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In North America more than 40 million doses of iodinated X-Ray contrast medium are delivered 

to patients undergoing CT imaging every year. This particular pharmaceutical is necessary to 

enable Computed Tomography of soft tissue, tumors, and vasculature. Very few of the contrast 

enhanced procedures are performed with the dose of the drug tailored to the individual patient or 

procedure and nearly every patient receives the same dose of contrast material. This dissertation 

presents a methodology to allow the routine administration of a personalized dose of contrast 

material to generate contrast enhancement sufficient for diagnosis during cardiothoracic CT 

Angiography imaging. Parameter estimation of a patient specific model is performed using 

Maximum Likelihood Estimation (MLE) with data generated from the scanner during a pre-

diagnostic "test" injection of contrast agent. A non-parametric system identification technique, 

using the truncated Singular Value Decomposition, is also developed for deriving a patient 

specific prediction of contrast enhancement. The MLE technique produces contrast enhancement 

predictions with less error than the tSVD method. It is also shown that the MLE method is less 

sensitive to data length and has greater noise immunity. A novel, patient-specific contrast 

protocol generation algorithm is also presented. It is based upon a constrained minimization 

(Sequential Quadratic Programming) that enforces constraints on the input parameters while 

minimizing the volume of contrast sufficient to achieve a prospectively chosen enhancement 

A NEW PARADIGM FOR THE DELIVERY OF IODINATED CONTRAST 

MATERIAL AT CARDIOTHORACIC, COMPUTED TOMOGRAPHY 

ANGIOGRAPHY 

John F Kalafut, PhD 

University of Pittsburgh, 2010 

 

 

U 

u 

 

University of Pittsburgh, 2010 

 

 

 



 v 

target. A physiologically based pharmacokinetic (PBPK) numeric model is developed and used 

to validate the contrast prediction and protocol generation techniques. Finally, a novel, 

instrumented, flow phantom is developed and used to validate the identification and protocol 

generation techniques. 
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1.0  INTRODUCTION 

The administration of iodinated contrast agent has become a routine and necessary 

component of most Computed Tomography (CT) X-Ray imaging procedures. In 2009 alone, 

there were nearly 40 million contrast enhanced CT procedures performed worldwide. Although 

X-Ray contrast agents have been used on humans for nearly a hundred years, only in the past 

twenty years have microprocessor controlled injection systems been introduced that make 

possible rapid bolus injections of the contrast agent (up to 10 ml/s) into a patient's peripheral 

venous blood stream prior to and during CT examination. Typical clinical protocols call for the 

delivery of between 60 - 170 ml of contrast agent at injection rates varying from 2 to 7 ml/s [1]. 

The volume of contrast to be injected, the flow rate of injection, the ideal concentration 

of iodine in the bolus, and the time delay between injection and commencement of the scan is 

mostly determined by empirical experience and clinical judgments [2]. Modern contrast injection 

systems have open-loop control architectures, and published approaches [3-10] to quantitatively 

model the contrast injection process have generally not been incorporated into clinical practice 

due to the practical complexities these techniques introduce.  

CT X-Ray scanners produce high-resolution 2D and 3D images of anatomy in multiple 

imaging planes. Despite the high spatial resolution generated by CT, exogenous intravenous 

contrast agents provide better image contrast. Recent advances in multi-detector or multi-slice 

CT (MDCT or MSCT) scanner technology facilitate the acquisition of sub-millimeter resolution 
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images in seconds [2]. A typical image created by contrast enhanced CT is shown in Figure 1. A 

3D reconstruction was applied to the raw, axial CT data acquired after the injection of 85 ml of 

contrast material and the image data were acquired in 2.5 seconds (Definition FLASH, Siemens 

Healthcare, Malvern PA). The full extent of the thoracic and abdominal aorta is visualized in this 

image along with other details like surgical sutures, some coronary artery segments, and an 

implanted pain pump. 

 

 

Figure 1 Example thoracic CTA data set. A 3D reconstruction was performed on 

CT data acquired after the injection of 85 ml of contrast material at 5 ml/s. The 

scan data was acquired in 2.5 seconds. Visible in the image are prior surgical 

repairs to the aorta and an implanted drug pump. 
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Whereas faster acquisition times reduce the total volume of contrast agent needed to 

enhance an anatomical region, the contrast must be injected at a faster rate, resulting in a 

challenge for the scanner operator to ensure optimal scan timing because the injection of the drug 

occurs over a very short duration. The most useful diagnostic image is generated during peak 

plasma or tissue concentration of the contrast media. The magnitude of the peak enhancement 

and the time to reach a maximum are variable across patients and are affected by cardiovascular 

properties of the patient and the intrinsic pharmacokinetics of the contrast agent [4]. 

Because quick image acquisition times mandate faster injection rates for visualization of 

arteries, the need exists to match scan interval to the peak enhancement of the vessels. The 

imaging of arteries with CT is known as CT Angiography (CTA). Miscalculating the contrast 

arrival and the subsequent scan acquisition may result in poor vessel opacification and a potential 

misdiagnosis. A poor image due to improper technique may also require a repeated procedure 

that unnecessarily increases a patient's exposure to ionizing radiation.  

Figure 2 illustrates the relationship among the contrast agent injector, the drug's 

propagation and the scanner acquisition. For this case, the scan starts at the first vertical line, 

marked with the letter A. This time also corresponds to the scan delay. A representation of the 

contrast media delivery is on the middle axis, while the image acquisition is depicted on the top 

axis. The time difference between the end of the contrast material administration and the 

beginning of the scan is the contrast arrival time, or the time needed for the contrast material to 

migrate into the vascular territory of interest. Finally, the bottom axis represents the plasma 

concentration of the contrast material in the vascular territory of interest. The contrast 

enhancement of the image is linearly related to the plasma concentration of the contrast material. 
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An ideal scanning procedure uses a minimal amount of contrast material and ensures scanning 

during the period of maximal plasma contrast concentration/image contrast enhancement. 

 

Figure 2 Pictorial demonstrating the temporal relationships among scanner, 

injection system and in vivo contrast enhancement profile.  

 

The existing methods for administering X-Ray contrast agent during CTA can be 

improved by generating and fitting patient-specific models of contrast dynamics with image data 

provided by the scanner and processed by the injection system. This dissertation presents a 

modeling and identification strategy that can be used to create patient-specific injection 

protocols. The algorithm results in optimized contrast injection protocols and ideal MSCT scan 
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timing for an individual patient. Optimized dosing, in this context, is defined to be the minimally 

sufficient volume of contrast material to enable reliable contrast enhancement (as specified by 

the clinician) of cardiothoracic arterial structures.  

Reducing the total volume of contrast fluid is especially desirable in patients with 

compromised renal function. The paradigm presented here considers the constraints of the 

injection system (ie: volumetric flow rates, pressures, scan times, contrast concentration) and of 

the patient's cardiovascular system, a consideration not formally made in previously published 

work. The initial clinical application for this research is thoracic CT Angiography because of the 

technical challenges inherent to the procedure, the growth of the procedure, and the valuable 

clinical information made available by consistent and repeatable examinations. The methods 

proposed here for optimal, diagnostic CT angiography of thoracic structures can also be applied 

to other anatomical regions of the body and also for other diagnostic imaging modalities 

requiring exogenous contrast material.  
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2.0   BACKGROUND AND LITERATURE REVIEW 

This chapter is a summary of relevant research, including brief reviews of X-Ray contrast, the 

practice of Contrast Enhanced CT angiography imaging, and pharmacokinetic modeling. 

Whereas a survey of the CT imaging literature reveals numerous approaches for the creation of 

ideal contrast injection protocols (see reviews in [1, 11]), Fleischmann [9] and Bae [6] are the 

most sophisticated techniques for computing patient specific contrast administration protocols. 

Bae's work is particularly noteworthy because it establishes a quantitative modeling framework 

(enhancing Blomley/Dawson and Krause) that serves as a means to generate patient-specific 

delivery protocols. Fleishmann and Bae's works are the precursors to the work presented here 

and therefore are described in detail.  

2.1 X-RAY CONTRAST MEDIUM 

Soft tissues and vasculature show poor contrast in CT images due to their low X-Ray absorption. 

The solution to imaging these structures is to introduce an intravascular agent that absorbs or 

scatters X-rays. In the 1920s, chemists synthesized water soluble mixtures of iodine that could be 

tolerated by mammalian physiology [12]. The organic chemistry was perfected by the 1950's, 

and physicians began to safely administer iodinated contrast pharmaceuticals via centrally 

inserted catheters, which enabled X-Ray imaging of the vascular system.  
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The iodinated agents were introduced via a hand syringe. Handheld delivery is 

suboptimal because the necessary force to push contrast through small catheters into the central 

circulation exceeds the force that can be produced by hand. The automated "power" injector, 

which could be remotely triggered, allowed the physician to distance himself from the X-Ray 

source and could generate sufficient hydrodynamic force while providing repeatable procedures. 

The power injector is routinely used in the millions of catheterization procedures performed each 

year. 

The intensity of an X-Ray image with contrast agent is directly proportional to the 

concentration of iodine in the vessel or organ's blood plasma, the electron configuration of 

iodine, and the excitation energy of the X-Ray photons as determined by the voltage applied 

across the X-Ray tube. The concentration of iodine in an X-Ray contrast agent is expressed in 

units of mg iodine per ml of fluid. Iodinated contrast agent is hyperosmolar in solution. 

Hounsfield Units are dimensionless units that normalize CT scan values across scanner 

types. The units reflect the attenuation values in the path of the X-Rays. A measurement of zero 

Hounsfield units is the attenuation of X-Rays when passing through water. The attenuation of air 

is calibrated to –1000 HU. Bone is measured at 1000 HU and is typically the upper end of the 

HU scale, although modern CT scanners report HU values up to 3000 HU. The HU is defined as 

  

 

2

2

tissue H 0

H 0

HU 1000

  (2.1) 

where 's are the mass attenuation coefficient of material measured by X-Ray attenuation. 
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2.2 CONTRAST ENHANCED CT IMAGING 

During Computed Tomography Angiography (CTA) procedures, the imaging of the vessels 

should coincide with the maximum concentration of contrast material. To ensure the rapid 

accumulation of contrast in the vessels, CT power injectors deliver contrast at volumetric flow 

rates of 4 ml/s and greater. The rapid injection ensures a sufficient volume of contrast material is 

present during the "first pass" of drug through the arterial system from the peripheral, venous 

injection site.    

Because contrast enhancement is related to the amount of iodine and its mass flux in a 

volume within an anatomical territory of interest, radiologists can modify the contrast volume 

and delivery flow rate to maximize image enhancement. The volume injected is regulated by a 

servo system controlling the linear displacement of a plunger sliding inside a large syringe 

containing the contrast agent. Contrast agent is injected into the patient at a programmed flow 

rate. Contrast enhancement in vessels is greatest when the contrast is delivered to the heart via 

the peripheral venous system at a high flow rate [13]. The fast injection of viscous contrast agent 

through the small tubing and catheter creates large pressures in the syringe (25 - 325 psi), patient 

connector tubing, and peripheral catheter. The polymer syringes and disposable tubing set cannot 

support large pressures (> 500 psi) for sustained periods and the pressure generated in the 

syringe is typically limited to 325 psi.. Sometimes the pressure limit is reduced for patients with 

difficult intravenous access or with compromised veins. 

 Contrast medium injected into the peripheral venous circulation drains into the heart. 

The heart then delivers the agent throughout the body. Contrast agent migrates from the central 

blood volume (within blood vessels) into parenchyma and tissue due to the concentration 

gradients across capillaries. Contrast medium is hyperosmolar and so plasma is "pulled" into the 
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intravascular space to balance osmotic pressures. The extravasation of contrast media into the 

tissue space and dilution in the bloodstream must be recognized when attempting to predict peak 

enhancement in an artery or organ.  

The diffusion of the contrast agent and the recirculation of the agent cause an 

asymmetrically peaked CTA enhancement curve (see Figure 3) for long duration contrast 

injections. Patients with diseased cardiovascular systems may exhibit CT enhancement peaks 

that are low in amplitude and excessively dispersed.  Decreased vascular opacification can result 

in a misdiagnosis by the radiologist. Because there is no feedback to the injection system 

regarding the behavior of the contrast in vivo, large inter-individual differences in contrast 

enhancement result in some patients receiving more contrast than needed to obtain an adequate 

diagnosis [14]. 

An injection of saline following the main bolus of contrast material is a standard 

technique for CTA procedures. The extra saline, typically injected at the same flow rate as the 

contrast material, ensures that contrast material is not left in the syringe and tubing set of the 

injection system and helps to maintain the momentum of the main bolus of contrast as it migrates 

through the peripheral venous circulation [15]. The saline phase has been demonstrated to 

increase the peak aortic enhancement from 5% to 10% as compared to injections without a saline 

phase [16]. Lee et al [17] investigated the impact on contrast enhancement in the aorta and 

pulmonary artery when a saline flush or “chase” phase followed a bolus of contrast material 

using a canine model. They followed the contrast phase with no saline, saline injected at the 

same flow rate as the contrast bolus, and saline injected at half the flow rate of the contrast bolus.  
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The enhancement profiles in the experimental groups using the saline phase (or "flush" as it is 

sometimes called) had greater peak enhancements and later peak enhancement times than the 

protocol group in which no saline flush was used.  

 

 

 

Contrast injection: 2ml/s of  

80 ml. 

Peak Enhancement 

Time to peak 

enhancement 

 

Figure 3 Example of a typical, CT enhancement curve generated from an uniphasic injection 

of contrast medium. This curve exhibits the typical peak associated with CT images of blood 

vessels. The y-axis represents Hounsfield units. 
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2.2.1 Detailed Description of CTA Data Acquisition and Image Sets 

There are three standard techniques for determining an appropriate CT scan delay [14, 18], or the 

time from commencement of the contrast injection to the start of the scan acquisition. These 

methods are:  

 use of a fixed delay for each patient 

 base the scan delay on the peak of a small "timing" or "test" bolus of contrast – 

the timing bolus technique 

 use of bolus "tracking" software integrated into the scanner – the bolus tracking 

technique. 

The fixed scan delay for every patient is the least desirable method, especially for cardio-thoracic 

CTA, because of large hemodynamic differences among patients. Most radiologists, therefore, 

compute a scan delay based on the time to peak of a small timing/identification bolus (similar 

injection as proposed in this research) or use the bolus tracking method.  

A drawback to the timing bolus technique is that the time of peak contrast enhancement 

for a timing (or test) bolus is not the same as the time of peak enhancement for a full diagnostic 

bolus. Radiologists apply empirically derived rules, such as adding 4 or 5 seconds to the test 

bolus peak, to determine the scan delay [18]. Assuming linearity of the system, one could 

compute an estimate of the time to peak of an arbitrary injection if the entire timing bolus 

enhancement curve were available [19], but this is not done in practice due to the current data 

exchange limitation between scanners and injection systems.  

The bolus tracking technique, a software feature commonly available on all commercial 

CT scanners, consists of a low level scan of a region of interest during the contrast injection. 

Once the enhancement in a chosen vessel exceeds a certain threshold, the scanner positions the 
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patient for the diagnostic scan. Some methodological issues prohibit bolus tracking from 

working ideally for all patients. The most notable drawback of bolus tracking is that choosing the 

proper enhancement level for the threshold is arbitrary and varies among clinicians. Additionally, 

there are unknown (to the clinician) latencies in the processing of the scan information, 

positioning of the patient, and initiation of the diagnostic scan. These indeterminate delays can 

make the scan timing less than ideal.  

Knowledge of the specific patient's physiologic status and how it influences the contrast 

agent is difficult, if not impossible, for the clinician to assess before delivering the agent. Some 

clinical procedures suggest the modulation of the flow rate or the volume based upon patient 

weight or other habitus index [20, 21]. Whereas these techniques do show promise in reducing 

some of the uncertainty associated with image quality and contrast medium dosage, they are not 

robust and also cannot aid in finding the ideal scan times [22]. 

For patient specific contrast protocol calculation, the timing bolus technique is preferred 

because the data provide a representation of the cardiovascular and contrast dynamics. To better 

understand the imaging techniques used in this research, a more detailed explanation of the 

contrast enhanced imaging procedure (assuming a timing or “test” bolus is used for timing and/or 

identification of the patient) is presented. An illustration of an entire imaging procedure is 

presented to aid comprehension in Figure 4, which is an elaboration of the process depicted in 

Figure 2. 
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Figure 4 Detailed schematic of a contrast enhanced CTA imaging procedure 

 

 In Figure 4, the origin of the time axis coincides to when the patient is positioned on the 

table and the scanner is initialized. The scanner axis contains three distinct imaging operations: a 

scout scan or topogram, a test (or timing) bolus scan, and the diagnostic scan. The topogram is a 

low-level scan used in planning the procedure.  Both the topogram and test bolus scans are 

acquired with the patient stationary in relationship to the gantry (the gantry contains the X-Ray 

source and the detectors). This type of scan is referred to as a “single level” scan. It is important 

to appreciate that the diagnostic scan (typically) is acquired in a helical, or spiral, fashion. The 

patient is moved continuously through the opening in the scanner and the gantry rotates around 

the patient as she is moved linearly through the scanner. For most cardio-thoracic CTA studies, 

the patient’s ECG signal is acquired simultaneously.  
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Modern CT detectors are 4-16 cm in width and are composed of multiple rows. As the 

patient moves through the bore of the scanner, the X-Ray fan beam passes through the patient 

and is intercepted by the detector array. Because the patient is continuously moving through the 

scanner, not every detector row receives a normal projection of X-Ray photons. Reconstruction 

algorithms on the scanner interpolate the “missing” data on each detector and reconstruct axial 

slices. Because of this helical acquisition mode, the diagnostic scan in Figure 4 is indicated with 

a wavy line, a different representation from the other, stationary scans. It is important to 

recognize that diagnostic CT data sets acquired in a helical mode are therefore a function of 

space and time. A convention in medical imaging is to label the spatial direction along the 

scanner bore – or the direction that the patient moves - as the z-axis.  

When the timing bolus is administered, the contrast injector infuses a small bolus of 

contrast followed by saline. The scanner then starts acquiring data in a single-level mode four to 

10 seconds after the start of contrast injection. The scanner operator processes the single-level 

scan series and constructs Time Enhancement Curves (TECs) on the relevant vascular anatomy. 

The resulting curve presents a dynamic view of the contrast bolus as it passes through the 

anatomy. Features of the TECs are used to plan the diagnostic scan contrast and scan protocols. 

Most commonly, the scan delay is computed from the peak contrast enhancement of the TEC 

acquired in the test bolus series. 

Because the contrast bolus propagates to the vascular region in a finite amount of time, 

the diagnostic scan must be delayed an appropriate amount to allow the bolus to appear in the 

territory of interest. In Figure 4, the diagnostic scan contrast protocol is injected and the helical 

acquisition starts in a time defined by the “scan delay”. One goal of optimized protocol 

construction is to time the helical acquisition to ensure the maximum of the contrast 
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enhancement concentration in the territory of interest (refer to Figure 4). When the scan delay 

time elapses, the scanner is triggered and the patient is moved through the scanner as the data are 

acquired.  

Depending upon the clinical indications and site preferences, the reconstruction software 

generates multiple views of the data. The patient’s ECG signal is used by the scanner’s 

reconstruction software to generate data free of motion artifact. Most commonly for CTA 

procedures, “thin” slice axial images are generated by the scanner software. Because the spatial 

resolution between the slices can be less than one millimeter, these thin slices may be used to 

construct views of the data from different angles (multi-planar reformatting MPR).  

 An example of MPR imagery is given in Figure 5. The top row of the figure shows, 

from left to right, axial, sagital and coronal views of the data. The bottom row depicts the 

enhancement profile of the contrast in the descending aorta from the top of the image set to the 

bottom. In this example, the scanner was configured such that each of the axial images was 

reconstructed with a .375 mm separation. There were 477 axial images in the data set. The 

blocked regions on the axis indicate the data reconstructed at each diastolic portion of the 

patient’s cardiac cycle (~75% of the R-R interval – these blocks, therefore are roughly 1 second 

apart at a 60 bpm heart rate). Because the data in each block were reconstructed at the same point 

relative to the cardiac cycle, the contrast data in that block are averaged together to present a 

temporal and spatial evolution of the contrast bolus in the aorta independent of changes related to 

the beating heart. 
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Figure 5 Example CTA data set (top – the shaded structure is the descending aorta) and contrast 

enhancement values derived from the aorta (bottom). The colored blocks indicate that the 

multiple slices within that block were acquired at one time instance.
1
 

 

The methodology just described is used to compare numerical techniques developed in 

subsequent sections of this dissertation. An implicit assumption for the applicability of this 

method is that the propagation velocity of the contrast media and blood mixture is greater than 

the time necessary to acquire the imaging data with the scanner. This is a valid assumption 

because the typical linear velocity of blood and contrast ejected from the Left Ventricle is 50-70 

cm/sec and the patient is moved through the scanner (a limiting factor in acquiring the image 

data during a helical acquisition) at speeds typically between 1-2 cm/sec. 

 

                                                 

1
 MATLAB software and GUI developed by CA Kemper PhD, MEDRAD Innovations 
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2.3 PHARMACOKINETIC DRUG MODELLING 

Pharmacokinetics (PK) is the study of drug distribution throughout an organism, the absorption 

of the drug in various tissues and the excretion of the drug through metabolic and/or excretory 

processes. It is contrasted with pharmacodynamics, the study of a drug's impact or effect on the 

organism. A common technique in pharmacokinetics is to model the transport and distribution of 

drug by dividing the physiology into several "compartments" in which conservation of mass is 

enforced. The rate-transfer among the components parameterizes the model. These 

compartments don't necessarily have a 1-1 relationship with an anatomical section of the 

organism but, rather, are useful mathematical structures for describing the distribution of drug. 

An example of a typical structure, a 2 compartment PK model, is shown in Figure 6. 

 

 

Figure 6 A 2-compartment PK model with Central and Peripheral compartments. 

The parameters r, k12, k21, and K are all mass rate transfer coefficients with units 

of time
-1

. 
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 The two compartments in Figure 6 are not meant to represent the actual central and 

peripheral circulatory systems of an organism. Rather, they provide a means to accommodate 

dynamics apparent in dose response data. The drug input is the infusion or adsorption mass rate 

of drug into the system. The clearance, K, represents the excretion of drug from the system – 

typically via urine or hepatic processes. The transfer coefficients between the 2 compartments 

introduce into the model a means of modeling non-instantaneous distribution of drug throughout 

the body. With mass (xi) being the independent parameter, the coupled set of first order 

differential equations describing Figure 6 is: 

 

 

1
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k x k x
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 (2.2) 

 

The concentration of the drug in either compartment can be found by dividing the mass by an 

apparent volume (sometimes called a distribution volume), Vi which has no direct physiologic 

meaning. An estimate of plasma concentration in compartment 1: 
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Numerical fitting of dose-response data, blood plasma measurements made after the 

administration of varying doses of a drug either to an animal or human, yields the rate transfer 

coefficients. The majority of pharmacokinetic models assume the system is linear and time 
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invariant. The parameters of the models are usually based on population statistics acquired from 

drug plasma measurements in many animals or subjects acquired during the drug's development.  

2.3.1 Physiologically Based Pharmacokinetic Modeling 

An alternative approach to classical, pharmacokinetic modeling in which the structure of the 

model is dictated primarily by mathematical convenience is physiologically based 

pharmacokinetic modeling (PBPK). It is a modeling approach that considers relevant physiology 

and function when determining the model structure. A review of the PBPK principles and 

clinical and pharmacology applications is presented in [23], and a recent text by Reddy and Yang 

[24] describes the history and development of the field. It is interesting to note that the first 

efforts to quantify and predict drug distribution were made using the PBPK paradigm. The non-

existence at that time of numerical methods made solving the coupled systems of differential 

equations over many time-steps nearly impossible. Thus, the classical one and two compartment 

approaches to fitting plasma concentration measurements became ascendant until the early 

1980s.  

In a PBPK model, the body is separated into a number of interconnected compartments 

corresponding to anatomical regions. Each compartment is parameterized (volume, blood flow, 

perfusion) based on physiologic and anatomic considerations of the organism, and each 

connected by vascular compartments that facilitate the convective transport of the species to and 

away from the compartment. An advantage of this approach is the ability to scale the model 

across species without changing the structure of the model. Fitting experimental data to a very 

large PBPK model can be computationally expensive and difficult, however. To overcome data 
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fitting challenges, modelers typically attempt to construct a model with the fewest compartments 

necessary while still maintaining physiologic and anatomic fidelity [24]. 

An example of a typical, whole body PBPK model (adopted from [25]) is presented in 

Figure 7.The mathematical basis of the PBPK model is mass-conservation among the various 

compartments. The convective transport of blood is denoted by the variable Q in the figure. 

There is a volume of blood in each compartment of the model and the blood volume is typically 

divided among the interstitial territory of the organ (Vi), the vascular territory of the organ (Vv), 

and the cellular sub-compartment (Vc). Within each compartment, the drug concentration is 

annotated by Ci and the mass is the product of volume and concentration. The mass flux of the 

species into an organ must equal the mass flux leaving the organ and is defined as the product of 

blood flow Q and concentration C. Further elaboration of the concepts and nomenclature are 

given in the next section, where a PBPK model of X-Ray contrast media propagation is 

discussed (Section 2.5). 
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Figure 7 Example of a PBPK model structure, adapted from [25]. Q represents 

blood flow through the vasculature connecting each region of the body. 

 

2.4 COMPUTER CONTROLLED INFUSION  

A large body of published literature exists related to optimal or predicative control of infusion 

pumps for administering chemotherapeutic, analgesic, and anesthetic agents. Representative 

publications are Rao [26], Held and Roy [27], and Jacobs [28]. In these works, a one or two 

compartment PK model described and subsequently predicted the drug distribution. The most 
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refined Computer Controlled Infusion (CCI) or Target Controlled Infusion (TCI) work was 

performed with the intent of controlling the delivery of propofol [29]. A commercial product, the 

Diprifusor was developed and distributed by Astra-Zeneca Inc. in the late 1990's based on this 

work.   

The X-Ray contrast delivery problem is different from similar ones in the Computer 

Controlled Infusion (CCI) literature because the delivery rate of the contrast is fast and of short 

duration (bolus delivery). While published CCI studies modeled drug pharmacokinetics in an 

effort to devise optimal injection routes, the infusion rates were very low relative to those used 

during contrast medium delivery (ml/min compared to ml/s). Furthermore, the infusions last 

minutes or hours, allowing for the potential update of model parameters based on previous 

control moves. Because the volume of administered contrast is typically between 60-150 ml, and 

the intravenous space volume from the injection site through the heart and pulmonary circulation 

is about 400-500 ml, once the contrast medium bolus enters the cardiac circulation, further 

control of the propagation of the contrast agent is not feasible. Control schemes to improve the 

delivery of these diagnostic agents (and potentially therapeutic agents) must decide the best 

trajectory before the agent is delivered to the patient.  

Model Predictive Control (MPC) techniques can be applied in CCI applications to 

identify the model dynamics once the injection has started – observing the actual scan 

enhancement values during the administration of the contrast, comparing them to an underlying 

model and updating the model parameters as a function of prediction error. A recent study by 

Gentilini et al.[30] proposed a model predictive control approach for controlling the plasma 

concentration of the opiate alfentanil with a computer controlled infusion pump. They used a 3-

compartment PK model to predict the distribution of opiate in a human. The controller relied 
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upon an observer to estimate plasma concentrations of the drug based on measurements of mean 

arterial pressure and the PK model running in parallel with data acquisition..  

Krause proposed a PK multi-compartmental model describing the distribution of X-Ray 

contrast medium [31]. Krause fit the results of plasma concentration data, as measured by 

periodic blood withdrawal, to simple kinetic models and produced dynamic curves of contrast 

medium propagation and the time to reach steady state in the human circulation. A particular 

emphasis was placed on studying the contrast behavior in the time-frame typical of liver CT 

scans, 40-80 seconds after the time period of interest during cardiac CT. 

