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We studied the structures in model biological membranes using solid state NMR and 

NMR diffusion microscopy. We have created a stable bicelle system containing cholesterol, 

unsaturated and saturated lipids, capable of forming micron-scale lipid domains and suitable for 

structural biology studies of membrane proteins. The domains were observed by measuring time-

dependent diffusion constants reflecting restricted diffusion of the lipids within micron-scale 

regions of the bicelles. We observed the correlation of bilayer structure of diverse bicelle 

systems with their alignment capability, using 
31

P NMR to measure the density of perforations in 

the bilayer as a function of bicelle alignment. We found a critical density for optimal bicelle 

alignment, applicable to bicelles of different lipid compositions. We were able to measure the 

effect of the perforation density on micron-scale domain formation in lipid bilayers. The 

perforations redistributed line active lipids within the bilayer, affecting the bulk line tension of 

the lipid domain. This work demonstrated that membrane topology can control domain formation. 
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1.0  INTRODUCTION 

1.1 SOLID STATE NMR 

Solid state nuclear magnetic resonance (NMR) spectroscopy is a promising tool for the 

structural study of membrane proteins and biophysical investigation of membranes [1-7]. In 

contrast to X-ray crystallography, which requires pure crystals with high quality and large size 

[8], and solution state NMR, which requires molecules to be solubilized and tumbling rapidly in 

particular solvents, solid state NMR is useful for collecting information about systems like 

biological membranes that lack crystalline order and cannot be solubilized. Solid state NMR 

features anisotropic interactions like dipole-dipole coupling and chemical shift anisotropy, which 

offers detailed structural information (Figure 1) [9, 10]. Solid state NMR can also exhibit the 

well-resolved spectrum of solution state NMR, exploiting the chemical shift information familiar 

to chemists [11-13]. With the ability to measure anisotropic interactions, solid state NMR is a 

useful tool for determining the structures and describing the dynamics of membranes and 

membrane proteins. Therefore, we studied membrane properties such as phase transitions and the 

alignment range and morphology of our model membranes, using 
1
H and 

31
P spectra obtained 

with solid state NMR. 
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Figure 1. NMR measurement according to the dynamics of sample. Solid state NMR is a useful 

tool to observe the dynamics and structures of lipid membrane by measuring anisotropic 

interactions. 
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1.1.1 31
P NMR SPECTRUM DOMINATED BY CHEMICAL SHIFT ANISOTROPY 

Solid-state 
31

P NMR spectroscopy is a useful method to collect structural information on 

phospholipid membranes, because the presence of a single phosphorus atom for each lipid leads 

to a simple spectrum. In addition, the spectrum is dominated by chemical shift anisotropy, giving 

useful information about the orientation and dynamics of the phosphorus atom (and lipid head 

group) with respect to the external magnetic field. Dipolar coupling, another feature observable 

in solid state NMR, is not important for 
31

P NMR of the membrane because of the low natural 

abundance of nearby carbons, the low 
31

P gyromagnetic ratio and the long distance between 
31

P-

1
H and 

31
P-

13
C. The chemical shift anisotropy tensor can be described using the parameters 

isotropic chemical shift        and anisotropy         [9]. 

                                                                                                                                                     (1)                                            

                                                                                                                                                     (2)   

Here, xx, yy and zz are components of the chemical shift anisotropy tensors.  is the angle 

between the local bilayer normal and external magnetic field [14].  

          The chemical shift information about the orientation and dynamics of the lipid head 

group can clearly show the phase of the lipid aggregation. Figure 2 shows the 
31

P spectra of 

vesicles, oriented bilayers and micelles. Figure 2a shows the vesicles with a powder distribution 

of lipids, reflecting all possible orientations in the chemical shift spectrum. More phospholipids 

in vesicles are oriented perpendicular to the magnetic field ( = 90) because of the spherical 

 

 𝑖𝑠𝑜 =
 𝑥𝑥 +  𝑦𝑦 +  𝑧𝑧

3
 

 𝑧𝑧 =  𝑖𝑠𝑜 +  𝑎𝑛𝑖𝑠𝑜 ,𝑧𝑧 

1

2
 3𝑐𝑜𝑠2𝛽 − 1  
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Figure 2. Comparison of 
31

P spectra of vesicle, bilayer and micelle: (a) dispersion of slow 

tumbling vesicles, (b) bilayers perfectly aligned perpendicular to magnetic field, (c) rapid 

tumbling micelles in solution [14].  
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surface area. Thus, chemical shielding for phospholipids perpendicular to the external magnetic 

field ( = zz ( = 90)) shows the most intense peak. On the other hand, there are few 

phospholipids at the poles of the vesicles parallel to magnetic field (∥ = zz ( = 0)) and they 

show very low intensity. Other phospholipids at various angles have various        values so that 

the spectrum shows a powder pattern and chemical shift anisotropy as a result of their various 

orientations. Figure 2b indicates the 
31

P spectrum of oriented membranes, which are 

perpendicular to the external magnetic field. The 
31

P spectrum of micelles exhibits an isotropic 

spectrum due to the rapid tumbling of the aggregates as shown in Figure 2c. In conclusion, 
31

P 

NMR resonance line shapes and shifts are indeed useful for measuring membrane morphology 

and the orientation of the lipid bilayer with respect to the magnetic field. 

Generally, phospholipid bilayers experience several phase transitions with changes in 

temperature. At low temperatures below Tm, the lipid chain melting point, the lipids exist in the 

gel phase (Lβ), in which hydrocarbon chains are tightly packed. Figure 3c shows the cartoon of a 

bicelle membrane with the lipids in the gel phase and the corresponding 
31

P spectrum (bottom).  

Above Tm, the gel phase becomes the liquid-crystalline phase (Lα). For a bicelle system, this 

phase can be aligned in the magnetic field and it adopts a planar and Swiss cheese-like 

morphology. Our lateral diffusion measurements were all carried out in this phase. The Lα phase 

reflects the phase of the biological membranes, and the uniaxial orientation of the bicelles gives 

the simplified magnetic resonance spectra of the membrane and proteins in the membrane. 

Magnetically aligned bicelle spectra show well distinguished narrow phosphorus peaks, in Figure 

3b, corresponding to lipids in the bilayer and perpendicular to the bilayer. At the higher 

temperature Tv, the liquid-crystalline phase changes to vesicles in Figure 3a  and 
31

P spectrum 

shows that the alignment is lost (top) [15]. 
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Figure 3. 
31

P spectra acquired of bicelles in our lab at the main transition temperatures from low 

to high and corresponding cartoon of the various DMPC/DHPC structures. Right spectra 

represent gel, aligned bicelle and vesicle phases, as corresponding to the left figures, 

respectively. This figure was modified from published papers [16, 17]. 
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1.1.2 1
H SPECTRA DOMINATED BY DIPOLAR COUPLING 

In contrast to the 
31

P spectra, 
1
H NMR of membranes is dominated by dipolar couplings. 

Dipolar coupling is defined as the interaction of the nuclear magnetic moments of two different 

nuclear spins, I and S, where the local magnetic field at spin S is affected by spin I. The 

magnitude of dipolar coupling reflects the internuclear distance, rIS, of two nuclei, their 

gyromagnetic ratios, I and S, and the angle  between the external magnetic field, Bo, and the 

internuclear vector of I and S. This can be seen in Eq. (3) and Figure 4a [18] 

 

   
−   
  

 
    

𝑟  
 
  𝑐𝑜𝑠  −      

                                                                                                                                                       (3) 

where 0 is the permeability of free space (4  10
7 

NA
-2

), and ħ the Planck constant. Thus, 

dipolar coupling provides structural information and orientation information about the molecules.  

 In particular, the proton spectra of solid crystals are not generally collected because of 

large 
1
H-

1
H dipolar coupling (due to the large gyromagnetic ratio, H), which broadens the 

spectral features, destroying both spectral resolution and signal. Specifically, dipolar couplings 

of 
1
H-

1
H  for static crystalline samples are very large with values of  ~ 600 kHz [19]. 

Fortunately, the degree of dynamics experienced by the liquid crystalline biological 

membrane scales these couplings to thousands of Hz, allowing the use of magic angle spinning 

(MAS) to retrieve the isotropic 
1
H spectrum so familiar to chemists. Diffusion experiments 

especially need peaks of high resolution and large signal, such as isotropic peaks in a solution. 

This linebroadening issue can be solved by fast spinning at  = 54.74, called the ―magic angle‖ 

[10, 20, 21], which is shown in Figure 4b. When the axis of the rotor is at the ―magic angle‖ and  
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         a                                                           b          

 

 

Figure 4. (a) Dipolar couplings between two different nuclear spins. Dipolar coupling gives 

structural information by considering the internuclear distance and orientation with respect to the 

external magnetic field. (b) The linebroadening due to dipole-dipole interaction and chemical 

shift anisotropy can be removed using magic angle spinning. The narrow lineshape of the peak 

under magic angle spinning allows 
1
H diffusion NMR measurement on bilayers. 
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spun fast with a spinning rate larger than the size of spectral features, the dipole coupling tensor 

is averaged out perpendicular to the spinning axis, and only the component along the spinning 

axis remains. Because the spinning axis is at the ―magic angle‖, the remaining dipolar coupling 

is zero. In a solid crystal sample, the current spinning technology (up to 70 kHz) is not fast 

enough to remove the linebroadening due to large dipolar coupling. In contrast, as lipid 

membranes are more dynamic than a solid sample, magic angle spinning at lower frequencies 

than 10 kHz can produce an isotropic 
1
H spectrum in a biological membrane. Therefore, with our 

lipid model membranes, we could perform the 
1
H and 

31
P NMR diffusion experiment and obtain 

solution-like isotropic peaks under magic angle spinning. 

1.2 NMR DIFFUSION TECHNIQUE: MEASUREMENT OF THE DOMAIN SIZE IN 

A MEMBRANE 

The solid state NMR diffusion technique is widely used to measure the lateral diffusion 

in a membrane, and it provides essential understanding of membrane structures and biophysical 

properties of the membrane as well as the intermolecular interaction of the chemical system [22-

25]. For example, it could measure lateral diffusion of membrane proteins associated with the 

membrane [26] and the association constant of a host-guest system with fast exchange [27, 28]. 

We focused on utilization of NMR diffusion to measure the domain size in our model 

membranes because of its promise in measuring sub-micron domains beyond the diffraction limit 

of optical microscopy. Figure 5 indicates the length scales of the domains in biomembranes. 

Domains in a cell membrane are generally small, 10 - 200 nm, and rich in sphingolipids and 

cholesterol as they create membrane heterogeneity [29]. The heterogeneity is involved in various  
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Figure 5. Domain length scales in biomembranes. The NMR diffusion technique can possibly 

measure both length scales of domains in cell and model membranes. This figure was modified 

from a  published paper [30]. 
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cellular processes like signaling and membrane trafficking [31, 32]. However, it is difficult to 

observe the domains using optical methods like fluorescence due to their small size [33, 34]. The 

single molecule detection method could be a breakthrough for measurement, but it also requires 

the attachment of labels for successful monitoring [35]. Lipid domains in a model membrane 

have micron-scale sizes much larger than cell membrane domains. Their larger domain sizes can 

be measured using optical microscopy, but the resolution is limited by the wavelength of light. 

For domains in both cell and model membranes, the NMR diffusion technique may potentially 

measure both length scales (vide infra) as its resolution is determined by the gradient strength, an 

engineering limitation. Lipid domains in both model and cellular membranes are governed by 

lipid phase separation in mixtures of cholesterol and saturated and unsaturated phospholipids. 

Thus, even though there is a limitation to representing and explaining cell membrane domains 

using model lipid domains, biophysical studies of these lipid domains can be used to investigate 

the interactions of membrane proteins, membrane curvature, and even cytoskeleton with these 

model domains [34].  

1.2.1 STRUCTURE OF MEMBRANE DOMAINS REFLECTED IN LIPID DIFFUSION 

Domains are formed by the miscibility of saturated and unsaturated lipids in the presence 

of cholesterol, as can be seen in Figure 6. Domains are the segregated regions of lipid 

membranes formed due to the immiscibility of liquid-ordered (lo) and disordered (ld) phases. 

