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THREE ESSAYS ON DECISION MAKING UNDER UNCERTAINTY IN

ELECTRIC POWER SYSTEMS

Lizhi Wang, PhD

University of Pittsburgh, 2007

This thesis consists of three essays, discussing three different but connected problems on

decision making under uncertainty in electric power systems.

The first essay uses a system model to examine how various factors affect the market

price of electricity, and decomposes the price to quantitatively evaluate the contributions of

individual factors as well as their interactions. Sensitivity analysis results from a parametric

quadratic program are applied in the computation.

The second essay formulates the well studied security constrained economic dispatch

(SCED) problem as a Markov decision process model, where the action space is a polyhedron

defined by linear generation and transmission constraints. Such a model enables the decision

maker to accurately evaluate the impact of a dispatch decision to the entire future operation

of the electric power system.

The third essay examines the effect of demand and supply side uncertainties on the

exercise of market power. Solutions under Bertrand, Cournot, and linear supply function

equilibrium (LSFE) models are derived and compared.

The three problems studied in the essays are a unique representation of different levels

of the decision making process in a sophisticated deregulated electric power system, using

techniques from both mathematical programming and probability/statistics.
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1.0 INTRODUCTION

1.1 INTRODUCTION TO ELECTRIC POWER SYSTEMS

Electric power is delivered to widely scattered customers through a three-tiered process. It

is first produced from a number of different types of generating units of varying capacities

and sizes. Transmission networks then carry large amounts of power over a long distance at

a high voltage level. From the transmission sources, distribution systems carry the load to

a service area by forming a fine network.

With electricity being a basic need of society, the electric power industry had been reg-

ulated for almost a hundred years. Under a regulated set-up, the functions of an electric

power system are provided by a given electric utility company which is responsible for sup-

plying power over a specified geographical area and has direct relationships with customers.

A major deficiency of regulation is its inefficiency. The regulator’s dilemma [81] is, while he

or she wishes to (a) hold price down to marginal cost and (b) minimize the cost at the same

time, these two objectives can never be achieved simultaneously. On the one hand, a policy

that holds price down to marginal cost and takes away any dollar saved by innovation will

provide no incentive for the suppliers to improve technology and reduce cost; on the other

hand, a policy that passes every dollar saved to the suppliers will soon be found to have

resulted in a large gap between cost and price.
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A trend of deregulation started since the 1990s, both in the US and in other countries,

with the hope of introducing competition and improving efficiency. Under deregulation,

electricity is traded like any other commodity, and the producers and consumers have the

option to buy and sell power in a marketplace created to provide competition. Transmission

networks can be viewed as consisting of nodes (or buses) and links (or lines). Power is

generated and/or consumed at the nodes, and the lines connect these nodes.

Electricity has two important characteristics that distinguish it from other commodities.

First, it travels at the speed of light through transmission lines, but it cannot be economically

stored. Thus, it has to be generated instantaneously as it is being consumed, and at every

moment, there should be sufficient generation to meet the demand (or load). Second, the

amounts of power that flow through the individual transmission lines corresponding to given

amounts of injections (i.e., the difference between generation and consumption) at each node

cannot be set arbitrarily, but are determined by the laws of physics (e.g., Kirchhoff’s laws).

The maximum power flow that can be carried out over any one line in a given network is

also limited by the physical characteristics of the network, known as the thermal limit.

During the last several years, different market structures have emerged but they all seem

to share the feature that the generation and transmission services are unbundled from each

other. Under all these schemes the generation services are competitive but the transmission

services remain a regulated monopoly that provides open access to the suppliers and con-

sumers of electricity. This latter function is provided by an impartial entity that is known

as the Independent System Operator (ISO). As described in [80], “the minimum functions

of the ISO should include the operation and coordination of the power system to ensure

security, ... the maximum functions of the ISO will include all the reliability-related and

market-related functions...”

Many decisions need to be made under uncertainty by different levels of decision makers

in the electric power systems. Uncertainties in the electric power systems come from three

major sources: demand, supply, and transmission. On the demand side, load is an ever

changing random process that is affected by different kinds of factors, such as season, time,

temperature, weather, and other ones that could affect human behavior. On the supply

side, the fuel prices are changing frequently, and generators could also have unexpected
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breakdowns. On the transmission level, transmission line failures impose a great threat on

the reliability and security of the power systems.

This thesis examines three problems at different levels of the electric power systems

where decisions need to be made under uncertainty. At a systemic planning level, a constant

vigilance needs to be maintained on the price of electricity, which is such a critical element to

the welfare of the society that nobody can afford to lose control of it. Investment decisions

may be made once the decision makers feel a need to expand the infrastructure of the power

system (e.g., building new transmission lines or adding new generators). A key consideration

in such decision making processes is how to evaluate the effectiveness of the investment. The

first essay examines this problem, and proposes a system model approach to assess the effect

of several chosen influential factors that affect electricity prices. This approach can also be

used to evaluate expansion plans and help make investment decisions.

The second essay considers decision making at the power dispatch level, where the system

operator allocates existing generation and transmission resources to serve the demand. One

of the major challenges is the possibility of a transmission line failure, which is a rare event,

but has tremendous impact. A Markov decision process approach with embedded stochastic

programming is used to model and solve the problem.

The third essay takes the power suppliers’ perspective and studies their market power

exercise behaviors. Market power is the ability of suppliers to raise price above marginal cost

in order to maximize their profits. As deregulation introduces competition into the power

market, it also gives the power suppliers a platform to exercise market power. The question of

whether deregulation is more efficient than regulation has thus been under extensive scrutiny

ever since the beginning of deregulation. The objective of this essay is to use game-theoretic

models to formulate the market power exercise behavior in the oligopolistic power market

with the hope of providing some insights on how market power affects the price of electricity.

The essay is also among the first to take into account the supply side uncertainty in standard

oligopoly models.

Although about different problems, these three essays are well connected. First, these

problems arise from three different levels of electric power systems, and they together depict

a frame of the sophisticated system. Second, the essays are all attempting to improve

3



the decision making process, which is complicated by the enormous amount of uncertainty

involved and the critical role electricity plays to the society. Finally, all essays can serve as

examples of applying optimization and probability/statistics techniques and methodologies

to real world problems in electric power systems.

The remainder of this thesis is organized as follows. Sections 1.2, 1.3, and 1.4 provide

background introduction and literature review on each of the three essays. Chapters 2, 3,

and 4 come directly from three papers that the author has co-authored with his advisor and

other faculty members. The first paper [89] has been published in the European Journal of

Operational Research, and the other two are currently under review. Chapter 5 summarize

this thesis and discusses some future research topics and directions.

1.2 INTRODUCTION TO “USING A SYSTEM MODEL TO DECOMPOSE

THE EFFECTS OF INFLUENTIAL FACTORS ON LOCATIONAL

MARGINAL PRICES”

The prices of electricity differ by location, because electricity is cheaper to generate in some

locations than others, and generation and transmission capacity is not always sufficient to

deliver the cheapest electricity to every location. From the definition of locational marginal

price (LMP), a widely used pricing mechanism, the LMP at a given node is determined by

the incremental cost of re-dispatching the system to serve one more unit of demand at that

node [45]. In a deregulated market, the LMP at a given location is also a stochastic process

driven by various endogenous and exogenous factors of the market.

Load uncertainty, for example, is one of the most influential factors. In Figure 1, the solid

curve shows the fluctuation of average demand over the 24 hour period, while the dashed

lines describe the range of load uncertainty within one standard deviation for each hour.
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Figure 1: Example of load fluctuation and uncertainty

In the situation when loads reach a very high level, the effect of transmission capacity

limitation becomes pronounced. When the transmission lines get too congested to deliver

cheaper power to every node, more expensive generators need to be used to serve demand,

causing significant price differences between different nodes. The transmission capacity lim-

itation, also known as thermal limit, is the second factor that is being considered in Chapter

2.

The third factor is related to power system security. The term “system security” refers

to keeping the system operating in the presence of failures of one or more components of

the system. Even when a transmission network is operating within the physical limits,

there always remains the possibility that the individual lines may fail due to accidents, such

as a lightning strike, fire, falling trees, weather, or deliberate attack. The loss of a single

transmission line would change the power flows over other operating lines, possibly exceeding

the physical limits. This might result in cascading failures or even collapse of the entire

network. To prevent such a catastrophic consequence, certain amounts of generation and/or

transmission capacity are typically kept in reserve so that the system can withstand these
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types of contingencies. The most widely used capacity reserve criterion in practice is the so

called N-1 criterion, which requires the system to be able to withstand any single contingency

or failure occurrence. The N-1 criterion will be discussed in more detail in Chapter 3. For

the sake of simplicity, here we propose what we refer to as the 90% criterion, which means

that the system operator can only use up to 90% of each generator’s and transmission line’s

capacity, with the hope that when a contingency occurs, the reserved 10% capacity would

be able to provide a buffer that will prevent the system from collapsing.

Market power is the fourth factor that is being considered. As an illustration, suppose

the marginal cost function of a generator at node n is a linear function of the production

quantity qn:

qn 7→ an + bnqn,

where an and bn are constants. In order to maximize its profit, the owner of this generator

may submit a supply function to the system operator that is higher than the marginal cost

function:

qn 7→ αn + bnqn,

where αn > an. This is illustrated in Figure 2. After collecting supply functions from all

suppliers, the system operator then allocates the generation and transmission resources to

meet the demand in the most economical way that satisfies the system security constraints.

Chapter 2 can serve as an introduction to the fundamental settings of the electric power

pricing system, and it attempts to answer the following questions:

1. How can one distinguish the sole contribution of one factor from that of others?

2. How can one evaluate the interaction among factors quantitatively?

3. What would be the effects if new factors were to be introduced?

A comprehensive introduction to locational pricing can be found in part 5 of [81], which

not only provides fundamentals of physical transmission limits and congestion pricing, but

also discusses fallacies of congestion pricing as well as taxes and transmission rights. [76] can

also serve as a good sourcebook on the theory and implementation of spot price based energy

marketplace, whose appendix is especially helpful to those with interests in the detailed
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Figure 2: Examples of supply function and marginal cost function

mathematical derivations. PJM’s training center [1] is another reference for fundamentals of

locational marginal pricing.

In the deregulated market, forecasting and analyzing LMPs become more and more

important for all market participants. Bastian et al. [14] outline basic requirements for

accurate computer forecast of LMPs. Hong and Hsiao propose LMP forecasting methods

using a recurrent neural network [55] and artificial intelligence [56].

Investigators have also been looking at the sensitivities of LMPs to various natural and

human factors. In other words, they address the question of how the LMPs evolve with

respect to shifts in operational parameters. Burger et al. [21] propose a model that takes

all the following factors into account: seasonal patterns, price spikes, mean reversion, price

dependent volatilities and long term non-stationarity. The sensitivity of LMPs to demand

changes throughout the network is mathematically derived in [30] from the OPF (optimal

power flow) problem. Hamoud and Bradley [45] present a methodology to assess the impact

of changes in system parameters and operating conditions on the LMPs using a “Probabilistic

Composite System Evaluation” program.

The perspective Chapter 2 takes differs from the existing literature in the sense that, as

opposed to looking at the response of LMPs to different factors as a whole, we decompose
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the LMPs and quantitatively assess LMPs to the effects of individual factors as well as their

interactions. The contribution of Chapter 2 is three fold. First, the decomposition approach

provides insights on how much contribution does each of the factors and their interactions

have on determining the prices, and in the case of abnormally high prices, points out the cause

of the problem. Secondly, if or when new factors are introduced to the power system (e.g.,

addition or expansion of generators and/or transmission lines), the impact of each of the new

factors can be quantitatively predicted to help decision makers make more effective decisions.

Thirdly, sensitivity analysis results from parametric quadratic programming [15] are applied

and expanded to perform the statistical computation required in the decomposition.

1.3 INTRODUCTION TO “SECURITY CONSTRAINED ECONOMIC

DISPATCH: A MARKOV DECISION PROCESS APPROACH WITH

EMBEDDED STOCHASTIC PROGRAMMING”

Security constrained economic dispatch refers to the program that the system operator uses

to allocate generation and transmission resources to meet the demand. Economics and

security are two major ingredients for an “optimal” dispatch. Economics means to serve

demand with minimum cost, while security requires that electricity be delivered to the

customers without interruption even in the event of component failures. Transmission line

failures constitute a big threat to the electric power system security. Although such failures

are rare events (e.g., 0.714 times/hundred mile-year for 230 kv transmission lines [5]), they

have tremendous impacts. Without proper protection, a single component failure could

disrupt the balance of the whole transmission system, cause cascading failures of other

components, and result in catastrophic losses. The August 2003 blackout, for example, was

initiated by the failures of three transmission lines, which caused subsequent failures of many

other lines, and eventually led to the big blackout, affecting millions of people and costing

billions of dollars [2].

Without the consideration of security, economic dispatch leads to a simple problem:

using the existing transmission capacity to deliver power to all demand nodes at minimum
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cost without violating any operational constraints. Besides generation and transmission

capacity, operational constraints could also include unit commitment [86]. Chowdhury and

Rahman [27] and Huneault and Galiana [57] give comprehensive surveys of economic dispatch

approaches and algorithms in the literature.

System security was brought into the attention of power dispatch after the large blackout

in 1965, when the North American Electric Reliability Council (NERC) was created. Another

large blackout in 1977 led to wide adoption of the N-1 criterion [48]. Despite the amount

of investment and effort spent by engineers and policy makers, there has been evidence that

the frequency of large blackouts in the United States during the period 1984 to 2003 has not

decreased, but increased [47]. The most recent large scale blackouts (August 2003 in North

America and September 2003 in Italy) led to more extensive discussions on the reliability of

power system infrastructure [39, 58, 77, 91] and re-examination of the N-1 criterion [29].

Peters et al. [69] examine the transmission line failure caused by extreme weather,

and recommends strategies to improve transmission network reliability. Chen, Thorp, and

Dobson [22] present a hidden failure model of the transmission line failure, and use the model

to investigate the cascading behavior of the transmission systems. The PhD thesis of Chen

[23] investigates the rare events in the power system that are not caused by uncontrollable

natural forces, and proposes new approaches to identify, evaluate, and prevent rare events

that could cause cascading failures. A summary of probabilistic approaches for power system

reliability assessment is given in [6].
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Various probabilistic methods have been proposed to improve or replace the deterministic

N-1 criterion. Harris and Strongman [46] enhance the N-1 criterion to include the probability

of overload and contingency. Bouffard, Galiana, and Arroyo [17] use the norms of Lagrange

multiplier vectors associated with the post-contingency dispatch to identify credible contin-

gencies that should be considered pre-contingency. Bouffard, Galiana, and Conejo [18, 19]

use the value of unserved load to calculate the optimal power dispatch and spinning reserve,

which implicitly determine the credit contingencies. The spinning reserve is the generating

capacity available to the system operator by increasing the power output of generators that

are already connected to the power system to meet demand in case a generator is lost or there

is another disruption to the supply [92]. The importance of spinning reserve is addressed in

[49] and [82].

Environmental issues have also been considered in the optimal dispatch problem. Ta-

lag, El-Harwary, and El-Harwary [83] summarize the algorithms in environmental/economic

dispatch.

Chapter 3 uses a Markov decision process (MDP) approach to address the security con-

strained economic dispatch problem. MDP provides a mathematical framework for modeling

sequential decision-making process where the decision at each stage affects both the current

outcome and future outcome. A classical introductory text to MDP is written by Puterman

[71]. Compared with the existing methods, the MDP approach has the following advantages:

(1) The risk of cascading failures as well as minor contingencies is converted into dollars and

combined with the generation cost as a single objective for the system operator to minimize.

Although cascading failures have been studied from statistical and systemic perspectives

(see e.g., [37, 85]), no previous study is known to the author that addresses the preventive

and corrective strategies for cascading failures and minor contingencies from the daily power

dispatch perspective. (2) As an important social service, electric power dispatch should be

a continuous and uninterrupted process. However, some existing literature have focused on

a short period [18, 19, 20] of the process, perhaps to accommodate the limitation of the

methodology. The MDP approach, on the other hand, allows one to formulate the dispatch

process as an infinite horizon problem, and both the immediate and the future impact of

an action is taken into account when an optimal policy is determined. (3) The objective of
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most existing literature is to obtain the optimal dispatch decision for the best scenario where

all components are working. However, the real practice needs a program that can provide

the optimal corrective actions in case of contingency scenarios. The MDP model consists of

different states, representing all possible contingency scenarios, and the optimal strategy for

all states can be calculated. An introduction to the formulation and algorithms of MDP can

be found in [71].

The contribution of Chapter 3 also includes the application of an MDP model with

continuous action space. A stochastic programming problem thus needs to be solved in the

policy improvement step of the policy iteration algorithm, since exhaustively enumerating

and comparing all feasible actions is no longer an available strategy.

1.4 INTRODUCTION TO “OLIGOPOLY MODELS FOR MARKET PRICE

OF ELECTRICITY UNDER DEMAND UNCERTAINTY AND UNIT

RELIABILITY”

Since the beginning of deregulation, there has been a great interest in understanding the

impact of introducing competition in the electricity market, and how the exercise of market

power affects the electricity prices [34]. The prevailing equilibrium models of competition in

the electricity market are Cournot-Nash and supply function equilibrium (SFE).

Named after the French philosopher and mathematician Antoine Augustin Cournot, the

Cournot competition refers to the economic model of non-cooperative quantity competition.

A state is said to be in Cournot-Nash equilibrium if no player has an incentive to unilaterally

change his quantity bid. Borenstein and Bushnell [16] use a Cournot model to simulate

the California electricity market with historical data. Their results indicate a potential of

significant market power exercise when demand is high. Wei and Smeers [90] use a Cournot-

Nash model to obtain long-run equilibrium, considering both investment and operation.

Arbitrage behavior in a bilateral market is examined by Hobbs [50], who further concludes

that with sufficient arbitrage, a bilateral market (a de-centralized market) yields the same

Cournot equilibrium as that of a POOLCO (a centralized market). Yao, Oren, and Adler
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[93] examine the Cournot competition in a two-settlement market, where the firms enter

contracts in the forward market, and then get financially settled in the spot market.

In the SFE model, supply quantity is bid as a function of the price (or vice versa), in

contrast to the fixed quantity bid in the Cournot model. SFE was originally introduced by

Klemperer and Meyer [59] to examine competition under demand uncertainty. Although

more general, realistic and flexible, the SFE model has been found to be intractable both

analytically and computationally [13], and there could exist zero or multiple equilibrium

solutions. Green and Newbery [40] consider a restricted symmetric duopoly model in the

British electricity market, obtain the general form supply function equilibrium, and conclude

that the government has underestimated the market power. Baldick, Grant and Kahn [11]

use linear supply functions to model the England and Wales electricity market. Hobbs,

Metzler and Pang [53] further restrict the linear supply functions to have fixed slopes, and

formulate the transmission constrained competition as a bilevel game. Day, Hobbs and Pang

[35] also introduce a modified version of SFE — a conjectured supply function approach, and

compare it with other oligopoly models from both theoretical and computational perspectives

with an application in the England-Wales system.

