be investigated with a larger cohort 

of lung cancer patients to replicate our findings. 
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Figure 5-1  Study subject selection flow chart 

*[Good Genetic Data] is defined as [subjects with less than 4 missing SNPs out of 18 SNPs in Plex#1] or [subjects with less than 2 missing SNPs out 
of 4 SNPs in Plex#2] 
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Figure 5-2  Linkage disequilibrium (LD) plot, drawn by Haploview using Solid Spine of LD method, is for White only.  The 22 SNPs were in three 

haplotype blocks (as highlighted).  The pattern of LD among Whites was indicated by a different color scheme:  Bright red: D-prime=1 and LOD>=2, 

Shades of pink and red: D-prime<1 and LOD>=2, Blue: D-prime=1 and LOD<2, and White: D-prime<1 and LOD<2. 
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Table 5-1  Patient Characteristics 

  
All (n=135) 

Characteristic Measure No. Percent 
Survival status Dead 87 64.4 

 
Alive 40 29.6 

 
Unknown 8 5.9 

Sex Men 62 45.9 

 
Women 73 54.1 

Race White 120 88.9 

 
Afircan-American 7 5.2 

 
Unknown 8 5.9 

Age 30-59 years 31 23.0 

 
60-69 years 42 31.1 

 
70+ years 62 45.9 

Smoking status never smoker 13 9.6 

 
ex-smoker 54 40.0 

 
active smoker 62 45.9 

 
Unknown 6 4.4 

Smoking dose-duration      
(among ever smokers=116) 

1-25 pack-years 20 17.2 
26-50 pack-years 45 38.8 

 
51-75 pack-years 22 19.0 

 
>76 pack-years 25 21.6 

 
Unknown 4 3.4 

Stage I 53 39.3 

 
II 24 17.8 

 
III 40 29.6 

 
IV 5 3.7 

 
recurrent 7 5.2 

 
Unknown 6 4.4 

Histology Adenocarcinoma 65 48.1 

 
BAC 1 0.7 

 
Adenosquamous 4 3.0 

 
Squamous cell 49 36.3 

 
Large cell 6 4.4 

 
Undifferentiated 3 2.2 

 
Malignant carcinoid 1 0.7 

 
Small cell 2 1.5 

 
Unknown 4 3.0 

Histology class Adenocarcinoma 65 48.1 

 
Squamous cell 49 36.3 

 
Other/unknown 21 15.6 

ERβ expression score nuclear 135a 7.14 (8.0)b  

cytoplasmic 135a 5.38 (7.0)b 

total 135a 12.52 (14.75)b 
a  Number of subjects with non-missing IHC data 
b  Mean and median of Allred score, medians in parentheses. 
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Table 5-2  Associations between median ER beta Allred scores and personal characteristics 

  
Total ERβ  

  
Cytoplasmic ERβ  

  
Nuclear ERβ  

Total N=135 Total N=135 Total N=135 

  Na  Median p-value*   Na  Median p-value*   Na  Median p-value* 
STATUS AT LAST CONTACT 

  
0.04 

   
0.03 

   
0.28 

Dead 87 15 
  

87 7 
  

87 8   
Alive 40 14 

  
40 6 

  
40 8   

SEX 
  

0.51 
   

0.57 
   

0.45 
Male 62 15 

  
62 7 

  
62 8   

Female 73 14.6 
  

73 7 
  

73 8   
RACE 

  
0.04 

   
0.05 

   
0.27 

African-American 7 16 
  

7 8 
  

7 8   
White 120 14.75 

  
120 7 

  
120 8   

AGE (years) 
  

0.45 
   

0.75 
   

0.01 
30-59 31 14 

  
31 6.5 

  
31 7.5   

60-69 42 14.75 
  

42 7 
  

42 8   
70+ 62 15 

  
62 7 

  
62 8   

SMOKING STATUS 
  

0.84 
   

0.70 
   

0.85 
active smoker 43 15 

  
43 7 

  
43 8   

ex-smoker 54 14.2 
  

54 6.775 
  

54 8   
smoker, NOS 19 14 

  
19 7 

  
19 8   

never smoker 13 15 
  

13 7 
  

13 8   
SMOKING DOSE-DURATION 
(among ever smokers) 

  
0.58 

   
0.66 

   
0.23 

1-25 20 15 
  

20 7 
  

20 8   
26-50 45 15 

  
45 7 

  
45 8   

51-75 22 13.875 
  

22 6.375 
  

22 8   
>76 25 14     25 6.8     25 7.6   
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Table 5-2  (continued) 

  
Total ERβ  

  
Cytoplasmic ERβ  

  
Nuclear ERβ  

Total N=135 Total N=135 Total N=135 

  Na  Median p-value*   Na  Median p-value*   Na  Median p-value* 
STAGE 

  
0.70 

   
0.55 

   
0.16 

I 53 15 
  

53 7 
  

53 8   
II 24 14.875 

  
24 7 

  
24 8   

III 40 15 
  

40 7 
  

40 8   
IV 5 14.6 

  
5 7.2 

  
5 7.4   

recurrent 7 15.25 
  

7 7.25 
  

7 7.8   
HISTOLOGY 

  
0.73 

   
0.75 

   
0.47 

Adenocarcinoma 65 14.75 
  

65 7 
  

65 8   
BAC 1 15 

  
1 7 

  
1 8   

Adenosquamous 4 11.5 
  

4 3.5 
  

4 8   
Squamous cell 49 15 

  
49 7 

  
49 8   

Large cell 6 12 
  

6 5.5 
  

6 7.5   
Undifferentiated 3 10 

  
3 3.5 

  
3 6.5   

Malignant carcinoid 1 16 
  

1 8 
  

1 8   
Small cell 2 9.625 

  
2 3.625 

  
2 6   

HISTOLOGY CLASS 
  

0.19 
   

0.14 
   

0.17 
Adenocarcinoma 65 14.8 

  
65 7 

  
65 8   

Squamous cell 49 15 
  

49 7 
  

49 8   
Other/missing 21 10     21 5     21 7.5   

Total N=Number of subjects with non-missing IHC data 
a Number of subjects with non-missing IHC data 
*Wilcoxon rank sum test (Wilcoxon two-sample test) with a continuity correction of 0.5 for comparing two  independent groups (e.g. 
sex and race) 
* Kruskal-Wallis Test for comparing more than two non-parametric independent groups 
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Table 5-3  Association between ESR2 SNPs and ER-beta IHC expression for all study subjects (N=135) 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8021944 TT 118 3.00 7.00 8.00 0.083 

 
118 7.00 8.00 8.00 0.028 

  TG 14 6.00 7.83 8.00 
  

14 8.00 8.00 8.00   
  GG 1 7.33 7.33 7.33 

  
1 8.00 8.00 8.00   

  TG+GG 15 6.00 7.75 8.00 0.081 
 

15 8.00 8.00 8.00 0.029 
rs968257 AA 44 0.75 7.00 8.00 0.826 

 
44 6.00 8.00 8.00 0.312 

  AG 55 5.00 7.00 8.00 
  

55 7.00 8.00 8.00   
  GG 22 0.00 6.00 7.70 

  
22 7.00 8.00 8.00   

  AG+GG 77 4.00 7.00 8.00 0.576 
 

77 7.00 8.00 8.00 0.439 
rs1152589 AA 31 4.00 6.80 8.00 0.586 

 
31 7.75 8.00 8.00 0.189 

  AT 59 4.80 7.00 8.00 
  

59 7.00 8.00 8.00   
  TT 26 0.00 6.25 7.75 

  
26 6.00 8.00 8.00   

  AT+TT 85 3.20 7.00 8.00 0.864 
 

85 6.50 8.00 8.00 0.064 
rs1255998 CC 100 3.35 7.00 8.00 0.240 

 
100 7.00 8.00 8.00 0.164 

  CG 32 4.00 7.00 7.33 
  

32 7.20 7.78 8.00   
  GG 1 3.50 3.50 3.50 

  
1 6.50 6.50 6.50   

  CG+GG 33 4.00 7.00 7.25 0.259 
 

33 7.00 7.75 8.00 0.185 
rs8006145 CC 61 3.00 7.00 7.90 0.600 

 
61 6.50 8.00 8.00 0.730 

 (Priority) CA 49 4.00 7.00 8.00 
  

49 7.00 8.00 8.00   
  AA 11 0.00 6.75 8.00 

  
11 8.00 8.00 8.00   

  CA+AA 60 3.75 7.00 8.00 0.570 
 

60 7.00 8.00 8.00 0.068 
rs4986938 GG 44 1.50 7.00 7.63 0.397 

 
44 6.50 8.00 8.00 0.086 

 (AluI) GA 61 4.00 7.00 8.00 
  

61 7.00 8.00 8.00   
  AA 16 4.75 7.00 8.00 

  
16 7.50 8.00 8.00   

  GA+AA 77 4.00 7.00 8.00 0.462 
 

77 7.00 8.00 8.00 0.137 
rs1256063 CC 108 3.50 7.00 8.00 0.756 

 
108 7.00 8.00 8.00 0.271 

  CT 13 2.50 7.00 7.25 
  

13 7.00 7.75 8.00   
  CT+TT 13 2.50 7.00 7.25 0.756 

 
13 7.00 7.75 8.00 0.271 

rs1256061 CC 33 0.00 6.50 7.25 0.551 
 

33 6.00 7.67 8.00 0.632 
  CA 67 4.00 7.00 8.00 

  
67 7.00 8.00 8.00   

  AA 21 4.00 7.00 8.00 
  

21 7.75 8.00 8.00   
  CA+AA 88 4.00 7.00 8.00 0.054 

 
88 7.25 8.00 8.00 0.022 

rs1952585 TT 96 3.35 7.00 8.00 0.133 
 

96 7.00 8.00 8.00 0.190 
  TC 24 3.25 5.80 7.23 

  
24 6.65 7.68 8.00   

  CC 1 6.75 6.75 6.75 
  

1 8.00 8.00 8.00   
  TC+CC 25 3.50 6.00 7.20 0.130 

 
25 6.80 7.75 8.00 0.173 

rs17766755 GG 46 0.00 7.00 7.50 0.322 
 

46 6.50 8.00 8.00 0.097 
  GA 62 3.50 7.00 8.00 

  
62 7.00 8.00 8.00   

  AA 12 4.75 7.00 8.00 
  

12 7.50 8.00 8.00   
  GA+AA 74 3.50 7.00 8.00 0.375 

 
74 7.00 8.00 8.00 0.140 

rs1256049 GG 112 3.35 7.00 8.00 0.421 
 

112 7.00 8.00 8.00 0.584 
 (RsaI) GA 8 2.00 6.00 7.20 

  
8 6.75 7.80 8.00   

  GA+AA 8 2.00 6.00 7.20 0.421   8 6.75 7.80 8.00 0.584 
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 Table 5-3  (continued) 
    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8003490 GG 110 4.00 7.00 8.00 0.072 

 
110 7.00 8.00 8.00 0.062 

  GA 22 0.00 5.55 7.20 
  

22 6.50 7.50 8.00   
  AA 1 6.75 6.75 6.75 

  
1 8.00 8.00 8.00   

  GA+AA 23 0.00 5.60 7.20 0.054 
 

23 6.50 7.50 8.00 0.119 
rs12435284 CC 109 3.00 7.00 8.00 0.073 

 
109 7.00 8.00 8.00 0.087 

  CT 12 6.50 7.95 8.00 
  

12 8.00 8.00 8.00   
  CT+TT 12 6.50 7.95 8.00 0.073 

 
12 8.00 8.00 8.00 0.087 

rs1256036 AA 33 3.50 6.00 8.00 0.541 
 

33 7.00 8.00 8.00 0.220 
  AG 67 5.00 7.00 8.00 

  
67 7.00 8.00 8.00   

  GG 21 0.00 6.00 7.50 
  

21 6.00 8.00 8.00   
  AG+GG 88 3.10 7.00 8.00 0.774 

 
88 6.90 8.00 8.00 0.434 

rs1887994 GG 102 3.00 7.00 8.00 0.584 
 

102 7.00 8.00 8.00 0.981 
  GT 19 4.80 7.00 8.00 

  
19 7.00 8.00 8.00   

  GT+TT 19 4.80 7.00 8.00 0.584 
 

19 7.00 8.00 8.00 0.981 
rs3020450 GG 52 2.25 7.00 8.00 0.582 

 
52 6.75 8.00 8.00 0.354 

 (Priority) GA 53 5.00 7.00 8.00 
  

53 7.00 8.00 8.00   
  AA 16 1.50 6.38 8.00 

  
16 7.50 8.00 8.00   

  GA+AA 69 3.50 7.00 8.00 0.886 
 

69 7.00 8.00 8.00 0.727 
rs3020449 TT 38 0.00 6.45 7.75 0.394 

 
38 6.00 8.00 8.00 0.092 

  TC 61 5.50 7.00 8.00 
  

61 7.40 8.00 8.00   
  CC 21 3.00 6.75 8.00 

  
21 7.60 8.00 8.00   

  TC+CC 82 4.00 7.00 8.00 0.156 
 

82 7.40 8.00 8.00 0.114 
rs10137185 CC 106 3.00 7.00 8.00 0.087 

 
106 6.80 8.00 8.00 0.155 

  CT 14 6.80 7.13 8.00 
  

14 7.90 8.00 8.00   
  TT 1 8.00 8.00 8.00 

  
1 8.00 8.00 8.00   

  CT+TT 15 6.80 7.25 8.00 0.080 
 

15 7.90 8.00 8.00 0.149 
rs3020443 AA 66 3.00 7.00 7.90 0.432 

 
66 6.50 8.00 8.00 0.140 

  AC 45 4.00 7.00 8.00 
  

45 7.00 8.00 8.00   
  CC 9 0.00 7.00 8.00 

  
9 8.00 8.00 8.00   

  AC+CC 54 3.50 7.00 8.00 0.433 
 

54 7.00 8.00 8.00 0.109 
rs1256120 TT 100 3.00 7.00 8.00 0.805 

 
100 6.90 8.00 8.00 0.400 

  TC 16 5.75 7.00 7.58 
  

16 7.30 7.95 8.00   
  CC 3 4.00 8.00 8.00 

  
3 8.00 8.00 8.00   

  TC+CC 19 5.50 7.00 8.00 0.567 
 

19 7.60 8.00 8.00 0.843 
rs10146204 GG 42 0.00 6.63 7.33 0.032 

 
42 6.00 7.75 8.00 0.258 

  GA 57 5.75 7.00 8.00 
  

57 7.50 8.00 8.00   
  AA 22 3.00 5.50 8.00 

  
22 7.00 8.00 8.00   

  GA+AA 79 4.00 7.00 8.00 0.051 
 

79 7.40 8.00 8.00 0.025 
rs1256108 TT 30 0.00 6.20 7.75 0.494 

 
30 5.75 8.00 8.00 0.255 

  TC 67 5.60 7.00 8.00 
  

67 7.40 8.00 8.00   
  CC 34 3.50 6.78 8.00 

  
34 7.50 8.00 8.00   

  TC+CC 101 4.00 7.00 8.00 0.119 
 

101 7.50 8.00 8.00 0.211 
*Jonckheere-Terpstra Test 
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Table 5-4  Association between rs1256061 genotype variants and ER-beta IHC expression among lung cancer patients with adenocarcinoma or squamous cell 

carcinoma 

  
Cytoplasmic ERβ 

 
Nuclear ERβ 

Histology Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
Adenocarcinoma CC 15 0.00 5.50 7.00 0.496 

 
15 5.50 7.67 8.00 0.651 

 
CA 36 4.90 7.00 8.00 

  
36 7.30 8.00 8.00 

 
 

AA 9 6.00 7.00 8.00 
  

9 8.00 8.00 8.00 
   CA+AA 45 5.50 7.00 8.00 0.023   45 7.75 8.00 8.00 0.027 

squamous cell 
carcinoma 

CC 12 5.00 7.23 7.88 0.990 
 

12 6.95 8.00 8.00 0.925 
CA 20 6.20 7.00 7.88 

  
20 7.55 8.00 8.00 

 
 

AA 8 1.75 6.88 8.00 
  

8 7.25 8.00 8.00 
   CA+AA 28 4.75 7.00 8.00 0.952   28 7.55 8.00 8.00 0.785 

*Jonckheere-Terpstra Test 
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Table 5-5  Crude Odds Ratios for the association between three SNPs and cytoplasmic and nuclear ER-Beta IHC expression scores among all study subjects 

(N=135) 

 
ERβ cytoplasmic expression 

 
ERβ nuclear expression 

 

Allred 
= 0 

 

Allred > 0 AND Allred 
< 8 

 
Allred = 8 

 

Allred 
≤ 6 

 

Allred > 6 AND Allred 
< 8 

 
Allred = 8 

Genotype n   n OR 95% CI   n OR 95% CI   n   n OR 95% CI   n OR 95% CI 
rs8021944 

                   TT 25 
 

60 Ref 
  

33 Ref 
  

19 
 

31 Ref 
  

68 Ref 
 TG 1 

 
7 2.92 0.34-25.0 

 
6 4.55 0.51-40.2 

 
1 

 
1 0.61 0.04-10.4 

 
12 3.35 0.41-27.4 

GG 0 
 

1 
   

0 
   

0 
 

0 
   

1 
  TG+GG 1 

 
8 3.33 0.40-28.0 

 
6 4.55 0.51-40.2 

 
1 

 
1 0.61 0.04-10.4 

 
13 3.63 0.45-29.6 

                    rs1256061 
                   CC 11 

 
17 Ref 

  
5 Ref 

  
9 

 
9 Ref 

  
15 Ref 

 CA 9 
 

37 2.66 0.93-7.61 
 

21 5.13 1.38-19.1 
 

9 
 

14 1.56 0.45-5.41 
 

44 2.93 0.98-8.76 
AA 4 

 
8 1.29 0.31-5.35 

 
9 4.95 1.02-24.1 

 
1 

 
5 5.00 0.48-51.8 

 
15 9.00 1.01-80.1 

CA+AA 13 
 

45 2.24 0.84-5.96 
 

30 5.08 1.47-17.6 
 

10 
 

19 1.90 0.57-6.31 
 

59 3.54 1.22-10.3 

                    rs10146204 
                   GG 12 

 
23 Ref 

  
7 Ref 

  
11 

 
11 Ref 

  
20 Ref 

 GA 7 
 

29 2.16 0.73-6.37 
 

21 5.14 1.45-18.2 
 

6 
 

12 2.00 0.55-7.25 
 

39 3.58 1.15-11.1 
AA 5 

 
10 1.04 0.29-3.76 

 
7 2.40 0.55-10.5 

 
2 

 
5 2.50 0.40-15.7 

 
15 4.13 0.79-21.5 

GA+AA 12   39 1.70 0.66-4.39   28 4.00 1.26-12.7   8   17 2.13 0.65-6.95   54 3.71 1.31-10.6 
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Table 5-6  ESR2 haplotypes and ER-beta IHC expression among only white subjects 

  
ERβ cytoplasmic expression 

 
ERβ nuclear expression 

Haplotype 
weight*  

Allred > 0 AND 
Allred < 8 vs. 

Allred = 0 
 

Allred = 8 vs. 
Allred = 0 

 

Allred > 6 AND 
Allred < 8 vs. 

Allred ≤ 6 
 

Allred = 8 vs. 
Allred ≤ 6 

Freq OR 95% CI   OR 95% CI   OR 95% CI   OR 95% CI 
T-C-G 0.44 Ref 

  
Ref 

  
Ref 

  
Ref 

 T-A-A 0.25 0.668 0.12-3.83 
 

4.07 0.54-31.0 
 

4.15 0.32-54.0 
 

11.43 1.06-123 
T-A-G 0.15 1.46 0.12-18.5 

 
0.92 0.04-21.6 

 
10.19 0.45-233 

 
1.56 0.09-27.2 

T-C-A 0.10 0.992 0.08-11.9 
 

0.11 0.00-4.48 
 

26.87 0.61- 
 

1.39 0.06-31.9 
G-A-A 0.06 4.857 0.05-454   40.98 0.37-   1.066 0.00-479   28.42 0.34- 

*Haplotype is composed of alleles in the order of rs8021944, rs1256061, and rs10146204. 
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6.0  DISCUSSION 

In all three projects, the immunohistochemical assay was used to detect protein expression level.  

Also, the Tissue microarrays (TMAs) were constructed using randomly selected formalin-fixed, 

paraffin-embedded lung tumor tissue blocks from each patient specimen and the protein 

expression status of biomarkers.  The laboratory assay procedures were performed in blinded 

fashion to outcome-related information.   

In the first project, a multilevel generalized linear mixed model was used to control for 

sample type and to comply with repeated measures from TMA with discrete response.  This 

model accounts the correlations among repeated IHC readings from TMA data on the same 

subject, and also for some possible heterogeneous variances among observations obtained on the 

same subject.  Through modeling the correlation among repeated measures from TMA, we could 

obtain the best linear unbiased predictions.   

