
A MICRO POWER HARDWARE FABRIC FOR EMBEDDED

COMPUTING

by

Gayatri Mehta

B.Tech in Electronics and Communications, National Institute of

Technology, India, 1999

M.Tech in Microelectronics, Panjab University, India, 2001

M.S in Telecommunications, University of Pittsburgh, 2003

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2009

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Gayatri Mehta

It was defended on

July 20, 2009

and approved by

Alex K. Jones, Associate Professor, Department of Electrical and Computer Engineering

Jun Yang, Associate Professor, Department of Electrical and Computer Engineering

Allen Cheng, Assistant Professor, Department of Electrical and Computer Engineering

James T. Cain, Professor, Department of Electrical and Computer Engineering

Brady Hunsaker, Adjunct Professor, Department of Industrial Engineering, Google, Inc.

Dissertation Director: Alex K. Jones, Associate Professor, Department of Electrical and

Computer Engineering

ii

Copyright c© by Gayatri Mehta

2009

iii

A MICRO POWER HARDWARE FABRIC FOR EMBEDDED COMPUTING

Gayatri Mehta, PhD

University of Pittsburgh, 2009

Field Programmable Gate Arrays (FPGAs) mitigate many of the problems encountered with the

development of ASICs by offering flexibility, faster time-to-market, and amortized NRE costs,

among other benefits. While FPGAs are increasingly being used for complex computational appli-

cations such as signal and image processing, networking, and cryptology, they are far from ideal

for these tasks due to relatively high power consumption and silicon usage overheads compared to

direct ASIC implementation. A reconfigurable device that exhibits ASIC-like power characteris-

tics and FPGA-like costs and tool support is desirable to fill this void.

In this research, a parameterized, reconfigurable fabric model named as domain specific fabric

(DSF) is developed that exhibits ASIC-like power characteristics for Digital Signal Processing

(DSP) style applications. Using this model, the impact of varying different design parameters

on power and performance has been studied. Different optimization techniques like local search

and simulated annealing are used to determine the appropriate interconnect for a specific set of

applications. A design space exploration tool has been developed to automate and generate a

tailored architectural instance of the fabric.

The fabric has been synthesized on 160 nm cell-based ASIC fabrication process from OKI

and 130 nm from IBM. A detailed power-performance analysis has been completed using signal

and image processing benchmarks from the MediaBench benchmark suite and elsewhere with

comparisons to other hardware and software implementations. The optimized fabric implemented

using the 130 nm process yields energy within 3X of a direct ASIC implementation, 330X better

than a Virtex-II Pro FPGA and 2016X better than an Intel XScale processor.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Related Work . 5

1.2 Background . 8

1.2.1 SuperCISC Architecture . 8

1.2.2 Super Data Flow Graphs . 9

2.0 STATEMENT OF THE PROBLEM . 11

2.1 Domain Specific Fabric . 12

2.2 Manual design space exploration . 13

2.3 Mapping of benchmarks onto the domain specific fabric using Simulated Annealing 14

2.4 Power and performance analysis of benchmarks implemented on the fabric 14

2.5 Design space exploration tool for domain-specific fabric 17

3.0 DOMAIN SPECIFIC FABRIC . 19

4.0 MANUAL DESIGN SPACE EXPLORATION . 27

4.1 Power modeling and analysis . 27

4.2 Design space case studies . 29

4.2.1 Functional unit implementation tradeoffs 29

4.2.2 Impact of datawidth on power, performance and area of functional units . . . 30

4.2.3 Dedicated Pass-gates . 33

4.2.4 Multiplexer cardinality impact on power . 34

4.2.5 Benchmark Driven Interconnect Design . 35

4.2.5.1 Interconnect profiling . 36

v

5.0 MAPPING OF BENCHMARKS ONTO THE FABRIC USING SIMULATED AN-

NEALING . 45

5.1 Optimizing the interconnect . 49

6.0 POWER AND PERFORMANCE ANALYSIS OF THE BENCHMARKS IMPLE-

MENTED ON THE FABRIC . 52

6.1 Homogeneous and heterogeneous interconnects 53

6.2 Dedicated vertical routes . 56

6.3 Heterogeneous ALUs . 61

6.4 Combining heterogeneity and dedicated vertical routes 65

6.5 Energy results for the fabric designs implemented on 130 nm IBM ASIC standard

cells . 65

7.0 DESIGN SPACE EXPLORATION TOOL FOR DOMAIN-SPECIFIC FABRIC . . 68

8.0 CONCLUSIONS AND FUTURE WORK . 77

8.1 Conclusions . 77

8.2 Future work . 78

8.2.1 Implementing the fabric design to 90 nm and below target technologies . . . 79

8.2.2 Designing fabric architectures to map encryption algorithms 80

8.2.3 Improvements in the design space exploration tool 80

BIBLIOGRAPHY . 82

vi

LIST OF TABLES

1 Parameters of the fabric model. For the design space exploration considered here,

fixed or limited parameters are indicated in bold. 20

2 Area results for ALUs of different datawidths . 31

3 Power comparison of ALU used as a pass-gate and a dedicated pass-gate. 35

4 Runtime and solution quality for the simulated annealing algorithm. 48

5 Rows added by various mapping strategies with different interconnects. A hyphen

(-) indicates that no solution was found. 49

6 Runtime in (seconds) of various mapping strategies with different interconnects. A

star (*) indicates that no solution was found. 50

7 Fabric size (Width x Height) for mapping various benchmarks onto different inter-

connects using the heuristic mapper. 54

8 Fabric size (Width x Height) for mapping various benchmarks onto different in-

terconnects with different percentages of dedicated pass gates using the heuristic

mapper. 59

9 Number of ALUs used as pass gates for various interconnect strategies. 60

10 Increase in overall path length by addition of dedicated pass gates. 60

11 Area results for various instances. 64

vii

LIST OF FIGURES

1 Power consumption features of a Xilinx Virtex-2 3000 FPGA [Sheng et al. 2002]. . 1

2 The domain specific fabric (DSF) is comprised of Arithmetic and Logic units and a

reconfigurable interconnect. 2

3 The multiplexer-based interconnection stripe structure. 3

4 Schematic for a 5:1 multiplexer equivalent using 4:1 multiplexers 4

5 SuperCISC architecture. 8

6 Software code and DFG showing control flow in ADPCM encoder 10

7 Example data flow graph (DFG) . 15

8 Example mapping. 16

9 Design space exploration flow of our fabric model. 18

10 Domain Specific Fabric conceptual model. 19

11 VHDL code for a 4-wide homogeneous ALU stripe. 23

12 FIM file example for 5:1 style interconnect. 24

13 FIM file example for an 8 ops ALU, 8:1 interconnect with 50% dedicated pass gates. 25

14 VHDL code for a heterogeneous ALU stripe generated from the FIM file of Figure 13. 26

15 4-D plots of p, d, and s versus power for ADD and MULT operations of an ALU

and 2:1 multiplexer synthesized with standard cells for a 160nm OKI ASIC process.

Power is indicated as a color between black and white where solid white represents

the least power consumed by the device and black indicates the most power con-

sumed by the device. Measurements taken at 0.1 intervals in each dimension p, d,

and s. 28

viii

16 Power results for several functional unit implementation techniques. Results for a

standard cell 160nm OKI ASIC process. 30

17 Power consumption of ALU for different datawidths. 31

18 Delay results of ALU for different datawidths. 32

19 Comparison of Energy consumption of 32-bit ALU, 16-bit ALU, 32-bit ALU used

for 16-bit operations, 8-bit ALU and 32-bit ALU used for 8-bit operations. 33

20 Power profiles for various vertical routing structures. 34

21 Power consumption in multiplexers of different cardinalities. Results for a standard

cell 160nm OKI ASIC process. 36

22 Design flow for creating SDFGs to run on the fabric. 37

23 Mapped SDFG of an ADPCM decoder onto a particular fabric instance. 38

24 Multiplexer cardinality usage. 39

25 Connectivity using 4:1 multiplexers. 39

26 Partial SDFG that occurs frequently in image and signal processing applications. . . 40

27 Attempt to embed the graph from Figure 26 into the connectivity supplied by Fig-

ure 25. 40

28 Ways to overlap node pairs with the 4:1 connectivity. 41

29 Embedding the graph from Figure 26 with the connectivity provided by Figure 4. . . 41

30 Embedding the graph from Figure 26 into a 3-5-5:1 interconnect. 42

31 Embedding the graph from Figure 26 into a 3-5-5-3:1 interconnect. 43

32 Embedding the dense subgraph from ADPCM encoder into a 5:1 interconnect with

25% of ALUs replaced with dedicated pass-gates. 43

33 Schematic for building a 6:1 reaching multiplexer interconnect using 4:1 multiplexers. 44

34 Embedding the graph from Figure 26 into a 6:1 interconnect with 25% dedicated

pass-gates. 44

35 Mapping of a benchmark onto the fabric. 46

36 Multiplexer cardinality usage for a variety of signal and image processing applica-

tions using ASAP scheduling, Simulated Annealing, and IP. 51

37 Design flow using FIM. 52

38 Impact of interconnect cardinality on energy consumption. 55

ix

39 Potential for energy reduction by reducing interconnect cardinality. 56

40 Comparison of ALUs used for routing and for computation. 57

41 Energy trend when adding dedicated pass gates for 5:1 interconnect. 58

42 Energy trend when adding dedicated pass gates for 6:1 interconnect. 58

43 Energy trend when adding dedicated pass gates for 8:1 interconnect. 59

44 Comparison of best energy result between 0% and 50% dedicated pass gates with

heuristic mapper. 62

45 Potential best energy result using between 0% and 50% dedicated pass gates, map-

pings provided by the IP program where feasible. 63

46 Impact of reducing the number of operations of ALUs on energy. 64

47 Combining dedicated pass gates with heterogeneous functional units. 66

48 Energy comparison of fabric designs implemented on 130 nm IBM ASIC standard

cells . 67

49 Design space exploration flow for the domain specific fabric. 69

50 Results from the design space exploration tool for various architectures for thresh-

old value of the average path length increase set to 2. 72

51 ALUs used as pass gates for various fabric architectures. 73

52 Results from the design space exploration tool for various architectures for thresh-

old value of the average path length increase to be 3. 74

53 ALUs used as pass gates for various fabric architectures. 75

54 Energy comparison between the manual architectural solution and the architectural

solutions generated by the tool. 76

55 Fabric compared with other hardware and software implementations. 79

56 Fabric design with memories using segmented bus architecture. 80

x

1.0 INTRODUCTION

Rapidly increasing mask and non-recurring engineering (NRE) costs, expensive Computer Aided

Design (CAD) tools, long manufacturing times, and lack of flexibility of Application Specific

Integrated Circuits (ASICs) necessitate new solutions to produce custom logic devices on time and

on budget. Field Programmable Gate Arrays (FPGAs) address many of these problems by offering

the benefits of fast time-to-market, flexibility, relatively low CAD tooling costs, and a per part cost

that amortizes NRE costs over all users. While FPGAs are increasingly being used for complex

computational applications such as multimedia, signal processing, networking, etc., they are far

from ideal for these tasks due to high power consumption and silicon usage overheads compared

to direct ASIC implementation.

Interconnect
71%

Logic
12%

I/O
7%

Clock
10%

Figure 1: Power consumption features of a Xilinx Virtex-2 3000 FPGA [Sheng et al. 2002].

The dynamic power consumption in FPGAs has been shown to be dominated by interconnect

power [1]. For example, as shown in Figure 1, the reconfigurable interconnect in the Virtex-2

FPGA consumes more than 70% of the total power dissipated in the device. Power consumption

is exacerbated by the necessity of bit-level control for the computational and switch blocks.

1

A reconfigurable device that exhibits ASIC-like power qualities and FPGA-like costs and tool

support is desirable to fill this void. Several coarse-grained fabric architectures proposed during

the last decade have been focused on performance and area-efficient architectural techniques. Even

though power is becoming one of the critical design concerns for semiconductor industry, this issue

has not been adequately addressed in the existing coarse-grained fabric architectures.

In this dissertation research, an energy-efficient, parameterized, reconfigurable fabric model

named as domain specific fabric (DSF) was designed for Digital Signal Processing (DSP) style

applications. The DSF has a striped configuration like that of PipeRench [2, 3] but without register

files. It is comprised of coarse-grained Arithmetic and Logic Units (ALUs) and multiplexer-based

interconnect. As shown in Figure 2, ALUs are organized into rows or computational stripes within

which each functional unit operates independently. The results of these ALU operations are then

fed into interconnection stripes constructed using multiplexers. The multiplexer based interconnect

is shown in Figure 3.

ALU(1,1) ALU(1,2) ALU(1,3) ALU(1,W)

Interconnect

ALU(2,1) ALU(2,2) ALU(2,3) ALU(2,W)

Interconnect

ALU(H,1) ALU(H,2) ALU(H,3) ALU(H,W)

Figure 2: The domain specific fabric (DSF) is comprised of Arithmetic and Logic units and a

reconfigurable interconnect.

Using this model, the impact of varying different architectural design parameters on power and

performance was studied. The tradeoffs of potential energy savings from reducing the flexibility of

2

Mux1(R,1)

ALU(R,1) ALU(R,W)

Mux2(R,1)

ALU(R,0) ALU(R,W)

Mux1(R,W)

ALU(R,1) ALU(R,W)

Mux2(R,W)

ALU(R,1) ALU(R,W)

ALU(R+1,1) ALU(R+1,W)

Figure 3: The multiplexer-based interconnection stripe structure.

the architecture compared to the ease of mapping the applications onto the device were examined.

The impact of varying the cardinality (number of inputs/fanin of multiplexers) and the orientation

(overlap of multiplexers for different operands) of multiplexers was considered. The interconnect

strategies considered include baseline interconnect architectures built from fully connected rows,

8:1, and 4:1 multiplexers. A 5:1 multiplexing strategy shown in Figure 4, developed from mirroring

4:1 multiplexers connected to the functional unit input operands was also explored. In order to

further simplify the device the possibility of using a heterogeneous interconnect to reduce the

multiplexing cardinality at some locations was explored. 33% and 50% of the 5:1 interconnect

were replaced with 3:1 multiplexers, built from mirrored 2:1 multiplexers. This is an attempt to

reduce the delay and power required by the multiplexers and interconnect wires. These strategies

are called 3-5-5:1 (33% 3:1), and 3-5-5-3:1 (50% 3:1). Different optimization techniques like local

search and simulated annealing were used to determine the appropriate interconnect for a domain

of applications. Simulated Annealing was also used to map benchmarks onto the fabric.

Then the impact of heterogeneity in the functional unit design was explored by introducing

non-uniform arithmetic and logic units in a stripe. When mapping a data flow graph to a stripe-

style structure, data dependency edges often traverse multiple rows. In these fabric structures,

ALUs must often pass these values through without doing any computation. These operations in

the graph are called pass gates. The benefit of adding dedicated pass-gates to prevent functional

units from being used as routing was examined. The incorporation of dedicated pass-gates requires

3

ALU

Multiplexer

ALU
2

ALU
1

ALU
3

ALU
4

ALU
0

Multiplexer

Multiplexer

Figure 4: Schematic for a 5:1 multiplexer equivalent using 4:1 multiplexers

potential tradeoffs in the cardinality and orientation of the multiplexers in the interconnect. An-

other approach used in this research to reduce the complexity of the ALUs is to reduce the number

of operations each ALU can support and spread the total number of required operations out over

the stripe. While the ALUs within the stripe are heterogeneous, each stripe in the fabric remains

identical.

Exploring the design space manually is time consuming and may not even be feasible for the

most complex designs. A design space exploration tool was developed to automate the architec-

tural exploration case studies. The tool generates a tailored architectural instance based on the

needs of the applications to reduce power and area, and improve performance for a given suite of

applications. Super data flow graphs of the applications were examined to get information like

number of functional units, type of functional units, granularity of the functional units and in-

terconnect, and fan-in and fan-out of different functional units. Several statistics like width and

height of the fabric, utilization of the fabric in terms of number of computational elements and

pass gates, multiplexer cardinality usage, granularity of the functional units and the interconnect

were determined. The tool determines the best candidate by minimizing the multiplexer cardinal-

ity and the number of operations supported per ALU, and maximizing the number of dedicated

4

pass gates in a fabric architecture. Power and performance analysis was done by implementing a

set of core signal processing benchmarks from the MediaBench benchmark suite and some edge-

detection benchmarks from the image processing domain onto the fabric. These benchmarks are of

particular interest due to applications such as speech processing and digital communications, and

platforms such as cell phones and cameras.

1.1 RELATED WORK

Recently, the development and use of coarse-grained fabrics for computationally complex tasks

has received a lot of attention as a possible alternative to FPGAs. Coarse-grained fabrics consist of

multi-bit logic units and multi-bit datapaths that significantly reduces the routing overhead. Many

architectures have been proposed and developed both in academia and industry during the last

decade such as MATRIX [4], Garp [5], Chimaera [6], MorphoSys [7], RaPiD [8, 9], PipeRench [2,

3], CFPA [10], HFPGA [11], RAP [12], XPP [13], and the FPOA [14]. Some of these architectures

are mentioned below:

MATRIX (Multiple ALU architecture with Reconfigurable Interconnect eXperiment) [4] is

comprised of a two-dimensional array of identical 8-bit functional units with a configurable net-

work. Each functional unit consists of a 256x8-bit memory, an 8-bit ALU and a control logic.

The Garp [5], the Chimaera [6], the MorphoSys [7], and the SuperCISC [15] architectures com-

bine a reconfigurable computing device with a processor in order to do hardware acceleration.

