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 Very few studies exist on the processes and products of formerly ice-confined, 

multiple vent and multiple fissure basaltic ridge complexes, even though it is estimated that more 

than 1000 of these structures exist in Iceland. This is the first study that examines the processes, 

products and depositional environments of such complexes over space and time. The 21-km 

long, 2.5 km wide and 250 m thick Sveifluháls ridge in SW Iceland was used as a case study to 

better understand the nature of these complexes. 

            Ridge growth began with eruptions beneath a 450-600 m thick ice sheet sometime 

between 43,000-12,400 years BP. The resulting melting ice and dropping overburden pressures 

facilitated the eruption of vitric phreatomagmatic tuff into one or more ice-confined meltwater 

lakes. These eruptions formed tuff cones, elongate tuff cones and narrow (0.5 km) tuff ridges, 

and collectively these formed a series of regularly-spaced (average spacing of 0.7 km) edifices 

along ~60 semi-parallel individual linear segments that vary in length from 0.25 km to 1.5 km. 

 Tuff ridges represent edifices formed from Surtseyan fissure eruptions, and are described for the 

first time.  All of the edifices grew by deposition from subaqueous density currents and/or by 

suspension and settling of phreatomagmatic tuff within the meltwater lakes. Tuff was commonly 

remobilized by slope failure due to melting and retreat of supporting ice walls, over steepening 
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of the subaqueous tephra pile, and/or by disturbance from intrusions that propagated into wet 

tuff. The majority of tuff units at Sveifluháls are not in-situ, and about half of these contain 

chaotically-dipping beds that are suggestive of slumping and movement before final 

emplacement. Tuff cones and ridges grew to enclose inter-ridge catchments with volumes as 

large as 1.5x10
7
 m

3
. These impoundments are interpreted as important sources for jökulhlaups. 

The total DRE volume of the ridge was ~2.0 km
3
 and an estimated total of 17.25 km

3
 of 

meltwater may have been generated during the eruptions of Sveifluháls. Prior to cessation of the 

eruptions, the ice-confined meltwater lake drained to 200 m below the original edifice height and 

subaerial lava was erupted from at least one eruption center.  
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1.0  INTRODUCTION 

Iceland straddles the Mid-Atlantic Ridge, which is a zone of actively spreading tectonic plates 

that forms new crust both underwater and on land. In southwest Iceland, the Mid-Atlantic Ridge 

comes ashore and forms the Reykjanes Peninsula that was created mostly by eruptions beneath 

an ice sheet that once covered the entire island, but has now vanished (Einarsson and Albertsson, 

1988; Hubbard et al., 2006).  

This research was conducted on the largest fissure complex of the Reykjanes Peninsula, 

called Sveifluháls (Figure 1). It is located 3 km inland from the southern coast of Iceland and is a 

well-exposed, NE-SW trending, 21 km long complex of formerly ice-confined basaltic volcanic 

eruptive fissures that represents the onshore continuation of the offshore Mid-Atlantic Ridge 

(Figure 2). Sveifluháls is thought to have formed sometime between 12,400 and 42,900 years 

ago during the Last Glacial Maximum, based on paleomagnetic rock analyses of nearby 

interglacial lavas (Levi et al., 1990) and 
14

C dated marine sediments found elsewhere on the 

Reykjanes Peninsula (Norðdahl and Pétursson, 2005). No glacial striae are found on rocks in the 

complex, and no glacial diamictons were identified. Therefore it is unlikely that the ridge 

experienced re-glaciation following ice retreat. 
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Figure 1: Map of field area and surrounding region. Sveifluháls is outlined in red and the subset field 

area is outlined in yellow. 

 

 Sveifluháls is a complex of numerous ridge segments (at least 60 in the field area alone) 

of varying length (between 0.25 km to 1.5 km) that are mainly concentrated into two major ridge 

axes. The area between the two major ridge axes is about 0.5 km. Because Sveifluháls is so 

large, a 10 km long subset of the ridge was selected for focused field study because it contained 

the highest elevations, most well-preserved deposits and best exposures of the ridge. Sveifluháls’ 

western flank is partially buried by 60-70 m of postglacial subaerial lavas. Hence, the majority of 

research was done on the eastern flank of the study area. Directly adjacent to the eastern flank of 
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the ridge is a 6 km long by 2.5 km wide lake called Kleifarvatn. This lake is 96 m deep and is 

believed to have formed by both volcanism and tectonic activity (Clifton et al., 2003), yet no 

published study has been done that detail these assumptions. Kleifarvatn sits on an active fault 

(Pagli et al., 2003), contains underwater geothermal vents in the lake bed (Clifton et al., 2003), 

lies north of a NE-SW trending line of verified (Thorarinsson, 1952) volcanic maars (Lorenz, 

1986 ), and is also bound by scalloped edges which may be large (from 1 to 1.5 km diameter) 

maar-like explosion craters. Maar volcanism is defined as interaction of magma with 

groundwater, causing explosions at the land surface and excavating craters usually <1 km 

diameter below the groundwater table, which often fill with water (Lorenz, 1986 ). 

 

 

Figure 2: Map of Iceland, showing the location of the study area in the Reykjanes Peninsula (represented by 

the ASTER satellite image in the lower left corner). 
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 This work focused on the processes and products of formerly ice-confined multi-vent 

basaltic multi-fissure complexes in order to better describe their formation and interaction with 

the surrounding ice. The research includes (1) descriptions and interpretations of the construction 

of these landforms and how they differ from better known single-vent systems; (2)  development 

of a conceptual model of how such complexes interacted with the ice; (3) models of how such 

complexes record evidence of former ice presence; (4) reconstructions of ice thicknesses in this 

part southwest Iceland at the time of the eruptions; (5) comparison with accounts and  models of 

sub-ice to emergent fissure eruptions that have occurred recently in Iceland (Gudmundsson et al., 

1997; Larsen et al., 1998; NORDVOL, 2010) and in the past on Mars (Chapman, 2003, 2007), 

and; (6) descriptions and interpretations of the volcaniclastic deposits surrounding Lake 

Kleifarvatn, and a proposed a theory of the lake’s possible volcanogenic origins and its 

relationship with the Sveifluháls ridge. To address these issues, field data, stratigraphic analysis, 

Geographic Information System (GIS) analysis, laboratory analysis of rock samples, and 

interpretation of photo-mosaics and aerial photography were used. 

1.1 SIGNIFICANCE OF RESEARCH 

In Iceland, volcanoes erupted under ice represent the largest untapped database on North Atlantic 

Pleistocene terrestrial ice conditions. However, in order to use volcanic products as indicators of 

past ice, we need very detailed models of exactly how such volcanoes interact with ice. In 

Iceland, there are only about 100 formerly ice-confined central-vent volcanoes (Jakobsson and 

Gudmundsson, 2008a), yet eruptions from these isolated central vents (Smellie and Skilling, 

1994; Werner and Schmincke, 1999; Smellie, 2001; Jakobsson et al., 2008a) are much better 
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understood than ridges formed from ice-confined to emergent fissure eruptions with multiple 

vents, despite the fact that more than 1,000 fissure-formed ridges of this origin exist in Iceland 

(Schopka et al., 2006). Very little previous research exists on the formation of basaltic, ice-

confined erupted ridges (Imsland, 1973; Gudmundsson et al., 1997; Schopka et al., 2006; 

Bennett et al., 2009). There is only one published paper on a multi-vent system (Bennett, 2009), 

and no studies of systems that are both multi-vent and multi-ridge.  This research was the first to 

study the products and construction processes of this type of ice-confined fissure complex. These 

ridges are also called ―tindars‖, from a term used by Jones in 1969 (Jones, 1969), which is used 

to refer to fissure-fed formerly ice-confined basaltic edifices.  

 Volatile (i.e., water and carbon dioxide) analysis of the glassy rinds of 

subaqueously emplaced, sub-ice lavas are particularly useful for estimating ice thickness at the 

time of their eruption (Tuffen, 2010). However, Tuffen (2010) concluded that the science of 

volatile analysis to reconstruct paleo-ice thickness is still in its infancy and that more studies are 

needed to further establish this technique. Some of the main problems associated with this 

method include the effects on volatile content caused by non-equilibrium degassing, hydration, 

sample heterogeneity, post-quenching sample movement, loading (by rock and ice) and non-

glaciostatic pressure in subglacial cavities (Tuffen, 2010). Tuffen (2010) suggested that ground 

truth of deposits with good secondary constraints on ice thickness (e.g., maximum height of 

edifice, elevation of passage zones, etc.) be done for improving the science and methods for 

estimating ice thickness by volatile analysis.  

At Sveifluháls, pillow lavas are present at the base of the ridge, and appear to be good 

candidates for volatile analysis and for ice thickness estimates from field observation. This is 

because these lavas were probably emplaced beneath ice, and not intrusively into wet sediment 
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or on the subaqueous slopes fed from subaerial lavas or dikes. Hence these pillows are the best 

chance we have at Sveifluháls to obtain glaciostatic pressure at the time of the onset of subglacial 

eruption. This topic will be discussed in later sections of this dissertation. This project helps to 

constrain methods used to estimate paleo-ice thickness from such rocks. However, note that 

volatile analysis of pillow lavas was not done for this dissertation due to extenuating 

circumstances at the lab where they were to be analyzed. 

1.2 QUESTIONS ADDRESSED 

The major questions addressed for this project are: 

 A) What information on former ice presence, thickness and paleo-environments 

can we infer from the volcanic products of ice-confined, multi-vent, multi-ridge, and fissure-

erupted centers (i.e., tindar)?  What is the evidence for ice-confinement at Sveifluháls? What is 

the evidence for meltwater ponding and drainage during construction of Sveifluháls? What is the 

relationship of eruption and other deposits to melt water flow and glacial flow directions in this 

area (Bingham et al., 2003; Norðdahl et al., 2005; Schopka et al., 2006)? What does evidence of 

ice-contact tell us about the interaction of these volcanoes with the ice that confined them?  

 B) How are sub-ice erupted fissure complexes constructed?  What can be 

inferred from patterns in rock units found along the length of the ridge? Based on analyses of 

rock samples and stratigraphy, which portions of the ridge were formed in what depositional 

environments (e.g. ice-contact lake, stream, inter-ridge lake, entirely-sub-ice, etc.), and how did 

such environments vary in space and time? Is there evidence of simultaneous eruptions, or vent 

shifting or focusing? What evidence is there for episodes of erosion between eruptive episodes?  
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 C) What are the broader impacts of my results with relation to history of ice in 

SW Iceland and for understanding volcano-ice interaction elsewhere?  How does Sveifluháls 

compare with findings at other sub-ice erupted volcanoes in Iceland and on Mars? What is the 

relationship between Sveifluháls and Lake Kleifarvatn? 

1.3 METHODS  

The methods used to execute this research are (1) field data collection; (2) stratigraphic analysis; 

(3) Geographic Information System (GIS) analysis; (4) XRF chemical analysis of rock samples, 

and; (5) interpretation of photo-mosaics and aerial photography.  

