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University of Pittsburgh, 2011

The preBötzinger complex (preBötC) of the mammalian brainstem is a heterogeneous neu-

ronal network underlying the inspiration phase of the respiratory rhythm. Through excita-

tory synapses and a nontrivial network architecture, a synchronous, network-wide bursting

rhythm emerges. On the other hand, during synaptic isolation, preBötC neurons display

three types of intrinsic dynamics: quiescence, bursting, or tonic activity. This work seeks to

shed light on how the network rhythm emerges from the challenging architecture and het-

erogeneous population. Recent debate surrounding the role of intrinsically bursting neurons

in the rhythmogenesis of the preBötC inspires us to evaluate its role in a three-cell network.

We found no advantage for intrinsically bursting neurons in forming synchronous network

bursting; instead, intrinsically quiescent neurons were identified as a key mechanism. This

analysis involved only studying the persistent sodium (NaP) current. Another important

current for the preBötC is the calcium-activated nonspecific cationic (CAN) current, which,

when combined with a Na/K pump, was previously shown to be capable of producing bursts

in coupled tonically active cells.

In the second part of this study, we explore the interactions of the NaP and CAN currents,

both currents are ubiquitous in the preBötC. Using geometric singular perturbation theory

and bifurcation analysis, we established the mechanisms through which reciprocally coupled

pairs of neurons can generate various activity patterns. In particular, we highlighted how the

NaP current could enhance the range of the strength of the CAN current for which bursts

occur. We also were able to detail a novel bursting pattern seen in data, but not seen in
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previous models.

With a foundation of understanding heterogeneity in the NaP and CAN currents, we

again turned our attention to networks. For the third portion of the dissertation, we exam-

ine the effects that heterogeneity in the neuronal dynamics and coupling architecture can

impose upon synchronous bursting of the entire network. We again found no significant

advantage to including intrinsically bursting neurons in the network, and the best networks

were characterized by an increased presence of quiescent neurons. We also described the way

the NaP and CAN currents interact on the network scale to promote synchronous bursting.
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1.0 INTRODUCTION

The preBötzinger complex (preBötC) of the mammalian ventral respiratory brainstem con-

tains a heterogeneous neuronal network that generates the inspiratory phase of the respi-

ratory rhythm [64, 20]. In isolation from the rest of the brainstem, the preBötC sustains

robust, network-wide, rhythmic bursts that can be studied in reduced preparations in vitro

[64]. The preBötC is located within a ring of other networks, many of which provide in-

hibition to the preBötC. During phenomena like hypoxia, this inhibition may be released

as the activation in these networks fades out, and so it falls on the preBötC to drive the

respiratory rhythm [63, 52]. Thus, a significant component of understanding the respiratory

cycle involves understanding the intrinsic dynamics of the preBötC. Excitatory synaptic

connections between neurons within the preBötC are essential for rhythm generation, while

the preBötC rhythm persists under blockade of chloride-mediated inhibition [21, 3, 60, 48].

Neurons within the preBötC are endowed with a persistent sodium (NaP) current [44] and

a calcium activated nonspecific cationic (CAN) current [42]. The CAN current can be ac-

tivated via second-messenger mediated synaptic pathways [42]. The NaP current is voltage

dependent and has sub-threshold activation [13, 45, 31]. Both currents are relevant to rhyth-

micity within the preBötC. Previous analysis of preBötC activity has primarily focused on

each of these currents individually, in the context of distinct neuronal models [4, 56].

The NaP current is found in every preBötC neuron [44], and has been shown to play

a role in generating robust bursts in the preBötC [44, 45, 31, 13, 57], at least in certain

conditions, such as when the respiratory brainstem is challenged by hypoxia, anoxia, or hy-

percapnia [52, 63, 59]. Butera et al. developed an ODE model (henceforth called the “Butera

model”) of preBötC neurons that is characterized by the presence of the NaP current, but

does not include the CAN current [4, 5]. In the Butera model, by varying the strength of
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the NaP current, model neurons can be made to exhibit quiescence (spiking rarely if at all),

intrinsic tonic activity (spiking with regular frequency), or instrinsic bursting (alternating

active phases containing multiple spikes with quiescence); all of these patterns are observed

in synaptically isolated preBötC neurons, though an individual neuron need not be capable

of all three patterns. In fact, for individual neurons in the preBötC, the NaP current is nec-

essary for intrinsic bursting dynamics [13]. The Butera model can exhibit network bursting

and reproduce important features of the in vitro respiratory rhythm. However, recent ex-

perimental results suggest that under pharmacological nullification of the NaP current [12],

via the drug Riluzole, the preBötC still generates an inspiratory-like rhythm [43]. There

must be another mechanism that functions independent of the NaP current that is capable

of maintaining inspiratory-like rhythms. Nevertheless, the NaP current is ubiquitous within

the preBötC, and given its capacity to enhance neuronal activity [34], investigation of the

NaP current is critical to efforts to fully understand preBötC rhythmicity.

Experimental observations suggest that most cells in the preBötC, when considered in

isolation, either are tonically active or are quiescent; however, there is also a significant pop-

ulation of cells that engage in intrinsic bursting behavior when they are decoupled from the

rest of the network [20]. Intrinsically bursting neurons in the preBötC are not necessary for

the overall network rhythm, since this rhythm persists when the persistent sodium current

is pharmacologically blocked (see also [55]). On the other hand, such intrinsically bursting

neurons may contribute to the bursting rhythm in normal circumstances. Chapter 2 consid-

ers the role of intrinsically bursting neurons in a network containing three model neurons.

The model used is a reduced version of the Butera model, and therefore does not include

the CAN current, but is still able to represent intrinsically quiescent, tonic, and bursting

neurons. We develop a set of necessary conditions, as well as a separate set of sufficient condi-

tions, for which the three model neurons, when coupled by synaptic excitation, will generate

synchronous bursting activity. We expand upon these conditions by performing numerical

simulations to evaluate the effect of adding model neurons with various intrinsic dynamics to

a network already containing a pair of neurons: one quiescent and one tonically active. Prior

numerical results using the Butera model indicate that neurons that are intrinsically burst-

ing, at least for some range of applied tonic input, enhance the robustness and frequency
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range of preBötC bursting [46]. Throughout, when we say a neuron has a certain kind of

intrinsic dynamics, we mean that the neuron is tuned to have those intrinsic dynamics under

baseline conditions. We found that of those so called burst capable neurons, intrinsically

quiescent neurons best support synchronous bursting over a broad frequency range when

embedded within a network, as long as intrinsically tonic neurons are also present. In fact,

we found that intrinsically bursting neurons are not well suited for promoting synchronous

bursts in the network of three neurons. Since these neurons do not promote synchronous

network bursts and network bursts persist in the absence of the NaP current, we turn our

attention to the CAN current, a network mechanism for generating network bursts.

The CAN current is found in up to 96% of preBötC neurons [42]. Experimental results

indicate that the CAN current plays an important role in rhythmogenesis within the preBötC

[7, 37, 42, 43]. A recent model (we will call it the Rubin-Hayes model) was used to study

the CAN-based mechanism for rhythmogenesis by focusing on the role of excitatory synaptic

interactions in activating the CAN current [56]. In its core form, this model included the

CAN current and a Na/K ATPase electrogenic pump current. It was shown that qualitative

features of model dynamics were preserved when the pump was replaced by any of a variety

of other currents that cause the loss of positive charge at high voltage, including the NaP

current. Analysis was done mostly in the absence of the NaP current, however, to focus on

emergent network properties achieved through recruitment of postsynaptic burst-generating

conductances by network activity.

Flufenamic acid (FFA) is a pharmacological agent that blocks the CAN current, but

also interferes with other network properties such as gap junctions. Nevertheless, when

the strength of the CAN current is significantly reduced by FFA, the preBötC is still able

to achieve synchronous bursting patterns. Simultaneous application of FFA and Riluzole,

however, abolishes the rhythmicity of the preBötC until the drugs are washed out. Therefore,

to understand how rhythmicity is generated in the preBötC it is important to understand

the interactions of the persistent sodium and CAN currents.

In Chapter 3 we introduce a unified model, which includes the CAN current, Na/K

pump, and persistent sodium current within one differential equation model. Numerical

simulations validate the reduction from two reciprocally coupled neurons to the self-coupled
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case. Within one self-coupled model neuron, we simultaneously vary the strengths of the per-

sistent sodium and CAN currents, and catalogue the dynamics that emerge by partitioning

parameter space into regions of like dynamics. Employing geometric singular perturbation

theory and bifurcation analysis, we explain how the dynamics in each region arise. We are

also able to analyze the transition mechanisms between each region, and use this to verify

the boundaries between the various regions. In particular, we elucidate the circumstances

through which a novel bursting pattern arises from the model; the pattern is experimen-

tally observed in preBötC neurons and highlights the interactions of the CAN and persistent

sodium currents. Heterogeneity is a known feature of preBötC networks, and our analysis

provides a framework through which we can understand larger networks when heterogeneity

is included in the strengths of the persistent sodium and CAN currents.

The study of long term behavior for large networks is a developing field that spans many

disciplines, including dynamical systems and graph theory [66]. A large network can be

thought of as having heterogeneity in two ways: the network architecture and the dynamics

at each node. Large bodies of research have explored the two natural limits of this dichotomy,

irregular architectures with identical dynamics for each node, or very regular architecture

with heterogeneous dynamics distributed across the nodes of the network. Heterogeneity in

dynamics for the individual nodes is often considered in the case of coupled oscillators, where

each node intrinsically oscillates at its own frequency. Studying coupled oscillators may not

necessarily yield good insights for analysis in the preBötC because of the heterogeneity in

the individual neurons. Indeed this can be seen in the wide variety of activity patterns for a

reciprocally coupled pair of neurons in Chapter 3. On the other hand, regular connectivity

patterns, such as all-to-all connectivity, which is often deployed in numerical simulations of

preBötC models [5, 46, 62, 33], may not be appropriate for elucidating the rhythmicity of

the preBötC, as it trivializes interneuronal distances between synaptically coupled neurons;

these distances are now known to be nontrivial [25].

Experimental data regarding the connectivity architecture of preBötC neurons are rela-

tively rare. The data that exist show that the neurons are organized into spatial clusters,

with dense intracluster connectivity and very sparse intercluster connectivity [25]. For neu-

rons modeled with the Butera model, simulations of network architectures adhering to these
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data, as well as networks adhering to a catalogue of other architectures, were recently per-

formed by Gaiteri and Rubin [24]. They found that networks inspired by the experimental

data performed poorly. Their analysis did not include the CAN current, the addition of

which may improve network bursting. Nevertheless, it is clear that the preBötC sustains

stable synchronous bursting despite the apparent handicap of its architecture. How do the

clusters of a large network synchronize with each other despite the challenges of heteroge-

neous intrinsic dynamics and sparse connectivity? In Chapter 4, we address this question

by creating artificial networks that adhere to the connectivity statistics from the data [25]

and endowing each node of the network with dynamics governed by the unified model from

Chapter 3.

Data based, randomly generated networks have poor performance, so we developed a

genetic algorithm to search parameter space for well performing networks with both het-

erogeneous neuronal dynamics and heterogeneous cluster structure. Through the genetic

algorithm we found families of networks that produce bursting rhythms that are stable and

synchronized. The genetic algorithm makes apparent two mechanisms that promote network

bursting. When connections between clusters are sparse, those few neurons with intercluster

connections rise to elevated importance because of their role in communicating activity from

the rest of the network to their cluster, or vice versa. The best networks we found through the

genetic algorithm contained significantly more quiescent neurons than the networks we used

to initialize the search. Moreover, we found that, with a greater frequency than expected by

chance, intrinsically quiescent neurons were harnessed to serve as the communicative neurons

between clusters. We also found that the CAN current plays a crucial role in rhythmogen-

esis. Interestingly, the average strength of the CAN current across the networks we found

through the genetic algorithm is different from the average at initialization. In Chapter 4 we

explore the ramifications of these findings, as well as other phenomena found in our search.
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2.0 INTRINSIC DYNAMICS FOR BURSTING IN 3-CELL NETWORKS

Most cells in the preBötC, when considered in isolation, either are tonically active (firing

spikes repeatedly) or are quiescent (spiking rarely if at all); however, there is also a signifi-

cant population of cells that engage in intrinsic bursting (alternating spiking and prolonged

quiescence) behavior when they are decoupled from the rest of the network [20]. This chapter

attempts to answer the question of what is the role of these neurons that burst in isolation

in the control of preBötC dynamics.

In [4, 5], Butera et al. developed an ODE model of a class of neurons in the preBötC

characterized by the presence of a persistent sodium current. Working with the model from

[4, 5], Rubin provided conditions for the emergence of synchronous bursting in a pair of

burst-capable cells, one tuned to be intrinsically quiescent and the other to be intrinsically

tonic, coupled with synaptic excitation [55], thereby proving that burst-capable neurons

need not be tuned to be intrinsically bursting in the absence of inputs in order for them to

generate network bursting when coupled (see also [50]). Purvis et al. used simulations of a

network including a mixture of intrinsically burst-capable and burst-incapable cells to show

that the presence of significant numbers of burst-capable cells enhances the parameter range

over which synchronous bursts occur and the frequency range that bursts achieve under

variation of a control parameter [46]. Together, these findings highlight the importance of

burst-capable cells for synchronous bursting within the preBötC but also lead us to ask, given

that cells that are tuned to burst in isolation are not necessary for network-wide synchronous

bursting, how do they contribute to such activity patterns?

Given the heterogeneity of dynamics observed in isolated preBötC cells (see also [47])

and the evidence for the involvement of burst-capable cells in network activity, we explore

the role of intrinsically bursting cells in the preBötC by considering heterogenous networks,
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each containing three burst-capable cells. Such networks are large enough to include repre-

sentatives of all three types of intrinsic dynamics (quiescence, bursting, and tonic spiking),

and hence for the role of intrinsically bursting cells in a heterogeneous network to become

apparent, but are also small enough to allow for the analysis of the dynamic effects of the

presence of intrinsic bursters.

Including this introduction, this chapter is partitioned into 6 sections. Section 2.1 in-

troduces the model we will use for our analysis and provides a heuristic introduction to the

theory of relaxation oscillators, including the effects of synaptic coupling. Section 2.2 pro-

vides a set of necessary conditions for periodic, synchronous bursting oscillations to occur

within our three-cell network, as well as a separate set of sufficient conditions for such a

solution to exist in the network. Although these conditions are presented for a three-cell

network, the interested reader may refer to Section 2.3, which provides a guideline for ex-

tending these conditions to an arbitrarily sized network. Section 2.4 provides results and

analysis of two numerical experiments. The first experiment explores which cells promote

synchronous oscillations if added to a network already containing an intrinsically quiescent

and an intrinsically tonic cell. The second simulation addresses the issue of frequency control

in the three-cell network. Finally, we summarize our work and suggest directions for future

research in the discussion contained in Section 2.5.

2.1 INTRODUCTORY THEORY

2.1.1 Models

Throughout this work, we will focus on a reduced version of the Butera model developed in

[4, 5]. The original model for an individual cell in isolation is

v′ = (−INaP (h, v) − INa(n, v) − IK(n, v) − IL(v) − Itonic−e(v) + Iapp)/Cm (2.1)

n′ = (n∞(v) − n)/τn(v) (2.2)

h′ = ε(h∞(v) − h)/τh(v) (2.3)

s′ = αs(1 − s)s∞(v) − s/τs (2.4)
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with INaP (h, v) = gNaP mp,∞(v)h(v−ENa), INa(n, v) = gNam
3
∞(v)(1−n)(v−ENa), IK(n, v) =

gKn4(v − EK), IL(v) = gL(v − EL) and Itonic−e = gton(v − Esyn−e). Equation (2.4) relates

to the strength of synaptic signals generated by the cell. The variable s does not feed back

to equations (2.1)–(2.3) in the isolated cell case but will play an important role in coupled

networks, later in the chapter. Values for the parameters and the definitions of the other

functions appearing in this model can be found in Subsection 2.1.2. Typically, the small

parameter ε is absorbed into the function τh(v), however, for clarity of analysis, we have

factored it out.

Neurons modeled by these equations are classified as quiescent, bursting or tonic depend-

ing on their activity patterns. After a transient that depends on the initial conditions of the

system, a quiescent neuron will not spike, and a tonic neuron will repeatedly fire spikes at

a regular frequency. A bursting neuron will switch between active and silent phases. Dur-

ing the active phase a bursting neuron emits spikes, while during the silent phase it does

not. Thus, a quiescent neuron can be thought of as being stuck in the silent phase, while a

tonic neuron is stuck in the active phase. Depending on the relative magnitudes of its ionic

conductances, each quiescent or tonic cell may be burst-capable, meaning that it can burst

for some level of gton, or not; for example, a large gL relative to gNaP , or vice versa, can

eliminate burst-capability.

In the given model, when the neuron is in the active phase, the currents IK and INa are

what cause the rapid fluctuations in the v variable that we interpret as spikes. In the silent

phase, these currents do not contribute much to the v dynamics. Removing these terms

from the v equation also allows us to remove equation (2.2) to obtain a reduced model that

is more amenable to analysis. This reduced model has been used previously for the analysis

of synchronous oscillations in a heterogeneous network combining intrinsically bursting and

intrinsically quiescent cells as well as for a coupled intrinsically quiescent and intrinsically

tonic cell pair [53, 55]. The model takes the form

v′ = (−INaP (h, v) − IL(v) − Itonic−e(v) + Iapp)/Cm (2.5)

h′ = ε(h∞(v) − h)/τh(v) (2.6)

s′ = αs(1 − s)s∞(v) − s/τs (2.7)
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where INaP (h, v) and IL(v) are as given above.

The s variable in equation (2.7) is slaved to v, and it does not appear in equations

(2.5) and (2.6), so it is useful to do analysis on the vh phase plane. A nice feature of this

reduced model is that if we make biologically reasonable assumptions on the parameters,

then equations (2.5) and (2.7) operate on a fast time scale, while (2.6) evolves on a slow

time scale, due to the small size of ε. Further, within a broad, biologically relevant parameter

range, the v-nullcline (the algebraic equation v′ = 0) can be written as a twice differentiable

function F (v) with a cubic shape, while the h-nullcline is a sigmoidal curve that is monotone

decreasing as a function of v. We follow the work of Rubin in [55] to perform analysis on

this model. Insights based on the shapes and positions of the nullclines often suffice to

analyze the model. When F (v) is cubic, we call its branches the left, middle, and right

branch, respectively. The left branch satisfies F ′(v) > 0, F ′′(v) < 0, the middle branch has

F ′(v) < 0, and the right branch has F ′(v) > 0, F ′′(v) > 0. Where the left branch meets the

middle branch there is a local maximum of the nullcline, which we will call the left knee.

Similarly, where the middle branch meets the right branch there is a local minimum of the

nullcline, which we will call the right knee. See Figure 2.1 for an example chosen to illustrate

these definitions. If we make a further assumption that the nullclines intersect exactly once,

then it is a straightforward calculation to determine the stability of the resulting critical

point.

2.1.2 Function definitions and parameter values

Below we record the definitions of the individual functions that make up equations (2.1)–

(2.4) which were introduced in Refs. [4, 5]. In these equations, for x ∈ {h,m,mP , n, s}, the

function x∞(v) takes the form x∞(v) = {1 + exp[(v − θx)/σx]}
−1, and also for x ∈ {h, n},

the function τx(v) has the form τx(v) = τ̄x/ cosh[(v − θx)/(2σx)]. The parameter values used

in the simulations are listed in Table 2.1. These parameters appear as they did in Ref. [55],

except that we set θh = −40mV. Heterogeneity was introduced by the parameters gNaP and

gL so they do not appear in Table 2.1.
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Figure 2.1: Example nullclines for three different instances of the reduced model. For ε

sufficiently small, the dark blue nullcline corresponds to a quiescent cell, the green nullcline

represents a bursting cell, and the black nullcline represents a tonic cell. All three cells in

this case share the same h-nullcline, which is light blue. All parameters are as in Table 2.1,

except: for the quiescent cell we have gNaP = 2, gL = 2.5, for the bursting cell we have

gNaP = 2, gL = 2 and for the tonic cell gNaP = 3.5, gL = 1.5.

Table 2.1: Common parameter values for equations (2.1)–(2.4)

Parameter Value Parameter Value Parameter Value

αs 0.2 ms−1 Iapp 12 mV τ̄h 1 ms
Cm 0.1 pF σh 6 mV τ̄n 10 ms
EK −85 mV σm −33 mV τs 6.25 ms
EL −65 mV σmP

−5 mV θh −40 mV
ENa 50 mV σn −4 mV θm −34 mV
Esyn−e 0 mV σs −1 mV θmp −38 mV
gij 0.35 nS θn −29 ms
gton 0 nS ε 1/100 θs −33 mV
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2.1.3 Review of the Dynamics of a Relaxation Oscillator

In this subsection we simply provide a brief, heuristic discussion of relaxation oscillator

dynamics relevant for our analysis of system (2.5)–(2.6). Analysis of the dynamics of relax-

ation oscillators in arbitrary dimensions can be done using the tools of geometric singular

perturbation theory [22, 32, 28].

For 0 < ε << 1 and v ∈ R, h ∈ R consider a system of the form:

v′ = f(v, h) (2.8)

h′ = εg(v, h) (2.9)

Suppose further that the v-nullcline can be written as a cubic shaped function h = F (v)

with lim
v→∞

F (v) = ∞. Allow the h-nullcline to be a monotonically decreasing function of v.

We will use again the terminology from Section 2.1.1 to describe the knees and branches of

the v-nullcline, see Figure 2.1. Figure 2.1 contains three different v-nullclines, one where the

intersection with the h-nullcline is on the left branch, another where the intersection is on

the middle branch, and at last one where the intersection falls on the right branch. If the

h-nullcline intersects the v-nullcline near one of the knees, we risk the existence of canards,

which are outside of the scope of this work. Let (vp, hp) be the intersection point of the v

and h-nullclines, and let (vLK , hLK), (vRK , hRK) denote the left and right knee, respectively.

For a given ε > 0, there is a δ = δ(ε) > 0, such that if min{|vp − vLK |, |vp − vRK |} > δ, then

canards will not exist. For the remainder of the work, we assume that this inequality holds.

It is useful at this point to define a way to measure the distance of a point from the

v-nullcline. For any fixed h there are between 1 and 3 values of v such that F (v) = h. We

will only concern ourselves with those v that correspond to the left and right branches of

the v-nullcline. Allow vLB(h) to be the v such that F (vLB) = h and (vLB, h) is on the left

branch of the v-nullcline, and if there is no such v then set vLB(h) = ∞. Similarly, allow

vRB(h) to be the value of v such that F (vRB) = h and (vRB, h) is on the right branch of

the v-nullcline, and set vRB(h) = ∞ if no such v exists. Let Γv(t) be the v-coordinate at

time t of a trajectory Γ(t) of the ODE. Similarly, allow Γh(t) to be the h-coordinate at time

11



t for the trajectory Γ(t). Now we can define the distance from Γ(t) to the v-nullcline as

D(Γ(t)) = min{|Γv(t) − vLB(Γh(t))|, |Γv(t) − vRB(Γh(t))|}.

The intersection of the v and h-nullclines is a critical point of system (2.8)–(2.9). Suppose

now that v′ < 0 below the v-nullcline and v′ > 0 above it. Similarly, assume that h′ > 0

below the h-nullcline and h′ < 0 above it. These assumptions, together with the critical

point being bounded away from the knees, imply that critical points on the middle branch

of the v-nullcline are unstable, while critical points on the left and right branches of the

v-nullcline are stable. If for some time t, D(Γ(t)) is large relative to ε, then |v′| >> 0 and

comparatively h′ ≈ 0. So we consider that the dynamics holds h fixed, and Γ(t) quickly

approaches a neighborhood of the v-nullcline for this fixed h. Once D(Γ(t)) is small enough,

then |v′| ≈ 0 and the h dynamics becomes relevant.

First, consider the case that critical point lies on the middle branch of the v-nullcline.

Suppose we start with Γ(0) on the left branch of the v-nullcline. Since the critical point is

on the middle branch of the v-nullcline, Γh(0) is below the h-nullcline, and so Γ′
h(0) > 0.

The ε in equation (2.9) implies that the h dynamics are slow, so we say that the trajectory

oozes up toward the h-nullcline, remaining close to the v-nullcline. Eventually Γh(t) >

hLK . In this situation, we find that D(Γ(t)) is large, because for Γh(t) there is only one

corresponding point on the v-nullcline, and it is on the right branch. So suddenly Γ′
v(t) >> 0,

and the trajectory quickly jumps over to the right branch of the v-nullcline, with Γh(t) barely

changing. Now Γh(t) is above the h-nullcline, so Γ(t) begins to ooze down toward the right

knee. Since the h-nullcline is below the right knee, Γ(t) will eventually drift below the right

knee, and as before, it is suddenly the case that D(Γ(t)) >> 0. So Γ(t) will quickly fall down

to the left branch of the v-nullcline, completing one cycle. This alternation of prolonged

phases of slow change interrupted by fast transitions between phases is the hallmark of

relaxation oscillations. In the two dimensional case, the Poincaré-Bendixon theorem implies

the existence of periodic relaxation oscillations in this situation.

Suppose instead that the critical point is on the left branch of the v-nullcline. If Γ(t) is

on the right branch of the v-nullcline, it will ooze down until it drifts below the right knee,

at which point it falls down to the left branch of the v-nullcline, as before. However, since

the critical point on the left branch of the v-nullcline is asymptotically stable, the trajectory
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will not be able to get above the left knee. So instead of jumping back to the right branch of

the v-nullcline, the trajectory simply approaches the critical point. Similarly, if the critical

point is on the right branch of the v-nullcline, the trajectory will eventually converge to the

critical point.

The v-nullcline for equation (2.1) or equation (2.5) may or may not be cubic, depending

on parameters such as gL and gNaP . In either case, in the full model (2.1)–(2.4), spiking

activity evolves due to the IK and INa currents, and spiking only occurs for v above some

threshold. This spiking behavior is encoded in the reduced model by the variable s, represent-

ing synaptic output. We see that equation (2.7) involves s∞(v), which is a steep sigmoidal

function (Section 2.1.2) since σs is small. s∞(v) takes the value 1
2

at v = θs, which we call the

synaptic threshold. For values of v arising during spiking, corresponding to the right branch

of the v-nullcline when it is cubic, s∞(v) ≈ 1, and the cell is producing synaptic output as

would be generated with spiking in the full model, which we represent with s = smax. On the

other hand, for values of v arising when the cell is quiescent, corresponding to the left branch

of the v-nullcline when it is cubic, s∞(v) ≈ 0, representing an absence of spiking. Should the

v-nullcline be cubic with a critical point on its middle branch, the cell will oscillate between

phases of low s and phases of s ≈ smax, corresponding to intrinsic bursting. We will use

the location of the critical point to classify our modeled cells as intrinsically bursting (cubic

v-nullcline with critical point on its middle branch), quiescent (cubic v-nullcline with critical

point on its left branch or monotone v-nullcline with critical point below θs), or tonic (cubic

v-nullcline with critical point on its right branch or monotone v-nullcline with critical point

above θs).

2.1.4 Heterogeneity in gNaP and gL

The preBötC is a heterogeneous network of cells that are quiescent, tonically active, or

bursting in isolation [20]. Following [46], in order to reflect this heterogeneity in our work,

we consider heterogeneity in two parameters: the conductance gNaP of the persistent sodium

current INaP and the conductance gL of the leak current IL. Such heterogeneity is observed

in experimental data [46]. Increasing gL has the effect of raising the entire v-nullcline, in

13



particular, the left knee. This moves the intersection of the v and h-nullclines to lower v

values. Numerically, we observe that increasing gNaP has the effect of moving the intersection

of the v and h-nullclines to higher v values. Below, in Figure 2.2, we show the partitioning

of gNaP gL space into regions where the resultant cell is quiescent (blue), bursting (green), or

tonically active (black). For each gNaP gL pair, we find the branch on which the h-nullcline

intersects the v-nullcline, if the nullcline is cubic on 0 ≤ h ≤ 1. If the intersection is on the

left branch, middle, or right branch the cell is declared quiescent, bursting, or tonic, and

is colored blue, green, or black, respectively. The coloring in Figure 2.2 does not take into

account those small neighborhoods around the knee where the intersection of the nullclines

may result in a canard explosion, or where the Andronov-Hopf bifurcation does not occur

precisely at the knee, as these cases only occur on very small parameter ranges, due to

the disparity in timescales of v and h, and thus are not significant for our results. If the

v-nullcline is not cubic (e.g., large gNaP relative to gL) or if it is only single branched for

0 ≤ h ≤ 1 (e.g., large gL relative to gNaP ), then we classify the cell as quiescent or tonic

depending on the position of the critical point relative to the synaptic threshold, θs. Further

detail on the effects of varying gNaP and gL can be found in Section 2.4.3.

Figure 2.2: Partitioning of gNaP gL space into regions where the cells are quiescent, bursting,

or tonic. The blue region represents quiescent cells, the green consists of bursting cells, and

the black region contains tonic cells.
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2.1.5 Effects of Synaptic Coupling

In a network of coupled cells, each individual cell in the network will have its own v,h and

s variables. The rest of this chapter concerns a network of three cells, so for i = 1, 2, 3, we

adopt the vector notation celli = [vi, hi, si], where

v′
i = (−INaP,i(hi, vi) − IL,i(vi) − Itonic−e(vi) + Iapp −

∑

j 6=i

gijsj(vi − Esyn−e))/Cm(2.10)

h′
i = ε(h∞(vi) − hi)/τh(vi) (2.11)

s′i = αs(1 − si)s∞(vi) − si/τs (2.12)

with INaP,i(vi, hi) = gNaP,imp,∞(vi)hi(vi − ENa), IL,i(vi) = gL,i(vi − EL) and Itonic−e(vi) =

gton(vi − Esyn−e). Note that Equation (2.10) excludes self-coupling, yet self-coupling could

be easily included in the analysis if desired (see Section 2.3). We henceforth assume that the

v-nullcline for each neuron is cubic, with associated active and silent phases corresponding

to its right and left branches, respectively, since this assumption is only violated on the edges

of the parameter range illustrated in Figure 2.2, away from where the important dynamic

effects occur.

In Section 2.2.2 we will prove that when sj increases, the knees of the coupled cells

have lower hi coordinates, see Figure 2.3. Here, we will use this result without proof, to

briefly illustrate the mechanism by which a network of these modeled neurons may produce

synchronous bursts. Recall that we do not have spiking oscillations in this reduced model, so

sj is relatively constant when vj is above the synaptic threshold. Therefore, the vi nullclines

for i 6= j experience a quick shift when vj crosses the synaptic threshold, but the changes

are otherwise gradual, see Subsection 2.2.1. We continue to assume ε is small so that the h

dynamics are slow relative to the v and s dynamics, see Section 2.1.3. Thus, in a network

architecture where cell1 = [v1, h1, s1] is coupled to cell2 = [v2, h2, s2] and both cells are

initially in the silent phase, if the trajectory for cell1 transitions to the active phase, then

there is an instantaneous change in the v2-nullcline. It may happen that the left knee for

cell2 has dropped below the current value of h2, in which case cell2 immediately transitions

to the active phase. A similar effect may happen when one cell transitions to the silent phase.

Such fast threshold modulation [65] can yield rapid convergence to synchronous oscillations
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Figure 2.3: Various levels of synaptic input to sample instances of the reduced model. The

blue, green and black nullclines represent respectively a quiescent, a bursting, and a tonic cell

under various levels of synaptic input. The key feature is that synaptic input from another

cell lowers both the left and the right knee of the receiving cell. In this way, a quiescent cell

can become bursting, and a bursting cell can become tonic.

by allowing the trailing cell to catch up to the cell ahead of it, although order switching

may complicate the dynamics. A great amount of detail on this mechanism is provided in

[55, 2, 65, 53].

2.1.6 Illustration of Three Coupled Cells

In this section, we illustrate how the dynamics in which we are interested, synchronous

bursting, can arise in an all-to-all coupled network of three cells, modeled by equations

(2.10),(2.11),(2.12), with heterogeneity introduced through gNaP and gL, such that one cell is

intrinsically quiescent, one is intrinsically bursting, and one is intrinsically tonic. Analysis of

such systems can yield insights into how these three types of intrinsic dynamics interact. We

define a solution as a synchronous bursting oscillation if all three cells transition repeatedly,

via fast excursions controlled by their v dynamics, between the silent and active phases and,

after one cell undergoes a transition from one phase to another, all the other cells join it in its

new phase before any cell undergoes a transition out of that phase. We will study this system
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by projecting the solution onto three separate phase planes: (v1, h1), (v2, h2), and (v3, h3),

while keeping in mind that the position of vj in the (vj, hj) phase plane directly affects sj

and so changes the shapes of the v-nullclines in the other two phase planes. Suppose that in

the absence of coupling cell1 is quiescent, cell2 is bursting, and cell3 is tonic. We will use the

shorthand Q, B, and T , for cell1, cell2 and cell3 respectively. We start with all three cells in

the silent phase, and view the evolution of the trajectory as a series of snapshots, laid out in

Figures 2.4–2.15. Though the vj-nullclines actually change continuously as a function of si

for i 6= j, we assume that the change is fast enough to be considered instantaneous relative

to the slow h dynamics.