RaPiD (Reconfigurable Pipelined Datapath) [8, 9], mainly intended for computation-intensive ap-

plications, consists of a linear array of application-specific function units. PipeRench [2, 3] has a

striped configuration and is comprised of an interconnected network of configurable logic blocks

and storage elements. It consists of a set of physical pipeline stages called stripes and each stripe

contains a set of processing elements, register files and an interconnection network.

The CFPA (Computational Field Programmable Architecture) [10] consists of Partial Add,

Subtract, and Multiply (PASM) blocks for implementing data path operations of computational

intensive applications. The PASM block operates on 4-bit operands and can be connected together

to implement adders, subtracters, and multipliers of various sizes. The HFPGA (Hierarchical Field

5

Programmable Gate Array) [11] allows the creation of coarse grain blocks built from traditional

4-input lookup tables. These coarse grain blocks have dedicated routing channels.

The Reconfigurable Algorithm Processor (RAP) from Elixent [12] is comprised of an array of

4-bit ALUs and register/buffer blocks that can be cascaded to suit different data widths. The ALUs

are arranged in a chessboard-style array, alternating with adjacent switchboxes.

Pact XPP Technologies [13] proposed the XPP architecture which has a hierarchical array

of coarse-grained adaptive computing elements called Processing Array Elements (PAEs) and a

packet-oriented communication network. An XPP core is comprised of a rectangular array of

ALU-PAEs and RAM-PAEs with I/O.

MathStar [14] proposed Field Programmable Object Array (FPOA) which consists of a 2-D

array of Silicon Objects (SOs). Silicon Objects are 16-bit configurable machines such as ALU,

Multiply-Accumulate Unit or Register File. Both Silicon Object behavior and the interconnection

among Silicon Objects are field-programmable. Rapport Incorporated has created Kilocore based

on the previously mentioned PipeRench [16].

Unlike MATRIX whose basic functional unit consists of an 8-bit ALU and a SRAM, the basic

functional unit in the DSF is a coarse-grained ALU having variable datawidth. Our approach dif-

fers from GARP and Chimaera in so much as we tailor the hardware co-processor to the application

domain. Compared to RaPiD which has small RAMs and registers to store data and intermediate

results, the DSF is purely combinational. The programmable connections in the datapath inter-

connect in the DSF are modeled as multiplexers somewhat similar to those in RaPiD. Unlike RAP

whose ALUs are arranged in a chessboard style, the DSF has a striped configuration like that of

PipeRench but without register files. Compared to the XPP architecture which is comprised of

a mixture of ALU-PAEs and RAM-PAEs, the DSF consists of only an array of ALUs with no

memory elements.

Application Specific Instruction Set Processors (ASIPs) attempt to extend normal processor

cores with custom instructions, often in reconfigurable hardware, designed to tailor the processor

to a particular domain of applications or even a single application for improved performance. One

of the earliest works on this topic is the dynamic instruction set computer (DISC) developed at

Brigham Young University [17]. DISC uses partial reconfiguration available in FPGAs to swap

in and out custom instructions based on demand of the application. Cong et al. from University

6

of California, Los Angeles described a technique to generate the instructions included in an ASIP

using pattern matching of input applications [18]. In addition to these notable examples, there has

been a lot of work in the development of ASIPs. Many are described in this survey paper [19].

However, ASIPs have transitioned into the commercial realm with the most notable example being

the Xtensa processor from Tensillica [20].

Shen et al. describe a video specific instruction set architecture including both single instruc-

tion multiple data (SIMD) and custom video specific instructions [21]. Fanucci et al. describe

a processor architecture for non-linear image processing algorithms [22]. In terms of the design

flows, Brisk et al. describes an optimal polynomial time solution to determining how many regis-

ters to include in an ASIP [23]. Finally, Dinh et al. describes a method to use resource sharing in

the custom instructions of ASIPs to reduce area and improve performance [24]. In this research,

a reconfigurable architecture, was designed which can be customized for the applications it exe-

cutes in a similar manner as ASIPs. However, we customize the reconfigurable fabric, rather than

utilizing a generic reconfigurable fabric to customize a processor.

The generic and parameterized fabric model presented in this dissertation is used to explore

the architectural design space of the reconfigurable architectures. Several methods have been pro-

posed in the past few years for design space exploration of reconfigurable architectures [25, 26, 27].

However, these methods are either too technology-dependent or too architecture-dependent. They

deal with low level of abstraction and are too specific as only a small and limited design space

can be explored around the target architecture. In order to overcome this limitation, Bossuet et al

[28] proposed a design space exploration method which can be used to cover a wide domain of re-

configurable fabrics, from fine-grained to coarse-grained fabrics, as well as heterogeneous fabrics.

They used the architectural processing use rate and the communication hierarchical distribution as

metrics to investigate a power-efficient architecture. In contrast, this research work is focused on

the study of the application needs that drive the construction of the fabric architecture. The impact

of varying different architectural design parameters on power and performance of the fabric has

been studied.

7

1.2 BACKGROUND

1.2.1 SuperCISC Architecture

The DSF was designed to operate within the super-complex instruction-set computing (Super-

CISC) embedded processor architecture summarized in Figure 5. SuperCISC is a heterogeneous,

multi-core processor architecture designed to exceed performance of traditional embedded pro-

cessors while maintaining a reduced power budget compared to low-power embedded processors.

FU FU FU FU FU

FU FU FU FU FU

FU FU FU FU FU

FU FU FU FU FU

FU FU FU FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

Shared Register File

MUX

Cust
InstrALU

MUX

Cust
InstrALU

MUX

Cust
InstrALU

Instr
RAM

Instruction
Decoder

Controller
MUX

Cust
InstrALU

FU

FU

FU

FU

FU

FU FU FU FU FU

FU FU FU FU FU

FU FU FU FU FU

FU FU FU FU FU

FU FU FU FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU FU FU FUFU FU FU FU FUFUFU FU

FU FU FU FUFU FU FU FU FUFUFU FU

FU FU FU FUFU FU FU FU FUFUFU FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FUU FUU FUU FUU

FUU FUU FUU FUU

FUU FUU FUU FUU

FUU FUU FUU FUU

FUU FUU FUU FUU

FUU

FUU

FUU

FUU

FUU

FUU FUU FUU FUUFUU

FUU FUU FUU FUUFUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU FUU

FUU FUU

FUU FUU

FUU FUU

FUU FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU FUU FUU FUUFUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUUFUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

Hardware Function Hardware Function Hardware Function

Hardware
Function

Hardware
Function

Hardware Function Hardware Function Hardware Function

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU FU

FUU FUU FUU

FUU FUU FUU

FUU FUU FUU

FUU FUU FUU

FUU FUU FUU

FUU FUU FUU FUU FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU FUU

FUU

FUU

FUU

FUU

FUU

U FUU

FUU FUU

FUU FUU

FUU FUU

FUU FUU

FUU

FUU

FUU

FUU

FUU

FUU FUU FUUFUUFUU FUU

FUU FUU FUUFUUFUU FUU

F

F

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

FUU

Figure 5: SuperCISC architecture.

The SuperCISC processor was developed with a 4-way very long instruction word (VLIW)

core with a shared register file. This shared register file is also shared with one or more application

specific hardware functions [15, 29]. The idea is to accelerate the high incidence code segments

(e.g. loops) that require large portions of the application runtime, called kernels, while also accel-

8

erating the remaining non-kernel code with the VLIW. These kernels are converted into entirely

combinational hardware functions generated automatically from the C using a design automation

flow [30].

1.2.2 Super Data Flow Graphs

Like many synthesis flows, the portion of code to be implemented in hardware is converted into

a Control Data Flow Graph (CDFG) representation. CDFG representation consists of a set of

blocks interconnected by control flow edges. The details of the creation of a CDFG representation

from a high level language can be found in [31]. These control flow edges are created by control

statements within the code such as loop boundaries or conditional statements. Using hardware

predication, these control dependencies can be converted into data dependencies and a Super Data

Flow Graph (SDFG) can be made. For example, a conditional statement, such as an if-then-else

C code segment, is implemented as a multiplexer acting as a binary switch to predicated output

datapaths. In software, an if-then-else statement is implemented as a stream of six instructions

composed of comparisons and branch statements. Software code and a data flow diagram for a 2:1

multiplexer equivalent are shown in Figure 6.

SDFGs retain a data flow structure allowing computational results to be computed in one ALU

and flow onto others in the system. The DSF was designed to mimic this computational style. Fig-

ure 2 illustrates this top-down data flow concept. The functional units that surround the processor

are the ASIC implementation of the kernels. The energy-efficient DSF designed in this research

can be used to replace the ASIC functional units.

9

If (bufferstep) {
delta = inputbuffer & 0xf;

} else {
inputbuffer = *inp++
delta = (inputbuffer >> 4) & 0xf;

}

0x0

bufferstep
0xF

*inp

0x4
inputbuffer

!= &

>>

&

2:1 MUX

0xF

delta

inputbuffer

T/1 F/0

++

inp

inp

2:1 MUX

T/1 F/0

Figure 6: Software code and DFG showing control flow in ADPCM encoder

10

2.0 STATEMENT OF THE PROBLEM

FPGAs are the most commonly used general purpose reconfigurable hardware devices. They con-

tain bit-level logic and independent bit-level routes. They are increasingly being used as ASIC

replacements for computational intensive applications such as signal processing, image process-

ing, security, networking, etc. This trend has been encouraged by an increase of heterogeneity in

the FPGA devices with multi-bit ASIC functional units supplementing the bit-level logic. Unfor-

tunately, FPGAs still have relatively poor power consumption characteristics compared to ASICs.

The dynamic power consumption in FPGAs has been shown to be dominated by interconnect

power [1]. The static power consumption of FPGAs is exacerbated by the necessity of bit-level

control of the computational and switch blocks. Because the device is designed to handle sequen-

tial logic, clock trees and storage registers are required, which also contribute to power consump-

tion. Much of this flexibility is not even needed for many classes of applications such as signal

processing, image processing, security, etc. It is also difficult to program these devices because

they use hardware description languages and have complex CAD tool flow. Thus, to create a low-

power computational device to fit the needs of a particular class of applications, it is desirable to

remove or reduce as many of these power consuming characteristics as possible. Additionally, the

device should mimic the computational style of the data flow graphs (DFGs) generated from the

compiler/synthesis engines so that applications can be easily mapped. This dissertation research

provides the following contributions to solve this problem.

The goals of this dissertation research are: (1) to design an energy-efficient domain specific

fabric by finding the best tradeoff between a reduced complexity device and the ability of design

tools to map the applications onto the device, and (2) to develop a design space exploration tool to

explore architectural tradeoffs efficiently and reach solutions quickly. In this research, a number

of design space case studies were developed. As an initial application domain for our case studies,

11

some of the core signal processing benchmarks from the MediaBench benchmark suite and some

edge-detection benchmarks from the image processing domain were selected. In order to explore

the architectural space, a parameterized, coarse-grained reconfigurable fabric model was designed.

Using this model, the impact of varying different design parameters was studied for their implica-

tions on power and performance. Different optimization techniques like local search and simulated

annealing were used to determine the appropriate interconnect for a domain of applications. A de-

sign space exploration tool was developed to automate the architectural exploration case studies.

The tool generates a tailored architectural instance based on the needs of the applications to reduce

power and area, and improve performance for a given suite of applications. The main contributions

of this dissertation are described as follows:

2.1 DOMAIN SPECIFIC FABRIC

Stripe-based hardware fabrics are designed to mimic the computational style of data flow graphs

(DFGs). The domain specific fabric (DSF) presented in this research works in a similar way, retain-

ing a data flow structure allowing computational results to be computed in one ALU and flow onto

others in the system. Each ALU in the fabric can be represented by a number of parameters such as

the number of operands, O, datawidth of each operand, DW , and the number of operations, OP .

The multiplexer cardinality, C, determines the width of each multiplexer and as a result connec-

tivity of the interconnection stripe. The fabric size is determined by the parameters specifying the

width, W , and the height, H , of the fabric. The width of the fabric determines the number of ALUs

in each computational stripe and the height determines the number of computational and intercon-

nection stripes in the fabric. The fabric model was implemented in parameterized VHDL using

the generic capability of the VHDL. As the fabric model is generic and parameterized, various

architectural instances can be generated and evaluated for power/performance. Redesigning the

fabric architecture by hand for each new configuration was impractical. To solve this problem, I

and other team members of our research group created the fabric interconnect model (FIM). The

FIM was designed as a textual representation to describe the interconnect and the layout and make-

up of the ALUs in the system. I developed the fabric generator to integrate the FIM in the design

12

flow to automate the generation of fabric architectures. The generator takes the FIM file as an input

and extracts information like the number and the type of operations supported by each ALU, the

type of the interconnect, the number of dedicated pass gates, and generates the fabric architectural

instance with the features defined in the FIM file.

2.2 MANUAL DESIGN SPACE EXPLORATION

To study the impact of various parameters of the fabric, the ALU and multiplexer elements were

studied individually. The cardinality of the multiplexers was varied from 2 to 32 in powers of 2 and

profiled for power consumption. Different architectural techniques for implementation of the ALU

were also explored. ALUs of different data widths like 8, 16, 32 were synthesized and profiled for

power and latency for several ALU operations.

The interconnect strategies considered in this research include baseline interconnect architec-

tures built from fully connected rows, 8:1, and 4:1 multiplexers. A 5:1 multiplexing strategy de-

veloped from mirroring 4:1 multiplexers connected to the functional unit input operands was also

explored. In order to further simplify the device the possibility of using a heterogeneous intercon-

nect to reduce the multiplexing cardinality at some locations was explored. 33% and 50% of the

5:1 interconnect were replaced with 3:1 multiplexers, built from mirrored 2:1 multiplexers. This

is an attempt to reduce the delay and power required by the multiplexers and interconnect wires.

These strategies are called 3-5-5:1 (33% 3:1), and 3-5-5-3:1 (50% 3:1). An ALU used as a pass

gate and a dedicated pass gate were power profiled. This is done to calculate the energy consump-

tion overhead of using an ALU for pass operations. The details of the design space exploration

studies are presented in Chapter 4 and [32, 33, 34].

13

2.3 MAPPING OF BENCHMARKS ONTO THE DOMAIN SPECIFIC FABRIC USING

SIMULATED ANNEALING

A mapping of a data flow graph onto a fabric consists of an assignment of operators in the data

flow graph to ALUs of the fabric such that the logical structure of the data flow graph is preserved

and the parameters of the fabric are respected. This mapping problem is central to the use of the

fabric, as a solution must be available in order for the fabric to be reprogrammed for a specific data

flow graph. Because of the layered nature of the fabric, the mapping is also allowed to use ALUs as

“pass gates,” which take a single input and pass the input value to one or more outputs. In general,

not all of the available ALUs and edges will be used. An example DFG and a corresponding

mapping are shown in Figure 7 and Figure 8 respectively.

One of the more complicated parts of creating a mapping is the introduction of pass gates

to fit the layered structure of the fabric. A successful approach that has been used works in two

stages. In the first stage, pass gates are introduced heuristically and operators assigned to rows so

that all edges go from one row to the next. The second stage assigns the operators to columns so

that the fabric interconnect is respected. This second stage is called Feasible Mapping with Fixed

Rows [35]. Depending on the interconnect design, there may or may not exist a feasible mapping.

In this dissertation research, we have formulated the Simulated Annealing algorithm to solve the

problem of Feasible Mapping with Fixed Rows. Simulated Annealing is a popular algorithm for

computer aided design flows targeting custom hardware (either for standard cell ASICs or FPGAs)

particularly for placement of cells. It was also used to study and optimize the interconnect for a

domain of applications.

