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EXISTENCE AND ASYMPTOTIC ANALYSIS OF SOLUTIONS OF

SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS

Susmita Sadhu, PhD

University of Pittsburgh, 2011

We study existence and uniform asymptotic expansions of solutions of two different classes

of singularly perturbed boundary value problems. The first boundary value problem that

we consider is

εy′′ + 2y′ + f(y) = 0, y(0) = y(A) = 0,

where f is a smooth, positive increasing function satisfying certain properties and A > 0. We

will show that the problem has two solutions for certain values of A. We will also derive and

prove a uniform asymptotic expansion of the smaller solution when f(y) = ey and A = 1.

The second boundary value problem that we consider is

ε2y′′ = y(q(x, ε)− y), y(−1) = α−, y(1) = α+,

where q(x, ε) is a smooth function with uniformly bounded derivatives and is uniformly

bounded from below by a positive constant q? for ε sufficiently small. The boundary values α±

are specified positive numbers bounded from above by q?. We will derive uniform asymptotic

expansion of solutions to this problem that have 3 or fewer critical points.
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1.0 INTRODUCTION

Singularly perturbed boundary value problems arise in many physical phenomena like fluid

dynamics, aerodynamic flows, magneto-hydrodynamic flows, diffusion reactions etc. These

problems often have solutions with at least one “boundary layer”. A “boundary layer”

generally refers to the edge of a physical region where a rapid transition in the structure

of a solution occurs over a very short length scale. This presents interesting mathematical

challenges.

To cite a few examples, in fluid mechanics, a boundary layer is the layer of fluid that

is in the immediate vicinity of a bounding surface. On an aircraft wing the boundary layer

is the part of the flow close to the wing. In earth’s atmosphere, the “planetary boundary

layer” is the air layer near the ground affected by daily heat, moisture, momentum transfer

to or from the surface.

Classical methods usually fail to give exact analytic solutions for nonlinear boundary

value problems and hence one tries to find approximate solutions. Matched asymptotic ex-

pansion is a traditional method for finding an approximate solution of a singularly perturbed

boundary value problem. Sometimes the method could give rise to “spurious” solutions,

namely it could give existence of formal solutions which do not correspond to actual ones.

The well-known Carrier-Pearson’s autonomous equation

ε2y′′ + y2 = 1, y(−1) = y(1) = 0

is an example of such a case. In this problem, the method of matched asymptotic expansion

gives rise to single/multi-spiked solutions with spikes that can cluster at any arbitrary x0 ∈

(−1, 1) as ε → 0. However, a phase plane analysis tells us that x0 = 0 is the only possible

point where the spikes can coalesce, a fact that perturbation theory could not detect (see [10],
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[11], [12], [13], [18]). Hence, it is essential to check first that a solution exists analytically and

then verify that the approximate solution obtained by heuristic methods actually converges

to the exact solution.

In my thesis, I have considered the two model BVPs, the solutions of both of which

exhibit boundary layers. The main goal is to rigorously prove that formal approximation

of a solution obtained by matched asymptotics is correct i.e. the approximate solution

converges uniformly to the exact solution as the parameter goes to zero.

My thesis will consist of two parts. One part will be devoted to proving existence (and

uniqueness) of solutions of two different classes of singularly perturbed boundary value prob-

lems and the other part will be devoted to rigorously proving uniform asymptotic expansions

of bounded solutions to these problems with three or fewer critical points.
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2.0 AN EXAMPLE OF A SINGULARLY PERTURBED BVP

We consider the following singularly perturbed BVP:

εy′′ + 2y′ + ey = 0 (2.1a)

y(0) = 0, y(1) = 0. (2.1b)

Here ε is a small parameter and ′ = d
dx

. This problem appears in [3],[21] as an example

to show that the techniques used to approximate linear boundary-layer problems can apply

equally well for this nonlinear problem. Numerical evidence in [3] suggested the existence

of one solution and a uniform approximation was given for that solution using matched

asymptotic expansions. In this chapter we will prove that this problem has at least two

solutions each having a boundary layer at x = 0. Both solutions have the same outer

solution on (0, 1], but have different boundary behavior near x = 0. The second solution has

a spike at the edge that is unbounded as ε → 0. Problems of this type with two or more

solutions are known, for example in [5] (Chapter 18), but we are not aware of examples in

which one of the boundary layers is unbounded this way.

In [3] and [21], a uniform approximation of the “smaller” solution is given by

yu(x) = ln 2(1− e−2x/ε)− ln(x+ 1). (2.2)

In addition to proving the existence of two solutions we will also prove rigorously that the

asymptotic formula given by (2.2) approximates the smaller solution of (2.1a)-(2.1b) correct

up to O(ε) as ε→ 0.
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If we set t = x/ε and z(t) = y(x) then (2.1a)-(2.1b) transform to

z′′ + 2z′ + εez = 0 (2.3a)

z(0) = 0, z(1/ε) = 0. (2.3b)

Since (2.1a)-(2.1b) and (2.3a)-(2.3b) are equivalent, we shall prove existence of solutions to

(2.3a)-(2.3b).

Theorem 1. For 0 < ε ≤ 19/100 there are at least two solutions to (2.3a)-(2.3b).

Remark 2.0.1. It will follow from the existence proof of the larger solution of (2.3a)-

(2.3b) that the initial velocity of the larger solution is bounded from above by 100/ε for all

ε ∈ (0, 19/100]. However, numerical evidence suggests that the initial velocity of the larger

solution is O(| log ε|) as ε→ 0.

Theorem 2. The smaller solution y of (2.1a)-(2.1b) is given uniformly by y = yu +O(ε) as

ε→ 0, where yu is given by (2.2).

It will follow from the existence proof of the smaller solution of (2.3a)-(2.3b) that it is

bounded from above by 1 for all ε ∈ (0, 19/100]. We will prove that the smaller solution

exists uniquely in the rectangle [0, 1]× [0, ln(ε−1)] as ε→ 0. This would imply that the larger

solution is unbounded as ε→ 0.

Thus we have the result:

Theorem 3. The boundary value problem (2.1a)-(2.1b) has at most one solution on the

rectangle [0, 1]× [0, ln(ε−1)] for ε > 0 sufficiently small.

To prove Theorem 1 we need some basic concepts presented in the next section.

2.1 PRELIMINARIES

Consider a boundary value problem given by

Ly = f(t, y) (2.4a)

y(a) = α, y(b) = β (2.4b)

4



where

Ly = (py′)′ + qy

and f is a function of t and y.

Definition 1. A C1 function u is a lower solution for (2.4a)-(2.4b) if Lu ≥ f(t, u) and

u(a) ≤ α and u(b) ≤ β.

Definition 2. A C1 function v is an upper solution for (2.4a)-(2.4b) if Lv ≤ f(t, v) and

v(a) ≥ α and v(b) ≥ β.

Theorem 4. Assume that p ∈ C1[a, b], q ∈ C0[a, b], p(t) > 0 in [a, b] and that u is a lower

solution and v is an upper solution for (2.4a)-(2.4b) with u ≤ v. If f(t, y) is continuous

in the region K = {(t, y) : a ≤ t ≤ b, u(t) ≤ y(t) ≤ v(t)}, then there exists a solution to

(2.4a)-(2.4b) between u and v.

The proof can be obtained in [22], page 264.

Theorem 5. Let

(p1(x)y′)′ + q1(x)y = 0 (2.5)

(p2(x)y′)′ + q2(x)y = 0 (2.6)

be two homogeneous linear second order differential equations in self-adjoint form with

0 < p2(x) ≤ p1(x)

and

q1(x) ≤ q2(x).

Let u be a non-trivial solution of (2.5) with successive roots at z1 and z2 and let v be a

non-trivial solution of (2.6). Then one of the following holds:

(i) there exists an x ∈ [z1, z2] such that v(x) = 0; or

(ii) there exists a λ such that v(x) = λu(x).

The proof can be found in [22], page 273.
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2.2 EXISTENCE OF THE SMALLER SOLUTION

In this section we will prove that the BVP (2.3a)-(2.3b) has a solution for ε ∈ (0, 19/100].

Remark 2.2.1. The method that we use in this section to prove existence of a solution to

(2.3a)-(2.3b) applies even for a larger range of ε, namely for ε ∈ (0, 27/100]. However, we

will only consider ε in (0, 19/100].

Multiplying (2.3a) by the integrating factor e2t, (2.3a)-(2.3b) can be re-written as

Lz = f(t, z) (2.7a)

z(0) = 0, z(1/ε) = 0 (2.7b)

where Lz = (e2tz)′ and f(t, z) = −εe2tez.

To find a solution to (2.7a)- (2.7b) we will first find a lower and an upper solution to

(2.7a)- (2.7b). Clearly u = 0 is a lower solution to (2.3a)-(2.3b).

For an upper solution, consider the BVP

v′′ + 2v′ + ε(1 + (e− 1)v) = 0 (2.8a)

v(0) = 0, v(1/ε) = 0. (2.8b)

Solving (2.8a)-(2.8b) we obtain

v(t) = e−t
(
Aeαt +Be−αt

)
− 1

e− 1
,

where

A =
e

1
ε − e−αε

2(e− 1) sinh
(
α
ε

) , B =
e
α
ε − e 1

ε

2(e− 1) sinh
(
α
ε

)
and

α =
√

1− ε(e− 1).

It can be checked that v attains its maximum at t = t̃, where

t̃ =
ε

2α
ln

(
α + 1

α− 1

B

A

)
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and

v(t̃) =

(
A

(
α + 1

α− 1

B

A

) 1
2
− 1

2α

+B

(
α + 1

α− 1

B

A

)− 1
2
− 1

2α

)
− 1

e− 1
. (2.9)

Note that v(t̃) is a function of ε and using L’ Hospital’s rule we can show that

lim
ε→0

v(t̃) =
e
e−1
2 − 1

e− 1
< 0.8. (2.10)

We will prove that that v(t̃) < 1 for all 0 < ε ≤ 19/100.

Lemma 2.2.1. For every ε ∈ (0, 19/100], v(t̃) < 1.

Proof. First of all, we note that

B
(
α+1
α−1

B
A

)− 1
2
− 1

2α

A
(
α+1
α−1

B
A

) 1
2
− 1

2α

=
α− 1

α + 1
.

Since A > 0, hence for every ε ∈ (0, 1/4] we have from (2.9) that

v(t̃) = A

(
α + 1

α− 1

B

A

) 1
2
− 1

2α
(

1 +
α− 1

α + 1

)
− 1

e− 1

= A

(
α + 1

α− 1

B

A

) 1
2
− 1

2α

(
1− ε(e− 1)

(1 +
√

1− ε(e− 1))2

)
− 1

e− 1

< A

(
α + 1

α− 1

B

A

) 1
2
− 1

2α

− 1

e− 1
. (2.11)

First, we will find an upper bound on A. Note that

A <
e

1
ε

2(e− 1) sinh
(
α
ε

) =: f1(ε)

Hence using the fact that coth(α/ε) > 1, we have

f ′1(ε) =
e

1
ε2

ε2
csch

(α
ε

)(
−1 + coth

(α
ε

)( 2− ε(e− 1)

2
√

1− ε(e− 1)

))

>
e

1
ε2

ε2
csch

(α
ε

)(
−1 +

2− ε(e− 1)

2
√

1− ε(e− 1)

)

=
e

1
ε2

ε2
csch

(α
ε

)(−2
√

1− ε(e− 1) + 2− ε(e− 1)

2
√

1− ε(e− 1)

)
. (2.12)
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Define

f2(ε) = −2
√

1− ε(e− 1) + 2− ε(e− 1).

Then for ε ∈ (0, 19/100], we have

f ′2(ε) = (e− 1)

(
1√

1− ε(e− 1)
− 1

)
> 0.

Note that f2(0) = 0. Hence f2(ε) > 0 for ε in that range. Using this fact, from (2.12) we

obtain that f ′1(ε) > 0 and thus f1(ε) < f1(19/100). Hence

A < f1(19/100). (2.13)

Next, we define

f3(ε) =
α + 1

α− 1

B

A
. (2.14)

Note that
−B
A

=
1− eα−1

ε

1− e−α−1
ε

> 1− e
α−1
ε .

Using this fact, we obtain from (2.14) that

f3(ε) >
α + 1

1− α

(
1− e

α−1
ε

)
(2.15)

Note that

α− 1

ε
=

√
1− ε(e− 1)− 1

ε

=
−(e− 1)

1 +
√

1− ε(e− 1)
<
−(e− 1)

2
. (2.16)

Hence from (2.15) and (2.16) we obtain that

f3(ε) >
α + 1

1− α

(
1− e

−e+1
2

)
. (2.17)

The right hand side of (2.17) > 1 if and only if

α >
e

1−e
2

2− e 1−e
2

,

8



which implies that

ε <
1

e− 1

1−

(
e

1−e
2

2− e 1−e
2

)2
 ≈ 0.54

Thus, in particular for ε ∈ (0, 19/100], we obtain that f3(ε) > 1 and thus

(f3(ε))
1
2
− 1

2α < 1, (2.18)

since 1/2− 1/(2α) < 0. Thus, from (2.11), (2.13) and (2.18) we obtain that

v(t̃) < A− 1

e− 1
< f1

(
19

100

)
− 1

e− 1
< 0.92 < 1.

0.05 0.10 0.15
¶

0.60

0.65

0.70

0.75

0.80
vHt�L

Figure 1: v(t̃) against ε ∈ (0, 19/100]. Note that v(t̃) < 1.

Note that the initial velocity of v is given by

v′(0) = A(α− 1)−B(α + 1), (2.19)

and using L’ Hospital’s rule we can show that

lim
ε→0

v′(0) =
2(e

e−1
2 − 1)

e− 1
< 1.6. (2.20)

9



In fact, we will show that v′(0) < 1.83 for 0 < ε ≤ 19/100, a fact that will be used later.

Note that since α < 1, A > 0 and B < 0, we have from (2.19) that

v′(0) < −B(α + 1) < −2B =
2
(
e

1−α
ε − 1

)
(e− 1)(1− e−2α

ε )
.

If we define

f4(ε) =
1− α
ε

,

then

f ′4(ε) =
−2
√

1− ε(e− 1) + 2− ε(e− 1)

2ε2
√

1− ε(e− 1)
=

f2(ε)

2ε2
√

1− ε(e− 1)
> 0.

Hence f4(ε) < f4(19/100) for ε ∈ (0, 19/100]. Hence

v′(0) <
2
(
ef4(19/100) − 1

)
(e− 1)(1− e−2α

ε )
. (2.21)

Since −α(ε)/ε increases with ε, so

−α(ε)

ε
< −4α(19/100).

Hence (2.21) is bounded above by

2
(
ef4(19/100) − 1

)
(e− 1)(1− e−8α(19/100))

< 1.83,

and thus v′(0) < 1.83 for all ε ∈ (0, 19/100].

Since v has exactly one critical point, and that corresponds to the point of maximum, and

v satisfies the boundary conditions (2.8b), we conclude that v ≥ 0. Thus for 0 < ε ≤ 19/100,

we obtain that

0 ≤ v < 1

and hence

ev ≤ 1 + (e− 1)v. (2.22)

10
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Figure 2: v′(0) against ε for 0 < ε ≤ 19/100.

To show that v is an upper solution to (2.3a)-(2.3b), consider Lv. From (2.22) we have

Lv = −εe2t(1 + (e− 1)v) ≤ −εe2tev = f(t, v).

Moreover

v(0) = 0, v(1/ε) = 0,

thus making v an upper solution to (2.3a)-(2.3b).

Note that u ≤ v. To prove this, set w = v − u and consider

w′′ + 2w′ + ε(e− 1)v = 0

w(0) = 0, w(1/ε) = 0.

Since v > 0 on (0, ε−1), w′′ < 0 whenever w′ = 0, hence w has no minimum in (0, ε−1). Thus

w ≥ 0. Now we can appeal to Theorem 4 and thereby conclude that there exists a solution

z to (2.3a)-(2.3b) such that u ≤ z ≤ v. One should also note that

u′(0) ≤ z′(0) ≤ v′(0). (2.24)

Thus the existence of the smaller solution is proved. 2

Let us denote the smaller solution by zs.
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Remark 2.2.2. The method of lower and upper solutions that we considered in this section

can be applied to prove existence of solutions to a bigger class of smooth functions f(y)

satisfying 0 < f(y) ≤ ey. Note that such an f need not satisfy f ′ ≥ 0 and f ′′ ≥ 0.

The equations that we considered for lower and upper solutions would work for this class of

functions as well. The method would work for all A ∈ (0, 1] and also for some values of A

larger than 1 but not for A ≥ 2. We will not address this issue here. The method would also

work for f(y) = eky for different values of k, but A might have to be decreased from 1.

2.3 EXISTENCE OF THE LARGER SOLUTION

To find another solution we transform (2.3a)-(2.3b) into an initial value problem:

z′′ + 2z′ + εez = 0 (2.25a)

z(0) = 0, z′(0) = α. (2.25b)

Denote the solution of (2.25a)-(2.25b) by zα. From the previous section, we know that the

BVP (2.3a)-(2.3b) admits at least one solution for ε ∈ (0, 19/100]. We will show that it also

admits another solution for the same range of ε. Fix ε ≤ 19/100. Let

α0 = min {z′(0) > 0 : z satisfies the BVP (2.3a)− (2.3b)}.

Our goal is to find α1, α2 > α0 such that zα1(1/ε) > 0 and zα2(1/ε) < 0. Since zα(1/ε) is

a continuous function of α, by the Intermediate Value theorem there exists an α ∈ (α1, α2)

such that zα(1/ε) = 0 which will then prove the existence of the other solution.

To prove the existence of α1, we consider the BVP (2.26a)-(2.26b) given below:

z′′ + 2z′ + εez = 0 (2.26a)

z(0) = 0, z(11/(10ε)) = 0. (2.26b)

To prove (2.26a)-(2.26b) has a solution, we use the same method as we did to prove the

existence of zs. The equations that we considered for lower and upper solutions of zs will

also work in this case with boundary conditions as in (2.26b). Moreover, the solution to

12



(2.26a)-(2.26b) will be positive at 1/ε. We will show that the initial velocity β of a solution

of (2.26a)-(2.26b) will be greater than α0 and will be a candidate for α1.

If possible, let β < α0. Denote tα > 0 to be the point where zα(tα) = 0. Then by our

assumption tβ = 11/(10ε). Also note that tα → 0 as α → 0. Since tα is continuous in α, it

follows that there exists α ∈ (0, β) such that tα = 1/ε, a contradiction to the definition of

α0. Hence β > α0 and thus, a candidate for α1.

To find α2 we need a series of lemmas which we present in the next two sections. In all

of these lemmas we will assume that ε ≤ 19/100.

2.3.1 Finding α2

Multiplying (2.25a) by the integrating factor e2t and integrating we get

z′(t) = αe−2t − εe−2t

∫ t

0

e2sez(s)ds. (2.27)

Integrating once again we obtain

z(t) =
α

2
(1− e−2t) +

ε

2
e−2t

∫ t

0

e2sez(s) − ε

2

∫ t

0

ez(s)ds.

Hence

z(1/ε) =
α

2
(1− e−

2
ε ) +

ε

2
e−

2
ε

∫ 1
ε

0

e2sez(s) − ε

2

∫ 1
ε

0

ez(s)ds. (2.28)

Multiplying (2.25a) by z′ and integrating we get

1

2
z′2(t) + 2

∫ t

0

z′2(s)ds+ εez(t) =
α2

2
+ ε. (2.29)

Integrating (2.25a) we obtain

z′(t) + 2z(t)) + ε

∫ t

0

ez(s)ds = α. (2.30)

Lemma 2.3.1. If α = 100
ε

and 0 < ε ≤ 19
100

, then zα
(

1
ε

)
< 0.

If we prove Lemma 2.3.1 then we obtain α2. Note that α2 > 1.83 for our choice of ε.

Hence by (2.20), (2.24) and by the definition of α0, we conclude that α2 > α0.

To prove Lemma 2.3.1 we need a few more lemmas as presented in the next section. In the

next section we will replace zα by z.

13



2.3.2 Some Important Lemmas

Lemma 2.3.2. There is a δ with 0 < δ < 3/4 such that z′(δ) = α/2, and moreover, δ tends

to zero as α tends to ∞.