Depending on the assumptions made on the bidding strategy, transmission pricing, mar-

ket clearing, etc., the computational effort needed to obtain a Nash equilibrium of the model

varies from solving differential equations [11, 13, 40, 59], to mixed complementarity problems

[35, 50] or variational inequality problems [90], to the challenging mathematical programs

with equilibrium constraints (MPEC) [53, 93]. MPEC is drawing increasing interests from

engineers and applied mathematicians in various fields [26, 64, 73]. Chen, Hobbs, Leyffer,

and Munson [26] use the MPEC model to examine the effect of NOx emission permits on

the exercise of market power.

Chapter 4 examines the market power exercise with the following three questions in

mind: (1) how does market power affect market price of electricity, (2) how do various

oligopoly models differ from each other, and (3) what are the effects of demand and supply

side uncertainties on the market power exercise and market price of electricity. The effects

of supply side uncertainty on electricity prices using oligopoly models do not appear to have

been studied previously.
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2.0 USING A SYSTEM MODEL TO DECOMPOSE THE EFFECTS OF

INFLUENTIAL FACTORS ON LOCATIONAL MARGINAL PRICES

2.1 INTRODUCTION

The formation of LMPs is a location dependent stochastic process [76], which is driven by a

combination of various factors. Valenzuela and Mazumdar [87] categorize these factors into

physical factors (which include production cost, load, generation availability, unit commit-

ment and transmission constraints) and economic factors (which include strategic bidding

and load elasticity). One approach to analyzing these factors is to derive analytical ex-

pressions for the sensitivity of LMPs with respect to the parameters of the optimal power

flow models which determine those prices [30], including the sensitivity with respect to bid

parameters. A similar approach has been used to identify market power in the energy mar-

ket [61]. Many of these factors are stochastic by nature, and they jointly affect the LMP

probability distribution. It is therefore hard to determine from historical data the sole or

interactive contributions of the individual factors (see [21, 63, 70] for examples of empirical

studies of LMPs).

However, such information is important and instructive in various ways. The exercise of

market power, for example, has been a big concern since the beginning of electricity market

deregulation, thus it will be useful to quantitatively distinguish the sole contribution of

market power from that of other factors in raising the LMPs above marginal cost. Another

use of this information is to accurately evaluate the effects on LMPs when generation or

transmission capacity expansion plans are being made. The objective of Chapter 2 is to

build a system model to analyze and decompose the effects of various influential factors on

the LMP probability distributions, assuming that the factors are binary variables (inactive
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or active). In this task, the property that the LMP is a piecewise linear function of demand

variation turns out to be handy.

For ease of exposition, only four of the most important factors are considered: load

uncertainty, thermal limit, capacity reserve and market power, numbered by 1, 2, 3 and 4,

respectively. (The effects of other factors, e.g., fuel price changes, are not being studied

here.) Our system model will analyze the contribution of each single and combination of

factors to the means and standard deviations of LMPs at different nodes. The mean of LMPs

measures the long term average level of prices, while the standard deviation is a measure of

LMP variability in the same unit with LMPs ($/MWh). The statistical models for node n

in hour t are in the following two postulated linear forms:

µn
LMP(t) (2.1)

= µn
0 (t) + µn

1 (t) + µn
2 (t) + µn

3 (t) + µn
4 (t)

+ µn
12(t) + µn

13(t) + µn
14(t) + µn

23(t) + µn
24(t) + µn

34(t)

+ µn
123(t) + µn

124(t) + µn
134(t) + µn

234(t) + µn
1234(t),

σn
LMP(t) (2.2)

= σn
0 (t) + σn

1 (t) + σn
2 (t) + σn

3 (t) + σn
4 (t)

+ σn
12(t) + σn

13(t) + σn
14(t) + σn

23(t) + σn
24(t) + σn

34(t)

+ σn
123(t) + σn

124(t) + σn
134(t) + σn

234(t) + σn
1234(t).

Here, µn
LMP(t) and σn

LMP(t) are the realized mean and standard deviation of LMPs at node

n in hour t, respectively; µn
0 (t) and σn

0 (t) are, respectively, the mean and standard deviation

given none of the four factors’ presence; for i, j = 1, 2, 3, 4, µn
i (t) is the sole contribution of

factor i to the mean of LMPs at node n in addition to µn
0 (t), and σn

ij(t) is the contribution

resulting from (exclusively) the interaction between factors i and j to the standard deviation

of LMPs at node n in addition to σn
0 (t). This is illustrated in Figure 3 for a three factor

case. The rectangular area as a result of three interacting factors is decomposed to µ0 +µi +

µj + µk + µij + µjk + µik + µijk. We will refer to the coefficients in (2.1) and (2.2) as impact
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Figure 3: Decomposition of contribution by factors i, j and k

coefficients, and our primary objective is to use the system model to obtain these impact

coefficients.

Section 2.2 describes the system model and the four factors in more detail. Section 2.3

first defines the inputs and outputs of the system model in 2.3.1; and then 2.3.2 describes

the derivation of outputs from inputs by utilizing the piecewise linear property of LMP as a

function of demand variation; the approach used in obtaining impact coefficients from input

and output is given in 2.3.3. A numerical example on the IEEE 30-bus network is given

in Section 2.4, where 2.4.1 gives the data of the test system, 2.4.2 and 2.4.3 present and

interpret the time-averaged impact coefficients and their time variation, respectively. Use

of the system model in evaluating transmission and generation capacity expansion plans is

discussed and illustrated in Section 2.5. Section 2.6 concludes this chapter.
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2.2 SYSTEM MODEL

2.2.1 Transmission Network

A set of nodesN is connected by a set of transmission lines L. The sets of nodes with demand

for and supply of power are denoted by D and S, respectively. Depending on whether or

not there is demand for or supply of power, any node in N could belong to either D or S,

or both, or neither.

2.2.2 Load Uncertainty

For a certain length of period t = 1, 2, ..., T , demand is assumed to be inelastic: dn,t(1 +

εt),∀n ∈ D, t = 1, 2, ..., T , where dn,t (in MW) is the nominal load at node n in hour t, while

εt is a random variable, representing the demand uncertainty in percentage of dn,t. Notice

that for a given t, the load uncertainty εt is assumed to be the same at all nodes, which

means that demands at all nodes are perfectly correlated, so that they increase or decrease

universally by the same percentage.

In our system model, dn,t’s are assumed to be known constants, and εt’s are assumed to

have known probability distributions, which can be obtained from the historical load data.

2.2.3 Thermal Limit

A DC lossless load flow model is used here, which has been found to be a good approximation

to the more accurate AC load flow model when thermal limits are the primary concern

[54, 68].

Denote by zn, H and Tl the net injection at node n, PTDF (power transfer distribution

factors) matrix [28] and capacity of transmission line l, respectively. Net injection is the

total power flow going into a node less the total power flow going out of it. PTDF matrix

gives the linear relation between net injection at each node and power flow through each line.

For all l ∈ L, |
∑

n∈N Hl,nzn| calculates the magnitude of the power flow through line l. If a

transmission line’s thermal limit is exceeded for a significant length of time, conductors sag
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or be damaged by excessive heating, and the probability of short-circuiting with the ground

increases. Therefore, the transmission constraints require that power flow going through any

transmission line in either direction must be within the capacity:

∑
n∈N Hl,nzn ≤ Tl, ∀l ∈ L

−
∑

n∈N Hl,nzn ≤ Tl, ∀l ∈ L.

2.2.4 Capacity Reserve

As part of the ancillary services, certain amounts of generation and transmission capacities

are kept in reserve to be able to re-establish the balance between load and generation in

the event of a contingency. However, obtaining the exact amount of reserve capacity that is

“optimal” for all stakeholders is a complex problem, and the solution may vary depending

on the perspective chosen. The N-1 criterion, for example, requires that the reserve level

should be sufficient to counter the loss of any single component (generator or transmission

line). On the other hand, [25] and [89] simply derate the capacities by the forced outage

rates to account for contingencies. As opposed to the above deterministic criteria, stochastic

criteria [18, 19, 38] have also been proposed, where transmission line reliability is taken into

account in determining the reserve level.

In our model, as an illustration, we use what we refer to as the 90% criterion. This

criterion is to require 10% reserve capacities of all generators and transmission lines.

In considering the capacity reserve factor, our purpose is not to study the LMP prob-

ability distribution under contingencies, but simply to address the fact that when system

security is taken into account, the system operator would be restricted from fully utilizing

all the available generation and transmission capacities.
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2.2.5 Market Power

Following [53], we assume that there is a single generator at each supply node (we will refer

to the generator at node n as generator n, which should not give arise to any confusion),

having a marginal cost function:

qn 7→ an + bnqn, ∀n ∈ S,

where qn (in MWh) is the quantity of power generation at node n, an (in $/MWh) and bn (in

$/(MWh)2) are constant parameters. The generating firms submit a linear supply function

for each of their generators:

qn 7→ αn + bnqn, ∀n ∈ S,

and they exercise their market power by strategically submitting αn’s that may be different

from an’s to maximize their profits, and they are simply assumed not to manipulate on bn’s.

Instead of solving αn’s using game-theoretic models as in [53], we assume them to be

known parameters, and attempt to find out quantitatively the effects of their numerical dif-

ferences from the an’s. We also assume that the supply functions stay the same for the entire

time horizon.

2.2.6 Market Clearing

The electricity market is cleared each hour using the following economic dispatch:

min
q,z

∑
n∈S

(
αnqn + 1

2
bnq

2
n

)
(2.3)

s. t. qn − zn = dn,t(1 + εt), (pn,t) ∀n ∈ N (2.4)∑
n∈N Hl,nzn ≤ 0.9Tl, ∀l ∈ L (2.5)

−
∑

n∈N Hl,nzn ≤ 0.9Tl, ∀l ∈ L (2.6)∑
n∈N zn = 0 (2.7)

0 ≤ qn ≤ 0.9Qn, ∀n ∈ S. (2.8)
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Here, Qn is the capacity of generator n, and dual variable pn,t is the LMP at node n in hour

t. The objective function (2.3) is to minimize the generation cost (using the firm submitted

supply functions); (2.4) comes from the definition of net injection, and the dual variable pn,t

calculates the marginal cost of serving unit increment of demand at node n in hour t, which

is consistent with the definition of LMP; (2.5) and (2.6) are transmission constraints under

the 90% criterion; (2.7) is the balancing property of a network; and (2.8) is the generation

capacity limit under the 90% criterion.

The economic dispatch (2.3)-(2.8) is a convex quadratic program, and is generally easy to

solve in a given hour for a given value of εt. It is assumed that generation and transmission

capacities are sufficient to serve demand at all scenarios, so that an optimal solution to

(2.3)-(2.8) always exists.

2.2.7 Other Factors

The system model can also be used to analyze the effects of other factors. For example,

we can quantitatively examine the effects of introducing new generators and/or expanding

the capacities of existing transmission lines. This example will be illustrated in Section 2.5,

where factors 1, 2, 3 and 4 are all assumed to be active, and four new factors 5, 6, 7 and 8

are introduced.

2.3 DETERMINATION OF IMPACT COEFFICIENTS

2.3.1 Input and Output of the System Model

We define four binary input variables x1, x2, x3 and x4 to represent the presence of load

uncertainty, thermal limit, capacity reserve and market power, respectively. Table 1 gives

the interpretation of these input variables. In reality, all the factors are active. In the system

model, however, some of the factors need to be assumed absent so that the difference it makes

can be obtained and used to calculate the impact coefficients.
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Table 1: Interpretation of input variables

i xi = 1 xi = 0

1 Demand uncertainty is active: εt is a

random variable, thus pn,t(εt) will be a

random variable as well.

Demand has no uncertainty: εt is a con-

stant 0, and pn,t will also be a constant.

2 Thermal limit is active: congestion may

occur when demands are high.

Thermal limit is ignored: constraints

(2.5) and (2.6) are ignored and there

will be no congestion.

3 The 90% criterion is used as in con-

straints (2.5), (2.6) and (2.8).

The 90% criterion is not used in con-

straints (2.5), (2.6) and (2.8).

4 Market power is exercised to a given ex-

tent (see Table 2) as in the objective

(2.3).

Market power is not exercised: firms

honestly submit marginal cost functions

as supply functions, thus an instead of

αn will be used in the objective (2.3).
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For a given set of input variables x = {x1, x2, x3, x4}, the output variables of the system

model at node n are p∗n,t(x; εt), µn
t (x) and σn

t (x). Here p∗n,t(x; εt) is the LMP at node n in hour

t, which results from the optimal (dual) solution to the economic dispatch (2.3)-(2.8), and

is also a function of εt; µn
t (x) and σn

t (x) are, respectively, the mean and standard deviation

of p∗n,t(x; εt). Let the pdf (probability distribution function) of εt be ft(·), then

µn
t (x) = Eεt [p

∗
n,t(x; εt)] =

∫
ft(εt)p

∗
n,t(x; εt)dεt,

and

σn
t (x)

=
√

Vεt [p
∗
n,t(x; εt)]

=

√∫
ft(εt)[p∗n,t(x; εt)− µn

t (x)]2dεt.

2.3.2 Deriving Output from Input

This subsection describes the algorithm for deriving p∗n,t(x; εt) as a function of εt from the

system model for a given x.

When x1 = 0, the economic dispatch (2.3)-(2.8) only needs to be solved once to obtain

the output for a given input. When x1 = 1, regardless of the other input variables, the

economic dispatch (2.3)-(2.8) can be represented by the following standard form parametric

convex quadratic program (QPε):

min
x

{
c>x +

1

2
x>Qx : Ax = b + ε∆b, x ≥ 0

}
,

where c ∈ Rn, Q ∈ Rn×n, A ∈ Rm×n and b ∈ Rm are constants, Q is a positive semi-definite

matrix, ∆b ∈ Rm is a given direction of variation, and ε is a scalar parameter. In the economic

dispatch context, Q = diag{bS} and ∆b = [d1,t, · · · , d|N |,t, 0, · · · , 0]>. It is well known that

the optimal solution x∗(ε) is a piecewise linear function of ε. [15] gives an algorithm that

analytically calculates the break points and the functional form of each segment. We can use

that algorithm to obtain the piecewise linear function p∗n,t(1, x2, x3, x4; εt), and then calculate

other outputs.
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We present below the algorithm that we use in our computational experiments to obtain

the break points of εt. The functional form of p∗n,t(1, x2, x3, x4; εt) within each segment can be

calculated by solving at the lower and upper limit break points, and then connecting them

with a straight line. Our algorithm adopts the basic ideas from [15], but is computationally

more robust.

We first review some preliminaries of parametric convex quadratic programming. Let

(QDε) be the Wolfe dual of (QPε):

max
x,y,s

{
(b + ε∆b)>y − 1

2
x>Qx : A>y + s−Qx = c, s ≥ 0

}
.

For a given ε, the tripartition π(ε) = {B(ε),N (ε), T (ε)} is defined as

B(ε) = {i : xi > 0 for an optimal solution (x(ε), y(ε), s(ε))},

N (ε) = {i : si > 0 for an optimal solution (x(ε), y(ε), s(ε))},

T (ε) = {1, ..., n}\{B(ε) ∪N (ε)}.

Define a maximal complementary solution (x∗(ε), y∗(ε), s∗(ε)) as an optimal solution such

that

x∗i (ε) > 0 ⇔ i ∈ B(ε) and s∗i (ε) > 0 ⇔ i ∈ N (ε).

It has been shown in [44, 66] that a maximal complementary solution can be obtained by

solving (QPε) or (QDε) using interior point methods.

We present the algorithm as pseudo codes of two functions: main function and sub function.

The function inputs of main function are coefficients of (QPε) and (QDε), and the function

output is the set of break points of ε within the entire range that (QPε) and (QDε) remain

feasible. The function inputs of sub function are coefficients of (QPε) and (QDε) and a

range (ε, ε), and the function output is the set of break points of ε within (ε, ε).

Υ = main function(A, b, ∆b, c, Q)

{ Step 1: Calculate (Lε, Uε), which is the entire range of ε that (QPε) and (QDε) are feasible:

Lε = min
ε,x,y,s

{ε : Ax−∆bε = b, A>y + s−Qx = c, x ≥ 0, s ≥ 0},
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Uε = max
ε,x,y,s

{ε : Ax−∆bε = b, A>y + s−Qx = c, x ≥ 0, s ≥ 0}.

Step 2: Call Υ = sub function(A, b, ∆b, c, Q, Lε, Uε), and return Υ.

}

Υ = sub function(A, b, ∆b, c, Q, ε, ε)

{ Step 1: If (ε − ε) is sufficiently small (or both ε and ε are infinity with same sign), then

return Υ = 1
2
(ε + ε). Otherwise set the initial point ε0 = 1

2
(ε + ε) and continue.

Step 2: Obtain the tripartition

π(ε0) = {B(ε0),N (ε0), T (ε0)}

by solving (QPε0) and (QDε0) using an interior point method and obtaining a maximal

complementary solution (x∗(ε0), y∗(ε0), s∗(ε0)).

Step 3: Calculate (lε0 , uε0), which is the range of ε that (QPε) and (QDε) have the same

tripartition as π(ε0):

lε0 = min
ε,x,y,s

{ε : Ax−∆bε = b, A>y + s−Qx = c,

xB(ε0) ≥ 0, xN (ε0)∪T (ε0) = 0,

sN (ε0) ≥ 0, sB(ε0)∪T (ε0) = 0},

uε0 = max
ε,x,y,s

{ε : Ax−∆bε = b, A>y + s−Qx = c,

xB(ε0) ≥ 0, xN (ε0)∪T (ε0) = 0,

sN (ε0) ≥ 0, sB(ε0)∪T (ε0) = 0}.

Step 4: Recursively call

Υ0 = sub function(A, b, ∆b, c, Q, ε, lε0),

Υ1 = sub function(A, b, ∆b, c, Q, uε0 , ε),

and return Υ = Υ0 ∪ {lε0 , uε0} ∪Υ1.

}
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2.3.3 Calculating Impact Coefficients

Impact coefficients can be calculated by obtaining the system model output for all possible

input variables, and then solving a linear system of equations given below.