2.4 POWER AND PERFORMANCE ANALYSIS OF BENCHMARKS IMPLEMENTED

ON THE FABRIC

In order to evaluate power and performance, a set of core signal processing benchmarks were se-

lected from the MediaBench benchmark suite including the ADPCM encoder, ADPCM decoder,

GSM channel encoder, and the MPEG II decoder. The Sobel and Laplace edge detection algo-

14

 <

mux

S

index

1

2

0

2

 <

2

mux

2

0

1

S

index

convert

 !=

1

 &

convert

1

convert

convertconvert convert

 &

convert

1

 >>

mux

2 +

1

 !=

S

convert

1

 &

1

mux

2 +

1

1

 !=

S

convert

1

 &

1

mux

2 +

1

1

 >>

2

 !=

S

convert

1

 &

1

 -

2

 +

2

1

 >>

2

mux

S

 <

2

 <

1

mux

2

12

mux

S

88

1

88

1

delta

8

2

7

2

step

1

2

1 1

3

2

4

2

0

2

2

2

0

2

1

2

1

2

0

2

2

2

0

2

valpred

11

32767

1

valpred

32767

1

S

2

-32768

2

-32768

1

Figure 7: Example data flow graph (DFG)

15

<

0index

Pass

0

Pass

index

Pass

88

&

7delta

>>

3step

Pass

4

Pass

step

Pass

2

>>

1step

Pass

1

>>

2step

Pass

valpred

Pass

32767

Pass

-32768

Pass Pass + Pass && &Pass !=Pass Mux NoOp NoOp

Pass Pass Pass Pass Pass Pass Pass != != != NoOp Pass Pass PassNoOp

NoOp Pass Pass Pass Pass Pass Mux NoOp Pass NoOp Pass NoOp Pass NoOp NoOp

NoOp NoOp Pass Pass Pass Pass + Pass NoOp Pass NoOp Pass NoOp Pass Pass NoOp

NoOp NoOp NoOp Pass Pass Pass Pass Mux NoOp NoOp NoOp NoOp Pass NoOp Pass Pass

NoOp NoOp NoOp NoOp Pass Pass Pass + Pass NoOp Pass NoOp NoOp NoOp Pass Pass

NoOp NoOp NoOp NoOp NoOp Pass Pass Pass Mux NoOp NoOp NoOp Pass NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp Pass Pass - + NoOp Pass NoOp NoOp NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp NoOp Pass Pass Mux NoOp NoOp NoOp NoOp NoOp NoOp

NoOp NoOp NoOp NoOp NoOp PassPass < < Pass NoOp NoOp NoOp NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp Pass Mux NoOp NoOp NoOp NoOp NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp NoOp Mux NoOp NoOp NoOp NoOp NoOp NoOp Pass

indexvalpred

NoOpNoOp

PassNoOp

Pass

Pass

Mux

&

8delta

PassPass

<

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp NoOp NoOp NoOp NoOp

NoOp NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOpNoOpNoOp

NoOpNoOpNoOpNoOp

NoOp NoOp

NoOp NoOp NoOp NoOp NoOp

NoOpNoOpNoOpNoOp

NoOp NoOp NoOp

NoOp NoOp NoOp

NoOp NoOp NoOp NoOp

NoOp

NoOp NoOpNoOp

NoOp

NoOp NoOp NoOp

NoOp

NoOp

NoOp NoOp NoOp

NoOp NoOp

NoOpNoOp

NoOp NoOp

NoOp NoOp

NoOpNoOp

NoOp

NoOp NoOp

Figure 8: Example mapping.

rithms were also analyzed for power and performance. Using the SuperCISC compilation flow

[30], computational kernels were extracted for these applications and converted into super data

flow graphs (SDFGs) as described in Chapter 1. These SDFGs were then mapped to the fabric

model. Several fabric architectures were designed and evaluated for power and performance for a

16

set of signal and image processing applications. Architectures with homogeneous (fully connected,

8:1, 4:1, 5:1, 6:1) and heterogeneous interconnects (3-5-5-3:1, and 3-5-5:1), dedicated pass-gates

(25%, 33%, and 50% of functional units replaced with dedicated pass-gates) were analyzed for

power and performance. The impact of reducing the number of operations supported by the ALUs

on energy was studied. The number of ALU operations were reduced from 23 to 16, 10 and 8. The

combined effect of having reduced instruction set ALU and dedicated pass gates on energy was

also examined.

2.5 DESIGN SPACE EXPLORATION TOOL FOR DOMAIN-SPECIFIC FABRIC

In this dissertation research, a design space exploration tool for domain specific reconfigurable

computing was developed to automate the design space case studies that were done manually. The

design space exploration flow for our fabric model is shown in Figure 9. It generates a tailored ar-

chitectural instance based on the needs of the applications to reduce power and area, and improve

performance for a given suite of applications. Super data flow graphs of the applications were ex-

amined to get information like number of functional units, type of functional units, granularity of

the functional units and interconnect, and fan-in and fan-out of the different functional units. Sev-

eral statistics like width and height of the fabric, utilization of the fabric in terms of the number of

computational elements and pass gates, multiplexer cardinality usage, granularity of the functional

units and the interconnect were determined. The tool determines an energy-efficient fabric for a

given domain of applications by minimizing the multiplexer cardinality, minimizing the number of

operations supported per ALU, and maximizing the number of dedicated pass gates.

The remainder of this dissertation is organized as follows: The fabric architecture and the con-

figurable parameters are described in Chapter 3. Chapter 4 describes how the fabric model is used

for architectural space exploration. Chapter 5 covers the study and optimization of the intercon-

nect for a specific domain of applications. Power and performance analysis of the benchmarks is

described in Chapter 6. Chapter 7 describes the automated design space exploration flow for the

reconfigurable fabric. Conclusions and future work are discussed in Chapter 8.

17

Design Space
Exploration

Fabric
Generator

Fabric
Instance

Heuristic
Mapper

SDFGs of
Applications

Energy
consumption

Synthesis
Standard Cell

Library

Simulate

Power/
Performance

Analysis

Domain Specific
Fabric

FIM FIM

Figure 9: Design space exploration flow of our fabric model.

18

3.0 DOMAIN SPECIFIC FABRIC

Stripe-based hardware fabrics are designed to easily map data flow graphs (DFGs) from the ap-

plication onto the device. The domain specific fabric (DSF) designed in this research works in a

similar way, retaining a data flow structure allowing computational results to be computed in one

ALU and flow onto others in the system. ALUs are organized into rows or computational stripes

within which each functional unit operates independently. The results of these ALU operations

are then fed into interconnection stripes constructed using multiplexers. Since the model does not

include registers or other internal storage, it does not permit feedback between stripes. Figure 10

illustrates this top-down data flow concept.

Figure 10: Domain Specific Fabric conceptual model.

.

The fabric model was implemented in parameterized VHDL using the generic capability of

the VHDL language. Several parameters were included in the fabric model and are listed in Table

19

Table 1: Parameters of the fabric model. For the design space exploration considered here, fixed

or limited parameters are indicated in bold.

Global Parameters

ALU Datawidth P= {8, 16, 32}

Fabric Parameters

Width of the fabric W

Height of the fabric H

Arithmetic and Logic Unit Parameters

Number of operands O= 3

Number of operations ALU −OP= {8, 10, 16, 20}

Interconnect Parameters

Multiplexer cardinality C= {2, 3*, 4, 5*, 6*, 8, 16, 32}

1. For example, each ALU in the fabric can be represented by a number of parameters such as

the number of operands, O, datawidth of each operand, DW , the number of operations, OP . The

multiplexer cardinality, C, determines the width of each multiplexer and as a result connectivity of

the interconnection stripe.

The fabric size is determined with the parameters specifying the width of the fabric, W , height

of the fabric, H , and datawidth, DW . W dictates the number of ALUs in each computational

stripe. The number of multiplexers in each interconnection stripe is a function of both W and O

as the input to each ALU operand is configurable. H determines the number of computational

and interconnection stripes in the fabric model. Thus, with the parameterizable model, a fabric

contains WxH DW -wide ALUs segregated into H computational stripes. These computational

stripes are interconnected by H − 1 stripes each containing OxW DW -wide C : 1 multiplexers.

The ALU which is the computational unit of the fabric not only performs arithmetic and logic

operations but it is also used as a pass gate and a multiplexer in the fabric grid. This multiplexer

requires a third, single bit operand to be included in the ALU. This bit specifies which of the two

input operands to propagate to the output, acting as a selector. Thus, the interconnection stripe

20

contains a third set of single bit C : 1 multiplexers for controlling this operand. This multiplex

operation is added to the ALU as a separate operator and is different from the interconnect multi-

plexers.

Figure 11 shows an example of a vhdl code for a 4-wide homogeneous ALU stripe. All ALUs

in a stripe are identical and all ALU stripes are identical. The fabric parameters are set using

generics in the vhdl code. For the initial design space case studies, the number of operations

supported by an ALU was fixed to 23. In the example code shown in Figure 11, the width of

the fabric W is 4 , the data width P is 32, and the opcode OP of an ALU is 5-bits long. These

parameters generate an ALU stripe with 4 ALUs in a stripe, where the op sel bus signal in the

stripe is 20-bits long. The appropriate offsets are generated for each ALU signal using generate

statements.

As the fabric model is generic and parameterized, various fabric architectural instances can

be generated and evaluated for power/performance for a domain of applications. Redesigning the

mapping flow and target fabric hardware by hand for each new configuration was impractical. To

solve this problem, I and other team members of our research group created the fabric interconnect

model (FIM). The FIM was designed as a textual representation to describe the interconnect and

the layout and make-up of the ALUs in the system. The FIM becomes an input file to the mapper as

well as the tool that generates a particular instance of the fabric with the appropriate interconnect.

The FIM file is written in the Extensible Markup Language (XML) [36]. XML was selected

as it allowed the FIM specification to easily evolve as new features and descriptions were re-

quired. For example, while the FIM was initially envisioned to describe the interconnect only, it

has evolved to describe dedicated pass-gates and other heterogeneous ALU structures.

Figure 12 shows an example partial FIM file that describes a 5:1-based interconnect. The

pattern repeats the interconnect pattern for alu0, whose zeroth operand can read from two units

to the left and one unit to the right, and the first operand is the mirror. The second operand is

the selection bit if the ALU is configured as a multiplexer and follows the first operand. The

ranges in the FIM can be discontinuous by supplying additional range flags. The file can contain

a heterogeneous interconnect by defining additional FTUs with different interconnect ranges. The

pattern can either repeat or can be arbitrarily customized without a repeating pattern for a fixed

size fabric. In the FIM file, the types of operations supported by each ALU can also be specified.

21

Figure 13 shows an example partial FIM file that describes a fabric having an 8 operations ALU,

8:1 interconnect and 50% dedicated pass gates.

The FIM file is used to automatically generate the VHDL for the fabric instance described by

the FIM. The FIM file shown in Figure 13 dictates the fabric generator to generate a heterogeneous

ALU stripe with ALUs and dedicated pass gates. As each ALU supports 8 operations, the fabric

generator determines that only a 3-bit opcode is needed for an ALU and a 1-bit opcode for a

dedicated pass gate as shown in the generics of Figure 14. The fabric generator also generates

a vhdl code for an ALU where ALU supports only the operations defined in the FIM file. Each

dedicated pass gate can act as a pass gate or a noop. The ALU, and pass gate pattern repeats in

the vhdl code as defined in the FIM file. The generated vhdl code has two ALUs (A) and two pass

gates (P) in the APAP pattern. The fabric instance VHDL is then synthesized using commercial

tools such as Synopsys Design Compiler to generate a netlist tied to ASIC standard cells.

22

entity stripe is
generic (W:integer:=4; P:integer:=32; OP:integer:=5);
port (
inp1,inp2 : in std_logic_vector (W*P-1 downto 0);
op_sel_bus : in std_logic_vector (W*OP-1 downto 0);
.......
dout_bus : out std_logic_vector (W*P-1 downto 0)
);
end stripe;
architecture struct of stripe is
component ALU_0
port (
op_sel : in std_logic_vector (OP-1 downto 0);
s1,s2 : in std_logic_vector (P-1 downto 0);
......
dout : out std_logic_vector (P-1 downto 0)
);
end component;
:
:
begin
I1 : for N in W-1 downto 0 generate
I2 : if N = W-1 generate
I3 : ALU_0
port map(
s1 => inp1(P-1 + N*P downto N*P),
s2 => inp2(P-1 + N*P downto N*P),
op_sel => op_sel_bus(19 downto 15),
.....
dout => dout_bus(P-1 + N*P downto N*P)
);
end generate;
:
:
end generate;
end struct;

Figure 11: VHDL code for a 4-wide homogeneous ALU stripe.

23

<rowpattern repeat="forever">
<row>
<ftupattern repeat="forever">
<FTU type="alu0">
<operand number="0">
<range left ="-2" right ="1"/>
</operand>
<operand number="1">
<range left ="-1" right ="2"/>
</operand>
<operand number="2">
<range left ="-1" right ="2"/>
</operand>
</FTU>

</ftupattern>
</row>

</rowpattern>

Figure 12: FIM file example for 5:1 style interconnect.

24

<ftudefine name="alu[0]" useic="false" noop="000" type="alu">
<op code="001" commutative="true"> + </op>
<op code="010" commutative="false"> - </op>
<op code="011" commutative="true"> * </op>
<op code="100" commutative="false"> >> </op>
<op code="101" commutative="false"> mux </op>
<op code="110" commutative="false"> pass </op>
<op code="111" order="reverse" commutative="false"> pass </op>
<op code="000" commutative="true"> noop </op>
</ftudefine>
<ftudefine name="pass" useic="false" noop="0" type="pass">
<op code="0" commutative="true"> noop </op>
<op code="1" commutative="false"> pass </op>
</ftudefine>
<rowpattern repeat="forever">
<row>
<ftupattern repeat="forever">
<FTU type="alu[0]">
<operand number="0">
<range left ="-3" right="4"/>
</operand>
<operand number="1">
<range left ="-3" right="4"/>
</operand>
<operand number="2">
<range left ="-3" right="4"/>
</operand>
</FTU>
<FTU type="pass">
<operand number="0">
<range left ="-3" right="4"/>
</operand>
</FTU>
</ftupattern>
</row>
</rowpattern>

Figure 13: FIM file example for an 8 ops ALU, 8:1 interconnect with 50% dedicated pass gates.

25

entity stripe is
generic(W:integer:=4;P:integer:=32;OP_ALU:integer:=3;OP_DP:integer:=1);
port (
inp1,inp2 : in std_logic_vector (W*P-1 downto 0);
op_sel_bus: in std_logic_vector((W*OP_ALU)+(W*OP_DP)-1 downto 0);
.....
dout_bus : out std_logic_vector (W*P-1 downto 0)
);
end stripe;
architecture struct of stripe is
component ALU_0
port (
op_sel : in std_logic_vector (OP-1 downto 0);
......
dout : out std_logic_vector (P-1 downto 0)
);
end component;
component pass_gate
port (
op_sel : in std_logic;
.......
dout : out std_logic_vector (P-1 downto 0)
);
end component;
begin
I1 : for N in W-1 downto 0 generate
I2 : if N = W-1 generate
I3 : ALU_0
port map(
s1 => inp1(P-1 + N*P downto N*P),
op_sel => op_sel_bus(7 downto 5),
......
dout => dout_bus(P-1 + N*P downto N*P)
);
end generate;
I4 : if N = W-2 generate
I5 : pass_gate
port map(
op_sel => op_sel_bus(4),
.......
dout => dout_bus(P-1 + N*P downto N*P)
);
end generate;
:
:
end generate;
end struct;

Figure 14: VHDL code for a heterogeneous ALU stripe generated from the FIM file of Figure 13.

26

4.0 MANUAL DESIGN SPACE EXPLORATION

In order to evaluate different design parameters of the fabric, the power consumption and perfor-

mance of different parameterized fabric components were studied. Because power consumption is

of particular interest the following section provides some details on how the power analysis was

done.

4.1 POWER MODELING AND ANALYSIS

Power has become one of the critical design concerns for semiconductor industry. A significant

amount of effort has been devoted to study low power hardware design techniques [37, 38, 39, 40,

41, 42, 43]. Power macromodeling is one of the most commonly used approaches to estimate power

dissipation in digital circuits. Power macromodeling when done at the Register Transfer Level

(RTL) generates a mapping between the power dissipation of the circuit and certain statistics of the

input signals applied to the circuit. Liu et al. [44] suggested that the statistics of the input signals,

like average input signal probability p, average transition density d and spatial correlation s can be

used for accurate estimation of the power dissipated in digital circuits. Using a technique similar

to [45], various functional units and interconnect multiplexers synthesized with standard cells for

a 160nm OKI ASIC process over all values of p, d and s were power profiled. This provides

a more accurate power analysis than considering switching alone. The actual input vectors for

power simulation were generated using the technique described in [44]. All power measurements

taken in this work are weighted averages across all valid p, d, and s values with 0.1 probability

increments ranging from 0.5 to 0.95. The synthesis was completed using Design Compiler and the

power was estimated using PrimePower; both of these tools are from Synopsys [46].

27

(a) Adder (b) Multiplier (c) 32-bit 2:1 Multiplexer

Figure 15: 4-D plots of p, d, and s versus power for ADD and MULT operations of an ALU and

2:1 multiplexer synthesized with standard cells for a 160nm OKI ASIC process. Power is indicated

as a color between black and white where solid white represents the least power consumed by the

device and black indicates the most power consumed by the device. Measurements taken at 0.1

intervals in each dimension p, d, and s.

The power consumption for several ALU operations and interconnect multiplexers synthesized

with standard cells for a 160nm OKI ASIC process is displayed in Figure 15 . Power is indicated

as a color between black and white where solid white represents the least power consumed by the

device and black indicates the most power consumed by the device. Measurements were taken

at 0.1 intervals in each dimension p, d, and s. The actual input vectors for power simulation

were generated using the technique described in [44]. The synthesis was completed using Design

Compiler and the power was estimated using PrimePower; both of these tools are from Synopsys

[46]. The reason for the wedge-like shape in the graphs is that several combinations of p, d, and s

are not possible. For example, if the probability of ’1’s, p, is extremely low or high, it reduces the

amount of switching, d, that is possible between vectors.

While transition density d is often considered the only metric of interest, Figure 15 provides

an indication of how it can be insufficient. The results shown in Figure 15(a) reveal that high

transition density dominates power consumption in the adder. However, the plot for the multiplier

in Figure 15(b) shows higher power consumption correlating with high spatial correlation. The

28

multiplexer in Figure 15(c) appears to be dominated by transition density, but has the most power

consumption when d is neither too high nor too low. As a result of these findings, all power

measurements taken in this work are weighted averages across all valid p, d, and s values with 0.1

probability increments ranging from 0.5 to 0.95.

4.2 DESIGN SPACE CASE STUDIES

To begin studying the impact of various parameters of the fabric, the ALU and multiplexer elements

were studied individually. Different architectural techniques for implementation of the ALU were

studied including a study of varying the width of the ALU. ALU used as a pass gate and a dedicated

pass gate were also power profiled. The cardinality of the multiplexers was varied from 2 to 32 in

powers of 2 and profiled for power consumption.