Generally lipid bilayers exist in solid-like (gel) states below both Tm, forming tightly packed 

domains. At that time, lipids are well mixed and there is no phase separation. Between the two 

lipid chain melting points, long chain saturated lipids with high Tm form a liquid-ordered domain 

whereas long chain unsaturated lipids with low Tm form a liquid-disordered domain. Cholesterols  
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Figure 6. Schematic of lipid domains. Lateral phase separations of the membrane into liquid 

ordered phase (lo) enriched in saturated lipid and liquid disordered phase (ld) domains enriched in 

unsaturated lipid, are made favorable by the presence of cholesterol.  
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are incorporated into the lo domain as promoting the phase segregation [36-39]. We focused on 

creation of the model membrane which has a lipid composition close to that of a biological cell 

membrane, and measured domain size using solid state NMR. In addition, in order to test for the 

presence of the lipid domains and to measure their size, we performed lateral diffusion 

measurements to see the effect of domain boundaries on lipid diffusion (Figure 7). We expected 

the diffusion constant of the aligned domain-containing unsaturated bilayer to show different 

behavior from that of a conventional saturated lipid bilayer. The presence of lipid domains leads 

to an apparent decrease in the diffusion constant of lipids in the domains as they encounter 

boundaries during their diffusion, as well as making the apparent diffusion constant dependent 

on the diffusion time. In contrast, membranes without any domains show a diffusion constant 

which would not be affected by boundaries and would be constant as the diffusion time is varied.  

1.2.2 NMR DIFFUSION MEASUREMENTS TO MEASURE LIPID DOMAINS IN A 

MODEL MEMBRANE 

The maximum resolution of optical microscopy in observing membrane structure is 

limited by the wavelength of light used. On the other hand, the spatial resolution of NMR 

diffusion microscopy measurement is only limited by gradient strength, so that in the presence of 

strong gradient, this technique can theoretically measure small domains below 100 nm [40]. 

Therefore, in order to measure the lipid diffusion coefficient and domain size, we used a 

stimulated echo pulsed field bipolar gradient using a WATERGATE sequence under magic angle 

spinning as shown in Figure 8 [41]. 

Here, the location of spins is encoded by the first gradient pulse of duration δ and 

amplitude g and decoded by the second gradient pulse [22] after the spins diffuse for time . 
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Figure 7. Boundary effect on diffusion measurement. Disruption of the diffusion reflects the 

existence of a boundary of the lipid domain and its size. Over a short diffusion time (short path), 

diffusion is uninterrupted. Over a long diffusion time (long path), diffusion would be interrupted 

by the boundaries of lipid domains, giving a smaller apparent diffusion constant. 
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Figure 8. 1D sequence using stimulated echo bipolar pulsed field gradient with WATERGATE 

sequence. During the first period, spin positions are encoded along the z direction, which is the 

applied magnetic field direction by gradient pulse of duration  with a π rf pulse. This spin 

magnetization is stored along the z direction during , diffusion time, and during the third period, 

the spin positions are decoded. If spin positions are changed after the diffusion time, incomplete 

spin refocusing will occur. Thus, the resulting echo signal will be attenuated by the spin motion 

to different positions. WATERGATE is used to suppress the water peak so that other lipid peaks 

are well observed. 
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During the diffusion time, magnetization is stored along the z direction, because the transverse 

relaxation time for the lipids is very short. Therefore, diffusion time, ∆, is limited only by 

longitudinal relaxation time and can be up to 1 s. We used gspoiler to destroy any magnetization 

left by pulse length imperfection. The intensity of the signal is decreased as the spin positions are 

changed after diffusion time because the encoding and decoding gradients give imperfect 

rephasing resulting from the spin motion. Eq. (4) exhibits the stimulated echo attenuation I (G,∆)  

after spin positions change from z1 to z2 [42]. 

                                                                                                                                    

                                                                                                                                           (4) 

Here, P(z, ) is the probability that a spin is displaced from z1 to z2 after diffusion time ∆ 

(z = z2 - z1), G gradient amplitude,  gyromagnetic ratio,  gradient pulse duration, and   

diffusion time. We assume that P(z, ) is controlled by a random walk, resulting in Gaussian 

distribution as shown in Eq. (5). 

                                                                                                                                                       (5)  

 𝑥      is the mean square displacement of spins from their initial places and D is the 

experimental diffusion constant in Eq. (6). 

                                                                                                                                           (6) 

 

𝑃 𝑧, ∆ =  1/2 𝑥2 1/2exp(−𝑧2  𝑥2  ) 

𝐼(𝐺, ∆) =  𝑃 𝑧, ∆ 𝑐𝑜𝑠  𝛿𝐺𝑧 𝑑𝑧
∞

−∞

 

 𝑥2 1/2 =  4  
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With the assumption of a Gaussian spin distribution, Eq. (5) is able to be written as Eq. 

(7). 

 

  

𝐼

𝐼 
     −  𝛿 𝑔  ∆    

                                                                                                                                                      (7) 

where I and I0 are the signal intensity in the presence and absence of the gradient, respectively. 

To extract the diffusion coefficient from the results, we used the Stejskal and Tanner equation 

[43], written as Eq. (8), a rearrangement of Eq. (7). 

 𝑛  
𝐼

𝐼 
  −  𝛿 𝑔  ∆ −     

                                                                                                                                                    (8)     

where k is a function of the following experimental parameters: gradient duration , gradient 

amplitude g, and diffusion time .  

1.2.3 RESOLUTION LIMIT OF NMR DIFFUSION MICROSCOPY  

In order to measure D, appropriate k should be sampled to induce good signal attenuation 

leading to precise measurement of D. Therefore, we required kmax D  1, where kmax is the k 

value at full gradient strength. This requirement leads to the resolution limit of the diffusion 

microscopy technique, as kmax imposes a minimum resolution, rmin. When we measure the sub-

micron-scale domain size, the measurement should be performed at a short diffusion time. If the 
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diffusion time, , must be short, then gmax should be large or  should be long to reach kmax, 

satisfying the requirement of kmax D  1. Therefore, rmin can be given by Eq. (9) 

 

                                                                          

                                                                                                                                                       (9) 

where rmin is the limit of domain measurement capability,  the gyromagnetic ratio,  the gradient 

duration, and gmax the maximum gradient strength. This equation indicates that a shorter  and 

stronger gmax can increase the spatial resolution of the measurement. With our current gradient of 

1.5 T/m, a diffusion measurement of 
1
H can resolve domains as small as 1.5 m. Increasing the 

gradient to 25 T/m could theoretically increase our domain resolution to 30 nm, potentially 

making diffusion-based NMR microscopy a valuable method to observe small lipid domains. 

1.2.4 MODELS FOR DIFFUSION IN BILAYER 

Diffusion in bilayer can be classified by the type of mean-square displacement as seen in 

Figure 9 [44]. The graph in Figure 9 shows the types of displacement when displacements are 

normal, anomalous, directed and confined, respectively. Among them, in the confined 

displacement, the diffusion describes the restriction with in a circular sample. When 

displacement is observed at long diffusion time, the displacement is confined in the domain and 

the plateau of the displacement indicates the size of the domain as you can see in Eq. (10) [44] 

 

                                                                  𝑥        𝑥     − 𝑒−𝑡                                                  (10) 

 

 

rmin =
2

γ ∙ δ ∙ gmax
  , 
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Figure 9. Models for diffusion in bilayer. This graph was taken from the reference [44]. 
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The confined diffusion also can be borrowed from the diffusion on spherical sample [45] 

 

 𝑥      𝑟𝑠𝑖𝑛 
   𝑡𝑟𝑢𝑒

𝑟
    

                                                                                                                                          (11) 

This displacement also can express the time-dependent diffusion, showing the plateau 

which indicates the confined diffusion. Moreover, both diffusions in circular and spherical 

system show no displacements when t = 0, and at small t, the displacements are proportional to 

the square root of diffusion time and diffusion constant.                            
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2.0  LIPID DOMAINS IN BICELLES CONTAINING UNSATURATED LIPIDS AND 

CHOLESTEROL 

This work, written in collaboration with Johnna L. Dominick, and Megan M. Spence, has been 

published in Journal of Physical Chemistry, B, 2010, 114, 9238–9245. 

2.1 ABSTRACT 

We have created a stable bicelle system capable of forming micron-scale lipid domains 

that orient in a magnetic field, suitable for structural biology determination in solid-state NMR.  

The bicelles consisted of a mixture of cholesterol, saturated lipid (DMPC), and unsaturated lipid 

(POPC), a mixture commonly used to create domains in model membranes, along with a short 

chain lipid (DHPC) that allows formation of the bicelle phase. While maintaining a constant 

molar ratio of long to short chain lipids, q = ([POPC]+[DMPC])/[DHPC] = 3, we varied the 

concentrations of the unsaturated lipid, POPC, and cholesterol to observe the effects of the 

components on bicelle stability. Using 
31

P solid-state NMR, we observed that unsaturated lipids 

(POPC) greatly destabilized the alignment of the membranes in the magnetic field while 

cholesterol stabilized their alignment. By combining cholesterol and unsaturated lipids in the 

bicelles, we created membranes aligning uniformly in the magnetic field, despite very high 

concentrations of unsaturated lipids. These bicelles, with high concentrations of both cholesterol 
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and unsaturated lipid, showed similar phase behavior to bicelles commonly used in structural 

biology, but aligned over a wider temperature range. Domains were observed by measuring time-

dependent diffusion constants reflecting restricted diffusion of the lipids within micron-scale 

regions of the bicelles. Micron-scale domains have never been observed in POPC/DMPC 

/cholesterol vesicles, implying that bilayers in bicelles show different phase behavior than their 

counterparts in vesicles, and that bilayers in bicelles favor domain formation. 

2.2 INTRODUCTION 

Membrane domains are hypothesized to organize the cell membrane by creating a lateral 

phase separation of lipids capable of sorting membrane proteins and regulating their activity [46]. 

Lipid domains have been demonstrated in model membranes formed from a ternary mixture 

consisting of the following components: unsaturated lipids, saturated lipids, and cholesterol, and 

are considered a model system for membrane domains.  Based on model membranes, membrane 

domains are described as in the liquid ordered (lo) state, and show distinctly different structural 

and dynamical properties than the liquid disordered (ld) state common in cellular membranes. 

These structural and dynamical differences are important to the function of membrane domains 

in modulating protein structure and accessibility [47], but molecular details of the interaction 

between domains and proteins are lacking. 

Model membranes containing lipid domains have not been used for membrane protein 

structural biology, mainly because of the severe constraints that the techniques place on the 

membrane composition. X-ray crystallography of membrane proteins employs detergents to 

solvate hydrophobic regions of the protein, or use 3D crystals of lipid bilayers [48]. Solid state 
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NMR can use intact lipid bilayers, but many experiments are designed for uniaxially aligned 

membrane samples, either mechanically aligned between glass slips, or aligned in the magnetic 

field [49].  The alignment of these membranes is very sensitive to membrane composition, and 

has been optimized for membranes composed of saturated phosphatidylcholines. For example, 

when the molar ratio of short and long chain lipid is altered, the bilayer structure and its 

alignment are varied [16]. 

The molecular composition of the membrane affects structural properties like membrane 

thickness and flexibility [50], dynamic properties like membrane fluidity [51], and the formation 

of phases like lipid domains [38, 52, 53]. Hydrophobic matching and membrane thickness can 

affect the activity of membrane proteins [54, 55] and membrane composition can modulate 

membrane protein function [56-58]. Cholesterol has been shown to control the structural 

interactions between some antimicrobial peptides and membranes [59]. Lipid domains are 

thought to be thicker than the surrounding membrane [60] and show slower lipid diffusion in 

measurements of model membranes [61], but the effect of these membrane structural differences 

on protein structure has not been studied and is unknown.   

Bicelles are model membranes well suited to magnetic resonance studies of membrane 

protein structure because of their ability to orient in a magnetic field [62], and they have been 

used in most NMR structural studies of transmembrane proteins [17, 49, 63-68]. However, like 

most model membranes, bicelles usually consist solely of saturated chain phosphatidylcholines, 

with a long chain lipid forming the bilayer and a short chain lipid solvating any perforations in 

the bilayer (Figure 10). Historically bicelles are regarded as disk shape, but the appropriate 

explanation for the bicelle alignment [69], and lateral diffusion experiment results [70] 

demonstrated that bicelle has the perforated and extended lamellar shape instead of disk shape.  
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Figure 10. Schematic of bicelles. Left : The short chain DHPC lipid molecules (in green) occupy 

the rim of the bicelle and long chain DMPC molecules (in blue) are located on the bilayer plane. 