The realized values of LMPs according to the system model are determined by the com-

bination of all factors, thus they correspond to p∗n,t(1, 1, 1, 1; εt). So, µn
LMP(t) = µn

t (1, 1, 1, 1)

and σn
LMP(t) = σn

t (1, 1, 1, 1), where µn
LMP(t) and σn

LMP(t) represent, respectively, the mean

and standard deviation of LMPs at node n in hour t. Moreover, for all possible binary input

variables x = {x1, x2, x3, x4}, we have the following relation between the outputs and the

impact coefficients:

µn
t (x1, x2, x3, x4)

= µn
0 (t) + µn

1 (t)x1 + µn
2 (t)x2 + µn

3 (t)x3 + µn
4 (t)x4

+ µn
12(t)x1x2 + µn

13(t)x1x3 + µn
14(t)x1x4

+ µn
23(t)x2x3 + µn

24(t)x2x3 + µn
34(t)x3x4

+ µn
123(t)x1x2x3 + µn

124(t)x1x2x4 + µn
134(t)x1x3x4

+ µn
234(t)x2x3x4 + µn

1234(t)x1x2x3x4,

σn
t (x1, x2, x3, x4)

= σn
0 (t) + σn

1 (t)x1 + σn
2 (t)x2 + σn

3 (t)x3 + σn
4 (t)x4

+ σn
12(t)x1x2 + σn

13(t)x1x3 + σn
14(t)x1x4

+ σn
23(t)x2x3 + σn

24(t)x2x3 + σn
34(t)x3x4

+ σn
123(t)x1x2x3 + σn

124(t)x1x2x4 + σn
134(t)x1x3x4

+ σn
234(t)x2x3x4 + σn

1234(t)x1x2x3x4,

where µn
0 (t), µn

1 (t), ..., µn
1234(t) and σn

0 (t), σn
1 (t), ..., σn

1234(t) are the impact coefficients at node

n in hour t.
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In matrix form, we have:

Y = M · β, (2.9)

where M , Y and β are, respectively, a constant matrix, the system outputs and the impact

coefficients:

M =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0

1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0

1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



, Y =



µn
t (0, 0, 0, 0)

µn
t (1, 0, 0, 0)

µn
t (0, 1, 0, 0)

µn
t (1, 1, 0, 0)

µn
t (0, 0, 1, 0)

µn
t (1, 0, 1, 0)

µn
t (0, 1, 1, 0)

µn
t (1, 1, 1, 0)

µn
t (0, 0, 0, 1)

µn
t (1, 0, 0, 1)

µn
t (0, 1, 0, 1)

µn
t (1, 1, 0, 1)

µn
t (0, 0, 1, 1)

µn
t (1, 0, 1, 1)

µn
t (0, 1, 1, 1)

µn
t (1, 1, 1, 1)



, β =



µn
0 (t)

µn
1 (t)

µn
2 (t)

µn
3 (t)

µn
4 (t)

µn
12(t)

µn
13(t)

µn
14(t)

µn
23(t)

µn
24(t)

µn
34(t)

µn
123(t)

µn
124(t)

µn
134(t)

µn
234(t)

µn
1234(t)



.

The matrix form for σ is similar. Therefore, if we obtain µn
t (x1, x2, x3, x4) and σn

t (x1, x2, x3, x4)

for all 16 possible inputs, then the impact coefficients in hour t can be calculated by solving

the above linear system of equations (2.9).
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The inverse of matrix M is

M−1 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0

1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0

−1 1 1 −1 1 −1 −1 1 0 0 0 0 0 0 0 0

−1 1 1 −1 0 0 0 0 1 −1 −1 1 0 0 0 0

−1 1 0 0 1 −1 0 0 1 −1 0 0 −1 1 0 0

−1 0 1 0 1 0 −1 0 1 0 −1 0 −1 0 1 0

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1



,

which interprets how the impact coefficients are calculated using the outputs. For example,

µn
1 (t) is the difference of µn

t (1, 0, 0, 0) and µn
t (0, 0, 0, 0); µn

12(t) is the difference of µn
t (0, 0, 0, 0)+

µn
t (1, 1, 0, 0) and µn

t (0, 1, 0, 0) + µn
t (1, 0, 0, 0).

2.4 NUMERICAL EXAMPLE

2.4.1 Test Data

We use the IEEE 30-bus network as an example to demonstrate our approach. As is shown in

Figure 4, a supply node has a “G” in a circle representing a generator, and a demand node has

an arrow. In this example, D = {2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26,

29, 30}, and S = {1, 2, 5, 8, 11, 13}. Node and transmission line data are given in Tables 2
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Figure 4: An IEEE 30-bus network example

Figure 5: Normalized chronological load change
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and 3, respectively. Most of these data are adopted from [53] and [7]: bn’s, Tl’s and Qn’s are

set to be, respectively, 50%, 60% and 80% of the values in [7]; αn’s are set to be 50% of the

equilibrium values in [53]. For all n ∈ D, the average nominal load over time horizon is set to

be 70% of dn in [7]; the relative load chronological changes, shown in Figure 5, are estimated

using the load data of PJM-E [1]; the demand uncertainty εt in each hour is assumed to have

a truncated normal distribution also estimated using the load data of PJM-E. Let fN(·) be

the pdf of a normal distribution, then the pdf of a truncated normal distribution fT (·) with

the same mean and standard deviation within [x, x] is

fT (x) =

fN(x)/
∫ x

x
fN(y)dy x ≤ x ≤ x,

0 otherwise.

2.4.2 Time-Averaged Impact Coefficients

We obtain the impact coefficients for both mean and standard deviation of LMPs at all

nodes n ∈ D ∪ S in hour t = 1, ..., 24. The computational time was around 24 minutes on a

Pentium 4 PC with CPU 3.2 GHz and 1.00 GB of RAM. Tables 4 & 5 and 6 & 7 show the

time-averaged impact coefficients for µn
LMP and σn

LMP, respectively. Here,

µn
LMP =

1

24

24∑
t=1

µn
LMP(t).

Time-averages are also taken in the same manner for other impact coefficients. The “average”

rows are the average values over all nodes in n ∈ D ∪S. We have the following observations

and interpretations based on these results:

1. Had none of the four factors existed, the LMPs would have been constantly and univer-

sally $39.61/MWh, compared to the realized mean of $62.43/MWh with a $6.11/MWh

standard deviation on average.

2. As the sole contributions of the individual factors, load uncertainty, capacity reserve

and market power raise the mean of LMPs by µn
1 =$2.09/MWh, µn

3 =$3.57/MWh and

µn
4 =$14.12/MWh, respectively.
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Table 2: Node data of the 30-bus example

n dn an αn bn Qn

1 – 0 14.00 1.00 160
2 15.19 0 12.10 0.88 64
3 1.68 – – – –
4 5.32 – – – –
5 65.94 0 8.28 0.50 40
6 – – – – –
7 15.96 – – – –
8 21 0 16.58 1.63 28
9 – – – – –
10 4.06 – – – –
11 – 0 15.41 1.50 24
12 7.84 – – – –
13 – 0 15.39 1.50 32
14 4.34 – – – –
15 5.74 – – – –
16 2.45 – – – –
17 6.3 – – – –
18 2.24 – – – –
19 6.65 – – – –
20 1.54 – – – –
21 12.25 – – – –
22 – – – – –
23 2.24 – – – –
24 6.09 – – – –
25 – – – – –
26 2.45 – – – –
27 – – – – –
28 – – – – –
29 1.68 – – – –
30 7.42 – – – –
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Table 3: Transmission line data of the 30-bus example

line resistance reactance thermal limit
R (Ω) X (Ω) (MW)

1-2 0.0192 0.0575 78
1-3 0.0452 0.1852 78
2-4 0.0570 0.1737 39
3-4 0.0132 0.0379 78
2-5 0.0472 0.1983 78
2-6 0.0581 0.1763 39
4-6 0.0119 0.0414 54
5-7 0.0460 0.1160 42
6-7 0.0267 0.0820 78
6-8 0.0120 0.0420 19.2
6-9 0 0.2080 39
6-10 0 0.5560 19.2
9-11 0 0.2080 39
9-10 0 0.1100 39
4-12 0 0.2560 39
12-13 0 0.1400 39
12-14 0.1231 0.2559 19.2
12-15 0.0662 0.1304 19.2
12-16 0.0945 0.1987 19.2
14-15 0.2210 0.1997 9.6
16-17 0.0824 0.1932 9.6
15-18 0.1070 0.2185 9.6
18-19 0.0639 0.1292 9.6
19-20 0.0340 0.0680 19.2
10-20 0.0936 0.2090 19.2
10-17 0.0324 0.0845 19.2
10-21 0.0348 0.0749 19.2
10-22 0.0727 0.1499 19.2
21-22 0.0116 0.0236 19.2
15-23 0.1000 0.2020 9.6
22-24 0.1150 0.1790 9.6
23-24 0.1320 0.2700 9.6
24-25 0.1885 0.3292 9.6
25-26 0.2544 0.3800 9.6
25-27 0.1093 0.2087 9.6
28-27 0 0.3960 39
27-29 0.2198 0.4153 9.6
27-30 0.3202 0.6027 9.6
29-30 0.2399 0.4533 9.6
8-28 0.0636 0.2000 19.2
6-28 0.0169 0.0599 19.2
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Table 4: Impact coefficients for µn
LMP (part I)

n µn
LMP µn

0 µn
1 µn

2 µn
3 µn

4 µn
12 µn

13 µn
14

1 61.80 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

2 61.81 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

3 61.75 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

4 61.74 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

5 61.85 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

7 61.87 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

8 61.89 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

10 62.42 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

11 62.23 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

12 60.80 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

13 60.80 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

14 62.54 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

15 64.99 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

16 61.49 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

17 62.14 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

18 64.08 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

19 63.54 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

20 63.26 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

21 62.54 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

23 64.18 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

24 63.11 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

26 62.65 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

29 62.36 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

30 62.36 39.61 2.09 0 3.57 14.12 0 2.66 –0.11

average 62.43 39.61 2.09 0 3.57 14.12 0 2.66 –0.11
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Table 5: Impact coefficients for µn
LMP (part II)

n µn
23 µn

24 µn
34 µn

123 µn
124 µn

134 µn
234 µn

1234

1 0 0 –0.32 –0.01 0 0.19 0 0.00

2 0 0 –0.32 0.02 0 0.19 0 –0.01

3 0 0 –0.32 –0.11 0 0.19 0 0.06

4 0 0 –0.32 –0.13 0 0.19 0 0.07

5 0 0 –0.32 0.10 0 0.19 0 –0.06

7 0 0 –0.32 0.15 0 0.19 0 –0.09

8 0 0 –0.32 0.21 0 0.19 0 –0.12

10 0 0 –0.32 1.39 0 0.19 0 –0.78

11 0 0 –0.32 0.97 0 0.19 0 –0.55

12 0 0 –0.32 –2.26 0 0.19 0 1.26

13 0 0 –0.32 –2.26 0 0.19 0 1.26

14 0 0 –0.32 1.65 0 0.19 0 –0.93

15 0 0 –0.32 7.18 0 0.19 0 –4.00

16 0 0 –0.32 –0.70 0 0.19 0 0.38

17 0 0 –0.32 0.77 0 0.19 0 –0.43

18 0 0 –0.32 5.14 0 0.19 0 –2.86

19 0 0 –0.32 3.92 0 0.19 0 –2.19

20 0 0 –0.32 3.28 0 0.19 0 –1.83

21 0 0 –0.32 1.65 0 0.19 0 –0.92

23 0 0 –0.32 5.37 0 0.19 0 –2.99

24 0 0 –0.32 2.95 0 0.19 0 –1.65

26 0 0 –0.32 1.90 0 0.19 0 –1.06

29 0 0 –0.32 1.26 0 0.19 0 –0.71

30 0 0 –0.32 1.26 0 0.19 0 –0.71

average 0 0 –0.32 1.40 0 0.19 0 –0.79
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Table 6: Impact coefficients for σn
LMP (part I)

n σn
LMP σn

0 σn
1 σn

2 σn
3 σn

4 σn
12 σn

13 σn
14

1 5.62 0 3.24 0 0 0 0 2.34 –0.11

2 5.63 0 3.24 0 0 0 0 2.34 –0.11

3 5.59 0 3.24 0 0 0 0 2.34 –0.11

4 5.59 0 3.24 0 0 0 0 2.34 –0.11

5 5.66 0 3.24 0 0 0 0 2.34 –0.11

7 5.67 0 3.24 0 0 0 0 2.34 –0.11

8 5.69 0 3.24 0 0 0 0 2.34 –0.11

10 6.08 0 3.24 0 0 0 0 2.34 –0.11

11 5.94 0 3.24 0 0 0 0 2.34 –0.11

12 5.01 0 3.24 0 0 0 0 2.34 –0.11

13 5.01 0 3.24 0 0 0 0 2.34 –0.11

14 6.17 0 3.24 0 0 0 0 2.34 –0.11

15 8.09 0 3.24 0 0 0 0 2.34 –0.11

16 5.41 0 3.24 0 0 0 0 2.34 –0.11

17 5.87 0 3.24 0 0 0 0 2.34 –0.11

18 7.37 0 3.24 0 0 0 0 2.34 –0.11

19 6.95 0 3.24 0 0 0 0 2.34 –0.11

20 6.73 0 3.24 0 0 0 0 2.34 –0.11

21 6.17 0 3.24 0 0 0 0 2.34 –0.11

23 7.45 0 3.24 0 0 0 0 2.34 –0.11

24 6.61 0 3.24 0 0 0 0 2.34 –0.11

26 6.25 0 3.24 0 0 0 0 2.34 –0.11

29 6.04 0 3.24 0 0 0 0 2.34 –0.11

30 6.04 0 3.24 0 0 0 0 2.34 –0.11

average 6.11 0 3.24 0 0 0 0 2.34 –0.11
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Table 7: Impact coefficients for σn
LMP (part II)

n σn
23 σn

24 σn
34 σn

123 σn
124 σn

134 σn
234 σn

1234

1 0 0 0 0.00 0 0.16 0 0.00

2 0 0 0 0.02 0 0.16 0 –0.01

3 0 0 0 –0.06 0 0.16 0 0.03

4 0 0 0 –0.08 0 0.16 0 0.04

5 0 0 0 0.07 0 0.16 0 –0.03

7 0 0 0 0.10 0 0.16 0 –0.05

8 0 0 0 0.14 0 0.16 0 –0.07

10 0 0 0 0.89 0 0.16 0 –0.43

11 0 0 0 0.63 0 0.16 0 –0.31

12 0 0 0 –1.36 0 0.16 0 0.75

13 0 0 0 –1.36 0 0.16 0 0.75

14 0 0 0 1.06 0 0.16 0 –0.51

15 0 0 0 4.58 0 0.16 0 –2.11

16 0 0 0 –0.44 0 0.16 0 0.23

17 0 0 0 0.49 0 0.16 0 –0.24

18 0 0 0 3.28 0 0.16 0 –1.53

19 0 0 0 2.51 0 0.16 0 –1.18

20 0 0 0 2.10 0 0.16 0 –1.00

21 0 0 0 1.06 0 0.16 0 –0.51

23 0 0 0 3.43 0 0.16 0 –1.60

24 0 0 0 1.89 0 0.16 0 –0.90

26 0 0 0 1.22 0 0.16 0 –0.59

29 0 0 0 0.81 0 0.16 0 –0.40

30 0 0 0 0.81 0 0.16 0 –0.40

average 0 0 0 0.91 0 0.16 0 –0.42
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3. The factor thermal limit does not increase LMPs by itself (µn
2 =$0/MWh), nor does the

interaction between load uncertainty and thermal limit (µn
12 =$0/MWh). This is because

in this particular example, the transmission capacity is sufficient when 90% criterion is

inactive. This result, however, may not necessarily hold in general, and µn
2 and/or µn

12

could become non-zeros for other network settings.

4. Price difference between nodes is an indication of congestion. Only two impact coefficients

µn
123 and µn

1234 in Tables 4 & 5 take different values over different nodes, which means that

congestion is not caused by a single factor, rather it is a result of the interaction among

three or four factors. For the same reason as explained above, there may exist other

combinations of factors that also contribute to the congestion, but the significant source

of congestion is still believed to be µn
123 and µn

1234. However, those columns where factor 2

does not appear (µn
0 , µn

1 , µn
34, etc.) can be proven to be constant across nodes regardless

of system parameters, because the only cause of price difference in a DC lossless model,

thermal limit (factor 2), is set to be inactive in the computation of these columns.

5. It is also interesting to observe that µn
1234’s have smaller magnitudes with opposite signs

than those of µn
123’s. This means that, given the existence of the first three factors, the

incremental effect of market power mitigates congestion. One possible interpretation of

this phenomenon is that market power reduces the relative differences among supply

functions, and thus diminishes the preference for less expensive generators. Comparing

the supply function parameters αn’s and bn’s in Table 2, we find that they have a positive

correlation, but αn’s are less spread out than bn’s:

b5 : b2 : b1 : b13 : b11 : b8

= 1 : 1.75 : 2 : 3 : 3 : 3.25,

α5 : α2 : α1 : α13 : α11 : α8

= 1 : 1.46 : 1.69 : 1.86 : 1.86 : 2.00.

Without market power, the ratio of supply functions of a more expensive generator i and

a less expensive one j is
aiq + biq

2/2

ajq + bjq2/2
=

bi

bj

> 1,
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noticing that an = 0,∀n ∈ S in this example. When market power becomes active, αn’s

substitute zero-valued an’s, and this ratio becomes

αiq + 1
2
biq

2

αjq + 1
2
bjq2

<

(
αj

bi

bj

)
q + 1

2
biq

2

αjq + 1
2
bjq2

=
bi

bj

,

which means that the relative differences among supply functions shrink. This phe-

nomenon has also been observed and discussed in [62]. However, we can only conclude

that market power could mitigate congestion in certain cases under certain assumptions

(e.g., how market power is exercised), but not necessarily so in all circumstances.

6. Load uncertainty is the single primary and decisive source of LMP volatility, contributing

an average standard deviation of σn
1 =$3.24/MWh to the realized $6.11/MWh in total.

The absence of sole contributions of other factors (σn
2 = σn

3 = σn
4 =$0/MWh) is due to

their assumed deterministic characteristics. The interactions between these factors and

load uncertainty, however, have significant contribution to the LMP volatility. It is also

indicated in Tables 6 & 7 that congestion is a result of the interaction among factors.

Figure 6: Time variation of µLMP(t) and σLMP(t)
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2.4.3 Time Variation of Impact Coefficients

We show in Figure 6 how the node-averaged mean and standard deviation of LMPs vary

from hour to hour. In Figure 6,

µLMP(t) =
1

|D ∪ S|
∑

n∈D∪S

µn
LMP(t).

Node-averages are also taken in the same manner for the impact coefficients, which are shown

in Figures 7 and 8. Only some of the impact coefficients are plotted; the omitted ones have

little or no variation over time.

We have the following observations:

1. Coefficients µLMP(t) and µ1(t) follow a similar pattern of time variation with dn,t. Recall

that µ1(t) represents the sole contribution of factor 1 at node n in hour t, and is the

difference between µt(x1 = 1, x2 = 0, x3 = 0, x4 = 0) and µt(x1 = 0, x2 = 0, x3 = 0, x4 =

0), which represent the two situations with demand at node n in hour t being dn,t(1+ εt)

and dn,t.

2. Coefficient µ13(t), interaction between factors 1 and 3, becomes significant when demand

is high.

3. We can see from µ123(t) and µ1234(t) that congestion occurs during peak hours and that

market power mitigates the congestion.

4. The observations on the impact coefficients for σLMP are similar.

2.5 USE OF SYSTEM MODEL IN EVALUATING EXPANSION PLANS

The system model approach described in Section 2.3 can be used to perform sensitivity

analysis for the current system, or to analyze the effects of other factors or system upgrading

decisions. As an illustration, we use the network example in Section 2.4 to analyze the effects

of generator and transmission line capacity expansion plans.