Figure 2.4: Starting with all cells silent, T is the first to reach its left knee and enter the

active phase. In this figure and for Figures 2.5–2.15, the dark blue, green, and black curves

represent the v-nullclines for the Q, B, and T cells respectively. The light blue curve is the

h-nullcline. Red represents the trajectory of the system. One black arrow indicates slow

evolution, while two black arrows indicates a fast evolution.
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Figure 2.5: Now that T is in the active phase, it sends synaptic input to the other two cells,

and their v-nullclines change abruptly.

Figure 2.6: Due to the synaptic input from T, B is suddenly above its left knee, so it

immediately enters the active phase. Meanwhile, Q quickly approaches its v-nullcline.

Figure 2.7: Now that B is in the active phase, it sends synaptic input to both Q and T, and

their v-nullclines are updated accordingly.
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Figure 2.8: Q is now above its left knee, and so it enters the active phase.

Figure 2.9: Now that Q is in the active phase, it sends synaptic signals to B and T, so their

v-nullclines are updated.

Figure 2.10: The system evolves until one of the cells reaches its right knee. In this case, the

Q cell must be the first to do so, because the other two cells become tonic under the current

input levels.
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Figure 2.11: Q has returned to the silent phase, so the v-nullclines are updated for cells B

and T. Note that Q could return to the silent phase because the synaptic input from B and

T were not strong enough to push Q’s critical to the right branch of its v-nullcline.

Figure 2.12: With the synaptic input from Q removed, B is below its right knee and enters

the silent phase.

Figure 2.13: Now that B is in the silent phase, synaptic inputs to Q and T are removed, and

their v-nullclines are updated.
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Figure 2.14: Finally T is below its right knee, so it falls down to the silent phase.

Figure 2.15: All cells have returned to the silent phase, so all synaptic inputs are removed.

This completes one cycle of the synchronous bursting oscillation.
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2.1.7 Remarks on Synaptic Adaptation

The cartoon presented in Figures 2.4–2.15 omits one feature of equation (2.12). Typically,

s∞(v) is a sigmoidal function. However, if the sigmoid is not steep, then there is a significant

range of values of v where the synaptic output of the cell is reduced from its maximal value

but remains nonzero. This effect can represent synaptic adaptation, if the relevant range

of v-values overlaps the right branch of the v-nullcline (i.e., the active phase). That is, v

effectively evolves on the slow timescale for a cell on the right branch, and a slow change in

v yields a slow change in s and hence a gradual change in the v-nullclines of the other cells.

This may have far reaching ramifications; for instance, if the v-nullcline of a quiescent cell

does not change fast enough, then the cell may not be able to transition to the active phase.

Further consideration on the effects of synaptic adaptation can be found in [69, 9].

2.2 SYNCHRONOUS OSCILLATIONS IN THREE-CELL NETWORKS

2.2.1 Necessary Conditions for Synchronous Bursting

Our definition of synchronous does not require cells to transition between the active and

silent phases at precisely the same time. Instead, we call a solution synchronous if the

following conditions are always met after some transient time. When celli transitions to the

active phase, every other cellj, for j 6= i, must have been in the active phase before celli

returns to the silent phase. Similarly, after the return to the silent phase, celli does not

transition to the active phase until all other cells have visited the silent phase. For an n-cell

network, these conditions can be formulated in terms of the time it takes each cell to reach

the left or right knee, as appropriate.

We will consider iterations on two sets of integers, one set contains the indices of cells

in the active phase, while the other set contains the indices of cells in the silent phase. An

iteration involves moving an index between the two sets. We let i ∈ Sm ⊆ {1, 2, .., n} if celli

is in the silent phase at iteration m. Similarly, i ∈ Am ⊆ {1, 2, .., n} if celli is in the active

phase at iteration m. Let TLK(i,m) be the time it takes celli to reach the left knee from
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its current position, which depends heavily on the current state of the network, implicitly

encoded in the iteration number m. Similarly define TRK(i,m) as the time it takes celli to

reach the right knee from its current position in iteration m. There are two network-wide

stages to consider: the first is “cells are transitioning from the silent to the active phase”

and the other is “cells are transitioning from the active to the silent phase.” Assume that

S0 = {1, 2, ..., n} and A0 = ∅. Let k be the index such that k = argmin
i∈{1,2,...,n}

TLK(i, 0). Then

we write S1 = S0\k and A1 = A0 ∪ k. This completes one iteration on the sets. We then

consider the system again after time TLK(k, 0).

With this notation, the necessary condition that no cell in the active phase may return

to the silent phase until there are no cells in the silent phase during the mth iteration can

be phrased as:

inf
i∈Sm

{TLK(i,m)} < inf
j∈Am

{TRK(j,m)} (2.13)

That is, for fixed m, as long as (2.13) holds, the first cell to jump up can be moved from Sm

to Am+1 to complete the mth iteration. If (2.13) holds for m = 0, 1, ..., n − 1, then all cells

enter the active phase before any cell leaves it. Then, after the first cell returns to the silent

phase, the condition is reversed for the “cells returning to the silent phase” network stage.

We must have inf
j∈Am

{TRK(j,m)} < inf
i∈Sm

{TLK(i,m)}, in this case, until all cells are back to

the silent phase. In order for a network to maintain synchronous bursting, these conditions

must be satisfied for all m ∈ N.

Remark. For fast-slow networks of arbitrary size, classification of cells into finer bins,

depending on slow variable values in the silent phase, can be used to develop a Markov chain

representation of network dynamics [51]. For the study of synchronous bursting solutions as

we have defined them, two bins suffice.

2.2.2 Sufficient Conditions for Synchronous Bursting

In this section we provide sufficient conditions for the existence of synchronous bursting

oscillations in a three-cell network of cells with all-to-all coupling modeled by equations

(2.10)–(2.12). The results in this section generalize to networks with an arbitrary number of
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cells with all-to-all coupling. The technique used can also be generalized to other architec-

tures; see Section 2.3 for details. Also for convenience, we assume one cell in this network is

intrinsically quiescent and another cell is tonic in the absence of input. We will place some

restrictions on the third cell, again for notational convenience. These restrictions will arise

in the context of the proof. The proof that the provided conditions are sufficient for syn-

chronous bursting works in the ε = 0 limit, though with sufficient effort it may be extended

to 0 < ε << 1, see [32]. We also assume without loss of generality that gton = 0, because

the arguments below are based on the shapes of the nullclines and the times of flight, which

are qualitatively independent of gton.

Suppose that j ∈ Z3. Let j = 0 correspond to the intrinsically quiescent cell, which we

shall also call Q for short. Let j = 2 correspond to the intrinsically tonic cell, also called T

below. Further, j = 1 will denote the other cell, which we will abbreviate by A for “added.”

The architecture is such that cell j receives synaptic input from cells j − 1 and j + 1.

In the ε = 0 limit, the dynamics for vj and sj are reduced to algebraic equations, and the

hj dynamics becomes relevant. For a fixed sj−1 and sj+1 and a given hj, there are up to three

corresponding values of vj, one for each branch of the vj-nullcline. However, if we restrict

our view to each branch individually, the monotonic nature of these branches permits us to

write vj = vX
j (hj, sj−1, sj+1) for X ∈ {L,M,R}. Further, since sj can be considered as a

function of vj, we can write sj = sX
j (hj, sj−1, sj+1), for X ∈ {L,M,R}. Since there are three

cells and each could be on either the left or right branch of the v-nullcline, there are many

possible slow subsystems. Due to the algebraic dependencies detailed above, to describe the

dynamics for
−→
h = [h0, h1, h2], we use the notation

−̇→
h = GXY Z(h) if v0, v1, v2 are on the X,

Y , Z branches of their respective v-nullclines, for X,Y, Z ∈ {L,M,R}.

For each cell j we label the h coordinate of the left knee, right knee, and fixed point

by LK(sj−1, sj+1; j), RK(sj−1, sj+1; j), FP (sj−1, sj+1; j) respectively. Below, we justify this

functional notation by the implicit function theorem. We will carry through the analysis

for equations (2.10)–(2.12), though it is clear that the techniques apply to any model with

similar structure.

Lemma 2.2.1. The h-coordinates of the left and right knees and the fixed point of cellj,
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modeled by equations (2.10)–(2.12), are monotonically decreasing functions of the synaptic

input variables sj−1 and sj+1.

Proof. Note that vj obeys the equation:

v̇j = (−gNaP mP,∞(vj)(vj − ENa)hj − gL(vj − EL) − (2.14)

gj,j−1sj−1(vj − Esyn−e) − gj,j+1sj+1(vj − Esyn−e))/Cm

We solve v̇j = 0 for hj to find F (vj, sj−1, sj+1), the v-nullcline:

hj = F (vj, sj−1, sj+1) :=
−gj,j−1sj−1(vj − Esyn−e) − gj,j+1sj+1(vj − Esyn−e) − gL(vj − EL)

gNaP mp,∞(vj)(vj − ENa)
(2.15)

For fixed synaptic input variables s∗j−1, s
∗
j+1, the v-coordinate of the right knee of cell j,

denoted by vRK
j , satisfies

∂F

∂vj

∣

∣

∣

∣

(vRK
j ,s∗j−1

,s∗j+1
)

=: Fvj
(vRK

j , s∗j−1, s
∗
j+1) = 0

∂2F

∂v2
j

∣

∣

∣

∣

(vRK
j ,s∗j−1

,s∗j+1
)

=: Fvjvj
(vRK

j , s∗j−1, s
∗
j+1) > 0

The Implicit Function Theorem applied to Fvj
(vRK

j , s∗j−1, s
∗
j+1) asserts the existence of a

unique aj(sj−1) and a neighborhood N1 around s∗j−1 such that for all sj−1 ∈ N1 we have

Fvj
(aj(sj−1), sj−1, s

∗
j+1) = 0, and so

RK(sj−1, s
∗
j+1; j) = F (aj(sj−1), sj−1, s

∗
j+1)

∂RK

∂sj−1

∣

∣

∣

∣

(sj−1,sj+1)

=: RKsj−1
(sj−1, s

∗
j+1; j) = Fvj

(aj(sj−1), sj−1, s
∗
j+1)a

′
j(sj−1) + Fsj−1

(aj(sj−1), sj−1, s
∗
j+1)

RKsj−1
(sj−1, s

∗
j+1; j) =

−gj,j−1(aj(sj−1) − Esyn−e)

gNaP mp,∞(aj(sj−1))(aj(sj−1) − ENa)

Since aj(sj−1)−Esyn−e < 0 and aj(sj−1)−ENa < 0, and all other terms are positive, we

conclude that

RKsj−1
(sj−1, s

∗
j+1; j) < 0
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A similar argument grants that there is a unique function bj(sj+1) and a neighborhood N2

of s∗j+1 such that for all sj+1 ∈ N2 we may conclude

RKsj+1
(sj−1, sj+1; j) < 0

Similar arguments also yield that the left knee is a monotonically decreasing function of both

synaptic inputs. Also, solving ḣj = 0 for hj yields hj = H(vj), the hj-nullcline. The intersec-

tion of the v and h-nullclines satisfies F (vj, sj−1, sj+1)−H(vj) = 0. For vj corresponding to

the left and right branches of the vj-nullcline, by assumption Fvj
(sj−1, sj+1) > 0, and also by

assumption Hvj
(vj) < 0, so the implicit function theorem again applies, yielding a function

ψ(sj−1) or φ(sj+1), each describing the change of the v coordinate of the fixed point under

variation of sj−1 or sj+1 respectively. Straightforward differentiation yields that ψ′(sj−1) > 0

and φ′(sj+1) > 0, and combined again with the fact that the hj-nullcline is a monotonically

decreasing function of vj, we see that ∂FP
∂sj−1

∣

∣

∣

(vj ,sj−1,sj+1)
< 0. Similarly, the h coordinate of

the fixed point is a monotonically decreasing function of sj+1.

The monotonicity of the knees justifies the functional definition of DQ, DA, DT , IQ, IA, IT

in Table 2.2 below.

The proof we provide for the existence of a periodic orbit corresponding to synchronous

bursting relies on the Brouwer Fixed Point theorem, for which there is a constructive proof.

Theorem 2.2.2. Let D1, D2, D3 be closed and bounded intervals in R
3. Consider a set

D = D1 × D2 × D3, and a continuous function B : D → D. There is an x∗ ∈ D such that

B(x∗) = x∗.

Proof. See reference [30].

We work in the ε = 0 limit, so that for any particular triple (h1, h2, h3) we precisely know

the possible states of the entire solution via the algebraic relations previously mentioned. We

will begin by considering the set Ω consisting of all possible (h1, h2, h3) coordinates where

all three cells can enter the silent phase simultaneously, with vj = vL
j (hj, 0, 0) and sj = 0

for all j, corresponding to all cells being in the silent phase. We will construct a continuous
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function M : Ω → Ω, by considering the evolution of a trajectory with arbitrary initial

condition in Ω until all cells return to the silent phase. Due to the fact that solutions to

ODEs depend continuously on their initial conditions, since M simply evolves a trajectory

with initial conditions in Ω, M will be a continuous function. In order to construct M in

such a way that it will map Ω to Ω, we need estimates on the time it will take each cell to

change phases, and it is on these estimates that we will place our assumptions. We note that

M can be viewed as a Poincaré map on the 3 dimensional section Ω of the 9d phase space.

The proposition below states that under certain assumptions on times of passage associated

with trajectories with initial conditions in Ω, there exists a periodic synchronous bursting

solution to equations (2.10)–(2.12). Roughly speaking, the assumptions set an order in which

the cells enter the active phase; first T will enter the active phase, then A will follow, and at

last Q will enter the active phase before A can return to the silent phase ((A2) and (A3)).

Finally, we set an assumption (A4) that will guarantee that all cells enter the silent phase

simultaneously, which ensures that M will map Ω to Ω (otherwise, a cell that entered the

silent phase first may have time to evolve such that its h coordinate leaves Ω). To prove

this result, we will show that these assumptions imply that even in the absolute worst case

scenario, every cell will jump from the silent to the active phase before any cell falls from the

active to the silent phase and all cells will eventually enter the silent phase together, with

respect to the fast timescale.

Rather than writing out each mathematical definition relevant to the proof individually,

we have collected these definitions in Table 2.2. The reader may find it useful to consult this

table in conjunction with Table 2.3, which gives heuristic interpretations of the mathematical

definitions. The reader may also find it illuminating to refer to Figures 2.16,2.17,2.18, 2.19,

and 2.20 for a graphical representation of some of the critical times involved in the proof of

the existence of a synchronous bursting solution given below.

Figure 2.17 illustrates the definition of τ ∗
1

3

. We have omitted a similar figure for T0. The

idea behind these two quantities is that we want to ensure that T enters the active phase

before A. Therefore, we need to compare the shortest possible time A could take to reach

its left knee from the silent phase with the longest possible time T could take to reach its

left knee from the silent phase.
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Figure 2.18 illustrates the definition of τ 2

3

(hQ, hT , hA). For a given coordinate (hQ, hT , hA)

in the silent phase, this gives the time it takes for Q to reach the active phase from that

point. An upper bound on τ 2

3

(hQ, hT , hA) is given by T 2

3

. This bound must be compared

against τ ∗
2

3

, which is the shortest possible time it could take for A to enter the silent phase

from the active phase (Figure 2.19).

Finally, Figure 2.20 illustrates the quantity TA. As stated above, we will require all cells

to enter the silent phase simultaneously, though we prescribe a particular falling order to

track the corresponding change in the nullclines. First, Q will enter the silent phase, and

then A will follow. For A to be able to enter the silent phase upon the sudden removal of

synaptic input from Q, the coordinate hA must be below RK(0, sT ; A), which takes its lowest

possible value if sT = smax. Correspondingly, TA is defined using RK(0, smax) as shown in

Figure 2.20. TT denotes a similar longest active time for the tonic cell, and a similar figure

could be generated to illustrate how it is defined. If TA and TT are both less than T1, then

both the A and T cells will return to the silent phase when Q does.

We make the following assumptions about some of the quantities defined in Table 2.2:

(A1) Let the added cell A be such that when sT = s̃T and sQ = s̃Q the fixed point for the A

subsystem occurs on the right branch of the vA-nullcline.

(A2) T0 < τ ∗
1

3

(A3) T 2

3

< τ ∗
2

3

(A4) max(TA, TT ) < T1

Proposition 2.2.3. Under assumptions (A1)–(A4), with the definitions in Table 2.2, the

system of three cells modeled by equations (2.10)(2.11)(2.12) admits a periodic orbit repre-

senting synchronous bursting.

Before stating the proof of the above proposition, we introduce one more bit of notation.

Definition 2.2.4. Allow x · t to represent the result of applying the flow of equations (2.10)–

(2.12) to the initial condition x for t units of model time.
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Proof. Assume that (A1)–(A4) hold. Given the definitions in Table 1, the proof is rather

concise. First, let x0 = (h0
Q, h0

A, h0
T ) ∈ Ω. Because T0 < τ ∗

1

3

(A2), T is the first cell to enter

the active phase, after time τ0(x0). We then allow x1 = x0 · τ0(x0). Since Q is silent under

input from T , we evolve until A enters the active phase, after an additional time τ1/3(x0),

and set x2 = x1 · τ 1

3

(x1). The condition T 2

3

< τ ∗
2

3

(A3) asserts that Q will always join the

active phase before A can fall down to the silent phase. Synaptic input from A lowers T’s

fixed point. The result of this is that T cannot return to the silent phase until the synaptic

input is removed. Thus, we call x3 = x2 · τ 2

3

(x2), and after time τ0(x0) + τ 1

3

(x1) + τ 2

3

(x2), all

three cells are in the active phase simultaneously. When Q falls down to the silent phase,

hQ ∈ DQ by the definition of DQ. Finally, the condition max(TA, TT ) < T1 (A4) asserts

that when Q falls down to the silent phase, hA ∈ DA and hT ∈ DT and both A and T will

return to the silent phase. If we define x4 = x3 · τ1(x3), then we have x4 ∈ Ω. Thus, the map

M : x0 → x4 is a continuous map from Ω into Ω, and by Brouwer’s fixed point theorem, there

is an x∗ such that M(x∗) = x∗. Thus, in the ε = 0 limit, the solution with initial condition

corresponding to x∗ is a periodic orbit. By construction, this orbit meets our definition of a

synchronous bursting solution.

Numerical explorations indicate that assumptions (A1)–(A4) are easy to satisfy in the

case where two cells are intrinsically tonic and the third is intrinsically quiescent. Parameter

sets for which the model satisfied (A1)–(A4) with one cell intrinsically tonic, one intrinsically

bursting, and one intrinsically quiescent were harder to find. An example of such a set

consists of the parameter values from Table 2.1, except gij = 0.0875, gNaP,1 = 0.795, gNaP,2 =

1.6945, gNaP,3 = 0.705, gL,1 = 0.898, gL,2 = 1.94709, gL,3 = 1.209.

2.2.3 Observations on Failures to Produce Synchronous Bursts

In searching for parameters sets for which (A1)–(A4) hold and one cell is intrinsically burst-

ing, the condition T 2

3

< τ ∗
2

3

proved to be the hardest to satisfy. While it is true that this

condition is fairly restrictive, it reveals a key feature of three-cell networks that include a

cell that intrinsically bursts: if the synaptic input from the tonic cell is not strong enough to

cause the bursting cell to become tonic itself, then the bursting cell has an opportunity to
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re-enter the silent phase before the quiescent cell can enter the active phase. More precisely,

suppose that sT = s̃T and sQ = 0. Suppose that under the corresponding level of input,

the fixed point for cell A falls on the middle branch of the vA-nullcline. In this case, the

condition T 2

3

< τ ∗
2

3

can be violated. If this occurs, then there may be an (h1, h2, h3) such

that Q fails to enter the active phase before A enters the silent phase, which would violate

our necessary conditions for synchronous bursting. In our numerical explorations of these

three-cell networks, we identified this premature return to the silent phase as the most com-

mon cause for a network to fail to burst synchronously. Addition of a tonic cell instead of

a bursting cell ensures that the added cell will not fall down from the active phase to the

silent phase before the quiescent cell has a chance to jump up, while addition of a quiescent

cell yields a relatively late entry of the added cell into the active phase, which makes it less

likely that the original quiescent cell will get stuck in the silent phase.

2.3 SUFFICIENT CONDITIONS: SYNCHRONOUS BURSTING FOR

OTHER ARCHITECTURES AND N ≥ 3

The conditions presented in Section 2.2.2 applied to a network of 3 relaxation oscillators.

These conditions generalize naturally for a network of n cells, even if the architecture is not

all-to-all. Recall that the network as a whole can be thought of as being in one of two stages,

“cells moving to the active phase” and “cells moving to the silent phase.” Consider a starting

set D1 × D2 × . . . × Dn, where the Dj are analogous to DQ, DA, DT in table 2.2. When the

network is in the stage where cells are moving to the active phase, the following rules should

be used to generate the sufficient conditions. First, an order in which the cells are going to

enter the active phase must be decided upon, and conditions must be placed to ensure that

this will be the order for any initial condition on the cross product of possible locations where

the cells could re-enter the silent phase. Once this order is established, then use C to denote

the next cell in line to enter the active phase. Consider TC to be the longest possible time C

could take to enter the active phase. Next, look at all the cells currently in the active phase.

Calculate the fastest-case scenario for a cell to return to the silent phase. As in Figure 2.19,

30



realize that the h coordinate of a cell in the active phase evolves fastest under maximal input

from the other cells in the active phase. If it happened that all synaptic inputs decayed to

some minimal value by the time the h coordinate reached the right knee height, the cell

would transition to the silent phase. Make this calculation for each active cell, and allow

TA to be the smallest of all these times. Then the sufficient condition becomes TC < TA.

Repeat this process for every cell in the silent phase, each time evolving the network until

C enters the active phase.

When the network is returning cells to the silent phase, numerical results suggest an

approach to derive a reasonable set of sufficient conditions for synchrony to be maintained.

As in the first case, decide on an order for the cells to return to the silent phase. Then the

sufficient conditions become a cascade; as each cell enters the silent phase, the right knees

of all other cells are raised. The sufficient condition is then, that the next cell that is to

return to the silent phase must be below its new right knee. Repeat this condition for each

cell until all of the cells have returned to the silent phase.

This return condition in particular can be relaxed a bit. The Brouwer fixed point theorem

requires a map to return a closed set to itself. Thus, if the cells do not return to the silent

phase simultaneously, as long as the last cell enters the silent phase before any cell leaves

the starting set, we construct a map that evolves the system until the last cell returns to the

silent phase. This map will return the starting set to itself, and so the fixed point theorem

yields a fixed point, which will be a periodic orbit of the ODE.

For a network with a different architecture, the same steps as above must be applied.

However, care must be taken when determining the order for the cells transitioning between

phases. A network other than all-to-all coupling is more complicated because when a cell

switches between the active and silent phases, it may not update the nullclines of every other

cell in the network. As long as this variation is handled properly in calculating the sheet of

knees each cell must reach to switch phases, the proof does not change. In fact, calculating

the fastest time in which a cell can return to the silent phase can be kept the same, again

because the h dynamics are fastest under full input. This shortcut may be undesirable; with

less than full connectivity the bound will be significantly tighter if the network coupling

architecture is incorporated properly.

31



On the other hand, an architecture including self coupling may promote synchronous

oscillations. We identified in Section 2.2.3 that intrinsically bursting cells that do not become

tonic under synaptic input from the tonic cell may prematurely fall down to the silent

phase before the rest of the network can join the active phase. However, should these

intrinsically bursting cells provide synaptic input to themselves, that extra kick may be

enough to push their critical point to the right branch, inducing a tonic behavior. As long

as the intrinsically quiescent cell can fall down to the silent phase under full synaptic input,

the all-to-all architecture with self-coupling should support synchronous oscillations more

robustly than the architecture considered throughout this work.

2.4 NUMERICAL EXPERIMENTS

2.4.1 Implementation

The numerical results presented in this section were gathered with the MATLAB program-

ming language (The MathWorks, Natick, MA). The equations (2.10),(2.11),(2.12) are very

stiff, and speed became an issue due to the large number of simulations we ran. To speed

up our simulations, we used a C implementation of the CVODE package from SUNDIALS

[26] for the differential equation integration, compiled as a MATLAB function by way of the

mex command.

We allowed a transient of 1000 milliseconds of model time before any conditions on

bursting were checked. Typically, integration was done for 10000 milliseconds. When a cell’s

synaptic output increased beyond 60% of the maximum possible output value, we recorded

that the cell entered the active phase. On the other hand, when the cell’s synaptic output

decreased below 20%, we recorded that the cell entered the silent phase. For purposes of

approximating the frequency of synchronous activity, we track each time when all three cells

have re-entered the silent phase after all three cells have been in the active phase.

The necessary conditions given in Section 2.2.1 provide a guideline for checking if a

solution is synchronous. We implemented these conditions by using a series of boolean flags
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that track the states for cells j + 1, j − 1 relative to cell j. Should a solution fail to meet

the necessary conditions at any time after the initial transient, the integration stops and

the solution is declared to be asynchronous. One shortcoming of this implementation is

that a solution may be declared synchronous if the first time the necessary conditions are

violated occurs after 10000 milliseconds. A second shortcoming is that we may be misled

by parameter values supporting bistability. Although we cannot guarantee that bistability

does not arise, additional numerical explorations suggested that it was rare in the parameter

regimes considered.

2.4.2 Which Cells Promote Synchronous Bursting?

Intuitively, a cell that is intrinsically bursting seems like a safe cell to add to a network to pro-

mote synchronous bursting; however, Section 2.2.3 casts doubt on this intuition. We tested

this intuition more systematically by performing the following numerical experiment. First,

pick at random one cell that is intrinsically tonic and another that is intrinsically quiescent.

Next, partition gNaP gL space into a mesh, and use each mesh point to form a third cell to be

coupled with the other two into a three-cell network. For each network, integrate equations

(2.10)–(2.12) and check whether the network sustains synchronous bursting. We present a

colorization of gNaP gL space as follows. If the third cell failed to create a synchronous burst,

we color the coordinate red. Otherwise we color the coordinate blue if the added cell was

intrinsically quiescent, green if it was intrinsically bursting, and black if it was intrinsically

tonic. We repeated this experiment with many different random choices of the Q, T pair.

After this numerical exploration, certain patterns emerged in these colorizations. Below,

in Figure 2.21, we provide examples that qualitatively cover the breadth of our numerical

findings. It may be useful to refer to Figure 2.2 to recall the division of gNaP gL space into

regions where the resultant cell is quiescent, bursting, or tonic. We also direct the web-

enabled reader to Figure 2.22 for an animated comparison between the original partition of

gNaP gL space and one example of the numerical experiment detailed here. A brief analysis

of which underlying cell pairs yielded each type of synchronization configuration shown in

Figure 2.21 can be found in Section 2.4.6.
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2.4.3 Explanation of the Mechanisms Involved in Synchronous Bursting

In each panel of Figure 2.21, large gL/gNaP or small gL/gNaP in the added cell leads to an

absence of synchronous bursting in the network. These failures correspond to cases when the

third cell is “too quiescent,” that is, even under full input from the other two cells it cannot

activate, or “too tonic,” in that when input is removed, it cannot transition to the silent

phase. Outside of these extreme ranges of gL and gNaP , it was often those coordinates that

represent the addition of an intrinsically bursting cell that failed to produce synchronous

network wide bursting. In this section we attempt to explain the mechanisms underlying

the changes in network dynamics that occur at the boundaries between the red region and

non-red regions of the parameter space.

To explain the results of our experiments, we will for convenience provide arguments

based on the positions of the knees of various nullclines. It should be noted that more

precise arguments should be expressed in terms of times of flight, as in the proof of the

existence of synchronous solutions in Section 2.2.2. However, numerically we observe that

the time of flight to the knee in the silent phase is an increasing function of the h-coordinate

of the left knee, and a decreasing function of the h-coordinate of the right knee. This result

allows an easy translation from knee-based arguments to the time-based analogue.

We consider four basic movements in gNaP gL space corresponding to increasing or de-

creasing gNaP or gL independently. Keeping in mind the insight from Section 2.2.3, that

the most common source of network failure is for a cell to prematurely return to the silent

phase, we will explain how varying gNaP or gL may affect the bursting behavior of the sys-

tem. Specifically we are interested in what happens to induce a switch from a red region to

a non-red region. That is, we seek to explain the bifurcation from non-synchronous solutions

to synchronous solutions resulting from changes in gNaP or gL.

As we did in Section 2.2.2, we can use the implicit function theorem to write the h-

coordinates of the left knee and right knee each as a function of gL. By straightforward

differentiation of equation (2.15), it is then easy to see that the h-coordinates of the left and

right knees are monotone functions of gL, but an important difference is that the h-coordinate

of the left knee is much more sensitive to changes in gL, so that for fixed (hQ, hA, hT ) ∈
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W, τ 1

3

(hQ, hA, hT ) is a monotonically increasing function of gL. Consider then the crossing

from a red-region to a non-red region as gL increases. The result of the added cell having

a higher gL is that it spends more time in the silent phase. This means that the difference

between the times when the A cell and Q cell will enter the active phase is smaller, and thus it

is less likely to be the case that A will prematurely return to the silent phase. This explains

the transition through the red-non-red border as gL increases for all the panels in Figure

2.21, except for Figure 21(b). In Figure 21(b), the only cell within a reasonable parameter

regime that could not be successfully added to the network to achieve synchronous bursting

was another tonic cell. The explanation for the transition in this case is that the Q for this

particular experiment, under synaptic input from the other cells, has a nullcline where the

left and right knees have very similar h coordinates. The result is that assumption (A4) is

violated. In particular, T will not return to the silent phase with Q each time, because Q

does not spend enough time in the active phase for hT to fall below the h-coordinate of the

required knee. Increasing gL to the added cell in this case still causes the A to spend more

time in the silent phase, but the beneficial effect is that when Q enters the active phase,

hT is lower, and thus more likely to sink below the knee as required for T to join the silent

phase when Q does.

This is not the whole picture, however. Consider those added cells such that when they

receive input from a tonic source, they have a fixed point on the right branch of the v-

nullcline. Such cells will not return to the silent phase until Q first enters the active phase

and then returns to the silent phase. If we increase the added cell’s value of gL from such

a configuration, it can happen that the intersection of the vA and hA-nullclines will occur

on the middle branch of the vA-nullcline. Suddenly, it becomes possible for A to reenter the

silent phase before Q can join the active phase. Reversing this process reveals a mechanism

by which lowering gL for the added cell can allow the network to burst synchronously, and

so explains the transition from a red region to a non-red region by lowering gL.

To understand the result of changing gNaP , we again use the implicit function theorem,

but this time we write the v-coordinates of the left knee and right knee each as a function of

gNaP , say v = ψ(gNaP ). Unfortunately, it is not true that the h-coordinates of the knees of a

cell are monotonically dependent on gNaP , and so our analysis of crossing the red-to-non-red
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border is more restricted. Increasing gNaP has the general effect of sliding the vA-nullcline

to the left, which causes the intersection with the hA-nullcline to move to the right, possibly

causing the intersection point to change from the center to the right branch. We claim that

the mechanism for creating synchronous bursting by increasing gNaP is analogous to the

one generated by lowering gL, consistent with the positive slopes of the boundary curves in

Figure 2.21. That is, increasing gNaP puts the intersection point of the vA and hA-nullclines

for the added cell on the right branch of the vA-nullcline when T is in the active phase.

Conversely, lowering gNaP should have an effect analogous to raising gL. Indeed, in the

absence of synaptic coupling, lowering gNaP increases the h-coordinate of the knees. When

A is receiving synaptic input from T , the situation is not as obvious. We seek conditions for

which the left knee will increase as gNaP decreases. Allowing v = ψ(gNaP ) and differentiating

equation (2.15) with respect to gNaP yields the relation

gL >
−gsj+1

sj+1(ψ(gNaP ) − Esyn−e)

ψ(gNaP ) − EL

(2.16)

For gL satisfying (2.16), the left knee is a monotone decreasing function of gNaP , when T

is in the active phase. In this case when gNaP is lowered, the left knee’s h-coordinate again

increases more than the right knee’s h-coordinate, and the analysis is the same as that of

the variation of gL we presented previously.

In summary, we identified two primary transitions from asynchronous network dynamics

to synchronous network oscillations. One transition mechanism is to eliminate the possibility

of the added cell prematurely entering the silent phase. If the added cell can prematurely

return to the silent phase, it must be because under input from the tonic cell the intersection

of the vA and hA-nullclines is on the middle branch of the vA-nullcline. When this intersection

is moved (by changing gL or gNaP ) to the right branch of the vA-nullcline, the added cell

no longer can return to the silent phase until after the quiescent cell first enters the active

phase and then re-enters the silent phase. The other transition mechanism involves keeping

the quiescent cell in the silent phase for an extended period of time, which allows the tonic

cell to approach the intersection of the vT and hT -nullclines. The closer the tonic cell is to

this intersection point, the more likely it is to have its h-coordinate sink below the right knee

when the quiescent cell returns to the silent phase. The mechanism provided for buying this
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extra time is to make the added cell not only quiescent, but to ensure that the h-coordinate

of its left knee is high even under synaptic input from the tonic cell, though not so high that

it intersects the h-nullcline on the left branch of the vA-nullcline, preventing it from being

active. In this way, the quiescent cell and the added cell will spend more time in the silent

phase and will enter the active phase at similar times, which prevents one cell from returning

to the silent phase before the other cell is ready to follow.

