

ELECTRONIC DESIGN AUTOMATION
FOR AN ENERGY-EFFICIENT COARSE-GRAIN
RECONFIGURABLE FABRIC ARCHITECTURE

by

Justin Nathanial Stander

BS, University of Pittsburgh, 2005

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2007

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Justin Nathanial Stander

It was defended on

July 5th, 2007

and approved by

Jun Yang, Assistant Professor, Departmental of Electrical and Computer Engineering

Tom Cain, Professor, Departmental of Electrical and Computer Engineering

 Thesis Advisor: Alex K. Jones, Assistant Professor, Departmental of Electrical and Computer

Engineering

 iii

Copyright © by Justin Nathanial Stander

2007

 iv

In the past those looking to accelerate computationally intensive applications through hardware

implementations have had relatively few target platforms to choose from, each with wildly

opposing benefits and drawbacks. The SuperCISC Energy-Efficient Coarse-Grain

Reconfigurable Fabric provides an ultra-low power alternative to field-programmable gate array

(FPGA) devices and application specific integrated circuits (ASICs). The proposed Fabric

combines the reconfigurable nature and manageable Computer-Aided Design (CAD) flow of

FPGAs with power and energy characteristic similar to those of an ASIC.

This thesis establishes the design flow and explores issues central to the design space

exploration of the SuperCISC Reconfigurable Fabric Project. The Fabric Interconnect Model

specification facilitates rapid design space exploration for a range of Fabric Models. Significant

effort was put into the development of the Heuristic Mapper which automates the problem of

programming the Fabric to perform the desired hardware function. Coupled with additional

automation the Mapper allows for conversion of C-code specified application kernels into Fabric

Configurations. The FIMFabricPrinter automates the verification, simulation, statistics

gathering, and visualization of these Fabric Configurations. Results show the Fabric achieving

power improvements of 68X to 369X, and energy improvements of 38X to 127X over the same

benchmarks performed on an FPGA device.

ELECTRONIC DESIGN AUTOMATION
FOR AN ENERGY-EFFICIENT COARSE-GRAIN
RECONFIGURABLE FABRIC ARCHITECTURE

Justin Nathanial Stander, M.S.

University of Pittsburgh, 2007

 v

TABLE OF CONTENTS

PREFACE.. XIII

1.0 INTRODUCTION ... 1

2.0 RELATED WORK & BACKGROUND... 7

2.1 COARSE GRAIN FABRIC ARCHITECTURES... 7

2.2 SUPERCISC ARCHITECTURE... 9

2.2.1 SuperCISC Automated Flow .. 10

2.2.2 Example Hardware Function .. 11

3.0 HEURISTIC BASED FABRIC MAPPER .. 17

3.1 PREPROCESSING.. 19

3.2 ROW ASSIGNMENTS... 22

3.3 COLUMN ASSIGNMENTS... 27

3.3.1 Initial Heuristic Column Assignment ... 30

3.3.2 Refining the Heuristic ... 35

3.3.3 Optimizing Child Dependency: Potential Linked Placement Values 35

3.3.4 Optimizing Child Dependency: Potential Child Placement Values 36

3.3.5 Dealing with unary operations .. 37

3.3.6 Picking Next Operation to Map .. 37

3.3.7 Force System... 38

 vi

3.3.8 Grandchild Dependency.. 39

3.3.9 Centering... 40

3.4 FINAL HEURISTIC.. 41

3.5 MAPPING REPRESENTATION ... 43

3.6 MAPPING TO DEDICATED PASSGATES.. 43

4.0 FABRIC INTERCONNECT MODEL (FIM).. 44

4.1 EXTENSIBLE MARKUP LANGUAGE (XML) ... 44

4.2 FIM DEFINED .. 45

4.3 SVG VISUALIZATION ... 50

4.4 FIM VERIFICATION ... 51

4.5 FIM FRONT-END INTERFACE.. 53

5.0 VERIFICATION AND CONFIGURATION .. 54

5.1 PARAMETERS AND INPUTS .. 54

5.2 VERIFICATION AGAINST FIM... 56

5.3 DYNAMICALLY DETERMINING MULTIPLEXER CONTROL SIGNALS 56

5.4 BUILDING CONFIGURATION FILES .. 57

5.5 GENERATING STATISTICS ... 58

5.6 GENERATING VISUALIZATION.. 58

6.0 PERFORMANCE RESULTS.. 60

6.1 FABRIC INTERCONNECT MODELS.. 61

6.1.1 8:1-based Fabric Models... 61

6.1.2 4:1-based Fabric Models... 62

6.1.3 3553:1-based Fabric Models... 64

 vii

6.2 BENCHMARK KERNELS... 64

6.3 SOLUTION IMPROVEMENT DURING DEVELOPMENT OF HEURISTIC 66

6.4 COMPARING MAPPING TECHNIQUES .. 68

6.4.1 Runtime Comparison .. 69

6.4.2 Mapping Size Comparison.. 70

6.4.3 Power / Energy Comparisons.. 70

6.4.4 Delay Comparison .. 73

6.4.5 Analysis... 75

6.5 HEURISTIC MAPPER RESULTS ON A VARIETY OF FABRIC MODELS. 75

6.5.1 Integrated Constants Results... 76

6.5.2 Dedicated Passgates Results ... 78

6.6 COMPARING FABRIC VS CURRENT HARDWARE TECHNOLOGIES..... 80

6.7 COMPARING HEURISTIC AGAINST AS SOON AS POSSIBLE 82

7.0 CONCLUSION.. 84

7.1 FUTURE DIRECTIONS... 85

7.1.1 Global Lookahead Information... 86

7.1.2 Global Lookahead Heuristic For First Row Mapping 86

7.1.3 Handling Heterogeneous Fabric Models .. 87

APPENDIX A. FABRIC INTERCONNECT MODEL FILES.. 89

APPENDIX B. XML SCHEMA FOR FABRIC INTERCONNECT MODEL 99

BIBLIOGRAPHY... 102

 viii

 LIST OF TABLES

1: The Complete FIM specification: Elements and Attributes. .. 48

2: Benchmark sizes ... 66

3: Heuristic Mapper Versions Summary... 67

4: Heuristic Versions: Processing time & added rows for 5:1-based Standard FIM. 67

5: CPU Runtime (seconds) of each mapper for 3553:1, 4:1, 5:1 & 8:1 standard FIMs. 69

6: Rows added by each mapper for 3553:1, 4:1, 5:1 & 8:1 standard FIMs. 70

7: Power (mW) of fabric mappings for 3553:1, 4:1, 5:1, & 8:1 standard FIMs across methods. 71

8: Energy (pJ) of fabric mapping for 3553:1, 4:1, 5:1, & 8:1 standard FIMs across methods. 71

9: Total delay (ns) of mappings when implemented onto the Fabric. .. 74

10: FIM variations, each could be coupled with any level of interconnect (8:1, 5:1, etc)............ 76

11: Rows added to solve 8:1, 5:1, and 3553:1 Std & IC FIMs using Heuristic Mapper. 77

12: Rows added to solve 8:1, 6:1, and 5:1 Standard & Dedicated Passgate FIMs 79

13: Power (mW) usage of benchmark implementations on ASIC, Fabric, FPGA, and XScale. .. 81

14: Energy (pJ) usage of benchmark implementations on ASIC, Fabric, FPGA, and XScale..... 81

15: Energy (pJ) comparison ASAP Schedule Solutions VS. Heuristic Mapper Solutions........... 83

 ix

LIST OF FIGURES

1: Amdahl's Law for total speedup of an application. .. 2

2: High-Level Fabric Model. .. 3

3: Multiplexer based interconnect stripe... 4

4: Design space exploration flow of the fabric model. ... 5

5: SuperCISC Architecture ... 10

6: SuperCISC Hardware Function Generation Flow. ... 11

7: Sobel Edge Detection Hardware Function C Source Code. ... 11

8: Sobel CDFG showing Control Flow and Basic Blocks.. 12

9: Sobel Super Data Flow Graph. ... 14

10: VHDL for 32 bit subtract found in Sobel SDFG. ... 15

11: Entity and port declarations for Sobel SDFG. .. 16

12: Overall Heuristic Mapper Flow. ... 18

13: Before/After Replacing converts and negate operations in an SDFG. 19

14: Before/After Integrating constant values into SDFG operations.. 20

15: SDFG with ALAP annotations. .. 21

16: Before/After Row alignment state of Heuristic Mapper... 24

17: Pseudocode for row-alignment section of Heuristic Mapper. .. 26

18: Example Parent Dependency Window construction assuming 4:1 based interconnect. 28

 x

19: Example of Child Dependency Window (CDW) construction. ... 29

20: Example Functional Unit Desirability (FUD) construction.. 30

21: Initial Heuristic column placement pseudocode... 32

22: Before/After Dynamically delaying an operation during mapping. 34

23: Example of finding Potential Linked Placement (PLP) Values. .. 36

24: Example of Building the Grandchild Dependency Window (GDW). 40

25: Final Heuristic Column Assignments Pseudocode... 42

26: A short CD catalogue written using XML.. 45

27: FIM Code for an ALU Definition... 46

28: FIM Pattern Section for a standard 8:1 multiplexer based model. ... 47

29: FIM Pattern Code for a 50% Dedicated Passgates, half 8:1 & half 4:1 interconnect............. 49

30: Portion of a rendered SVG file for FIM shown in Figure 20. .. 50

31: XML Schema Definition (XSD) for Catalogue of CDs XML file shown in Figure 26. 52

32: FIM Fabric Printer Parameters. .. 55

33: Equation to determine output rows when using outputmux fabric feature............................. 55

34: Example of control signal generation using 4:1 multiplexer. ... 57

35 : SVG representation of Sobel mapping on 8:1-based FIM... 59

36: Visualization of 8:1-based Interconnect. .. 61

37: SVG Visualization of 4:1-based Interconnect. ... 62

38: SVG Visualization of 5:1-based Interconnect. ... 63

39: SVG Visualization of 6:1-based Interconnect. ... 63

40: SVG Visualization of 3553:1-based Interconnect. ... 64

41: Energy Comparison of 8:1 standard FIM across mappers.. 72

 xi

42: Energy Comparison of 5:1 standard FIM across mappers.. 73

43: Comparing Average runtime for each Mapper/FIM combination... 74

44: Energy Comparison between Standard and Integrated Constant FIMs.................................. 78

45: Energy Comparison between 8:1, 5:1, Standard and Dedicated Passgates FIMs................... 79

46: Energy Comparison between hardware technologies... 82

 xii

LIST OF ACRONYMS

1. ALAP As Late as possible

2. ALU Arithmetic Logic Unit

3. ASIC Application Specific Integrated Circuit

4. BB Basic Block

5. CDFG Control Data Flow Graph

6. CISC Complex Instruction Set Computing

7. CP Constraint Programming

8. DP Dedicated Passgates

9. FIM Fabric Interconnect Model

10. FPGA Field Programmable Gate Array

11. FTU Fabric Topological Unit

12. FUD Functional Unit Desirability

13. IC Integrated Constants

14. MILP Mixed Integer Linear Program

15. SDFG Super Data Flow Graph

16. SVG Scalable Vector Graphics

17. VHDL VHSIC Hardware Description Language

18. XML Extensible Markup Language

 xiii

PREFACE

I would like to express my appreciation of the hard work and efforts of all the present and past

members of the SuperCISC and Fabric research teams especially Josh Lucas, Josh Fazekas,

Gayatri Mehta, Colin Ihrig, Mustafa Baz, and Professor Brady Hunsaker. Many thanks go to my

advisor Dr. Alex Jones for his continued support over the last few years. I would also like to

thank Dr. Tom Cain and Dr. Jun Yang for serving on my master’s thesis committee.

 1

1.0 INTRODUCTION

In order to utilize a reconfigurable device such as a Coarse-Grain reconfigurable Fabric a method

must be devised in order to configure the device to perform a desired application. Additionally

in order for this method to allow for variations and changes to the Fabric architecture it must be

extensible and parameterizable. This thesis addresses this problem through the introduction of a

C to Fabric design flow featuring a Heuristic Mapper which incorporates a method of Fabric

Modeling to handle different Fabric variants as well as a set of visualization, verification, and

testing support tools.

Contributions:

1. Heuristic Mapper for solving Fabric Configuration

2. Fabric Interconnect Model (FIM) facilitating rapid design space exploration

3. Visualization & Verification of Fabric Mappings

4. Support for simulation and power/performance analysis of Fabric hardware

In recent years system and application developers have realized large speedups with the

use of processors equipped with application specific auxiliary hardware. In order to pursue this

type of solution the application must first be broken down into hardware and software portions.

By placing into hardware the sections of the application which take up a large portion of overall

execution time a significant overall performance increase can be realized. Typically in these

types of applications a small portion of computationally intensive code (10% of the code) uses

 2

up a large portion of the execution time (90% of time). The relationship between speedup of a

hardware portion in relation to the overall performance improvement is best represented by

Amdahl’s law (shown in Figure 1).

Speedup =

P: Portion of overall time spent in accelerated portion.

S: Speedup of accelerated portion.

Figure 1: Amdahl's Law for total speedup of an application.

 Those looking to accelerate computationally intensive applications through hardware

implementations have had relatively few target platforms to choose from, each with wildly

opposing benefits and drawbacks. Modern day Application Specific Integrated Circuits (ASICs)

possess excellent power and performance characteristics. However they still invoke a large up-

front fabrication and development cost (non-recurring engineering cost) for each new chip

designed. In addition they require complex and expensive Computer Aided Design (CAD) tools

as well as long manufacturing times. Meanwhile solutions using highly flexible Field-

Programmable Gate Array (FPGA) devices are both fast and easy to develop. While highly

reprogrammable and able to support a wide variety of applications, FPGAs suffer from relatively

poor power and energy characteristics, making this route infeasible for many potential uses.

 3

This thesis will demonstrate that a third way, specifically a reconfigurable low power

coarse-grain “Fabric” solution is both possible and competitive against FPGA and ASIC

implementations. While possessing the ease of development found in the FPGA world, the

Fabric uses dramatically less power, putting it close to the power and energy characteristics of an

ASIC solution. In particular this thesis will focus on the problems which arise from targeting

such a device and specifically the problem of finding a valid fabric configuration (“Mapping”)

which programs the device to perform a desired program.

Figure 2: High-Level Fabric Model.

 4

A high level diagram of an ALU-homogeneous version of the Fabric is shown in Figure

2. Each fabric row consists of a number of Functional Units, each able to perform a set of

operations on their inputs. Most often these Functional Units are Arithmetic & Logic Units

(ALUs), although whether the fabric is homogeneous or a mix of ALUs with different

capabilities (heterogeneous) and units dedicated to specific functionality (ex: dedicated

passgates) is a decision to be determined by extensive design space exploration. In between each

fabric row lies a layer of multiplexer based interconnect (Figure 3) which determines the possible

connections that can be made between adjacent fabric rows. In order to program the Fabric a set

of control signals for each functional unit and interconnect multiplexer must be set properly

(fabric configuration).

Figure 3: Multiplexer based interconnect stripe.