Proof. Since z′(0) = α > 0, by continuity there exists a δ1 > 0 such that |z′(t)− z′(0)| < α/2

for t ∈ (0, δ1). This in turn implies that z′(t) > α/2 on (0, δ1). From (2.25a) we note that

z′′(t) < −α − ε as long as z′(t) > α/2, and hence there exists t for which z′(t) = α/2.

Therefore one can choose δ > 0 such that z′(δ) = α/2 with z′(t) > α/2 on (0, δ). We will

show that δ ∈ (0, ε−1). From (2.29) we have

α2

2
+ ε =

1

2
z′2(δ) + 2

∫ δ

0

z′2(s)ds+ εez(δ)

>
α2

8
+

2α2

4
δ + εe

α
2
δ

The above inequality implies that

(3− 4δ)
α2

8
> ε(e

α
2
δ − 1). (2.31)

which in turn implies that δ < 3/4 and hence δ ∈ (0, ε−1). Clearly from (2.31), one can see

δ → 0 as α→∞ and the lemma is proved.

Now set α = 100
ε

and henceforth we work with this α.

Lemma 2.3.3. There exists some t ∈ (0, ε−1) for which εez(t) > α.

Proof. Choose δ > 0 as in the proof of Lemma 2.3.2 such that z′(δ) = α/2. Then z(t) > α
2
t

for t ∈ (0, δ). We shall prove that δ < 1
16

. If not, then from (2.31) we must have

11

32
α2 > ε(e

α
32 − 1). (2.32)

With α = 100
ε

, (2.32) can be written as

6875

2ε2
− ε(e

25
8ε − 1) > 0. (2.33)

Define

g(ε) =
6875

2ε2
− ε(e

25
8ε − 1),

14



then for ε ∈ (0, 19/100], we have

g′(ε) =
−6875

ε3
+

(
25

8ε
− 1

)
εe

25
8ε + 1

>
−6875

ε3
+

(
625

38
− 1

)
εe

25
8ε > 0.

Note that g(19/100) < 0, hence we must have g(ε) < 0 for all ε ∈ (0, 19/100]. This

contradicts (2.33) and therefore we must have δ < 1/16. For this range of δ, from (2.29) we

have

εez(δ) =
α2

2
+ ε− 1

2
z′2(δ)− 2

∫ δ

0

z′2(s)ds

>
α2

2
+ ε− α2

8
− 2α2δ

=

(
3

8
− 2δ

)
α2 + ε

>
α2

4
+ ε.

The inequality

εez(δ) >
α2

4
+ ε. (2.34)

proves Lemma 2.3.3.

Since z′′(t) < −ε if z′(t) > 0, z′(t) decreases at least until it is equal to zero. Let

z′(t0) = 0. Observe that z′′(t0) < 0 and hence z attains its maximum at t = t0.

Lemma 2.3.4. With t0 defined as above, t0 <
1
2
.

Proof. Evaluating (2.27) at t0 it follows that

α = ε

∫ t0

0

e2sez(s)ds > ε

∫ t0

δ

e2sez(s)ds (2.35)

where δ is such that εez(δ) > α2

4
(from (2.34)) and δ < 1

16
. Since y(t) is increasing on the

interval (0, t0),

εez(t) >
α2

4

15



for t ∈ (δ, t0). Therefore we have

α > εez(δ)
∫ t0

δ

e2sds >
α2

4

∫ t0

δ

e2sds =
α2

8

(
e2t0 − e2δ

)
.

Thus

α >
α2

8

(
e2t0 − e

1
8

)
. (2.36)

If t0 >
1
2

then from (2.36) we have 8 > α(e − e 1
8 ) which is not true for our choice of α and

ε. Therefore we conclude that t0 <
1
2
.

Note from (2.29) that

εez(t0) <
α2

2
+ ε. (2.37)

Since z′′ < 0 if z′ = 0, y cannot have a minimum. Hence, z′(t) < 0 for t > t0. Differentiating

(2.25a) gives us

z′′′ = −2z′′ − εezz′ (2.38)

and (2.38) implies that z′′′ > 0 if z′′ < 0. Hence z′′ increases to the right of t0. Also since

z′′′ > −εy′ if z′′ < 0 and z′ < 0, so z′′ increases at least until for some t, z′′(t) = 0. Let

z′′(t2) = 0. Let us denote the interval (t0, t2) by I. Note that on I, z′ is decreasing (since

z′′ < 0), hence, there exists t1 ∈ I such that z′(t1) = z′′(t1). From (2.25a) we have

εez(t1) = −z′′(t1)− 2z′(t1) = −3z′(t1). (2.39)

We will prove that t1 < ε−1 and this proof is independent of the length of the interval I. We

will prove later that I ⊂ (0, ε−1), but at present we focus on t1.

Lemma 2.3.5. Let t1 and t0 be as above. Then t1 − t0 < 1
2

ln 3.
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Proof. Using the first relation in (2.35), (2.27) and the fact that z(t) is decreasing on the

interval (t0, t1) we get that

z′(t1) = e−2t1

(
α− ε

∫ t1

0

e2sez(s)ds

)
= −εe−2t1

∫ t1

t0

e2sez(s)ds

< −εe−2t1ez(t1)

∫ t1

t0

e2sds

= −ε
2
ez(t1)

(
1− e2(t0−t1)

)
Hence from (2.39) and the above inequality we obtain that

−ε
3
ez(t1) < −ε

2
ez(t1)

(
1− e2(t0−t1)

)
which in turn implies that

e2(t0−t1) >
1

3

and hence

t1 − t0 <
1

2
ln 3.

Thus from Lemma 2.3.5 and Lemma 2.3.4 we conclude that t1 <
1
2

+ 1
2

ln 3 and therefore

t1 is in (0, ε−1). Also from the choice of ε, we have t1 + 1
2
< 1

ε
.

Lemma 2.3.6. z′(t1) < −α
4
.

Proof. Suppose that −α
4
< z′(t1) < 0. Then from (2.39) εez(t1) < 3α

4
. Using (2.29) and

Lemma 2.3.5 we have

εez(t0) =
1

2
z′2(t1) + 2

∫ t1

t0

z′2(s)ds+ εez(t1)

<
α2

32
+

2α2

16
(t1 − t0) +

3α

4

<
α2

32
+
α2

16
ln 3 +

3α

4

<
α2

4

The last inequality is true for our choice of α and ε. Hence εez(t0) < α2

4
, but that contradicts

(2.34). Thus the lemma is established.
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Getting back to the the interval I = (t0, t2), we note that z′ decreases on I (since z′′ < 0

on I) and increases after t2. If z′(t) < −α
4

for all t > t1 then one can easily see that z(1/ε) < 0

for our choice of α and that will prove Lemma 2.3.1. Hence we assume z′ is not less than

−α
4

for all t > t1. This implies there exists t3 > t2 such that z′(t3) = −α
4

and z′(t) < −α
4

for all t ∈ (t1, t3). As pointed out earlier, t1 + 1
2
< 1

ε
. We will prove either z

(
t1 + 1

2

)
< 0, in

which case we are done, or t3 − t1 < 1
2
.

If t3 − t1 > 1
2

then by the fact that

z′(t) < −α
4

we have for all t ∈ (t1, t3)

z(t)− z(t1) < −
α

4
(t− t1).

Hence

z

(
t1 +

1

2

)
< z(t1)−

α

4

(
t1 +

1

2
− t1

)
< z(t0)−

α

8

< ln

(
α2

2ε
+ 1

)
− α

8
< 0.

Here the second last inequality followed from (2.37).

Now assume t3 − t1 < 1
2
. From Lemma 2.3.5 we have

t3 − t0 = (t3 − t1) + (t1 − t0) <
1

2
+

1

2
ln 3. (2.40)

From (2.40) and Lemma 2.3.4 we obtain t3 < 1+ 1
2

ln 3 and hence t2 < 1+ 1
2

ln 3 and therefore

t2 and t3 both are in (0, ε−1).
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2.3.3 Proof of Lemma 2.3.1.

Consider the integral

εe−
2
ε

∫ t3

0

e2sez(s)ds.

From the first relation in (2.35), (2.37), (2.40) and Lemma 2.3.4 we have

εe−
2
ε

∫ t3

0

e2sez(s)ds = εe−
2
ε

(∫ t0

0

e2sez(s)ds+

∫ t3

t0

e2sez(s)ds

)
= αe−

2
ε + εe−

2
ε

∫ t3

t0

e2sez(s)ds

< αe−
2
ε + εe−

2
ε ez(t0)

∫ t3

t0

e2sds

< αe−
2
ε + e−

2
ε

(
α2

2
+ ε

)
e2t0

(
e2(t3−t0) − 1

)
< αe−2/ε +

(
α2

2
+ ε

)
e−2/εe

(
e(1+ln 3) − 1

)
= αe−

2
ε +

(
α2

2
+ ε

)
e−

2
ε e(3e− 1).

Thus we have

εe−
2
ε

∫ t3

0

e2sez(s)ds < αe−
2
ε +

(
α2

2
+ ε

)
e−

2
ε e(3e− 1). (2.41)

From (2.30) and definition of t3 we have

ε

∫ t3

0

ez(s)ds = α− z′(t3)− 2z(t3) > α +
α

4
− 2z(t0)

Thus from the above inequality and (2.37) we get

ε

∫ t3

0

ez(s)ds >
5α

4
− 2 ln

(
α2

2ε
+ 1

)
(2.42)

Now consider

ε

∫ 1
ε

t3

ez(s)ds− εe−2/ε

∫ 1
ε

t3

e2sez(s)ds = ε

∫ 1
ε

t3

(1− e−
2
ε e2s)ez(s)ds

> 0. (2.43)
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Finally from (2.28), (2.37), (2.41), (2.42) and (2.43) we obtain

z

(
1

ε

)
=

α

2
(1− e−

2
ε ) +

ε

2
e−

2
ε

∫ 1
ε

0

e2sez(s) − ε

2

∫ 1
ε

0

ez(s)ds

=
α

2
(1− e−

2
ε ) +

ε

2
e−

2
ε

∫ t3

0

e2sez(s) − ε

2

∫ t3

0

ez(s)ds

− ε

2

(∫ 1
ε

t3

ez(s)ds− e−2/ε

∫ 1
ε

t3

e2sez(s)ds

)

<
α

2
(1− e−

2
ε ) +

α

2
e−

2
ε +

1

2

(
α2

2
+ ε

)
e−

2
ε e(3e− 1)

− 5α

8
+ ln

(
α2

2ε
+ 1

)
= −α

8
+

(
α2

4
+
ε

2

)
e−

2
ε e(3e− 1) + ln

(
α2 + 2ε

2ε

)
=: h(ε)(say)

With α = 100/ε and ε ∈ (0, 19/100], we have

h′(ε) = e(1−2/ε)(−1 + 3e)

(
1

2
+

1

ε
+

5000

ε3

(
1

ε
− 1

))
+

25

2ε2
− 15000

5000ε+ ε4

>
25

2ε2
− 15000

5000ε
> 0.

Note that h(19/100) < 0, hence h(ε) < 0 for ε ∈ (0, 19/100] and thus z(1/ε) < 0. 2

Thus we obtain α2 and hence obtain a second solution to (2.3a)-(2.3b). This proves

Theorem 1. 2
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Figure 3: Two solutions of the BVP (2.3a)-(2.3b). Here ε = 0.01.

2.4 ASYMPTOTIC BEHAVIOR

As mentioned earlier (see eq. (2.2)), a uniform approximation of the “smaller” solution using

matched asymptotic expansions is given by (see [3] and [21])

yu(x) = ln 2(1− e−2x/ε)− ln(x+ 1).

We will prove that yu approximates the smaller solution y of (2.1a)-(2.1b) correct up to O(ε).

This will prove Theorem 2.

Remark 2.4.1. In the next chapter, we will consider a more generalized boundary value

problem, where we will rigorously prove a uniform expansion of the smaller solution by con-

sidering the difference between the actual solution and the conjectured asymptotic expansion

and showing that the error is O(ε). In this section, we will do a similar thing. A crucial part

of the proof lies in the knowledge of a priori bounds on the maximum value and initial veloc-

ity of the smaller solution of (2.3a)-(2.3b). These facts motivated us to work with bounded

solutions that have uniformly bounded velocities for small ε of the generalized boundary value

problem considered in the next chapter.
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The next section will be devoted to the proof of Theorem 2.

2.4.1 Proof of Theorem 2

Proof. Suppose that y and u satisfy the equations

εy′′ + 2y′ + ey = 0, y(0) = 0, y(1) = 0,

εu′′ + 2u′ + eu = εu′′, u(1) = 0

respectively. If y′(0) = C, where y is the smaller solution of (2.1a)-(2.1b) then

y(x)− u(x) = h1(x)− 1

2
εCe

−2x
ε +

1

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε

(
ey(s) − eu(s)

)
dsdt, (2.44)

where

h1(x) =
εC

2
e−

2
ε − ε

2
u′(0)

(
e−

2
ε − e−

2x
ε

)
+

1

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε u′′(s) dsdt.

Since u′ and u′′ are bounded and εC ≤ K for some k ≤ 1.6, (follows from (2.20) and (2.24)),

it follows that h1(x) = O(ε) uniformly as ε→ 0.

Define

g(x) = y(x)− u(x) +
εC

2
e−2x/ε. (2.45)

Then from (2.44), it follows that g satisfies the integral equation

g(x) = h1(x) +
1

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε (ey − eu) dsdt.

= h1(x) +
1

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε

(
eu+g−

εC
2
e−

2s
ε − eu

)
dsdt. (2.46)

Also note that since u satisfies

2u′ + eu = 0, u(1) = 0,

it implies that

u(x) = ln 2− ln(x+ 1). (2.47)
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In Section 2.2, we found out that an upper solution v of (2.1a)-(2.1b) is bounded from above

by 0.8 for ε > 0 sufficiently small (see (2.10)). Hence from (2.47) and the fact that εC ≤ 1.6,

we have from (2.45) that

g(x) ≤ v(x)− ln

(
2

1 + x

)
+
εC

2
e−2x/ε ≤ v(x) + 0.8e−2x/ε ≤ 0.8 (2.48)

since v(x) + 0.8e−2x/ε is decreasing in x. Also since y > 0,

g(x) ≥ ln(1 + x)− ln 2 ≥ − ln 2. (2.49)

Hence on combining (2.48) and (2.49) we have

‖g‖ < 1 (2.50)

on [0, ε−1] for all sufficiently small ε. Since εC is bounded and ‖g‖ < 1, by Taylor’s theorem,

we have that

e

“
u+g− εC

2
e−

2x
ε

”
− eu = eu+g − eu +O

(
εCe−

2x
ε

)
(2.51)

as ε→ 0.

Remark 2.4.2. Note that in (2.51), O
(
εCe−2x/ε

)
is a function that depends on g as well,

but its bound is independent of g since ‖g‖ < 1.

The contribution from the O-term in (2.51) to the integral in (2.46) is

O

(
1

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε εCe−

2s
ε dsdt

)
= O

(
Cε2

)
= O(ε),

uniformly as ε→ 0, since Cε ≤ 1.6. Hence (2.46) can be written as

g(x) = h3 +
1

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε

(
eu+g − eu

)
dsdt, (2.52)

where h3 = h1(x, ε) +h2(x, ε, εC, g), h2 = O(Cε2) = O(ε) and hence h3 = O(ε) uniformly as

ε→ 0. Since ‖g‖ < 1 and u is bounded,

∣∣eu+g − eu∣∣ ≤ K|g|,
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where K = max
0≤w≤‖u‖+1

ew. Using this estimate, (2.52) can be estimated by

|g(x)| ≤ |h3|+
K

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε |g(s)| dsdt (2.53)

≤ |h3|+
K

ε
‖g‖

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε dsdt

≤ |h3|+
K

2
‖g‖(1− x) (2.54)

Substituting the estimate given by (2.54) into (2.53), we obtain that

|g(x)| ≤ |h4|+
K

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε
K

2
‖g‖(1− s) dsdt

= |h4|+
K2

2ε
‖g‖

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε (1− s) dsdt

≤ |h4|+
(
K

2

)2

‖g‖
(

(1− x)2

2!
+ a2

1ε(1− x)

)
, (2.55)

where

h4 =
K

ε

∫ 1

x

e
−2t
ε

∫ t

0

e
2s
ε |h3| dsdt = O(h3) = O(ε)

and a2
1 is some positive constant. Similarly substituting the estimate (2.55) in (2.53), we

obtain that

|g(x)| ≤ |h5|+
(
K

2

)3

‖g‖
(

(1− x)3

3!
+ a3

2ε
(1− x)2

2!
+ a3

1ε
2(1− x)

)
,

with h5 = O(ε) and a3
2, a

3
1 being some constants that can be calculated explicitly. Proceeding

iteratively, we obtain that

|g(x)| ≤ |hn+2|+
(
K
2

)n ‖g‖(
(1−x)n
n!

+ ann−1ε
(1−x)n−1

(n−1)!
+ ann−2ε

2 (1−x)n−2

(n−2)!
+ . . .+ an1ε

n(1− x)
)
, (2.56)

where ani are constants for 1 = 1, 2, . . . n− 1 and hn+2 = O(ε).

Now we fix some r with 0 < r < 1. Choose n large enough such that(
K

2

)n
1

n!
< r. (2.57)

24



Now for this n there are finitely many terms an1 , a
n
2 , . . . , a

n
n−1, hence we can choose ε small

enough such that

(
K

2

)n( ann−1ε

(n− 1)!
+ . . .+

an1ε
n

(1)!

)
<

(1− r)
2

. (2.58)

Combining (2.57) and (2.58), we obtain from (2.56) that

|g(x)| ≤ |hn+2|+
1 + r

2
‖g‖,

which would imply that
(

1−r
2

)
‖g‖ ≤ |hn+2|, and so ‖g‖ = O(ε) uniformly as ε→ 0.

Substituting that ‖g‖ = O(ε) in (2.45), we obtain that

y(x) = u(x)− εC

2
e−2x/ε +O(ε).

Since y(0) = 0, we obtain that εC = 2u(0) + O(ε) = 2 ln 2 + O(ε) and the correct uniform

approximation is established.

2

2.5 UNIQUENESS OF THE SMALLER SOLUTION

Since (2.1a)-(2.1b) and (2.3a)-(2.3b) are equivalent, we shall prove the result for (2.3a)-(2.3b).

Suppose for a contradiction that there are two solutions z1 and z2. Set φ = z1−z2. Then

φ(0) = φ(ε−1) = 0. Then by subtraction

φ′′ + 2φ′ + εeξφ = 0,

where ξ lies between z1 and z2. Setting φ = e−tψ, we have

ψ′′ + (εeξ − 1)ψ = 0. (2.59)
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By our assumption, eξ ≤ ε−1, and so εeξ − 1 ≤ 0. Hence (2.59) has at most one zero (for

a proof see Corollary 5.2, page 346-347 in [8]). Thus ψ (and so φ) has at most one zero,

contradicting

φ(0) = φ(ε−1) = 0.

Hence, we must have φ = 0. 2

Remark 2.5.1. To see that the smaller solution zs of (2.3a)-(2.3b) satisfies the conditions of

Theorem 3, we note from (2.10) that zs(t) < 0.8 for all t ∈ [0, ε−1] and for ε sufficiently small.

For ε > 0 sufficiently small, − ln(ε) > 0.8. Hence zs lies in the rectangle [0, ε−1]× [0,− ln(ε)]

and thus we have the uniqueness of the smaller solution.

Remark 2.5.2. For the larger solution it is clear from Theorem 3 that z(t) > − ln(ε) for

some t and hence it gets unbounded as ε → 0. This is an interesting feature of the second

solution. The asymptotics for the second solution is still an open question. The method

employed to find the asymptotic expansion for the smaller solution fails in this case.

Remark 2.5.3. The BVP (2.1a)-(2.1b) has exactly two solutions for ε ∈ (0, 19/100]. The

proof will be discussed in the next chapter, where we deal with a BVP of a more general form.
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3.0 A CLASS OF SINGULARLY PERTURBED BVPS

In this chapter we will consider a generalization of the example considered in the previous

chapter. This chapter is based on the paper [16], which is joint with Professor J.B. McLeod.