Ledzewicz and Schattler considered the treatment of certain cancers via intravenous 

chemotherapy in a minimum-fuel context [32]. They used a two-compartment pharmacokinetic 

model to describe the action of the chemotoxic agents. The authors demonstrated that the optimal 

controls are bang-bang with respect to the dosing of the drug. A distinction, however, between 

this work and the contrast delivery problem is that contrast delivery for CTA is a one-bolus 

delivery problem opposed to a slow infusion of drug over time. Furthermore, the introduction of 

"gaps" in the bolus of contrast agent will present as un-enhanced regions in the imagery. 

 

2.5 BAE’S PBPK MODEL OF CONTRAST MEDIA PROPOGATION 

Bae et al. used the PBPK framework to model and ultimately control the propagation of X-Ray 

contrast media [5]. Bae treated the concentration of the intravenous contrast injection as the input 

function to a whole-body PBPK model with two main components in the model – the blood 

vessels and organs.  
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Figure 8 Bae's representation of a blood vessel. It is assumed that the volume of 

the component is fixed, the vessel is a rigid tube (no compliance), the flow is non-

pulsatile and the compartment is well-mixed. 

 

Bae modeled the blood vessels as rigid tubes with a mass flow rate entering the vessel 

equal to that leaving, pictorially demonstrated in Figure 8. He also assumed that the blood and 

contrast instantaneously and uniformly mix within the vessel. Contrast concentration  follows 

first-order kinetics as the bolus propagates through the vasculature. The differential equation 

describing the mass balance on the concentration of Iodine in the vessel is given by the Fick 

principle: 
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where V is the volume of the vessel, Qi and Qo are the mass flow rates at the entrance and exit of 

the vessel (usually, assumed to be  equal), Ci is the input concentration  (assumed constant) and 

Qi = Input Flow Rate
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Co is the output concentration. The differential equation can be solved for output concentration, 

where Tinj marks the end of the injection.  
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Figure 9 Bae's model of the diffusion of contrast medium in organs of the 

mammalian system.  

 

The organs were modeled as multi-compartment structures with intravascular and 

extravascular compartments. A graphical depiction of the organ model is shown in Figure 9. The 

intravascular region consists of the plasma compartment of the blood while the extravascular 
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component represents the permeable tissue of an organ separated from the intravascular domain 

by the capillary endothelial membrane.  

 Fick's Law of Diffusion modeled the diffusion of contrast medium across the capillary 

membrane separating the intra and extravascular spaces. The Fick principle, applied across the 

membrane is stated as: 

 

 

i oC CdM
DS

dt x
 (2.6) 

 

where M is the mass of a species, D is the diffusion coefficient, S is the surface area between the 

two compartments, and Δx is the membrane thickness. For thin membranes, one may include D 

and Δx in the permeability, P, of the membrane. Thus, equation (2.6) may be rewritten as: 

 

 
i o
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PS C C

dt  (2.7) 

 

The values of P and S must be approximated, however, because there is no direct means 

of measuring the surface area of the membranes for all the capillary beds of the model's organ 

compartments. The permeability of these membranes is also dependent on a number of factors, 

including the flow rate of blood through the compartment and the concentration of the species 

within the compartment. Bae assumed a flow-limited regime and set the PS term proportional to 

the local flow rate of blood through the region. 

Equations (2.6) and (2.7) were coupled and applied to ten major organs and the  contrast 

propagation in organ compartments was modeled as: 
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Subscript notation in equation (2.8) is described in Figure 9. Because contrast material 

does not penetrate the intracellular space of the blood cells, the intracellular compartment was 

omitted from the model and equation (2.8). Excretion of contrast agent occurs via glomerular 

filtration and was fixed at 19% of the renal arterial blood flow in the model. A total of 104-

coupled differential equations were solved and the predicted arterial concentration was compared 

to empirical data collected from 25 human volunteers who received chest CT scans.  

The anatomical volumes of the vessels and organs were obtained from published data. 

The authors claim "good" agreement between the averaged empirical and simulated enhancement 

results with the mean percent difference in maximum aortic enhancement of 7.4% and in 

maximum liver enhancement of 4.8%. The variation in time to maximum enhancement between 

experimental data and simulation predictions was measured as 11.6% in the aorta and 12.7% in 

the liver. 

2.6 BAE REDUCED ORDER PHARMACOKINETIC MODEL 

Bae recognized the practical limitations of the full-body model, namely that the use of the model 

in clinical practice would require the entry of many constants and the estimation of cardiac 
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output. He subsequently simplified the global circulatory model to make it more amenable for 

clinical use.  

 

Figure 10 Bae et al.'s simplified circulatory model. This model was used to 

compute the input (contrast injection) that would produce an uniform contrast 

enhancement in the aorta (output of Left Heart). 

 

Bae et al. simplified the circulatory system into five sections: the right heart, the pulmonary 

circulation, the left heart, peripheral venous circulation, and the systemic circulation, as depicted 

in Figure 10. The set of equations describing the dynamics of the contrast medium is given in 

equation (2.9), and the initial conditions for all concentration parameters are 0 at time 0. It was 

assumed, during contrast injection, that the volumetric flow rates (Q terms) are equal. There was 

no consideration given for pulsatile flow or local vessel compliance changes. In [3], Bae solved 

for the input function (QcCc(t)) in the coupled differential equation system (equation (2.9)) that 

would produce an uniform, flat contrast enhancement at the aorta (CL). 
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Bae showed that by injecting contrast into the venous system as an exponential function 

of time, the resulting contrast enhancement in the left heart compartment was uniform over a 

time period: 
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with α being the initial injection rate. The model predictions compared well with enhancement 

data generated from a porcine model[4] .  

In [33], Bae and colleagues applied the injection profile in equation (2.10) to pigs and 

reported the results as "good uniform enhancement of the aorta" and that the empirical and 

simulation results were in good agreement. Bae subsequently reported results on a sample of 

patients undergoing standard CTA exams [7] in which there was uniform enhancement in the 

abdominal aorta.  
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2.7 WADA AND WARD PBPK MODEL OF ALFENTANIL 

Wada and Ward [34, 35] derived a PBPK model similar to the Bae model and applied it for 

regulating the plasma concentration of anesthetic (the opioid alfentanil). Their model included 

the recirculation effect of drug through the blood stream, which was modeled as explicit 

transport delays. The state-space model of the drug and patient explicitly considered the injection 

delay and delay through the cardiopulmonary circuit as well. The transport of the pharmaceutical 

was approximated as plug flow for the larger vessels of the cardiovascular system and implies 

that the amount of time for a bolus of fluid to traverse the administration route is t=Q/V, with Q 

representing the volumetric flow rate of the blood and V is the blood volume between the 

injection site and the measurement location. The volumetric flow rate and concentration of the 

drug are treated as separate elements of mass flux throughout the model, Ji=QiCi with Q the 

volumetric flow rate and C the concentration of the drug. 

Cardiopulmonary parameters were fit with a weighted sum of squares technique using 

experimental data from blood measurements. Blood plasma values 60 seconds post injection of 

the drug were used to fit the parameters of the model. Data collected after 60 seconds were used 

to validate the fitted models. Wada and Ward reported prediction errors of less than 5%. 

Parameter estimation was performed using the Nelder-Mead Simplex algorithm [34].  

The estimated cardiopulmonary parameters were: the blood volume of the left heart, the 

blood volume of the right heart, the blood volume of the lung, and the transfer coefficients of 

drug through the pulmonary capillary endothelium. Other parameters in the model, like cardiac 

output and the total volume of fluid in the system, were based on average human values (5.5  
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L/min cardiac output and 14.9 L of residual fluid volume). The resulting prediction of drug 

concentration in the plasma agreed well with the sampled data. Wada and Ward [35] also applied 

their pharmacokinetic (PK) model to control multiple effects of anesthetic drugs. Their control 

scheme required an anesthesiologist to set the allowable side-effect levels (expressed as a plasma 

concentration).  

A representation of the model structure is illustrated in Figure 11 and is the basis for a 

novel pharmacokinetic model describing contrast medium propagation developed in Chapter 4.  

Two primary compartment types - Tissue and Blood denoted by subscript "T" and "B" 

respectively – are used to construct the global model. Blood compartments are pure vascular 
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Figure 11 Topology of the Wada and Ward PK model. The Vessel Rich Group represents organs 

with many blood vessels in which drug is more likely to diffuse from the intravascular 

compartment. 
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regions, while Tissue compartments are extracellular tissue spaces. It is possible that the drug 

can be irreversibly cleared from the Tissue compartment.  

Conservation of mass applied to any subsystem in Figure 11 yields:  
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 (2.11) 

 

where the subscripts B,T represent the blood and tissue compartments respectively. The rate 

transfer coefficient kBT is the rate at which the drug diffuses from the blood to the tissue 

compartment and kTB is the rate of movement from the tissue compartment back to the blood 

compartment. The variable Q is the volumetric flow rate of the blood/drug mixture through a 

vascular compartment and C is the concentration of contrast medium entering or leaving a 

compartment. Drug concentration is mass divided by the estimated total volume of blood in the 

compartment. Wada and Ward scaled the apparent volume of the compartments by an estimated 

hematocrit value of the blood, . 
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2.8 FLEISCHMANN AND HITTMAIR PATIENT SPECIFIC CONTRAST 

PROTOCOL COMPUTATION 

Fleischman and Hittmair approached the problem of computing an injection profile that produces 

a uniform contrast enhancement in the aorta by treating the patient's circulatory system as a 

single input single output (SISO) linear, time-invariant "black box". The input to the system is 

the contrast injection profile and the output is the enhancement profile at the aorta as measured 

by the CT scanner. The transfer function of the system (vasculature) was acquired by applying a 

short duration contrast bolus (a "test bolus") of volume 16 ml at 4 ml/s and the resulting contrast 

enhancement curve from the scan data was the system output signal.Fleischmann and Hittmair 

used Fourier methods to perform the deconvolution necessary to estimate the patient/drug 

transfer function. If ut(n) is the discrete-time test bolus(units ml/s), yt(n) is the discrete-time 

signal representing the response of the patient and drug as measured by the scanner (Hounsfield 

Units). Assuming the contrast media and vascular system behave as a linear time invariant 

system, the estimated system impulse response was found by deconvolution: 
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In the Z-domain, the deconvolution operation, 1 ,is a spectral division: 
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where Z
-1 

 represents the inverse z-transform operator. Discrete-time operations were performed 

because the patient response signal, yt(n) was sampled every 1 or 2 seconds by the CT scanner. 

Contrast enhancement was measured by applying circular Regions Of Interest (ROI) over the 

abdominal aorta proximal to the iliac arteries.  

To reduce the influence of high frequency noise (assumed to be non-physiological), 

Fleischmann and Hittmair filtered the output spectrum by multiplication with an exponential 

kernel (m is a scaling factor): 
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Because the zero or small values in the denominator of equation (2.13) can cause 

numerical instabilities, they ensured H(k) was zero when Ut(k) was zero by multiplying the 

filtered output spectrum by a masking signum function, sgn(x) defined as: 
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. The estimated transfer function of the patient/drug system was: 
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with: 

 

  

f tT (k) sgn(| U (k) |)

  (2.17) 

 

the signum masking function preventing the transfer function estimate from growing unbounded. 

Their goal was to determine the input necessary to give a desired enhancement response 

during a diagnostic CT scan. The ideal contrast input function was computed by: 
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An inverse, discrete Fourier Transform of equation (2.18) determined the input function 

necessary to achieve the desired enhancement level in time.  

In general, the raw, computed input function is not realizable because negative flow rates 

were generated and the flow rates often exceeded 8 ml/s. Flow rates are limited by clinical and 

system constraints to 6-7 ml/s due to material strength limits of the syringe, tubing and catheters. 

The pressure generated in the system is a function of contrast medium viscosity, catheter gauge 

(or inner diameter), tubing length and diameter, and patient's vascular status. Therefore, many 

radiologists reduce the maximum flow rate for a patient depending on the condition of the 

vascular access site, the patient's health status, or confidence of the clinician administering the 

drug.  To produce realizable injection profiles, Fleischmann and Hittmair applied a heuristic to 

the contrast injection protocol that prevented negative flow rates and rounded the continuously 

varying function so that a contrast injection system could realize the injection. No explicit 
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algorithm describing the truncation, however, was described in [9] or [36] although some 

MATHEMATICA code was included in [8].  

 

 

2.8.1 Fleischmann et al Clinical Results 

Fleischmann tested the algorithm described in [9] by applying the computed "optimal" injection 

profiles to a group of 16 patients undergoing CT angiography suspected of abdominal 

aneurysms. A control group of 16 patients undergoing the CT scans (abdominal aortic imaging) 

were administered contrast agent with a standard, uniphasic protocol (120 ml of contrast at one 

flow rate, 4ml/s) [36]. Time enhancement curves were generated from the axial, CT data sets for 

each patient in the 2 cohorts. ROIs were drawn in the abdominal aorta every 2 cm by a 

radiologist to construct the time enhancement curves. Variability in a subject's contrast 

enhancement was measured by the standard deviation of the enhancement signal throughout the 

scan duration.   

Contrast enhancement variability within the group receiving injection protocols 

computed via Fourier deconvolution was significantly smaller than that of the control group (p < 

.001, two tailed t-test), suggesting that the computed contrast injection profile produced more 

uniform contrast enhancement. A statistically significant difference between the control and 

deconvolution groups' mean enhancement was not found, however. Fleischmann et al. concluded 

that the patient-specific, optimized input functions resulted in a reduction of enhancement 

variability for individual subjects (low intra-subject variability), but did not reduce inter-subject 

variability. 
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Hittmair and Fleischmann conducted a subsequent investigation similar to that in [36] , 

but added a group with central venous injections [37]. The results suggested that a more uniform 

and less variable contrast enhancement can be achieved when the contrast medium is injected via 

a central venous catheter directly into the right heart. Those findings suggest that dispersion 

effects of the peripheral venous system and contrast migrating into ancillary arm veins from the 

injection site to the right heart contributed to the variability in their results. The administration of 

a large volume of saline after the injection of contrast can aid in pushing the contrast consistently 

into the right heart and so the introduction of this saline push capability in standard contrast 

delivery systems should reduce some of the inter-subject variability reported in their work. 

An important consideration not made in Fleischmann or Bae is that the maximum, 

deliverable flow rate is dictated by hydraulic constraints, namely the viscosity of the drug 

solution and the inner diameter (gauge) of the catheter that provides vascular access. These 

factors limit the useable flow rates for contrast medium to 6-7 ml/s for most clinical situations. 

Furthermore, the radiologist may decide to lower the flow rate when a patient having a 

compromised vascular system is scanned. An optimal, patient specific contrast medium delivery 

algorithm should consider these constraints when computing an injection trajectory.  

 

2.9  RELEVANT WORK BY THE AUTHOR 

Numburi et al. [38, 39] presented clinical validation of the Fleishcmann/Hittmair algorithm with 

a 16-slice MSCT scanner. The results were in accordance with Fleischmann's – the enhancement 
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profiles were more uniform, but there was large variability among patients in how well the model 

predicted enhancement. 

Kalafut developed a set of algorithmic rules commercialized as MEDRAD's Stellant ™ 

P3T™ Cardiac software [40] . The principles applied in the algorithm were similar to those 

suggested by Awai et al.[8] in that the injection duration is a function of scan duration and the 

injection volume is scaled to body weight [40]. Clinical validation of the approach was presented 

in [41]. 

The software validated in [41] adapted the iodine delivery rate (gI/s) based upon a non-

linear relationship between patient weight, scan duration and concentration of the contrast 

material. Numerical simulations using the pharmacokinetic model of Bae et al.[6] refined the 

relationship between iodine administration rate and patient weight. The scan procedure 

information, patient characteristics and data from a test-bolus injection were used to compute 

patient specific scan delays. With knowledge of scan delay and scan duration, further 

refinements and customizations of the contrast protocol were made. For example, because the 

algorithm knew the scan's end-time, the contrast injection was forced to finish several seconds 

prior to the completion of scan acquisition, ensuring the maximum utilization of the contrast 

material. The algorithmic approach and software is a first step towards robust, optimal contrast 

protocol generation in the clinic.  

In [42], Kalafut et al. presented an identification and contrast protocol generation 

technique that fit a 1-compartment PK model to enhancement data generated from test bolus 

injections. Specifically, the times to maximum contrast enhancement and the maximum 

magnitude of contrast enhancements in the pulmonary artery and ascending aorta were inputs to 

the algorithm. The algorithm allowed the radiologist to set desired contrast enhancement targets 
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in the left heart structures. A direct-search optimization computed the flow rate and injection 

duration for the diagnostic contrast bolus. Seventy subjects undergoing cardiac CTA were 

included in a test of the injection scheme. The injection protocols resulted in the desired contrast 

enhancement in all segments of the coronary anatomy and used 18 ml (mean) less contrast than a 

retrospective control group. The main limitation to this algorithm was that it only considered a 

few discrete points on the test bolus enhancement curves. 

2.10 CARDIAC OUTPUT ESTIMATION USING CT CONTRAST 

Many studies have been published describing the use of tracers for identifying quantitative 

processes in metabolic systems. Of relevance to the research presented in this document is work 

using X-ray contrast medium as a tracer or indicator. Indicator-dilution techniques introduce an 

exogenous tracer into a flow system. By measuring the concentration of indicator (or dye) 

present in the system at a moment in time and comparing it to the amount injected into the inlet 

side of the system, estimates of flow field parameters can be extracted. A standard assumption in 

these techniques is that the indicator instantaneously mixes in the system, mass is conserved, and 

the concentration response is linear. 

The Stewart-Hamilton equation states that a measure of the cardiac output from a 

mammalian heart is the quotient of an injected indicator's mass and the area under the curve of 

the indicator's concentration measurement: 
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0

MassMass
CO

AreaUnderCurve
c(t)dt  (2.19) 

 

Mahnken et al. conducted a feasibility study for determining cardiac output using X-Ray 

contrast medium as an indicator and a Multi-Detector CT scanner as a measurement device with 

25 patients undergoing cardiac CTA [43]. Mahnken and colleagues injected each subject with 20 

ml of non-ionic contrast medium followed by a saline chaser of 30 ml. Dynamic CT images 

(axial images were taken at one level of the thorax, and only at that level) were recorded in the 

ascending aorta for 38 seconds. The resulting time-density curves (Hounsfield units vs time) 

were fit to a gamma-variate function to correct for recirculation of contrast medium. Recirculated 

contrast manifests as an elevated baseline after the initial peak enhancement, and fitting the data 

to a gamma-function removes the excess signal after the peak enhancement.  

After fitting the CT enhancement data to the gamma function, Mahnken computed the 

cardiac output for each subject using the Stewart-Hamilton equation as presented in equation 

(2.19). The Stewart-Hamilton derived cardiac output was compared to the cardiac output 

determined by calculating the stroke volume of the heart via volumetric analysis of the left 

ventricle using image data. Cardiac output was determined by multiplying the stroke volume by 

the averaged heart rate of the subject. Estimated cardiac output computed with both methods 

correlated well, with a Pearson's correlation coefficient of .87. 

Mahnken and colleague also compared the test bolus analysis technique for cardiac 

output determination with the thermal dilution technique (the "gold" standard for invasive 

measurement of cardiac output) using Bland-Altman analysis and present animal results having 
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5-10% standard error between the CT image data derived cardiac output measurement. and the 

catheter measurements[44] 

 

2.11 TRUNCATED SINGULAR VALUE DECOMPOSITION  

Ostergaard et al. applied Fourier deconvolution and other deconvolution approaches to extracting 

the "residue" function, or impulse response of brain tissue between a feeding artery and a 

draining vein for assessment of ischemic stroke in Contrast Enhanced (CE) MRI perfusion [45]. 

Whereas the MRI perfusion application is different from the current problem, it has similarities 

to the contrast medium/patient identification problem in that measurements are made of a 

physiologic blood flow system using intravascular agents. Therefore similar noise processes 

would be expected. Ostergaard discovered that truncated Singular Value Decomposition (tSVD) 

was the most robust method for solving the tissue impulse response inverse problem, even when 

the SNR was < 10 [46]. Recently, Koh et al. [47] also demonstrated the robustness of tSVD in 

MR perfusion assessment using a novel technique to choose the Singular Value Decomposition's 

truncation index.  

The goal of the tSVD (as is other deconvolution techniques) is to estimate h, given a 

noisy y measurement vector and a U matrix constructed from input samples, u. 

 

 h *uy H U

 (2.20) 
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and ε is assumed to be an iid random process. Before solving for h, H is decomposed into 

singular vectors (left U and right V)  and a singular value matrix (  ) via singular value 

decomposition: 

 

 

n
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 (2.21) 

 

where  is a square matrix with the nonnegative singular values of H on the diagonal. A solution 

for h can be found by algebraic manipulation if H from equation (2.21) is inserted into equation 

(2.20). An obvious solution for h is: 
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 (2.22) 

 

Small singular values, however, can amplify the noise present in the measurement vector. 

To limit the effect of noise, the rank of the equations can be reduced by ignoring singular values 

 greater than a threshold value. The solution vector for h is: 
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 (2.23) 

 

The rationale for proper selection of the truncation index, k, for a given problem must be 

considered, however. tSVD is a regularization technique - a nonparametric approach to solving 

ill-conditioned inverse problems in which one makes a tradeoff between data fitting and 
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smoothness of the solution. A standard regularization technique is Tikhonov's regularization that 

solves the following minimization problem (assuming the standard notation of a linear system 

Ax=b): 
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min x xA b

 (2.24) 

 

where  is the regularization parameter that weights the solution norm 
2

2
x versus the residual 

norm 
2

2
xA b . Hansen [48]demonstrated the connection between Tikhonov regularization and 

tSVD and how the solution of equation (2.24) can be expressed in terms of the SVD: 
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where i are singular values, and  is the regularization parameter. The first term in the 

summation is known as the Tikhonov filter factor. If the truncation index, k, from the tSVD is 

known, then the regularization parameter is 
k
where 

k
is the singular value at index k.  

The L-curve is a log-log plot (Figure 13 is an example) of the solution norm versus the 

residual norm for various values of the regularization parameter. The (index) point of maximum 

curvature on the L-curve is used as the estimate of optimal trade-off between solution and 

residual  errors. A drawback to this technique, however, is that sometimes a corner point is 

obscured by noise. 
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 Koh et al. present an automated technique for finding the truncation index for the 

tSVD (and thus the regularization parameter 
k
) by fitting piecewise linear curves to a log 

plot of the SVD's Fourier coefficients ( T

iu y )versus the index of singular values. The log plot 

representation of the Fourier coefficients is called a Picard plot. In the presence of noise, the log 

of the Fourier coefficients in a Picard plot tend to monotonically decrease to a point at which the 

slope of the line decreases and begins to level-off (see the example in Figure 12). The index of 

the inflection or transition point, then, is the truncation index for the tSVD. The singular value at 

the index is used in the Tikhonov filter factor. Koh et al. determined the transition point by 

fitting two different linear models to the data in the Picard plot and using a sum of squared error 

criterion to determine the transition point. 
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Figure 12 Example Picard plot using clinical data. The x axis is index value and the y-axis is a 

log transform of the Fourier coefficients |uib| The singular values are plotted with diamonds and 

connected with a solid line. 
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Figure 13 Example "L-curve" constructed with a clinical data set. 
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3.0  SPECIFIC AIMS OF THE RESEARCH  

The primary goal of this research is the generation of methodology for infusing X-Ray contrast 

medium tailored to an individual patient’s physiology, the pharmacokinetics of the drug, and the 

requirements of the contrast enhanced, imaging procedure. The infusion generation algorithm 

must also be cognizant of constraints pertinent to the patient’s intravenous access and the desire 

to use the minimum contrast agent sufficient to achieve image contrast enhancement. The 

specific aims of this dissertation are: 

1) To develop a new, physiologic based pharmacokinetic model of contrast 

propagation. The model will improve upon the work of Bae and Krause [6] [31] by 

incorporating explicit transport delays in its formulation, by including a non-linear 

saturation in the input, by including the saline flush effect on the contrast 

propagation, and by using fewer states than Bae's full body model. This new model 

will be used in developing and validating a new infusion paradigm in which a data-

driven model will predict a patient's response to contrast agent. Potentially, the new 

model may be used in predicting the behavior of other radiological pharmaceuticals 

(future work). The new model structure will be simulated with parameters used by 

Bae et al in [6]. The predicted enhancements in the Left Heart compartment for the 

new PBPK model will be compared to those made by the Bae model. It is expected 

that the de novo technique presented here will match those of the Bae full body 
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model. Finally, retrospective clinical imaging data will be used to compare the 

performance of the new model with the Bae model.  

2) To develop and test system identification techniques for the contrast/human 

system based on individual scan data. Two classes of identification schemes will 

be explored and developed. Both strategies are predicated on an identification 

operation; the drug/patient system is perturbed with a small infusion of drug and the 

response is recorded with the imaging system. In both instances, a discrete time 

realization of the system model must be generated. 

a) Model based (or parametric) The model based identification strategy will 

perform a maximum-likelihood parameter estimation to fit parameters to a 

Physiologic Based Pharmacokinetic (PBPK) model describing the dynamics 

of the drug in an individual patient's cardiovascular system. The identified 

LTI model will be used in the subsequently developed patient-specific 

infusion strategy. 

b) Model Independent (or non-parametric) The model independent 

identification strategy will generate a non-parametric estimate of the 

drug/patient system by solving an inverse problem using the truncated 

Singular Value Decomposition (tSVD) deconvolution technique. 

3) To develop and implement a rational technique for computing individual, 

optimal contrast protocols based on an identified model (using scan data) for a 

subject - A constrained optimization will be performed to compute a minumum 

volume of drug necessary to achieve contrast enhancement above a clinically 

significant threshold (e.g. >= 300 HU ) in the cardiovascular anatomy throughout 
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the duration of a diagnostic CT scan. The physical constraints of the injection, drug 

and patient system will be explicitly enforced. In addition to non-negative injection 

flow rates, the maximum injection flow rate will be set according to the 

radiologist's preference or from recognition of the pressure to flow-rate relationship 

inherent in the injection system's fluid path (ie: the higher a flow rate, more 

pressure is generated in the syringe and fluid path). Furthermore, the maximum 

volume of contrast fluid that can be delivered to the patient will be adjustable. With 

the constraints enforced, the algorithm will compute the maximum contrast 

enhancement achievable for a specific patient, drug formulation, and injection 

system configuration. The ability to prospectively obtain a patient specific 

enhancement bound by constraints differs from and improves upon the Fleischmann 

and Hittmair approach [9]. 

4) To create a novel, CT compatible, cardiovascular flow phantom system for 

repeated scanning and validation of the developed identification and protocol 

generation strategies. The developed contrast protocol computation methods will 

be implemented and targeted to a prototype drug delivery system. The delivery 

system will deliver contrast medium into a realistic, cardiopulmonary mock-flow 

loop. The flow loop will provide pulsatile flow of a blood emulant, into which 

contrast agent will be injected. Obviously, repeated injections and scanning of 

human patients is not possible. Likewise, it is desirable to minimize or eliminate the 

amount of animal testing needed to validate the new contrast delivery paradigm. 

This realistic, cardiovascular flow phantom will enable repeated experiments for 

validation of the resulting models, identification and optimization methods. The 
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dynamics of the flow loop and kinetics of the drug will allow for realistic 

simulation of the injected contrast media's intravascular transport and distribution. 

Laboratory sensors and contrast emulant will be calibrated against results acquired 

with a CT scanner.  
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4.0  A  NEW PATIENT SPECIFIC PHARMACOKINTEC MODEL 

A physiologically based, pharmacokinetic (PBPK) model is developed combing elements of 

Bae’s [6] [3] and Wada’s [34] models. The new formulation incorporates parameterized 

transport delays of the contrast material from the injection site into the central circulation, 

models the effect of a saline “push” after the infusion of the main bolus of diagnostic contrast 

material, and is formulated so that the model can be discretized (when linearized and time-

varying terms are adjusted) for use as a plant model in future research investigating model 

predictive control techniques. The model shares a similar structure to the Bae reduced model, 

however, but differs in that it includes a saturating non linearity on the input function and a time-

varying formulation of the peripheral vascular compartment. In subsequent chapters, the model is 

used to develop and test patient-specific identification schemes. 