This analysis of the bifurcation from asynchronous network dynamics to synchronous

network oscillations reveals what may be called a weakness of a neuron with intrinsically

bursting dynamics. When such a bursting cell is added and receives synaptic input from

the tonic cell, the intersection of the vA and hA-nullclines may still be on the center branch

of the vA-nullcline. This presents the opportunity for A to enter the silent phase before Q

enters the active phase. There are two primary ways to correct this phenomenon. We can

increase the h-coordinate of A’s left knee, thereby giving Q more time to enter the active

phase, or we can change the position of A’s right knee enough that the intersection of the vA

and hA-nullclines falls on the right branch of the vA-nullcline. Such adjustments are required

less frequently for added cells with intrinsically quiescent or tonic dynamics. When a cell is

added with intrinsically tonic dynamics, it cannot prematurely return to the silent phase.

Therefore the only concern is that Q spends enough time in the active phase to allow T

and A to return to the silent phase. On the other hand, if the added cell is intrinsically

quiescent, we potentially must still face the issue of A returning to the silent phase before Q

enters the active phase. However, the left knees of Q and A have more similar h-coordinates

than if A were not intrinsically quiescent and hence the times at which they enter the active

phase will differ by less than if A had any other intrinsic dynamics. Therefore it is more

likely that Q will follow A into the active phase. Keeping such results in mind, it is perhaps

unsurprising that when adding a third cell to a network already containing a quiescent and

tonic cell, it is those added cells which are intrinsically bursting that are most likely to fail

to create synchronous oscillations.
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2.4.4 Which Cells Promote Frequency Modulation?

Another important aspect of the preBötC is that it exhibits a wide range of bursting fre-

quencies, perhaps influenced by an outside population of tonically active cells. Biologically,

control over frequency for the preBötC would allow it to adapt to changes in environmen-

tal and metabolic demands. Further, the system should not be too sensitive to variation

of a control parameter, such as the conductance gton of the tonic drive current Itonic (i.e.,

|dfrequency
dgton

| should not be too big). Intuitively, it may seem that a cell that is intrinsically

bursting may enhance this dynamic range of network bursting, given that it is naturally

tuned to burst. We performed a numerical experiment, however, which suggests that this

may not be the case. In our experiment, we repeatedly selected two cells, one intrinsically

quiescent and one intrinsically tonic, at random. For each such pair, we added a third cell

with gNaP = 2 and varied gL systematically in the interval (.5, 4). Finally, for each value of

gL, we varied gton ∈ (0, .25), taking gton = 0 as the baseline value without loss of generality.

For each (gL, gton) pair, we recorded the frequency of the network, if it bursted, as the inverse

of the average period of synchronous oscillations, recording 0 if synchronous oscillations were

not obtained. Figure 2.23 illustrates some of the results from this experiment.

Our simulations showed that adding an intrinsically bursting cell to the network did

not promote synchronous oscillations particularly well, even under variation of the control

parameter gton. Even in those cases where the network demonstrated synchronous oscillations

over a wide range of gton when an intrinsically bursting cell was added, we did not observe

a wide range of frequencies for these synchronous oscillations. On the other hand, we saw

that adding a quiescent cell often promoted synchronous oscillations under a broad range of

gton, and further, when the network produced synchronous oscillations over a wide frequency

range, it was commonly an intrinsically quiescent cell that had been added.

2.4.5 Explanation of the Mechanisms Involved in Frequency Control

The numerical experiments illustrated in Figure 2.23 have a trait reminiscent of those in

Figure 2.21: it is common for the network to fail to exhibit synchronous oscillations when

the added cell is intrinsically bursting. This experiment gives us information about more
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than just the existence of synchronous oscillations, however. It also indicates the range of

frequencies that the three-cell networks can produce, as well as their robustness to variation

of the control parameter gton. We rescaled the parameters relating to the time constants from

Butera’s original model in [4] to speed up the simulations, so the frequencies recorded here do

not match the frequencies seen in the preBötC. However, our qualitative results should carry

over to biologically relevant time scales. Based on the criteria discussed in Section 2.4.4, an

optimal network should generate a significant color variation extending over a wide range of

gton values. We consistently find that it is the addition of a quiescent cell to the network

that allows the network to burst at a wide range of frequencies over a wide range of values

of gton.

We offer an explanation for this result by analyzing the v-nullclines of the cells. Suppose

we have a network consisting of two quiescent cells and one tonic cell. The control parameter

gton changes the strength of the excitatory synaptic current Itonic−e in equation (2.14), and

mathematically, varying gton is analogous to varying a synaptic conductance variable s.

Therefore, an argument similar to those in Section 2.2.2 implies that the h-coordinate of the

left knee of the v-nullcline is a monotonic decreasing function of gton. Suppose that input

from the tonic cell is insufficient to activate either quiescent cell; that is, they still have their

fixed points on the left branches of their v-nullclines. Then it is variation of gton that can

push the knees low enough that one of the quiescent cells can activate through a singular

Andronov-Hopf bifurcation where there is a O(ε) pure imaginary eigenvalue corresponding

to the change in the intersection point of the v and h-nullclines of the activating cell. In

the ǫ = 0 case, for values of gton beyond this bifurcation but still nearby, the quiescent

cell can take arbitrarily long to activate, which yields an arbitrarily low network oscillation

frequency. Thus, in the ǫ > 0 case, this slow activation may account for the wide range of

frequencies observed, even though arbitrarily low frequencies may no longer be achieved.

Interestingly, in some cases, adding a T cell to a given (Q, T ) pair gives a similarly broad

range of frequencies to that achieved by adding a Q cell, as in Figures 23(a) and 23(b). Let T

and Q be the intrinsically tonic and intrinsically quiescent cells fixed for this experiment and

let A be the added cell. We observe that the added cells that yield synchronous oscillations

in this experiment for low levels of gton are either intrinsically tonic or have high values of
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gL, corresponding to a high value of the h-coordinate of the left knee. For intermediate

values of gL, a high value of gton is required to induce the network to burst synchronously.

These observations together indicate that the left knee of the quiescent cell has a high h-

coordinate, even under synaptic input from the tonic cell. With this insight in mind, it

makes sense that adding a cell that will become tonic under input from T will provide the Q

cell with adequate time to become active over a broad range of gton, with a correspondingly

wide range of frequencies of synchronous oscillations. The mechanism for achieving this

frequency range will be the same as before: two cells, A and T , are stuck in the active

phase, so increasing gton lowers LK(sT , sA; Q), which hastens the Q cell’s jump to the active

phase. As Q jumps into the active phase progressively faster with increased values of gton,

the network frequency increases, since Q always controls the network’s return to the silent

phase. On the other hand, an added cell that is intrinsically quiescent, with the h-coordinate

of its left knee at a high value similar to that of the Q cell’s left knee, will jump up close to

the time when Q does, and so also generates synchronous network oscillations.

2.4.6 Additional analysis

Figure 2.24 highlights an auxiliary experiment designed to increase our understanding of the

relative frequency of occurrence of the various configurations represented by the individual

panels of Figure 2.21, and of which pairs of intrinsically quiescent and intrinsically tonic cells

give rise to each configuration. For the numerical experiment, we selected a set of intrinsically

quiescent and intrinsically tonic cells. For each pair, we explored network dynamics over a

range of added cell parameters as in Section 2.4.2 and produced a diagram of the results, as

Figure 2.21. We qualitatively categorized each pair based on the similarity of the resulting

diagram to the individual panels from Figure 2.21. Figure 2.24 illustrates the pairs identified

for two such panels.

One result of this experiment is, for each panel in Figure 2.21, Q cells with diverse

(gNaP , gL) values appear to generate similar synchrony configurations, and they do so by

pairing with different T cells. This observation suggests that there may be multiple mecha-

nisms through which each configuration represented in Figure 2.21 can arise. Interestingly,
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the ratio gL

gNaP
for the quiescent cell seems to be important in selecting the configuration that

results, although the parameters for the T cell participate as well.

We performed one more simulation to investigate this idea further. For each category

from the above numerical experiment, we took the average value of the gL values for the

intrinsically quiescent cells together with the average value of the gNaP values of those cells,

to form an average intrinsically quiescent cell. Similarly, we formed an average intrinsically

tonic cell for that category. We performed the simulation from Section 2.4.2.

We found that in several cases, the results from the intrinsically quiescent and intrinsically

tonic pair generated with the averaged parameters did not match those generated from the

individual pairs that were averaged. While this result may initially seem surprising, it reflects

the fact that there may be multiple clusters of pairings that produce each configuration,

whereas the average across all relevant pairs may lie outside all such clusters.

2.5 DISCUSSION

This chapter was motivated by the current debate about the source of synchronous rhythmic

bursting in the heterogeneous network of cells coupled with synaptic excitation within the

preBötC, which includes some intrinsically bursting neurons. Previously, it has been shown

that cells that intrinsically burst are not required for sustained network-wide bursting in

the preBötC [5, 55, 46, 56]. Numerical results do suggest, however, that the presence of

neurons that burst under some range of tonic input current does enhance the robustness and

frequency range of preBötC bursting. We have furthered this result by explaining why, of

all such burst-capable cells, it is the ones that are intrinsically quiescent that best support

synchronous bursting over a broad frequency range when embedded within a network, as

long as intrinsically tonic cells are also present.

To arrive at this conclusion, we provided a definition of synchronous bursting and stated

sufficient conditions under which a three-cell network will support a solution that satisfies

this definition. To expand upon these results, we numerically explored the effects of adding

intrinsically quiescent, bursting, or tonic cells to various (quiescent,tonic) pairs to form var-
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ious three-cell networks with all-to-all coupling architectures. The central result from these

experiments and analysis is that typically, if we start with a network containing an intrin-

sically quiescent and an intrinsically tonic cell, then it is preferable to add an intrinsically

quiescent cell instead of an intrinsically bursting cell to endow the network with the capacity

to burst synchronously and to achieve a wide frequency range under variation of the strength

gton of an excitatory synaptic drive. In brief, tonic cells play a key role in spreading synap-

tic excitation throughout the network and meanwhile remain active, ensuring that all other

cells can enter the active phase. Intrinsically bursting neurons can also recruit quiescent

cells, but they tend to return to the silent phase too soon, before quiescent cells can become

active or before the persistent sodium current for the tonic cells can inactivate sufficiently to

allow them to become silent along with the bursters. Intrinsically quiescent cells offer three

advantages relative to bursters: because they enter the active phase more slowly, they (1)

allow for slower overall burst frequencies to be achieved (see also [9]), (2) provide tonic cells

with more inactivation time, decreasing their chances of being stuck in the active phase, and

(3) provide extra time for other, even less excitable cells to be recruited to the active phase.

In our simulations, consistent with these features, we observe tightly synchronized tran-

sitions from the active phase to the silent phase, whereas the transitions from silent to active

may be much less unified. Interestingly, single cells in the preBötC appear to be unable to

initiate network bursts, which instead arise through a gradual recruitment [47], reflected in a

diversity in active phase onset times observed experimentally [5, 6, 27]. On the other hand,

too much spread could pose disadvantages for a strong activation of muscles associated with

inspiration; thus, some of the oscillations on the low end of the frequency range we consider

may not be biologically relevant. Clearly, less heterogeneous networks would yield tighter

synchronization, but heterogeneity is a known feature of the preBötC. Beyond the possibil-

ity that our definition of synchrony is over-generous, another limitation of our study is the

omission of spikes. Spiking effects may make important contributions to preBötC network

bursting. For example, two intrinsically tonic preBötC model cells coupled with synaptic

excitation may engage in synchronous bursting at a very low frequency, due to asynchrony at

the level of spikes within bursts [1]. Nonetheless, our main qualitative result should encom-

pass such spike-related phenomena: To maintain synchronous bursting over a broad range
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of frequencies, it is optimal to introduce intrinsically quiescent cells into the network, such

that a full range of dynamic regimes can be sampled by gradually turning up the strength

of the drive (e.g. gton) to these cells, as long as there are enough tonically active cells in the

network to recruit the quiescent cells to become active in the first place. Once these cells

join the active phase, similar spike asynchrony effects should apply to the network dynamics,

regardless of what behavior these added cells exhibited in the absence of coupling.

Since our results rely on synaptic activity for synchronization, the relative strengths of the

synapses merit discussion. Changing gsyn will change which neurons promote synchronous

bursting and frequency control in Section 2.4.2 and Section 2.4.4. Decreasing gsyn means

that an intrinsically bursting cell is less likely to become tonic under synaptic input from

another cell. Increasing gsyn has the opposite effect, it will improve synchrony as long as at

least one cell in the network can return to the silent phase. In light of Subsection 2.2.3, lower

gsyn will accentuate the fact that intrinsically quiescent cells promote synchronous bursting

and frequency control. When gsyn is elevated, intrinsically quiescent cells will still play this

role, but to a lesser extent.

There are many ways to extend this work. In particular, this chapter focused on strong

excitatory synaptic coupling and the results may change with weak synaptic excitation, or

synaptic inhibition [73], or synaptic plasticity [29]. Further, to understand the dynamics

of the preBötC, it is important to realize that the persistent sodium current is not the

only mechanism that may yield intrinsically bursting dynamics. Rubin et al. developed

a computational model for an experimentally grounded group pacemaker, showing that a

calcium-activated nonspecific cation (CAN) current present in at least some cells in the

preBötC can give rise to synchronous network bursting that depends crucially on synaptic

interactions [56]. As such, an important next step will be to analyze the role of such a group

pacemaker within a small heterogeneous network also including some cells featuring bursting

dependent on the persistent sodium current. It may also be important to understand how

the CAN and persistent sodium currents work together within the same cell, to help with

the interpretation of various pharmacological experiments. This extension is the focus of

Chapter 3.

Another important direction for future work is to consider the effect of noise on the overall
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dynamics. In particular, a study of which network configurations sustain robust synchronous

oscillations in the presence of noise is critical to an understanding of the overall picture of

the preBötC. Headway into analysis of noise in the slow-fast dynamics of the preBötC has

been made by Nesse et al. [39].

Ultimately, this chapter identified no significant advantage of adding intrinsically bursting

neurons to a network of intrinsically quiescent and intrinsically tonic cells. In this model,

changing gNaP or gL switches a cell’s intrinsic behavior from quiescent to bursting to tonic,

or from tonic to bursting to quiescent. The fact that intrinsically bursting neurons are in

the center of this slice of parameter space may account for their presence in the preBötC.

Indeed, if there were a similar region of the brain exhibiting network-wide synchronous

bursting oscillations, and the mathematical model for the individual cells transitioned under

parameter variation from intrinsically quiescent directly to tonic and then to bursting, then

we would predict that cells with intrinsically bursting dynamics would not be prominent in

the network.
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Table 2.2: Mathematical definitions of symbols in Subsection 2.2.2

Symbol Mathematical Definition

DQ [RK(smax, smax;Q), RK(0, 0;Q)]
DA [RK(smax, smax;A), RK(0, 0;A)]
DT [RK(smax, smax;T ), RK(0, 0;T )]

Ω DQ × DA × DT

UQ [LK(smax, smax;Q), FP (0, 0;Q))] valid by (A3)

IQ [RK(smax, smax;Q), FP (0, 0;Q))
IA (FP (smax, smax;A), LK(0, 0;A)] valid by (A1)
IT (FP (smax, smax;T ), LK(0, 0;T )]
W IQ × IA × IT

τ0(hQ, hA, hT ) time of flight (t.o.f.) from (hQ, hA, hT ) ∈ Ω to hT = LK(0, 0;T ) under

the flow
−̇→
h = GLLL(

−→
h )

τ 1

3

(hQ, hA, hT ) t.o.f. from (hQ, hA, hT ) ∈ W to hA = LK(0, sT ;A), under

the flow GLLR(
−→
h ); see Figure 2.16

τ∗

1

3

t.o.f. from hQ ∈ IQ, hT ∈ IT , hA = RK(0, 0;A) to hA = LK(0, 0, A), under the

flow
−̇→
h = GLLL(

−→
h ), with sQ = sT = 0 and held constant; see Figure 2.17

τ 2

3

(hQ, hA, hT ) t.o.f. from hQ ∈ IQ, hT ∈ (FP (0, 0;T ), LK(0, 0;T )], hA = LK(0, sT ;A)

to hQ = LK(sT , sA;Q) under the flow
−̇→
h = GLRR(

−→
h ); see Figure 2.18

ṽA vA corresponding to hA = LK(0, 0;A) and sT = smax

ṽQ vQ corresponding to hQ = LK(smax, smax;Q) and sT = sA = smax

s̃T sT corresponding to hT = FP (0, 0;T ), with vT = vRB(hT )
s̃A sA corresponding to hA = RK(s̃T , 0;A) for vA = vRB(hA)
s̃Q sQ corresponding to hQ = RK(s̃T , s̃A;Q) for vQ = vRB(hQ)

τ∗

2

3

τh(ṽA)) log(LK(0,smax;A)
RK(0,s̃T ;A) )

τ1(hQ, hA, hT ) t.o.f. from hQ ∈ UQ, hA ∈ [LK(0, 0;A), RK(0, smax;A)),
hT ∈ [LK(0, 0;T ), FP ((smax, 0;T )] to hQ = RK(sT , sA;Q) under

the flow
−̇→
h = GRRR(

−→
h ); see Figure 2.19

TA t.o.f. from hQ ∈ IQ, hA = LK(0, 0;A),hT ∈ IT , to hA = RK(0, smax;A) under

the flow
−̇→
h = GRRR(

−→
h ); see Figure 2.20

TT t.o.f. from hQ ∈ IQ, hA ∈ IA,hT = LK(0, 0;T ), to hT = RK(0, smax;T ) under

the flow
−̇→
h = GRRR(

−→
h )

T0 t.o.f. from hQ ∈ DQ, hA ∈ DA, hT = FP (smax, smax;T )

to hT = LK(0, 0;T ) under the flow
−̇→
h = GLLL(

−→
h ) with sQ = sA = 0 fixed

T 2

3

τh(ṽQ)) log(RK(smax,smax;Q)
LK(s̃A,s̃T ;Q) )

T1 t.o.f. from hQ = LK(smax, smax;Q), hA ∈ IA, hT ∈ IT to hQ = RK(s̃T , s̃A;Q)

under the flow
−̇→
h = GRRR(

−→
h ) with sT = sA = smax held constant
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Table 2.3: Explanation of symbols in Table 2.2

Symbol Interpretation

DQ range of possible h values at which the Q cell can enter the silent phase.
DA range of possible h values at which the A cell can enter the silent phase.
DT range of possible h values at which the T cell can enter the silent phase.

Ω box containing all possible (hT , hA, hQ) coordinates at which
the network can enter the silent phase.

UQ range of possible h values at which the Q cell can enter the active phase.

IQ range of h values that Q can achieve.
IA range of h values that A can achieve.
IT range of h values that T can achieve.
W all possible (hT , hA, hQ) coordinates.

τ0(hQ, hA, hT ) the time T takes to enter the active phase, that is, the
time for hT to reach the left knee.

τ 1

3

(hQ, hA, hT ) the time A takes to enter the active phase,

taking into account that the position of the left knee changes based on sT .
τ∗

1

3

the minimum time A can spend in the silent phase, without input from T .

τ 2

3

(hQ, hA, hT ) the time it takes Q to enter the active phase after

A, T have entered the active phase.
ṽA the maximal value attainable by vA when only T is in the active phase.
ṽQ the maximal value attainable by vQ while Q is still in the silent phase.
s̃T the minimal synaptic output from cell T when it is in the active phase.
s̃A the minimal synaptic output from cell A when both A and T are

in the active phase.
s̃Q a lower bound on the minimal synaptic output from cell Q when all three

cells are in the active phase.
τ∗

2

3

the minimal time A can spend in the active phase, if T

is also in the active phase.
τ1(hQ, hA, hT ) the time it takes Q to reach its right knee from the time

it enters the active phase.
TA maximum time it takes A to reach a point where it will enter the

silent phase when Q does.
TT maximum time it takes T to reach a point where it will enter the

silent phase when A does.
T0 upper bound on the time T can spend in the silent phase.
T 2

3

upper bound on the time Q can spend in the silent phase.

T1 a lower bound on the time Q can spend in the active phase.

46



Figure 2.16: Plot of hA against sT . The blue curve is the curve of the left knees of the

vA-nullcline as a function of sT . When the black trajectory reaches the curve of left knees,

the added cell A will jump up to the active phase. The time it takes to reach the curve

of left knees is τ 1

3

(hQ, hA, hT ) for initial conditions hQ, hA, hT ∈ W . In this figure, the blue

curve LK(0, sT ; A) was generated numerically for one particular added cell A, while the

black trajectory is a schematic included for illustrative purposes. For the added cell A, all

parameters are as in Table 2.1, except gNaP = 2, gL = 2.
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Figure 2.17: Plot of hA against vA. The green curve is the vA-nullcline, while the light blue

curve is the hA nullcline. In the worst case, shown here, the trajectory starts as high as

possible, namely at RK(0, 0; A), and continues to the left knee LK(0, 0; A). This evolution

takes time τ ∗
1

3

. In this figure, the light blue and green nullclines were generated numerically

for a particular choice of the added cell A, while the black trajectory is fictive and included

for illustrative purposes. For the added cell A, the parameters are as in Table 2.1, except

gNaP = 2, gL = 2.
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Figure 2.18: Plot of hQ against sT and sA. The multicolored surface is the sheet of Q’s left

knees as a function of sT and sA. The black curve is the hQ coordinate of the Q subsystem

under the flow GLRR(hQ, hA, hT ). The trajectory evolves towards the sheet as sT and sA

experience some decay. When trajectory reaches the sheet LK(sT , sA), Q enters the active

phase. From initial conditions hQ, hA, hT , the time it takes the trajectory to reach the sheet

is τ 2

3

(hQ, hT , hA). In this figure, the sheet of left knees LK(sT , sA; Q) for the quiescent cell

was generated numerically, while the black trajectory is included for illustrative purposes

only. For the quiescent cell Q, the parameters are as in Table 2.1, except gNaP = 2, gL = 4.
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Figure 2.19: Plot of hA against sT . The green curve is the curve of right knees of A as

a function of sT . The trajectory begins at LK(0, smax) and has maximum velocity while

sT = smax. The point with the largest value at which A can enter the silent phase is

RK(0, s̃T ; A). τ ∗
2

3

is defined such that if sT suddenly dropped to sT = s̃T after time τ ∗
2

3

, then

the trajectory of A would exactly hit the curve of knees at RK(0, s̃T ; A). In this figure, the

green curve RK(0, sT ; A) of right knees was generated numerically for a particular choice

of the added cell A. For the added cell A, the parameters are as in Table 2.1, except

gNaP = 2, gL = 2. The black trajectory is an illustration of the worst-case trajectory and

may not be realized.

50



Figure 2.20: Plot of hA against sT and sQ. The green-hued surface is the sheet RK(sQ, sT ; A)

of right knees for A as a function of sT and sQ. The red plane is h = RK(0, smax; A), the h

value of the lowest possible right knee for A when Q has entered the silent phase. In order

for A to return to the silent phase simultaneously with Q, hA must be below the red sheet

when Q enters the silent phase. We define TA as the time it takes a trajectory starting from

LK(0, 0; A) to reach the red sheet. Here, the green-hued sheet RK(sQ, sT ; A) and the red

sheet RK(0, smax; A) were generated numerically for a particular choice of the added cell A.

For the added cell A, the parameters are as in Table 2.1, except gNaP = 2, gL = 2. The black

trajectory, on the other hand, is fictive and included for illustrative purposes.
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(a) (b) (c)

(d) (e) (f)

Figure 2.21: Each panel is a plot of gNaP vs. gL and represents a numerical experiment

with a different pair of fixed intrinsically quiescent and intrinsically tonic cells. For each

such experiment, we choose a third cell with parameters gNaP and gL, and color the point

(gNaP , gL) red if the network failed to exhibit synchronous bursting. Otherwise, we color

the point according to the added cell’s intrinsic dynamics, using blue for quiescent, green

for bursting, and black for tonic. For each cell, all parameters are as in Table 2.1, except:

(gNaP,1, gL,1, gNaP,2, gL,2) = (a) (5.772, 1.842, 2.043, 2.552), (b)

(4.529, 1.842, 2.043, 2.552), (c) (4.529, 2.236, 5.772, 4.342), (d)

(4.529, 2.000, 3.286, 4.105), (e) (4.529, 1.921, 3.286, 4.105), (f) (4.529, 2.000, 5.772, 5.815).
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Figure 2.22: Animated comparison between the original partition of gNaP gL

space and one example of the numerical experiment detailed in Section 2.4.2.

Click here to view the animation.
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(a) (b) (c)

(d) (e) (f)

Figure 2.23: Frequency variation by gton depends on the added cell. Each panel shows an

individual experiment where an intrinsically quiescent cell and an intrinsically tonic cell

were chosen at random. Then, with gNaP = 2 and a range of values of gL between .5 and

4, we added a third cell to the network. For this network, we varied gton from 0 to .25, and

at each mesh point we recorded the average period of synchronous oscillations (recording 0

if synchronous oscillations did not occur). The frequency is color coded here as the inverse

of this average period, unless the period was 0, in which case we recorded the frequency

as 0 as well. As indicated on the gL axis, gL = 1.3947 and gL = 2.1579 represent, for

gNaP = 2, where the added cell’s intrinsic dynamics transitions from tonic to bursting and

from bursting to quiescent, respectively. The black regions indicate a failure by the network

to burst synchronously. The parameters for each cell are as in Table 2.1, except:

(gNaP,1, gL,1, gNaP,2, gL,2) = (a) (4.5293, 2.0789, 5.7724, 5.8158), (b)

(5.7724, 2.6316, 5.7724, 5.8158), (c) (5.7724, 2.3158, 3.2862, 4.1053), (d)

(4.5293, 2.0000, 3.2862, 4.1053), (e) (4.5293, 2.2368, 4.5293, 4.4474), (f)

(5.7724, 2.1579, 4.5293, 4.4474).
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Figure 2.24: An illustration of which pairs of (Q,T) cells give rise to two classes of synchrony

outcomes. The top row shows two examples from Figure 2.21. In the bottom row, dots

corresponding to quiescent cells are blue, and dots corresponding to tonic cells are black. In

each panel, the dots for each intrinsically quiescent and intrinsically tonic pair are connected

if, using the procedure discussed in Section 2.4.2, this pair generated a synchrony diagram

like the one in the panel above.

55



3.0 ON THE INTERACTION OF THE CAN AND NaP CURRENTS

3.1 INTRODUCTION

In the previous chapter, we concluded that intrinsically bursting neurons did not promote

synchronization in small model networks of respiratory neurons. Heuristically this is because

intrinsically bursting neurons need not become tonically active when receiving synaptic input

from the rest of the population; this allows them to prematurely return to the silent phase

before the rest of the network could enter the active phase. Under tonic input, quiescent

neurons using the reduced model in Chapter 2 were able to return to the silent phase. The

loss of the synaptic output from the quiescent neuron would return the rest of the network

to the silent phase, in an excitatory analogue of post-inhibitory rebound. This chapter

highlights another mechanism for returning tonically active neurons to the silent phase, the

CAN current.

Recently, the Rubin-Hayes model was used to show how the CAN current may, when

coupled with another outward current such as the NaP current or Na/K ATPase pump, gen-

erate robust bursting rhythms in small network of intrinsically tonic neurons [56]. However,

analysis for the self-coupled neuron mostly done in the absence of the NaP current. Given

the prevalence of the NaP current, in this chapter we study its interaction with the CAN

current, and the roles each current play in preBötC rhythmogenesis.

We analyze a unified model by extending the core Rubin-Hayes model to include the NaP

current, with all of its associated dynamic effects. This is a crucial step in understanding

the rhythmicity of the preBötC. Indeed, although the previous modeling work done on these

neurons for the most part separated out the CAN and NaP components of preBötC dynamics,

it is likely that in the majority of preBötC neurons, it is the interaction of these currents
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that produces the cellular activity that underlies the bursting rhythm. Our unified model

provides a framework with which we can understand this interaction.

We use a slow-fast decomposition involving three slow variables to analyze dynamics of

the unified model. We approach this problem by reviewing bifurcation mechanisms present

in the NaP-only and CAN-only limits of the unified model, which have one and two slow

variables, respectively, and then consider how these interact when both currents are present.

Specifically, in Section 3.2, we introduce the unified model. In Section 3.3, we review, in the

context of the unified model, the mechanisms by which the Butera model and Rubin-Hayes

model generate bursting rhythms. Section 3.4 discusses the particulars of our numerical

implementations of the unified model. In Section 3.5 and Section 3.6 we provide an analysis

of the unified model by considering dynamic regimes that emerge under variation of the CAN

and NaP conductances. Section 3.7 highlights the coexistence of bursting and tonically active

solutions for some regions of conductance space. In Section 3.8 we break the symmetry of

a self-coupled neuron by considering two reciprocally coupled neurons that are identical

except for their initial conditions. Overall, this chapter shows that the interaction of the

synaptically activated CAN conductance with the voltage dependent NaP conductance yields

a rich spectrum of behaviors, most of which are prevalent in experimental recordings of

neurons of the preBötC. These results suggest that the diversity of observed preBötC neuron

outputs reflects an intrinsic heterogeneity across neurons in this population, which should

be taken into account in future preBötC network models.

3.2 PRELIMINARIES

We present and analyze a model that extends the Rubin-Hayes model to include the NaP

current. As a starting point for developing this model, we used the Rubin-Hayes model

containing the CAN current together with a Na/K ATPase pump. In the Rubin-Hayes model,

individual model neurons isolated from synaptic inputs can be quiescent or tonically active,

with transitions between these regimes governed by the reversal potential, EL, of the leak

current, or equivalently by Iapp, the applied current. Excitatory synaptic coupling between
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two tonically active model neurons, or between a quiescent model neuron and a tonically

active model neuron, allows the pair to burst via interactions of the CAN current and the

Na/K ATPase pump. We analyze a self-coupled model neuron that, considered in synaptic

isolation, would be tonically active. We review the mechanisms underlying the bursting

behavior in the Rubin-Hayes model resulting from synaptic excitation in Section 3.3.2. We

model the NaP current based on the data given for the Butera model [4].

The Butera model differs from the Rubin-Hayes model in that isolated model neurons,

without self-coupling, may have quiescent, bursting, or tonically active spiking patterns, with

transitions between these dynamics as appropriate parameters are varied [46]. In the Butera

model, introducing self-coupling for a model neuron that would intrinsically be tonically

active may yield a bursting rhythm [1]. In Chapter 2 we noted that quiescent and tonically

active model neurons may also be coupled together to generate a bursting rhythm (see also

[55]). In the Butera model, the NaP current is responsible for transitions from the silent to

the active phase and for the return from the active phase to the silent phase, as reviewed in

Section 3.3.1.

Parameters have been adjusted from those values found in [56] and [4] such that the

unified model can be tuned to generate qualitatively identical dynamics to the Rubin-Hayes

model and the Butera model. Using the notation ẋ for the time derivative of the variable x,

the unified model is

v̇ = −{IL(v) + INa(v, h,m) + IK(v, n) + INaP(v, hp) + ICAN(v, Ca) (3.1)

+ Ipump(Na) − Iapp + Isyn(v, s)}/Cm

ḣ = (h∞(v) − h)/τh(v) (3.2)

ṁ = (m∞(v) − m)/τm(v) (3.3)

ṅ = (n∞(v) − n)/τn(v) (3.4)

Ċa = εCa(kIP3
s − kCa(Ca − Cabase)) (3.5)

Ṅa = α(−ICAN(v, Ca) − Ipump(Na)) (3.6)

ḣp = εhp(hp∞(v) − hp)/τhp(v) (3.7)

ṡ = ((1 − s)s∞(v) − kss)/τs (3.8)
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Table 3.1: Common parameter values for Equations (3.1)–(3.8)

Parameter Value Parameter Value Parameter Value

α 6.6 × 10−5 mM pA−1ms−1 gK 30 nS Nabase 5 mM
Cabase 0.05 µM gL 3 nS rpump 200 pA
Cm 45 pF gNa 160 nS σCAN −0.05 µM
EK −75 mV gsyn 2.5 nS σh 5 mV
ENa 65 mV Iapp 0 mV σhp 6 mV
εCa 0.0007 kIP3

1200 µM ms−1 σm −8.5 mV
εhp 0.001 ks 1 σm,p −6 mV
ECAN 0 mV kNa 10 mM σn −5 mV
Esyn 0 mV kCa 22.5 ms−1 σs −3 mV
EL −61 mV kCAN 0.9 µM τ̄h 15 ms
τ̄hp 1 ms τ̄m 1 ms τ̄n 30 ms
τs 15 ms θh −30 mV θhp −48 mV
θm −36 mV θmp

−40 mV θn −30 mV
θs 15 mV

where εCa, α, and εhp are relatively quite small, and IL(v) = gL(v − EL), INa(v, h,m) =

gNam
3h(v − ENa), IK(v, n) = gKn4(v − EK), Isyn(v, s) = gsyns(v − Esyn), ICAN(v, Ca) =

gCAN(v − ECAN)/(1 + exp((Ca − kCAN)/σCAN)), INaP(v, hp) = gNaP mp∞(v)hp(v − ENa),

Ipump(Na) = φ(Na)−φ(Nabase), where φ(x) = x3/(x3 +k3
Na). For each x ∈ {h, hp,mp, n, s},

the function x∞(v) takes the form x∞(v) = {1 + exp[(v − θx)/σx]}
−1. Also for each x ∈

{h, hp,m, n}, the function τx(v) is given by τx(v) = τ̄x/ cosh[(v − θx)/(2σx)]. In Table 3.1

we record the baseline parameter values used for equations (3.1)–(3.8). A value for EL is

included, although we also comment on variations away from this baseline. Values of gCAN

and gNaP are discussed throughout the text, so these parameters do not appear in Table 3.1.