We consider the BVP:

εv′′ + 2v′ + f(v) = 0 (3.1a)

v(0) = 0, v(A) = 0, (3.1b)

where A > 0.

Here ε is a positive parameter and ′ = d
dx

. Assume that f ∈ C2[0,∞) with the following

properties:

(a) f(0) > 0, f ′ ≥ 0, f ′′ ≥ 0,

(b) f(v)
v
→∞ as v →∞ and

(c) if F (v) =
∫ v

0
f(s)ds, then ∫ v

0

ds√
F (v)− F (s)

→ 0

as v →∞.

These conditions are satisfied by (v+2) log(v+2), (v+1)p (p > 1), ev. Under these conditions

on f , we will show that the BVP (3.1a)-(3.1b) (which of course depends on A) has at most

two solutions.

In this chapter we will find conditions on A such that (3.1a)-(3.1b) has two solutions

and also find an asymptotic expansion for the the first solution to (3.1a)-(3.1b) and prove

rigorously that the formula is correct up to O(ε) as ε→ 0.
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If we set t = x/ε and y(t) = v(x) then (3.1a)-(3.1b) transform to

y′′ + 2y′ + εf(y) = 0 (3.2a)

y(0) = 0, y(A/ε) = 0. (3.2b)

Since (3.1a)-(3.1b) and (3.2a)-(3.2b) are equivalent, we shall prove existence of solutions

to (3.2a)-(3.2b).

3.1 EXISTENCE AND MULTIPLICITY

Theorem 6. For each ε > 0 there exists A(ε) > 0 such that (3.2a)-(3.2b) has exactly two

solutions, if 0 < A/ε < A(ε), exactly one solution, if A/ε = A(ε), and no solutions if

A/ε > A(ε).

Proof. To prove the existence of solutions we consider the initial value problem:

y′′ + 2y′ + εf(y) = 0 (3.3a)

y(0) = 0, y′(0) = α (3.3b)

where α > 0. Write (3.3a) as

(y′e2t)′ = −εf(y)e2t < −εf(0)e2t.

From this we see that if y satisfies (3.3a)-(3.3b) then y increases first, attains a maximum

say at some t0, and then decreases to 0. Also observe that since f > 0, y′ has exactly one

zero and is negative for t > t0, and that y′′ < 0 for t ∈ [0, t0]. Differentiating (3.3a)-(3.3b),

we obtain

y′′′ + 2y′′ + εf ′(y)y′ = 0

which implies that y′′′ > 0 whenever y′′ = 0 and t > t0. Hence y′′ has at most one zero. Also

consider the energy equation

y′2(t)

2
+ 2

∫ t

0

y′2(s)ds+ εF (y) =
α2

2
. (3.4)

Denote the maximum of y by y0.
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Lemma 3.1.1. y0 →∞ as α→∞.

Proof. Suppose y0 is bounded. Then there exists a constant k > 0 such that y0 < k for all

α. Since f is continuous, there exists some M > 0 such that f(y) < M for all y ∈ [0, k].

Hence from (3.3a) we have,

(y′e2t)′ > −εMe2t.

Hence

y′(t) > αe−2t − εM

2
(1− e−2t)

which in turn implies that for all t > 0

y(t) >
α

2
(1− e−2t)− εMt

2
+
εM

4
(1− e−2t).

In particular one can make y(1) > k by choosing α sufficiently large, contradicting our

assumption.

Remark 3.1.1. By Lemma 3.1.1, if we choose α large, then y0 is large, and similarly, we

see from (3.4) that if we choose y0 large, then we can find α large such that the maximum of

y(t) is y0.

Lemma 3.1.2. t0 → 0 as y0 →∞, where t0 is the location of the maximum of y.

Proof. Multiplying (3.3a) by y′ and integrating it over (t, t0), 0 ≤ t < t0, we obtain

−y′2(t) + 4

∫ t0

t

y′2(s)ds+ 2ε(F (y0)− F (y)) = 0,

and so

y′2(t) > 2ε(F (y0)− F (y)).

Since y′ > 0 on [0, t0), we have from the above

y′(t) >
√

2ε
√
F (y0)− F (y).

Hence,
√

2ε

∫ t0

0

dt <

∫ y0

0

dy√
F (y0)− F (y)

→ 0

as y0 →∞ by assumption (c) on f . Thus we have proved that t0 → 0 as α→∞.
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It is easy to see, since y′ < 0 for t > t0 and f(0) > 0, that y must have a second zero,

say at t = t?.

Lemma 3.1.3. As α→ 0, t? → 0.

Proof. It is immediate that if α = 0, then y < 0 for t > 0. Hence continuity in α proves the

lemma.

Lemma 3.1.4. t? → 0 as α→∞.

Proof. First assume that y′′ < 0 for all t ∈ [0, t?]. Then y′ is negative decreasing for t > t0.

Hence

∫ t

t0

y′2(s)ds < (t− t0)y′2(t) (3.5)

for t > t0. Multiplying (3.3a) by y′ and integrating it over (t0, t), we obtain

y′2(t) + 4

∫ t

t0

y′2(s)ds = 2ε(F (y0)− F (y)). (3.6)

As long as t− t0 < 1, we have from (3.5) and (3.6) that

5y′2(t) > 2ε(F (y0)− F (y)).

Since y′ < 0, we have

∫ t

t0

dt <

√
5

2ε

∫ y0

y

ds√
F (y0)− F (s)

→ 0 (3.7)

as y0 → ∞. By choosing y0 large, and hence t0 small (by Lemma 3.1.2), and setting t = 1,

we have t − t0 < 1 and yet (3.7) does not hold. Hence, for large y0, y
′′ cannot always be

negative for t > t0, and so there exists t1 such that y′′ = 0. From (3.7) we see that t1−t0 → 0

as α → ∞. Let y(t1) = y1. Then y1 satisfies 2y′1 = −εf(y1). Choose α large enough such

that t1 − t0 < 1/4. Then from (3.5) and (3.6) we obtain

y′21 > ε(F (y0)− F (y1)).
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Therefore

y′1 < −
√
ε
√

(F (y0)− F (y1))

= −
√
ε
√
F (y0)

√
1− F (y1)

F (y0)

which implies that

εf(y1) > 2
√
ε
√
F (y0)

√
1− F (y1)

F (y0)
. (3.8)

If F (y1)
F (y0)

< 1
2

then we see from (3.8) that

f(y1) >

√
2

ε

√
F (y0)→∞

as α→∞. If F (y1)
F (y0)

≥ 1
2
, then

f(y1)y1 ≥ F (y1) ≥
F (y0)

2
→∞

as α→∞. In either case, we must have that y1 →∞ as α→∞. Multiplying (3.3a) by e2t

we have, for all t ≥ t1,

(e2ty′)′ < 0,

so that

e2(t−t1)y′(t) < y′1 = −εf(y1)/2

which implies

y′(t) < −ε
2
f(y1)e

−2(t−t1).

Integrating over (t1, t
?), where y(t?) = 0, we obtain

−y1 < −
ε

4
f(y1)(1− e−2(t?−t1))

and hence

1− e−2(t?−t1) <
4εy1

f(y1)
→ 0

as α→∞. The last step is true by assumption (b) on f since y1 →∞ as α→∞. Thus we

obtain t? − t1 → 0 as α→∞, and so t? → 0 as α→∞. This proves the lemma.
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Lemma 3.1.5. The problem (3.3a)-(3.3b) has at most two solutions.

Proof. Let φ = ∂y
∂α

. Then for each α, φ satisfies

φ′′ + 2φ′ + εf ′(y)φ = 0, (3.9a)

φ(0) = 0, φ′(0) = 1 (3.9b)

and y′ satisfies

(y′)′′ + 2(y′)′ + εf ′(y)y′ = 0, (3.10a)

y′(0) = α, (y′)′(0) = −2α− εf(0). (3.10b)

We know that y′ has precisely one zero at t0. Comparing (3.9a) and (3.10a), we have by

Sturm-Liouville applied to the self adjoint form of (3.9a) and (3.10a) that φ has no zero in

(0, t0) and at most one zero in (t0, t
?). Implicitly differentiating

y(t?(α), α) = 0

we have

y′(t?(α), α))
dt?

dα
+ φ(t?) = 0. (3.11)

Note from (3.11) that φ(t?) = 0 for some α if and only if dt?

dα
= 0 since y′(t?(α), α)) < 0.

Moreover for that α, φ > 0 on (t0, t
?) since φ can have at most one zero on that interval.

Remark 3.1.2. Since t?(α) is a continuous function of α, Lemma 3.1.3 and Lemma 3.1.4

imply that t? has at least one local maximum. Hence there exists at least one α for which

dt?

dα
= 0.
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Our goal is to show that t? has exactly one maximum and no local minima. To prove

this we will show that d2t?

dα2 < 0 whenever dt?

dα
= 0.

Differentiating (3.11) with respect to α, we obtain

y′′(t?)

(
dt?

dα

)2

+ y′(t?)
d2t?

dα2
+ φ′(t?)

dt?

dα
+
∂2y

∂α2
(t?) = 0.

If dt?

dα
= 0, then the above equality reduces to

y′(t?)
d2t?

dα2
+
∂2y

∂α2
(t?) = 0. (3.12)

Let ψ = ∂2y
∂α2 . Then

ψ′′ + 2ψ′ + εf ′(y)ψ = −εf ′′(y)φ2, (3.13a)

ψ(0) = 0, ψ′(0) = 0. (3.13b)

Multiplying (3.13a) by φ and (3.9a) by ψ and subtracting we obtain

d

dt
(φψ′ − φ′ψ) + 2(φψ′ − φ′ψ) = −εf ′′(y)φ3. (3.14)

Integrating (3.14), we obtain

(φψ′ − φ′ψ)e2t = −ε
∫ t

0

f ′′(y(s))φ3(s)e2sds (3.15)

since φ = 0 and ψ = 0 at t = 0.

Now we are interested in evaluating (3.15) at t? for all those α for which dt?

dα
= 0 and for that

we need a small lemma.

Lemma 3.1.6. f ′′(y(t)) > 0 for some t ∈ [0, t?], where y satisfies (3.3a)- (3.3b) and α is

such that dt?

dα
= 0.
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Proof. Let y satisfy (3.3a)- (3.3b) for some α. Define α? = inf B, where

B = {α > 0 : f ′′(y(t)) > 0 for some t ∈ [0, t0]}.

Since y(t0)→∞ as α→∞ and f satisfies condition (b), we conclude that f ′′ cannot always

remain 0. Thus the set B contains at least large values of α and is therefore nonempty.

Hence α? exists. If α? = 0, then for every α > 0, we have f ′′(t) > 0 for some t ∈ [0, t0].

In particular f ′′(t) > 0 for some t ∈ [0, t0] for all those α for which dt?

dα
= 0. Hence assume

that α? > 0. Note that for all α ≤ α?, f ′′(y(t)) = 0 for all t ∈ [0, t0] and hence, it follows

from (3.13a)-(3.13b) that ψ = 0. In particular ψ(t?) = 0, hence, d2t?

dα2 = 0 (this follows from

(3.12)). We know that dt?

dα |α=0
> 0 (see Lemma 3.1.3), and so, d2t?

dα2 = 0 would imply dt?

dα
> 0

for all α ≤ α?. Thus, dt?

dα
cannot be equal to 0 for any α ≤ α?. Hence, if dt?

dα
= 0 for some α,

then clearly α > α?, and thus, the lemma is proved.

Going back to (3.15), by Lemma 3.1.6, it also follows that (φψ′ − φ′ψ) < 0 whenever

dt?

dα
= 0. At t?, φ = 0, φ′ < 0, hence we have ψ(t?) < 0. This in turn implies that d2t?

dα2 < 0

(follows from (3.12)). Thus, we proved that d2t?

dα2 < 0 whenever dt?

dα
= 0. Therefore t? takes

any value at most twice and Lemma 3.1.5 is proved.

Thus, we establish the existence of at most two solutions to the problem (3.3a)-(3.3b).

Remark 3.1.3. For each fixed ε > 0, A(ε) is the maximum value of t?. The boundary

value problem (3.2a)-(3.2b) will have either no solutions, or one solution or two solutions

depending on whether t? > A(ε), or t? = A(ε) or t? < A(ε) respectively.

Proof of Theorem 6: Combining Lemma 3.1.3, Lemma 3.1.4, Lemma 3.1.5 and Remark

3.1.3 we have proved Theorem 6.

Remark 3.1.4. (i)The BVP (2.1a)-(2.1b) that we considered in Chapter 2 is a particular

example of the BVP (3.1a)-(3.1b), with f(y) = ey and A = 1. However, note that the proof

in Theorem 5 only gives us an existence of A(ε), and we have no estimate on A(ε). Hence,

we cannot apply Theorem 5 to conclude that (2.1a)-(2.1b) has two solutions for any ε.

(ii) Moreover, we have no idea how A(ε) behaves as ε changes. For the specific case when

f(y) = ey, if A(ε) were constant, say equal to 1, over a certain range of ε, then Theorem 5
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would give us the existence of only one solution for all those values of ε. However, at least we

now know from the existence proof in Section 2.3 that A(ε) > 1, for ε ∈ (0, 19/100]. Hence

the existence proofs discussed in the previous chapter are important on their own right.

3.2 A UNIFORM EXPANSION OF THE SMALLER SOLUTION

Going back to the original variable we have the BVP:

εv′′ + 2v′ + f(v) = 0 (3.16a)

v(0) = 0, v(A) = 0. (3.16b)

Note here ′ = d/dx. Define

Φ(z) =

∫ z

0

dt

f(t)
,

so that the solution of

2u′ + f(u) = 0, u(A) = 0

is given by

Φ(u) = −1

2
(x− A),

and so

u = Φ−1

(
1

2
(A− x)

)
. (3.17)

We choose A such that A < 2
∫∞

0
dt/f(t) and then u is defined on [0, A]. (The condition is

of course no restriction on A if the integral is divergent.) We will prove that for sufficiently

small ε the asymptotic expansion of the smaller solution up to the first order is given by

v1(x) = −Φ−1

(
A

2

)
e−

2x
ε + Φ−1

(
1

2
(A− x)

)
. (3.18)
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3.2.1 Theorem on the Asymptotic Expansion

Theorem 7. Assume that A < 2
∫∞

0
dt/f(t). Suppose that there exist constants M > 0 and

K > 0 and an ε0 > 0 such that (3.16a)-(3.16b) has a solution v for every ε ∈ (0, ε0] with the

property that ‖v‖ ≤M and |εv′(0)| ≤ K. Then ‖v− v1‖ = O(ε) as ε→ 0, where v1 is given

by (3.18).

Remark 3.2.1. In the special case when f(y) = ey and A = 1, it follows from the previous

chapter that the smaller solution satisfies all the conditions mentioned in Theorem 7. How-

ever, in general, we haven’t yet investigated to what classes of functions do these conditions

apply.

3.2.2 Proof of Theorem 7

Proof. Assume that the smaller solution v of (3.16a)-(3.16b) exists such that ‖v‖ ≤ M and

|εv′(0)| ≤ K, for some M,K > 0. Also, let u be given by (3.17). Then v and u satisfy

εv′′ + 2v′ + f(v) = 0, v(0) = 0, v(A) = 0,

εu′′ + 2u′ + f(u) = εu′′, u(A) = 0,

where u′′ = f(u)f ′(u)/4.

If v′(0) = C, then

v − u = h1(x)− 1

2
εC
(
e−

2x
ε − e−

2A
ε

)
− (3.20)

1

ε

∫ x

A

e−
2t
ε dt

∫ t

0

e
2s
ε (f(v)− f(u))ds,

where

h1(x) =

∫ A

x

e−
2s
ε

∫ s

0

u′′e
2σ
ε dσds+

εu′(0)

2

(
e−

2x
ε − e−

2A
ε

)
.

Here h1 depends on ε, though we do not indicate this in our notation. Since u is defined and

bounded on [0, A], along with its derivatives, one can easily check that h1 = O(ε) uniformly

in [0, A] as ε→ 0. Set

g = v − u+
εC

2
e−

2x
ε . (3.21)
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Then g satisfies

g = h2(x)− 1

ε

∫ x

A

e−
2t
ε

∫ t

0

e
2s
ε

(
f

(
u+ g − εC

2
e−

2s
ε

)
− f(u)

)
dsdt, (3.22)

where

h2(x) = h1(x) +
ε

2
Ce−

2A
ε

and h2 = O(ε) as ε→ 0. Note that since u is bounded and v is bounded by our assumption,

g is uniformly bounded by R (say) for ε ∈ (0, ε0].

Since εC and g and u are bounded, we are dealing with a situation where f and f ′ are

bounded. Thus

f

(
u+ g − εC

2
e−

2x
ε

)
− f(u) = f(u+ g)− f(u) +O(εCe−

2x
ε ),

where the constants implied in the O-term depend only on K and R, and certainly not on

ε. Since Cε ≤ K and ‖g‖ ≤ R, the contribution to the integral in (3.22) from the O-term is

O

(
1

ε

∫ A

x

e−
2t
ε dt

∫ t

0

e
2s
ε εCe−

2s
ε ds

)
= O

(
C

∫ A

x

te−
2t
ε dt

)
= O(Cε2) = O(ε)

uniformly as ε→ 0. Hence (3.22) becomes

g = h3(x, εC, g)− 1

ε

∫ x

A

e−
2t
ε dt

∫ t

0

e
2s
ε (f(u+ g)− f(u))ds, (3.23)

where h3 = h2 + hc, where hc = O(Cε2) and thus h3 = O(ε) uniformly as ε→ 0.

Let

L = max
0≤w≤u(0)+R

f ′(w)

Then for x ∈ [0, A], we have from (3.23) that

|g(x)| ≤ |h3|+
L

ε

∫ A

x

e−
2t
ε

∫ t

0

e
2s
ε |g(s)| dsdt, (3.24)

≤ |h3|+
L

2
‖g‖(A− x). (3.25)
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Substituting the estimate for |g(x)| given by (3.25) into (3.24), we have

|g(x)| ≤ |h4|+
L

ε

∫ A

x

e−
2t
ε

∫ t

0

e
2s
ε
L

2
‖g‖(A− s) dsdt, (3.26)

≤ |h4|+
(
L

2

)2

‖g‖
(

(A− x)2

2!
+ a2

1ε(A− x)

)
, (3.27)

where

h4 =
L

ε

∫ A

x

e−
2t
ε

∫ t

0

e
2s
ε |h3(s)| dsdt = O(h3) = O(ε)

uniformly as ε → 0. Again, substituting the estimate for |g(x)| given by (3.27) into (3.24),

we have

|g(x)| ≤ |h5|+
(
L

2

)3

‖g‖
(

(A− x)3

3!
+ a3

2ε
(A− x)2

2!
+ a3

1ε
2(A− x)

)
,

where a3
2 and a3

1 are positive constants and h5 = O(ε). After a finite number of steps, we

obtain

|g(x)| ≤ |hn+2|

+

(
L

2

)n
‖g‖

(
(A− x)n

n!
+ ann−1ε

(A− x)n−1

(n− 1)!
+ . . .+ an1ε

n−1(A− x)

)
, (3.28)

where ani are positive constants for i = 1, 2, . . . n− 1 and hn+2 = O(ε) uniformly as ε→ 0.

Fix some r ∈ (0, 1). Then we can choose n large enough such that(
L

2

)n
An

n!
< r. (3.29)

For this n, there exist finitely many terms ani , i = 1, 2, . . . , n− 1 and hence we can choose ε

sufficiently small such that(
L

2

)n(
ann−1ε

An−1

(n− 1)!
+ ann−2ε

2 An−2

(n− 2)!
+ . . .+ an1ε

n−1A

)
<

1− r
2

. (3.30)

Using (3.29) and (3.30), (3.28) can be written as

|g(x)| ≤ |hn+2|+
(
r +

1− r
2

)
‖g‖,

hence

‖g‖ = O(hn+2) = O(ε)
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as ε→ 0. Thus, from (3.21) it follows that

v(x) = u(x)− εC

2
e−

2x
ε +O(ε).

uniformly as ε → 0. Since v(0) = 0, it follows that εC = u(0) + O(ε), and thus the

conjectured uniform approximation is established.
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4.0 AN EXAMPLE OF ANOTHER SINGULARLY PERTURBED BVP

In this chapter, we will consider a well-known BVP introduced by G.F Carrier.