In order to implement actual hardware functions onto the Fabric an automated Heuristic

“Mapper” was developed. The Heuristic Mapper creates a fabric configuration which performs

the desired hardware function by finding a valid placement of all operations which allows the

interconnect system to connect operations correctly. The Heuristic Mapper uses a two-tiered

 5

top-down approach wherein operations are first assigned into fabric rows in a row-alignment

stage before the heuristic determines the fabric location to place each operation in during the

column-assignment stage. A detailed explanation of the heuristic and workings of the mapper

are found in Section 3.0 .

Figure 4 shows the design space exploration flow used for the Fabric. To facilitate

design space exploration and to provide a unified fabric description the Fabric Interconnect

Model (FIM) specification was developed. Designed with maximum versatility in mind the

model contains all information needed to describe any particular fabric model. Primarily this

consists of a full description of each Functional Unit as well as the interconnect stripe found

between each fabric row. A support library and other tools (such as visualization) were then

developed so that the FIM could be used by the entire suite of Fabric CAD tools. A full

description of the FIM is found in Section 4.0 .

Figure 4: Design space exploration flow of the fabric model.

 6

After determining a valid mapping the proper control signals must be generated in order

to test and simulate the mapping. In order to avoid human-errors and automate the process a

verification tool, the FimFabricPrinter software application was developed. In addition to

generating the fabric configuration files for simulation the Printer also can verify a mapping

against the FIM file, this ensures that the Mapper is properly obeying the constraints of the

Fabric Model. Other features include creation of mapping visualization and verification files

which can be used during simulation to ensure the Fabric achieves the correct results. A full

description of the FimFabricPrinter tool is found in Section 5.0 .

Section 2.0 introduces related work and background information upon which this project

builds. Section 6.0 contains the results of running a set of benchmarks on a variety of Fabric

Models using the Heuristic Mapper as well as two alternative methods of mapping. A

comparison against ASIC and FPGA implementations is included. Lastly Section 8.0 discusses

potential future directions and provides a concluding summary of the project.

 7

2.0 RELATED WORK & BACKGROUND

A short comparison between other coarse grain fabrics architectures and this project is included

to contrast the Fabric architecture against other projects in the same field of devices. A review of

material originally created for the SuperCISC architecture/compiler project[1,2] is included as

portions of the SuperCISC compiler flow have been incorporated into the C to Fabric design

flow discussed throughout this thesis. In particular this includes creation of Control and Data

Flow Graphs (CDFG), and a hardware predication method which allows for the creation of

“Super” Data Flow Graphs (SDFG).

2.1 COARSE GRAIN FABRIC ARCHITECTURES

Over the past several years, a tremendous amount of effort has been devoted to the area of

reconfigurable computing. Since fine-grained fabrics like FPGAs are not considered appropriate

for computationally intensive applications due to their poor power characteristics and significant

routing overhead, the area of reconfigurable computing stresses the development and use of

coarse-grained fabrics for computationally complex tasks. Many architectures have been

proposed and developed both in academia and industry during the last decade including

MATRIX, Garp, Chimaera, RaPiD, PipeRench, Elixent, XPP, and FPOA.

 8

MATRIX (Multiple ALU architecture with Reconfigurable Interconnect eXperiment) [3]

is comprised of a two-dimensional array of identical 8-bit functional units with a configurable

network. Each functional unit consists of a 256x8-bit memory block, an 8-bit ALU and control

logic. The Garp [4], Chimaera [5] and SuperCISC [1] architectures combine a reconfigurable

computing device with a processor to perform hardware acceleration. RaPiD (Reconfigurable

Pipelined Datapath) [6,7], mainly intended for computation intensive applications, consists of a

linear array of application-specific function units. PipeRench [8,9] has a striped configuration and

is comprised of an interconnected network of configurable logic blocks and storage elements. It

consists of a set of physical pipeline stages called stripes and each stripe contains a set of

processing elements, register files and an interconnection network.

The Reconfigurable Algorithm Processor (RAP) from Elixent [10] is comprised of an

array of 4-bit ALUs and register/buffer blocks that can be cascaded to suit different data widths.

The ALUs are arranged in a chessboard-style array, alternating with adjacent switchboxes.

Pact XPP Technologies [11] proposed the XPP architecture which has a hierarchical

array of coarse-grained adaptive computing elements called Processing Array Elements (PAEs)

and a packet-oriented communication network. An XPP core is comprised of a rectangular array

of ALU-PAEs and RAM-PAEs with I/O.

MathStar [12] proposed Field Programmable Object Array (FPOA) which consists of a

2D array of Silicon Objects (SOs). Silicon Objects are 16-bit configurable machines such as

ALU, Multiply-Accumulate Unit or Register File. Both Silicon Object behavior and the

interconnection among Silicon Objects are field-programmable.

Unlike MATRIX whose basic functional unit consists of an 8-bit ALU and a SRAM, the

basic functional unit in the proposed Fabric (introduced in Section 1) is a coarse-grained ALU

 9

having variable datawidth. There is no internal memory or storage element in the proposed

model. Unlike GARP and Chimaera the proposed Fabric uses an application domain tailored

hardware co-processor. Compared to RaPiD, which has small RAMs and registers to store data

and intermediate results, the proposed Fabric is purely combinational. The programmable

connections in the datapath interconnect in the proposed Fabric are modeled as multiplexers

somewhat similar to those in RaPiD. Unlike RAP who’s ALUs are arranged in a chessboard

style, the proposed fabric model has a striped configuration like that of PipeRench but without

register files. Compared to the XPP architecture which is comprised of a mixture of ALU-PAEs

and RAM-PAEs, the proposed fabric consists of only an array of ALUs with no memory

elements.

2.2 SUPERCISC ARCHITECTURE

The SuperCISC architecture[1] in Figure 5 shows a 4-way very long instruction word (VLIW)

core, surrounded by a series of hardware functions connected to the core via a shared register

file. The goal is to accelerate sections of code that use significant amounts of execution time by

converting these code sections into combinational hardware functions. In order to facilitate this

process an automated flow was developed which converts user designated C code sections into

synthesizable VHDL blocks, allowing them to be implemented as hardware functions.

 10

Figure 5: SuperCISC Architecture

2.2.1 SuperCISC Automated Flow

Figure 6 shows the hardware function design flow that SuperCISC uses to create its hardware

functions. An application is first profiled to determine where hardware functions should be

created. After specifying each desired hardware block with pragma compiler directives the

SuperCISC compiler creates a Control-Data Flow Graph (CDFG) representation of each future

hardware block. A hardware predication pass is performed on each CDFG in order to create a

 11

single large block of execution called a Super Data Flow Graph (SDFG). The Hardware

Generator then processes the SDFG into hardware components (synthesizable VHDL).

Figure 6: SuperCISC Hardware Function Generation Flow.

2.2.2 Example Hardware Function

We will consider the core C code for the relatively simple Sobel benchmark in Figure 7. The

SuperCISC compiler creates the Control-Data Flow graph shown in Figure 8 which contains all

basic blocks (BB) and the control flow of the specified section of code. Basic blocks represent

contiguous code segments found in the code. Each graph contains nodes for inputs, operations,

and outputs. Each edge connecting these nodes designates a data dependency. Output nodes

designated ‘eval’ are used to determine which basic block the control flows to next. Note that

even this simple benchmark requires nine basic blocks to implement due to the if/else statements.

#pragma HWstart //Begin Hardware
e1 = x3-x0;
e2 = 2*x4;
e3 = 2*x1;
e4 = x5-x2;
e5 = e1+e2;
e6 = e4-e3;
gx = e5+e6;
if(gx < 0)
 c = 0-gx;
else
 c = gx;
e1 = x2-x0;

e2 = 2*x7;
e3 = 2*x6;
e4 = x5-x3;
e5 = e1+e2;
e6 = e4-e3;
gy = e5+e6;
if(gy < 0)
 c += 0-gy;
else
 c += gy;
if(c > 255)
 c = 255;
#pragma HWend //End hardware

Figure 7: Sobel Edge Detection Hardware Function C Source Code.

 12

Figure 8: Sobel CDFG showing Control Flow and Basic Blocks.

 13

 In order to create a single contiguous hardware block the SuperCISC compiler uses

hardware predication to combine all basic blocks into one predicated block. Groups of basic

blocks can be combined into a fewer larger basic blocks with the additional of a number of

multiplexers. The multiplexers are used to determine which results are allowed to propagate

down the graph. The eval signals (found in BB 0, 3, 6) of each branched basic block are used as

the select inputs of these multiplexer. For example in the Sobel CDFG BB0 starts a branch

leading to BB1 and BB2. In order to predicate the branch a multiplexer is introduced which

takes for inputs the output node c from BB1 and the output node c from BB2. The eval signal

from BB0 drives the multiplexer select line, thus determining which result for c is allowed to

propagate down the graph. Figure 9 shows the predicated graph otherwise referred to as a Super

Data Flow Graph (SDFG).

 14

Figure 9: Sobel Super Data Flow Graph.

 15

 In the final step the Super Data Flow Graph is converted into synthesizable VHSIC

Hardware Description Language (VHDL) code. Each operation found in the SDFG is

implemented using VHDL entity and architecture definitions. Figure 10 shows VHDL for the

dual 32 bit input subtract found in the Sobel SDFG. Next the main entity is defined by

converting each input/output node in the SDFG to an IN or OUT port as shown in Figure 11.

Afterward each operation node in the SDFG is instantiated inside the main entity and the SDFG

edges are examined to determine the proper port mapping to use. The Fabric Mapping Flow

utilizes the same creation flow of the SuperCISC hardware functions with the major exception of

requiring the Heurstic Mapper in order to handle the conversion from SDFG to Fabric Mapping.

entity subtract_32_32 is
 port (
 signal A: IN signed(31 DOWNTO 0);
 signal B: IN signed(31 DOWNTO 0);
 signal C: OUT signed(31 DOWNTO 0)
);
end subtract_32_32;

architecture behavior of subtract_32_32 is
begin
 process (A, B)
 begin
 C <= A - B;
 end process;
end behavior;

Figure 10: VHDL for 32 bit subtract found in Sobel SDFG.

 16

entity sobel is
 port (
 signal x3: IN signed(31 DOWNTO 0);
 signal x0: IN signed(31 DOWNTO 0);
 signal x4: IN signed(31 DOWNTO 0);
 signal x1: IN signed(31 DOWNTO 0);
 signal x5: IN signed(31 DOWNTO 0);
 signal x2: IN signed(31 DOWNTO 0);
 signal c_out: OUT signed(31 DOWNTO 0);
 signal x7: IN signed(31 DOWNTO 0);
 signal x6: IN signed(31 DOWNTO 0)
);
end sobel;

Figure 11: Entity and port declarations for Sobel SDFG.

 17

3.0 HEURISTIC BASED FABRIC MAPPER

In order to utilize a reconfigurable device to accomplish any sort of application, a method for

configuring the device must be established. For this purpose a heuristic based automated

solution was developed. This solution processes a Super Data Flow Graph (SDFG)

representation of a software program (or more likely a key section of the program) and the Fabric

Interconnect Model (FIM) to create a valid fabric configuration which performs the functionality

of the SDFG this is accomplished by performing a top-down assignment of operations to

functional units within the Fabric. By examining the results (Section 6.0) as well as the instances

which performed poorly a number of refinements were added to the Mapper in order to improve

the performance (in terms of quality of solution). The final version of the Mapper produces

results up to 64% more energy efficient than what As-Soon-As-Possible (ASAP) mappings could

produce. The overall fabric flow is shown in Figure 12. Before Mapping can occur the SDFG is

preprocessed to remove operations not applicable to the Fabric. Optionally constant nodes can

then be integrated into the operations. Row Assignment introduces pass operations into the

graph and assigns an initial row number to each operation. Starting at the top row and working

down the column assignment stage uses the heuristic to determine which functional unit to assign

each operation to. Finally when all rows have been placed the valid mapping is written in the

form of a graph representation file and an ordering file.

 18

Figure 12: Overall Heuristic Mapper Flow.

 19

3.1 PREPROCESSING

The Heuristic Mapper takes an SDFG representation of a program to map to the Fabric.

However, as-is the SDFG cannot be directly mapped onto the Fabric. Some operations such as

“Convert”, which changes the sign and bit length of an operation of data, are not currently

applicable to the Fabric architecture. Other operations such as the ‘negate’ operation are not

always included in an ALU but can be implemented using other operations. For negate a constant

zero and a subtract operation can be used instead of a true negate. The first stage of

preprocessing checks the Fabric for each operation found in the SDFG, removes unnecessary

operations, and replaces some operations with equivalent operations found in the functional

units. Figure 13 shows an example with converts and a negate operation. The Convert

operations are removed and the edges leading into them are connected to the edges leading out.

The negate operation is replaced by the subtract and constant zero nodes.

Figure 13: Before/After Replacing converts and negate operations in an SDFG.

 20

 The next stage deals with the constant values found in the SDFG. For the standard case

all constant inputs with the same value are combined into one node. The idea behind this is to

make it so that only one copy of a constant value is passed around the Fabric, thus reducing the

size of the graph (typically making the problem easier to solve). The Heuristic Mapper also

supports the Integrated Constant hardware feature which allows for preloading constant values

into functional units, removing the need to pass and route the constant value down to the

functional unit performing the operation. When mapping to a Fabric with this feature, the SDFG

is checked for operation nodes that have a constant value for an input. The edge connecting the

constant value node is removed and the value is incorporated into the operation node. Figure 14

shows an example of this process.

Figure 14: Before/After Integrating constant values into SDFG operations.

 21

 Finally the SDFG is annotated with information necessary for the Mapper this consists of

building a fan-out list for each node as well as determining the As-Late-As-Possible (ALAP)

scheduled row for each operation. The ALAP scheduled row is the last row in the Fabric where

the operation could be mapped into without having to increase the critical path of the mapping.

These values are based on the length of the critical path through the SDFG with nodes directly

above output nodes receiving the value of the critical path. This process continues upwards

through each edge until hitting an input node along each (upstream) path. For each level the

process moves the assigned value is reduced by one. ALAP (see Figure 15) is used to

dynamically determine the Slack of operations during mapping. Slack refers to the number of

rows an operation can potentially be delayed without increasing the overall height of the

mapping. Slack is used as a criterion for determining row assignment as well as choosing the

next operation to place in the heuristic.

Figure 15: SDFG with ALAP annotations.

 22

3.2 ROW ASSIGNMENTS

The next stage of the Heuristic Mapper divides the SDFG into rows of operations. The initial

row assignment of each operation is determined by the row it would place into in an As-soon-as-

possible (ASAP) scheduling of the SDFG. That is operations are placed into the earliest row they

could conceivable be mapped to (ignoring interconnect related issues). Then, starting at the top

row and working to the bottom, the fanout of each operation is checked against the maximum

fanout and passgates are added to locations where there is an edge between nodes that cuts across

multiple rows. The pass operation (AKA passgate) simply passes its input to its output.