Suppose investment decisions are to be made to introduce new generators at nodes 15,

18 and 23, where highest means and largest standard deviations of LMPs are observed. The
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Figure 7: Time variation of impact coefficients for µLMP(t)

Figure 8: Time variation of impact coefficients for σLMP(t)
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supply function parameters of the new generators are all assumed to take the average values

of the previously existing ones, i.e., an = 0, αn = 13.63, bn = 1.17, Qn = 52.2,∀n = 15, 18, 23.

Transmission line 12-15 is also planned to be expanded by 15% of its current capacity. The

questions are: (1) how would the LMPs be affected, and (2) how effective would the capacity

expansion of each component (generator or transmission line) be?

Keeping all of the previous factors (load uncertainty, thermal limit, capacity reserve

and market power) active, we define another four factors, numbered 5, 6, 7 and 8, as the

introduction of generators 15, 18 and 23, and capacity expansions of transmission line 12-15,

respectively.

The statistical models for this problem become:

µ̃n
LMP(t)

= µn
LMP(t) + µn

5 (t) + µn
6 (t) + µn

7 (t) + µn
8 (t)

+ µn
56(t) + µn

57(t) + µn
58(t) + µn

67(t) + µn
68(t) + µn

78(t)

+ µn
567(t) + µn

568(t) + µn
578(t) + µn

678(t) + µn
5678(t),

σ̃n
LMP(t)

= σn
LMP(t) + σn

5 (t) + σn
6 (t) + σn

7 (t) + σn
8 (t)

+ σn
56(t) + σn

57(t) + σn
58(t) + σn

67(t) + σn
68(t) + σn

78(t)

+ σn
567(t) + σn

568(t) + σn
578(t) + σn

678(t) + σn
5678(t),

where µ̃n
LMP(t) and σ̃n

LMP(t) are, respectively, the forecasted mean and standard deviation of

LMP at node n as a result of these additional factors; as has been defined before, µn
LMP(t) and

σn
LMP(t) are, respectively, the realized mean and standard deviation before the introduction

of new factors.

We obtain the impact coefficients at all nodes n ∈ D∪S in each hour t = 1, ..., 24. Tables 8

& 9 and 10 & 11 show the time-averaged impact coefficients for µ̃n
LMP and σ̃n

LMP, respectively.

As a result of the combined effect of these four factors, the mean and standard deviation

of LMPs are reduced on average from $62.43/MWh and $6.11/MWh to $49.18/MWh and

$3.24/MWh, respectively. The individual contributions of factors 5, 6, 7 and 8 to µ̃n
LMP
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are, respectively, −$6.71/MWh, −$7.61/MWh, −$8.84/MWh and −$0.62/MWh on average;

and their individual contributions to σ̃n
LMP are, respectively, −$0.49/MWh, −$1.82/MWh,

−$2.19/MWh and −$0.49/MWh on average.

Tables 8 & 9 and 10 & 11 can also provide information for any subset of factors 5, 6, 7

and 8. For example, to answer the question of “what is the incremental value of expanding

the capacity of transmission line 12-15 by 15% after new generators have been introduced at

nodes 15, 18 and 23?”, we select those columns in Tables 8 & 9 that contain factor 8: {µ8,

µ58, µ68, µ78, µ568, µ578, µ678, µ5678}. The summation of these columns is zero. The same

result is observed for Tables 10 & 11. It indicates that the incremental value of expanding

the capacity of transmission line 12-15 beyond introducing new generators is zero. This

information is useful for decision makers to avoid redundant investments.

By re-defining the factors as unit increments of certain system parameters (e.g., bn’s as

fuel prices increase or αn’s as more severe market power), sensitivity analysis for the current

system can also be performed in a similar way as illustrated in this section.

2.6 CONCLUSION

This chapter builds a system model to decompose the effects of influential factors on loca-

tional marginal prices. Four factors (load uncertainty, thermal limit, capacity reserve and

market power) are considered, and the impact coefficients are calculated to estimate the

contribution of each single factor and their interactions to the mean and standard deviation

of LMPs at each node.

An IEEE 30-bus network is used as an example to demonstrate this approach. The

system model approach can also be used to perform sensitivity analysis or to evaluate the ef-

fectiveness of investment plans, e.g, introducing new generators and/or expanding capacities

of transmission lines.

The main contributions of this chapter include:

1. The system model enables one to answer “what if” questions which are generally hard

to answer using historical data.
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2. Piecewise linear property of LMPs as functions of demand variation has been explored.

For a given continuous probability distribution of demand uncertainty and input vari-

ables, the mean and standard deviation of LMPs can be obtained exactly and efficiently

using integration, which is equivalent to infinitely many simulation samples if Monte

Carlo simulation were to be used instead.

3. Impact coefficients provide insights on the composition of LMP probability distribution,

in terms of mean and standard deviation. They can also inform and assist power system

evaluation and investment decision making. The techniques used in this chapter can also

be applied for a more complete analysis of the LMP probability distribution (e.g., on

higher moments).

It is worth mentioning that our observations and analyses are based on the consideration

of only four factors with simplifying assumptions, and are only derived for some specified

system parameters. Further research should (1) consider other factors that affect LMP

probability distributions, e.g., fuel prices fluctuation, generator or transmission line outage;

(2) relax the assumption of perfect load correlation among nodes (according to the load

data from PJM [1], the correlation between PJM-E and PJM-W is 0.8632); (3) relax the

assumption that supply functions stay the same over the entire time horizon, and study the

dynamic gaming behavior of market power exercise under different scenarios and inputs; (4)

examine the hypothesis that market power would in general reduce the difference among

supply functions and mitigate congestion; and (5) compare the analyses from the system

model to real world observations.
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Table 8: Impact coefficients for µ̃n
LMP (part I)

n µ̃n
LMP µn

LMP µn
5 µn

6 µn
7 µn

8 µn
56 µn

57 µn
58

1 50.10 61.80 –8.82 –6.79 –7.44 0.01 5.53 6.37 –0.01

2 50.24 61.81 –8.74 –6.73 –7.38 0.00 5.50 6.34

3 49.68 61.75 –9.06 –6.96 –7.62 0.05 5.63 6.44 –0.05

4 49.59 61.74 –9.12 –7.00 –7.67 0.06 5.65 6.46 –0.06

5 50.60 61.85 –8.53 –6.58 –7.22 –0.04 5.42 6.28 0.04

7 50.83 61.87 –8.39 –6.48 –7.12 –0.06 5.36 6.24 0.06

8 51.08 61.89 –8.32 –6.43 –6.95 –0.09 5.41 6.23 0.09

10 56.28 62.42 –3.54 –2.93 –5.94 –0.61 1.79 4.49 0.61

11 54.45 62.23 –5.18 –4.13 –6.32 –0.43 3.01 5.09 0.43

12 40.20 60.80 –14.62 –10.93 –11.83 1.01 7.79 8.08 –1.01

13 40.20 60.80 –14.62 –10.93 –11.83 1.01 7.79 8.08 –1.01

14 36.56 62.54 –19.01 –14.68 –15.42 –0.73 10.95 10.90 0.73

15 31.43 64.99 –25.21 –19.97 –20.48 –3.18 15.41 14.86 3.18

16 47.08 61.49 –9.87 –7.50 –9.31 0.32 5.22 6.54 –0.32

17 53.54 62.14 –5.42 –4.29 –6.94 –0.33 2.81 5.10 0.33

18 22.36 64.08 28.72 –33.19 –15.35 –2.27 –36.82 –9.29 2.27

19 67.53 63.54 18.28 13.47 –12.31 –1.74 –22.15 –4.83 1.73

20 64.69 63.26 12.76 9.32 –10.70 –1.45 –16.10 –2.47 1.45

21 57.43 62.54 –4.75 –3.89 –4.03 –0.73 4.17 5.21 0.73

23 23.53 64.18 –18.70 –15.10 –31.94 –2.38 33.38 10.59 2.38

24 63.09 63.11 –10.68 –8.62 5.38 –1.31 15.86 8.70 1.31

26 58.49 62.65 –9.78 –7.78 0.66 –0.84 11.86 7.76 0.84

29 55.70 62.36 –9.23 –7.27 –2.21 –0.56 9.43 7.18 0.56

30 55.70 62.36 –9.23 –7.27 –2.21 –0.56 9.43 7.18 0.56

average 49.18 62.43 –6.71 –7.61 –8.84 –0.62 4.26 5.73 0.62
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Table 9: Impact coefficients for µ̃n
LMP (part II)

n µn
67 µn

68 µn
78 µn

567 µn
568 µn

578 µn
678 µn

5678

1 3.91 –0.01 –0.01 –4.46 0.01 0.01 0.01 –0.01

2 3.89 0.00 0.00 –4.47 0.00 0.00 0.00 0.00

3 3.96 –0.05 –0.05 –4.45 0.05 0.05 0.05 –0.05

4 3.98 –0.06 –0.06 –4.45 0.06 0.06 0.06 –0.06

5 3.85 0.04 0.04 –4.48 –0.04 –0.04 –0.04 0.04

7 3.82 0.06 0.06 –4.48 –0.06 –0.06 –0.06 0.06

8 3.79 0.09 0.09 –4.55 –0.09 –0.09 –0.09 0.09

10 3.17 0.61 0.61 –3.18 –0.61 –0.61 –0.61 0.61

11 3.39 0.43 0.43 –3.63 –0.43 –0.43 –0.43 0.43

12 5.14 –1.01 –1.01 –4.24 1.01 1.01 1.01 –1.01

13 5.14 –1.01 –1.01 –4.24 1.01 1.01 1.01 –1.01

14 7.69 0.73 0.73 –6.40 –0.73 –0.73 –0.73 0.73

15 11.29 3.18 3.18 –9.44 –3.18 –3.18 –3.18 3.18

16 4.29 –0.32 –0.32 –3.78 0.32 0.32 0.32 –0.32

17 3.50 0.33 0.33 –3.36 –0.33 –0.33 –0.33 0.33

18 12.26 2.27 2.27 11.94 –2.27 –2.27 –2.27 2.27

19 1.97 1.74 1.74 9.57 –1.74 –1.73 –1.74 1.73

20 2.27 1.45 1.45 6.34 –1.45 –1.45 –1.45 1.45

21 3.00 0.73 0.73 –4.82 –0.73 –0.73 –0.73 0.73

23 12.40 2.38 2.38 –31.29 –2.38 –2.38 –2.38 2.38

24 2.19 1.31 1.31 –12.86 –1.31 –1.31 –1.31 1.31

26 2.80 0.84 0.84 –9.68 –0.84 –0.84 –0.84 0.84

29 3.17 0.56 0.56 –7.74 –0.56 –0.56 –0.56 0.56

30 3.17 0.56 0.56 –7.74 –0.56 –0.56 –0.56 0.56

average 4.75 0.62 0.62 –4.83 –0.62 –0.62 –0.62 0.62
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Table 10: Impact coefficients for σ̃n
LMP (part I)

n σ̃n
LMP σn

LMP σn
5 σn

6 σn
7 σn

8 σn
56 σn

57 σn
58

1 3.28 5.62 –1.24 –1.33 –1.58 0.00 0.99 1.35 0.00

2 3.30 5.63 –1.22 –1.32 –1.58 –0.01 0.98 1.34 0.01

3 3.22 5.59 –1.33 –1.34 –1.60 0.03 1.01 1.37 –0.03

4 3.21 5.59 –1.35 –1.34 –1.60 0.04 1.01 1.37 –0.04

5 3.35 5.66 –1.14 –1.31 –1.56 –0.03 0.96 1.32 0.03

7 3.38 5.67 –1.09 –1.30 –1.56 –0.05 0.95 1.31 0.05

8 3.42 5.69 –1.07 –1.31 –1.54 –0.07 1.00 1.30 0.07

10 4.14 6.08 0.69 –0.91 –1.62 –0.46 –0.63 1.17 0.46

11 3.88 5.94 0.08 –1.04 –1.59 –0.32 –0.09 1.21 0.32

12 1.89 5.01 –3.38 –1.73 –2.06 0.61 1.57 1.90 –0.61

13 1.89 5.01 –3.38 –1.73 –2.06 0.61 1.57 1.90 –0.61

14 1.37 6.17 –5.60 –3.27 –3.59 –0.55 3.30 3.52 0.55

15 0.66 8.09 –6.53 –5.75 –6.04 –2.47 5.45 5.99 2.47

16 2.85 5.41 –1.58 –1.32 –1.81 0.21 0.57 1.53 –0.21

17 3.75 5.87 0.02 –1.02 –1.67 –0.25 –0.28 1.27 0.25

18 0.54 7.37 113.23 –6.94 –4.47 –1.75 –13.33 1.65 1.75

19 5.62 6.95 9.17 1.66 –3.54 –1.32 –13.31 1.49 1.32

20 5.25 6.73 7.02 1.01 –3.05 –1.10 –10.10 1.41 1.10

21 4.31 6.17 0.15 –1.16 –1.29 –0.55 0.83 1.02 0.55

23 0.53 7.45 –5.67 –4.32 –7.03 –1.83 18.43 5.77 1.83

24 5.17 6.61 –2.42 –2.42 0.27 –0.99 7.92 0.26 0.99

26 4.50 6.25 –1.91 –1.99 –0.41 –0.63 5.28 0.66 0.63

29 4.09 6.04 –1.59 –1.73 –0.83 –0.41 3.66 0.90 0.41

30 4.09 6.04 –1.59 –1.73 –0.83 –0.41 3.66 0.90 0.41

average 3.24 6.11 –0.49 –1.82 –2.19 –0.49 0.89 1.75 0.49
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Table 11: Impact coefficients for σ̃n
LMP (part II)

n σn
67 σn

68 σn
78 σn

567 σn
568 σn

578 σn
678 σn

5678

1 0.79 0.00 0.00 –1.31 0.00 0.00 0.00 0.00

2 0.79 0.01 0.01 –1.32 –0.01 –0.01 –0.01 0.01

3 0.78 –0.03 –0.03 –1.26 0.03 0.03 0.03 –0.03

4 0.78 –0.04 –0.04 –1.25 0.04 0.04 0.04 –0.04

5 0.79 0.03 0.03 –1.36 –0.03 –0.03 –0.03 0.03

7 0.79 0.05 0.05 –1.39 –0.05 –0.05 –0.05 0.05

8 0.79 0.07 0.07 –1.44 –0.07 –0.07 –0.07 0.07

10 0.80 0.46 0.46 –1.45 –0.46 –0.46 –0.46 0.46

11 0.80 0.32 0.32 –1.43 –0.32 –0.32 –0.32 0.32

12 0.87 –0.61 –0.61 –0.31 0.61 0.61 0.61 –0.61

13 0.87 –0.61 –0.61 –0.31 0.61 0.61 0.61 –0.61

14 2.28 0.55 0.55 –1.43 –0.55 –0.55 –0.55 0.55

15 4.56 2.47 2.47 –5.12 –2.47 –2.47 –2.47 2.47

16 0.78 –0.21 –0.21 –0.73 0.21 0.21 0.21 –0.21

17 0.79 0.25 0.25 –1.23 –0.25 –0.25 –0.25 0.25

18 4.39 1.75 1.75 –1.37 –1.75 –1.75 –1.75 1.75

19 0.80 1.32 1.32 2.41 –1.32 –1.32 –1.32 1.32

20 0.80 1.10 1.10 1.43 –1.10 –1.10 –1.10 1.10

21 0.82 0.55 0.55 –2.22 –0.55 –0.55 –0.55 0.55

23 4.22 1.83 1.83 –18.32 –1.83 –1.83 –1.83 1.83

24 0.93 0.99 0.99 –5.99 –0.99 –0.99 –0.99 0.99

26 0.87 0.63 0.63 –4.25 –0.63 –0.63 –0.63 0.63

29 0.83 0.41 0.41 –3.19 –0.41 –0.41 –0.41 0.41

30 0.83 0.41 0.41 –3.19 –0.41 –0.41 –0.41 0.41

average 1.32 0.49 0.49 –2.33 –0.49 –0.49 –0.49 0.49
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3.0 SECURITY CONSTRAINED ECONOMIC DISPATCH: A MARKOV

DECISION PROCESS APPROACH WITH EMBEDDED STOCHASTIC

PROGRAMMING

3.1 INTRODUCTION

In a pool-based electricity market, security constrained economic dispatch is the process of

allocating generation and transmission resources so as to serve the system load with low

cost and high reliability. The goals of cost efficiency and reliability, however, are oftentimes

conflicting. On the one hand, in order to serve the demand most cost efficiently, the capacities

of transmission lines and the cheapest generators should be fully utilized. On the other

hand, the consideration of reliability would suggest using local generators, which may not

be the cheapest, but the supply has less dependence on the reliability of transmission lines;

a considerable amount of generation and transmission capacities should also be reserved for

contingency use. A compromise between low cost and high reliability is thus inevitable.

In practice, the “optimal” tradeoff for all stakeholders is a complex problem, and the

solution may vary depending on the perspective chosen. The N-1 criterion, for example,

requires that the system be able to withstand the failure of any single component (generator

or transmission line). Various stochastic criteria have also been proposed. [18, 19] review

some of the recent publications on the probabilistic criteria, and propose a stochastic secu-

rity approach to market clearing where the probabilities of generator and transmission line

failures are taken into consideration.

This chapter presents another stochastic approach to security constrained economic dis-

patch, which has some significant differences with [18, 19], and is able to address some

important questions that have yet to be answered in the existing literature. First, cascading
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failures are taken into consideration. Although a rare event, the impact of a cascading fail-

ure could be tremendous [10], and the frequency of large blackouts in the United States has

been observed to increase during the recent years [47]. A great amount of research has been

conducted on modeling, monitoring and managing the risk of cascading failures (see e.g.,

[24, 48, 84]). [94] proposes an operational criterion to minimize the risk of subsequent line

failures, whereas the generation cost is not being considered. We adopt the hidden failure

model [22] and take both the probability and the economic cost of a cascading failure into

consideration of power dispatch.

Secondly, in our model, the dispatch decisions are made with an infinitely repeated 24-

hour time horizon taken into account, as opposed to [18, 19], where an isolated 24-hour period

is studied. The advantage of far-sighted decision making is that the long-term economic cost

of a potential contingency is not underestimated when compared with the immediate reward

of taking the risk.

Thirdly, the optimal policy from the MDP model provides the optimal dispatch not

only for the normal scenario, but also for contingency scenarios. A remarkable property of

the MDP approach is that the optimal decision is provided for all possible scenarios that

are being considered. [79] uses an MDP approach to study the bidding decision of power

suppliers in the spot market, and [72] uses a competitive MDP model to examine the market

power exercise in deregulated power markets.

The remaining sections are organized as follows. Section 3.2 explains the optimization

problem and makes necessary definitions and assumptions. The MDP model is formulated in

Section 3.3, and the policy iteration algorithm is introduced in Section 3.4 to solve the MDP

model. Section 3.5 demonstrates the approach with a numerical example, and compares the

results with those of other approaches. Section 3.6 concludes this chapter.
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3.2 DEFINITIONS AND ASSUMPTIONS

3.2.1 Transmission Network

A set of nodesN is connected by a set of transmission lines L. The sets of nodes with demand

for and supply of power are denoted by D and S, respectively. Depending on whether there

is demand for or supply of power, any node in N could belong to either D or S, or both, or

neither.