ε2y′′ + 2(1− x2)y + y2 = 1 (4.1)

y(−1) = 0, y(1) = 0. (4.2)

Carrier introduced this problem in a survey paper [4] as an example to demonstrate that

matched asymptotic expansion could give rise to spurious solutions, i.e to apparent approx-

imate solutions that do not correspond to actual solutions! An autonomous version of this

problem was considered by Carrier and Pearson in [5], where they considered

ε2y′′ + y2 = 1, y(−1) = y(1) = 0. (4.3)

They showed that adding exponentially small terms in asymptotic expansions of solutions

was consistent with matching and apparently produced valid approximate solutions (see

below), which in fact were false solutions, something which perturbation theory failed to

detect. More precisely, an approximation to an actual solution is given by

y = −1 + 3 sech2
(1 + x√

2ε
+ ln(

√
2 +
√

3)
)

+ 3 sech2
(1− x√

2ε
+ ln(

√
2 +
√

3)
)
. (4.4)

However, on adding a fourth term to the right side of (4.4) namely,

p(ξ) =
12eξ

(1 + eξ)2
= 3 sech2 ξ√

2
,

where ξ = (x− x0)/ε and 1− |x0| >> ε we obtain an approximate solution

y = −1 + 3 sech2
(1 + x√

2ε
+ ln(

√
2 +
√

3)
)

+ 3 sech2
(1− x√

2ε
+ ln(

√
2 +
√

3)
)

(4.5)

+ 3 sech2
(x− x0√

2ε

)
,
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which can be shown to satisfy the boundary value problem (4.3) except for exponentially

small remainder terms. However, since the exact solution can be expressed in terms of

elliptic functions, which is periodic, only x0 = 0 corresponds to an actual solution as ε→ 0.

O’Malley [17], using a phase plane analysis argued that any spike layers for autonomous

problems of this type must be evenly-spaced. A lot of work has been done on the problem

(4.3) (see [10], [11], [12], [13], [14], [17], [18]).

The method of matched asymptotic expansion also produces spurious solutions for the

non-autonomous problem (4.1)-(4.2). Similar to the autonomous problem, even in this case,

placing a spike at any position is consistent with matching. However such approximations

do not correspond to true solutions. Since this problem is non-autonomous, it appears more

interesting than the autonomous case. Bender and Orszag treated this problem in their book

[3], where they produced many numerically generated solutions and discussed the application

of the boundary layer theory to this example. The problem is known to have many solutions

(see [1], [23]). Ai in [1] proved that the problem admits solutions that have internal spikes

coalescing near x = 0 and that the spikes are separated by an amount O(ε| ln ε|), while single

spikes can occur only near the end points. We are interested in four types of solutions, each

of them having boundary layers at the end points.

First we seek for even solutions. Set t = (1 + x)/ε and z(t) = y((1 + x)/ε). Then

(4.1)-(4.2) changes to

z′′ + (z − εt(εt− 2))2 = 1 + ε2t2(εt− 2)2

z(0) = 0, z′(1/ε) = 0.

Setting

u(t) = z(t)− εt(εt− 2) (4.6)

we obtain the BVP:

u′′ + u2 = 1 + ε2t2(εt− 2)2 − 2ε2 (4.7)

u(0) = 0, u′(1/ε) = 0. (4.8)
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Figure 4: Some typical solutions of the BVP (4.1)-(4.2)

4.1 EXISTENCE THEOREMS

In this section we will prove existence of four different solutions of the BVP (4.7)-(4.8).

4.1.1 Existence theorem for the negative solution.

Theorem 8. For ε > 0 sufficiently small, (4.7)-(4.8) has a solution that is always negative.

Proof. To find one such solution we shall find a lower solution and an upper solution to

(4.7)-(4.8).

We write (4.7) as

Lu = f(t, u)

u(0) = 0, u′(1/ε) = 0.
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where

Lu = u′′, f(t, u) = 1 + ε2t2(2− εt)2 − 2ε2 − u2.

For an upper solution consider

u′′1 = 0 with u1(0) = 0, u′1(1/ε) = 0.

u1 = 0 is the solution to the above problem and is an upper solution to (4.7)-(4.8) since

Lu1 = 0 < 1− 2ε2 + ε2t2(2− εt)2 − u2
1 = f(t, u1).

For a lower solution consider

u′′2 = 2 with u2(0) = 0, u′2(1/ε) = −
√

2ε.

This can be solved exactly and if we denote the solution by u2 then

Lu2 = 2 ≥ 1 + ε2t2(2− εt)2 ≥ 1 + ε2t2(2− εt)2 − 2ε2 − u2
2 = f(t, u2).

Hence u2 is a lower solution.

By Theorem 4 we have at least one solution u between u1 and u2 satisfying u(0) =

0, u′(1/ε) = 0.
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4.1.2 Existence theorem for the solution that has spikes at each end points.

Theorem 9. For ε > 0 sufficiently small, (4.1)-(4.2) has a solution that has a spike at each

end points.

Proof. Again we are seeking for an even solution. So it is enough to consider the interval

[−1, 0] and we are looking for a solution y satisfying (4.1) with boundary conditions y(−1) =

0 and y′(0) = 0. We will use a shooting argument. Let t = (1 + x)/ε and set z(t) = y(x).

Then (4.1)-(4.2) transforms to

z̈ + z2 = 1− 2εt(2− εt)z, z(0) = 0, ż(ε−1) = 0, (4.9)

where ż = dz/dt. We consider an initial value problem:

z̈ + z2 = 1− 2εt(2− εt)z (4.10)

z(0) = 0, ż(0) = β, (4.11)

where β ≥ 0. Our goal is to prove that there exists a β with ż(0) = β such that z satisfies

(4.9).

Set ε = 0 in (4.10) and consider

v̈ + v2 = 1 (4.12)

v(0) = 0, v̇(∞) = 0. (4.13)

The solution v of (4.12)-(4.13) is a part of the homoclinic orbit γ0 with v̇(0) = 2/
√

3.

Any solution v of (4.12) with v(0) = 0 and 0 ≤ v̇(0) < 2/
√

3 remains inside γ0, and so it

oscillates. In fact if v satisfes (4.12) with initial conditions v(0) = 0, v̇(0) = 0, then from the

phase plane analysis we note that v is periodic and always remains non-negative and has 0

as its minimum value. Denote this solution by v0. Let t̃ be the time taken by v0 to attain its

first minimum. Then clearly t̃ is independent of ε. If t1 is the time taken by v0 to attain its

first maximum, then since v0 is symmetric, t̃ = 2t1. Similarly the time taken by v0 to attain

its second maximum is equal to 3t1, which is clearly independent of ε.

Let us denote the solution of (4.10)-(4.11) by z0 for β = 0. For ε > 0 sufficiently small,

by continuity, z0 remains close to v0 on the finite interval [0, 3t1]. Hence, z0 has a minimum
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in (0, 3t1]. Denoting the location of the first minimum of z0 by t00, then 0 < t00 < ε−1 for ε

sufficiently small.

Now for each β > 0 denote the location of the first minimum of zβ by tβ0 (if it exists),

where zβ is a solution of (4.10)-(4.11).

Let

α = sup{β ≥ 0 : tβ0 exists and 0 < tβ0 < ε−1}.

We will show that zβ does not have a minimum for large β and that will prove that α <∞.

Suppose that vβ satisfies (4.12) with initial conditions vβ(0) = 0 and v′β(0) = β. Note

that for every β ≥ 0, vβ has a maximum. Let vMβ denote the maximum value of vβ attained

at the point tM . It follows from a phase plane analysis that vMβ → ∞ as β → ∞. For the

sake of completion, we will prove this as well as show that tM → 0 as β →∞.

Lemma 4.1.1. vMβ →∞ and tM → 0 as β →∞.

Proof. The energy equation for vβ is

v̇2
β = 2vβ −

2

3
v3
β + 2β2. (4.14)

Evaluating (4.14) at tM , we obtain that

vMβ

(1

3
(vMβ )

2 − 1
)

= β2,

which implies that vMβ →∞ as β →∞. Thus we obtain that

v̇2
β = 2(vβ − vMβ ) +

2

3
((vMβ )3 − v3

β)

Choose β large enough such that vMβ > 3. Integrating the above inequality over (0, tM), we

obtain that∫ tM

0

ds =

√
2

3

∫ vMβ

0

du√
(vMβ − u)((vMβ )2 + vMβ u+ u2 − 3)

<

√
2

3

∫ vMβ

0

du√
(vMβ − u)((vMβ )2 − 3)

=

√
2

3

√
vMβ√

(vMβ )2 − 3
→ 0

as β →∞.
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By an argument similar to that in Lemma 4.1.1, we can conclude that if tβm is the first

t > 0 where vβ(tβm) = 0, then tβm → 0 as β →∞, with v′β(tβm) = −β. Choose β large enough

such that tβm < 1/2. For ε sufficiently small, by continuity, we know that zβ is close to vβ on

[0, 1]. Hence there exist tMβ and tβ ∈ (0, 1] such that zβ(tMβ ) = zMβ and zβ(tβ) = 0, where zMβ

is the maximum of zβ. Fix ε sufficiently small such that tβ < 1 and in the rest of the proof

we will work with this fixed ε.

Now for all β > 0, multiplying (4.10) by żβ and integrating over (0, tMβ ), we obtain

zMβ

(zMβ 2

3
− 1
)

=
β2

2
− 2

∫ tMβ

0

εs(2− εs)zβ żβds (4.15)

>
β2

2
− εtMβ (2− εtMβ )zMβ

2
. (4.16)

Similarly multiplying (4.10) by żβ and integrating over (tMβ , tβ), we obtain

ż2
β(tβ)

2
= zMβ

(zMβ 2

3
− 1
)
− 2

∫ tβ

tMβ

εs(2− εs)zβ żβds

> zMβ

(zMβ 2

3
− 1
)

+ εtMβ (2− εtMβ )zMβ
2
>
β2

2
,

where the last inequality follows from (4.16). Thus, we obtain żβ(tβ) < −β. Let δ > 0 be

such that żβ(tβ +δ) = −β/2. If no such δ exists, then żβ < −β/2 for all t > tβ, and so zβ has

no minimum. Assume that such a δ exists. If δ < 1/2, then by the Mean Value Theorem,

there exists some ζ ∈ (tβ, tβ + δ) such that

z̈β(ζ) =
−β/2− żβ(tβ)

δ
>

β

2δ
> β. (4.17)

However, from (4.10), we note that

z̈β < 1− z2
β − zβ < 5/4

if zβ < 0. In particular, z̈β(ζ) < 5/4 which contradicts (4.17) for large β. Hence, we must

have δ > 1/2. However, if δ > 1/2, then from the fact that żβ(t) < −β/2 for t ∈ (tβ, tβ + δ),

it follows that zβ(tβ + δ) < −βδ/2 < −β/4. Hence from (4.10), we again note that for all

large β, z̈β(tβ + δ) < 0. Thus żβ(t) < 0 for all t > tβ + δ and hence zβ never attains its

minimum for large β.
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Thus we proved that α exists and α < ∞. Now for β = α, it follows from the above

argument that if tα > 0 is the first time that zα(tα) = 0, then żα(tα) < −α. Hence, if zα has

a minimum, then the minimum must be negative.

Let τ > tα be the first time such that żα(τ) = 0. We will show that τ exists. By the

existence theory, we know that zα has a maximum interval of existence. If τ does not exist,

then we can have two possibilities, namely zα goes unbounded negatively at or before 1/ε or

zα exists on [0, 1/ε] with żα(t) < 0 for all t > tMα .

(i) If the first possibility occurs, then there exists some t̂ < 1/ε such that zα(t) < −3 with

żα(t) < 0 for all t > t̂, as long as zα exists. By continuous dependence of solutions on initial

conditions, we must have a β < α such that zβ behaves like zα on [0, t̂]. But if zβ crosses

−5/2, then zβ cannot have a minimum, a contradiction.

(ii) If the second possibility occurs, then again by continuous dependence of solutions on

initial conditions, we must have a β < α such that zβ behaves like zα on [0, 1/ε]. But, zβ

has a minimum in [0, 1/ε]. Hence the second possibility cannot occur as well.

Hence τ must exist. If τ < 1/ε, then by the continuous dependence of solutions on initial

conditions, we must have a β > α such that tβ0 exists, and that would contradict the definition

of α. Hence τ = 1/ε.

By our assumption zα is even, so τ must be the location of the minimum for zα, i.e

τ = tα0 . Hence we get an existence of a solution of (4.1) - (4.2) that has spikes at each end

points.

4.1.3 Existence theorem for the solution that has a spike at the left end point.

Theorem 10. For ε > 0 sufficiently small, (4.1)-(4.2) has a solution that has a spike at the

left but not at the right end point.

Proof. As in the proof of Theorem 9 we write (4.1)-(4.2) as an initial value problem:

ε2y′′ + 2(1− x2)y + y2 = 1 (4.18)

y(−1) = 0, y′(−1) = β, (4.19)
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with β > 0. Denote the solution of (4.18)-(4.19) by yβ. Theorem 9 gives us the existence of a

solution yα(x) that has spikes at both the ends with y′α(−1) = α > 0. Note that yα(xα) = 0

for some 0 < xα < 1. Moreover yα attains it only minimum at the point xαm = 0. Let xβm be

the location of the first minimum of yβ, where yβ satisfies (4.18)-(4.19) with β > α and close

to α. Let xβ be the first time such that yβ(xβ) = 0, where xβm < xβ < 1, provided xβ exists.

Let

γ = sup{β ≥ α : xβ exists with xβm < xβ < 1}.

Then γ > α, where α > 0 is the initial velocity of yα. In the proof of Theorem 9 we showed

that for β > 0 large enough yβ has no minimum. This in turn implies that xβ does not exist

for large β. Hence γ < ∞ and thus xγm exists. We will prove that xγ exists. If xγ did not

exist, then either yγ would have attained a negative maximum at some point xM ∈ (xγm, 1)

with yγ(x) < 0 for x ∈ [xM , 1] or yγ would be increasing with yγ(x) < 0 for x ∈ [xβm, 1].

In either of these two cases, by continuous dependence on initial conditions, we will find a

β < γ with yβ behaving like yγ. But this is not possible, since xβ exists. Hence xγ must

exist. Now from the definition of γ, we conclude that xγ = 1.

4.1.4 Existence theorem for the solution that has a spike at the right end point.

Theorem 11. For ε > 0 sufficiently small, (4.1)-(4.2) has a solution that has a spike at the

right but not at the left end point.

Proof. From Theorem 10 we know that there is a solution y(x) that has a spike at the left

end point with y(−1) = 0 and y(1) = 0. Now set τ = −x and let z(τ) = y(−x). Then z

satisfies

ε2z′′ + 2(1− τ 2)z + z2 = 1 (4.20)

z(−1) = 0, z(1) = 0 (4.21)

and thus z has a spike at the right end point.
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4.2 ASYMPTOTIC EXPANSION OF THE NEGATIVE SOLUTION

Consider the BVP:

u′′ + u2 = 1 (4.22)

u(0) = 0, u(∞) = −1. (4.23)

A solution u1 to the above problem is a part of the homoclinic orbit based at (−1, 0) and

hence would satisfy u′1(∞) = 0. Set w1 = u1 + 1. Then we have

w′′1 + w2
1 − 2w1 = 0 (4.24)

w1(0) = 1, w1(∞) = 0. (4.25)

Solving, we obtain
w′21 (t)

2
+
w3

1(t)

3
− w2

1(t) = 0.

Thus

w′1(t) = −
√

2w1(t)
√

1− w1(t)/3.

Using the boundary conditions, we obtain

w1(t) = 3 sech2

(
t√
2

+ arctanh

√
2

3

)
.

Hence

u1(t) = 3 sech2

(
t√
2

+ arctanh

√
2

3

)
− 1. (4.26)

Set

g(t) = 1−
√

1 + ε2t2(2− εt)2.

Theorem 12. If u is a negative solution of (4.7)-(4.8) then v = g + u1 is a uniform ap-

proximation of u, namely, there exists a constant A > 0 such that |u(t)− v(t)| < Aε2 for all

t ∈ [0, ε−1], provided ε > 0 is sufficiently small.
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Remark 4.2.1. In the next chapter, we will prove asymptotic expansions for solutions with

three or fewer critical points and that would also include this solution as well, but the esti-

mates will only be to order O(ε).

Proof. To prove Theorem 12, we first note that g′(ε−1) = 0. Hence v satisfies

v′′ + v2 = 1 + g2 + 2u1g + g′′ (4.27)

v(0) = 0,

v′(1/ε) = −3
√

2sech2
(

1√
2ε

+ arctanh
√

2
3

)
tanh

(
1√
2ε

+ arctanh
√

2
3

)
.

One can prove that v′(1/ε) = O(e−
√

2/ε) as ε→ 0. v meets the same first boundary condition

as u but fails to meet the second boundary condition. Set w = u− v. Then from (4.7) and

(4.27), we obtain

w′′ + (u+ v)w = −2ε2 − 2(u1 + 1)g − g′′ (4.28)

w(0) = 0, w′(1/ε) = −v′(1/ε). (4.29)

Denote the right hand side of (4.28) by h(t).

Lemma 4.2.1. h(t) changes sign (positive to negative) exactly once on the interval [0, ε−1].

Denote that point by tε. Then tε < 1/(2ε) and v(tε) < −1.

Proof. To prove this, one can check that h(1/(8ε)) > 0.37ε2 and h(1/(2ε)) < −211ε2/125.

This shows that h has at least one zero on the interval (1/(8ε), 1/(2ε)). To show that h has

exactly one zero on [0, ε−1], first consider

2ε2t2 + g(t) = 2ε2t2 + 1−
√

1 + ε2t2(2− εt)2

= 2ε2t2 − ε2t2(2− εt)2

1 +
√

1 + ε2t2(2− εt)2

=
ε2t2

(
2
(

1 +
√

1 + ε2t2(2− εt)2
)
− (2− εt)2

)
1 +

√
1 + ε2t2(2− εt)2

=
ε2t2(4− (2− εt)2)

1 +
√

1 + ε2t2(2− εt)2
+ f(t, ε)ε2

=
ε2t2(4εt− ε2t2)

1 +
√

1 + ε2t2(2− εt)2
+ f(t, ε)ε2,
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where f(t, ε) > 0 and f(t, ε), f ′(t, ε)→ 0 uniformly as ε→ 0 for all t ∈ [0, 6]. Hence for all

t ∈ [0, 6]

−g(t)

ε2
= 2t2 − s(t, ε), (4.30)

where s(t, ε) > 0 and s(t, ε), s′(t, ε)→ 0 uniformly as ε→ 0. Thus we have

−(g(t)(1 + u1(t))/ε
2)′ = 2t2u′1(t) + 4t(1 + u1(t))− s(t, ε)u′1(t)− s′(t, ε)(1 + u1(t))

on [0, 6]. Note that the last two terms are small since u′1(t) and 1 + u1(t) are bounded. Let

ρ(t) = 2t2u′1(t) + 4t(1 + u1(t))

= 6
√

2t sech2

(
t√
2

+ arctanh

√
2

3

)(
√

2− t tanh

(
t√
2

+ arctanh

√
2

3

))

Clearly for t ∈ (0, 6], ρ(t) = 0 if and only if

σ(t) =
√

2− t tanh

(
t√
2

+ arctanh

√
2

3

)
= 0

We can easily check that σ′ < 0 in (0, 6] and that σ(1) > 0 while σ(2) < 0. This implies

that σ has exactly one zero in (1, 2) and that σ(t) < 0 for t ∈ [2, 6]. Hence, we conclude that

ρ(t) > 0 in (0, 1] and ρ has exactly one root in the interval (1, 2). Figure 5 is the graph of

ρ(t) on [0, 6].

Hence for sufficiently small ε, we proved that −(g(t)(1 + u1(t)))
′ has exactly one zero

t0 ∈ (0, 6]. One can prove that −g′′′(t) < 0 for all t ∈ [0, ε−1] by setting εt = x and

considering g̃(x) = 1 −
√

1 + x2(2− x)2 for x ∈ [0, 1]. In Figure 6, we give the graph of

g̃′′′(x) on [0, 1].