Reducing fan-out is necessary in cases when the fan-out of a node exceeds the number of

connections that the Fabric Model being used can support. This is particularly prominent when a

constant value needs to be passed down to a large number of operations which all occur in

parallel. When this occurs some of the child operations of the constant are delayed to later fabric

rows. To delay these operations, first a pass operation is added as a child node, then operations

are moved from under the fan-out exceeding operation to under the pass operation. In order to

determine which operations should be delayed, the child nodes are sorted into a list with the

lowest fan-in, lowest fan-out, and highest slack possessing operation at the front. This order was

chosen in order to pick the operation whose delay would have the least overall effect on the

graph. As long as the delayed operation has some amount of slack (>0), then the critical path

(and therefore mapping height) will remain unchanged. Figure 16 shows an example of this

process, here the constant value 5 must be passed down to operations in later rows. As this

constant value is used by five operations in parallel, the >> and <<operations were delayed to the

next row down. Delaying a node with zero slack increases the height of the solution, the critical

path, and causes a re-evaluation of each nodes’ ALAP row value. The Heuristic Mapper tries to

 23

minimize the number of delays (especially row adding delays) because typically smaller

solutions (smaller height and fewer operations) require a smaller Fabric device and use less

power and energy.

 24

(Before)

(After)

Figure 16: Before/After Row alignment state of Heuristic Mapper.

 25

Currently the Mapper requires that the parents of each operation appear in the row of

functional units directly above the operation. Pass operations are added to allow inputs to be

passed down to where they are needed in the Fabric. Since these passgates are not inherently

required by the application that is being mapped they can be moved, removed, and added to

accommodate dynamically delaying operations performed in the column assignment portion of

the mapper. Figure 17 shows pseudocode for the entire row-assignment portion of the Heuristic

Mapper. When iterating through the rows, the passgate correcting section is performed twice in

order to ensure that operations that were delayed in the fanout correction section are still

connected to all of their parents (the parents must be available in or passed to the row directly

above them).

 26

//Set initial row assignments
op <- Get first operation from list
while op is valid
 op.row <- Determine Highest Mapable Level of op
 op <- next op
end while

//Iterate through rows from top to bottom
row <- 0
while row < total # rows

 //Correct indirect children by adding passgates
 op <- Get first operation in row
 while op is valid
 if op has indirect children
 Create passgate as child of op (or Reuse existing passgate)
 Move indirect children to passgate
 end if
 op <- next op in row
 end while

 //Correct excess fanout by delaying operations
 op <- Get first operation in row
 while op is valid
 if op.fanout > FIM’s max fanout
 Create passgate as child of op (or Reuse existing passgate)
 Move operations from op to passgate until fanout fixed.
 end if
 op <- next op in row
 end while

 //Correct indirect children again
 op <- Get first operation in row
 while op is valid
 if op has indirect children
 Create passgate as child of op (or Reuse existing passgate)
 Move indirect children to passgate until fanout fixed.
 end if
 op <- next op in row
 end while
end while

Figure 17: Pseudocode for row-alignment section of Heuristic Mapper.

 27

3.3 COLUMN ASSIGNMENTS

Finally the operations are ready to be assigned to functional units available in the Fabric.

Beginning with the first row each operation in a row is placed into a valid location. In order to

perform column assignment, a number of factors are employed to determine the best location for

a given operation considering how this decision will impact the placement of other operations in

the current row as well as the children and grandchildren of the given operation. The initial three

factors used to build the mapper are the Parent Dependency, Child Dependency, and Functional

Unit Desirability factors. The Parent Dependency states that an operation must be mapped such

that each input (parent) connection can be routed using the fabric interconnect. Using the

locations of the (already placed) parents and the interconnect capabilities of the Fabric allows for

building of the Parent Dependency Window (PDW), which contains a list of all valid Functional

Unit locations that the operation could be placed in while meeting this dependency. Figure 18

shows an example of PDW construction. Each arrow shows a possible connection using the

Fabric’s interconnect. Given this interconnect a node with parents subtract in column 6 and

addition in column 8 can only be placed into ALUs 6 and 7. It should be noted that the parent

dependency window is the only requirement for assigning to a Functional Unit. The other factors

are used to improve the mapability of the other operations in the current row as well as

operations in later rows.

 28

Figure 18: Example Parent Dependency Window construction assuming 4:1 based interconnect.

 The Child Dependency states that optimally an operation should be placed such that the

shared children operations (child operations which have an input other that the current operation)

will have at least one possible placement location (their own PDW will contain at least one

location). The Child Dependency Window (CDW) lists all of the functional unit locations

which, if this operation were placed in, would potentially lead to shared children having some

valid placement. In order to build an operation’s CDW its PDW, the PDWs of nodes which

share a child (linked nodes), and the Fabric’s interconnect are examined to determine which

locations would allow a shared child node to be placed in the following row, these locations are

then added to the CDW. Figure 19 shows an example of CDW construction, given the parent

nodes >> and << only ALU 7 for >> and ALU 10 for << will provide for a conceivable

placement of a child operation (into ALU 8).

When a node has no shared children it also has no CDW and the child dependency factor

goes unused when mapping that node. It is also possible for a node to begin with an empty

 29

CDW (or a depleted CDW) if its PDW contains no locations that could satisfy the child

dependency.

Figure 19: Example of Child Dependency Window (CDW) construction.

 The functional unit desirability (FUD) is often used as a tiebreaker during mapping when

locations are otherwise equal. FUD indicates the number of unplaced operations which contain

the given location in their PDW. In other words, how many operations “desire” to be placed into

the given location. Figure 20 shows the FUD construction using a few theoretical PDWs, ALU 0

is only found in the PDW of node >> which gives ALU0 a FUD value of 1. ALU 2 has the

highest FUD value at 3 as it is desired by the >>, mux, and << operations.

 30

Figure 20: Example Functional Unit Desirability (FUD) construction.

3.3.1 Initial Heuristic Column Assignment

The initial heuristic relies only on the parent dependency, child dependency, and functional unit

desirability factors. Figure 21 shows the pseudocode for the initial heuristic column mapping of

a single row. Before mapping a row the child and parent dependency windows for each

operation are generated and the desirability of each functional unit is determined. Each

dependency window and desirability value is updated as functional units are filled by operation

placement. When a location is filled it is removed from the PDW and CDW of all operations

and the FUD values for all other locations in the mapped operation’s PDW are reduced

appropriately. In order to pick which operation to place, the remaining unmapped operations are

sorted such that the operation with the smallest PDW, smallest CDW, and least slack is at the

front of the list. The next operation list is resorted after each placement. This is partially

necessary such that the mapper will immediately deal with operations with a PDW of size zero or

 31

a PDW of size one, both important (special) cases. In the PDW of size zero case, all the valid

locations the operation could be placed in have either been used or the parents of the operation

were mapped such that there would be no valid placement for the operation. In either case the

operation will be delayed until the next fabric row where the mapper will again try to place the

operation.

 32

Create unsorted list of all operations in the given row
op <- Get first operation from unsorted list
while op is valid
 Generate PDW from location of parents/interconnect
 Add to desirability values
 op <- next op
end while
op <- Get first operation from unsorted list
while op is valid
 Generate CDW from PDW and PDW of connected nodes
 op <- next op
end while
while unmapped ops > 0
 Sort list of unmapped ops by PDW, CDW, slack
 op <- front of sorted list(smallest PDW, smallest CDW, least slack)
 Remove op from list of operations
 if PDW.size == 0
 if Op is unary
 Exit Mapper, return UnMapable Code
 else
 Delay operation to next row
 if op.slack == 0
 Increase high of problem graph
 Fix ALAP row for all unassigned nodes

 Search downstream of operation for passgates
 Absorb passgates
 Unassign everything in current row
 Restart Mapping current row
 end if
 else if PDW.size == 1
 Place op in PDW's only location
 Update PDW,CDW,Desirability values.
 else //PDW.size > 1
 if CDW.size == 1
 Place op in CDW's only location
 Update PDW,CDW,Desirability values
 else if CDW.size > 1
 Place op in CDW location with lowest desirability
 Update PDW,CDW,Desirability values
 else //no CDW, or CDW.size == 0
 Place op in PDW location with lowest desirability
 Update PDW,CDW,Desirability values
 end if
end while

Figure 21: Initial Heuristic column placement pseudocode.

 33

Dynamically delaying an operation pushes it down to the next row and reconnects the

input edges using passgates (possibly new passgates). When pushing down an operation with

slack we know that there is a number of passgates that appear in later rows before the operation

is needed by the critical path. In order to correct the graph, after delaying an operation the

mapper will push the children of the given operation down (and then push their children, etc)

until encountering a passgate along each child-branch. The passgates (one along each branch of

children) are then absorbed and the graph is properly reconnected. If the operation has no slack

then no such passgates exist and an additional row will be added to the graph at the bottom

before the operation is delayed and passgates are absorbed. Figure 22 shows an example of

dynamically delaying an operation. The non-unary multiply operation is delayed to the next row,

two new pass operations are then added to fill the gap between the delayed node and its parents,

the subtract operation is then delayed to the next row and its pass operation child is absorbed

(removed).

 34

Figure 22: Before/After Dynamically delaying an operation during mapping.

After delaying a node there may (and probably will) be new passgate operations that must

be mapped to the current row. In order to properly place them, the column assignment for the

current row restarts with all operations unassigned. However, in the case that the operation to

delay is a unary operation, then delaying would not fix the problem, instead the heuristic aborts

mapping. This is one of several issues that were remedied in later versions of the heuristic

(explained in the next sections).

Operations with only a single location in their PDW are placed in that location. When

the operation has more than one PDW location, the heuristic picks the location that has the

lowest desirability value and is also found in the CDW (assuming the CDW exists and has

 35

nonzero size). Although the initial heuristic does well for several benchmarks, when using

highly connected Fabric Models, performance degrades quickly when the connectivity is reduced

and certain benchmarks become unsolvable.

3.3.2 Refining the Heuristic

In order to improve the results of the Heuristic Mapper a number of additional factors were

added to the heuristic. These changes were aimed at improving the placement of operations to

facilitate the eventual mapping of descendent operations. A priority node queue was added to

deal with the unmapable unary operations problem. To make the heuristic feasible for solutions

with less connectivity, an additional level of lookahead was implemented adding a Grandchild

dependency and associated grandchild dependency window (GDW). The following sections

examine each of these changes.

3.3.3 Optimizing Child Dependency: Potential Linked Placement Values

Although the initial algorithm uses the CDW to narrow the number of locations to consider, it

treats all locations in the CDW as equally good to use. In general that is not the case. While all

CDW locations theoretically allow each child operation to be placed, the ability to place them is

also tied to the placement of linked operations (“shared parents”). In order to increase the

likelihood that the child nodes will be mapped, the CDW concept is expanded to include a

Potential Linked Placement (PLP) value. The PLP value of each child dependency window

location is found by considering (for each child) the number of PDW locations of linked

operations that could be used while allowing the child operation(s) to be placed, assuming that

 36

the current operation was placed in the given child dependency window location. Instead of

treating all CDW locations as equal, the heuristic now chooses from among the locations with

highest PLP when making mapping decisions. Figure 23 shows an example of finding PLP

values. For the left operation (>>) ALU7 has a PLP of 1 because only one location in the CDW

of the right operation could be used to make a child operation possible in the next row. ALU8

has a PLP of 2 because both locations in the CDW of the right operation could be used.

Figure 23: Example of finding Potential Linked Placement (PLP) Values.

3.3.4 Optimizing Child Dependency: Potential Child Placement Values

Another factor used to optimize placement for child operations, the Potential Child Placement

(PCP) value provides the number of PDW locations that a child operation could potential have if

the operation is placed in the given location. Like PLP it is based on the PDW of each linked

operation and the Fabric’s interconnect. PLP is used to optimize the placement such that child

 37

operations can be mapped while PCP optimizes the placement to increase the mapping flexibility

of the child operation. Practically PCP is used to break ties where multiple locations have the

same PLP value.

3.3.5 Dealing with unary operations

In the initial heuristic, unary operations which run out of PDW locations before being placed will

cause the mapper to abort. Two changes were made to facilitate mapping unary operations.

First, when encountering a unary node with an empty PDW, the mapper attempts to “create” an

open spot that would allow the unary operation to be placed. The operations in each of the

locations in the unary node’s original PDW (before any operations in the current row were

mapped) are checked to see if any of them could move to an alternative position. If at least one

of them can, then the mapper reassigns a movable operation and places the unary operation in the

vacated spot. Otherwise the unary operation is placed into a priority node queue before

unassigning all operations in the current row and restarting column assignment. The column

assignment code was then modified so that priority nodes are mapped befefore non-priority

nodes. The priority queue can grow as additional hard to place unary operations are found.

However, if a priority node is found to be unmapable after given priority status the mapper is

forced to abort. Fortunately in practice this occurs rarely.

3.3.6 Picking Next Operation to Map

In the initial heuristic, choosing an operation to map relied primarily on the size of each

operation’s PDW. The revised version incorporates the priority node queue as well as resorting

 38

the list to map highly connected nodes sooner. Priority nodes are placed before non-priority

nodes with the most recently prioritized nodes handled first. These nodes remain in the priority

queue until the current row is successfully mapped. This is done so that all the difficult unary

operations can be mapped if possible. After all priority nodes are placed, the nodes with PDW of

size 0 and 1 are handled in the original sort order (smallest PDW, smallest CDW, least slack

first). Following the special cases, the mapper resorts the list of unassigned operations. This

time the node with the smallest CDW (when considering only the CDW locations with maximum

PLP value), most linked nodes (nodes which share a child), most 2nd level linked nodes (share a

grandchild), and lowest slack is placed first in the list. Nodes without a CDW are placed at the

end of the list and, therefore, mapped last. This ordering optimizes the placement of the highly

connected nodes, which makes it easier to place their child operations in the next row.

3.3.7 Force System

The initial heuristic was unable to solve certain benchmarks within a reasonable fabric size due

to its inability to “converge” (i.e. bring to the point of making the shared children mapable)

problem nodes to map their shared children. In the case where two operations were far apart

from each other, they would also have empty CDWs. The mapper would place these nodes into

their PDW locations with lowest desirability. Often this would move the two operations further

apart instead of closer. Without a mechanism to ‘converge’ operations with shared children the

practical use of the heuristic was limited to small applications on highly connected fabrics. To

remedy this issue a system of forces is employed that assigns a force value to each location in the

PDW. The force system attempts to choose the location that can potentially satisfy the most

child operations, and it is optimized to prefer locations that provide linked nodes with as many

 39

valid placements as possible. However, the system only performs its full logic when at least one

linked node can converge within the next two rows (2 row lookahead). If additional rows will be

required, then the system simply tries to move the linked nodes as close together as possible.