A DC lossless load flow model is used here, which has been found to be a good approxi-

mation to the more accurate AC load flow model when thermal limit is the primary concern

[54, 68].

3.2.2 Load

Hourly load fluctuation is considered. Locational demands are assumed to be inelastic,

deterministic and constant within each hour. The demand (in MW) at node n in hour t is

denoted by Dn,t,∀n ∈ D, t = 1, 2, ..., 24.

In case the generation and transmission capacity is not sufficient to meet all the demands,

a certain amount of load will be involuntarily left unserved. The amount of involuntarily

unserved load is called load shedding. The associated cost of unit amount of load shedding

is denoted by cLS
n (in $/MWh).

3.2.3 Generation

Following [53], we assume that there is at most one generator at a node (as a result, the

generator at node n can be referred to as generator n), and that power suppliers will submit

a linear supply function for each of their generators to the system operator. The supply

function for generator n is denoted by

qn 7→ an + bnqn, ∀n ∈ S,

where qn (in MWh) is the quantity of power generation at node n, an (in $/MWh) and

bn (in $/(MWh)2) are constant parameters. Each generator n has a maximum generation
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capacity Qn. No minimum generation, fixed cost, or other unit commitment requirements

are considered. For modeling simplicity, we also ignore generator failures, which could be

considered without much additional modeling effort.

3.2.4 Transmission Constraint

Denote by zn, Tl, and H the net injection at node n, the thermal limit of line l, and the

PTDF (power transfer distribution factors) matrix, respectively. Net injection is the total

power flow going into a node less the total power flow going out of it. PTDF matrix gives

the linear relation between net injection at each node and power flow through each line.

For all l ∈ L, |
∑

n∈N Hl,nzn| calculates the magnitude of the power flow through line l.

The transmission constraints require that power flow going through any transmission line in

either direction must be within the capacity:

∑
n∈N Hl,nzn ≤ Tl, ∀l ∈ L,

−
∑

n∈N Hl,nzn ≤ Tl, ∀l ∈ L.

These two constraints will be presented as

±
∑
n∈N

Hl,nzn ≤ Tl, ∀l ∈ L

for short in the remainder of this chapter.

3.2.5 Transmission Line Failure

A transmission line can be in either of two states: working or failed. There are two types

of transmission line failures: (a) When the power flow is within the thermal limit, the risk

comes from unexpected events, e.g., fire, falling tree, bad weather, etc. Failures of the

transmission lines in such situation are assumed to be independent of each other. The state

transition between failed and working (repaired) states of a transmission line is assumed

to be a continuous time Markov chain, and the availability of the lines can be calculated

using the historical data on MTTF (mean time to failure) and MTTR (mean time to repair).

Denote by λl and µl (both in #/hour) the rates of failure and repair of line l, respectively.
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(b) When the power flow exceeds the thermal limit of line l, there is an additional risk of

failure due to the overflow. The system operator makes the dispatch decision in such a way

that the power flows do not exceed the thermal limits. However, once a transmission line has

failed due to an unexpected event, the power flows will instantaneously change their routes

according to the new network topology, which may cause overflows on some other lines. [22]

proposes a hidden failure model to estimate the probability of a type (b) failure on line l as

a function f(vl):

f(vl) :=

2.5vl 0 ≤ vl ≤ 0.4,

1 vl > 0.4,

where vl is the percentages of overflow with respect to the thermal limit of line l. If the

power flow through line l is tl, then

vl = max

{
0,
|tl| − Tl

Tl

}
× 100%.

This assumption is reported to be “consistent with the observed NERC events.”[67]

3.2.6 Cascading Failure

We assume that a cascading failure occurs whenever two or more transmission lines have

failed in a single hour. This could occur in the following two situations: (i) two or more

lines have failed due to unexpected events, and (ii) the failure of one line causes overflow

and then failure of another line. Once one line has failed due to an unexpected event, which

could cause overflows on all other lines, we assume that the probability of a cascading failure

caused by the overflow is a function f(v):

f(v) :=

2.5 max{v} 0 ≤ max{v} ≤ 0.4,

1 max{v} > 0.4,

(3.1)

where v is the vector of percentages of overflows with respect to the thermal limits.
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3.2.7 System Operator

The task of the system operator is assumed to be to make dispatch decisions using existing

generation and transmission resources to serve the demand at minimum long term expected

cost, which includes cost of generation, load shedding and cascading failures. The system

operator re-dispatches the system once every hour to adjust for the demand change and

possible transmission line failure and repair. In case of a cascading failure, the system oper-

ator should shut down the entire system until the system has been restored (all components

examined and all failed lines repaired). The rate of system restoration is denoted by µ̃ (in

#/hour).

3.2.8 Timing of the Transmission Line Failures

We make two assumptions about the timing of the transmission line failures:

(A1) A single transmission line failure may only occur at the beginning of each hour, after

the system operator has already made the dispatch decision without expectation of that

failure.

(A2) A cascading failure occurs at the end of the hour, so that the cost of blackout is

calculated from the next hour.

3.3 THE MARKOV DECISION PROCESS MODEL

3.3.1 Time Horizon {1, 2, ...}

We consider infinitely repeated 24-hour cycles. The time cycle will be incorporated into the

state space, thus the decision making time horizon is: {1, 2, ...}.

3.3.2 State Space S

There are three types of states: a normal state sN , a set of contingency states SC , and a

blackout state sB. In the normal state sN , all transmission lines are working; in a contingency
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state s ∈ SC , exactly one transmission line has failed; sB represents the blackout state caused

by a cascading failure. A contingency state is represented by the failed transmission line:

SC = {{1}, {2}, ..., {|L|}}. To incorporate the repeated time cycles, we include the demand

vector Dn,t as an additional dimension to the state space, and set Dn,t = Dn,t+24 for all

t = 1, 2, .... As a result, the size of the entire state space is (1 + |L|+ 1)× 24.

3.3.3 Action Space As

An action as ∈ As at a given state s is an admissible dispatch decision of using the generators

and working transmission lines (denoted by Ls) to serve the demand Dn,t of all nodes in hour

t. More specifically, it is a polyhedron of admissible actions {qn,∀n ∈ S; dn,∀n ∈ D} defined

by the following constraints:

As

= {q, d :

±

[∑
n∈S

Hs
l,nqn −

∑
n∈D

Hs
l,n(Dn,t − dn)

]
≤ Tl, ∀l ∈ Ls∑

n∈S

qn =
∑
n∈D

(Dn,t − dn)

0 ≤ qn ≤ Qn, ∀n ∈ S; dn ≥ 0, ∀n ∈ D},

where dn is the amount of load shedding at node n.

3.3.4 Transition Probability P (j|s, a)

In an MDP model, the transition probability P (j|s, a) is the probability that the system

moves from state s to state j within an hour given action a. In the remainder, when this

probability does not depend on the action a (as long as a ∈ As is a feasible action), it may

be denoted as P (j|s).

• The transition of staying at the normal state sN means that no failure occurs in this

hour, so

P (st+1 = sN |st = sN) =
∏
l∈L

e−λl .

52



• The transition from the normal state sN to a contingency state s ∈ SC means that (i)

line s has failed in this hour due to an unexpected event, and that (ii) this failure does

not cause a type (b) failure of another line. The latter depends on the action (dispatch

decision). Therefore,

P (st+1 = s|st = sN , a) = [1− f(a)]
(
1− e−λs

) ∏
l∈L\s

e−λl ,∀s ∈ SC ,

where the probability of a type (b) failure, f(·), is written as a function of the action

a, because the percentage of overflow can be calculated from the action a = {qn,∀n ∈

S; dn,∀n ∈ D}:

vl =

(∣∣∑
n∈S Hs

l,nqn −
∑

n∈D Hs
l,n(Dn − dn)

∣∣− Tl

Tl

)+

× 100%,∀l ∈ Ls.

• The probability of transition from the normal state sN to the blackout state sB is

P (st+1 = sB|st = sN , a) = 1− P (st+1 = sN |st = sN)−
∑
l∈SC

P (st+1 = l|st = sN , a).

• The transition from a contingency state s ∈ SC to the normal state sN implies that,

during this hour no line has failed and line s has been repaired:

P (st+1 = sN |st = s) =
(
1− e−µs

) ∏
k∈L\s

e−λk ,∀s ∈ SC .

• The transition of staying at the same contingency state s ∈ SC implies that, during this

hour no line has failed and line s has not been repaired:

P (st+1 = s|st = s) = e−µs
∏

k∈L\s

e−λk ,∀s ∈ SC .

• The transition from a contingency state s ∈ SC to another contingency state k ∈ SC

implies that, during this hour line k has failed, line s has been repaired, and no other

line has failed:

P (st+1 = k|st = s, a) = [1− f(a)]
(
1− e−µs

) (
1− e−λk

) ∏
j∈L\{k,s}

e−λj ,∀s, k(6= s) ∈ SC .
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• The probability of transition from a contingency state s ∈ SC to the blackout state sB is

P (st+1 = sB|st = s, a) = 1− P (st+1 = sN |st = s)−
∑
k∈SC

P (st+1 = k|st = s, a),∀s ∈ SC .

• The probability of transition from the blackout state sB to the normal state sN is

P (st+1 = sN |st = sB) = e−µ̃.

• The probability of transition from the blackout state sB to a contingency state s ∈ SC is

P (st+1 = s|st = sB) = 0,∀s ∈ SC .

• The probability of staying at the blackout state sB is

P (st+1 = sB|st = sB) = 1− e−µ̃.

3.3.5 Immediate Cost c(s, a)

The immediate cost includes generation cost and cost of load shedding of this hour. For a

given dispatch decision as = {qn,∀n ∈ S; dn,∀n ∈ D}, the immediate cost is

c(s, a) =

∫ qn

0

(an + bnq)dq +
∑
n∈D

cLS
n dn =

(
anqn +

1

2
bnq

2
n

)
+
∑
n∈D

cLS
n dn.

3.3.6 Objective

The objective of the MDP model is to minimize the total cost, including immediate cost and

discounted future cost. The optimality equations are:

V (s) = inf
a∈As

{
c(s, a) +

∑
j∈S

βP (j|s, a)V (j)

}
,∀s ∈ S (3.2)

where V (s) is the value (total cost) at state s, and β is the discount rate.
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3.4 SOLVING THE MDP MODEL

We present here the steps of the policy iteration [71], which is a commonly used method for

solving MDPs:

Step 1: Set i = 0, and select an initial decision rule a0
s,∀s ∈ {{sN} ∪ SC ∪ {sB}}.

Step 2: Obtain V i by solving

(I − βP (ai))V i = c(ai).

Step 3: For all s ∈ {{sN} ∪ SC ∪ {sB}}, choose ai+1
s to satisfy

ai+1
s ∈ argmin

{
c(ai+1

s ) + βPai+1
s

(·|s)V i
}

,

setting ai+1
s = ai

s if possible.

Step 4: If ai+1
s = ai

s,∀s ∈ {{sN} ∪ SC ∪ {sB}}, stop and set a∗s = ai
s,∀s ∈ {{sN} ∪ SC ∪

{sB}}. Otherwise increment i by 1 and return to Step 2.

In this algorithm, I is the identity matrix, ai is the action vector for all states in iteration

i, c(ai) is the immediate cost vector for all states given action vector ai, V i is the value vector

for all states in iteration i, and P (ai) is the transition probability matrix given action vector

ai. The value vector V i is updated in Step 2, but is treated as a constant vector in the policy

improvement Step 3.

Since the action space for each state s ∈ {{sN} ∪ SC} is a polyhedron, the decision

improvement in Step 3 cannot be done by enumerating all infinitely many possible actions

as in the case with a finite discrete action space, thus an optimization problem needs to be

solved in Step 3 for each state s ∈ {{sN} ∪ SC}. In the following sections, the optimization

problems are derived and structured as two-stage stochastic programs with convex quadratic

objective functions and binary variables. Extensive forms of the stochastic programs can be

solved by a Cplex [3] solver.
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3.4.1 Solving Step 3 in Policy Iteration for the Normal State sN

For the normal state sN , the optimization problem is:

min
q,d,v,vmax

V i+1(sN) =
∑
n∈S

(
anqn +

1

2
bnq

2
n

)
+
∑
n∈D

cLS
n dn

+ βP (sN |sN)V i(sN) + β
∑
s∈SC

P (s|sN , vs
max)V

i(s) + βP (sB|sN , vs
max)V

i(sB)

s. t. ±

[∑
n∈S

Hl,nqn −
∑
n∈D

Hl,n(Dn − dn)

]
≤ Tl, ∀l ∈ L

±

[∑
n∈S

Hs
l,nqn −

∑
n∈D

Hs
l,n(Dn − dn)

]
≤ (1 + vs

l )Tl, ∀l ∈ Ls,∀s ∈ SC∑
n∈S

qn =
∑
n∈D

(Dn − dn)

vs
l ≤ vs

max, ∀l ∈ Ls,∀s ∈ SC ;

0 ≤ qn ≤ Qn,∀n ∈ S; dn ≥ 0,∀n ∈ D; vs
l ≥ 0,∀l ∈ Ls,∀s ∈ SC ; vs

max ≥ 0,∀s ∈ SC .

Here vs
l calculates the percentage of thermal limit violation on line l caused by the failure

of line s, and vs
max is the maximum of such percentages on all working line l ∈ Ls. The

state values V i(s) for all s ∈ {{sN} ∪ SC ∪ {sB}} from the last iteration i are treated as

constants. This formulation can be equivalently simplified by substituting vs
l with vs

max for

all l ∈ Ls, s ∈ SC and then replacing vs
max with a simpler notation vs:

min
q,d,v

V i+1(sN) =
∑
n∈S

(
anqn +

1

2
bnq

2
n

)
+
∑
n∈D

cLS
n dn

+ βP (sN |sN)V i(sN) + β
∑
s∈SC

P (s|sN , vs)V i(s) + βP (sB|sN , vs)V i(sB)

s. t. ±

[∑
n∈S

Hl,nqn −
∑
n∈D

Hl,n(Dn − dn)

]
≤ Tl, ∀l ∈ L

±

[∑
n∈S

Hs
l,nqn −

∑
n∈D

Hs
l,n(Dn − dn)

]
≤ (1 + vs)Tl, ∀l ∈ Ls,∀s ∈ SC∑

n∈S

qn =
∑
n∈D

(Dn − dn)

0 ≤ qn ≤ Qn,∀n ∈ S; dn ≥ 0,∀n ∈ D; vs ≥ 0,∀s ∈ SC .
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In this stochastic program, q and d are the first stage variables representing a priori contin-

gency dispatch decisions, whereas v can be perceived as the second stage variables represent-

ing post contingency percentage violations. The definition of the transition probabilities in

the objective function contains the piecewise linear function f(·), which can be formulated

by using the standard SOS-2 (special order set constraint of type 2) technique [32, 36]. The

piecewise linear function

f(v) =

2.5v 0 ≤ v ≤ 0.4,

1 v > 0.4.

can be modeled as:

v = 0.4(1− u1 − u2) + Mu2

f(v) = 1− u1

u1 ≤ w

u2 + w ≤ 1

u1, u2 ≥ 0, w ∈ {0, 1},

where v plays the role of max{v} in (3.1), and M is a sufficiently large number. By sub-

stituting the transition probabilities and the f(·) function, we can rewrite the stochastic

programs as the following:
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min
q,d,u,w

V i+1(sN) =
∑
n∈S

(
anqn +

1

2
bnq

2
n

)
+
∑
n∈D

cLS
n dn (3.3)

+β
∑
s∈SC

us
1

∏
l∈L\s

e−λl
(
1− e−λs

)
[V i(s)− V i(sB)]

+ vc

s. t. ±

[∑
n∈S

Hl,nqn −
∑
n∈D

Hl,n(Dn − dn)

]
≤ Tl, ∀l ∈ L

±

[∑
n∈S

Hs
l,nqn −

∑
n∈D

Hs
l,n(Dn − dn)

]
≤ [1 + 0.4(1− us

1 − us
2) + Mus

2]Tl, ∀l ∈ Ls,∀s ∈ SC∑
n∈S

qn =
∑
n∈D

(Dn − dn)

us
1 ≤ ws, ∀s ∈ SC

us
2 + ws ≤ 1, ∀s ∈ SC

0 ≤ qn ≤ Qn, ∀n ∈ S; dn ≥ 0, ∀n ∈ D; us
1, u

s
2 ≥ 0, ws ∈ {0, 1}, ∀s ∈ SC ,

where vc is a constant term that appears in the objective function but does not affect the

optimal solution. When it appears in other formulations of this chapter, vc may or may not

represent the same value of constant.

In this formulation, the binary variable ws indicates whether (ws = 0) or not (ws = 1)

the type (a) failure (defined in Section 3.2.5) of transmission line s will surely result in a

cascading failure. If ws = 1, the probability of a cascading failure is calculated by 1− us
1. A

lower bound of M can be obtained as:

M ≥
∑

n∈D Dn

minl∈L{Tl}
.

Any value above this bound can guarantee the validity of the formulation, since the maximal

percentage of violation max{v} is bounded by the largest possible amount of power flow∑
n∈D Dn divided by the minimal thermal limit minl∈L{Tl}.
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3.4.2 Solving Step 3 in Policy Iteration for Other States

For a contingency state s ∈ SC , the optimization problem is:

min
q,d,v

V i+1(s) =
∑
n∈S

(
anqn +

1

2
bnq

2
n

)
+
∑
n∈D

cLS
n dn

+ βP (sN |s)V i(sN) + β
∑
k∈SC

P (k|s, vk)V i(k) + βP (sB|s, v)V i(sB)

s. t. ±

[∑
n∈S

Hs
l,nqn −

∑
n∈D

Hs
l,n(Dn − dn)

]
≤ Tl, ∀l ∈ Ls

±

[∑
n∈S

Hk
l,nqn −

∑
n∈D

Hk
l,n(Dn − dn)

]
≤ (1 + vk)Tl, ∀l ∈ Ls\k,∀k ∈ SC\s∑

n∈S

qn =
∑
n∈D

(Dn − dn)

0 ≤ qn ≤ Qn,∀n ∈ S; dn ≥ 0, ∀n ∈ D; vk ≥ 0, ∀k ∈ SC\s.