4.1 DESCRIPTION OF THE MODEL 

In Bae’s models, there is no consideration for implementation of the PK models in a controller 

framework. When converting the differential equation system of (2.9) into a state-space form, the 

rank of the resulting state matrix (A) is less than the order of the system because of the number 

of free parameters in the system formulation. This rank deficiency manifests itself as a 

singularity when attempting to invert the matrix and is problematic for digital representation of 
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the system for prediction and control. The Bae models do not address transport delays of the 

contrast material directly, but model the transport delay by introducing multiple, in series sub-

compartments throughout the cardiopulmonary model. The multiple sub-compartments provide a 

propagation delay in the simulated output because the new phase response of the system is 

different (additive) due to the additional compartments. The introduction of the multiple 

compartments is somewhat arbitrary, albeit based on physical insight of the vascular system. For 

example, the lung compartment is divided into 30 sub-compartments because of the contrast 

bolus dispersion and delay through the cardiopulmonary system. 

To overcome the mathematical difficulties intrinsic to the Bae models, a modeling 

approach similar to that of Wada and Ward [34] (see Section 2.7) is taken. The Wada and Ward 

model can be transformed into the discrete-time domain and allows for the explicit introduction 

of transport delays in the drug dynamics (ie: propagation time of contrast through the pulmonary 

vasculature). A PBPK strategy is adopted in which consideration is given to describing the 

distribution of drug in the vascular structures throughout the body because the focus is for 

predicting enhancement during the arterial phase of contrast distribution. Because the model 

developed here combines the topology of the Wada and Ward model with the parameterization 

of the Bae contrast model, it will be referred to as the "hybrid" model. In addition to 

incorporating explicit transport delays into the model structure and a saturating non-linearity in 

the input compartment, the new hybrid model also allows for the simulation of saline injection 

after the main contrast bolus. The Bae model does not model the effects of the saline flush on in 

vivo contrast enhancement. 
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4.1.1 Model Structure 

The compartments of the new contrast media model are shown in Figure 14. 

 

 

Figure 14 Model structure of the new PK model describing contrast medium 

propagation. 

 

Each subsystem in the model represents an anatomical region of the body. As described in 

Chpater 2, subsystems in PBPK models are split into three compartments – the intracellular, 

extracellular and intravascular spaces (see Figure 9). Contrast material does not enter the 

intracellular space and so it is ignored in PBPK models of contrast medium propagation. The 

notation used by Wada is adopted (see section 2.7) throughout the development below.  

The state variable, x, for the hybrid PBPK model is the mass of the contrast medium in a 

compartment (xi). The volumetric flow rate of blood/contrast in an i
th

 compartment is denoted by 

Qi, and volumes are denoted by the variable Vi. The clearance of contrast medium from a 

subsystem, Cl, occurs via an irreversible process. Extraction of contrast medium occurs via 

glomerular filtration through the kidneys. 



 54 

Because this model is intended for studying and predicting the distribution of contrast 

medium during CT angiography, quantifying the blood plasma concentration during the first-

pass of the agent into the body is of primary concern and there is less interest in describing the 

absorption and distribution of the contrast material as it diffuses through systemic organs and 

parenchyma, with the exception of the lung subsystem. The model only considers the vascular 

compartments of the peripheral veins, the right and left heart, and the systemic circulation. 

The mass "flux" (J) in or out of a compartment of the model is: 
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where Q is the volumetric flow rate and V is the apparent volume of the compartment. The flow 

fractions, fBODY, and fPER scale the cardiac output through the respective body segments. A 

summation of the flow fractions must equal the cardiac output, QCO: 
PER CO BODY CO COf Q f Q Q . 

For vascular compartments in this model, the apparent volume is the intravascular blood volume.   

Application of mass balance in the subsystems of the model results in the following global 

expression for the subsystems in Figure 14, Peripheral, Lung, Right Heart, Left Heart, and Body 

(i = 1:5) 
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where uexog(t) is the exogenous administration of contrast medium. It is non-zero only in the 

peripheral compartment and is defined by: 

 

 exog inj inju (t) C (t) Q (t)

 (4.3) 

 

because the administration flow rate, Qinj(t), or the concentration of the administered contrast 

agent, Cinj(t), can be varied as a function of time. The product of volumetric flow rate and 

contrast concentration is termed the iodine administration rate. Predictions of concentration in 

the various compartments of the model are made by dividing the state-variable (mass units) by 

the effective blood volume in the respective compartment. 

4.1.1.1 Peripheral subsystem Contrast agent is injected into a peripheral vein in the left or right 

arm of a human. The endogenous flow rate of blood draining through the peripheral veins in the 

arm ranges from 2- 4 ml/s [6]. The flow rates typical with CTA examinations are greater than the 

endogenous flow rate of blood draining through the peripheral veins. In the model, therefore, the 

injection of contrast into the peripheral veins results in an additive contribution to the 

endogenous flow rate through the veins, which was also a consideration made by Bae in [4]. 

Mathematically, the peripheral venous subsystem is a linear time-varying formulation of mass 

balance in the peripheral subsystem due to the injection of the contrast: 
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where QPER_END is the endogenous flow rate of blood through the peripheral vein and TBODY is 

the transport delay of contrast recirculating through the entire body back through the peripheral 

veins. The general solution to (4.4) is: 
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To avoid formulating a time-varying model, (4.4) can be rewritten considering that after 

the injection, QPER(t) = QPER_END and that during the injection the flow rate is the sum of 

QPER_END+QInj. The transport delays introduced by the circulatory system are denoted by TPER 

and TBODY and represent the output delays of the contrast agent from the peripheral and body 

subsystems. The time delays can be constants or functions of the volume and flow rate of blood 

in the respective systems. Details concerning the time delays are discussed in section 4.1.2. In 

the subsequent development, Tinj represents the duration of the contrast injection.  

Under these assumptions, the peripheral subsystem dynamics can be expressed in 

standard LTI, state-space formulation as: 
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where yPER(t) is the mass flux (units gI/s) of contrast exiting the peripheral subsystem. The 

concentration in the peripheral subsystem is xPER(t) divided by the blood volume in the 

peripheral veins.  

A saturating behavior affects the injection flow rate into the peripheral compartment. 

Empirical evidence suggests that injections greater than 8-10 ml/s saturate because of the 

compliant nature of the peripheral veins or because of reflux of contrast through the right atrium 

into the inferior vena cava [10]. The most general description of the peripheral compartment 

dynamics, therefore is: 
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where the non-linear exogenous input function is a function of both flow rate and time: 
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exog inj inj inj inj

exog inj inj inj

u (Q , t) Q (t) C (t) Q (t) 8[ml / s]

u (Q , t) 8 C (t) Q (t) 8[ml / s]
 (4.8) 

 

4.1.1.2 Right Heart Subsystem Conservation of mass applied to the Right Heart subsystem in 

Figure 14 is: 
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4.1.1.3 Lung Subsystem The lung subsystem differs from the pure vascular subsystems in that 

the role of permeability between the capillary bed and the lungs is modeled. Consideration of the 

tissue compartment is made for completeness and for anticipated future work in which the effect 

of recirculation and accumulation of contrast in tissue will be of interest. 
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where QCO is the cardiac output, kLUNG_BT is the rate transfer coefficient of contrast from the 

blood compartment into the tissue compartment, kLUNG_TB is the rate transfer coefficient from the 

tissue compartment back into the blood compartment, and CLLUNG_T represents an irreversible 

clearance term out of the tissue compartment.  

4.1.1.4 Left Heart Subsystem The delay of contrast through the pulmonary vasculature is 

modeled as an input delay term in the dynamics of the Left Heart subsystem: 

 

 

CO
LH LH LUNG LUNG

LH

CO
LH LH

LH

Q
x (t) x (t) y (t T )

V

Q
y (t) x (t)

V
 (4.11) 

 

and  yLUNG(t) is the mass flux of contrast exiting the Lung subsystem. TLUNG is the delay time of 

the bolus travelling through the pulmonary vasculature. It can be a scalar constant or a function 

of the cardiac output and blood volume in the lung. 

4.1.1.5 Body Subsystem First-pass distribution and propagation of the contrast bolus is of 

primary interest for CT angiography applications. Because the organs, muscle, and fat 

compartments affect the distribution of the contrast after several recirculation times, they are not 

considered in the current model description. Bae [4, 16] and others combined the systemic 

circulation into one, large vascular compartment and is modeled in that fashion here. 
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4.1.1.6 State Space Formulation  A unified formulation of the model, combining Equations 

(4.4) through (4.12) is now given to ease implementation in numerical simulations. For 

notational convenience and to ensure that transport delays only appear as input and output 

delays, an augmented state vector comprised of state variables for each of the sections of the 

model is defined. The Right Heart, Lung and Left Heart subsystems are combined into a 

Cardiopulmonary (CP) state vector: 

 

 PER BODY[x x ]Aug CPx x

 (4.13) 

 

where the Cardiopulmonary (CP) state vector consists of the Right Heart, Lung and Left Heart 

state variables: 

 

 RH LUNG LH[x x x ]CPx

 (4.14) 

 

The total system is expressed as: 
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The input vector to the peripheral subsystem is composed of the exogenous contrast media 

injection through a peripheral vein and the recirculated contrast from the body subsystem: 

 

 PER exog PER BODY BODY PER(u (t T )) y (t T )fu

 (4.16) 

  

The blood-plasma concentration of the contrast in the body subsystem is scaled by a flow 

fraction, fPER. The scalar function, φ(uexog) in (4.16) defines the saturating non-linear behavior of 

the venous system between the injection site and the right heart described in (4.8). 

 

 

exog inj inj inj inj

exog

exog inj inj inj

u (Q , t) Q (t) C (t) Q (t) 8[ml / s]
(u )

u (Q , t) 8 C (t) Q (t) 8[ml / s]
 (4.17) 

 

The state matrices are: 

  

 

PER
PER

PER

Q (t)
A

V
 (4.18) 
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where the time varying flow through the peripheral circulation, QPER(t) is defined in (4.4). The 

control (B’s) and output (C's) are presented below, followed by an all-integrator view of the 

model in Figure 15.   
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Figure 15 All-integrator view of the physiologic based pharmacokinetic model developed in this section. The thick 

lines in the “CP” section denotes  vector quantities. The matrix values in the figure are those defined in equations (4.18) 

through (4.26). 
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4.1.2 Parameter Selection 

In choosing model parameter values for numerical simulations, a balance between fidelity and 

realizability must be made. It is difficult to deduce parameter values for each sub-compartment 

which match the true, physiological parameters for an individual. The direction taken in this 

work follows that of Bae [6, 33] and Wada and Ward [34]– reliance upon standard, physiologic 

“look up” tables and relationships determined via regression analyses on population data. In 

Chapter 5, PBPK model identification methods using test bolus enhancement data from patients 

are developed. The simulations performed in this chapter use parameter values based solely on 

demographic data (height, weight, sex, age) and procedure specific values such as flow rate, 

volume and concentration of the contrast material. 

4.1.2.1 Cardiac Output and Central Blood Volume Estimators Bae et al. used Guyton's [49] 

regression formulae, corrected for age, to estimate cardiac output and blood volume. The cardiac 

output estimation method of Bae is adopted here and provides the cardiac output estimation 

when the hybrid model is simulated. The estimator is: 

 

 
.725 .425ˆCO(h,w,a) 36.36 h w 1 .005 a 30

 (4.27) 
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where the parameters h,w, and a are height [inches], weight [lbs] and age [years]. The central 

blood volume estimator in the model is, likewise, derived from a published regression formula 

and is a function of height, weight, and sex. The estimated blood volume for males is: 

 

 
.725 .425ˆBV(h, w) 33.164 h w 1229

 (4.28) 

 

and for females: 

 

 
.725 .425ˆBV(h, w) 34.850 h w 1954

. (4.29) 
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4.1.2.2 Regional Blood Volume Estimates The regional blood volume parameters throughout 

the hybrid model must equal the total blood volume estimated by equation (4.28) or(4.29). With 

the exception of the peripheral compartment, the volumetric flow rate of blood through the 

model is the cardiac output computed by equation (4.27). Blood volumes in the different sub-

systems are also set according to the relationships used by Bae et al [6], with one modification. 

Instead of setting the Left Heart blood volume to 3.6% of the total blood volume as by Bae et al., 

an additional 100 ml of blood is added in the hybrid PBPK model so as to include the ascending 

aorta in the computations. The procedure for configuring the blood volumes for a given subject is 

to compute an estimate of cardiac output and blood volume using height, weight, age and sex. 

The regional blood volumes are then computed using the relationships in Table 1. 

 

Table 1 Regional blood volume parameters used in the model simulation 

Parameter Value [Units] 

VPER .08*BV(h,w,sex)[ml] 

VRH .036*BV(h,w,sex)[ml] 

VLB .088*BV(h,w,sex)[ml] 

VLH .056*BV(h,w,sex)[ml] 

VSYS .848*BV(h,w,sex)[ml] 

 

 Additional model parameters include the rate transfer coefficients between the lung, 

blood and tissue compartments and contrast clearance from the central blood compartment. 

Because extraction of contrast material from the blood supply and tissue compartments occurs 

minutes after bolus injection, clearance terms (CLUNG_T) are set to zero. Likewise, on the first 
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pass of contrast material, there is little passage of contrast material through the pulmonary 

capillary bed, and subsequent accumulation into the tissue is minimal. The pulmonary transfer 

rate constants are therefore set to zero. Bae et al. made a similar assumption in their reduced-

order model in [33] in which the pulmonary compartment is purely vascular and consists of 

many sub-compartments to model the transport of contrast through phase delays. 

The final parameters considered are the contrast bolus propagation delays through the 

peripheral venous circulation (TPER), the propagation time through the pulmonary system 

(TLUNG), and the recirculation delay of a bolus throughout the entire circulatory system (TBODY).  

The system recirculation delay is held constant at 30 seconds, as used by Wada and Ward 

[34]. Consideration of per-patient values, however, is made for the other two propagation delays. 

TPER is a function of the blood volume in the peripheral venous sub-system and the sum of 

injection rate and endogenous venous flow. Likewise, the propagation delay through the 

pulmonary compartment is a function of the pulmonary blood volume and the estimated cardiac 

output for each subject. The transit delays used in the model are given in Table 2. 

  

Table 2 Transit delay parameters 

Parameter Value [Units] 

TPER 
PER

vein Inj

V

2

Q Q
 [sec] 

TLUNG 
LUNG _ B

CO

V

Q
 [sec] 

TBODY 30 [sec] 
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4.2 SIMULATION METHODS AND RESULTS  

Performance of the model as a function of various parameters and inputs is presented in the 

following sections and compared to predictions by the Bae model (both published and resulting 

from an implementation of the model in Simulink). The hybrid model’s ability to predict contrast 

enhancement in a human data set is described section 4.3 and is also compared to Bae model 

predictions. 

4.2.1 Simulation results from the hybrid model 

This section presents the results of experiments in which injection parameters and model 

parameters were varied to demonstrate the model’s ability to mimic known behaviors of contrast 

dynamics. Simulations demonstrating the model’s ability to reproduce the effect of varied 

cardiac output on contrast enhancement were conducted. The saturating behavior of contrast 

enhancement as injection rates increase was demonstrated via simulation of the model as were 

the effects of saline flush after the contrast medium injection.  
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Figure 16: Simulated contrast enhancements for a normal subject. 

 

 Figure 16 presents simulated contrast enhancement in the pulmonary artery and 

ascending aorta for a virtual patient with nominal attributes. The model was implemented and 

simulated in MATLAB (R2008b). The patient parameters for this example were, weight=170 

lbs, height = 68 in, sex=Male, age = 35 years. Using equation (4.27), the estimated cardiac 

output was 6.60 L/min. The injection protocol consisted of contrast with 370 mgI/ml 

concentration contrast agent, injected at a volumetric flow rate (Qinj(t)) of 5 ml/s for 20 seconds 

(volume = 100 ml). Following the contrast injection, a 30 ml volume of saline was injected at 5 

ml/s for 6 seconds. Note the enhancement in the ascending aorta peaks 5-6 seconds after 

maximum enhancement in the pulmonary artery as expected. Likewise, the enhancement level in 

the ascending aorta compartment is ~100 HU below that in the pulmonary artery as expected 

because the bolus was diluted between the pulmonary trunk and the ascending aorta. One can 

appreciate the systemic recirculation of the contrast material by noting the secondary contrast 
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enhancement peak in the pulmonary artery at 50 seconds and the appearance in the ascending 

aorta of a secondary peak near 60 seconds. 

 Another series of simulations was conducted in which contrast injection parameters were 

held constant across a set of simulated patient parameters to demonstrate the model’s ability to 

replicate the influence of cardiac output on contrast enhancement. The injection parameters 

were: 370 mgI/ml concentration contrast injected at 5 ml/s for 10 seconds (volume = 50 ml ) 

followed by a saline flush phase of 30 ml at 5 ml/s. The cardiac output of the simulated patient 

was adjusted from a low value (3 L/min) to a high value (8 L/min) in 1 L/min increments. This 

experiment assumed that the cardiac output can be manipulated independently of the blood 

volume. The blood volume for the patient was held constant for each of the cardiac output values 

(using the same parameters as in the previous experiment: a 170 lb, 68 inch, 35 year old male). A 

shorter injection duration than in the previous example was used to avoid any recirculation 

phenomena at the low cardiac output values.  

The peak contrast enhancement level in the ascending aorta and the time of maximum 

contrast enhancement were recorded and are graphically presented in Figure 17. We expect to 

find that as the cardiac output increases, the arrival time of the contrast bolus in a vascular 

territory decreases. Likewise, as the cardiac output increases, we expect the contrast 

enhancement in the vascular structure to decrease as demonstrated theoretically and empirically 

by Bae and others [4, 10, 50]. 
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Figure 17 Simulated peak aortic enhancements and times to peak aortic 

enhancement plotted as functions of cardiac output in the hybrid model 

  

The hybrid model was also simulated in MATLAB/Simulink using a virtual, 35 year old 

male, 68 inches tall and weighing 170 lbs. with three different injection protocols of 5 ml/s of 

370 mgI/ml contrast for 10 seconds (volume = 50 ml), followed by a saline chaser at 5ml/s over 

6 seconds (volume = 30 ml), a saline chaser at a flow rate of 2.5 ml/s over 6 seconds (volume = 

15 ml), or no saline chaser. The resulting time enhancement curves are shown in Figure 18. The 

simulations demonstrated a 14% increase in peak aortic enhancement for the protocol in which a 

saline flush was injected at the same flow rate of the contrast bolus. The time to peak 

enhancement was also delayed by 0.8 seconds. For the injection in which the saline was injected 

at half the flow rate of the contrast bolus, the increase in peak enhancement was 7% greater than 
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when no saline flush was administered. The peak enhancement time was increased by 0.6 

seconds. These results cannot be replicated with the Bae models because these models are not 

formulated (as published) to allow consideration of the effects of a saline chaser after the 

administration of the contrast bolus. The results demonstrated qualitative agreement of the model 

response with results demonstrated by Lee [17] and others in animal models and humans.  

 

 

Figure 18 Simulation results demonstrating the model's ability to simulate the 

effect of saline flusi injections. 
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4.2.2 Comparison of results between the hybrid model and published Bae Data 

Concordance between the hybrid model results and Bae models is now presented. Aggregate data 

from a test cohort published by Bae et al in [6] facilitated the performance comparison. The 

patients were enrolled into three groups based on contrast injection protocol. There were three 

contrast protocols used in the study: a biphasic low-flow rate protocol, a uniphasic low-flow rate 

protocol, and a uniphasic high-flow rate protocol. A saline flush phase was not used in any of the 

groups because the technique was not widely practiced when the study was performed (1997).  

The data from the uniphasic, high-flow rate cohort were used for evaluating the hybrid 

model. In that group, the mean body weight of the 27 subjects was 177 lb and the range of values 

was 44.1 to 135.0 lbs. The contrast protocol consisted of injecting 320 mgI/ml contrast at 5.0 

ml/s for 25 seconds (volume = 125 ml). The heights, sex and age composition of the subject 

sample were not reported, but the authors used an average height of 68 inches and male sex when 

simulating their model. Single level scanning was performed on each of the subjects at the mid-

abdominal aorta every 15 seconds for 120 seconds, and then once every 60 seconds up to 300 

seconds. TECs were created by the investigators after placing a 1cm
2
 ROI on the abdominal 

aorta at the celiac axis and another one on the liver parenchyma.  

The hybrid model was executed in MATLAB/Simulink. Because the empirical results 

were collected to 300 seconds, the contrast has sufficient time to recirculate through the vascular 

system. Clearance terms were added into the model to ensure adequate downslope/recirculation 

dynamics in the TECs. A typical Glomerular Filtration Rate (GFR) was set in the simulation of 

the Bae model (nominally 50-70 ml/min) as a clearance term set to 19% of the blood’s 

volumetric flow-rate in the simulated renal artery.  
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The new model does not contain a kidney compartment and the mechanism to mimic 

clearance is through the lung compartment. In the simulation comparing the published Bae 

empirical data, a blood-tissue transfer coefficient (kLUNG_BT) of .08 sec
-1

 and a compartment 

clearance value (CLLUNG_T) of .1 sec was used to approximate a 60 ml/min clearance rate 

because no meaningful physiologic process for this problem has a time scale shorter than 1 

second. Too short a time step results in an inefficient simulation because excess time is taken to 

deliver equivalent results to what would be obtained with a longer time step. Simulations 

conducted at times steps of .01 and .001 revealed no difference in predicted enhancements. 

Hybrid model simulation results using the aggregate patient data from the Bae study are 

shown in Figure 19 alongside the results from the aggregate enhancement data. Simulations 

were performed with a fixed-step solver (Runge-Kutta) and a step-time of .1 seconds. The 

enhancement data were down-sampled for a better visual comparison to the empirical data.  

The average peak enhancement of the high-flow rate group in [6] was reported as 313.7 

HU and the new model generated an aortic enhancement curve with a peak enhancement of 

317.3 HU, a percent difference of 1.15%. The Bae full-body model generated an enhancement 

curve with a peak enhancement of 321.3 HU, a percent difference of 2.42%. The time to peak 

enhancement predicted by the  model was 31 seconds, the time to peak enhancement predicted 

by the Bae full-body model was 31 seconds, and the empirical data had an average peak 

enhancement time of 32 seconds. 
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Figure 19 Comparison of data reported by Bae et al. to the hybrid model output. 

(a) figure 6a in [6] from the patient group using a 5 ml/s injection (b) predicted 

output from the new model in the abdominal aorta using the same contrast 

protocol and patient demographics as for the data in the empirical study. 

4.3 COMPARISON RESULTS TO BAE'S MODEL USING CLINICAL DATA 

The validation results presented in [6] did not assess the model’s utility in simulating individual 

contrast enhancement profiles. To determine the ability of the Bae full-body model and the 

hybrid model to predict individual contrast enhancement profiles, simulations using individual 

patient attributes (height, weight, age, sex) from a CTA imaging clinical trial were performed. 

The corresponding enhancement profiles from those patients' imaging data were then used to 

compare the outputs of the two models.  
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Three metrics were used to evaluate the predictive ability of both models – the Root 

Mean Square Error (RMSE), the Percent Difference in Maximum Enhancement (PDME), and  a 

metric described in [6] as the “Enhancement Difference Index (EDI)”(the sum of the difference 

between the simulated and empiric enhancement curves, obtained from the clinical imaging data 

set, divided by the empirical data's area under the curve: 

 

 

N

Sim Emp

i 1

Emp

AUC AUC

EDI
AUC

 (4.30) 

 

where the subscripts “Sim” and “Emp” stand for the simulated response data and the empiric 

data respectively.  

4.3.1 Clinical Data and Methods  

A CT angiography data set collected at the Medical University of South Carolina was used to 

compare the performance of the hybrid model and the Bae full body model. The study was a 

HIPAA compliant, prospective study (sponsored and funded by MEDRAD Inc.) approved by the 

local Institutional Review Board. The study’s objective was to evaluate a patient-specific, 

optimized contrast delivery algorithm using features of timing bolus scans at the level of the 

pulmonary trunk. Seventy subjects undergoing routine coronary CTA (cCTA) were enrolled in 

the study.  Due to incomplete axial CT data set storage and transfer, data from only 20 of the 
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subjects could be used in the comparison tests presented here.  The performance of the 

personalized delivery algorithm have been reported in [42] and also in [51].  

The demographics of the 20 subjects used in this analysis are summarized in 

Table 3. The average weight in this sample was average for adults in the United States 

[52] and the average age is representative of the population typically indicated for cCTA. 

 

Table 3 Summary demographic data. Mean data are presented with standard 

deviations. 

Parameter mean min max median

Weight [lbs] 196.7 +/-57.3 110 290 184

Height [in] 68.1 +/-44.3 61 76 68

Age [yrs] 60.1+/10.2 37 74 60.5

Heart Rate [bpm] 65.6+/-8.47 50 81 64.5

Freq. Male 11  

 

All subjects in the study were scanned with a Dual Source CT scanner (Definition DS, 

Siemens Medical, Malvern PA) using standard scan parameters (details in the Appendix). All 

subjects were administered a 20 ml test bolus of 300 mgI/ml contrast material followed by a  30 

ml saline flush at a flow rate of 5ml/s. The timing bolus scan was started approximately 

(variation due to scanner software) 5 seconds after the start of contrast injection, and single-level 

scans were acquired every 2 seconds until approximately 5 seconds after the peak enhancement 

in the ascending aorta. The scanner operator used discretion in stopping the data acquisition to 

reduce undue radiation exposure to the subject and a consistent length of acquisition data was not 

obtained.  
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TECs were created by the scanner software based on ROIs drawn in the pulmonary trunk 

and ascending aorta by the scanner operator. The times to peak and peak enhancements in those 

two areas were used by the investigational software to compute a patient-specific contrast flow 

rate, volume, contrast/saline admixture, and a personalized scan delay for the diagnostic CT 

scan. Summary procedure specific results are presented in Table 4 and Table 5.  Many factors 

influence the scan duration of a CTA examination including scanner settings, patient heart rate, 

and the length of anatomy being imaged. Recall that the scan delay in this data set was computed 

by the investigational software described in [42]. 

The contrast protocol computed by the investigational software consisted of 3 phases – a 

contrast only portion, a contrast and saline admixture phase, and finally a saline only “flush” 

phase. The volume reported in Table 5 for phase 2 refers to the volume of contrast in the phase 

while the phase 3 volume is the amount of saline delivered in the flush. Because the contrast was 

diluted in phase 2, the concentration reported in Table 5 is not the concentration of the stock 

solution (300 mgI/ml). 

 

Table 4 Relevant scan parameters from the clinical data set,  20 subjects. Mean 

values are given with standard deviations. 

Parameter mean min max median

Scan Duration [sec] 10.3+/-2.59 4.3 16 18

Scan Delay [sec] 18+/-3.9 11.2 27 18  
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Table 5 Summary contrast protocol statistics from the clinical data set, first 20 

subjects. Values are mean +/- standard deviation. 

Flow Rate [ml/s] Volume [ml] Concentration [mgI/ml]

Phase 1 4.18+/-.88 74+/-12.7 300

Phase 2 4.18+/-.88 3.01+/-3.72 69+/-65.4

Phase 3 4.18+/-.88 30 0  

 

4.3.2 Data Acquisition Methods  

A semi-automated segmentation software tool developed for other research tasks was used to 

extract time enhancement data from the 20 subject imaging sets (the helical imaging data are 

from the diagnostic scans) as presented in section 2.2.1. Each axial CT image was separated by 

.375 mm. The time between blocks of acquisition data (see Figure 5) varied between .75 and 

1second. An example data set is presented (subject 1) in Figure 20. The scan delay for this 

particular acquisition was 23 seconds and thus the time axis begins at 23 seconds. Because the 

enhancement data are a function of time and space, the corresponding spatial dimension across 

the data set is superimposed on the figure’s x-axis. Because the hybrid model generates 

predictions with respect to time in discrete “compartments”, the comparisons employed here will 

be with the temporal view of the image data extracted from the aortas of the 20 subjects. 