3.3.8 Grandchild Dependency

The initial heuristic was seriously limited by its effectively single row of lookahead. Operations

that needed to “converge” in two rows could be placed on opposite ends of the Fabric making it

impossible to pull the parent operations close enough to map a child operation without delaying

the child until a later row. To improve the overall quality of the mappings (reduce delays and

height), the second level of lookahead was added which gives the mapper one row to bring

operations that share a grandchild into positions that make the grandchild potentially mapable

(before having to delay operations). The grandchild dependency states that optimally an

operation should be placed such that the shared grandchildren operations could have at least one

possible placement location (their PDWs will contain at least one location). The Grandchild

Dependency Window is constructed in a similar manner as the CDW. Figure 24 shows an

example of GDW construction for two nodes with a shared child node. For the left node both

locations (4 and 5) could be used to reach a potential shared grandchild node, for the right node

only ALU10 and ALU11 could be used to reach the potential grandchild placement.

Nodes with no shared grandchildren simply have no GDW. Each location in a GDW also

has a Potential Linked Placement (PLP) value (similar to the CDW counterpart) that is used to

narrow the selection when the GDW holds multiple locations.

 40

Figure 24: Example of Building the Grandchild Dependency Window (GDW).

3.3.9 Centering

One unintended result of using lowest functional unit desirability to determine placement is that

typically this pushes operations away from the center of the Fabric, which in general is the most

connected section and has functional units with high desirability values. Even after revising the

heuristic with many of the features already discussed the problem still existed as operations

(especially pass operations) with no CDW and GDW were forced to the outer edges of the

Fabric. The further out these operations were placed the longer it would take to converging them

with the nodes they shared children with. To alleviate this problem Distance From Center (DFC)

was added as a tiebreaker in several cases and a passgate centering procedure was executed after

each row had been completely mapped. Passgate centering moves non-linked passgate

operations into empty functional units closer to the fabric center which brings them closer to the

nodes which they will eventually need to converge with.

 41

3.4 FINAL HEURISTIC

Figure 25 shows pseudocode for the final version which incorporates all of the described changes

into the heuristic. The method for using the heuristic on different Fabric Models is explained in

the next Section (4) with results examined in Section 6 and ideas for future improvements

presented in Section 7.

// Build PDW, CDW, Functional unit desirability\
Create unsorted list of all operations in the given row
Generate PDW for each operation
Determine functional unit desirability (FUD) values
Generate CDW and PLP values for each operation
Generate GDW and PLP values for each operation

while unmapped ops > 0
 if NOT (priority nodes all mapped)
 op <- next high priority node
 else
 Sort list of unmapped ops by PDW, CDW, slack
 op <- front of sorted list(smallest PDW, smallest CDW, least slack)
 Remove op from list of unmapped operations

 if PDW.size == 0
 if Op is unary
 Attempt to create open spot
 if success
 Place into vacated spot
 else
 if op is a priority node
 Quit mapper
 else
 Make op high priority
 Restart Mapping current row
 end if
 end if
 else
 Delay operation to next row
 if op.slack == 0
 Increase height of problem graph
 Fix ALAP row for all nodes
 Absorb passgates ‘downgraph’
 Restart Mapping of current row
 end if
 else if PDW.size == 1
 Place op in PDW's only location

 42

 else //PDW.size > 1
 Resort operations list for highest connect node
 op <- front of list

 if CDW.size == 0
 Choose location with force system
 else if CDW.size == 1
 Choose only location in CDW
 else if CDW.size > 1
 if GDW.size == 0
 Choose location with highest PLP, highest PCP,

highest force value, lowest FUD
 else if GDW.size == 1
 Choose only location in GDW
 else if GDW.size > 1

Choose location with highest GDW PLP value, highest
PCP, lowest FUD, lowest DTC

 else if No shared grandchildren
Choose location with highest PLP, lowest FUD,
highest PCP, lowest DTC

 end if

 else if no shared children and no grandchildren
 Choose location with lowest desirability
 else if shared grandchildren
 if GDW.size == 0
 Choose locations with force system
 else if GDW.size == 1
 Choose only location in GDW
 else //GDW.size > 1

Choose location with highest GDW PLP, lowest FUD,
lowest DTC

 end if
 end if
 end if
end while

Figure 25: Final Heuristic Column Assignments Pseudocode.

 43

3.5 MAPPING REPRESENTATION

After the Heuristic Mapper has successfully mapped each row using the heuristic, the generated

mapping is recorded into a pair of files labeled the Order and Mapped Graph files. The Mapped

Graph holds the final form of the SDFG graph (including passgates) written in the DOT[13]

graph description language. The Order file lists the column assignment of each operation in the

graph. Together these files are used to represent a mapping that can be processed by the

software tools in the rest of the design flow.

3.6 MAPPING TO DEDICATED PASSGATES

During design space exploration, a set of Fabric Models that employ a mix of ALUs and

Dedicated Pass Units were tested to determine their performance (power/energy) characteristics

(Section 6.0). In order to perform mapping to a Fabric model with the dedicated passgates

feature, the column-assignment heuristic simply checks to see if a dedicated passgate is available

when mapping pass operations. Effectively this adds a dedicated passgate preference when

dealing with passgate operations. When generating the PDW for each non-pass operation, the

dedicated passgate locations are left out which prevents the heuristic from placing non-passgates

into dedicated passgate units. Although the current version can support these mixed ALU/DP

Fabric Models, further modifications will be needed to support more elaborate heterogeneous

models (Section 7).

 44

4.0 FABRIC INTERCONNECT MODEL (FIM)

In order to facilitate creation of the design space exploration toolset a fabric model description

format was created. Built using extensible markup language (XML), the fabric interconnect

model (FIM) format specifies functional units used within the Fabric as well as the placement of

functional units and the interconnect between them. FIM allows for rapid writing and testing of

new fabric models and can be written directly by a user. In addition tools to support using the

FIM format were developed including verification, visualization and a programming interface.

4.1 EXTENSIBLE MARKUP LANGUAGE (XML)

Extensible Markup Language is an open-standard general-purpose markup language created by

the World Wide Web Consortium (W3C)[14]. XML provides a user and computer readable

format for holding data with the goal of utilization across multiple systems and applications.

Unlike languages such as HTML or VHDL, XML (syntax) tags do not come predefined. For the

most part the syntax (elements, attributes, and their properties) of each XML file is specified by

the format designer. A major advantage to using XML is the large amount of support code

available allowing easy reading, writing, interpreting, and verification. Figure 26 shows an

example XML file which contains a short CD catalogue. CATALOGUE is the root element and

 45

contains the type attribute as well as one or more <CD> elements. Each CD contains child

elements for TITLE, ARTIST, COUNTRY, PRICE, and YEAR.

 <?xml version="1.0" encoding="utf-8"?>
<CATALOGUE type="music">
 <CD>
 <TITLE>But seriously</TITLE>
 <ARTIST>Phil Collins</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Atlantic / Wea</COMPANY>
 <PRICE currency="us">11.98</PRICE>
 <YEAR>1989</YEAR>
 </CD>
</CATALOGUE>

Figure 26: A short CD catalogue written using XML.

4.2 FIM DEFINED

The FIM format was designed with the goal of creating a relatively simple method for the design

space exploration team to specify a fabric model. Each type of functional unit used in the Fabric

is defined using the FTU (Fabric Topological Unit) definition element <ftudefine>. All

operations a functional unit can perform are listed within an <ftudefine> using the operation

element <op>. In the proposed Fabric architecture, functional units are also required to have the

ability to perform a NoOp operation so that they can be turned off when not in use, the opcode

for this functionally is included as an attribute to <ftudefine>. The FIM specification can be

easily expanded to provide additional information about the fabric model.

One particular hardware feature which was added after the initial development is the

Integrated Constant (IC) feature (explained in detail in Section 6.0). The FIM specification was

expanded to add support for enabling/disabling of the Integrated Constants feature to functional

 46

unit definition (<ftudefine>) elements using the attribute useic. The FIM code which specifies a

commonly used ALU is shown in Figure 27. This example indicates that the functional unit type

with name “alu0” can perform 18 operations in total; the opcode of each is defined using the

code attribute of each op element.

<ftudefine name="alu0" noop="10111" useic="false">
 <op code="00001"> + </op>
 <op code="00010"> - </op>
 <op code="00011"> * </op>
 <op code="10011"> == </op>
 <op code="00111"> ^ </op>
 <op code="01110"> > </op>
 <op code="10000"> >= </op>
 <op code="01111"> < </op>
 <op code="10001"> <= </op>
 <op code="10010"> != </op>
 <op code="00100"> & </op>
 <op code="00101"> | </op>
 <op code="01001"> << </op>
 <op code="01011"> >> </op>
 <op code="00000"> pass </op>
 <op code="10100" order="reverse"> pass </op>
 <op code="11111"> mux </op>
 <op code="01000"> ! </op>
</ftudefine>

Figure 27: FIM Code for an ALU Definition.

The placement of functional units and interconnect is described using a series of tags

which create the pattern that represents a Fabric’s layout. Once defined the pattern can be used to

model a Fabric of any given height and width. The FIM Pattern description of an 8:1

multiplexer-based interconnect model is shown in Figure 28. The interconnect portion is

described using the <operand> and <range> tags. <range> describes the relative distances to the

left and right of the functional unit that could be reached for a particular operand. For example

<operand number=”0”> <range left = “-3” right = “4”/> </operand> gives operand zero access to

 47

the outputs of the functional units in positions -3, -2, -1, +0, +1, +2, +3, and +4 relative to the

current functional unit’s position.

<rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0">
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="1">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="2">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
</rowpattern>

Figure 28: FIM Pattern Section for a standard 8:1 multiplexer based model.

The elements (tags) and attributes that makeup the FIM file format are described in Table

1. The inclusion of the rowpattern and ftupattern elements allow for the creation of nearly any

conceivable configuration of functional units and interconnect. Consider Figure 29, in this

model odd numbered rows use 8:1 multiplexer-based interconnect while even numbered rows

use 4:1 multiplexer-based interconnect. In addition dedicated passgates (functional units that

only perform the pass operation) are used for the even half of the functional units and arithmetic

and logical units (ALUs) are used for the odd half. The FIM pattern code begins with a

rowpattern element with attribute repeat set to forever, this states that the rows described within

this rowpattern should be used to fill up the remaining rows of the Fabric Model(in this case all

of them). The first row element contains a single group of functional units which also is repeated

forever, meaning that the functional and topological (connectivity) definitions (FTUs) contained

 48

within the pattern should be used to fill up all columns of the Fabric. The first FTU uses the alu0

functional unit, which is defined elsewhere in the same FIM file. All three operands are

connected to inputs -3, -2, -1, 0, +1, +2, +3, and +4 (8:1 multiplexer) via the operand and range

elements. The next FTU uses the pass type and only connects a single operand. Similarly the

second row element contains the ftupattern, FTU, operand, and range elements to describe an

alu0/pass pattern which connects each operand to inputs -1, 0, +1, and +2 (4:1 multiplexer).

Table 1: The Complete FIM specification: Elements and Attributes.

Element: Attributes: Description:
FIM Root Element, can contain multiple ftudefine and rowpattern elements

ftudefine Defines a functional unit used in this fabric, can contain multiple op
elements

 name Name used to reference this definition
 noop Control Signal for NoOp operation (required)

 useic Enable/Disable the Integrated Constant Hardware feature for this
functional unit (disabled by default)

op Defines an operation the current functional unit can perform
 code Control Signal for this operation

reversed Designates the operation uses operand 1 as its first input and operand 0
as its second input (optional)

rowpattern A pattern made up of rows of functional units with interconnect. Contain
1 or more row elements

repeat Number of times the rowpattern should be repeated with "forever"
designating unlimited repeating up to the height of the fabric.

row Represents a single row of a rowpattern, consists of 1 or more
ftupatterns

ftupattern Defines a pattern of functional units in the current row

repeat Number of times the ftupattern should be repeated with "forever"
designating unlimited repeating up to the width of the fabric

FTU Places a particular functional unit into an ftupattern; contains
interconnect for one to three operand elements.

 type The functional unit's type, should match the name attribute of one of the
ftudefine elements

operand Defines interconnect of a particular operand of the current functional unit
 number Designates which operand is being described
range Defines the relative range of locations reachable by the current operand
 left Range to the left
 right Range to the right

 49

<rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0"><!-- 8:1 ALU -->
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="1">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="2">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 <FTU type="pass"><!--8:1 Dedicated Pass-->
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0"><!-- 4:1 ALU -->
 <operand number="0">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU><!-- 4:1 Dedicated Pass -->
 <FTU type="pass" commutative="true">
 <operand number="0">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
</rowpattern>

Figure 29: FIM Pattern Code for a 50% Dedicated Passgates, half 8:1 & half 4:1 interconnect.

 50

4.3 SVG VISUALIZATION

In order to visualize fabric models software was developed to interpret a FIM file and produce a

Scalable Vector Graphics (SVG) representation. SVG is an XML-based method for defining

two-dimensional vector-based graphics [15]. Benefits of SVG include: optimized rendering for

all devices, support by a variety of applications (web browsers, image processors, etc), and

scaling to any size without loss of quality. Figure 30 shows a portion of a rendered SVG file for

the FIM file specified in Figure 29. Different colors are used to represent each column making it

possible to examine highly connected FIMs. Each functional unit lists its row / column location

within the Fabric, and below each input connection to a functional unit lists the operands which

have access to that particular input. For example R1C0 shows that operands 0, 1, and 2 have

access to R0C0, R0C1, and R0C2. For dedicated passgates (ex: R1C1) the inputs are all listed as

connecting to operand ‘P’ which is used to designate that the dedicated passgate is able to pass

any of the inputs through to the output.

Figure 30: Portion of a rendered SVG file for FIM shown in Figure 20.

 51

4.4 FIM VERIFICATION

A number of methods exist which allow for the verification of XML files against a structural

definition. The most commonly used methods include Document Type Declarations

(DTDs)[16], RELAX NG[17], and XML Schema[18]. XML Schema provides an XML-based

method of describing the elements and attributes, the relationships between elements, and the

range of values allowed for content used for each element/attribute which fully describes what

could be written in an XML document. Figure 31 shows the XML Schema which describes the

format of the CD catalogue from Figure 26. Each XML element usable in the FIM is defined as

a complex or simple type which defines the type of data, attributes, and elements contained

within the element. The first defined element is CATALOGUE which contains only a sequence

of CD elements as well as having the required attribute type. The CD element type is defined as

a sequence containing the TITLE, ARTIST, COUNTRY, COMPANY, PRICE, and YEAR

elements. The first four can contain only string data, PRICE contains a currency value, and

YEAR uses the year datatype.

 52

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema targetNamespace="http://cds.org/SimpleSchema.xsd"
 elementFormDefault="qualified"
 xmlns="http://cds.org/XMLSchema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="CATALOGUE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CD" maxOccurs="unbounded" type="CDType"/>
 </xs:sequence>
 <xs:attribute name="type" use="required" type="xs:string"/>
 </xs:complexType>
</xs:element>
<xs:complexType name="CDType">
 <xs:sequence>
 <xs:element name="TITLE" type="xs:string"/>
 <xs:element name="ARTIST" type="xs:string"/>
 <xs:element name="COUNTRY" type="xs:string"/>
 <xs:element name="COMPANY" type="xs:string"/>
 <xs:element name="PRICE">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute name="currency" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="YEAR" type="xs:gYear"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

Figure 31: XML Schema Definition (XSD) for Catalogue of CDs XML file shown in Figure 26.