Right: When the bicelles coalesce, they have the perforated extended lamellae shape like Swiss 

cheese [62]. This figure was taken from the reference [62].  
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Bicelles have been created with small amounts of unsaturated lipids [15, 71], cardiolipin [72, 73], 

and cholesterol [15, 74, 75]. Unfortunately, the stability and alignment of the bicelles can be 

greatly affected by even a small change in the membrane composition [15, 17, 71, 76]. 
31

P NMR 

can monitor any changes in the morphology of the bicelles caused by the addition of new 

membrane components, and can measure the stability and alignment of bicelle systems.  

Lateral diffusion of lipids is a useful metric of the state of a lipid bilayer [77], and is 

sensitive to parameters like lipid composition, cholesterol content, and temperature. Pulsed field 

gradient (PFG) NMR is a well-established tool for measuring the self diffusion constant of lipids 

in bilayers, relying on magic angle spinning (MAS) [78] or macroscopic orientation of the 

bilayers at the magic angle [79] to narrow the 
1
H signals characteristic of anisotropic molecular 

systems. 

  Using PFG NMR, distinct diffusion constants have been observed for lipids in the lo and 

ld phases, and the onset of domain formation has been measured for domain forming systems 

[61, 80, 81].  The size of lipid domains has been measured by using PFG NMR experiments to 

observe the lipid diffusion behavior as a function of diffusion time, with the time-dependent 

diffusion constant offering a measure of the length scale of membrane inhomogeneity [82, 83]. 

2.3 EXPERIMENTAL SECTION 

2.3.1 SAMPLE PREPARATION 

1,2-dimyristoyl-sn-glycero-3-dihexanoyl-sn-glycero-3-phosphatidylcholine (DHPC, 

99 %) in chloroform, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) in 
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chloroform were purchased from Avanti Polar Lipids (Birmingham, AL). Lipids were used as 

purchased without further purification. Cholesterol (ovine wool, > 98 %) in powder form, 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES,  99.5 %) and sodium azide were 

purchased from Sigma-Aldrich (Allentown, PA). Deuterium oxide was purchased from 

Cambridge Isotopes Lab (Woburn, MA). 

The lipids were dissolved in chloroform and combined in a molar ratio of 2.6/0.4/1 and 

1.5/1.5/1 molar ratios of DMPC/POPC/DHPC with and without 13 mol % cholesterol (calculated 

with respect to moles of long chain lipids) to create unsaturated bicelles (Figure 11).  A 

conventional bicelle sample (no cholesterol or unsaturated lipids) was composed of DHPC and 

DMPC dissolved in chloroform with molar ratio, q = [DMPC]/[DHPC], equal to 3.5. The lipid 

mixtures were placed under a nitrogen gas flow for ~ 20 minutes to remove chloroform and then 

placed on a vacuum line for at least 4 hours until the sample was reduced to a powder or 

powder/film mixture. A mixture of 10 % deuterium oxide and water was added to each 

unsaturated bicelle sample to a concentration of 30 % w/w. A 20 mM HEPES buffer (pH = 7.1) 

was used to redissolve the conventional bicelle mixture to a concentration of 30 % w/w. Three 

cycles of the following: heating at 40 C for 15 min, vortexing for 2 min, cooling at 0 C for 15 

min and again vortexing for 2 min, were performed to form bicelle mixtures. 

2.3.2 NMR MEASUREMENT 

All spectra were acquired using an 11.7 T magnet with a Bruker Avance console (Bruker 

Biospin, Billerica, MA) and BCU05 Variable Temperature Control Unit. All sample rotors were 

200 L Bruker 4 mm ZrO2 magic-angle spinning (MAS) rotors.  A 4 mm HXY MAS probe was  
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Figure 11. Structures of DHPC (top), DMPC (middle) and POPC (bottom). 
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used to acquire the 
31

P NMR spectra. All 
31

P experiments were performed under static conditions. 

The variable temperature 
31

P experiments at 201.98 MHz used FLOPSY at 6 kHz [84] for proton 

decoupling. The temperature was varied from 273 K to 335 K, in increments of 5 K or 3 K with 

the sample equilibrating in the probe for 10 to 15 minutes at each temperature.  The 
31

P chemical 

shifts are referenced to 85 % phosphoric acid. 

A high-resolution HCN HR-MAS probe (Bruker Biospin, Billerica, MA) was used to 

acquire the 
1
H NMR spectra. All 

1
H experiments were performed under MAS at 5 kHz in order 

to obtain isotropic spectra. 
1
H spectra were acquired after temperature equilibration for 30 

minutes. 
1
H diffusion NMR spectra were recorded at 499.81 MHz with a stimulated echo bipolar 

pulsed field gradient diffusion experiments using WATERGATE for water suppression [85, 86]. 

The maximum gradient strength of the magic angle gradient coil was 0.513 T/m. The intensities 

of the acyl peak (1.2 ppm) were used to calculate the diffusion coefficient. The 
1
H chemical 

shifts are referenced to H2O. 

2.4 RESULTS AND DISCUSSION 

2.4.1 CREATING MAGNETICALLY ALIGNABLE LIPID DOMAINS  

2.4.1.1 31
P SPECTRA AS A METRIC FOR ALIGNMENT AND PHASE 

The 
31

P chemical shift anisotropy of phospholipids is a sensitive probe of the lipid phase 

and membrane morphology. Aligned bicelles show a characteristic 
31

P spectrum with two 

narrow, symmetric lines (Figure 12b) separated by ~ 8 ppm [87]. The chemical shift difference 

reflects the width of the chemical shift anisotropy pattern of the phosphatidylcholine head group,  
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Figure 12. 
31

P chemical shift difference () as a measure of bicelle phase. Parts (a)-(c) 

Vesicle, bicelle, and gel spectra, respectively, of 3.5/1 DMPC/DHPC conventional bicelles. (d) 

Chemical shift difference increases from 0 ppm (gel phase) to ~ 8 ppm (aligned bicelles) to ~ 15 

ppm (vesicles) as temperature of sample is increased. Aligned bicelle phase is present for 

temperature range defined by box. 
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and the two peaks arise from the different orientations of lipids in the plane of the membrane and 

the lipids solvating the holes in the membrane. Three 
31

P spectra of conventional bicelles (q = 3.5) 

at different temperatures are shown in Figure 12 to mark the different phases of the lipid mixture.  

To summarize the phase behavior of the lipid mixture, we use the chemical shift 

difference, , between the upfield and downfield peaks in the spectra.  In the gel phase at 285 K 

only one 
31

P peak is present so the chemical shift difference is 0 ppm (Figure 12c).  When the 

bicelles align at 310 K the two peaks are separated by ~ 8 ppm (Figure 12b) and at 320 K the 

peaks are approximately 15 ppm apart (Figure 12a), reflecting the transition to vesicles. Plotting 

 as a function of temperature (Figure 12d) shows the major changes in lipid phase as reflected 

in the 
31

P spectrum. The stability and phase behavior of bicelles can be described by the 

following two parameters: Talign, the temperature at which two symmetric peaks appear in the 
31

P 

spectrum, and Talign, the temperature range over which the bicelles align, indicated by a box in 

the phase diagram (Figure 12d). 

The incorporation of unsaturated lipids or membrane components such as cholesterol 

increases are necessary for domain formation but can also strongly alter the phase behavior and 

alignment temperature of a bicelle system. To explore this, we made model membranes 

containing saturated long chain DMPC and short chain DHPC lipids as well as unsaturated long 

chain lipid POPC (palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine). In addition, in order to 

look at the effect of cholesterol in the model membrane, we added 13 mol % of cholesterol with 

respect to long chain lipids into bicelles containing POPC. The phase transitions of the model 

membranes between different morphologies were detected by solid state 
31

P NMR spectroscopy 

and these spectra were used to create phase diagrams like that of Figure 12d. 
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2.4.1.2   EFFECT OF UNSATURATED LONG CHAIN LIPIDS ON BICELLES 

In order to examine the effect of unsaturated long chain lipids on the ability of the 

membrane to align in the magnetic field, we combined DMPC and DHPC with two different 

molar amounts of unsaturated lipid. One sample contained a small amount of unsaturated lipid, 

with molar ratios of 2.6/0.4/1 of DMPC/POPC/DHPC, while another contained equal amounts of 

saturated and unsaturated long chain lipids (similar to biological membranes [88], with a 

1.5/1.5/1 molar ratio of DMPC/POPC/DHPC. Figure 13a,b shows the 
31

P NMR spectra of the 

1.5/1.5/1 DMPC/POPC/DHPC bicelles at main phase transition temperatures between 273 K and 

335 K. The spectrum in Figure 13b exhibits the two symmetric lines characteristic of membrane 

alignment in the magnetic field. The width of the peak at -13.2 ppm likely reflects a distribution 

in the orientation of the bilayer normal. The spectrum in Figure 13a is consistent with the 

formation of vesicles above 288 K observed in previous bicelle studies [16]. We also measured 

31
P NMR spectra of the 2.6/0.4/1 molar ratios of DMPC/POPC/DHPC unsaturated lipid bicelles 

at temperatures between 273 K and 335 K and created phase diagrams of both model membranes 

(Figure 13c). The 2.6/0.4/1 DMPC/POPC/DHPC bicelles show that small amounts of 

unsaturated lipid do not significantly change the alignment temperature, Talign, or alignment 

temperature range, ΔTalign, of bicelles. However, bicelles containing equal amounts of saturated 

and unsaturated long chain lipids aligned at a much lower temperature (Talign = 283 K) and 

aligned over a very small temperature range (ΔTalign < 5 K). While the large component of 

unsaturated lipids makes this bicelle system a good model for cellular membranes, the small 

alignment range makes it a poor model membrane for structural and biophysical studies. 
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Figure 13. Unsaturated lipids destabilize bicelle alignment. (a),(b)  Representative 
31

P spectra of 

1.5/1.5/1 DMPC/POPC/DHPC unsaturated bicelles in vesicle and bicelle phase. (c) 1.5/1.5/1 

DMPC/POPC/DHPC bicelles () aligned over a small range of ~ 5 K due to the loose chain 

packing of unsaturated acyl chain. In contrast, 2.6/0.4/1 DMPC/POPC/DHPC bicelles () 

behaved similarly to bicelles without any unsaturated lipids.  
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2.4.1.3 EFEECT OF CHOLESTEROL ON BICELLES 

In order to look at the effect of cholesterol in the model membrane, we added 13 mol % 

of cholesterol to both unsaturated bicelle samples, reflecting the cholesterol content of the 

endoplasmic reticulum [89]. Cholesterol is able to restrict the motion of the lipid chains and 

increase the lipid membrane stability [76], possibly counteracting the effect of unsaturated lipid 

on the alignment of bicelles [15]. Representative 
31

P NMR spectra of the 1.5/1.5/1/13 mol % 

DMPC/POPC/DHPC/cholesterol bicelles are shown in Figure 14a-c for main phase transition 

temperatures between 273 K and 335 K. At 278 K, the lipids are in the gel state (Figure 14c), 

transitioning to aligned bicelles at 291 K (Figure 14b), and to vesicles at 315 K (Figure 14a). As 

shown before, we created a phase diagram of model membranes containing 1.5/1.5/1 

DMPC/POPC/DHPC with and without cholesterol, shown in Figure 14d. In the case of the 

1.5/1.5/1 DMPC/POPC/DHPC bicelles, cholesterol increased the alignment temperature, Talign, 

from 283 K to 291 K. Among these model membranes, the 1.5/1.5/1/13 mol % DMPC/POPC/ 

DHPC/cholesterol unsaturated bicelles show the greatest similarity to biological membranes and 

the greatest stability, reflected in the large alignment temperature range. 

2.4.2 RESTRICTED DIFFUSION INDICATES LIPID DOMAINS 

The formation of domains has been noted in many systems combining saturated and 

unsaturated lipids, arising from the different main chain phase transition temperatures, Tm, for 

the two components [90]. Below the Tm of the unsaturated component, the lipids are miscible in 

the gel state. In the presence of cholesterol, when the sample is heated above the transition 

temperature for the unsaturated component, the saturated lipids remain in the ordered state, lo, 

but the unsaturated chains form domains of liquid-disordered (ld) phase [38]. Once the sample is  
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Figure 14. Cholesterol increases alignment temperature range of bicelles. Parts (a)-(c) 

Representative 
31

P spectra of 1.5/1.5/1/13 mol % DMPC/POPC/DHPC/cholesterol bicelles in 

vesicle, bicelle, and gel phase. (d) Bicelles containing unsaturated lipid and cholesterol () show 

increased stability over conventional bicelles and bicelles containing only unsaturated lipid (O) 

due to condensing effect of cholesterol on the lipid membrane. 
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heated above the Tm for the saturated lipid, both components are in the ld phase and mix 

uniformly again. Domains can be present between the transition temperatures of the two 

components. 