In the Rubin-Hayes model and the unified model (3.1)–(3.8), the value for kIP3
is large,

and represents a signaling cascade that begins with presynaptic glutamate and terminates

with the release of intracellular calcium stored in the post synaptic endoplasmic reticulum.

When enough intracellular calcium is released (represented by Ca ≈ kCAN) the CAN current

activates. The Rubin-Hayes model includes an outward current denoted Ipump(Na) with

corresponding dynamic variable Na, that represents the effects of ATPase pumps that are

activated during CAN current dominated activity [56].
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When two neurons modeled by (3.1)–(3.8) are coupled with excitatory synapses, the pair

can produce robust bursts analogous to those exhibited by the Rubin-Hayes model, when

gNaP = 0, or to those exhibited by the Butera model, when gCAN = 0. With the unified

model, we seek to analyze the forms of rhythmic activity produced by interactions of the

CAN and NaP currents. To understand this interaction, we systematically vary gCAN , the

conductance of the CAN current, and gNaP , the conductance of the NaP current.

In a real preBötC neuron, synaptic recruitment of the CAN current and the Na/K

ATPase pump activity occur primarily in dendrites [41, 37, 38], whereas sodium channels

are likely to be most prevalent near the axon hillock, where they can strongly influence

action potential generation. However, simultaneous somatic voltage recordings and dendritic

calcium imaging from preBötC neurons suggest that preBötC neurons are electrotonically

compact. Figure 3.1 shows an example of the temporal proximity of somatic and dendrite

responses, which is representative of a large set of recordings [10]. In particular Figure 3.1(e)

demonstrates that the difference between the time when the onset of activity occurs in the

dendrite (green trace in panel (e)) and the time when activity begins in the soma (black trace

at the top of panel (e)) is sufficiently small that we may justify using a one compartment

model, which simplifies the analysis. Another way we have simplified analysis is by focusing

on one self-coupled model neuron, instead of a network of two model neurons. We provide

numerical justification for this simplification in Section 3.4.

Our primary tool for analysis will be geometric singular perturbation theory [22] (for

thorough review see [28]). This analysis exploits the fact that εCa, α and εhp are small,

and so Ca,Na,hp (the “slow subsystem”) evolve on a timescale separate from the dynamic

variables v, h,m, n, s (the “fast subsystem”). Here we briefly summarize the interactions

of the slow and fast subsystems. From the perspective of the fast subsystem, the slow

subsystem’s dynamic variables are fixed at some values. The fast subsystem then approaches

some stable orbit or critical point based on the current values of the slow variables. From the

slow subsystem’s perspective, the dynamics of the fast subsystem is instantaneous. Based

on the asymptotic limit of the fast subsystem dynamics, the slow subsystem slowly evolves.

This drift updates the appropriate stable orbit for the fast subsystem, but the fast subsystem

instantly tracks these updates, and the slow subsystem continues to drift in a way that is
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determined by the fast subsystem’s limits.

3.3 REVIEW OF THE LIMITING CASES gNAP = 0 AND gCAN = 0

We begin our analysis by reviewing model dynamics in the two extremal parameter regimes,

gCAN = 0 and gNaP = 0. Analysis of these regimes isolates key mechanisms that will combine

to yield the rich dynamics of the general case.

3.3.1 Dynamics without the CAN current

First, we set gCAN = 0 and allow gNaP to vary for a self-coupled model neuron. With

gCAN = 0, we can safely ignore the calcium dynamics given in Equation (3.5) and the sodium

dynamics will equilibrate at Na = Nabase. Thus, after a transient, we need only consider

one slow variable, hp, which simplifies the analysis. In this case, the model is similar to

the Butera model, though the parameter values differ slightly. Importantly, the bifurcation

structure is similar to the one from the Butera model[1]. Here we will briefly recall how a

slow-fast decomposition can be used to describe the dynamics in the case gCAN = 0. First we

present the bifurcation structures associated with equations (3.1)–(3.4),(3.8) in Figure 3.2

by projecting the bifurcation diagram generated by treating hp as a parameter, along with

the graph of the curve satisfying equation hp′ = 0 (also called the hp-nullcline), into (v, hp)

coordinates.

We have marked three key features in Figure 3.2, a saddle-node (SN) bifurcation (visible

in the inset), a family P of stable periodic orbits, and the family’s termination point: a critical

point of the fast subsystem (3.1)–(3.4),(3.8) that is the asymptotic limit of a homoclinic

orbit (HC). At the SN bifurcation the family of asymptotically stable critical points of the

fast subsystem that correspond to quiescence ceases to exist. The family P is born in a

supercritical Andronov-Hopf (AH) bifurcation at hp > 1.2 but is is not visible in Figure 3.2.

The features illustrated in Figure 3.2 will be visited in succession by the evolving tra-
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Figure 3.1: Neurons in the preBötC are electrotonically compact; these data were collected

from the Del Negro laboratory. (a) Videomicroscopic image of a whole-cell patch-clamp

recording in the preBötC of a neonatal mouse. (b) Neuronal soma and dendrites imaged via

Alexa 568 hydrazide (fast diffusing) fluorescent dye. The white box in (b) shows the dendrite

region subsequently imaged using Oregon-Green BAPTA 2, a calcium-sensitive dye, and

two-photon excitation [11]. The inset shows this dendrite region imaged via Oregon-Green

BAPTA 2. (c) Superimposition of (a) and (b). (d) Inspiratory bursts recorded immediately

after achieving a whole-cell recording in the neuron (a–c). A bias current of -90 pA was

applied to maintain a -60 mV baseline membrane potential. At first, the Alexa dye quickly

dialyzes the cell (panel (b)) to reveal its full morphology. However, the Oregon-Green dye

diffuses more slowly and does not reach the dendrite until 20-30 min later. (e) Whole-cell

recording and dendritic imaging after 30 min. A 300 ms current step command is also

illustrated to show that calcium fluorescent changes in the dendrite occur closely in time

with somatic voltage changes.
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Figure 3.2: Bifurcation diagram for gCAN = 0 formed by treating hp as a bifurcation pa-

rameter. P is a family of stable periodic orbits, the maximum and minimum v values of the

periodic orbits are indicated by solid black circles. P terminates in a homoclinic orbit with

homoclinic point HC. Solid lines indicate stable critical points, while black dashed lines are

unstable critical points, and the sigmoidal red dashed curve is the hp-nullcline.
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jectory to create the dynamics for the gCAN = 0 system. We will work in the εhp = 0 limit

so that the methods of geometric singular perturbation theory allow us to first consider the

slow variable hp as fixed. For each fixed hp ∈ [0, 1] each solution of the fast subsystem is

quickly attracted to one of the stable structures highlighted in Figure 3.2.

To facilitate our analysis we introduce the following notation. Considering hp fixed as a

parameter, we call (v, h,m, n, s) the fast subsystem, with associated fast dynamics given by

Equations (3.1)–(3.4),(3.8).

Let x · t be the result of applying the flow of the fast dynamics to initial condition x for

time t. Allow d(x, y) to be the usual euclidean distance between points x = (vx, hx,mx, nx, sx)

and y = (vy, hy,my, ny, sy), that is, d(x, y) =
√

(vx − vy)2 + (hx − hy)2 + . . . + (sx − sy)2.

We use the dynamics of equations (3.1)–(3.4),(3.8) to define FgCAN=0(hp, x0) = {x: for fixed

hp and any given δ > 0 there exists tn → ∞ such that for each tn, d(x0 · tn, x) < δ}.

Note that FgCAN=0(hp, x0) can be thought of as limt→∞ x0 · t for hp fixed, when this limit

exists. FgCAN=0(hp, x0) may be either a nontrivial orbit or a critical point and may depend

critically on x0 for choices of hp where the fast subsystem exhibits bistability. We construct

a solution for the full system by allowing hp to drift based on the dynamics of equation

(3.7) averaged over FgCAN=0(hp, x0). We define hpSN to be the hp coordinate of the SN

bifurcation. In Figure 3.2 the AH bifurcation (with hp-coordinate hpAH) is not seen because

it occurs at hpAH > 1.2. Further, for hp fixed in [0, hpSN), we define Q(hp) to be the unique

stable critical point of the fast subsystem corresponding to quiescence for that fixed hp, see

Figure 3.2. We will call hpHC the hp coordinate of the homoclinic orbit. For hpHC ≤ hp < 1

we define P (hp) to be the unique stable periodic orbit with large amplitude and high voltage

corresponding to fast subsystem spiking for that given value of hp, see Figure 3.2.

Without loss of generality, we begin our analysis of the model dynamics with gCAN = 0

and an initial condition (hp, x0) on the lower stable branch in Figure 3.2, that is, (hp, x0) =

(hp,Q(hp)) for 0 < hp < hpSN . FgCAN=0(hp, x0) = Q(hp) is below the hp-nullcline, so that hp

will slowly begin to increase toward hp∞(v). As hp slowly increases, FgCAN=0(hp, x0) = Q(hp)

initially persists. If the hp-nullcline intersects the curve of stable quiescent states, then the

system converges to this intersection point, and the resultant solution will exhibit quiescent

dynamics. Otherwise, hp > hpSN eventually holds, and Q(hp) is not defined for such values
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of hp. For hpAH > hp > hpSN , FgCAN=0(hp, x0) = P (hp), so a spiking or active phase begins

once hp > hpSN .

During the active phase, the relation FgCAN=0(hp, x0) = P (hp) is maintained, based on

the x0 values visited. If the right hand side of equation (3.7) averaged over P (hp) is negative

for each fixed hp ∈ (hpHC , hpSN ], then there is a negative net drift for hp, so that hp

decreases until hp ≈ hpHC . The location of the hp-nullcline relative to the homoclinic orbit

will determine the resultant dynamics of the solution. More precisely, let T (P (hp)) be the

period of P (hp) and let D(hp) = εhp

∫ T (P (hp))

0
(hp∞(v) − hp)/τhp(v) dt where (v,m, n, h, s)

evolve according to P (hp). The net drift of hp across the homoclinic is D = lim
hp→hp+

HC

D(hp).

Suppose D < 0. Under this assumption, hp < hpHC eventually holds (and P (hp) is no longer

defined) and again FgCAN=0(hp, x0) = Q(hp), resulting in the termination of the active phase,

after which the full cycle repeats. Such dynamics represent square-wave bursting. On the

other hand, if D ≥ 0, even if hp < hpHC for some time, then eventually hp > hpHC again,

and FgCAN=0(hp, x0) = P (hp) for all subsequent time. The full system will eventually settle

onto a periodic orbit, resulting in tonic spiking.

Modulation of gNaP or EL shifts the location of the SN bifurcation and the location of

the homoclinic orbit. For some range of EL ≤ −61 and EL = −61 in particular, increasing

gNaP from 0 to 5, the stable dynamics changes from quiescence to bursting, and eventually

from bursting to tonic spiking. For some range of EL ≥ −60 and gNaP ∈ [0, 5], the full

system always exhibits tonic spiking.

3.3.2 Dynamics without the NaP current

We now consider a self-coupled model neuron with gNaP = 0 and gCAN nonzero. With

gNaP = 0, we may safely ignore the dynamics of hp, and so may reduce our system to one

that has two slow variables: Ca and Na. In this case, with the exception of a few parameter

values, the model is the same as the Rubin-Hayes model [56]. For a sample voltage trace of

a burst when gNaP = 0, together with its projection into the (Na,Ca) plane, see Figure 3.3.

There are several bifurcation structures we must consider to explain the dynamics when

gNaP = 0. In Figure 3.4, we present the bifurcation diagram of the fast subsystem projected
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into (Ca, v) coordinates with Na > Nabase fixed. As in the gCAN = 0 regime, there is a

supercritical AH bifurcation that gives rise to a family of small amplitude periodic orbits,

which quickly coalesce with a family of unstable periodic orbits at a SNP bifurcation; it is

important to note that the Ca-coordinate of the AH bifurcation will be attainable by the

full system, unlike the gCAN = 0 case. The unstable family of periodic orbits meets the

stable family of periodic orbits P at another SNP bifurcation. P contains periodic orbits

with large amplitude and generally short period, again representative of neuronal spiking. As

above, P terminates at a homoclinic orbit; however, this homoclinic orbit precisely coincides

with a SN bifurcation, resulting in a saddle-node on an invariant circle (SNIC) bifurcation.

In this section, we consider two slow variables, but our definitions will be analogous to
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Figure 3.3: Sample trajectory for a burst in the gNaP = 0 case. (a) Voltage trace. The

colors correspond to those in panel (b). (b) Projection of the trajectory into the (Na,Ca)

plane. As the model neuron spikes (purple), Ca exhibits several sharp increases until the

CAN current activates (green), which drives both Ca and Na to higher values, eventually

leading to depolarization block (black) and the termination of the burst (red).

those in Section 3.3.1. In Section 3.3.1 we defined Q(hp) as the branch of stable quiescent

critical points for the fast subsystem. Those critical points were not defined for hp > hpSN .

Analogously, in this section, instead of a single SN bifurcation point, there is a curve of

SNIC bifurcations in the (Ca,Na) plane. Setting Ca = Cabase and considering Na as a

bifurcation parameter, there is a SNIC bifurcation of the critical points corresponding to

quiescence at Na = NaSNIC . For Na > NaSNIC we define CaSNIC(Na) to be the unique
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Figure 3.4: Bifurcation diagram of the fast subsystem with gNaP = 0 generated by treating

Ca as a bifurcation parameter. Na has been fixed at a level higher than Nabase. Solid

lines indicate stable critical points of the fast subsystem, and the line at low Ca corresponds

to the silent phase. Dashed lines indicate unstable critical points of the fast subsystem.

Open or closed circles mark the maximum and minimum v coordinates of a periodic orbit.

Closed black circles indicate stable periodic orbits P of the fast subsystem that correspond

to spiking. Open black circles correspond to unstable periodic orbits for the fast subsystem.

Orange circles correspond to high voltage low amplitude oscillations L of the fast subsystem.

A SN bifurcation coincides with a homoclinic bifurcation of P, resulting in a SNIC bifurca-

tion. P meets the unstable periodic orbits at a SNP bifurcation, labeled OSNP here. The

unstable periodic orbits meet L at another SNP bifurcation, labeled ISNP here. L collapses

down to the branch of stable critical points corresponding to depolarization block at an AH

bifurcation.
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Ca coordinate of the curve of SNIC bifurcations. For (Ca,Na) such that Na > NaSNIC and

Ca < CaSNIC(Na) there is a unique stable critical point of the fast subsystem, Q(Ca,Na),

corresponding to hyperpolarized quiescence. In particular, Cabase < CaSNIC(Na) for almost

all Na > NaSNIC .

Similarly to subsection 3.3.1, we use the dynamics of equations (3.1)–(3.4),(3.8) to define

FgNaP =0(Ca,Na, x0) = {x : for fixed (Ca,Na) and any given δ > 0 there exists tn → ∞ such

that for each tn, d(x0 · tn, x) < δ}. Again, FgNaP =0(Ca,Na, x0) may be either a nontrivial

orbit or a critical point. We use this definition to consider various types of trajectories for

the full system. We begin our construction with Ca = Cabase and Na > NaSNIC so that

FgNaP =0(Ca,Na, x0) = Q(Ca,Na). In this state, s ≈ 0 and thus Ċa ≈ 0, and we need

only consider the Na dynamics, which will initially cause Na to decrease toward Nabase.

If NaSNIC < Nabase, then Na will stagnate at Nabase, resulting in a solution to the full

system that exhibits quiescence. On the other hand, if NaSNIC > Nabase, the system may

exhibit bursting or tonic spiking dynamics. As Na decreases toward Nabase, eventually

Na < NaSNIC holds and Q(Ca,Na) is no longer defined; the full system exits the quiescent

state, see Figure 3.5.

For fixed Na, treating Ca as a bifurcation parameter yields two SNP bifurcations, which

we label as ISNP (“inner SNP”), for the one with a lower Ca coordinate, and OSNP (“outer

SNP”), for the bifurcation at higher Ca coordinate. We define CaISNP (Na) to be the Ca

coordinate of ISNP for the given value of Na, and similarly, CaOSNP (Na) is defined to be the

Ca coordinate of OSNP for the given value of Na. For CaSNIC(Na) ≤ Ca < CaOSNP (Na)

we can define P (Ca,Na) to be the unique high voltage large amplitude stable periodic orbit

of the fast subsystem that corresponds to spiking.

As the full system exits the quiescent state, it follows that FgNaP =0(Ca,Na, x0) =

P (Ca,Na). The model neuron is self-coupled, and as a result of the spiking the s dy-

namic variable increases, which induces a positive drift in Ca, see Equation (3.5). Increased

Ca activates the CAN current, which for sufficiently high gCAN leads to increased spiking

frequency. This increased spiking frequency further drives Ca by sustaining a higher synap-

tic level s, see Equations (3.1) and (3.8). The dynamics may enter a voltage-dependent spike

inactivation state called depolarization block, and to explain this, we consider the location
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of the AH bifurcation relative to the trajectory of the slow subsystem. There is a curve of

AH bifurcations in the (Ca,Na) plane, so we define CaAH(Na) to be the Ca coordinate of

the AH bifurcation for a provided value of Na. For (Ca,Na) satisfying CaAH(Na) < Ca, we

define DB(Ca,Na) to be the unique stable critical point of the fast subsystem corresponding

to depolarization block (e.g., the solid branch of critical points near v = −20 in Figure 3.4).

As Ca increases, eventually Ca > CaOSNP (Na) > CaAH(Na) holds, and P (Ca,Na) is no

longer defined; FgNaP =0(Ca,Na, x0) = DB(Ca,Na) so that the dynamics no longer exhibits

spiking. Instead, through damped oscillations, it winds down to the depolarization block

state.

With the full system in depolarization block, the s dynamic variable decays due to the

spike attenuation (see Equation (3.8), and in particular s∞(v) and θs in Section 3.2). From

Equation (3.5) we note that low levels of s cause Ca to decay, so that Ca < CaAH(Na) even-

tually holds. For (Ca,Na) satisfying CaISNP (Na) < Ca < CaAH(Na), we define L(Ca,Na)

to be the unique high voltage low amplitude stable periodic orbit of the fast subsystem cor-

responding to the given (Ca,Na) pair. For CaISNP (Na) < Ca < CaAH(Na) there is

bistability between L(Ca,Na) and P (Ca,Na) for the fast subsystem; however, a solution

just exiting depolarization block will be in the basin of attraction for L(Ca,Na). Periodic

orbits for L(Ca,Na) have a maximal voltage less than θs; see Figure 3.4 for an example of

this situation. These sub-threshold oscillations do not yield an increase in the s dynamic

variable, so that Ca continues to have a negative drift, at least until Ca < CaISNP (Na), so

that L(Ca,Na) is no longer defined and FgNaP =0(Ca,Na, x0) = P (Ca,Na). However, due to

the activated CAN current, Na continues to have a positive net drift throughout the active

phase that we have described, see Equation (3.6). As Na increases, so does CaSNIC(Na).

If the combined changes in Na and Ca push Ca < CaSNIC , then P (Ca,Na) is not de-

fined, yielding FgNaP =0(Ca,Na, x0) = Q(Ca,Na) so that the full system returns to the silent

phase. We summarize the (Na,Ca) coordinates corresponding to different dynamics for

FgNaP =0(Ca,Na, x0) in Figure 3.5.

A solution that encompasses all of these components has a burst that exhibits depolar-

ization block during its active phase, which we will call a DB burst. If gCAN is low, then,

for Na ≥ Nabase, CaAH(Na) may be beyond the maximum attainable value of Ca, so the
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Figure 3.5: Plot of various bifurcation curves and resultant dynamics of the fast subsystem

when gNaP = 0. For (Na,Ca) corresponding to the light blue region FgNaP =0(Ca,Na, x0) =

Q(Ca,Na). For (Na,Ca) corresponding to the light grey region, FgNaP =0(Ca,Na, x0) =

P (Ca,Na). For (Na,Ca) in the green region, there is bistability in the fast subsystem,

either FgNaP =0(Ca,Na, x0) = P (Ca,Na) or FgNaP =0(Ca,Na, x0) = L(Ca,Na). Similarly,

for (Na,Ca) in the red region, there is also bistability in the fast subsystem such that either

FgNaP =0(Ca,Na, x0) = P (Ca,Na) or FgNaP =0(Ca,Na, x0) = DB(Ca,Na) holds. Finally,

for (Ca,Na) in the white region, FgNaP =0(Ca,Na, x0) = DB(Ca,Na). These regions are

bounded by various curves of SNIC, AH, or SNP bifurcations.
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model neuron will not reach the depolarization block state, see Section 3.5.5. This may lead

either to square-wave bursting or to tonic activity. We say that a function f(x) blows up

for finite x = x0 if limx→x0
f(x) = ∞. When the coordinate of a bifurcation blows up, the

trajectory may be captured by this bifurcation. For instance, if CaSNIC(Na) blows up for

finite Na = Na0 then as Na approaches Na0, the trajectory’s Ca and Na coordinates satisfy

Ca < CaSNIC(Na), and so FgNaP =0(Ca,Na, x0) = Q(Ca,Na) and we say that the trajectory

has been captured by the SNIC bifurcation. Specifically, if gCAN is low, then CaSNIC(Na)

may blow up for finite Na, see Section 3.5.6.

If the activated CAN current can pull Na up to such a value that the CaSNIC(Na)

blows up, then FgNaP =0(Ca,Na, x0) = Q(Ca,Na). Thus, the trajectory will have a period of

quiescence, so that Ca and Na will decay. As Na decays during the quiescence, CaSNIC(Na)

takes finite values again. Eventually Na < NaSNIC holds and triggers re-entry to the active

phase, which, via activation of the CAN current, brings Na high enough that CaSNIC(Na)

blows up, resulting in a return to the silent phase. A solution with such dynamics exhibits

square-wave bursting with a long period and we note that this version of square-wave bursting

is distinct from the square-wave bursts see in Section 3.3.1. Should this blowup of the

CaSNIC(Na) not occur, the resultant solution has no way to return to the silent phase and

so will be tonically active.

The dynamics of the gNaP = 0 system depends on EL as well. If EL ≤ −61, then

Nabase > NaSNIC , so that the solution cannot enter the active phase and quiescence results.

If EL = −60, then increasing gCAN from 0 to 5 first yields tonically active solutions and then

DB bursting solutions. For EL = −59.5, increasing gCAN from 0 to 5 first yields solutions

that are tonically active, then square-wave bursting, then tonic activity again, and finally

DB bursting. Desirable bursting solutions persist for a range of EL ≥ −59.5; however, when

EL is not sufficiently negative, Ipump is unable to terminate the burst by causing a prolonged

silent phase [56]. Instead, for sufficiently high gCAN and EL, the trajectory will wind back and

forth through the AH bifurcation, resembling an elliptic burster. The mechanisms underlying

these different solutions will be described in detail, for the more general case with both INaP

and ICAN in the model, in Sections 3.5 and 3.6.

71



3.4 NUMERICS

Most of our numerical work was done in the MATLAB programming language (The Math-

Works, Natick, MA). Systems such as our unified model that have multiple timescales are

stiff, so to speed up integration we used a C implementation of the CVODE package from

SUNDIALS [26], interfaced with MATLAB via the mex command. Absolute and relative

tolerances were set to 10−6. Two dimensional bifurcation diagrams such as Figure 3.2 were

generated with XPPAUT [19], and three dimensional bifurcations were created by the MAT-

CONT package for MATLAB [16] as well as XPPAUT.

In Figure 3.6, we present a colorization of (gNaP , gCAN) parameter space based on the

dynamics of the model under different parameter choices, using blue for quiescence, black

for tonic, and green for bursting. To classify a parameter set based on neuronal activity,

we use initial conditions corresponding to the silent phase, with elevated Na and low Ca

and hp, and after a transient of 10, 000 msec, we apply an algorithm to the spiking pattern

of the model neuron recorded over the next 9999 msec. The algorithm records that the

model neuron has spiked each time V = 0 and V ′ > 0, since most spikes peak at about

V = 20, and V stays below 0 during both the spike attenuation leading into depolarization

block that sometimes occurs and the sub-threshold oscillations that emerge upon exit from

depolarization block. If there are no spikes after the initial transient, then we classify the

model neuron as quiescent. Otherwise, we compute the standard deviation of the interspike

intervals (ISI). The ISI of a tonically active model neuron will have a standard deviation very

close to zero milliseconds. On the other hand, due to the long time between the last spike of

a burst and the first spike of the next burst, in the bursting case the standard deviation of

the ISI is significantly increased relative to the tonically active case. We classified the model

neurons as follows: if the standard deviation of the ISI was less than 10 msec, we considered

the model neurons to be tonically active; otherwise, they were considered to be bursting.

All of the tonically active model neurons observed before automating the procedure had ISI

standard deviations well below 10 msec. Most bursting solutions yielded ISIs with standard

deviations greater than 50 msec, so a threshold of 10 msec is reasonable for partitioning the

parameter space.

72



We include white labels in Figure 3.6 to facilitate later discussion. Figure 3.7 provides

representative voltage traces from these labeled regions. The bursting dynamics in region II

(Figure 3.7(a)) is square-wave bursting as seen in the Butera model [4], while that in region

III (Figure 3.7(b)) is DB bursting as seen in the Rubin-Hayes model [56]. Both of these are

prevalent in voltage traces recorded from mouse preBötC slices, as are the patterns found

in region * (Figure 3.7(c)). Figure 3.8 gives several sample recordings and agrees well with

model output for the various bursting regimes.

In Section 3.8.2, we discuss the differences between considering a reciprocally coupled

pair of model neurons, and one self-coupled neuron. For two reciprocally coupled neurons, we

find that the synchronous state is weakly unstable, but nevertheless, the activity patterns of

the two neurons are very similar. Except for the precise spike synchrony, all of the dynamics

observed in the self-coupled case have been observed in the two-neuron case. The result

of this analysis yields that the self-coupled case will yield good insight into the two-neuron

case.

Variations in EL have been used to explore robustness of model dynamics in past work,

for various reasons (see Discussion). We generated Figure 3.6 with EL = −61, although the

figure would be qualitatively similar for a range of EL values. In particular, for EL < −61,

a higher value of gNaP is required for solutions to be able to enter the active phase, so all of

the regions will shift to the right in gNaP space. On the other hand, for EL > −61 and large

enough such that the system fails to produce quiescence or bursts when gCAN = 0, then the

gCAN 6= 0 case will not exhibit region I-like or region II-like dynamics, but the other regions

persist. We note that region * is lost for a value of EL close to that which causes the loss of

region II. For EL insufficiently negative, Ipump and the NaP current will be unable to cause

a prolonged silent phase (as seen in the gNaP = 0 case), and the system may exhibit activity

that resembles elliptic bursts.
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Figure 3.6: Partition of (gNaP , gCAN) parameter space based on the dynamics of the unified

model for a self-coupled neuron. Blue dots represent quiescent solutions. Black dots represent

tonic activity. Green dots represent bursting activity, either of DB bursting or square-wave

bursting type. See Figure 3.7 for example voltage traces corresponding to non-quiescent

labeled regions.
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Figure 3.7: Example voltage traces of select regions from Figure 3.6. Panel (a) corresponds

to region II, (b) to region III, and (c) to region *, while panel (d) shows the typical structure

of a DB burst from region III or region *. Panel (e) shows activity from region V, (f) from

region IV, and (g) from region VI.
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Figure 3.8: Examples from typical in vitro recordings from the mouse. Panel (a) corresponds

to region II (Figure 3.7(a)), panels (b) and (c) to region III (Figure 3.7(b)), and panels (d)

and (e) to region * (Figure 3.7(c)).
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3.5 ANALYSIS OF UNIFIED MODEL DYNAMICS FOR A

SELF-COUPLED NEURON

In this section, we analyze the mechanisms by which the solutions observed in each marked

region of Figure 3.6 come about. Figure 3.6 was generated with EL = −61 and with initial

conditions corresponding to the quiescent state, as described in Section 3.4. We elected

EL = −61 for this analysis because when gCAN = 0, we have quiescent, bursting, and

tonic spiking solutions, depending on the values of other parameters, in the presence of

self-coupling.

For gNaP 6= 0, for fixed hp > 0 and for fixed Na > Nabase, the bifurcation diagram

for the fast subsystem generated by treating Ca as a bifurcation parameter is similar to

Figure 3.4. When gNaP 6= 0, but hp = 0, the bifurcation diagram is the same as Figure 3.4,

because hp and gNaP are multiplied together in equation (3.1) and do not appear anywhere

else in the fast subsystem. However, for hp > 0, the SNIC bifurcation from the hp = 0

case decomposes down into a SN bifurcation and a separate homoclinic bifurcation as in

Figure 3.2. The unstable critical point to which the homoclinic orbit converges as t → ±∞

will be called a homoclinic point. Thus, for sufficiently small hp, we may approximate the Ca

and Na coordinates of the homoclinic point with those coordinates of the SN bifurcation.

Again, we will work in the (εCa, α, εhp) = (0, 0, 0) limit and allow F (Ca,Na, hp, x0) =

{x: for fixed (Ca,Na, hp) and any given δ > 0 there exists tn → ∞ such that for each

tn, d(x0 · tn, x) < δ}. As before, F (Ca,Na, hp, x0) may be a critical point or a nontrivial

orbit. In Figure 3.9, by treating Ca,Na, hp as bifurcation parameters, we present some

examples of bifurcation structures for the fast subsystem; in particular, we include a surface

of SN bifurcations (SN surface), a surface of AH bifurcations (AH surface), as well as a

surface of homoclinic points (HC surface). Indeed, except for the different values of EL

used when generating Figure 3.5 and Figure 3.9, these figures are closely related; Figure 3.5

corresponds to the hp = 0 plane of Figure 3.9. We set CaSN(Na, hp), CaAH(Na, hp), and

CaHC(Na, hp) to be the Ca coordinate of the SN surface, AH surface, and HC surface for

each given (Na, hp). We will also define CaISNP (Na, hp) and CaOSNP (Na, hp) to be the Ca

coordinates of the two SNP surfaces, analogous to the corresponding curves in Figure 3.5.
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For X ∈ {SN,AH,HC, ISNP,OSNP} we say that the trajectory intersects or reaches the

surface X if the trajectory’s Ca,Na, hp coordinates satisfy Ca = CaX(Na, hp). In general,

a transition from the silent phase to the active phase occurs when the trajectory intersects

the SN surface transversely, and hence crosses through it, through increases in hp or Ca

or decreases in Na. A transition from the active phase to the silent phase occurs when the

trajectory crosses the HC surface via decreases in hp or Ca. An increase in Na promotes such

a transition by bringing the surface to larger hp and Ca values (Figure 3.9 and Figure 3.10

below) but will not achieve this transition on its own due to the curvature of the relevant

part of the HC surface.

For the following, we assume that initially, Na > Nabase and 0 ≤ hp ≤ 1. As in Sec-

tions 3.3.1 and 3.3.2, for (Ca,Na, hp) such that Ca < CaSN(Na, hp), there is a unique

stable critical point for the fast subsystem corresponding to hyperpolarized quiescence,

Q(Ca,Na, hp).

For (Ca,Na, hp) such that CaHC(Na, hp) < Ca < CaOSNP (Na, hp) there is a unique

large amplitude high voltage stable periodic orbit of the fast subsystem, P (Ca,Na, hp), cor-

responding to spiking. When (Ca,Na, hp) satisfy CaISNP (Na, hp) < Ca < CaAH(Na, hp),

there is a unique small amplitude high voltage stable periodic orbit of the fast subsystem,

L(Ca,Na, hp), corresponding to sub-threshold oscillations. Finally, for (Ca,Na, hp) such

that CaAH(Na, hp) < Ca, there is a unique stable critical point of the fast subsystem,

DB(Ca,Na, hp), corresponding to depolarization block.