Similar to Section 3.4.1, this stochastic programs can be rewritten by substituting the

transition probabilities and the f(·) function as the following:

min
q,d,u,w

V i+1(s) =
∑
n∈S

(
anqn +

1

2
bnq

2
n

)
+
∑
n∈D

cLS
n dn (3.4)

+β
∑

k∈SC\s

uk
1

∏
j∈L\{k,s}

e−λj
(
1− e−µs

) (
1− e−λk

)
[V i(k)− V i(sB)]

+ vc

s. t. ±

[∑
n∈S

Hs
l,nqn −

∑
n∈D

Hs
l,n(Dn − dn)

]
≤ Tl, ∀l ∈ Ls

±

[∑
n∈S

Hk
l,nqn −

∑
n∈D

Hk
l,n(Dn − dn)

]
≤ [1 + 0.4(1− uk

1 − uk
2) + Muk

2]Tl,

∀l ∈ Ls\k,∀k ∈ SC\s∑
n∈S

qn =
∑
n∈D

(Dn − dn)

uk
1 ≤ wk, ∀k ∈ SC\s

uk
2 + wk ≤ 1, ∀k ∈ SC\s

0 ≤ qn ≤ Qn,∀n ∈ S; dn ≥ 0,∀n ∈ D; uk
1, u

k
2 ≥ 0, wk ∈ {0, 1},∀k ∈ SC\s.
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For the blackout state sB, the action affects neither the transition probability nor the

immediate cost, thus no optimization problem needs to be solved.

3.4.3 Convergence of the Policy Iteration Algorithm

For an MDP with a finite state space and a finite action space, the policy iteration has

been proved to converge finitely (Theorem 6.4.2 in [71]). However, the proposed model has

a continuous action space, thus in general the policy iteration algorithm may not converge.

An alternative theorem establishes the convergence of policy iteration for arbitrary state and

action spaces under the assumption that there is a minimizing decision rule at each value

vector V [71]:

Theorem 1. (Theorem 6.4.6 in [71])

The sequence of value vectors {V i} generated by policy iteration converges monotonically and

in norm to {V ∗
β }, which solves the optimality equation (3.2).

It is mentioned on page 180 in [71] that Theorem 1 holds for models with action space

As compact, transition probability matrix P (j|s, a) and immediate cost function c(s, a) con-

tinuous in a for each s ∈ S, and S either finite or compact. It can be confirmed from

Section 3.3 that the action space As is compact, transition probability P (j|s, a) and imme-

diate cost c(s, a) are continuous in a for each s ∈ {{sN} ∪ SC ∪ {sB}}, and the state space

{{sN} ∪ SC ∪ {sB}} is finite. Therefore, the convergence of policy iteration for this model

can be established.

Corollary 1. As long as stochastic programs (3.3) and (3.4) are solved to optimality, the

sequence of value vectors {V i} generated by the policy iteration in Section 3.4 converges

monotonically and in norm to {V ∗
β }, which solves the optimality equation (3.2).
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3.5 A NUMERICAL EXAMPLE

Figure 9 shows a five-bus network example from the website (http://www.pjm.com) of PJM

(Pennsylvania–New Jersey–Maryland Interconnection), which is a regional transmission or-

ganization (RTO) in the eastern United States that operates the world’s largest competitive

wholesale electricity market. In Figure 9, a ‘G’ in a circle represents a generator, and an

arrow represents demand. In this example, N ={A, B, C, D, E}, D ={B, C, D}, S ={A, C,

D, E}, L ={A-B, B-C, C-D, D-E, E-A, A-D}. Node and transmission line data are given in

Tables 12 and 13. Discount rate β is set to be 0.99.

Figure 9: A five-bus test example

Table 12: Node data for a five-bus example

n Dn an bn Qn

A – 7 0.0452 210

B 250 – – –

C 350 13.51 0.0700 520

D 250 15 0.1210 200

E – 9 0.0920 600
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Table 13: Transmission line data for a five-bus example

line resistance reactance thermal limit MTTF MTTR

R (Ω) X (Ω) (MW) (Hour) (Hour)

A-B 0 0.0281 377 18015 43

B-C 0 0.0108 77 6924 17

C-D 0 0.0297 223 19041 46

D-E 0 0.0297 240 19041 46

E-A 0 0.0064 360 4103 10

A-D 0 0.0304 159 19490 47

Policy iteration is implemented in Matlab [4] and Cplex [3]. We present the results of

this example and answer the following questions.

• How is the initial decision rule determined?

The initial decision rule (in Step 1 of policy iteration) is obtained by solving the non-

security constrained economic dispatch for all s ∈ {{sN} ∪ SC ∪ {sB}}:

min
q,d

∑
n∈S

(
anqn +

1

2
bnq

2
n

)
+
∑
n∈D

cLS
n dn

s. t. ±

[∑
n∈S

Hs
l,nqn −

∑
n∈D

Hs
l,n(Dn − dn)

]
≤ Tl, ∀l ∈ Ls∑

n∈S

qn =
∑
n∈D

(Dn − dn)

0 ≤ qn ≤ Qn, ∀n ∈ S; dn ≥ 0, ∀n ∈ D.

The objective here is only to minimize the immediate cost, ignoring the future cost. The

initial generation decisions at the normal state sN and the contingency state s = {A-B}

for the 24-hour period are shown in Figures 10 and 11, respectively.
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Figure 10: Initial generation decisions for sN

Figure 11: Initial generation decisions for s = {A-B}

63



Figure 12: Optimal generation decisions for sN

Figure 13: Optimal generation decisions for s = {A-B}
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• How fast does the policy iteration algorithm converge?

The algorithm converges in two iterations within a few seconds. The optimal generation

decisions at the normal state sN and the contingency state s = {A-B} for the 24-hour

period are shown in Figures 12 and 13, respectively.

Compared to the initial generation decisions, the optimal ones at the normal state use

generators C and D more, but use generator E less. This is because generator E depends

on transmission lines to supply, which has some risk that the optimal generation decisions

are trying to avoid. The optimal generation decisions at the contingency state s = {A-

B} have similar changes over the initial ones, but the differences are very small. This is

because the failure of line {A-B} has already reduced the use of generator E significantly

even in the non-security constrained economic dispatch.

• How are the values of the initial decisions and N-1 criterion evaluated?

The values of the initial decisions and N-1 criterion are evaluated by solving the linear

system of equations given in Step 2 of the policy iteration, where the action ai is obtained

using the initial dispatch decision and N-1 criterion, respectively.

• How much improvement do the optimal decisions have over the initial deci-

sions and the N-1 criterion?

The comparison of total costs between optimal and initial decisions are given for the

normal state sN and the contingency state s = {A-B} in Figure 14. The N-1 criterion,

as has been explained, requires that the system withstands any single line failure. From

the comparison of total costs between optimal decisions and N-1 criterion in Figure 15,

we can see that the expected total cost of the optimal decisions is significantly less (in

the order of million dollars) than that of the N-1 criterion.

For the normal state sN , we also compare the probability that a system is in each

of the possible states in Table 14, and the expected total cost of being in each of the

possible states in Table 15. The stationary probability is obtained by solving the following

equation

π>P (a∗) = π>,

where π is the stationary probability vector, while P (a∗) is the transition probability

matrix under the optimal policy a∗. The stationary cost is given by the optimal solution
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Figure 14: Total cost comparisons between optimal and initial decisions

Figure 15: Total cost comparisons between optimal decision and N-1 criterion
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Table 14: Comparisons of state probabilities for the normal state sN

Normal A–B B-C C–D D–E E–A A–D Blackout

Initial 0.917 0.012 0.002 0.014 0.014 0.002 0.016 0.023

MDP 0.918 0.012 0.002 0.015 0.015 0.002 0.016 0.020

N–1 0.918 0.014 0.002 0.015 0.015 0.002 0.016 0.018

Table 15: Comparisons of state costs (in $106) for the normal state sN

Normal A–B B-C C–D D–E E–A A–D Blackout

Initial 1.796 3.590 1.831 1.906 1.911 1.807 1.908 10.830

MDP 1.796 3.590 1.831 1.906 1.911 1.807 1.908 10.830

N–1 7.269 7.470 6.493 7.392 7.482 7.288 7.486 14.535

of the state value V ∗ to the MDP model. It can be seen from Tables 14 and 15 that the

MDP solution is almost as cost efficient as the initial economic dispatch solution, but it

also has a security level almost as high as the N–1 criterion. Therefore, the long-term

expected cost for the MDP solution outperforms both of the other approaches, as is

confirmed in Table 16.

Table 16: Comparisons of expected long-term costs for the normal state sN

Long-term Expected Cost

Initial 2.0326 ×106$

MDP 2.0062 ×106$

N–1 7.4101 ×106$
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3.6 CONCLUSION

We have introduced a Markov Decision Process model for the security constrained economic

dispatch problem. This approach quantitatively takes the cascading failure into modeling

consideration, and minimizes the long-term expected total cost. The optimal solution of the

model provides the cost-minimizing decision rules not only for the normal state but also for

all contingency states. The numerical example demonstrates the advantage of this model

over non-security constrained economic dispatch and N-1 criterion.
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4.0 OLIGOPOLY MODELS FOR MARKET PRICE OF ELECTRICITY

UNDER DEMAND UNCERTAINTY AND UNIT RELIABILITY

4.1 INTRODUCTION

In the new deregulated environment, the price of electricity is no longer set by regulators;

instead it is set by market forces. Since investment and operating decisions will be made

based on the anticipated prices, there is a strong interest in modeling them using available

engineering and economic information [78]. In the recent literature, three oligopoly models

(together with their various variants and extensions) have been proposed to depict the be-

havior of market prices. These are the Bertrand, Cournot, and SFE models [12, 33, 40, 75].

For the most part, with the exception of the SFE, these models are deterministic. The elec-

tricity price, however, depends on a variety of physical and economic factors, many of which

are stochastic by nature. The physical factors include production cost, load, generation and

transmission reliability, unit commitment, and transmission constraints. The economic fac-

tors include strategic bidding and load elasticity. In this chapter, we enhance the oligopoly

models by incorporating the stochasticity associated with the load and the generation avail-

abilities. We obtain the Nash equilibrium solutions for the Cournot and SFE models, in

which generating firms compete with each other to maximize their own expected profits.

The current literature on these models primarily considers random factors on the demand

side, but it does not consider random factors present in the supply side of the market [40, 59].

In their elegant formulation of the SFE, Klemperer and Meyer [59] consider a stochastic

demand function by assuming that the quantity demanded is a function of both the price

p and a scalar random variable ε. Thus, the demand function is represented by D(p, ε).

Under the assumption that the second partial derivative Dpε = 0, they express the Nash
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equilibrium solution in terms of differential equations. Their solution does not apply without

this condition or when there are uncertainties associated with the supply side such as fuel

prices and production cost functions. Our contribution is to include some of these sources

of uncertainties in the oligopoly models for electricity prices. We conjecture that when these

sources of uncertainties are included, a supply function equilibrium as general as that of

Klemperer and Meyer may not exist. Cournot model can be seen as a restricted special

case of SFE. Using the best response function, our approach obtains the Nash Cournot

equilibrium solution, taking into account both demand and supply side uncertainties.

Theoretical research and computational studies on SFE models have shown considerable

difficulties in computing equilibrium solutions [12, 40, 59]. In fact, multiple equilibrium

solutions may exist, which carry additional equilibrium selection problem. Thus, most of the

SFE studies have been designed assuming a linear supply function [41, 42, 74]. Klemperer

and Meyer [59] have shown that in the special case of symmetric firms with linear marginal

costs and random shock with full support (ε ≥ 0), a unique equilibrium solution exists, and

this solution is a linear function. If the random shock does not have full support, which

is a more realistic assumption, the linear supply function is not the unique equilibrium.

Nevertheless, according to Green [41], a linear supply function is more tractable and for low

levels of demand, it can be seen as an approximation to a set of equilibrium supply functions.

The assumption of linear supply functions has been used in Green [42] to study the effects

of the contract market on a pool market. It has also been used by Rudkevich [74] in his

investigation of the bidding learning process. The learning model consists of generating

companies adjusting their supply functions as aggregated-bid information on the market is

revealed. Rudkevich shows that if the initial supply functions submitted by the firms are

based on their marginal costs, the sequence of supply functions converges to a linear SFE.

In this chapter, we have thus restricted ourselves to linear supply functions and attempted

to obtain an equilibrium solution for this class (LSFE).

The numerical examples given here are based on a linear demand function with multiple

asymmetric firms. Our model assumes that the transmission grid is free of congestion. In the

Cournot model, adding transmission constraints to the market models would involve solving

a mixed complementarity problem [51]. These constraints in conjunction with supply and
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demand uncertainties would make the models hard to solve. A similar difficulty would occur

with the SFE model. Our assumption is reasonable under low demand conditions (off-peak

hours) during which the power system remains unconstrained by congested lines. We use

best response function approach to obtain the Nash Cournot equilibrium, and nonlinear

optimization for LSFE.

Section 4.2 states the assumptions used to represent the supply and demand sides for

the electricity market. Section 4.3 provides the derivation of the Nash Cournot equilibrium

under the stochastic setup. Section 4.4 gives the corresponding approach for the LSFE

model. Section 4.5 gives numerical examples for a market consisting of three asymmetric

firms. We compare here the results of the mean and standard deviation of equilibrium prices,

profits, and the quantities supplied under these two models. As an added comparison, we also

provide the corresponding statistics resulting from the perfect SFE and Bertrand models.

Section 4.6 concludes this chapter.

4.2 ASSUMPTIONS AND OBJECTIVES FOR THE STOCHASTIC

MODELS

This chapter considers the following decision situation in the face of uncertainty. A com-

mitment is being made at some point in time (either to quantity, in the case of the Cournot

model, or to the slope and intercept of the bid curve in the case of the SFE model), before the

bidder knows the exact load level or generator availabilities. For example, assume that bids

are taken hour by hour, and the commitment is “day ahead” (such as 12 noon the previous

day, as in the PJM market [www.pjm.com]). The load uncertainty is due to errors in the

short term load forecasts (typically with a standard deviation of 2-5% [8, 9]). The generator

availability uncertainty is about generators that are currently available, but might have a

forced outage between the time of making the bid and 24 hours away. We have obtained the

appropriate estimates of generator availabilities using the failure and repair rates given for

the IEEE Reliability Test System [43] and using the Markov process assumption as described

in the following paragraph.
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We assume that there are n competing asymmetric firms with firm i having Ni− 1 units

available for production. The capacity of the jth unit, j = 1, . . . , Ni−1 of firm i is represented

by cij. To account for a firm’s ability to purchase energy at a higher cost from an outside

source, we define an Ni
th unit which represents this available source. As a result, we assume

ciNi
= ∞,∀i = 1, ..., n. We assume that each firm’s units are dispatched according to their

constant marginal cost, which is represented by dij. The operating state of generator j for

firm i at time t is denoted by a two-state stochastic process Yij(t) that takes the value 1 when

the unit is up and 0 otherwise. For the purpose of the numerical examples given in Section

4.5, we will assume that this process is a continuous time Markov chain with a failure rate

λij and a repair rate µij. The steady state availability of the unit which we denote by pij is

given by

pij = P [Yij(∞) = 1] =
µij

λij + µij

.

We will abbreviate Yij(∞) by Yij, thus we have P [Yij = 1] = pij. We assume piNi
= 1. That

is, the outside source is always available. We also assume that the Yij’s and the load L are

independent. It is well known [60] that under the Markov assumption,

pij(t) ≡ P [Yij(t)|Yij(0) = 1] =
µij

λij + µij

+
λij

λij + µij

e−(λij+µij)t.

Thus the average availability during the interval [0, T ] given that the unit (i, j) was up at

time 0 is given by

p̄ij(T ) =
1

T

∫ T

0

[
µij

λij + µij

+
λij

λij + µij

e−(λij+µij)t

]
dt

=
µij

λij + µij

+
1

T

λij

(λij + µij)2

[
1− e−(λij+µij)T

]
.

In Section 4.5, the first example uses the steady-state availability term pij whereas the second

one gives results for day ahead bids using the quantity p̄ij(T ) for the average availability

where T = 24 hours.

We assume a constant marginal cost for each generating unit (i, j). This results in a

piecewise linear production cost function for each firm i. Our model also makes several

simplifying assumptions. First, it does not consider unit commitment. Uncertainty in load

by itself (due to 24 hour-ahead load forecast error) can make an important difference in
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unit commitment. Wrong unit commitments can have negative economic consequences [52].

Uncertainty in generator availability would certainly magnify this effect. The zero-one nature

of commitment, along with minimum run levels and ramp rates, may make it impossible to

stack units in merit order. Secondly, we have assumed that if a firm commits one of its

generators to provide a specified quantity ahead, but one of its own generators fails, it will

access the balancing market if its quantity commitment is greater than the sum of their

available capacities, and the cost for this transaction is fixed. But, in reality, it will go into

the real time market and buy at the prevailing market price to make up for the shortfall.

This may be a price that is quite low, or it might be very high if the system is in a shortage

state. Also, if the balancing energy prices are below the generating costs, the firm will surely

opt to access the market even if it has ample generation. Inclusion of this exogenous factor

will make our model complicated, and we do not consider this here.

At price P , the actual demand function Q = D(L, P ) is a random variable, where the

load L is the source of uncertainty. It is assumed that L has a known probability distribution.

Each firm will select its bid to maximize its expected profit. We describe this process in detail

and provide Nash equilibrium solution for each of the bidding models.

4.3 COURNOT MODEL

In the Cournot model, we assume ∂D(L,P )
∂P

< 0 and denote the inverse function of D(L, P ) as

P (L, D). In this model, each firm simultaneously bids a quantity qi that it is willing to supply.

Notice that qi is an MWh variable, and it represents the firm amount of generation that the

firm commits itself to. The market clearing price P ∗ is determined after the actual demand

is observed. We denote the market clearing price P ∗ as the price where D(l, P ∗) =
∑n

i=1 qi

or P ∗ = P (l,
∑n

i=1 qi), where l is the realization of L. We assume that if P ∗ < 0, no trade is

made.

Firms choose their bids qi in order to maximize their expected profits. Given the sum of

other firms’ bids q−i, the profit of firm i is a function of qi:
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πi(qi | q−i) = qiP (L, q−i + qi)
+ − Costi(qi),

where Costi(qi) is the cost for firm i to produce the quantity of qi, and P (L, q−i + qi)
+ :=

max{P (L, q−i + qi), 0}. Clearly, the cost is a random variable due to uncertainty resulting

from supply side unit availabilities. Therefore, each firm’s objective is to select a qi to

maximize its expected profit, which is the expected revenue less the expected costs:

E[πi(qi | q−i)] = qi

∫ ∞

−∞
P (l, q−i + qi)

+f(l)dl − EY [Costi(qi)]. (4.1)

where EY [·] indicates that expectation is taking in terms of random variable Y .

For ease of exposition, we assume that D(L, P ) is a linear function, i.e. Q = D(L, P ) =

L −mP for a constant m > 0, and then P (L, Q) = (L−Q)
m

. We assume that L is uniformly

distributed on [L1, L2]. This assumption allows us to obtain closed form expressions for the

solutions of the integrals that appear in the computations, although the basic idea of the

approach also applies to more general distributions (In the literature, the normal distribution

has been considered to be more representative of actual forecast errors). Assuming further

that L2 > Q, we can directly compute the expected revenue

qi

∫ ∞

−∞
P (l, q−i+qi)

+f(l)dl = qi
[L2 −max(L1, q−i + qi)][L2 + max(L1, q−i + qi)− 2(q−i + qi)]

2m(L2 − L1)
.