According to this model, domain formation in the 1.5/1.5/1/13 mol % sample is expected  

between 270 K and 296 K, Tm(POPC) and Tm(DMPC) respectively, and the uniaxial orientation 

of the domains in the magnetic field would exist between 291 K and 296 K (Figure 15). To 

measure domain formation in the bicelles, we carried out pulsed-field gradient measurements of 

the lipid self-diffusion constant. In the absence of domains, the diffusion constant should be 

independent of the diffusion time of the molecules. If domains are present and restrict the lipid 

diffusion, the diffusion constant will decrease as the lipid diffusion time increases because the 

lipid diffusion is confined [78, 83]. 

2.4.2.1 MEASURING LIPID DIFFUSION 

Figure 16a shows the 
1
H NMR spectrum of 1.5/1.5/1/13 mol % DMPC/POPC/DHPC/ 

cholesterol bicelles with the choline peak appearing at 3.2 ppm and two acyl chain peaks at 1.2 

ppm and 0.8 ppm. The allylic proton peak from POPC appears at 2.0 ppm and WATERGATE 

has been used to suppress the water peak at 4.7 ppm. For the diffusion measurements, we 

combined a stimulated-echo pulsed-field bipolar gradient diffusion experiment [41] with water 

suppression, spinning the sample at the magic angle to obtain well-resolved, isotropic 
1
H spectra.  

The acyl peak at 1.2 ppm (marked with an asterisk) was integrated to monitor the lipid signal.  

In this experiment, the spin location is encoded by a pair of sine-shaped bipolar gradients of 

duration δ and amplitude g, bracketing a diffusion time ∆. Diffusion is measured along the 

direction of the spinning axis with a magic-angle gradient. The intensity of the lipid signal is 

modulated by the gradient length and amplitude, reflecting the self-diffusion of the lipids. The  
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Figure 15. The presence of lipid domains is possible in 1.5/1.5/1/13 mol % molar ratios of 

DMPC/POPC/DHPC/cholesterol bicelles. Alignment of 1.5/1.5/1/chol DMPC/POPC/DHPC 

bicelles begins at 291 K, between the two Tm of DMPC (296 K) and POPC (270 K), so domains 

between 291 K and 296 K should orient in magnetic field. 
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Figure 16. (a) 
1
H solid-state NMR spectrum of magnetically aligned 1.5/1.5/1/13 mol % 

DMPC/POPC/DHPC/cholesterol unsaturated bicelles using WATERGATE under magic angle 

spinning.  * acyl peak integrated for diffusion experiment. (b) 1D sequence using stimulated-

echo bipolar pulsed field gradient with WATERGATE sequence. During first period, spin 

positions are encoded along spinning axis by a bipolar gradient pulse of duration /2 and 

amplitude g. This spin magnetization is stored longitudinally during diffusion time, , before the 

bipolar gradient is applied again. 
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variation of the signal strength, I, with the experimental parameters can be described by the 

Stejskal Tanner equation [43] 

 

   
𝐼

𝐼 
  − 𝑔    ∆ −

 

 
−
𝛿

 
 ∙       − ∙          

                                                                                                                                                     (12) 

where I0 is the acyl peak integral in the absence of gradients, is the spacing of the bipolar 

gradient pulses, and  is gyromagnetic ratio for the observed nucleus (in this experiment 
1
H). The 

measured self-diffusion constant, Dmeas, can be extracted from a plot of ln(I/I0) versus k (shown 

in Figure 17). Under the magic angle spinning, the aligning force of the bicelles is lost and the 

membranes adopt a random distribution of the membrane normal with respect to the magnetic 

field [91]. Therefore Dmeas should be multiplied by 3/2 to compensate for the powder pattern to 

obtain the apparent lateral diffusion constant, Dapp [26].  

In the absence of confinement, lipids show classical diffusion in two dimensions, with a 

diffusion constant that is independent of diffusion time. Displacement in free diffusion is 

described by a Gaussian distribution with the root mean square displacement of a lipid increasing 

with diffusion time, , according to the following equation: 

 

 𝑥          

                                                                                                                                                     (6) 

Conventional bicelles containing only DMPC and DHPC are unable to form domains.  

The long chain lipids in these samples exhibit free diffusion in which the displacement varies 

linearly with the square root of diffusion time, shown in Figure 18. Each point on this graph 

represents an apparent diffusion constant measured for a given diffusion time, .   
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Figure 17. Stimulated-echo intensities are attenuated as gradient strength is increased from 
1
H 

NMR spectra of 1.5/1.5/1/13 mol % DMPC/POPC/DHPC/cholesterol bicelles at T = 292 K. As 

the diffusion time is increased, the diffusion coefficient is decreased due to boundary effect of 

lipid domains; (a)  = 50 ms. (b)  = 200 ms. (c)  = 700 ms. Gradient strengths are increased 

from 0.003 Tm
-1

 to 0.168 Tm
-1

. Error bars reflect the signal to noise ratio of the acyl peak (2σ). 
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Figure 18. Conventional bicelles (DMPC/DHPC, q = 3.5) show a linear relationship between 

lipid displacement and the square root of diffusion time, consistent with free diffusion. Error bars 

reflect the fit uncertainty (2σ) of the diffusion constant for each point. 
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When confined diffusion occurs, the measured diffusion constant decreases with diffusion time, 

as more molecules encounter the boundary.  Figure 17a shows the diffusion measurement of 

lipids in 1.5/1.5/1/13 mol % bicelles at 292 K, in which the diffusion time, , was 50 ms. As the 

diffusion time increases to 700 ms (Figure 17ac), the measured self-diffusion constant is 

reduced from 4.9  10
-12 

 m
2
s

-1
 to 1.5  10

-12 
 m

2
s

-1
, demonstrating lipid confinement.  

In Figure 19, the apparent displacement,  𝑥𝑎𝑝𝑝
         𝑎𝑝𝑝, is plotted as a function of 

the square root of diffusion time for three different temperatures. At 300 K, above the expected 

miscibility transition, the displacement varies linearly with the square root of diffusion time, 

indicating free diffusion with no confinement or boundaries as observed in the conventional 

bicelles (Figure 18). At 295 K, the displacement does not increase linearly with the square root 

of diffusion time, but rather plateaus at ~ 3.0 μm, indicating that the lipids are confined within a 

micrometer-scale region. At 292 K, the plateau is at ~ 2.6 μm, indicating that the areas of 

confinement decreased with temperature (Figure 19). The changes in diffusion at different 

temperatures are fully reversible and diffusion measurements made on other samples of the same 

composition gave results consistent with those presented here. 

 To extract the true diffusion constant and the domain size, the displacement at 292 K and 

295 K can be fit to the following equation [45]:  

 

 𝑥      𝑟𝑠𝑖𝑛 
   𝑡𝑟𝑢𝑒

𝑟
    

                                                                                                                                     (11) 
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Figure 19. The average displacements in 1.5/1.5/1/chol DMPC/POPC/DHPC unsaturated lipid 

system with and without domains as a function of diffusion time at three temperatures. At 300 K 

(), the displacement increased as the square root of time, consistent with free diffusion. In 

contrast, at temperatures 295 K () and 292 K (), the lipid displacements are limited and 

showed plateaus, indicating confined diffusion within a lipid domain. Error bars reflect the fit 

uncertainty (2σ) of the diffusion constant for each point. 
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which reduces to the expression for free diffusion when the domain size, r, is much larger than 

the displacement. The true diffusion constant at 292 K is 4.3 ± 1.8  10
-12

 m
2
s

-1 
and 7.3 ± 2.6  

10
-12

 m
2
s

-1
 at 295 K (Table 1). 

The composition of the domains is likely ld. The size of the domain increases with 

temperature, consistent with ld domains, and the domains disappear above the Tm of DMPC. 

Interestingly, our 
1
H NMR spectrum of 1.5/1.5/1/13 mol % bicelles shows narrow (~ 45 Hz) 

lipid resonances that increase in intensity from 273 K to 310 K as the bicelles align. Previous 
1
H 

MAS NMR spectroscopy of similar ternary lipid mixtures (DPPC, DOPC, and cholesterol) 

showed narrow acyl peaks (~ 50 Hz) for ld domains, similar to our spectra, showing the same 

basic temperature dependence. However, we observed no signal from the lo phase, while they 

observed broad (~1 kHz) peaks for lo domains [92]. At these temperatures, the lo phase is a very 

small fraction of the membrane and such a weak, broad peak was likely too small to detect.  

This POPC/DMPC bicelle system exhibited micrometer-scale lipid domains, while 

vesicular systems of POPC/DMPC have shown no domains [93]. In previous work, it was 

speculated that the asymmetry of the POPC legs decreased its rotational mobility, and hindered 

formation of the lo phase [93].
 
Bicelles exhibit greater lateral and rotational fluidity of the bicelle 

bilayer than vesicles [94],
 

apparent in the scaled 
31

P chemical shift anisotropy of the 

phosphatidylcholine head group, which might affect or favor the formation of domains.  The 

presence of the amphiphile DHPC could play a role in the phase separation directly by 

partitioning into the bilayer, or the properties of the membrane as a whole simply by stabilizing 

perforations in the bilayer. Further work characterizing the domain formation in this model 

membrane, particularly the role of DHPC in domain formation, is described in Chapter 4. 
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Table 1. Diffusion constants and domain sizes in 1.5/1.5/1/13 mol % bicelle 

sample temperature (K) diffusion constant, Dtrue (10
-12

 m
2
s

-1
) domain size, r (m) 

292 4.3 ± 1.8 2.6 ± 0.4 

295 7.3 ± 2.6 3.0 ± 0.3 

300 8.8 ± 0.3 -- 
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2.5 CONCLUSION 

In this work, we created a uniaxially aligned membrane containing both saturated and 

unsaturated lipids, as well as cholesterol, capable of phase separating into lipid domains. Among 

the various model membranes we created, the 1.5/1.5/1/13 mol % molar ratios of DMPC/POPC 

/DHPC/cholesterol bicelles showed strong alignment over a large range of temperatures, and 

exhibited micrometer-scale phase separation into lo and ld domains, raising the possibility of 

structural studies of membrane proteins in domains and outside of domains. Structural biology 

studies of this sort could clarify the molecular action of membrane domains in cellular biology. 
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3.0  THE ROLE OF MEMBRANE PERFORATIONS IN THE ALIGNMENT OF 

BICELLES 

3.1 ABSTRACT 

Bicelles are valuable model membranes consisting of short chain lipids in the core that 

solvate perforations in the bilayer, and of long chain lipids that form a bilayer orienting in a 

magnetic field. Conventional bicelles, widely used in protein-related studies, consist of saturated 

long and short chain lipids. Any perturbations in the lipid composition can destroy the bicelle 

alignment. By clarifying the general alignment mechanism for bicelles of diverse composition, 

we hope to expand the diversity of model membranes available for membrane protein structural 

studies. We previously created a very stable bicelle containing cholesterol, saturated lipid and 

unsaturated lipid, and have compared the bilayer structure under alignment to that of 

conventional bicelles.  

We used 
31

P NMR to measure the density of perforations in the bilayer as a function of 

bicelle alignment and found a critical density for optimal bicelle alignment. While the 

temperature of optimal alignment differed for bicelles of different compositions, the perforation 

density was the same. The perforation density is a function of short chain lipid concentration, 

and the tendency of the short chain lipid to dissolve in the bilayer, reducing the number of 

perforations. We observed that bicelles showed a well-aligned structure when between ~ 65 % 
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and ~ 75 % of DHPC was forming perforations. As the temperature increased, the fraction of 

DHPC in the bilayer increased, depleting the number of perforations and destroying alignment. 

The fraction of DHPC in the core strongly correlated with the ability of bicelles of diverse 

compositions to align. Based on these results, it seems that the solubility of DHPC in the bilayer 

is a major limiting factor in the ability of any bicelles to align. We expect that understanding of 

role of DHPC for the bicelle alignment will help us predict and understand the alignment 

behavior and temperatures for bicelles with novel composition, reducing the hit-or-miss nature of 

novel bicelle creation.  