1.3.1 Collection of Field Data 

This research was dependent upon the collection of field data. Because this project was focused 

on the eruptive and depositional environments of ice-confined multi-fissure eruptions, it was 

necessary to collect information from the types of deposits that best display this information in 

the field. Because of its large extent, it is impossible to evaluate Sveifluháls as a whole in a 

single doctoral project, so two eruption centers (vents) and several other well-exposed, accessible 

and distinct depositional centers (i.e., inter-ridge, inter-vent and ridge margins) were closely 

examined within a 10 km long subsection of the ridge (Figure 3).  
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Figure 3: Air photo map of the study area, a 10 km long subset of Sveifluháls, showing several major 

features discussed in this dissertation. 
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Vents (i.e. topographic highs) represent the thickest succession of eruptive products on 

the ridge, and best describe the complete construction process of tuff cones or ridges on the 

fissure system. By working upwards from the base of the ridge towards the top of the vent, 

information on rock type, unit thickness, texture, bedding and other sedimentary characteristics 

were collected. By studying inter-ridge and inter-vent areas, information was obtained on how 

the processes and products of multiple vents and multiple fissure segments differ from simpler 

single-vent/single fissure systems. The margins of the complex provided the best information on 

how the complex interacted with ice and how and where water may have drained. All field stops 

were photographed, bedding attitudes were measured with a Brunton transit compass, and rock 

samples were collected. All information was recorded in field notebooks and numbered to reflect 

photograph number and field stop. Geographic Positioning System (GPS) data were also 

recorded for each field stop. 

1.3.2 Stratigraphic Analysis 

Following the collection of data from the field site, the information describing rock units were 

organized into stratigraphic columns which describe rock thicknesses, textures, and other 

sedimentary characteristics. These stratigraphic transects were then analyzed to better understand 

qualities such as eruptive and depositional paleo-environment (e.g., sub-ice, sub-aqueous, sub-

aerial, etc.), eruption characteristics (e.g., intermittent eruption ―pulses‖, sustained continuous 

―uprush‖, etc.), unconformities or basal erosion structures (e.g., time lapses between deposition, 

overlapping of deposits from a different vent, glaciations, etc.), and other features such as the 

location of prominent slump zones and intrusions. Analyses of stratigraphy also helps to unravel 

the construction of Sveifluháls by enabling the grouping into facies (i.e., rock units with 
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associated sedimentological characteristics that are usually indicative of a specific transport 

mechanism and/or depositional environment), and allowing for pattern recognition in volcanic 

deposits, both horizontally (among multiple stratigraphic transects) and vertically (within a 

single stratigraphic transect). Results from stratigraphic analyses, especially data that detail the 

size and duration of an eruptive episode, were also used to estimate the maximum volume of ice 

that may have melted at Sveifluháls (Tuffen, 2007). This information is extremely valuable for 

helping to understand the effects these eruptions have on ice sheets, such as constraining ideas 

about the ice sheet stability during and following an eruption. 

1.3.3 GIS Analysis 

Because all field data were recorded with GPS location information (i.e., latitude, longitude, and 

altitude), they were compatible in a GIS interface. All data were imported into the ESRI ArcGIS 

program and were cross-referenced with other information such as topographic maps, aerial 

photographs of the field area, satellite imagery, and other vector-based data layers that served as 

a reference and backdrop to this project. The use of GIS as a tool was very important in this 

research as it enabled efficient synthesis of information from multiple data sources over a large 

area. Additionally, it served as the primary method for creating maps, generating spatially-aware 

databases, and performing spatial analyses of bedding units and their locations at multiple vent 

transects.   
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1.3.4 Analyses of Rock Samples 

 X-Ray Fluorescence (XRF) chemical analyses of rock samples was used to help 

discriminate vent sources, and thin sections were prepared to constrain the grain size, grain shape 

and mineralogy of rock types. Thin section study of vitriclastic (i.e., composed of glassy 

fragments) material were also used to help discriminate vent sources, and provide some 

constraints on eruptive and transport environments (White, 1996; Sohn et al., 2008).  

1.3.5 Photo-Mosaics and Aerial Photography of the Sveifluháls Ridge 

In addition to the collection of field data, measurements and photographs of each field stop, the 

flanks of the main ridge were photographed in their entirety, in an assemblage of 354 

photographs from 39 vantage points along both flanks of the principal ridge (i.e., the easternmost 

ridge). These photographs were then stitched together and compiled to create a continuous, 

―virtual‖ representation of the length of the ridge, on both the eastern and western flank (Figure 

4). These photo-mosaics of Sveifluháls were used for three main purposes: to (1) annotate 

massive and bedded rock units, as well as other structural and eruptive features on the flanks of 

the ridge in order to define patterns and continuity of rock units along the ridge; (2) to cross-

reference field data and stratigraphic transects, and; (3) to help plan field research of target areas 

for follow-up field seasons.   
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Figure 4: Annotated photo-mosaic for a section of Sveifluháls (facies codes and symbols used here are explained in Section 2.4, Table 3). 
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Aerial orthophotographs and a corresponding digital elevation model (DEM) of the field 

area were also used. These were obtained from a private Icelandic company, Loftmyndir. These 

full-color, high-resolution (2 feet pixel resolution) air photos (as seen in Figure 3) and DEM (5 m 

pixel resolution) were imported into the GIS and were used to cross-reference field data and 

serve as a backdrop for other data. The level of detail and accuracy of the air photos and the 

DEM enabled spatial analysis of features in the field area, such as vent spacing and distribution, 

ridge volume measurements, and 3-D modeling of field data. These analyses were helpful in 

improving understanding of ridge construction and paleo-environmental conditions. 

1.4 SUMMARY OF PREVIOUS WORK 

There are several important previous studies that contributed significantly to the broad 

understanding of ice-confined and subaqueous basaltic fissure volcanism. This body of previous 

work provided a knowledge base for this dissertation and helped to shape many key concepts 

developed in this project. Summaries of the most pertinent of these previous studies are given in 

the following sections. 

1.4.1 Previous Work on Ice-Confined Basaltic Ridges 

No published studies exist that describe the construction and evolution of tindar by multi-vent, 

multi-fissure basaltic complexes. In respect to Sveifluháls, there is only one known previous 

study, a 1973 Bachelor of Science thesis written in Icelandic entitled ―Um Jardfrædi Sveifluháls 

(The Geology of Sveifluháls)‖ (Imsland, 1973) that focused on gross geologic mapping of the 
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fissure complex. This thesis also documented the observation of intrusions, bedding, and 

mapping of faults and other primary structures. It was beyond the scope of this current study to 

translate Imsland’s thesis into English, but his work was referenced during the field campaigns at 

Sveifluháls that were undertaken for this current research. There are several other peer-reviewed 

bodies of work that served as a foundation for this dissertation. These published works are 

described in the following. 

 Early work by Jones (Jones, 1969, 1970) examined the morphology of Kalfstindar and 

Raudafell-Hognhofdi in Iceland and described the non-fragmental pillow lavas and fragmental 

tuff that composed the tindar. Jones was the first to use the Icelandic term ―tindar‖ to describe 

the ridges formed by ice-confined fissure-fed eruptions (Jones, 1969). The term ―tindar‖ is 

actually the plural form of the Icelandic singular word ―tindur‖, meaning ―peak‖. The plural form 

of this word (used in the vernacular as ―tindars‖) is ―tindar‖ in Icelandic. This dissertation will 

use the proper Icelandic usage of the word ―tindar‖. It is recommended here that any future work 

should eliminate use of the word ―tindars‖, instead using the Icelandic plural word ―tindar‖ when 

referring to a single or multiple ridge complexes.   

 Jones documented several of the major rock types found at Kalfstindar (Jones, 1970) that 

were later referenced in following work at other tindar, including Sveifluháls. These include 

descriptions of various forms of pillow basalts, pillow breccias, tuffs, and sheet-like lavas, and 

also documented the occurrence of intrusions and slumping/deformation that are common to 

tindar. Jones also developed the first models of edifice growth within an ice vault (Jones, 1970). 

Although these models lacked information on the role of escaping meltwater during ice-confined 

eruptions, they did provide a meaningful reference point for future and more detailed models.      
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 Schopka et al. (2006) described the formation of Helgafell, a monogenetic, basaltic, and 

fissure-fed ridge located 2 km northeast of Sveifluháls, along the same trend as the fissure 

complex, and as such is a very useful comparative study. Helgafell is 2 km long, 0.8 km wide, 

and 340 m above sea level (asl) and is predominantly composed of fragmented basaltic glass 

fragments that were rapidly quenched by cooling in water (the term ―hyaloclastite‖ is used in this 

paper to describe these fragmented materials). Schopka et al. (2006) used field observations, a 

gravity survey, and FTIR analysis of volatiles to constrain the paleo-environmental conditions 

and ice thickness estimates at the time of its eruption. The study found that pillow basalts were 

only detected in the gravity survey and thus only made up a small percentage of the total ridge 

volume. Most of the ridge was composed of fragmented material (i.e., phreatomagmatic tephra) 

generated by explosive, fuel-coolant interaction (FCI). Sorting of these fragmented materials was 

dependent on where glacial meltwater was pooling within the meltwater vault. It was found that 

sorting and bedding was much better developed on the northwest side of the ridge, which was on 

the upstream side of ice flow during the estimated time of eruption during the later Pleistocene 

(Schopka et al., 2006).  An ice thickness of 500 m was estimated by the Schopka et al. study, 

based on the estimated maximum elevation of Helgafell at the time of eruption, and on evidence 

from similar ice-confined eruptions (e.g., Gjálp, Katla) that took place under comparable 

thicknesses of ice in Iceland during the 20
th

 century (Gudmundsson et al., 1997; Gudmundsson et 

al., 2002a; Gudmundsson et al., 2002b; Gudmundsson et al., 2004; Scharrer et al., 2008). The 

laboratory results from volatile content of their glass showed much lower elevations than that 

found currently at Helgafell, suggesting that a rapid drop in confining pressure was taking place 

at the time of glass formation and emplacement due to simultaneous drainage of meltwater from 

the englacial vault (Schopka et al., 2006).   
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 The study at Helgafell provided a starting point for this current work at Sveifluháls. From 

this work, it was established that glacial flow direction may have a significant bearing on the 

way facies appear at various locations along the ridge flanks. The availability of a meltwater 

vault large enough to enable sorting of fragmented glass is an important consideration when 

interpreting facies architecture. Schopka et al. argued that a lack of a large meltwater vault 

produced massive tuff units that were interpreted as deposition against an ice wall, whereas the 

availability of meltwater would allow for sorting and the formation of bedded units. The study at 

Helgafell also included work detailing the role of intrusions on fissure-fed ridges, and how these 

intrusive bodies play a major part in the formation of the ridge and contribute clastic material 

found in many facies at Helgafell.  

The descriptions of Helgafell provided the first detailed model of a formerly ice-confined 

tindar. This model shows that after the onset of the fissure eruption, the glacial meltwater began 

flowing along the base of the glacier in the same direction as glacier flow. A depression in the 

ice surface grew as the ridge began to grow, and this depression became larger as the eruption 

shifted from non-explosive (i.e., pillow-forming) to explosive due to the higher heat flux from 

fragmented material. Meltwater continued to flow away from the eruption site along the favored 

flow pathway. On the western side of the ridge, the erupted materials are thus better sorted due to 

the availability of a meltwater vault. Schopka et al. report that it is unclear if the edifice broke 

through the ice, as any evidence of a subaerial phase may have been eroded away.  