 To determine the relationship between HU value and blood-plasma concentration of the 

contrast material, an experiment with diluted amounts of contrast material was performed on the 

scanner prior to the clinical study. Diluted contrast material was placed into radio-opaque 

containers and scanner using the same parameters used during the clinical trial. The conversion 

factor between HU and mgI/ml was computed, by linear regression, to be 27.1HU/(mgI/ml). This 
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constant was used in the hybrid model and Bae model simulations to convert the plasma 

concentration of iodine to HU. 

 

 

Figure 20 Subject 1’s contrast enhancement profile extracted from the descending 

aorta. Error bars indicated the standard deviation of contrast enhancement at each 

measurement location. 

 

4.3.3 Simulations  

An implementation of the Bae full-body PK model was made in MATLAB/Simulink to provide 

a comparison of the hybrid model's performance using the clinical imaging data. The parameters 

for the model described in [6] and further elaborated in [53] were used in configuring the model. 

A fixed-time step solver (Runge-Kutta) executed the model every .1 seconds. Individual subject 
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demographic data (height, weight, sex, and age) were computed using equations (4.27), and 

equations (4.28) and (4.29) were used to compute the cardiac output and total central blood 

volume estimates for each simulated subject. Because the Bae model, as published, does not 

allow for modeling a saline flush phase, the contrast protocols used in simulating the model only 

included contrast. The conversion factor of 27.1 HU/(mgI/ml) converted blood-plasma 

concentrations to HU values. 

The hybrid model was simulated using the parameters and methods presented in section 

4.1.2. As with the Bae model, subject demographic data and the relationships defined in 

equations (4.27), (4.28) and (4.29) provided the values for cardiac output and blood volume. The 

parameter values in Table 1-3 were used to configure the model. MATLAB/Simulink (R2008b) 

was used to simulate the model for each patient using the clinical data for patient parameters and 

the diagnostic phase contrast injection protocol, including the saline flush phase. As with the Bae 

model, the conversion factor of 27.1 HU/(mgI/ml) converted plasma concentrations to HU 

values. 

Predicted HU values for each subject were downsampled to match the temporal 

resolution of the enhancement curves from the imaging data (1 sec/sample). Only the portions of 

the predicted enhancement curves spanning the time segment of the imaging data were used in 

computing the comparison metrics (MSE, PDME, EDI).  

4.3.4 Results  

All 20 sets of demographic, procedure, and imaging data were sufficient to allow simulations of 

the models and to allow computation of the metrics. An example simulation output using subject 
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11’s demographic and procedure data is plotted with the contrast enhancement profile from the 

imaging data in Figure 21. The error bars on each imaging data point are the standard deviations 

of the contrast enhancement as determined by analysis of all the pixels in the aorta at each 

acquisition location. Contributing to the noise at each point is intrinsic imaging noise in the CT 

scanner, contrast flow dynamics, image processing mechanisms, and motion of the structure. The 

results for all 20 simulations using the hybrid and Bae models, superimposed over the clinical 

scan enhancement data, are presented in Appendix B 

 

 

Figure 21 Subject 11 clinical imaging data, hybrid model simulation prediction 

and Bae model predictions 

 

The hybrid model using data from subject 11 a 60 year old female weighing 280 lbs with 

a height of 68 inches, generated an enhancement curve matching favorably – RMSE of 15 HU -
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to the enhancement curve acquired from the aortic imaging data for that patient. The results for 

this patient are displayed because the predicted enhancement curves matched very favorably to 

the measured data and also because heavier patients present challenges to conventional contrast 

dosing protocols. A total of 61 ml of 300 mgI/ml contrast was delivered at 4.1 ml/ and the scan 

duration was 11 seconds. 

 The Bae model produced an adequate enhancement curve but undershoots the empirical 

data by 20-40 HU. The hybrid model predicted a higher peak enhancement value than the Bae 

model. Linear extrapolation of the clinical data suggests the actual (assuming the ability to 

measure the contrast enhancement in vivo in the aorta for 10-20 more seconds) peak 

enhancement value should be greater than the Bae model would suggest, in agreement with the 

hybrid model prediction.  

Examples comparing enhancement predictions from the models and the two sets of 

imaging data are given in Figure 22 for cases that did not match well. The first comparison is for 

Subject 6, who was a 37 year old female, weighing 110 lb at a height of 61 inches with a heart 

rate of 80 bpm.  Seventy seven ml of 300 mgI/ml contrast material was delivered at a flow rate of 

5.9 ml/s for a scan that lasted 9 seconds. Subject 8 was a 53 year old male, weighing 223 lbs at a 

height of 70 inches. His heart rate averaged 58 bpm. Seventy four ml of 300 mgI/ml contrast was 

injected at 4.1 ml/s and his scan duration was 12 seconds. 

Neither the Bae model nor the hybrid model predicts a contrast enhancement profile that 

matches the empirical data adequately .For Subject 6, both the Bae and hybrid models predict 

enhancement maxima 200 HU less than the empirical data. For Subject 8, the hybrid model 

predicts a maximum enhancement 79 HU less than the empirical data’s maximum. The Bae 

maximum prediction was 111 HU less than the empirical data’s maximum.  
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Figure 22 Model predictions compared to clinical data for (a) subject 6 and (b) 

subject 8. Subject 6 was a 47 year old, 110 lb female while patient 8 was a 53 year 

old, 246 lb male. 

 

Statistical results comparing the predictions of the hybrid and the Bae models are 

presented in tables and plots below. For each subject, the same patient and procedure data were 

used in both models. In each instance, the model’s enhancement outputs for the aortic 

compartment were compared to the imaging data set. Simulation data segments starting at the 

time point corresponding to the scan delay and lasting until the scan was completed were 

included in the computations of Root Mean Square Error and the Enhancement Difference Index. 

Tabulated results are presented in Table 6. Although the three comparison metrics are smaller 

for the hybrid model simulation, Mann-Whitney U tests do not reveal significant differences 
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between the medians for all measures (RMSE - U=455,p=.229; PDME - U=445,p=.351; EDI -

U=470,p=.064). 

 

Table 6 Summary results of models compared against clinical data 

 

  

 Box-and-whisker plots for the three comparison tests reveal the skewed distribution of 

the data and the equivalence of medians. The box-and-whisker plots in Figure 23 are drawn with 

whiskers extending to the data point 1.5 times the Interquartile Range (IQR) greater or less than 

the median. Crosses in Figure 23 indicate outliners that are data points greater than 1.5*IQR 

away from the median. 

metrics mean stdev min max median mean stdev min max median

RMSE [HU] 50.5 28.9 17.1 134.1 40.6 41.9 29.8 12.2 142.3 37.3

PDME [%] 18.5 11.7 3.7 42.9 15.7 14.6 10.2 0.8 42.1 14.5

EDI [%] 16.0 11.1 1.7 42.7 14.0 10.8 11.0 2.1 45.8 5.3

Hybrid Model ResultsBae Model Results
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Figure 23 Box-and-whisker plots of the summary results for (a) RMSE (b) 

PDME and (c) EDI. 

 

 Another visualization of the data is given as a series of bar plots in Figure 24. Visual 

inspection of the charts reveals the results for subjects 6,8,12,16 and 19 show the greatest 

variation in simulation performance. The hybrid model predictions for subjects 15-20 show 

slightly better agreement with the clinical data than the Bae data. The hybrid model generated 

lower RMSE values in 14 of the 20 subjects, lower PDME results in 13 of the 20 subjects, and 

lower EDI in 17 of the 20 subjects. 
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Figure 24 Scatter plots of the simulation tests (x- = Bae model, o-- = hybrid 

model) – (a) RMSE (b) PDME (c) EDI 

4.4 DISCUSSION 

In this chapter, a new physiologic-based pharmacokinetic model (a hybrid) describing contrast 

medium propagation was developed. In comparison to the published, full-body physiologic-

based pharmacokinetic of Bae et al., the hybrid model has a reduced order, is discretizable, 
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explicitly models contrast propagation delays, models the effects of saline flush injections 

routinely performed  during CTA procedures, and models the time-varying effects of blood-

plasma/contrast interactions in the peripheral venous circulation. A comparison of the model’s 

output to clinical data published by Bae et al in [6] shows favorable agreement. Further 

comparison of the hybrid model with contrast enhancement profiles derived from helical CTA 

data revealed close agreement with the Bae model and, in many instances, a better ability to fit 

the clinical data. 

The hybrid model is used in subsequent chapters to test methods to identify models from 

test bolus data sets. In the methods developed, reduction strategies will be employed, rather than 

attempting to fit all the parameters of the hybrid model. This model reduction is done to reduce 

the computation burden and reliability of the numerical predictions. It is expected that by making 

use of identification data (ie: test bolus scan TECs) and individually identified models, the 

RMSE and EDI for subjects with the highest values, subjects 6,8 and 10 in particular, should 

improve. 
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5.0  DATA DRIVEN CONTRAST MODEL IDENTIFICATION 

This chapter presents techniques for developing patient-specific predictions of contrast 

enhancement using contrast enhancement data derived from a test bolus injection. Two 

techniques were evaluated, one assuming a model structure and another using a non-parametric 

“black box” approach. In the model-based approach, the order of the pharmacokinetic model 

developed in Chapter 4.0 was reduced slightly by considering a subset of the physiologic 

compartments and to ease the computational burden when identifying the model parameters and 

to overcome the challenges of modeling time varying systems. Furthermore,sub-systems were 

decoupled during the parameter estimation to further aid the numerical fitting process.    

5.1 PARAMETRIC (MODEL BASED) IDENTIFICATION 

An approach for identifying and constructing a data-dependent, patient specific contrast 

propagation model with a decoupled and reduced-form of the hybrid PBPK model is developed 

in this section. Model parameters are estimated after acquisition of two CT time-enhancement 

curves (sequential low-level CT scans at the level of the pulmonary trunk) resulting from the 

injection of a small "identification" bolus of contrast medium (10-20 ml). 
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This section presents an overview of the methodology for extracting the identification 

data, a description of the model structure used for parameter estimation, and the methodology 

employed for generating the parameter estimate. An evaluation of the estimation technique with 

two data sets is given. The first data set was created with the hybrid model developed in Chapter 

4, and the second validation data set consisted of retrospective imaging data from a clinical trial. 

5.1.1 Model Based Methodological Background 

Contrast agent is infused into the peripheral circulatory system, typically via intravascular access 

in a forearm vein or in the antecubital fossa. Several seconds later, the bolus of contrast arrives in 

the right heart. Next, the right ventricle pushes the contrast bolus through the pulmonary 

circulation. At this point, the transport of the contrast bolus is dominated by central circulatory 

parameters, namely the cardiac output. Between 6 and 20 seconds later, the contrast arrives in the 

left side of the heart and is ejected by the left ventricle into the main arterial and coronary 

vasculature. By positioning an axial CT acquisition at the level of the pulmonary trunk and 

acquiring CT images at that level every n seconds, a numerical and graphical depiction of the 

contrast's transport is generated. 

Figure 25 presents an axial "slice" of cross-sectional image data acquired from a patient 

undergoing CT Angiography. A small test bolus of contrast (20 ml of 350 mgI/ml) was injected 

peripherally and scans were taken at the level of the pulmonary trunk every 2 seconds. As 

contrast flows through the anatomy, image enhancement or brightness in vascular structures 

increases. Upon acquisition of the axial images, the scanner or off-line processing software 

performs a surface integration within the Regions of Interest (ROI's) on each image and plots the 
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averaged attenuation value with respect to time. Standard clinical practice is to start the 

acquisition 5-10 seconds after the start of contrast injection and to acquire images for 20-30 

seconds at a standard tube voltage (120 kV) but at a low tube current-time product (10-30 mAs).  

Typical Time Enhancement Curves (TEC) for a human subject are shown in Figure 26. 

A region of interest (ROI) marker is placed over the subject's pulmonary artery trunk and the 

ascending aorta as demonstrated in Figure 25. 

 

 

Figure 25 An axial CT image acquired from a test bolus scan procedure. 
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Figure 26 Time enhancement curve generated from a patient after analysis of the 

test bolus scan arising from a test bolus contrast injection (data set from Figure 

25). 
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5.1.2 Model Structure 

An attempt to fit all the parameters of the hybrid model using the limited length of data available 

from test bolus TECs was not made. Rather, a model reduction strategy was employed where the 

most relevant compartments of the hybrid model are considered during the first-pass of the 

contrast agent – the peripheral venous compartment, the right heart compartment, the lung 

compartment and the left heart/aortic compartment. This approach is justified by recognition that 

CTA imaging is performed during the first-pass of the contrast material and is typically ended 30 

seconds after the initiation of contrast injection due to the short scan acquisition time of the 

scanner. There are also intrinsic challenges to statistical identification techniques when feedback 

is present in the system [54]. Contrast recirculation would be considered a type of feedback in 

the hybrid model. 

Figure 27 is an illustration of the hybrid model subsystems used for parameter 

estimation. The PER and RH compartments are collapsed into one transfer function, He1, where 

the contrast injection infusion is the input function uinj(n) and the measured TEC (ROI1 in 

Figure 26) in the pulmonary trunk, yRH(n), is the output signal. yRH(n) is converted to blood 

plasma concentration using a scaling coefficient dependent on the scanner configuration and 

determined via calibration. Because linearity is assumed throughout the model, the transport 

delay describing the propagation delay of the contrast bolus from the injection site to the 

pulmonary artery can be positioned anywhere within the He1 block. Likewise, the LUNG_B and 

LH subsystems are combined into one subsystem with transfer function He2. The input function 

for the He2 block is yRH(n) and the output signal is the measured concentration TEC yLH(n) 

derived from the ROI (ROI2 in Figure 26)  placed in the aorta during a test bolus scan. 
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By performing the parameter estimation in two distinct operations, computational 

complexity is reduced. In addition to reducing computational complexity, a theoretical reduction 

in parameter variance can be realized [54] when fewer parameters are identified using 

input/output data. Furthermore, a reduction in the total number of parameters identified with a 

pair of input/output data help prevent overfitting. 

Including only the RH and PER compartments, in the HE1 system,  during preliminary 

parameter estimation resulted in non-convergence and poor fitting of experimental data. 

Increasing the order of the He1 system by introducing an "intermediate" compartment between 

the peripheral vein compartment and the right heart compartment resulted in convergence of the 

parameter estimators. This intermediate compartment also provides a means to model the effects 

of the injection flow rate within the peripheral compartment because the mass flux between the 

peripheral compartments is driven by a new volumetric flow rate term, QPER that is neither the 

 

Figure 27 Reduced hybrid model structure used for parameter estimation 

with test bolus scan data. The dashed lines represent the model 

subsystems combined for model identification. 
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injection flow rate nor the flow rate of blood entering the right heart. The model structure is 

presented in Figure 28 which shows uinj(t), the contrast bolus injection into a peripheral vein, 

and yRH(t), a TEC measured in the pulmonary artery (and converted to concentration units from 

HU). 

 

 

Figure 28 Reformulated right heart and peripheral compartments (He1) model 

structure for use in the parameter estimation. The mass flow rate terms, QPER and 

QCO transport contrast from peripheral compartment one to two and from 

peripheral compartment two into the right heart.  

 

The continuous time state-space formulation for He1 is: 
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He1
inj PERHe1 He1 He1

He1 He1 He1

u (t T )(t)

y (t) (t)

x A x B

C x  (5.2) 

 

and recalling that He1 RHy (t) y (t) when measured data are available from CT data collected in a 

Right Heart structure, such as the pulmonary artery. The predicted output for the system has 

units of concentration, which is from the governing equations of Chapter 4 in which the model 

outputs had units of mass flux. The transport delay of the contrast through the peripheral venous 

circulation is TPER. The input function in (5.2) is parameterized by the administration flow rate 

(Qinj) , the concentration of the test bolus (Cinj), and the contrast bolus duration TDUR: 

 

 
inj inj inj DURu (t) Q (t)C u(t) u(t T )

 (5.3) 

 

where u(t) is the unit-step function.  

The contrast injection flow rate (Qinj) is omitted in the formulation of (5.1) because it is 

assumed that the identification data set is acquired when a saline bolus flush follows the test 

bolus contrast volume. A saline infusion following the test bolus maintains the flow rate in the 

peripheral compartments (QPER) for a duration of 10-14 seconds (the volume of contrast and 

saline divided by the flow rate). A typical diagnostic bolus has duration of 10-14 seconds 

(contrast) so the assumption is that the peripheral flow rate during the diagnostic injection will be 

the same as during the test bolus injection. 

Because the CT data are acquired by single-level scanning at discrete time steps, the 

models used in the identification step were discretized. Discretization of the continuous state-
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space system defined in (5.1) was obtained by a standard transformation of Linear System 

Theory: 
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 (5.4) 

 

The subscript "D" refers to the discretized state-space matrix form and Δ is the sampling interval 

defined by the time between single-level scans. This approach yields the following state-space 

matrices: 
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 The second sub-system of the model is a combination of the Lung and Left-Heart 

compartments, denoted as He2 in Figure 27. Because first-pass circulatory effects dominate 

when predicting contrast enhancement for CT Angiography, the transport of contrast from the 

vascular region to lung tissue is ignored. As in the derivations of the hybrid model, the 

propagation delay of contrast material through the cardiopulmonary circuit is lumped into a 

transport delay, TLUNG. A graphical depiction of the isolated He2 sub-system is presented in 

Figure 29. 

 

 

Figure 29 Reformulated left heart and lung compartment (He2) model structure 

for use in the parameter estimation. The cardiac output (QCO) transports the 

contrast bolus from the Lung compartment to the Left Heart compartment. 

 

 

 

 

 

 

 

 



99 

 

The continuous time state-space dynamics for He2 are: 
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 (5.6) 

 

He 2 He2 He2 He2 RH LUNG

He2 He2 He2

y (t T )(t)

y (t) (t)

x A x B

C x  (5.7) 

 

and yHe2(t)=yLH(t) when TEC data are available from a left heart structure, such as the ascending 

aorta. Applying (5.4)  to the system equations results in the discrete-time representation for the A 

and B matrices (the C and D matrices are equivalent to the continuous-time version), with Δ 

representing the sampling time: 
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The two discrete systems serve as the basis for the data-driven parameter estimation 

technique developed herein. Input to the first discrete system (He1D) is a sampled injection input 

signal, uinj(n) (discrete version of (5.3)) and the output is the TEC measured in the pulmonary 

trunk, yRH(n) (ROI1 in Figure 26). The input to the second discrete system, He2D, is yRH(n) and 

the output vector is the TEC measured from the Ascending Aorta, yLH(n) (ROI2 in Figure 26). 

Figure 30 presents a block-diagram view of the two discrete systems and the respective inputs 

and outputs for the systems. The two, discrete, state-space systems used in the parameter 

estimation are: 
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 The parameters to be estimated in the first system, He1D, are: 

VPER1,VPER2,VRH,QPER,QCO, and the transport delay TPER. Parameters to be estimated in the 

second system are: VLH, VLUNG, QCO, and the transport delay through the pulmonary system 

TLUNG. 

 

 

Figure 30 Block diagram of the discrete model used for identifying parameters 

with a maximum likelihood estimator. 

 

5.1.3 Maximum Likelihood Estimator 

In this section, the methodology for identifying the parameters of a patient-specific, reduced-

order, hybrid pharmacokinetic model is presented. The approach presented here differs from the 

parameter estimation and individual pharmacokinetic model generation presented in Chapter 4.0 

because the identification data is derived from scan data acquired after the injection of a small 

bolus of contrast material into a patient.  

Parameter estimation occurs in two distinct steps. By using two measured signals, yRH(n) 

and yLH(n), and estimating the two systems serially, the convergence time, computation burden 

and parameter variability are reduced because fewer parameters need to be identified in one 
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single identification step by numerical optimization. For example, instead of estimating 10 

parameters with the sampled test bolus enhancement data, six parameters are identified in He1D 

using the known input function, uinj(n) and the output signal yRH(n) (which might only have 10 

data points) and then only 4 parameters for He2D are identified in another separate parameter 

estimation step (using yRH(n) and yLH(n) as input/output data). 

 First, the "He2" system is parameterized using the scan data from a test bolus injection 

and the resulting TECs measured in the pulmonary artery and the ascending aorta – yRH(n) and 

yLH(n). Next, the "He1" system is parameterized using the signals uinj(n) and yRH(n), the input 

injection function and the TEC measured in the pulmonary artery. After estimating the 

parameters, an individual model for that patient is constructed using equations (5.9) and (5.10). 

Goodness-of-fit is determined by comparing the predicted enhancement in the ascending aorta 

(with a test bolus injection) against the measured data. 

Because a large number of noise sources influence the measurement process, including 

the Zero-Order sampling process, it is assumed the errors are normally distributed throughout the 

system. With the assumption of Gaussian distributed error and independent noise processes, 

Maximum Likelihood Estimation (MLE) can be used for estimating the unknown model 

parameters[54]. The cost function used in the MLE when estimating the parameters of He1D and 

He2D is the sum of squared differences between the measured test bolus TEC data  yRH(n) and 

yLH(n) and the estimated test bolus response in those structures, 
RHy (n)  and 

LHy (n) : 
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2N

He1D RH He1DRH2
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2

 (5.11) 
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2N
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2

 (5.12) 

 

where the parameter estimate vectors ("hat" notation, ^, signifies estimated parameters): 
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recognizing that maximum likelihood estimation is equivalent to least squares fitting when the 

noise processes are Gaussian [54]. The variance term, 2

meas  in (5.11) and (5.12) does not enter 

into the cost function and may be estimated post-hoc, based on noise estimates from the 

measured TECs. In the summations of (5.11) and (5.12), N is the number of TEC samples 

available from the test bolus enhancement data, and the index variable, i, ranges across the 

discrete-time samples. 

In matrix notation, the problem is stated as minimizing the sum of squares of residuals 

through a function of the estimated parameters: 
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where i( )f are n-vectors that estimate the LH and RH signals given the p-value parameter 

estimates He1D and He2D  (p=6 and p=4) and inputs. The vectors He1DRH ( )r  and He2DLH ( )r are 

the residuals for the estimates of the He1D and He2D systems: 

 

 
He1DRH RH He1D He1D (n)r y C x

 (5.16) 

 
He2DLH LH He2D He2D (n)r y C x

 (5.17) 

 

with η(n) representing the model and measurement uncertainty.  

The n x p Jacobian matrices, RH He1DV  and LH He2DV are constructed from the first 

derivatives of the residual vectors with respect to the parameter vectors. Note that bold V 

notation is used for the Jacobians while V (non-bold) is used for volume. The i
th

 and j
th

 elements 

of the Jacobian matrices are:  
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LHLH
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 (5.19) 

 

The maximum likelihood estimates of the parameter vectors are normally distributed with 

covariance of 
1

2 T
V V where the estimators of variance are [55]: 
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The variance of the parameter estimates can also be expressed as the inverse of the Fisher 

Information Matrix (the inverse of the Hessian), which is often accessible from numerical 

computing packages such as MATLAB's optimization toolbox. 

An approximate expression for the parameter bias, that is the difference between the 

estimated and the true parameter, can be expressed in terms of the Jacobian matrices: 

 

 

1
T TE V V V d

 (5.21) 

 

where 

2 T
1

Ttrace
2

d V V H where H is the p x p Hessian matrix (derivative of the 

Jacobian).  

5.1.3.1 Numerical Optimization Details  Because the model, as defined by (5.9) and (5.10), is 

non-linear in the parameters the minimization of the cost functions is a non-linear Least Squares 

(NLS) problem. There are numerous iterative techniques for solving NLS problems. An 

optimization scheme for this problem needs to provide non-negativity constraints on the 

parameters. Also, it is reasonable to enforce physiologic bounds on the parameter estimates. 
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Because the problem is a constrained minimization, line-search techniques like Gauss-Newton, 

simplex or hybrid techniques like the classic Levenberg-Marquardt are not applicable. For this 

reason, a subspace trust-region method, based on an interior-reflective Newton method as 

implemented in the MATLAB Optimization toolbox (nonlinsq), was used to estimate the 

parameter vectors in (5.13). The algorithm computes an approximate solution at each iteration of 

the solver using a Precondition Conjugate Gradient (PCG) technique. Finite difference 

approximations were used to construct the Jacobian and Hessian matrices during the solution 

process.  

In the experiments described below, the minimizations were run with convergence 

criteria of 10
-5

 on the cost function evaluation and a tolerance of 10
-5

 on the parameters. A 

maximum number of function evaluations of 400 was set and the maximum number of iterations 

at each solution step allowed was 500. The parameter bounds for He1D and He2D used in the 

experiments are presented in Table 7. 

 

Table 7 Upper and lower boundaries or constraints on the estimated parameters 

He1D  He2D  

Parameter Lower Bound Upper Bound Parameter Lower Bound Upper Bound 

VRH [ml] 30 400 VLH [ml] 50 400 

VPER1 [ml] 10 90 VLUNG [ml] 250 825 

VPER2 [ml] 10 200 QCO [ml/s] 30 200 

TPER [sec] 1 5 TLUNG [sec] 1 8 

QPER [ml/s] 1 80    

QCOr [ml/s] 30 170    
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The parameters were initialized, prior to starting the estimation, at 50% midpoints of the 

upper and lower parameter bounds. To investigate the sensitivity of the solver to initial condition 

selection, five solver runs were executed per parameter estimation. The initialization vector with 

the best-fit output curve was selected as the starting estimate. The estimated output vector for the 

He1D system,
RHŷ (n) ,was used as the input to He2D system when performing forward 

predictions of contrast enhancement. A detailed description of the parameter estimation 

methodology is included in Appendix A. 

 

 

5.1.4 Parametric Estimator Evaluation Methods 

To demonstrate the effectiveness of the parameter estimation technique, three distinct 

experiments were conducted. The first two experiments used synthetic data to determine 

properties of the estimator (bias, variance) and it's robustness to truncated input/output data and 

variations in temporal sampling of the data. Retrospective clinical data were then used to 

determine the estimator's performance in predicting aortic contrast enhancement in human 

subjects based on timing bolus scan TECs measured in the pulmonary trunk and the ascending 

aorta. A table is provided to aid the reader in navigating the methods and corresponding results 

sections for this section. 
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Description Method Section Results Section 

Analysis of the estimator 

performance – bias and 

variance analyses 

 The reduced-order 

model is the source of 

comparison data 

 

 

Section 5.1.4.1,  Page 109 

 

 

Section 5.1.5.1, page 113 

Effect of the test bolus 

enhancement data length and 

noise on estimator 

performance.  

 The hybrid PBPK 

model is the source of 

comparison data 

 

 

Section 5.1.4.2, page 110 

 

 

Section 5.1.5.2, page 119 

Performance of the estimator 

using clinical imaging data 

Section 5.1.4.3, page 112 Section 5.1.5.3, page 125 
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5.1.4.1 Model-to-model Comparisons To characterize the estimator, a synthetic data set was 

created using the system defined by (5.9) and (5.10), the same equations used by the estimator. 

The hybrid model, therefore, did not generate the data used in these experiments. The intent of 

this methodology was to isolate the performance of the estimator independent of the 

measurement data. This type of comparison has been termed a "model-to-model" comparison in 

the literature [56, 57] and is useful for studying the behavior of an estimator independent of other 

factors such as model accuracy, sampling noise and variability in noise processes. The model-to-

model terminology indicates that the same model used for estimating the parameters generated 

the data. It is also useful for visualizing the solution space and assessing the performance of the 

estimators because the "true" parameters, true

HeiD  for i=1,2 are known. A data set was computed 

using the parameter values specified in Table 8.   