3.2 INTRODUCTION 

Cell membranes are a main structural element of living organisms and participate in 

various biological functions such as the conductance of ions and cell signaling [63, 95]. The 

biological membrane consists of the phospholipid bilayers, myriad proteins and cholesterol, and 

the dynamic interaction of these components has been widely studied to elucidate their biological 

function in living organisms [96, 97]. In particular, the physical and biochemical properties of 

proteins in the membranes have been well studied when reconstituted with artificial model 

membranes [98-100]. A model membrane retaining a few essential components of the complex 

cell membrane can allow the folding and activity of a membrane protein. Bicelles are one 

popular model membrane employed for structure and dynamics studies of membrane proteins 

because of their ability to orient in a magnetic field [62], and they have been used in most solid 

state NMR structural studies of transmembrane proteins [17, 49, 63-68]. Because membrane 
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structure and dynamics are easily affected by the lipid composition of the membrane, it is 

important to create an optimized model membrane for each biological system [50, 51]. 

 In spite of the advantages mentioned above, it has been challenging to utilize a 

customized model membrane system in this field of research because the stability of bicelles is 

so sensitive to their composition. Difficulty in dealing with bicelles with their delicate nature has 

caused most people to utilize the simplest bicelle, composed of only saturated long and short 

chain lipid. However, it is hard to represent the cell membrane properties due to the simple 

composition of the model membrane compared to a cell membrane. Therefore, realization of a 

new model membrane often requires optimization of the preparation conditions and a process of 

trial and error to make the desired model. In order to predict and choose the aligned bicelles 

appropriate for the purposes of experiments using bicelles, it is necessary to understand the 

properties of the bicelles and their organizing principles for the alignment.  

 Bicelles are often idealized as perfectly segregating the long and short chain lipids into 

the bilayer and core, respectively. The ability of conventional bicelles to align has been 

correlated with the presence of perforations in the bilayer. We seek to generalize this correlation 

by quantifying the degree of perforation in unique aligned bicelles with a very different 

composition from conventional bicelles. 

In addition, we have developed the use of 
1
H NMR as a metric for bicelle alignment. 

Most studies about the morphology of bicelle focus on the observation of 
31

P NMR spectra, 

because the chemical shift of the phosphorus head group reveals the orientation of the lipid in the 

magnetic field, and can monitor morphological changes at critical transition temperatures, 

including alignment. In our work, we measured the impact of bulk bilayer morphology on the 
1
H 

NMR of the lipids. Observing phase behavior with 
1
H NMR allows simultaneous observation of 



 49 

sample alignment and spectroscopy of biological samples like proteins in the bilayer, requiring 

no additional experiments or equipment (
31

P NMR probe). 
1
H NMR measurements of bicelle 

alignment allow in situ measurements of bilayer phase when carrying out spectroscopy on 

proteins in the bicelle sample.  

3.3 EXPERIMENTAL SECTION 

3.3.1 SAMPLE PREPARATION 

1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC, 99 %) in powder form, 1,2-

di-o-hexyl-sn-glycero-3-phosphatidylcholine (DHPC, 99 %) in chloroform, and 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphatidylcholine (POPC) in chloroform were purchased from Avanti 

Polar Lipids (Birmingham, AL). Lipids were used as purchased without further purification. 

Cholesterol (ovine wool, > 98 %) in powder form, 4-(2-hydroxyethyl)-1-piperazineethane 

sulfonic acid (HEPES,  99.5 %) and sodium azide were purchased from Sigma-Aldrich 

(Allentown, PA). Deuterium oxide was purchased from Cambridge Isotopes Lab (Woburn, MA).  

The lipids were dissolved in chloroform and combined in a molar ratio of 1.5/1.5/1, 2/2/1 

and 2.5/2.5/1 molar ratios of DMPC/POPC/DHPC with 13mol% cholesterol (calculated with 

respect to moles of long chain lipids) to create unsaturated bicelles with molar ratio, q = 

[DMPC]/[DHPC], equal to 3, 4, and 5 respectively. The lipid mixtures were placed under a 

nitrogen gas flow for ~ 20 minutes to remove chloroform and then placed on a vacuum line for at 

least 4 hours until the sample was reduced to a powder or powder/film mixture. A mixture of 

10% deuterium oxide and water was added to each unsaturated bicelle sample to a concentration 
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of 30 % w/w. Three cycles of the following were performed: heating at 40 C for 15 min, 

vortexing for 2 min, cooling at 0 C for 15 min and again vortexing for 2 min, were performed to 

form bicelle mixtures. A 20 mM HEPES buffer (pH = 7.1) was used to redissolve the 

conventional bicelle mixture to a concentration of 30 % w/w. The same sequence of activities 

was again performed in three cycles. 

3.3.2 NMR EXPERIMENTS 

All spectra were acquired using an 11.7 T magnet with a Bruker Avance console (Bruker 

Biospin, Billerica, MA) and BCU05 Variable Temperature Control Unit. All sample rotors were 

200 L Bruker 4 mm ZrO2 magic-angle spinning (MAS) rotors.  

A 4 mm HXY MAS probe, was used to acquire the 
31

P NMR spectra. All 
31

P experiments 

were performed under static conditions. The variable temperature 
31

P experiments at 201.67 

MHz used FLOPSY at 6 kHz [84] for proton decoupling. The temperature was varied from 269 

K to 320 K with the sample equilibrating in the probe for 10 to 15 minutes at each temperature.  

The 
31

P chemical shifts were referenced to 85% phosphoric acid. 

A high-resolution HCN HR-MAS probe (Bruker Biospin, Billerica, MA) was used to 

acquire the 
1
H NMR spectra. All 

1
H experiments were performed under MAS at 5 kHz in order 

to obtain isotropic spectra. 
1
H spectra were acquired after temperature equilibration for 15 

minutes. The variable temperature 
1
H experiments were recorded at 500.12 MHz with 

WATERGATE for water suppression. The maximum gradient strength of the magic angle 

gradient coil was 0.513 T/m. The 
1
H chemical shifts were referenced to H2O at 298 K. 



 51 

3.4 RESULTS AND DISCUSSION 

3.4.1 PREDICTION OF BICELLE ALIGNMENT USING 
31

P NMR SPECTRA: 

CORRELATING PERFORATION DENSITY AND BICELLE ALIGNMENT                

In order to see the correlation between perforations and bicelle alignment, we prepared 

the series of the bicelle samples with different ratios of short and long chain lipids. By varying 

the concentration of short chain lipid (DHPC), we created bicelle samples with varying density 

of perforations. Using 
31

P NMR, we could measure the alignment of each bicelle sample at a 

given temperature, and measure the concentration of DHPC in the core, reflecting the perforation 

density. In conclusion, by tracing the movement of the chemical shift of each component, we can 

understand the composition and structure of bicelles at each phase. 

3.4.1.1 MEASURING PHASE DIAGRAM OF BICELLES WITH 

DIFFERENT q 

We measured 
31

P NMR spectra from q = 3 bicelles (Figure 20a) and q = 5 bicelles 

(Figure 20b) at temperatures from 267 K to 325 K. Representative
 31

P spectra of each q showed 

how chemical shifts of peaks of short chain lipids (DHPC, blue) and long chain lipids (DMPC 

and POPC, green) move in the range of alignment. The alignment ranges of q = 3 and 5 are from 

294 K to 306 K, and from 290 K to 300 K, respectively. At low temperatures, the lipids are in a 

gel phase, and the 
31

P NMR has a chemical shift () near 0 ppm. When the bicelles align in the 

magnetic field, the single peak of the gel splits into two peaks, reflecting the separation of long 

and short chain lipids into the bilayer and core region. The two distinguishable peaks of the long 

and short chain lipids are a direct marker of bilayer alignment. The peaks shift further apart after  
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Figure 20. (a) The chemical shift of 
31

P spectra of q = 3 of DMPC/POPC/DHPC/cholesterol 

bicelles respectively as a function of temperature and the representative 
31

P spectra at 296 K and 

306 K. (b) The chemical shift of 
31

P spectra of q = 5 of DMPC/POPC/DHPC/cholesterol bicelles 

respectively as a function of temperature and the representative 
31

P spectra at 295 K and 300 K. 

As temperature increases, the chemical shift of the DHPC peak () moves toward the chemical 

shift of the long chain lipids () in an aligned bilayer (—) which is perpendicular to magnetic 

field. The error bar reflects the uncertainty of full width of half maximum (FWHM) due to the 

signal to noise. 
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the second phase transition from aligned bicelles to vesicles. As temperature increases, more 

DHPC partitions from the core into the bilayer. For q = 5, at the temperatures higher than 300 K 

all DHPC has entered the bilayer, resulting in a single 
31

P peak at ~-15 ppm, arising from 

phosphocholine headgroups in the bilayer. For q = 3, the higher relative concentration of DHPC 

means that at high temperatures, excess DHPC is seen in a peak at 0 ppm reflecting micelles 

outside  the bilayer, while a peak arising from DHPC, DMPC, and POPC in the bilayer is present 

at ~-15 ppm. In conclusion, the 
31

P chemical shift offers a direct measure of the phase behavior 

of bicelles with different degrees of perforation. 

3.4.1.2 PREDICTING ALIGNMENT FROM COMPOSITION OF 

BILAYER AND  

Above Tm of bicelles, DHPC is present in both the core and bilayer environments, and 

exchanges rapidly between them. As temperature increases, DHPC increasingly incorporates into 

the bilayer, as it is shown by the continuous shift of the DHPC peak from the isotropic value (0 

ppm) toward the chemical shift of the long chain lipids in the bilayer. The schematic cartoon in 

Figure 21a illustrates the partitioning of DHPC into the lipid bilayer plane. The increased 

partitioning of DHPC molecules into the bilayer depletes the number of perforations, and 

eventually the bicelle alignment ends. Figure 21b shows the upfield shift of the resonance 

frequency of the peak of DHPC and the peak of the long chain lipids, toward the aligned bilayer 

frequency. These shifts arise from two different phenomena. The chemical shift of the long chain 

lipids approaches the chemical shifts of a static lipid perpendicular to the magnetic field, 

reflecting the greater membrane rigidity and alignment at higher temperature. The chemical shift 

of DHPC, short, also shifts upfield due to the greater alignment, but experiences an additional  
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Figure 21. (a) The schematic cartoon of bilayer when DHPC (blue) partitions into long chain 

lipids (green)-rich plane. With the increased amount of DHPC in the bilayer plane, the bicelle 

will undergo a phase change from liquid crystal to vesicle. (b) As temperature increases, both the 

peaks of short chain lipids and long chain lipids in the low field shift to the high field. Since 

DHPC partitioning increases as the temperature increases, the DHPC peak moves closer to the 

long chain lipid peak consisting of the bilayer. While long chain lipids showed a slight shift to an 

aligned bilayer (—) due to the increase in overall alignment, DHPC shifted largely due to 

increased partitioning into the bilayer plane. 
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shift because of the increase in DHPC in the bilayer, reflected in Eq. (13).  

 

                       𝛿            
       

 𝛿             
     𝛿          

                    

                                                                                                                                                                                                               (13) 

where bilayer  and core are the chemical shift of DHPC in bilayer and core, and are approximately 

equal to ~-15 ppm and ~ 0 ppm, respectively.  

In order to elucidate the amount of DHPC in the bilayer and the core, the position of the 

DHPC peak, short (referenced to the isotropic chemical shift, iso) is plotted as a function of q. To 

remove the effect of the alignment on the DHPC chemical shift, the change in the peak position 

is normalized with respect to the shift observed for the long chain lipids (long). The ratio of the 

shifts, short/long = (short - iso ) / (long - iso), reflects the effect of chemical exchange on the 

chemical shift and has removed the alignment contribution to shift.  

From Eq. (13), we can derive the following equation relating the chemical shift to q:  

 

∆𝛿     
∆𝛿    

   − 
𝛿    
𝛿       

 
 

 −  
𝑞  

𝛿    
𝛿       
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                                                                                                                                                      (14)                                                                                           

where        
       

       
       

      
       

 , the DHPC fraction of lipids in the bilayer [16, 101]. 

With perfect segregation of long and short chain lipids  = 0, and increases as more DHPC 

partitions into the bilayer. In Figure 22, the ratio of short/long  is plotted as a function of q in 

the bicelle alignment temperature range. At each temperature, it was observed that short/long   

proportionally increased with q, and that for a given q, short/long increased with temperature. 