 The body of work by Gudmundsson on the ice-confined eruptions of basaltic fissures in 

Iceland (Gudmundsson et al., 1997; Gudmundsson et al., 2004; Gudmundsson, 2005; 

Gudmundsson et al., 2010)  is a very important resource for this dissertation. The Gjálp eruption 

of 1996 is of particular importance as it documents the findings from field and remotely sensed 
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data collection campaigns and describes the growth and morphology of an active ice-confined 

fissure eruption below the surface of the Vatnajökull ice cap. The Gjálp 1996 eruption is of great 

importance as it is the most similar modern analog to the eruption of Sveifluháls and provides a 

wealth of information on how tindar grow and evolve through the eruptive phase. It was also the 

first sizable eruption within an ice sheet to have been monitored in any detail (Gudmundsson et 

al., 2004). However it is important to note that the vast majority of these deposits were emplaced 

beneath ice and are inaccessible for detailed study. 

The 13-day long Gjálp eruption in October of 1996 produced a 6 km long subglacial 

fissure-fed edifice that varied in height between 150 to 500 m high (Gudmundsson et al., 2004). 

The ice thickness above the tindar was approximately 550-750 m thick (varying by location) and 

only about 2-4% of the materials were erupted subaerially. Proximal to the eruption of Gjálp was 

a preexisting sub-ice caldera called Grímsvötn that contained a subglacial lake formed by 

geothermal heating. Directly above this caldera is a 160 km
2
 depression in the ice sheet. The 

subglacial lake at Grímsvötn drained in jökulhlaups every 4-6 years prior to the 1996 Gjálp 

eruption (Gudmundsson et al., 2004). During the Gjálp eruption, crevasses within the melting ice 

collected large volumes of meltwater and carried it southward in a meltwater channel. The 

meltwater then sank below the surface of the ice and flowed southward along the base of the ice, 

eventually to be collected by Grímsvötn. The basal flow of meltwater away from the eruption 

site helped to reduce the confining pressures from the overlying ice and allowed the eruption to 

proceed explosively. The low density of the southern and central parts of the tindar show that 

most of the ridge is composed of fragmental material, not pillow lava (Gudmundsson et al., 

2002a; Gudmundsson, 2005), and heat flux estimates further support these models 

(Gudmundsson et al., 2004). However, subglacial flow of water was hampered at the northern 
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end of the ridge (formed in the later stages of the eruption) due to the emergent edifice built by 

fragmental material at the central part of the tindar. It is thought that this edifice may have acted 

as a barrier, forcing the meltwater to flow up and over it (Gudmundsson et al., 2004). It is 

possible that the northern section of the Gjálp tindar may partially contain pillow basalt, due to 

the higher confining pressures caused by impedance in flow over the central edifice 

(Gudmundsson et al., 2002a; Gudmundsson et al., 2004). Evidence for possible pillow lavas at 

this northern section include a slightly higher density of rocks in the northern (and central) 

section of the ridge (Gudmundsson et al., 2004), and the fact that the northern section only 

reached a height of 150-200 m. Because no pillow lavas were indicated by the gravity profile, 

Gudmundsson et al. (2004) argue that evidence from Gjálp shows that a thickness greater than 

550-750 m (the estimated thickness of the Vatnajökull ice cap) may be required for creating 

pillows, since pillows at Gjálp were likely not produced under the Vatnajökull ice cap.  

However, even though there is no definite evidence that pillow lavas exist at Gjálp, it is 

theoretically possible based on models of water pressure at this location during the eruption 

(Gudmundsson et al., 2004). Also, vesicular lava (porosities from 0.3 to 0.7) have comparable 

densities (Walker, 1989) as phreatomagmatic tephra (1,500 to 1,900 kg/m
3
) (Gudmundsson et 

al., 2004) and can easily be misidentified in a gravity profile survey like that used for the Gjálp 

deposits by Gudmundsson et al. in 2004.     

 Bennet at al. (2009) described in detail the facies of subaqueously emplaced materials 

from a formerly ice-confined, multi-vent, and single fissure-fed basaltic eruption that went on to 

form the Brekknafjöll–Jarlhettur ridge in Central Iceland (Bennett et al., 2009). This paper was 

mainly concerned with how the architecture of the facies helped in understanding the 

glaciotectonic deformation at the ridge complex. The role of glacial diamictons within these 
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facies was of particular importance in this work, as these deposits were used to infer multiple 

episodes of glacial transgression and regression at Brekknafjöll–Jarlhettur. Bennett et al. (2009) 

also provided useful depositional models that were applicable to this current study. In particular, 

models that detailed the deposition of clastic materials within subglacial meltwater vaults were 

especially good analogs for Sveifluháls. The Bennett et al. 2009 study described large-scale soft 

sediment deformation of saturated diamicton and gravel units caused by the weight of overlying 

tephras, breccias, lavas and water (Bennett et al., 2009). Bennett mainly focused on deformation 

found in diamictons and did not provide explanations for the slumping and deformation of the 

tephra that overlaid these deposits. This study will be examined further in this dissertation, but it 

is worth noting here that no diamictons were observed at Sveifluháls, but it is possible they may 

have eroded away or are covered by Kleifarvatn on the eastern side, or by post-glacial lavas on 

the western side. Overall, the deposits at Brekknafjöll–Jarlhettur are similar to Sveifluháls, but 

there are important differences that will be further explained in later chapters of this dissertation.  

Edwards et al. (2009) described the formation and evolution of the Pillow Ridge tindar, 

part of the Mount Edziza volcanic complex in British Columbia, Canada. The ridge is 

approximately 4 km long, 1 km wide and 450 m thick, and was likely erupted at ca. 0.9 Ma 

(based on fission track analysis of apatite crystals) (Souther, 1992) likely during a regional high 

stand of the middle Pleistocene Cordilleran Ice Sheet (Edwards et al., 2009). Pillow Ridge is 

comprised of about 40% pillow lava, 55% volcaniclastic tuff breccias and <5% of ―sedimentary‖ 

breccia (Edwards et al., 2009). Minor volumes (<5%) of dikes, tuff and lapilli tuff, and other 

sedimentary facies were also described. Ice thicknesses ranging from 380 m to 950 m were 

estimated based on field observations and FTIR analysis (Edwards et al., 2009).  
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One major difference between Sveifluháls and Pillow Ridge (aside from the much greater 

volume of pillow lava at Pillow Ridge) is the dominance of volcaniclastic breccias (Edwards et 

al., 2009). Tuff Breccia 1 (TB1) was described as a monomict breccia consisting of juvenile ash, 

lapilli and block sized fragments that varied in the degree of matrix support, color, and clast 

shape (Edwards et al., 2009). This breccia was reported to be formed by subaqueous mass flows 

and grain flows of Surtseyan tephra (Edwards et al., 2009). Tuff Breccia 2 (TB2) was described 

as a massive, clast-supported, and poorly sorted monomict breccia containing variable sized 

fragments of pillow lava (Edwards et al., 2009). TB2 was interpreted to be formed by slope 

collapse of pillow lavas and deposited towards the base of advancing pillow lobes (Edwards et 

al., 2009). The dominance of these breccias at Pillow Ridge is very different from Sveifluháls, 

where vitric phreatomagmatic tuff makes up at least 80% of the ridge (see Chapter 2).  

However, descriptions of several tuff facies that each make up less that 1% of the total 

volume at Pillow Ridge were very helpful in identifying and interpreting possibly similar facies 

at Sveifluháls. Pillow Ridge lapilli tuff facies ―LT‖ was described as a dark grey, massive, clast-

supported and moderately well-sorted unit comprised of angular fragments of vesicular basalt, 

and was interpreted as air fall deposits from a subaerial Surtseyan eruption column (Edwards et 

al., 2009). This facies is similar to glassy and massive lapilli tuff (LT3) found at Sveifluháls in 

this study (Chapter 2.1.4.3). Pillow Ridge tuff facies ―T‖, described as a laminated and locally 

cross-bedded unit of partially palagonitized ash-sized fragments, was interpreted as a true 

hyaloclastite (see Chapter 1.3) formed proximal to pillow extrusion and deposited by gravity 

flows and stream flows (Edwards et al., 2009). This facies seems similar to several laminated ash 

tuff facies identified in this study (AT1 and AT2 in Chapters 2.1.5.1 and 2.1.5.2), but the 

interpretation of these facies differs greatly from that at Pillow Ridge. Lastly, the Edwards et al. 
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study also describes a sedimentary ―sandstone‖ facies S1, which bears a strong resemblance to 

Sveifluháls facies LT4, a massive and coarse lapilli tuff (Chapter 2.1.4.4). Edwards et al. 

interpreted the S1 facies as material (tephra) from Surtseyan eruptions that deposited by mass 

flow in an ice-confined meltwater body (Edwards et al., 2009). This interpretation is very similar 

to that described for many of the ash and lapilli tuff facies in this dissertation (see Chapter 2.3 for 

these interpretations), and was a useful reference in better understanding the nature of 

Sveifluháls deposits. It is important to note that the Edwards et al. study categorized the S1 facies 

as a sedimentary rock unit even though other similarly subaqueously emplaced tuff facies at 

Pillow Ridge (i.e., facies LT and T) were classified as volcaniclastic rocks. The descriptions of 

tuff facies at Sveifluháls described in this dissertation are all considered volcaniclastic.  

1.4.2 Other Related Studies 

There are several other previous studies of basaltic and phreatomagmatic landforms that 

provided helpful background for this dissertation. While these papers do not specifically address 

the eruption of basaltic fissures within an ice-confined setting, they do provide important data on 

the nature of phreatomagmatic deposits emplaced in a subaqueous environment. These studies 

were therefore a good reference for identifying and interpreting Sveifluháls facies. These 

previous studies are summarized in the following. 

 Black Point, a flat-topped basaltic cinder cone that erupted during the Pleistocene in 

Mono Lake, California, was described in a 1964 paper by Christensen et al. (Christensen and 

Gilbert, 1964). The focus of this paper was to describe the nature of Black Point as an analog for 

some guyots (i.e., flat-topped submarine volcanoes). Deposits at Black Point were described as 

being comprised of partially palagonitized and explosively-erupted angular fragments of olive-
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rich basaltic tuff that contained some blocks of lava varying from 5 to 30 cm in diameter 

(Christensen et al., 1964). The bedded units (some of which are reverse-graded) are generally 

shallowly dipping outwards at 5°, but some local dips of 20° were observed (Christensen et al., 

1964). Dips of 30° to 45° were also observed at a possible crater wall, but generally the overall 

dip angle at Black Point was shallow (Christensen et al., 1964). Because of these shallow dips, 

flat-topped nature of the cone, and appearance of non-juvenile rocks found within the deposits, 

Christensen et al. determined that Black Point was formed by a violent eruption within Mono 

Lake, and that the tephra was emplaced by suspension and settling (Christensen et al., 1964).  

Pahvant Butte, Utah, is another example of a basaltic cone formed in a lacustrine 

environment, and was described in 1994 in a paper by James White (White, 1996). This study 

described in detail the pre-emergent facies that formed about 85 m below Lake Bonneville in 

15,300 BP (White, 1996), and how these deposits recorded the paleo-lacustrine environment 

present at the time of emplacement.  The facies associated with the initial subaqueous phase of 

the eruption are characterized by thinly bedded and intercalated units of lapilli and ash tuff, and 

were emplaced by suspension and settling and gravity flows (White, 1996). Upper units that 

were emplaced closer to the lake surface show cross bedding (representative of traction currents) 

and ripples (an effect of surface waves and oscillatory currents) (White, 1996). Several of the 

tuff facies at Pahvant Butte, namely the M1 (well bedded and broadly scoured ash and lapilli) 

and M3 (broadly cross-bedded with local lenses and ripples) facies, are very similar to similar 

tuff facies found at Sveifluháls and the interpretations provided by White were a helpful for 

understanding similar subaqueous depositional process that took place during the construction of 

Sveifluháls.  
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Another study that provided detailed description of phreatomagmatic tuff is a 2008 paper 

by Sohn et al. on hydrovolcanic deposits found in a core drilled from Jeju Island, Korea (Sohn et 

al., 2008). The objective of this paper was to differentiate between primary and secondary (i.e., 

remobilized) deposits and subaerial and submarine tephra, as it appeared in the core (Sohn et al., 

2008). The shift to and from marine, non-marine, volcaniclastic and non-volcaniclastic deposits 

showed that hydrovolcanic activity persisted in the Yellow Sea off the Korean Peninsula for 

nearly one million years during the Pleistocene between 1.5 Ma and 0.4 Ma (Sohn et al., 2008). 