In the second project, we presumed that protein expression patterns transmit fundamental 

information about underlying tumor biology and attempted to identify meaningful expression 

patterns involving these seven interesting and relevant proteins.  Even though our study did not 

identify two major subgroups with differing host and tumor characteristics or clinical outcomes, 

our finding is important due to the biological functions of the proteins composed in each cluster 

which supports the idea of autocrine HGF-c-Met signaling plays significant roles in the 

progression of lung tumors.   
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At the last project, we found that individuals with at least one rare allele of two htSNPs 

(rs1256061 and rs10146204) are associated with maximum expression of both cytoplasmic and 

nuclear ERβ expression in the dominant inheritance model, compared to non-carriers.  The last 

project produced results from first study of the relationship between ESR2 gene variation and 

ERβ lung tumor expression. 

The main limitation of these projects is the limited study population diversity:  

approximately 90% of study population is Caucasian.  However, our study has the largest sample 

size among the previously reported studies on the HGF or c-Met expression in lung cancer 

patients.  The small sample size may provide less power for other hypotheses testing including 

stratifications by gender, histological types of lung cancer, and smoking history.  These projects 

have the retrospective cohort study design.  Since the analysis of the study depends on 

preexisting records, I have limited control over the incompleted datasets.  Therefore, unmeasured 

confounders, measurement error, and missing datasets could influence the study results. 

More research is needed to fully understand the association between the 

immunohistochemical expression of protein markers in lung tumors and the lung cancer survival.  

It would be useful to replicate our findings regarding the ESR2 genetic variation and ERβ 

expression in lung tumors with a large cohort study where various host, tumor, and outcome 

information collection procedures were taken as part of the study protocol.  Large cohort study 

will provide more power to perform subgroup analysis with various histological groups of lung 

cancer.  This may eliminate the selection bias and measurement errors.   
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APPENDIX A 

SUPPLEMENTAL TABLES AND FIGURES FOR PROJECT#1 

A.1 DESCRIPTION FOR HGF AND C-MET DATABASE 
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Table A-1 Subjects Elimination Steps for Cleaned Database of HGF and c-Met 

  Description Subject ID 

Total 
Number 

of 
Subjects 

Start 
Received Laboratory Data:  TMA=126 & Whole 
section=77   203 

 
6 Duplicated observations: select only TMA data 430, 448, 593, 604, 671, 920 197 

 

Case status is not Lung cancer and Lung cancer 
histology="N/A" 

V-101, V-102, 1520,1542, 
1701, 1744 191 

 

IHC from Whole section which used "normal 
lung tissue" 948, 999 189 

 

Younger than 21 years old 
(age_at_tissue_collection) V-101, V-102, 682 188 

 

Overall survival time is zero, died on the same 
day (surgery date), age = 7 682 188 

Final 
Survival Time is missing due to no death status 
information 

V-101, V-102,1520,1542, 
1701, 1744, 301, 317, 683, 
L-012, L-024, L-031, L-
033, L-037, 180 

NOTE:  Whole-section: n=65 and TMA: n=115 
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Table A-2  Distribution of the difference between Age at diagnosis and Age at tissue collection 

Age at tissue collection – Age at diagnosis N 

0 150 
1 15 
2 6 
4 3 
5 3 
6 1 
7 1 
11 1 

 

 

 

   

Table A-3 Percent missing between the TMA study and the Whole-section study 

  
Whole 
section TMA   

  n=65 n=115 
p-

value* 
Race 9.2 0.0 0.0019 
Smoking status 1.5 5.2 0.4245 
Smoking level 6.2 7.0 1.0000 
Stage 1.5 0.0 0.3611 
*Fisher exact test 
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Table A-4  HGF and c-Met expression and non-expression frequencies among total study subject 

(N=180) 

  Total (N=180) 
   c-Met   

   Missing Non-
Missing Total 

HGF 
Missing 9 2 11 

Non-
Missing 1 168 169 

  Total 10 170 180 

       Whole section (N=65) 
   c-Met   

   Missing Non-
Missing Total 

HGF 
Missing 8 2 10 

Non-
Missing 1 54 55 

  Total 9 56 65 

       TMA (N=115) 
   c-Met   

   Missing Non-
Missing Total 

HGF 
Missing 1 0 1 

Non-
Missing 0 114 114 

  Total 1 114 115 
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Table A-5  Subject characteristics: TMA vs. Whole section 

   Tissue source  

  All 
Whole 
section TMA  

Variable Measure n=180 n=65 n=115 p-value1 
Survival status Dead, % 68.3 69.2 67.8 0.87 
Sex Women, % 51.1 50.8 51.3 1.00 
Race African-American, % 9.2 10.2 8.7 0.79 
Age 30-59 years, % 22.2 30.8 17.4 0.13 

60-69 years, % 34.4 30.8 36.5  
70+ years, % 43.3 38.5 46.1  

Smoking status never smoker, % 5.8 6.3 5.5 0.09 
ex-smoker, % 43.4 32.8 49.5  
current smoker, % 50.9 60.9 45.0  

Smoking dose-duration 
(among ever smokers) 

<50 pack-years, % 56.3 54.4 57.4 0.74 
50+pack-years, % 43.7 45.6 42.6  

Stage IA 17.9 15.6 19.1 0.42 
IB 25.7 31.3 22.6  
IIA/B 19.6 20.3 19.1  
III 27.4 28.1 27.0  
IV 9.5 4.7 12.2  

Histology squamous cell carcinoma 33.9 33.9 33.9 0.18 
non-squamous non-small cell 57.8 63.1 54.8  
undifferentiated 6.7 1.5 9.6  
small cell carcinoma 1.7 1.5 1.7  

HGF3 High expression4, % 49.1 29.1 58.8 0.0003 
Allred, Median 7.0 6.0 7.5 <.00012 

c-Met3 High expression4, % 50.0 42.9 53.5 0.25 
Allred, Median 7.1 7.0 7.3 0.872 

1Fisher exact test, except where indicated otherwise 
2 Wilcoxon rank sum test 
3Using subject-specific Allred values averaged across TMA cores 
4Allred >7 
Whole section: 6 missing race, 1 missing smoking status, 3 missing smoking dose-duration 
(among ever smokers), 1 missing stage 
TMA: 6 missing smoking status, 2 missing smoking dose-duration (among ever smokers) 
Smoking dose duration Total N: All=163, Whole section=60 , TMA=103 
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A.2 ASSOCIATIONS BETWEEN HGF AND C-MET AND SUBJECTS 

CHARACTERISTICS: DATASET WITH AVERAGED ALLRED SCORE 
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Table A-6  Frequency of high HGF and high c-Met IHC expression according to subject category 

  HGF (N=169)   c-Met (N=170) 

  N High 
(%) p-value*   N High (%) p-

value* 
STATUS AT LAST CONTACT 

  
0.09 

   
0.18 

Alive 52 53.8 
  

53 35.8 
 Dead 117 47.0 

  
117 47.9 

 SEX 
  

0.35 
   

0.76 
women 86 47.7 

  
88 45.5 

 men 83 39.8 
  

82 42.7 
 RACE 

  
0.27 

   
0.16 

African-American 14 28.6 
  

14 64.3 
 White 149 45.6 

  
150 42.7 

 AGE  
  

0.81 
   

0.73 
30-59 35 42.9 

  
35 40.0 

 60-69 57 47.4 
  

58 48.3 
 70+ 77 41.6 

  
77 42.9 

 SMOKING STATUS 
  

0.04 
   

0.46 
never smoker 10 20.0 

  
9 22.2 

 active smoker 82 46.3 
  

82 45.1 
 ex-smoker 70 60.0 

  
72 44.4 

 SMOKING DOSE-DURATIONS              
(among ever smokers) 

  
0.87 

   
0.51 

<50 pack-years 83 45.8 
  

84 47.6 
 50+ pack-years 64 48.4 

  
65 41.5 

 PATHOLOGIC STAGE 
  

0.02 
   

0.24 
IA 30 56.7 

  
30 60.0 

 IB 44 47.7 
  

44 34.1 
 IIA/B 34 55.9 

  
34 38.2 

 III 45 53.3 
  

46 47.8 
 IV 16 12.5 

  
16 43.8 

 HISTOLOGY GROUP 
  

0.70 
   

0.19 
SCCA 57 49.1 

  
58 55.2 

 Adeno, SQUAM, BAC, Carcinoid 97 48.5 
  

97 39.2 
 NSCLS, large cell carcinoma 12 58.3 

  
12 33.3 

 small cell carcinoma 3 33.3 
  

3 33.3 
 

High HGF and c-Met expression defined by subject-specific averaged Allred values above IHC source-
specific Allred median cutpoints (HGF cutpoints: 7.5 for TMA and 6.0 for whole section; c-Met 
cutpoints: 7.25 for TMA and 7.0 for whole section) 

Total N=Number of subjects with non-missing IHC data     
HGF: 6 missing race (33.3% high expression), 7 missing smoking status (14.3% high expression), 22 
missing smoking dose-duration (22.7% high expression) 

c-Met: 6 missing race (33.3% high expression), 7 missing smoking status (57.1% high expression), 21 
missing smoking dose-duration (38.1% high expression) 

 *Fisher exact test 
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Table A-7   Bivariate associations between HGF and c-Met Allred scores and personal characteristics 

  N 
Median 

HGF p-value*   N 
Median 
c-Met p-value* 

STATUS AT LAST CONTACT 
  

0.3167 
   

0.0901 
Alive 52 7.6 

  
53 7.0   

Dead 117 7.0 
  

117 7.3   
Sex 

  
0.4138 

   
0.8519 

women 86 7.3 
  

88 6.1   
men 83 7.0 

  
82 6.0   

RACE 
  

0.5015 
   

0.1574 
African-American 14 6.8 

  
14 7.6   

White 149 7.3 
  

150 7.0   
AGE  

  
0.5403 

   
0.4196 

30-59 35 7.0 
  

35 7.0   
60-69 57 7.3 

  
58 7.3   

70+ 77 7.0 
  

77 7.0   
SMOKING STATUS 

  
0.0768 

   
0.2127 

never smoker 10 6.8 
  

9 6.0   
active smoker 82 7.0 

  
82 7.3   

ex-smoker 70 7.5 
  

72 7.0   
Smoking dose-duration (among ever 
smokers) 

  
0.8147 

   
0.6568 

<50 pack-years 83 7.3 
  

84 7.3   
50+ pack-years 64 7.4 

  
65 7.0   

PATHOLOGIC STAGE 
  

0.0595 
   

0.6585 
IA 30 7.3 

  
30 7.6   

IB 44 7.0 
  

44 7.0   
IIA/B 34 7.5 

  
34 7.0   

III 45 7.3 
  

46 7.3   
IV 16 6.0 

  
16 7.2   

HISTOLOGY GROUP 
  

0.9771 
   

0.2766 
SCCA 57 7.0 

  
58 7.5   

Adeno, SQUAM, BAC, Carcinoid 97 7.0 
  

97 7.0   
NSCLS, large cell carcinoma 12 7.3 

  
12 6.1   

small cell carcinoma 3 7.0     3 5.8   
*Wilcoxon rank sum test (Wilcoxon two-sample test) with a continuity correction of 0.5 for comparing 
two  independent groups (e.g. sex and race) 
* Kruskal-Wallis Test for comparing more than 2 non-parametric independent groups 
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Table A-8  Subject Characteristics and Median HGF and c-Met Allred Score: Whole section vs. TMA 

  HGF   c-Met 
  Whole section  TMA  Whole section  TMA 
  N Median  p*   N Median  p*   N Median  p*   N Median  p* 
STATUS AT LAST CONTACT 

  
0.90 

   
0.08 

   
0.46 

   
0.10 

Alive 16 6.0 
  

36 7.8 
  

17 7.0 
  

36 6.8   
Dead 39 6.0 

  
78 7.3 

  
39 7.0 

  
78 7.3   

SEX 
  

0.51 
   

0.72 
   

0.54 
   

0.77 
women 28 6.0 

  
58 7.6 

  
30 7.0 

  
58 7.3   

men 27 5.0 
  

56 7.5 
  

26 7.0 
  

56 7.2   
RACE 

  
0.59 

   
0.09 

   
0.38 

   
0.21 

African-American 4 6.5 
  

10 6.8 
  

4 7.5 
  

10 7.6   
White 45 6.0 

  
104 7.6 

  
46 7.0 

  
104 7.2   

AGE  
  

0.09 
   

0.92 
   

0.84 
   

0.50 
30-59 15 6.0 

  
20 7.3 

  
15 7.0 

  
20 7.2   

60-69 16 6.5 
  

41 7.5 
  

17 7.0 
  

41 7.3   
70+ 24 5.0 

  
53 7.5 

  
24 7.0 

  
53 7.0   

SMOKING STATUS 
  

0.11 
   

0.44 
   

0.15 
   

0.76 
never smoker 4 3.0 

  
6 7.0 

  
3 6.0 

  
6 6.4   

active smoker 34 6.0 
  

48 7.4 
  

34 7.5 
  

48 7.3   
ex-smoker 16 5.5 

  
54 7.7 

  
18 6.5 

  
54 7.1   

SMOKING DOSE-DURATION             
(among ever smokers) 

  
0.89 

   
0.43 

   
0.47 

   
0.22 

<50 pack-years 26 6.0 
  

57 7.5 
  

27 7.0 
  

57 7.3   
50+ pack-years 21 6.0 

  
43 7.5 

  
22 7.0 

  
43 7.0   

PATHOLOGIC STAGE 
  

0.83 
   

0.00 
   

0.36 
   

0.70 
IA 8 6.0 

  
22 7.8 

  
8 8.0 

  
22 7.3   

IB 18 5.5 
  

26 7.5 
  

18 7.0 
  

26 6.9   
IIA/B 12 6.0 

  
22 7.9 

  
12 7.0 

  
22 7.0   

III 15 6.0 
  

30 7.6 
  

16 7.0 
  

30 7.4   
IV 2 3.0 

  
14 6.0 

  
2 3.5 

  
14 7.3   

HISTOLOGY GROUP 
  

0.10 
   

0.83 
   

0.41 
   

0.06 
SCCA 18 5.0 

  
39 7.5 

  
19 7.0 

  
39 7.5   

Adeno, SQUAM, BAC, Carcinoid 35 6.0 
  

62 7.6 
  

35 7.0 
  

62 7.2   
NSCLS, large cell carcinoma 1 4.0 

  
11 7.3 

  
1 5.0 

  
11 6.3   

small cell carcinoma 1 5.0     2 7.5     1 8.0     2 5.6   

*Wilcoxon rank sum test (Wilcoxon two-sample test) with a continuity correction of 0.5 for comparing two independent groups (e.g. sex and race). 
* Kruskal-Wallis Test for comparing more than 2 non-parametric independent groups. 
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A.3 RESULTS FROM GENERALIZED LINEAR MIXED MODELS (SAS PROC 

GLIMMIX): ASSOCIATIONS BETWEEN HGF AND C-MET AND SUBJECTS 

CHARACTERISTICS: CORRELATED DATASETS [TMA ALLRED SCORE 

CLUSTERED BY SUBJECTS] 
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Table A-9  Crude odds ratios (OR) and 95% confidence intervals (CI) for associations between personal 

characteristics and high HGF and high c-Met IHC expression 

     High HGF Expression   High c-Met Expression 

  
 

OR 95% CI p-value* 
 

OR 95% CI p-value* 
SEX 

         
  

Women 
 

1.00 
    

1.00 
  

  
Men 

 
0.64 0.37 1.10 0.11 

 
0.97 0.57 1.65 0.90 

RACE  
    

 
    

  
White 

 
1.00 

    
1.00 

  
  

African-American 
 

0.56 0.22 1.41 0.22 
 

2.29 1.02 5.14 0.04 

AGE (years) 
 

1.01 0.98 1.04 0.56 

 
0.99 0.96 1.01 0.39 

AGE  
    

0.32 

    
0.27 

30-59 
 

1.00 
    

1.00 
  

  
60-69 

 
1.81 0.82 3.99 0.14 

 
1.56 0.74 3.25 0.24 

70+ 
 

1.56 0.75 3.23 0.23 
 

0.97 0.49 1.95 0.94 

SMOKING STATUS 
    

0.20 

    
0.85 

never smoker 
 

1.00 
    

1.00 
  

  
active smoker 

 
1.66 0.63 4.37 0.30 

 
1.44 0.40 5.17 0.57 

ex-smoker 
 

2.30 0.87 6.09 0.09 
 

1.44 0.40 5.22 0.57 

Smoking dose-duration (among 
ever smokers) 

    

0.44 

    
0.21 

<50 pack-years 
 

1.00 
    

1.00 
  

  
50+ pack-years 

 
1.26 0.70 2.27 0.44 

 
0.69 0.39 1.23 0.21 

PATHOLOGIC STAGE 
    

0.06 

    
0.48 

IA 
 

1.00 
    

1.00 
  

  
IB 

 
0.64 0.28 1.47 0.28 

 
0.57 0.25 1.32 0.19 

IIA/B 
 

0.91 0.36 2.28 0.83 
 

0.56 0.23 1.34 0.19 
III/IV 

 
0.40 0.18 0.87 0.02 

 
0.77 0.37 1.58 0.47 

HISTOLOGY GROUP 
    

0.78 

    
0.39 

Adeno, SQUAM, BAC, Carcinoid 
 

1.00 
    

1.00 
  

  
NSCLS, large cell carcinoma 0.81 0.31 2.10 0.66 

 
0.77 0.23 2.55 0.66 

SCCA 
 

0.75 0.42 1.34 0.32 
 

1.47 0.83 2.58 0.18 
small cell carcinoma   1.09 0.19 6.22 0.92   0.38 0.03 4.40 0.44 

HGF and c-Met expression (high vs. low) is defined by median Allred scores. High expression means Allred 
score>median.  Low expression means Allred score ≤ median. [median for HGF from TMA=7.5 and whole 
section=6.0] and [median for c-Met from TMA=7.25 and whole section=7.0] 

Odds ratios comparing individuals with high HGF/c-Met expression to those with low expression unless otherwise 
specified 
*Wald Method for Testing Global Null Hypothesis: beta=0 and Wald's Chi-Square Test (p-value) for each stratified 
level based on analysis of maximum likelihood estimates 
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Table A-10  Adjusted odds ratios (OR) and 95% confidence intervals (CI) for associations between personal 

characteristics and high HGF and high c-Met IHC expression 

    High HGF Expression   High c-Met Expression 

  
 

OR 95% CI p-value* 
 

OR 95% CI p-value* 
SEX 

           
Women 

 
1.00     1.00     

Men 
 

0.63 0.36 1.11 0.11  0.91 0.52 1.59 0.74 
RACE  

           
White 

 
1.00     1.00     

African-American 
 

0.95 0.34 2.66 0.91  2.66 1.07 6.59 0.03 
AGE (years) 

 
1.00 0.97 1.03 0.98  1.00 0.97 1.03 0.83 

AGE  
    0.67     0.40 

30-59 
 

1.00     1.00     
60-69 

 
1.43 0.63 3.24 0.39  1.69 0.76 3.74 0.20 

70+ 
 

1.37 0.62 3.02 0.43  1.24 0.60 2.57 0.56 
SMOKING STATUS 

    0.14     0.91 
never smoker 

 
1.00     1.00     

active smoker 
 

2.35 0.74 7.43 0.15  1.25 0.32 4.82 0.74 
ex-smoker 

 
3.08 0.99 9.57 0.05  1.33 0.35 5.13 0.67 

PATHOLOGIC STAGE 
    0.05     0.39 

IA 
 

1.00     1.00     
IB 

 
0.66 0.28 1.58 0.35  0.57 0.24 1.33 0.19 

IIA/B 
 

1.26 0.47 3.39 0.64  0.48 0.19 1.22 0.12 
III/IV 

 
0.43 0.19 0.98 0.05  0.75 0.36 1.55 0.43 

HISTOLOGY GROUP 
    0.88     0.49 

Adeno, SQUAM, BAC, Carcinoid 
 

1.00     1.00     
NSCLS, large cell carcinoma 0.77 0.32 1.86 0.56  0.73 0.22 2.48 0.62 
SCCA 

 
0.85 0.46 1.57 0.60  1.39 0.76 2.54 0.29 

small cell carcinoma   1.31 0.25 6.95 0.75   0.34 0.02 4.89 0.42 

High HGF and c-Met expression defined by subject-specific averaged Allred values above IHC source-specific 
Allred median cutpoints (HGF cutpoints: 7.5 for TMA and 6.0 for whole section; c-Met cutpoints: 7.25 for TMA and 
7.0 for whole section) 
Odds ratios comparing individuals with high HGF/c-Met expression to those with low expression unless otherwise 
specified. 
*Wald Chi-Square Test (Type 3 Analysis of Effects) for overall and each stratified level based on analysis of 
maximum likelihood estimates. 