The linearity of the chemical shift with q shows that the partitioning of DHPC into the bilayer () 
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Figure 22. The plot of the ratio of short/long  as a function of q in the alignment temperature 

range. The measured temperatures are 294 K ( ), 295 K (o), 296 K ( ), 297 K ( ), 298 K( ), 

299 K () and 300 K (), respectively. At each temperature, short/long proportionally 

increases with q and the short/long at each q rises with increases in temperature. The error bar 

reflects the uncertainty of the chemical shift measurements due to the signal to noise. 
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is independent of q and changes only with the temperature.  

   As temperature increases, the  increases at a given q, which means the fraction of DHPC 

partitioning into the bilayer from core is increasing. By fitting this data to Eq. (14), we extract  

for temperatures between 294 K and 300 K. From the value of  we can calculate the fraction of 

DHPC in the core and bilayer environment. In order to know the fraction of DHPC in the bilayer 

at temperatures outside of this range, we exploit the Boltzmann distribution. 

 

                                                             𝑒
  

  
      

                                                                                                                                                     (15) 

where kB is Boltzmann constant and Ea is the partitioning energy of DHPC in bilayer. Eq. (15) 

predicts a linear relationship between ln and 1/T, seen in our data (Figure 23). Since  is 

constant at the same temperature regardless of q, by extrapolating to other temperatures, we can 

estimate how many DHPC exist in the bilayer at a given temperature for any q. 

Table 2 shows the fraction of DHPC in the core at different temperatures for various 

values of q. At 294 K, where bicelles of all q aligned in a magnetic field, from ~ 72 % to ~ 83 % 

of the total DHPC was located in the core. In particular, q = 4 and 5 bicelles had two narrow and 

symmetric 
31

P peaks at this temperature, indicating that the alignment was strong and uniform 

when DHPC was between ~ 72 % and ~ 77 % of total DHPC. Later, in this chapter we discuss 

the relationship between alignment and peak linewidth. The 
31

P linewidths of DHPC of q = 3, 4 

and 5 were narrowest at 300 K, 295 K and 296 K, respectively, indicating the best alignments. At 

these temperatures, the percentage of DHPC of q = 3, 4 and 5 in the core were ~ 68 %, ~ 75 % 

and ~ 65 %, respectively (highlighted in Table 2). Therefore, it is possible to conclude that when 

between ~ 65 % and ~ 75 % of the DHPC exists in the core, the bicelle will achieve a  
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Figure 23. The natural log of fraction of DHPC in the bilayer plane () is proportional to the 

inverse of temperature. Because the  is only a function of temperature, the number of DHPC 

molecules existing in the bilayer and at the edge of each q bicelle can be estimated at each 

temperature. The error bars reflect the experimental uncertainty, arising from the fits in Figure 22. 
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Table 2. The amounts of DHPC (= ncore/ntotal) existing in the core at different temperatures, for 

unsaturated and conventional bicelles 

DMPC:POPC:DHPC:chol 294 K 295 K 296 K 300 K 308 K 

q = 3 ~ 83 % ~ 81 % ~ 79 % ~ 68 % ~ 23 % 

q = 4 ~ 77 % ~ 75 % ~ 72 % ~ 57 % ~ 0 % 

q = 5 ~ 72 % ~ 69 % ~ 65 % ~ 47 % ~ 0 % 

      
DMPC:DHPC* 

q = 3.5 
- - - ~ 85 % ~ 70 % 

*Values from published study of conventional bicelles [16] 

 The most uniform (or strongest) alignments are highlighted for q = 3 to 5 and correspond to ~ 

70 % of DHPC in the core.  
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well-aligned structure. The end of the alignment range occurs when the fraction of the DHPC in 

the core drops below 60 %. This corresponds well with the results at 300 K, where q = 3 is well-

aligned but the q = 4 and 5 are at the end of the alignment range and about to transition to the 

vesicle with the DHPC below 60 %. This correlation between the fraction of DHPC and the 

alignment is also observed in published work on conventional bicelles, which consist of DHPC 

and DMPC [16]. According to  values of conventional bicelles reported previously, it is 

estimated that ~ 85 % of DHPC are present at the core at 300 K, where the conventional bicelle 

starts aligning. When a bicelle is optimally aligned at 308 K, approximately 70 % of DHPC 

exists in the core, consistent with the requirements for the alignment of our bicelles.  

Interestingly, at a single temperature, the fraction of DHPC molecules in the bilayer 

differs for different q. Although the Boltzmann distribution dictates that the fraction of DHPC in 

the bilayer depends on the temperature alone, the larger amounts of long chain lipids in higher q 

allow more DHPC molecules to partition into the bilayer. This can be seen in Table 2 for the 

bicelles at 308 K, where q = 3 bicelles still have 23 % of the DHPC in the core, while q = 4 and 5 

bicelles have no DHPC remaining in the core, and accordingly have no perforations. 

The differences in depletion according to q can explain why the alignment range ends at 

the lower temperature for higher q than that of lower q bicelles. At the same temperature, the 

higher q bicelles have more DHPC molecules in the bilayer plane and fewer DHPC molecules in 

the core, creating perforations. This implies that the depletion in the amount of short chain lipids 

in the core can cause the collapse of the liquid crystal structure, and that the composition of long 

and short chain lipids in the bilayer is correlated with alignment capability and morphology. The 

 of our membranes is different from that of conventional bicelles at the same temperature due to 

the different bilayer composition. In the unsaturated bicelles, the  value is larger than in 
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conventional bicelles (0.096 vs 0.04 at 300 K, respectively) [16], reflecting the larger solubility 

of the DHPC in a membrane with the unsaturated lipid and cholesterol. Accordingly, the fraction 

of the DHPC in the core is depleted at a lower temperature for the unsaturated bicelles, and their 

alignment range ends at a lower temperature than that of conventional bicelles (306 K vs 311 K, 

respectively).    

3.4.1.3 OBSERVING THE CHANGE OF 
31

P PEAK LINEWIDTHS OF 

DHPC AT PHASE TRANSITION 

As we measured the 
31

P NMR spectrum of bicelles at temperatures ranging from low to 

high, we noted the changes in the linewidth reflecting the critical changes in phase from gel to 

liquid crystal to vesicles. Since the location and molecular environment of the DHPC depends 

strongly on temperature, the line broadening of the DHPC peak was more sensitive than that of 

long chain lipids. Figure 24 shows the line widths of the DHPC peak in the 
31

P NMR spectra of 

an assortment of bicelles as a function of temperature. The alignment range of each bicelle is 

described by a box. The linewidth showed similar trends in all of the bicelles. As shown in 

Figure 24a, the linewidth of the single 
31

P peak containing both long and short chain lipids, from 

269 K to 291 K is approximately 200 Hz, reflecting that the bicelles are in the gel phase. As the 

temperature approaches the Tm (= 292 K), the linewidth increases to the largest value of ~ 332 

Hz at the Tm.  The linewidth reaches another peak of over 400 Hz as the bicelles transition to 

vesicles. Major phase transitions are clearly seen in the 
31

P linewidth.  

Between the Tm and Tv phase transitions, the linewidth decreases to a minimum and then 

increases. The 
31

P peak linewidth is a heterogeneous sum of peaks from bilayer with the range of 

directors. Immediately after Tm, highly perforated bilayers begin to align in the magnetic field. 

The membrane regions between the perforations are quite small and the orientation of their 
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 Figure 24. The plot of the linewidth of the low field peak from DHPC () in 
31

P NMR spectra 

of q = 3, 4, 5 of DMPC/POPC/DHPC/cholesterol bicelle as well as conventional bicelle 

(DMPC/DHPC, q = 3.5) as a function of temperature. Phase transitions are clearly seen in the 

change of 
31

P linewidth. The error bar reflects the uncertainty of full width of half maximum 

(FWHM) due to the signal to noise.  

 



 63 

membrane normal is able to fluctuate in the magnetic field with thermal motion. As temperature 

increases, the number of pores decreases, and the bigger membrane regions orient more strongly 

in the magnetic field.   As the extent of bilayers increases, the range of director orientations 

decreases, narrowing the linewidth of the 
31

P peak to its narrowest value, corresponding to the 

most homogeneous alignment. As the bilayer extent between perforations gets even larger, the 

membrane begins to bend, beginning the transition to vesicles. The bending again corresponds to 

a range of bilayer directors and exhibits an associated linebroadening [102]. The 
31

P linewidth is 

more sensitive to the alignment and phase transition than the 
31

P chemical shift. For example, in 

Figure 20b, the end of alignment for q = 5 is difficult to pick out. In contrast, Figure 24c shows a 

peak in the linewidth at 300 K, corresponding to the end of the alignment. 

3.4.2 CAPABILITY OF THE OBSERVATION OF THE PHASE TRANSITION USING 

1
H SPECTRA 

As we explained above, the chemical shift and linewidth of the phosphorus spectrum give 

information about molecular structure, phase and alignment range. This fact led us to investigate 

if we could acquire such information looking at the 
1
H NMR spectra, allowing us to use the same 

probe to take 
1
H NMR of protein and membrane alignment in the same spectrum. Therefore, we 

measured the 
1
H spectra of q = 3, 4 and 5 as the temperature was increased from 267 K to 315 K. 

The 
1
H spectra were obtained under magic angle spinning and WATERGATE was applied to 

suppress the water peak at 4.7 ppm. 

Figure 25 shows the changes in linewidth of three different peaks corresponding to 

double bond, acyl, and methyl moiety at the end of an acyl chain, which representatively exhibits 

significant changes in width as a function of temperature. As temperature increases, the  
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Figure 25. The changes of linewidths of 
1
H NMR peaks are associated bicelle the phase 

transition and bicelle alignment. The plot shows the linewidths of double bond of unsaturated 

lipid (), acyl () and methyl at the end of acyl chain ( and ) of q = 3 bicelle as a function 

of temperature from 267 K and 315 K. The box indicates the alignment range. When the error 

bar is smaller than the data point, it is not shown.  
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linewidths of all peaks varied, showing considerable changes near the point of the phase 

transition from gel to liquid crystal and from liquid crystal to vesicle form. The peak of the 

double bond () appears right before Tm = 292 K, where bicelle transitions from gel to liquid 

crystal and the linewidth gets narrow after broadening as they align. The acyl () and methyl 

peaks ( and ) also broaden as they start to align and become narrow with temperature 

increase. The methyl peak starts splitting near Tm into two peaks which then merge into one peak 

as the bicelle aligns. The linewidths of all these peaks suddenly get very narrow as soon as 

alignment of the bicelle finished and show relatively narrow and consistent values of about 30 

Hz. Therefore, we can know that the change in 
1
H linewidth is connected to the phase transition 

of the bicelle, and the linewidth of the methyl and the double bond peaks report the complex 

changes in the environment of these parts at critical moments such as alignment. However, the 

linewidths of acyl peaks of different q bicelles, shown in Figure 26, vary smoothly and 

continuously over the alignment range of the bicelles. For example, the 
1
H acyl linewidth in a q 

= 5 bicelle decreases from ~ 75 Hz to ~ 30 Hz over the alignment range. The q = 3 bicelle peaks 

decrease from ~ 60 Hz to ~ 50 Hz in linewidth. The intense acyl 
1
H peak therefore can report 

directly on the alignment state of a liquid crystal matrix while acquiring 
1
H signal from a 

biological molecule embedded in the matrix. The homogeneous 
1
H linewidth of the acyl chain 

reports the local dynamics and structure of the chain, not the overall alignment of the membrane.   

In contrast, the variation in 
31

P linewidth in the alignment range indicates the heterogeneous 

nature of the peak, reflecting the various orientation of DHPC at critical temperatures. 
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Figure 26. The plot of the 
1
H linewidths of acyl peaks of q = 3, 4, 5 of DMPC/POPC/DHPC/ 

cholesterol bicelle as well as conventional bicelles as a function of temperature. The change of 

1
H linewidth can be a criterion to identify the alignment range. The error bar reflects the 

uncertainty of full width of half maximum (FWHM) due to the signal to noise. When the error 

bar is smaller than the data point, it is not shown.  
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3.5 CONCLUSION 

In this work, we observed the correlation of bilayer structure of diverse bicelle systems 

with their alignment capability, with the goal of clarifying the general alignment mechanism for 

bicelles of arbitrary composition. As previously reported, the bicelles will align above Tm when 

short chain lipids can mix with the long chain lipids.  In order for planar bilayers to align, DHPC 

must form a significant density of pores in the bilayer. As temperature increases DHPC will 

migrate from pores to the bilayer, disrupting alignment. The larger the solubility of DHPC in the 

bilayer, the smaller the alignment range will be. The loss of alignment is gradual, as reflected by 

the 
31

P linewidth, reaching completion at Tv. The solubility of DHPC in the long chain lipids may 

be able to be measured with vesicles composed of the long chain lipids, allowing a researcher to 

predict the ability of a given bicelle mixture to align. 