 

Table 8 Parameter values used in the model-to-model simulations and 

comparisons. 

true

He1D  
true

He2D  

Parameter Value Parameter Value 

VRH [ml] 200 VLH [ml] 325 

VPER1 [ml] 30 VL [ml] 310 

VPER2 [ml] 100 QCO [ml/s] 90 

TPER [sec] 2 TLUNG [sec] 3 

QPER [ml/s] 4   

QCOr [ml/s] 80   

 

The input function, uinj(t) (5.3) was parameterized by contrast concentration of 370 

mgI/ml (Cinj ) for a duration 5 seconds (TDUR), at a flow rate of 5 ml/s (Qinj).  Simulations were 
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performed in MATLAB using a time-step of .10 sec/sample. The simulated TECs were 

downsampled at rates of 1 sec/sample, 2 sec/sample and 5 sec/sample to mimic the effect of 

sampling on the TECs by the CT scanner,. 

 Simulations were also performed with the "true" parameters corrupted with synthetic 

measurement noise (AWGN) having standard deviations of 0, 1 and 2 HU (η(n) in (5.16) and 

(5.17) to develop estimates of bias and variance. For every combination of noise level and 

sample time, 30 parameter estimations were performed. For each simulation run, the initial 

parameter estimates were varied by 25% of the nominal values. Five parameter estimates were 

computed and the best set of parameters was determined by choosing the set which generated the 

minimum residual Mean Square Error between the predicted enhancement curve from the 

parameter estimation and that generated by the model, Test Test

RH LH
ˆ ˆy (n), y (n) . 

Finally, noise-free simulations were performed with true parameter values varied by +/- 

20% in 2% increments to generate graphical illustrations of the cost functions JRH(θHe1D), and 

JLH(θHe2D) . These simulations also allow for analysis of the sensitivity of the estimator to initial 

condition selection. Five simulations using with the initial conditions randomly varied within 

25% of the values in Table 8 were executed. The Root Mean Square Error between the predicted 

test bolus and the simulated test bolus enhancement for each set of initial conditions were 

recorded and analyzed. 

5.1.4.2 Estimator Performance Using Hybrid Model Data  This section presents the methods 

for determining the estimator's performance in the presence of noise and sensitivity to truncated 

test bolus enhancement data. The hybrid model was simulated using the parameters and methods 

presented in section 4.1.2. Simulated subject demographic data and the relationships defined in 
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equations (4.27), (4.28) and (4.29) provided the values for cardiac output and blood volume. The 

parameter values in Table 1-3 configured the model. MATLAB/Simulink (R2008b) was used to 

simulate the model for each patient using the clinical data for patient parameters and the 

diagnostic phase contrast injection protocol, including the saline flush phase.  The same 

parameter set was used to create synthetic, discrete test bolus data Test ,H

RHy (n)  and Test ,H

LHy (n)  ((4.9) 

and (4.11)) where the superscript (Test,H) denotes a simulated test bolus injection response 

created from the hybrid model. The patient demographics used for simulations in 4.3 

parameterized the model system (4.15). A fixed flow rate and contrast volume injection signal 

(uDiag(n)) was delivered to each simulated "subject" to generate a simulated enhancement curve

Diag,H

LHy (n) .The injection protocol, Diagu (n)  , was parameterized with the following values: Qinj = 

5ml/s, Cinj = 350 mgI/ml, for 15 seconds followed by a saline phase at a flow rate of 5ml/s and 

duration of 8 seconds. 

Parameter estimation was performed with Gaussian noise vectors with standard 

deviations of: .1, .25, .5, 1.0, 2.0, 5.0, 10, and 20 HU added to the hybrid model test bolus data. 

Performance of the predicted enhancement against the "true" enhancement as simulated by the 

hybrid-model for the twenty data sets were  assessed using the metrics developed in 4.0 - RMSE, 

Percent Difference in Max Enhancement (PDME), and Enhancement Difference Index (EDI). 

It is common practice for the technologist performing the study to stop data collection 

from a test bolus scan shortly after the peak contrast enhancement. Reasons for stopping the data 

acquisition include concern of excess radiation exposure to the patient and a desire to make the 

study time short. Because the test bolus data record may contain only a few samples of data after 
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peak enhancement, patient-specific contrast delivery algorithms must function in the presence of 

truncated data sets.  

Experiments were conducted with truncated test bolus data vectors created with the 

simulated hybrid model to determine the effect of truncated test bolus scan data on the MLE 

parameter estimator. The vectors were truncated at durations of 20, 25, 30, and 35 seconds with 

no additive noise present. Next, simulated test bolus TECS were truncated at 25 and 35 seconds 

and noise was added. The AWGN were created with standard deviations of  .1, .25, .5, 1.0, 2.0, 

5.0, 10, and 20 HU. In all cases, the first data points of  Test ,H

RHy (n) and Test ,H

LHy (n) were 5 seconds 

after the start of injection. The truncation times of 25 and 35 were chosen as specific test points 

because a 25 second acquisition duration can be expected in clinical practice and 35 seconds 

ensures the capture of the contrast peak and a number of samples after the peak in the left heart 

compartment for most procedures.  

5.1.4.3 Estimator Performance Using Retrospectively Gathered Clinical Data The estimator 

performance was assessed against clinical data collected during an IRB approved clinical trial at 

the Medical University of South Carolina (Somatom Definition DS, Siemens Healthcare Malvern 

PA). The data set and methods used to collect the data are described in 4.3.2. The test bolus 

TECs collected during the clinical trial were used to derive parameter estimates and the semi-

automated aortic contrast enhancement data were used to compare the estimator's predicted 

output, identical to the methods in 4.3.2.  

During the clinical trial, scanner operators acquired the test bolus scan data by placing 

ROIs on the pulmonary trunk and the ascending aorta. Data collection started at 5 seconds after 

the injection of contrast started. Single-level scan acquisition was stopped by the operator two to 
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four seconds after the peak of contrast enhancement in the ascending aorta was observed. The 

scanner software then processed the data and created TECs which were exported to data files and 

saved. Diagnostic scan enhancement profile data was extracted as in Chapter 4.3.2.  

An outline of the experimental methodology is: 

1. Extract test-bolus TEC data 

2. Perform parametric estimation using MLE technique 

3. Generate predicted contrast enhancement using the diagnostic injection protocol 

from the clinical data set and the identified parameters from step 2 

4. Extract the enhancement curve from the clinical data set 

5. Compare the predicted contrast enhancement against the clinical data (from the 

scan delay to the end of the scan acquisition) 

Predicted outputs from the data-drive estimator were compared to the actual, clinical data 

using RMSE, PDME, and EDI.  

5.1.5 Results 

All simulations and analyses were conducted with MATLAB (r2008b), the Optimization 

Toolbox (v4.1) and Simulink (v7.2 ).  

 

5.1.5.1 Estimator Performance using model to model comparisons The results from the 

model-model simulation are presented in Table 9 through Table 12. The resulting mean estimator 

bias for each parameter in the cardiopulmonary system, He2D, is listed in Table 9. The goodness 
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of fit criteria used to gauge the performance of the estimators is the Mean Square Error between 

the predicted LHŷ (n)
 and estimated yLH. The mean of MSE across the 30 simulations (and the 

square root of the MSE) are tabulated in addition to the percent bias for each parameter. Bias 

results for the He1D subsystem parameter estimation are summarized in Table 10. 

Parameter estimation bias increased independently of the additive noise in the He2D 

subsystem, except for the Qco and TLUNG parameters at sampling periods of .5 and 1 

sec/sample. The MSE of the fit appears to be independent of the sampling period because it 

increases similarly as a function of the noise sigma for all three sample periods. Parameter 

estimation bias increased in the He1D subsystem when data sampling periods exceeded one 

sec/sample. The MSE of the residual between the estimator's prediction and the true values 

increased as the noise contribution increased and for sampling periods greater than 1 sec/sample. 

Variance of the parameter estimates for both systems are shown in Table 11 and Table 12. 

Parameter estimation variance was the largest, for all sampling times, when the standard 

deviation of the noise contribution was 2 HU. The variance of the transport delay parameter, 

TLung, was the largest among all the parameters. 
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Table 9 Summary of parameter bias for He2D . Values are percent bias from the 

nominal values. MSE is the Mean Square Error of the residual error for the 

estimated and actual enhancement signal, yLH 

 

Ts σHU VLH VLUNG QCO TLUNG MSE

0.5 0 -2.2 9.6 3.7 -8.1 0.0

1 -6.6 11.6 2.5 -7.2 1.0

2 -10.5 18.1 4.3 -5.7 4.2

1 0 -5.1 8.2 1.7 -15.9 0.0

1 -4.5 14.3 5.2 -15.4 1.0

2 -9.2 23.0 7.0 -14.3 4.1

2 0 -14.9 18.4 2.9 -29.8 0.0

1 -13.7 16.7 2.8 -29.2 1.0

2 -17.3 32.2 9.9 -25.6 3.7  

 

Table 10 Summary of parameter bias for He1D . Values are percent bias from the 

nominal values. MSE is the Mean Square Error of the residual error for the 

estimated and actual enhancement signal, yRH 

 

Ts σHU
VRH VPER1 VPER2 TPER QPER QCOr MSE

0.5 0 0.0 3.0 12.5 -0.4 0.4 10.0 0.0

1 -10.2 2.1 22.8 -0.4 0.3 9.9 1.0

2 -4.4 3.1 19.1 -0.4 0.4 10.1 3.8

1 0 0.0 2.7 12.5 -0.9 0.4 10.0 0.0

1 -4.5 2.3 17.4 -0.9 0.3 10.0 1.0

2 -4.5 1.3 16.2 -0.9 0.2 10.1 3.7

2 0 35.1 1.9 -90.0 -1.0 0.3 10.7 2.4

1 34.9 3.3 -90.0 -1.0 0.5 10.6 3.4

2 38.1 3.3 -90.0 -1.0 0.5 10.8 5.3  
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Table 11 Summary of parameter estimation variance for He2D 

Ts σHU VLH VLUNG QCO TLUNG

0.5 0 4.14E-07 4.01E-07 2.02E-05 4.92E-03

1 2.01E-02 1.88E-02 9.50E-01 2.30E+02

2 3.38E-04 3.08E-04 1.55E-02 3.79E+00

1 0 4.20E-06 4.01E-06 2.02E-04 4.69E-02

1 9.80E-03 9.02E-03 4.56E-01 1.14E+02

2 1.52E-04 1.35E-04 6.92E-03 1.84E+00

2 0 4.87E-05 4.23E-05 2.16E-03 5.16E-01

1 5.25E-03 4.67E-03 2.34E-01 5.61E+01

2 7.00E-05 5.80E-05 2.88E-03 8.32E-01  

 

Table 12 Summary of parameter estimation variance for the He1D system 

Ts σHU
VRH VPER1 VPER2 TPER QPER QCOr

0.5 0 6.23E-12 1.06E-09 7.83E-12 7.58E-08 5.96E-08 3.56E-10

1 3.83E-03 6.26E-01 4.55E-03 4.51E+01 3.55E+01 2.13E-01

2 5.85E-05 8.95E-03 7.09E-05 7.00E-01 4.99E-01 3.29E-03

1 0 3.50E-11 5.50E-09 4.39E-11 4.25E-07 3.09E-07 2.00E-09

1 1.88E-03 3.04E-01 2.32E-03 2.26E+01 1.70E+01 1.06E-01

2 2.83E-05 4.87E-03 3.47E-05 3.39E-01 2.71E-01 1.57E-03

2 0 2.22E-03 3.94E-01 3.59E-03 2.97E+01 2.19E+01 1.21E-01

1 3.14E-03 5.16E-01 5.08E-03 4.20E+01 2.87E+01 1.71E-01

2 1.87E-05 3.08E-03 3.05E-05 2.52E-01 1.70E-01 1.02E-03
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Contour plots of the noise-free cost-functions for the left heart and right heart estimators 

((5.14) and (5.15)) were created for a range of parameters and are shown in Figure 31 and 

Figure 32. In each plot, two parameters were varied about a nominal value while the other 

parameters in the model were fixed. The resulting plots are 2D projections of the n-space 

hyperplanes defining the parameter space over the specified range. When the ellipsoids near the 

minimum of the solution space are elongated, this gives an indication that numerical solvers 

could have trouble converging on the true minimum and increased variance. The contour plots 

do display single minima. Many of the parameter pairs exhibit long and narrow ellipses near the 

minimum – in particular the VLH, VLUNG  pair for the He2D subsystem. 
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Figure 31 Contour plots of the JLH cost-function for parameter pairs for the He2D 

subsystem. 
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Figure 32 Contour plots showing projection of the JRH cost function as a function 

of parameter pairs. 

 

5.1.5.2 Hybrid Model Parameter Estimation Results Results from parameter estimation 

experiments using the hybrid model as the source of enhancement data for 20 subjects are 

presented in this section. In all 20 subjects, test bolus enhancement data were generated in the 

left and right heart compartments of the hybrid model using an input injection of 20 ml, 350 

mgI/ml concentration contrast injected at 5 ml/s followed by 40 ml of saline. AWGN (standard 
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deviation = 2.5 HU) was added to the simulations response vectors and the test bolus 

enhancement signals were truncated at 35 seconds.  

The diagnostic injection for the simulated data set was a 75 ml bolus of 350 mgI/ml at 5 

ml/s and followed by 40 ml of saline at 5 ml/s. Only data between the scan delay and the end of 

the scan were used in the comparisons between the estimated and simulated data (the scan delay 

and scan duration for each subject came from the clinical data set) as illustrated in Figure 33. 

For all subjects, the data points between the two vertical lines were included in the computations 

of RMSE, PDME, and EDI as defined in (4.30). 

 

 

Figure 33 Hybrid model simulation for a diagnostic injection, using Subject 6 data, and 

estimated enhancement curve using the MLE methodology. The scan delay and scan duration 

values were extracted from the clinical data set for subject 6 as well. 
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The mean Root Mean Square Error between the simulated and estimated response was 

7.78 +/- 4.40 HU. The average maximum percent difference between maximum enhancement 

(PDME) for both curves across the 20 subjects was 1.29 +/- 1.12%, and the mean Enhancement 

Difference Index was 1.57+/- 1.16%.  

 

 

Figure 34 Results from the hybrid model simulation set using the Maximum Likelihood 

Estimator. a) Root Mean Square Error between 20 patients simulated with the hybrid model and 

the predicted enhancement b) The Predicted Difference Maximum Enhancement between the 
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simulated hybrid model data and the estimated response c) Enhancement Difference Index 

results. Dashed lines represent the mean value for each data set. 

The impact of test bolus data length and additive noise on the estimator's performance are 

shown in Figure 35. Hybrid model simulations of the twenty subjects in the clinical set were 

performed using the same diagnostic injection for all subjects (75 ml of 350 mgI/ml 

concentration contrast at 5 ml/s followed by 40 ml of saline).  

 

 

Figure 35 Simulation results using the MLE methodology from hybrid model data (mean of 20 

subjects). Error bars indicate one standard deviation of the mean. a) Root Mean Square Error 

(RMSE) between simulation and predicted enhancements b) Percent Difference Maximum 

Enhancement (PDME) between simulation and predicted enhancement data. 
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 In the experiments that generated Figure 35, the additive noise was zero. As the test 

bolus data vector decreased, the RMSE and PDME increased. It is not expected that scanner 

operators will acquire test bolus data many seconds after the appearance of the peak contrast 

opacification due to increased patient radiation exposure. Typical peak times in the ascending 

aorta from a test bolus injection are 17 to 24 seconds. The mean time to peak in the simulation 

cohort was 21.1+/- 2.1 seconds. When the test bolus curves were truncated at 20 seconds, the 

peak enhancement was missing in most instances. Despite this fact, the estimator was still able to 

generate estimates of the system dynamics with 12 HU RMS error. 

Shown in Figure 36 is the performance of the estimator when additive noise between .1 

and 20 HU is added to test bolus enhancement data truncated at 25 and 35 seconds. There is a 

consistent separation of approximately 3 HU for RMSE and there is less RMSE for longer test 

bolus enhancement curves. Prediction of maximum contrast enhancement is less sensitive to the 

length of test bolus measurement data vector. Typical noise on clinical test bolus enhancement 

data ranges between 2 and 10 HU. The difference in PDME between 25 and 35 second test bolus 

vectors is less than .5%. Both comparison metrics remain constant until the additive noise sigma 

exceeds 2 HU. Then the errors increase linearly. 
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Figure 36 Results demonstrating the impact of reduced length test bolus for identification and 

noise contribution on estimator performance a) RMSE between hybrid model simulation outputs 

and the estimator's predictions for test bolus data ending at 25 and 35 seconds b) PDME between 

the hybrid model simulation outputs and estimator's predictions for test bolus data truncated at 

25 and 35 seconds. 
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5.1.5.3 Maximum Likelihood Estimation Results with Clinical Data This section presents the 

ability of the estimator to predict contrast enhancement using the retrospective clinical data set. 

For each subject, the test bolus TEC data measured in the pulmonary trunk and the ascending 

aorta were used as inputs to the MLE algorithm. Comparisons between the estimated model 

(based on the MLE fitting) and the diagnostic scan contrast enhancement in the aorta were made. 

The injection protocol and scan parameters from the clinical data set were used in making the 

comparisons and only data points between the scan delay and the end of the scan were included 

in the computation of RMSE, PDME and EDI (as demonstrated with Figure 33 ).  

Figure 37 presents the results for all 20 subjects estimated using the test bolus data and 

the MLE technique. The horizontal, dashed lines indicate the sample mean for each performance 

metric. Subjects seven, nine and fifteen have the largest errors across all three categories. 

Numerical results from the analysis using the MLE are in Table 13 along with the prediction 

results (from Chapter 4) when using the hybrid model parameterized with only subject 

demographic data. The MLE method resulted in lower mean RMSE, PDME and EDI (PDME 

was significantly different, p<.05) , a smaller range  of data for all 3 metrics, and lower valued 

standard deviations. The maximum RMSE for the hybrid simulation was 142.3 HU while the 

RMSE was 70.5 HU using MLE. Plots for all 20 subjects and the clinical enhancement data are 

presented in Appendix C. 
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Figure 37 Performance metrics of the MLE methodology using the clinical data set. Dashed 

horizontal lines indicate mean value. 
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Table 13 Summary results comparing the MLE and hybrid model prediction 

results from Chapter 4  

 

 

 Figure 38 plots the predicted contrast enhancement and diagnostic contrast enhancement 

for two subjects (6 and 8). The predicted enhancements for these patients using the hybrid model 

were presented in Figure 22 (Chapter 4, page 84). Their prediction performance was the worst 

among all 20 subjects. Using the test bolus TEC from the clinical data and the MLE 

methodology, better contrast enhancement prediction was achieved for these two subjects  

(RMSE of 39 HU vs. 160 HU for subject 6 and 21 HU vs. 57 HU for subject 8 – MLE and 

hybrid results). 

 

metrics mean stdev min max median mean stdev min max median

RMSE [HU] 38.2 18.1 7.3 70.5 38.7 41.9 29.8 12.2 142.3 37.3

PDME [%] 8.9 8.1 1.0 35.0 6.3 14.6 10.2 0.8 42.1 14.5

EDI [%] 8.8 5.4 0.1 21.0 8.4 10.8 11.0 2.1 45.8 5.3

MLE Prediction Results Hybrid Model Results
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Figure 38 MLE prediction results using clinical data for (a) subject 6 and (b) 

subject 8. Error bars indicate plus/minus one standard deviation of the mean, as 

measured in the aorta at the particular z-axis location. 

 

Figure 39 presents box-whisker plots graphically comparing the results from the hybrid 

model and MLE across the 20 subjects. The horizontal line in each box indicates the median data 

value and the edges of the vertical boxes indicate 1
st
 and 3

rd
 quartile of data.  
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Figure 39 Box-and-whisker plots for results of predicted enhancements using the 

hybrid model (Hybrid) and the MLE methodology (MLE) to predict contrast 

enhancement in the clinical data set . (a) RMSE (b) PDME (c) EDI 

5.2 NON-PARAMETRIC IDENTIFCATION 

In this section, the methodology and results (simulation and clinical data) for a non-parametric 

identification technique for prediction of contrast enhancement using the test-bolus paradigm are 

presented. A truncated Singular Value Decomposition method is introduced, it's performance on 
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simulation and retrospective clinical data are presented and a comparison to the MLE 

methodology is presented. 

5.2.1 Truncated Singular Value Decomposition Methodology 

In section 5.1, a parametric identification methodology was developed for estimating and 

predicting contrast enhancement on an individual basis using test-bolus enhancement data to 

parameterize a reduced-order pharmacokinetic model. In this section, a non-parametric (or 

model-independent) approach is developed that is also dependent on data from a test-bolus 

injection and scan, but only requires data from one scan location. In this research, the ascending 

aorta is used as the scan location. One advantage of a non-parametric approach is that 

assumptions, such as the model structure and order, are not required. The assumption that the 

underlying system dynamics can be modeled as a LTI system is made, however.  

The non-parametric methodology poses the contrast enhancement problem as an inverse 

problem in which the output (image data from the ascending aorta upon administration of a test-

bolus) and the input (test bolus Iodine administration profile) are known. A regularization 

method, the truncated Singular Value Decomposition (tSVD) presented in Section 2.11 is used to 

estimate the impulse response (or residue function) of the drug and cardiopulmonary system. A 

truncation index that adapts to measurement noise and that balances residual error and solution 

error must be selected for the tSVD to produce the desired results. As discussed in section (2.23), 

the adaptive truncation index and the tSVD is more robust to data variation than the 

Fleischmann/Hittmair Fourier deconvolution methodology because in that approach only a low 

pass filter with a fixed cutoff frequency was used. 
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The necessity for a regularization technique, like tSVD, when creating predictive contrast 

enhancement techniques is demonstrated with an example. An estimated impulse response, hsys, 

for Subject 7 in the clinical data set (test bolus TEC data) was generated by using standard linear 

least squares (MATLAB's matrix left division operator). The enhancement dynamics were 

defined by the matrix product of the impulse response and a lower triangular, Toeplitz matrix 

formed from the input function(2.20): yLH=Uinjhsys. Figure 40 plots a linear least squares 

solution for hsys, using the clinical enhancement data from the left heart generated from a test 

bolus injected at 5 ml/s for 20 seconds (350 mgI/ml concentration contrast). Clearly evident are 

the oscillations introduced by the measurement noise. The linear least squares method inability to 

filter the noise prohibits the robust estimation of the system impulse response. 

 

 

Figure 40 Solution for the impulse response, hsys, using subject 7 data and matrix 

division (least squares solution) 
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 Contrasted with the impulse response estimate using simple Least Squares is the plot in 

Figure 41 which is an estimated impulse response for Subject 7 using the tSVD methodology 

developed in this section. The detailed algorithm for creating a contrast enhancement prediction 

using the tSVD is presented below in Table 14.  

 

 

Figure 41 Estimated impulse response for subject 7 data using the tSVD method 
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Two approaches for selecting the truncation index, k, in the singular value decomposition 

were investigated and implemented – the linear piece-wise fit method of Koh et al [47] and the 

adaptive pruning L-curve criterion of Hansen et al.[58]. The truncated singular value 

decomposition method provided in the Regularization toolbox [59], freely distributed on the 

Internet, (tsvd.m) was used to create impulse response estimates.  

1. Acquire and process test-bolus enhancement data from the Left Heart 

compartment (ie: Ascending Aorta), Test

LHy (n) generated by a test-bolus 

injection, uinj(n). 

2. Define the system in matrix notation as in (2.20): 
Test Testy H U  

a. Construct a Toeplitz Matrix Utemp from the scalar input function, 

uTest(n) = QinjCinj[u(n)-u(n-Ninj)]where Qinj, Cinj, and Ninj are the 

flow rate, concentration and duration of the test bolus injection. 

b. UTest is the lower triangular portion of Utemp 

3. 1

Test TestH U y  

4. Decompose UTest into its singular vectors (U, V) and singular value 

matrix (Σ) by the Singular Value Decomposition:  

a. 
1

T

TestH U yΣV  

5. The columns of H are (per (2.23)): 

a. 
k

i
k i

i 1 i

u y
vh  

6. Determine the system impulse response estimate¸ hsys, by selection of  

an optimal truncation index, k. Select k  by the method of: 

a. Piecewise linear-fit method Koh et al [47] 

b. Adaptive pruning method of Hansen et al [58] 

7. Compute RMSE between Test sys Testŷ h u and yTest 

8. Compute estimate of diagnostic enhancement Diag sys Diagŷ h u  for an 

arbitrary injection input, uDiag=QDiagCDiag[u(n) – u(n-NDiag)] 

Table 14 Non-parametric estimation algorithm 
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As presented in section 2.11, the Koh method computes the truncation index by 

approximating the Picard plot with a piece-wise, linear function. A Picard plot is a log plot of the 

Fourier coefficients against an index variable ranging over the length of the data samples in the 

observation vector, Test

LHy . The system of linear equations for the problem is: 

 

 
Test

inj sys LHU h y

 (5.22) 

 

which is similar to the standard notation of Ax=b for a linear system. The Fourier coefficients are 

the absolute values of the product of the left singular vectors (columns of the left singular matrix 

from a singular value decomposition) and the observation vector T

i Testu y . The coefficients for 

the approximation to the Picard plot were determined by solving: 

 

 

T

lsq T

X Y

X X
 (5.23) 

 

where Y is the vector of Fourier coefficients, T

i Testu y . The X matrix was formulated as 

described in section 2.11. MATLAB's internal matrix multiplication and inversion utilities were 

used to solve (5.23).  Finally, a vector consisting of the sum of squared errors, SSE indexed by k, 

was constructed: 
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T

k lsq lsqSSE Y YX X

 (5.24) 

 

Per Koh's algorithm, the optimal truncation index was selected as the index belonging to 

the element of the SSE array with the smallest value. 

The adaptive pruning algorithm for determining the truncation index is described fully in 

[58]. In summary, the technique constructs a discrete L-curve, which is simply a plot of the 

solution norm 
2

sys 2
h  versus the residual norms 

2

sys Test 2
hU y . The Hensen adaptive pruning 

algorithm searches for the L-curve's corner by systematically removing points from the discrete 

L-curve in two stages. The corner function in Hansen's Regularization Toolbox implements the 

pruning algorithm, and it was  used to compute the truncation index, k [59].  

Simulations of the hybrid model were used to determine the preferred methodology to 

compute the truncation index. The same twenty subjects simulated in section 5.1.4.2 were 

simulated, using a fixed flow rate and volume of contrast (5ml/s of 350 mgI/ml contrast for 4 

seconds) as the injection for all the simulations. Two simulation runs were completed. The first 

used the L-curve adaptive pruning algorithm to determine the optimal truncation index for the 

tSVD and the second used the Koh method to select the truncation index. A comparison of 

RMSEs between the two methodologies was performed to determine the preferred method. 

Mean values for the three performance metrics, RMSE, PDME and EDI across the 20 

subjects are given in Table 15. The Koh method produces predicted enhancement with 11% less 

RMS error, 22% less maximum difference error, and 10% less average EDI percentage. Also, the 

resulting impulse responses and reconstructed test bolus curves were smoother when the Koh 

technique computed the truncation index. Also, the Koh method computed lower valued 
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truncation indices than the adaptive pruning algorithm for this problem. The Koh method was 

selected, based on these results, for the subsequent experimentation. 

 

Table 15 Simulation analysis results comparing the two methods of determining 

the tSVD truncation index 

Truncation Method Mean RMSE [HU] Mean PDME [%] Mean EDI [%] 

Adaptive Pruning [58] 7.9 2.2 1.9 

Koh [47] 7.0 1.7 1.7 

 

 

5.2.2 Evaluation Methods 

One set of experiments used the hybrid PBPK model to generate enhancement data and was 

conducted to determine the performance of the non-parametric estimator in the presence of 

additive noise and with truncated test bolus measurement vectors. Next, retrospective clinical 

data (the same set as used with the parametric MLE technique described in Section 5.1) were 

used to ascertain the performance of the non-parametric technique with human subject data. The 

performance metrics were then compared to those from the parametric method in Section 5.1. 

5.2.2.1 Hybrid Model Simulation Experiments  Once again, a set of 20 subjects were 

numerically simulated using the hybrid PBPK model and the patient demographics from the 

clinical data set using the same methodology as in section 5.1.4.2 . Only the test bolus response 
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in the left heart compartment, Test

LHy (n) , was used in generating the non-parametric estimate of the 

system. The block of 20 subjects had AWGN added to the test bolus data (0,.1,.25,.5,1,2,5,10,20 

HU). The impact of the test bolus vector on performance was investigated by performing 

simulations with variable length test bolus enhancement data. 