Adjusted for age (continuous) , smoking, stage, and sex 
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Table A-11  Fully odds ratios (OR) and 95% confidence intervals (CI) for associations between personal 

characteristics and high HGF and high c-Met IHC expression 

    High HGF Expression   High c-Met Expression 

  
 

OR 95% CI 
p-

value* 
 

OR 95% CI 
p-

value* 
SEX 

         
  

Women 
 

1.00 
    

1.00 
  

  
Men 

 
0.62 0.35 1.11 0.11 

 
0.82 0.45 1.47 0.49 

RACE  
         

  
White 

 
1.00 

    
1.00 

  
  

African-American 
 

0.90 0.32 2.55 0.84 
 

2.70 1.07 6.77 0.04 
AGE (years) 

 
1.00 0.96 1.04 0.98 

 
0.99 0.96 1.02 0.36 

SMOKING STATUS 
    

0.14 
    

0.82 
never smoker 

 
1.00 

    
1.00 

  
  

active smoker 
 

2.65 0.76 9.24 0.13 
 

1.16 0.31 4.37 0.83 
ex-smoker 

 
3.48 1.00 12.13 0.05 

 
1.36 0.36 5.08 0.65 

PATHOLOGIC STAGE 
    

0.05 
    

0.49 
IA 

 
1.00 

    
1.00 

  
  

IB 
 

0.75 0.314 1.768 0.50 
 

0.6 0.246 1.441 0.25 
IIA/B 

 
1.52 0.551 4.172 0.42 

 
0.49 0.187 1.295 0.15 

III/IV 
 

0.46 0.2 1.062 0.07 
 

0.74 0.357 1.537 0.42 
HISTOLOGY GROUP 

    
0.79 

    
0.52 

Adeno, SQUAM, BAC, Carcinoid 
 

1.00 
    

1.00 
  

  
NSCLS, large cell carcinoma 

 
0.72 0.30 1.77 0.47 

 
0.78 0.23 2.66 0.68 

SCCA 
 

0.79 0.41 1.49 0.46 
 

1.42 0.76 2.65 0.27 
small cell carcinoma   1.29 0.23 7.08 0.77   0.39 0.03 5.43 0.49 

High HGF and c-Met expression defined by subject-specific averaged Allred values above IHC source-specific 
Allred median cutpoints (HGF cutpoints: 7.5 for TMA and 6.0 for whole section; c-Met cutpoints: 7.25 for TMA 
and 7.0 for whole section) 
Odds ratios comparing individuals with high HGF/c-Met expression to those with low expression unless 
otherwise specified. 
*Wald Chi-Square Test (Type 3 Analysis of Effects) for overall and each stratified level based on analysis of 
maximum likelihood estimates. 
Adjusted for age (continuous) , smoking, stage, and sex, race, and histology 
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Age in Years Age categories 

  
Sex: 1=Men, 2=Women; Stage: 1=IB, 2=IIA/B, 3=III/IV, 4=IA; Histology: 1=NSCLS, large cell carcinoma, 2=SCCA, 3=small cell carcinoma, 4=Adeno, SQUAM, BAC, 
Carcinoid; Age: 1=30-59, 2=60-69, 3=70+. 
HGF and c-Met expression (high vs. low) is defined by median Allred scores. High expression means Allred score>median.  Low expression means Allred score ≤ 
median. [Median for HGF from TMA=7.5 and whole section=6.0] and [median for c-Met from TMA=7.25 and whole section=7.0].  
Odds ratios comparing individuals with high HGF/c-Met expression to those with low expression unless otherwise specified. 
*Wald Chi-Square Test (Type 3 Analysis of Effects) for overall and each stratified level based on analysis of maximum likelihood estimates 
Adjusted for age, smoking, stage, and sex, race, and histology 

Figure A-1  Fully odds ratios and 95% confidence intervals (CI) for the association between personal characteristics and HGF status [Age in years vs. 

Age categories] 
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Age in Years Age categories 

  
Sex: 1=Men, 2=Women; Stage: 1=IB, 2=IIA/B, 3=III/IV, 4=IA; Histology: 1=NSCLS, large cell carcinoma, 2=SCCA, 3=small cell carcinoma, 4=Adeno, SQUAM, BAC, 
Carcinoid; Age: 1=30-59, 2=60-69, 3=70+. 
HGF and c-Met expression (high vs. low) is defined by median Allred scores. High expression means Allred score>median.  Low expression means Allred score ≤ 
median. [Median for HGF from TMA=7.5 and whole section=6.0] and [median for c-Met from TMA=7.25 and whole section=7.0].  
Odds ratios comparing individuals with high HGF/c-Met expression to those with low expression unless otherwise specified. 
*Wald Chi-Square Test (Type 3 Analysis of Effects) for overall and each stratified level based on analysis of maximum likelihood estimates 
Adjusted for age, smoking, stage, and sex, race, and histology 

Figure A-2  Fully odds ratios and 95% confidence intervals (CI) for the association between personal characteristics and c-Met status [Age in years vs. 

Age categories] 
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A.4 SURVIVAL ANALYSIS OF LUNG CANCER PATIENTS 
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Table A-12  Univariate Cox Regression for the Overall Survival 

  
Hazard Ratio 

(95%CI) p-value* 
HGF (High Expression) 0.830 (0.571, 1.205) 0.328 
HGF Allred Score 1.018 (0.920, 1.127) 0.725 
c-Met (High Expression) 0.959 (0.662, 1.388) 0.823 
c-Met Allred Score  1.047 (0.918, 1.193) 0.497 
Sex (Men) 1.287 (0.901, 1.837) 0.165 
RACE (African-American) 1.427 (0.783, 2.602) 0.245 
Age (continuous variable) 1.021 (1.002, 1.039) 0.030 
AGE  

 
0.041 

30-59 1.00   
60-69 1.094 (0.664, 1.804) 0.724 
70+ 1.675 (1.049, 2.673) 0.031 

SMOKING STATUS 
 

0.208 
never smoker 1.00   
active smoker 1.670 (0.763, 3.654) 0.200 
ex-smoker 1.258 (0.568, 2.789) 0.571 

Smoking dose-duration  
(among ever smokers) 

 
  

<50 pack-years 1.00   
50+ pack-years 1.193 (0.815, 1.748) 0.364 

PATHOLOGIC STAGE 
 

0.001 
IA 1.00   
IB 1.467 (0.788, 2.732) 0.227 
IIA/B 2.364 (1.274, 4.387) 0.006 
III/IV 2.950 (1.664, 5.232) 0.0002 

HISTOLOGY GROUP 
 

0.292 
Adeno, SQUAM, BAC, Carcinoid 1.00   
NSCLS, large cell carcinoma 1.312 (0.651, 2.644) 0.448 
SCCA 1.396 (0.949, 2.053) 0.090 
small cell carcinoma 1.895 (0.593, 6.052) 0.281 

*Wald Test (Type 3 test) for Testing Global Null Hypothesis: beta=0 and Chi-
Square Test for each stratified level based on analysis of maximum likelihood 
estimates. 

HGF and c-Met expression (high vs. low) is defined by median Allred scores. High 
expression means Allred score>median.  Low expression means Allred score ≤ 
median. [median for HGF from TMA=7.5 and whole section=6.0] and [median for 
c-Met from TMA=7.25 and whole section=7.0] 
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Table A-13  Univariate Cox Regression for the Progression Free Survival 

  
Hazard Ratio 

(95%CI) p-value* 
HGF (High Expression) 0.794 (0.541, 1.164) 0.237 
HGF Allred Score  0.991 (0.898, 1.095) 0.861 
c-Met (High Expression) 1.079 (0.742, 1.571) 0.691 
c-Met Allred Score  1.068 (0.932, 1.224) 0.342 
Sex (Men) 1.362 (0.948, 1.957) 0.095 
RACE (African-American) 1.298 (0.714, 2.362) 0.393 
Age (continuous variable)  1.009 (0.991, 1.027) 0.328 
AGE  

 
0.425 

30-59 1.00   
60-69 1.044 (0.630, 1.729) 0.868 
70+ 1.304 (0.817, 2.079) 0.266 

SMOKING STATUS 
 

0.553 
never smoker 1.00   
active smoker 1.217 (0.525, 2.819) 0.647 
ex-smoker 0.989 (0.422, 2.318) 0.980 

Smoking dose-duration  
(among ever smokers) 

 
  

<50 pack-years 1.00   
50+ pack-years 1.247 (0.846, 1.839) 0.264 

PATHOLOGIC STAGE 
 

0.001 
IA 1.00   
IB 1.326 (0.710, 2.477) 0.376 
IIA/B 2.451 (1.317, 4.562) 0.005 
III/IV 2.661 (1.503, 4.713) 0.001 

HISTOLOGY GROUP 
 

0.714 
Adeno, SQUAM, BAC, Carcinoid 1.00   
NSCLS, large cell carcinoma 1.374 (0.682, 2.766) 0.374 
SCCA 1.139 (0.770, 1.687) 0.515 
small cell carcinoma 1.524 (0.478, 4.865) 0.477 

*Wald Test (Type 3 test) for Testing Global Null Hypothesis: beta=0 and Chi-
Square Test for each stratified level based on analysis of maximum likelihood 
estimates 

HGF and c-Met expression (high vs. low) is defined by median Allred scores. 
High expression means Allred score>median.  Low expression means Allred 
score ≤ median. [median for HGF from TMA=7.5 and whole section=6.0] and 
[median for c-Met from TMA=7.25 and whole section=7.0] 
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Table A-14  Hazard ratios of HGF and c-Met for the overall and progression free survival among lung cancer patients 

 

Overall Survival 

 
Age Adjusted 

 
Minimally Adjusteda 

 
Additionally Adjustedb 

 
Fully Adjustedc 

 
HR (95% CI) p* 

 
HR (95% CI) p* 

 
HR (95% CI) p* 

 
HR (95% CI) p* 

HGF (High Expression) 0.819 (0.564, 1.190) 0.295 
 

0.830 (0.565, 1.220) 0.344 
 

0.869 (0.586, 1.291) 0.488 
 

0.88 (0.59, 1.31) 0.518 
HGF Allred Score 1.010 (0.912, 1.119) 0.849 

 
1.011 (0.909, 1.126) 0.835 

 
1.015 (0.912, 1.129) 0.790 

 
1.02 (0.92, 1.14) 0.686 

c-Met (High Expression) 0.942 (0.649, 1.366) 0.752 
 

0.937 (0.640, 1.372) 0.737 
 

1.056 (0.707, 1.578) 0.791 
 

1.01 (0.67, 1.52) 0.963 
c-Met Allred Score  1.046 (0.915, 1.195) 0.511 

 
1.023 (0.897, 1.167) 0.736 

 
1.081 (0.946, 1.236) 0.254 

 
1.08 (0.95, 1.24) 0.244 

 

 

Progression Free Survival 

 
Age Adjusted 

 
Minimally Adjusteda 

 
Additionally Adjustedb 

 
Fully Adjustedc 

 
HR (95% CI) p* 

 
HR (95% CI) p* 

 
HR (95% CI) p* 

 
HR (95% CI) p* 

HGF (High Expression) 0.792 (0.540, 1.162) 0.233 
 

0.785 (0.527, 1.169) 0.233 
 

0.855 (0.568, 1.287) 0.453 
 

0.87 (0.58, 1.32) 0.523 
HGF Allred Score 0.987 (0.893, 1.091) 0.799 

 
1.001 (0.901, 1.111) 0.990 

 
1.003 (0.903, 1.114) 0.953 

 
1.00 (0.90, 1.12) 0.934 

c-Met (High Expression) 1.068 (0.733, 0.156) 0.731 
 

1.031 (0.697, 1.526) 0.877 
 

1.288 (0.855, 1.941) 0.226 
 

1.30 (0.85, 1.99) 0.22 
c-Met Allred Score  1.069 (0.931, 1.226) 0.345 

 
1.059 (0.923, 1.215) 0.417 

 
1.126 (0.974, 1.301) 0.109 

 
1.14 (0.98, 1.33) 0.088 

 

*p-value from Wald Test (Type 3 test) 
Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Adjusted for age (continuous) and smoking 
b Adjusted for age (continuous) , smoking, stage, and sex (Variables selected from Modeling) 
c Adjusted for age (continuous) , smoking, stage, sex, race, and histology 
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Table A-15  Multivariate Cox Regression for the overall Survival 

  Age Adjusted   Minimally Adjusteda   Additionally Adjustedb   Fully Adjustedc 

  HR (95% CI) p* 
 

HR (95% CI) p* 
 

HR (95% CI) p* 
 

HR (95% CI) p* 

HGF (High Expression) 0.819 (0.564, 1.190) 0.295 
 

0.830 (0.565, 1.220) 0.344 
 

0.869 (0.586, 1.291) 0.488 
 

0.88 (0.59, 1.31) 0.518 
HGF Allred Score  1.010 (0.912, 1.119) 0.849 

 
 1.011 (0.909, 1.126) 0.835 

 
 1.015 (0.912, 1.129) 0.790 

 
1.02 (0.92, 1.14) 0.686 

c-Met (High Expression) 0.942 (0.649, 1.366) 0.752 
 

0.937 (0.640, 1.372) 0.737 
 

 1.056 (0.707, 1.578) 0.791 
 

1.01 (0.67, 1.52) 0.963 
c-Met Allred Score   1.046 (0.915, 1.195) 0.511 

 
 1.023 (0.897, 1.167) 0.736 

 
 1.081 (0.946, 1.236) 0.254 

 
1.08 (0.95, 1.24) 0.244 

Sex (Men) 1.317 (0.922, 1.881) 0.131 
 

1.435 (0.995, 2.070) 0.053 
 

1.617 (1.115, 2.345) 0.113 
 

1.51 (1.03, 2.22)* 0.034 
RACE (African-American) 1.372 (0.752, 2.504) 0.303 

 
 1.112 (0.577, 2.145) 0.751 

 
1.245 (0.639. 2.428) 0.520 

 
1.42 (0.72, 2.83) 0.313 

Age (continous variable) ** ** 
 

1.026 (1.006, 1.046) 0.011 
 

1.037 (1.017, 1.056) 0.0002 
 

1.03 (1.01, 1.05)* 0.001 
AGE      

0.025 
  

0.002 
  

0.009 
30-59 ** ** 

 
1.00 

  
1.00 

  
1.00   

60-69 ** ** 
 

1.122 (0.665, 1.892) 0.667 
 

1.617 (0.937, 2.792) 0.085 
 

1.74 (1.00, 3.04) 0.052 
70+ ** ** 

 
1.775 (1.095, 2.879) 0.020 

 
2.453 (1.479, 4.067) 0.001 

 
2.24 (1.34, 3.76)* 0.002 

SMOKING STATUS 
 

0.079 
     

0.005 
  

0.001 
never smoker 1.00 

  
*** *** 

 
1.00 

  
1.00   

active smoker 1.858 (0.847, 4.077) 0.122 
 

*** *** 
 

2.544 (1.130, 5.727) 0.024 
 

2.60 (1.15, 5.86)* 0.021 
ex-smoker 1.269 (0.572, 2.812) 0.558 

 
*** *** 

 
1.405 (0.627, 3.151) 0.409 

 
1.27 (0.56, 2.88) 0.56 

PATHOLOGIC STAGE 
 

 <.0001 
  

 <.0001 
  

 <.0001 
  

 <.0001 
IA 1.00 

  
1.00 

  
1.00 

  
1.00   

IB 1.472 (0.788, 2.749) 0.225 
 

1.413 (0.751, 0.658) 0.284 
 

1.709 (0.893, 3.269) 0.105 
 

1.59 (0.83, 3.06) 0.166 
IIA/B 2.737 (1.462, 5.123) 0.002 

 
2.771 (1.460, 5.258) 0.002 

 
3.914 (1.995, 7.679) <.0001 

 
4.39 (2.21, 8.72)*  <.0001 

III/IV 3.333 (1.863, 5.964)  <.0001 
 

3.291 (1.831, 5.917) <.0001 
 

3.997 (2178, 7.335) <.0001 
 

4.00 (2.17, 7.36)*  <.0001 
HISTOLOGY GROUP 

 
0.554 

  
0.532 

  
0.329 

  
0.290 

Adeno, SQUAM, BAC, Carcinoid 1.00 
  

1.00 
  

1.00 
  

1.00   
NSCLS, large cell carcinoma 1.227 (0.607, 2.483) 0.569 

 
1.315 (0.644, 2.686) 0.452 

 
1.701 (0.819, 3.535) 0.155 

 
1.73 (0.83, 3.63) 0.146 

SCCA 1.283 (0.864 , 1.905) 0.216 
 

1.259 (0.836, 1.896) 0.271 
 

1.223 (0.802, 1.867) 0.350 
 

1.25 (0.82, 1.92) 0.300 

small cell carcinoma 1.690 (0.526, 5.429) 0.378   1.885 (0.580, 6.125) 0.292   2.230 (0.655, 7.586) 0.199   2.38 (0.70, 8.16) 0.167 

*p-values from Wald Test (Type 3 test) for Testing Global Null Hypothesis: beta=0 and  Chi-Square Test for each stratified level based on analysis of maximum likelihood estimates 
Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Adjusted for age (continuous) and smoking; b Adjusted for age (continuous) , smoking, stage, and sex (Variables selected from Modeling); c Adjusted for age (continuous) , smoking, 
stage, sex, race, and histology 
**same as univariate hazard ratio; *** same as age adjusted hazard ratio 
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Table A-16  Multivariate Cox Regression for the progression free survival 

  Age Adjusted   Minimally Adjusteda   Additionally Adjustedb   Fully Adjustedc 

  HR (95% CI) p* 
 

HR (95% CI) p* 
 

HR (95% CI) p* 
 

HR (95% CI) p* 

HGF (High Expression) 0.792 (0.540, 1.162) 0.233 
 

0.785 (0.527, 1.169) 0.233 
 

0.855 (0.568, 1.287) 0.453 
 

0.87 (0.58, 1.32) 0.523 
HGF Allred Score 0.987 (0.893, 1.091) 0.799 

 
1.001 (0.901, 1.111) 0.990 

 
1.003 (0.903, 1.114) 0.953 

 
1.00 (0.90, 1.12) 0.934 

c-Met (High Expression) 1.068 (0.733, 0.1556) 0.731 
 

1.031 (0.697, 1.526) 0.877 
 

1.288 (0.855, 1.941) 0.226 
 

1.30 (0.85, 1.99) 0.22 
c-Met Allred Score  1.069 (0.931, 1.226) 0.345 

 
1.059 (0.923, 1.215) 0.417 

 
1.126 (0.974, 1.301) 0.109 

 
1.14 (0.98, 1.33) 0.088 

Sex (Men) 1.386 (0.963, 1.994) 0.079 
 

1.483 (1.019, 2.157) 0.040 
 

1.606 (1.098, 2.348) 0.015 
 

1.59 (1.07, 2.36)* 0.021 
RACE (African-American) 1.279 (0.702, 2.329) 0.421 

 
1.101 (0.572, 2.119) 0.773 

 
1.254 (0.644, 2.441) 0.506 

 
1.38 (0.70, 2.73) 0.358 

Age (continous variable) ** ** 
 

1.011 (0.992, 1.030) 0.254 
 

1.019 (1.001, 1.038) 0.040 
 

1.02 (1.00, 1.04) 0.068 
AGE      

0.417 
  

0.134 
  

0.232 
30-59 ** ** 

 
1.00 

  
1.00 

  
1.00   

60-69 ** ** 
 

1.045 (0.617, 1.772) 0.869 
 

1.380 (0.799, 2.385) 0.249 
 

1.37 (0.77, 2.43) 0.278 
70+ ** ** 

 
1.316 (0.811, 2.135) 0.266 

 
1.660 (1.009, 2.732) 0.046 

 
1.56 (0.94, 2.59) 0.087 

SMOKING STATUS 
 

0.458 
     

0.101 
  

0.053 
never smoker 1.00 

  
*** *** 

 
1.00 

  
1.00   

active smoker 1.275 (0.549, 2.964) 0.572 
 

*** *** 
 

1.499 (0.619, 3.630) 0.370 
 

1.45 (0.59, 3.54) 0.413 
ex-smoker 1.005 (0.429, 2.355) 0.992 

 
*** *** 

 
0.963 (0.403, 2.299) 0.932 

 
0.87 (0.36, 2.10) 0.749 

PATHOLOGIC STAGE 
 

0.0003 
  

0.0002 
  

 <.0001 
  

 <.0001 
IA 1.00 

  
1.00 

  
1.00 

  
1.00   

IB 1.332 (0.712, 2.491) 0.370 
 

1.258 (0.667, 2.374) 0.479 
 

1.395 (0.724, 2.687) 0.320 
 

1.28 (0.66, 2.48) 0.463 
IIA/B 2.594 (1.389, 4.846) 0.003 

 
2.716 (1.435, 5.139) 0.002 

 
3.393 (1.734, 6.639) 0.0004 

 
3.71 (1.88, 7.35)* 0.0002 

III/IV 2.880 (1.613, 5.145) 0.0004 
 

2.918 (1.620, 5.258) 0.0004 
 

3.072 (1.698, 5.558) 0.0002 
 

3.05 (1.68, 5.53)* 0.0002 
HISTOLOGY GROUP 

 
0.797 

  
0.717 

  
0.294 

  
0.280 

Adeno, SQUAM, BAC, Carcinoid 1.00 
  

1.00 
  

1.00 
  

1.00   
NSCLS, large cell carcinoma 1.331 (0.658, 2.692) 0.426 

 
1.422 (0.696, 2.905) 0.335 

 
1.903 (0.921, 3.934) 0.082 

 
1.94 (0.93, 4.05) 0.077 

SCCA 1.105 (0.742, 1.647) 0.623 
 

1.070 (0.706, 1.622) 0.749 
 

1.031 (0.670, 1.586) 0.890 
 

1.06 (0.69, 1.64) 0.796 
small cell carcinoma 1.458 (0.455, 4.674) 0.526   1.564 (0.483, 5.064) 0.456   1.793 (0.532, 6.043) 0.346   1.87 (0.55, 6.35) 0.313 