 Numerous tools and XML engines support verifying XML files against an XML Schema

Definition (XSD). Software was created using Microsoft’s XML Core Services (MSXML)

Software development kit (SDK) [19] that verifies any XML file against any XML Schema

(XSD). The program was specifically used to provide verification of each FIM file created for

design space exploration against the FIM XSD. Additionally the FIM XSD can be used by XML

writing applications such as XMLSpy[20], XML Notepad[21], and Visual Studio[22] to shorten

 53

the development time of FIM files by providing features such as code completion and visually

showing code which doesn’t meet the XSD specification.

4.5 FIM FRONT-END INTERFACE

A single FIM reader and FIM “front-end” object were developed to provide a single unified

interface that can be queried for information that any component of the Fabric CAD and design

space exploration tools may require. The FIM front-end takes as inputs the target fabric height

and width and a valid FIM file. The front-end then interprets the FIM’s pattern elements in order

to fill an internal fabric representation with functional units and interconnect. Relative range

values are interpreted and translated into absolute positions within the Fabric. The FIM front-

end object supports the ability to examine fan-ins, fan-outs, configuration signals, programmable

operations, and hardware features at any location in the Fabric. As new hardware features are

added they are first supported by the reader / front-end object, afterwards “back-end” tools such

as the Fabric Mapper can check for these features with simple query functions.

 54

5.0 VERIFICATION AND CONFIGURATION

In order to test the results of a fabric mapper and generate the control signals needed for

configuring Fabric hardware, the FIM Fabric Printer tool was developed. The FIMFabricPrinter

analyzes a FIM to determine the length and number of all control signals needed for fabric

programming. The Printer then generates the set of control signals to configure the given fabric

in the form of Modelsim “do” files which allows for simulation and power analysis. To verify

that the mapping is valid each functional unit placement and use of interconnect is checked

against the capabilities of the FIM. In addition the Printer creates a visualization of the fabric

configured with the given mapping and generates statistics related to functional unit and

interconnect usage. When provided with input and results data, the tool can also generate a

verification file for use during hardware simulation to verify that the hardware is configured

properly and the simulation results are reliable.

5.1 PARAMETERS AND INPUTS

The Printer takes for input the Order and Mapped Graph files represent a mapping, a FIM format

file, and optionally an input/output data file. In addition a number of parameters are used to

customize the outputs (shown in Figure 32). The height and width of the target Fabric are

required by the FIM interpreter (FIM Front-End) to create a Fabric Model needed for the Printer.

 55

Datasets and Verification Limit determine the number of input and output datasets which are

placed into .do files used for running simulations. Filltype and Output Mux Cardinality are used

to designate where and how the output values can be extracted from the Fabric. The output rows

are determined by the equation shown in Figure 33. Without this feature outputs must be passed

all the way to the last row of functional units in the Fabric. With the passgate Filltype, functional

units below the mapped operation that generates each result are programmed as passgates so that

the output results are available from the last row. The NoOp setting ignores the issue of

retrieving results completely and programs everything below the used portion of the Fabric as

NoOps.

Parameter Description
Benchmark name Base name to use for all output file

Columns Width of target Fabric
Rows Height of target Fabric

Datasets Number of input sets to place into result files

Verification limit Limits the number of input datasets used to the number of output
datasets available

Fill type Output muxes, Passgates, or NoOps used to fill the bottom of the
Fabric

Output mux cardinality Designates Cardinality to use for output mux feature (if enabled)

Figure 32: FIM Fabric Printer Parameters.

For i = 0 to k-1

⎡ ⎤)1/()1(+−− khih

k: Output multiplexer cardinality
h: Fabric height

Figure 33: Equation to determine output rows when using outputmux fabric feature.

 56

5.2 VERIFICATION AGAINST FIM

The FIMFabricPrinter reads the Order and Mapped Graph files and builds an internal mapping

representation using a matrix of operations and NoOps. Traversing the matrix, the Printer checks

each operation against the location’s functional unit to ensure it can be performed. The input

connection of each operand is then checked against the Fabric’s interconnect to ensure that a

connection between the two functional units is legitimate. Any error encountered during

verification will prevent the Printer from generating the configuration and output files. All

mapping errors are logged to aid in debugging incorrect mappings and mappers.

5.3 DYNAMICALLY DETERMINING MULTIPLEXER CONTROL SIGNALS

A key feature of the Fabric design space exploration flow is the ability to rapidly test a variety of

fabric models. Although the functional units used in a Fabric must be fully described in the FIM

model, including specifying the control signals to produce each operation the functional unit can

perform, the interconnect portion is described only by giving the range of inputs that it can

support. Determining the actual control signals for this interconnect has been automated by the

design flow to reduce the time to test alternative FIMs.

 To determine the length of each multiplexer control signal, the number of inputs is

rounded up to the nearest standard multiplexer size (2:1, 4:1, 8:1, etc). Next each connection

(relative values given by <range> FIM elements) is assigned a binary value control signal

beginning with the leftmost connection receiving the greatest value and moving rightward.

Values range from (in decimal) 12 −n down to 0, n being the number of bits needed to control

 57

the multiplexer. Figure 34 shows an example of input select control signal generation for a 4:1

mutliplexer. Relative range value -2 is assigned to the highest available binary value ‘11’, then

proceeding to the right each relative range value is assigned to the next highest binary value.

<range left ="-2"
right ="1"/>

Figure 34: Example of control signal generation using 4:1 multiplexer.

5.4 BUILDING CONFIGURATION FILES

The Printer writes the control signals for each functional unit and interconnect multiplexer to a

series of ModelSim script files used for simulation. Each fabric row is controlled using a pair of

do files; one each for functional units and interconnect. The Printer begins at the first row of the

mapping matrix and processes each operation and NoOp from left to right. For each position the

operation control signal is retrieved from the parameterized fabric model and placed into the

corresponding row’s do file. Afterward multiplexer control signals are found for each operand by

performing a look up into the dynamically generated control signals. The first row will also

 58

contain the number of input datasets used (as per the parameter) written in the form of force

commands which set the inputs to the functional units (with integrated constants). In addition a

verification (.vf) file is generated if results data is available. The file can be compared against

simulation results to verify that the fabric configuration and simulation model are correct.

5.5 GENERATING STATISTICS

While traversing the mapping matrix the Printer records functional unit and interconnect usage

statistics. For each row the Printer tracks the number of non-pass operations, passgate

operations, and NoOps. In addition it determines and records the minimum multiplexer needed

to implement each connection between operations (each usage of interconnect). These statistics

have proven helpful in the design space exploration process and provide guidance on which

alternative FIMs to pursue.

5.6 GENERATING VISUALIZATION

FIMFabricPrinter produces a Scalable Vector Graphics (SVG) file which provides a

visualization of the parameterized Fabric configured with the given mapping. As shown in

Figure 35 the SVG displays the mapped function of each position in the Fabric as well as the

input and output nodes of the mapped SDFG. The utilized interconnect is shown as lines between

functional units. Unused functional units are set to NoOps and are displayed as grey boxes.

 59

Figure 35 : SVG representation of Sobel mapping on 8:1-based FIM.

 60

6.0 PERFORMANCE RESULTS

In this section we will employ five metrics of performance: Mapping Height, Mapper Runtime,

Power, Energy, and Delay. In order to judge the performance of the Heuristic Mapper we

compare the mappings produced by the heuristic against those produced by two alternative

methods, a Mixed Integer Linear Program Mapper and a Constraint Program Mapper, using all

five metrics. These comparisons were performed using the 8:1, 5:1, 4:1, and 3553:1 fabric

interconnect models. In order to understand the progression of the Heuristic Mapper we will also

compare the mapping sizes of the Initial, Advanced, and Final versions using the 5:1 FIM. The

results of running the Heuristic Mapper on a variety of FIMs are also included. Finally the 8:1

results will be compared against FPGA and ASIC implementations to determine how the Fabric

compares against these hardware alternatives.

 To perform power/energy comparisons the appropriate fabric configuration files were

generated for each combination of Mapper and FIM. For each combination the minimum size

(width/height) needed to implement all seven benchmarks was used to create an Application

Specific Fabric (ASF)1. Each ASF was implemented in parameterized VHDL and synthesized

using 160nm OKI standard cell ASIC process. Synthesis was executed using Design Compiler

1Team member Gayatri Mehta handled creation, simulation, & power/energy profiling of the hardware

fabric models.

 61

and power was estimated using PrimePower; both tools from Synopsys [23]. PrimePower is

considered to provide power estimations within approximately 10% accuracy of a Spice

simulation of the circuit [24].

6.1 FABRIC INTERCONNECT MODELS

6.1.1 8:1-based Fabric Models

The 8:1-based Fabric Models employ 8:1 multiplexers to build each stripe of interconnect

between rows of Functional Units. Therefore each operation has a maximum fan-in of eight and

a maximum fanout of eight. The 8:1-based Fabric Models employed by this thesis pull from

inputs in the column positions -3, -2, -1, +0, +1, +2, +3, and +4 relative to the position of any

given Functional Unit. A portion of the rendered SVG representation of this type of Fabric

Model is shown in Figure 36. Notice that each operand of each functional unit can connect to

any of the eight inputs.

Figure 36: Visualization of 8:1-based Interconnect.

 62

6.1.2 4:1-based Fabric Models

The 4:1-based Fabric Models employ 4:1 multiplexers to build each stripe of interconnect.

Figure 37 shows a portion of the rendered SVG representation of this Model. Each operation has

a maximum fan-in of four and a maximum fan-out of four. Each of the multiplexers used for the

ALU operands pulls from locations -1, +0, +1, and +2 relative to the position of any given

Fucntional Unit.

Figure 37: SVG Visualization of 4:1-based Interconnect.

 The 5:1 Fabric Interconnect Model also builds stripes of interconnect using a 4:1

multiplexers. Figure 38 shows a portion of the rendered SVG representation of this model.

Notice that the first operand (labeled 0) pulls from relative locations -2, -1, +0, and +1 while the

other operands (1 and 2) are unchanged from the 4:1 Models. Through this one minor change a

maximum fan-in and fan-out of five can be achieved with only a minor change in hardware (the

additional wiring to connect the extra input). As shall be seen, the increased connectivity allows

the Heuristic Mapper to generate considerable improved mappings.

 63

Figure 38: SVG Visualization of 5:1-based Interconnect.

The 6:1 Fabric Interconnect Model shown in Figure 39 also uses 4:1 multiplexers. In this

case operand zero pulls from relative locations -2, -1, +0, +1 while operand one pulls from +0,

+1, +2, and +3. This provides the Model with a maximum fan-in and fan-out of six. The

drawback of this Model is that it relies heavily on operand zero coming from the left and operand

one coming from the right. If an operation being mapped is commutative then the positioning of

inputs is less of an issue; however for non commutative operations the inputs cannot be swapped,

which makes this model more restrictive than 5:1 in those cases.

Figure 39: SVG Visualization of 6:1-based Interconnect.

 64

6.1.3 3553:1-based Fabric Models

The 3553 Fabric Models employ a mixture of 2:1 and 4:1 multiplexers. Figure 39 shows a

portion of the rendered SVG representation of this model. Every first and fourth Functional Unit

in the Fabric is connected to its operands using three 2:1-multiplexers, they are configured such

that operand 0 connects to relative locations -1 and +0, while operands 1 and 2 are connected to

operands +0 and +1. This gives these locations a maximum fan-in and fan-out of 3. Every

second and third location uses the 5:1 configuration already described.

Figure 40: SVG Visualization of 3553:1-based Interconnect.

6.2 BENCHMARK KERNELS

For the current stage of Fabric development, a set of seven benchmark kernels from image and

signal processing algorithms was employed for testing of the Fabric design flow. All of these

benchmarks except Laplace and Sobel are part of the Mediabench suite [25]. Laplace and Sobel

were created using commonly available source code.

 65

Adpcm Encoder and Decoder: An Adaptive Differential Pulse Code Modulation,

ADPCM is employed in audio and video compression algorithms including video

conferencing and Voice over IP [26].

GSM: The core channel encoding kernel used in wireless communications for digital

mobile phones. GSM-based services are used by more than 2 billion people across the

world making it the most popular cell phone standard [27].

Idct Column and Row: Column-wise and row-wise decompositions of a two-dimensional

inverse discrete cosine transformation (DCT) that was extracted from the MPEG II

decoder. MPEG II is the video compression algorithm commonly used to decode DVD

video[28].

Laplace: An algorithm to find the edges between features in an image. The Laplace edge

detection technique calculates these edges by computing the 2nd derivative in two

directions of 5 x 5 blocks of pixels.

Sobel: Another edge detection algorithm. The Sobel edge detection technique calculates

these edges by computing the gradient in two directions of 3 x 3 blocks of pixels.

 As we can see from Table 2, idctcol and idctrow are the largest benchmarks in terms of

actual operations; in addition they also have the highest density values. Density here meaning:

(total number of operations + passgates) / height. All benchmarks become “thinner” and less

dense when Integrated Constants(IC) are used in the Fabric. In general we find that less dense

benchmarks are easier to map meaning that the Heuristic Mapper is more likely to find a near

optimal solution.

 66

Table 2: Benchmark sizes

ASAP Regular
Constants(RC)

ASAP Integrated
Constants(IC) ASAP

 #operations #passgates Width Density #passgates Width Density Height
adpcm_decoder 29 79 16 8.31 48 11 5.92 13
adpcm_encoder 36 130 17 10.38 77 12 7.06 16
GSM 28 129 14 8.72 63 9 5.06 18
idctcol 61 88 20 12.42 44 11 8.75 12
idctrow 52 57 17 10.9 34 11 8.6 10
Laplace 29 17 15 5.75 4 13 4.13 8
Sobel 24 18 10 4.67 7 8 3.44 9

6.3 SOLUTION IMPROVEMENT DURING DEVELOPMENT OF HEURISTIC

The motivation behind heuristic improvement was primarily the desire to find decent mappings

for 5:1 and other limited interconnect FIMs. Table 3 shows the differences between three distinct

versions of the heuristic. Table 4 shows the results of running the heuristic with each version.

Using 5:1 FIM the initial mapper was only able to solve 5 out of 7 benchmarks; this was

remedied by the Force system mechanic added into the revised version. In order to further

improve the results a second level of lookahead was added into the final version. Additionally

time to map is significantly reduced in post-initial versions, although it should be noted that no

version was optimized for runtime.

 67

Table 3: Heuristic Mapper Versions Summary.

Initial Version: Basic Rule (PDW)

One level of lookahead (CDW).

ALU Desirability: Used for tiebreaking.
Revised Version: Optimized for future child placement (Potential Connectivity).

“Force” system to converge problematic operations so that they

could be solved.

Row & Passgate Centering
Final Version: Two levels of lookahead added to all logic (GDW, Forces).

Priority Operations

Support for some heterogeneous fabrics (Dedicated Passgates)

Table 4: Heuristic Versions: Processing time & added rows for 5:1-based Standard FIM.