3.5.1 Region I

As described in Figure 3.6, parameter values from region I yield quiescent solutions. We

begin the analysis with gCAN = 0. Increasing gNaP lowers hpSN , possibly so that the hp-

nullcline no longer intersects the family of quiescent critical points. We call g∗
NaP the critical

gNaP such that when gCAN = 0 the quiescent solution exists if and only if gNaP < g∗
NaP. We

note that g∗
NaP is the value for gNaP such that the hp-nullcline intersects the surface of fast

subsystem critical points precisely at the SN bifurcation point. When gNaP < g∗
NaP, allow

hpmax(gNaP ) to be the hp coordinate of the intersection of the hp-nullcline and branch of
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Figure 3.9: SN bifurcation surface (red), AH bifurcation surface (green), and homoclinic

points (blue) of system (3.1)–(3.4),(3.8), treating Ca, Na and hp as bifurcation parameters.

Notice that as hp decreases toward 0, the blue and red surfaces combine to form a SNIC

bifurcation surface. We also note that for Ca = 0 and hp = 0, NaSN < Nabase = 5, so

the slow subsystem cannot pass through the SN surface unless hp or Ca increases. The

MATLAB figure file is available as electronic supplementary material.
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Figure 3.10: Bifurcation curves with fixed Ca ≈ Cabase. The top curve is hpSN as a function

of Na. The bottom curve is hpHC as a function of Na. Note that the functions increase, so

that a small increase in Na may cause hpHC to be crossed, resulting in an early return to

and an extended time in the silent phase.
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quiescent critical points.

When EL = −61 in the case gNaP = 0, the solution is unable to escape quiescence

because Nabase > NaSNIC . Modulation of gCAN will not change this, because ICAN(v, Ca)

does not contribute to v̇ when Ca is small. With Ca decaying to Cabase the slow subsystem

evolves toward the point (Cabase, Nabase, hpmax), and Cabase < CaSN(Nabase, hpmax) so that

F (Ca,Na, hp, x0) → Q(Cabase, Nabase, hpmax) and the solution exhibits quiescent dynamics

forever, see Figure 3.11. Similar coordinates for 0 < gNaP < g∗
NaP yield the vertical right

boundary of region I in Figure 3.6, representing independence from gCAN .
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Figure 3.11: SN surface projected onto (Ca = Cabase, Na, hp) coordinates is colored black.

The colored curve with the arrowhead is the projection of the trajectory of the full system.

The trajectory converges to (Cabase, Nabase, hpmax) without crossing the SN surface, yielding

a quiescent steady state.
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3.5.2 Region II

Trajectories found for parameter values in region II exhibit square-wave bursts typical of

the Butera model, even in the presence of elevated gCAN . Indeed, the dynamics here is

not very different from the dynamics described in Section 3.3.1, with gCAN = 0. Here,

we will show how this dynamics is preserved when gCAN > 0. With EL = −61, since

Nabase > NaSN , we rely on hp increasing enough to cause the singular solution to cross the

SN surface to initiate spiking, see for instance the Ca = Cabase = 0.05 plane in Figure 3.9.

That is, after Na has decayed to Nabase and Ca has decayed to Cabase, we need hp such

that CaSN(Nabase, hp) < Cabase in order for the solution to exit the silent phase. As in

Section 3.3.2, once the solution exits the silent phase, F (Ca,Na, hp, x0) = P (Ca,Na, hp),

the solution begins spiking, and hp begins to decay. Across each spike, Ca rises to a higher

level, and then Ca decays after the spike. However, the CAN current requires a certain level

of Ca, namely Ca ≈ kCAN, to become active and qualitatively change the dynamics. Until

Ca ≈ kCAN, Na remains near Nabase and the dynamics is qualitatively as in the gCAN = 0

case.

To activate the CAN current, then, we need a certain number of spikes of F (Ca,Na, hp, x0)

to occur within a certain window of time to increase s and overwhelm the decay of Ca to

Cabase (see Equation (3.5)). The bursts in region II do not yield enough spikes to meet this

condition, and decreasing hp causes a return to the silent phase exactly as with gCAN = 0.

In fact, the presence of the CAN current, even if not fully activated due to low Ca, actually

aids in this transition to the silent phase. The small rise in Ca induced by the spiking

activity causes enough ICAN activation to increase Na slightly, especially for high gCAN .

Numerically, we observe that, for Ca fixed, both hpHC and hpSN are increasing functions of

Na, see Figure 3.10. Thus, the spiking activity that increases Na slightly will increase hpHC

and cause an earlier crossing of hpHC and return to the silent phase. Further, since hpSN is

an increasing function of Na, hp may be unable to cross hpSN until Na decays. This has

two key effects. First, the dependence on the slow decay of Na causes the solution of the

full system to spend a longer time in the silent phase. Second, the singular solution crosses

the SN surface with a higher hp value, which may cause more spikes to occur; however,
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in region II, these extra spikes never appreciably activate the CAN current. So, increasing

gCAN within region II changes the interburst interval, and the spike counts within bursts,

but does not yield the DB bursts seen in region III (Figure 3.7).

3.5.3 Region III

Region III contains DB bursts similar to those seen in the Rubin-Hayes model from interac-

tions of ICAN and Ipump. Again, the key difference arising for DB bursts in the unified model

(3.1)–(3.8), compared to the Rubin-Hayes model, is that the SNIC bifurcation transforms

into two separate entities, a SN bifurcation of critical points and a homoclinic bifurcation.

Nevertheless, when a solution spends an extended time in the active phase, we may use the

SN bifurcation as an approximation to the homoclinic orbit once the CAN current is acti-

vated. This approximation is reasonable because hp becomes very small during an extended

active phase and gNaP and hp are multiplied in INaP(v, hp) in Equation (3.1), so that dur-

ing an extended active phase, the bifurcation structures approach those from the gNaP = 0

case, where the saddle node and homoclinic do combine to form a SNIC bifurcation. In

Figure 3.9, we see that for hp = 0, the homoclinic surface and SN surface coincide as ex-

pected, supporting our claim that for low hp we may approximate the homoclinic surface by

the SN surface. This approximation can also be justified by the interpretation of hp as an

inactivation variable for INaP, so when hp is low there is little contribution from INaP due to

inactivation. This approximation will come into play in understanding the transition to the

silent phase in region III, as described below.

While F (Ca,Na, hp, x0) = Q(Ca,Na, hp), decreasing Na and increasing hp cause a

decrease in CaSN(Na, hp), until CaSN(Na, hp) < Cabase, allowing the trajectory exit the

silent phase. As in both Section 3.3.1 and Section 3.3.2, once CaSN(Na, hp) < Cabase, the

fast subsystem no longer has a branch of critical points corresponding to quiescence as an

attractor, and F (Ca,Na, hp, x0) = P (Ca,Na, hp). The difference between region II and

region III is that region III has higher gNaP than region II, resulting in faster spikes along

solutions in F (Ca,Na, hp, x0), which occur fast enough to build up Ca and activate the

CAN current.
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By the time that Ca builds up, hp has decayed significantly, so that we may approx-

imate the HC surface by the SN surface. With this approximation, the dynamics is sim-

ilar to Section 3.3.2. Ca continues to build up, until Ca > CaOSNP (Na, hp) holds. For

Ca > CaOSNP (Na, hp), F (Ca,Na, hp, x0) = DB(Na, hp), and the full system enters de-

polarization block. Spike attenuation due to depolarization block causes Ca to decrease

and eventually Ca < CaAH(Na, hp) holds, such that the solution exits depolarization block.

As the trajectory exits depolarization block, F (Ca,Na, hp, x0) = L(Ca,Na, hp) and the

solution has small amplitude high voltage periodic orbits, as in Section 3.3.2. The small

amplitude of the periodic orbits do not produce enough voltage variation to yield an in-

crease in Ca. Thus, at least until Ca < CaISNP (Na, hp) holds (and so F (Ca,Na, hp, x0) =

P (Ca,Na, hp)), Ca continues to decrease. Meanwhile Na has been increasing, so that it

is possible that as Ca decreases, Ca < CaSN(Na, hp) ≈ CaHC(Na, hp) results and corre-

spondingly F (Ca,Na, hp, x0) = Q(Ca,Na, hp). The full system returns to quiescence until

Na decreases and hp increases enough to start another burst, as described above.

The variable hp plays two roles in generating a DB burst in region III. First, hp combines

with Na to allow escape from the silent phase. Second, hp contributes to the spike speed-up

that yields the Ca increases needed for a DB burst. One of the key features of the trajectory

of the full system for region III is that in the active phase, although hp becomes small, the

decrease in hp alone could not trigger a return to the silent phase. As gNaP is decreased,

this feature may be lost, and this brings us to region *.

3.5.4 Region *

Region * is characterized by solutions that feature both square-wave bursts and DB bursts.

As described in Section 3.5.3, while the full system is in the silent phase, a sufficient de-

crease in Na together with an adequate rise in hp allows CaSN(Na, hp) < Ca, causing

F (Ca,Na, hp, x0) = P (Ca,Na, hp), and the solution transitions to the active phase. During

the active phase, Ca increases and hp decreases. These effects result in a race between Ca

and hp. On one hand, if hp decreases so that CaHC(Na, hp) > Ca, the full system may

return to quiescence without going into the full burst that incorporates greater plateau-like
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voltages, higher spiking rates, and ultimately depolarization block. Thus, this outcome re-

sults in a square-wave burst as in region II. On the other hand, if Ca increases enough to

activate the CAN current, then decreasing hp alone will be unable to trigger a return to

the silent phase; to terminate the burst, Ca must be decreased by the full system entering

depolarization block as in region III. The winner of the race is influenced by the level of Na

when the full system enters the active phase, as we shall now describe.

For Ca fixed, hpHC increases as Na increases, see Figure 3.10. When the trajectory

enters the active phase with elevated Na, the decreasing variable hp may be able to drop to

the elevated value of hpHC and the net drift of hp at the homoclinic orbit may be negative.

In this case, hp triggers a return to the silent phase before the CAN current can activate

and cause a DB burst. The result is a square-wave burst. Such square-wave bursts, due to

the fact that Ca does not exhibit a large increase, yield a net decrease in Na. After one or

more square-wave bursts, the full system enters the active phase with Na low enough that

hp cannot drop below hpHC to trigger a return to the silent phase, resulting in a DB burst.

After a DB burst, Na is elevated, and thus so is hpHC , so the subsequent bursts may be

square-wave. In this way, we may observe solutions with varying sequences of square-wave

and DB bursts. These solutions may not be periodic. Indeed, for at least some parameter

values in region * we have noted a positive Lyapunov exponent, which may indicate that

they are chaotic.

To illustrate this mechanism, we have plotted a trajectory of the full system projected

into hp, Ca space, along with two slices of the homoclinic surface, one for lower Na and

one for higher Na, see Figure 3.12. We begin on the orange section of the trajectory shown

in Figure 12(b). Here, the full system has crossed through the SN surface and entered the

active phase with hp = .8 and Na = 5.3 (“start” in Figure 12(a)). As the solution spikes,

Ca experiences several abrupt but transient increases while hp decreases. The trajectory

passes through the blue curve, which is the slice of the homoclinic surface corresponding to

Na = 5.1, and even though several subsequent spikes occur, they are insufficient to keep the

trajectory in the active phase. With the subsequent return to the silent phase, a square-

wave burst results. In the silent phase, Na decreases to 5.051 and hp increases to about

0.6, and again the trajectory passes through the SN surface, causing the solution to re-enter
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the active phase. We illustrate the next part of the solution in Figure 3.12 in black. Again,

as the solution spikes, Ca experiences abrupt though transient increases. Now we compare

the trajectory of the full system against the slice of the homoclinic surface corresponding to

Na = 5.051, shown in magenta. This time, the trajectory crosses the homoclinic surface only

briefly, immediately returning back to the other side of the surface due to a spike. Indeed,

this last spike brings Ca > kCAN, activating the CAN current, and the DB burst progresses

as usual, such that Na attains an elevated level (Figure 12(b)) and then the trajectory

enters the silent phase. In this way, with Na diminished by each square-wave burst until it

becomes small enough to allow a DB burst, which pushes it back up again, the model may

continually generate alternating square-wave and DB bursts, or perhaps sequences of two or

more square-wave bursts before a DB burst, as in Figures 3.7(c) and 3.8(d).

In recordings from preBötC neurons that alternate between DB and square-wave bursts

we observe that the interburst interval following a DB burst is generally longer than the

interburst interval after a square-wave burst. We highlight one example of this phenomenon

in Figure 3.13(a), and the preceding analysis for region * can shed some light on this situation.

During a DB burst, the activated CAN current elevates Na, and hp typically decays to hp ≈ 0

due to the prolonged activity. The next active phase begins when hp crosses hpSN , which

will take longer due to elevated Na (Figure 3.10), even though Na is slowly decaying during

the silent phase. If the subsequent burst is a square-wave burst, Na will have continued

to decay, and it need not be the case that hp ≈ 0 at the start of the silent phase. Thus,

following a square-wave burst, hp is initially larger and hpSN is smaller (due to decaying

Na), so it takes less time for the system to attain hp > hpSN and enter the next active

phase, see Figure 3.13(b).

3.5.5 Region IV

As before, we begin our analysis with Na > Nabase, hp = 0, Ca = Cabase and F (Ca,Na, hp, x0) =

Q(Ca,Na, hp). A decrease in Na toward Nabase and an increase in hp cause CaSN(Na, hp) <

Ca, resulting in a transition to the active phase. As in region III, gNaP is high enough so

that a decrease in hp alone cannot trigger a return to the silent phase. For fixed Na, hp, we
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Figure 3.12: Example trajectory from region *, with projection into (hp, Ca) coordinates

to illustrate the analysis of Section 3.5.4. (a) Projection of a trajectory from region * into

(hp, Ca) coordinates. The light blue curve is a slice of the homoclinic surface for Na = 5.1

and the magenta curve is a slice of the homoclinic surface for Na = 5.051. (b) v and Na

plotted against time corresponding to the trajectory in (a).
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Figure 3.13: Silent phases following DB bursts have longer durations than those following

square-wave bursts. Panel (a) shows a sample recording from a preBötC cell that consistently

exhibited both square-wave and DB bursts. Panel (b) shows a typical trace from region *.

Even though the time scale is not the same, the relative differences between the silent phases

in the model agrees well with the data.
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observe that CaAH(Na, hp) is a decreasing function of gCAN , see Figure 3.14. Decreasing

gCAN may cause CaAH(Na, hp) to blow up, in which case, Ca < CaAH(Na, hp) always holds.

During an extended active phase, hp decreases to a minimal value, and we are essentially in

the situation from Section 3.3.2. Recall from Section 3.3.2 or Section 3.5.3 that to terminate

the burst, we required the solution to enter depolarization block so that spike attenuation

would lead to a decrease in Ca. If Ca < CaAH(Na, hp) always holds, the only way to

depolarization block and corresponding decrease in Ca will never occur, and tonic activity

results, unless eventually CaHC(Na, hp) > Ca holds. However, for most values of gCAN ,

the value of CaSN(Na, hp), and thus CaHC(Na, hp), remains low relative to Ca levels of

CAN driven tonic activity in region IV, even for extremely high Na, see Figure 3.15. Thus,

given that CaAH(Na, hp) is beyond the maximal attainable value of Ca and CaSN(Na, hp)

remains low, F (Ca,Na, hp, x0) = P (Ca,Na, hp) and the model’s activity is indeed tonic.

As we shall see in the next subsection, there are some gCAN values for which CaSN(Na, hp)

does not remain bounded as a function of Na and hence for which significantly different model

dynamics emerges.

3.5.6 Region V

In this section we explain how the square-wave bursts seen in Figure 3.7(e), correspond-

ing to region V, are realized. As usual, we begin in the silent phase, with Na decreasing

toward Nabase and hp increasing. Eventually, Ca > CaSN(Na, hp), F (Ca,Na, hp, x0) =

P (Ca,Na, hp), and the solution enters the active phase. We note that region V has gNaP

values similar to those of region III, which implies that the trajectory cannot return to the

silent phase simply by virtue of hp decreasing, see Section 3.5.3. Moreover, region V lies below

the gCAN value for which CaAH(Na, hp) blows up, see Figure 3.14. So the trajectory cannot

pass through the AH surface, meaning that the full system cannot enter depolarization block

and hence Ca cannot decrease to pass back through the HC surface. Instead, we find in re-

gion V that CaHC(Na, hp) actually blows up as Na increases, see Figure 3.16. When this

blowup occurs, the trajectory is captured by the HC surface, that is, Ca < CaHC(Na, hp)

holds so that F (Ca,Na, hp, x0) = Q(Ca,Na, hp) and the full system returns to the silent
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Figure 3.14: CaAH(Nabase, 0) as a function of gCAN , with gNaP = 3. For fixed gCAN , if

CaAH(Nabase, 0) is below the maximal value of Ca attainable by the full system, the full

system can exhibit a DB burst. Lowering gCAN causes CaAH(Nabase, 0) to blow up, so that

depolarization block is never realized, resulting in tonic activity.
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Figure 3.15: CaSN(Na, 0) plotted for gCAN = 2.5 and gNaP = 3, a value for which the full

system’s Ca coordinate cannot attain CaAH(Nabase, 0). For (Na,Ca) below CaSN(Na, 0),

the full system exhibits quiescence, while above it, the full system exhibits tonic spiking.
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Figure 3.16: CaSN(Na, 0) plotted for gNaP and gCAN corresponding to region V. Note that

for values attainable by Na during tonic spiking, CaSN(Na, 0) blows up. Using the approx-

imation CaHC(Na, 0) ≈ CaSN(Na, 0), we conclude that CaHC(Na, 0) blows up for finite

Na as well. For (Na,Ca) below CaSN(Na, 0) the full system dynamics corresponds to

quiescence, while those above CaSN(Na, 0) the full system exhibits tonic spiking.

3.5.7 Region VI

Regions IV and VI both feature tonically active solutions. The difference between the two

regions is that in region VI, the CAN current does not become active, such that essentially

the same tonic spiking dynamics as in Section 3.3.1, with gCAN = 0, emerges. When gNaP is

low, there are tonic solutions such that the spikes are not fast enough to maintain sustained

levels of s sufficient to increase Ca enough to activate the CAN current. When gCAN is low,

even if the spike acceleration increases Ca enough to activate the CAN current, the CAN
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current is too weak to bring Na to values such that CaSN(Na, 0) blows up (Section 3.5.6).

Also, low values of gCAN prohibit the CAN current from strongly influencing the dynamics.

On the other hand, in region IV, the CAN current is strong and active during tonic spiking

(Section 3.5.5), which yields solutions with shorter ISI. We summarize these differences

graphically in Figure 3.17.
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Figure 3.17: Mean interspike interval (ISI) for tonically active model neurons. Black regions

indicate that the model neuron was not tonically active. Note the sharp change between

high ISI and low ISI within the tonic spiking dynamics that occurs at some gCAN ∈ (1, 3.5)

for each gNaP ∈ (1, 2).

3.6 TRANSITIONS BETWEEN REGIONS

In Section 3.5, we explained how particular bifurcation structures give rise to different forms

of model dynamics, as indicated in Figures 3.6 and 3.7. In this section, we estimate where
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the borders between dynamic regimes lie in the (gNaP , gCAN) plane (Figure 3.6) based on

criteria derived from insights presented in Section 3.5 and additional numerical calculations.

In some cases, we numerically compute estimated boundary curves, the accuracy of which

confirms the validity of our analysis. The transition criteria that we provide also allow us

to predict the location of regions of bistability in the (gNaP , gCAN) plane, which we discuss

further in Section 3.7.

3.6.1 From I to II and from II to VI

The transitions from region I to II and from region II to VI are well understood when

gCAN = 0 [1]. The transition mechanisms persist when gCAN > 0. Starting from region I,

an increase in gNaP pushes hpSN low enough that the hp-nullcline no longer intersects the

family of quiescent critical points, and F (Ca,Na, hp, x0) = P (Ca,Na, hp) once hp > hpSN .

This change in the location of the intersection point provides the transition from region I to

region II. In the transition from region II to region IV, a further increase in gNaP moves the

homoclinic surface enough such that the net drift of hp along the homoclinic is nonnegative,

such that hp can never lead the transition back to the silent phase and tonic spiking is

attained.

3.6.2 From II to *

The transition from region II to region * is similar to the transition from region II to region

VI. The key point is that in region II, the CAN current does not sufficiently activate to take

control of the active phase before the decrease in hp can terminate it. With an increase in

gNaP , even without CAN current activation, the trajectory can no longer return to the silent

phase simply by virtue of hp decreasing. Without a contribution from ICAN the resultant

solution would be tonically active, as in region VI. Such spiking activity sustains an elevated

value for Ca. Even if this sustained Ca < kCa, and so may not be enough to activate the

CAN current in the traditional sense, it may enable to the CAN current to have a slight

influence on the voltage. This influence is amplified by gCAN , and for gCAN large enough, it

qualitatively changes the dynamics by giving the trajectory the extra spike needed to fully
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activate the CAN current. The tipping point for this qualitative change is shown as the

lower boundary for region * in Figure 3.6. Thus, as described in Section 3.5.3, alternation

of DB and square-wave bursts, depending on levels of Na ensues. Recall from Section 3.3.1

D = D(hp) was the net drift of hp across the homoclinic orbit. In brief, in region II, D < 0,

and it is increasing gNaP such that D = 0, in the presence of enhanced ICAN, that triggers a

transition to region *.

3.6.3 From * to III

Increasing gNaP further increases D = D(hp), such that in region III, unlike region *, levels of

Na attained by typical DB bursts maintain D > 0. While D > 0, the only way for a solution

to return to the silent phase is through a DB burst, and thus DB bursting characterizes region

III.

3.6.4 From III to IV

The key feature of solutions in region III is that eventually Ca > CaAH(Na, hp), so that

F (Ca,Na, hp, x0) = DB(Na, hp). CaAH(Na, hp) is a decreasing function of gCAN , see Fig-

ure 3.14. As gCAN decreases, CaAH(Na, hp) blows up for finite gCAN . This blowup can be

used to indicate a transition from region III to region IV, because for lower gCAN the system

cannot go into depolarization block. In Figure 3.18, we plot the predicted boundary between

regions III and IV, based on where this blowup occurs. To determine the value of gCAN such

that CaAH(Na, hp) blows up, we must fix Na and hp. We fixed Na at 6.5, a value higher

than those normally seen in bursting activity, but lower than is seen in tonic activity. We

also set hp = 0, assuming a prolonged active phase. For each value of gNaP , we found gCAN

such that CaAH(Na, hp) = 1.6, a typical saturation value for Ca during tonic activity. This

scheme gives us the red boundary curve seen in Figure 3.18.

Similarly, INaP(v, hp) is a depolarizing current, so CaAH(Na, hp) is a decreasing function

of gNaP as well. This means that an increase in gNaP decreases CaAH(Na, hp), so that we

need a slightly lower gCAN to maintain CaAH(Na, hp) = 1.6. This relationship causes the

negative slope of the boundary between regions III and IV.
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Figure 3.18: Numerical approximations to the boundaries between regions III and IV, and

IV and V, as described in Section 3.6.4 and Section 3.6.5, respectively.
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3.6.5 From IV to V and V to VI

In Figure 3.19, we present an approximation to the boundary between regions IV and V

and to the boundary between regions V and VI. These approximations are not based on

a slow-fast decomposition, but rather on a bifurcation analysis of the full system. To find

these curves, we start with a tonic solution T in region IV and follow T as gCAN is decreased,

with gNaP fixed. T loses stability at a torus, or Neimark-Sacker, bifurcation; we color the

(gNaP , gCAN) at which the torus bifurcation occurs magenta. We continue to follow T until

it regains stability at another torus bifurcation, coloring the corresponding bifurcation point

blue. We note that the continuation analysis performed by AUTO [19], due to the incidence

of limit point of periodic orbit (LPPO) bifurcations, is not necessarily monotonic in gCAN ,

see Figure 3.20. This lack of monotonicity occurs for low gNaP so that even though the

magenta point is identified first by the algorithm, the blue point occurs for higher values

of gCAN . The magenta curve accurately predicts the boundary between regions IV and V,

while the blue curve gives an accurate estimate of the boundary between regions V and VI

for sufficiently large gNaP and deviates as gNaP decreases (but see Section 3.7).

We can also predict the boundary between regions IV and V based on the slow-fast

decomposition. The mechanism that distinguishes regions IV and V is that in in region V,

CaHC blows up to trigger a return to the silent phase. This blow up occurs after an extended

time in the active phase, so for the rest of this analysis we assume hp has decreased to a

small but nonzero value. Actually, in region IV, CaHC(Na, hp) blows up for finite Na, but

such values of Na are not attained. Indeed, solving Ṅa = 0 for Na yields Nafp(v, Ca),

the value that Na will approach based on the activity of the CAN current. For a given

(gNaP , gCAN) pair, the value Na = Na∗ for which CaSN(Na, hp) blows up may be such

that Na∗ > Nafp(v, Ca); that is, the Na dynamics will saturate at Nafp(v, Ca) and never

reach Na∗. As such, the blow up of CaHC(Na, hp) will never occur for this (gNaP , gCAN)

pair, so we know that (gNaP , gCAN) belongs to region IV. On the other hand, if Na∗ <

Nafp(v, Ca), then as Na drifts toward its saturation value Nafp(v, Ca), it crosses Na∗,

causing CaHC(Na, hp) to blow up and capture the trajectory, triggering a return to the

silent phase. This places (gNaP , gCAN) in region V. The border between IV and V therefore
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Figure 3.19: Locations of torus bifurcations of tonic solutions from region IV found by

decreasing gCAN as described in Section 3.6.5. For (gNaP , gCAN) above the magenta curve,

there are stable tonically active solutions. Also, for (gNaP , gCAN) below the blue curve, there

are also stable solutions with tonic activity.
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Figure 3.20: Two examples of the bifurcation analysis described in Section 3.6.5. Solid

dots correspond to stable tonically active solutions with the corresponding ISI, and open

circles are unstable tonic solutions. In each panel above, the continuation analysis begins at

gCAN = 2 and initially gCAN decreases. The first torus bifurcation found is labeled as TB

with a magenta arrow and the second one is labeled with a blue arrow. For Panel (a), gNaP

was fixed at gNaP = 1.8. Note that after locating the first torus bifurcation the analysis

encountered a LPPO bifurcation and the algorithm increased gCAN until another LPPO

was encountered. Decreasing gCAN again eventually yielded another torus bifurcation at a

higher gCAN value than the first. For Panel (b), gNaP was fixed at gNaP = 4. We note that

in Panel (b), the continuation analysis was monotonic in gCAN .
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is the curve of (gNaP , gCAN) pairs where Na∗ = Nafp(v, Ca). To approximate this border,

we first allow Na∗ to be the value of Na such that CaHC(Na∗, hp) = Ca∗ where Ca∗ must

be determined. As CaHC(Na∗, hp) increases, the fast subsystem approaches a homoclinic

orbit, and this increased time between spikes can have subtle effects on the drift for Ca

and Na. We tried many values for Ca∗, and Ca∗ = 1.01 gave the best fit for the border.

We also use the fact that for low hp, CaSN(Na, hp) approximates CaHC(Na, hp) well. For

fixed Ca we calculate the mean v, s over one period of the tonic spiking solution. Using this

mean s in Equation (3.5), we calculate the drift of Ca, which changes the value of the CAN

current. With mean v and adjusted Ca, we calculate an approximation for Nafp(v, Ca).

This updated Na moves the homoclinic surface, possibly changing the mean v, s for the

tonic spiking solutions with updated fixed Ca. We iterate this calculation until Nafp(v, Ca)

changes by no more than 10−3, and call this value Nafp. In Figure 3.18 we plot in magenta

the (gNaP , gCAN) pairs such that Nafp = Na∗.

Again, because INaP(v, hp) is a depolarizing current, a slight increase to gNaP lowers

CaSN , thus requiring slightly higher Na for CaSN(Na, hp) ≈ CaHC(Na, hp) to blow up.

On the other hand, increasing gNaP has little effect on Nafp(v, Ca). Therefore, increasing

gNaP from a point on the border of regions IV and V causes Na∗ > Nafp, resulting in the

dynamics of region IV, consistent with the negative slope of the boundary curve between

regions IV and V.

3.7 BISTABILITY

Figure 3.19 predicts several regions of bistability. Tonic solutions where the CAN current is

activated, similar to those solutions commonly seen in region IV, are found for (gNaP , gCAN)

above the magenta curve in Figure 3.19. For appropriate values of (gNaP , gCAN), these

tonic solutions coexist with the previously described solutions of regions I, II, III, VI and

*. Similarly, for (gNaP , gCAN) below (to the left) of the blue curve in Figure 3.19, there

are tonic solutions where the CAN current does not play a strong role. These solutions are

like those solutions commonly found in region VI and coexist with the previously described
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solutions of regions *, III and IV. Such solutions lose stability at the boundary of region II

and so they are not observed in regions II or I. We summarize the result of this bistability

analysis in Figure 3.21. In Table 3.2, we list the regions of Figure 3.21 together with the

regions for which corresponding solutions were originally described.
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Figure 3.21: Partitioning of parameter space based on bistability analysis. The colors only

establish the boundaries of regions A–L.

Therefore, the generalizable modeling framework that incorporates the CAN and NaP

currents presented in this specific preBötC model could be useful for adaptation or applica-

tion to other neuronal systems as well.

3.8 RECIPROCAL COUPLING

To facilitate analysis in Sections 3.2–3.7, the unified model considered a self-coupled neu-

ron. However, preBötC neurons do not naturally make autaptic connections. Further, the
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Table 3.2: List of stable solutions for each region of Figure 3.21.

Region of Figure 3.21 Solutions corresponding to regions of Figure 3.6

A I
B I, IV
C II, IV
D II
E IV, VI
F IV
G V, VI
H V
I *, IV, VI
J IV
K III, IV
L III, IV, VI

effects of spike asynchrony for reciprocally coupled neurons can be subtle. For instance, in

reciprocally coupled, intrinsically tonic neurons, spike asynchrony can expand the range of

external input for which the two-cell network bursts [1]. It is not obvious that the reduction

to a self-coupled model neuron will fully capture the behavior of the two-neuron network. In

this section we present computational analysis for two identical, reciprocally coupled model

neurons and qualify the differences from the self-coupled case.

3.8.1 Model

Here, we focus on the same basic model as Equations (3.1)–(3.8) but instead consider two

model neurons reciprocally coupled via excitatory synapses. For i, j ∈ {1, 2} the dynamics
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for model neuron i are given by:

v̇i = −{IL(vi) + INa(vi, hi,mi) + IK(vi, ni) + INaP(vi, hpi) + ICAN(vi, Cai) (3.9)

+ Ipump(Nai) − Iapp + Isyn(vi, sj 6=i)}/Cm

ḣi = (h∞(vi) − hi)/τh(vi) (3.10)

ṁi = (m∞(vi) − mi)/τm(vi) (3.11)

ṅi = (n∞(vi) − ni)/τn(vi) (3.12)

˙Cai = εCa(kIP3
sj 6=i − kCa(Cai − Cabase)) (3.13)

˙Nai = α(−ICAN(vi, Cai) − Ipump(Nai)) (3.14)

˙hpi = εhp(hp,∞(vi) − hpi)/τhp(vi) (3.15)

ṡi = ((1 − si)s∞(vi) − kssi)/τs (3.16)

with all functions and parameters appearing as they did in Section 3.2.

In this section we compare the self-coupled system to a reciprocally coupled system of

two model neurons that are identical to each other except for their initial conditions. When

the homogeneous, reciprocally coupled pair is perfectly synchronized, it behaves precisely

like a self-coupled neuron, hence the reduction to the self-coupled case leaves gsyn and

kIP3
unchanged. Figure 3.6 shows the effect of changing gNaP , the conductance of the NaP

current, and gCAN , the conductance of the CAN current, for the self-coupled model neuron.

In Subsection 3.8.2, we reproduce that figure in the context of the reciprocally coupled pair

of model neurons. We demonstrate that all of the regions of qualitatively distinct dynamics

are preserved, and no new dynamics are observed by reducing the reciprocally coupled pair

of model neurons to a single self-coupled neuron.

3.8.2 Dynamics of reciprocally coupled model neurons

In this section we qualitatively categorize the various dynamic regimes that arise from the

two-neuron model given by (3.9)–(3.16) and compare them against the self-coupled case. The

first important observation is that spike synchrony between the model neurons is unstable.

We illustrate this fact with simulation data. In Figure 3.22 we begin a solution with identical
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initial conditions corresponding to the silent phase. Initially the solutions behave as the self-

coupled case (Figure 3.22a). Eventually, due to slight numerical error, the voltage traces

separate and spike synchrony is broken, see Figure 3.22b.
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Figure 3.22: Example model output with gNaP = 4, gCAN = 4, and

initial conditions (v1, h1,m1, n1, Ca1, Na1, hp1) = (v2, h2,m2, n2, Ca2, Na2, hp2) =

(−60, 1, 0, 0, Cabase, 0, Nabase). Model output for v1 is colored red, while model output for

v2 is colored black. Initially, the solutions remain quite close together, we note that even

at t = 11, 000 milliseconds the traces are virtually indistinguishable in (a). However, even-

tually the model neurons separate, though they still burst at roughly the same time, with

essentially the same burst duration (b).

To classify the dynamics of the two-neuron network, we use the scheme as described in

Section 3.4 to qualify the individual model neurons within the network as quiescent, bursting,

or tonically active. Even though the solution in Figure 3.22 does not have perfect synchrony,

both model neurons burst at roughly the same time. The important feature of the preBötC

is that the neurons burst synchronously; the neurons need not be perfectly synchronized as

long as the active phases overlap sufficiently.