Among the samples in the Jeju cores were thin and planar-bedded or laminated lapilli and ash 

tuffs (facies PHTR) that were intercalated with coarser and finer grained tuff layers that were 

deposited by traction and suspension sedimentation of varying intensity (Sohn et al., 2008). Very 

similar bedding characteristic were also observed in Sveifluháls lapilli and ash tuff facies 

(Chapter 2). Because the Sohn et al. study was based on core samples, it is impossible to 

determine how laterally extensive these deposits were, but the descriptions and interpretations 

provided by Sohn et al. for phreatomagmatic tuff were very helpful in understanding similar-

looking tuff units at Sveifluháls.  

However, the deposits formed by explosive basaltic eruptions in mostly unconfined 

lacustrine or marine settings lack the complexity and chaotic nature of deposits that arise from 

eruption in an ice-confined environment. Sveifluháls deposits, while similar in many ways to 

those discussed by the above studies, have been much more heavily influenced by remobilization 

than the facies described in previous work. These concepts and processes will be discussed in 

greater detail in later chapters of this dissertation. 
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1.4.3 Usage of the term “Hyaloclastite” 

The term ―hyaloclastite‖ appears regularly in literature describing the clastic deposits 

formed through the eruption of basalt into water. The sensu stricto interpretation of hyaloclastite 

is the fragmental spall that is generated by rapid quenching and mechanical flexing of basaltic 

magma emplaced in a subaqueous environment.  However, ―hyaloclastite‖ is also used as a term 

for any type of glassy clastic material formed by the quenching of basaltic glass in a subaqueous 

environment. For example, the term is also used to describe deposits formed by the explosive 

interaction of basaltic lava and water, whereas the more appropriate term for this type of material 

is ―vitric phreatomagmatic deposits‖. ―Hyalotuff‖ (Honnorez and Kirst, 1975) has also been used 

to refer to vitric phreatomagmatic deposits, but is rarely used outside the volcano-ice interaction 

research community. Thus, in regards to Sveifluháls, the term ―hyaloclastite‖ will only be used 

here to describe clastic deposits formed by the spalling of effusive subaqueous lavas, and the 

term vitric phreatomagmatic deposits will be used to describe clastic deposits formed by 

explosive phreatomagmatic fragmentation. Late Pleistocene Ice in SW Iceland 

There is evidence for 15 to 23 glaciations in Iceland over the past 3 million years 

(Einarsson et al., 1988). Data collected for this dissertation and described in this section indicate 

that Sveifluháls was most likely erupted during the Pleistocene; because we see no evidence of 

re-glaciation (i.e., striae, diamicton, etc.), it is most probable that the complex was erupted 

during the LGM sometime between 42,900 and 12,400 yr BP.  

 Determining the extent and ages of paleo-ice cover in Iceland is complicated by its 

location above a mantle plume and astride a divergent plate boundary. Because of the thin and 

plastic nature of the lithosphere in Iceland, the crust tends to rebound quickly from de-glaciation, 
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as evidenced by the 1,000 year rebound of crust since the LGM (Sigmundsson, 1991). Therefore, 

to determine past ice conditions in Iceland, it is necessary to consider a variety of evidence, 

including the rate of isostatic rebound of Iceland (calculated from paleo-shorelines and 

identification and dating of marine fossils), tephrochronology (the identification, K/Ar 

radiometric or relative age dating, and correlation of tephra units found within sedimentary 

deposits), lithological evidence for glaciation, location and altitudes of paleo-shorelines, location, 

age and extent of moraines, and δ18
O% marine isotopes from sea cores (Eiríksson, 2008).  

The oldest exposed rocks in southwest Iceland range in age between 2.4 million years 

(Aronson and Saemundsson, 1975) based on a radiometric age of a vitricastic unit in the 

Miðsuðurland sequence, (located about 45 km east of Sveifluháls) and 3.1 million years, based 

on K/Ar age determinations at Hvalfjörður, located about 25 north of Sveifluháls. It is difficult to 

determine the exact number of glaciations that occupied the Reykjanes Peninsula during the last 

several million years, as very little literature exists on deposits older than 40,000 years. Over the 

past million years at Miðsuðurland (about 150 km east of the Reykjanes Peninsula), four 

glaciation events were estimated (Eiríksson, 2008) based on K/Ar radiometric age dating and 

paleomagnetic excursion dating of glacial sediments and volcanic materials, respectively. These 

glaciations were at approximately 800,000 yr BP, 680,000 yr BP, 18,000 yr BP and 3,000 yr BP, 

but it is important to note here that not all of these glaciations may have reached as far as the 

Reykjanes Peninsula, and there is no evidence for glaciation on the Reykjanes Peninsula after 

12,400 yr BP.  

Offshore, coccolith records from cores taken from the Reykjanes Ridge south of 

Greenland indicate that increased advection of the North Atlantic Current, which provides a 

source of moisture from which to advance ice sheets onto the shelf, were dated at 69,000–67,000 
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yr BP, 56,000–54,000 yr BP, 35,000–33,000 yr BP, and 26,000–23,000 yr BP (Lackschewitz et 

al., 1998).  Much better records for glacial periods exist for middle to late Weichselian-age rocks 

(approximately 60,000 to 10,000 y BP) on the Reykjanes Peninsula (the most likely age of 

Sveifluháls), as discussed in the following section. 

1.4.4 The Weichselian Ice Sheet in Southwest Iceland 

The Weichselian ice sheet that covered the European continent from approximately 115,000 to 

10,000 yr BP (Svendsen et al., 1999; Siegert et al., 2001) likely extended across Iceland during 

the LGM (Norðdahl et al., 2008). The earliest known Weichselian rocks in Iceland are subaerial 

lava flows at Krafla volcano in Northern Iceland, which yield ages between 90 ka and 85 ka BP 

based on 
40

Ar/
39

Ar dating methods (Norðdahl et al., 2005). These rocks indicate that parts of the 

northern volcanic zone were free of ice at the time of the eruption. On the Reykjanes Peninsula 

in southwest Iceland (Figure 5), Skálamælifell and other tuyas east of Rauðamelur on the 

Reykjanes Peninsula have been 
40

Ar/
39

Ar dated to Middle Weichselian ages of 42.9±7.8 ka and 

are part of the Laschamp geomagnetic excursion (Levi et al., 1990). A whalebone fragment from 

the lower Spit formation at Rauðamelur has been dated to 34.7±1.4 
14

C ka BP (Norðdahl et al., 

2005). This formation is partially capped by a subaerial lava flow, indicating that seal level had 

regressed to a position below the whalebone-bearing unit (interstadial conditions).  
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Figure 5: A map showing the location, sequence and interpretation of deposits at Rauðamelur, the location of 

the tuya at Skálamælifell and the approximate location of Sveifluháls (modified after Norðdahl et al., 2005). 

  

About 5 km to the north-northwest of Rauðamelur, at Njarðvíkurheiði, is a sequence of 

marine sediments with an age of 21.5±0.1 
14

C ka pre-date the LGM glacier advance across and 

past the present coastline of the Reykjanes Peninsula (Norðdahl et al., 2005). Njarðvíkurheiði 

was then occupied by glaciers that were moving in a northwest direction at 320° (Norðdahl et al., 

2005). At Rauðamelur, LGM till is covered by another marine sediment (the Upper Spit 

formation) with an mean age of 12.4±0.08 
14

C ka BP (Norðdahl et al., 2005), indicating a glacial 

regression. Since this regression, the area has not been re-glaciated. The marine limit (ML) on 

the Reykjanes Peninsula (i.e., the highest recorded sea level)  was at approximately 100 m above 

current sea level (Hoppe, 1982; Eiríksson, 2008; Norðdahl et al., 2008) and is of Bølling age 

(i.e., 12.6±0.1 
14

C ka BP) (Ingólfsson and Norðdahl, 2001). The history of these late Pleistocene 

glacial episodes is summarized below (Table 1).  
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Table 1: Estimated Late Pleistocene Ice History on the Reykjanes Peninsula 

Year  

Paleo-

environment Sample Location Methodologies 

Sample 

Type Reference 

42.9±-7.8 ka to 

sometime before 

34.7±1.4 k Stadial Skálamælifell  

K-Ar and 

paleomagnetics 

Tholeiitic 

lava 
Levi et al., 

1990 

34.7±1.4 ka to 

21.5±0.1 Interstadial  

Rauðamelur, 

Njarðvíkurheiði 
14

C dating 

Whale 

bone 
Norðdahl et 

al, 2005 

after 21.5±0.1 to 

sometime before 

12.4±0.08 ka Stadial Njarðvíkurheiði relative 

Glacial 

sediments 
Norðdahl et 

al., 2005 

12.4±0.08 ka to 

present Interstadial  Rauðamelur  
14

C dating 

Marine 

fossils 
Norðdahl et 

al., 2005 

 

There were no marine fossils found at Sveifluháls, and the minimum elevation of 

Sveifluháls falls at 145 m ASL which is 45 m above the marine limit. There is also observable 

evidence of ice-contact within the tephra units (described later in this work) on the ridge. It is 

therefore safe to assume that the Sveifluháls fissure complex was erupted under ice and not 

under the ocean. Additionally, there is no observable evidence of glacial striae on the deposits 

and no evidence of diamicton at Sveifluháls, which implies that the ridge was not re-glaciated 

following emplacement. However, because tephra does not preserve striae very well, it is 

possible that the ridge was re-glaciated and that the evidence has since eroded away, or that only 

part of the ridge was glaciated and the remainder was ice-free. It is worth noting that few tuya 

and tindar sequences have deposits and erosion interpreted as glacial in origin, but this might be 

due to (1) lack of glacial sedimentological research done at them, (2) lack of source material at or 

near these complexes from which to generate clay-rich diamictons out of an overriding ice sheet, 

and (3) massive and poorly sorted deposits that might be interpreted as glacial in origin may also 

be generated by volcanic-sedimentary processes that can operate in the absence of ice. 
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In 2009, Leó Kristjansson from the University of Iceland analyzed the polarity of 

subaerial lava at Sveifluháls for this research project (described in detail in Section 2.1.1.2) and 

found no steep positive (i.e., downwards) inclinations, indicating normal polarity and no 

association with lavas located 5 km to the west at Hraunssels-Vatnsfell that were erupted during 

the Laschamp excursion (Levi et al., 1990) (Figure 6). Hence, Sveifluháls lavas were likely 

erupted after the Laschamp excursion ended around 40,000 years ago.  