Hence

h′(t)/ε2 = −2(g(t)(1 + u1(t)))
′/ε2 − g′′′(t)/ε2 (4.31)

< 0
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Figure 6: g̃′′′(x)
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for t ∈ (t0, 6]. Also note that

−g(t)− ε2t2 =
ε2t2((2− εt)2√
1 + ε2t2(2− εt)2

− ε2t2 > 0

on [0, (2ε)−1]. In other words, −g(t)/ε2 > t2 on [0, (2ε)−1].

Also

−g
′(t)

ε2
=

2t(1− εt)(2− εt)√
1 + ε2t2(2− εt)2

≤ 4t.

Using the above two facts and u′1 < 0, we obtain

−
(
g(t)(1 + u1(t))

ε2

)′
=
−g(t)u′1(t)− g′(t)(1 + u1(t))

ε2

< t2u′1(t) + 4t(1 + u1(t)). (4.32)

On the interval [6, (2ε)−1], we claim that (4.32) < 0.

To see that (4.32) < 0, we compute it.

(4.32) = −3
√

2t2sech2

(
t√
2

+ arctanh

√
2

3

)
tanh

(
t√
2

+ arctanh

√
2

3

)

+ 12tsech2

(
t√
2

+ arctanh

√
2

3

)

= tsech2

(
t√
2

+ arctanh

√
2

3

)(
−3t
√

2tanh

(
t√
2

+ arctanh

√
2

3

)
+ 12

)

≤ tsech2

(
t√
2

+ arctanh

√
2

3

)(
−18
√

2tanh

(
t√
2

+ arctanh

√
2

3

)
+ 12

)

< tsech2

(
t√
2

+ arctanh

√
2

3

)(
−27

√
2

2
+ 12

)
< 0.

In the second last step we have used the fact that tanh
(

t√
2

+ arctanh
√

2
3

)
> 3/4 on

[6, (2ε)−1] for ε > 0 sufficiently small.

Thus, we obtain

h′(t)/ε2 = −2(g(t)(1 + u1(t)))
′/ε2 − g′′′(t)/ε2 < 0

for all t ∈ [6, (2ε)−1] and hence h′(t) < 0 on (t0, (2ε)
−1]. For t ∈ [1/(2ε), 4/(5ε)], note that

h′(t) = −g′′′(t) + O(e−1/ε). We can check that g′′′(t) > 9/10 on that interval. Hence for
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ε sufficiently small, h′(t) < 0 for t ∈ [1/(2ε), 4/(5ε)] . Now we will consider the interval

(4/(5ε), 1/ε]. Note that

h′(t) = 12sech2

(
t√
2

+ arctanh

√
2

3

)
(

tanh

(
t√
2

+ arctanh

√
2

3

)
g(t)√

2
+
ε2t(1− εt)(2− εt)√

1 + ε2t2(2− εt)2

)
− g′′′(t)

Note that since g < 0, we have

tanh

(
t√
2

+ arctanh

√
2

3

)
g(t)√

2
< 0.

Moreover,

tanh

(
t√
2

+ arctanh

√
2

3

)
g(t)√

2
= O(1)

uniformly on (4/(5ε), 1/ε], while

ε2t(1− εt)(2− εt)√
1 + ε2t2(2− εt)2

= O(ε)

uniformly as ε→ 0. Hence for sufficiently small ε,

h′(t) < −g′′′(t) < 0

on (4/(5ε), 1/ε].

Choose ε small such that (8ε)−1 > t0, then h′(t) < 0 for t ∈ [(8ε)−1, ε−1]. We already

know that h has a zero in the interval [(8ε)−1, (2ε)−1] and h(t) > 0 for t ∈ [0, (8ε)−1] (recall

h((8ε)−1) > 0 and h′ > 0 on (0, t0)). Since h′ < 0 for t ≥ (8ε)−1, h has only zero. This gives

us the existence of tε ∈ ((8ε)−1, (2ε)−1).

To prove v(tε) < −1, note that

v′(t) = −3
√

2sech2

(
t√
2

+ arctanh

√
2

3

)
tanh

(
t√
2

+ arctanh

√
2

3

)

− 2ε2t(1− εt)(2− εt)√
1 + ε2t2(2− εt)2

< 0

on the interval [0, ε−1]. Moreover

v(1/8ε) = 3sech2(1/8
√

2ε+ arctanh
√

2/3)−
√

1 + 152/642 < −1

for ε sufficiently small. Since v(t) is decreasing and v(1/8ε) < −1, we conclude that v(tε) <

−1. This completes the proof of the lemma.
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Figure 7: 48t2 exp(−2(t/
√

2 + arctanh
√

2/3))

Lemma 4.2.2. h(t) can be bounded by some function of ε2. More precisely,

|h(t)| < 3.5ε2 (4.33)

uniformly in t ∈ [0, ε−1] for small ε.

Proof. To prove this, first observe that we have already proved −g(t)/ε2 ≤ 2t2 for all t ∈

[0, ε−1] (see (4.30)). Now

−2(u1(t) + 1)g(t)/ε2 ≤ 12t2sech2(t/
√

2 + arctanh
√

2/3)

< 48t2 exp(−2(t/
√

2 + arctanh
√

2/3)) < 1.5.

(see Figure 7).

Moreover,

−2ε2 − g′′(t)
ε2

= −2− 4ε2t2(1− εt)2(2− εt)2

(1 + ε2t2(2− εt)2)3/2
+

4(1− εt)2√
1 + ε2t2(2− εt)2

− 2εt(2− εt)√
1 + ε2t2(2− εt)2

< 2
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for all t ∈ [0, ε−1]. Hence

h(t)

ε2
=
−2ε2 − g′′(t)− 2(u1(t) + 1)g(t)

ε2
< 3.5

on [0, ε−1]. Since −2ε2 − g′′(t) is decreasing in t, so

−2ε2 − g′′(t)
ε2

>
−2ε2 − g′′(ε−1)

ε2
= −2−

√
2 > −3.5.

Also since −2(u1(t) + 1)g(t)/ε2 ≥ 0 for all t ∈ [0, ε−1], we have

h(t)

ε2
=
−2ε2 − g′′(t)− 2(u1(t) + 1)g(t)

ε2
> −3.5

and thus we obtain (4.33).

Remark 4.2.2. Note from (4.29) that

w′
(

1

ε

)
=

3
√

2Ce
−2√
2ε

(
1− Ce

−2√
2ε

)
(

1 + Ce
−2√
2ε

)3

where C = e−2arctanh
√

2
3 .

Clearly w′(1/ε) > 0. Also since 3
√

2C < 1/2, we have

0 < w′(1/ε) <
1

2
e−2/

√
2ε. (4.34)

Lemma 4.2.3. |w(t)| < (K + 2)ε2 for all t ∈ [0, 1/ε] for sufficiently small ε where K = 3.5.
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Proof. We shall prove this by contradiction. The proof will be divided into four cases. We

will be using the fact that −v(t) is an increasing function of t and v(t) < −1 for t ≥ tε,

where tε has been defined in Remark 4.2.1.

Case 1: w(t) > (K + 1)ε2 for some t ∈ (0, tε].

Since w(0) = 0, for this case to hold there would exist some t1 ∈ (0, tε) such that

w(t1) = (K + 1)ε2 and w′(t1) ≥ 0. Since h(t) is nonnegative on (0, tε] and u ≤ 0 we have

from (4.28)

w′′(t1) ≥ −(u+ v)(t1)w(t1) ≥ −v(t1)(K + 1)ε2 > 0.

Hence there exists some maximal δ > 0 with t1 + δ ≤ ε−1 such that w′(t) is increasing on

(t1, t1 + δ).

Case (i) t1 + δ < ε−1.

Note that w′(t) > 0 for t ∈ (t1, t1 + δ), hence w(t) > (K + 1)ε2 on (t1, t1 + δ]. If t1 + δ < tε

then since −v(t) is an increasing function of t and u ≤ 0, we have

w′′(t) ≥ −(u+ v)(t)w(t) > −v(t1)(K + 1)ε2

for all t ∈ (t1, t1 + δ]. In particular w′′(t1 + δ) > 0 which implies that w′(t) is increasing to

the right of t1 + δ. This contradicts the maximality of δ.

Hence t1 + δ ≥ tε. Thus we proved w′(tε) > 0 and hence w(tε) > (K + 1)ε2.

Since v(t) < −1 for t ∈ (tε, ε
−1) and h(t) is bounded below by −Kε2, we obtain

w′′(tε) > −Kε2 − (u(tε)− 1)(K + 1)ε2 > ε2.

Note that if w(t) > (K + 1)ε2 for any t ∈ (tε, ε
−1) then

w′′(t) > −Kε2 − (u(t)− 1)(K + 1)ε2 ≥ ε2. (4.35)

Hence w′(t) always increases on (tε, ε
−1) and thus w(t) > (K + 1)ε2. Hence (4.35) holds on

(tε, ε
−1). This in turn implies that

w′(t) > ε2(t− tε) + w′(tε)
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for t ∈ (tε, ε
−1) and therefore

w′(1/ε) > ε2(1/ε− tε) + w′(tε).

Since tε < 1/2ε, we obtain w′(1/ε) > ε/2 contradicting (4.34) for sufficiently small ε.

Case (ii) t1 + δ = ε−1.

Since w′(t) > 0 for t ∈ (t1, t1 + δ) and tε < 1/2ε, we have w(tε) > w(t1) = (K + 1)ε2. Then

exactly like Case (i) we will have w′(1/ε) > ε/2 contradicting (4.34) for sufficiently small ε.

Case 2: w(t) > (K + 1)ε2 for some t ∈ (tε, 1/ε).

Let t1 ∈ (tε, 1/ε) be the first time such that w(t1) = (K + 1)ε2. Then w′(t1) ≥ 0.

Using the fact that v(t1) < −1 and h(t) is bounded below by −Kε2 note that from (4.28)

we have

w′′(t1) > −Kε2 − (u(t1) + v(t1))(K + 1)ε2

> −Kε2 − (u(t1)− 1)(K + 1)ε2 ≥ ε2.

Hence w(t) > (K + 1)ε2 on a small interval to the right of t1. Note that if w(t) > (K + 1)ε2

for any t ∈ (t1, ε
−1), then

w′′(t) > −Kε2 − (u(t)− 1)(K + 1)ε2 ≥ ε2.

The above inequality shows that w′ always increases on (t1, ε
−1) and hence w′′(t) > ε2 for

all t ∈ (t1, ε
−1)

If 1/ε − t1 > 1, then we have w′(1/ε) > ε2(1/ε − t1) + w′(t1) > ε2, a contradiction to

(4.34) for sufficiently small ε > 0..

Hence assume 1/ε− t1 ≤ 1. Then since w′′(t) > 0 for t > t1, we have w′(t) < w′(1/ε) for

all t1 < t < 1/ε. Thus

w(1/ε) < w′(1/ε)(1/ε− t1) + (K + 1)ε2

≤ w′(1/ε) + (K + 1)ε2.

Using (4.34) we obtain w(1/ε) < (K + 2)ε2 for sufficiently small ε > 0.

Since w′ > 0 on (t1, ε
−1), we obtain w(t) < w(ε−1) on that same interval. Also by our

assumption, w(t) ≤ (K + 1)ε2 for t ∈ (0, t1], hence w(t) < (K + 2)ε2 for all t ∈ [0, ε−1].
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Case 3: w(t) < −Kε2 for some t ∈ [tε, 1/ε].

Let t1 ∈ [tε, 1/ε) be the first time such that w(t1) = −Kε2.Then w′(t1) ≤ 0. Since

h(t1) ≤ 0 and v(t1) < −1 we have

w′′(t1) ≤ −(u+ v)(t1)w(t1) = Kε2(u+ v)(t1) < −Kε2.

Hence w(t) < −Kε2 on a small interval to the right of t1. Moreover, if w(t) < −Kε2 for any

t ∈ (t1, ε
−1) then

w′′(t) < −v(t)w(t) < −v(t1)(−Kε2) < −Kε2. (4.36)

(4.36) implies that w′ is decreasing on (t1, ε
−1] and hence w(t) < −Kε2 on that interval.

Hence (4.36) holds on (t1, ε
−1]. This indicates that w′(1/ε) < −Kε2(1/ε − t1) + w′(t1) < 0

contradicting the sign of w′(1/ε) [see (4.34)].

Case 4: w(t) < −(K + 1)ε2 for some t ∈ (0, tε).

Let w(t1) = −(K+ 1)ε2 and w′(t1) ≤ 0 for some t1 ∈ (0, tε). Here we will have two cases:

Case a) t1 < 1/2.

Case b) t1 ≥ 1/2.

Case b): First of all, note that since K = 3.5,

K + 1 > 5K/4. (4.37)

Now

v

(
1

2

)
= 3sech2

(
1

2
√

2
+ arctanh

√
2

3

)
−
√

1 + ε2t2(2− εt)2

< 3sech2

(
1

2
√

2
+ arctanh

√
2

3

)
− 1

< −0.45. (4.38)

Hence from (4.37) and (4.38), we obtain

h(1/2) + 2(K + 1)ε2v(1/2) < Kε2 +
5

2
Kε2v(1/2) < −0.125Kε2 < 0. (4.39)
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Since h′(t) < 0 for t > t0 and v′(t) < 0, h(t)+2(K+1)ε2v(t) decreases for t ≥ t0. (t0 ≈ 1.45;

see fig 1.) We wish to prove that h(t) + 2(K + 1)ε2v(t) decreases for t ≥ 1/2. To prove that,

from (4.31) and (4.32) note that

h′(t) + 2(K + 1)ε2v′(t) < 2ε2t2u′1(t) + 8ε2t(1 + u1(t)) (4.40)

−g′′′(t) + 2(K + 1)ε2(g′(t) + u′1(t)).

For t ∈ [1/2, t0] and ε sufficiently small, (1− εt)(2− εt) > 1, and so

g′(t) = −2ε2t(1− εt)(2− εt)√
1 + ε2t2(2− εt)2

< −2ε2t√
2

(1− εt0)(2− εt0)

< −2ε2t√
2
. (4.41)

From (4.40), (4.41) and using the fact that K = 3.5, one can check that

h′(t) + 2(K + 1)ε2v′(t) < ε2(2t2 + 9)u′1(t) + ε2t(8(1 + u1(t))− 18/
√

2ε2)− g′′′(t)

< 0 (4.42)

on [1/2, t0].

Thus, h(t) + 2(K + 1)ε2v(t) is decreasing in t for t ≥ 1/2. Now

(u+ v)(t1) = w(t1) + 2v(t1) = −(K + 1)ε2 + 2v(t1).

Hence

w′′(t1) = h(t1) + (K + 1)ε2(2v(t1)− (K + 1)ε2)

< −(K + 1)2ε4

and moreover using (4.39) and (4.42) we have

w′′(t) = h(t)− 2v(t)w(t)− w2(t)

< h(t1) + (K + 1)ε22v(t1)− (K + 1)2ε4

< −(K + 1)2ε4

whenever w(t) < −(K + 1)ε2.
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Arguing as in Case 3, we proved w′′(t) < −(K + 1)2ε4 for t ≥ t1. But this implies

w′(1/ε) < 0 and that contradicts the sign of w′(1/ε) [see (4.34)]. Hence, we conclude that

w(t) cannot cross −(K + 1)ε2 for any t ≥ 1/2. A similar argument as above will also show

that w(t) < −(K + 1)ε2 for t ≥ 1/2 is impossible.

Case a) Let t2 > t1 be such that w(t2) = −(K + 2)ε2. If there exists no such t2 then we

obtain |w(t)| < (K + 2)ε2 and we are done. Assume such a t2 exists and w(t) < −(K + 1)ε2

for t ∈ [t1, t2].

If t2 − t1 > 1/2 then clearly t2 > 1/2 and w(t2) < −(K + 1)ε2. But this is impossible,

since we proved that w(t) � −(K + 1)ε2 for t ≥ 1/2 in Case b). Assume t2 − t1 < 1/2. By

the Mean Value Theorem, there exists η ∈ (t1, t2) such that

w′(η) = − ε2

t2 − t1
.

Then w′(η) < −2ε2. Note that if w(t) < 0 then from (4.33) it follows that

w′′(t) = h(t)− (u+ v)(t)w(t) < h(t)

< Kε2. (4.43)

In particular w′′(η) < Kε2. Let δ > 0 be the maximum length of the interval on which

w′′(t) < Kε2 and t ∈ [η, η + δ]. Then η + δ ≤ ε−1.

Case i): η + δ < ε−1.

Since w′′(t) < Kε2 for t ∈ [η, η + δ], we have w′(t) < Kε2(t− η)− 2ε2 on that interval.

If δ < 1/2 then

w′(η + δ) < Kε2δ − 2ε2 < Kε2/2− 2ε2 < 0 (4.44)

since K = 3.5. By a similar argument w′(η+ s) < 0 for all s < δ. Hence w(t) ≤ −(K + 1)ε2

for all t ∈ [η, η + δ]. From (4.44), we can say that there exists some t̃ > η + δ such that

w(t) < w(η + δ) < 0 for all t ∈ (η + δ, t̃). Hence from (4.43) we conclude that w′′(t) < Kε2

for t ∈ [η + δ, t̃), contradicting the maximality of δ.

Hence δ > 1/2. But then we have w′(η+ s) < Kε2/2− 2ε2 < 0 for all s ∈ [0, 1/2]. Hence

w(η + 1/2) < −(K + 1)ε2, but this is impossible as η + 1/2 > 1/2.
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Case ii): η + δ = ε−1.

Choosing ε sufficiently small, we will have η + δ > 1/2. Then as in Case i), we have

w′(η + s) < Kε2s− 2ε2 < 0

for all s ∈ [0, 1/2]. Hence w(η + 1/2) < w(η) < −(K + 1)ε2, a contradiction.

Thus we proved that |w(t)| < (K + 2)ε2 for all t ∈ [0, ε−1].

Since |w(t)| < (K + 2)ε2 for all t ∈ [0, ε−1], we have proved Theorem 12.

Thus we have

v(t) = 3sech2

(
t√
2

+ arctanh

√
2

3

)
−
√

1 + ε2t2(2− εt)2

approximating u uniformly on [0, ε−1]. Referring to (4.6), we obtain that y(t) can be ap-

proximated uniformly by z(t) = v(t) + εt(εt − 2). Transforming back to original variable x

we have

z(x) = 3sech2

(
1 + x√

2ε
+ arctanh

√
2

3

)
+ x2 − 1−

√
1 + (1− x2)2

approximating y(x) on (−1, 0). Since we are looking for a symmetric solution about x = 0

z̃(x) = 3sech2

(
1− x√

2ε
+ arctanh

√
2

3

)
+ x2 − 1−

√
1 + (1− x2)2

would approximate y uniformly on the interval (0, 1). Hence

x2 − 1−
√

1 + (1− x2)2 + 3sech2

(
1 + x√

2ε
+ arctanh

√
2

3

)

+3sech2

(
1− x√

2ε
+ arctanh

√
2

3

)

is a uniform approximation of y on (−1, 1); thus proving that the asymptotics given in

Bender and Orzag is correct.
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5.0 ASYMPTOTIC EXPANSIONS OF SOLUTIONS TO AN

INHOMOGENEOUS EQUATION

In this chapter we consider a class of problems which also includes (after a transformation)

the boundary value problem (4.1)-(4.2) that we considered in the previous chapter. This

chapter is based on the paper [6], which is joint with Professor X. Chen. We consider the

asymptotic behavior of solutions of

ε2u′′(x) = u(x)(q(x, ε)− u(x)) (5.1)

for all x ∈ I = [−1, 1] as ε↘ 0. We assume that q(x, ε) is a smooth function such that
0 < q? = inf

ε∈(0,ε0]
min
x∈I

q(x, ε) 6 sup
ε∈(0,ε0]

max
x∈I

q(x, ε) = q? <∞,

q1 = sup
ε∈(0,ε0]

max
x∈I
|q′(x, ε)| <∞, q2 = sup

ε∈(0,ε0]

max
x∈I
|q′′(x, ε)| <∞

(5.2)

for some ε0 > 0.