When both model neurons are classified as bursting, we consider a time window where

each model neuron bursts exactly once. In this window, let F1 be the time of the first spike

of the first model neuron to enter the active phase, and similarly, let L1 be the time of the

last spike of the first model neuron to exit the active phase. Note that F1 and L1 need
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not correspond to the same model neuron. Let F2 be the first spike of the second model

neuron to enter the active phase, and let L2 be the last spike of the second model neuron

to exit the active phase. If F2 < L1 there is some overlap of the active phases, otherwise,

the network is said to exhibit anti-phase bursting. We never observed anti-phase bursting in

these simulations. When there is overlap in the active phases, we define the duration of the

shared active phase as S = L1−F2. Also, we define the total active duration as T = L2−F1.

We use the ratio R = S/T as a measurement of burst synchrony; if R > 0.4, we declare the

bursts to be in-phase, otherwise, the bursts are out-of-phase.

At each grid point of Figure 3.23, the initial conditions for each neuron were drawn

from a normal distribution corresponding to quiescence. Specifically, each neuron was ini-

tialized with (vi, hi,mi, ni, Cai, Nai, hpi) = (N(−60, 5), N(1, 0.1), N(0.04, 0.1), N(0, 0.1),

N(0, 0.0001), N(0.05, 0.01), N(0, 0.1), N(5, 0.1)), where N(x, y) is a normal distribution

with mean x and standard deviation y. Even though some initial conditions drawn from

the above distribution will not be physically relevant, the solutions quickly become physical.

Note that qualitatively similar results are expected if instead of drawing from the above

distribution for each grid point, initial conditions were drawn once from the above distri-

bution and then used for all grid points. We then used the above classification algorithm

to partition the (gNaP , gCAN) parameter space based on the result of the integration. For

sample model output from the various regions of Figure 3.23, refer to Figure 3.24. Regions

II, *, III, and V have dynamically distinct bursting patterns. Region IV and region VI both

contain tonically active solutions, the only distinction is that in region VI the CAN current

is active in both model neurons, which causes the spiking to occur with higher frequency,

see Figure 3.24d2 and 3.24f2. The boundaries of region * in Figure 3.23 are where we have

observed the existence of solutions with dynamics similar to Figure 3.24c2. For (gNaP , gCAN)

in region VI and above the dashed white line, there is bistability between bursting solutions

and tonic solutions with low frequency (e.g.: Figure 3.24f2), which makes identifying bound-

aries of region * difficult. This bistability is also seen in the self-coupled case, but spike

asynchrony makes the tonically active solutions more prominent here.

The preceding classification algorithm can be used to partition the self-coupled case. In

Figure 3.25, we compare the differences between Figure 3.23 and the partitioning for the self-
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Figure 3.23: Partitioning of parameter space based on resultant dynamics from a network of

reciprocally coupled model neurons. Both model neurons start with slightly different initial

conditions corresponding to quiescence, but otherwise all parameters are identical. Dark

blue dots correspond to solutions where both model neurons remained quiescent. Black

dots correspond to both model neurons having tonic activity. When the model neurons

have-in phase bursting, we color the dot green. The relatively few times when the model

neurons have out-of-phase bursting, the dot is colored light blue. No out-of-phase bursts

that were observed were anti-phase; their classification as out-of-phase seems to be a result

of one model neuron exhibiting an extra spike before burst termination, which causes the

total active phase to increase. Dots are colored red when both model neurons were bursting

as defined by the standard deviation criterion but the algorithm was unable to determine

the phase relation. Magenta dots correspond to the situation where one model neuron is

tonically active and the other is bursting, and are most likely a numerical artifact. The

boxed-dashed region marked * features bursts similar to Figure 3.24c2.
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Figure 3.24: Model output for both the self-coupled case as well as the case for a reciprocally

coupled pair of model neurons. Panels a1–f1 (blue traces) represent the self-coupled case,

while panels a2–f2 (red and black traces) represent the reciprocally coupled case. Specifically,

panel a2 corresponds to model output from region II of Figure 3.23, b2 to region III, c2 to

region *, d2 to region IV, e2 to region V, and f2 to region VI. Although it cannot be seen at

this resolution, the spikes in panel e2 are anti-phase. Note that all of the dynamics of the

reciprocally coupled pair are observed in the self-coupled model case, and vice-versa.
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coupled case. The primary difference between the self-coupled case and Figure 3.23 is the

location of region *. Bursting patterns seen in panels b1, b2, c1 and c2 of Figure 3.24 require

activation of the CAN current. Activation of the CAN current relies on sufficient increase

of Cai. This Cai buildup is closely related to the spiking frequencies of solutions when

they enter the active phase; higher frequencies lead to faster buildup. Asynchronous spiking

may lead to lower spiking frequencies for the reciprocally coupled pair because each neuron

receives the most synaptic input when it is in the trough between spikes. On the other hand,

in the self-coupled case, the neuron receives maximal synaptic input when it is at the peak of

a spike. The differences between these two cases is subtle, and is outside of the scope of this

work. Numerically, we observe that the self-coupled solution spikes at a higher frequency than

the solution for the reciprocally coupled pair. The spiking frequency is directly proportional

to gNaP , therefore, in the self-coupled case, activation of the CAN current occurs for lower

gNaP than it does for the reciprocally coupled pair. This explains the difference in the

location of region *. Also, the initiation of each burst requires sufficient deinactivation of

the NaP current. The inactivation variable for the NaP current, hp, multiplies gNaP in the

definition of INaP(v). Thus, increasing gNaP shortens the silent phase between bursts, which

explains the timing difference in panels c1 and c2 of Figure 3.24. We also note that, in

Figure 3.25, the range of gNaP for which there are square-wave bursting solutions of the

reciprocally coupled pair (region II) seems to be smaller than the corresponding region for

the self-coupled case. In general, introducing asynchronous spiking expands the range of

external input, and perhaps other parameters, for which square-wave bursting solutions are

observed in traditional models featuring only the NaP current [1]. It has not been quantified

whether gNaP is one such parameter. Nevertheless, we have observed bistability between

tonically active solutions and square-wave bursting solutions near the low gNaP border of

region VI, as well as in region II, which explains why the square-wave bursting region seems

smaller for the reciprocally coupled pair.

The unified model has not been calibrated to capture specific voltage traces, rather, the

intent is to qualitatively describe the bursting behavior of preBötC neurons. Numerically,

we have observed that the reduction from the two reciprocally coupled model neurons to

the self-coupled case does not significantly impact statistics such as the burst period, which
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Figure 3.25: Figure 3.23 with partitioning of the self-coupled case overlaid for comparison.

Yellow lines indicate the boundaries of various regions of dynamics for the self-coupled case.

We observe that, although positions of regions have shifted, all regions of activity in Fig-

ure 3.23 are seen in the self-coupled case, and vice versa. The most significant change is

region *, which shifted to a much higher range of gNaP due to the spike asynchrony.

indicates that the self-coupled case indeed can inform us about the reciprocally coupled

case, and may help elucidate the bursting rhythm of the preBötC. Thus, we summarize

some results from the chapter so far to illustrate how one can use insights from the self-

coupled case to understand bursting in the reciprocally coupled case. Bursts are primarily

initiated and terminated by the drift in the slow variables Cai, Nai, hpi which, by virtue of

geometric singular perturbation theory, can be treated as bifurcation parameters for the fast

subsystem (vi, hi,mi, ni, si). For low gNaP corresponding to region II, a burst is initiated when

hp crosses a particular threshold corresponding to a fold bifurcation in the fast subsystem,

and the burst is terminated when hp later decreases through a homoclinic bifurcation of

the fast subsystem [49]. Spike asynchrony modulates the hp coordinate of the homoclinic

bifurcation differently from the self-coupled case, however for the gsyn considered here and

low gNaP , decreasing hp will always terminate the burst. This accounts for the similarities

in region II for both the self-coupled and reciprocally coupled cases.

We have already discussed how spike asynchrony requires higher values of gNaP to cause

a sufficient Cai buildup to ignite the CAN current. In the self coupled case, when the CAN
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current turns on, the spike frequency dramatically increases, which causes Ca to build up

even higher. Eventually Ca increases through a supercritical Andronov-Hopf bifurcation

of the fast subsystem, leading to depolarization block. Meanwhile, the CAN activity has

increased the Na variable, which corresponds to increasing the Ca coordinate of the ho-

moclinic bifurcation that must be crossed to terminate the burst. Once in depolarization

block, the self-coupled system stops spiking, and thus, s decays, resulting in a decay of Ca.

Decaying Ca crosses the homoclinic bifurcation of the fast subsystem before returning to

spiking behavior. This mechanism generalizes to the reciprocally coupled case. Suppose

neuron 1’s CAN current is activated first. The activated CAN current causes neuron 1 to

bombard neuron 2 with synaptic signals (s1 is high), leading neuron 2’s CAN current to

ignite, which causes both s2 and Na2 to significantly increase. Elevated s2 further elevates

Ca1 (and so also elevates Na1), and eventually Ca1 is high enough to put neuron 1 in de-

polarization block by crossing the Andronov-Hopf bifurcation of the fast subsystem. During

depolarization block, Ca2 decreases because s1 = 0, and since Na2 is elevated, neuron 2’s

burst terminates as Ca2 decreases through the homoclinic bifurcation of the fast subsystem.

Neuron 2’s burst termination causes s2 = 0, which yields a decrease in Ca1, and eventually

neuron 1 returns to the silent phase.

We have also provided analysis for the boundaries of the various regions of dynamically

distinct activity. For instance, we identified the mechanism of crossing from region III to

region IV by decreasing gCAN . The mechanism involves the Andronov-Hopf bifurcation of

the fast subsystem when Ca is treated as a bifurcation parameter. When gCAN is decreased

the Ca coordinate of the Andronov-Hopf bifurcation increases, eventually blowing up for

finite gCAN . With the Andronov-Hopf bifurcation unattainable by Ca, the self-coupled cell

has no way to enter depolarization block and hence terminate its burst. Thus, the gCAN

value for which this blow-up occurs depends on gNaP , and can be used to approximate the

boundary between regions III and IV. This will carry over into the reciprocally coupled case.

If gCAN is sufficiently low such that the Cai coordinates of Andronov-Hopf bifurcations of

the fast subsystems are beyond the maximal attainable values of Cai, the system will cease

to exhibit synchronous bursting, because neither neuron will enter depolarization block,

which is required for the other neuron’s Caj to begin to decrease and eventually terminate
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the bursts. Similar insights can be applied to the transitions between all of the regions of

Figure 3.23.

These arguments can be extended to the case when the reciprocally coupled neurons are

not from the same region of Figure 3.23. For instance, a reciprocally coupled pair consisting

of a region III neuron and a region IV neuron may still exhibit bursting. For region III and

region IV neurons, the CAN current of both neurons will eventually become activated. The

region III neuron will go into depolarization block, and this sudden loss of synaptic output

to the region IV neuron could cause it to suddenly return to the silent phase. Hence, the

sudden loss of synaptic input to the region III neuron will cause its return to the silent phase.

3.9 DISCUSSION

In this chapter we consider a computational model for respiratory neurons in the preBötC

that includes the CAN current and the Na/K ATPase pump, as modeled in the Rubin-Hayes

model [56], and the NaP current, all of which are ubiquitous within this population of neu-

rons. By considering varying strengths of gCAN , the conductance of the CAN current, and

gNaP , the conductance of the NaP current, we explain the mechanisms through which the

model yields dynamics seen in in vitro recordings, such as square-wave bursting (2 differ-

ent mechanisms), bursts featuring depolarization block (DB bursts), and mixed patterns of

square-wave and DB bursts, as well as tonic activity. Although analysis is done for one

model neuron, the model is self coupled, and so actually represents the activity of a small,

synaptically coupled network. Using our understanding of the bifurcation structure of the

fast subsystem, we compute estimates of where transitions between dynamic regimes are

predicted to occur, and these agree with direct simulations, validating our analysis. We

predict that activity patterns shown in this chapter will be observed in reciprocally coupled

pairs of preBötC neurons, as well as preBötC neurons that are manipulated in culture to

form autapses.

A multitude of factors influence the activation and magnitude of the CAN current in

a biological setting. In the present model, activation of the CAN current depends on in-
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tracellular calcium, which is released via a synaptic pathway. Acting through AMPA re-

ceptors, glutamate can trigger a small influx of calcium [41], while glutamate binding to

metabotropic glutamate receptors (specifically mGluR5s) can induce G protein activation

that leads to inositol 1,4,5-trisphosphate (IP3) synthesis and subsequent intracellular calcium

release. These two mechanisms work in concert to recruit the CAN current [42, 41]. Phos-

phatidyl 4,5-bisphosphate (PIP2) is required to synthesize IP3 and is generally abundant in

the preBötC neurons [7]. Levels of PIP2 in the membrane surrounding the channels may

fluctuate or be regulated and thus affect channel availability, however, which impacts the

magnitude of the CAN current [35]. Finally, second messengers such as calcium can also

adjust the magnitude of the CAN current by affecting the phosphorylation state of relevant

ion channels [40, 7]. Given the variety of factors that could contribute to the heterogeneity

in CAN current magnitude and activity across neurons in the preBötC, it was most conve-

nient simply to use variations in the parameter gCAN to represent these effects, as a means to

explore how changes in the CAN current characteristics influence preBötC neuron dynamics.

The characteristics of the NaP current within the preBötC also exhibit inherent biological

variability, which we represent in this chapter by varying gNaP .

Rhythmic activity in the preBötC can be influenced by either the NaP current or the CAN

current, as shown previously [4, 56], but their combination in this chapter gives a spectrum of

additional activity patterns and bistability that are expected to arise in the preBötC network.

In particular, alternation of square-wave and DB bursts is seen in experimental data, and is

often attributed to intrinsic noise and neuronal variability, but our unified model suggests

that such bursting may result from the interactions of the CAN and NaP currents. DB bursts

require activation of the CAN current, which also increases Na so that the Na/K ATPase

pump leads to eventual burst termination. Although Na decays during the subsequent silent

phase, Na may be elevated enough during the next burst that the Na/K ATPase pump and

NaP inactivation together may terminate the burst before the CAN current is activated. This

interaction may cause one or more square-wave bursts to occur between DB bursts and can

also be used to explain the differences in durations of the silent phases between such bursts.

Specifically, we observed in our sample of in vitro recordings that, in a preBötC neuron that

has both DB and square-wave bursts, the silent phase following a DB burst was generally
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longer than the silent phase following a square-wave burst (Figure 3.13). We explained

this phenomenon by noting that after a DB burst, the Na/K ATPase pump experiences an

increased load, which prolongs the silent phase by requiring more NaP deinactivation to occur

before the next burst can start. During a subsequent square-wave burst, as noted above, the

load on the pump decreases, resulting in a shorter silent phase before NaP deinactivation

initiates the next burst. Thus, the model predicts that this link between the nature of a

burst and the duration of the subsequent interburst interval should be a general feature of

activity of the type generated by the unified model for parameter values from region *.

In addition to underlying square-wave bursting, to contributing to the mixed burst pat-

terns seen in region * and prevalent in electrophysiological recordings (Figure 3.8), and to

helping control interburst interval durations, the NaP current plays a role in boosting synap-

tic activation, due to its voltage-dependence. In the unified model, this boost can promote

DB bursts if both gNaP and gCAN are large enough. By increasing the spike rate during tonic

activity, the NaP current can contribute to CAN current activation, resulting in a transition

through depolarization block and eventually a return to quiescence. Indeed, increasing gNaP

increases the range of gCAN for which DB bursting occurs (Figure 3.6), which represents

another model prediction.

In this work, we also validated the reduction of the pair of reciprocally coupled neurons

(henceforth called “the pair”) to a single self-coupled one. This reduction is only valid when

both neurons are identical in all parameters except for initial conditions. Perfect synchrony is

at least a weakly unstable state for the pair. However, it is not necessary for preBötC neurons

to be perfectly synchronous; as long as the active phases have enough overlap, we consider

the network to be synchronized. Indeed, almost all bursts observed in this network had

sufficient overlap to be called synchronous bursts. We partitioned the pair parameter space

into seven different regions containing distinct dynamics. All of the dynamics observed in the

pair are qualitatively observed in the self-coupled setting, and vice-versa (Figure 3.24). We

also compared the boundaries of the regions in the pair and self-coupled case. The regions for

the pair case are qualitatively similar to the self-coupled case (Figure 3.25), which completes

the validation of our reduction to the self-coupled case. Numerical exploration suggests that

similar results are obtained when gsyn and kIP3
are varied.
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Precisely quantifying the effects of spike asynchrony on each neuron’s three dimensional

slow-subsystem is required to produce computational or analytic boundary curves for many

of the regions of Figure 3.23. It is also required, therefore, to explicitly describe the activity

patterns of a heterogeneous pair of reciprocally coupled neurons, which is an important step

in understanding the activity of large networks of preBötC neurons.

The efforts of Rybak et al. have refined models of the NaP current [59, 58]. We expect

that including such refinements would induce some quantitative differences in the locations

of the boundaries between regions in Figure 3.6; however, it is unlikely that these relatively

minor changes would alter the qualitative bifurcation structures or model dynamics that we

have described and analyzed. Toporikova and Butera recently developed a two compartment

model including the CAN and NaP currents [70]. Their chapter focuses on individual model

neurons that utilize either NaP inactivation, IP3 desensitization, or a combination of these

mechanisms to burst in the absence of synaptic input. In this paper, we present a recent ex-

perimental result (Figure 3.1) demonstrating that, despite the lack of information regarding

the distribution of the NaP and CAN currents, preBötC neurons appear to be electroton-

ically compact. Given this finding, and the absence of evidence that more compartments

are needed to capture the essential mechanisms of burst generation, we here consider the

unified model as a one compartment model. Furthermore, intrinsic rhythmicity in individ-

ual preBötC neurons is neither necessary for preBötC rhythmicity [14, 15] nor necessarily

advantageous for burst synchrony over a broad parameter range (see Chapter 2), and our

unified model highlights the diversity of burst-generation mechanisms that emerge through

the interaction of synaptically-gated channels with other voltage-dependent channels. It is

possible that including desensitization of IP3 in the unified model may alter the locations

and burst frequencies associated with regions * and III of Figure 3.6 by delaying activation

of the CAN current or yielding earlier burst termination with less Na accumulation, and

these effects should be explored in future work. We also note that EL, the reversal potential

of the leak current, has been focused on in previous modeling work on the preBötC because

it can significantly impact certain forms of model dynamics, it can be manipulated exper-

imentally through alterations in potassium concentrations external to neurons, and it can

serve as a proxy for variations in Iapp (since gLEL and Iapp play identical roles) [4, 54, 56].

113



If EL is perturbed, then similar forms of dynamics to those seen in Figure 3.6 arise, albeit

with differences in region locations. Larger increases in EL can push the model away from

bursting toward tonic spiking, although DB bursts persist for sufficiently high gCAN until

they are transformed into elliptic-like bursts due to the failure of the Na/K ATPase pump

to create a prolonged silent phase, as discussed in Section 3.4.

While this chapter is motivated by the dynamics observed in the preBötC (e.g. Fig-

ure 3.8), it may be applicable to other rhythmic brain areas as well. In several mammalian

locomotor CPGs, the NaP current has been identified as playing a critical role in generating

the network rhythm [67, 68, 76]. On the other hand, in other rhythmic brain areas such as

entorhinal cortex [18, 23] or the trigeminal system [72], the CAN current plays a critical role

in pattern generation. In fact, the trigeminal system features both NaP [74] and CAN cur-

rents. Indeed, given that CAN and NaP currents are widespread and can robustly drive the

array of rhythmic activity patterns presented and analyzed in this paper, it seems likely that

the interaction of these currents is a fundamental component of neuronal rhythmogenesis.
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4.0 LARGE NETWORKS OF UNIFIED MODEL NEURONS

When embedding models for respiratory neurons in a network, the connectivity architecture

is often chosen to be all-to-all [5, 46, 62, 33]. However, recent experimental data indicate

that this architecture may not be valid for large networks [25]. In this chapter, we study the

unified model from Chapter 3 when it is coupled with an architecture inspired by the data.

Heterogeneous networks that adhere to the data and yield synchronous network bursting are

trivial to engineer, but there may be other less obvious mechanisms that promote synchronous

bursting across the network. We found that randomly generated networks that adhere to

the data stand little chance of having synchronous bursting. Thus, it is clear that some

mechanisms must be present to support bursting in the preBötC in the face of the dual

challenges of neuronal heterogeneity and clustered architecture.

To tease out those mechanisms that promote bursting, in Section 4.3 we develop a genetic

algorithm to find families of bursting networks. In Section 4.4 we analyze the networks we

found by the genetic algorithm, and show that non-trivial networks that have synchronous

bursts do exist, however the quality of the bursting activity is quite limited. Section 4.5

weakens a restriction on the genetic algorithm. By allowing more communication between

clusters, we find substantial improvement over Section 4.4. Section 4.6 elucidates the role of

the CAN current in communicating bursts throughout the network. We find that intrinsically

quiescent neurons are prominent in the networks found through the genetic algorithm; this

is discussed in Section 4.7. We found that intrinsically bursting neurons do not play a

significant role in the network, see Section 4.8. In Section 4.9 and Section 4.10, we further

elucidate the mechanisms underlying synchronous network bursting by simulated blockade of

the NaP and CAN currents. Finally, an extension to the model is discussed in Section 4.11.
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4.1 MODEL NEURONS

For this work, we use the unified model from Chapter 3. The core model is unchanged,

except we must account for more synaptic connections than before. Define the matrix a so

that aj,i = 1 if neuron j is presynaptic to neuron i, and 0 otherwise. Let N be the number

of neurons in the network. For i ∈ {1, 2, ..., N} the dynamics for model neuron i is given by:

v̇i = −{IL(vi, EL,i) + INa(vi, hi,mi) + IK(vi, ni) + INaP(vi, hpi, gNaP,i) (4.1)

+ ICAN(vi, Cai, gCAN,i) + Ipump(Nai) − Iapp +
N

∑

j=1

aj,iIsyn(vi, sj)}/Cm

ḣi = (h∞(vi) − hi)/τh(vi) (4.2)

ṁi = (m∞(vi) − mi)/τm(vi) (4.3)

ṅi = (n∞(vi) − ni)/τn(vi) (4.4)

˙Cai = εCa(kIP3

N
∑

j=1

aj,isj − kCa(Cai − Cabase)) (4.5)

˙Nai = α(−ICAN(vi, Cai, gCAN,i) − Ipump(Nai)) (4.6)

˙hpi = εhp(hp,∞(vi) − hpi)/τhp(vi) (4.7)

ṡi = ((1 − si)s∞(vi) − kssi)/τs (4.8)

where εCa, α, and εhp are small and cause Cai, Nai and hpi to evolve on a separate timescale

from vi, hi,mi, ni, si (see Subsection 4.1.1). All remaining functions and parameter values

can be found in Subsection 4.1.1, and are in general very similar to those in Chapter 3. We

now use εhp = 0.003 instead of 0.001 to add spikes for intrinsically bursting neurons. Also

note that gCAN,i, gNaP,i and EL,i are no longer constant across all neurons.

4.1.1 Function definitions and parameter values

In equations (4.1)–(4.8), for each x ∈ {h, hp,mp, n, s}, the function x∞(v) takes the form

x∞(v) = {1 + exp[(v − θx)/σx]}
−1. Also for each x ∈ {h, hp,m, n}, the function τx(v) is

given by τx(v) = τ̄x/ cosh[(v − θx)/(2σx)]. We used the following functions in equations

(4.1)–(4.8): IL(v, EL) = gL(v − EL), INa(v, h,m) = gNam
3h(v − ENa), IK(v, n) = gKn4(v −
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EK), Isyn(v, s) = gsyns(v − Esyn), ICAN(v, Ca, gCAN) = gCAN(v − ECAN)/(1 + exp((Ca −

kCAN)/σCAN)), INaP(v, hp, gNaP ) = gNaP mp,∞(v)hp(v−ENa), Ipump(Na) = φ(Na)−φ(Nabase),

where φ(x) = x3/(x3 +k3
Na). In Table 4.1 we record the parameter values used for equations

(4.1)–(4.8). Values of gCAN , gNaP , and EL vary across all neurons, so these parameters do

not appear in Table 4.1, see Subsection 4.3.2.

Table 4.1: Common parameter values for Equations (4.1)–(4.8)

Parameter Value Parameter Value Parameter Value
α 6.6 × 10−5 mM pA−1ms−1 gL 3 nS rpump 200 pA
Cabase 0.05 µM gNa 160 nS σCAN −0.05 µM
Cm 45 pF gsyn 2.5 nS σh 5 mV
EK −75 mV Iapp 0 mV σhp 6 mV
ENa 65 mV kIP3

1200 µM ms−1 σm −8.5 mV
εCa 0.0007 ks 1 σm,p −6 mV
εhp 0.003 kNa 10 mM σn −5 mV
ECAN 0 mV kCa 22.5 ms−1 σs −3 mV
Esyn 0 mV kCAN 0.9 µM τ̄h 15 ms
gK 30 nS Nabase 5 mM τ̄hp 1 ms
τ̄m 1 ms τ̄n 30 ms τs 15 ms
θh −30 mV θhp −40 mV θm −36 mV
θmp

−40 mV θn −30 mV θs 15 mV

4.2 METHODS FOR ANALYZING LARGE NETWORKS OF MODEL

NEURONS

The numerical simulations in this chapter involve integrating large systems of differential

equations. Each network contains approximately 50 model neurons, each with 8 dynamic

variables. Separation of timescales in the neuronal dynamics yields a model that is stiff, so

we employed the CVODE routine from SUNDIALS, with absolute and relative tolerances

set to 10−6. For computational speed, the CVODE routine was used in custom C++ code

compiled for MATLAB via the mex command. We used MATLAB to implement the genetic

algorithm described in Section 4.3 and produce simulated raster plots of the results. Most of

the administrative code was written in MATLAB. For networks that result from the genetic
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algorithm, graphical depictions of the connectivity structure were produced using the iGraph

library in the R programming language[8]. This chapter involves the simulation of a large

number of independent systems, so the code was parallelized using the pMATLAB package

[71]. Finally, simulations of small clusters and example voltage traces were generated using

XPP [19].

4.3 GENETIC ALGORITHM

The data gathered on the network connectivity of the preBötC indicate that the neurons

are collected into spatial clusters [25]. Neurons within a spatial cluster have high synaptic

connectivity with each other. A few neurons within each spatial cluster have far reaching

synaptic connections to neurons in one or more different clusters; we say that these clusters

are connected via “intercluster connections.” At first glance, an artificial network adhering to

these statistics stands little chance of synchronizing well, due to the relative sparseness of the

intercluster connections. Indeed, we found that out of the 240 networks that were randomly

generated while adhering to the statistics from the data (see Subsection 4.3.2), we found only

12.5% of networks exhibited a bursting pattern in the summed synaptic output of all neurons

in the network (see Subsection 4.3.1). From those 12.5% bursting networks, we did not find

any networks that exhibited a particularly strong bursting pattern. A search of 240 networks

is far from exhaustive. To perform an exhaustive search, two factors must be considered.

The first factor is the connectivity architecture; simply changing the direction on a select

handful of connections could massively affect synchrony (see Section 4.4). The second factor

arises from the heterogeneity of the neuronal population within the preBötC. The individual

neurons can be intrinsically quiescent, intrinsically bursting, or intrinsically tonic (we model

this by varying the strength of the NaP current), and neurons also independently express

the CAN current in various strengths. To represent this heterogeneity, we must at least vary

in gNaP and gCAN ; in this chapter we will also consider limited heterogeneity in EL, the

reversal potential of the leak current. Thus, for networks of approximately 50 neurons, an

exhaustive search is out of the scope of this work. In light of this, we developed a genetic
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algorithm to search parameter space for networks that simultaneously fit the connectivity

data and yield good bursting patterns across the population.

The genetic algorithm is a map that takes a collection of networks, hereafter called a “gen-

eration,” to a new generation. This transformation occurs in two stages. First, each network

of the current generation must be assigned a “fitness score,” see Subsection 4.3.1. The top

twenty networks with high-scoring fitness are then combined to produce a new generation,

see Subsection 4.3.3. We found that choosing the top twenty networks strikes an acceptable

balance between heterogeneity in the new generation and computational feasibility.

4.3.1 Evaluating the fitness of a network

Fitness of a particular network was measured by looking at statistics pertaining to the

summed synaptic output of all neurons in the network (“population activity”). We define

the population activity for a network of N model neurons as p(t) =
∑N

i=1 si(t). We recorded

the population activity of a network for 15 seconds of simulated time, after discarding a

5 second transient. The theoretical maximal population activity, pmax, is defined to be

pmax = N · smax, where smax = max
v

s∞(v)/(ks + s∞(v)). If the population increased through

a threshold of 25% of pmax, we marked that the population started a burst. Later, if the

population decreased through 20% of pmax, we declared that the population ended the burst.

Burst duration is defined to be the end time minus the start time of the burst. The burst

period, on the other hand, is the difference between consecutive start times. Burst amplitude

is calculated by finding the maximal value of the p(t) during the burst and subtracting off the

average population activity during the middle third of the quiescent period before the next

burst. Therefore, the last burst in the 15 second window does not always have its amplitude

measured. We exclude the first third of the silent phase because we set the burst termination

point to be 20% of pmax, and so should allow some time for the burst to fully terminate. On

the other hand, preBötC neurons do not enter the active phase simultaneously. Such activity

should not be penalized, so we exclude the last third of the silent phase from consideration

to calculate the relative amplitude of the burst. Therefore, this method of calculating the

amplitude rewards synchrony during the active phase of a burst and penalizes large numbers
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of neurons for being active during much of the silent phase. Instead of using the maximal

value of p(t), we also considered the average value of p(t) during middle third of the active

phase. This did not produce significantly different results, so we will continue to use the

maximal value for scoring in the remainder of the work.

During the 15 second window, if a network displayed at least 3 complete bursts, we

then gathered statistics on this network; otherwise, the network is declared to be a failure.

The statistics that we gathered were the coefficient of variation (CV) of the burst duration,

the CV of the burst period, the CV of the burst amplitude, and the mean of the burst

amplitude. Using these statistics, we compile two separate fitness scores: the CV score and

the amplitude score. To form the CV score we add together the CV of the burst durations,

the CV of the burst periods, and the CV of the amplitudes of the bursts in the network. The

amplitude score is the average of the amplitudes for the bursts in the network, as described

above, except it is normalized by pmax. Thus, a network with a low CV score has bursts that

have regular shape and occur with a regular frequency, but the amplitude of those bursts

might be universally low. On the other hand, a network with a high amplitude score has

high participation from the entire network during each burst, with low participation during

the network’s silent phase, but the bursts may not have regular shape or regular frequency.

The best networks will have a low CV score and a high amplitude score.

To select the twenty networks that would engender the next generation, we formulated

two lists. One list contains networks with the 10 best CV scores, and other list contains the

networks with the 10 best amplitude scores. Once a network was placed on a list, it was

precluded from appearing on the other list. These two lists form the top twenty networks

that will be combined and mutated to form the next generation. The combination and

mutation process will be referred to as “mating” the networks. A priori, it is not clear which

score is more important, therefore mating was performed randomly within the top twenty

networks; we did not preferentially mate the networks from the CV list with those from

the amplitude list. Each network in the top twenty mated with two other networks in the

top twenty, selected at random, and each mating pair produced three child networks; thus

the next generation contains 120 new networks. Due to asymmetries and randomness in

the mating procedure described in Subsection 4.3.3, repeated mating pairs, reversed mating
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pairs, and even self-mating pairs were permitted. As an example, let {A, B, C, D} be

networks. Each network will get two mates; we will use XY to signify X mated with Y .

The mating pairs XY could be {AB, AC, BA, BB, CB, CC, DA, DA}. Before detailing

the mating procedure, we describe how the initial generation is formed.

4.3.2 Creating a network

We used the following algorithm to construct networks that adhere to the connectivity data

in [25]. First, a target number of neurons must be chosen; in these simulations we set a target

number of 50 neurons. We define the size of a cluster as the number of neurons within it. The

histogram figure for cluster size in [25] yields a few classes of cluster sizes: {3}, {4, 5, 6, 7},

{8, 9, 10, 11}, and {12, 13, 14, 15}. The data do not distinguish individual probabilities of

occurrence for members within a class. Therefore, we will use these classes as a sort of

equivalence class in the mating procedure, see Subsection 4.3.3 for details. We approximated

the histogram data with the probabilities given in Table 4.2. These probabilities were derived

by counting the height, in pixels, for each bar in the histogram. When a new cluster is created,

the size is chosen randomly using those probabilities. Once the size of the cluster is chosen,

we add this new cluster to the collection of clusters, repeating this process until the total

number of neurons meets or exceeds the target number. Each cluster is also assigned a unique

ID, which will be utilized in the mating process. Each ID is unique across all networks, and

all generations, of the simulation. At this time, the algorithm does not account for neurons

that reside outside of all clusters, because we elected to focus on clusters as the functional

units of the network and most preBötC neurons reside within clusters [25].