5.2.2.2 Clinical Data Experiments Experiments using the retrospective clinical data set were 

conducted, again using the methods of Section 5.1.4.3. The same performance metrics, RMSE, 

PDME and EDI, were used to describe the performance of the estimation and prediction 

technique. Comparison to the results using the MLE methodology was also conducted. 

 

 

5.2.3 Numerical Simulation Results 

Presented here are the results of the tSVD methodology tested with simulated data and clinical 

imaging data. The mean RMSE, PDME and EDI results for all 20 subjects using tSVD to predict 

contrast enhancement using simulated data from hybrid model simulation are presented in Figure 

42. Comparisons were made between the simulated and predicted enhancement in the left heart 

compartment when the same diagnostic injection protocol was delivered to all 20 simulated 

patients. These results are comparable to those in Figure 34 where the MLE method estimated 

the contrast enhancement for these 20 subjects. The RMSE (mean +/- standard deviation) 

between the enhancement values was 7.3+/-5.1 HU, the PDME was 1.8+/-1.3%, and EDI was 
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1.6+/-1.3%. Using the MLE with these same data resulted in RMSE, PDME, and EDI of 7.78+/-

4.40HU , 1.29+/-1.1%, and 1.57+/-1.2% (see Figure 34). 

 

 

Figure 42 Performance metrics for the tSVD estimating left-heart enhancement 

with the hybrid model data. The horizontal, dashed blue line represents mean (a) 

Root Mean Square Error (b) Percent Difference Maximum Enhancement (c) 

Enhancement Difference Index.  

 

The impact of variable length test bolus enhancement data (20 to 40 seconds) on tSVD 

estimator performance are presented in Figure 43. The data are average values taken across all 
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20 subjects at each test bolus enhancement vector length. No noise was added to the test bolus 

enhancement data for these experiments. 

 

 

Figure 43 Hybrid model simulation results comparing the performance of the 

MLE and tSVD estimation methodologies as the length of the test bolus vectors 

ranged from 20 to 40 seconds . In all simulations, there was no additive noise 

present on the test bolus data.(a) RMSE results (b) PDME results 

 

The performance of the tSVD estimator when the test bolus enhancement data were 

corrupted with AWGN is presented in Figure 44. Twenty simulations were performed using the 
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demographic data from the clinical data set. Test bolus vectors were truncated at 35 seconds for 

all the simulations. Additive Gaussian noise with standard deviations of 0,.1,.25,.5,1.0,2.5,5.0,10 

and 20 HU were added to the test bolus data for each block of 20 subjects. The average RMSE 

values for the tSVD and MLE estimators are plotted together in the figure. Note that when the 

additive noise was greater than 2.5 HU, the MLE performed better. For low levels of additive 

noise (.1, .2, .5, and 1.0 HU sigma), the tSVD performed slightly better. 

 

 

Figure 44 Simulation results for test bolus length of 35 seconds but when AWGN 

(sigma) added to the test bolus data varied from 0 to 20 HU. Each data point is the 

mean of 20 simulated subjects using the hybrid model. 
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5.2.4 Clinical data results 

Comparative results for the tSVD and MLE methodologies, using the clinical data as the 

source of the test bolus and diagnostic enhancement data, are given in Figure 45. The MLE 

estimation technique produced enhancement estimates with lower RMSE, PDME and EDI in 

14/20, 13/20, and 13/20 subjects, respetively. Summary results for the three performance metrics 

RMSE, PDME, and EDI were (mean +/- SD): 49.1+/-24.7 HU, 14.9+/-10.5 %, and 13.6+/-9.6%. 

Plots for all 20 simulations are presented in Appendix D. 
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Figure 45 Results from the two estimation methodologies, MLE and tSVD, using 

the clinical data set test bolus vectors and diagnostic enhancement data (a) RMSE 

(b) PDME (c) EDI 

 

The box and whisker plot in Figure 46 show that the MLE method produced  lower 

RMSE, PDME and EDI across the 20 subjects, but the differences were not statistically 

significant.  It is apparent from the box-whisker plot that the estimated enhancements using 

tSVD resulted in wider variability around the median. Mann-Whitney U tests on the three sets of 

metrics reveals a significant difference only for the PDME results (p<.05). 
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Figure 46 Box and whisker plots comparing the two estimation techniques using 

the clinical data set as the basis of comparison. (a) RMSE (b) PDME (c) EDI 

 

In some cases, however, statistical significance for all three metrics was demonstrated between 

the two methods. Subjects 5, 12, and 19 had significantly greater mean RMSE and PDME with 

tSVD than MLE (p<.05, Sign-Rank test). These subjects showed the greatest discrepancy 

between the two data-driven estimation techniques. 
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5.3 DISCUSSION 

The results indicate that the MLE method is superior to the tSVD method for predicting patient-

specific contrast enhancement, especially when considering the constraints and practicalities of 

actual clinical practice. Specifically, the MLE is more robust to changes in test bolus 

enhancement data vector lengths, it has favorable noise rejection characteristics, and it provides 

parametric estimates of physiologic variables that could have utility in quantifying the status of 

the patient (eg: cardiac output estimation). If test bolus enhancement data are available that 

extend several seconds beyond the peak of contrast enhancement, then the tSVD and MLE 

methods perform similarly. In clinical practice, however, it is difficult to ensure that data 

acquisition during the test bolus scan will routinely contain data points after the peak is achieved. 

Whereas the tSVD appears to have superior noise immunity for low levels of AWGN, the 

MLE has better noise immunity when the test bolus data are corrupted with large values of 

AWGN. The tSVD has a main advantage in that only one TEC curve is required for estimation 

and it is computationally less burdensome. However, the optimization within the MLE was 

performed in seconds using a Pentium III (not exceptional hardware) and widely available 

numerical methods. It is worth noting that the order of the system matrix computed via the 

truncated SVD is similar to the total order of the estimated MLE system. 

Parametric bias and variance were favorable using the MLE. Visualization of the solution 

space also revealed well defined minima, albeit they were long and broad in some instances. 

There is evidence, therefore, to support that the cost function used in the MLE are adequate for 

computing the required parametric estimations for patient-specific contrast enhancement 
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prediction based on the performance metrics when the hybrid model simulation data tested the 

MLE method. 

Some of the poor concordance between predicted and clinical data can be attributed to 

noisy and/or incomplete test bolus TECs from the clinical data set. The large error for subject 15 

in both the MLE and tSVD experiments can be directly attributed to an incomplete test bolus 

curve. Subject 15's TEC is plotted in Figure 47. Peak enhancement values in the pulmonary 

artery and ascending aorta were not captured. Despite these missing features, the MLE was still 

able to produce a contrast enhancement with morphology not too dissimilar from the clinical 

data, albeit shifted in time (see Figure 72 in Appendix B). The three performance metrics using 

the tSVD on this subject, however, were all well above the sample mean, illustrating the impact 

of limited test bolus data on the tSVD's performance. The TECs for the entire test bolus clinical 

set are presented in Appendix E.  
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Figure 47 Test bolus for Subject 15 in the clinical data set. The curved marked 

with the "x"'s is the pulmonary artery TEC and the curve annotated with "o"'s is 

the ascending aorta TEC. 

The second worst EDI score for the MLE outcome was for subject seven. Inspection of 

the diagnostic enhancement data and the predicted enhancement profile shows that the 

enhancement prediction tracks the diagnostic, clinical data but is offset by 40-80 HU. Perhaps 

the baseline attenuation for this subject was lower than 50 HU.  

Subject five had the highest RMSE error for the MLE data. There is general agreement 

between the predicted contrast enhancement and the clinical data for this subject, but the 

predicted enhancement profile has an upslope that starts several seconds too early. Perhaps the 

test bolus data were improperly timed or the clinical data set scan delay was improperly 

recorded. The highest RMSE results with the tSVD predictions were seen with subjects 5, 12, 

and 16. Subject 15 had the worst performance for all three metrics, attributable to the poor test 

bolus data for that subject. 
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In general, the clinical scan data used in this chapter are not ideal for testing the 

identification methods because they were generated with diagnostic injection protocols having 

different flow rates from the test bolus injection protocol. As discussed in Chapter 4, injection 

flow rates alter the peripheral compartment flow rate. The dynamics for the model made by 

fitting the test bolus at one flow rate during the test bolus injection and scan can be slightly 

different for a diagnostic injection with a different flow rate. An ideal diagnostic injection 

protocol for comparing the identification methods would be similar to the one used with the 

hybrid model comparisons in this chapter – a fixed flow rate and same volume for all patients. 

Future clinical validation experiments using the techniques developed in this dissertation should 

be cognizant of this limitation and preferentially design experiments in which the test bolus and 

diagnostic bolus use the same flow rate. 

The method by which the diagnostic enhancement data were generated must also be 

considered a limitation of the analyses because the TECs were not generated from a single-level 

scan at the same level from which the timing bolus TEC was constructed. Rather, the data were 

constructed from the spatiotemporal distribution of contrast in the aorta. The generation of the 

enhancement data from the helical data set could lead to unanticipated error and variability. 

Examination of the error bars on the diagnostic scan TECs in the plots of Appendix C shows the 

variability in the data (mostly due to the selection of thin-slice CT data for these analyses). 

Unfortunately, the ideal validation scenario in which a single level scan is performed at the 

ascending aorta during the diagnostic injection is not feasible with humans due to the excess 

radiation and contrast material the subjects would be exposed to. For these reasons, animal and 

phantom models are needed to validate contrast prediction models and contrast protocol 

generation techniques. Animal testing can be expensive, so a validated and realistic 
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cardiovascular phantom that mimics the transport and distribution of contrast material has much 

value. 

Because the data-driven identification estimation techniques use data derived from the 

system (using a test bolus), they should produce greater prediction accuracy. As expected, the 

prediction error in subjects 6, 8 and 12, who had the greatest prediction errors with the hybrid 

model as shown in Chapter 4, decreased because the estimators rely upon image data acquired 

from the subjects. With a larger clinical data set, a statistically significant reduction in prediction 

error could be realized.  

Whereas the MLE method was deemed a superior approach when two TECs were 

available, consideration must be made in a clinical algorithm when two ROIs can not be placed 

or when the data from the first ROI is corrupted. It is anticipated, therefore, that a clinical 

algorithm should use the tSVD as a secondary approach for estimating contrast enhancement in 

the scenario just mentioned. Some classification logic will be needed to determine whether the 

TEC data are adequate for use by the MLE technique. 
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6.0  PATIENT SPECIFIC CONTRAST PROTOCOL GENERATION 

In the previous chapters, patient specific and data-driven techniques for identifying and 

predicting contrast pharmacokinetics in the human cardio-vascular system were developed. The 

goal of this research is not only to predict contrast enhancement, but to provide a method to 

compute an injection protocol that achieves prospectively chosen enhancement targets for an 

individual patient and procedure while using a minimal volume of contrast material. This chapter 

presents the methodology for computing individualized injection protocols for contrast-

enhanced, cardiothoracic CT Angiography. The method was tested using the hybrid PBPK model 

developed in Chapter 4 as a surrogate for human data. 

6.1 PROTCOL GENERATION ALGORITHM 

The problem is posed as a non-linear minimization problem, with a non-negativity constraint 

placed on the input function. A distinct difference between the approach developed here and 

previously published efforts to compute individualized contrast protocols is that an effort is not 

made to force the predicted contrast enhancement to a specific trapezoidal function. In both Bae 

and Fleishmann's approaches, a contrast injection protocol was derived that attempted to achieve 

a constant, uniform contrast enhancement throughout the duration of the scan. An unfavorable 
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effect of their approaches is that excess control energy (contrast volume) was exerted in order to 

achieve the uniform peak enhancement as compared to attempting to focus on achieving peak 

enhancement. 

When Bae and Fleischmann published their approaches for optimal contrast protocol 

computation, typical acquisition times for CTA scans ranged between 20-40 seconds. With the 

current generation of CT scanners, the acquisition window for CTA data rarely exceeds 10 

seconds. It is less important, with very short scan acquisitions, to design injection protocols that 

minimize or prevent skewed, peaked enhancement profiles. Rather, a modern injection protocol 

generation technique should attempt to ensure that the scan occurs during the peak contrast 

enhancement and that a sufficient contrast enhancement is achieved at the start of data 

acquisition and at the end of the scan acquisition. The scan durations for the clinical data set used 

in the comparisons in Chapters 4 and 5 averaged 10 seconds. Those data were collected in 2006 

and 2007. In the past 2 years, CT technology has advanced such that those scan times are now 

longer than the typical scan duration. 

The goals of CTA contrast enhancement, and thus those guiding the protocol generation 

methodology in this research, are graphically depicted in Figure 48. A hybrid PBPK model 

simulation produced the contrast enhancement profile shown in the figure. The vertical lines 

represent a 4 second CTA acquisition window – a scan duration typical with contemporary CT 

scanners. The scan is timed so that it is positioned on the enhancement profile to ensure that peak 

contrast opacification is obtained during scan acquisition. At the start of scan acquisition (the 

scan delay) and at the end of the scan, the contrast attenuation is greater than 350 HU. If the scan 

duration was 8 seconds in this example and the desired enhancement target was 300 HU, then the 

goal would also have been satisfied by the injection profile assuming that the scan delay was 
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adjusted appropriately to ensure the scan started at 300HU. It is evident that an individual 

protocol generation algorithm should also compute an individual scan delay because the optimal 

scan acquisition time varies as a function of the injection protocol, the patient's hemodynamics 

and the selected contrast enhancement target. 

The contrast enhancement level is a parameter that should be free for the radiologist to 

choose, and the appropriate enhancement target will depend upon the preferences of the 

radiologist dictated by the suspected pathology, and any procedural constraints. A general 

consensus has emerged that a minimum contrast enhancement of 250 HU is acceptable to 

differentiate vasculature lumen from plaques, thrombus and other pathophysiology during 

cardio-thoracic CTA [60]. At coronary artery CTA, Cademartiri et al. recently demonstrated an 

increased sensitivity for detecting accurate coronary stenoses when coronary contrast 

enhancement is greater than 320 HU [61]. In certain instances, when a patient has renal 

insufficiency or disease, a lower enhancement level may be tolerated if that means the contrast 

volume is minimized to help prevent or mitigate renal damage.  

Regardless of the precise clinical motivation, a rational and patient-specific contrast 

protocol generation algorithm should provide the ability to prospectively target a contrast 

enhancement level for an individual patient. The algorithm should then attempt to achieve a 

desired maximum contrast enhancement and a minimum enhancement throughout the entire scan 

duration. 
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Figure 48 Depiction of the desired outcome from individualized protocol 

generation. The solid, curved line is a contrast enhancement profile computed 

with the hybrid PK model, the vertical lines represent the CT scan acquisition 

window and the dashed horizontal lines represent desired enhancement levels. 

The nomenclature within the labels coincide to the terms in equation (6.1) 
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6.1.1 Cost Function Formulation 

Important considerations and requirements of a rational contrast protocol generation algorithm 

were discussed in the previous section. To achieve those goals, a cost function is presented that is 

the central component of the proposed contrast protocol generation algorithm. The cost function 

is minimized via numerical optimization. The result of the minimization is an injection protocol 

with the minimum flow rate and injection duration sufficient to minimize the cost. The cost 

function used by the contrast protocol algorithm is a function of 
LHŷ (n) , the predicted contrast 

enhancement in the Left Heart compartment generated by the data-driven, estimation methods 

developed in Chapter 5. It is: 

 

 Prot LH sDly HU LH sDly sDur HU LH Pk HU
ˆ ˆ ˆJ y (T ) M y (T T ) M y (T ) M 50

 (6.1) 

 

 where TsDly is the scan delay of the CT study as computed by the protocol generation algorithm, 

TsDur is the scan duration of the CTA acquisition, TPk is the time of maximum contrast 

enhancement, and MHU is the desired target enhancement level. All of the parameters are 

identified in Figure 48. Fifty HU is added to the peak target enhancement recognizing that the 

contrast enhancement will be peaked and no efforts are made to flatten the enhancement profile 

(as was done by Fleishcmann and Hittmair). Fifty HU was chosen as the target because two 

sections of aortic vasculature differing in contrast enhancement of 50 HU are typically not 
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clinically relevant
2
. Because the simulations and computations are performed in discrete time, 

the time parameters (TsDur, TsDly, and TPk) in the cost function are discrete time values. A non-

quadratic cost function was chosen because of the success using the absolute value formulation 

in the [42], but also because the preliminary investigations of the cost function surface revealed 

that a quadratic form resulted in a much smoother topology near the minima. Furthermore, none 

of the three terms in the cost function weight any heavier than any other term. 

Recall that the predicted Left Heart enhancement is a function of the parameter vectors 

and the contrast injection: 

 

 
LH He1D He2D inj

ˆ ˆŷ (n) f , ,u (n)

 (6.2) 

 

and the input function for the predicted enhancement ,
LHŷ  is a pulse: 

 

 inj inj inj inju (n) Q C u(n) u(n T )

 (6.3) 

 

The cost function defined in equation (6.1) was used and validated by Kalafut et al. in [42] . Its 

last term penalizes deviations of enhancement greater than 50 HU above the target enhancement 

level and is added into the cost function to prevent the situation in which the target HU is 

achieved but the peak is much higher than necessary (and using, therefore, more contrast than 

necessary to achieve the target goals).  

                                                 

2
 Personal correspondence, UJ Schoepf MD 
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Put within context of the injection protocol generation, the minimization procedure is 

stated as: 

 

 min max

Prot
,

arg min J ( )

 (6.4) 

 

where the arguments in the vector, , are the flow rate of the injection protocol (
^

injQ ) and the 

duration of the injection (
^

injT ),  

 

 
inj inj

ˆ ˆQ ,T

 (6.5) 

 

which parameterize the input function, equation (6.3).  

The minimization is bounded because upper and lower limits are placed on the injection 

flow rate and injection duration. The obvious lower constraint is non-negativity, but the upper 

limits are problem specific. For example, the maximum flow rate may be determined as a 

function of the intravenous catheter's inner diameter or the preference of the nursing staff. The 

maximum injection duration is a function of the maximum volume of contrast available in the 

syringe. Because the upper limit of flow rate and volume are dictated by clinical constraints and 

are user-configurable, the upper limit of the injection duration is the maximum volume divided 

by the minimum flow rate. The lower flow rate limit is set to 3 ml/s and the minimum injection 

duration is eight seconds. Injections at flow rates less than 3 ml/s are not appropriate for CTA 
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because they likely result in enhancements less than 250 HU for the majority of patients.  

Injection durations less than eight seconds at the lowest flow rate of 3 ml/s  also may result in 

contrast volumes equivalent to the test bolus. 

6.1.1.1 Visualization of the cost function The presence of local minima and discontinuities in 

the cost function should be investigated prior to conducting numerical experiments and to that 

end, a few surface plots of the cost function given by equation (6.1) were generated using 

simulated contrast enhancement data created with the hybrid PBPK model. The parameters of the 

input function ranged from 2 to 7 ml/s (for Qinj) in .1 ml/s increments and from 6 to 22 seconds 

in .5 second increments. Subject 6's demographic data from the clinical data set were used to 

generate contrast enhancement predictions, yLH(n), at each pair of injection flow rate and 

duration. The contrast enhancement targets and scan durations used to generate plots of the cost 

function space were 250HU, 350 HU target and 2 and 8 seconds respectively. These values 

represent typical upper and lower limits based on current CT scanning technology and clinical 

preferences.  Three dimensional surface plots of the four cases are presented in Figure 49 and 2D 

projections of the solution space are presented as contour plots in Figure 50. 

Inspection of the cost function surfaces show that even for one patient there is a wide 

variety in the morphology of the solution space as the procedural parameters vary. The 8 second 

scans display two minima but a well-defined global minimum. For the 2 second scan duration 

cases, the global minimum is distinct, but it lies in a long trough indicating potential difficulties 

for a numerical solver to reach the true global minimum. The long trough indicates there may be 

multiple pairs of injection durations and flow rates that can satisfy the target criterion (achieving 

the desire target contrast enhancement for an interval equal to the scan duration). These findings 
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influenced the development of the protocol generation methodology described in the next 

section. 

 

Figure 49 3D surface plots of the proposed cost function (6.1) using simulation 

data and different procedure characteristics.(a) Cost function for subject 6 with a 

250 HU target and a 2 second scan duration (b) Subject 6 cost function with a 250 

HU target and a 8 second scan duration (c) Subject 6 cost function with a 350 HU 

target and a 2 second scan duration (d) Subject 6 cost function with a 350 HU 

target and 8 second scan duration 
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Figure 50 2D Contour plots of cost function for subject 6 simulated data and the 

proposed cost function, (6.1). The cross indicates the true minimum of each 

projection. (a) Cost function for subject 6 with a 250 HU target and a 2 second 

scan duration (b) Subject 6 cost function with a 250 HU target and a 8 second 

scan duration (c) Subject 6 cost function with a 350 HU target and a 2 second 

scan duration (d) Subject 6 cost function with a 350 HU target and 8 second scan 

duration 
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6.1.2 Protocol Generation Algorithm 

As previously discussed, a robust contrast protocol generation algorithm should adapt to each 

subject and scan duration, allow a radiologist to select desired contrast enhancement targets, and 

ensure these targets are met at the beginning and end of the scan acquisition. It should also 

compute a patient-specific scan delay, satisfy the requirements within the parameter constraints 

of lower and upper bounds, and minimize the total volume of contrast. To achieve these goals, a 

numerical minimization scheme was developed using the cost function defined in (6.1) and (6.4) 

with an iterative procedure that adapts initial conditions and upper parameter bounds (when 

possible) and then tests the solution against the target enhancement goals. Implicit to the protocol 

generation technique is the use of a timing bolus to generate a patient-specific estimate of 

contrast enhancement. The general steps of the algorithm are: 

1. Inject the patient with a test bolus 

2. Process the timing bolus scan data to generate a patient-specific model of contrast 

enhancement (using the techniques in Chapter 5) using initial conditions in uinj 

* *

inj injQ ,T  

3. Given the desired target enhancement levels (HU) and scan duration, compute an 

injection protocol with a flow rate and duration that satisfies (6.4) 

Some parameters in the cost function (6.1) are determined by the preference of the 

radiologist (target contrast enhancement, MHU) and the procedure (scan duration, TsDur, 

maximum Volume, Vmax and flow rate, Qmax) while the time of maximum contrast enhancement 

(TPk) is determined by the predicted contrast enhancement and the input function, uinj(n).  
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Consideration must be given to the parameterization of TsDly because it is not easily 

defined by the radiologist or scanner operator. It is the time on the upslope of contrast 

enhancement ( Diag

LHŷ (n) ) when scan acquisition should commence and is a function of the time to 

maximum enhancement of the test bolus enhancement, Test

LHy (n) , measured in the left heart 

compartment (aorta). 

Because the test bolus has shorter injection duration than the full diagnostic injection, the 

time to reach maximum test bolus contrast enhancement should not be the time to start scan 

acquisition during the diagnostic scan. It is common practice to compute the scan delay for the 

diagnostic scan as the time of maximum enhancement from the test bolus TEC plus an offset 

term, TOffset. In the prior work of Kalafut et al. [41], TOffset was 4 or 6 seconds based on the 

duration of the scan. For short scans, a longer offset time is used in an attempt to position the 

short scan window on the peak of contrast enhancement. When the scan is long, the scan should 

start earlier to help ensure the peak and the target threshold values fit inside the scan window. 

Because the results in [41] were favorable using this scan timing approach, it was adapted for the 

current work and is expressed as: 

 

 
Test

sDly Pk OffsetT T T

 (6.6) 

 

where Test

PkT is the peak time of the test bolus TEC. TOffset is four seconds when the scan duration 

is longer than or equal to four seconds, and is six seconds for scan durations shorter than four 

seconds. A detailed algorithmic description is presented in Table 16. 
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Begin A: ESTIMATE PATIENT MODEL 

1. Use techniques in Chapter 5 based on test bolus data, Test

LHy (n) and 
Test

RHy (n) if using MLE technique 

2. Compute and store, Test

PkT from Test

LHy (n)  

End A 

 

Begin B: COMPUTE CONTRAST PROTOCOL 

1. Get and store: MHU, TsDur,VMax,QMax 

2. Set upper and lower limits on the parameter vector 

1. min 3 8  

2. max
max max

min

V
Q

Q
 

3. Initialize TOffset and φ 

1. If TsDur ≥ 4 sec 

2. TOffset = 4 sec 

3.  0 4.5 15  

4. else 

5. TOffset = 6 sec 

6.  0 5 13  

 

7. end If 

8. m =0 

9.  

4. while targetMet != true 

1. run minimization - (6.4) until convergence 

i. update 
inj inj

ˆ ˆQ T  

2. compute estimated enhancement using estimated patient 

model {θHe1D,θHe2D} or hest and uinj(t) with 
inj inj

ˆ ˆQ T  

3. Find ti s.t. 
Diag

LH i HUŷ t M  

4. Compute TD, time ≥ MHU from ti 

5. If TD ≥ TsDur 

i. update: TsDly = t1, the first element of ti 

ii. targetMet = true 

6. else 

i. increment m 

Table 16 Protocol Generation Algorithm 

ii. If m ≤ 5 

1. update: inj inj
ˆ ˆT T 1 

iii. ElseIf m > 5 & m ≤ 7 

1. If TOffset == 6 

a. TOffset = 4 

2. elseIf TOffset==4 

a. TOffset = 2 

3. end If 

jfkst21
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VMax is the maximum upper bound constraint for the minimization and is selected by the 

radiologist. Qmax is the maximum flow rate for the individual patient dictated by venous access or 

IV catheter gauge. Both Qmax and Vmax determine the upper constraint on the minimization 

routine. 

 

 

6.2 NUMERICAL EXPERIMENTS AND RESULTS 

A comparison with prior published results was made by implementing the Fleischmann and 

Hittmair algorithm and using test bolus enhancement data published in [9] as the input and 

output data. The same test bolus enhancement data was also used by the protocol generation 

algorithm in Table 16, and the contrast protocols generated with both methods were compared. 
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 Validation of the protocol generation algorithm presented here was performed using the 

same 20 simulated data sets created with the hybrid model in Chapters 4 and 5. Multiple 

combinations of scan durations and target enhancements defined the procedure data. The 

generated injection protocols from the numerical minimization and protocol algorithm were used 

as inputs for hybrid PK model simulations for each subject. The outcome was deemed successful 

if the contrast enhancement profile generated by the algorithm exceeded the target enhancement 

(MHU) for the duration of the scan, TsDur. 

 The algorithm was implemented and executed in MATLAB (R2008b) using the 

Optimization toolbox function fmincon as the numerical optimization method. The fmincon 

function performs nonlinear, constrained optimization as a Sequential Quadratic Programming 

(SQP) problem. SQP techniques break the larger problem into smaller, Quadratic Programming 

(QP) subproblems at each iteration of the solver. The method uses a line-search technique ( an 

approximation of the Hessian is made at each iteration and a quasi-Newton method updates the 

Lagrangian) and a merit function to solve each subproblem. More details of the solver may be 

found in [62].  

The solver specific constraints were: convergence tolerance on the parameters (TolX) = 

1E-4, convergence tolerance on the function (TolFun) = 1E-4, minimum increment for the finite 

difference subroutine (DiffMinChange) = .01, maximum increment for the finite difference 

subroutine (DiffMaxChange) = 2.0, and the maximum number of function evaluations at each 

iteration was 400. The maximum number of iterations (maxIter)was set at 100. 
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6.2.1 Comparison to Fleischmann and Hittmair 

An implementation of (2.13) through (2.18) was made in MATLAB using the published test 

bolus enhancement data (as numerically tabulated in an Appendix of [9] ) and desired 

enhancement levels. The test bolus-enhancement response from a human subject (enhancement 

values reported in [9]) is presented in Figure 51 and was used to generate contrast protocols. The 

test bolus enhancement response is typical of short bolus injections measured at the descending 

aorta by a CT scanner. The desired enhancement was defined as a level of 200 HU starting at the 

peak of the test bolus enhancement. An increasing ramp ranging from 0 to 200 HU and a 

decreasing ramp from 200 HU to 0 were added to the leading and trailing edges of the desired 

enhancement profile to generate a trapezoidal enhancement profile. The slope of the leading and 

trailing ramps matched those from [9].  