*p-values from Wald Test (Type 3 test) for Testing Global Null Hypothesis: beta=0 and  Chi-Square Test for each stratified level based on analysis of maximum likelihood estimates 
Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Adjusted for age (continuous) and smoking; b Adjusted for age (continuous) , smoking, stage, and sex (Variables selected from Modeling); c Adjusted for age (continuous) , smoking, 
stage, sex, race, and histology 
**same as univariate hazard ratio; *** same as age adjusted hazard ratio 
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Table A-17  Hazard ratios of HGF and c-Met by sex for the Overall Survival among Lung cancer patients 

  Crude   
  All Subjects 

 
Women 

 
Men 

  HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
HGF (High Expression) 0.830 (0.571, 1.205) 0.328 

 
0.842 (0.500, 1.417) 0.518 

 
0.821 (0.476, 1.413) 0.476 

HGF Allred Score 1.018 (0.920, 1.127) 0.725 
 

1.037 (0.902, 1.193) 0.609 
 

0.987 (0.850, 1.146) 0.864 
c-Met (High Expression) 0.959 (0.662, 1.388) 0.823 

 
0.812 (0.483, 1.365) 0.432 

 
1.193 (0.703, 2.026) 0.513 

c-Met Allred Score  1.047 (0.918, 1.193) 0.497   1.036 (0.874, 1.230) 0.682   1.073 (0.866, 1.328) 0.520 
  

       
  

  
       

  
  Age Adjusted 
  All Subjects 

 
Women 

 
Men 

  HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
HGF (High Expression) 0.819 (0.564, 1.190) 0.295 

 
0.820 (0.487, 1.380) 0.455 

 
0.829 (0.481, 1.429) 0.499 

HGF Allred Score 1.010 (0.912, 1.119) 0.849 
 

1.025 (0.888, 1.182) 0.737 
 

0.983 (0.848, 1.141) 0.825 
c-Met (High Expression) 0.942 (0.649, 1.366) 0.752 

 
0.800 (0.474, 1.349) 0.402 

 
1.151 (0.676, 1.961) 0.604 

c-Met Allred Score  1.046 (0.915, 1.195) 0.511   1.032 (0.866, 1.229) 0.727   1.074 (0.870, 1.326) 0.505 
  

       
  

  
       

  

  Multivariable Adjusted1 
  All Subjects 

 
Women 

 
Men 

  HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
HGF (High expression) 0.83 (0.56, 1.23) 0.36  0.91 (0.53, 1.56) 0.73  0.69 (0.37, 1.30) 0.25 
HGF Allred Score 1.01 (0.91, 1.12) 0.86  1.02 (0.87, 1.20) 0.79  1.02 (0.88, 1.18) 0.77 
c-Met  (High expression) 1.02 (0.68, 1.51) 0.93  0.91 (0.53, 1.58) 0.74  1.26 (0.70, 2.29) 0.44 
c-Met Allred Score  1.08 (0.95, 1.23) 0.26   1.07 (0.90, 1.28) 0.46   1.10 (0.90, 1.33) 0.35 
1 Cox proportional hazards models adjusted for age at tissue collection, smoking, and stage 

High HGF and c-Met expression defined by subject-specific averaged Allred values above IHC source-specific Allred median cutpoints (HGF cutpoints: 
7.5 for TMA and 6.0 for whole section; c-Met cutpoints: 7.25 for TMA and 7.0 for whole section) 
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Table A-18  Hazard ratios of HGF and c-Met by sex for the progression free survival among Lung cancer patients 

 
  

  Crude   
  All Subjects 

 
Women 

 
Men 

  HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
 

HR (95% CI) p-value* 
HGF (High Expression) 0.794 (0.541, 1.164) 0.237 

 
0.843 (0.488, 1.458) 0.541 

 
0.772 (0.448, 1.329) 0.350 

HGF Allred Score 0.991 (0.898, 1.095) 0.861 
 

1.017 (0.884, 1.169) 0.817 
 

0.964 (0.834, 1.115) 0.625 
c-Met (High Expression) 1.079 (0.742, 1.571) 0.691 

 
0.969 (0.567, 1.655) 0.907 

 
1.262 (0.744, 2.138) 0.388 

c-Met Allred Score  1.068 (0.932, 1.224) 0.342 
 

1.078 (0.895, 1.298) 0.427 
 

1.070 (0.867, 1.320) 0.527 
  

          
          Age Adjusted 

  All Subjects 
 

Women 
 

Men 
  HR (95% CI) p-value* 

 
HR (95% CI) p-value* 

 
HR (95% CI) p-value* 

HGF (High Expression) 0.792 (0.540, 1.162) 0.233 
 

0.843 (0.487, 1.457) 0.540 
 

0.772 (0.448, 1.331) 0.353 
HGF Allred Score 0.987 (0.893, 1.091) 0.799 

 
1.014 (0.880, 1.168) 0.845 

 
0.962 (0.833, 1.111) 0.600 

c-Met (High Expression) 1.068 (0.733, 0.1556) 0.731 
 

0.964 (0.564, 1.649) 0.964 
 

1.233 (0.726, 2.094) 0.437 
c-Met Allred Score  1.069 (0.931, 1.226) 0.345 

 
1.077 (0.894, 1.298) 0.436 

 
1.075 (0.873, 1.323) 0.497 

  
          
          Multivariable Adjusted1 

  All Subjects 
 

Women 
 

Men 
  HR (95% CI) p-value* 

 
HR (95% CI) p-value* 

 
HR (95% CI) p-value* 

HGF (High Expression) 0.834 (0.554, 1.257) 0.387 
 

1.044 (0.567, 1.923) 0.889 
 

0.687 (0.371, 1.271) 0.231 
HGF Allred Score 1.002 (0.901, 1.113) 0.975 

 
1.047 (0.891, 1.230) 0.577 

 
1.027 (0.891, 1.184) 0.711 

c-Met (High Expression) 1.218 (0.813, 1.825) 0.339 
 

1.131 (0.632, 2.025) 0.678 
 

1.599 (0.877, 2.915) 0.125 
c-Met Allred Score  1.124 (0.975, 1.295) 0.106 

 
1.141 (0.940, 1.386) 0.182 

 
1.153 (0.935, 1.423) 0.183 

1 Cox proportional hazards models adjusted for age at tissue collection, smoking, and stage 

High HGF and c-Met expression defined by subject-specific averaged Allred values above IHC source-specific Allred median cutpoints (HGF cutpoints: 
7.5 for TMA and 6.0 for whole section; c-Met cutpoints: 7.25 for TMA and 7.0 for whole section) 
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Table A-19  Cox proportional hazards model for overall survival of lung cancer patients: Three models with HGF and c-Met treated as continuous 

variables 

 

  

DF
Parameter 
Estimate

Standard 
Error

Chi-
Square Pr>ChiSq HR 

HGF Allred Score 1 -0.01268 0.06569 0.0372 0.847 0.987 0.868 1.123
cMet Allred Score 1 0.05205 0.08391 0.3848 0.535 1.053 0.894 1.242 DF Wald Chi-Square

Sex (Men) 1 0.53174 0.19756 7.2441 0.0071 1.702 1.155 2.507 HGF_Allred 1 0.0372
Age (continous variable) 1 0.03792 0.00982 14.9035 0.0001 1.039 1.019 1.059 cMet_Allred 1 0.3848

SMOKING STATUS     (reference=never smoker) Sex 1 7.2441
active smoker 1 0.93131 0.44152 4.4493 0.0349 2.538 1.068 6.029 Age_at_tissue_collection 1 14.9035

ex-smoker 1 0.31123 0.44155 0.4968 0.4809 1.365 0.575 3.244 Smoking 2 10.598
PATHOLOGIC STAGE    (reference=IA) stage_grp 3 24.6017

IB 1 0.41138 0.34073 1.4577 0.2273 1.509 0.774 2.942
IIA/B 1 1.24196 0.35635 12.147 0.0005 3.462 1.722 6.961
III/IV 1 1.31106 0.31764 17.0361 <.0001 3.71 1.991 6.915

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

HGF Allred Score 1 0.0145 0.05454 0.0706 0.7904 1.015 0.912 1.129 DF Wald Chi-Square
Sex (Men) 1 0.51424 0.19502 6.9534 0.0084 1.672 1.141 2.451 HGF_Allred 1 0.0706

Age (continous variable) 1 0.03872 0.00984 15.4844 <.0001 1.039 1.02 1.06 Sex 1 6.9534
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 15.4844

active smoker 1 0.99775 0.4158 5.758 0.0164 2.712 1.201 6.127 Smoking 2 11.544
ex-smoker 1 0.37268 0.41679 0.7995 0.3712 1.452 0.641 3.286 stage_grp 3 24.7532

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.40235 0.33699 1.4255 0.2325 1.495 0.772 2.895

IIA/B 1 1.20307 0.34644 12.0597 0.0005 3.33 1.689 6.567
III/IV 1 1.31367 0.31598 17.2846 <.0001 3.72 2.002 6.91

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

cMet Allred Score 1 0.07787 0.06827 1.3011 0.254 1.081 0.946 1.236 DF Wald Chi-Square
Sex (Men) 1 0.54383 0.19586 7.7097 0.0055 1.723 1.173 2.529 cMet_Allred 1 1.3011

Age (continous variable) 1 0.03706 0.00973 14.509 0.0001 1.038 1.018 1.058 Sex 1 7.7097
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 14.509

active smoker 1 0.92859 0.44137 4.4263 0.0354 2.531 1.066 6.011 Smoking 2 10.8089
ex-smoker 1 0.30448 0.44101 0.4767 0.4899 1.356 0.571 3.218 stage_grp 3 24.5159

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.42077 0.33934 1.5375 0.215 1.523 0.783 2.962

IIA/B 1 1.27317 0.3472 13.447 0.0002 3.572 1.809 7.054
III/IV 1 1.29181 0.31686 16.6216 <.0001 3.639 1.956 6.772

HGF and cMet (continous)

(95% CI) Type 3 Tests 

HGF (continous)

(95% CI)
Type 3 Tests

cMet (continous)

(95% CI) Type 3 Tests 
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Table A-20  Cox proportional hazards model for overall survival of lung cancer patients: Three models with HGF and c-Met treated as categorical 

variables 

 
  

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

HGF (High expression) 1 -0.15763 0.20485 0.5921 0.4416 0.85 0.57 1.276 DF Wald Chi-Square Pr > ChiSq
cMet (High expression) 1 0.05551 0.21052 0.0695 0.792 1.06 0.7 1.597 HGF_Allred 1 0.5921 0.4416

Sex (Men) 1 0.51372 0.19833 6.7093 0.0096 1.67 1.13 2.466 cMet_Allred 1 0.0695 0.792
Age (continous variable) 1 0.03756 0.00995 14.2631 0.0002 1.04 1.02 1.059 Sex 1 6.7093 0.0096

SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 14.2631 0.0002
active smoker 1 0.96537 0.44448 4.7172 0.0299 2.63 1.1 6.275 Smoking 2 10.783 0.0046

ex-smoker 1 0.34516 0.44417 0.6039 0.4371 1.41 0.59 3.373 stage_grp 3 23.3121 <.0001
PATHOLOGIC STAGE    (reference=IA)

IB 1 0.38861 0.34489 1.2696 0.2598 1.48 0.75 2.9
IIA/B 1 1.22631 0.35676 11.8154 0.0006 3.41 1.69 6.859
III/IV 1 1.26074 0.32073 15.4519 <.0001 3.53 1.88 6.615

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

HGF (High expression) 1 -0.13994 0.20164 0.4816 0.4877 0.87 0.59 1.291 DF Wald Chi-Square Pr > ChiSq
Sex (Men) 1 0.5011 0.19578 6.551 0.0105 1.65 1.13 2.423 HGF_Allred 1 0.4816 0.4877

Age (continous variable) 1 0.03905 0.00978 15.9363 <.0001 1.04 1.02 1.06 Sex 1 6.551 0.0105
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 15.9363 <.0001

active smoker 1 1.04533 0.42048 6.1804 0.0129 2.84 1.25 6.485 Smoking 2 11.7748 0.0028
ex-smoker 1 0.42354 0.41977 1.0181 0.313 1.53 0.67 3.477 stage_grp 3 23.7339 <.0001

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.39314 0.33765 1.3557 0.2443 1.48 0.76 2.872

IIA/B 1 1.21175 0.34599 12.2656 0.0005 3.36 1.71 6.619
III/IV 1 1.2781 0.31874 16.079 <.0001 3.59 1.92 6.705

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

cMet (High expression) 1 0.05437 0.20486 0.0704 0.7907 1.06 0.71 1.578 DF Wald Chi-Square Pr > ChiSq
Sex (Men) 1 0.54605 0.19628 7.7392 0.0054 1.73 1.18 2.536 cMet_Allred 1 0.0704 0.7907

Age (continous variable) 1 0.03746 0.00993 14.2261 0.0002 1.04 1.02 1.059 Sex 1 7.7392 0.0054
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 14.2261 0.0002

active smoker 1 0.92778 0.44165 4.413 0.0357 2.53 1.06 6.01 Smoking 2 11.1886 0.0037
ex-smoker 1 0.28777 0.44064 0.4265 0.5137 1.33 0.56 3.163 stage_grp 3 23.2162 <.0001

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.39455 0.34423 1.3138 0.2517 1.48 0.76 2.913

IIA/B 1 1.24204 0.35341 12.3516 0.0004 3.46 1.73 6.922
III/IV 1 1.24453 0.31797 15.3191 <.0001 3.47 1.86 6.474

HGF (categorical)

(95% CI) Type 3 Tests

cMet  (categorical)

(95% CI) Type 3 Tests

HGF and cMet  (categorical)

(95% CI) Type 3 Tests
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Table A-21  Cox proportional hazards model for progression free survival of lung cancer patients: Three models with HGF and c-Met treated as 

continuous variables 

 
  

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

HGF Allred Score 1 -0.04543 0.06596 0.4744 0.491 0.956 0.84 1.087
cMet Allred Score 1 0.12007 0.08835 1.8469 0.1741 1.128 0.948 1.341 DF Wald Chi-Square Pr > ChiSq

Sex (Men) 1 0.48951 0.20237 5.8512 0.0156 1.632 1.097 2.426 HGF_Allred 1 0.4744 0.491
Age (continous variable) 1 0.02224 0.00945 5.5445 0.0185 1.022 1.004 1.042 cMet_Allred 1 1.8469 0.1741

SMOKING STATUS     (reference=never smoker) Sex 1 5.8512 0.0156
active smoker 1 0.53617 0.49016 1.1965 0.274 1.709 0.654 4.468 Age_at_tissue_collection 1 5.5445 0.0185

ex-smoker 1 0.09668 0.48692 0.0394 0.8426 1.102 0.424 2.861 Smoking 2 4.5544 0.1026
PATHOLOGIC STAGE    (reference=IA) stage_grp 3 20.9011 0.0001

IB 1 0.33809 0.34713 0.9486 0.3301 1.402 0.71 2.769
IIA/B 1 1.21277 0.36349 11.1319 0.0008 3.363 1.649 6.857
III/IV 1 1.16492 0.31794 13.4243 0.0002 3.206 1.719 5.978

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

HGF Allred Score 1 0.00315 0.05363 0.0035 0.9531 1.003 0.903 1.114 DF Wald Chi-Square Pr > ChiSq
Sex (Men) 1 0.47872 0.20062 5.694 0.017 1.614 1.089 2.392 HGF_Allred 1 0.0035 0.9531

Age (continous variable) 1 0.02123 0.0095 4.9935 0.0254 1.021 1.003 1.041 Sex 1 5.694 0.017
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 4.9935 0.0254

active smoker 1 0.41399 0.45333 0.834 0.3611 1.513 0.622 3.679 Smoking 2 4.3095 0.1159
ex-smoker 1 -0.0292 0.45057 0.0042 0.9483 0.971 0.402 2.349 stage_grp 3 19.9498 0.0002

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.25761 0.34308 0.5638 0.4527 1.294 0.66 2.535

IIA/B 1 1.10337 0.34781 10.0634 0.0015 3.014 1.524 5.96
III/IV 1 1.08798 0.31322 12.0655 0.0005 2.968 1.607 5.484

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

cMet Allred Score 1 0.1183 0.07374 2.5734 0.1087 1.126 0.974 1.301 DF Wald Chi-Square Pr > ChiSq
Sex (Men) 1 0.49086 0.20012 6.0166 0.0142 1.634 1.104 2.418 cMet_Allred 1 2.5734 0.1087

Age (continous variable) 1 0.02096 0.00938 4.9935 0.0254 1.021 1.003 1.04 Sex 1 6.0166 0.0142
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 4.9935 0.0254

active smoker 1 0.53639 0.48951 1.2007 0.2732 1.71 0.655 4.463 Smoking 2 4.9824 0.0828
ex-smoker 1 0.07805 0.48505 0.0259 0.8722 1.081 0.418 2.797 stage_grp 3 21.0006 0.0001

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.33682 0.34514 0.9524 0.3291 1.4 0.712 2.755

IIA/B 1 1.21559 0.35153 11.958 0.0005 3.372 1.693 6.717
III/IV 1 1.14027 0.31576 13.0406 0.0003 3.128 1.684 5.807

Type 3 Tests

HGF (continous)

(95% CI) Type 3 Tests 

cMet (continous)

(95% CI) Type 3 Tests 

HGF and cMet (continous)

(95% CI)
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Table A-22  Cox proportional hazards model for progression free survival of lung cancer patients: Three models with HGF and c-Met treated as 

categorical variables 

 

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

HGF (High expression) 1 -0.21561 0.2146 1.0095 0.315 0.806 0.529 1.228 DF Wald Chi-Square Pr > ChiSq
cMet (High expression) 1 0.274 0.21823 1.5764 0.2093 1.315 0.858 2.017 HGF_Allred 1 1.0095 0.315

Sex (Men) 1 0.48644 0.20387 5.6932 0.017 1.627 1.091 2.425 cMet_Allred 1 1.5764 0.2093
Age (continous variable) 1 0.01972 0.00951 4.2969 0.0382 1.02 1.001 1.039 Sex 1 5.6932 0.017

SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 4.2969 0.0382
active smoker 1 0.59097 0.49905 1.4023 0.2363 1.806 0.679 4.802 Smoking 2 4.5924 0.1006

ex-smoker 1 0.15818 0.49648 0.1015 0.75 1.171 0.443 3.1 stage_grp 3 20.0557 0.0002
PATHOLOGIC STAGE    (reference=IA)

IB 1 0.34521 0.34874 0.9798 0.3222 1.412 0.713 2.798
IIA/B 1 1.22485 0.36421 11.3098 0.0008 3.404 1.667 6.95
III/IV 1 1.113 0.31832 12.2257 0.0005 3.043 1.631 5.68

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

HGF (High expression) 1 -0.15678 0.20869 0.5644 0.4525 0.855 0.568 1.287 DF Wald Chi-Square Pr > ChiSq
Sex (Men) 1 0.47213 0.20121 5.5055 0.019 1.603 1.081 2.379 HGF_Allred 1 0.5644 0.4525

Age (continous variable) 1 0.02125 0.00944 5.07 0.0243 1.021 1.003 1.041 Sex 1 5.5055 0.019
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 5.07 0.0243

active smoker 1 0.49228 0.46366 1.1273 0.2884 1.636 0.659 4.059 Smoking 2 4.3423 0.114
ex-smoker 1 0.05851 0.46049 0.0161 0.8989 1.06 0.43 2.614 stage_grp 3 19.369 0.0002

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.25156 0.34349 0.5364 0.4639 1.286 0.656 2.521

IIA/B 1 1.1145 0.34798 10.2576 0.0014 3.048 1.541 6.029
III/IV 1 1.05612 0.31561 11.1976 0.0008 2.875 1.549 5.337

DF
Parameter 
Estimate

Standard 
Error Chi-Square Pr>ChiSq HR 

cMet (High expression) 1 0.25303 0.20915 1.4636 0.2264 1.288 0.855 1.941 DF Wald Chi-Square Pr > ChiSq
Sex (Men) 1 0.51625 0.20108 6.5916 0.0102 1.676 1.13 2.485 cMet_Allred 1 1.4636 0.2264

Age (continous variable) 1 0.01997 0.00952 4.3978 0.036 1.02 1.001 1.039 Sex 1 6.5916 0.0102
SMOKING STATUS     (reference=never smoker) Age_at_tissue_collection 1 4.3978 0.036

active smoker 1 0.51683 0.49023 1.1115 0.2918 1.677 0.641 4.383 Smoking 2 5.2188 0.0736
ex-smoker 1 0.04623 0.48587 0.0091 0.9242 1.047 0.404 2.714 stage_grp 3 20.1245 0.0002

PATHOLOGIC STAGE    (reference=IA)
IB 1 0.34982 0.34776 1.0119 0.3144 1.419 0.718 2.805

IIA/B 1 1.23242 0.3584 11.8247 0.0006 3.43 1.699 6.923
III/IV 1 1.10628 0.31567 12.282 0.0005 3.023 1.628 5.612

HGF (categorical)

(95% CI) Type 3 Tests

cMet  (categorical)

(95% CI) Type 3 Tests

HGF and cMet  (categorical)

(95% CI) Type 3 Tests



131 

A.5 PROC GLIMMIX EXAMPLE IN SAS 9.2 

To identify baseline factors related to HGF and c-Met expression, we used a generalized linear 

mixed model approach, which controlled for data source (TMA vs. whole section) and accounted 

for the correlated nature of the TMA core-level data. 