 

 

Figure 6: Location map after Levi et al., 1990, showing the locations of Hraunssels-Vatnsfell lavas associated 

with the Laschamp excursion in relation to the location of Sveifluháls (indicated by arrow). 
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 Based on the ages from the studies referenced in Table 1 and from the observations made 

at Sveifluháls during the course of this research, it is considered most likely that the ridge 

erupted either sometime between 40 to 34.7±1.4 ka BP during the post-Laschamp middle 

Weichselian, or between 21.5±0.1 to 12.4±0.08 ka BP during the LGM on the Reykjanes 

Peninsula. It is possible that the interstadial periods at Skálamælifell, Rauðamelur and 

Njarðvíkurheiði (as referenced in Table 1) in the western part of the Reykjanes Peninsula do not 

necessarily equate the same paleoenvironmental conditions at Sveifluháls, which is further to the 

east. The recession of ice at these locations may be localized, and it is possible and therefore 

arguable that the middle Weichselian ice sheet remained at Sveifluháls up through the LGM and 

recessed around 12 ka BP.  

 On the Reykjanes Peninsula, an ice divide trended NE-SW across the middle of the 

peninsula and ice flowed in directions that were perpendicular to the divide (Figure 7) 

(Bourgeois et al., 1998). The locations of the divide and the ice flow directions were inferred 

from glacial striae and glacial geomorphologic features found throughout Iceland. Using the map 

from Bourgeois et al. (1998) map as a guide, Sveifluháls straddled both sides of this divide. 

North of the divide at Sveifluháls, ice flowed to the northwest, and south of the divide, ice 

flowed to the south-southeast. Data collected during field campaigns for this current research that 

indicate possible meltwater flow directions that are in agreement with these interpreted ice flow 

vectors from the Weichselian ice sheet. These data will be discussed later in this dissertation 

(Chapters 3 and 4). 
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Figure 7: A map showing the location and direction of ice divides and flows of the Weichselian ice cap in 

Iceland (after Bourgeois, 1998). 

1.4.5 A Review of Late Pleistocene/Weichselian Ice Thickness Estimates in Iceland  

Ice thickness estimates for late Pleistocene ice in Iceland are largely based on 
39

Ar/
40

Ar 

dates of tuyas, on the heights of tuyas, and on their superimposition upon 
14

C-dateable marine 

sediments (Rundgren and Ingólfsson, 1999). A comprehensive summary of prior research 

showing the ice thickness of LGM ice in Iceland (Rundgren et al., 1999) is summarized by an ice 

isopach map (Figure 8). According to this map, the ice thickness at Sveifluháls was in the 500 m 

to 600 m range during the LGM. 
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Figure 8: A map showing ice thickness in Iceland during the LGM, after Rundgren et al., 1999. Tuya 

heights were the main data source used to produce this ice isopach map. 

 

By using tuya heights, it is possible to constrain the thickness of ice because the 

maximum heights of these edifices are generally 100-200 m below the paleo-ice surface 

(Gudmundsson, 2005) but these estimates can only provide a very approximate ice thickness due 

to the many variables associates with the growth of tuyas in englacial lakes (Smellie, 2006), and 

are at best within a few hundred meters of error.  

If the construction of Sveifluháls was anything analogous to the growth of the 1996 Gjálp 

fissure-fed edifice under the Vatnajökull ice cap, it is possible that the tindar only reached 66% 

of the original ice thickness (Gudmundsson et al., 2004). The current height of the Sveifluháls 
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ridge is approximately 250 m from the exposed base of pillow lavas near the Kleifarvatn lake 

shore. If the Gjálp heat transfer model is applied to Sveifluháls, and assuming a maximum 15% 

loss of edifice height due to erosion since the time of emplacement (Schopka et al., 2006), then 

the ice must have been a minimum of 450 m thick at the time of the eruption. This estimate is 

comparable to the maximum LGM ice thicknesses of 500 to 600 m at Sveifluháls (Figure 8). 
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2.0  LITHOFACIES AND LITHOFACIES ARCHITECTURE OF THE 

SVEIFLUHÁLS COMPLEX 

The facies architecture of the Sveifluháls fissure complex is complicated and varies 

dramatically at different locations along the length of the main ridge. The complex contains basal 

pillow sequences, bedded and massive vitric phreatomagmatic tephra units, pillow lavas, and 

coarse peperite domains derived from intrusions, dike-like and regular intrusions, fluvially 

emplaced materials, and subaerial lavas. Many of the vitric phreatomagmatic tephra units are 

commonly slumped and deformed, and initially appear to be very chaotic when observed in the 

field. These units are also commonly intruded by dikes of varying type and size, and in many 

cases these intrusions cause soft sediment deformation, rotation, and slumping in the surrounding 

tephra units. Post-glacial subaerial lavas obscure the lower 60 m of ridge on the western flank of 

Sveifluháls, and Lake Kleifarvatn may obscure basal sequences on the eastern flank. Despite 

these challenges to observations in the field, there are clear and repetitive patterns of facies 

associations.  

During the course of this research, a dense array of field data was collected during three 

field seasons at Sveifluháls, including structural data at 245 locations, GPS locations of 414 

study points, detailed notes and rock descriptions, 80 rock samples, 354 photographs of both 

flanks of Sveifluháls that were later ―stitched‖ into a continuous assemblage (―photo mosaics‖), 

more than 1500 additional photographs of field sites and samples, and 7 logs that describe the 
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architecture and rock types found on the ridge. The logs are represented as traditional 

stratigraphic logs and transects (or ―strip maps‖).   

A Digital Elevation Model (DEM) and accompanying aerial orthophotographs of the 

study area were used as a backdrop and reference dataset for many of the analyses done in this 

research. These data products were obtained by Loftmyndir, an Icelandic aerial imaging and 

remote sensing company based in Reykjavik. The Loftmyndir data was extremely useful for 

better understanding the topography of Sveifluháls and for calculating ridge volume. At 

Sveifluháls, vents are likely represented as the peaks of individual elongated tuff cones that line 

the ridge complex in a series of crater row-type edifices (Jenness and Clifton, 2009). These 

elongated tuff cones grade into individual tuff ridge segments along the fissures, and appear as 

linear features (Figure 9). Within the study area, inter-ridge spacing is a maximum of 0.5 km, 

and at least 30 topographic highs are spaced an average of 0.7 km apart in a continuous 21-km 

long axis that makes up the Sveifluháls complex. Within the 10-km long study area, 17 

topographic highs were identified (Figure 9).   

Based on these digital elevation data, and by using the geometric model of each eruptive 

center as an elongated prism (volume = ½ base x height x length), the mean volume of individual 

eruptive centers/vents is about 0.081 km
3
 and the total ridge volume is about 2.76 km

3
. The total 

estimated DRE (dense rock equivalent) volume of the entire original complex is estimated at a 

minimum of 2.0 km
3
. This includes the estimated area buried by postglacial lava, the 10% loss to 

syn-eruptive floods (as at Gjálp in 1996) and 10% loss to post-eruptive erosion (as estimated at 

nearby Helgafell by Schopka et al. in 2006). 
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Figure 9: Location map of key morphological features within the study area, including linear features (orange 

lines), topographic highs (red circles), inter-ridge zones (blue), the locations of logs and transects (green) and 

other pertinent areas. 
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Figure 10: Air photos and corresponding digital elevation profiles showing several examples of 

topographic profiles of Sveifluháls. Profile A shows the topographic highs and lows along a line of sight along 

the major ridge axis (Figure 10). Profiles B and C show the variation in number of individual fissure 

segments and dike-related ridges (topographic highs oriented semi-parallel to the major ridge axis) found at 

different locations across the ridge complex (Figure 10). Profile B includes the elevation ranges for the highest 

peak at Sveifluháls (maximum elevation of 400 m asl). Profile C includes the elevation ranges for one of the 

tuff cones examined in detail in Log 2, discussed in Section 2.2 of this dissertation. 

   

The DEM data were examined in the GIS and several general topographic profiles were 

created that describe the topographic complexity of the complex (Figure 10). The profiles are 
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particularly helpful for understanding the range of elevations that characterize the eastern and 

western flanks of the complex. Generally, the eastern flank of the ridge is steeper and contains 

fewer smaller ridge segments, and the western flank is characterized by numerous smaller ridge 

segments and broad inter-ridge flat zones (Figure 10).  

2.1 LITHOFACIES DESCRIPTION  

In this Section, the major lithofacies observed at Sveifluháls are described in detail. The main 

categories for the facies at Sveifluháls are as follows: lavas, breccias, intrusions, lapilli tuffs and 

ash tuffs.  

 To characterize lapilli and ash tuffs into individual facies, the following traits were 

evaluated:  

o presence of clasts larger than the majority grain size (i.e., outsize clasts);  

o degree of angularity of grains;  

o presence of pillows, broken pillows (distinguished by glassy chill rinds, 

concentric banding of bubbles, and/or pie-shaped fragments), and bombs.  

o bedded or non-bedded tephra; 

o average clast size;  

o vesicularity of clasts; and, 

o presence of lithics other than pillow fragments (such as bombs and re-worked 

consolidated tephra blocks, i.e., intraclasts).  

It is important to establish here that the term ―bomb‖ is used in this dissertation in the 

strictest sense and is meant to describe flattened, elongated and/or twisted forms of ductile 
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deformed vesicular basalt larger than 64 mm that erupted explosively from the vent. Although a 

brittle fractured fragment of pillow basalt can act as a bomb, the two will be differentiated in this 

dissertation whenever possible. Generally, pillow fragments within tuff facies are distinguishable 

because the pillow fragments will maintain several characteristics, such as concentric banding or 

pie-shaped fragments formed by breakage along radial cooling joints. Note that no bomb sags 

were found in any Sveifluháls lapilli or ash tuffs. 

The percentages of clasts, phenocrysts, vesicles and other rock characteristics provided in 

the facies descriptions and interpretations represent volume percents unless otherwise noted. All 

facies descriptions and log associations are provided in a summary table (Table 2) in Chapter 

2.1.5.8. Facies descriptions with interpretations are given in Chapter 2.3.This dissertation will 

likewise also use recently suggested naming conventions such as ―lapilli tuff‖, ―ash tuff‖, etc. 

(White and Houghton, 2006) (Figure 11). 

 

 

Figure 11: Grain size ternary diagram for naming primary volcaniclastic rocks, from White and 

Houghton, 2006. The points of the triangle are represented as follows: B&B = blocks and bombs, L= lapilli, 

A= ash. Inside the triangle, the following as represented: B= breccia, TB= tuff breccia, LT= lapilli tuff, T= 

tuff. In this dissertation, AT was used instead of T for describing ash tuffs. 
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2.1.1 Lavas 

There are two types of lavas at Sveifluháls: basal pillow lavas (PL1) found at the lowest 

elevations along the ridge and subaerial lava (SL1) found at one discreet location in the southern 

portion of the ridge. Each following subsection is titled by the facies name and code, given in 

parentheses.  

2.1.1.1 Basal Pillow Lava (PL1) 

Pillowed lava flows are found at several locations along the base of Sveifluháls (Figure 

12). They may exhibit banding and varying degrees of vesiculation within bands or within the 

pillow core. The pillow lavas are generally topped by a pillow breccia PB1 or PB2.   

 

Figure 12: Field photo of a pillow lava (PL1),  shown with a 10 cm scale card. 

 

Both pillow interiors and their rinds were thin sectioned (Figures 13 and 14, 

respectively). These samples were taken from the pillow pictured in Figure 12, and represent part 
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of a basal pillow sequence found at the lowest elevation of Sveifluháls, along the Kleifarvatn 

lake shore as represented in Log 7.  

 

 

Figure 13: Microphotograph of a pillow lava (PL1) interior. 