The motivation comes from the boundary value problem

ε2y′′ + 2b(1− x2)y + y2 = 1, y(−1) = y(1) = 0. (5.3)

We studied this problem in the previous chapter when b = 1. The case b = 0 corresponds

to an autonomous system. As discussed in the previous chapter, Carrier used this example

to show that matched asymptotic expansions (MAE) could produce spurious solutions. He

pointed out that the approximate solutions of (5.3) obtained by the MAE method that

displayed spikes at arbitrary points did not correspond to true solutions. In this chapter, we

will study this problem in a different setting. We will show that (5.3) can be transformed
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to (5.1) with different boundary conditions. We will do a rigorous asymptotic analysis of

solutions satisfying (5.1).

We will deal with b > 0. To show that (5.3) can be transformed into (5.1), let us first

define

N [y] := −y′′ + f(x, y, ε),

where f(x, y, ε) = (−2b(1− x2)y − y2 + 1)/ε2. Let

y± = φ0 + ε2φ1 ± κε4,

where

φ0 = b(x2 − 1)−
√

1 + b2(1− x2)2, φ1 =
φ′′0(x)

2
√

1 + b2(1− x2)2

and

κ = 1 + max
x∈[−2,2]

∣∣∣∣∣ φ2
1(x) + φ′′1(x)

2
√

1 + b2(1− x2)2

∣∣∣∣∣ .
Note that φ0 is a root of the algebraic equation

1− 2b(1− x2)y − y2 = 0.

It can be checked that N [y−] ≤ 0 ≤ N [y+] for ε sufficiently small and that y±(−1) = y±(1) =

−1 − ε2 ± κε4. Hence by the method of upper and lower solutions (see the “Existence

Theorem” on page 264 in [22]), the boundary value problem

N [y] = 0, y(−1) = y(1) = −1− ε2

has a solution yg which we call the “ground state” such that y− ≤ yg ≤ y+. Moreover,

yg = φ0 +ε2φ1 +ε4ψ(x, ε), where |ψ(x, ε)| ≤ κ. Here although we can expand yg to arbitrary

high orders of ε, the above expansion is sufficient, since q(·, 0) is not degenerate, in the sense

that |q′(·, 0)| + |q′′(·, 0)| > 0. Note that φ0 and all its derivatives up to second order are
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bounded in I, hence φ1 and κ are bounded as well. On setting u = y − yg, where y satisfies

(5.3), the equation for u becomes

ε2u′′ = −u2 − 2ygu− 2b(1− x2)u

= u(q − u), u(−1) = u(1) = 1 + ε2,

where

q(x, ε) = −2b(1− x2)− 2yg = 2
√

1 + b2(1− x2)2 − 2ε2φ1 − 2ε4ψ. (5.4)

Note that for ε > 0 sufficiently small, q satisfies (5.2) with q? = 2 and is symmetric

around x = 0. The results that we obtain by analyzing (5.1) can be applied to Carrier’s

equation for b > 0 and they agree with the asymptotic formulas that have been obtained

formally by Bender and Orszag in [3] for b = 1. It is worthwhile to mention that Carrier’s

autonomous case b = 0 relates to the constant function q = 2.

In this chapter, O(1) will represent a function of x and ε that is bounded by a constant

K, which depends only on q?, q
?, q1 and q2. We define O(β) = O(1)β for every β ∈ (0,∞),

and hence O(β) will represent a function of β, x and ε that is bounded by Kβ. Often we

will denote q by q(x) bearing in mind that q depends on ε as well.

5.1 ASYMPTOTIC EXPANSION ON A MONOTONIC INTERVAL

The main result that we prove is the following:

Theorem 13. Suppose that u is a solution of (5.1) and that q satisfies (5.2). Let m ∈

(0, q?/2] and M > m be positive constants. Consider an interval (xm, xM) ⊆ I such that

u(xm) = m, u′(xm) = 0, u′ > 0 in (xm, xM), u′(xM) = 0 and u(xM) = M. (5.5)

Then

M =
3q(xM)

2
− m2

M +m
− [2 +O(m)]εq′(xM)√

q(xM)
+O(ε2) (5.6)
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and for every x ∈ [xm, xM ],

ln
1+
√

1−u(x)/M

1−
√

1−u(x)/M
+ ln 2

1+
√

1−m2/u2(x)
= ln 8M

m
−
∫ x
xm

(√
q(y)

ε
− q′(y)

4q(y)

)
dy +O(ε+m). (5.7)

Remark 5.1.1. Note that there is no requirement in Theorem 13 that ε and m are small.

With the definition of O given in the previous section, the theorem makes sense for all positive

ε for which (5.2) holds. However it tells us nothing significant about the solutions unless ε

and m are small. The “degree of smallness” does not depend on the particular solution, since

the bounds in O(ε2) and O(ε+m) depend only on the bounds on q, q′, and q′′.

There are several application of Theorem 13. To mention a few, note that the expression

(5.7) gives the asymptotic expansion of u on an interval where it is monotonic. This is the

key formula that helps us in finding out the location of a minimum of u, say xm, on any

interval (a, b), such that u′ < 0 on (a, xm) and u′ > 0 on (xm, b). We can also prove that

the minimum is exponentially small if 1/(b − a) = O(1). Further, we can find the relation

between two successive minima of u, even if both of the minima are of exponentially small

order. We will discuss the details in the Section 5.2.

Before we proceed to the proof of Theorem 13, let us recall a few basic facts about

hyperbolic functions:

tanhx =
ex − e−x

ex + e−x
, arctanh (x) =

1

2
ln

1 + x

1− x
, sech2(arctanh

√
1− x) = x.

The rest of this section is devoted to the proof of Theorem 13.

5.1.1 A New Technique of Variation of Constants.

First we derive a key identity which essentially transfers (5.1) into a first order separable

ordinary differential equation. We obtain a new type of variation of constants formula

that works for such nonlinear quadratic equations, but unfortunately it doesn’t apply to

cubic equations, as in [2]. With the help of this formula, we will then derive the asymptotic

expansion (5.7) of u on a monotonic interval.
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Lemma 5.1.1. Suppose the assumptions in Theorem 13 hold. Then for every x ∈ (xm, xM),

εu′(x)

ρ(u(x),m,M)
=

√
q(x)− δ1(x)− δ2(x), (5.8)

where

ρ(v,m,M) :=

√
(v −m)(M − v)(Mv +mv +Mm)

M2 +Mm+m2
,

δ1(x) :=
M2 +Mu(x) + u2(x)

[u(x)−m)][u(x) + Mm
M+m

]

∫ x

xm

u2(y)−m2

M2 −m2
q′(y)dy

and

δ2(x) :=
m2 +mu(x) + u2(x)

[M − u(x)][u(x) + Mm
M+m

]

∫ xM

x

M2 − u2(y)

M2 −m2
q′(y)dy.

Remark 5.1.2. When q is a constant, δ1 = δ2 ≡ 0, so (5.8) is indeed a first integral of the

autonomous ode (5.1), where M and m are related by the algebraic equation (M3 −m3) =

3q(M2 −m2)/2.

Proof of Lemma 5.1.1. Integrating 2ε2u′u′′ = 2uu′(q − u) over [xm, x] for each x ∈

(xm, xM ] we obtain

ε2u′(x)2 = 2

∫ x

xm

u(y)u′(y)(q(y)− u(y))dy

=
2

3
(m3 − u3) + (u2 −m2)q −

∫ x

xm

(u2 −m2)q′dy

=
{

(u2 −m2)− (u3 −m3)
M2 −m2

M3 −m3

}
q + J, (5.9)

where u = u(x), q = q(x) and

J = J(x) := (u3 −m3)
{M2 −m2

M3 −m3
q − 2

3

}
−
∫ x

xm

[u2 −m2]q′dy.

Evaluating (5.9) at x = xM we obtain J(xM) = 0 which implies that

M2 −m2

M3 −m3
q(xM)− 1

M3 −m3

∫ xM

xm

[u2 −m2]q′ =
2

3
. (5.10)
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Substituting the left-hand side of (5.10) for the constant 2/3 in the definition of J we obtain

J = (u3 −m3)
{M2 −m2

M3 −m3
[q − q(xM)] +

1

M3 −m3

∫ xM

xm

[u2 −m2]q′
}
−
∫ x

xm

[u2 −m2]q′

=
u3 −M3

M3 −m3

∫ x

xm

[u2 −m2]q′ +
u3 −m3

M3 −m3

∫ xM

x

[u2 −M2]q′ (5.11)

by the identity q(x) − q(xM) = −
∫ xM
x

q′(y)dy. The assertion (5.8) then follows from (5.9),

(5.11), and the identity

(u2 −m2)− (u3 −m3)
M2 −m2

M3 −m3
=

(u−m)(M − u)(Mu+mu+Mm)

M2 +Mm+m2
=: ρ2(u,m,M).

5.1.2 The size of δ1 and δ2

In this subsection we prove the following:

Lemma 5.1.2. With δ1 and δ2 defined as in Lemma 5.1.1, we have

|δ1(x)|+ |δ2(x)| = O(ε) (5.12)

for all x ∈ (xm, xM). Consequently (5.8) can be wrtten as

ε
du

dx
= [1 +O(ε)]

√
qρ(u,m,M). (5.13)

Proof. We will first establish an upper bound on M and εu′. For each x ∈ (xm, xM),

integrating 2ε2u′u′′ = 2uu′(q − u) over [xm, x] and applying the mean value theorem gives

ε2u′(x)2 =

∫ x

xm

2uu′(q − u) = q(x̂)(u2 −m2)− 2

3
(u3 −m3)

= (u2 −m2)

{
q(x̂)− 2

3
u− 2

3

m2

u+m

}
for some x̂ ∈ (xm, x). We could apply the mean value theorem because uu′ does not change

sign in (xm, xM). Thus, for all x ∈ (xm, xM), we have

M =
3

2
q(x̂)− m2

M +m
<

3q?

2
, ε2u′2(x) 6 max

s>0
s2
{(
q? − 2

3
s
)}

=
q?3

3
.
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We also note from the above expression that M > q?. Next we define

x1 = min{x ∈ [xm, XM ] | u(x) > q?/2}.

Note that u′′(xM) 6 0, which implies that u(xM)(q(xM) − u(xM)) 6 0, so that u(xM) >

q(xM) > q?. Hence, x1 is well-defined, u(x1) = q?/2 and m 6 u 6 q?/2 in [xm, x1]. Conse-

quently, for x ∈ [xm, x1],

ε2u′(x)2 = (u2 −m2)
{
q(x̂)− 2u

3
− 2m

3

m

u+m

}
>
q?
3

(u2 −m2).

It then follows that εu′ >
√

q?
3

√
u2 −m2 and∫ x

xm

(u2 −m2) 6

√
3

q?

∫ x

xm

(u2 −m2)
εu′√

u2 −m2
6

√
3

q?
ε

∫ u

m

vdv =

√
3ε

2
√
q?

(u2 −m2).

Since m 6 q?/2 and M > q?, we must have δ1(x) = O(1)ε for x ∈ (xm, x1]. For the interval

[x1, xM ], we consider the function U(X) = u(x1 + εX)

Ü = U(q(x1)− U) +O(εX), U(0) = q?/2, 0 6 U̇(0) 6
q?3

3
,

where “ . ” represents d
dX

. Since q(x1) > q?, it follows from a regular perturbation that

xM − x1 = O(ε). Hence, for x ∈ [x1, xM ],∫ x

xm

(u2 −m2) 6
∫ x1

xm

(u2 −m2) +

∫ x

x1

(u2 −m2)

6

√
3ε

2
√
q?

(u2(x1)−m2) + (u2(x)−m2)(xM − x1) = O(1)ε(u2 −m2),

and so δ1(x) = O(1)ε for all x ∈ [x1, xM ]. Thus for all x ∈ (xm, xM), δ1(x) = O(1)ε.

Now we shall estimate δ2. If x ∈ [x1, xM ], then∫ xM

x

(M2 − u2(y))dy 6 (M2 − u2(x))(xM − x1) = O(1)ε (M2 − u2(x)),

and so δ2(x) = O(1)ε. When x ∈ [xm, x1], we have M − u(x) > M − q?/2 > q?/2, and hence

δ2(x) 6 3(M + u(x))u(x)

∫ xM

x

1dy 6 6M

∫ xM

x

u(y)dy

6 6M
{
M(xM − x1) +

√
3

q?

∫ x1

xm

uεu′√
u2 −m2

}
= O(1)

{
ε+ ε

∫ q?/2

m

vdv√
v2 −m2

}
= O(1)ε.

Thus, (5.12) holds. Finally (5.13) follows from (5.8) since q > q?. This completes the proof

of the Lemma.
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5.1.3 An Integral Representation

Integrating (5.8) over [z, x] ⊆ [xm, xM ] and using

√
q − δ1 − δ2 =

√
q
{

1− δ1 + δ2
2q

+O(1)
(δ1 + δ2)

2

q2

}
=
√
q − δ1 + δ2

2
√
q

+O(ε2)

we obtain ∫ u(x)

u(z)

ds

ρ(s,m,M)
=

1

ε

∫ x

z

{√
q(y)− δ1(y) + δ2(y)

2
√
q(y)

+O(ε2)
}
dy. (5.14)

We shall use (5.13) to estimate the integral in (5.14) that is related to the functions δ1

and δ2. The expansion to be derived is aimed at situations where (xM − xm)/ε is very large,

i.e., to the cases where m is very small.

1. First we investigate the integral in the definition of δ1. For this, we introduce the

function

R(v,m,M) :=

∫ v

m

(s2 −m2) ds

ρ(s,m,M)
= O(1)(v2 −m2), (5.15)

since 1/ρ(s,m,M) is integrable on [m,M ]. Using (5.13) we find that∫ x

xm

(u2 −m2) = O(1)

∫ x

xm

(u2 −m2)εu′

ρ(u,m,M)
= O(1) εR(u(x),m,M) = O(ε)(u2(x)−m2).

Consequently, writing (5.13) as 1 = εu′/(
√
qρ) +O(ε) we have∫ x

xm

(u2 −m2)q′dy =

∫ x

xm

q′(u2 −m2)
{ εu′
√
qρ(u,m,M)

+O(ε)
}
dy

=

∫ x

xm

{ εq′
√
q

(
R(u(y), u,M)

)′
+O(ε)(u2 −m2)q′dy

}
=

εq′(x)√
q(x)

R(u(x),m,M))

−
∫ x

xm

(
ε
( q′
√
q

)′
R +O(ε)(u2 −m2)q′

)
(5.16)

=
εq′(x)√
q(x)

R(u(x),m,M) +O(ε2)(u2(x)−m2) (5.17)

where in the third equation, we have used integration by parts.
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2. Next we consider the integral in (5.14) that involves δ1. Notice that∫ xM

xm

(
u+

m

u

)
= O(ε)

∫ M

m

[v + m
v

]dv

ρ(v,m,M)
= O(ε).

We can write

R(u,m,M) =
(

1 +O
(m2

u

))∫ u

m

(s2 −m2)√
s2 −m2)(1− s/M)

ds

= (u2 −m2)
{1

2
+O(u) +O(

m

u
)
}
,

hence, from the definition of δ1 and (5.17) we obtain

δ1(x) =
εq′(x)√
q(x)

(M2 +mu+ u2)R(u,m,M)

(u−m)(u+ Mm
m+M

)(M2 −m2)
+O(ε2)

=
εq′(x)√
q(x)

(M2 +mu+ u2)R(u,m,M)

(u2 −m2)(1− m2

(u+m)(m+M)
)(M2 −m2)

+O(ε2)

=
εq′(x)√
q(x)

{1

2
+O

(
u+

m

u

)}
+O(ε2).

Thus, for [z, x] ⊆ [xm, xM ] ⊆ [−1, 1], we have∫ x

z

δ1
2
√
q

=
ε

4

∫ x

z

q′

q
+O(ε)

∫ xM

xm

(
u+

m

u
+ ε
)

=
ε

4

∫ x

z

q′

q
dq +O(ε2).

3. Finally, we estimate the integral of δ2. From the definition of δ2 we observe that

|δ2| 6
3u2

(M − u)u

∫ xM

x

q1(M
2 − u2(y))

M2 −m2
dy = O(1)u

∫ xM

x

1dy.

Thus, ∫ xM

xm

|δ2|dx = O(1)

∫ xM

xm

∫ xM

x

u(x)dydx

= O(1)

∫ xM

xm

dy

∫ y

xm

u(x)dx = O(ε)

∫ xm

xM

dy

∫ u

m

s

ρ(s,m,M)
ds

= O(ε)

∫ xm

xM

√
u2(y)−m2dy = O(ε2)

where in the third equation, we have used the technique to bound u(x) dx by

O(ε)udu/ρ(u,m,M). Substituting the above estimate in (5.14), we have the

following:
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Lemma 5.1.3. For every [z, x] ⊆ [xm, xM ],

L(u(z),m,M)− L(u(x),m,M) =

∫ x

z

{√q(y)

ε
− q′(y)

4q(y)

}
dy +O(ε) (5.18)

where

L(v,m,M) :=

∫ M

v

ds

ρ(s,m,M)
, (5.19)

for all v ∈ [m,M ].

5.1.4 The Function L

The function L defined in (5.19) is an elliptic function which is not so easy to use. Here we

derive asymptotic expansions of L for small m. When m = 0, it is easy to find that

L(v, 0,M) =

∫ M

v

ds

s
√

1− s/M
= ln

1 +
√

1− v/M
1−

√
1− v/M

= 2 arctanh

√
1− v

M
.

Thus, L(u, 0,M) = A if and only if u = M
(

1− tanh2 A
2

)
= M sech2A

2
.

Next we estimate the difference between L(u,m,M) and L(u, 0,M). For s ∈ (m,M), we

have

1

ρ(s,m,M)
− 1

ρ(s, 0,M)
=

1 + O(m2)
s√

(1− s/M)(s2 −m2)
− 1

s
√

(1− s/M)

=
( 1√

s2 −m2
− 1

s

)
+
( 1√

1− s/M
− 1
)( 1√

s2 −m2
− 1

s

)
+

O(m2)

s
√

1− s/M
√
s2 −m2

=
( 1√

s2 −m2
− 1

s

)
+

O(m2)

s
√

1− s/M
√
s2 −m2
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by using 1/
√
a − 1/

√
b = (b − a)/(

√
a
√
b[
√
a +
√
b]) for the second term on the right-hand

side of the second equation. Integrating the last equation over [v,M ] we then obtain

L(v,m,M) = L(v, 0,M) + ln
(1 +

√
1−m2/M2

1 +
√

1−m2/v2

)
+O

(m2

v

)
= ln

1 +
√

1− v/M
1−

√
1− v/M

+ ln
( 2

1 +
√

1−m2/v2

)
+O

(m2

v

)
(5.20)

= ln
(1 +

√
1− v/M)2

4
+ ln

( 8M

v +
√
v2 −m2

)
+O

(m2

v

)
,

L(m,m,M) = ln
8M

m
+O(m). (5.21)

5.1.5 Completion of the Proof of Theorem 13

Evaluating (5.18) at z = xm and substituting (5.20) and (5.21) for L(v,m,M) and

L(m,m,M) respectively, we obtain

ln
1 +

√
1− v/M

1−
√

1− v/M
+ ln

( 2

1 +
√

1−m2/v2

)
= ln

8M

m
−
∫ x

z

{√q(y)

ε
− q′(y)

4q(y)

}
dy +O(ε)

+ O
(m2

v

)
.

Replacing O(m2/u(x)) by O(m) we obtain (5.7).

To find the relation between m and M , we multiply (5.10) by 3(M3 −m3)/2(M2 −m2)

and use (5.17) to derive

M +
m2

M +m
− 3q(xM)

2
= − 3

2(M2 −m2)

∫ xM

xm

[u2 −m2]q′ = − 3εq′(xM)

2
√
q(xM)

R(M,m,M)

(M2 −m2)

+ O(ε2).

The exact value of R(M,m,M) defined in (5.15) involves an elliptic integral and we do not

want to use it here, nevertheless we can derive that R(M,m,M) = 4M2/3 + O(m), from

which, we obtain (5.6). This completes the proof of Theorem 13.
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5.2 REMARKS AND APPLICATIONS OF THE MAIN RESULT

As mentioned in the previous section, we will now discuss some remarks and applications of

Theorem 13. We will derive an important corollary which will later help us to analyze the

solutions of (5.1) with certain specified boundary conditions. In all of this, we will assume

the statement of Theorem 13.