SAS editor example using Proc Glimmix 

/*********************Fully adjusted odds ratios******************/ 
/****Adjusted by age, smoking, stage,  sex, race and histology****/ 
/*****************************************************************/ 
%let data=all_corr_median; 
%let insert=HGF_allred; /*Insert "HGF_allred" or "cMet_allred"*/ 
 
ods rtf file= 'I:\HGFcMet_Analysis\HGFcMet_SAS_Code\OR_corr_final.rtf' 
style=journal; 
Ods graphics on; 
 
Proc glimmix data=&data plots=oddsratio method=RSPL empirical; 
Class subjectID_final datasource sex stage smoking race histology; 
Model  &insert(event="Positive")=  sex race age smoking  stage histology/ 
dist=binary link=logit solution oddsratio; 
Random _residual_/subject=subjectID_final(datasource) type=AR(1) ; 
format  histology histo_group. stage stg_grp. smoking smoking. HGF_allred 
HGF. cMet_allred cMet. ; 
run; 
 
Ods graphics off; 
ods rtf close;  

 

  



132 

SAS output from Proc Glimmix 
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APPENDIX B 

SAMPLE SIZE AND POWER CALCULATION FOR PROJECT#3 

The sample size calculation is based on the first hypothesis of specific aim #3 from Project #3: 

the prevalence of polymorphisms in ESR2 gene is not different between lung cancer patients with 

and without ER beta protein expression in lung tumor tissue.  Sample size calculation was 

performed with significance level of alpha=0.05 (two-sided), 80% power (beta=0.20), and 

various minor allele frequencies of ESR2 SNPs selected in the project #3.  The sample size 

calculation was performed for both the recessive and dominant models by treating ER-beta 

protein expression as categorical variable. 

Based on previous analysis, we had 60% ER-beta protein expression among study 

samples.  Therefore, assuming 120 samples with ER-beta protein expression and 80 samples 

without the expression, odds ratios of ER-beta protein expression associated with various SNPs 

for ESR2 were obtained with continuity correction for both models (Table B-1).  For recessive 

model of ESR2 SNP with minor allele frequency of 0.35 in the Caucasian population, it is 

calculated that we will have 12.3% minor genotype prevalence among subjects with ER-beta 

protein expression and 29.4% among subjects without ER-beta protein expression to show an 

odds ratio of 2.97 for the lung cancer patients with a 80% power at 5% significance.  For 
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dominant model of ESR2 SNP with minor allele frequency of 0.35 in the Caucasian population, 

it is calculated that we will have 57.8% minor genotype prevalence among subjects with ER-beta 

protein expression and 77.7% among subjects without ER-beta protein expression to show an 

odds ratio of 2.54 for the lung cancer patients with a 80% power at 5% significance.  In both 

model, odds ratios are calculated to be greater than 2.5 showing that subjects without ER-beta 

protein expression are much more likely to have the minor allele of ESR2 SNP than those with 

ER-beta protein expression.   

Assuming dominant model of inheritance, we can detect the odds ratios less than 3.5 with 

80% power at 5% significant for the polymorphisms with extreme minor allele frequency as 0.05 

(lower) and 0.5 (higher).  However, in recessive model, only extreme odds ratios such as 35.86 

and 12.64 can be detected with 80% power at 5% significance for polymorphisms with lower 

minor allele frequencies: 0.05 and 0.10, respectively. The power analysis software, Power 

Analysis and Sample Size (PASS)1

 

, were used to perform the sample size calculation.  This may 

provide less power for other hypotheses testing including stratifications by gender, histological 

types of lung cancer, and smoking history. 

 

                                                 

1 Pass 2000 (January 21, 2005):  Hintze J. (2004). NCSS and Pass. Number Cruncher Statistical Systems. Kaysville, 
Utah. www.ncss.com  

http://www.ncss.com/�
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Table B-1  Sample Size and Power Calculation 

  N0 (ER-beta positive)=120, N1 (ER-beta negative)=80, alpha=0.05 (two-sided, difference between two proportions with continuity correction), beta=0.20, 
allele A=minor allele, OR=[P1/(1-P1)]/[P0/(1-P0)]

 Genotype Frequency Recessive model Dominant model 
Allele Freq AA AB BB P0 P1 OR P0 P1 OR 

0.050 0.003 0.095 0.903 0.003 0.097 35.86 0.098 0.259 3.22 
0.100 0.010 0.180 0.810 0.010 0.113 12.64 0.190 0.379 2.61 
0.150 0.023 0.255 0.723 0.023 0.140 6.89 0.278 0.481 2.41 
0.200 0.040 0.320 0.640 0.040 0.170 4.93 0.360 0.570 2.35 
0.250 0.063 0.375 0.563 0.063 0.207 3.89 0.438 0.648 2.36 
0.300 0.090 0.420 0.490 0.090 0.248 3.34 0.510 0.716 2.42 
0.350 0.123 0.455 0.423 0.123 0.294 2.97 0.578 0.777 2.54 
0.400 0.160 0.480 0.360 0.160 0.342 2.73 0.640 0.828 2.72 
0.450 0.203 0.495 0.303 0.203 0.395 2.57 0.698 0.874 3.00 
0.500 0.250 0.500 0.250 0.250 0.451 2.46 0.750 0.912 3.46 
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APPENDIX C 

SNP SELECTION METHDOLOGY FOR PROJECT#3 

C.1 SNP SELECTION METHODOLOGY 

Candidate ESR2 single nucleotide polymorphisms (SNPs) 

Five data sources provided information about genetic variation in the human ESR2 gene, 1) 

OVID Medline®, 2) NCBI Entrez SNP13 Cancer Genome Anatomy Project (CGAP) 

SNP500Cancer Database

, 3) the 

14 International HapMap Project [1], 4) the 15 FastSNP, and 5) 16

 

 [2]. 

1. OVID Medline® 

An OVID Medline literature search (conducted on 01/28/2009) for articles indexed under the 

keywords “Estrogen Receptor beta” and (“Polymorphism, Genetic” or “Polymorphism, 

Restriction Fragment Length” or “Polymorphism, Single Nucleotide” or “Polymorphism, Single-

Stranded Conformational”) produced 119 citations published between 1998 and 2009. 

                                                 

13 http://www.ncbi.nlm.nih.gov/sites/entrez 
14 http://snp500cancer.nci.nih.gov/home_1.cfm 
15 http://www.hapmap.org/ 
16 http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp 

http://www.ncbi.nlm.nih.gov/sites/entrez�
http://snp500cancer.nci.nih.gov/home_1.cfm�
http://snp500cancer.nci.nih.gov/home_1.cfm�
http://www.hapmap.org/�
http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp�
http://www.ncbi.nlm.nih.gov/sites/entrez�
http://snp500cancer.nci.nih.gov/home_1.cfm�
http://www.hapmap.org/�
http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp�
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Three ESR2 variants of scientific interest have included a silent G1082A SNP in exon 6 

(ligand binding domain), A1730G SNP in the 3′-untranslated region of exon 8, and a CA 

dinucleotide repeat polymorphism in intron 5 [3] (Table C-1). The inheritance of one or another 

of these three specific ESR2 genetic variants has been studied in relation to cancers of the colon 

or rectum [4], endometrium [5], ovary [6], testis [7], prostate [8-10], and breast [11-19]. 

Table C-1  Three frequently studied ESR2 genetic variants. 

Identifier Restriction site Description MAF1 

rs1256049 RsaI Silent G1082A SNP in exon 6 
(ligand binding domain) 

0.025 

rs4986938 AluI A1730G SNP in the 3′-untranslated region of exon 8 0.398 

D14S1026  CA dinucleotide repeat polymorphism in intron 5  

1. Minor allele frequency (MAF) in the CEU population (Utah residents with ancestry from northern and western 
Europe), HapMap Data Rel 24/phase II Nov 08 database. 

 

Table C-2 lists the 15 ESR2 SNPs included in haplotype or genome-wide association 

studies of cancer [9, 13, 20]. 
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Table C-2  ESR2 SNPs included in haplotype or genome-wide association studies of cancer. 

Identifier BPC3 CAPS CGEMS 

rs1256031 X   

rs1256049 (RsaI) X   

rs3020450 X  X 

rs4986938 (AluI) X   

rs1256040  X  

rs1256062  X X 

rs1887994  X  

rs2987983  X  

rs1255998    

rs1256030    

rs1256065    

rs10137185   X 

rs1256044   X 

rs1269056   X 

rs944045   X 
 
Legend: BPC3 – Breast and Prostate Cancer Cohort Consortium, CAPS – Cancer Prostate in Sweden, CGEMS– 
Cancer Genetic Markers of Susceptibility 
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2. NCBI Entrez SNP 

A 01/28/2009 query of the NCBI Entrez SNP database (ESR2[All Fields] AND ("homo 

sapiens"[Organism] AND "snp"[Snp_Class]) identified 571 SNPs. The search identified 10 

coding SNPs, all synonymous (sense). 

3. Cancer Genome Anatomy Project (CGAP) SNP500Cancer Database 

A 01/28/2009 query of the Cancer Genome Anatomy Project (CGAP) SNP500Cancer Database 

identified 13 SNPs with variation in either the SNP500Cancer or Human Diversity Panel (HDP) 

populations. 

4. International HapMap Project 

A HapMap Data Rel 24/phase II Nov 08 database (NCBI build 36) query restricted to the CEU 

population (N=90 Utah residents with ancestry from northern and western Europe) identified 169 

SNPs in chromosome 14 (position 63743506 to 63895021), a 151.5 kb genomic region spanning 

20 kb upstream and 20 kb downstream of the estrogen receptor beta isoform 2 

(NM_001040276). 

5. FastSNP 

A 01/29/2009 Excel spreadsheet FastSNP download of variants (coding type = ALL) in the 

ESR2 ENST00000358599 transcript contained 754 SNPs. The search identified ten SNPs with 

possible functional significance, including one conservative missense and three sense SNPs in an 

ESR2 coding region and six non-coding SNPs in an ESR2 promoter or regulatory region. 

 

List of candidate SNPs 

SNP500Cancer, Entrez SNP, FastSNP, and CEU HapMap database searches identified a total of 

1,149 SNPs according to dbSNP identifier (“rs number”), including 154 SNPs common to CEU 
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HapMap and non-HapMap sources (SNP500Cancer, Entrez SNP, and FastSNP), 980 SNPs 

unique to non-HapMap sources, and 15 SNPs unique to CEU HapMap (Table C-3). 

SNP500Cancer, Entrez SNP, and FastSNP database searches identified 29 high priority SNPs, 

including 11 CEU HapMap SNPs (Table C-3). 

Table C-3  N=1,149 SNPs identified through SNP500Cancer, Entrez SNP, FastSNP, and HapMap 

database searches 

 CEU HapMap SNP 

 No (N=980) Yes (N=169) 

In SNP500Cancer 5 8 

In Entrez SNP 434 133 

In FastSNP 623 128 

In SNP500, EntrezSNP, or FastSNP 980 154 

High Priority SNP1 18 11 

Not in SNP500Cancer, EntrezSNP, or FastSNP  15 

1. High priority SNPs include SNP500Cancer SNPs, coding SNPs in Entrez SNP or FastSNP, and promoter-
regulator SNPs in FastSNP. 

 

Haplotype tag-SNP (htSNP) selection procedure 

As noted above, a HapMap search initially identified 169 CEU ESR2 Phase II SNPs (Table C-3). 

However, 49 ESR2 SNPs had a zero minor allele frequency (MAF) in the CEU population.  

Figure C-1 displays measures (D′) of linkage disequilibrium (LD) for the remaining 120 ESR2 

SNPs with non-zero MAF in the CEU population. To select htSNPs for the SNPs shown in 

Figure C-1, I forced selection of the AluI SNP (rs4986938 ), the RsaI SNP (rs1256049), and four 

eligible high priority SNPs (rs8006145, rs1256031, rs1256030, and rs3020450) and used the de 
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Bakker pairwise Tagger algorithm [21] at an R2 = 0.80 threshold, as implemented in Haploview 

4.1 [22]. Tagger selected 34 htSNPs, including 28 SNPs within the ESR2 gene (Table C-4), 

capturing all 120 SNPs with mean R2 = 0.967. Nine of the 34 htSNPs captured only low-

frequency-low-priority SNPs (MAF < 0.05). The SNP500Cancer SNPs rs1256031 captured the 

six SNPs tagged by the adjacent SNP500Cancer SNP rs1256030. Twenty-five htSNPs remained 

after excluding rs1256030 and the low-frequency-low-priority SNPs. Replacing two low priority 

SNPs with linked alternatives, a final set of 25 htSNPs could be genotyped on two Sequenom 

multi-plex panels (Table C-5). These 25 ht SNPs captured 104 (87%) of the 120 CEU HapMap 

SNPs within 20 kb of ESR2 at R2 ≥ 0.80 with mean R2 = 0.961. Table C-6 lists the HapMap 

SNPs not captured by the 25 htSNPs in Table C-5. 
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Figure C-1  Linkage disequilibrium (LD) display of N=120 HapMap Phase II SNPs within 20 kb of the ESR2 with non-zero MAF in the CEU 

population. Color key – White= D′<1 and LOD<2, Blue: D′=1 and LOD<2, Shades of pink and red: D′<1 and LOD≥2, and Bright red: D′=1 and 

LOD≥2.
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Table C-4  Haplotype tagging SNPs (htSNP) for ESR2 HapMap Phase II SNPs. 

 
1. Forced selection as htSNP, rs1256049 because of location in coding region and rs8006145, rs4986938, rs1256031, 

rs1256030, and rs3020450 because of membership in SNP500Cancer. 
  

Position htSNP Forced [1] N Min MAF Max MAF
63763624 rs1255998 2 0.086 0.092
63763835 rs8018687 3 0.059 0.067
63764502 rs17225885 1 0.033 0.033 X
63769203 rs8006145 Priority 3 0.308 0.317
63769569 rs4986938 AluI 3 0.398 0.425
63770894 rs17101732 1 0.026 0.026 X
63771970 rs1256063 1 0.083 0.083
63773346 rs1256061 4 0.440 0.475
63782108 rs1952585 5 0.114 0.176
63785526 rs17766755 1 0.331 0.331
63787406 rs1256052 1 0.033 0.033 X
63788870 rs7157428 2 0.085 0.092
63790285 rs2738415 1 0.008 0.008 X
63793804 rs1256049 RsaI 10 0.017 0.026
63809258 rs1273196 1 0.059 0.059
63810273 rs12435284 2 0.125 0.125
63813085 rs1256036 20 0.321 0.461
63815932 rs1256031 Priority 1 0.415 0.415
63816923 rs1256030 Priority 6 0.417 0.458
63838055 rs3020450 Priority 4 0.325 0.342
63843145 rs3020449 2 0.483 0.500
63845529 rs10137185 2 0.158 0.158
63854189 rs7146908 3 0.009 0.033 X
63862093 rs3020443 1 0.216 0.216
63865264 rs11629158 5 0.025 0.034 X
63868313 rs2987976 2 0.083 0.083
63873910 rs17226088 1 0.042 0.042 X
63874754 rs1256120 1 0.183 0.183

SNPs captured Max MAF < 
0.05



148 

Table C-5  Proposed htSNPs. 

 

Identifier MAF
R2 with 
htSNP

1 rs8021944 rs8021944 0.110 1.000
rs8022694 0.108 1.000
rs7145919 0.100 0.914
rs12434245 0.100 0.914

2 rs968257 rs1152594 0.400 0.833
rs1152592 0.408 0.867
rs968257 0.392 1.000
rs1152590 0.408 0.867

3 rs1152589 rs2738413 0.450 0.935
rs1152591 0.450 0.935
rs1152589 0.467 1.000

4 rs1255998 rs1152583 0.075 1.000
rs1048315 0.070 1.000
rs1255998 0.086 1.000
rs1256064 0.092 0.901

5 rs8018687 rs8020646 0.051 1.000
rs8018687 0.059 1.000
rs1109056 0.067 1.000
rs944045 0.067 1.000

6 rs8006145 rs2772163 0.316 0.843
rs8006145 0.317 1.000
rs867443 0.308 0.887

7 rs4986938 rs4986938 0.398 1.000
rs3783736 0.425 0.865
rs17179740 0.422 0.860

8 rs1256063 rs1256063 0.083 1.000
9 rs1256061 rs1256061 0.475 1.000

rs4365213 0.440 0.901
rs6573549 0.440 0.901
rs12435857 0.449 0.903

10 rs1952585 rs1256062 0.176 0.805
rs10144225 0.125 1.000
rs8017441 0.125 1.000
rs1952585 0.125 1.000
rs2274705 0.114 1.000

11 rs17766755 rs17766755 0.331 1.000
12 rs1256049 rs1152596 0.025 1.000

rs1152585 0.017 1.000
rs1152580 0.017 1.000
rs1256066 0.017 1.000
rs944050 0.025 1.000
rs944460 0.025 1.000
rs944461 0.025 1.000
rs1256060 0.025 1.000
rs953592 0.026 1.000
rs1256055 0.025 1.000
rs1256053 0.025 1.000
rs1256049 0.025 1.000

htSNP identifier

Tagged SNP
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Table C-5  Continued 

 

Identifier MAF
R2 with 
htSNP

13 rs8003490 rs8003490 0.085 1.000
rs7157428 0.092 1.000

14 rs1273196 rs1273196 0.059 1.000
15 rs12435284 rs12435284 0.125 1.000

rs7159462 0.125 1.000
16 rs1256036 rs915057 0.383 0.863

rs1152588 0.405 0.930
rs1152582 0.397 0.894
rs928554 0.365 0.840
rs1152579 0.377 0.855
rs1152578 0.386 0.891
rs1256065 0.384 0.891
rs1256059 0.397 0.930
rs1256056 0.400 0.932
rs1256048 0.383 1.000
rs1256045 0.383 1.000
rs1256044 0.383 1.000
rs1256043 0.321 1.000
rs10148269 0.383 1.000
rs1271573 0.381 1.000
rs1256038 0.373 1.000
rs1256037 0.390 1.000
rs1256036 0.383 1.000
rs1269056 0.383 1.000
rs960069 0.370 1.000
rs1271572 0.414 0.931
rs3020445 0.461 0.924
rs2357479 0.433 0.813

17 rs1256031 rs1256040 0.420 1.000
rs10143616 0.450 0.871
rs960070 0.450 0.871
rs1256033 0.417 1.000
rs1256031 0.415 1.000
rs1256030 0.417 1.000
rs6573553 0.458 0.842

18 rs1887994 rs1887994 0.083 1.000
rs2987976 0.083 1.000

19 rs3020450 rs7154455 0.342 0.963
rs2987983 0.333 1.000
rs3020450 0.333 1.000
rs3020444 0.325 0.963

20 rs3020449 rs2978381 0.500 0.967
rs3020449 0.483 1.000

21 rs10137185 rs1952586 0.158 1.000
rs10137185 0.158 1.000

22 rs3020443 rs3020443 0.216 1.000

htSNP identifier

Tagged SNP
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Table C-5  Continued 

 
  

Identifier MAF
R2 with 
htSNP

23 rs1256120 rs1256120 0.183 1.000
rs944052 0.192 0.947
rs1256116 0.192 0.947
rs1256114 0.192 0.947

24 rs10146204 rs10146204 0.465 1.000
25 rs1256108 rs1256112 0.408 0.872

rs1256111 0.442 1.000
rs1256110 0.490 0.925
rs1256108 0.442 1.000
rs1256107 0.442 1.000

htSNP identifier

Tagged SNP
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Table C-6  SNPs not captured by htSNPs in Table C-5. 

 
 

Proposal 

Table C-7 lists 24 interesting SNPs not in HapMap. According to Entrez SNP, the missense SNP 

identified by FastSNP (rs1255953) is located in a SYNE2 intron. Justification for genotyping any 

of the SNPs in Table C-7 is weak based on information currently available. Therefore, I propose 

to limit ESR2 genotyping to the 25 htSNPs listed in Table C-5. 