 The changes in chemical shift of 
31

P NMR spectra showed the phase behavior of bicelles 

with different degrees of perforation, resulting in different phase diagram between q = 3 and 5. 

Moreover, the 
31

P peak linewidth showed the alignment more clearly than simply the number of 

peaks and chemical shifts. The change in 
1
H linewidth also could be used to characterize 

alignment, reflecting the dynamics of hydrocarbon chains of the lipids.  
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4.0  THE EFFECT OF MEMBRANE PERFORATION ON DOMAIN FORMATION 

AND BICELLE STRUCTURE 

4.1 ABSTRACT 

We have observed the formation of micron-scale domains in a bicelle containing a 

saturated lipid, DMPC, cholesterol, and an asymmetric unsaturated lipid, POPC (Chapter 2). 

However, Veatch and Keller reported that a vesicular system of DMPC/POPC/cholesterol had no 

micron-scale domains. It has been theorized that the tendency of POPC to partition to the 

interface of the lo and ld regions lowers the line tension of the interface and stabilizes nanoscopic 

domains. While vesicles and bicelles show similar physical properties, the bilayer in bicelles are 

highly perforated with stable holes created by DHPC. By varying the relative amounts of DHPC 

and long chain lipids (varying q) we were able to measure the effect of the perforation density on 

domain formation. The q = 3 bicelles, with a higher density of perforations, showed micron-scale 

domain formation, while the q = 5 bicelles, with a lower degree of perforation due to the smaller 

fraction of DHPC, showed no domains in NMR diffusion microscopy. The absence of domains 

of q = 5 correlates with the observation of no domains in the vesicular system with no 

perforations. Potentially, the interface of the bilayer and pore competes with the lold interface 

for POPC, modulating the line tension at the domain interface. Using a geometric model for the 

bicelle structure, we calculated the surface density of pores, p, and the distance between pores, 
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dp, in both the q = 3 and q = 5 bicelles. From these calculations, we showed that the total length 

of the pore interface is ten times larger than the boundary length of a one micron domain for q = 

5, and hundred times larger than the boundary length of a one micron domain for q = 3, allowing 

substantial depletion of POPC at the domain boundary.  It is the first observation of membrane 

topology controlling domain formation, and is consistent with the theorized role of POPC as a 

line–active lipid. 

4.2 INTRODUCTION 

Domains in cell membranes are correlated with many biological functions such as 

signaling, transportation and association of proteins [29, 103, 104]. However, it is estimated that 

the cell membrane domain sizes are generally small, ~ 10  200 nm [29], and it makes the direct 

detection using optical spectroscopy difficult [105]. In order to understand the role of domains in 

the cell membrane, model membranes with ternary compositions of cholesterol, saturated lipids 

and unsaturated lipids are widely used to study domains, but domains in model systems are 

micron-scale, orders of magnitude larger than the cell membrane domains [61, 83]. The 

discrepancy in biological and model membrane domain sizes is not understood. Possible 

mechanisms are numerous and could involve the high density of membrane proteins in the 

cellular membrane (Figure 27) [30], the local curvature of the membrane [106-108], or the 

presence of a cytoskeleton [109, 110]. Interestingly, micron-scale domains are generally not 

observed when asymmetric legged lipids like POPC are the unsaturated component, although 

these are most similar to the lipids present in cellular membranes. For example, previous 

experimental results also showed that the vesicular ternary systems of saturated phosphocholine 
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Figure 27. The schematic of the biological membrane with membrane proteins [30]. The density 

of membrane proteins in the cell is estimated to be ~ 30,000 /m
2
, creating a highly interrupted 

bilayer. Figure was taken from the reference [30]. 
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lipids such as DMPC and symmetric unsaturated lipids such as DOPC (1,2-dioleoyl-sn-glycero-

3-phosphocholine) with cholesterol showed the domain formation of micron-size [93]. However, 

the mixture of saturated phosphocholine lipids and asymmetric phosphocholine lipids such as 

POPC did not form domains [93].  

The difference in the ability of symmetric and asymmetric lipids to form domains is of 

great interest. Generally, the size of domains can be explained in terms of line tension [111, 112]. 

The height mismatch of lipids in the lo and ld domains has an energetic cost called a line tension. 

As seen in Figure 28, asymmetric lipids like POPC can act as a line-active lipid, reducing the 

line tension in the interface of different domains by partitioning to those interfaces, leading to 

nanoscopic domains [111-114]. A high line tension drives the coalescence of smaller domains 

and results in micron-scale domains, while a low line tension leads to the formation of 

nanoscopic domains.    

Instead of vesicular systems, bicelles, consisting of the planar bilayer and core, can be 

used as model membranes. Bicelles are very similar to vesicles, because the lateral diffusion of 

lipids [22, 83], the phase behavior [115, 116], and the transmembrane protein activity [49] are 

comparable with vesicles, and they show the same thicknesses of bilayer [71, 117]. Therefore, 

we expected to see the same basic domain formation in bicelles as in vesicles, and were surprised 

to see micron-scale domains in POPC-based bicelles when no such domains had been noted in 

the corresponding vesicles [93]. Bicelles and vesicles differ mainly in their degree of perforation, 

caused by the short chain lipid DHPC in bicelles. By decreasing the fraction of DHPC 

(increasing q), we reduced the degree of the perforations, creating model membranes more 

similar to the vesicles. Measuring the domain size in bicelles with different q will show the role 

of the perforations in domain formation. Models of the bicelle structure allow us to calculate 
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Figure 28. The partitioning of the POPC in the interface of lo and ld domains. Different from the 

symmetric lipid, DOPC, POPC has asymmetric legs, which are partitioning in lo and ld, 

respectively. This lowers the line tension in the interface and results in the nanoscopic domain 

formation. 

  

ld lo

POPC



 73 

the surface density of pores in these bicelles of varying q, and quantitatively compare the 

interface between domains and the interface of the bilayer with the perforations. These models 

also allow us to compare the length of uninterrupted lipid expanse in the bicelles (the distance 

between the perforations) to that in the cell (the distance between membrane proteins), to 

examine the effect of nanoscopic structure on membrane properties. 

4.3 RESULTS AND DISCUSSION 

4.3.1 COMPARISON OF THE DOMAIN FORMATION IN q = 3 AND 5 BICELLES  

To examine the effect of perforations on domain formations, we created bicelles with q = 

3 (1.5/1.5/1/13 mol % ratios of DMPC /POPC/DHPC/cholesterol), and q = 5 (2.5/2.5/1/13 mol % 

of DMPC/POPC /DHPC/cholesterol). We carried out the experiments described in Chapter 2, 

measuring the lateral diffusion constant of the lipid in membrane as a function of the diffusion 

time. Any time-dependence of the diffusion constant served as a marker of domain formation. As 

described earlier, in free diffusion the lipid displacement will vary linearly with the square-root 

of diffusion time (Eq. 6). 

 

 

                                                                                                                                                        (6) 

 If domains are present, the displacement does not vary linearly with the square-root of 

diffusion time, and can be described by Eq. (11).  

 𝑥2 1/2
=  4 𝑡𝑟𝑢𝑒  
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                                                                                                                                                     (11) 

Figure 29a shows the results of the Chapter 2 for q = 3, in which the free diffusion is seen 

at 300 K, and confined diffusion seen at 292 K and 295 K when domains are present. Figure 29b 

shows the average displacements in the q = 5 bicelle system at three temperatures.  

At 298 K, above the Tm of DMPC, q = 5 showed a linear relationship between lipid 

displacement and the square root of diffusion time, corresponding to the free diffusion. However, 

at 293 K and 294 K, where the formation of domains was noted for q = 3, the displacement also 

varied linearly with the square root of diffusion time, indicating the free diffusion. As described 

in Chapter 3, at a given temperature, the concentration of DHPC in the bilayer is the same for q = 

3 and 5 due to the same , and only the number of DHPC molecules left in the core forming 

perforations differs. These results indicate that the formation of domains can be promoted or 

eliminated by modulating the concentration of DHPC in the core, and the density of the resulting 

perforations. 

4.3.2 QUANTIFYING THE DIFFERENCE OF THE PERFORATIONS BETWEEN q = 

3 AND 5  

In order to analyze the relationship between the number of perforations and domain 

formation quantitatively, the geometric models of the bicelle structure allow the calculation of 

the pore density from the fraction of the DHPC molecules, and the membrane physical properties 

[118]. We calculated the surface density of pores,p, and distance between pores, dp of q = 3 

 𝑥2 1/2
= 𝑟 𝑠𝑖𝑛  

 4 𝑡𝑟𝑢𝑒 

𝑟
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Figure 29. (a) The average displacements in q = 3 at 292 K (), 295 K (), and 300 K (). At 

292 K and 295 K, the lipid displacements are limited and showed plateaus, indicating confined 

diffusion within a lipid domain. (b) The average displacements in q = 5 at 293 K (), 294 K (), 

and 298 K (). Plots showed linear relationships between lipid displacement at each temperature 

and the square root of diffusion time, consistent with free diffusion without domains. Error bars 

reflect the fit uncertainty (2σ) of the diffusion constant for each point.  

300 K 

295 K 

292 K 

298 K 

294 K 

293 K 

q = 3 

q = 5 
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and 5 bicelles at 295 K (highlighted in Table 3). The relative numbers of the DHPC molecules in 

the core and bilayer environments depend on the , as described in Chapter 3. The value of the  

for the q = 3 and q = 5 bicelles at 295 K is shown in Table 3. We can calculate the ratio of 

volumes of the entire bilayer and core using  and the relative volumes of the long and short 

chain lipids, , as shown in Eq. (16) [93]. 

 

                                                                                                                                         (16) 

where  is the ratio between the volume of a short chain lipid and volume of a long chain lipid 

[71]. With the value of qv, we can calculate the surface density of pores, p, from Eq. (17) [119] 

 

 

                                                                                                                                                     (17) 

where Rp is the pore size and rc  is the core thickness as can be seen in Figure 30. Since our 

model membrane used the same short chain lipid, DHPC, as conventional, we expect the same 

basic pore geometry and used the previously published values of ~ 400 Å and 44.2 Å for Rp and 

rc, respectively [71, 117]. In a side note, the pore size in bicelles is similar to the pore size 

generated by electroporation on vesicles [120, 121].  

 We could then estimate the inter-pore distance, dp, of both bicelles using p because the 

pore density is correlated to the average of pore distance as shown in Eq. (18) [71].        

𝑑𝑝    𝑝𝑠𝑖𝑛
 

 
 
−
 
 
−   𝑝 

                                                                                                                                                     (18) 

𝑞𝑣 =
𝑞


 
1 +  (− 1)

1 − (𝑞 + 1)
  , 

 𝑝 =
6

 (6 𝑝
2 + 3 𝑞𝑣𝑟𝑐 𝑝 − 4𝑞𝑣𝑟𝑐

2)
 , 
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                  Table 3 . Difference in perforations of q = 3 and 5 at 295 K 

q  qv p (pores/m2) dp (nm) 
hole-bilayer 

interface (m) 

3 0.059 ~ 6.3 ~ 1.32  10
14

 ~ 10 ~ 100  

5 0.059 ~ 12.4 ~ 1.04  10
14

 ~ 22 ~ 75 
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Figure 30. The schematic of perforated bilayer [71]. In this model membrane, the pore sizes are 

uniform. For calculations, previously reported values of Rp and rc were used [71]. 
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 As seen in Table 3, when q was increased from 3 to 5, the surface density of pores was 

decreased from ~ 1.32  10
14

 pores/m2
 to ~ 1.04  10

14
 pores/m2

. The inter-pore distance is 

increased from ~ 10 nm to ~ 22 nm. As expected, as q is increased, the numbers of pores are 

decreased due to the depletion of DHPC in the membrane as shown in Figure 31. 