 

 

Figure 51 Sample test bolus response measured in a subject in the descending 

aorta as presented in [9] 
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Figure 52 presents computed injection protocols using the Fleischmann/Hittmair 

technique. Figure 52-A shows the raw protocol computed by the algorithm. The injection 

protocol is negative in sections and exceeds flow rates commonly employed, especially when 

viscous (13 –20 cPoise), high Iodine concentration contrast agents are administered. Figure 52-B 

is the same computed protocol, but with negative flow rates truncated to zero. Figure 52-C and 

D present the computed protocol with the maximum flow rate set at 7 ml/s (arbitrarily). Protocols  

C and D truncate the input protocol at different sample points as explained below. 

The time to peak enhancement in the test bolus enhancement of Figure 51 is 14 seconds 

and the transport delay, or contrast propagation time, for the contrast to arrive in the vessel 

(ascending aorta) is approximately 8-10 seconds. The contrast propagation time limits the 

contribution of contrast in the injection protocol for samples less than 10 seconds prior to the end 

of the scan. The protocol in Figure 52-C is truncated at 34 seconds whereas D is truncated at 32 

seconds.  

A trapezoidal, numerical integration was used to compute the total volume of contrast in 

each injection and the volumes are annotated in Figure 52 A-D. These contrast volumes were 

computed to serve as a basis of comparison to the techniques presented in this dissertation. The 

total contrast volume decreased as the protocols were modified, but there is clearly arbitrariness 

in the approach taken to generate these results [9]. Fleischmann and Hittmair do not propose an 

optimization algorithm to minimize the contrast volume. 

Predicted enhancement profiles using the estimated impulse response from Fourier 

deconvolution (using Fleischmann and Hittmair's technique) and the computed protocols of 

Figure 52 are shown in Figure 53 A-D The smallest residual between predicted and desired 

enhancement is for protocol A and the most for protocol D. 
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A contrast protocol was also created, using the same test bolus and procedure data, with 

the algorithm described in Table 16. Because only one test bolus curve is presented in [9], the 

tSVD methodology was used to identify the patient model. The resulting contrast enhancement 

curve, superimposed on the desired 30 second scan duration, is shown in Figure 54. The contrast 

volume computed by the algorithm, to achieve the desired enhancement target was 114.9 ml, at a 

flow rate of 4.1 ml/s. The volume is 20 ml less than that of the lowest volume prediction from 

the Fleischmann-Hittmair algorithm (Figure 52-D) and doesn't require modulation of the flow 

rate over time which could lead to undesired contrast bolus broadening in the peripheral 

vasculature. 
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Figure 52 Computed injection protocols using the Fourier deconvolution method 

described in [9],Ts=2 sec/image. The total contrast volume of the injection is 

listed in each subfigure. (A) Raw protocol. Because the injection flow rate is 

allowed to be negative, the total contrast volume is lower than B-D. (B) Non-

negative protocol (C) Non-negative protocol clamped at 7ml/s and injection 

commands at time > 34 sec removed (D) Same protocol as C but samples post 32 

seconds removed. 
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Figure 53 Predicted (blue) and desired (green) enhancement levels generated with 

the injection protocols presented in  (A) Ideal enhancement profile using the raw 

protocol (B) Enhancement generated with non-negative injection protocol (C) 

Enhancement when non-negative injection is clamped to 7ml/s and injection is 

not allowed post 34 seconds (D) Enhancement profile as in C but with samples 

ignored after 32 seconds. 
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Figure 54 Comparative result between desired enhancement profile(solid line) 

and the predicted enhancement using the protocol generation algorithm in Table 

18 (dashed line). A contrast volume of 115 ml and a flow rate of 4.1 ml/s was 

computed by the algorithm to generate the enhancement profile shown in the 

figure. The desired scan duration was 30 seconds. 
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6.2.2 Hybrid PBPK Model Simulations and Results 

The protocol generation algorithm was tested under realistic conditions using 20 simulated data 

sets generated with the hybrid PBPK model. Subject demographic (height, weight, sex, age) data 

were identical to those from the retrospective clinical data set used in previous chapters. The 

physiologic parameter relationships defined in Table 1- Table 2 were used to set the parameters 

of the hybrid model for the simulation runs. For each subject, the model was executed 

(simulation sample period = .01 sec/sample) with a 20 ml test bolus (with a 40 ml saline flush 

phase) at 5 ml/s as an input function and the corresponding test bolus TECs (
Test Test

RH LHy n , y n ) 

were down-sampled. To better resemble clinical test bolus TECs, the vectors were windowed at 

5 seconds (relative to the origin) and truncated at 25 seconds. Also, zero-mean AWGN with 

standard deviation of 1 HU was added to both TECs. 

After the test-bolus enhancement curves were generated, they were used as the input and 

output data for the MLE algorithm developed in Chapter 5.1. The parameterized patient-specific 

model parameters ( He1D He2D
ˆ ˆ, ) were used by the protocol generation algorithm defined in Table 

16. For a protocol generation algorithm to be effective, it must accommodate different procedure 

specific parameters and constraints. Therefore, the simulated data were used to generate injection 

protocols under a combination of procedure settings. All 20 subjects were simulated and tested 

with desired target enhancements (MHU) of 250 HU, 300 HU and 350 HU which span the range 

of minimally accepted vessel contrast enhancements [63] considered acceptable for 

cardiothoracic CTA [61]. At each enhancement target value, experiments were conducted at scan 

durations of 2, 4 and 8 seconds. These ranges of scan durations are typically encountered when 
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performing cardiothoracic CTA scanning procedures with modern MDCT scanners (64, 128, 

256, 320 slice and dual-source). The maximum flow rate, Qmax, was 7 ml/s and the maximum 

volume, Vmax, was 150 ml for all subjects. The minimum flow rate in all experiments was 3 ml/s 

and the minimum injection duration was set to 8 seconds. These values were chosen because it is 

generally accepted that CTA below 3 ml/s is not feasible and contrast bolus durations less than 8 

seconds result in smaller than desired bolus volumes at the minimum flow rate of 3 ml/s (21 ml, 

for example). 

The performance of the protocol generation algorithm was assessed by using the 

computed injection protocol as an input signal to the hybrid PK model. Upon simulation of the 

model with the calculated injection protocol, the duration of enhancement greater than the 

desired MHU was recorded. The enhancement durations were compared to the scan duration for 

each experimental set and success was defined as enhancement greater than the target for the 

specified scan duration. Because of rounding errors (mostly introduced by the downsampling of 

the TECs to 1 sec/sample) and other random effects, acceptability was extended to scan duration 

plus/minus .5 seconds. A flowchart of the experimental configuration is presented in Figure 55. 
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Initialize the hybrid PK model 

Compute simulated test bolus enhancements,yLH(n) and yRH(n)

Estimate patient model with MLE or tSVD  technique

Compute diagnostic contrast protocol via non-linear, constrained 

optimization algorithm in Chapter 6

Simulate diagnostic injection protocol with computed protocol

enhancement ≥ 

target window?

Clinical data Set 

– subject 

demographics

Scan Duration, Target 

Enhancement, 

Max Volume and flow 

rate

Model 

Parameters

 

Figure 55 Illustration of protocol generation validation experiments. 

 

An example of a typical result from the experimental data set is shown in Figure 56. In 

this instance (subject 8 from the clinical data set), the scan duration was 4 seconds and MHU was 

300 HU. The algorithm computed a diagnostic injection protocol of 4.52 ml/s for 15 seconds 

(67.8 ml of contrast) and resulted in a hybrid model TEC exceeding the target enhancement for 

the scan duration. 
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Figure 56 Hybrid model simulation result using Subject 8 data and injection 

protocol computed with methods presented in this chapter.  The dot-dashed TEC 

(peaking at ~ 130 HU) is the Left Heart test bolus enhancement curve. The dashed 

TEC was generated with the injection protocol (flow rate 4.52 ml/s. 67.8 ml, 15 

sec), visualized by the solid rectangle at the bottom left of the figure (flow rate 

multiplied by 10). The dot-dashed horizontal line intersecting the top of the 

diagnostic TEC is the target enhancement MHU of 300 HU. The two solid, vertical 

lines represent the scan duration window, starting at TsDly computed by the 

algorithm and lasting for 4 seconds.  
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Two summary plots displaying time exceeding the target enhancement, MHU, across the 

20 simulated subjects are presented in Figure 57 and Figure 58.  

 

 

Figure 57 Enhancement values greater than the 350 HU target for the scan 

duration plotted  for all 20 simulated subjects. The horizontal, dashed line at 2 

seconds is the scan duration for all runs. 
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Figure 58 Enhancement values greater than the 250 HU target for the scan 

duration plotted for all 20 simulated subjects. The horizontal, dashed line at 8 

seconds is the scan duration for all runs. 

 

In both figures, the horizontal dashed line represents the scan duration for the particular 

experiment. In Figure 57, the scan duration was 2 seconds and the target enhancement was 350 

HU. For all 20 subjects, the enhancement exceeded MHU for the scan duration (starting at the 

computed scan delay, TsDly).  

 Figure 58 shows the results of all twenty subjects tested when the scan duration was 8 

seconds and MHU was 250 HU. In this experiment, two subjects had resulting enhancement times 

slightly less than the target (subject 3 – 7.8 seconds, subject 8 – 7.6 seconds), but were within the 

tolerance stipulated. The other subjects had resulting enhancement curves greater than or equal to 

the scan duration and, in some instances, with excess enhancement sample time. Compared to 
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the two second scan duration and 350 HU target results, however, it appears that the optimization 

resulted in more efficient (minimum flow rate and injection duration) protocols. Tabulated 

results for all the experiments, including summary statistics of the computed diagnostic injection 

protocols (flow rates, volumes) are shown in Table 17. 

 

Table 17 Summary results from protocol generation experiments. Each row 

represents 20 simulations of the hybrid PK model at the procedure targets defined 

in the first two columns. 

MHU [HU] Scan Duration [sec] Mean Vol [ml] Mean Flow [ml/s] Mean Dur [sec]
Mean t > scan Dur 

[sec]
n > scan Dur & MHU

350 2 sec 69.1 5.16 13.4 5.8 20

350 4 sec 69.3 5.26 13.2 6.2 20

350 8 sec 76.0 4.75 16.0 8.1 20

300 2 sec 54.3 5.28 10.3 5.5 20

300 4 sec 55.1 4.78 11.5 5.8 20

300 8 sec 62.8 4.15 15.1 8.3 20

250 2 sec 43.6 4.91 8.9 9.9 20

250 4 sec 43.8 4.37 10.0 6.3 20

250 8 sec 53.7 3.59 15.0 8.6 20

Injection Protocol Statistics (350 mgI/ml) Summary Output CriteriaTargets

 

In all of the experimental cases, the non-linear optimizer found a feasible solution and converged 

to a solution. The average execution time for each subject's estimation and protocol optimization 

was 5.6 +/- 1.2 seconds (Pentium III PC, windows XPPro, 2 GB RAM).   

6.3 DISCUSSION 

Testing of the protocol generation algorithm using the hybrid PK model validated the technique 

as robust across different patient types and procedure settings. The results in Table 17 reveal 
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trends consistent with contrast enhancement principles. For example, the injection duration and 

contrast volume increase as scan durations increase for each target enhancement group. Also, as 

the scan durations decrease, the computed flow rates increase, which is expected because with 

short acquisitions, the scan duration should be positioned near the peak of contrast enhancement. 

One can achieve greater peak enhancement by injecting with a short duration at a high flow rate.   

In the results shown in Figure 57, the target enhancement was exceeded by a few 

seconds in all cases. These results could indicate that for short scan durations, the cost function 

might be modified to result in shorter injection duration. Also, for short scan durations, the 

positioning of the scan duration on the enhancement curve could be reconsidered. For example, 

the TsDly could be set as the Tpk minus one half of the scan duration.  This approach will not 

produce ideal results, however, when scan times are 8 seconds or longer because the TEC 

morphology tends to become skewed (to the right) for longer injection durations. 
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7.0  CARDIOVASCULAR FLOW PHANTOM 

This chapter presents a physical, circulatory model designed to mimic the transport and 

distribution of radiographic contrast material through the mammalian circulatory system. The 

primary features of the model (or phantom) are: it recreates hemodynamic conditions in ranges 

similar to humans, it allows for the injection of contrast material, it is radio-opaque and it can be 

used both in the laboratory (using near-IR dye) and in a CT scanner. The phantom was used to 

test the methods developed in Chapters 5 and 6, and the results are reported here. 

An overview of the phantom is presented followed by characterization study results 

demonstrating performance equivalency between use in a CT scanner and when near Infrared 

sensors in the laboratory measured dye injected through the phantom. Finally the results from 

prospective experiments validating the contrast prediction and protocol generation algorithms 

(chapters 5 and 6), performed in the laboratory, are presented. 

7.1 BACKGROUND 

Awai et al. published a feasibility study using a custom circulation phantom [16] to demonstrate 

and validate basic principles of contrast medium injection. Their model did not contain a 

separate pulmonary circulation system with physiological venous and arterial pressures, did not 



179 

 

mimic the delicate anatomy of the coronary artery tree, did not simulate the pulsatile nature of 

the heart, and did not provide a means to interface with a scanner's ECG triggering system. The 

Awai phantom also did not mimic physiologic hemodynamic parameters such as diastolic and 

systolic blood pressure. Repeated injections of contrast demonstrated that the model was 

adequate to replicate the contrast enhancement pattern of the abdominal aorta at CTA [16], 

however. 

To better characterize the dynamics of early-phase contrast enhancement in the 

cardiothoracic vasculature, to improve upon the work of Awai, and to validate the novel, patient 

specific contrast protocol generation method developed in Chapter 6, a new flow phantom was 

developed. The following list enumerates the phantom's characteristics: 

 configurable cardiac output, heart rate, stroke volume, blood volume  

 accurate transport delays of the injected bolus 

 accurate dilution of the contrast media through the cardiopulmonary circuit 

 the ability to interface an ECG signal to the scanner 

 accurate motion of the coronary tree 

 pressures and flow rates within the physiologic realm and responsive to changes 

in the driving function 

 pulsatile blood flow and heart rate 

Details of the phantom have been presented by Kalafut et al in [64] and published by Behrendt et 

al. in [65], but a summary of the phantom and design is presented in the next section. 

Experiments conducted for this dissertation are then presented in subsequent sections. 
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7.2 PHANTOM TOPOLOGY/STRUCTURE 

The flow phantom consists of a lung and a body circulation with an anatomically accurate replica 

of the aortic arch, the coronary arteries, and the thoracic aorta. Other components of the phantom 

include connecting tubes emulating the systemic vasculature, a water filled acrylic container, 

pressure and flow meters and a height-adjustable setup of the fill and drain compartment for 

adjusting the arterial and the venous pressure to different values.  

A pulsatile Harvard medical heart pump (BS4, Harvard Apparatus, Holliston Mass) acts 

as the system's heart. The pump can be configured to deliver stroke volumes of 15 to 100 ml, 

heart rates from 10 to 100 bpm, and systolic/diastolic ratios from 35% to 50% full cycle. The 

pump was designed to safely administer blood or a blood emulant (like a glycerin and water 

mixture), but distilled water was chosen as the blood emulant in this research because of the 

large size of the vessels and the interest in modeling the macroscopic behavior of the contrast 

media's convective transport.  

The pump was modified to generate a trigger signal at the end of full piston displacement. 

A micro-switch drives a MOSFET circuit that intercepts the ECG signal on a commercial ECG 

simulator (ECG Plus, Bio-Tek Inc., Winooski, Vermont USA). This circuit entrains the ECG 

rhythm to the pump – including an R-R interval to match the Harvard pump's duty cycle. The 

drive circuits of the ECG simulator were not modified so that standard 3 or 5 lead ECG sets from 

the scanner could record the synthetic ECG signal. The ECG trace is used by the scanner when 

scanning structures that move with the cardiac cycle and is used in the retrospective 

reconstruction of the cardiac data sets. 
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An off the shelf, silicone coronary tree model (Elastrat Model T-S-N-002, Shelley 

Medical Inc., London, Ontario Canada) emulates the human cardiovascular anatomy. It is the 

structure within the black box of Figure 59. The cardiovascular model includes a compliant, 

ascending aorta and arch, and the left and right coronary arteries. An additional silicone tube 

emulates the thoracic aorta. An image of the phantom system is in Figure 59. 

 

 

Figure 59 Picture of the cardiovascular phantom system and labels annotating the various 

sections of the model. The thick white arrow (with black edges) points to the pulmonary trunk 

structure fabricated for the phantom and the thick black arrow points to the thoracic aorta model. 

 

The standard coronary and aortic arch model developed by Shelley Medical was modified 

to allow a pulmonary artery to cross the cardiac anatomy (thick white arrow in Figure 59 and 

Figure 60) to enable the acquisition of single-level, axial scans mimicking the contrast 

enhancement pattern at the pulmonary trunk in the human vascular system. Figure 60 displays an 

Peripheral Pulmonary 

Aortic Arch Aorta 

Coronaries 
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axial CT image acquired with a 64 slice MSCT scanner (VCT, General Electric Healthcare, UK) 

displaying the pulmonary artery in relation to the emulated ascending and descending aorta. This 

configuration is essential when developing and testing contrast protocol injection techniques 

requiring TEC information from the pulmonary vasculature and the aorta, as with the MLE 

methodology for estimating patient specific contrast propagation models. To mimic the X-Ray 

absorption of the chest, distilled water filled the Plexiglas chamber holding the aortic arch and 

coronary vasculature. 

 

 

Figure 60 CT cross section of the phantom showing the ascending aorta (black arrow) and the 

pulmonary trunk (white arrow). 
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Contrast medium (or emulant) is administered into the phantom through an injection port 

via a commercially available i.v. catheter (size 18 G) and is transported through a peripheral 

venous compartment, consisting of tubing more compliant than that used in other parts of the 

phantom. The water and the contrast medium then circulate through the simulated pulmonary 

artery, the heart pump, the lung compartment, the aortic arch compartment (including the 

coronary arteries with direct reflow into the pulmonary system), the descending aorta 

compartment, and lastly the body compartment. The contrast and water mixture then recirculates 

back through the model. A diagram of the main compartments included in the model and the 

corresponding fluid volumes is given in Figure 61. The coronary arteries are configured to drain 

into a location proximal to the Pulmonary Vascular compartment similar to how the coronary 

arteries actually drain into the right heart via the coronary sinus in mammalian hearts. The total 

volume through the coronary artery return circuit, however, is less than 100 ml. 
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Figure 61 Topology of the cardiovascular phantom. The fluid volume in each compartment is 

annotated in each block. 
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To control the inlet pressure at the injection site, the injection port was placed on a lab 

stand. The variable height of the injection port above the phantom and the introduction of 

compliant tubing between the injection port and the inlet of the pump allows for control of the 

venous pressure. The pressure was set at physiological values with a mean venous pressure of 15 

mmHg and an arterial pressure of 125/75 mmHg for all experiments.  

The phantom is instrumented with two pressure transducers (Omega pressure transducers, 

PX35D, Omega Inc, Stamford Connecticut USA). One transducer is placed in the low pressure 

portion of the model, and the second transducer is located in the high pressure region. 

Instrumentation of the phantom's flow rate is made by in-line, ultrasonic transducers (Transonic 

Inc., New York USA). The pressures and flow-rates are continuously monitored and acquired 

using LabView (NIDAQ, National Instruments, Austin Texas USA) Data Acquisition hardware 

and software during experiments. 

To reduce the necessity of requiring a CT scanner while testing protocol generation and 

identification concepts, custom-engineered and built near Infrared (nIR) sensors were used to 

measure the concentration of an X-Ray contrast agent emulant. The contrast emulant used is a 

water soluble nIR dye, a prototype dye manufactured by Fuji Fillm Inc., provided in sample 

quantities. The sensors consist of an LED and phototransistor pair that resides in an enclosure 

through which a tubular segment of the model passes. nIR photons pass axially through the 

tubing and are measured by the phototransistor on the opposite side.  

Attenuation of the photons by the water and nIR mixture flowing through the tube is 

described mathematically by the Beer-Lambert law, which states that the transmission of light 

through material has a logarithmic dependence on the product of the absorption coefficient and 

the path-length of the light. For substances in liquid, the absorbance coefficient is the product of 
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the molar absorptivity and the concentration of the species. Due to this relationship, the 

concentration of the nIR at locations in the phantom model can be calculated by transforming the 

voltage of the phototransistor opposite from the nIR LED. One sensor pair is clamped onto a 

tube just proximal to the pulmonary vascular segment and another is clamped onto a tube 

segment proximal to the aortic arch compartment. The outputs from these sensors provide 

analogues to the X-Ray TECs measured by a CT scanner in the pulmonary artery and aortic 

segments of the phantom. 

 

7.3 EXPERIMENTAL METHODS 

Several experiments were designed and conducted to characterize the behavior of the contrast 

agent distribution through the phantom, to demonstrate equivalence between TEC generation via 

the nIR dye methodology and data measured from a CT scanner, and to provide validation of the 

methods developed in Chapters 5 and 6. 

 

7.3.1 Phantom Linearity Validation 

X-Ray contrast bolus morphology and transport through the phantom was investigated via 

several injection and imaging experiments designed and conducted with a 64 Slice CT scanner 

(Lightspeed 64 VCT, GE Healthcare, Chalfont U.K.). Bae et al [7] demonstrated the linear time 



186 

 

invariant properties of contrast pharmacokinetics with respect to injection duration. It is expected 

that for a linear system, the contrast enhancement pattern resulting from an injection of a long 

duration (measured at one-level in the vasculature) should be a linear superposition of injections 

with shorter durations.  

The linearity experiments performed by Bae with pigs were replicated with the phantom 

via bolus injections using a power injector (Stellant D, MEDRAD Inc, Pittsburgh PA USA) and 

measurement of the resulting enhancement pattern at a fixed level in the model (the pulmonary 

trunk). Bolus injections of iopromide 370mgI/ml (Ultravist 370, Bayer Schering Pharmaceutical, 

Berlin Germany) lasting 5, 10 , 15 and 20 seconds were injected at a flow rate of 4 ml/s. The 

pump generated a cardiac output of 4.5 L/min (heart-rate of 60 bpm, stroke volume of 75 ml). 

Scan acquisition started 5 seconds after the beginning of contrast delivery and lasted for 45 

seconds. TECs were manually created by a custom program in MATLAB that opened the CT 

scanner DICOM data. Offline analysis of the image data consisted of drawing a 1 cm ROI over 

the phantom's "ascending aorta", and software extracted the intensity average at each image. The 

TEC was constructed by combing the resulting data points into one vector per image data set. 

7.3.2  Demonstration of equivalence between CT and nIR Injections 

Before using the phantom and the nIR dye and sensors to validate the methods developed in this 

dissertation, equivalency testing of the nIR sensors was performed. The goal of the 

experimentation was to compare the phantom response after injection of nIR dye to TECs 

measured with a CT scanner and X-Ray contrast, using identical injection protocols (flow rates 

and volumes of the contrast) and pump settings. 
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The CT experiments were conducted on a 64 slice CT scanner (Lightspeed 64 VCT, 

General Electric Healthcare, Chalfont U.K.) at the University of Pittsburgh Medical Center. 

Contrast with a concentration of 370 mgI/ml (Ultravist, Bayer Schering Pharmaceuticals, Berlin) 

was used in the CT experiments. Twenty milliliters of contrast were injected into the phantom 

through an 18 Ga peripheral IV catheter at a flow rate of 4 ml/s and followed with a 20 ml saline 

flush with a CT power injector (Stellant D, MEDRAD Inc., Pittsburgh PA). Three injections 

were performed and TECs were obtained from a ROI placed on the ascending aorta of the 

phantom. The average of the three TECs was used to compare against the lab/nIR data. 

Calibration of the nIR sensors was performed prior to comparing the CT experimental 

data with the nIR data. A stock solution of the nIR dye (Fuji Film) was prepared in a 

concentration of 10mg of dye per ml of distilled water. Eight aliquodts, made from a 5 cm 

section of phantom tubing with plugs on both sides, were filled with diluted nIR in the following 

concentrations: .016 mg/ml, .032 mg/ml, .063 mg/ml, .125 mg/ml, .250 mg/ml, .500 mg/ml, 1.00 

mg/ml and 2.00 mg/ml. Voltages from the phototransistor circuit were recorded while the nIR 

LED diode (sourced at 10mA) was energized over 5 second measurement blocks. The nIR 

concentration values, along with 0 mg/ml concentration solution and a blocked light beam, were 

plotted against the mean voltages measurements. The resulting concentration versus voltage 

curve was the calibration curve used to convert sensor voltage readings into concentration units 

for the equivalence experiments and the other laboratory experiments described below. 

TECs were constructed using the operational curve generated during the calibration step 

and voltages recorded after three, 20 ml injections of  1mg/ml nIR dye (followed by 40 ml of 

saline) at 4 ml/s using a CT power injector (Stellant D, MEDRAD Inc., Pittsburgh PA). The 

sensors were positioned on the pulmonary vascular compartment proximal to the aortic arch 
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compartment as previously described. For all experiments, the Harvard pump was set to generate 

a cardiac output of 4.5 L/min (50 bpm, 90ml stroke volume) through the phantom. Five liters of 

water was added to the phantom and refreshed between each injection experiment. An average 

enhancement profile was compute across the three injections and compared to the mean TEC 

measured with the CT scanner. Quantitative and qualitative comparisons of the data were made. 

7.3.3 Contrast Enhancement Model Prediction Validation 

The phantom was used to validate the data-driven methodology for predicting contrast 

enhancement using test bolus data. The ability of the tSVD method to predict enhancement using 

a 20 ml test bolus was tested by comparing predicted outputs against enhancement data measured 

in the phantom for 40ml, 60 ml, and 80 ml injections (1mg/ml dye used for all injections and a 

20 ml saline flush followed all injections). In preliminary investigations, it was determined that a 

reliable pulmonary artery TEC could not be consistently measured with the nIR sensor. It was 

decided, therefore, to restrict the testing in this section to the tSVD method. The protocol 

generation algorithm is independent of the methodology used to identify the contrast dynamics 

so using the tSVD was justified. The injection flow rate was 4 ml/s for all the injections. The 

same power injector used in the previous experiment injected the nIR dye into the phantom 

through an 18 Ga catheter. The pump generated a cardiac output of 4.5 L/min, and 5.0 L of water 

filled the phantom. Between each experiment, the water was cleared of nIR dye and refreshed. 

Calculation of the RMSE between the predicted and measured data at each injection volume 

were computed and reported.  
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7.3.4 Patient Specific Contrast Protocol Creation Validation 

The last set of experiments were designed to test the ability of the protocol generation algorithm 

developed in Chapter 6, independent of hemodynamics, to create injection protocols that achieve 

preset enhancement targets over a specified scan duration. In these experiments, different 

patients were approximated by varying the pump cardiac output and blood volume in the 

phantom.  

In the first three experiments, the protocol generation algorithm's ability to produce 

desired enhancement targets on three different simulated patients was tested. In each case, TECs 

in the ascending aorta were recorded after the injection of a 20 ml test bolus followed by 40 ml 

of saline, injected at 4ml/s. The TEC data were processed by the protocol described in Chapter 6 

(the tSVD method used to predict the enhancement) using a desired target enhancement of .07 

mg/ml for 2 seconds. Because HU values reflect the concentration of the Iodine in the 

vasculature, the concentration of the nIR in the phantom was chosen as the target goal in these 

experiments, absent an equivalent HU measurement scale for the nIR sensors. In between each 

experimental run, the fluid in the phantom was exchanged with fresh water. 