4.2.1 Functional unit implementation tradeoffs

The power consumed in the fabric is also heavily dependent on the ALU power consumption. Sev-

eral architectural techniques for implementing computations in the functional units were profiled

including a high performance ALU, a power optimized ALU and individual functional units di-

rectly. These blocks were synthesized using 160nm OKI standard cells. The results are shown in

Figure 16. The Hardware bar corresponds to the power results for the blocks independently syn-

thesized for each operation. The ALU bar corresponds to a synthesizable ALU built structurally

from the Mentor Moduleware components. This ALU was originally designed for maximizing

performance. It executes each function in parallel and selects the result using a multiplexer after

the computation completes. Finally, the Optimized ALU bar represents a low-power ALU in

which latches are used at the input to each operation to avoid unnecessary switching of the rest

of the hardware blocks when only a single operation is executed. For example, when an ADD

operation is being executed, the other components like multiplier, shifter, etc. are latched to the

last computation completed by that hardware block. Thus, power profiling provides an insight into

the impact of power on the functional units. The power consumed by the performance optimized

29

0

0.1

0.2

0.3

0.4

0.5

0.6

Add

Mult
ipl

y
Sub And Or

Nor Xor Not Ls
l

Ls
r

Rsl
Rsa Rsr

Cmp_
eq

Cmp_
gt

Cmp_
gte

Cmp_
lt

Cmp_
lte

Cmp_
ne

ALU operation

P
o

w
er

 (
m

W
)

Hardware ALU Optimized ALU

Figure 16: Power results for several functional unit implementation techniques. Results for a

standard cell 160nm OKI ASIC process.

ALU is most likely dominated by the multiplier power, making it a poor power choice in the fab-

ric. While, the additional latches may create an area increase, the delay increase is added to all

paths in parallel, thus creating a minimal delay overhead. The optimized ALUs are used as the

computational elements of the fabric.

4.2.2 Impact of datawidth on power, performance and area of functional units

While many hardware fabric projects agree that coarse-grained functional units are important for

performance improvement of reconfigurable devices, the actual granularity varies across projects.

The datawidth of each functional unit has a significant impact on the power dissipation of the

fabric. Thus, 8, 16 and 32-bit ALUs, which are candidates to be used as computational elements,

have been power profiled for several ALU operations. A parameterized model of an ALU was

written in VHDL and ALUs of different datawidths was synthesized and profiled for latency and

power. The area results are shown in Table II. The area is reduced to more than half when datawidth

30

is decreased from 32 to 16 bits. The same trend is seen when datawidth is reduced from 16 to 8

bits. This area change is likely due to the multiplier, which is the most complex functional unit

included in the ALU.

Table 2: Area results for ALUs of different datawidths

Design Unit Area(µm2)

32-bit ALU 18492.2

16-bit ALU 7787.63

8-bit ALU 3670.5

Figure 17: Power consumption of ALU for different datawidths.

The results shown in Figure 17 reveal that as datawidth decreases by half, power dissipation

also decreases by nearly 50% for all cases excepting multiplication. Because combinational mul-

tiplication has a stacking complexity it grows faster than other functional units, and the power

reflects that decreasing to about 30% of the 32-bit version. There is a similar power trend between

31

Figure 18: Delay results of ALU for different datawidths.

16-bit and 8-bit operations. Figure 18 describes the latency of each bit-width. While as expected,

the latency is lowest for the 8-bit ALU operations the change is only a nominal decrease over a

16-bit ALU. Even compared to a 32-bit ALU, the delay improvement is less than 50% at the cost

of 3/4 of the bandwidth for the computation.

The energy results of ALUs of different datawidths are shown in Figure 19. This chart in-

cludes the power consumption of using a 32-bit wide ALU to compute both 16-bit and 8-bit values

in comparison to computing them directly on a 16-bit or an 8-bit wide ALU. This was done to

calculate the energy consumption overhead of a 32-bit ALU used for lower bit width operations

Consider the dedicated width case (from left to right, the first, second, and fourth bars of each

operation), as datawidth decreases by half, energy dissipation also decreases almost by half for

most of the ALU operations except multiplier. In the case of multiplier, the energy is reduced

to almost one-fourth when datawidth decreases by half. However, the overhead in using a 32-bit

ALU for 16-bit operations as compared to a 16-bit ALU is 2.5X on the average. The same trend

32

0

10

20

30

40

50

60

70

80

90

100

Add

Mult
ipl

y
Sub And Or

Nor Xor Not Ls
l

Ls
r

Rsa Rsl Rsr

Cmp_
eq

Cmp_
gt

Cmp_
gte

Cmp_
lt

Cmp_
lte

Cmp_
ne

ALU operation

E
n

er
g

y
(p

J)

32-bit ALU 16-bit ALU 32-bit ALU (16-bit) 8-bit ALU 32-bit ALU (8-bit)

Figure 19: Comparison of Energy consumption of 32-bit ALU, 16-bit ALU, 32-bit ALU used for

16-bit operations, 8-bit ALU and 32-bit ALU used for 8-bit operations.

is observed if we compare the energy results of a 32-bit ALU used for 8-bit operations and a 8-

bit ALU. However, when the multiplier is removed from consideration, the overheads are much

lower. While, it appears that the overhead actually decreases for some of the logic operations,

this is unlikely, and the difference between the two calculations does not exceed the estimated

inaccuracy from using the PrimePower simulation over a SPICE level simulation. We used 32-bit

ALUs in our domain-specific fabric.

4.2.3 Dedicated Pass-gates

When mapping a DFG to a stripe-style structure, data dependency edges often traverse multiple

rows. In these fabrics, ALUs must often pass these values through without doing any computation.

We call these operations in the graph, pass-gates. However, these ALUs used as pass-gates are

certainly an area-inefficient and possibly also power-inefficient method for vertical routing. The

power distribution using average input signal probability, p, average transition density, d, and

33

spatial correlation s for two vertical routing options shown in Figure 20 was studied. The first

option was to use an ALU as a pass-gate shown in Figure 20(a) and the second is a simple routing

structure that could only pass a value from the left operand, the right operand, or act as a NOOP is

shown in Figure 20(b).

(a) ALU used as pass-gate. (b) Dedicated pass-gate.

Figure 20: Power profiles for various vertical routing structures.

The power trends indicate a similar power profile between the two vertical routing implemen-

tations, relating to the probabilities that produce the minimum and maximum power, as would be

expected. However, the power scales are very different between the two structures as shown in

Table 3, using an ALU as a pass-gate requires over an order of magnitude more power than a ded-

icated pass gate implementation. As a result, if the structure of the benchmarks requires vertical

routes there is an opportunity to reduce power consumption by using these simpler dedicated pass

gates.

4.2.4 Multiplexer cardinality impact on power

The power required in the interconnect depends heavily on the cardinality of the multiplexers in

the interconnection stripe. The power impact of the cardinality of the multiplexer is shown by

the trends from Figure 21. As shown in the figure, the maximum, minimum and average powers

consumed in the multiplexers increases linearly with the cardinality. While not shown explicitly,

34

Table 3: Power comparison of ALU used as a pass-gate and a dedicated pass-gate.

ALU as pass-gate Dedicated pass-gate

Minimum Power 0.78 mW 0.03 mW

Maximum Power 6.46 mW 0.28 mW

Average Power 4.02 mW 0.17 mW

reducing the cardinality also reduces the delay of the multiplexer. Thus, reducing the multiplexer

complexity is desirable if allowed by the needs of the applications of interest.

4.2.5 Benchmark Driven Interconnect Design

In order to study the system level interconnect, a set of core signal processing benchmarks were

examined. Algorithms of interest were selected from different categories such as voice compres-

sion, image and video coding and wireless communications. The software codes examined were

taken from the MediaBench benchmark suite. SDFGs were created for these benchmark circuits

and mapped to the fabric model for verification and analysis. Mapping was done both by hand

and through an automated mapping flow. The number of operands of an ALU and the number of

operations of each ALU are fixed in this particular analysis. The design flow of the fabric model

is shown in Figure 22.

Figure 23 shows an example mapping for the ADPCM decoder kernel SDFG from the auto-

mated mapping flow that is part of the flow in Figure 22. In this example, the circular blocks

represent input and output values at the top and bottom, respectively. The rectangular blocks rep-

resent ALU resources. Multiplexers to allow routing are not shown in this representation, however,

the actual routes are shown. The grayed boxes represent ALUs that are idle for this mapping. This

representation illuminates a property of the SDFGs, they tend to be triangular requiring many ALU

resources near the top and relatively few near the bottom.

35

Mux Power Trends

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

5.00E-05

0 5 10 15 20 25 30 35

Mux Cardinality

MAX

AVERAGE

MIN

Figure 21: Power consumption in multiplexers of different cardinalities. Results for a standard cell

160nm OKI ASIC process.

4.2.5.1 Interconnect profiling To examine the need for complex multiplexers, a mapping as-

suming full interconnection stripe connectivity was performed without any particular bias to reduce

lateral distance between computations in successive rows. The multiplexers were then categorized

based on whether they would have been satisfied with a smaller multiplexer from the group of

3:1, 5:1, 9:1, 17:1 and 33:1 multiplexers. As it can be seen in Figure 24, the connections satisfied

with 3:1 multiplexers is greater than 45% in almost all the applications, and the need for higher

cardinality multiplexers like 17:1 and 33:1 is minimal.

Due to the trend of power consumption versus multiplexer cardinality shown in Figure 21 in

this Chapter, it is desirable to utilize 2:1 multiplexers wherever possible. It is also well known that

low cardinality multiplexers reduce delay, allowing improved performance. Based on the trends

from Figure 24, it appears that a fabric with mostly 2:1 multiplexers and possibly a handful of

larger multiplexers would be a good architectural choice.

While 2:1 multiplexers are desirable for these reasons, 4:1 multiplexers are more practical for

two reasons, first hardware predication requires three operands, which for our architecture makes

36

Code
Profiling

HW/SW
Partitioning

CDFG
representation

Application
SDFG

representation
Fabric

Mapper

Fabric
Configuration

Figure 22: Design flow for creating SDFGs to run on the fabric.

2:1 multiplexers insufficient and automated mapping based on 2:1 multiplexers is too limiting to

achieve a solution without adding a lot of extra pass gates in the design. It is for these reasons a

uniform fabric architecture was considered, which limits connectivity from four locations in the

prior stripe to the current functional unit. The fabric model with 4:1 multiplexers was considered

that allows connections from above, one column left, and two columns right of the prior stripe to

the current stripe as shown in Figure 25. However, depending on the needs of the applications to

be implemented, this regular structure may not be appropriate.

While many structures can be successfully mapped using this interconnection strategy, this

configuration is somewhat limited, as it provides only a 4-way fanout from one node to other

nodes in the circuit. Consider a subgraph that appears frequently in signal and image processing

applications as shown in Figure 26. Between the first and second rows, this graph consists of three

pairs of nodes (A,B), (C,D), and (E,F) that communicate with three other pairs of nodes (G,H),

(I,J), and (K,L) in the subsequent stage. However, between the second and third stage nodes G-H

are grouped into three different pairs (G,I), (H,K), and (J,L) which communicate with three new

pairs in the third stage (M,N), (O,P), and (Q,R). While separately, either of these rows could be

implemented with the configuration in Figure 25, the edges connecting H with P and J with R are

not possible in this configuration as shown in Figure 27.

The graph in Figure 26 is not a subgraph of the graph created by the connectivity in the fabric

supplied by the 4:1 multiplexers as oriented in Figure 25. Two edges represented by dashed lines

are not available in this structure. This is not solved by permuting the nodes. Figure 28 presents all

four orientations possible for two pairs of nodes with dependency edges under this connectivity.

Unfortunately, none of these configurations can be overlapped with another pair of nodes, which

37

<

0index

Pass

0

Pass

index

Pass

88

&

8delta

&

7delta

>>

3step

Pass

4

Pass

step

Pass

2

>>

1step

Pass

1

>>

2step

Pass

valpred

Pass

32767

Pass

-32768

Mux Pass & Pass + Pass & Pass & Pass != Pass Pass Pass NoOp NoOp

< Pass Pass != Pass Pass != Pass != Pass Pass Pass Pass Pass NoOp NoOp

Mux Mux Pass Pass Pass Pass Pass Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp

+ Pass Pass Pass Pass Pass Pass Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp

Mux Pass Pass Pass Pass Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

+ Pass Pass Pass Pass Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

Mux Pass Pass Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

- + Pass Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

Mux Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

< < Pass Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

Mux Pass Pass Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

Mux Pass NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp NoOp

indexvalpred

Figure 23: Mapped SDFG of an ADPCM decoder onto a particular fabric instance.

shows that permutation of the nodes is not possible. To effectively map this structure, a 5:1 multi-

plexer is required. However, a true 5:1 multiplexer would require an additional control bit and an

additional level of logic, which is undesirable from a power and performance perspective.

But there is a way to make a 5:1 multiplexer using two 4:1 multiplexers. The connectivity

shown in Figure 4 allows an emulation of a 5:1 multiplexer without increasing the architectural

38

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gsm row col enc dec sob lap

Multiplexer Cardinality

3:1 mux 5:1 mux 9:1 mux 17:1 mux 33:1 mux

Figure 24: Multiplexer cardinality usage.

ALU

Multiplexer

ALU
2

ALU
1

ALU
3

ALU
4

ALU
0

Figure 25: Connectivity using 4:1 multiplexers.

complexity beyond 4:1 multiplexers. One 4:1 multiplexer is the mirror image of the other one. In

this case, the three internal ALUs, 1-3, are shared on both operand’s multiplexers. The outermost

39

A B C D E F

G H I J K L

M N O P Q R

Figure 26: Partial SDFG that occurs frequently in image and signal processing applications.

A B C D E F

G H I J K L

M N O P Q R

Figure 27: Attempt to embed the graph from Figure 26 into the connectivity supplied by Figure 25.

ALUs, 1 and 5, are only available on the left and right operand multiplexer, respectively. As shown

in Figure 29, it is relatively easy to embed the graph from Figure 26 into the connectivity provided

by Figure 4. Based on the study of several applications graphs, the fabric with 5:1 interconnect

multiplexers has been found to provide a good baseline architecture to relatively easily map the

applications on to the fabric. The biggest limitation to this approach is that for non-commutative

operations such as subtract, there is some restriction as to which operand may be retrieved from the

far left or far right. But the limitation of non-commutative operation mapping can be overcome in

the architecture of the fabric by providing a separate operation that executes the operation right to

40

A B

G H

(a) Standard ori-
entation.

A B

G H

(b) Top node shifted
right.

A B

G H

(c) Top two nodes
shifted right.

A B

G H

(d) Bottom node shifted
left.

Figure 28: Ways to overlap node pairs with the 4:1 connectivity.

A B C D E F

G H I J K L

M N O P Q R

Figure 29: Embedding the graph from Figure 26 with the connectivity provided by Figure 4.

left in addition to left to right. Thus, the ALUs of the fabric can be extended to have capability of

computing non-commutative operations.It may be possible to further optimize a 5:1 interconnect

and still provide the necessary interconnection to implement the appropriate graphs. For example,

if some number of these 5:1 multiplexers could be replaced with 3:1 multiplexers, built from 2:1

multiplexers in a similar manner as Figure 4 power and delay could be reduced if no or minimal

41

overhead is increased due to the mapping.

A B C D E F

G H I J K L

M N O P Q R

Figure 30: Embedding the graph from Figure 26 into a 3-5-5:1 interconnect.

Consider the fabric structure in which one-third of the 5:1 multiplexers are replaced with 3:1

multiplexers. Consider the structure where there are two 5:1 multiplexers adjacent, followed by a

3:1 multiplexer and this interconnect pattern is repeated throughout the fabric. This interconnect is

named as the 3-5-5:1 interconnect. The graph from Figure 26 can relatively easily be mapped into

this structure as shown in Figure 30.

Consider the fabric structure where half of the 5:1 multiplexers are replaced with 3:1 multi-

plexers and a 3-5-5-3:1 interconnect pattern has been repeated throughout the fabric. The graph

embedded in an interconnect with one-half 3:1 multiplexers is shown in Figure 31. The fabric

model is very generic in a sense that different parameters of the interconnect multiplexers can be

set up in the model to generate fabric instances with different interconnect patterns.

Then a dense subgraph from the ADPCM encoder benchmark that contains several pass-gates

in addition to the multiplexers and other logic has been tried to map onto the fabric. In this case,

dedicated pass-gates in the architecture can be heavily utilized by the mapped graph. Figure 32

shows a mapping of the subgraph onto a 5:1 interconnect where 25% of the ALUs have been

replaced with fixed, dedicated pass-gates equally spaced within each stripe. In this representation,

fixed pass-gates are represented by squares, and ALUs configured to be pass-gates are circles with

a P inside. The multiplexers (trapezoids) do not imply fixed selectors, just ALUs configured for

selection. As shown in the figure, the graph can be mapped without increasing the number of

rows. 8 of the 13 total pass-gates can be implemented by the fixed dedicated pass-gates as shown

in the figure. By leveraging the fact that a pass-gate is unary, the multiplexers can be rearranged to

42

A B C D E F

G I H J K L

M N O P Q R

Figure 31: Embedding the graph from Figure 26 into a 3-5-5-3:1 interconnect.

mimic an 8:1 interconnect for the dedicated pass-gates. This can increase the number of dedicated

pass-gates used to 9 of 13, or 69%.

>> + P - <= P P

P + - <= | P

>>

Figure 32: Embedding the dense subgraph from ADPCM encoder into a 5:1 interconnect with 25%

of ALUs replaced with dedicated pass-gates.