Table 4.2: Number of neurons for a newly created cluster

# neurons probability # neurons probability # neurons probability
3 10.7784% 8 11.976% 12 4.7904%
4 10.7784% 9 10.7784% 13 4.1916%
5 10.7784% 10 5.988% 14 1.1976%
6 11.3772% 11 4.7904% 15 0.5988%
7 11.976%
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Each neuron is assigned a random number of open connections, where this number is

chosen from a distribution that approximates the histogram data in the literature, see Ta-

ble 4.3; these open connections will be closed pairwise when two neurons are synaptically

connected. Again, the approximation was obtained by counting the height in pixels of the

histogram bars from the appropriate figure in [25]. For each cluster within the collection of

clusters, we will form a small network containing all the neurons within that cluster, and

intercluster connections will be formed from the remaining open connections for neurons in

each cluster.

In the absence of data to the contrary, we selected the intrinsic dynamics for each neuron

randomly, instead of having neurons have similar parameters based on spatial locations

(e.g. within the same cluster). With a probability of 25% the neuron is chosen to be

intrinsically bursting, while 37.5% of neurons were intrinsically quiescent and the remaining

37.5% of the neurons are intrinsically tonic. To represent intrinsically quiescent neurons, we

set EL,i = −61.5, and gNaP,i was chosen from a uniform distribution ranging between 0.55

and 0.75. Intrinsically bursting neurons were generated such that EL,i = −61.5 and gNaP,i

was chosen from a uniform distribution ranging between 0.85 and 1.25. For intrinsically

tonic neurons, we allowed EL,i to vary so that some neurons would become active even

without the NaP current, see Section 4.9. Intrinsically tonic neurons therefore had gNaP,i

chosen from a uniform distribution ranging between 1.3 and 4 while EL,i was chosen from a

uniform distribution ranging between −61.5 and −57. No matter what intrinsic dynamics

were elected for the neuron, gCAN,i was chosen from a uniform distribution ranging between

0 and 5.

Table 4.3: Initial number of open connections for a newly created neuron

# open connections probability # open connections probability # open connections probability
2 5.6604% 4 25.4717% 6 5.6604%
3 11.3208% 5 51.8858%

To form the small network consisting of neurons from only one cluster we iterate the

following procedure, see Figure 4.1 for an illustration of the process. We first find the
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Figure 4.1: Creation of an example cluster by connecting neurons with open connections.

Circles represent neurons of the network, arrows connecting them are unidirectional synaptic

connections, and S shaped segments represent open connections. A few connections are

assumed to have been made already, and the creation of the cluster proceeds through Panels

I-IV. Panel I: find the neuron with the least number of open connections (α), and label it

L. Find the node with the most open connections (β), that is already not already connected

to L, and label it M. Panel II: Form a connection between α and β, choosing the direction

randomly. Again, find the node with the least number of open connections (α), label it L.

Find the node with the most number of open connections, that is not already connected to L

(γ, since β is already connected to α), and label it M. Panel III: form a connection between

β and δ. Find the node with the least number of open connections. This would typically be

α, but there are no legal neurons for it to connect to, so it is removed from consideration,

and so we label δ as L instead. Find the neuron with the most open connections that is not

already connected to L (β) and label it M. Panel IV: form a connection between δ and β,

choosing the direction randomly. Each neuron with open connections is already connected

to every other neuron with open connections, so the cluster is completed. The remaining

open connections will be used to form intercluster connections.
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neuron with the least number of open connections, L, as well as the neuron with the greatest

number of open connections that it is not already connected to, M, and form a connection

between L and M. L and M are never the same neuron. Connections are directed edges on

a graph, with the direction determined by an unbiased coin toss. When a neuron has no

open connections remaining, or there are no neurons remaining that have open connections

that it is not yet connected to, the neuron is removed from consideration. In the latter case,

when the removed neuron still has open connections, the neuron will become a candidate for

intercluster connections. This process is repeated until there are a prescribed number of open

connections left, or until no more connections can be made without having a pair of neurons

connected to each other more than once. The prescribed number of open connections to

be preserved at this stage is same as the maximum number of intercluster connections per

cluster allowed, which is usually 2 or 3 (see Section 4.4 and Section 4.5).

Experimental results suggest that each cluster has, on average, 2 connections to other

clusters (personal communication, Mironov). In this algorithm, we enforce a rule that each

cluster will have at least two connections to other clusters, and may have more depending

on the circumstances of the simulation. To ensure connectedness of the network, clusters are

placed into a ring structure (that is, if there are N clusters: cluster 1 is connected to cluster 2

and cluster N, cluster 2 is also connected to cluster 3, etc.). Note that with only 2 intercluster

connections per cluster, the only other connected structure is a long chain where cluster 1

is not connected to cluster N, but this would be terrible for synchronization and therefore is

not considered here. Intercluster connections are selected by randomly choosing one neuron

with remaining open connections from each of the two clusters, and determining the direction

of the connection by an unbiased coin toss, see Figure 4.2. If more than two intercluster

connections are permitted, then these extra connections are formed after the clusters have

been placed into the ring. There are no restrictions on which clusters these intercluster

connections may connect, other than the rule that no neuron may be connected with any

other single neuron more than once. Once all intercluster connections are created, there

may be some neurons with remaining open connections. These open connections are not

forgotten, and may be utilized during the mating process, although they have no functional

impact when the network is integrated.

124



Figure 4.2: Formation of intercluster connections. Panel I: Consider Cluster 1 and Cluster 2,

each with varying number of open connections (S shaped segments). Panel II: An intercluster

connection is formed between the two clusters by closing one open connection from each

cluster at random.
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4.3.3 Production of a child network from a mated pair

Let XY be a mating pair. We will see below that the order is important; XY is very likely

to yield a significantly different network from Y X. Now we can describe how X and Y are

mated to form a child network for the next generation.

An exact copy of X is created, which we will call S, see Figure 4.3. S will serve as a

sort of scaffolding and its clusters will change to distinguish it from X and Y . S will be

modified several times as some of its are clusters replaced with clusters from Y , or with

mutant clusters that may have not yet appeared in any network. Let T be a cluster not

already appearing in S. When the cluster in S is replaced by T , we say that T is transplanted

into S. Each initial cluster in S has a 50% chance to be replaced. Let R be a cluster in S

that has been chosen to be replaced. Recall from Subsection 4.3.2 that the cluster sizes are

divided into classes. R will be replaced with a cluster that is in the same class size as R.

For example, suppose S initially adheres to the data and R has 7 neurons, if we replace R

with a cluster of size 4, 5, 6 or 7, then S will still be consistent with the data. Therefore,

to keep S consistent with the data, we compile a list, C, of clusters from Y that are in the

same size class as R.

We remove clusters from C if they have IDs already appearing in the current version

of S; this prevents a network, and perhaps an entire generation, from being dominated by

one cluster through repeated mating, see Figure 4.3. If there are no clusters remaining in

C, we generate a new mutant cluster using the rules described for cluster creation of the

first generation, except that its size will be randomly selected from those within R’s size

class, and the number of open connections the mutant cluster has is at least the number of

intercluster connections that R had. This also means that if the mating pair is XX, the first

cluster replaced will be guaranteed to be replaced by a mutant cluster, but that replaced

cluster could then be transplanted into the network at a different location. Even if there

are still clusters in C after checking for repeated IDs, R is replaced by a mutant cluster 5%

of the time, while the other 95% of the time we randomly select one of the clusters from

C to transplant into S. The neurons in a mutant cluster have intrinsic dynamics that are

randomly generated, as in Section 4.3.2.
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Figure 4.3: Setup for illustration the illustration of transplanting a cluster from Y into the

network S. Three intercluster connections per cluster are allowed. The purple cluster R will

be replaced. The blue cluster A is within R’s size class, so it is a candidate to replace R.

The red cluster B is also in R’s size class, but already appears in S (albeit with different

remaining open connections), so it is rejected. The orange cluster C is not in R’s size class,

so it too is rejected. Therefore, R will be replaced by A or by a mutant. Note that the

network Y will not be altered.
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Figure 4.4: Illustration of transplanting cluster A from Figure 4.3 into network S. Panel I:

R is deleted, and the intercluster connections that connected it to the other clusters in S

are converted to open connections on neurons in those other clusters. The cluster A from

network Y is copied, and we refer to this copy as T. Any intercluster connections the original

A had are converted to open connections in T, and its already existing open connections are

preserved. Panel II: The open connections in T are closed by connecting to neurons with

open connections in S. These connections are joined first by forming the ring, and then

filling out the rest of the connections until as many clusters as possible have 3 intercluster

connections. Note that the network on the right in panels I and II of this figure has not been

changed; it is preserved for future mating within this generation.
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When a cluster, T , is transplanted into the scaffold network S, it keeps its intracluster

connectivity structure, as well as the intrinsic dynamics of all of its neurons. If T came from

Y , then the intercluster connections it had in Y will be recovered as open connections, see

Figure 4.4 panel I. The remembered open connections of T are utilized when connecting T

to the other clusters in S. First, the ring structure of S is preserved by closing random

open connections from each appropriate cluster. That is, if R was the ith cluster, T will

be connected to clusters i − 1 and i + 1. If R had more than two intercluster connections,

we attempt to utilize the remaining open connections in T to restore those intercluster

connections, see Figure 4.4 panel II. Some open connections in T may not be utilized, since

multiple connections between neurons are forbidden, or perhaps the other clusters in S do

not have enough open connections remaining. Another alternative is that the maximum

number of intercluster connections allowed for T has already been obtained. No matter the

cause, the remaining open connections in T are recorded for possible later use.

After all clusters have been replaced or preserved for the next generation network S,

we attempt to connect as many pairs of neurons with open connections as possible, while

working within the restraints concerning maximum numbers of intercluster connections and

continuing to forbid self-coupling and multiple connections between neurons. Open connec-

tions that could not be closed are remembered for future generations, and S is now a next

generation network.

4.4 THE GENETIC ALGORITHM PRODUCES BURSTING NETWORKS

In the preBötC it is hypothesized that each cluster is connected to two other clusters (private

communication, Mironov). We ran the genetic algorithm while requiring each cluster to be

connected to exactly two other clusters. Recall that a network exhibits population bursting if

p(t) features repeated (though not necessarily periodic) activity of alternating phases above

25% of pmax with phases below 20% of pmax. The 11th and final generation of this run of

the genetic algorithm will be called GA(2) (Genetic Algorithm, 2 intercluster connections

per cluster). Out of the initial 120 networks for the genetic algorithm, only 14 exhibited any
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bursting patterns, and 6 non-bursting networks were chosen at random to fill out the top

twenty. The next generation substantially improved upon this, containing 49 networks with

bursting population activity. The final generation contained 80 networks with population

bursting.

The directionality of intercluster connections cannot be deduced from the data in [25].

Therefore, with only two intercluster connections per cluster, an individual cluster has a

50% chance to fail to influence, or fail to be influenced by, the rest of the network. Another

ramification of having only two intercluster connections per cluster, is that the clusters are

arranged in a ring, which results in a long path length between some clusters, which can

interfere with synchrony (see also [24]). Some networks from GA(2) achieve a low CV score

by avoiding this issue, see Figure 4.5. In Figure 4.5, the red and light blue clusters are

tonically active, and keep the population output at about 10% of pmax. The yellow cluster

receives no input from the rest of the network, but has a short path length to the dark blue,

green, brown, and purple clusters. In this case, those clusters respond well to bursting input,

so the bursting behavior of the yellow cluster controls the remaining clusters. This results

in a low CV score, because the clusters that do burst, burst well together. However, the

excessive tonic activity is penalized in the amplitude score.

In contrast to the network in Figure 4.5, other networks in GA(2) may achieve periods

of lower population activity if they do not contain clusters that are tonically active. With

only two intercluster connections per cluster, the path length between clusters can be long

enough to interfere with synchronization, see Figure 4.6. Even though each cluster in this

network is bursting in some capacity, the population does not cross the 25% threshold unless

sufficiently many clusters coincidentally burst. Relying on coincidence yields high CVs for

burst amplitude and burst period, and therefore a high CV score. The amplitude score in

this network is not a significant improvement over the amplitude score for the network in

Figure 4.5, due to the population “bursts” that failed to cross the 25% threshold. Notice

that for the network in Figure 4.6, the population activity does regularly fall below 5% of

pmax. Would more intercluster connections per cluster shorten the path length enough to

engender networks where each cluster bursts with tighter synchrony?
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Figure 4.5: A network from GA(2) with a low CV score but also a low amplitude score.

Panel I: simulated raster plot. Neuron number is given on the y axis, and a tick at that y

value is made at each time (x axis) that neuron spiked. Like colors indicate that the neurons

are in the same cluster. Panel II: p(t)/pmax, the amplitude score is lowered by the fact that

the population still has a large amount of activity during the “silent” phase. Panel III:

network architecture. Nodes of the graph represent individual neurons, and directed edges

are synaptic connections. Colors of the nodes correspond to those colors in panel I.
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Figure 4.6: A network from GA(2) with a high amplitude score but also a high CV score.

Panel I: simulated raster plot. Neuron number is given on the y axis, and a tick at that y

value is made at each time (x axis) that neuron spiked. Like colors indicate that the neurons

are in the same cluster. Panel II: p(t)/pmax. Panel III: network architecture. Nodes of the

graph represent individual neurons, and directed edges are synaptic connections. Colors of

the nodes correspond to those colors in panel I.
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4.5 THREE INTERCLUSTER CONNECTIONS PER CLUSTER YIELD

STRONGER POPULATION ACTIVITY

In this section, we allow the genetic algorithm to establish three intercluster connections per

cluster, instead of two. The first 120 networks created this way did not fare much better than

the first 120 from Section 4.4: 16 had bursting in their population activity. The subsequent

generation again had a marked improvement in performance: 49 networks were bursting.

The 11th and final generation yielded 103 networks that were classified as bursting. The

final generation of this run of the genetic algorithm will be called GA(3), to signify that it

allowed 3 intercluster connections per cluster. The top twenty networks from GA(3) yielded

a few networks with high amplitude score while keeping the CV score low, although for

the most part, the CV and amplitude scores between GA(3) and GA(2) are comparable at

first glance, see Figure 4.7. Networks that received similar scores can look quite different.

For instance, the network GA∗
3 (Figure 4.8) emerged from GA(3); every cluster participates

in bursting behavior, which is well synchronized across the network; hereafter this network

will be referred to as GA∗
3. However, the amplitude scores of the networks from GA∗

3 and

Figure 4.5 differ only by 0.03 (11% relative change) in Figure 4.7. This similarity is primarily

a reflection of how amplitude scores are calculated: the penalty for activity between bursts

differentiates these two networks, but not by enough for it to be apparent from Figure 4.7

that GA(3) outperforms GA(2).

To clarify the separation between GA(2) and GA(3) we performed an additional test.

During the scoring process, we recorded the start time of a burst when the population activity

increased through 25% of pmax, and the end time was marked when the population activity

decreased through 20% of pmax. For the additional test, we made the definition of bursting

activity much more restrictive. We kept the burst initiation threshold at 25%, but we now

mark the end of a burst when it falls below 5% of pmax. This means that networks such as

those in Figure 4.6 and GA∗
3 (Figure 4.8) will still be labeled as bursting, but the network

in Figure 4.5 will not, since its population activity never dips below 5%. For the top twenty

networks from GA(2) and GA(3), if they continued to be classified as bursting under this

new test, the CV and amplitude scores of are plotted in Figure 4.9. Interestingly, only 2
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Figure 4.7: Scatterplot of amplitude score vs CV score. Red marks indicate the scores for

top twenty networks of GA(2), while blue marks correspond to the top twenty networks from

GA(3). Recall that low CV scores and high amplitude scores are desirable. Although the

blue marks seem to be concentrated at slightly lower CV scores than the red marks, it is not

obvious that the difference between GA(2) and GA(3) is significant.
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out of the top twenty for GA(2) continued to be classified as bursting, while 9 of the top

twenty from GA(3) were still found to be bursting. Even though the fitness algorithm did

not condition GA(2) or GA(3) for increased performance on this test, it is interesting that

GA(3) did significantly better. What properties of GA(3) yield this performance increase?

GA(3) is characterized by allowing 3 intercluster connections per cluster, instead of

the 2 allowed in GA(2). In Section 4.4 we discussed that for a network to improve its

amplitude score, there would need to be less activity between registered bursts. The network

in Figure 4.6 managed this, although the CV score was lowered by the lack of synchrony of

the bursting clusters. There is a lack of synchrony between clusters due to the long path

length, which cannot be shortened without more intercluster connections. For instance, by

the time one cluster finishes bursting, a cluster four positions further on the ring may have

just received the bursting input; Figure 4.10 demonstrates this phenomenon in a toy network

of 4 neurons. Let the black neuron represent the neuron in cluster 1 that has an intercluster

connection. An external burst (presumably from the rest of the black neuron’s cluster) is

fed into the black neuron at time t = 100ms. Suppose there are two clusters for which input

from and output to the rest of the network occurs from the same neuron; let those neurons

correspond to the white neurons in the toy network of Figure 4.10. Finally, allow the red

neuron to represent the input neuron of the fourth cluster down the ring from the black

neuron’s cluster. Notice that the red neuron does not burst until after the black neuron has

finished bursting, which risks asynchronous behavior between the first and fourth clusters of

the represented network. If the black neuron was allowed one extra connection, perhaps one

that reaches the red neuron, the bursts can become synchronous.

The high interconnectivity of the neurons within the clusters means that a bursting input

to the cluster will quickly be felt by the rest of the cluster. Certainly, smaller clusters are

easier to synchronize. Indeed, a large cluster like the red cluster from Figure 4.6 is difficult to

synchronize because long path lengths can exist within the cluster; the path from the north-

most neuron to the east-most neuron has length 4. To achieve synchrony across the whole

network, then, there should be small clusters with more than 2 intercluster connections per

cluster to serve as shortcuts around the ring. In GA(3), this is achieved by networks like

GA∗
3 (Figure 4.8), whereas in GA(2) smaller clusters may not be practical due to the long
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Figure 4.8: A network from GA(3) with high amplitude score and a low CV score, hereafter

referred to as GA∗
3. Panel I: simulated raster plot. Neuron number is given on the y axis,

and a tick at that y value is made at each time (x axis) that neuron spiked. Ticks of the

same color indicate that the neurons are in the same cluster. Panel II: p(t)/pmax. Panel III:

network architecture. Nodes of the graph represent individual neurons, and directed edges

are synaptic connections. Colors of the nodes correspond to those colors in panel I.
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Figure 4.9: Scatterplot of amplitude score vs CV score, when the thresholds for the definition

of bursting are set to be 25% and 5% of pmax, instead of 25% and 20%. Most networks from

GA(3) and GA(2) failed to burst under this definition; those that do meet this harsher

definition are plotted here. Red marks indicate the scores for top twenty networks of GA(2),

while blue marks correspond to the top twenty networks from GA(3). Note that only 2 out

of the top twenty networks from GA(2) met the harsher criterion for bursting, while 9 from

the top twenty networks in GA(3) bursted under these harsher restrictions.
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path length between clusters. Indeed, clusters in GA(3) have, on average, 2 less neurons

than clusters in GA(2).

Considering the clusters of the top 20 networks of GA(3) in isolation from each other, 57%

of the clusters burst in phase with a supplied bursting input. On the other hand, for GA(2),

only 33% of clusters burst under the same conditions. The bursting input had an activated

CAN current and was supplied to a neuron that previously had an incoming intercluster

connection. For GA(3), only 13% of clusters were tonically active when disconnected from

the rest of the network. Therefore, clusters that persist through the generations leading to

GA(3) are likely to burst when they receive bursting input, or burst themselves. Combined

with the decreased path length between clusters, this helps lower the CV score by promoting

synchrony and increase the amplitude score by reducing tonic activity between bursts.

4.6 DISTRIBUTIONS OF gCAN

In Section 4.5, we concluded that short path lengths are important for synchronization

between clusters. However, the dynamics of the neurons are also very important. In the

unified model, a lot of information is carried by the CAN current; for a single neuron, CAN

current activation is indicative of the activity of its presynaptic neurons. Activation of a

neuron’s CAN current causes it to, at least for a short time, bombard its postsynaptic neurons

with sufficient activity to activate the postsynaptic CAN currents, if they have sufficiently

high gCAN (around 0.6 or higher). No matter what intrinsic dynamics are selected when

a new model neuron is created, the strength of its CAN current is chosen uniformly from

the interval [0, 5]. Interestingly, the center of the distribution of gCAN changes by the final

generation of the genetic algorithm.

For the top twenty networks in GA(2) and GA(3), the average value of gCAN across all

neurons is lower than the initial average. For GA(2), the average gCAN is 2.081±0.1321, and

in GA(3) it is 1.9323±0.2679, both of which are statistically significantly different from the

initial average of 2.5. Statistical significance was given by a series of t-tests. Each t-test

involved 20 samples of 50 randomly selected gCAN values from a uniform distribution ranging
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Figure 4.10: Long path lengths can cause bursts to lose synchrony. Panel I: synaptic output

from black and red neurons of the four neuron network shown in Panel II. All neurons in the

network are intrinsically quiescent, with gNaP = gCAN = 0.6. The black neuron receives a

burst from the rest of its cluster and the activity propagates through the chain. By the time

the red neuron enters the active phase, the black neuron has returned to quiescence. Panel

II: The neurons for are arranged in a chain to represent the minimum time it would require

for a cluster’s bursting output to reach a cluster further down the ring.
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from 0 to 5. The average of each sample was computed, and these 20 averages were compared

against the average for GA(2) by using the “ttest” command in MATLAB. This gave a p

value which was typically around p = 10−8. We performed 500, 000 such t-tests, and the

maximum p was such that p < 10−5, yielding that the differences in gCAN distributions from

GA(2) and GA(3) are statistically significant from their initial populations. Interestingly,

the average gCAN value has drifted towards an ideal value for relaying a presynaptic burst,

see Figure 4.11. In Figure 4.11 we plot the result of simulating a toy network with two

neurons: one neuron is self coupled and generates a DB burst, the second neuron (indexed

as ‘r’ for response) is intrinsically quiescent, but responds with a burst of its own. In panel

I of Figure 4.11 we vary gCAN,r and plot a blue dot at the amplitude of this response by

averaging sr over a 300ms window. The window of 300ms was chosen based on the duration

of the self-coupled burst. For intermediate values of gCAN , we note that the amplitude of

the burst in the response is actually increased. Notice that the amplitude of the response

is weaker than amplitude of the input for gCAN,r > 3. The response neuron is capable of

entering depolarization block when gCAN,r > 3. Presynaptic activation of the CAN current

causes the responding neuron to quickly enter depolarization block, resulting in decreased

burst amplitude. The speed of the transition to depolarization block is enhanced by the

CAN current, which is why the response continues to decrease as gCAN increases toward 5;

the averaging process causes the the amplitude of the response to be mitigated by the short

duration.

Nevertheless, the ability of some neurons to enter depolarization block is also important

for network functionality. To elucidate the role of depolarization block in these networks,

we performed an additional numerical experiment on the top twenty networks from GA(2)

and GA(3). For each neuron of the network, if gCAN,i > 3, we set gCAN,i = 2. This removes

the capability of the neuron to enter depolarization block and gives it the ability to boost

signals. In most cases, when we make this change in any of the top twenty networks from

GA(2) or GA(3), the rhythm of the network is destroyed; it becomes tonically active. Those

networks that do continue to burst do so in a very irregular way; this bursting is explained

in Section 4.10. Clearly, the ability for some neurons to enter depolarization block is a good

thing for the networks we found through the genetic algorithm. Can you have too much of
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a good thing?

We performed an analogue of the previous experiment: for each neuron in the network,

if gCAN,i < 3 we set gCAN,i = 3.5. Thus, virtually all neurons will be capable of entering

depolarization block. Although not as severe as preventing all neurons from entering de-

polarization block, the outcome was that a great deal of the amplitude and regularity of

the bursts was lost. Thus, the strength of the CAN current across the network needs to be

distributed; both neurons that are capable of entering depolarization block, as well as those

that are incapable, are important for network functionality.
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Figure 4.11: The amplitude of a neuron’s response to a burst depends on the conductance

of its CAN current. Panel I: On the x axis, we plot the strength of gCAN,r the conductance

of the postsynaptic CAN current. On the y axis, we plot s̄r = 1
300

∫ 300

0
sr(t)dt, the average

of the synaptic activity across the burst. The red line is the average of the synaptic activity

for the presynaptic burst. Notice that there appears to be a maximum of the average of

the postsynaptic neuron’s response around gCAN,r = 2.25 and for gCAN,r > 3 the response is

weaker than the input. The strange increase in amplitude around gCAN,r = 0.5 appears to

be an artifact of the averaging process. Panel II: Network architecture for this toy network.

For the self-coupled neuron, gCAN = 4 and gNaP = 2, EL = −61.5, while for the response

neuron gNaP,r = 0.06 and EL,r = −61.5.
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For GA(2) and GA(3), most neurons will not go into depolarization block, but their CAN

current will activate when they receive sufficient synaptic input. Also, the CAN current in

the average neuron is activated when a presynaptic CAN current is active. However, the

CAN current can also be recruited by as few as one presynaptic tonically active neuron,

even without that presynaptic neuron’s CAN current being active. A tonically active neuron

that is presynaptic to a neuron in another cluster, therefore, could activate that neuron’s

CAN current, regardless of the overall activity of the cluster to which the presynaptic neuron

belongs. A quiescent neuron on the other hand sends a pure signal to other clusters since

it will only be active when its cluster is active. Similarly, a quiescent neuron that is on

the postsynaptic side of an intercluster connection accurately reports the activity of other

clusters in the network. Thus, for synchronized cluster behavior, we would expect quiescent

neurons to serve as the neurons with intercluster connections.

4.7 QUIESCENT NEURONS ARE MORE COMMON IN LATER

GENERATIONS

When a new neuron is created (when the networks for the first generation are created,

or when a cluster is replaced by a mutant cluster), it has a 25% chance to have intrinsic

bursting dynamics, a 37.5% chance of being intrinsically quiescent and a 37.5% chance of

being intrinsically tonic. However, in the 20 best networks from the GA(3), on average, 41%

of neurons are intrinsically quiescent, see Figure 4.12. If the distribution of the intrinsic

dynamics is approximated by a normal distribution, then this is a statistically significant

skew towards intrinsically quiescent neurons; a t-test (the MATLAB function “ttest” was

used) rejects the hypothesis that GA(3)’s neurons were drawn from a normal distribution

with a mean of 37.5% of neurons are intrinsically quiescent (p < 0.01). Some of the best

networks boast a makeup of more than 50% quiescent neurons, such as GA∗
3 (Figure 4.8).

Perhaps quiescent neurons become prominent due to the way input strength is handled

in the simulations. In the absence of evidence to the contrary, we did not scale the strength

of synaptic connections according to the number of those connections. If a neuron has a
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high level of gCAN , numerous tonic inputs can hold the neuron in depolarization block. Any

neuron pinned in depolarization block will reduce the amplitude of the population activity,

because the voltage in depolarization block is below the synaptic threshold. Being pinned

in depolarization block also prevents the neuron from responding to bursting input. In

particular, if the pinned neuron has an intercluster connection, this behavior can cause the

loss of burst regularity across the network. However, the average level of gCAN is low, so

most neurons cannot be pinned in depolarization block.

Quiescent neurons are ideal for relaying signals; quiescent neurons only send synaptic

output when they receive synaptic input. Indeed, with intermediate levels of gCAN they

can increase the amplitude and duration of a burst, which can rekindle a weak burst input

into a strong output, see Section 4.6. There is little cause for concern that the bursts

will be eternally extended by quiescent neurons; any neuron with sufficiently high values of

gCAN will almost immediately enter depolarization block upon receiving a sufficiently strong

burst. This fast entry into depolarization block will result in the neuron’s output being a

very short, high amplitude, burst. Quiescent neurons endowed with this property can halt

runaway activity without affecting the rest of the network first, and so send a short signal

that is still an accurate reflection of the activity presynaptic to it.

In Section 4.6 we concluded that quiescent neurons are well suited to be the neurons with

intercluster connections. In most networks of GA(3), there are more intrinsically quiescent

neurons than any other type, so we would expect there to be more quiescent neurons with

intercluster connections than other intrinsic dynamics. If GA(3) had increased numbers of

quiescent neurons with intercluster connections, this may help explain why its clusters are

well synchronized. In support of our analysis of the synchrony of clusters in GA(3), we do

see that even though there are more intrinsically quiescent neurons in GA(3) than other

kinds, there are disproportionately more intrinsically quiescent neurons serving as neurons

with intercluster connections, see Figure 4.13.

On the other hand, intercluster connections are less important for networks from GA(2).

Frequently, only a few clusters need to burst together to generate the bursting rhythm of

the population. Therefore the property of pure communication that quiescent neurons have

does not need to be emphasized in the network. Our analysis predicts that GA(2) should

143



not have a preference for intrinsically quiescent neurons, nor should intrinsically quiescent

dynamics stand out for neurons with those rare intercluster connections. We display the

makeup of the top twenty networks from GA(2) in Figure 4.14. The average number of

intrinsic quiescent, bursting, and tonic dynamics are as expected from the initial distribution

of neurons. Interestingly, there is a preference for intrinsically bursting dynamics for neurons

with intercluster connections and intrinsically quiescent neurons are underrepresented in this

role. Do these intrinsically bursting neurons play a special role in GA(2) that is not observed

in GA(3)?

4.8 INTRINSICALLY BURSTING NEURONS MAY NOT IMPACT THE

NETWORK DYNAMICS

Recall from Chapter 2 that we did not find a significant advantage to having intrinsically

bursting neurons in a three cell network. Is their prominence in GA(2) merely chance? To

test this, for every intrinsically bursting neuron in GA(2) or GA(3), we changed its intrinsic

dynamics to quiescence by setting gNaP,i = 0.6; gCAN,i was unchanged. We plot the effect

of this change on the CV and amplitude scores in Figure 4.15. We note that for the most

part, the relative changes are clustered around 0%, indicating that intrinsically bursting

neurons are not playing a very strong role in these networks. Indeed, all of the top twenty

networks in GA(3) continued to burst in the absence of intrinsically bursting neurons, while

16 of the top twenty networks in GA(2) burst; by way of example, see Figure 4.16. In the

unified model in the absence of synaptic input, inactivation of the NaP current is required to

return to the silent phase. Therefore, the NaP current is required for intrinsically bursting

dynamics in the unified model. If intrinsically bursting neurons are not necessary for the

network rhythm, perhaps the same can be said for the NaP current.
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4.9 SIMULATED RILUZOLE

Applying Riluzole to the preBötC quickly results in the blockade of the NaP current [15].

In the preBötC, network bursting can persist in the presence of Riluzole, although the burst

frequency and burst amplitude are reduced [15]. Recall from Chapter 3 that neurons modeled

by the unified model have two mechanisms that can create bursts: the NaP current or the

combination of the CAN current with the Na/K pump. The parameters in Chapter 3 were

such that some level of gNaP was required to enter the active phase. When creating networks

for the genetic algorithm, we introduced heterogeneity in EL, which allows for some neurons

to be intrinsically tonic even when the NaP current is blocked. EL is a natural parameter to

vary, because it can be manipulated by changing [K+]o in experimental settings[4]. Therefore,

simulated blockade of the NaP current need not necessarily destroy the network bursting

rhythm in all networks.

We simulated the blockade of NaP by first discarding a transient of 5 s, then allowing the

network to be active for 5 seconds of simulated time. Over the next 5 seconds of simulated

time, we linearly reduced the value of gNaP,i to 10% of its original value for all i = 1 . . . N .

Finally, we recorded population activity for 10 more seconds of simulation time. By our

definition of bursting, most networks failed to burst under these conditions. The effect of

blocking the NaP current on the amplitude and CV scores of the top twenty of GA(2) and

GA(3) is summarized in Figure 4.17.

From GA(3), only 5 out of the top twenty networks continued to burst when NaP is

blocked, while GA(2) had 9 of its top twenty networks sustain bursting. GA∗
3 (Figure 4.8)

stands out again as an interesting example from GA(3), see Figure 4.18. This is the ideal

scenario; even though the algorithm doesn’t detect the bursts because they never go above

25% of pmax, it is clear that both the burst amplitude and burst frequency are lowered, but

the bursting rhythm endures. The cause for this behavior is clear: the brown, yellow and

purple clusters relied on NaP drive to generate bursts, which then synchronized with the

rest of the network. Most of the networks do not have this behavior, however. The networks

that fail to burst generally have persistent activity that does not regularly fall below 20%

of pmax, or highly irregular bursting with an amplitude that never exceeds 25% of pmax.
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Networks that have population activity that never falls below 20% of pmax seem to require

the extra excitation from the NaP current to push some neurons into depolarization block

to trigger the bursting cascade. Those networks that cannot regularly exceed 25% of pmax

were irregular to begin with, the loss of the NaP current prevents some clusters from having

enough drive to burst. Such bursts previously were coincidental with other clusters’ bursts,

resulting in an increase through 25% of pmax, and without them, the network fails to burst.