In the next three experiments, the cardiac output of the phantom and the desired targets 

varied for each case. These experiments were conducted to demonstrate the ability of the 

protocol generation algorithm to generate a desired enhancement independent of the patient 

cardiac function and when the desired enhancement targets and scan duration targets varied.   

Table 18 presents the configuration settings of the phantom for the protocol generation validation 

experiments. 
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Table 18 Phantom settings during the protocol generation validation experiments – set 1 

Simulated 

Patient 

Heart 

Rate 

[min
-1

] 

Stroke 

Volume 

[ml] 

Cardiac 

Output 

[L/min] 

Blood 

Volume 

[L] 

Desired Target 

Concentration 

[mg/ml] 

Desired Scan 

Duration [sec] 

1 50 80 4.0 5.0 .07 6 

2 50 70 3.5 4.5 .07 6 

3 50 60 3.0 5.0 .07 6 

4 55 80 4.4 5.0 .06 8 

5 45 80 3.6 4.5 .08 4 

6 50 60 3.0 5.0 .07 6 

 

 

 

7.4 RESULTS 

The data collected from the experiments are presented in this section. Figure 62 shows the 

contrast enhancement response of the phantom (as measured with a CT scanner and 370 mgI/ml 

contrast) for increased injection bolus durations. The additive effect of the enhancement profile 

as a function of the injection duration is appreciated by inspection. As the injection duration 

increases, the time of maximum contrast enhancement also increases. These response data 

demonstrate the same features as Bae et al. measured in the porcine models under similar 

injection conditions [4]  
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Figure 62 Plot displaying additive linearity response of phantom when injected 

with contrast material and measured with a CT scanner 

 

The results from the equivalency experiments are presented in Figure 63 and Figure 64. 

In Figure 63, the three TECs recorded by the aortic inlet nIR sensor are superimposed with the 

mean TEC of those three injections at 4 ml/s (20 ml, 1 mg/ml). All three injections produced 

similar TECs as evident by the overlap of all the curves and the mean. 

Figure 64. presents the mean of the three TECs generated by the CT scanner along with 

the mean TEC from the nIR sensors (aortic compartment used to generate the data in both cases). 
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The power injector injected the same volume at the same flow rate for the lab and CT 

experiments. The pump was also set to the same values for both experiments. Each curve was 

normalized by its own maximum value. The absolute magnitude comparison is not of particular 

relevance for this experiment, but rather the width of the enhancement curve and the arrival time 

are of interest. The mean TECs are very similar in width and arrival, with the exception of the 

CT TEC's initial upslope enhancement being slightly more concave than the nIR data. 

 

 

Figure 63 Plot of the mean (solid line) and curves from three separate injections 

of 20 ml nIR dye into the phantom in the laboratory 
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Figure 64 Plot of mean response from three injections of nIR dye (20 ml at 4 

ml/s) in the lab to results measured with a CT scanner after injection of 20 ml of 

370 mgI/ml contast at 4ml/s. The hemodynamic settings of the pump and 

phantom were identical for all experiments. 

 

Results from the experiments testing the tSVD method's ability to predict arbitrary 

injection profiles based on test bolus data are displayed in Figure 65. There was good agreement 

between the predicted TEC and the curve measured in the phantom for all injections. The RMSE 

for the 20 ml experiment was .0003, for the 40 ml experiment it was .0027, for the 60 ml 

experiment it was .0029 and .0009 for the 80 ml injection.  
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Figure 65 Results of phantom experiments testing the tSVD method to predict contrast enhancement. In 

each subplot, the measured data are annotated by x's connected with a solid line(x-), and the predicted 

enhancements are plotted with a dashed line (--). The flow rate was 4ml/s for all injection and the nIR dye 

had a concentration of 1mg/ml in the syringe. (a) predicted and measured aortic enhancement for 20 ml 

injection (b) predicted and measured aortic enhancement for 40 ml injection (c) predicted and measured 

aortic enhancement for 60 ml injection (d) predicted and measured aortic enhancement for 80 ml 

injection.  
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Tabulated results of the experiments validating the patient specific protocol generation 

algorithm are presented below. The computed flow rate and volume of the diagnostic injection to 

achieve the desired enhancement target over the desired scan duration are given. Also presented 

in the table is a binary response (yes or no) indicating if the enhancement TEC produced by the 

injection protocol achieved the specified goal for that experiment (the desired enhancement 

target for the duration of the scan). 

 

Table 19 Results from the experiments in set 1. The parenthetical values in the "Goal 

Achievement" column are the desired enhancement target and the scan duration. 

Experiment # Computed 

Flow Rate [ml/s] 

Computed 

Volume [ml] 

Goal Achievement? 

1 5.1 66 Yes (.07,4) 

2 4.7 61 Yes (.07,4) 

3 4.9 64 Yes(.07,4) 

4 5.0 65 Yes (.06,8) 

5 4.0 60 Yes (.08,4) 

6 4.8 72 Yes(.07,6) 

 

 The results for experiments 1-3 are given in Figure 66. The measured enhancement in the 

aorta matched the predicted enhancements very well. The protocols computed by the generation 

algorithm resulted in enhancement exceeding or equaling the target in all three instances. Figure 

67 presents the results for experiments 4-6. The computed protocols resulted in measured 

enhancements that exceeded the goal in each instance. 
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Figure 66  Predicted (dashed curve) and measured TECs (solid curves) from injections into the phantom 

for experiments 1 -3. The vertical lines in each subplot indicate the scan duration window, starting at the 

scan delay value computed by the algorithm. The horizontal dashed line indicates the desired 

enhancement target for the experiment. The text annotation (sec > target = x)  in each subplot presents the 

duration of each curve greater than the target enhancement  (a) experiment 1 results (b) experiment 2 

results (c) experiment 3 results. 
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Figure 67 Predicted (dashed curve) and measured TECs (solid curves) from injections into the phantom 

for experiments 4-6. The vertical lines in each subplot indicate the scan duration window, starting at the 

scan delay value computed by the algorithm. The horizontal dashed line indicates the desired 

enhancement target for the experiment. The text annotation (sec > target = x) in each subplot presents the 

duration of each curve greater than the target enhancement  (a) experiment 4 results (b) experiment 5 

results (c) experiment 6 results. 
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7.5 DISCUSSION 

In this chapter, a cardiovascular flow phantom for validating contrast enhancement prediction 

techniques was presented. In addition to several characterization experiments, the phantom was 

used to validate the contrast enhancement prediction methodology described in Chapter 5 and the 

patient specific contrast protocol generation algorithm described in Chapter 6. CT scanning of 

the phantom after injection of X-Ray contrast material with increasing injection durations 

generated enhancement profiles similar to those measured in a porcine model by Bae et al. A 

trend of increasing time to maximum contrast enhancement was noted, similar to the trend 

recorded in pig models and also reported in human studies by Awai et al [8]. 

The nIR sensors and dye were shown to replicate the behavior of a CT scanner and 

contrast system, thus allowing the phantom to be injected and measurements to be made in the 

lab. The laboratory testing reduced the need to test the developed patient specific contrast 

enhancement methods on an actual CT scanner. A practical limitation of clinical CT scanners is 

the ability to export the test bolus TEC during a procedure to a computer system capable of 

executing the algorithms developed in this research. The test bolus scan data used throughout 

this research were all obtained "offline", after the test bolus scan was performed and the scanner 

operator saved the TECs to a fixed hard drive within the scanner. Because of this limitation, the 

laboratory setup was critical for testing the algorithms in a physical simulator. 

The tSVD method was used to validate the data-driven methodology for predicting 

contrast enhancement because long segments of the TEC could be measured. It was chosen 

because of limitations in the sensor characterization and measurements in the pulmonary trunk. 

Once those limitations are overcome, it is expected that the MLE methodology for predicting the 
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contrast enhancement in the phantom will be applicable and should be undertaken in future 

work. Because of the sensor limitation, validation of the protocol generation algorithm was also 

performed using the tSVD method to identify the patient model. As mentioned, the protocol 

generation algorithm functions independently of the method used to estimate the contrast 

enhancement dynamics so it is not expected that its performance, in the phantom, will differ 

when the MLE method is perfected with the phantom. 
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8.0  CONCLUSION 

Four primary contributions are presented in this dissertation. 1)  A new Physiologically Based 

Pharmacokinetic model (hybrid model) for X-Ray contrast medium that is a hybrid of Bae et al.'s 

PBPK model and Wada and Ward's PBPK model of alfentanil propagation. 2)  Data-driven 

techniques for predicting contrast enhancement on a per-patient basis were developed. 3) A 

novel algorithm for computing patient specific contrast protocols based on the data-driven 

predictions of contrast enhancement was developed. 4) A cardiovascular flow phantom for 

testing and validating contrast prediction and protocol generation methods was constructed and 

used. 

A few features of the hybrid PBPK model differentiate it from the Bae model. The hybrid 

model incorporates a non-linear saturation term in the peripheral venous compartment, it models 

the transport of contrast through the various compartments with configurable transport delay 

terms, and it enables the modeling of the saline flush phase commonly used during CTA imaging 

procedures. The hybrid model also has a reduced number of states as compared to the Bae 

model. Comparisons between the output of the hybrid model and the Bae model were favorable 

because lower prediction errors were measured by using the hybrid model, although most of the 

differences were not statistically significant. In certain cases, the hybrid model outperformed the 

Bae model when clinical data were used to compare the performance of both models.  
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Comparison of the two data-driven contrast enhancement methods revealed the MLE was 

more robust to real-life considerations encountered in the clinic. Specifically, the MLE can better 

predict contrast enhancement when shorter segments of test-bolus enhancement data are 

available. The tSVD method, however, only requires the placement of one ROI and is potentially 

less computationally burdensome. Maximum likelihood estimation was successfully used in 

identifying the reduced order PBPK model developed to enable patient-specific contrast 

enhancement predictions. Comparison tests using the hybrid model and retrospective clinical 

data demonstrated that the MLE was superior to the tSVD. The results are encouraging and 

suggest that a larger, prospective study using clinical data collection is warranted. As mentioned 

during the discussion of Chapter 5, a clinical algorithm should consider both data-driven 

techniques for estimating patient-specific contrast enhancement because there will be situations 

in which two TECs can not be generated from a test bolus injection. In these cases, assuming the 

Left Heart TEC is available, the algorithm should attempt to generate the contrast enhancement 

prediction using the tSVD method. 

Using the data-driven contrast enhancement prediction methods, the protocol generation 

algorithm successfully generated contrast enhancement profiles across a range of procedures and 

patient variables. The hybrid PBPK model was used to validate the protocol generation 

algorithm. For short scan durations, it appears that the algorithm could be further optimized so as 

to reduce the volume of contrast needed to achieve the goals based on the results in Figure 57. In 

all  of these short scan duration cases, the enhancement exceeded the target scan duration by at 

least 2 seconds, indicating further refinement could be possible. 

The cardiovascular flow phantom developed for this research [64, 65], was shown to 

replicate the propagation of contrast material. The methods for predicting contrast enhancement 
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and generating patient-specific contrast protocols were validated using the phantom and nIR dye. 

The sensing mechanism and the phantom itself can serve as a useful platform to conduct future 

experiments requiring multiple injections and scanning and it can reduce the cost and complexity 

associated with performing feasibility studies on animals and humans. 

The primary goal of this research was the creation of patient-specific methods to predict 

contrast enhancement in humans based on test bolus data and then to compute contrast protocols 

specific to the patient and the specific procedure. Numerical and physical phantoms were 

developed and used to test these methods. Validation results, using the phantom, were 

encouraging and suggest that human, clinical studies are warranted. It is anticipated that the 

methods can be adopted for other imaging modalities in which exogenous contrast material is 

intravenously infused into the patient. 

 

8.1 PROPOSED CLINICAL VALIDATION 

 

Validation of the contrast prediction techniques in Chapter 5 can be accomplished by a 

prospective study in which a test bolus determines the scan timing. TECs should be generated on 

the pulmonary artery and ascending aorta and saved for off-line analysis. The diagnostic contrast 

bolus should be injected at the same flow rate as used during the test bolus injection and a fixed 

volume of contrast should be used in all the subjects. A sample size of at least 30 patients is 

suggested.  
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To generate the diagnostic contrast enhancement profile for each subject, the axial CT 

data should be reconstructed in 5 or 10 mm slices and saved in an offline repository for 

subsequent analysis using the auto-segmentation software described in Chapter 4. In addition to 

the imaging data, patient demographics should be recorded for each subject (weight, height, sex, 

and age). The demographic data will be used to parameterize the hybrid model. Comparisons 

between the actual enhancement data in the aorta to the hybrid model prediction and between the 

enhancement data and predictions using the MLE and tSVD methods will be made using the 

three performance metrics used throughout the dissertation (RMSE, PDME, and EDI). It is 

expected that the prediction errors, using the prospective data, will be at least equivalent to the 

results produced in Chapters 4 and 5 (for the hybrid and data-driven prediction methods). 

Because the imaging data will be used in exploratory research, Institutional Review Board 

review will be mandated as will informed consent from the subjects. 

 Assuming positive outcomes from the previous study, the second prospective 

investigation should be conducted to test the contrast protocol generation in a clinical setting. In 

order to conduct this prospective study, a data exchange mechanism between the CT scanner and 

the injection system will need to be perfected. The CT software can process the TECs from ROIs 

on the image set and then transfer the data to the injection system (or an intermediary gateway 

PC) for processing and protocol generation. The resulting contrast protocol can then be 

automatically transferred to the injection system User Interface. Another option is for the scanner 

operator to transmit the test bolus enhancement imagery to the gateway PC, and an application 

will process the data and generate TECs for the pulmonary and ascending aorta. 

 When the software acquires the TECs, the contrast protocol generation algorithm will 

compute injection protocols based on constraints chosen by the Principal Investigator and 
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potentially by the technologist operating the scanner. The resulting contrast protocol will be 

reviewed by the technologist prior to injecting into the subject (and reviewed by the PI if 

necessary). The resulting diagnostic scan data will be saved and analyzed as described above. 

Specific endpoints for this study will be achievement of contrast enhancement in the aorta to the 

desired target enhancement lasting for the duration of the scan. 

 

8.2 ADDITIONAL APPLICATIONS 

The methods developed here for patient-specific, contrast enhancement CT of the cardiothoracic 

vasculature also has applicability to other anatomical regions of the body. In particular, 

peripheral arterial angiography of the leg arteries is challenging due to the acquisition speed of 

modern CT scanners. In many instances, the scanner must be slowed to account for the 

physiologic processes transporting the contrast bolus through the vasculature. Typically patients 

needing peripheral arterial CTA studies are also diabetic or have other renal insufficiencies and 

are potentially susceptible to kidney injury due to large volumes of contrast media. Therefore, 

computing a minimum volume of contrast dose in the patients is also very important. 

Another clinical indication in which this research can be adopted is neurological CT 

imaging. A short bolus of contrast, precisely and individually timed, is critical for CTA of the 

brain arteries. It is important in these studies to synchronize the scan prior to contrast filling the 

veins of the head. 
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There is the opportunity to apply the hybrid model in predictive contrast enhancement 

scenarios in which a test bolus is not administered. Some radiologists prefer bolus tracking 

software over the test bolus methodology to synchronize the acquisition of the scan with the 

arrival of contrast. In these cases, the hybrid model (assuming the patient demographic data are 

available) could be used to determine, a priori, a contrast injection protocol to achieve desired 

targets in an iterative fashion. The drawback to this method is that true hemodynamic status of 

the patient is not available when constructing the contrast protocol. Also, due to the transport 

delays in contrast propagation through the cardiopulmonary circuit, once the bolus is injected 

there is no "control" that can be exerted over the bolus for a particular patient. However, using 

the model in this open-loop approach is still superior to dosing without any consideration of the 

patient's habitus or physiology. A more intriguing approach is to use the hybrid model and the 

data collected during the scanner's bolus tracking acquisition in a Model Predictive Control 

framework. To enable this research, however, close collaboration with the scanner manufacturers 

is required. 

Gadolinium-based (Gd) contrast agents are routinely delivered during MRI examinations 

to provide enhanced visualization of arterial and venous structures (MR Angiography). The 

methods developed in this dissertation can be modified for MR applications, while recognizing 

that the relationship between signal intensity and blood-plasma concentration of the Gd contrast 

agent is not linear as it is with CT contrast agents. 

 

 

 

 



206 

 

9.0  SPECIFIC CONTRIBUTIONS BY THE AUTHOR 

This section presents the original work and, where applicable, publications, generated by the 

author during the development of this dissertation. 

 

 A novel, PBPK model and structure for describing the distribution of iodinated 

contrast in the human circulatory system. 

 Data-drive methods for predicting patient-specific contrast enhancement at 

thoracic CT Angiography. The statistical methodologies were adapted from 

techniques in the literature (truncated SVD, maximum likelihood estimation) and 

the numerical methods were library functions provided by commercial software 

(MATLAB).The novel contribution, however, is the synthesis and application of 

these methods for the CTA contrast enhancement application. 

 A  contrast protocol generation algorithm that considers clinical and patient 

constraints in its formulation. The cost-function used in the optimization step 

was presented in an IEEE conference proceedings [42]: 

o Kalafut JF, Kemper CA, Suryani P, Schoepf U. A personalized and 

optimal approach for dosing contrast material at coronary computed 

tomography angiography. Conf Proc IEEE Eng Med Biol Soc. 

2009;2009:3521-4. 
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 A novel, physiologically realistic flow phantom. The phantom was designed by 

JF Kalafut and constructed (under the direction of JF Kalafut) by Dave Reilly and 

Michael Yanniello (MEDRAD Inc. employees). The cardiovascular flow phantom 

has been presented in 2 forums – the 2008 European Congress of Radiology 

conference [64] and in an Investigative Radiology manuscript [65]. JF Kalafut 

was the lead author in the conference presentation. The imaging studies were 

performed at the Ohio State University Medical Center following a protocol  

developed by Kalafut. Kalafut was third author in the journal article because the 

experimental imaging protocol was designed and conducted by the physicians 

(first 2 authors). 

 Kalafut, J.F., Kemper C.A., and Sammett S.. An anthropomorphic, 

cardiovascular flow phantom for CT contrast and imaging protocol 

optimization. in European Congress Radiology. 2008. Vienna Austria: 

ESR. 

 Behrendt FF, Bruners P, Kalafut J, Mahnken AH, Keil S, Plumhans C, 

Das M, Stanzel S, Wildberger JE, Pfeffer J, Günther RW, Mühlenbruch G. 

Introduction of a dedicated circulation phantom for comprehensive in 

vitro analysis of intravascular contrast material application. Invest 

Radiol. 2008Oct;43(10):729-36. 

 

Other relevant articles and presentations listed as author: 

1. Numburi, U.D., et al., Patient-specific contrast injection protocols for 
cardiovascular multidetector row computed tomography. J Comput Assist 
Tomogr, 2007. 31(2): p. 281-9. (4th author) 

2. Seifarth, H., et al., Introduction of an individually optimized protocol for the 
injection of contrast medium for coronary CT angiography. Eur Radiol, 2009. 
19(10): p. 2373-82 (3rd author, but technical/algorithmic principle author) 

3. Suryani P., et al. A Computerized Prediction Model for Individualized, Patient-
Based Contrast Dosing at Dual-Source Coronary CT Angiography in Radiological 
Society North America. 2007. Chicago Illinois: RSNA. (2nd author) 

4. Deible C., et al, A Clinical Evaluation of an automated software program for 
patient-specific contrast injection during chest CTA to exclude pulmonary 
embolism, in Society Thoracic Radiology. 2007, STR: Charleston SC. (4th author) 
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APPENDIX A 

APPENDIX A MLE METHODOLOGY DETAILS 

The methodology to construct a patient-specific, prediction of contrast enhancement in the left 

heart structures using Maximum Likelihood Estimation is summarized here A prerequisite for 

this technique is the availability of TEC data derived from CT measurements (simulated or 

actual) in the pulmonary trunk ( Test

RHy (t) ) and the ascending aorta ( Test

LHy (t) ) after delivery of a test 

bolus of contrast , uTest(t). Because the data are sampled according to the temporal resolution 

dictated by instrumentation constraints, the data are discrete and are expressed as 

Test Test

RH RHy (n)  y tk ,
Test Test

LH LHy (n)  y tk  and uTest(n)=Qinj(n)Cinj[u(n)-u(n-Ninj)] where k 

is an integer, index parameter, Δ is the sample period of the data, and Ninj is the duration of the 

test bolus injection in integer sample periods. He2D
ˆ is estimated using the measured test bolus 

data Test

RHy (n)  and Test

LHy (n) . He1D
ˆ is estimated using Test

RHy (n)  and uTest(n). Prediction of an 

arbitrary injection (uDiag(n)) is based upon the serial cascade of the two system He1D and He2D 

(populated with  the parameter estimates He1D
ˆ and He1D

ˆ estimated with the test bolus injection 

data). Metrics comparing the performance of the identification method are based upon the 
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simulated or clinical, contrast enhancement data in left heart structures. A detailed explanation of 

the algorithm is in Table 20. 

 

 

 

Set initial estimates for the parameter estimates by randomly picking parameter values, 
*

He1D

*

He2D ,within 

+/- 25% of the midpoint values in Table 8.: 
 
Begin A 

1. Acquire 
Test Test

LH RHy (n), y (n)  (simulated or clinical) based upon a test injection, uTest(n) 

2. Perform Maximum Likelihood Estimation to derive parameter estimates He1D  and He2D using 

(5.11) and (5.12). 

3. Estimate 
Test

LH He1D He2D He1D He2D Test
ˆ ˆŷ (n) f , ,u (n) by serially cascading (5.9) and (5.10). 

4. Compute the Root Mean Square error between
Test

LHŷ (n)   and 
Test

LHy (n)  

end A 
 
Repeat A 5 times. Select Initial conditions and parameter estimated that generated the smallest RMSE in step 
A.4 

Set He1D He2D  

 
Begin B 

5. Generate a predicted Left Heart structure enhancement signal for an arbitrary, diagnostic injection of 

drug Diagu (n) using the parameter estimates: 
Diag

LH He1D He2D He1D He2D Diag
ˆ ˆŷ (n) f , ,u (n)  

6. Compare the predicted enhancement, 
Diag

LHŷ (n) , against simulated or actual enhancement data, 

Diag

LHy (n) using RMSE, PDME and EDI metrics as defined in Chapter 4 

end B 

Table 20 General algorithm for predicting enhancement using MLE 

 



210 

 

APPENDIX B 

APPENDIX B HYBRID MODEL PREDICTIONS 

In this appendix are plots of hybrid model and Bae model predictions against the clinical 

data set. In each of the simulations, the procedure specifics for each patient (contrast volume, 

flow rates, concentration) were used as inputs into the simulations. The patient demographics 

(height, weight, age and sex) were used to parameterize each simulation using the equations for 

cardiac output and blood volume presented in Chapter 4. The diagnostic contrast enhancement 

from the clinical CT data served as the basis of comparison. In each plot, the diagnostic CT data 

are indicated with "x"'s and start at the scan delay recorded for each subject in the clinical study. 
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Figure 68 Hybrid model simulation outputs (dashed line) and Bae model 

simulation outputs (solid line) for subjects one through nine. In each plot, the CT 

diagnostic scan enhancement data are also plotted, indicated with "x"'s. 
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Figure 69 Hybrid model simulation outputs (dashed line) and Bae model 

simulation outputs (solid line) for subjects 10 through 18. In each plot, the CT 

diagnostic scan enhancement data are also plotted, indicated with "x"'s. 
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Figure 70 Hybrid model simulation outputs (dashed line) and Bae model 

simulation outputs (solid line) for subjects 19 and 20. In each plot, the CT 

diagnostic scan enhancement data are also plotted, indicated with "x"'s. 
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APPENDIX C 

APPENDIX C PREDICTION OUTPUT MLE 

The resulting predicted enhancement profiles for all 20 subjects using the MLE technique are 

presented in this appendix. Diagnostic scan enhancement data points at 600 HU indicate that 

portion of the diagnostic enhancement curve could not be extracted from the aorta due to motion 

artifact, contrast streaking, or anatomical deviation. The 600 HU values were not included in any 

of the calculations used to assess the performance of the estimators. 

 



215 

 

 

Figure 71 Predicted contrast enhancement (blue dotted lines) using the test bolus 

enhancement data from the clinical data set to parameterize the model The 

procedure data from the clinical study (contrast protocol, scan duration and delay) 

were applied to the identified model. The crosses are the clinical data from the 

diagnostic scan (enhancement measured in the aorta). 
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Figure 72 Predicted (subjects 10-18) contrast enhancement (blue dotted lines) 

using the test bolus enhancement data from the clinical data set to parameterize 

the model. The procedure data from the clinical study (contrast protocol, scan 

duration and delay) were applied to the identified model. The crosses are the 

clinical data from the diagnostic scan (enhancement measured in the aorta). 
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Figure 73 Predicted contrast (subjects 19 and 20) enhancement (blue dotted lines) 

using the test bolus enhancement data from the clinical data set to parameterize 

the model The procedure data from the clinical study (contrast protocol, scan 

duration and delay) were applied to the identified model. The crosses are the 

clinical data from the diagnostic scan (enhancement measured in the aorta). 
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APPENDIX D 

APPENDIX D PREDICTION OUTPUT USING TRUNCATED SVD 

The resulting predicted enhancement profiles for all 20 subjects using the tSVD technique are 

presented in this appendix. Diagnostic scan enhancement data points at 600 HU indicate that 

portion of the diagnostic enhancement curve could not be extracted from the aorta due to motion 

artifact, contrast streaking, or anatomical deviation. The 600 HU values were not included in any 

of the calculations used to assess the performance of the estimators. 
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Figure 74 Predicted contrast (subjects 1 and 9) enhancement (blue dotted lines) 

using the test bolus enhancement data from the clinical data set to parameterize 

the model. The tSVD methodology provided the estimates. The procedure data 

from the clinical study (contrast protocol, scan duration and delay) were applied 

to the identified model. The crosses represent the clinical data from the diagnostic 

scan (enhancement measured in the aorta), with one standard-deviation error bars 

attached to each data point. 
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Figure 75 Predicted contrast (subjects 10 and 18) enhancement (blue dotted lines) 

using the test bolus enhancement data from the clinical data set to parameterize 

the model. The tSVD methodology provided the estimates. The procedure data 

from the clinical study (contrast protocol, scan duration and delay) were applied 

to the identified model. The crosses represent the clinical data from the diagnostic 

scan (enhancement measured in the aorta), with one standard-deviation error bars 

attached to each data point. 
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Figure 76 Predicted contrast (subjects 19 and 20) enhancement (blue dotted lines) 

using the test bolus enhancement data from the clinical data set to parameterize 

the model. The tSVD methodology provided the estimates. The procedure data 

from the clinical study (contrast protocol, scan duration and delay) were applied 

to the identified model. The crosses represent the clinical data from the diagnostic 

scan (enhancement measured in the aorta), with one standard-deviation error bars 

attached to each data point. 
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APPENDIX E 

APPENDIX E CLINICAL TEST BOLUS TECS 

The test bolus TECs for all 20 subjects used in Chapter 5 are presented below. 
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Figure 77 Clinical data - Time Enhancement Curves for subjects one through nine 

used by the methods developed and tested in chapter 5. The curves marked with 

the "'x"'s were measured in the pulmonary artery while the curves marked with 

"o"'s were measured in the ascending aorta. The end points for the TECs were 

determined by the scanner operator and were not controlled. 
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Figure 78 Clinical data - Time Enhancement Curves for subjects ten through 

eighteen used by the methods developed and tested in chapter 5. The curves 

marked with the "'x"'s were measured in the pulmonary artery while the curves 

marked with "o"'s were measured in the ascending aorta. The end points for the 

TECs were determined by the scanner operator and were not controlled. 
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Figure 79 Clinical data - Time Enhancement Curves for subjects 19 and 20 used 

by the methods developed and tested in chapter 5. The curves marked with the 

"'x"'s were measured in the pulmonary artery while the curves marked with "o"'s 

were measured in the ascending aorta. The end points for the TECs were 

determined by the scanner operator and were not controlled. 
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