However, the introduction of these dedicated pass-gates can make it more difficult to map dense

subgraphs. The addition of even a single pass-gate within the partial butterfly from Figure 26 makes

it impossible to be mapped with a 5:1 interconnect. Thus, we have created a 6:1 multiplexer as

shown in Figure 33. The 6:1 interconnect allows the right operand to be read from a maximum

distance of three to the right. This allows the graph to be mapped in a system where 25% of the

ALUs are replaced with dedicated pass-gates. The solution is based on Figure 31 and is shown in

Figure 34. By utilizing this extra distance to read from the right, the edges (D,I) and (O,K) can be

43

accommodated, which is not possible with the 5:1-based interconnect.

ALU

Multiplexer

ALU
2

ALU
1

ALU
3

ALU
4

ALU
0

Multiplexer

Multiplexer

ALU
5

Figure 33: Schematic for building a 6:1 reaching multiplexer interconnect using 4:1 multiplexers.

A B C D E F

G I H J K L

M N O P Q R

Figure 34: Embedding the graph from Figure 26 into a 6:1 interconnect with 25% dedicated pass-

gates.

44

5.0 MAPPING OF BENCHMARKS ONTO THE FABRIC USING SIMULATED

ANNEALING

A mapping of a data flow graph onto a fabric consists of an assignment of operators in the data

flow graph to ALUs of the fabric such that the logical structure of the data flow graph is preserved

and the parameters of the fabric are respected. This mapping problem is central to the use of the

fabric, as a solution must be available in order for the fabric to be reprogrammed for a specific data

flow graph.

Because of the layered nature of the fabric, the mapping is also allowed to use ALUs as “pass

gates,” which take a single input and pass the input value to one or more outputs. In general, not

all of the available ALUs and edges will be used. An example mapping is shown Figure 35.

One of the more complicated parts of creating a mapping is the introduction of pass gates to fit

the layered structure of the fabric. A successful approach that has been used works in two stages.

In the first stage, pass gates are introduced heuristically and operators assigned to rows so that all

edges go from one row to the next. The second stage assigns the operators to columns so that the

fabric interconnect is respected. This second stage is called Feasible Mapping with Fixed Rows

[35, 47]. Depending on the interconnect design, there may or may not exist a feasible mapping. In

this dissertation research, Simulated Annealing was used to solve the problem of Feasible Mapping

with Fixed Rows. Simulated Annealing is a popular algorithm for computer aided design flows

targeting custom hardware (either for standard cell ASICs or FPGAs) particularly for placement of

cells. It was also used to study and optimize the interconnect for a specific domain of applications.

The Simulated Annealing formulation uses a graded cost function based on the multiplexing

cardinality required to satisfy the edges. Lower costs have been assigned to the nearby edges

and the cost gets higher for the distant edges. In this case, the starting solution is the assignment

of the operators to the ALUs of the fabric according to ASAP scheduling. The neighborhood

45

<

0index

Pass

0

Pass

index

Pass

88

&

7delta

>>

3step

Pass

4

Pass

step

Pass

2

>>

1step

Pass

1

>>

2step

Pass

valpred

Pass

32767

Pass

-32768

Pass Pass + Pass && &Pass !=Pass Mux NoOp NoOp

Pass Pass Pass Pass Pass Pass Pass != != != NoOp Pass Pass PassNoOp

NoOp Pass Pass Pass Pass Pass Mux NoOp Pass NoOp Pass NoOp Pass NoOp NoOp

NoOp NoOp Pass Pass Pass Pass + Pass NoOp Pass NoOp Pass NoOp Pass Pass NoOp

NoOp NoOp NoOp Pass Pass Pass Pass Mux NoOp NoOp NoOp NoOp Pass NoOp Pass Pass

NoOp NoOp NoOp NoOp Pass Pass Pass + Pass NoOp Pass NoOp NoOp NoOp Pass Pass

NoOp NoOp NoOp NoOp NoOp Pass Pass Pass Mux NoOp NoOp NoOp Pass NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp Pass Pass - + NoOp Pass NoOp NoOp NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp NoOp Pass Pass Mux NoOp NoOp NoOp NoOp NoOp NoOp

NoOp NoOp NoOp NoOp NoOp PassPass < < Pass NoOp NoOp NoOp NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp Pass Mux NoOp NoOp NoOp NoOp NoOp NoOp Pass

NoOp NoOp NoOp NoOp NoOp NoOp Mux NoOp NoOp NoOp NoOp NoOp NoOp Pass

indexvalpred

NoOpNoOp

PassNoOp

Pass

Pass

Mux

&

8delta

PassPass

<

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp

NoOp NoOp NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOp NoOp NoOp NoOp NoOp

NoOp NoOp

NoOp

NoOp

NoOp

NoOp

NoOp

NoOpNoOpNoOp

NoOpNoOpNoOpNoOp

NoOp NoOp

NoOp NoOp NoOp NoOp NoOp

NoOpNoOpNoOpNoOp

NoOp NoOp NoOp

NoOp NoOp NoOp

NoOp NoOp NoOp NoOp

NoOp

NoOp NoOpNoOp

NoOp

NoOp NoOp NoOp

NoOp

NoOp

NoOp NoOp NoOp

NoOp NoOp

NoOpNoOp

NoOp NoOp

NoOp NoOp

NoOpNoOp

NoOp

NoOp NoOp

Figure 35: Mapping of a benchmark onto the fabric.

for the model consists of two possible moves: (1) a node is moved from one column location to

an unoccupied column within the same row or (2) two nodes within the same row are selected

and swapped. A candidate move is selected uniformly at random from the choices above. The

simulated annealing algorithm accepts all moves that decrease the overall cost of the system and

46

accepts moves that increase the overall cost with the probability described in Equation 5.1 based

on the Boltzmann equation from thermodynamics. kB is the Boltzmann constant and T is the

temperature in the system.

P (∆C) = e
−∆C
kBT (5.1)

The exponential cooling schedule shown in Equation 5.2 was used to decrease the probability

that bad moves will be accepted as the algorithm proceeds. α is a multiplier in the range between

0 and 1. We selected α = 0.9 based on initial experimental results.

Tnew = αTold (5.2)

The above formulation is able to solve six of the instances, particularly for the cardinality 8

interconnect shown in Table 4. However, the results for the cardinality 5 interconnect were not as

successful: the approach failed to find feasible solutions for three of the instances.

The possibility of a larger neighborhood that would allow moving a node up or down one row

was considered. Unfortunately, due to the data dependencies in the flow graphs such moves could

affect the positions of many other nodes in the graph—including some nodes that are many rows

away. This dependency makes such a neighborhood harder to implement and slower to solve, and

initial tests did not find that it provided significant benefits.

Post-processing: In most cases, upon completion of the Simulated Annealing run there are still

several violated edges. In this case, a local search algorithm was run with the same neighborhood

of moves from Simulated Annealing to ensure that a local optimum has been discovered.

The Simulated Annealing algorithm was implemented in C++ and run on a hyper-threaded

Pentium 4 operating at 3.2 GHz with 4G of memory and running Linux. The results for map-

ping size and algorithm runtime are shown in Table 4 for the Feasible Mapping with Fixed Rows

problem. For the cardinality 5 interconnect, four of the benchmarks are able to be mapped. For

the cardinality 8 interconnect, six of the benchmarks are possible to be mapped. The algorithm

takes between a half minute to two and half minutes to execute, primarily depending on the size

of the graph to be mapped. There is no difference in the algorithm when using cardinality 5 or

cardinality 8 interconnect; the same graded cost function is used in either case. Therefore, a single

47

Table 4: Runtime and solution quality for the simulated annealing algorithm.

Cardinality 5 Cardinality 8

size runtime (s) size runtime (s)

sobel 10x9 25 10x9 25

laplace 15x8 27 15x8 27

gsm 16x18 125 16x18 125

adpcm decoder 16x13 82 16x13 82

adpcm encoder - 160 20x16 160

idctcol - 165 - 165

idctrow - 120 17x10 120

run tests both interconnects. This explains why the run times are identical for the two intercon-

nects. Simulated Annealing was compared with other mapping strategies like mixed-integer linear

programming (MILP) [48], constraint programming (CP) [35], and a custom heuristic (H) [47].

MILP is a common modeling and solution technique for combinatorial optimization. Constraint

programming is a modeling and solution methodology based on the ideas of intelligent enumera-

tion and reduction of the search space through careful analysis of constraints. The greedy heuristic

mapper follows a top-down mapping approach to provide a feasible mapping for a given bench-

mark. Both the cardinality 5 interconnect and the cardinality 8 interconnect (which is easier to

map) were tested for all the mapping approaches. Table 5 gives the number of extra rows needed

by each method. Table 6 shows the run times for each approach. The Simulated Annealing ap-

proach is promising for those instances that it can solve, but it cannot solve several of the instances.

The MILP approach is valuable in showing that a mapping is possible using the minimum number

of rows in each case. However, the run times for the MILP are quite long compared to the other

approaches, as may be expected. In practice, the MILP is likely to be a good choice if minimizing

the number of rows is of high importance and using several hours of processing time is acceptable.

For larger instances, however, it is likely that even several hours will not be sufficient for the cur-

rent MILP formulation. Both the constraint program and the heuristic algorithm offer reasonably

48

Table 5: Rows added by various mapping strategies with different interconnects. A hyphen (-)

indicates that no solution was found.

Cardinality 5 Cardinality 8

MILP SA CP Heuristic MILP SA CP Heuristic

sobel 0 0 0 0 0 0 0 0

laplace 0 0 1 0 0 0 1 0

gsm 0 0 0 1 0 0 0 0

adpcm decoder 0 0 0 0 0 0 0 0

adpcm encoder 0 - 7 2 0 0 0 0

idctcol 0 - 0 7 0 - 0 0

idctrow 0 - 1 3 0 0 0 0

good performance in terms of number of rows added, though each has one instance where many

rows are added. The heuristic algorithm has by far the best execution times, with none over 10 sec-

onds. Each mapping technique has its own advantages and disadvantages. There exists a tradeoff

between the quality of the solution and the execution time.

5.1 OPTIMIZING THE INTERCONNECT

To examine the needs of target applications, the representative signal and image processing bench-

marks were mapped to a fabric with fully interconnected stripes (e.g. any ALU from a previous

stripe could be connected to any ALU in the current stripe). At first, no particular emphasis was

made to optimize the locations within the fabric to reduce wire length, this routing requirement is

shown as the left most bar for each benchmark in Figure 36. This non-optimized mapping shows

that over 60% of the multiplexers required are only 3:1.

Using a mixed-integer linear programming (MILP) formulation that provided an increasing

penalty to using 5:1, 9:1, and 17:1 routes or higher, the bar in Figure 36 marked (IP) was created.

49

Table 6: Runtime in (seconds) of various mapping strategies with different interconnects. A star

(*) indicates that no solution was found.

Cardinality 5 Cardinality 8

MILP SA CP Heuristic MILP SA CP Heuristic

sobel 23 25 1 1 37 25 < 1 < 1

laplace 101 27 47 1 13 27 27 < 1

gsm 3104 125 2 3 514 125 1 < 1

adpcm decoder 2916 82 2 4 155 82 1 < 1

adpcm encoder 2555 160* 277 10 306 160 1 4

idctcol 2825 165* 7 8 894 165* 10 1

idctrow 1175 120* 36 6 460 120 1 < 1

This technique was run either until completion of an optimal solution or for 48 hours, whichever

was less, so not all solutions are optimal. The IP technique eliminates the need for nearly all mul-

tiplexers greater than 5:1 for some of the benchmarks. Then the results obtained from Simulated

Annealing, the bar in Figure 36 marked (SA) were compared with the results obtained from MILP.

The Simulated Annealing technique eliminates the need for nearly all the multiplexers greater than

9:1 for five of the benchmarks.

50

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Benchmark
3:1 mux 5:1 mux 9:1 mux 17:1 mux 33:1 mux

Figure 36: Multiplexer cardinality usage for a variety of signal and image processing applications

using ASAP scheduling, Simulated Annealing, and IP.

51

6.0 POWER AND PERFORMANCE ANALYSIS OF THE BENCHMARKS

IMPLEMENTED ON THE FABRIC

In order to evaluate power and performance, a set of core signal processing benchmarks were se-

lected from MediaBench benchmark suite including the ADPCM encoder, ADPCM decoder, GSM

channel encoder, and the MPEG II decoder. We added the Sobel and Laplace edge detection algo-

rithms to the benchmark suite. The design flow overview using the FIM is shown in Figure 37. The

SuperCISC
CompilerC code Mapper

Fabric GeneratorFIM ASIC
Synthesis

SDFG

VHDL Power
Estimation

Simulation

Netlist

Mapping

VCD

Validation

Power

Figure 37: Design flow using FIM.

SuperCISC Compiler [30, 29] takes C code input, which is compiled and converted into an SDFG.

The SDFG is then mapped into a configuration for the fabric described by the FIM. The FIM is

also used to automatically generate the VHDL for the fabric instance described by the FIM. The

fabric instance VHDL is synthesized using commercial tools such as Synopsys Design Compiler

to generate a netlist tied to ASIC standard cells. This netlist and the mapping of the application

are then fed into ModelSim where correctness can be checked. The mapping is communicated to

the simulator to program the fabric device in the form of ModelSim do files. The input data to the

power simulations was generated by the benchmark datasets supplied with the Mediabench suite or

52

from sample photograph images in the case of the edge detection algorithms. A value change file

(VCD) output from the simulation of the design netlist can then be used to determine the power

consumed in the design. Synopsys PrimePower and PrimeTime tools are used to estimate the

power consumption of the device.

The core components of the fabric model were implemented in parameterized VHDL using the

generic capability of the VHDL language [33]. However, much of the fabric is generated using

scripts that read from the FIM and generate the properly customized synthesizable VHDL.

The mapping heuristic follows a top-down approach to provide a feasible mapping for any

given benchmark. Nodes in the SDFG are initially assigned a row in the fabric in a similar fash-

ion to an as soon as possible schedule in high-level synthesis. During this step, pass-gates are

introduced in the SDFG for edges that traverse multiple rows. During the second phase, starting

with the top row, nodes in each row are completely placed using a limited look-ahead of two rows.

Nodes are assigned specific column positions within each row based on the locations of their par-

ent nodes, children nodes, slack, etc. When a node cannot be mapped within the row it is assigned

(e.g. it violates the interconnect of the fabric) it is postponed until a later row and pass-gates may

be introduced to propagate the values to the next row. After each row is mapped, the mapper will

not modify the mapping of any portion of that row.

While the limited information available to the mapper does not often allow it to produce op-

timal or minimum-size mappings, its runtime is typically a few seconds or less. The FIM is in-

corporated into the mapping flow as a set of restrictions on what interconnect lines are available,

the capabilities of particular functional units (e.g. dedicated vertical routes versus fully capable

ALUs) in the system, etc. Additional details on this mapping flow can be found in [35, 49, 50, 47].

6.1 HOMOGENEOUS AND HETEROGENEOUS INTERCONNECTS

The fabric hardware was created using 8:1 and 4:1 multiplexers. We also targeted our 6:1, 5:1,

3-5-5:1, and 3-5-5-3:1 multiplexer-based interconnects as described in Chapter 5 and include a

fully connected interconnect for comparison. Fully connected refers to the case where each ALU

53

Table 7: Fabric size (Width x Height) for mapping various benchmarks onto different interconnects

using the heuristic mapper.

adpcm enc adpcm dec idctrow idctcol gsm sobel laplace

Fully Connected 17x16 16x13 17x10 20x12 14x18 10x9 15x8

8:1 17x16 16x13 17x10 20x12 14x18 10x9 15x8

6:1 17x18 16x14 17x13 20x18 14x18 10x9 15x9

5:1 20x18 16x13 17x13 20x19 20x19 10x9 20x8

4:1 20x20 16x15 17x18 20x28 20x21 10x9 20x8

3-5-5:1 20x22 16x15 20x17 20x24 14x19 20x10 20x9

3-5-5-3:1 17x30 20x21 17x19 20x29 20x22 20x10 20x9

in a row can read from every ALU in the preceding row. Table 7 provides a summary of the area

requirements of the benchmarks mapped to the fabric using the different multiplexing cardinalities

and using the previously mentioned mapping strategies. Once all benchmarks were mapped to

a fabric using a particular interconnect, the fabric size was fixed to the smallest size that could

fit all seven benchmarks. The number of rows required by a benchmark implementation has a

strong correlation to both the power and performance of the benchmark implementation. Energy

is the product of the power and time of the benchmark implementation and as such provides a

summary of the impact of the mapping on both factors. Figure 38 shows a comparison of the

energy consumption of mapping the benchmark suite onto various interconnect cardinalities.

As the sizes of the mappings for both fully connected and 8:1 interconnections are identical,

the reduction the difference in energy consumption demonstrates the impact that the interconnect

complexity has on the power and performance of the fabric. Some other items that jump out are

that 4:1 and 3-5-5-3:1 interconnects perform very poorly compared to most of the alternatives.

The remainder of the interconnects do not show a clear winner, however, 6:1, 5:1, and 3-5-5:1 do

outperform 8:1, though not by a large margin.