 We propose that the boundary of the perforations competes for POPC with the domain 

boundaries in Figure 32. Instead of POPC partitioning mainly to the domain boundaries, 

lowering the line tension [111, 112], and reducing the domain size [113, 122], the POPC is 

divided between the pore edges and the domain edges. This pore-induced redistribution of POPC 

results in the formation of large micron-scale domains. To reiterate, in q = 5, the lower density of 

pores allows more POPC to locate at the interface of lo and ld, leading to submicron domains 

similar to those seen in vesicles [113]. In q = 3, there are more POPC molecules associated with 

pores, and the line tension between lo and ld remains higher, leading to micron-scale domains. 

While changing the number of perforations by 30 % seems a subtle change, this corresponds to 

the order of magnitude change in the hole-bilayer interfacial length. The high density of pores 

means the one micron domain, with a circumference of ~ 6 m will contain enough pores that 

the hole-bilayer interface will be approximately 100 m for the q  =  3 system (Table 3). In 

future work, we will measure the proximity of POPC to DHPC in the core to confirm this 

mechanism. 

4.4 CONCLUSION 

In this work, we observed the effect of the membrane perforation on domain formation.  
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Figure 31. Increased q has fewer perforations and the longer distance of pores because of the 

decreased concentration of DHPC in the core. 

  



 81 

 

 

 

  

 

                

 

 Figure 32. The boundary of the perforations competes for POPC with the domain boundaries. 

The hole-bilayer interface of ~ 100 m (q = 3) redistributes POPC molecules, resulting in 

micron-scale domains. The rectangle is 2 m by 1 m, with 80 nm diameter pores, spaced 20 nm 

apart. The domains have a radius of 1 m. 
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While q = 3 bicelles with many perforations showed the micron-scale domain formation, q = 5 

bicelles with fewer perforations had no micron-scale domains. The lower concentration of 

perforations in q = 5 correlates with the lack of domains observed in vesicles with no perforation. 

The presence of perforations can have a significant impact on the spatial arrangement of lipids 

affecting bulk properties like line tension. Similarly, in the cell membrane, transmembrane 

proteins are densely packed and have a local density ten times that of the pores in the bicelles 

[30]. The high concentration of proteins in the bilayer could also actively modulate the spatial 

composition of the bilayer, with large effect. 
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5.0  CONCLUSION 

In this work, we studied the structures in model membranes using solid state NMR and 

diffusion NMR techniques. We created a magnetically-aligned model membrane (bicelle) 

containing cholesterol and unsaturated lipids, with the goal of creating a versatile substrate for 

structural studies of transmembrane proteins with solid state NMR. The unsaturated bicelles 

exhibited micron-scale domains, measured by observation of time-dependent diffusion constants 

for lipid diffusing in the membrane. This NMR diffusion microscopy is a promising tool for the 

study of domains in model membranes and in vivo, examining the biological factors affecting 

domain formation, domain size, and domain dynamics.  

There is a diversity of lipids in the cell, often correlating with particular membrane 

proteins. These membrane proteins need these lipids in any model membrane if a meaningful 

structure is desired. For example, the catalytic activity of diacylglycerol kinase (DAGK) was 

varied according to the model membrane system and also showed the different preference 

according the kinds of phosphocholine [73]. In order to understand the universal alignment 

mechanism of diverse bicelles, we observed the distribution of long and short chain lipids in the 

core and bilayer regions of the bicelles, correlating the distribution and the alignment capability. 

A critical fraction (~ 70 %) of DHPC must be located in the core for optimal alignment, 

regardless of the composition of the bilayer. The partitioning of DHPC into the bilayer results in 

the depletion of DHPC in the core, and the solubility of DHPC in the bilayer strongly affects the 
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alignment behavior. We hope that the measurement of the solubility of DHPC in vesicle of 

various compositions will enable us to forecast the alignment capability of novel bicelles.  

Bicelles forming domains offer insight to the behavior of membranes with nanoscopic 

structure and variations in composition. We observed the effect of the membrane perforation on 

domain formation by creating series of bicelles with different density of perforations. The highly 

perforated bicelle showed micron-scale domain formation, but the less perforated bicelle showed 

no micron-scale domains. The change of topology affected the location of the line-active lipid, 

POPC, and led to a change in the line tension between domains enough to change the domain 

size. Similar mechanisms may occur in biological systems like cellular membranes. 

 

 

 

 

 

 

 

 

 



 85 

APPENDIX A 

 [CALCULATION OF ERROR BARS] 

A.1 ERRORS OF DIFFUSION CONSTANT 

When diffusion experiment is performed by stimulated-echo pulsed field bipolar gradient 

diffusion experiment [104], the signal is attenuated with the variation of experimental parameters 

described by Stejskal Tanner equation [41] 
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                                                                                                                                          (12) 

where I0 is the acyl peak integral in the absence of gradients, τ is the spacing of the bipolar 

gradient pulses, and γ is gyromagnetic ratio for the observed nucleus. The attenuation of intensity 

depends on gradient duration , gradient amplitude g, and diffusion time . We measured 

attenuation of signal intensity as g is increased. The measured diffusion constant Dmeas can be 

calculated from a plot of ln(I/I0) as a function of k. At that time, the reading of each attenuated 

intensity can have the measurement error by an uncertainty due to signal to noise ratio. 
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Therefore, we calculated the error of the measured signal intensity by using error 

propagation; 

𝑓  
𝐼

𝐼 
 

                                                   

 
 𝑓
𝑓
 
 

  
 𝐼
𝐼
 
 

  

                                                                                                                                                    (A-1) 

where f  is the error of the measured signal intensity and I is the standard deviation of measured 

intensities of I due to noise of the spectrum. Therefore, (A-1) can be written as (A-2). 

 

 
 𝑓
𝑓
 
 

           

                                                                                                                                                    (A-2) 

Finally f  can be calculated by (A-3), a rearrangement of (A-2), 

                                

 𝑓           
𝐼
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                                                                                                                                                    (A-3) 

and as a result, the error of signal, f , can be obtained. 

Then the uncertainty in   
 

  
,   

  
 

  
 
, for each spectrum can be calculated by the error 

propagation as shown in (A-4). 

 
  
𝐼
𝐼  

   
𝐼 
𝐼

 

                                                                                                                                                    (A-4) 
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 The error bars shown in the plots of   
 

  
 vs k in Chapter 2 reflect the value of  

  
 

  

.  The 

error of measured diffusion constant,       , and the error of apparent diffusion constant,      ,  

reflect the standard deviation of the least-square fit of the data to a line. 

 In membranes where domains formed, a true diffusion constant, Dtrue, was extracted from 

the displacement as a function of diffusion time. The error of the true diffusion constant,       , 

was extracted from the least-square fit to the following equation.  

 

                                                                                                                                                     (11) 

Eq. (11) can be simply expressed to x
2


1/2
 = Asin(B1/2

) and we can obtain A and B 

directly from standard deviations measured from the simplified fitting Eq. (11). Since the domain 

size r is the same as A, the error of domain size r is the regarded as A. In order to obtain Dtrue 

from Eq. (11),          
    𝑟 is rearranged to Eq. (A-5) 

 𝑡𝑟𝑢𝑒  
 

 
𝑟      

                                                                                                                                                 (A-5) 

and the error propagation can be applied to (A-5). The resulting Dtrue can be given by Eq. (A-6). 

         

 
  𝑡𝑟𝑢𝑒
 𝑡𝑟𝑢𝑒

 
 

  
 𝑟 

𝑟 
 
 

  
 
  

  
 
 

 

                                                                                                                                                    (A-6) 

The r
2
 and B

2 
can be written with r and B by the error propagations as shown in Eq. 

(A-7). 

 𝑥2 1/2
= 𝑟 𝑠𝑖𝑛  

 4 𝑡𝑟𝑢𝑒 

𝑟
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                                                                                                                                                   (A-7) 

Finally, we obtained        of the confined diffusion by Eq. (A-8). 

              
   

𝑟 
 
   

  
 

                                                                                                                                                   (A-8) 

If the membrane showed free diffusion without interruption, then       was calculated 

from the fitting, which is equal to Eq. (6), following Gaussian distribution. 

 

 

                                                                                                                                                        (6) 

Eq. (6) can be simply expressed to x
2


1/2
 = A1/2

 and A can be rearranged to get Dtrue = 

A
2
/4. The error propagation to get        is given by Eq. (A-9). 

            

      
     

 
   
 

 

                                                                                                                                                  (A-9) 

We can obtain A directly from standard deviations measured from the simplified fitting 

Eq. (6). Finally, we can calculate       of the free diffusion by Eq. (A-10). 

 

                                                                                                                                                                                                     

                                                                                                                                                  (A-10) 

 𝑟
2 = 2𝑟 𝑟  

  
2 = 2    

 𝑥2 1/2
=  4 𝑡𝑟𝑢𝑒  
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As seen in Eq. (6), the error of each displacement as a function of the square root of time 

reflects the error from the measured diffusion constant. The error of the displacement,         , 

was calculated from the fitting which is equal to Eq. (6), following Gaussian distribution. The 

error propagation to get          is given by Eq. (A-11). 

 

        

 𝑥     
 
 

 

      
     

 

                                                                                                                                      (A-11) 

Finally, we can get          by Eq. (A-12) as a rearrangement of Eq. (A-11). 

 

         
 

 

      
     

 𝑥      

                                                                                                                                      (A-12)               

A.2 ERRORS OF THE NATURAL LOGARITHM OF  

In Chapter 3, the error shown in the plot of ln vs 1/T (Figure 23), ln, is generated from 

the error of , , and the error  from the fitted data using Eq. (13). 
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   − 
𝛿    
𝛿       

 
 

 −  
𝑞  

𝛿    
𝛿       

 𝑐 ∙ 𝑞  𝑐   

                                                                                                                                         (13)                 
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 The Eq. (13) can be rearranged to Eq. (A-13) as expressed by the relationship between , 

c1, and c2. 

  
𝑐 

 − 𝑐  𝑐 
 

                                                                                                                                                                                                      (A-13) 

The error of the obtained , , is generated from the uncertainty of the value of c1 and c2. 

The   from Eq. (A-13) can be obtained using the error propagation.  
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 − 𝑐  𝑐 

 
 

  

                                                                                                                                      (A-14) 

The          can be obtained from     and    , which are the standard deviations of c1 

and c2, respectively. Therefore,   can be calculated from the Eq. (A-15). 
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                                                                                                                                      (A-15)                          

Finally, from the obtained , we can calculate ln as shown in Eq. (A-16). 

 

     
  
 

 

                                                                                                                                      (A-16) 
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A.3 ERRORS OF THE CHEMICAL SHIFT MEASUREMENT 

In the NMR spectrum, each peak has a Lorentzian shape. The Lorentzian line includes 

three factors which are the full width at half height (2) in ppm, amplitude (A), and peak 

distance from the center ( = X-X0) in ppm.  

                                                            

   
    

      ∆ 
 

                                                                                                                                                  (A-17) 

The accuracy of the measurement of chemical shift of the peak is dependent on how close 

the measured peak position is to the summit of the peak and the signal to noise ratio (SNR). A 

large SNR allows for a very precise location of the peak and a small error in the measurement of 

the chemical shift. Therefore, the relationship can be described as shown in (A-18). 

 

                                                   −      𝑛𝑜𝑖𝑠𝑒                                                  (A-18) 

 

where Y(A) is the position at summit of the peak and Y(H) is the measured peak position, 

respectively. 

x0

2A

ppm

SNR


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This equation (A-18) can be rearranged to (A-19) by Lorentzian equation. 
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                                                                                                                                                  (A-19) 

This equation can be simplified as follows. 
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                                                                                                                                                  (A-20)   

The error of chemical shift measurement, cs, takes place when there is a difference 

between  and . Therefore, the error can be expressed as shown in (A-21). 

                                            

      −  
   

   −  
−     

                                                                                                                                                  (A-21) 



 93 

A.4 ERRORS OF THE LINEWIDTH MEASUREMENT 

The error of the linewidth measurement, linewidth, is caused by the difference between the 

real peak position of the full width at half height (2) and the peak position measured at the half 

height manually in Lorentzian shape. We assume that this error is a result of the SNR of this 

spectrum. 

 

    −   
 

 
  𝑛𝑜𝑖𝑠𝑒 

                                                                                                                                                  (A-22) 

It can be rewritten to (A-23) by the substitution into Lorentzian function 
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                                                                                                                                                  (A-23) 

 and it is summarized to (A-24). 
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−   

                                                                                                                                                  (A-24) 

The linewidth arises when there is a difference between  and . Therefore, the error can 

be summarized as follows. 
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                                                                                                                                                      (A-25) 
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