 Initial Revised Final

Time to
Map (s) Added rows

Time to
Map (s) Added rows

Time to
Map (s) Added rows

Adpcm_decoder 9 11 3 0 4 0
Adpcm_encoder 79 13 16 2 10 2
GSM 18 3 1 1 3 1
Idctcol 37 no solution 11 12 8 6
Idctrow 15 no solution 4 6 6 3
Laplace < 1 0 < 1 0 1 0
Sobel 1 1 < 1 1 1 0

 68

6.4 COMPARING MAPPING TECHNIQUES

Currently there exist two alternative methods of solving the Fabric Mapping problem, the first

being a Mixed Integer Linear Program (MILP) 2. In the MILP solution a set of object functions

and constraints are used to define the mapping problem. A MILP solver then searches for a

solution which correctly minimizes the objective value while meeting all the constraints. In our

case the objective function is to minimize the number of edges (fabric interconnect links) that are

infeasible with the given FIM. In order to find a valid mapping, the MILP solver must find a

solution with objective value equal to zero, so that there are no “infeasible” connections. The

constraints ensure that only each operation occupies one position, operations are placed in the

correct row, and that each position is used by only one operation.

 Unlike the Heuristic Mapper this solution will only find an “optimal’ result, meaning a

result where all operations are mapped into the row they are found in a row-aligned SDFG. The

MILP solution lacks the ability to “push” operations down to later rows. ILOG’s CPLEX 9.0

was employed to execute the MILP solver [29].

 The second alternative method employs Constraint Programming and a heuristic

approach to create a valid mapping3. In Constraint Programming a set of relations between

variables are described using constraints. In addition a distribution strategy is included to

determine how the search space is explored. Much like the MILP Solution, constraints are used

2 The MILP Mapper was developed by team member Mustafa Baz.

3 The Constraint Programming Mapper was developed by Fabric team member Professor Brady Hunsaker

of the Industrial Engineering Department.

 69

to define the mapping problem. The Constraint Program was implemented in the open-source

Mozart/Oz environment [30].

 Similarly to MILP the CP is unable to dynamically “push” operations down to later rows,

however by adding additional automation we are able to add additional rows of pass operations

to the CP’s row-aligned input, these additional rows add a degree of flexibility allowing

additional benchmarks to be solved.

6.4.1 Runtime Comparison

Table 5 lists runtime numbers found by running each mapper on a Pentium IV 3.0 GHz machine.

Dashes indicate that no valid mapping could be found. MILP consumes significantly more time

compared to the CP and heuristic solutions. In general runtime increases as the connectivity

decreases.

Table 5: CPU Runtime (seconds) of each mapper for 3553:1, 4:1, 5:1 & 8:1 standard FIMs.

3553:1 Standard

FIM 4:1 Standard FIM 5:1 Standard FIM 8:1 Standard FIM
 MILP CP H MILP CP H MILP CP H MILP CP H
Adpcm_decoder 539 1 7 539 1 7 960 2 4 155 1 < 1
Adpcm_encoder - - 64 - 86 16 2746 277 10 306 1 4
GSM - 25 48 2613 1 4 1801 2 3 514 1 < 1
Idctcol - - 25 - 307 19 7587 7 8 894 10 1
Idctrow - 512 8 - 512 8 2049 36 6 460 1 < 1
Laplace 181 23 2 181 23 2 46 47 1 13 27 < 1
Sobel - - 1 104 < 1 1 33 1 1 37 < 1 < 1

 70

6.4.2 Mapping Size Comparison

In Table 6 we see that the 8:1 mapping is a relatively easy problem for each mapper, while the

5:1 model requires the heuristic and CP to add up to 6 rows. At 4:1 the MILP is no longer able

to solve all the benchmarks, and at 3553 the CP begins to fail as well.

Table 6: Rows added by each mapper for 3553:1, 4:1, 5:1 & 8:1 standard FIMs.

3553:1 Standard

FIM 4:1 Standard FIM 5:1 Standard FIM 8:1 Standard FIM
 MILP CP H MILP CP H MILP CP H MILP CP H
Adpcm_decoder 0 0 8 0 0 2 0 0 0 0 0 0
Adpcm_encoder - - 14 - 3 4 0 7 2 0 0 0
GSM - 0 4 0 0 3 0 0 1 0 0 0
Idctcol - - 16 - 4 15 0 0 6 0 0 0
Idctrow - 12 9 - 3 8 0 1 3 0 0 0
Laplace 0 1 1 0 2 0 0 1 0 0 1 0
Sobel - - 1 0 0 0 0 0 0 0 0 0

6.4.3 Power / Energy Comparisons

Table 7 and 8 show the power and energy usage of each FIM / Mapper combination where all

seven benchmarks are mapable. Looking at the 8:1 results shown in Figure 41, each mapper

produced similar energy numbers (<10% variance) with the heuristic performing slightly better

overall.

 71

Table 7: Power (mW) of fabric mappings for 3553:1, 4:1, 5:1, & 8:1 standard FIMs across methods.

3553:1
Std FIM

4:1 Std
FIM 5:1 Std FIM 8:1 Std FIM

 H CP H MILP CP H MILP CP H
Adpcm_decoder 3.4 2.9 2.7 2.9 2.7 2.7 3.52 3.38 3.5
Adpcm_encoder 20.2 18.5 15.4 17.4 17.7 18.0 20.68 19.84 20.08
GSM 16.2 19.6 17.6 19.6 19.4 19.3 22.19 22.27 21.45
Idctcol 35.3 31.9 38.9 28.9 27.2 33.4 31.87 31.95 29.09
Idctrow 40.1 40.7 47.2 31.8 31.2 39.4 25.74 36.57 36.22
Laplace 3.0 4.8 3.1 4.0 4.4 3.9 4.42 5.03 4.3
Sobel 3.5 5.0 3.5 5.0 5.0 4.7 5.68 5.81 5.65

Table 8: Energy (pJ) of fabric mapping for 3553:1, 4:1, 5:1, & 8:1 standard FIMs across methods.

3553:1 Std

FIM 4:1 Std FIM 5:1 Std FIM 8:1 Std FIM
 H CP H MILP CP H MILP CP H
Adpcm_decoder 175 113 137 107 100 105 151 145 151
Adpcm_encoder 1068 738 785 662 672 722 910 873 884
GSM 937 880 986 843 832 868 1110 1114 1073
Idctcol 2259 1624 2412 1415 1334 1704 1753 1757 1600
Idctrow 2445 1955 2785 1464 1436 1889 1858 1902 1883
Laplace 146 172 147 137 150 139 172 196 168
Sobel 183 193 175 188 185 181 244 250 243

 72

0

200

400

600

800

1000

1200

1400

1600

1800

2000

En
er

gy
 (p

J)

Adpcm_decoder Adpcm_encoder GSM Idctcol Idctrow Laplace Sobel
Benchmark

Energy Comparison With 8:1 FIM

8:1 Std FIM MILP 8:1 Std FIM CP 8:1 Std FIM H

Figure 41: Energy Comparison of 8:1 standard FIM across mappers.

Looking at the 5:1 results in Figure 42, the heuristic has some difficulty mapping the Idctrow and

Idctcol benchmarks producing larger (worse) mappings. Due to the increase in mapping size, a

larger fabric is needed. In this case a 20x19 fabric is used to implement the 5:1 Heuristic

Mapper solutions, while CP & MILP use a 20x18 fabric. In general solutions with additional

rows and more delayed operations within the solution require more pass operations to implement

which leads to higher power/energy results.

 73

0

200

400

600

800

1000

1200

1400

1600

1800

2000

En
er

gy
 (p

J)

Adpcm_decoder Adpcm_encoder GSM Idctcol Idctrow Laplace Sobel
Benchmarks

Energy Comparison WIth 5:1 FIM

5:1 Std FIM MILP 5:1 Std FIM CP 5:1 Std FIM H

Figure 42: Energy Comparison of 5:1 standard FIM across mappers.

6.4.4 Delay Comparison

Table 9 shows the time to execute (delay) of each mapping when implemented on the Fabric.

Figure 43 shows the average delay for each mapper/FIM combination. For 8:1 the delay of all

mappings is almost identical. For 5:1 & 4:1 the heuristic solutions perform slightly worse. Only

the heuristic is able to solve all the benchmarks for 3553:1, however these mappings are

particularly large and thus produce longer delays.

 74

Table 9: Total delay (ns) of mappings when implemented onto the Fabric.

3553:1
Std FIM

4:1 Std
FIM 5:1 Std FIM 8:1 Std FIM

 H CP H MILP CP H MILP CP H
Adpcm_decoder 43.5 32.1 33.3 30.8 30.8 32.1 35.4 35.4 35.4
Adpcm_encoder 52.0 38.0 41.8 36.8 36.8 38.0 39.5 39.5 39.5
GSM 50.1 43.7 47.5 42.0 42.0 43.7 48.4 48.4 48.4
Idctcol 63.0 48.9 60.3 42.5 42.5 49.0 47.2 47.2 44.0
Idctrow 52.0 40.6 49.4 34.2 34.2 40.6 37.5 37.5 37.5
Laplace 24.6 23.4 22.1 22.1 22.1 23.4 22.2 25.4 22.2
Sobel 27.8 26.6 25.3 25.3 25.3 26.6 28.6 28.6 28.6

44.7

36.2

40.0

33.4 33.4

36.2 37.0 37.4 36.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

A
ve

ra
ge

 d
el

ay
 (n

s)

GH CP H MILP CP H MILP CP H

3553:1 Std
FIM

4:1 Std FIM 5:1 Std FIM 8:1 Std FIM

 Figure 43: Comparing Average runtime for each Mapper/FIM combination.

 75

6.4.5 Analysis

From the mapping results we can see that both 4:1 and 3553:1 FIMs are significantly harder to

map for, while 8:1 and 5:1 are relatively easier for the mappers to handle. Due to the nature of

each mapper, MILP and CP tend to find closer to optimal (no rows added) solutions, while the

heuristic is willing to delay operations into lower rows. This property also allows the heuristic to

solve even the tough 3553:1 and 4:1 cases. However, at that point, the quality of the solutions

becomes so poor that the use of these FIMs becomes questionable.

 Comparing the mappers using 8:1 we can see that while each mapping’s power / energy

results are relatively similar, the MILP takes 13X to 894X as much processing (mapping) time as

the Heuristic Mapper. Clearly there is an implicit tradeoff made for each of these mappers. The

Heuristic Mapper is designed to find any valid mapping, while MILP and CP spend significant

time exploring possible solutions in order to come up with an optimal solution. In addition we

can see that additional improvements to the heuristic will be required if the 4:1 and 3553:1 FIMs

are going to be used over the 5:1 and 8:1 solutions.

6.5 HEURISTIC MAPPER RESULTS ON A VARIETY OF FABRIC MODELS

After finding the poor performance of all mappers on “less connected” FIMs (those using smaller

multiplexer sizes) the Heuristic Mapper was used to explore mapping on alternative FIM models

described in Table 10.

 76

Table 10: FIM variations, each could be coupled with any level of interconnect (8:1, 5:1, etc).

Standard (std): Identical ALUs for all positions.

All inputs must be passed down from the top of the Fabric.

Integrated Constants
(IC):

Identical ALUs for all positions.

Constant inputs preloaded instead of passing down.

Dedicated Passgates
(DP):

Dedicated passgates used for some portion of fabric (50%, 33%, etc)

All inputs must be passed down from the top of the fabric.

 The goal of Integrated Constants (IC) is to reduce the complexity of the mapping

problems by loading certain constant inputs (inputs which remain constant across all iterations of

a particular benchmark) into latches located inside each ALU.

 The goal of Dedicated Passgates (DP) is to reduce the area/power/energy of the Fabric by

replacing some percentage of ALUs in each row with dedicated passgate units (DPU). In

addition to being much smaller, these dedicated passgates use less power and energy than

standard ALUs.

6.5.1 Integrated Constants Results

Table 11 shows the number of rows that were added for the heuristic to find a solution for each

benchmark using the 8:1, 5:1 and 3553:1 FIMs with and without Integrated Constants. By

removing constant inputs from the SDFG, the problem size is significantly reduced (see Table 2),

resulting in smaller solutions. The energy results shown in Figure 44 present a mixed picture.

There is a power and energy cost to pay for the additional hardware required to handle constant

 77

preloading. In smaller benchmarks (decoder, laplace, sobel), the additional hardware is not worth

the cost because these problems are already comparatively easy to map. In the larger benchmarks

(idctrow, idctcol, gsm), the benefits significantly outweigh the costs. The decision to use

Integrated Constants (IC) or Regular Constants (RC) should be determined by considering the

size of all the benchmarks a user wanted the Fabric to perform.

Table 11: Rows added to solve 8:1, 5:1, and 3553:1 Std & IC FIMs using Heuristic Mapper.

 8:1 Std 8:1 IC 5:1 Std 5:1 IC 3553:1 Std 3553:1 IC
Adpcm_decoder 0 0 0 1 8 4
Adpcm_encoder 0 0 2 1 14 5
GSM 0 0 1 0 4 0
Idctcol 0 0 6 0 16 4
Idctrow 0 0 3 4 9 8
Laplace 0 0 0 0 1 1
Sobel 0 0 0 0 1 2

 78

0

500

1000

1500

2000

2500

En
er

gy
 (p

J)

Adpcm_decoder Adpcm_encoder GSM Idctcol Idctrow Laplace Sobel
Benchmark

Energy Comparison Std vs IC

5:1 Std 5:1 IC 3553:1 Std 3553:1 IC

Figure 44: Energy Comparison between Standard and Integrated Constant FIMs.

6.5.2 Dedicated Passgates Results

Table 12 shows that FIMs using Dedicated Passgates produce slightly larger mappings than

standard FIMs. However despite the larger mappings the energy results in Figure 45 show that

the 8:1 DP solutions have the best energy characteristics. Meanwhile the 5:1 and 6:1 DP

solutions are not consistently better their corresponding standard Models. It seems that the

Heuristic Mapper is better able to take advantage of dedicated passgates when the Fabric uses a

higher level of connectivity (8:1), leading to lower energy consumption.

 79

Table 12: Rows added to solve 8:1, 6:1, and 5:1 Standard & Dedicated Passgate FIMs

 8:1 6:1 5:1

 Std
50%
DP

33%
DP Std 50% DP 33% DP Std

50%
DP

33%
DP

Adpcm_decoder 0 0 0 1 1 0 0 1 1
Adpcm_encoder 0 1 0 2 4 2 2 2 2
GSM 0 0 0 0 0 1 1 1 0
Idctcol 0 2 1 5 6 6 6 7 6
Idctrow 0 1 0 3 4 5 3 4 4
Laplace 0 2 1 1 2 1 0 3 1
Sobel 0 0 0 0 1 0 0 2 0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

En
er

gy
 (p

J)

Adpcm_decoder Adpcm_encoder GSM Idctcol Idctrow Laplace Sobel

Energy Comparison Standard VS Dedicated Passgates

8:1 Std 8:1, 50% DP 8:1, 33% DP
6:1 Std 6:1, 50% DP 6:1 33% DP
5:1 Std 5:1, 50% DP 5:1, 33% DP

Figure 45: Energy Comparison between 8:1, 5:1, Standard and Dedicated Passgates FIMs.