To highlight the potential impact of the interconnect cardinality, we developed an 0-1 IP for-

mulation that attempts to discover an optimal mapping (e.g. no additional rows) for the benchmark

54

0

500

1000

1500

2000

2500

3000

3500

4000

4500

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace average

Benchmark

Fabric (32:1) 20x18 Fabric (8:1) 20x18 Fabric (6:1) 20x19 Fabric (5:1)
20x28 Fabric(4:1) 20x24 Fabric (355:1) 20x30 Fabric (3553:1)

Figure 38: Impact of interconnect cardinality on energy consumption.

if possible. Figure 39 shows the energy results for mappings from this technique. In many cases

the IP program can prove that the mapping is infeasible, and in these cases the heuristic solution

is used as the best available mapping. All IP solutions were feasible for fully connected, 8:1, 6:1,

and 5:1. Three of the benchmarks; idctrow, idctcol, and adpcm enc; were not feasible for 4:1 or

3-5-5:1. Sobel in addition to these other three were not feasible for 3-5-5-3:1. The results show a

clear advantage to the 5:1 and 6:1 interconnects with slightly better results for 5:1. Unfortunately,

these results cannot be obtained without improvement to the heuristic algorithm and running times

for the IP mapping make the technique impractical.

55

0

500

1000

1500

2000

2500

3000

3500

4000

4500

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace average

Benchmark

Fabric (32:1) 20x18 Fabric (8:1) 20x18 Fabric (6:1) 20x18 Fabric (5:1)
20x28 Fabric(4:1) 20x24 Fabric (355:1) 20x30 Fabric (3553:1)

Figure 39: Potential for energy reduction by reducing interconnect cardinality.

6.2 DEDICATED VERTICAL ROUTES

Figure 40 provides a comparison of ALUs used in the graph, showing that more than 50% of

the ALUs in the fabric will be used for routing by configuring the ALU as a pass-gate. Thus,

some percentage of the ALUs in the fabric can be replaced with dedicated pass-gates to reduce

complexity of the device. The top performers were chosen from Section 6.1, 5:1, 6:1, and 8:1

and varied the percentage of ALUs replaced with dedicated pass gates at levels of 25% (1 out of

4), 33% (1 out of 3), and 50% (1 out of 2) dedicated pass gates. While the study in Section 4.2.3

pointed to 25% stretching the 5:1 and 6:1 interconnect to its limits, the 8:1 interconnect has enough

56

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace

Benchmark

Utilization of CEs (%) Utilization of Pass gates (%)

Figure 40: Comparison of ALUs used for routing and for computation.

flexibility and the benchmarks contain enough need for pass gates as seen by Figure 40 that 33%

and 50% may be reasonable, particularly for sparse subgraphs.

Figure 41, Figure 42, and Figure 43 show energy results for varying each of the percentage

of dedicated pass gates for the three chosen interconnects. The trend for 5:1 shown in Figure 41

shows that including dedicated pass gates does not help the overall energy improvement. In fact,

when using 25% dedicated pass gates, the energy increases. When the level of dedicated pass gates

is 50%, this tradeoff returns to a similar energy compared to no dedicated pass gates. The trend

for 6:1 shown in Figure 42 is similar to 5:1 except that it returns to relatively even only at 33%

dedicated pass gates. The trend for 8:1 is the best overall, dropping below the initial level with

25% dedicated pass gates and dropping further with 33%. The change between 33% and 50% is

nominal. The fabric size requirements for including dedicated pass gates are shown in Table 8. The

width number includes full ALUs and dedicated pass gates, so a width of 20 with 25% dedicated

57

0

500

1000

1500

2000

2500

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace average

Benchmark

20x19 Fabric (5:1)(No DP) 20x20 Fabric (5:1)(25% DP)
20x19 Fabric (5:1)(33% DP) 25x20 Fabric (5:1)(50% DP)

Figure 41: Energy trend when adding dedicated pass gates for 5:1 interconnect.

0

500

1000

1500

2000

2500

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace average

Benchmark

20x18 Fabric (6:1)(No DP) 20x22 Fabric (6:1)(25% DP)
23x19 Fabric (6:1)(33% DP) 25x20 Fabric (6:1)(50% DP)

Figure 42: Energy trend when adding dedicated pass gates for 6:1 interconnect.

58

0

200

400

600

800

1000

1200

1400

1600

1800

2000

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace average

Benchmark

20x18 Fabric (8:1)(No DP) 20x18 Fabric (8:1)(25% DP)
20x18 Fabric (8:1)(33% DP) 25x18 Fabric (8:1)(50% DP)

Figure 43: Energy trend when adding dedicated pass gates for 8:1 interconnect.

Table 8: Fabric size (Width x Height) for mapping various benchmarks onto different interconnects

with different percentages of dedicated pass gates using the heuristic mapper.

adpcm enc adpcm dec idct row idct col gsm sobel laplace
5:1 (0% DP) 20x18 16x13 20x8 17x13 20x19 20x19 10x9
5:1 (25% DP) 17x19 16x14 20x9 18x15 20x20 14x18 10x9
5:1 (33% DP) 20x18 20x14 19x10 20x14 20x19 20x18 11x9
5:1 (50% DP) 20x18 16x14 25x11 21x14 21x20 14x19 20x13
6:1 (0% DP) 17x18 16x14 15x9 17x13 20x18 14x18 10x9
6:1 (25% DP) 17x22 16x14 17x11 17x16 20x22 20x22 10x9
6:1 (33% DP) 20x18 16x13 20x9 20x15 23x19 14x19 11x9
6:1 (50% DP) 22x20 20x14 25x10 23x14 22x19 20x18 20x10
8:1 (0% DP) 17x16 16x13 15x8 17x10 20x12 14x18 10x9
8:1 (25% DP) 17x16 16x13 17x8 17x10 20x12 14x18 10x9
8:1 (33% DP) 17x16 16x13 19x8 17x11 20x12 14x18 11x9
8:1 (50% DP) 17x16 16x13 25x8 21x10 21x12 14x18 15x9

pass gates contains 15 full ALUs and 5 dedicated pass gates. While the energy consumed in the

fabric is impacted by the height of the benchmark implementation, this does not tell the whole

59

story and in these results sizes of the implementations do not always correlate well to the energy

consumed in the fabric. One reason is that the size can not change while the length of non-critical

paths can change a great deal. The energy consumed by each implementation is affected by the

Table 9: Number of ALUs used as pass gates for various interconnect strategies.

adpcm enc adpcm dec idct row idct col gsm sobel laplace
5:1 (0% DP) 170 85 103 165 138 20 20
5:1 (25% DP) 110 56 86 104 80 8 15
5:1 (33% DP) 77 22 43 77 55 4 7
5:1 (50% DP) 57 28 36 50 48 5 3
6:1 (0% DP) 152 91 104 160 131 19 24
6:1 (25% DP) 143 50 74 70 84 7 12
6:1 (33% DP) 85 44 42 68 66 9 6
6:1 (50% DP) 44 28 47 20 43 3 8
8:1 (0% DP) 137 81 58 88 129 19 17
8:1 (25% DP) 78 44 22 56 82 6 6
8:1 (33% DP) 57 30 16 40 63 2 1
8:1 (50% DP) 26 11 8 12 32 1 2

number of ALUs used as vertical routes and the change in the overall path length (i.e. length of

all output paths). We ran a two-way analysis of variance (ANOVA) on the energy with the number

of ALUs used as pass gates and path length as factors to determine the correlation. Using an

alpha value of 0.05, both factors significantly influenced the energy (p < 0.01 and p = 0.031,

respectively).

Table 10: Increase in overall path length by addition of dedicated pass gates.

adpcm enc adpcm dec idct row idct col gsm sobel laplace
5:1 (25% DP) 5 1 9 8 -1 0 2
5:1 (33% DP) 1 -1 9 1 -1 0 2
5:1 (50% DP) -1 1 -4 9 1 2 3
6:1 (25% DP) 8 -1 31 18 0 0 2
6:1 (33% DP) -1 -2 13 7 1 0 0
6:1 (50% DP) 3 0 16 1 0 1 1
8:1 (25% DP) 1 0 2 10 0 0 0
8:1 (33% DP) 1 0 4 9 0 0 1
8:1 (50% DP) 1 0 12 14 0 0 2

Reducing the number of ALUs used as pass gates reduces energy. We assume that the amount

of energy consumed by a dedicated pass gate is negligible compared to an ALU configured to be

60

a pass gate. Increasing the path length increases the energy. Table 9 contains the impact of adding

dedicated pass gates on the number of ALUs used as pass gates and Table 10 shows the increase

in path length over the 0% dedicated pass gate case for each interconnect cardinality.

As dedicated pass gates are added, the numbers of ALUs used as pass gates decreases for

each cardinality. However, for 6:1 and 5:1 cardinalities where the energy initially increases when

adding 25% and 33% dedicated pass gates, we can also see spikes in the path length that overcome

the savings due to reducing the number of pass gates. For both cases it requires 50% dedicated

pass gates for the path length increase to finally be mitigated by the savings in ALUs used as pass

gates. However, the path length was not as dramatically increased when dedicated pass gates were

included for 8:1, which is why the energy decreased overall.

To study the overall impact of adding dedicated pass gates, Figure 44 presents the best energy

result using the heuristic mapper and dedicated pass gates for each interconnection cardinality. For

example, where 8:1 uses 33% or 50% dedicated pass gates, the more restrictive interconnects such

as 4:1 or 3-5-5:1 use no dedicated pass gates because of the inherent difficulty in mapping.

The results clearly indicate that the 8:1 based interconnects provide the best result as it is

the lowest power for each of the benchmarks. However, the results for 6:1, 5:1, and 3-5-5:1 all

seem to generate a similar result with each providing a better energy for different benchmarks and

averaging out to be similar. When exploring the potential for energy reduction with the IP program,

the energy savings possible from the various interconnect strategies becomes distinguishable as

shown in Figure 45. 8:1 still provides the best result, however, 5:1 becomes the second choice.

Based on the results from Figure 43, 8:1 interconnect with 33% dedicated pass gates was selected

as the best energy performing fabric solution of those that were tested.

6.3 HETEROGENEOUS ALUS

Another approach to reduce the complexity of the ALUs is to reduce the number of operations each

can support and spread the total number of required operations out over the stripe. Each stripe re-

mains identical. However, when creating a heterogeneous stripe, it is important to distinguish what

operations to include, and how often to include each operation. By analyzing representative appli-

61

0

500

1000

1500

2000

2500

adpcm
enc

adpcm
dec

idct row idct col gsm sobel laplace average

Benchmark

Fabric (8:1) Fabric (6:1) Fabric (5:1) Fabric (4:1)
Fabric (355:1) Fabric (3553:1)

Figure 44: Comparison of best energy result between 0% and 50% dedicated pass gates with

heuristic mapper.

cations, it is possible to extrapolate the needs of similar applications and create a heterogeneous

fabric capable of supporting applications in the same computation class with minimal additional

overheads. Each stripe is capable of supporting a fixed number of total operations. This total is

determined by the number of ALUs in the row and the number of operations each ALU can sup-

port. A number of the total operations are consumed by NOOP and pass gate operations, which

are supported by every ALU. The remaining operations’ frequencies are calculated by first sum-

ming the frequencies of each operation across all of the benchmarks. An operation’s distribution

is made across the ALUs in the row based on its percentage of the total nodes. Thus, a frequently

62

0

500

1000

1500

2000

2500

adpcm
enc

adpcm
dec

idct row idct col gsm sobel laplace average

Benchmark

Fabric (8:1) Fabric (6:1) Fabric (5:1) Fabric (4:1) Fabric (355:1) Fabric (3553:1)

Figure 45: Potential best energy result using between 0% and 50% dedicated pass gates, mappings

provided by the IP program where feasible.

used operation such as addition may take up a large percentage of the total possible operations in

a row. However, the actual number of addition operations included in the fabric would be much

lower. This is due to the restriction of allowing each ALU to contain only one instance of a given

operation. This restriction ensures that any given operation can only occur w times in a given row,

where w is the width of the fabric. By removing these extraneous operations, additional slots are

made available to remaining operations. The impact of reducing the number of operations sup-

ported by the ALUs in the fabric on energy was studied. Figure 46 shows the energy results for

varying the number of operations supported by the ALUs from 23 to 16, 10, and 8. As the number

63

0

200

400

600

800

1000

1200

1400

1600

1800

2000

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace average

8:1 (20x18) 16ops-8 (20x18) 10ops-8 (20x18) 8ops-8 (26x22)

Figure 46: Impact of reducing the number of operations of ALUs on energy.

Table 11: Area results for various instances.

Fabric instances Area (µm2) Area with 33% DP
23 ops 8362981 6057959
16 ops 4940466 5194891
10 ops 4190375 4463338
8 ops 5145491 no mapping

of operations reduces from 23 to 16, there is a significant decrease in energy consumption but as

we go from 16 to 10, the decrease is nominal. As it can be seen that the fabric with 10-operations

per ALU is the best candidate as it has the lowest energy for all the benchmarks. However, when

64

we further reduced the number of operations to 8, this makes the mapping problem more difficult

and we had to use a larger fabric to fit all of the benchmarks. This leads to increase in the energy

consumption in several of the cases.

6.4 COMBINING HETEROGENEITY AND DEDICATED VERTICAL ROUTES

Based on our study where we varied the percentage of ALUs replaced with dedicated pass gates at

levels of 25%, 33%, and 50%, the results clearly indicate that 8:1 interconnect with 33% dedicated

pass gates requires the minimal energy. We selected our top performer from Section 6.3 and stud-

ied the combined effect of using dedicated vertical routes and reducing the number of operations

supported by the ALUs. We tried the 16-operations ALU and 10-operations ALU with 8:1 inter-

connect cardinality and 33% dedicated pass gates. The 10-operations ALU with 33% dedicated

pass gates configuration consumes the least energy among all the candidates considered here for

all the benchmarks. The area results for different fabric instances is shown in Table 11. As it can

be seen from the area results, the fabric with 10-operations and 8:1 interconnect consumes the least

area.

6.5 ENERGY RESULTS FOR THE FABRIC DESIGNS IMPLEMENTED ON 130 NM

IBM ASIC STANDARD CELLS

We selected the following fabric architectures based on our design space case studies when we

moved to the new target technology: homogeneous ALUs with 8:1 interconnect, homogeneous

ALUs with 8:1 interconnect and 33 % dedicated pass gates, 10 operations per ALU with 8:1

interconnect, and 10 operations per ALU with 8:1 interconnect and 33 % dedicated pass gates.

The fabric VHDL automatically generated using the FIM file, was synthesized into an IBM cell-

based ASIC design with a feature size of 0.13 µm using Synopsys Design Compiler. The post-

synthesis design was simulated in Mentor Graphics ModelSim to calculate the delay of each design

and these simulations were used as stimulus to the Synopsys PrimeTime PX tool to estimate the

65

0

200

400

600

800

1000

1200

1400

1600

1800

2000

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace average

8:1 (20x18) 8:1-88P (20x18) 10ops-8 (20x18)
16ops-88P (29x18) 10ops-88P (29x18)

Figure 47: Combining dedicated pass gates with heterogeneous functional units.

power consumption of the device. Energy was calculated by computing the product of the power

and delay of the design. Figure 48 shows energy comparison of homogeneous fabric with 8:1

multiplexer, homogeneous fabric with 8:1 multiplexer and 33% dedicated pass gates, 10 operations

per ALU with 8:1 multiplexer and 10 operations per ALU with 8:1 multiplexer and 33 % dedicated

pass gates. The fabric with 10 ops per ALU and 33% dedicated pass gates consumes the least

energy and is the best candidate from our design space case studies.

66

0

50

100

150

200

250

300

350

400

450

500

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace dwt average

Benchmark

homo-mux8-d homo-88P-d
10ops-mux8-d 10ops-88P-d

Figure 48: Energy comparison of fabric designs implemented on 130 nm IBM ASIC standard cells

67

7.0 DESIGN SPACE EXPLORATION TOOL FOR DOMAIN-SPECIFIC FABRIC

Exploring the design space manually would be very time consuming and may not even be feasible

for large system-on-chip designs. Design space exploration tools can allow application developers

to explore architectural tradeoffs efficiently and reach solutions quickly. To make these design

exploration tools work, however, it is important to consider the applications of interest. When

reconfigurable computing is considered as a design option, the application domain (a suite of

applications to be run on the device) is often well known in advance. A general purpose design may

make poor power / performance tradeoffs for that application domain, while a design fine-tuned for

a single application may be inflexible. However, a reconfigurable design for an application domain

can provide some of the flexibility of general purpose reconfigurable computing along with some

of the optimality that can result from application specific design. This task is somewhat more

challenging than application specific design, however, because the needs of different applications

must be carefully balanced to achieve the targeted design goals.

In this dissertation research, a number of design space case studies were developed . As an

initial application domain for our case studies, some of the core signal processing benchmarks

from the MediaBench benchmark suite and some edge-detection benchmarks from the image pro-

cessing domain were selected. In order to explore the architectural space, an energy-efficient,

parameterized, coarse-grained reconfigurable fabric model was designed. Using this model, the

impact of varying different design parameters onto physical characteristics of the device was stud-

ied. A design space exploration tool was developed to automate the design space case studies that

were done manually. The tool generates a tailored architectural instance based on the needs of the

applications to reduce power and area, and improve performance for a given suite of applications.

The design space exploration flow is similar to the Application Specific Instruction Set Proces-

sor (ASIP) design automation flows. ASIP flows read in one or more programs into the tool and

68

attempt to identify custom instructions which when added to the processor instruction set archi-

tecture could improve an execution metric such as power or performance. Similarly, the design

space exploration flow shown in Figure 49 takes information from the applications and produces

statistics from different instances of the fabric model. These statistics are used to make decisions

and evaluate tradeoffs to converge on a fabric model tailored to the applications it executes.