Identifier Position MAF
rs17101715 63744135 0.008
rs17101718 63752147 0.025
rs9323448 63761209 0.025
rs17225885 63764502 0.033
rs17101732 63770894 0.026
rs1256052 63787406 0.033
rs2738415 63790285 0.008
rs1256034 63814878 0.025
rs10136955 63815016 0.009
rs1256032 63815777 0.034
rs1256027 63836427 0.033
rs11625778 63843062 0.026
rs7146908 63854189 0.033
rs17101774 63863334 0.017
rs11629158 63865264 0.034
rs17226088 63873910 0.042
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Table C-7  ESR2 SNPs coded as possibly functional (in FastSNP), located in coding region (in Entrez 

SNP), or validated in SNP500Cancer, but not represented in HapMap. 

 

  

Identifier FastSNP Possible Functional Effect

Possible 
Functional 
Effect in 
FastSNP

Sense coding 
SNPs in 

Entrez SNP SNP500 MAF
rs1255953 Missense (conservative); Splicing regulation X 0.167
rs1256054 Sense/synonymous; Splicing regulation X X 0.000
rs10137994 Promoter/regulatory region X
rs10483774 Promoter/regulatory region X 0.000
rs17226060 Promoter/regulatory region X 0.000
rs2738411 Promoter/regulatory region X
rs35945666 Promoter/regulatory region X
rs3832949 Promoter/regulatory region X
rs1541060 Sense/synonymous X X
rs17225976 X
rs45624541 X
rs56926155 X
rs58127193 X
rs58256696 X
rs60101369 X
rs60892953 X
rs10047818 X 0.000
rs1256030 X 0.414
rs1256041 X 0.403
rs34996860 X 0.005
rs35000350 X 0.000
rs35142532 X 0.000
rs35743760 X 0.016
rs944459 X 0.000

Reason selected
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APPENDIX D 

SUPPLEMENTAL TABLES AND FIGURES FOR PROJECT#3 

D.1 DESCRIPTION FOR ESR2 GENOTYPE RESULTS 
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Table D-1  SNPs included in genotyping analysis 

htSNP identifier Tagged SNP Identifier 

1 rs8021944 rs8022694 rs7145919 rs12434245 rs8021944 
2 rs968257 rs1152594 rs1152592 rs1152590 rs968257   
3 rs1152589 rs2738413 rs1152591 rs1152589     
4 rs1255998 rs1152583 rs1048315 rs1256064 rs1255998   
5 rs8006145 rs2772163 rs867443 rs8006145   
6 rs4986938 rs3783736 rs17179740 rs4986938     
7 rs1256063 rs1256063         
8 rs1256061 rs4365213 rs6573549 rs12435857 rs1256061   
9 rs1952585 rs1256062 rs10144225 rs8017441 rs2274705 rs1952585 
10 rs17766755 rs17766755         
11 rs1256049 rs1152596 rs1152585 rs1152580 rs1256066 rs944050 
    rs944460 rs944461 rs1256060 rs953592 rs1256055 
    rs1256053 rs1256049       
12 rs8003490 rs7157428 rs8003490   

 
  

13 rs12435284 rs7159462 rs12435284 
 

    
14 rs1256036 rs915057 rs1152588 rs1152582 rs928554 rs1152579 
    rs1152578 rs1256065 rs1256059 rs1256056 rs1256048 
    rs1256045 rs1256044 rs1256043 rs10148269 rs1271573 
    rs1256038 rs1256037 rs1269056 rs960069 rs1271572 
    rs3020445 rs2357479 rs1256036 

 
  

15 rs1887994 rs2987976 rs1887994 
 

    
16 rs3020450 rs7154455 rs2987983 rs3020444 rs3020450   
17 rs3020449 rs2978381 rs3020449       
18 rs10137185 rs1952586 rs10137185       
19 rs3020443 rs3020443         
20 rs1256120 rs944052 rs1256116 rs1256114 rs1256120   
21 rs10146204 rs10146204         
22 rs1256108 rs1256112 rs1256111 rs1256110 rs1256107 rs1256108 
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Table D- 2 SNPs selected initially but excluded in genotyping 

SNPs 
HapMap 

MAF Forced Tagged SNP Identifier 

rs1256031 0.420 Priority rs1256040 rs10143616 rs960070 rs1256033 rs1256030 
      rs6573553 rs1256031       

rs1273196 0.059   rs1273196         
rs8018687 0.051   rs8020646 rs1109056 rs944045 rs8018687   

 

 

 

 

Table D-3  Distribution of called number for plex 1 and 2 

Plex 1 (18 SNPs) 

N non-missing 
N 
subject 

0 21 
4 2 
5 1 
7 1 
10 1 
12 1 
13 2 
14 6 
15 5 
16 3 
17 7 
18 122 

All 172 
 

Plex 2 (4 SNPs) 

N non-missing 
N 
subject 

0 21 
1 3 
2 4 
3 2 
4 142 

All 172 
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Table D-4  Distribution of genotype results by the source of DNA extraction 

  
Extraction method 

      1 2 3 4 All p-value* 
Plex1Good 

      
<0.001 

No n 6 3 17 14 40 
 Yes n 27 47 7 51 132 
 

 
% 82% 94% 29% 78% 77% 

 All n 33 50 24 65 172 
 

        Plex2Good 
      

 <0.001 
No n 3 2 12 11 28 

 Yes n 30 48 12 54 144 
 

 
% 91% 96% 50% 83% 84% 

 All n 33 50 24 65 172 
 

        PlexAllGood 
     

 <0.001 
No n 6 3 17 16 42 

 Yes n 27 47 7 49 130 
 

 
% 82% 94% 29% 75% 76% 

 All n 33 50 24 65 172   
*Chi-Square Test 
extraction batch 

 1 - extracted by Maureen Lyons from tissue on slides  
 2 - extracted by Romkes lab, received sample at 10ng/ul concentration 
 3 - extracted by Jill's lab 
 4 - extracted by Ji 
 

        Plex1Good 
 NO means missing >=4 SNPs out of 18 
 Yes means missing <4 SNPs out of 18 
 

        Plex2Good 
 NO means missing >=2 SNPs out of 4 
 Yes means missing <2 SNPs out of 4 
 

        PlexAllGood 
 NO means Plex1Good=0 or Plex2Good=0 
 Yes means Plex1Good=1 and Plex2Good=1 
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Table D-5  Distribution of called rate for 22 SNPs in the study 

htSNP identifier SNP N 
Non-missing 

called % Non-missing 
rs1256120 1 132 130 98.5% 
rs1952585 2 132 132 100.0% 
rs4986938 3 132 132 100.0% 
rs8006145 4 132 132 100.0% 
rs3020450 5 132 132 100.0% 
rs968257 6 132 132 100.0% 
rs1256061 7 132 132 100.0% 
rs1256063 8 132 132 100.0% 
rs12435284 9 132 132 100.0% 
rs17766755 10 132 131 99.2% 
rs10146204 11 132 132 100.0% 
rs1256049 12 132 131 99.2% 
rs1887994 13 132 132 100.0% 
rs1152589 14 132 125 94.7% 
rs3020443 15 132 131 99.2% 
rs3020449 16 132 131 99.2% 
rs10137185 17 132 132 100.0% 
rs1256036 18 132 132 100.0% 
rs1255998 19 144 144 100.0% 
rs8021944 20 144 144 100.0% 
rs8003490 21 144 144 100.0% 
rs1256108 22 144 142 98.6% 
N= Number of subjects with plex1Good =Yes or with plex2Good=Yes, as appropriate 
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Table D-6  Minor allele frequency comparison with HapMap and Hardy-Weinberg Equilibrium 

(HWE) test result for white study subjects 

     
Minor Allele Frequency 

 Genotype 
Order Position Forced htSNPs Allele [1]  Study      HapMap [2] HWE [3] 
1 63874754 

 
rs1256120 C 0.098 0.183 0.031* 

2 63782108 
 

rs1952585 C 0.106 0.176 0.829 
3 63769569 AluI rs4986938 A 0.381 0.398 0.745 
4 63769203 Priority rs8006145 A 0.289 0.316 0.377 
5 63838055 Priority rs3020450 A 0.344 0.342 0.373 
6 63750038 

 
rs968257 G 0.404 0.400 0.373 

7 63773346 
 

rs1256061 A 0.450 0.475 0.433 
8 63771970 

 
rs1256063 T 0.050 0.083 0.579 

9 63810273 
 

rs12435284 T 0.050 0.125 0.579 
10 63785526 

 
rs17766755 A 0.352 0.331 0.317 

11 63888522 
 

rs10146204 A 0.399 0.465 0.798 
12 63793804 Rsal rs1256049 A 0.032 0.025 0.728 
13 63830364 

 
rs1887994 T 0.078 0.083 0.377 

14 63753679 
 

rs1152589 T 0.486 0.450 0.838 
15 63862093 

 
rs3020443 C 0.259 0.216 0.383 

16 63843145 
 

rs3020449 C 0.417 0.500 0.767 
17 63845529 

 
rs10137185 T 0.069 0.158 0.469 

18 63813085 
 

rs1256036 G 0.454 0.383 0.179 
19 63763624 

 
rs1255998 G 0.123 0.075 0.504 

20 63749051 
 

rs8021944 G 0.064 0.110 0.418 
21 63795122 

 
rs8003490 A 0.093 0.085 0.978 

22 63891973   rs1256108 C 0.496 0.408 0.577 
1. Rare allele observed in white study subjects 
2. Minor allele frequency obtained from HapMap database 
3. Hardy-Weinberg-Equilibirum p-value, with asterisk (*) to indicate p<0.05 
Genotype order#1-18 is from Plex1 with 109 white subjects and #19-22 is from Plex2 with 118 white 
subjects 
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D.2 DESCRIPTION FOR PROJECT 3 STUDY SUBJECTS 
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Figure D-1 Study Subject selection flow chart 

*Total N=204 subjects obtained after excluding two known non-lung cancer patients (V-101 and V-102) and 1 lung cancer patients aged less than 21 years old (Subject ID=660 
with age of 7) 
*[Good Genetic Data] is defined as [Plex1Good=1:  subjects with less than 4 missing SNPs out of 18 SNPs in Plex#1] or [Plex2Good=1:  subjects with less than 2 missing SNPs 
out of 4 SNPs in Plex#2] 
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Table D-7  Characteristics of subjects excluded and included from analysis 

  All Excluded Included   
  n=204 n=69 n=135   
Characteristic n % n % n % p-value* 
Survival status 

      
0.83 

Dead 133 65.2 46 66.7 87 64.4   
Alive 58 28.4 18 26.1 40 29.6   
Unknown 13 6.4 5 7.2 8 5.9   

Sex 
      

0.15 
male 101 49.5 39 56.5 62 45.9   
female 103 50.5 30 43.5 73 54.1   

Race 
      

  
white 178 87.3 58 84.1 120 88.9 0.03 
African-

American 17 8.3 10 14.5 7 5.2   
missing 9 4.4 1 1.4 8 5.9   

Age 
      

0.64 
30-59 45 22.1 14 20.3 31 23.0   
60-69 68 33.3 26 37.7 42 31.1   
70+ 91 44.6 29 42.0 62 45.9   

Smoking status 
      

0.25 
active smoker 67 32.8 24 34.8 43 31.9   
ex-smoker 81 39.7 27 39.1 54 40.0   
smoker, NOS 25 12.3 6 8.7 19 14.1   
never smoker 17 8.3 4 5.8 13 9.6   
missing 14 6.9 8 11.6 6 4.4   

Smoking dose-
duration (among 
ever smokers) 

      
0.72 

1-25 29 16.8 9 15.8 20 17.2   
26-50 65 37.6 20 35.1 45 38.8   
51-75 38 22.0 16 28.1 22 19.0   
>76 36 20.8 11 19.3 25 21.6   
missing 5 2.9 1 1.8 4 3.4   

Stage 
      

0.53 
I 80 39.2 27 39.1 53 39.3   
II 36 17.6 12 17.4 24 17.8   
III 56 27.5 16 23.2 40 29.6   
IV 12 5.9 7 10.1 5 3.7   
recurrent 10 4.9 3 4.3 7 5.2   
missing 10 4.9 4 5.8 6 4.4   

Source of stage 
      

0.10 
pathologic 175 85.8 56 81.2 119 88.1   
clinical 9 4.4 6 8.7 3 2.2   
not applicable 20 9.8 7 10.1 13 9.6   
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Table D-7 (continued) 

  All Excluded Included   
  n=204 n=69 n=135   
Characteristic n % n % n % p-value* 
Histology 

      
  

Adenocarcinoma 105 51.5 40 58.0 65 48.1   
BAC 2 1.0 1 1.4 1 0.7   
Adenosquamous 7 3.4 3 4.3 4 3.0   
Squamous cell 67 32.8 18 26.1 49 36.3   
Large cell 8 3.9 2 2.9 6 4.4   
Undifferentiated 5 2.5 2 2.9 3 2.2   
Malignant 

carcinoid 2 1.0 1 1.4 1 0.7   
Small cell 3 1.5 1 1.4 2 1.5   
missing 5 2.5 1 1.4 4 3.0   

Histology class 
      

  
Adenocarcinoma 105 51.5 40 58.0 65 48.1 0.32 
Squamous cell 67 32.8 18 26.1 49 36.3   
Other/missing 32 15.7 11 15.9 21 15.6   

*Chi-square test 
 

 

 

Table D-8  ER-beta IHC expression of subjects excluded and included from analysis 

    All Excluded Included   
  

 
n=204 n=69 n=135   

Characteristic   n 
% or  

(median) n 
% or  

(median) n 
% or  

(median) p-value 
ER Beta 
cytoplasmic 

High 
expression, %* 73 38.0 19 33.3 54 40.0 0.38 

  Medianª 192 (7.0) 57 (6.0) 135 (7.0) 0.27 
ER Beta Nuclear High 

expression, %* 132 68.8 36 63.2 96 71.1 0.28 
  Medianª 192 (8.0) 57 (7.9) 135 (8.0) 0.21 
*Chi-square test 
ªWilcoxon rank sum test 
High ER-beta cytoplasmic and nuclear expression defined by subject-specific averaged Allred values above 
7. 
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Table D-9  Patients characteristics 

  
All 

 
Non-Missing 

  
n=135 

 
Max N=135 

Variable Measure No. percent 
 

Total N No. percent 
Survival status Dead 87 64.4 

 
127 87 68.5 

Sex Women 73 54.1 
 

135 73 54.1 
Race African-American 7 5.2 

 
127 7 5.5 

Age 30-59 years 31 23.0 
 

135 31 23.0 
60-69 years 42 31.1 

  
42 31.1 

70+ years 62 45.9 
  

62 45.9 
Smoking status never smoker 13 9.6 

 
129 13 10.1 

ex-smoker 54 40.0 
  

54 41.9 
active smoker 62 45.9 

  
62 48.1 

Smoking dose-duration      
(among ever 
smokers=116) 

<50 pack-years 65 56.0 
 

112 65 58.0 

50+pack-years 47 40.5 
  

47 42.0 
Stage I 53 39.3 

 
129 53 41.1 

II 24 17.8 
  

24 18.6 
III 40 29.6 

  
40 31.0 

IV 5 3.7 
  

5 3.9 
recurrent 7 5.2 

  
7 5.4 

Histology Adenocarcinoma 65 48.1 
 

131 65 49.6 
BAC 1 0.7 

  
1 0.8 

Adenosquamous 4 3.0 
  

4 3.1 
Squamous cell 49 36.3 

  
49 37.4 

Large cell 6 4.4 
  

6 4.6 
Undifferentiated 3 2.2 

  
3 2.3 

Malignant carcinoid 1 0.7 
  

1 0.8 
Small cell 2 1.5 

  
2 1.5 

Histology Class Adenocarcinoma 65 48.1 
 

114 65 57.0 
Squamous cell 49 36.3 

  
49 43.0 

ERβ expression score nuclear 135a 7.14 (8.0)b  
    cytoplasmic 135a 5.38 (7.0)b 
    

total 135a 12.52 (14.75)b 
 

      
a  Number of subjects with non-missing IHC data 

    b  Mean and median of Allred score, medians in parentheses. 
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Table D-10  Summary statistics of nuclear, cytoplasmic, and total IHC expression scores of estrogen receptor beta in the study population by 

gender, N=135 

    N Mean SD Median 
25th 

Percentiles 
75th 
Percentiles 

Total Subject nuclear ERβ 135 7.13 1.80 8 7 8 
  cytoplasmic ERβ 135 5.38 3.08 7 3.2 8 
  total ERβ 135 12.51 4.41 14.75 10 16 
Men nuclear ERβ 62 7.25 1.66 8 7 8 
  cytoplasmic ERβ 62 5.61 2.90 7 3.5 8 
  total ERβ 62 12.86 4.08 15 10.5 16 
Women nuclear ERβ 73 7.03 1.92 8 7 8 
  cytoplasmic ERβ 73 5.18 3.23 7 1.5 8 
  total ERβ 73 12.21 4.67 14.6 8 16 
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D.3 ASSOCIATION BETWEEN ESR2 SNP AND ER-BETA IHC EXPRESSION IN 

LUNG TUMORS 
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Table D-11  Association between ESR2 SNPs and ER-beta IHC expression for all study subjects 

(N=135) 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8021944 TT 118 3.00 7.00 8.00 0.083 

 
118 7.00 8.00 8.00 0.028 

  TG 14 6.00 7.83 8.00 
  

14 8.00 8.00 8.00   
  GG 1 7.33 7.33 7.33 

  
1 8.00 8.00 8.00   

  TG+GG 15 6.00 7.75 8.00 0.081 
 

15 8.00 8.00 8.00 0.029 
rs968257 AA 44 0.75 7.00 8.00 0.826 

 
44 6.00 8.00 8.00 0.312 

  AG 55 5.00 7.00 8.00 
  

55 7.00 8.00 8.00   
  GG 22 0.00 6.00 7.70 

  
22 7.00 8.00 8.00   

  AG+GG 77 4.00 7.00 8.00 0.576 
 

77 7.00 8.00 8.00 0.439 
rs1152589 AA 31 4.00 6.80 8.00 0.586 

 
31 7.75 8.00 8.00 0.189 

  AT 59 4.80 7.00 8.00 
  

59 7.00 8.00 8.00   
  TT 26 0.00 6.25 7.75 

  
26 6.00 8.00 8.00   

  AT+TT 85 3.20 7.00 8.00 0.864 
 

85 6.50 8.00 8.00 0.064 
rs1255998 CC 100 3.35 7.00 8.00 0.240 

 
100 7.00 8.00 8.00 0.164 

  CG 32 4.00 7.00 7.33 
  

32 7.20 7.78 8.00   
  GG 1 3.50 3.50 3.50 

  
1 6.50 6.50 6.50   

  CG+GG 33 4.00 7.00 7.25 0.259 
 

33 7.00 7.75 8.00 0.185 
rs8006145 CC 61 3.00 7.00 7.90 0.600 

 
61 6.50 8.00 8.00 0.730 

  CA 49 4.00 7.00 8.00 
  

49 7.00 8.00 8.00   
  AA 11 0.00 6.75 8.00 

  
11 8.00 8.00 8.00   

  CA+AA 60 3.75 7.00 8.00 0.570 
 

60 7.00 8.00 8.00 0.068 
rs4986938 GG 44 1.50 7.00 7.63 0.397 

 
44 6.50 8.00 8.00 0.086 

  GA 61 4.00 7.00 8.00 
  

61 7.00 8.00 8.00   
  AA 16 4.75 7.00 8.00 

  
16 7.50 8.00 8.00   

  GA+AA 77 4.00 7.00 8.00 0.462 
 

77 7.00 8.00 8.00 0.137 
rs1256063 CC 108 3.50 7.00 8.00 0.756 

 
108 7.00 8.00 8.00 0.271 

  CT 13 2.50 7.00 7.25 
  

13 7.00 7.75 8.00   
  CT+TT 13 2.50 7.00 7.25 0.756 

 
13 7.00 7.75 8.00 0.271 

rs1256061 CC 33 0.00 6.50 7.25 0.551 
 

33 6.00 7.67 8.00 0.632 
  CA 67 4.00 7.00 8.00 

  
67 7.00 8.00 8.00   

  AA 21 4.00 7.00 8.00 
  

21 7.75 8.00 8.00   
  CA+AA 88 4.00 7.00 8.00 0.054 

 
88 7.25 8.00 8.00 0.022 

rs1952585 TT 96 3.35 7.00 8.00 0.133 
 

96 7.00 8.00 8.00 0.190 
  TC 24 3.25 5.80 7.23 

  
24 6.65 7.68 8.00   

  CC 1 6.75 6.75 6.75 
  

1 8.00 8.00 8.00   
  TC+CC 25 3.50 6.00 7.20 0.130 

 
25 6.80 7.75 8.00 0.173 

rs17766755 GG 46 0.00 7.00 7.50 0.322 
 

46 6.50 8.00 8.00 0.097 
  GA 62 3.50 7.00 8.00 

  
62 7.00 8.00 8.00   

  AA 12 4.75 7.00 8.00 
  

12 7.50 8.00 8.00   
  GA+AA 74 3.50 7.00 8.00 0.375 

 
74 7.00 8.00 8.00 0.140 

rs1256049 GG 112 3.35 7.00 8.00 0.421 
 

112 7.00 8.00 8.00 0.584 
  GA 8 2.00 6.00 7.20 

  
8 6.75 7.80 8.00   

  GA+AA 8 2.00 6.00 7.20 0.421   8 6.75 7.80 8.00 0.584 
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Table D-11  (continued) 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8003490 GG 110 4.00 7.00 8.00 0.072 