 80

6.6 COMPARING FABRIC VS CURRENT HARDWARE TECHNOLOGIES

Now we will consider how well the Fabric meets the stated goal of providing an FPGA

replacement while providing ASIC like power/energy results. Figure 46 shows a comparison

between custom ASIC implementations of the benchmarks, fabric implementations using the 8:1

50% DP FIM, FPGA implementations using a Xilinx Virtex 2P, and running each benchmark in

software on an Intel XScale 733 MHz processor. Table 13 shows the power results for each

implementation, while Table 14 provides the energy results. To determine the FPGA results,

delay was computed using post place-and-route simulations in ModelSim and these were used to

estimate power using Xilinx Xpower. XScale processor results were found using the XTREM

[31] SimpleScalar ARM simulator.

While the ASIC implementation receives the best energy scores, overall in terms of

power and energy performs the Fabric far outclasses the FPGA and XScale implementations.

Power improvements over the Virtex-2P ranged from 68X to 369X and energy improvements

from 38X to 127X. Compared to the XScale the Fabric used 7X to 92X less power and 87X to

1199X less energy.

The Fabric comes close to matching the power characteristics of a custom

implementation, at worst the Fabric uses 3X the power and 13X as much energy as

corresponding ASIC implementations. The power and energy difference between the Fabric and

direct ASIC implementations are primary due to the configurable interconnect found in the

Fabric implementation, which is significantly more complex than the dedicated routing used in

each custom ASIC implementation. Another portion of the difference comes from the increased

power and delay inherent in using configurable functional units over single purpose units.

 81

Table 13: Power (mW) usage of benchmark implementations on ASIC, Fabric, FPGA, and XScale.

ASIC

(0.16um)
Fabric (8:1, 50% DP)

 (0.16 um)
Virtex-2P
(0.13um)

XScale 733
MHz (0.18um)

Adpcm_decoder 0.802 2.28 842.01 195.84
Adpcm_encoder 4.99 14.6 1085.19 194.81
GSM 6.97 15.4 1049.01 198.68
Idctcol 16.13 24.6 4277.55 218.36
Idctrow 16.47 30.7 4258.87 215.82
Laplace 4.21 4.6 903.38 382.12
Sobel 5.088 4.11 1122.5 378.19

Table 14: Energy (pJ) usage of benchmark implementations on ASIC, Fabric, FPGA, and XScale.

ASIC

(0.16um)
Fabric (8:1, 50% DP) (0.16

um)
Virtex-2P
(0.13um)

XScale 733
MHz (0.18um)

Adpcm_decoder 7.218 98 10946 117557
Adpcm_encoder 79.84 642 24959 152020
GSM 139.4 770 34617 67763
Idctcol 354.86 1353 136882 336626
Idctrow 329.4 1596 127766 139562
Laplace 42.1 156 13551 177017
Sobel 61.056 177 22450 109800

 82

1

10

100

1000

10000

100000

1000000

En
er

gy
 (p

J)

Adpcm_decoder Adpcm_encoder GSM Idctcol Idctrow Laplace Sobel
Benchmark

Energy Comparison Between Hardware Technologies

ASIC (0.16um) Fabric (8:1, 50% DP) (0.16 um)
Virtex-2P (0.13um) Xscale (0.18um)

Figure 46: Energy Comparison between hardware technologies

6.7 COMPARING HEURISTIC AGAINST AS SOON AS POSSIBLE

During the course of developing the Fabric design flow, the ability to generate an As Soon As

Possible mapping of an SDFG was added to the design flow path. The ASAP mappings can

potentially be used as actual fabric mappings for a high connectivity homogeneous fabric. The

power / energy results of running these ASAP mappings can be used as a baseline to compare

new FIMs. Table 15 shows an energy comparison between a 32:1-based FIM used to implement

the ASAP mappings and the most (power / energy) efficient mappings the Heuristic Mapper

 83

could generate (8:1, 50% dedicated passgates). By employing the Heuristic Mapper the energy

usage can be reduced by a significant amount (32% to 64%) from the simplistic ASAP approach.

Table 15: Energy (pJ) comparison ASAP Schedule Solutions VS. Heuristic Mapper Solutions.

32:1 using

ASAP
8:1, 50% DP using
Heuristic Mapper

Times
improvement % reduction

Adpcm_decoder 274 98 2.79 64.22%
Adpcm_encoder 1535.04 642 2.39 58.15%
GSM 1533.3 770 1.99 49.78%
Idctcol 2712.5 1353 2.00 50.12%
Idctrow 4045.8 1596 2.53 60.54%
Laplace 232.76 156 1.49 32.81%
Sobel 325.115 177 1.84 45.64%

 84

7.0 CONCLUSION

The electronic design automation suite presented by this thesis provides a complete C to Fabric

design flow for the Coarse-Grain Reconfigurable Fabric target platform. This suite allows for

rapid design space exploration of the Fabric device during Research and Development while also

providing the basis for a full CAD toolset to be used with the device. Each of the contributions

of this thesis assist in accomplishing these overarching goals.

Heuristic Mapper: Handles the central problem of configuring the Fabric to perform a given

functionality. Very fast, expandable, and capable of solving the mapping problem for a

wide range of Fabric Models.

Fabric Interconnect Model (FIM): Facilitates rapid testing of Fabric Models by providing

the mechanism for configuring the Heuristic and overall Fabric EDA suite to target a

specific Fabric Models. Eliminates the need to reprogram Heuristic for every Fabric Model.

FimFabricPrinter: Provides quality assurance of the Fabric Mappings at an early stage

through visualization and verification of Fabric Mappings. Integrates support for simulation

and power/performance analysis of Fabric hardware through generation of set of Modelsim

script (“.do”) files facilitating the simulation of the Fabric device configured with any given

Mapping.

 85

The results of comparing Fabric implementations against FPGA, ASIC, and embedded

processor demonstrates that the Reconfigurable Coarse-grain Fabric can function as a viable

FPGA or ASIC alternative for system and system-on-a-chip designers interested in a low power

reconfigurable solution for accelerating application kernels. Even with a perfect Mapper and

fully optimized Fabric it will not be possible to match the power, energy, and performance

characteristics of a full custom ASIC implementation. This is partly due to the overhead of using

multiplexer based connectivity in the Fabric as opposed to the direct routing found in ASIC

implementations. The usage of reconfigurable ALUs also increases the size of the device

leading to increased wire length and increased power and reduced performance. These factors

cannot be eliminated but they can be minimized through careful design space exploration of the

Fabric and development of capable Mapping techniques to efficiently configure the Fabric.

7.1 FUTURE DIRECTIONS

While the Heuristic Mapper performs admirably for 8:1-based Fabric Models, its capabilities

seem to scale poorly as the amount of connectivity decreases. This is made obvious by the poor

performance of particular 5:1 and 3553:1 based models. A number of approaches could be

considered to remedy this issue, however it is the author’s opinion that the most promising

modifications lie in the area of incorporation elements of Global Lookahead. In addition further

modifications should be considered in order to better target heterogeneous Fabric Models using

the heuristic.

 86

7.1.1 Global Lookahead Information

While the Heuristic Mapper performs well for the group of medium sized benchmarks analyzed

in the results section, and typically does well for Fabric Models with high connectivity (such as

8:1-based models), when the connectivity is reduced (5:1, 355:1, etc) or benchmark sizes

increases significantly, the quality of the mapping generated degrades. Particularly the Heuristic

Mapper shows problems when mapping SDFGs where a number of inputs are passed down

though several fabric rows before being used with another operation. The passed value may be a

non-constant input or a value which is calculated early in the Fabric but then unused for several

rows. In these cases the passgates which carry the value will be pushed away from the center of

the Fabric, typically this will move the operation away from the operations that it eventually

shares children with. As the fabric width increases or the connectivity decreases, the two rows of

lookahead prove to be insufficient because the number of columns which need to be crossed to

put the nodes into position requires the child operations to be delayed.

 Fixing this problem will require the heuristic to integrate global lookahead information.

Instead of looking at the nodes that share children in the next two rows, the heuristic should

consider all convergences in the next several rows or potentially the entire graph. Depending on

the amount of connectivity (8:1, 4:1, etc), the heuristic can determine when to begin pushing

linked nodes together such that their shared children will be mapable without repeated delays.

7.1.2 Global Lookahead Heuristic For First Row Mapping

To complete the transformation to a global lookahead heuristic, the first row of the Fabric should

be placed using a lookahead specialized heuristic. The goal of the first row heuristic should be to

 87

map the top row such that the distance between each operation is dependent on the row in which

the operations share a child operation. Operations which share a child in the next few rows

should be mapped close together to avoid delays, while operations that share a child in a later

row can be mapped near enough for the modified heuristic to bring them together soon enough

such that their child operations are mapable with a minimal amount of delay. This improvement

would eliminate the common problem where nodes that converge three rows from the top are

mapped on opposite ends of the Fabric. This heuristic will be in effect planning out every

convergence in the graph. By adding global lookahead elements, the heuristic can expect to

reduce the number of dynamic delays, the number of passgates needed, and the height of the

mapping. By reducing the size of the mapping these changes should lead to further power and

energy improvement over the current mappings.

7.1.3 Handling Heterogeneous Fabric Models

The Heuristic Mapper was designed upon the basic idea that in a homogenous fabric only the

distance between nodes prevents their child operations from being mapable. Therefore, when a

child node is found to be unmapable, the heuristic will simply delay the node and try to push the

introduced passgates as close together as possible such that eventually the child node will be

mapable. In heterogeneous fabric models there exists the additional problem of having no

functional unit within range that can execute the child operation. The changes that would be

required to optimize mapping to heterogeneous fabrics are more difficult to generalize.

However, there are a few modifications which would benefit the heuristic when mapping to any

heterogeneous fabric.

 88

The first modification would alter the parent dependency window building procedure

such that locations which cannot perform an operation are not added into the window. This

functionality is already partly implemented to support dedicated passgates. Another change

would modify the behavior in all cases where the child operation is unmapable. Although the

parents should still be pushed closer together they also need to be pushed in the direction of a

location in some later row that can perform the child operations. The CDW and GDW

generation logic could also be modified to incorporate information on each functional unit’s

capabilities when considering the potential locations for child operations. These changes should

improve the quality of mapping when using fabric models with multiple types of functional

units.

 89

APPENDIX A

FABRIC INTERCONNECT MODEL FILES

A.1 FIM FOR 8:1-BASED, 50% DEDICATED PASSGATES FABRIC

<?xml version="1.0" encoding="utf-8"?>
<!--This XML file defines a 8 to 1 Interconnect pattern -->
<FIM xmlns="http://composers.ee.pitt.edu/FIM.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://composers.ee.pitt.edu/FIM.xsd
FIM.xsd">
 <!-- This is for the standard alu we've been working with-->
 <ftudefine name="alu0" noop="10111" useic="false">
 <op code="00001"> + </op>
 <!-- non-comm subtract -->
 <op code="00010"> - </op>
 <op code="00011"> * </op>
 <op code="10011"> == </op>
 <op code="00111"> ^ </op>
 <op code="01110"> > </op>
 <op code="10000"> >= </op>
 <op code="01111"> < </op>
 <op code="10001"> <= </op>
 <op code="10010"> != </op>
 <op code="00100"> & </op>
 <op code="00101"> | </op>
 <op code="01001"> << </op>
 <op code="01011"> >> </op>
 <op code="00000"> pass </op>
 <op code="10100" order="reverse"> pass </op>
 <op code="11111"> mux </op>
 <op code="01000"> ! </op>
 </ftudefine>

 90

 <!-- 8:1 passgate -->
 <ftudefine name="pass" noop="0" useic="false">
 <op code="1" order="std">pass</op>
 </ftudefine>

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <!-- 8:1 ALU -->
 <FTU type="alu0">
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="1">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="2">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 <!-- 8:1 Dedicated Pass -->
 <FTU type="pass">
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
 </rowpattern>
</FIM>

 91

A.2 FIM ROWPATTERN FOR 8:1-BASED, 33% DEDICATED PASSGATES FABRIC

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <!-- 8:1 ALU -->
 <FTU type="alu0">
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="1">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="2">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 <!-- 8:1 ALU -->
 <FTU type="alu0">
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="1">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="2">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 <!-- 8:1 Dedicated Pass -->
 <FTU type="pass">
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
 </rowpattern>

 92

A.3 FIM ROWPATTERN FOR 8:1-BASED STANDARD FABRIC

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0">
 <operand number="0">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="1">
 <range left ="-3" right ="4"/>
 </operand>
 <operand number="2">
 <range left ="-3" right ="4"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>

</rowpattern>

 93

A.4 FIM ROWPATTERN FOR 5:1-BASED 50% DEDICATED PASSGATES FABRIC

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0">
 <operand number="0">
 <range left ="-2" right ="1"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 <!-- 8:1 Pass, made from 2 4:1 inputs -->
 <FTU type="pass" commutative="true">
 <operand number="0">
 <range left ="-3" right ="0"/>
 </operand>
 <operand number="1">
 <range left ="1" right ="4"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
 </rowpattern>

 94

A.5 FIM ROWPATTERN FOR 5:1-BASED 33% DEDICATED PASSGATES

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0">
 <operand number="0">
 <range left ="-2" right ="1"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 <FTU type="alu0">
 <operand number="0">
 <range left ="-2" right ="1"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 <!-- 8:1 Pass, made from 2 4:1 inputs -->
 <FTU type="pass" commutative="true">
 <operand number="0">
 <range left ="-3" right ="0"/>
 </operand>
 <operand number="1">
 <range left ="1" right ="4"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
 </rowpattern>

 95

A.6 FIM ROWPATTERN FOR 5:1-BASED STANDARD FABRIC

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0">
 <operand number="0">
 <range left ="-2" right ="1"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
 </rowpattern>

 96

A.7 FIM ROWPATTERN FOR 4:1-BASED STANDARD FABRIC

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <FTU type="alu0">
 <operand number="0">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>
 </rowpattern>

 97

A.8 FIM ROWPATTERN FOR 3553:1-BASED STANDARD FABRIC

 <rowpattern repeat="forever">
 <row>
 <ftupattern repeat="forever">
 <!-- 3:1 -->
 <FTU type="alu0">
 <operand number="0">
 <range left ="-1" right ="0"/>
 </operand>
 <operand number="1">
 <range left ="0" right ="1"/>
 </operand>
 <operand number="2">
 <range left ="0" right ="1"/>
 </operand>
 </FTU>
 <!-- A 5:1 -->
 <FTU type ="alu0">
 <operand number="0">
 <range left ="-2" right ="1"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 <!-- A 5:1 -->
 <FTU type ="alu0">
 <operand number="0">
 <range left ="-2" right ="1"/>
 </operand>
 <operand number="1">
 <range left ="-1" right ="2"/>
 </operand>
 <operand number="2">
 <range left ="-1" right ="2"/>
 </operand>
 </FTU>
 <!-- 3:1 -->
 <FTU type="alu0">
 <operand number="0">
 <range left ="-1" right ="0"/>
 </operand>