 

Figure 14: Microphotograph of a pillow lava (PL1) rind. 
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Compositionally, the rinds and interiors are identical and are comprised of basaltic glass 

(i.e., sideromelane and tachylite), plagioclase microphenocrysts, and occasional concentric 

growths of reddish iron oxidation minerals (especially visible in Figure 13). The rinds have a 

glassy margin of sideromelane on the outside 1-2 mm of the sample (Figure 14). This signifies a 

faster cooling rate than the darker colored tachylite found inside the sample.  

2.1.1.2 Subaerial Lava (SL1) 

Subaerial pahoehoe basaltic lava at Sveifluháls were spotted at four locations and 

Sveifluháls and later confirmed at two of these four locations within the study area. According to 

a geologic map published by Jónsson in 1978 (Jónsson, 1978), other subaerial lavas may be 

present on the ridge but are further south and lie outside of the field area used in this study. 

These subaerial lavas are not to be confused with post-glacial lavas that erupted from a row of 

scoria cones concentrated in the southern end of Sveifluháls. These scoria cones are 

superimposed on older ice-confined vitric phreatomagmatic tuff from the Sveifluháls eruptions, 

and are characterized by their reddish color, signifying iron oxidation in air. The subaerial lavas 

on Sveifluháls described here were generated by eruption from the fissure complex while it was 

confined by ice but were emplaced in a dry environment (Figure 15).   
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Figure 15: A map showing the location, sample name and elevation of confirmed and possible 

subaerial lavas within the Sveifluháls study area (A). The location of the confirmed lava, in detail (white star 

and dashed white line) (B). 

 

The lava was confirmed as subaerial because a distinctive pahoehoe surface was found on 

the lava top (Figure 16). The remaining unconfirmed subaerial lavas look nearly identical to the 

confirmed subaerial one, and shared nearly all of the same field characteristics of the confirmed 

subaerial lava, aside from the pahoehoe surface. The confirmed subaerial lava was observed at an 

elevation of 250 m asl, well below the maximum ridge height of 400 m asl. The appearance of 

subaerial lavas at this elevation indicate that the meltwater vault drained at least 150 m below the 

highest peak of Sveifluháls, which in itself was probably 100 to 200 m below the original ice 

surface.  
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The subaerial lava was found capping a 3 m thick unit of massive highly vesicular lapilli 

tuff (LT9). The contact between the subaerial lava and the tuff has a strike and dip of 123/65. 

The lava is aphyrric, grey in color, and very dense with no vesicles. Fragments of this subaerial 

lava lay strewn across the valley floor, and appears as though the tephra underneath has eroded 

away, leaving the broken remnants of the flow. The subaerial lava was found adjacent to a 

drainage basin that was collecting runoff from an active geothermal area located about 60 m up-

slope from the site.  

The lavas are aphyric in thin section (Figure 17) and are composed of 85% to 90% 

sideromelane, 3% to 10% tachylite, and occasional plagioclase phenocrysts up to 1 mm in size. 

The composition of these and other Sveifluháls lavas are described in Section 2.6. 

 

 

 

Figure 16: Annotated field photos of the confirmed subaerial lava outcrop in the Sveifluháls study 

area. The pahoehoe surface is clearly marked in the image on the right. 
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Figure 17: Microphotographs of the confirmed lavas (A) and other lavas found in the field area that may also 

be subaerial (B-E), but lacked a pahoehoe surface or other characteristics that would confirm subaerial 

emplacement. 
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2.1.2 Breccias 

The breccias at Sveifluháls are generally found near areas of mid-slope intrusions and vary based 

on their degree of clast support and amounts of pillow, scoria and/or older, consolidated, and 

reworked tephra fragments. They also appear in proximity to basal pillow lavas and usually 

immediately overlie the layer of intact basal pillows.  

2.1.2.1 Clast-Supported Pillow Breccia (PB1) 

This breccia is clast supported and composed entirely of angular broken pillow 

fragments. The fragments can range from 2 to 50 cm and are recognized by one or more of the 

following features: pie shapes (a result of radial fracturing within the pillow), vesicles (from 

possibly several stages of degassing, allowing smaller bubbles to grow along the margins of 

larger ones), and concentric banding of the pillow interiors due to pulses of magma into (or 

through) the pillow. This type of pillow breccia is found adjacent to pillow lavas formed either 

from basal pillow sequences or as a peperite from intrusive pillowed dikes (Figure 21). In thin 

section, PB1 appears very similar to its adjacent pillow lava (PL1) (Figure 18). Examples of PB1 

are found in Logs 2, 3 and 7.  
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Figure 18: Microphotograph of pillow breccia PB1 in thin section. 

2.1.2.2 Matrix-Supported Pillow Breccia (PB2) 

This facies is a matrix-supported unit comprised of sub-angular to sub-round pillow 

fragments in an ash tuff and/or lapilli tuff matrix (Figure 19). The average size of pillow 

fragments is about 2.5 cm (ranging from 1 to 5 cm) but there may also be a few outsize clasts >5 

cm.  
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Figure 19: Field photo of a matrix-supported pillow breccia (PB2). Green ruler is 6 inches long. 

 

In thin section, PB2 looks very similar in nature and composition as the pillowed units 

adjacent to it (Figure 20). 

 

 

Figure 20: Microphotograph of matrix-supported pillow breccia (PB2) in thin section. 
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2.1.2.3 Matrix-Supported Heterolithic Tuff Breccia (LB1) 

This matrix-supported breccia consists of sub-angular to sub-rounded consolidated tuff 

fragments and/or pillow fragment lithics in an ashy and glassy matrix (Figure 21). The tuff 

fragments are typically angular to sub-rounded and sometimes exhibit bedding within the 

fragment itself, indicating that the material was remobilized and reworked from older tuff units. 

The average size of lithics is around 2.5 cm. No grading is observed in these poorly sorted 

deposits. Example of LB1 can be found in Logs 1 and 7. No samples were collected of LB1. 

 

 

Figure 21: Matrix-supported heterolithic breccia (LB1) in the field, seen above the yellow dashed line above a 

bed of PB1. Green ruler is approximately 6 inches long (15.25 cm). 
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2.1.3 Intrusions 

Intrusions are common at all Sveifluháls depositional centers and play an important role in the 

architecture of the ridge. There were three major types of intrusions distinguished within the 

study area.    

2.1.3.1 Unvesiculated Intrusion (I1) 

The intrusions are tabular in appearance, are not vesiculated and have sharp, unpillowed 

and non-peperitic margins (Figure 22). They are the least common intrusion type at Sveifluháls 

and may transition into a pillowed or peperitic intrusion. They may be either micro-porphyritic 

(with crystals of plagioclase) or aphyrric.    

 

 

Figure 22: A field photo of an unvesiculated intrusion (I1) hosted in a lapilli tuff. The margin of this intrusion 

has a glassy appearance likely due to rapid chilling. Blocky jointing is also seen along the margin.  



 51 

As shown in Log 3, the unvesiculated intrusions may have a kubbaberg, or ―box-jointed‖ 

texture that is marked by irregular, hackly, columnar jointing formed by water cooling 

(Sigvaldason, 1968; Smellie et al., 1998). Kubbaberg is typically ascribed to water cooling of 

extruded lavas (Smellie et al., 1998; Skilling, 2009). In this case, the kubbaberg texture is 

associated with rapid cooling of an intrusion that propagated into water-laden subaqueous tephra 

deposits. The plagioclase microphenocrysts in these intrusions are generally less than 0.25 mm, 

and they are randomly oriented in a groundmass of sideromelane (Figure 23). Red iron oxide 

minerals may also be present. 

 

 

Figure 23: Microphotograph of an unvesiculated intrusion (I1) in thin section. 

2.1.3.2 Pillowed Intrusion (IP1) 

Pillowed intrusions are a common feature at Sveifluháls, appear at all elevations of the 

ridge and are shown in Logs 1, 2 and 3. They are by far the most common type of intrusion 

within the Sveifluháls complex. The pillowed intrusions generally have non-peperitic margins, 
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although occasional detached discrete pillows may be seen within the host tephra (Figures 24 and 

25).  

 

 

Figure 24: An annotated field photo of pillowed intrusions (IP1), shown under the yellow dashed line, and 

hosted in a weakly bedded lapilli tuff. The interior of the intrusion has some block-jointed texture, and the 

pillows are formed on either side of the dike margin (more visible on the left side of the image). 
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Figure 25: An annotated field photo of pillowed intrusions (IP1), found mid-slope on the eastern flank of 

Sveifluháls (under yellow dashed line) at around 250 m elevation. It is very common to find these intrusions 

protruding from the host rock, as they less easily weather compared to the host vitric phreatomagmatic 

tephra. 

 

 In thin section (Figure 26), the pillowed intrusions (IP1) look very similar to the 

unvesiculated intrusions (I1) (Figure 22), but the microphenocrysts of plagioclase are slightly 

larger (less than 0.5 mm). An orientation of microphenocrysts may be present around vesicles or 

larger phenocrysts (Figure 26).  

Pillow-margined intrusions also formed mound-type structures in the field (Figure 27). 

The interior of the intrusion appears to be more like an unvesiculated intrusion I1 because of its 

blocky box-jointed texture at the interior of the dike, but the margins of the intrusion are 

extensively pillowed at the contact with the host tephra.  
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Figure 26: Microphotograph of a pillowed Intrusion (IP1) in thin section 

 

 

Figure 27: Field photo of a pillowed intrusion (IP1) forming a mound-like structure within a host of bedded 

lapilli tuff. 
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2.1.3.3 Peperitic Intrusion (IPep1) 

Peperitic intrusions (IPep1) are defined by their well-developed peperitic margins 

(Skilling et al., 2002b), i.e., magma-sediment mixing along the intrusion-host interface. These 

peperites typically contain discrete intact pillows, pillow lobes, pillow fragments, or non-

pillowed basaltic fragments in the mixture, forming fluidal to blocky bodies within the host 

tephra (which may be deformed or overturned by the intrusion) (Figure 28). Complex jointing 

patterns and magma-sediment interface margins may also be observed in the juvenile domains of 

peperitic intrusions (Figure 29) 

 

 

Figure 28: Annotated field photo of a peperitic intrusion (IPep1) showing fluidal and blocky juvenile 

clasts in the peperite and domains of overturned host tephra.  
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Figure 29: Annotated field photo showing several peperitic domains (IPep1) that feature different styles of 

jointing and degrees of mingling with the host tephra. 

 

Typically, the host tephra within the peperitic margin is more heavily palagonitized and a 

deeper color of orange-brown in hand sample when compared to regular tephra in adjacent areas. 

This is due to the alteration caused by convecting hydrothermal fluids formed by heat from the 

intrusion within water-laden subaqueous tephra. 