To aid in the computation of a firm’s expected cost, we define the following expression:

Ci,j(q) :=


EY [Costi(q)] if j = 1,

EY [Costi(q) | Yik = 0, for k = 1, . . . , j − 1] for j = 2, . . . , Ni.

Here Cij(q) represents the expected cost of firm i producing q units of energy when generating

units 1, . . . , j − 1 are not available. Then we have

Ci,Ni
(q) = qdiNi

,
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and for k = 1, 2, ..., Ni − 1, we obtain the following recursive relationship:

Ci,j(q) =


pijdijq + (1− pij)Ci,j+1(q) 0 ≤ q ≤ cij;

pij{dijcij + Ci,j+1(q − cij)}+ (1− pij)Ci,j+1(q) q > cij.

Therefore, Ci,j(·) is a piecewise linear function and EY [Costi(qi)] = Ci,1(qi) can be calculated

recursively. We then rewrite the expected profit function as

E[πi(qi | q−i)] = qi

∫ ∞

−∞
P (l, q−i + qi)

+f(l)dl − EY [Costi(qi)] =: Ri(qi | q−i)− Ci,1(qi).

Here, the term Ri(qi | q−i) is the expected revenue function and the Ci,1(qi) is the expected

production costs. Equation (4.1) is the expected profit given the total bid of the other firms.

The best response for firm i is to bid a quantity q∗i in order to maximize (4.1). Therefore,

q∗i is a function of q−i, in other words, if firm i observes the other firms’ total bids q−i, then

q∗i (q−i) is its optimal bid. Thus q∗i (·) is the best response function for firm i. We can further

derive the best response function in terms of Q = q−i+q∗i (q−i), so q∗i (Q) = q∗i [q−i+q∗i (q−i)]. It

means that if the market total bid is Q, then firm i must have bid q∗i (Q). Under the uniform

distribution assumption of load uncertainty L, best response functions q∗i (q−i) and q∗i (Q)

are piecewise linear and can be analytically obtained. Then the Nash Cournot equilibrium

outcome Q∗ can be either determined analytically by the solution to Q =
∑n

i=1 q∗i (Q), or

graphically by the intersection of q(Q) =
∑n

i=1 q∗i (Q) and the 45 degree line q(Q) = Q. Each

firm’s bid under equilibrium is then determined by their best response functions q∗i = q∗i (Q
∗).

The computations are further described by means of an illustration in Section 4.5.2.

Let q∗ and Q∗ be the optimal bids under equilibrium, then the equilibrium price becomes

P ∗ = P (L, Q∗) = L−Q∗

m
, whose mean and variance can be calculated accordingly. In the

specific example above, E[P ∗] = E[L]−Q∗

m
and V ar[P ∗] = V ar[L]

m2 . Notice that the variance of

the equilibrium price only depends on the variance of the load. Similarly to the expected

cost, we can also recursively calculate the variance of profit under equilibrium:

V ar[πi(qi | q−i)] = q2
i

∫ ∞

−∞
[P (l, Q∗)+]2f(l)dl − q2

i

[∫ ∞

−∞
P (l, Q∗)+f(l)dl

]2

+ V arY [Costi(q
∗
i )].
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Define

Vi,j(q) =


V arY [Costi(q)] if j = 1,

V arY [Costi(q) | Yik = 0, for k = 1, . . . , j − 1] for j = 2, . . . , Ni.

Then,

Vi,Ni
(q) = 0,

and for k = 1, 2, ..., Ni − 1,

Vi,j(q) =



(1− pij)Vi,j+1(q) + pij(1− pij)[dijq − Ci,j+1(q)]
2, 0 ≤ q ≤ ci,j,

pijVi,j+1(q − cij) + (1− pij)Vi,j+1(q)

+pij(1− pij)[dijcij + Ci,j+1(q − cij)− Ci,j+1(q)]
2, q > cij.

4.4 LINEAR SUPPLY FUNCTION EQUILIBRIUM

In the SFE model, firms simultaneously bid their supply functions Si(P ). After the sup-

ply bids are submitted, the actual demand function is observed. Thereafter, the market

clearing price P ∗ is obtained such that D(l, P ∗) =
∑n

i=1 Si(P
∗), where l is the realization

of uncertainty L. We assume that if P ∗ < 0, no trade is made. In this section, we restrict

our attention to linear supply functions, i.e Si(P ) = ai + biP , and a linear demand function

D(L, P ) = L−mP . Here, L is a random variable and m is a constant.

Again, firms choose their bids Si(P ) = ai + biP in order to maximize their expected

profits. Given the sum of other firms’ bids S−i(P ) = a−i + b−iP and using the equation

D(L, P ) = Si(P ) + S−i(P ), we can solve for the market clearing price P ∗ = (L−ai−a−i)
+

m+bi+b−i
.

Define xi = bi

m+bi+b−i
, we then have P ∗ = (1−xi)(L−ai−a−i)

+

m+b−i
and Si(P

∗) = ai+xi(L−ai−a−i)
+.

The profit of firm i is a function of Si(P ), or equivalently, a function of ai and xi:
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πi(ai, xi) = Si(P
∗)P ∗ − Costi[Si(P

∗)]

=
(1− xi)(L− ai − a−i)

+[ai + xi(L− ai − a−i)
+]

m + b−i

−Costi[ai + xi(L− ai − a−i)
+],

where Costi(q) is the cost for firm i to produce the quantity of q, which now involves both

demand side and supply side uncertainties. Therefore,

E[πi(ai, xi)] =
(1− xi)

{
aiE[L− ai − a−i]

+ + xiE [(L− ai − a−i)
+]

2
}

m + b−i

−EY,L{Costi[ai + xi(L− ai − a−i)
+]}.

Specifically, if L is uniformly distributed on [L1, L2] (assuming L2 ≥ ai + a−i), then

E[L− ai − a−i]
+ =

1

L1 − L2

∫ L2

max(L1,ai+a−i)

(l − ai − a−i)dl

=
[L2 −max(L1, ai + a−i)][L2 + max(L1, ai + a−i)− 2(ai + a−i)]

2(L2 − L1)

and

E[(L− ai − a−i)
+]2 =

1

L1 − L2

∫ L2

max(L1,ai+a−i)

(l − ai − a−i)
2dl

=
(L2 − ai − a−i)

3 − [max(L1, ai + a−i)− ai − a−i]
3

3(L2 − L1)
.

As in the Cournot model, we again develop a recursive relationship for determining the

expected cost under a given supply function. For x and α ≥ 0, define

C̄L
i,j(x, α, β) =


EY,L{Costi[α + (Lx− β)+]},

EY,L{Costi[α + (Lx− β)+] | Yik = 0, k = 1, ..., j − 1} for j = 2, ..., Ni.

Then,

C̄L
i,Ni

(x, α, β) = E[α + (Lx− β)+]dNi
(4.2)
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and for j = 1, ..., Ni − 1:

C̄L
i,j(x, α, β) =



pijdijE[α + (Lx− β)+] + (1− pij)C̄
L
i,j+1(x, α, β), α + (L2x− β)+ ≤ ci,j;

pijdijE{cij − [cij − α− (Lx− β)+]+} α + (L1x− β)+ < cij,

+pijC̄
L
i,j+1(x, 0, β + cij − α) cij < α + (L2x− β)+;

+(1− pij)C̄
L
i,j+1(x, α, β)

pijdijcij + pijC̄
L
i,j+1(x, 0, β + cij − α) α + (L1x− β)+ ≥ cij,

+(1− pij)C̄
L
i,j+1(x, α, β) α ≤ cij;

pijdijcij + pijC̄
L
i,j+1(x, α− cij, β) α > cij,

+(1− pij)C̄
L
i,j+1(x, α, β) α + (L1x− β)+ ≥ cij.

(4.3)

Therefore, EY,L{Costi[ai + xi(L − ai − a−i)
+]} = C̄L

i1[xi, ai, (ai + a−i)xi] can be evaluated

recursively. If L is uniformly distributed on [L1, L2], then from (4.2) and (4.3) we obtain

E[α + (Lx− β)+] =



x = 0,

α + (L2x− β)+ L1 = L2, or

L2x ≤ β ;

α + 1
L2−L1

∫ L2

max(L1, β
x)(lx− β)dl

= α +
[L2−max(L1, β

x)][L2x+max(L1x,β)−2β]

2(L2−L1)
otherwise.

In fact, the Cournot model is a special case of LSFE, where the supply function S(P ) = a;

also the expected cost function Ci,j(q) in the Cournot model is a special case of C̄L
i,j(x =

0, α = q, β = 0).

Let a∗ and b∗ be the optimal bids under equilibrium (assuming L1 ≥
∑n

i=1 a∗i ), then

the equilibrium price becomes P ∗ =
L−

Pn
i=1 a∗i

m+
Pn

i=1 b∗i
, and E[P ∗] =

E[L]−
Pn

i=1 a∗i
m+

Pn
i=1 b∗i

and V ar[P ∗] =

V ar[L]
(m+

Pn
i=1 b∗i )2

. Notice that here the variance of price under LSFE model is smaller than that

under Cournot model. We do not obtain an analytical expression for the variance of profit
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under LSFE model. Instead, we obtain the results shown in Section 4.5 using Monte Carlo

simulation.

For the purpose of obtaining the equilibrium solution (a∗i , b
∗
i ), we adopt a sequential

search procedure:

1. Set ki = 0, aki
i = 0, bki

i = 0, for i = 1, 2, · · · , n. Select an ε > 0.

2. For i = 1, 2, · · · , n,

(aki+1
i , bki+1

i ) = argmaxai∈R+,bi∈R+
E

[
π

(
ai, bi

∣∣∣∣∣∑
j 6=i

a
kj

j ,
∑
j 6=i

b
kj

j

)]

and set ki = ki + 1.

3. If ∆ai = |aki
i − aki−1

i | ≤ ε and ∆bi = |bki
i − bki−1

i | ≤ ε for i = 1, 2, · · · , n, stop; otherwise

go to step 2.

Thus the starting point of the algorithm is monopoly, and the firm obtains its optimal

linear supply function that will maximize its expected profit. And then the second firm

enters the market and obtains its optimal supply function subject to the residual demand

function. The third firm enters in a similar way as the second one, then it obtain its optimal

supply function based on the other two firms’ previous supply functions. Subsequently, the

three firms bid in the same order iteratively until the coefficients ai and bi converge. We use

two dimensional golden section search to solve the maximization problem in step 2. While

function E[π(·)] is non-convex, one can only get a local optimal solution using this algorithm.

However, we conjecture based on our extensive experiments that the two dimensional golden

section search obtains the global optimal in most cases.

We illustrate the results for both Cournot and LSFE models and present comparisons in

the following section.
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4.5 NUMERICAL EXAMPLES

4.5.1 Demand and Supply

We consider a market which consists of three asymmetric firms with different mixes of gen-

erator types. Firm 1 has 12 generators, firm 2 has 8, and firm 3 has 10. The characteristics

of the units and their numbers are given in Tables 17 and 18. The last row in Table 17 refers

to the N th
i unit of each firm. It has infinite capacity and is perfectly reliable. Its marginal

cost is assumed to be higher than that of the firm’s generators. The last two columns refer

to the generating units’ steady-state availability and the average 24-hour availability (under

the assumption that at the beginning of the period the unit is up). The terms MTTF and

MTTR refer to the mean uptime and mean downtime respectively. The values given in this

table have been extracted from [43].

We give two examples using different coefficients. In the first example, m = 38.5 and L

has a uniform distribution on [769, 1154]. This represents an 11.6% load variation. We also

use the steady state availability pij. Our solution approach for Nash Cournot equilibrium

is illustrated in Figures 16 to 19, and the results for both Cournot and LSFE models are

given in Tables 19 to 22. In the second example, m = 38.5 and L has a uniform distribution

on [913, 1010]. This represents a 2.9% load variation, a figure in agreement with the recent

literature [8, 9] on the short term load forecast errors. We also use the average availability

p̄ij. Results for this example are given in Tables 23 to 26.

Clearly, the results given in the second example are more relevant for the decision maker

who is considering making a day-ahead bid. In contrast, the first example illustrates how

varying assumptions on the load distribution and the generator availabilities affect the price

and profit statistics.

4.5.2 Cournot Model

For a given q−i, firm i’s expected profit is a function of qi. Our approach for obtaining

the Nash Cournot equilibrium is illustrated by the following figures. Figure 16 shows the

expected profit (expected revenue less the expected production cost) for firm 3 as a function
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Table 17: Generator unit data

Unit Unit Unit Marginal Availability Average

Group Type Capacity Cost MTTF MTTR pij Availability

cij dij p̄ij

U12 Oil/Steam 12 14.8 2940 60 0.98 0.996

U20 Oil/CT 20 8.0 450 50 0.90 0.978

U50 Hydro 50 1.0 1980 20 0.99 0.996

U76 Coal/Stem 76 14 1960 40 0.98 0.995

U100 Oil/Steam 100 14.8 1200 50 0.96 0.991

U155 Coal/Steam 155 14 960 40 0.96 0.990

U197 Oil/Steam 197 14.8 950 50 0.95 0.989

U350 Coal/Steam 350 14 1150 100 0.92 0.990

U400 Nuclear 400 0.4 1100 150 0.88 0.990

U∞ Market ∞ 30 – – 1.00 1.000

of q3 when q−3 = 480.75. Figure 17 are the derivative functions C ′
3,1(q3) and R′

3(q3|q−3), the

intersection of which yields the best response q∗3. Figure 18 is a plot of the piecewise linear

optimal response function q∗3(q−3) vs. q−3. Figure 19 illustrates the graphical solution of Nash

Cournot equilibrium. The intersection of the dashed equiangular line and the summation

of best response functions q(Q) =
∑n

i=1 q∗i (Q) yields the market supply Q∗, and the dashed

vertical line starting from Q∗ crosses each firm’s best response function q∗i (Q) at its supply

q∗i under equilibrium. Firms’ optimal bids and expected profits and standard deviation of

profits under Nash equilibrium are shown in Tables 22 and 26.
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Table 18: Firm unit data

Unit Number of Units Owned by

Group Firm 1 Firm 2 Firm 3

U12 2 2 0

U20 1 1 1

U50 0 2 2

U76 2 1 1

U100 0 1 2

U155 2 0 0

U197 2 0 2

U350 2 0 0

U400 0 0 1

U∞ 1 1 1

4.5.3 LSFE Model

To determine the equilibrium solution for our numerical example, we use the sequential

search procedure outlined at the end of Section 4.4. As we see by the successive values of

the approximations in Tables 19 and 23, the solutions converged quite rapidly. The same

final values were reached using different firms as the initial starting points in the iterations.

Note that in general, even for LSFE with two decision variables ai and bi, the equilibrium

solution may not necessarily exist, nor does it have to be unique [35]. In our experiments,

however, we have been able to obtain the equilibria for a large range of parameter settings.

4.5.4 Model Comparisons

Table 20 gives a comparison of the mean and standard deviation of prices and the expected

values of total market supply under Cournot, LSFE, “perfect” SFE and Bertrand models. In
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Figure 16: Expected profit for q−3 = 480.75 with L ∼ U(769, 1154) and m = 38.5

the perfect SFE model, we assume that the realized value of load (occurring according to the

stipulated distribution) is known to each supplier who then offers its profit-maximizing bid

according to a Cournot model including generator failure. Note that the perfect SFE solution

in this case is identical to the corresponding Cournot equilibrium solution. In the Bertrand

model, we assume that firms bid their expected cost functions as supply functions. Here,

the expectation considers generator failure only. We observe that the LSFE model yields a

smaller expected value and standard deviation of price. The values for perfect SFE have been

obtained using Monte Carlo simulation. We hypothesize that this yields an upper bound to

expected profit, because the shape of the perfect SFE is not restricted. Table 21 captures the

effect of different assumptions on generator reliabilities. In the first row, the Cournot bids

are made assuming that the generators do not fail. The expected profit is however obtained

using the availability values, pij. In the second row, the generator capacities are derated.

The maximum cij is now multiplied by pij and in the remainder of the computations the pij
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Figure 17: Best response of q∗3 to q−3 = 480.75 with L ∼ U(769, 1154) and m = 38.5

values are ignored. The last two rows of the tables repeat similar computations for the LSFE

model. The model using derated capacities yields slightly higher values of the expected price

and larger values for the expected profit when compared to the Cournot model (ignoring

failures). The expected value for this case is less than that when failures are taken into

account as shown in Table 20. The conclusions from comparing the three LSFE models

are similar to those from the corresponding Cournot model. Table 22 gives the quantities

(expected quantities for the LSFE) and the expected values and standard deviation of profit

for each of the three different firms. Although the quantity values change very little, the

expected profits are less for each firm when the bids are made ignoring failures.