Design Space
Exploration

Fabric
Generator

Fabric
Instance

Heuristic
Mapper

SDFGs of
Applications

Energy
consumption

Synthesis
Standard Cell

Library

Simulate

Power/
Performance

Analysis

Domain Specific
Fabric

FIM FIM

Figure 49: Design space exploration flow for the domain specific fabric.

Using the SuperCISC compilation flow [30], computational kernels were extracted for these

signal and image processing applications and converted into super data flow graphs (SDFGs),

which were used as the benchmark circuits. SDFGs were mapped onto the fabric with fully in-

terconnected stripes (e.g any ALU from a previous stripe can be connected to any ALU in the

current stripe) using as soon as possible (ASAP) schdeduling. SDFGs were then examined to get

information about number of functional units, type of functional units, granularity of the functional

units and the interconnect, and fan-in and fan-out of the functional units. Several statistics like size

of the fabric, utilization of the fabric in terms of the number of computational elements and pass

69

gates, multiplexer cardinality usage, granularity of the functional units and the interconnect were

determined. The tool generates a fabric instance model (FIM) described in detail in Chapter 3.

The FIM is a textual representation to describe the interconnect and the layout and make-up of the

ALUs in the device. The SDFGs are then mapped to the fabric architecture described by the FIM

using heuristic mapper. Even though the heuristic mapper is not the best mapping algorithm but it

was chosen because of its fast execution time.

Since energy results are generated from extremely time consuming power simulations using

computer-aided design tools, conducting power simulations for each possible fabric architecture in

the design space would be impractical. From our manual design space case studies, we examined

that the two factors that affect the energy consumption of the device are: (1) the increase in the

total path length of the mapped application onto the device, and (2) the number of ALUs used as

pass-gates. The total path length in the mapped design is the sum of the number of rows traversed

from each input to each output. The number of ALUs used as pass-gates is useful in judging

success in cases where the fabric contains dedicated pass-gates. Dedicated pass-gates are more

energy efficient than complex functional units at passing a value (more than an order of magnitude

described in Chapter 4). Thus, when using dedicated-pass gates, the fewer ALUs are used as pass-

gates. To demonstrate that these factors influence the energy consumption of the device, we ran a

two-way analysis of variance (ANOVA) on the energy with the number of ALUs used as pass-gates

and path length as factors to determine the correlation. Using an alpha value of 0.05, both factors

significantly influenced the energy (p < 0.01 and p = 0.031, respectively) described in Chapter 6.

We used the average path length increase (average pli) as a metric in our design space exploration

algorithm. We used only one metric in our algorithm for simplicity. This allows us to explore a

wide range of architectures in reasonable amount of time without doing power simulations for each

case. We performed power simulations only on the final fabric architecture picked by the tool to

compare its energy consumption with the one picked by our manual design space case studies.

ASAP provides ideal and total path length for a suite of benchmarks. Based on our manual

design space case studies, the threshold for average pli was selected for a set of fabric architectures

examined here for a suite of applications. The design goal here is to determine an energy efficient

fabric for a given domain of applications by minimizing the multiplexer cardinality, minimizing

the number of operations supported per ALU, and maximizing the number of dedicated pass gates.

70

The design space exploration algorithm is described in Algorithm 1:

Algorithm 1 Design Space Exploration
1: while average pli < threshold do

2: Reduce multiplexer cardinality (C) to next power of 2n+1 where n = 5, 4, ..., 1.

3: Map applications to the fabric using heuristic mapper.

4: Determine average path length increase.

5: end while

6: Revert to last C where average pli ¡ threshold.

7: while average pli < threshold do

8: Increase the number of dedicated pass gates (D) where D = 0%, 25%, 33%, 50%, ..., 75%.

9: Map applications to the fabric using heuristic mapper.

10: Determine average path length increase.

11: end while

12: Revert to last percentage of D where average pli ¡ threshold.

13: while average pli < threshold do

14: Reduce the number of operations supported by each ALU (O) by one.

15: Map applications to the fabric using heuristic mapper.

16: Determine average path length increase.

17: end while

18: Revert to last number of ALU operations O where average pli ¡ threshold.

Figure 50 shows the results obtained from the design space exploration tool for various fabric

architectures. Based on our manual design space case studies, the threshold value for the aver-

age path length increase was set to 2. As the multiplexer cardinality was reduced from 33:1 to

32:1,17:1,16:1, and 8:1, the average path increase stayed at zero. As it reached 5:1 interconnect,

the average path length increase went up to 9.4 because we were restricting the connectivity of

each ALU and making the mapping problem more difficult. Since it exceeded the threshold limit

for a 5:1 interconnect, the tool picked an 8:1 interconnect and then started changing the percentage

of dedicated pass gates from 0% to 25%, 33%, 50% for that interconnect. Now it picked an 8:1

interconnect with 33% dedicated pass gates based on the average path length increase and then it

started reducing the number of operations supported per ALU for that architecture. As it started

71

0

1

2

3

4

5

6

7

8

9

10

33:1
No

DPs-
homo
ALUs

32:1
No

DPs-
homo
ALUs

17:1
No

DPs-
homo
ALUs

16:1
No

DPs-
homo
ALUs

9:1 No
DPs-
homo
ALUs

8:1 No
DPs-
homo
ALUs

5:1 No
DPs-
homo
ALUs

8:1
25%
DPs-
homo
ALUs

8:1
33%
DPs-
homo
ALUs

8:1
50%
DPs-
homo
ALUs

8:1
33%
DPs-
14ops

8:1
33%
DPs-
13ops

8:1
33%
DPs-
12ops

8:1
33%
DPs-
11ops

8:1
33%
DPs-
10ops

Architecture

Figure 50: Results from the design space exploration tool for various architectures for threshold

value of the average path length increase set to 2.

reducing the number of ALU operations, the mapping problem became even more challenging

because each ALU could support only certain number and types of operations. It picked an 8:1

interconnect with 33% dedicated pass gates and 11 operations per ALU as the best candidate that

could meet the target design goals. The manual design space exploration case studies picked the

fabric with 10 operations per ALU, 8:1 interconnect with 33% dedicated pass gates as the best

candidate in terms of energy consumption. Figure 51 shows the number of ALUs used as pass

gates for various architectures explored for threshold value of average pli to be 2. As the number

of dedicated pass gates increases, lesser number of ALUs are used as pass gates.

72

0

100

200

300

400

500

600

700

800

900

33:1 No
DPs-
homo
ALUs

32:1 No
DPs-
homo
ALUs

17:1 No
DPs-
homo
ALUs

16:1 No
DPs-
homo
ALUs

9:1 No
DPs-
homo
ALUs

8:1 No
DPs-
homo
ALUs

5:1 No
DPs-
homo
ALUs

8:1
25%
DPs-
homo
ALUs

8:1
33%
DPs-
homo
ALUs

8:1
50%
DPs-
homo
ALUs

8:1
33%
DPs-
14ops

8:1
33%
DPs-
13ops

8:1
33%
DPs-
12ops

8:1
33%
DPs-
11ops

8:1
33%
DPs-
10ops

Architecture

Figure 51: ALUs used as pass gates for various fabric architectures.

Figure 52 shows the results obtained from the design space exploration tool for various fabric

architectures for a threshold value for the average path length increase to be 3. The initial design

space exploration was same as explained in the above experiment. After the tool picked an 8:1

interconnect, it started changing the percentage of dedicated pass gates from 0% to 25%, 33%,

50%, 66% for that interconnect. Now it picked an 8:1 interconnect with 50% dedicated pass gates

based on the average path length increase and then it started reducing the number of operations

per ALU for that architecture. As it started reducing the number of operations supported by each

ALU, this made the mapping problem even more difficult because each ALU can support only

certain number and types of operations. It picked an 8:1 interconnect with 50% dedicated pass

73

0

1

2

3

4

5

6

7

8

9

10

33:1
No

DPs-
homo
ALUs

32:1
No

DPs-
homo
ALUs

17:1
No

DPs-
homo
ALUs

16:1
No

DPs-
homo
ALUs

9:1 No
DPs-
homo
ALUs

8:1 No
DPs-
homo
ALUs

5:1 No
DPs-
homo
ALUs

8:1
25%
DPs-
homo
ALUs

8:1
33%
DPs-
homo
ALUs

8:1
50%
DPs-
homo
ALUs

8:1
66%
DPs-
homo
ALUs

8:1
50%
DPs-
14ops

8:1
50%
DPs-
13ops

8:1
50%
DPs-
12ops

8:1
50%
DPs-
11ops

8:1
50%
DPs-
10ops

Architecture

Figure 52: Results from the design space exploration tool for various architectures for threshold

value of the average path length increase to be 3.

gates and 11 operations per ALU as the best candidate that could meet the target design goals.

Figure 53 shows the number of ALUs used as pass gates for various architectures for threshold

value of average pli to be 3. The best candidate picked by the tool uses lesser number of ALUs as

pass gates as compared to the best architectural solution from the manual design space exploration.

Figure 54 compares the energy consumption of the architecture picked from manual design

space case studies with the architectures picked by the design space exploration tool for threshold

values of the average path length increase to be 2 and 3. 11 operations per ALU, 8:1 interconnect

74

0

100

200

300

400

500

600

700

800

900

33:1
No

DPs-
homo
ALUs

32:1
No

DPs-
homo
ALUs

17:1
No

DPs-
homo
ALUs

16:1
No

DPs-
homo
ALUs

9:1 No
DPs-
homo
ALUs

8:1 No
DPs-
homo
ALUs

5:1 No
DPs-
homo
ALUs

8:1
25%
DPs-
homo
ALUs

8:1
33%
DPs-
homo
ALUs

8:1
50%
DPs-
homo
ALUs

8:1
66%
DPs-
homo
ALUs

8:1
50%
DPs-
14ops

8:1
50%
DPs-
13ops

8:1
50%
DPs-
12ops

8:1
50%
DPs-
11ops

8:1
50%
DPs-
10ops

Architecture

Figure 53: ALUs used as pass gates for various fabric architectures.

with 50% dedicated pass gates consumes the least energy. It consumes approximately 9% less

energy on an average as compared to the best candidate from the manual design space case studies.

75

0

50

100

150

200

250

300

350

400

450

adpcm
encoder

adpcm
decoder

idct row idct col gsm sobel laplace dwt average

Benchmark

10ops-8:1-33%DP (M) 11ops-8:1-33%DP (T) 11ops-8:1-50%DP (T)

Figure 54: Energy comparison between the manual architectural solution and the architectural

solutions generated by the tool.

76

8.0 CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS

In this dissertation research, an energy-efficient, parameterized, reconfigurable fabric model was

designed for Digital Signal Processing (DSP) style applications. Using this model, the impact of

varying different architectural design parameters on power and performance was studied. The im-

pact of varying the cardinality (number of inputs/fanin of multiplexers) and the orientation (overlap

of multiplexers for different operands) of multiplexers was considered. The interconnect strategies

considered in this dissertation research include baseline interconnect architectures built from fully

connected rows, 8:1, and 4:1 multiplexers. 5:1 and 6:1 multiplexing strategies , developed from

mirroring 4:1 multiplexers connected to the functional unit input operands were also explored. In

order to further simplify the device the possibility of using a heterogeneous interconnect to reduce

the multiplexing cardinality at some locations was explored. 33% and 50% of the 5:1 interconnect

were replaced with 3:1 multiplexers, built from mirrored 2:1 multiplexers.

The impact of heterogeneity in the functional unit design was explored by introducing non-

uniform arithmetic and logic units in a stripe. The benefit of adding dedicated pass-gates to pre-

vent functional units from being used as routing was examined. The incorporation of dedicated

pass-gates requires potential tradeoffs in the cardinality and orientation of the multiplexers in the

interconnect. Another approach used in this research to reduce the complexity of the ALUs was

to reduce the number of operations each ALU can support and spread the total number of required

operations out over the stripe. While the ALUs within the stripe are heterogeneous, each stripe

in the fabric remains identical. Different optimization techniques like local search and simulated

annealing were used to study and optimize the interconnect. Simulated Annealing was also used

to solve the problem of Feasible Mapping with Fixed Rows.

77

Exploring the design space manually is time consuming and may not even be feasible for the

most complex designs. A design space exploration tool was developed to automate the architec-

tural exploration case studies. The tool generates a tailored architectural instance based on the

needs of the applications to reduce power and area, and improve performance for a given suite of

applications. Super data flow graphs of the applications were examined to get information like

number of functional units, type of functional units, granularity of the functional units and inter-

connect, and fan-in and fan-out of the different functional units. Several statistics like width and

height of the fabric, utilization of the fabric in terms of the number of computational elements and

pass gates, multiplexer cardinality usage, granularity of the functional units and the interconnect

were determined. It determines the best architectural solution by minimizing the multiplexer cardi-

nality and the number of operations supported per ALU, and maximizing the number of dedicated

pass gates.

Power and performance analysis was done by implementing a set of core signal processing

benchmarks from the MediaBench benchmark suite and some edge-detection benchmarks from

the image processing domain onto the fabric. The fabric was synthesized on 160 nm cell-based

ASIC fabrication process from OKI.The power-performance of the benchmarks implemented onto

the fabric was compared with other hardware and software implementations. The optimized fabric

energy consumption shown in Figure 55 is within 5X of a direct ASIC implementation, is 95X

better than a Virtex-II Pro FPGA and is 575X better than an Intel XScale processor. The opti-

mized fabric was also implemented on 130 nm cell-based ASIC fabrication process from IBM.

The optimized fabric yields energy within 3X of a direct ASIC implementation, 330X better than

a Virtex-II Pro FPGA and 2016X better than an Intel XScale processor.

8.2 FUTURE WORK

Some of the future directions of this dissertation include (1) implementing the fabric design onto 90

nm and below target technologies, (2) designing fabric architectures to map encryption algorithms

having medium to large size look-up tables, and (3) applying better control optimization algorithms

to the design space exploration tool.

78

1

10

100

1000

10000

100000

1000000

adpcm
enc

adpcm
dec

idct row idct col gsm sobel laplace average

Benchmark

Xscale (0.18um) Virtex-2P (0.13um) Fabric (initial)(0.16um)

Fabric (optimized)(0.16um) Fabric (optimized)(0.13um) ASIC (0.16um)

ASIC (0.13 um)

Figure 55: Fabric compared with other hardware and software implementations.

8.2.1 Implementing the fabric design to 90 nm and below target technologies

Leakage power dissipation has become one of the critical design concerns for the semiconductor

industry at 90 nm and below [51, 52]. Leakage power consumption is the power consumed by the

sub-threshold currents and by reverse biased diodes in a CMOS transistor. Power gating, one of the

well known techniques, effective for reducing leakage power, can be applied to the fabric design.

A sleep transistor is added between actual ground rail and circuit ground also called virtual ground

[53, 54]. The leakage path is cut off by putting this transistor in the sleep mode. It has already been

shown that this technique provides a substantial reduction in leakage power at a minimal impact

on performance [55, 56, 57].

79

8.2.2 Designing fabric architectures to map encryption algorithms

Fabric architectures can be designed to map encryption algorithms like AES (Advanced Encryp-

tion Standard). These algorithms have read only arrays of non-changing data. Data can be pre-

programmed into static random access memories (SRAMs). Depending on the needs of the ap-

plications, the size of the SRAM cells can be determined. One approach to implement large size

look-up tables is by grouping together smaller memory cells. For example, 1-Kbit SRAM cell is

approximately the same size as a 32-bit multiplier. 1-Kbit SRAM cell can be added to each ALU

and eight of these can be grouped together to make an 8-Kbits memory. A segmented bus architec-

ture shown in Figure 56 can be used to allow loads to be specified from any location in the group.

The reason for choosing a segmented bus architecture is that it shows potential for improving both

performance and power related features of a device.

ALU0

1-Kbit

S D
G

ALU1

1-Kbit

S D
G

ALU2

1-Kbit
S D

G

ALU(N-1)

1-Kbit

S D
G

S D
G

S D
G

ADDR

DATA

Figure 56: Fabric design with memories using segmented bus architecture.

8.2.3 Improvements in the design space exploration tool

Currently, only one parameter is varied at a time keeping others constant and the parameters of

the search space exploration algorithm are explored in a specific order based on the manual design

space studies. This might not lead us to the best candidate for the target goals. The search space

can be explored in a more efficient way by varying all the parameters at the same time or by

changing the order in which the parameters are explored for the manual architectural exploration.

80

Better optimization algorithms can also be applied to improve the quality of the solution obtained

by the tool. The decision making process can be improved by assigning weights to various metrics

of interest instead of using threshold values for the metrics.

81

BIBLIOGRAPHY

[1] L. Sheng, A. S. Kaviani, and K. Bathala, “Dynamic power consumption in virtex-II FPGA
family,” in FPGA, 2002.

[2] B. Levine and H. Schmit, “Piperench: Power & performance evaluation of a programmable
pipelined datapath,” presented at Hot Chips 14, Palo Alto, CA, August 2002.

[3] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor, “Piperench: A
virtualized programmable datapath in 0.18 micron technolog,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, 2002.

[4] E. Mirsky and A. Dehon, “Matrix: A reconfigurable computing architecture with configurable
instruction distribution and deployable resources,” in in Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, April 1996.

[5] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a reconfigurable
coprocessor,” in IEEE Symposium on FPGAs for Custom Computing Machines, K. L. Pocek
and J. Arnold, Eds. Los Alamitos, CA: IEEE Computer Society Press, 1997, pp. 12–21.
[Online]. Available: citeseer.nj.nec.com/hauser97garp.html

[6] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The chimaera reconfigurable functional
unit,” in IEEE Symposium on FPGAs for Custom Computing Machines(FCCM), 1997, pp.
87–96.