 
110 7.00 8.00 8.00 0.062 

  GA 22 0.00 5.55 7.20 
  

22 6.50 7.50 8.00   
  AA 1 6.75 6.75 6.75 

  
1 8.00 8.00 8.00   

  GA+AA 23 0.00 5.60 7.20 0.054 
 

23 6.50 7.50 8.00 0.119 
rs12435284 CC 109 3.00 7.00 8.00 0.073 

 
109 7.00 8.00 8.00 0.087 

  CT 12 6.50 7.95 8.00 
  

12 8.00 8.00 8.00   
  CT+TT 12 6.50 7.95 8.00 0.073 

 
12 8.00 8.00 8.00 0.087 

rs1256036 AA 33 3.50 6.00 8.00 0.541 
 

33 7.00 8.00 8.00 0.220 
  AG 67 5.00 7.00 8.00 

  
67 7.00 8.00 8.00   

  GG 21 0.00 6.00 7.50 
  

21 6.00 8.00 8.00   
  AG+GG 88 3.10 7.00 8.00 0.774 

 
88 6.90 8.00 8.00 0.434 

rs1887994 GG 102 3.00 7.00 8.00 0.584 
 

102 7.00 8.00 8.00 0.981 
  GT 19 4.80 7.00 8.00 

  
19 7.00 8.00 8.00   

  GT+TT 19 4.80 7.00 8.00 0.584 
 

19 7.00 8.00 8.00 0.981 
rs3020450 GG 52 2.25 7.00 8.00 0.582 

 
52 6.75 8.00 8.00 0.354 

  GA 53 5.00 7.00 8.00 
  

53 7.00 8.00 8.00   
  AA 16 1.50 6.38 8.00 

  
16 7.50 8.00 8.00   

  GA+AA 69 3.50 7.00 8.00 0.886 
 

69 7.00 8.00 8.00 0.727 
rs3020449 TT 38 0.00 6.45 7.75 0.394 

 
38 6.00 8.00 8.00 0.092 

  TC 61 5.50 7.00 8.00 
  

61 7.40 8.00 8.00   
  CC 21 3.00 6.75 8.00 

  
21 7.60 8.00 8.00   

  TC+CC 82 4.00 7.00 8.00 0.156 
 

82 7.40 8.00 8.00 0.114 
rs10137185 CC 106 3.00 7.00 8.00 0.087 

 
106 6.80 8.00 8.00 0.155 

  CT 14 6.80 7.13 8.00 
  

14 7.90 8.00 8.00   
  TT 1 8.00 8.00 8.00 

  
1 8.00 8.00 8.00   

  CT+TT 15 6.80 7.25 8.00 0.080 
 

15 7.90 8.00 8.00 0.149 
rs3020443 AA 66 3.00 7.00 7.90 0.432 

 
66 6.50 8.00 8.00 0.140 

  AC 45 4.00 7.00 8.00 
  

45 7.00 8.00 8.00   
  CC 9 0.00 7.00 8.00 

  
9 8.00 8.00 8.00   

  AC+CC 54 3.50 7.00 8.00 0.433 
 

54 7.00 8.00 8.00 0.109 
rs1256120 TT 100 3.00 7.00 8.00 0.805 

 
100 6.90 8.00 8.00 0.400 

  TC 16 5.75 7.00 7.58 
  

16 7.30 7.95 8.00   
  CC 3 4.00 8.00 8.00 

  
3 8.00 8.00 8.00   

  TC+CC 19 5.50 7.00 8.00 0.567 
 

19 7.60 8.00 8.00 0.843 
rs10146204 GG 42 0.00 6.63 7.33 0.032 

 
42 6.00 7.75 8.00 0.258 

  GA 57 5.75 7.00 8.00 
  

57 7.50 8.00 8.00   
  AA 22 3.00 5.50 8.00 

  
22 7.00 8.00 8.00   

  GA+AA 79 4.00 7.00 8.00 0.051 
 

79 7.40 8.00 8.00 0.025 
rs1256108 TT 30 0.00 6.20 7.75 0.494 

 
30 5.75 8.00 8.00 0.255 

  TC 67 5.60 7.00 8.00 
  

67 7.40 8.00 8.00   
  CC 34 3.50 6.78 8.00 

  
34 7.50 8.00 8.00   

  TC+CC 101 4.00 7.00 8.00 0.119 
 

101 7.50 8.00 8.00 0.211 
*Jonckheere-Terpstra Test 
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Table D-12  Association between ESR2 SNPs and ER-beta IHC expression for only white subjects 

(N=120) 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8021944 TT 104 3.00 7.00 8.00 0.065 

 
104 7.00 8.00 8.00 0.041 

  TG 13 6.00 7.90 8.00 
  

13 8.00 8.00 8.00   
  GG 1 7.33 7.33 7.33 

  
1 8.00 8.00 8.00   

  TG+GG 14 6.00 7.83 8.00 0.063 
 

14 8.00 8.00 8.00 0.042 
rs968257 AA 41 1.50 7.00 8.00 0.729 

 
41 6.00 8.00 8.00 0.406 

  AG 48 4.90 7.00 8.00 
  

48 7.00 8.00 8.00   
  GG 20 0.00 6.00 7.35 

  
20 7.00 8.00 8.00   

  AG+GG 68 3.35 7.00 8.00 0.681 
 

68 7.00 8.00 8.00 0.485 
rs1152589 AA 27 4.00 6.80 8.00 0.680 

 
27 8.00 8.00 8.00 0.105 

  AT 53 4.80 7.00 8.00 
  

53 7.00 8.00 8.00   
  TT 24 0.00 6.25 7.75 

  
24 6.00 8.00 8.00   

  AT+TT 77 3.00 7.00 8.00 0.786 
 

77 6.50 8.00 8.00 0.042 
rs1255998 CC 90 3.20 7.00 8.00 0.123 

 
90 7.00 8.00 8.00 0.075 

  CG 27 3.00 7.00 7.25 
  

27 7.00 7.75 8.00   
  GG 1 3.50 3.50 3.50 

  
1 6.50 6.50 6.50   

  CG+GG 28 3.25 6.90 7.23 0.134 
 

28 6.75 7.68 8.00 0.085 
rs8006145 CC 57 3.00 7.00 7.90 0.816 

 
57 6.50 8.00 8.00 0.936 

  CA 41 3.20 7.00 8.00 
  

41 7.00 8.00 8.00   
  AA 11 0.00 6.75 8.00 

  
11 8.00 8.00 8.00   

  CA+AA 52 3.10 6.90 8.00 0.758 
 

52 7.00 8.00 8.00 0.095 
rs4986938 GG 41 3.00 7.00 7.50 0.442 

 
41 6.50 8.00 8.00 0.072 

  GA 53 3.00 6.80 8.00 
  

53 7.00 8.00 8.00   
  AA 15 3.50 7.00 8.00 

  
15 8.00 8.00 8.00   

  GA+AA 68 3.10 6.90 8.00 0.539 
 

68 7.00 8.00 8.00 0.155 
rs1256063 CC 98 3.00 7.00 8.00 0.906 

 
98 7.00 8.00 8.00 0.428 

  CT 11 2.50 7.00 7.75 
  

11 7.00 7.75 8.00   
  CT+TT 11 2.50 7.00 7.75 0.906 

 
11 7.00 7.75 8.00 0.428 

rs1256061 CC 31 0.00 6.50 7.25 0.675 
 

31 6.00 7.67 8.00 0.997 
  CA 58 3.50 7.00 8.00 

  
58 7.00 8.00 8.00   

  AA 20 3.75 7.38 8.00 
  

20 7.88 8.00 8.00   
  CA+AA 78 3.50 7.00 8.00 0.065 

 
78 7.00 8.00 8.00 0.035 

rs1952585 TT 87 3.00 7.00 8.00 0.128 
 

87 7.00 8.00 8.00 0.120 
  TC 21 3.00 5.60 7.20 

  
21 6.50 7.50 8.00   

  CC 1 6.75 6.75 6.75 
  

1 8.00 8.00 8.00   
  TC+CC 22 3.00 6.18 7.20 0.126 

 
22 6.50 7.55 8.00 0.107 

rs17766755 GG 43 0.00 7.00 7.50 0.369 
 

43 6.50 8.00 8.00 0.085 
  GA 54 3.00 6.90 8.00 

  
54 7.00 8.00 8.00   

  AA 11 3.50 7.00 8.00 
  

11 8.00 8.00 8.00   
  GA+AA 65 3.20 7.00 8.00 0.446 

 
65 7.00 8.00 8.00 0.161 

rs1256049 GG 101 3.00 7.00 8.00 0.580 
 

101 7.00 8.00 8.00 0.394 
  GA 7 0.00 7.00 7.40 

  
7 6.50 7.60 8.00   

  GA+AA 7 0.00 7.00 7.40 0.580   7 6.50 7.60 8.00 0.394 
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Table D-12  (continued) 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8003490 GG 97 3.50 7.00 8.00 0.047 

 
97 7.00 8.00 8.00 0.042 

  GA 20 0.00 5.25 7.10 
  

20 6.50 7.50 8.00   
  AA 1 6.75 6.75 6.75 

  
1 8.00 8.00 8.00   

  GA+AA 21 0.00 5.50 7.00 0.036 
 

21 6.50 7.50 8.00 0.087 
rs12435284 CC 98 3.00 6.90 8.00 0.058 

 
98 6.80 8.00 8.00 0.117 

  CT 11 6.00 8.00 8.00 
  

11 8.00 8.00 8.00   
  CT+TT 11 6.00 8.00 8.00 0.058 

 
11 8.00 8.00 8.00 0.117 

rs1256036 AA 29 3.50 6.00 8.00 0.506 
 

29 7.00 8.00 8.00 0.232 
  AG 61 5.00 7.00 8.00 

  
61 7.00 8.00 8.00   

  GG 19 0.00 6.00 7.50 
  

19 6.00 8.00 8.00   
  AG+GG 80 3.00 7.00 8.00 0.837 

 
80 6.90 8.00 8.00 0.373 

rs1887994 GG 92 3.00 7.00 8.00 0.454 
 

92 6.90 8.00 8.00 0.646 
  GT 17 4.80 7.00 8.00 

  
17 7.50 8.00 8.00   

  GT+TT 17 4.80 7.00 8.00 0.454 
 

17 7.50 8.00 8.00 0.646 
rs3020450 GG 49 3.00 7.00 8.00 0.506 

 
49 7.00 8.00 8.00 0.340 

  GA 45 3.50 7.00 8.00 
  

45 6.80 8.00 8.00   
  AA 15 0.00 6.00 8.00 

  
15 7.00 8.00 8.00   

  GA+AA 60 3.10 6.90 8.00 0.970 
 

60 7.00 8.00 8.00 0.820 
rs3020449 TT 36 0.00 6.45 7.63 0.535 

 
36 6.25 8.00 8.00 0.188 

  TC 54 5.00 7.00 8.00 
  

54 7.40 8.00 8.00   
  CC 18 0.00 6.38 8.00 

  
18 7.00 8.00 8.00   

  TC+CC 72 3.50 7.00 8.00 0.198 
 

72 7.20 8.00 8.00 0.171 
rs10137185 CC 95 2.50 6.75 8.00 0.070 

 
95 6.50 8.00 8.00 0.192 

  CT 13 6.80 7.25 8.00 
  

13 7.90 8.00 8.00   
  TT 1 8.00 8.00 8.00 

  
1 8.00 8.00 8.00   

  CT+TT 14 6.80 7.58 8.00 0.065 
 

14 7.90 8.00 8.00 0.185 
rs3020443 AA 61 3.00 7.00 7.90 0.599 

 
61 6.50 8.00 8.00 0.148 

  AC 38 3.20 7.00 8.00 
  

38 7.00 8.00 8.00   
  CC 9 0.00 7.00 8.00 

  
9 8.00 8.00 8.00   

  AC+CC 47 3.00 7.00 8.00 0.587 
 

47 7.00 8.00 8.00 0.115 
rs1256120 TT 89 3.00 6.75 8.00 0.813 

 
89 6.80 8.00 8.00 0.310 

  TC 15 5.50 7.00 7.90 
  

15 7.00 7.90 8.00   
  CC 3 4.00 8.00 8.00 

  
3 8.00 8.00 8.00   

  TC+CC 18 5.50 7.00 8.00 0.517 
 

18 7.60 8.00 8.00 0.951 
rs10146204 GG 40 0.00 6.63 7.29 0.021 

 
40 6.25 7.75 8.00 0.288 

  GA 51 5.50 7.20 8.00 
  

51 7.50 8.00 8.00   
  AA 18 0.00 5.00 8.00 

  
18 7.00 8.00 8.00   

  GA+AA 69 3.50 7.00 8.00 0.068 
 

69 7.40 8.00 8.00 0.041 
rs1256108 TT 28 0.00 6.20 7.63 0.657 

 
28 5.88 8.00 8.00 0.273 

  TC 61 5.60 7.00 8.00 
  

61 7.50 8.00 8.00   
  CC 27 0.00 6.75 8.00 

  
27 7.00 8.00 8.00   

  TC+CC 88 3.75 7.00 8.00 0.143 
 

88 7.45 8.00 8.00 0.253 
*Jonckheere-Terpstra Test 
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Table D-13  Association between ESR2 SNPs and ER-beta IHC expression for subjects with 

adenocarcinoma of lung  

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8021944 TT 60 3.75 7.00 8.00 0.291 

 
60 7.00 8.00 8.00 0.211 

  TG 5 7.00 7.90 8.00 
  

5 8.00 8.00 8.00   
  GG 

          
  

  TG+GG 5 7.00 7.90 8.00 0.291 
 

5 8.00 8.00 8.00 0.211 
rs968257 AA 18 0.00 6.25 7.90 0.404 

 
18 5.75 7.95 8.00 0.141 

  AG 31 5.50 7.00 8.00 
  

31 7.50 8.00 8.00   
  GG 11 4.00 6.80 8.00 

  
11 7.60 8.00 8.00   

  AG+GG 42 5.00 7.00 8.00 0.156 
 

42 7.60 8.00 8.00 0.169 
rs1152589 AA 17 5.00 6.80 8.00 0.181 

 
17 7.60 8.00 8.00 0.701 

  AT 30 5.50 7.00 8.00 
  

30 7.75 8.00 8.00   
  TT 12 0.00 4.50 7.17 

  
12 5.25 7.33 8.00   

  AT+TT 42 4.00 7.00 8.00 0.830 
 

42 7.00 8.00 8.00 0.499 
rs1255998 CC 47 3.50 7.00 8.00 0.211 

 
47 7.00 8.00 8.00 0.431 

  CG 18 4.00 6.40 7.00 
  

18 7.50 7.78 8.00   
  GG 

          
  

  CG+GG 18 4.00 6.40 7.00 0.211 
 

18 7.50 7.78 8.00 0.431 
rs8006145 CC 25 3.00 6.50 7.33 0.306 

 
25 7.00 7.75 8.00 0.266 

  CA 30 4.80 7.00 8.00 
  

30 7.60 8.00 8.00   
  AA 5 6.00 7.00 8.00 

  
5 8.00 8.00 8.00   

  CA+AA 35 4.80 7.00 8.00 0.154 
 

35 7.60 8.00 8.00 0.047 
rs4986938 GG 19 0.00 7.00 7.33 0.093 

 
19 5.75 7.90 8.00 0.141 

  GA 34 5.00 6.90 8.00 
  

34 7.60 8.00 8.00   
  AA 7 6.00 7.00 8.00 

  
7 7.00 8.00 8.00   

  GA+AA 41 5.50 7.00 8.00 0.106 
 

41 7.60 8.00 8.00 0.129 
rs1256063 CC 54 4.00 7.00 8.00 0.753 

 
54 7.00 8.00 8.00 0.439 

  CT 6 0.00 6.75 8.00 
  

6 5.50 7.88 8.00   
  CT+TT 6 0.00 6.75 8.00 0.753 

 
6 5.50 7.88 8.00 0.439 

rs1256061 CC 15 0.00 5.50 7.00 0.496 
 

15 5.50 7.67 8.00 0.651 
  CA 36 4.90 7.00 8.00 

  
36 7.30 8.00 8.00   

  AA 9 6.00 7.00 8.00 
  

9 8.00 8.00 8.00   
  CA+AA 45 5.50 7.00 8.00 0.023 

 
45 7.75 8.00 8.00 0.027 

rs1952585 TT 45 4.80 7.00 8.00 0.068 
 

45 7.67 8.00 8.00 0.123 
  TC 15 3.00 5.60 7.00 

  
15 6.80 7.75 8.00   

  CC 
          

  
  TC+CC 15 3.00 5.60 7.00 0.068 

 
15 6.80 7.75 8.00 0.123 

rs17766755 GG 20 0.00 6.75 7.17 0.037 
 

20 6.28 7.83 8.00 0.048 
  GA 34 4.80 6.90 8.00 

  
34 7.60 8.00 8.00   

  AA 6 7.00 7.50 8.00 
  

6 8.00 8.00 8.00   
  GA+AA 40 5.25 7.00 8.00 0.076 

 
40 7.68 8.00 8.00 0.067 

rs1256049 GG 56 4.00 7.00 8.00 0.386 
 

56 7.00 8.00 8.00 0.796 
  GA 3 4.00 5.00 7.00 

  
3 7.00 8.00 8.00   

  GA+AA 3 4.00 5.00 7.00 0.386   3 7.00 8.00 8.00 0.796 
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Table D-13  (continued) 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8003490 GG 52 4.40 7.00 8.00 0.111 

 
52 7.30 8.00 8.00 0.295 

  GA 13 3.00 5.60 7.00 
  

13 6.80 7.75 8.00   
  AA 

          
  

  GA+AA 13 3.00 5.60 7.00 0.111 
 

13 6.80 7.75 8.00 0.295 
rs12435284 CC 55 4.00 7.00 8.00 0.311 

 
55 7.00 8.00 8.00 0.239 

  CT 5 7.00 7.90 8.00 
  

5 8.00 8.00 8.00   
  CT+TT 5 7.00 7.90 8.00 0.311 

 
5 8.00 8.00 8.00 0.239 

rs1256036 AA 17 5.00 6.00 8.00 0.466 
 

17 7.60 8.00 8.00 0.375 
  AG 34 5.50 7.00 8.00 

  
34 7.50 8.00 8.00   

  GG 9 0.00 3.00 7.00 
  

9 5.50 7.67 8.00   
  AG+GG 43 3.20 7.00 8.00 0.756 

 
43 7.00 8.00 8.00 0.829 

rs1887994 GG 53 4.00 7.00 8.00 0.897 
 

53 7.00 8.00 8.00 0.664 
  GT 7 5.50 6.00 8.00 

  
7 7.00 7.75 8.00   

  GT+TT 7 5.50 6.00 8.00 0.897 
 

7 7.00 7.75 8.00 0.664 
rs3020450 GG 21 4.00 7.00 7.90 0.619 

 
21 7.00 8.00 8.00 0.883 

  GA 32 5.25 7.00 8.00 
  

32 7.25 8.00 8.00   
  AA 7 3.00 7.00 8.00 

  
7 7.00 8.00 8.00   

  GA+AA 39 4.00 7.00 8.00 0.500 
 

39 7.00 8.00 8.00 0.436 
rs3020449 TT 16 1.50 6.25 7.67 0.398 

 
16 6.38 7.88 8.00 0.218 

  TC 34 5.50 7.00 8.00 
  

34 7.50 8.00 8.00   
  CC 10 4.00 6.90 8.00 

  
10 7.60 8.00 8.00   

  TC+CC 44 4.50 7.00 8.00 0.285 
 

44 7.55 8.00 8.00 0.240 
rs10137185 CC 53 4.00 7.00 8.00 0.410 

 
53 7.00 8.00 8.00 0.693 

  CT 6 6.80 7.00 7.90 
  

6 7.75 7.95 8.00   
  TT 1 8.00 8.00 8.00 

  
1 8.00 8.00 8.00   

  CT+TT 7 6.80 7.00 8.00 0.377 
 

7 7.75 8.00 8.00 0.664 
rs3020443 AA 29 4.00 6.50 7.90 0.379 

 
29 7.00 7.90 8.00 0.146 

  AC 28 4.00 7.00 8.00 
  

28 7.30 8.00 8.00   
  CC 3 7.00 8.00 8.00 

  
3 8.00 8.00 8.00   

  AC+CC 31 4.00 7.00 8.00 0.241 
 

31 7.60 8.00 8.00 0.091 
rs1256120 TT 51 3.20 7.00 8.00 0.673 

 
51 7.00 8.00 8.00 0.238 

  TC 7 6.80 7.00 7.90 
  

7 7.60 7.75 8.00   
  CC 2 4.00 6.00 8.00 

  
2 8.00 8.00 8.00   

  TC+CC 9 6.80 7.00 7.90 0.532 
 

9 7.75 7.90 8.00 0.831 
rs10146204 GG 20 1.50 6.63 7.17 0.228 

 
20 6.38 7.75 8.00 0.332 

  GA 30 5.60 7.00 8.00 
  

30 7.75 8.00 8.00   
  AA 10 4.00 6.00 8.00 

  
10 7.00 8.00 8.00   

  GA+AA 40 4.50 7.00 8.00 0.144 
 

40 7.63 8.00 8.00 0.072 
rs1256108 TT 15 0.00 6.00 8.00 0.397 

 
15 5.50 8.00 8.00 0.304 

  TC 34 5.50 7.00 8.00 
  

34 7.00 8.00 8.00   
  CC 16 4.00 6.90 8.00 

  
16 7.68 8.00 8.00   

  TC+CC 50 5.00 7.00 8.00 0.179 
 

50 7.50 8.00 8.00 0.272 
*Jonckheere-Terpstra Test 
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Table D-14  Association between ESR2 SNPs and ER-beta IHC expression for subjects with 

squamous cell carcinoma of lung 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8021944 TT 43 3.50 7.00 8.00 0.577 