2.1.4 Lapilli Tuffs 

Lapilli tuffs are characterized by the dominance (>50%) of lapilli-sized (>2 mm) glass 

fragments. The following lapilli tuff facies were distinguished. 
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2.1.4.1 Bedded Heterolithic Lapilli Tuff (LT1) 

LT1 is characterized by beds of lapilli sized clasts (>2 mm) of dark, sub-angular to sub-

round vesicular (up to 50%) glass fragments combined with lighter-colored clasts or coherent 

(and likely older) tephra. Some ashy laminations may also be present in this facies. It is labeled 

as heterolithic because the clasts within the tuff vary in composition: rounded outsize clasts (5-20 

cm) of vesicular bombs, pillow fragments, and/or older tephra (remobilized) may be present 

(Figure 30). The amounts of these heterolithic materials may vary within the facies and within 

individual bedded units. Cross bedding of tephra and lenticular forms of outsized, vesicular 

fragments wedged within the lapilli tuff may also be present. Bedded heterolithic-bearing lapilli 

tuff (LT1) is widely observed at Sveifluháls and examples of it can be seen in Logs 1, 2, 3, 4, 5, 

and 7. The appearance of LT1 varies depending on elevation. At high elevations, LT1 is 

generally not cross-bedded and is steeply dipping (>40°), while at middle and lower elevations, 

cross-bedding is present and the outcrops are generally more shallowly dipping (<40°).  
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Figure 30: Field photos of bedded heterolithic lapilli tuff (LT1) in the field (A and C) and a 

microphotograph of it in thin section (B). The photo in A shows an example of steeply-dipping and planar-

bedded LT1 at the top of the ridge. The microphotograph in B shows a moderately vesiculated (about 40%) 

LT1 in thin section, from the same outcrop shown in Image A. The photo in C shows LT1 at the lake shore, 

where the outcrop is shallowly dipping and shows some cross-bedding. 

 

In thin section, LT1 at high elevations displays generally lapilli-sized and vesicular 

glassy clasts (up to 50%) with approximately 25% tachylite distributed among the sideromelane 

fragments, which is generally higher than that found in other bedded lapilli tuff facies.   
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2.1.4.2 Bedded Lapilli Tuff (LT2) 

This lapilli tuff is very similar to LT1 but is generally more finer-grained, and the average 

clast size is slightly smaller at 2 mm and outsize clasts range from about 3 to 7 cm. The bedded 

lapilli tuff may be parallel or cross bedded, and consists of beds of lapilli sized clasts of dark 

tachylite vesicular glass fragments and lighter-colored glass and altered tephra (Figure 31). 

Clasts are generally sub-angular to sub-rounded. LT2 is also common at Sveifluháls and appears 

in Logs 1, 2, and 3.  

 

 

Figure 31: Field photo of parallel bedded lapilli tuff (LT2) in the field showing a scour and fill form 

at the location of the rock hammer. 
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2.1.4.3 Glassy Massive Lapilli Tuff (LT3) 

This facies is defined by poorly consolidated and clast-supported, lapilli-sized, glassy, 

vesicular tuff fragments that make up >50% of the unit. The remainder is generally comprised of 

glassy ash tuff fragments with some scoriatious clasts less than 2 cm. The facies is often entirely 

structureless or may have slight suggestions of ill-defined bedding. At some locations, 

deformation bands and water escape structures may be present (Figure 32), and soft sediment 

deformation structures may be visible at the contact margin with another facies. However, these 

structures are not always present nor are they continuous when present across a unit of LT3.   

  

 

Figure 32: A field photo of glassy massive lapilli tuff (LT3). Backpack (about 50 cm high) is used for scale. 

The unit is mostly structureless, but some faint, lighter-colored string-like features may indicate bedding or 

deformation banding due to small amounts of slumping prior to final emplacement.  
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The average clast size is about 2 mm, and sub-angular to sub-rounded outsize clasts 

(when present) range from 0.5 cm to 2 cm. Outcrop faces are generally weathered to a smooth 

appearance and crumble easily when struck with a rock hammer. This facies is found at several 

locations at Sveifluháls and is featured in Log 5. Figure 33 shows an example of LT3 in the field. 

This photo was taken near the peak of Miðdegishnjukur, which is a tuff cone that was described 

in the Transect Log 2. In thin section (Figure 33), the glass clasts are unaltered, and larger clasts 

(> 0.5 mm) are sub-rounded while smaller clasts (usually < 0.4 mm) are sub-angular to angular, 

and appear to be remnants of broken glass clasts that fractured near bubble walls, as evidenced 

by their tricuspoidal and shard-like shapes. The glass fragments themselves do not appear to 

contain much vesiculation (<5% vesiculation is seen in the fragments). 

 

 

Figure 33: Microphotograph of LT3 in thin section. Due to the crumbly nature of the rock sample, 

the thin section was impregnated by blue epoxy before cutting. Some of the blue areas in the thin section 

likely represent clasts that were “plucked” out during the slide preparation process. 
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2.1.4.4 Massive Coarse Lapilli Tuff (LT4) 

LT4 is defined as a mostly massive (some very weak and discontinuous bedding may be 

present in some locations), clast-supported lapilli tuff that also contains coarse, sub-angular to 

sub-round clasts of older tuff intraclasts and dark vesicular glass. The average clast size is 7 mm 

and the facies may also have dark, vesicular, sub-rounded outsize clasts from 2 to 10 cm (Figure 

34).   

 

 

Figure 34: Field photo of a massive coarse lapilli tuff (LT4). Field book used for scale is about 19 cm long.  



 63 

 

Figure 35: Annotated field photos of LT4, shown below the dashed yellow line. These two field examples 

show a facies that is smoothly weathered but punctuated by outsize clasts. The outcrop itself shows varying 

degrees of alteration, with the example shown in B being the more altered in appearance. This alteration is 

also apparent in thin section, as seen in Figure 37B. 

 

In the field, LT4 can have a range of appearances (Figure 35), but it defined by the 

presence of outsize clasts of broken vesicular lava (either bombs or pillow lava) up to 10 cm set 

in a coarse, clast-supported glassy matrix. Although not widely featured in the Logs, this is a 

very common facies at Sveifluháls and it is thus important to understand the range of 

appearances this facies includes. In thin section (Figures 36 and 37), the glass fragments do not 

exhibit much, if any, alteration. Larger glass clasts (> 1mm) are sub-angular and smaller clasts (< 

1mm) are generally angular to sub-angular and exhibit tricuspoidal shapes.  
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Figure 36: Microphotograph of LT4 in thin section. A portion of a large outsize clast (bottom of image) is 

rimmed in tachylite and contains an interior that is microcrystalline and non-vesicular. 

 

 

Figure 37: Microphotographs of LT4, corresponding to the outcrops shown in Figure 37. 
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In thin section, samples are coarse-grained and contain lapilli-sized (>2 mm) clasts of 

vesicular glass (some glass is highly vesiculated, as in Figure 37B) which are mostly clast-

supported, but some smaller clasts (<0.5 mm) may also be present among the larger clasts. These 

finer clasts appear to be broken fragments of vesiculated glass, and many have tricuspoidal or 

shard-like shapes. The vesicularity varies widely from sample to sample. Some clasts may show 

no vesicularity whatsoever, while others show a high degree of vesiculation (between 50-75%) 

typical of Surtseyan tephra.  

2.1.4.5 Bedded Coarse Lapilli Tuff (LT5) 

This facies is characterized by parallel bedding and cross-bedding, and generally 

normally graded clast-supported lapilli tuff with coarse, sub-angular to sub-round clasts of vitric 

phreatomagmatic tuff and dark vesicular glass fragments (Figure 38). The average clast size is 7 

mm and may also contain up to 40% of dark, vesicular, and sub-rounded outsize clasts up to 5 

cm. The facies may be very weakly bedded in well-sorted zones, making the bedding only faintly 

discernable. This facies is found in Logs 1, 3 and 7.  
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Figure 38: Field photo of cross-bedded coarse lapilli tuff (LT5). 

2.1.4.6 Massive Glassy Lapilli Tuff (LT6) 

Facies LT6 is defined as a massive, glassy, matrix-supported lapilli tuff with coarse, sub-

angular to sub-round clasts of tuff and dark vesicular glass (Figure 39). It is similar to facies 

LT3, but is coarser. The average clast size is 3 mm and unlike LT3, LT6 contains dark, vesicular, 

sub-rounded outsize glassy clasts up to 5 cm. These outsize clasts appear to be either broken 

bomb or pillow fragments. This facies is featured in Logs 2, 5 and 6, and is found at other 

locations at Sveifluháls.  
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Figure 39: Field photo of smoothly-weathered massive glassy coarse lapilli tuff (LT6) in the field. 

Person is standing on the unit. 

 

In thin section, many clasts appear to have broken along bubble walls and exhibit 

cuspoidal and shard-like shapes (Figures 40 and 41). 

 

 

Figure 40: Microphotograph of LT6 from the outcrop shown in Figure 39. 
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Figure 41: Microphotograph of LT6 shown in thin section from the outcrop shown in Figure 39. 

2.1.4.7 Massive Bomb or Pillow-Bearing Lapilli Tuff (LT7) 

Facies LT7 is characterized as a massive vitric lapilli tuff that contains bomb and/or 

pillow fragments up to 10 cm, and/or intact discrete pillows up to 35 cm (Figure 42). It is similar 

to LT3 but is significantly more coarser-grained. The average clast size can range from 3 mm to 

7 mm and may also contain lenses of pillow or scoriaceous breccia. This facies was found in 

Logs 1, 2 (Figure 44), 4 and 7. Like LT3, facies LT7 is mostly structureless but may display 

some discernable soft sediment deformation or water escape structures.  

In thin section, LT7 exhibits angular to sub-angular, matrix-supported clasts (Figure 45), 

and may have a matrix that appears to be heavily altered into palagonite, making individual 

matrix grains indiscernible (Figure 45A).  
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Figure 42: Field photo of massive bomb or pillow-bearing lapilli tuff (LT7), in this case showing an intact 

pillow distinguished by its smooth and round exterior, and by the presence of pie-shaped and banded 

fragments surrounding it. 

 

 

Figure 43: Annotated field photo of LT7 in the field, outlined by the yellow dashed line. In this example, the 

coarse-grained and glassy nature of the facies is apparent, particularly towards the base of the outcrop. 
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Figure 44: Field photo of LT7 with a boulder-sized clast of poorly vesiculated basalt, either a bomb or pillow. 

This facies variant is the coarsest grained of the three examples shown of LT7. 

 

 

Figure 45: Microphotographs of LT7 in thin section, showing an altered and palagonitized matrix 

(A) and an unaltered matrix (B). In both images, the larger glass fragments range from 1 mm to 0.25 mm, 

and the smaller fragments have tricuspoidal and shard-like shapes. The vesicularity is rather low (<5% 

overall), and appears to be similar in clast shape and vesicularity to that found in LT3, with the main 

difference being a more coarse-grained texture in LT7. 
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2.1.5 Ash Tuffs 

Ash tuffs are characterized by the dominance (>50%) of ash-sized (<2 mm) vitric fragments 

(Heiken and Wohletz, 1985; White et al., 2006). To characterize these ash tuffs into individual 

facies, the following criteria were used: presence of outsize clasts larger than 2 mm, degree of 

angularity of grain size, presence of pillows, broken pillows or bombs, bedded or non-bedded, 

average clast size, vesicularity of clasts, and presence of lithics other than pillows or bombs. To 

be classified as a ―fine ash tuff‖, the facies must have an average grain size of <0.063 mm 

(Heiken et al., 1985). Significant amounts of fine ash within a single bed or lamination at 

Sveifluháls were not observed, so all facies are either named as ―ash tuff‖, when grain sizes 

ranged between 0.063 mm and 2 mm, or ―coarse ash tuff‖ where the predominant grain size was 

between 1-2 mm (White et al., 2006). The following facies descriptions include this and the other 

above factors in their taxonomy. 