The networks that manage to sustain bursting under blockade of NaP are ones whose

activity look like the network in Figure 4.5. Recall from Chapter 3 that for intermediate

values of gCAN we found that some neurons will not go into depolarization block, but will

have an activated CAN current. For the self-coupled model neuron, when the CAN current

was activated, we were able to observe tonically active solutions that were stable even when

gNaP = 0 (Figure 3.21 in Chapter 3). The recurrent excitation activates the CAN current for

many of the neurons in some of the clusters, as is the case for the red cluster of Figure 4.5,

and these neurons were not predisposed to enter depolarization block. These neurons no

longer rely on the NaP current for excitation, so this behavior persists as gNaP is gradually

reduced. In Figure 4.19 we see that the clusters that continue to burst did not require

the NaP current to do so in the first place, though we do observe a reduction in frequency

because, before being blocked, the NaP current hastened their entry into the active phase.

In light of this evidence, it is not surprising that GA(2) had more networks continue

to burst in the presence of simulated Riluzole; we noted in Section 4.4 that some tonically

active clusters mixed with a few bursting ones was a method that emerged from the genetic

algorithm for optimizing the CV score. Blockade of the NaP current doesn’t significantly

impact this behavior, so for the most part, there is not a significant change in score, as

reflected in Figure 4.17.

4.10 SIMULATED FLUFENAMIC ACID

Flufenamic acid (FFA) is a pharmacological agent that blocks the CAN current. However,

excessive doses of FFA interfere with other neuronal properties, such as gap junctions. This
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interference occurs at doses lower than those required to completely block the CAN current.

In real preBötC networks, the rhythm persists under application of FFA, although its regu-

larity and amplitude are altered. In this section, we simulate the incomplete blockade of the

CAN current in the top twenty networks of both GA(2) and GA(3).

First we discard a transient of 5 seconds of simulation time, and then allow the network

to proceed as normal for 5 more seconds. Then, across the next 5 s, we linearly reduce gCAN,i

in all neurons to 25% of its original value. Finally, we recorded the population activity for

the next 10 seconds. For the networks that continued bursting under this condition, we plot

the relative change in the CV and amplitude score in Figure 4.20. Note that even though

there are more networks bursting than in Section 4.9, the relative change in score is much

higher in this case.

In Section 4.6 we discussed the importance of the depolarization block state for generating

network bursts. We showed this by replacing virtually every neuron that was capable of

entering depolarization block, with one of equivalent gNaP and EL, but reduced gCAN = 2.

From that analysis, we might expect that the reduction of all gCAN,i to values below 1.25

would cause a cessation of bursting. This is mostly correct. However, in the presence of

the simulated incomplete block of the CAN current, 8 networks from GA(3) and 9 networks

from GA(2) maintained a bursting rhythm. Those networks that did not maintain bursts

behave much like we expect from Section 4.6; with no way of entering depolarization block,

the CAN current does not shut off, leading to persistent tonic activity as in Figure 4.21.

For the network to burst, the CAN current must be shutting off, but not through a

depolarization block mechanism. The mechanism terminating the burst in networks such as

the one in Figure 4.22 was described in Section 3.5.6 of Chapter 3. The CAN current remains

active, and sodium slowly increases until the saddle-node bifurcation blows up and captures

the trajectory of one of the neurons. This neuron will return to quiescence, which may cause

a cascade and terminate the activity of the rest of the network, if the conditions are right;

otherwise, there is a delay until another neuron’s trajectory is captured by its saddle-node

bifurcation. This mechanism occurs in some neurons in Figure 4.21, but such neurons do

not trigger a cascade strong enough to quiet the population activity. This behavior was

not noted in Section 4.6 because we set gCAN = 2, where this behavior does not occur (see
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Figure 3.6 in Chapter 3).

The bursts in this section and Section 4.9 are not particularly appealing and activation

of the CAN current for durations as long as shown here is not necessarily biophysical. To

correct this, the model needs to be extended, and this is the focus of the next section.

4.11 MODEL EXTENSION

So far, we have established that the CAN current is an important mechanism for generating

the bursts we see in the top twenty networks of GA(2) and GA(3). However, some neurons

in these networks, like those in the red cluster of Figure 4.5, have CAN current activation for

the entirety of the simulation. This situation is probably not biophysical. The CAN current

model we use in the unified model, and was originally used in the Rubin-Hayes model, works

based on IP3 mediated calcium-induced calcium- release. Over time, the IP3 receptors on the

ER may become desensitized [70]. Thus, if a neuron receives prolonged synaptic input that

ignites the CAN current, eventually the CAN current activation should wear off when IP3

receptors can no longer respond. This phenomenon was originally modeled by Toporikova

et al [70], but their work focused on calcium oscillations as an intrinsic bursting mechanism.

Here we introduce a new dynamic variable to the unified model, and while it is equivalent

to the basic implementation in [70], it serves a very different function here.
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For i ∈ {1, 2, ..., N} the dynamics for model neuron i are given by:

v̇i = −{IL(vi, EL,i) + INa(vi, hi,mi) + IK(vi, ni) + INaP(vi, hpi, gNaP,i) (4.9)

+ ICAN(vi, Cai, gCAN,i) + Ipump(Nai) − Iapp +
N

∑

j=1

aj,iIsyn(vi, sj)}/Cm

ḣi = (h∞(vi) − hi)/τh(vi) (4.10)

ṁi = (m∞(vi) − mi)/τm(vi) (4.11)

ṅi = (n∞(vi) − ni)/τn(vi) (4.12)

˙Cai = εCa(kIP3
(1 − D)

N
∑

j=1

aj,isj − kCa(Cai − Cabase)) (4.13)

˙Nai = α(−ICAN(vi, Cai, gCAN,i) − Ipump(Nai)) (4.14)

˙hpi = εhp(hp,∞(vi) − hpi)/τhp(vi) (4.15)

Ḋi = εD(D∞(Cai) − D) (4.16)

ṡi = ((1 − si)s∞(vi) − kssi)/τs (4.17)

with all functions as in Section 4.1, and D∞(x) = 1/(1 + exp((x − θD)/σD)), εD = 0.001,

θD = 0.9, and σD = −0.0006. Di is a dynamic variable with no units that represents the

desensitization of the IP3 receptors in the neuron. As Cai in the cell increases, so too does

Di until it shuts off the IP3 term in equation (4.13), so that further synaptic activity will

not increase intracellular calcium.

Di operates on a slow timescale, and therefore does not interfere with “normal” bursting

patterns, like those seen in GA∗
3 (Figure 4.8), indeed, see Figure 4.23. A quantification of

the effect of including dynamics for the desensitization of IP3 can be found in Figure 4.24.

With these new dynamics, 17 of the top twenty networks of GA(3), and 18 of the top twenty

networks of GA(2), maintained a bursting rhythm.

We note that adding the desensitization dynamics improves the quality of bursts for the

networks undergoing simulated partial blockade of the CAN current, see Figure 4.25. Indeed,

for networks that were incapable of bursts during simulated blockade of the CAN current,

adding IP3 desensitization can recover a bursting rhythm, see Figure 4.26. In every network

149



of the top twenty networks from GA(2) and GA(3), adding the desensitization dynamics

recovered a bursting rhythm during simulated partial blockade of the CAN current.

4.12 DISCUSSION

In this chapter, we consider large scale simulations of the unified model from Chapter 3.

Many works consider all-to-all connectivity architectures [5, 46, 62, 33], but this is not

necessarily an appropriate approximation for the preBötC network topology [25]. Introducing

heterogeneity in the network architecture is sure to give rise to complications in analysis [66],

and has been recently studied in model preBötC networks [24]. In fact, in their recent study,

Gaiteri and Rubin demonstrated that the architecture inspired by the data, they call it the

“Hartelt” architecture, yielded irregular bursting and high numbers of neurons out of sync

with the global rhythm, especially when compared against other well studied architectures,

such as the small-world network[24, 25]. That study did not consider the CAN current,

which is known to be important for rhythmicity in the preBötC [7, 37, 42, 43]. Even if

the architecture is suboptimal for synchronous bursting across the preBötC, we continue to

breathe in the face of this handicap; this inspires further study of the “Hartelt” architecture.

Out of the gate, we encountered a hurdle: only 12.5% of randomly generated networks

that adhere to the data generate synchronous bursts. On the other hand, heterogeneous,

data based networks that burst synchronously are easy to engineer. Such networks seem

unrealistic, so we need to seek out less obvious design principles that will promote network

bursting. To illuminate some of these design principles, we developed a genetic algorithm to

search for families of networks that have strong bursting patterns. An important feature of

the genetic algorithm is that every network it creates adheres to the data, so that we can be

confident that the networks we find are biologically sound. As we search through networks,

we score them based on two criteria: a CV score that measures the regularity of the shape of

the burst, and the amplitude score which rewards synchrony and penalizes too much activity

during the silent phase. These scores were kept separate, a network was chosen for mating

if it excelled in either one.
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The analysis of the networks found through the genetic algorithm were divided into

two classes, which we called GA(2) and GA(3). Inspired by private communication with

Mironov, we initially required the genetic algorithm to establish precisely two intercluster

connections per cluster. The 11th and final generation of this network was called GA(2). We

found that GA(2) was split between two classes of networks. Some networks optimized the

CV score by having some clusters be fully tonic, and then synchronizing the bursting of the

remaining clusters. Other networks did not have any tonic clusters, instead, all clusters were

bursting, but the long path length between clusters interfered with synchrony. Nevertheless,

occasionally the bursts overlapped, which drove the amplitude up, and the low activity

during the silent phase helped the amplitude score, but the CV score was penalized because

of the irregular bursting.

To create GA(3), we increased the number of allowed intercluster connections per cluster

to 3, and in simulated 11 generations of the genetic algorithm. The networks in GA(3)

were significantly better than those in GA(2). A viable strategy for optimizing the CV

score for GA(3) was to contain tonically active clusters with a few bursting clusters. The

networks that achieved optimal amplitude scores were capable of having every cluster burst

synchronously. These bursts were possible due to the reduced path lengths between clusters

for GA(3) relative to GA(2). Indeed, no networks of this quality were found in GA(2).

With these superior networks in hand, we described some of their interesting underlying

mechanisms.

We showed that intercluster connections were much more important in GA(3) than in

GA(2). We also discussed how intrinsically quiescent dynamics are optimal for neurons that

have intercluster connections. The reasoning for this was that intrinsically quiescent neurons

“only speak when spoken to,” and as such, send a less noisy signal than an intrinsically

tonic or intrinsically bursting neuron. The importance of intrinsically quiescent neurons for

synchronization was highlighted by their elevated presence in GA(3). Indeed, in GA(3) for a

neuron with an intercluster connection, it was more likely than pure chance that the neuron

would have intrinsically quiescent dynamics. On the other hand, intrinsically quiescent

neurons were not more prominent in GA(2), and intrinsically bursting neurons served as

neurons with intercluster connections. However, when we replaced all of the intrinsically
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bursting neurons in GA(2) and GA(3) with intrinsically quiescent neurons (keeping gCAN

unchanged), we saw little effect on most of the networks; in fact, every network in GA(3)

continued to burst, and only 4 networks from GA(2) failed to burst.

This led us to question the role of the NaP current in the network, because intrinsically

bursting neurons rely on the NaP current. When we blocked the NaP current, we found

that, in most cases, it was actually providing important excitation to the rest of the network

that allowed the CAN current to generate DB bursts.

This is reinforced by our study on the distribution of gCAN across the networks. We

found the average of gCAN in GA(2) and GA(3) was significantly different than the average

at the onset of the search. This was interesting, because the average gCAN = 2, occurring in

generation 11, provides a strong burst in response to a bursting input; we argued that this was

important for intercluster communication, as it could rekindle a weaker burst into a strong

one. However, some population of neurons still had gCAN > 3, which can actually dampen

the response of a burst. Those neurons ended up being crucial to the activity in the network;

when we lowered gCAN in those neurons so that they could not go into depolarization block,

the rhythm was destroyed. On the other hand, neurons that are incapable of depolarization

block were also important, as increasing their value of gCAN also destroyed the rhythm. This

suggested that a mechanism for synchronization lies in distributing the strength of the CAN

current across the network.

We also simulated the blockade of the CAN current and found that the rhythm need

not dissolve. To simulate the experiments more closely, we only partially blocked the CAN

current by reducing its strength in each cell to 25% of the initial strength. This allowed

some neurons to fall into Region V behavior as described in Chapter 3, and in some cases,

these neurons could drive the rhythm. On the other hand, the prolonged activation of the

CAN current may not be biophysically relevant.

To halt prolonged CAN current activation, we presented an extension of the model to

include desensitization of the IP3 receptors that enable calcium-induced calcium release.

This has been modeled by Toporikova et al., but their model focuses on intrinsic calcium

oscillations, rather than the group pacemaker mechanism developed in the Rubin-Hayes and

unified models [70, 56]. We found that our implementation of the desensitization phenomenon
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did not significantly interfere with the normal bursting mechanisms in many networks of

GA(2) and GA(3), but allowed these networks to more graciously endure blockade of the

NaP current or partial blockade of the CAN current.

Ultimately, we identified three major mechanisms underlying the networks that we found

to have the best synchronous bursting behavior. The first one is that short path lengths

between clusters promote synchronous behavior, this was also shown in recent work by

Gaiteri and Rubin[24]. Another mechanism is that intrinsically quiescent neurons promote

synchronous bursts, which was also the one of the results of Chapter 2. We concluded that

the strength of the CAN current needs to be heterogeneous across the network. Additionally,

the mean strength of the CAN current should sit at a level that amplifies synaptic input,

if that input is strong enough to invoke the CAN current. Interestingly, the persistent

sodium current interacts with the CAN current to help sustain network bursting, and control

frequency, as was discussed in Chapter 3. Finally, reminiscent of Chapter 2, we found no

significant advantage to having intrinsically bursting neurons within the network.

There are many ways to extend this work. One important direction is to study the

architecture of the networks from GA(2) and GA(3). Specifically, what are the connectivity

structures within clusters that yield good performance? We approached this problem through

a variety of graph theoretic tools. For instance, in graph theory, a motif is a collection of

three nodes together with the edges linking them [36]. In this study, neurons were not allowed

to be reciprocally coupled, or self-coupled, which greatly reduced the variety of motifs to

5 basic types: convergence (2 nodes output the same node), divergence (one node outputs

to two nodes), loop (each node outputs to exactly one other node), asymmetric (two nodes

have two outputs each, one has two inputs), or chain (one node has exactly one output

and one output, no connections between the other two nodes). We predicted that clusters

containing many loops would promote bursting, due to the recurrent excitation available to

the system. On the other hand, for large networks, chains represent correlated input and

output degrees for the nodes, which can lead to a feed-forward structure. Such structures

have been shown to have synchronizing effects [17]. We were unable to use any of these

features to distinguish good clusters from poorly performing ones. Nevertheless, there may

be second order statistics for these structures, or other ways to analyze them that we have
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not yet found, that will help identify what architectures promote burst synchrony in clusters.

We can also build on our findings for the roles of intrinsically quiescent neurons. Con-

fident that intrinsically bursting neurons can be downplayed somewhat, we could increase

the initial number of intrinsically quiescent neurons. Would later generations become fur-

ther skewed in their distribution of intrinsic dynamics? A systematic approach could be

used to generate testable hypotheses about the distribution of intrinsic dynamics in the

preBötC. Another approach is to focus on the role of intrinsically quiescent neurons within

the networks. We found that intrinsically quiescent dynamics are preferred for neurons with

intercluster connections. This could be pushed one step further by creating new networks

that have only intrinsically quiescent dynamics for such neurons. We predict that this would

improve network performance, or perhaps allow for better networks to evolve.

In the absence of evidence to the contrary, we did not scale the synaptic conductance

strength based on the number of connections. This lack of normalization means that inter-

cluster connections affect the postsynaptic neuron as strongly as the other neurons in its

cluster, which aids the synchronization of the two clusters. What networks would emerge

when the genetic algorithm allows for randomization of the strengths of the connections of

the architecture could be considered in future work.

We made two assumptions when defining the rules to create both new clusters and new

networks. Altering these assumptions may lead to very different networks. The first assump-

tion was utilized when creating new clusters; whenever possible, we connect the neuron with

the least number of remaining open connections to the neuron with the greatest number of

remaining open connections. This assumption ensures connectedness of the cluster. It also

means that there will be a short path length from any node to a node with an intercluster

connection, before directionality is considered. An alternate method is to arrange the neu-

rons within a ring; this is similar to the organization of clusters within the network. This

also ensures connectivity within the cluster, but it remains to be seen if such a paradigm will

improve the networks found within the genetic algorithm. The second assumption that we

made was that we were to focus on the role of clusters as the functional unit of the network.

In doing so, we ignored the population of neurons that exist without clusters [25]. Such

neurons almost never connect to each other, and so must connect to clusters. Therefore,
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these neurons decrease the number of intercluster connections, an already precious resource.

There is another explanation, however. Perhaps these neurons without clusters are only

rendered as such by the experimental methods used to gather the data. We predict that

such neurons were actually within a cluster that is lost in the experimental preparation.

This viewpoint may support our claim that more intercluster connections are needed signif-

icantly promote synchrony; perhaps these connections are there, just misinterpreted by the

experimental method.

Improvements can be made upon the genetic algorithm for future work. Initially thresh-

olds of 25% of pmax and 20% of pmax are required to produce useful initial generations. On

the other hand, we’d like to penalize sustained activity above 5% of pmax in later generations.

Thus, an evolving bursting scale could be deployed; each generation could face stricter defi-

nitions of bursting than its forebears. We could also find other ways to combine the scores,

or more strictly penalize activity that is out of phase with the burst. In particular, gathering

CV information on just 3 bursts may not give an accurate representation of the regularity

of the rhythm. Therefore, we could also require more bursts during the 15 second window

before assigning CV and amplitude scores. Another valid direction is to consider the IP3

desensitization mechanics of Section 4.11 from the first generation of the genetic algorithm.

Gap junctions could also be added to the unified model, as such connections may promote

intercluster synchronization [61]. Alternate scoring methods to determine what networks

are best can also be developed; for instance, a network that responds well to frequency

modulation by a tonic drive is much preferable.
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Figure 4.12: Distribution of intrinsic dynamics in GA(3). Blue dots correspond to the

percentage of the network’s neurons that are intrinsically quiescent. Black dots correspond to

the percentage of neurons that are intrinsically tonic. Green dots correspond to intrinsically

bursting neurons. Red dashed lines correspond to 25% and 37.5%.
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Figure 4.13: Distribution of intrinsic dynamics in GA(3) across the network, and across

neurons that have intercluster connections. The blue dots represent the percentage of neu-

rons in the entire network that have intrinsically quiescent dynamics. The blue line shows

the percentage of the subset of neurons with intercluster connections that have intrinsi-

cally quiescent dynamics. Red dashed lines correspond to 25% and 37.5%. Notice that for

most networks in GA(3), the neurons with intercluster connections are more likely to be

intrinsically quiescent than would be expected from the makeup of the network.

157



0 2 4 6 14 16 18 20
10

20

50

60

70

Figure 4.14: Distribution of intrinsic dynamics in GA(2) across the network, and across

neurons that have intercluster connections. The blue dots represent the percentage of neu-

rons in the entire network that have intrinsically quiescent dynamics. The blue line shows

the percentage of the subset of neurons with intercluster connections that have intrinsi-

cally quiescent dynamics. Green dots correspond to the proportion of intrinsically bursting

dynamics in the network, and the green line represents the percentage of neurons with in-

tercluster connections that also have intrinsically bursting dynamics. Similarly, black dots

are for tonic neurons in the network, and the black line is the percentage of neurons with

intercluster connections that are intrinsically tonic. Red dashed lines correspond to 25% and

37.5%. A striking difference from GA(3) is that intrinsically quiescent dynamics is under-

represented and intrinsically bursting dynamics is overrepresented when it comes to neurons

with intercluster connections.
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Figure 4.15: Relative change for the scores of the top twenty networks from GA(2) and GA(3)

when intrinsically bursting neurons were replaced with intrinsically quiescent neurons. Blue

dots correspond to GA(3), and red dots correspond to GA(2). For each neuron, the value of

gCAN was not changed. Notice that although a few scores were significantly changed, most of

the new scores are clustered around a 0% change. Impressively, for the top twenty networks

in GA(3), every network continued to burst despite this drastic change in dynamics. For

GA(2), 16 of the top twenty networks continued to burst. This indicates that intrinsically

bursting dynamics are not necessary for the bursting rhythm of the networks found through

the genetic algorithm, even though they formed 25% of the initial neuronal population.
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Figure 4.16: The same network as GA∗
3 (Figure 4.8), except every intrinsically bursting

neuron has been replaced by a quiescent neuron. Notice that this does not change the

rhythm very much; it looks like the burst frequency increased, but notice this simulation

was longer than the one for GA∗
3.
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Figure 4.17: Result of the simulation of blocking the NaP current in the top twenty networks

of GA(2) and GA(3). Only 5 networks from GA(3) continued to burst, the relative change

of the amplitude and CV score is plotted as a blue dot. From GA(2), 9 networks continued

to burst, their relative changes in scores are plotted in red. Notice that for the networks

that continue to burst, the relative changes are mostly around 0% in both scores.
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Figure 4.18: The same network as GA∗
3 (Figure 4.8), except we simulate the addition of

Riluzole to the network to block the NaP current. Above is a raster plot, with colors

corresponding to the clusters of panel II from Figure 4.8. At 5 seconds on the recorded time,

we simulate blocking the NaP current by gradually reducing gNaP,i for all neurons to 10% of

their original value. The brown, yellow, and purple clusters lose the drive that initiated their

bursts, but the remaining clusters continue to burst, albeit with a lower frequency. Below is

the population activity, and we observe a loss of amplitude and frequency for the network,

which is seen in experimental data. [15]
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Figure 4.19: The same network as from Figure 4.5, except we simulate the addition of

Riluzole to the network to block the NaP current. Above is a raster plot, with colors

corresponding to the clusters of panel II from Figure 4.5. At 5 seconds on the recorded time,

we simulate blocking the NaP current by gradually reducing gNaP,i for all neurons to 10%

of their original value. Some neurons, like those in the light blue cluster stop spiking, but

otherwise the activity is largely unchanged except for a slightly lower frequency. Below is the

population activity, and we observe a slight loss of amplitude and frequency for the network,

which is seen in experimental data. [15]
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Figure 4.20: Relative change for the scores of the top twenty networks from GA(2) and

GA(3) under incomplete blockade of the CAN current. From GA(3), 8 networks continued

to burst, we have plotted the relative change in scores for these networks as blue dots. On

the other hand, 9 networks from GA(2) continued to burst (red dots). In almost all cases,

the relative changes were significant, indicating a significant reliance on the CAN current for

bursting.
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Figure 4.21: A typical result of the incomplete blockade of the CAN current in a top twenty

network from GA(2) or GA(3). Once the CAN current is sufficiently weak, tonic activity

dominates all clusters.
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Figure 4.22: Some networks do burst when the CAN current is weakened. This network is

the same as in GA∗
3 (Figure 4.8), but with the CAN current significantly weakened. The

burst termination mechanism is the one described in Section 3.5.6 of Chapter 3.
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Figure 4.23: The same network as GA∗
3 (Figure 4.8), but now the dynamics are modeled

instead by equations (4.9)–(4.17). Note that because Di evolves on a slow timescale and

requires the CAN current to be active before taking effect, it does not have a large impact

on the dynamics here.
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Figure 4.24: Relative change in CV and amplitude score when networks from GA(2) and

GA(3) have dynamics for desensitization of IP3. Blue dots correspond to the relative change

in score for GA(3), and red dots correspond to GA(2). Notice that there is a large clus-

ter around (0,0), indicating that the additional dynamics do not significantly effect these

networks. Networks with large, tonically active clusters have their CV score changed signif-

icantly, because these clusters now burst, but at a different frequency than the rest of the

network.
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Figure 4.25: The same network as GA∗
3 (Figure 4.8), undergoing simulated partial blockade

of the CAN current as in Figure 4.22, except now with model dynamics that include IP3

desensitization. The runaway CAN current activity is halted by the IP3 desensitization.

Note the marked improvement of the synchrony of the bursts.
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Figure 4.26: The same network undergoing blockade of the CAN current as in Figure 4.21,

except now model dynamics include IP3 desensitization. Notice the emergence of bursting

due to the new dynamics, despite these harsh conditions.
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5.0 DISCUSSION

In this dissertation, we provide insight regarding the emergence of network-wide, synchronous

bursting within the preBötC. The study is spread across three chapters. Chapter 2 was

inspired by the debate regarding heterogeneity in the preBötC. In it, we evaluated the roles

of different intrinsic dynamics in small networks of three neurons. The bursting mechanism

in Chapter 2 relies on inactivation of the NaP current. Another mechanism relevant to

the preBötC was described in [56]; this mechanism involved the CAN current’s activation

through recurrent excitation. In Chapter 3 we systematically explore the interactions of the

CAN and NaP currents. We detail how bursting can emerge from a reciprocally coupled

pair of identical neurons. Finally, Chapter 4 extends the methodology of both preceding

chapters. We study the effects of heterogeneity in networks of larger than two or three

neurons. We found families of networks that sustain robust bursting rhythms by employing

a genetic algorithm designed to create networks that adhere to known connectivity data for

the preBötC.

There are three types of intrinsic dynamics that are well represented in the preBötC:

quiescence, bursting, and tonic activity; however, only 5-15% of neurons in the preBötC

are intrinsically bursting. Recently, the role of intrinsically bursting neurons has come into

question [20]. We constructed three-neuron networks to analyze the roles of the various in-

trinsic dynamics. To represent the prevalence of intrinsically tonic and intrinsically quiescent

neurons, every three-neuron network contained one of each. The third neuron could have

any of the three types of intrinsic dynamics, which allowed us to compare the effects of each

type of intrinsic dynamics on the rest of the network. We found that intrinsically bursting

neurons did not offer any significant advantage for synchronous bursting in the three-cell

network; in fact, due to their ability to return to the silent phase prematurely, they were
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often detrimental to the activity of the network. When we studied a pair of reciprocally

coupled neurons, we found that intrinsically bursting neurons were incapable of recruiting

the postsynaptic CAN current. In our simulations of larger networks, 25% of the initial

neurons were intrinsically bursting neurons. By overemphasizing their presence, we sought

to find networks that relied on such behavior. Nevertheless, most networks we found through

the genetic algorithm did not necessarily need their intrinsically bursting neurons. Indeed,

36/40 networks continued to exhibit synchronous, network-wide bursts when all intrinsically

bursting dynamics were replaced with intrinsic quiescence. Ultimately, this study concludes

that intrinsically bursting neurons may not significantly contribute to rhythmogenesis in the

preBötC.

On the other hand, we have consistently shown that intrinsically quiescent neurons play a

very important role in creating synchronous bursts across the preBötC. In our study of three-

cell networks, we discovered that it is ideal to endow the third cell with intrinsically quiescent

dynamics. The added quiescent neuron supported general bursting, but could also be selected

to yield a broad frequency of bursting rhythms through input from a tonic source. Our

work in studying the interaction of the CAN and NaP currents did not focus on intrinsically

quiescent neurons, since the reciprocally coupled pair were identical. However, we noted that

a quiescent neuron’s CAN current will become active when the CAN current for a presynaptic

neuron becomes active. In this way, intrinsically quiescent neurons can communicate a pure

signal to the rest of the network. Thus, intrinsically quiescent neurons would be the best

candidate for neurons with intercluster connections. The best networks in GA(3) have more

intrinsically quiescent neurons than the other two types. Further, intrinsically quiescent

dynamics occurred more frequently in neurons with intercluster connections than would have

happened by chance. The abundance of intrinsically quiescent neurons was an evolved trait;

for the networks used to initiate the search intrinsically quiescent neurons were approximately

37.5% of the population, but by the 11th generation, there was a statistically significant

increase to 41%. In fact, some of the best networks had 50% or more of their neurons endowed

with intrinsically quiescent dynamics. Of course, tonically active neurons are required to

provide baseline excitability for the network. Further, the best networks of GA(2) and GA(3)

relied on the NaP current for rhythmogenesis; the bursting activity was often destroyed
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when gNaP , the strength of the NaP current, was decreased in all cells. Intrinsically bursting

neurons are not needed by the networks, but a distribution of intrinsically quiescent and

tonic neurons are required for synchronous bursting. Perhaps the prevalence of intrinsically

bursting neurons can be attributed to the fact that, in gNaP parameter space, intrinsic

bursting dynamics lie between intrinsically tonic and intrinsically bursting dynamics.

The distribution of the strength of the CAN current, gCAN , was modified by the genetic

algorithm during the search. A statistically significant decrease of the mean value of gCAN

from 2.5 to 2.0 occurred in the progress to the 11th generation. We found that heterogeneity

was critical in this case; even though the average neuron was incapable of entering depo-

larization block (DB) for GA(2) and GA(3), the network rhythm failed if no neuron was

capable of entering DB. On the other hand, neurons incapable of entering DB were also vital

to the population’s bursting activity. Such a distribution of gCAN may therefore be required

for bursting in the preBötC.

Mathematically, this work primarily employed the techniques of geometric singular per-

turbation theory and bifurcation theory. Indeed, without this analysis we would very much

be in the dark about the mechanisms underlying the bursting in the large networks. The

analysis has been nontrivial. When we considered networks of three neurons, each neuron

had an associated slow variable, but the interaction was restricted to the fast subsystem.

This allowed us to consider the evolution of the trajectory in three separate phase planes that

updated when the trajectory entered the active phase corresponding to any plane. On the

other hand, when we studied the interactions of the CAN and NaP currents, the self-coupled

neuron also had three slow variables but they could not be so easily separated. Indeed, it

was through the interaction of these three slow variables that we were able to show how

the subtle modulation of the surface of homoclinic points for the fast subsystem created

alternating patterns of DB and square-wave bursts; this novel bursting pattern had been

seen in data, but not in any prior model. Even though hope of analysis through geometric

means was abandoned when we moved to larger networks, insights from the self-coupled case

continued to light the way. The NaP current played a role in promoting DB bursting through

the CAN current, as well as increasing the frequency of such bursts. This explained the loss

of population bursting, or the slowing of the frequency of bursts when it remained, when
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the NaP current was blocked. Bifurcation analysis from the self-coupled system, yielded

regimes of bistability that also became very relevant when we blocked the NaP current. The

slow-fast decomposition also yielded the interesting bursting regime, region V, which was

characterized by the saddle-node bifurcation of the fast subsystem blowing up to capture

the trajectory. The behavior of this mechanism became relevant when we partially blocked

the CAN current; it was the cause of burst termination across the network. However, the

timescale of these bursts require activation of the CAN current for a duration which may

not be biophysically relevant. We took a step toward correcting this by adding IP3 desensi-

tization to the unified model in the form of another dynamic variable. This added a fourth

slow variable to the unified model, the analysis of which is a very important future direction

for this work. Finally, prior work has established methodology for quantifying the effects of

spike asynchrony for two reciprocally coupled Butera model neurons [1]. The situation is

more complicated in our work because each neuron has 3 (or 4!) slow variables, instead of

two as was previously considered. Therefore, a nontrivial direction to pursue for future work

is the analysis of the effects of spike asynchrony in the unified model.

Another important direction for mathematical work is in the analysis of the connectivity

structures found through the genetic algorithm. We tried many different approaches to

categorize the best networks from GA(2) and GA(3). In graph theory, three-node networks

fall into one of many motifs, based on the connections between them. Initially, these seem like

an ideal way to describe clusters; loops (not self-coupling) can represent recurrent excitation

that is beneficial for CAN current activation, and chains (correlated input degree and output

degree) correspond to a feed-forward structure that can boost synchronization [17]. We found

no significant correlation between the distributions of the motifs and the performance of the

cluster.

Directionality analysis is another potentially fruitful direction. Networks are more likely

to synchronize when information flows in one direction [75]. Determining a direction in our

networks was a difficult problem because of the abundance of potential feedback for each

neuron. One must consider pairs of neurons, neither of which is postsynaptic, through any

sequences of synapses, to the other. If, eventually, they share a postsynaptic neuron, the

information they send could be competitive (one terminates the burst, so the other can
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have no effect), or cooperative (both inputs are necessary to terminate the burst). What

is the direction of such situations? What about pairs that have no interaction, such as

neurons in separate clusters, both of which have no output to the rest of the network? In

the face of these challenges, our characterizations of direction were too weak to distinguish

well-performing networks from GA(3) with poor performing networks from GA(2).

Of biological importance and mathematical interest is the study of the effects of noise

on the preBötC. The study of noise in this system ultimately leads to stochastic switching

times between the silent and active phases. Noise can be incorporated into the model in

a variety of ways, including the membrane potential and synaptic transmission rate. Are

the networks from GA(2) and GA(3) robust to noise? Noise could also provide a stochastic

method for terminating bursts, which may actually improve the population bursting of some

networks during the simulated application of Riluzole or FFA.

Also of importance is frequency modulation of the preBötC by an outside source. The

preBötC is surrounded by a ring of other neuronal networks, many of which provide inhi-

bition to the preBötC during normal respiration. Such networks have been studied in the

absence of the CAN current [63]. Given that both the CAN current and the heterogeneity in

connectivity architecture play an extremely important role in this work, the larger network

studies in [63] may need to be revisited.
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