[7] e. a. H. Singh, “Morphosys: An integrated re-configurable architecture,” in Proc. of the NATO
RTO Symposium on System Concepts and Integration, 1998.

[8] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable pipelined datapath,” in
in the 6th International Workshop on Field-Programmable Logic and Applications, 1996.

[9] C. Ebeling et al., “Mapping applications to the rapid configurable architecture,” in Proc. of
the IEEE Symposium on FPGAs for Custom Computing Machines, 1997.

[10] A. Kaviani, D. Vranesic, and S. Brown, “Computational field programmable architecture,” in
Proc. of the IEEE Custom Integrated Circuits Conference, 1998.

[11] A. A. Aggarwal and D. M. Lewis, “Routing architectures for hierarchical field programmable
gate arrays,” in Proc. of the IEEE International Conference on Computer Design, 1994.

82

citeseer.nj.nec.com/hauser97garp.html

[12] Elixent, “The reconfigurable algorithm processor,” http://www.elixent.com/.

[13] PACT-XPP, “Xpp-lib core overview,” http://www.pactcorp.com/.

[14] MathStar, “Field programmable object array architecture,”
http://www.mathstar.com/literature.html.

[15] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An FPGA-based VLIW processor
with custom hardware execution,” in ACM International Symposium on Field-Programmable
Gate Arrays (FPGA), 2005, pp. 107–117.

[16] Rapport, Inc, “Kilocore,” website,
http://www.rapportincorporated.com.

[17] M. J. Wirthlin and B. L. Hutchings, “A dynamic instruction set computer,” in Proc. of FCCM,
1995, pp. 99–107.

[18] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific instruction generation for con-
figurable processor architectures,” in Proc. of the International Symposium on Field Pro-
grammable Gate Arrays (ISFPGA). New York, NY, USA: ACM, 2004, pp. 183–189.

[19] M. K. Jain, M. Balakrishnan, and A. Kumar, “Asip design methodologies: Survey and issues,”
in International Conference on VLSI Design, 2001.

[20] R. E. Gonzalez, “Xtensa – a configurable and extensible processor,” IEEE Micro, vol. 20,
no. 2, pp. 60–70, 2000.

[21] Z. Shen, H. He, Y. Zhang, and Y. Sun, “A video specific instruction set architecture for asip
design,” VLSI Design, vol. 2007, no. 2, pp. 1–7, 2007.

[22] L. Fanucci, M. Cassiano, S. Saponara, D. Kammler, E. M. Witte, O. Schliebusch, G. Ascheid,
R. Leupers, and H. Meyr, “Asip design and synthesis for non linear filtering in image process-
ing,” in Proceedings of the conference on Design, automation and test in Europe (DATE).
3001 Leuven, Belgium, Belgium: European Design and Automation Association, 2006, pp.
233–238.

[23] P. Brisk, A. K. Verma, and P. Ienne, “Optimal polynomial-time interprocedural register allo-
cation for high-level synthesis and asip design,” in Proc. of the International Conference on
Computer-aided Design (CCAD). Piscataway, NJ, USA: IEEE Press, 2007, pp. 172–179.

[24] Q. Dinh, D. Chen, and M. D. F. Wong, “Efficient asip design for configurable processors
with fine-grained resource sharing,” in Proceedings of the International Symposium on Field
Programmable Gate Arrays (ISFPGA). New York, NY, USA: ACM, 2008, pp. 99–106.

[25] P. Benoit, G. Sassatelli, L. Torres, D. Demigny, M. Robert, and G. Cambon, “Metrics for
reconfigurable architectures characterization: Remanence and scalability,” in Reconfigurable
Architecture Workshop, 2003.

83

[26] R. Enzler, T. Jeger, D.Cottet, and G. Troster, “High-level area and performance estimation of
hardware building blocks on FPGAs,” in Field-Programmable Logic and Applications Forum
on Design Language, 2000.

[27] S. Bilavarn, G. Gogniat, J. L. Philippe, and L. Bossuet, “Fast prototyping of reconfigurable
architectures from a C program,” in IEEE Symposium on Circuits and Systems, 2003.

[28] L. Bossuet, G. Gogniat, and J.-L. Philippe, “Generic design space exploration for reconfig-
urable architectures,” in Proc. of the Reconfigurable Architectures Workshop (RAW), 2005.

[29] A. K. Jones, R. Hoare, D. Kusic, G. Mehta, J. Fazekas, and J. Foster, “Reducing power
while increasing performance with supercisc,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 5, no. 3, pp. 1–29, August 2006.

[30] R. Hoare, A. K. Jones, D. Kusic, J. Fazekas, J. Foster, S. Tung, and M. McCloud, “Rapid
VLIW processor customization for signal processing applications using combinational hard-
ware functions,” EURASIP Journal on Applied Signal Processing, vol. 2006, pp. Article ID
46 472, 23 pages, 2006.

[31] G. D. Micheli, Synthesis and Optimizaton of Digital Circuits. McGraw-Hill Inc., 1994.

[32] G. Mehta, J. Stander, J. Lucas, R. R. Hoare, B. Hunsaker, and A. K. Jones, “A low-energy
reconfigurable fabric for the supercisc architecture,” Journal of Low Power Electronics, vol. 2,
no. 2, pp. 148–164, August 2006.

[33] G. Mehta, R. R. Hoare, J. Stander, and A. K. Jones, “Design space exploration for low-power
reconfigurable fabrics,” in Proc. of the Reconfigurable Architectures Workshop (RAW), 2006.

[34] G. Mehta, A. K. Jones, J. Stander, M. Baz, and B. Hunsaker, “Interconnect customization
for a hardware fabric,” ACM Transactions on Design Automation for Electronic Systems (TO-
DAES), vol. 14, no. 1, January 2009.

[35] M. Baz, B. Hunsaker, G. Mehta, J. Stander, and A. K. Jones, “Mapping and design of a
hardware fabric,” University of Pittsburgh, Industrial Engineering, Tech. Rep., 2007, under
review for Operations Research since April 2007.

[36] T. Bray, J. Paoli, E. M. C. M. Sperberg-McQueen, and F. Yergeau, “Extensible markup lan-
guage (xml) 1.0 (fourth edition) - origin and goals,” World Wide Web Consortium, Tech. Rep.
20060816, 2006.

[37] A. K. Jones, D. Bagchi, S. Pal, P. Banerjee, and A. Choudhary, Pact HDL: Compiler Targeting
ASIC’s and FPGA’s with Power and Performance Optimizations, R. Graybill and R. Melhem,
Eds. Boston, MA: Kluwer Academic Publishers, 2002.

[38] K. Roy and S. Prasad, Low-Power CMOS VLSI Design. John Wiley and Sons Inc., 2000.

[39] J.-M. Chang and M. Pedram, “Module assignment for low power,” in European Design
Automation Conference, 1996. [Online]. Available: citeseer.nj.nec.com/chang96module.html

84

citeseer.nj.nec.com/chang96module.html

[40] K. Khouri, G. Lakshminarayana, and N. Jha, “Impact: A highlevel synthesis system for low
power control-flow intensive circuits,” in Proc. Design Automation & Test in Europe Conf.,
1998, pp. 848–854. [Online]. Available: citeseer.nj.nec.com/khouri98impact.html

[41] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in Proceedings of
ICCD, October 1994, pp. 318–322.

[42] Z. X. Shen and C. C. Jong, “Exploring module selection space for architectural synthesis of
low power designs,” in IEEE International Symposium on Circuits and Systems, 1997.

[43] N. K. Jha, “Low power system scheduling and synthesis,” in Proceedings of the 2001
IEEE/ACM international conference on Computer-aided design. IEEE Press, 2001, pp.
259–263.

[44] X. Liu and M. C. Papaefthymiou, “A markov chain sequence generator for power macromod-
eling,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), July 2004.

[45] ——, “A static power estimation methodology for ip-based design,” in Design, Automation,
and Test in Europe, March 2001, pp. 280–287.

[46] Synopsys Inc., “Design compiler and primepower manual,” www.synopsys.com.

[47] C. J. Ihrig, M. Baz, J. Stander, R. R. Hoare, B. A. Norman, O. Prokopyev, B. Hunsaker, and
A. K. Jones, Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric.
I-Tech Education and Publishing, 2008.

[48] M. Baz, “Optimization of mapping onto a flexible low-power electronic fabric architecture,”
Ph.D. dissertation, University of Pittsburgh, Pittsburgh, Pennsylvania, July 2008.

[49] M. Baz, B. Hunsaker, G. Mehta, J. Stander, and A. K. Jones, “Application mapping onto a
coarse-grained computational device,” European Journal of Operations Research, 2008, in
review.

[50] G. Mehta, C. J. Ihrig, and A. K. Jones, “Reducing energy by exploring heterogeneity in a
coarse-grain fabric,” in Proc. of the IPDPS Reconfigurable Architecture Workshop (RAW),
2008.

[51] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4, 1999.

[52] K. B. et al., “Design and cad challenges in sub-90 nm cmos technologies,” in ICCAD, Novem-
ber 2003.

[53] S. M. et al., “1v power supply high-speed digital circuit technology with multi threshold-
voltage cmos,” JSSC, vol. SC-30, August 1995.

[54] J. K. et al., “Mtcmos hierarchical sizing based on mutual exclusive discharge patterns,” in
DAC, June 1998.

85

citeseer.nj.nec.com/khouri98impact.html

[55] H. K. et al., “A super cut-off cmos (sccmos) scheme for 0.5 v supply voltage with picoampere
stand-by current,” JSSC, vol. SC-35, October 2000.

[56] S. K. et al., “Enhanced multi-threshold (mtcmos) circuits using variable well bias,” in
ISLPED, August 2001.

[57] M. A. et al., “Dynamic and leakage power reduction in mtcmos circuits using an automated
efficient gate clustering technique,” in DAC, June 2002.

86

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Parameters of the fabric model. For the design space exploration considered here, fixed or limited parameters are indicated in bold.
	2. Area results for ALUs of different datawidths
	3. Power comparison of ALU used as a pass-gate and a dedicated pass-gate.
	4. Runtime and solution quality for the simulated annealing algorithm.
	5. Rows added by various mapping strategies with different interconnects. A hyphen (-) indicates that no solution was found.
	6. Runtime in (seconds) of various mapping strategies with different interconnects. A star (*) indicates that no solution was found.
	7. Fabric size (Width x Height) for mapping various benchmarks onto different interconnects using the heuristic mapper.
	8. Fabric size (Width x Height) for mapping various benchmarks onto different interconnects with different percentages of dedicated pass gates using the heuristic mapper.
	9. Number of ALUs used as pass gates for various interconnect strategies.
	10. Increase in overall path length by addition of dedicated pass gates.
	11. Area results for various instances.

	LIST OF FIGURES
	1. Power consumption features of a Xilinx Virtex-2 3000 FPGA [Sheng et al. 2002].
	2. The domain specific fabric (DSF) is comprised of Arithmetic and Logic units and a reconfigurable interconnect.
	3. The multiplexer-based interconnection stripe structure.
	4. Schematic for a 5:1 multiplexer equivalent using 4:1 multiplexers
	5. SuperCISC architecture.
	6. Software code and DFG showing control flow in ADPCM encoder
	7. Example data flow graph (DFG)
	8. Example mapping.
	9. Design space exploration flow of our fabric model.
	10. Domain Specific Fabric conceptual model.
	11. VHDL code for a 4-wide homogeneous ALU stripe.
	12. FIM file example for 5:1 style interconnect.
	13. FIM file example for an 8 ops ALU, 8:1 interconnect with 50% dedicated pass gates.
	14. VHDL code for a heterogeneous ALU stripe generated from the FIM file of Figure 13.
	15. 4-D plots of p, d, and s versus power for ADD and MULT operations of an ALU and 2:1 multiplexer synthesized with standard cells for a 160nm OKI ASIC process. Power is indicated as a color between black and white where solid white represents the least power consumed by the device and black indicates the most power consumed by the device. Measurements taken at 0.1 intervals in each dimension p, d, and s.
	(a). Adder
	(b). Multiplier
	(c). 32-bit 2:1 Multiplexer
	16. Power results for several functional unit implementation techniques. Results for a standard cell 160nm OKI ASIC process.
	17. Power consumption of ALU for different datawidths.
	18. Delay results of ALU for different datawidths.
	19. Comparison of Energy consumption of 32-bit ALU, 16-bit ALU, 32-bit ALU used for 16-bit operations, 8-bit ALU and 32-bit ALU used for 8-bit operations.
	20. Power profiles for various vertical routing structures.
	(a). ALU used as pass-gate.
	(b). Dedicated pass-gate.
	21. Power consumption in multiplexers of different cardinalities. Results for a standard cell 160nm OKI ASIC process.
	22. Design flow for creating SDFGs to run on the fabric.
	23. Mapped SDFG of an ADPCM decoder onto a particular fabric instance.
	24. Multiplexer cardinality usage.
	25. Connectivity using 4:1 multiplexers.
	26. Partial SDFG that occurs frequently in image and signal processing applications.
	27. Attempt to embed the graph from Figure 26 into the connectivity supplied by Figure 25.
	28. Ways to overlap node pairs with the 4:1 connectivity.
	(a). Standard orientation.
	(b). Top node shifted right.
	(c). Top two nodes shifted right.
	(d). Bottom node shifted left.
	29. Embedding the graph from Figure 26 with the connectivity provided by Figure 4.
	30. Embedding the graph from Figure 26 into a 3-5-5:1 interconnect.
	31. Embedding the graph from Figure 26 into a 3-5-5-3:1 interconnect.
	32. Embedding the dense subgraph from ADPCM encoder into a 5:1 interconnect with 25% of ALUs replaced with dedicated pass-gates.
	33. Schematic for building a 6:1 reaching multiplexer interconnect using 4:1 multiplexers.
	34. Embedding the graph from Figure 26 into a 6:1 interconnect with 25% dedicated pass-gates.
	35. Mapping of a benchmark onto the fabric.
	36. Multiplexer cardinality usage for a variety of signal and image processing applications using ASAP scheduling, Simulated Annealing, and IP.
	37. Design flow using FIM.
	38. Impact of interconnect cardinality on energy consumption.
	39. Potential for energy reduction by reducing interconnect cardinality.
	40. Comparison of ALUs used for routing and for computation.
	41. Energy trend when adding dedicated pass gates for 5:1 interconnect.
	42. Energy trend when adding dedicated pass gates for 6:1 interconnect.
	43. Energy trend when adding dedicated pass gates for 8:1 interconnect.
	44. Comparison of best energy result between 0% and 50% dedicated pass gates with heuristic mapper.
	45. Potential best energy result using between 0% and 50% dedicated pass gates, mappings provided by the IP program where feasible.
	46. Impact of reducing the number of operations of ALUs on energy.
	47. Combining dedicated pass gates with heterogeneous functional units.
	48. Energy comparison of fabric designs implemented on 130 nm IBM ASIC standard cells
	49. Design space exploration flow for the domain specific fabric.
	50. Results from the design space exploration tool for various architectures for threshold value of the average path length increase set to 2.
	51. ALUs used as pass gates for various fabric architectures.
	52. Results from the design space exploration tool for various architectures for threshold value of the average path length increase to be 3.
	53. ALUs used as pass gates for various fabric architectures.
	54. Energy comparison between the manual architectural solution and the architectural solutions generated by the tool.
	55. Fabric compared with other hardware and software implementations.
	56. Fabric design with memories using segmented bus architecture.

	1.0 INTRODUCTION
	1.1 Related Work
	1.2 Background
	1.2.1 SuperCISC Architecture
	1.2.2 Super Data Flow Graphs

	2.0 STATEMENT OF THE PROBLEM
	2.1 Domain Specific Fabric
	2.2 Manual design space exploration
	2.3 Mapping of benchmarks onto the domain specific fabric using Simulated Annealing
	2.4 Power and performance analysis of benchmarks implemented on the fabric
	2.5 Design space exploration tool for domain-specific fabric

	3.0 DOMAIN SPECIFIC FABRIC
	4.0 MANUAL DESIGN SPACE EXPLORATION
	4.1 Power modeling and analysis
	4.2 Design space case studies
	4.2.1 Functional unit implementation tradeoffs
	4.2.2 Impact of datawidth on power, performance and area of functional units
	4.2.3 Dedicated Pass-gates
	4.2.4 Multiplexer cardinality impact on power
	4.2.5 Benchmark Driven Interconnect Design
	4.2.5.1 Interconnect profiling

	5.0 MAPPING OF BENCHMARKS ONTO THE FABRIC USING SIMULATED ANNEALING
	5.1 Optimizing the interconnect

	6.0 POWER AND PERFORMANCE ANALYSIS OF THE BENCHMARKS IMPLEMENTED ON THE FABRIC
	6.1 Homogeneous and heterogeneous interconnects
	6.2 Dedicated vertical routes
	6.3 Heterogeneous ALUs
	6.4 Combining heterogeneity and dedicated vertical routes
	6.5 Energy results for the fabric designs implemented on 130 nm IBM ASIC standard cells

	7.0 DESIGN SPACE EXPLORATION TOOL FOR DOMAIN-SPECIFIC FABRIC
	8.0 CONCLUSIONS AND FUTURE WORK
	8.1 Conclusions
	8.2 Future work
	8.2.1 Implementing the fabric design to 90 nm and below target technologies
	8.2.2 Designing fabric architectures to map encryption algorithms
	8.2.3 Improvements in the design space exploration tool

	BIBLIOGRAPHY