Remark 5.2.1. (1) The condition m ∈ (0, q?/2] in Theorem 13 can be replaced by m ∈

(0, q(xm)− η] for any fixed small positive constant η. Indeed, if m ∈ [η, q(xm)− η], then we

can use a regular perturbation for the function U(X) := u(xm + εX) to obtain estimates that

are more accurate than those stated in Theorem 13, see [23].

(2) If xM > 1 then we can extend our equation to a slightly larger interval till u attains

its first maximum and therefore (5.7) would hold for every x ∈ [xm, 1].

(3) If u attains its maximum at xM and its minimum at xm with u′ < 0 in (xM , xm) ⊆ I,

then by setting y = 2xM −x and extending our equation outside I if necessary, we can apply

(5.6) to the functions ũ(y) = u(x), q̃(y) = q(x) on the interval [2xM − xm, xM ] to obtain

M =
3

2
q(xM)− m2

M +m
+

[2 +O(m)]εq′(xM)√
q(xM)

+O(ε2). (5.22)

Also by setting y = 2xm − x and extending our equation if necessary, we apply (5.7) to the

functions ũ(y) = u(x), q̃(y) = q(x) on the interval [xm, 2xm − xM ] to obtain

ln
1+
√

1−u(x)/M

1−
√

1−u(x)/M
+ ln 2

1+
√

1−m2/u2(x)
= ln 8M

m
−
∫ xm
x

(√
q(y)

ε
+ q′(y)

4q(y)

)
dy +O(ε+m). (5.23)

(4) Using the technique in the next subsection, one can derive from (5.7) that

u(x) =
m

1 +O(u(x))

(q(xm)

q(x)

)1/4

cosh
(1

ε

∫ x

xm

√
q(y)dy +O(ε)

)
∀x ∈ [xm, xM ].

This estimate can be regarded as an extension of the WKB (Wentzel-Kramers-Brillouin)

approximation method applied to the linear equation ε2w′′ = qw with initial value w(xm) = m,

w′(xm) = 0.

Corollary 5.2.1. Let u be a solution of (5.1) and let q satisfy (5.2). Then the following

holds:
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1. Asymptotic Formula. If u(xm) = m ∈ (0, q?/2], u′(xm) = 0 and u′ > 0 in (xm, z) ⊂ I,

then

u(x) =
3q(z)

2
sech2

(√q(z)

2ε
(z − x) + arctanh

√
1− 2u(z)

3q(z)

)
+O(ε+m) (5.24)

for all x ∈ [xm, z].

2. Neighboring Local Minima. Suppose that xmL , xM , xmR are points in I satisfying

u′(xmL) = 0, u′ > 0 in (xmL , xM), u′ < 0 in (xM , xmR), u′(xmR) = 0,

u(xmL) = mL 6 q?/2, u(xM) = M, u(xmR) = mR,

then

m2
R = m2

L + ε q′(xM)
√
q(xM) (6 +O(mL +mR)) +O(ε2) (5.25)

and at least one of the following holds:

(i) xM = xmR +O(ε| ln ε|), (ii) xM = xmL +O(ε| ln ε|), (iii) q′(xM) = O(ε).(5.26)

3. Local Valley. Suppose that a, xm, b are points in I satisfying

u′ < 0 in (a, xm), u′ > 0 in (xm, b), u(xm) = m < q?/2 6 min{u(a), u(b)}.

Then

xm = X0(a, b) + εX1(a, b, u(a), u(b)) +O(ε2 + εm), (5.27)

m =
m0(a, b, u(a), u(b))

1 +O(ε)
exp

(
− 1

2ε

∫ b

a

√
q(y)dy

)
, (5.28)

where X0(a, b) is the middle point of a and b weighted by
√
q, in the sense that∫ X0(a,b)

a

√
q(y)dy =

1

2

∫ b

a

√
q(y)dy,

and

X1(a, b, α, β) :=

(
arctanh

√
1− 2β

3q(b)
− arctanh

√
1− 2α

3q(a)
+ 5

8
ln q(a)

q(b)

)
√
q(X0(a, b))

,

m0(a, b, α, β) :=
12(q(a)q(b))

5
8

(q(X0(a, b)))
1
4

√√√√√√(1−
√

1− 2α
3q(a)

)(1−
√

1− 2β
3q(b)

)

(1 +
√

1− 2α
3q(a)

)(1 +
√

1− 2β
3q(b)

)
.
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Remark 5.2.2. (1) By (2) of Remark 5.2.1, we note that z = 1 is allowed in (1) of

Corollary (5.2.1).

(2) If m is exponentially small as given by (5.28), then (5.24) approximates u up to

O(ε). If z ∈ [xm + 2
√
ε, 1], then (5.24) is very precise for every x such that z − x = O(ε),

however if x lies in the interval (xm, z−
√
ε), then (5.24) does not give us much information.

(3) If q′(z) = O(ε), then O(ε+m) in (5.24) can be replaced by O(ε2 +m).

(4) If u(xm) = m, u′(xm) = 0 and u′ < 0 in (z, xm), then as in (1) of Corollary 5.2.1,

we can derive an analogous formula for u by setting y = 2xm − x and defining ũ(y) = u(x),

q̃(y) = q(x). Note that y ∈ (xm, 2xm − z) and ũ > 0 on this interval and that ũ′(xm) = 0.

Define z̃ = 2xm − z. Then on applying (5.24) to ũ and q̃ on (xm, z̃) we obtain

u(x) = 3q(z)
2

sech2
(√

q(z)

2ε
(x− z) + arctanh

√
1− 2u(z)

3q(z)

)
+O(ε+m) (5.29)

for all x ∈ [z, xm].

(5) We can relax the assumptions of (3) of Corollary 5.2.1 by taking min{u(a), u(b)} ≥ η,

for some fixed η > 0 as long as m < η. Moreover, u′(a) = 0 or u′(b) = 0 are also allowed in

the assumptions of (3) of Corollary 5.2.1.

5.2.1 Proof of Corollary 5.2.1 using Theorem 13

Without loss of generality, we assume that q is defined on R and satisfies (5.2) with I replaced

by R.

1. First we prove (5.24), assuming that u(xm) = m ∈ (0, 1], u′(xm) = 0 and u′ > 0 in

(xm, z) ⊂ I.

If u(z) 6 ε, then u = O(ε) on [xm, z] and so (5.24) is trivially true. Hence, we only need

to consider the case when u(z) > ε. By extending q to be constant outside I, if necessary,

we notice that if u satisfies (5.1) then there exist xM and M such that u′(xM) = 0, u′ > 0 in

(xm, xM) and u(xM) = M . In the proof of Theorem 13, we have shown that M ∈ (q?,
3q?

2
)

and that εu′ >
√
q?/3
√
u2 −m2 if u < q?/2. Let x1 be the point such that u(x1) = q?/2.

It then follows that x1 = xm + O(ε| lnm|). Moreover by a regular perturbation around xM ,

we can show that xM = x1 + O(ε). Hence xM − xm = O(ε| lnm|). Since M > u(z) > ε, we
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note from (5.7) that m > Kε(exp(−1/ε)) and hence xM − xm = O(1). Theorem 13 can be

applied here since the length of the location of the maximum and the minimum is bounded.

Now for each z ∈ (xm, xM ], taking the difference of (5.7) evaluated at x ∈ [xm, z] and

the same equation with x replaced by z we obtain

ln
1 +

√
1− u(x)/M

1−
√

1− u(x)/M
= 2arctanh

√
1− u(x)

M
= A+B, (5.30)

where

A :=

∫ z

x

(√q(y)

ε
− q′(y)

4q(y)

)
dy + ln

1 +
√

1− u(z)/M

1−
√

1− u(z)/M
+O(ε+m),

B := ln
1 +

√
1−m2/u2(x)

1 +
√

1−m2/u2(z)
= ln

1−m2/4u2(x) +O(m4/u4(x))

1−m2/4u2(z) +O(m4/u4(z))

= O
( m2

u2(x)
+

m2

u2(z)

)
= O

( m2

u2(x)

)
.

Thus we have,

u(x) = M sech2A+B

2
= M [1 +O(B)] sech2A

2

= Msech2A

2
+O(B)Msech2A

2
= Msech2A

2
+O(B)u(x)

Msech2A
2

Msech2A+B
2

= Msech2A

2
+O(B)u(x) = Msech2A

2
+O

( m2

u(x)

)
= Msech2A

2
+O(m).

We will simplify the last expression to obtain an O(ε+m) approximation. Evaluating A at

z = xM , we first note that

u(x) = O(1)sech2
(∫ xM

x

√
q(y)

2ε
dy
)

= O(1) exp
(
− (xM − x)

ε

)
,

so that

sup
x∈[xm,xM ]

((xM − x)2

ε
+ (xM − x)

)(
m+ u(x)

)
= O(ε). (5.31)
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If xM − x >
√
ε, then u(x), m = O(e−1/

√
ε) and (5.24) is trivially true. On the other hand,

if xM − x 6
√
ε, then substituting

M =
3q(xM)

2
+O(m2 + ε) =

3q(z)

2
+O(m2 + ε+ |xM − z|),

A =

√
q(z)(z − x)

ε
+ 2arctanh

√
1− 2u(z)

3q(z)
+O

(
ε+m+

|xM − x|2

ε
+ |xM − x|

)
into u(x) = Msech2A+B

2
we obtain

u(x) = Msech2C
(

1 +O
(
ε+m+

|xM − x|2

ε
+ |xM − x|

))
+O(m), (5.32)

where

C :=

√
q(z)(z − x)

ε
+ 2arctanh

√
1− 2u(z)

3q(z)
.

Then from (5.31) and (5.32) we have

u(x) = Msech2
(C

2

)
+O

(
ε+m+

|xM − x|2

ε
+ |xM − x|

)
Mu(x)

sech2
(
C
2

)
Msech2

(
A+B

2

) +O(m)

= Msech2
(C

2

)
+O

(
ε+m+

|xM − x|2

ε
+ |xM − x|

)
O(1)u(x) +O(m)

= Msech2
(C

2

)
+O(ε) +O(m)

=
3q(z)

2
sech2

(C
2

)
+O(m2 + ε+ |xM − z|)sech2

(C
2

)
+O(ε+m)

=
3q(z)

2
sech2

(C
2

)
+O(m2 + ε+ |xM − z|)O(1) exp

(
−
√
q(z)(z − x)

ε

)
+O(ε+m)

=
3q(z)

2
sech2

(C
2

)
+O(ε+m).

This proves the first assertion of the Corollary.

2. Next we prove the second assertion of the Corollary. Applying (5.6) to the function

u(x) on [xmL , xM ] and (5.22) to the function u(x) on [xM , xmR ], we obtain

M =
3

2
q(xM)− m2

L

M +mL

− [2 +O(mL)]εq′(xM)√
q(xM)

+O(ε2)

=
3

2
q(xM)− m2

R

M +mR

+
[2 +O(mR)]εq′(xM)√

q(xM)
+O(ε2).
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Setting them equal, we obtain

m2
R

M +mR

− m2
L

M +mL

=
εq′(xM)√
q(xM)

(
4 +O(mL + m̃R)

)
+O(ε2),

which implies (5.25) since the left-hand side can be written as

(m2
R −m2

L)
M + mRmL

mR+mL

(M +mR)(M +mL)
=

m2
R −m2

L

M +O(mR +mL)
=

m2
R −m2

L
3
2
q(xM) +O(mR +mL + ε)

.

Note that (5.25) implies that (i) mR > ε, or (ii) mL > ε, or (iii) q′(xM) = O(ε). Suppose

mL > ε. Then evaluating (5.7) at x = xM , we obtain

ln
2

1 +
√

1−m2
L/M

2
= ln

8M

mL

− 1

ε

∫ xM

xmL

√
q(y)dy +

1

4
ln
q(xM)

q(xmL)
+O(ε+mL).

Hence

1

ε

∫ xM

xmL

√
q(y)dy = O(1) ln

(1 +
√

1−m2
L/M

2)

mL

= O(1) ln
1

mL

= O(| ln ε|),

and thus

xM − xmL = O(ε| ln ε|).

Similarly, if mR > ε, then one can prove that xmR − xM = O(ε| ln ε|) and thus we proved

that at least one of (i), (ii), and (iii) in (5.26) holds. This proves the second assertion of the

Corollary.

3. Finally we prove the third assertion of the Corollary. As before, we extend our

equation to a slightly larger interval till u attains it maxima at xML
and xMR

, where xML
<

xm < xMR
with values ML and MR respectively. Since u(a), u(b) ≥ q?/2, by a regular

perturbation, we can prove that |xML
− a| = O(ε) and |xMR

− b| = O(ε). Evaluating (5.7)

at x = b with MR = 3q(b)/2 +O(ε+m) and (5.23) at x = a with ML = 3q(a)/2 +O(ε+m)

respectively, we obtain

1
ε

∫ b
xm

√
q(y)dy + 2arctanh

√
1− 2u(b)

3q(b)
+ 1

4
ln q(xm)− 5

4
ln q(b) +O(ε+m) = (5.33)

ln
12

m
= 1

ε

∫ xm
a

√
q(y)dy + 2arctanh

√
1− 2u(a)

3q(a)
+ 1

4
ln q(xm)− 5

4
ln q(a) +O(ε+m).
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Multiplying the second equation by ε and adding
∫ xm
a

√
q(y)dy to both the equations, we

then obtain∫ xm
a

√
q(y)dy = 1

2

∫ b
a

√
q(y)dy

+ ε
(

arctanh
√

1− 2u(b)
3q(b)
− arctanh

√
1− 2u(a)

3q(a)
+ 5

8
ln q(a)

q(b)

)
+O(ε2 + εm).

This equation, together with the definition of X0(a, b) and∫ xm

a

√
q(y)dy =

∫ X0(a,b)

a

√
q(y)dy +

√
q(X0(a, b)(xm −X0(a, b)) +O((xm −X0(a, b))

2),

gives√
q(X0(a, b)(xm −X0(a, b)) = ε

(
arctanh

√
1− 2u(b)

3q(b)
− arctanh

√
1− 2u(a)

3q(a)
+ 5

8
ln q(a)

q(b)

)
+ O(ε2 + εm)

which gives us (5.27). Finally, adding the two equations in (5.33), we obtain

ln
12

m
=

1

2ε

∫ b

a

√
q(y)dy + arctanh

√
1− 2u(b)

3q(b)
+ arctanh

√
1− 2u(a)

3q(a)
+

1

4
ln q(xm)

− 5

8
ln q(a)q(b) +O(ε+m),

which implies

ln
mq(xm)1/4

12(q(a)q(b))5/8
+ arctanh

√
1− 2u(b)

3q(b)
+ arctanh

√
1− 2u(a)

3q(a)
= − 1

2ε

∫ b

a

√
q(y)dy.

Using (5.27) and one of the properties of hyperbolic functions, we have

ln
mq(X0)

1/4

12(q(a)q(b))5/8
+

1

2
ln

(
1 +

√
1− 2u(b)

3q(b)

)(
1 +

√
1− 2u(a)

3q(a)

)
(

1−
√

1− 2u(b)
3q(b)

)(
1−

√
1− 2u(a)

3q(a)

) = − 1

2ε

∫ b

a

√
q(y)dy +O(ε)

and thus

m =
12(q(a)q(b))5/8

q(X0)1/4

√
(1−

√
1− 2u(a)/3q(a))(1−

√
1− 2u(b)/3q(b))

(1 +
√

1 + 2u(a)/3q(a))(1 +
√

1− 2u(b)/3q(b))

exp
(
− 1

2ε

∫ b

a

√
q(y)dy

)
which is (5.28). This completes the proof of Corollary 5.2.1.
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5.3 ASYMPTOTIC EXPANSIONS OF A FEW SPECIAL SOLUTIONS.

Here we investigate asymptotic expansion of solutions of the boundary value problem

ε2u′′(x) = u(x)(q(x, ε)− u(x)) in (−1, 1), u(−1) = α−, u(1) = α+, (5.34)

where q(x, ε) is a C2 function satisfying (5.2) and α± ∈ [η, q?), for some fixed η such that

0 < η < q?. A critical point is a root of the equation u′(·) = 0.

5.3.1 Existence

The boundary value problem (5.34) has many solutions for sufficiently small ε. In this

section, we will only outline a general existence proof using a shooting argument. More

specifically, suppose that u satisfies

ε2u′′ = u(q − u) in (−1, 1), u(−1) = α−, u′(−1) = c.

We will show that as c varies, u(1) takes all values between η and q?, and in particular,

attains the value α+, giving us a solution of (5.34). Moreover, by choosing ε sufficiently

small, we can obtain any pre-determined number of oscillations. We will also present a

different existence proof using the method of lower and upper solutions to show that (5.34)

has a solution with exactly one critical point.

1. Outline of an existence proof. We first define v(t) = u(x) and q̃(t) = q(x), where

t = (1 + x)/ε. Then (5.34) transforms to

v̈ = v(q̃ − v), v(0) = α−, v(2/ε) = α+. (5.35)

We will consider an initial value problem

v̈ = v(q̃ − v), v(0) = α−, v̇(0) = β, (5.36)
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where β will be specified later. Without loss of generality, assume that β > 0. A similar

argument holds when β < 0. We will show that for a given N , (5.35) has a solution with

exactly N oscillations for sufficiently small ε.

Consider the autonomous problem

V̈ = V (q̃(0)− V ), V (0) = α−, V̇ (0) = β, (5.37)

where

β < β? = α−

√
q̃(0)− 2

3
α−.

Fix β = β0 < β?, where β0 will be chosen later. Since α− < q?, (5.37) has a solution V

with at least (N + 1) oscillations on [0, 2/ε] for sufficiently small ε. Hence, by continuity

(5.36) also has a solution vβ0 with at least (N + 1) oscillations on [0, 2/ε], for small enough

ε. Moreover, the first (N + 1) oscillations of vβ0 will be close to the oscillations of V , and

hence they will have amplitudes bounded below by some constant K independent of ε.

We will show that there exists β1, such that if β = β1, then (5.36) has a solution vβ1

with exactly N oscillations, and in the process as β sweeps over from β0 to β1, vβ(1) takes

all values between q? and η, where vβ satisfies (5.36) and 0 < η < q? is a fixed number as

defined before. Hence we can conclude that there exists a β ∈ (β0, β1) such that vβ(1) = α+.

Choose β0 such that the first minimum of V is less than η/4. This is possible, because

as β gets closer to β?, the periodic solutions of (5.37) get closer to the homoclinic orbit of

the autonomous system given by (5.37), based at (0, 0). Hence the minima of the solutions

of (5.37) get closer to 0 as we raise β. By continuity, we can say that the first two minima

of vβ0 are close to the minima of V and hence are less than equal to η/4. Let us denote the

ith minimum of vβ0 by mi and let mN denote the minimum of the (N + 1)st oscillation of

vβ0 . Then by (5.25), we note that for 1 ≤ i ≤ N

m2
i ≤ m2

i−1 +Kε, (5.38)

where K > 0 is independent of ε. Thus,

mi ≤
√
m2

1 +K(i− 1)ε < η/2
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for sufficiently small ε. Hence the first N minima of vβ0 lie below η/2. Clearly, every

maximum of vβ lies above q and hence above q?, and so, the first N maxima and minima do

not merge as ε→ 0. Note that the location of all the minima of vβ are continuous functions

of β. Hence for a fixed ε, as we increase β from β0, they move across t = 2/ε. By a similar

reasoning as above and using (5.38), we can show that the first N minima of vβ still stay

below η/2 as we raise β from β0. In particular, the Nth minimum always stays below η/2.

Let β1 > β0 be such that the location of the Nth minimum of vβ1 has crossed t = 2/ε.

The (N + 1)st maximum of vβ is always above q? and the Nth minimum of vβ is below η/2.

Hence as β varies between β0 and β1, vβ(1) takes all values between η and q?. Moreover, we

have lost an oscillation as β increases from β0 to β1. Thus, we have a β̃ ∈ (β0, β1) such that

if β = β̃, (5.35) has a solution with exactly N oscillations.