Tables 23, 24, 25 and 26 are counterparts of tables 19, 20, 21 and 22, respectively, with

pij substituted by p̄ij and the spread of the uniform load distribution reduced. They apply

for the day-ahead bid situation. The conclusions from the inter-model comparisons for this

situation remain the same as before. The LSFE model yields a smaller expected value and
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Figure 18: Best response function q∗3(q−3) with L ∼ U(769, 1154) and m = 38.5

standard deviation of profit than Cournot. The Bertrand model yields the lowest price,

the highest supply quantity, but lowest expected profit. Accounting for the possibility of

unit failures, the Cournot model yields a higher expected profit than when quantity bids

are offered while ignoring this uncertainty. Comparing Tables 22 and 26, we observe that

although statistics for firms 1 and 2 change very little, firm 3 has higher expected profit with

much lower standard deviation. This is undoubtedly a consequence of the large difference

between the values of pij and p̄ij for the base loaded nuclear unit, and its having a relatively

large value for its MTTF.
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Figure 19: Nash equilibrium outcome with L ∼ U(769, 1154) and m = 38.5

Table 19: Sequential search iteration results using pij and L ∼ U [769, 1154]

k a1 b1 a2 b2 a3 b3 max{|∆ai|, |∆bi|}

0 56.2977 7.9560 61.2977 4.4223 261.1492 11.3414 —

1 14.5297 0.4658 67.4462 3.8744 247.8594 12.5006 41.7680

2 15.4563 0.3870 65.5544 4.0563 247.8594 12.5306 1.8918

3 15.4271 0.3885 65.5475 4.0588 247.8594 12.5318 0.0291

4 15.4271 0.3885 65.5475 4.0589 247.8594 12.5318 0.0001

5 15.4271 0.3885 65.5475 4.0589 247.8594 12.5318 0.0000
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Table 20: Comparison of equilibrium outcomes under different models using pij and L ∼

U [769, 1154]

Model E[P ∗] S.D.(P ∗) E[Q∗] E[Π∗]

Cournot 11.76 2.89 508.59 4943.2

LSFE 11.40 1.00 522.46 4986.6

Perfect SFE1 11.93 1.48 502.03 5217.3

Bertrand 8.94 2.46 617.10 4333.1

1Same as perfect Cournot

Table 21: Comparison of equilibrium outcomes under different models using pij and L ∼

U [769, 1154]

Model E[P ∗] S.D.(P ∗) E[Q∗] E[Π∗]

Cournot (Ignoring Failures) 11.03 2.89 536.75 4827.5

Cournot (Derated Capacities) 11.23 2.89 529.00 4876.2

LSFE (Ignoring Failures) 10.58 0.93 554.31 4821.7

LSFE (Derated Capacities) 10.95 0.99 539.87 4926.1
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Table 22: Equilibrium outcomes for each firm using pij and L ∼ U [769, 1154]

Cournot LSFE

q∗ E[π∗] S.D.(π∗) (a∗, b∗) E[q∗] E[π∗] S.D.(π∗)

Firm 1 20 63 68 (15.43, 0.39) 20 56 40

Firm 2 118 1119 353 (65.55, 4.06) 112 1074 243

Firm 3 371 3761 1634 (247.86, 12.53) 391 3857 1016

Cournot (Ignoring Failures) LSFE (Ignoring Failures)

q∗ E[π∗] S.D.(π∗) (a∗, b∗) E[q∗] E[π∗] S.D.(π∗)

Firm 1 20 49 68 (13.89, 0.53) 20 39 37

Firm 2 117 1031 350 (64.96, 4.40) 112 980 221

Firm 3 400 3748 1791 (251.49, 16.24) 423 3803 1035

Table 23: Sequential search iteration results using p̄ij and L ∼ U [913, 1010]

k a1 b1 a2 b2 a3 b3 max{|∆ai|, |∆bi|}

0 122.1574 4.5758 64.7189 3.5281 235.6314 16.1959 —

1 17.3470 0.2384 74.8778 3.9372 232.7896 16.6475 104.8104

2 17.3943 0.2386 74.2296 4.0065 232.7896 16.6747 0.6482

3 17.3883 0.2390 74.2296 4.0085 232.7896 16.6756 0.0060

4 17.3883 0.2390 74.2296 4.0085 232.7896 16.6756 0.0001

5 17.3883 0.2390 74.2296 4.0085 232.7896 16.6756 0.0000
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Table 24: Comparison of equilibrium outcomes under different models using p̄ij and L ∼

U [913, 1010]

Model E[P ∗] S.D.(P ∗) E[Q∗] E[Π∗]

Cournot 11.12 0.73 533.30 5353.7

LSFE 10.72 0.24 548.73 5265.1

Perfect SFE2 11.18 0.39 531.09 5510.1

Bertrand 8.73 0.44 625.37 4763.2

2Same as perfect Cournot

Table 25: Comparison of equilibrium outcomes under different models using p̄ij and L ∼

U [913, 1010]

Model E[P ∗] S.D.(P ∗) E[Q∗] E[Π∗]

Cournot (Ignoring Failures) 11.03 0.7273 536.75 5315.9

Cournot (Derated Capacities) 11.09 0.73 534.53 5309.8

LSFE (Ignoring Failures) 10.68 0.2372 550.40 5256.0

LSFE (Derated Capacities) 10.68 0.24 550.47 5265.5
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Table 26: Equilibrium outcomes for each firm using p̄ij and L ∼ U [913, 1010]

Cournot LSFE

q∗ E[π∗] S.D.(π∗) (a∗, b∗) E[q∗] E[π∗] S.D.(π∗)

Firm 1 20 60 23 (17.39, 0.24) 20 52 10

Firm 2 113 1047 100 (74.23, 4.01) 117 1012 61

Firm 3 400 4247 509 (232.79, 16.68) 412 4201 274

Cournot (Ignoring Failures) LSFE (Ignoring Failures)

q∗ E[π∗] S.D.(π∗) (a∗, b∗) E[q∗] E[π∗] S.D.(π∗)

Firm 1 20 58 23 (17.46, 0.23) 20 51 10

Firm 2 117 1047 103 (74.63, 3.91) 117 1008 61

Firm 3 400 4211 509 (238.09, 16.39) 413 4198 274
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4.6 CONCLUSIONS AND DISCUSSIONS

In this chapter we have provided an analytical procedure for calculating a Nash equilibrium

solution when firms submit bids (before the realization of uncertainties in demand and sup-

ply) that maximize their expected profits. Two different oligopoly market models have been

considered, Cournot and LSFE. We have enhanced these conventional models by including

supply side uncertainties in addition to the stochastic demand. The randomness on the

supply side is assumed here to be caused by the unpredictable failures of the generators. We

have not considered other important supply side uncertainties such as those affecting hydro

generation or fuel prices. The stochasticity associated with fuel prices can be accounted for

by assuming that the cost parameter dij has a probability distribution. [65] has used such

an approach for the Cournot model. The numerical values given in our tables may give

the reader the impression that inclusion of generation availabilities and load uncertainties

in the various oligopoly models do not make much differences in the statistics related to

electricity prices and the profits of individual firms. As a matter of fact, these comparisons

depend greatly on the assumed values for generator reliabilities and the parameters of the

load probability distribution. The contribution of this chapter has been in the development

of a mathematical framework in which the effect of these uncertainties on prices and profits

can be calculated for standard oligopoly models when the firms are not necessarily symmetric

and supply side uncertainties prevail. The results given in the chapter indicate that lower

prices and profits arise when the effects of generator failures are not considered in determin-

ing the bids. Notice that not including generator reliabilities is similar to assuming that all

generators are perfectly reliable, and all will be competing in the market. Therefore, under

this assumption the bids are determined assuming a more intense competition, which results

in lower prices. The costs are also affected by these uncertainties. The costs increase because

when the random demand is realized, some inexpensive generators may not be available and

the firm may need to use more expensive units. The analysis given in this chapter can also

enable one to compare the relative importance of load and capacity uncertainties [88].
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5.0 SUMMARY, DISCUSSION, AND FUTURE RESEARCH DIRECTIONS

This thesis consists of three essays, representing three different but well connected facets of

the sophisticated electric power systems, where strategic and operational decisions at various

levels need to be made in different time frames. Due to the critical role of electricity as well

as its special properties, many decisions need to be made under uncertainty. These essays

thus serve as examples of using operations research techniques to assist decision making in

the electric power system.

5.1 SUMMARY

Chapter 2 analyzes four factors that have significant influence on the locational marginal

prices, and decomposes the mean and standard deviation of LMPs to contribution from

individual factors and their interactions. This approach not only presents a novel angle to

understand the LMPs, but also can be used to quantitatively evaluate the effectiveness of

system expansion projects.

As opposed to the simplifying 90% capacity reserve criterion in Chapter 2, Chapter 3

attempts to find the “optimal” solution for the security constrained economic dispatch prob-

lem. Since an 100% secure and reliable dispatch strategy does not exist (it is conceptually

possible for all generation and transmission units to break down simultaneously due to natu-

ral disasters), the problem becomes of resolving how much tradeoff between system security

and economic benefit is appropriate. A key point in solving such a problem is to accurately

evaluate the economic impact of the risk, so that the risk can be converted to dollars and

combined with the generation cost as a single objective function for the system operator to
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minimize. Using the MDP model, we evaluate the economic impact of a dispatch decision by

calculating not only its immediate generation cost but also the risk imposed to the system

by such decision. Different contingency scenarios are treated as various states of the system,

and an optimal dispatch decision for each of the states is obtained from the solution to the

MDP model.

Chapter 4 examines how power suppliers compete with each other under different oligopoly

models as well as the presence of uncertainties (from both demand and supply sides). The

results in this chapter show that the LSFE model, as a generalized case of Bertrand and

Cournot, results in more competition than Cournot but less than Bertrand. The results on

the effect of uncertainty on the market power exercise is open ended. On the one hand, for

a single supplier, taking into account uncertainty improves its profitability. On the other

hand, all suppliers considering the uncertainty in their bids may or may not generate a more

favorable result than all suppliers ignoring the uncertainty.

These three essays present novelty from not only the methodological perspective, but

also from the application perspective. Similar ideas of attributing electricity prices to vari-

ous factors have been presented in the literature [21, 63, 70]. What enables Chapter 2 to take

a further step in implementing the idea is the system model, which quantitatively decom-

poses the prices to the contribution of individual factors as well as their interactions. The

application of sensitivity analysis results from parametric quadratic programming also plays

an important role in making the computation accurate and efficient. Chapter 3 examines

a well studied yet open problem, the security constrained economic dispatch. Instead of

focusing on a short period of time as most other papers do, this chapter takes the impact

of a dispatch decision to the entire future into the modeling consideration, and formulates

the problem as a Markov decision process model with continuous action space, which is

a relatively rarely studied model. The numerical example section in this chapter provides

experimental examples for the computational study of such model. Chapter 4 raises the

question of how demand and supply uncertainties affect the exercise of market power in the

electric power system, creatively uses the recursive function to solve the piecewise linear

expected cost function, and graphically obtains the Nash equilibrium.
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5.2 INTERRELATIONSHIPS AMONG THREE ESSAYS

An electric power system is such a sophisticated system that people usually have to restrict

their scope to small facets, make simplifying assumptions about certain details, and study

separate problems, like what is being done in this thesis. However, the three essays can be

integrated by a single market clearing problem presented in Section 2.2.6, which is rewritten

here:

min
q,z

∑
n∈S

(
αnqn + 1

2
bnq

2
n

)
(5.1)

s. t. qn − zn = dn,t(1 + εt), (pn,t) ∀n ∈ N (5.2)∑
n∈N Hl,nzn ≤ 0.9Tl, ∀l ∈ L (5.3)

−
∑

n∈N Hl,nzn ≤ 0.9Tl, ∀l ∈ L (5.4)∑
n∈N zn = 0 (5.5)

0 ≤ qn ≤ 0.9Qn, ∀n ∈ S. (5.6)

The first essay assumes that (1) supply functions in (5.1) are constant and known, (2)

the system security is simply taken care of by the 90% criterion in (5.3), (5.4) and (5.6),

and transmission lines never fail. These (and other) simplifying assumptions enable one to

take a systemic and strategic perspective, and to use the system model to calculate impact

coefficients.

The second essay focuses on the dispatch decision making process at the operational

level, keeps assumption (1), relaxes assumption (2), and searches for the dispatch decision

that has the best tradeoff between cost efficiency and system security.

Assumption (1) is relaxed in the third essay, which examines the oligopoly competition

from two perspectives: what is the best strategy for a supplier to maximize its own profit,

and how the oligopoly competition will affect the price of electricity. Transmission con-

straints (5.3) and (5.4) are ignored to simplify the computation, but demand and supply

side uncertainties are introduced. The existing literature has also studied the oligopoly com-

petition with transmission constraints (5.3) and (5.4) but without demand and supply side

uncertainties, which will result in the MPEC formulation to be briefly discussed in Section

5.3.3.
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5.3 DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS

The research in this thesis has been conducted with the hope that it will (1) shed light

on a deeper understanding of decision making under uncertainty in electric power systems,

(2) provide novel modeling and computational perspectives on solving some of the existing

problems, and (3) outline or inspire future research on continuous improvement of the electric

power system towards a more efficient and reliable direction.

5.3.1 Discussions and Future Research Directions for Chapter 2

• More factors that affect LMPs significantly need to be considered. These include fuel

price change, transmission line failures, long term demand increase, etc. The assumption

of constant fuel prices restricts the analysis to a short time horizon. The fuel prices hav-

ing exhibited such volatile behavior during the past years, their impact on the electricity

prices remains an important yet open question. The system model used in Chapter 2

provides a unique and appropriate approach to such problem, because it can quantita-

tively differentiate the sole contribution of fuel price change from that of its interaction

among other factors.

It is assumed in the current model that, although capacity reserve criterion is used,

transmission line failures do not actually occur. To study the effects of transmission line

failures on the electricity prices, an extensive additional modeling and computational

effort will be needed. Some results from Chapter 3 may be useful in such extension.

Mean and standard deviation will not be sufficient in describing the random behavior

of LMPs, because the delivery of electricity could be interrupted by transmission line

failures. A risk index needs to be added to take such possibility into account. The

calculation of mean and standard deviation will also be complicated by transmission line

failures.

The computational techniques in Chapter 2 heavily depend on the assumption that de-

mands at all nodes increase or decrease by the same percentage simultaneously. Although

this is not completely unrealistic (according to the load data from PJM [1], the correlation
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between PJM-E and PJM-W is 0.8632), it will be more accurate to relax this assump-

tion and study non-perfect load correlation situations. The required computational effort

remains an open question.

• For modeling simplicity, it is assumed in Chapter 2 that supply functions never change.

However, it will be more interesting (and challenging) to study dynamic market power be-

havior under different scenarios. In such situation, the supply functions of all generators

need to be calculated for each possible system input parameter x = {x1, x2, x3, x4}. How-

ever, direct calculation of the Nash Equilibrium would lead to a sophisticated program

Equilibrium Program with Equilibrium Constraints (EPEC), which is one of the most

challenging mathematical programming problems, and to which no known algorithm is

guaranteed a solution.

• The locational marginal price pn,t is calculated as the dual of the equality constraint

(2.4) in the market clearing problem (2.3)-(2.8). However, unless certain constraint

qualifications hold, the optimal dual p∗n,t is not guaranteed to be unique or bounded.

For a nonlinear program min{f(x) : g(x) ≤ 0, h(x) = 0}, the Linear Independence

Constraint Qualification(LICQ) [31] at a feasible solution x0 requires that the gradients

∇gi(x0),∀i : gk(x0) = 0 and ∇hj(x0),∀j are linearly independent. If LICQ holds for

(2.3)-(2.8), then p∗n,t can be uniquely determined.

Theorem 2. LICQ holds for (2.3)-(2.8) when the congested transmission lines are

acyclic.

Proof. The market clearing problem (2.3)-(2.8) can be written in matrix form as

min
q,z

c>q + 1
2
q>Qq

s. t. M

 q

z

−m ≤ 0

N

 q

z

− n = 0,
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where

M =


0L×N HL×N

0L×N −HL×N

IN×N 0N×N

 , m =


0.9TL×1

0.9TL×1

0.9QN×1

 ,

N =

 IN×N −IN×N

01×N 11×N

 , and n =

 dN×1(1 + εt)

0

 .

Let K be any set of congested lines that are acyclic. Without loss of generality, we use

HK×N · z = 0.9TK×1 to represent the active thermal limit constraints, since a power flow

has only one direction, and the two thermal limit constraints

HL×N · z ≤ 0.9TL×1

−HL×N · z ≤ 0.9TL×1

cannot both be active. Using only the constraints with plus signs does not change the

argument about the linear independency that follows.

To prove LICQ, it suffices to show that all rows of the following matrix are linearly

independent:

W =


0K×N HK×N

IN×N 0N×N

IN×N −IN×N

01×N 11×N

 .

For i = 1, 2, 3, 4, let Wi denote the ith block of rows in W . The linear independence

of W{2,3,4} is easy to see. If we can prove that HK×N has a rank |K|, then the linear

independence of W1 as well as W1 with W{2,3,4} will be clear, which will also complete

the proof.

The PTDF matrix H is calculated using the formula given in [76] on page 316:

H = ΩA(A>ΩA)−1,
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where AL×(N−1) is the reduced arc-node incidence matrix, ΩL×L is a positive diagonal

matrix, and the relation between HL×(N−1) and HL×N is HL×N =
[
HL×(N−1) 0L×1

]
.

Showing that HK×N has a rank |K| is equivalent to show that

HK×(N−1) = ΩK×KAK×(N−1)(A
>
(N−1)×LΩL×LAL×(N−1))

−1

has a rank |K|. We know that HK×(N−1) has |K| rows, so rank[HK×(N−1)] ≤ |K|. On the

other hand, we have

rank[HK×(N−1)]

= rank
[
ΩK×KAK×(N−1)(A

>
(N−1)×LΩL×LAL×(N−1))

−1
]

= rank
[
(A>

(N−1)×LΩL×LAL×(N−1))
−1
]

−dim
{
Null[ΩK×KAK×(N−1)] ∩ Range[(A>

(N−1)×LΩL×LAL×(N−1))
−1]
}

≥ rank
[
(A>

(N−1)×LΩL×LAL×(N−1))
−1
]
− dim

{
Null[ΩK×KAK×(N−1)]

}
= (|N | − 1)− (|N | − 1− |K|) (5.7)

= |K|,

where (5.7) follows because

dim
{
Null[ΩK×KAK×(N−1)]

}
= |N | − 1− rank[ΩK×KAK×(N−1)],

and ΩK×K is a positive diagonal matrix, also the rank of a reduced acyclic arc-node

incidence matrix AK×(N−1) equals |K|. Therefore,

rank[HK×(N−1)] = |K|.

This completes the proof.
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5.3.2 Discussions and Future Research Directions for Chapter 3

• A larger system needs to be tested to study the efficiency and convergence of the al-

gorithm, which could be computationally a challenging task. An alternative approach

would be to study heuristic or approximation algorithms that overcome the curse of

dimensionality.

• Instead of converting system risk into dollars, the multi-objective approach seems to

provide a natural alternative perspective to examine the same problem. One objective

is to minimize the generation cost, and the other objective is to minimize the risk of

cascading failures. A dispatch decision that has larger objective values than another dis-

patch decision in both objective functions is called a dominated decision. The collection

of all non-dominated dispatch decisions forms a Pareto frontier. The inevitable tradeoff

between cost and risk is more apparent to observe from Figure 20. In this example of

Pareto frontier, each point represents the cost minimizing dispatch for the given level of

risk, or the risk minimizing dispatch for the given level of cost. The “optimal” dispatch

will need to be selected from the Pareto frontier by the decision maker according to

specific system requirements.

Figure 20: An example of a Pareto frontier
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5.3.3 Discussions and Future Research Directions for Chapter 4

• The effect of uncertainty on the exercise of market power demands more study from the

game theory perspective. The numerical examples in Chapter 4 do not demonstrate much

difference between considering the uncertainty and ignoring it. However, not considering

uncertainty while all other competitors do would hurt a supplier’s profitability. Therefore,

considering uncertainty is not only a rational option for any supplier, but also a necessary

strategy to survive in the market competition.

• Transmission constraints could also be added into the model, resulting in a Mathematical

Program with Equilibrium Constraints (MPEC) [64]. An MPEC [64] is defined as

min{f(x, y) : (x, y) ∈ Z, y ∈ S(x)},

where for each x ∈ X, S(x) is the solution set of the variational inequality VI(F (x, ·), C(x));

i.e., y ∈ S(x) if and only if y ∈ C(x) and (v − y)>F (x, y) ≥ 0,∀v ∈ C(x).

The deterministic version of the game is a well studied problem (see [25, 53] for example,

which are not considering demand and supply uncertainties), but both theoretical and

computational techniques are still evolving, and no known algorithm is guaranteed to

find a global optimal solution. As a matter of fact, MPEC is a subproblem in EPEC.

MPEC represents the best response action of a supplier who tries to maximize its own

profit assuming other suppliers’ actions are known, while EPEC is the Nash Equilibrium

state where no supplier has an incentive to unilaterally change its action. In the current

literature, a local optimum is treated as the solution to MPEC, and different suppliers’

MPECs are iteratively solved with the hope that an equilibrium occurs. Both convergence

and cycle have been observed and reported in the literature [53]. A possible alternative

could be a modified version of the game-theoretic model, where optimality conditions

and Nash equilibria are easier to achieve.
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