 
43 7.40 8.00 8.00 0.454 

  TG 5 6.00 7.75 8.00 
  

5 8.00 8.00 8.00   
  GG 1 7.33 7.33 7.33 

  
1 8.00 8.00 8.00   

  TG+GG 6 6.00 7.54 8.00 0.566 
 

6 8.00 8.00 8.00 0.464 
rs968257 AA 20 2.75 7.00 8.00 0.907 

 
20 6.75 8.00 8.00 0.343 

  AG 13 7.00 7.20 7.75 
  

13 7.40 8.00 8.00   
  GG 7 0.00 6.75 8.00 

  
7 8.00 8.00 8.00   

  AG+GG 20 6.38 7.10 7.88 0.701 
 

20 7.70 8.00 8.00 0.443 
rs1152589 AA 9 6.00 7.70 8.00 0.406 

 
9 8.00 8.00 8.00 0.093 

  AT 19 3.50 7.00 7.40 
  

19 6.50 8.00 8.00   
  TT 11 4.00 7.75 8.00 

  
11 8.00 8.00 8.00   

  AT+TT 30 4.00 7.00 8.00 0.761 
 

30 7.40 8.00 8.00 0.231 
rs1255998 CC 42 3.50 7.00 8.00 0.760 

 
42 7.50 8.00 8.00 0.824 

  CG 7 7.00 7.25 7.70 
  

7 7.40 8.00 8.00   
  GG 

          
  

  CG+GG 7 7.00 7.25 7.70 0.760 
 

7 7.40 8.00 8.00 0.824 
rs8006145 CC 25 4.00 7.20 8.00 0.890 

 
25 7.40 8.00 8.00 0.420 

  CA 10 7.00 7.00 7.75 
  

10 7.00 8.00 8.00   
  AA 5 6.00 6.75 8.00 

  
5 8.00 8.00 8.00   

  CA+AA 15 6.00 7.00 8.00 0.898 
 

15 8.00 8.00 8.00 0.326 
rs4986938 GG 15 6.00 7.25 8.00 0.671 

 
15 7.40 8.00 8.00 0.594 

  GA 18 1.50 7.00 8.00 
  

18 7.00 8.00 8.00   
  AA 7 3.50 6.75 8.00 

  
7 8.00 8.00 8.00   

  GA+AA 25 3.50 7.00 8.00 0.670 
 

25 7.50 8.00 8.00 0.890 
rs1256063 CC 36 5.00 7.00 8.00 0.664 

 
36 7.55 8.00 8.00 0.330 

  CT 4 3.50 7.10 7.48 
  

4 3.70 7.70 8.00   
  CT+TT 4 3.50 7.10 7.48 0.664 

 
4 3.70 7.70 8.00 0.330 

rs1256061 CC 12 5.00 7.23 7.88 0.990 
 

12 6.95 8.00 8.00 0.925 
  CA 20 6.20 7.00 7.88 

  
20 7.55 8.00 8.00   

  AA 8 1.75 6.88 8.00 
  

8 7.25 8.00 8.00   
  CA+AA 28 4.75 7.00 8.00 0.952 

 
28 7.55 8.00 8.00 0.785 

rs1952585 TT 35 4.00 7.00 8.00 0.576 
 

35 7.50 8.00 8.00 0.821 
  TC 4 3.60 7.23 7.48 

  
4 6.95 7.70 8.00   

  CC 1 6.75 6.75 6.75 
  

1 8.00 8.00 8.00   
  TC+CC 5 6.75 7.20 7.25 0.604 

 
5 7.40 8.00 8.00 0.781 

rs17766755 GG 16 6.00 7.23 7.88 0.495 
 

16 7.50 8.00 8.00 0.974 
  GA 19 1.50 7.00 8.00 

  
19 7.00 8.00 8.00   

  AA 4 1.75 4.75 7.00 
  

4 7.25 8.00 8.00   
  GA+AA 23 1.50 7.00 8.00 0.654 

 
23 7.00 8.00 8.00 0.875 

rs1256049 GG 38 4.00 7.00 8.00 0.925 
 

38 7.40 8.00 8.00 0.848 
  GA 2 7.00 7.20 7.40 

  
2 7.60 7.80 8.00   

  GA+AA 2 7.00 7.20 7.40 0.925   2 7.60 7.80 8.00 0.848 
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Table D-14  (continued) 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N P25 Med P75 p-value*   N P25 Med P75 p-value* 
rs8003490 GG 44 5.00 7.13 8.00 0.420 

 
44 7.50 8.00 8.00 0.122 

  GA 4 0.00 3.60 7.45 
  

4 6.95 7.45 7.75   
  AA 1 6.75 6.75 6.75 

  
1 8.00 8.00 8.00   

  GA+AA 5 0.00 6.75 7.20 0.201 
 

5 7.40 7.50 8.00 0.331 
rs12435284 CC 36 5.00 7.00 7.88 0.855 

 
36 7.45 8.00 8.00 0.911 

  CT 4 3.00 7.00 8.00 
  

4 6.75 8.00 8.00   
  CT+TT 4 3.00 7.00 8.00 0.855 

 
4 6.75 8.00 8.00 0.911 

rs1256036 AA 9 3.50 6.75 8.00 0.513 
 

9 8.00 8.00 8.00 0.820 
  AG 23 6.00 7.00 7.75 

  
23 7.40 8.00 8.00   

  GG 8 5.00 7.63 8.00 
  

8 7.00 8.00 8.00   
  AG+GG 31 6.00 7.00 8.00 0.755 

 
31 7.40 8.00 8.00 0.603 

rs1887994 GG 30 6.00 7.10 8.00 0.557 
 

30 7.60 8.00 8.00 0.407 
  GT 10 0.00 6.70 8.00 

  
10 6.50 8.00 8.00   

  GT+TT 10 0.00 6.70 8.00 0.557 
 

10 6.50 8.00 8.00 0.407 
rs3020450 GG 23 4.00 7.25 8.00 0.658 

 
23 7.50 8.00 8.00 0.090 

  GA 11 3.50 7.00 7.75 
  

11 6.50 8.00 8.00   
  AA 6 6.00 7.23 8.00 

  
6 8.00 8.00 8.00   

  GA+AA 17 6.00 7.00 7.75 0.771 
 

17 7.40 8.00 8.00 0.866 
rs3020449 TT 17 4.00 7.00 7.75 0.801 

 
17 7.50 8.00 8.00 0.314 

  TC 14 6.00 7.10 8.00 
  

14 7.40 8.00 8.00   
  CC 8 3.00 7.23 8.00 

  
8 8.00 8.00 8.00   

  TC+CC 22 6.00 7.10 8.00 0.752 
 

22 8.00 8.00 8.00 0.402 
rs10137185 CC 35 4.00 7.00 8.00 0.787 

 
35 7.40 8.00 8.00 0.686 

  CT 5 6.00 7.25 8.00 
  

5 8.00 8.00 8.00   
  TT 

          
  

  CT+TT 5 6.00 7.25 8.00 0.787 
 

5 8.00 8.00 8.00 0.686 
rs3020443 AA 26 4.00 7.00 7.75 0.353 

 
26 7.40 8.00 8.00 0.431 

  AC 9 7.00 7.70 8.00 
  

9 8.00 8.00 8.00   
  CC 5 0.00 6.00 8.00 

  
5 8.00 8.00 8.00   

  AC+CC 14 6.00 7.35 8.00 0.445 
 

14 8.00 8.00 8.00 0.431 
rs1256120 TT 33 4.00 7.00 8.00 0.828 

 
33 7.40 8.00 8.00 0.556 

  TC 6 6.00 7.13 8.00 
  

6 8.00 8.00 8.00   
  CC 

          
  

  TC+CC 6 6.00 7.13 8.00 0.828 
 

6 8.00 8.00 8.00 0.556 
rs10146204 GG 17 4.00 7.00 7.50 0.320 

 
17 7.00 8.00 8.00 0.653 

  GA 14 7.00 7.48 8.00 
  

14 8.00 8.00 8.00   
  AA 9 3.50 6.75 8.00 

  
9 8.00 8.00 8.00   

  GA+AA 23 6.00 7.20 8.00 0.374 
 

23 8.00 8.00 8.00 0.218 
rs1256108 TT 13 1.50 6.40 7.75 0.475 

 
13 6.00 8.00 8.00 0.310 

  TC 21 7.00 7.25 8.00 
  

21 7.60 8.00 8.00   
  CC 13 3.50 7.33 8.00 

  
13 8.00 8.00 8.00   

  TC+CC 34 6.00 7.25 8.00 0.309 
 

34 7.60 8.00 8.00 0.276 
*Jonckheere-Terpstra Test 
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Table D-15  Crude Odds Ratios for the association between three SNPs and lung cancer characterized by cytoplasmic and nuclear ER-Beta 

IHC expression status 

    Cytoplasmic ERβ   Nuclear ERβ 
SNP Genotype N OR 95% CI p-value*   N OR 95% CI p-value* 
rs8021944 TT 118 1.00 

    
118 1.00 

  
  

  TG+GG 15 2.43 0.81 7.29 0.11 
 

15 6.15 0.78 48.52 0.09 
rs1256061 CC 33 1.00 

    
33 1.00 

  
  

  CA+AA 88 1.39 0.60 3.21 0.45 
 

88 1.95 0.84 4.56 0.12 
rs10146204 GG 42 1.00 

    
42 1.00 

  
  

  GA+AA 79 1.99 0.89 4.44 0.09   79 1.94 0.87 4.36 0.11 
High ER-beta cytoplasmic and nuclear expression defined by subject-specific averaged Allred values above 7. 
Odds ratios comparing individuals with high ER-beta cytoplasmic and nuclear expression to those with low expression unless otherwise specified 
*Wald Method for Testing Global Null Hypothesis: beta=0 and Wald's Chi-Square Test (p-value) for each stratified level based on analysis of 
maximmum likelihood estimates 
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Table D- 16  Crude Odds Ratios for the association between three SNPs and nuclear ER-Beta IHC 

expression status 

    Nuclear ERβ 
SNP Genotype N OR 95% CI p-value* 
rs8021944 TT 118 1.00 

  
  

  TG+GG 15 4.78 1.03 22.12 0.05 
rs1256061 CC 33 1.00 

  
  

  CA+AA 88 2.44 1.08 5.53 0.03 
rs10146204 GG 42 1.00 

  
  

  GA+AA 79 2.38 1.10 5.13 0.03 
High ER-beta nuclear expression defined by subject-specific averaged Allred values 
equals to  8 which is the median nuclear ER-beta IHC score for my study group. 
Odds ratios comparing individuals with high ER-beta nuclear expression to those 
with low expression 

*Wald Method for Testing Global Null Hypothesis: beta=0 and Wald's Chi-Square 
Test (p-value) for each stratified level based on analysis of maximmum likelihood 
estimates 
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Table D-17  Crude Odds Ratios for the association between three SNPs and cytoplasmic and nuclear ER-Beta IHC expression scores among all 

study subjects (N=135) 

 
ERβ cytoplasmic expression 

 
ERβ nuclear expression 

 

Allred 
= 0 

 

Allred > 0 AND Allred 
< 8 

 
Allred = 8 

 

Allred 
≤ 6 

 

Allred > 6 AND Allred 
< 8 

 
Allred = 8 

Genotype n   n OR 95% CI   n OR 95% CI   n   n OR 95% CI   n OR 95% CI 
rs8021944 

                   TT 25 
 

60 Ref 
  

33 Ref 
  

19 
 

31 Ref 
  

68 Ref 
 TG 1 

 
7 2.92 0.34-25.0 

 
6 4.55 0.51-40.2 

 
1 

 
1 0.61 0.04-10.4 

 
12 3.35 0.41-27.4 

GG 0 
 

1 
   

0 
   

0 
 

0 
   

1 
  TG+GG 1 

 
8 3.33 0.40-28.0 

 
6 4.55 0.51-40.2 

 
1 

 
1 0.61 0.04-10.4 

 
13 3.63 0.45-29.6 

                    rs1256061 
                   CC 11 

 
17 Ref 

  
5 Ref 

  
9 

 
9 Ref 

  
15 Ref 

 CA 9 
 

37 2.66 0.93-7.61 
 

21 5.13 1.38-19.1 
 

9 
 

14 1.56 0.45-5.41 
 

44 2.93 0.98-8.76 
AA 4 

 
8 1.29 0.31-5.35 

 
9 4.95 1.02-24.1 

 
1 

 
5 5.00 0.48-51.8 

 
15 9.00 1.01-80.1 

CA+AA 13 
 

45 2.24 0.84-5.96 
 

30 5.08 1.47-17.6 
 

10 
 

19 1.90 0.57-6.31 
 

59 3.54 1.22-10.3 

                    rs10146204 
                   GG 12 

 
23 Ref 

  
7 Ref 

  
11 

 
11 Ref 

  
20 Ref 

 GA 7 
 

29 2.16 0.73-6.37 
 

21 5.14 1.45-18.2 
 

6 
 

12 2.00 0.55-7.25 
 

39 3.58 1.15-11.1 
AA 5 

 
10 1.04 0.29-3.76 

 
7 2.40 0.55-10.5 

 
2 

 
5 2.50 0.40-15.7 

 
15 4.13 0.79-21.5 

GA+AA 12   39 1.70 0.66-4.39   28 4.00 1.26-12.7   8   17 2.13 0.65-6.95   54 3.71 1.31-10.6 
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Table D-18  ESR2 haplotypes and ER-beta IHC expression among only white subjects 

  
ERβ cytoplasmic expression 

 
ERβ nuclear expression 

Haplotype 
weight*  

Allred > 0 AND 
Allred < 8 vs. 

Allred = 0 
 

Allred = 8 vs. 
Allred = 0 

 

Allred > 6 AND 
Allred < 8 vs. 

Allred ≤ 6 
 

Allred = 8 vs. 
Allred ≤ 6 

Freq OR 95% CI   OR 95% CI   OR 95% CI   OR 95% CI 
T-C-G 0.44 Ref 

  
Ref 

  
Ref 

  
Ref 

 T-A-A 0.25 0.668 0.12-3.83 
 

4.07 0.54-31.0 
 

4.15 0.32-54.0 
 

11.43 1.06-123 
T-A-G 0.15 1.46 0.12-18.5 

 
0.92 0.04-21.6 

 
10.19 0.45-233 

 
1.56 0.09-27.2 

T-C-A 0.10 0.992 0.08-11.9 
 

0.11 0.00-4.48 
 

26.87 0.61- 
 

1.39 0.06-31.9 
G-A-A 0.06 4.857 0.05-454   40.98 0.37-   1.066 0.00-479   28.42 0.34- 

*Haplotype is composed of alleles in the order of rs8021944, rs1256061, and rs10146204. 
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D.4 SURVIVAL ANALYSIS OF LUNG CANCER PATIENTS WITH RARE 

VARIANT ALLELE OF ESR2 GENE 
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Table D-19  Hazard ratios of the rare variant alleles of ESR2 gene for the overall survival among 

lung cancer patients 

 

SNP 

Reference 
(common 

homozygous) Genotype HR (95% CI) p-value* 
rs8021944 TT TG+GG 0.91 (0.47, 1.77) 0.79 
rs968257 AA AG+GG 1.23 (0.78, 1.95) 0.38 
rs1152589 AA AT+TT 1.21 (0.71, 2.05) 0.49 
rs1255998 CC CG+GG 1.05 (0.65, 1.69) 0.86 
rs8006145 CC CA+AA 1.17 (0.75, 1.82) 0.48 
rs4986938 GG GA+AA 1.31 (0.83, 2.08) 0.25 
rs1256063 CC CT+TT 1.16 (0.55, 2.43) 0.69 
rs1256061 CC CA+AA 1.16 (0.71, 1.92) 0.55 
rs1952585 TT TC+CC 0.78 (0.44, 1.37) 0.39 
rs17766755 GG GA+AA 1.20 (0.76, 1.89) 0.44 
rs1256049 GG GA+AA 0.93 (0.40, 2.15) 0.87 
rs8003490 GG GA+AA 0.89 (0.50, 1.58) 0.69 
rs12435284 CC CT+TT 0.92 (0.44, 1.91) 0.82 
rs1256036 AA AG+GG 1.26 (0.76, 2.09) 0.37 
rs1887994 GG GT+TT 1.06 (0.58, 1.92) 0.86 
rs3020450 GG GA+AA 0.99 (0.64, 1.53) 0.98 
rs3020449 TT TC+CC 0.97 (0.61, 1.54) 0.89 
rs10137185 CC CT+TT 0.88 (0.45, 1.71) 0.71 
rs3020443 AA AC+CC 1.16 (0.74, 1.80) 0.53 
rs1256120 TT TC+CC 0.93 (0.51, 1.69) 0.82 
rs10146204 GG GA+AA 1.07 (0.68, 1.70) 0.76 
rs1256108 TT TC+CC 1.17 (0.70, 1.96) 0.55 
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Table D-20  Hazard ratios of the rare ESR2 genotypes for the overall survival among lung cancer 

patients 

SNP 

Reference 
(common 

homozygous) Genotype HR (95% CI) p-value* 
rs8021944 TT TG 0.96 (0.48, 1.91) 0.9 
    GG 0.65 (0.09, 4.72) 0.67 
rs968257 AA AG 1.44 (0.88, 2.36) 0.14 
    GG 0.87 (0.45, 1.68) 0.69 
rs1152589 AA AT 1.35 (0.77, 2.36) 0.3 
    TT 0.97 (0.50, 1.89) 0.93 
rs1255998 CC CG 1.01 (0.62, 1.65) 0.96 
    GG 3.49 (0.47, 25.66) 0.22 
rs8006145 CC CA 1.32 (0.83, 2.09) 0.24 
    AA 0.73 (0.31, 1.72) 0.47 
rs4986938 GG GA 1.48 (0.92, 2.39) 0.11 
    AA 0.87 (0.41, 1.83) 0.71 
rs1256063 CC CT 1.16 (0.55, 2.43) 0.69 
rs1256061 CC CA 1.22 (0.72, 2.04) 0.46 
    AA 1.01 (0.50, 2.02) 0.98 
rs1952585 TT TC 0.73 (0.41, 1.30) 0.29 
    CC 12.74 (1.59, 101.96)* 0.02 
rs17766755 GG GA 1.36 (0.85, 2.18) 0.2 
    AA 0.66 (0.28, 1.59) 0.36 
rs1256049 GG GA 0.93 (0.40, 2.15) 0.87 
rs8003490 GG GA 0.83 (0.46, 1.50) 0.54 
    AA 11.65 (1.49, 91.03)* 0.02 
rs12435284 CC CT 0.92 (0.44, 1.91) 0.82 
rs1256036 AA AG 1.32 (0.78, 2.24) 0.31 
    GG 1.10 (0.56, 2.18) 0.78 
rs1887994 GG GT 1.06 (0.58, 1.92) 0.86 
rs3020450 GG GA 0.98 (0.62, 1.57) 0.95 
    AA 1.02 (0.52, 2.00) 0.95 
rs3020449 TT TC 0.98 (0.60, 1.60) 0.93 
    CC 0.93 (0.48, 1.80) 0.83 
rs10137185 CC CT 0.80 (0.40, 1.60) 0.52 
    TT 15.13 (1.86, 123.09)* 0.01 
rs3020443 AA AC 1.26 (0.79, 2.01) 0.33 
    CC 0.78 (0.31, 1.96) 0.59 
rs1256120 TT TC 0.78 (0.40, 1.52) 0.47 
    CC 2.54 (0.79, 8.18) 0.12 
rs10146204 GG GA 1.12 (0.69, 1.82) 0.65 
    AA 0.96 (0.50, 1.85) 0.9 
rs1256108 TT TC 1.17 (0.68, 2.01) 0.58 
    CC 1.17 (0.63, 2.17) 0.61 
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