2. Existence of a solution with exactly one critical point. We will show that

there exists at least one solution of (5.34) that has only one critical point. We will use the

method of upper and lower solutions to prove this. Let us first consider the boundary value

problem

y′′ =
y

ε2
(q? − y), y(−1) = α−, y(1) = α+. (5.39)

We will show that (5.39) has a solution with exactly one critical point. Let

y1 = α+

cosh
√

q?
ε

(x− β)

cosh
√

q?
ε

(1− β)
,

where β is chosen such that y1(−1) = α−. Note that y1 has exactly one critical point, the

point of local minimum and we can check that y1 is a lower solution of (5.39). Let

y2 = α− +
(α+ − α−)

2
(x+ 1).

Then y2 is an upper solution of (5.39) and clearly y2 < q? by our choices of α+ and α−.

We can easily check that y1 ≤ y2. By a well-known existence theorem (see page 264 in

[22]), there exists a solution y of (5.39) such that y1 ≤ y ≤ y2. Moreover, y has exactly one
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critical point, the point of minimum, since 0 < y < q?. Now, we consider our boundary value

problem (5.34). Suppose that

z = α+

cosh
√

q?

ε
(x− γ)

cosh
√

q?

ε
(1− γ)

,

where γ is chosen, so that z(−1) = α−. We can check that z is lower solution of (5.34) Also

if y satisfies (5.39), then by the definition of q?, we can show that y is an upper solution of

(5.34). Hence by the existence theorem in [22], there exists a solution u of (5.34) such that

z ≤ u ≤ y. Also, u has exactly one critical point since u < q?.

5.3.2 Solutions with one critical point.

Asymptotic Expansion.

Let u be a solution of (5.34) that has only one critical point. Then the critical point

must be a point of local minimum. Denoting the critical value by m and the point by xm,

we have

u(xm) = m, u′(xm) = 0, u′(x) > 0 in (xm, 1), u′(x) < 0 in (−1, xm).

Applying (3) of Corollary 5.2.1 we obtain,

m =
m0(−1, 1, α−, α+)

1 +O(ε)
exp

(
− 1

2ε

∫ 1

−1

√
q(y)dy

)
and

xm = X0(−1, 1) + εX1(−1, 1, α−, α+) +O(ε2).

Also by (5.29) and (5.24) respectively, we have an asymptotic expansion for u given below:

u(x) =


3
2
q(−1)sech2

(√
q(−1)

2ε
(1 + x) + arctanh

√
1− 2α−

3q(−1)

)
+O(ε) if x ∈ [−1, 0],

3
2
q(1)sech2

(√
q(1)

2ε
(1− x) + arctanh

√
1− 2α+

3q(1)

)
+O(ε) if x ∈ [0, 1].


84



-1.0 -0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0
u

Figure 8: A solution of the transformed carrier’s BVP. Here α− = α+ = 1 + ε2.

The figure above represents an asymptotic solution of the transformed Carrier’s equation

(b=1) with one critical point and with boundary values α− = α+ = 1 + ε2 for sufficiently

small ε. Here xm = O(ε2) since X0(−1, 1) = X1(−1, 1, α−, α+) = 0.

Remark 5.3.1. In [2], Morse index was studied for solutions with finite number of oscilla-

tions. Analysis in [2] implies that solutions with one critical point have index one, and are

therefore locally unique. We omit the details.

5.3.3 Solutions with two critical points.

Such a solution will have a global maximum, say, M and a global minimum, say, m

attained at points xM and xm ∈ (−1, 1) respectively. There are two possibilities, (i) xm < xM

and (ii) xm > xM .

Suppose xm > xM . To obtain an asymptotic expansion of u on the interval [xm, 1], we

apply (5.24) to obtain

u(x) =
3

2
q(1)sech2

(√q(1)

2ε
(1− x) + arctanh

√
1− 2α+

3q(1)

)
+O(ε+m). (5.40)
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On the interval [xM , xm], we apply (5.29) with z = xM and use (5.22) to obtain

u(x) =
3

2
q(xM)sech2

(√q(xM)

2ε
(−xM + x)

)
+O(ε+m). (5.41)

To obtain an expansion on the interval [−1, xM ], we will do a regular perturbation around

x = xM . Define U(z) = u(xM + εz). Then U satisfies

Ü = U(q(xM)− U) +O(εz), U(0) = M, U̇(0) = 0.

If U
(

(−1− xM)/ε
)

= α− then

U(z) = Msech2
(√

q(xM)
(z

2
+

1 + xM
2ε

)
− arctanh

√
1− α−

M

)
+O(ε)

and hence

u(x) = Msech2
(√q(xM)

2ε
(1 + x)− arctanh

√
1− α−

M

)
+O(ε), x ∈ [−1, xM ]. (5.42)

Substituting x = xM in (5.42) we observe that

1 + xM =
2ε√
q(xM)

arctanh

√
1− α−

M
+O(ε2),

and hence we can write xM = −1 + ε`− +O(ε2) where

l± :=
2d±√
q(±1)

, d± := arctanh

√
1− α±

M±
, M± :=

3

2
q(±1).

To obtain the value of the local minimum, we apply the proof of the third part of Corollary

5.2.1 to a = −1 + 2ε`− + O(ε2) and b = 1. Note that u(−1 + 2ε`− + O(ε2)) = α− + O(ε).

Just as in (5.33), and obtain

ln 12
m

= 1
ε

∫ 1

xm

√
q(y)dy + 2arctanh

√
1− 2α+

3q(1)
+ 1

4
ln q(xm)− 5

4
ln q(1) +O(ε+m)(5.43)

= 1
ε

∫ xm
−1

√
q(y)dy + 2arctanh

√
1− 2α−

3q(−1)
+ 1

4
ln q(xm)− 5

4
ln q(−1)

− 1
ε

∫ −1+2ε`−
−1

√
q(y)dy +O(ε+m).

Using the definition of `−, the second equation can be written as

ln
12

m
=

1

ε

∫ xm

−1

√
q(y)dy − 2d− +

1

4
ln q(xm)− 5

4
ln q(−1) +O(ε+m). (5.44)
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Adding up (5.43) and (5.44) and using the definition of m0, we obtain

m = m0(−1, 1, α−, α+) exp
(
− 1

2ε

∫ 1

−1

√
q(y)dy + 2arctanh

√
1− α−

M−
+O(ε)

)
.

Setting the first equation of (5.43) equal to (5.44) and using the definition of X0 and X1 and

the fact that m is exponentially small, we obtain

xm = X0 +
ε√
q(X0)

(
d+ + d− +

5

8
ln
q(−1)

q(1)

)
+O(ε2)

= X0 + εX1 + ε
2arctanh

√
1− 2α−

3q(−1)√
q(X0)

+O(ε2).

Thus on combining (5.40), (5.42) and substituting the value of xM in (5.41), we obtain that

the solution has the expansion

u(x) =


3
2
q(−1)sech2

(√
q(−1)

2ε
(1 + x)− arctanh

√
1− 2α−

3q(−1)

)
+O(ε) if x ∈ [−1, 0],

3
2
q(1)sech2

(√
q(1)

2ε
(1− x) + arctanh

√
1− 2α+

3q(1)

)
+O(ε) if x ∈ [0, 1].

If xM > xm, then xM = 1− ε`+ +O(ε2), and we have the analogous expansion.

The figure below represents two asymmetric solutions of the transformed Carrier’s equation

with α− = α+ = 1 + ε2 for sufficiently small ε. Since X0 and X1 are zero, hence in the

first situation we have xm = ε√
2
arctanh

√
2
3

+ O(ε2) and in the second situation, xm =

− ε√
2
arctanh

√
2
3

+O(ε2) .
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Figure 9: Asymmetric solutions of the transformed Carrier’s problem with b = 1.
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5.3.4 Solutions with Three Critical Points.

There are two cases to consider:

(i) Two interior local maxima and one interior local minimum.

(ii) Two local minima and one local maximum.

Case (i) Two interior local maxima and one interior local minimum. Similar to the

previous analysis, it can be shown that the solution has the expansion

u(x) =


3
2
q(−1)sech2

(√
q(−1)

2ε
(1 + x)− arctanh

√
1− 2α−

3q(−1)

)
+O(ε) if x ∈ [−1, 0],

3
2
q(1)sech2

(√
q(1)

2ε
(1− x)− arctanh

√
1− 2α+

3q(1)

)
+O(ε) if x ∈ [0, 1].

Also, the two local maxima are attained at xM− = −1+ε`−+O(ε2) and xM+ = 1−ε`++O(ε2)

respectively. Again applying the proof of (3) of Corollary 5.2.1 to a = −1 + 2ε`− + O(ε2)

and b = 1− 2ε`+ +O(ε2), we can check that the interior minimum is attained at

xm = X0 + εX1 + ε
2arctanh

√
1− 2α−

3q(−1)
− 2arctanh

√
1− 2α+

3q(1)√
q(X0)

+O(ε2),

with critical value

u(xm) = m0(−1, 1, α−, α+)

exp
( ∫ 1

−1
−
√
q(y)

2ε
dy + 2arctanh

√
1− 2α−

3q(−1)
+ 2arctanh

√
1− 2α+

3q(1)
+O(ε)

)
.

Later (see Figure 10) we have a figure representing this case where we have an asymptotic

symmetric solution of the transformed Carrier’s equation for sufficiently small ε. Here xm =

O(ε2) and α− = α+ = 1 + ε2.

Case (ii) Two interior local minima and one interior local maximum. Denote the loca-

tions of the interior minima by xm, xm̃, where xm < xm̃, and the location of the maximum

by xM with values m, m̃ and M respectively. Without loss of generality, we assume that

xM > 0. Then applying (3) of Corollary 5.2.1 with a = −1 and b = xM , we must have

m = O(e−1/(2ε)). Consequently from (5.25) we can write

m̃2 = 6εq′(xM)[1 +O(m̃)] +O(ε2). (5.45)
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Figure 10: Another symmetric solution of the transformed Carrier’s problem with b = 1.

Again applying (3) of Corollary 5.2.1 with a = xM and b = 1, we obtain

m̃ = O(1) exp
(
− 1

2ε

∫ 1

xM

√
q(y)dy

)
. (5.46)

For a further detailed discussion, we consider a special case where q satisfies (5.2) and is

given by
q(x, ε) = q0(x) + ε2q1(x) +O(ε4),

{z ∈ [−1, 1] | q0′(z) = 0} = {−1, 0, 1}, q0
′′(±1) > 0, q0

′′(0) < 0.

(5.47)

Note that the q in Carrier’s equation satisfies these properties for sufficiently small ε.

Consider the two situations:

(1) xM is bounded away from 1 for all ε ∈ (0, ε0). Then m̃ = O(e−(1−xM )/ε) and m̃ < ε for

sufficiently small ε. Hence, it follows from (5.45) that q′(xM) = O(ε). Thus, the only possible

location of xM is near the point x0 where q′(x0) = 0. Since xM ≥ 0 and is bounded away

from 1, we conclude that the only possible location of xM is near 0. Additional analysis

shows us that q′(x0) = 0 and q′′(x0) 6 0 are sufficient conditions for this case to occur.

Indeed, when q′(xM) = O(ε), the next order expansion is

m̃2 = 6εq′(xM)− c2ε2q′′(xM) +O(ε3), (5.48)
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where c2 is a positive constant. (see Appendix for a proof).

(2) xM is close to 1. Since q′(1) = O(ε2), we have q′(xM) = −(1 + o(1))q′′(1)(1− xM) +

O(ε2). Hence (5.45) can be written as

m̃2 = −6εq′′(1)(1− xM)(1 + o(1))[1 +O(m̃)] +O(ε2). (5.49)

Note that since q′′(1) > 0 and 1/q′′(1) = O(1), (5.49) will give us a contradiction if 1 −

xM > 2Kε/6q′′(1), where K > 0 has been defined at the end of Section 1. However if

1 − xM ≤ 2Kε/6q′′(1), then 1/m̃ = O(1) (follows from (5.46)) which would imply that our

solution has many oscillations for small ε, contradicting the existence of only three critical

points. Thus, such a solution does not exist.

Below we have a figure representing asymptotic solution of the transformed Carrier’s

equation with the same boundary conditions as mentioned earlier. The only possibility is

that xM = O(ε2), xm = −1 + ε`− + O(ε2) and xm̃ = 1 − ε`− + O(ε2), where `± have been

defined before.
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Figure 11: Another solution of the transformed Carrier’s problem with three critical points.

5.3.5 Solutions with Four Critical Points.

Suppose that q is given by (5.47). Then one of the interior local maximum must exist near

xM = O(ε3). The solution has two pulses, one centered near the origin, the other centered

either at −1 + ε`− + O(ε2) or at 1 − ε`+ + O(ε2). The two local minima are in an O(ε)
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neighborhood of zL and zR, where zL and zR are weighted averages of
√
q. In other words,

zL and zR satisfy

∫ zL

−1

√
q(y) = 1

2

∫ 0

−1

√
q(y)

and

∫ zR

0

√
q(y)dy =

1

2

∫ 1

0

√
q(y)

respectively. The two possibilities that can occur in the transformed Carrier’s equation for

ε small in this situation are shown below.
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Figure 12: Solutions of the transformed Carrier’s problem with four critical points.

5.3.6 Solutions with u possessing N spikes for a given N independent of ε

Let q satisfy (5.47). Ai studies this case in [1] for Carrier’s equation. He proved that the

solutions can have at most one oscillation near x = ±1 and the others are clustered near

x = 0. We will not deal with this case here.
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5.4 APPENDIX.

The proof of (5.48) will follow from this appendix. Equation (5.25) gives us a relation between

the two successive local minima. We will find the next order term in (5.25) if q′(xM) = O(ε).

First note that writing 1 = εu′/(
√
qρ) +O(ε), we have∫ xM

xm

(xM − x)(u2 −m2) = ε

∫ xM

xm

[1 +O(ε)]
(xM − x)√

q(x)

(u2 −m2)u′dx

ρ(u,m,M)

= ε[1 +O(ε)]

∫ xM

xm

xM − x√
q(x)

(R(u(x),m,M))′dx

= −ε(1 +O(ε))

∫ xM

xm

(xM − x√
q

)′
R(u,m,M)dx = O(ε2).

Here in the second equation, the quantity [1 +O(ε)] can be taken outside the integral since

the integrand is non-negative. Thus, if q′(xM) = O(ε), then

|q′(x)| 6 |q′(xM)|+ q2(xM − x) = O(ε) + q2(xM − x).

Consequently,∣∣∣ ∫ xM

xm

O(ε)q′(u2 −m2)
∣∣∣ 6 ∫ xM

xm

O(ε)
{
O(ε) + q2(xM − x)

}
(u2 −m2) = O(ε3).

Thus, from (5.16), we have∫ xM

xm

q′(u2 −m2) =
εq′(xM)R(M,m,M)√

q(xM)

− ε

∫ xM

xm

( q′
√
q

)′
R(u,m,M)

{ εu′
√
qρ(u,m,M)

+O(ε)
}

+O(ε3)

=
εq′(xM)R(M,m,M)√

q(xM)
− ε2

(( q′
√
q

)′ 1
√
q

)′∣∣∣
x=xM

R1(M,m,M)

+ O(ε2)

∫ xM

xm

R1dx+O(ε3)

=
εq′(xM)R(M,m,M)√

q(xM)
− ε2

(( q′
√
q

)′ 1
√
q

)′∣∣∣
x=xM

R1(M,m,M)

+ O(ε3),

where

R1(v,m,M) :=

∫ v

m

R(s,m,M)ds

ρ(s,m,M)
= O(v2 −m2), R1(M,m,M) =

2

3
M2(ln 16− 1) +O(m).

92



Noting that (( q′
√
q

)′ 1
√
q

)′∣∣∣
x=xM

=
2q′′(xM)

q(xM)
− q′(xM)2

q2(xM)
=

2q′′(xM)

q(xM)
+O(ε2)

and R(M,m,M) = 4M2/3 +O(m), we then obtain

1

M2 −m2

∫ xM

xm

q′[u2 −m2] =
4 +O(m)

3

εq′(xM)√
q(xM)

− 4ε2

3
(ln 16− 1 +O(m))

q′′(xM)

q(xM)
+O(ε3).

Thus, when q′(xM) = O(ε), equation (5.6) can be refined as

M =
3

2
q(xM)− m2

M +m
− 2ε[1 +O(m)]q′(xM)√

q(xM)
+ 2ε2(ln 16− 1 +O(m))

q′′(xM)

q(xM)
+O(ε3),

and then equation (5.25) will be refined as

m̃2 −m2 = 6ε
√
q(xM)q′(xM)[1 +O(m+ m̃)]− 6ε2(ln 16− 1 +O(m))q′′(xM) +O(ε3).
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6.0 CONCLUSIONS

The main theme of my dissertation is to prove uniform asymptotic expansions of solutions

of singularly perturbed boundary value problems. There are still some open questions and

hence scopes of doing further research on the problems that I have considered. I will outline

some specific questions below:

Monotonicity of A(ε): In Chapter 3, we showed that for every ε > 0, there exists

A(ε) such that if 0 < A < A(ε), then the problem (3.1a)-(3.1b) has exactly two solutions. It

would be interesting to study the limiting behavior of A(ε) as ε→ 0. As a part of the proof

of Theorem 5, we proved that for ε sufficiently small, the BVP (3.1a)-(3.1b) has a solution

for every A <
∫∞

0
2

f(y)
dy. This in turn implies that A(ε) ≥

∫∞
0

2
f(y)

dy for ε sufficiently small.

Conjecture: A(ε) increases monotonically as ε→ 0. Moreover,

lim
ε→0

A(ε) =

∫ ∞
0

2

f(y)
dy.

The significance of the above conjecture is that it implies that the asymptotic formula

(3.18) applies to every smaller solution of (3.1a)-(3.1b).

A general theory A well-known problem by Lagerstrom was studied in [9], where an

elementary approach was used to derive an asymptotic expansion of the solution of the

boundary value problem

y′′ +
n− 1

x
y′ + εyy′ = 0, y(1) = 0, y(∞) = 1, (6.1)

where n ≥ 2. The solution was expressed as an infinite series, uniformly convergent on

1 ≤ x < ∞, and the terms of the series can be evaluated recursively, leading to a unique

asymptotic expansion as ε→ 0.
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In Theorem 8 , we derived the asymptotic expansion of the smaller solution by finding a

fixed point of an integral equation. As a by-product, we also obtained a new existence proof

of the smaller solution of (3.1a)-(3.1b). It will be interesting to study whether it is possible

to build a theory that would treat both the BVPs (3.1a)-(3.1b) and (6.1) together. More

generally,

Question: Is it possible to develop a general theory that would unify problems of the

types (3.1a)-(3.1b) and (6.1)?

Asymptotic Expansions: In Chapter 4, we proved that the asymptotic expansion of

the solution to the BVP (4.1)-(4.2) with no spikes is correct up to O(ε2). In Chapter 5, we

used a different method to obtain asymptotic expansions of solutions to the same BVP, that

have three or fewer critical points (this of course includes the solution with no spikes). We

obtained formulas that are correct up to O(ε). A possible question is to check whether the

asymptotic formulas for the spiked solutions are correct up to O(ε2)? On the other hand, it

is very possible that the spike approximation is not to this order.

Extension of the method of Variation of Constants In Chapter 5, we derived a new

technique of “variation of constants” that works for quadratic equations u(x)(q(x, ε)−u(x)),

but unfortunately does not work for cubic equations as in [2]. One possible area of study

is to find out whether this method can be applied to functions with exactly two roots. In

other words, I would like to study the following:

Question: Check whether the method of variation of constants can be applied to derive

asymptotic expansions of solutions

u′′ = f(x, u, ε),

where f has two roots.

Applications in real physical phenomena: All the problems that have been dis-

cussed so far are model BVPs that help us in studying boundary layer theory in details. I

am looking forward to working on boundary layer problems that model real physical phenom-

ena. Some possible problems that I would like to consider are studying final steady flow near

a stagnation point on a vertical surface in a porous medium (see [19], [20]), understanding

the dynamics of climate patterns (see [15]) and the boundary layer phenomenon occurring
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along thin edges of glaciers, coastlines etc. I am hoping to apply my techniques to some of

these problems.
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