 98

 <operand number="1">
 <range left ="0" right ="1"/>
 </operand>
 <operand number="2">
 <range left ="0" right ="1"/>
 </operand>
 </FTU>
 </ftupattern>
 </row>

</rowpattern>

 99

APPENDIX B

XML SCHEMA FOR FABRIC INTERCONNECT MODEL

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema targetNamespace="http://composers.ee.pitt.edu/FIM.xsd"
 elementFormDefault="qualified"
 xmlns="http://composers.ee.pitt.edu/FIM.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- FIM is the root node, it consists of 1 or more rowpattern elements-->
 <xs:element name="FIM">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ftudefine" maxOccurs="unbounded"
 type="FTUDefineType"/>
 <xs:element name="rowpattern" maxOccurs="unbounded"
 type="RowPatternType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <!-- The FTUDefineType consists of 1 or more Op elements and requires
 a name attribute-->
 <xs:complexType name="FTUDefineType">
 <xs:sequence>
 <xs:element name="op" type="OpType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" use="required"/>
 <xs:attribute name="noop" use="required"/>
 <xs:attribute name="useic" use="optional" default="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="false"/>
 <xs:enumeration value="true"/>

 100

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <!-- The OpType consists provides an op and the corresponding opcode
 optionally it can designate if this is a "reversed" op using the
 order attribute-->
 <xs:complexType name="OpType" mixed="true">
 <xs:attribute name="code" use="required"/>
 <xs:attribute name="order" use="optional" default="std">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="std"/>
 <xs:enumeration value="reverse"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>

 <!-- The RowPatternType consists of 1 or more row elements
 , and can have the repeat attribute-->
 <xs:complexType name="RowPatternType" >
 <xs:sequence>
 <xs:element name="row" type="RowType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="repeat" type="xs:string" default="1" use="optional"/>
 </xs:complexType>

 <!-- A RowType repesents a single row,
 consists of 1 or more ftupattern elements-->
 <xs:complexType name="RowType" >
 <xs:sequence>
 <xs:element name="ftupattern" maxOccurs="unbounded"
 type="FTUPatternType"/>
 </xs:sequence>
 </xs:complexType>

 <!-- FTUPatternType consists of 1 or more FTUs,
 has the optional attribute repeat-->
 <xs:complexType name="FTUPatternType" >
 <xs:sequence>
 <xs:element name="FTU" maxOccurs="unbounded"
 type="FTUType"/>
 </xs:sequence>
 <xs:attribute name="repeat" default="1" type="xs:string" use="optional"/>
 </xs:complexType>

 101

 <!-- FTUType consists of 1 to 3 operands , has required type field, has optional
 commutative attribute
 FTU means Fabric Topological Unit
 -->
 <xs:complexType name="FTUType">
 <xs:sequence>
 <xs:element name="operand" maxOccurs="3" type="OperandType"/>
 </xs:sequence>
 <xs:attribute name="commutative" type="xs:boolean" use="optional"
 default="false"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:complexType>

 <!-- OperandType consists of 1 or more range elements, and the
 required attribute "number"-->
 <xs:complexType name="OperandType">
 <xs:sequence>
 <xs:element name="range" maxOccurs="unbounded"
 type="RangeType"/>
 </xs:sequence>
 <xs:attribute name="number" type="xs:unsignedInt" use="required"/>
 </xs:complexType>

 <!-- RangeType consists of only the attributes:
 left, and right, which give the "ranges"-->
 <xs:complexType name="RangeType">
 <xs:attribute name="left" type="xs:int"/>
 <xs:attribute name="right" type="xs:int"/>
 </xs:complexType>

</xs:schema>

 102

BIBLIOGRAPHY

[1] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, An FPGA-based VLIW Processor

with Custom Hardware Execution, in Proc. of the ACM International Symposium on Field-
Programmable Gate Arrays (FPGA) 2005, pp. 107-117.

[2] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, G. Mehta, and J. Foster, A VLIW Processor with
Hardware Functions: Increasing Performance While Reducing Power, IEEE Transactions on
Circuits and Systems II, Vol. 53, No. 11, November 2006, pp. 1250-1254.

[3] E. Mirsky and A. Dehon, “Matrix: A reconfigurable computing architecture with
configurable instruction distribution and deployable resources,” in Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, April 1996.

[4] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a reconfigurable
coprocessor,” in IEEE Symposium on FPGAs for Custom Computing Machines, K. L. Pocek
and J. Arnold, Eds. Los Alamitos, CA: IEEE Computer Society Press, 1997, pp. 12–21.
[Online]. Available: citeseer.nj.nec.com/hauser97garp.html

[5] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The chimaera reconfigurable functional
unit,” in IEEE Symposium on FPGAs for Custom Computing Machines(FCCM), 1997, pp.
87–96.

[6] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable pipelined datapath,” in
the 6th International Workshop on Field-Programmable Logic and Applications, 1996.

[7] C. E. et al., “Mapping applications to the rapid configurable architecture,” in Proc. of the
IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

[8] B. Levine and H. Schmit, “Piperench: Power & performance evaluation of a programmable
pipelined datapath,” presented at Hot Chips 14, Palo Alto, CA, August 2002.

[9] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor, “Piperench: A
virtualized programmable datapath in 0.18 micron technolog,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, 2002.

[10] Elixent, “The reconfigurable algorithm processor,” http://www.elixent.com/

 103

[11] PACT-XPP, “Xpp-lib core overview,” http://www.pactcorp.com/

[12]MathStar, “Field programmable object array architecture”,
http://www.mathstar.com/literature.html.

[13] DOT Language http://en.wikipedia.org/wiki/DOT_language

[14] World Wide Web Consortium. http://www.w3.org/XML/

[15] Scalable Vector Graphics Working Group. http://www.w3.org/Graphics/SVG/

[16] Document Type Definition. http://en.wikipedia.org/wiki/Document_Type_Definition

[17] RELAX NG http://relaxng.org/

[18] W3C XML Schema http://www.w3.org/XML/Schema

[19] XML Developer Center. http://msdn2.microsoft.com/en-us/xml/default.aspx

[20] XMLSpy - XML editor for modeling, editing, transforming, & debugging XML
technologies http://www.altova.com/

[21] XML Notepad 2007 http://msdn2.microsoft.com/en-us/xml/default.aspx

[22] Microsoft Visual Studio – http://msdn.microsoft.com/vstudio

[23] Synopsys Inc., “Design compiler and primepower manual,” http://www.synopsys.com

[24] R. Georing, “Synopsys launches power tool,” EETimes, May 2000.

[25] Lee, C., Potkonjak, M., Magione-Smith, W. K., 1997. Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems. Proceedings of the International
Symposium on Microarchitecture.

[26] Adaptive Differential Pulse Code Modulation
http://www.everything2.com/index.pl?node_id=1377999

[27] Global System for Mobile Communications.
http://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications

[28] MPEG-2. http://en.wikipedia.org/wiki/Mpeg_2

[29] ILOG CPLEX. http://www.ilog.com/products/cplex/

 104

[30] Roy, P. V. (Ed.), 2005. Multiparadigm Programming inMozart/Oz, Second International

Conference, MOZ 2004, Charleroi, Belgium, October 7-8, 2004, Revised Selected and
Invited Papers. Vol. 3389 of Lecture Notes in Computer Science. Springer.

[31] C. Gilberto, M. Martonosi, J. Peng, R. Ju, and G. Lueh, “XTREM: A power simulator for
the Intel XScale core,” in Proc. ACM LCTES, 2004.

	TITLE PAGE

	ABSTRACT

	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	1: The Complete FIM specification: Elements and Attributes.
	2: Benchmark sizes.
	3: Heuristic Mapper Versions Summary.
	4: Heuristic Versions: Processing time & added rows for 5:1-based Standard FIM.
	5: CPU Runtime (seconds) of each mapper for 3553:1, 4:1, 5:1 & 8:1 standard FIMs.
	6: Rows added by each mapper for 3553:1, 4:1, 5:1 & 8:1 standard FIMs.
	7: Power (mW) of fabric mappings for 3553:1, 4:1, 5:1, & 8:1 standard FIMs across methods.
	8: Energy (pJ) of fabric mapping for 3553:1, 4:1, 5:1, & 8:1 standard FIMs across methods.
	9: Total delay (ns) of mappings when implemented onto the Fabric.
	10: FIM variations, each could be coupled with any level of interconnect (8:1, 5:1, etc).
	11: Rows added to solve 8:1, 5:1, and 3553:1 Std & IC FIMs using Heuristic Mapper.
	12: Rows added to solve 8:1, 6:1, and 5:1 Standard & Dedicated Passgate FIMs.
	13: Power (mW) usage of benchmark implementations on ASIC, Fabric, FPGA, and XScale.
	14: Energy (pJ) usage of benchmark implementations on ASIC, Fabric, FPGA, and XScale.
	15: Energy (pJ) comparison ASAP Schedule Solutions VS. Heuristic Mapper Solutions.

	LIST OF FIGURES
	1: Amdahl's Law for total speedup of an application.
	2: High-Level Fabric Model.
	3: Multiplexer based interconnect stripe.
	4: Design space exploration flow of the fabric model.
	5: SuperCISC Architecture
	6: SuperCISC Hardware Function Generation Flow.
	7: Sobel Edge Detection Hardware Function C Source Code.
	8: Sobel CDFG showing Control Flow and Basic Blocks.
	9: Sobel Super Data Flow Graph.
	10: VHDL for 32 bit subtract found in Sobel SDFG.
	11: Entity and port declarations for Sobel SDFG.
	12: Overall Heuristic Mapper Flow.
	13: Before/After Replacing converts and negate operations in an SDFG.
	14: Before/After Integrating constant values into SDFG operations.
	15: SDFG with ALAP annotations.
	16: Before/After Row alignment state of Heuristic Mapper.
	17: Pseudocode for row-alignment section of Heuristic Mapper. 26
	18: Example Parent Dependency Window construction assuming 4:1 based interconnect.
	19: Example of Child Dependency Window (CDW) construction.
	20: Example Functional Unit Desirability (FUD) construction.
	21: Initial Heuristic column placement pseudocode.
	22: Before/After Dynamically delaying an operation during mapping.
	23: Example of finding Potential Linked Placement (PLP) Values.
	24: Example of Building the Grandchild Dependency Window (GDW).
	25: Final Heuristic Column Assignments Pseudocode.
	26: A short CD catalogue written using XML.
	27: FIM Code for an ALU Definition.
	28: FIM Pattern Section for a standard 8:1 multiplexer based model.
	29: FIM Pattern Code for a 50% Dedicated Passgates, half 8:1 & half 4:1 interconnect.
	30: Portion of a rendered SVG file for FIM shown in Figure 20.
	31: XML Schema Definition (XSD) for Catalogue of CDs XML file shown in Figure 26.
	32: FIM Fabric Printer Parameters.
	33: Equation to determine output rows when using outputmux fabric feature.
	34: Example of control signal generation using 4:1 multiplexer.
	35 : SVG representation of Sobel mapping on 8:1-based FIM.
	36: Visualization of 8:1-based Interconnect.
	37: SVG Visualization of 4:1-based Interconnect.
	38: SVG Visualization of 5:1-based Interconnect.
	39: SVG Visualization of 6:1-based Interconnect.
	40: SVG Visualization of 3553:1-based Interconnect.
	41: Energy Comparison of 8:1 standard FIM across mappers.
	42: Energy Comparison of 5:1 standard FIM across mappers.
	43: Comparing Average runtime for each Mapper/FIM combination.
	44: Energy Comparison between Standard and Integrated Constant FIMs.
	45: Energy Comparison between 8:1, 5:1, Standard and Dedicated Passgates FIMs.
	46: Energy Comparison between hardware technologies

	1.0 INTRODUCTION
	2.0 RELATED WORK & BACKGROUND
	2.1 COARSE GRAIN FABRIC ARCHITECTURES
	2.2 SUPERCISC ARCHITECTURE
	2.2.1 SuperCISC Automated Flow
	2.2.2 Example Hardware Function

	3.0 HEURISTIC BASED FABRIC MAPPER
	3.1 PREPROCESSING
	3.2 ROW ASSIGNMENTS
	3.3 COLUMN ASSIGNMENTS
	3.3.1 Initial Heuristic Column Assignment
	3.3.2 Refining the Heuristic
	3.3.3 Optimizing Child Dependency: Potential Linked Placement Values
	3.3.4 Optimizing Child Dependency: Potential Child Placement Values
	3.3.5 Dealing with unary operations
	3.3.6 Picking Next Operation to Map
	3.3.7 Force System
	3.3.8 Grandchild Dependency
	3.3.9 Centering

	3.4 FINAL HEURISTIC
	3.5 MAPPING REPRESENTATION
	3.6 MAPPING TO DEDICATED PASSGATES

	4.0 FABRIC INTERCONNECT MODEL (FIM)
	4.1 EXTENSIBLE MARKUP LANGUAGE (XML)
	4.2 FIM DEFINED
	4.3 SVG VISUALIZATION
	4.4 FIM VERIFICATION
	4.5 FIM FRONT-END INTERFACE

	5.0 VERIFICATION AND CONFIGURATION
	5.1 PARAMETERS AND INPUTS
	5.2 VERIFICATION AGAINST FIM
	5.3 DYNAMICALLY DETERMINING MULTIPLEXER CONTROL SIGNALS
	5.4 BUILDING CONFIGURATION FILES
	5.5 GENERATING STATISTICS
	5.6 GENERATING VISUALIZATION

	6.0 PERFORMANCE RESULTS
	6.1 FABRIC INTERCONNECT MODELS
	6.1.1 8:1-based Fabric Models
	6.1.2 4:1-based Fabric Models
	6.1.3 3553:1-based Fabric Models

	6.2 BENCHMARK KERNELS
	6.3 SOLUTION IMPROVEMENT DURING DEVELOPMENT OF HEURISTIC
	6.4 COMPARING MAPPING TECHNIQUES
	6.4.1 Runtime Comparison
	6.4.2 Mapping Size Comparison
	6.4.3 Power / Energy Comparisons
	6.4.4 Delay Comparison
	6.4.5 Analysis

	6.5 HEURISTIC MAPPER RESULTS ON A VARIETY OF FABRIC MODELS
	6.5.1 Integrated Constants Results
	6.5.2 Dedicated Passgates Results

	6.6 COMPARING FABRIC VS CURRENT HARDWARE TECHNOLOGIES
	6.7 COMPARING HEURISTIC AGAINST AS SOON AS POSSIBLE

	7.0 CONCLUSION
	7.1 FUTURE DIRECTIONS
	7.1.1 Global Lookahead Information
	7.1.2 Global Lookahead Heuristic For First Row Mapping
	7.1.3 Handling Heterogeneous Fabric Models

	APPENDIX A: FABRIC INTERCONNECT MODEL FILES
	APPENDIX B: XML SCHEMA FOR FABRIC INTERCONNECT MODEL
	BIBLIOGRAPHY