2.1.5.1 Laminated Ash Tuff (AT1) 

Facies AT1 is dominated by parallel and cross-bedded laminations of <2 mm ash 

fragments. In some outcrops at Sveifluháls (as shown in Log 4), this facies may alternate with 

beds of lapilli sized (>2 mm) fragments (facies LT3). Outsize, sub-rounded to sub angular, and 

dark glassy clasts of vesiculated lava (either pillow or bomb fragments) up to 5 mm may be 

present in the laminations. However, this is not common and not continuous across all units of 

AT1 and is typically only found in isolated lenses within the laminations (Figure 46). AT1 is 

found in Logs 1, 2, 4 and 6.  
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Figure 46: Field photo of laminated AT1, interbedded with LT3. 

 

 

Figure 47: Field photo of an outcrop of cross-bedded AT1 with a small slump at its center. 



 73 

 

Thin sections of AT1 show a range of average grain size between 0.1. mm and 0.5 mm 

(Figures 48, 49 and 50).  Many of the AT1 clasts show tricuspoidal and shard-like shapes, 

indicating that the fragments were generated from highly vesiculated magma.  Not many 

complete vesicles remains in the glass fragments, and overall the vesicularity of ash clasts 

appears to be <3%. This is because the ash-sized fragments are a product of breakage of larger 

clasts along bubble walls. 

 Sideromelane is the predominant glass type in the AT1 facies, making up >96% 

of the sample. The remaining percentages are comprised of tachylite (roughly 3%) and iron 

oxidation minerals (1%). 

 

Figure 48: Microphotograph of AT1, from the outcrop shown in Figure 46. This sample shows some 

imbrication of grains. Elongated clasts are likely the broken walls of larger vesicles. 
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Figure 49: Microphotograph of AT1 taken from a sample in Log 2. Very thin (1 mm) individual 

laminae can be seen here (dark band in center of image), marked by the annotated black lines. 

 

 

Figure 50: Microphotograph of AT1 from Log 1. This sample was much finer grained in comparison 

to Figures 50 and 51. 



 75 

2.1.5.2 Laminated Coarse Ash Tuff (AT2) 

Facies AT2 is represented by repeating parallel and cross-bedded laminated beds of 

mostly 1-2 mm ash fragments. Outsize clasts of broken pillow, bomb and lapilli fragments up to 

5 cm may be present. The facies differs from AT1 in that it is coarser-grained and contains as 

much as 40% clasts >2 mm. This facies is found in Logs 1, 2 and 4. This facies often weathers to 

a smooth surface (Figures 51 and 52). In thin section (Figures 53 and 54), AT2 is coarser-grained 

than that of AT1 and shows an average grain size range from about 0.7 to 1 mm. Glass clasts in 

AT2 are also more vesiculated than those of AT1. About 20% of the glass fragments show 

vesiculation in thin section, and of these vesiculated fragments, bubbles can make up as much as 

40% of the clast.  

 

Figure 51: Field photo of AT2. The unit is mostly planar bedded and weathered to a smooth surface. This 

unit is more laterally continuous (around 7 m) than what is typical for Sveifluháls tephra deposits. 
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Figure 52: Field photo of AT2 showing cross-bedding. Ruler is approximately 16 cm long. Note the coarser 

texture and lighter color of clasts in some of the alternating beds.   

 

 

Figure 53: Microphotograph of AT2 from a sample of the outcrop shown in Figure 52. Note the larger clast 

size in comparison with AT1. 
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Figure 54: Microphotograph of AT2 from Log 1. 

2.1.5.3 Laminated Swirly Ash Tuff (AT3) 

One of the most enigmatic facies at Sveifluháls was parallel-laminated ―swirly‖ ash tuff. 

This ash tuff was very different from anything else seen on the ridge complex, and is 

characterized by a swirled and/or deformed ribbons of fine, ashy laminations that make up beds 

of about to 5 cm in width (Figure 55 and 56). Individual laminae are generally less than 3 mm 

wide and are made up of fine ash clasts less than 0.063 mm in size. This facies appears 

sporadically across Sveifluháls and seems to correspond with slumped blocks of tuff. AT3 is 

featured in Logs 1, 2 and 3. In thin section (Figure 57), the rock exhibits sub-millimeter 

laminations of well-rounded fine ash fragments.  

In the field, outcrops of this facies hosted in bedded tuff generally follow the trend of 

bedding of the host but have a more undulating bed form. In massive tuff, the facies has a 

tendency to form swirls or wave-like morphologies within the host tuff. These irregular 

morphologies give the impression that this facies was squirted or injected into wet, 
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unconsolidated tephra at the time of emplacement, or possibly even formed along the slip plane 

of tephra blocks that were undergoing slumping and sliding.  

  

 

Figure 55: Field photo of AT3, showing swirled, ashy laminations set within a massive lapilli tuff 

unit. 
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Figure 56: Field photo of AT3 set in a massive lapilli tuff. Purple pen used as scale is approximately 

15 cm long. 

 

 

Figure 57: Microphotograph of AT3 in thin section. Sub-millimeter laminations are clearly seen as 

alternating darker and lighter bands of fine ash fragments. 
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2.1.5.4 Massive Glassy Ash Tuff (AT4) 

Facies AT4 is comprised of predominantly massive and mostly dark, glassy ash tuff with 

<50% lapilli-sized glassy clasts. Few outsize clasts appear in this massive glassy ash tuff. AT4, 

as it appears on Log 2 (Figure 58), looks as though it underwent slumping and deformation prior 

to emplacement on the ridge flank. Lapilli sized clasts are embedded within a massive unit of 

ash, and no sorting or grading appear to have taken place in the unit. In thin section (Figure 59), 

glassy, unaltered, sub-angular to sub-round glass fragments (mostly sideromelane) with an 

average clast size of 1 mm make up >50% of the sample. The remaining materials are sub-

rounded, finer-grained (average 0.10 mm) glassy clasts, with the smallest of these fragments 

showing signs of alteration. A clast of non-vesiculated tachylite containing microcrystalline 

plagioclase (seen in the lower right corner of Figure 59) indicates that some lava was 

incorporated into the sample, most likely from an intrusion. 
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Figure 58: Annotated field photo of AT4, shown here enclosed within the yellow dashed line. (Note 

that on the surface, the unit appears to be coarser than a typical ash tuff, but this is because a thick layer of 

lichen has obscured the underlying texture of the rock.) 

 

 

Figure 59: Microphotograph of AT4 from the outcrop featured in Figure 58. 
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2.1.5.5 Massive Bomb or Pillow-Bearing Ash Tuff (AT5) 

Facies AT5 is defined as a massive tuff containing angular to sub-rounded clasts of 

unaltered glass. The average clast size is 1 mm and flattened and/or twisted vesiculated bombs 

up to 35 cm are typically present (Figure 60). The host tuff is very glassy, and larger clasts (i.e., 

those discernable by the naked eye) have >50% vesicles. In thin section, ash clasts may show 

tricuspoidal and shard-like shapes as well as long, limu-type fragments that may represent 

broken bubble walls from highly vesiculated lava (Maicher et al., 2000; Maicher and White, 

2001). This facies is featured in Log 6.  

 

 

Figure 60: Photo of AT5 in the field, as seen in Log 6. In this figure, a bomb fragment is clearly 

visible at the center of the photograph and is surrounded by a massive, glassy ash tuff that has weathered to a 

smooth surface. 
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In thin section, AT5 consists of angular to sub-rounded clasts of unaltered glassy 

fragments <1 mm in size (Figure 61). Some of these clasts are curved and shard-like, and 

resemble Limu O’Pele-type, shard-like fragments (Maicher et al., 2000; Maicher et al., 2001).  

 

 

Figure 61: Microphotograph of Limu O'Pele-type clasts (in black dashed outlines in A and B) within 

the sample of AT5 featured in Figure 60. In A, the shard is curved and thin, forming an arc which was fitted 

to a bubble size of about 1.5 mm. The outlined clast in image B appears to have folded back on itself while 

still ductile, forming a V-shape.   

2.1.5.6 Bedded Bomb or Pillow-Bearing Ash Tuff (AT6) 

Facies AT6 is defined as a bedded tuff composed of >50% glassy, highly vesiculated 

glassy clasts <1 mm and also containing <50% poorly-vesiculated, glassy, plagioclase-bearing 

lapilli-sized clasts >2 mm.  AT6 also contains intact or broken vesiculated pillows and/or bombs 

up to 20 cm in size and contains a much as 30% lapilli-sized clasts (Figure 62). In thin section 

(Figure 63), the glass clasts are highly vesiculated with bubbles up to 0.5 mm in diameter. 

Smaller fragments breaking off of the larger clasts can be seen filling in the voids left by the 
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breaking vesicles. Vesiculation is not found in all clasts, but roughly 50% of all clasts show some 

degree of vesicularity. In clasts >0.5 mm, vesicularity can be as high as 75% (Figure 63).  

 

 

Figure 62: Field photo of a large intact pillow in bedded ash tuff AT6, as featured in Log 1. 
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Figure 63: Microphotographs of AT6 in thin section (A and B). Sample was taken from the ash tuff 

surrounding the pillow shown in Figure 64. The sample shown in A is well-vesiculated (about 70%) and the 

bubble walls are mostly intact. The sample in B is not as well vesiculated and contains more shard-like 

fragments. A lapilli-sized, poorly-vesiculated clast of plagioclase-bearing glass can be seen surrounded by 

vesiculated ash-sized clasts. 

2.1.5.7 Bedded Heterolithic Ash Tuff (AT7) 

Facies AT7 consists of a matrix-supported parallel bedded tuff of glassy vesiculated 

clasts with an average size of 1 mm. Beds contain a mixture of lithics up to 15 cm in size, and 

may include two or more of the following lithic types:  pillow fragments, bomb fragments and 

tuff intraclasts (Figure 64). This facies can be seen in Logs 2 and 3. In thin section (Figure 65) 

the sample is low to moderately vesiculated, and 1 mm subrounded glass clasts are in a matrix of 

smaller ash fragments (average of 0.4 mm) and fine ash (<0.064 mm).  
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Figure 64: Field photo of an outcrop of AT7.  Person is standing on the top of the bed. 

 

 

Figure 65: Microphotograph of AT7, from a sample taken from the outcrop shown in Figure 64. A dark, 

tachylite clast containing plagioclase microphenocrysts can be seen in on the left side of the image.   
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2.1.5.8 Summary of Lithofacies at Sveifluháls 

The following table (Table 2) represents a summary of all lithofacies observed at 

Sveifluháls.  

Table 2: Sveifluháls facies summary table. 

LAVAS 
Code Name Description Log  

PL1 Pillow lava 

Pillow basalts found along the base of Sveifluháls. May 
exhibit banding and varying degrees of vesiculation 
within bands or inside the pillow core.  7 

SL1 Subaerial lava Light to medium grey and aphyric subaerial lava. n/a 

BRECCIAS 
Code Name Description Log 

PB1 
Clast-supported 
pillow breccia 

Clast-supported deposit of broken pillow lava. Pillow 
fragments can range from 2 to 50 cm. 2, 3,7 

PB2 

Matrix-
supported 
pillow breccia 

Matrix-supported deposit of sub-angular to sub-round 
pillow fragments in an ashy and/or lapilli matrix. 
Average size of pillow fragments is 2.5 cm (ranging 
from 1 to 5 cm), but some outsize pillow fragments 
may also be present.  1, 2,7 

LB1 

Matrix-
supported 
heterolithic tuff 
breccia 

Matrix-supported deposit of sub-angular to sub-round 
vesicular bombs, tuff and/or pillow lithics in an ashy 
matrix. Average size of lithics is 2 cm. Rare outsize 
clasts. 1,7 

INTRUSIONS 
Code Name Description Log 

I1 
Unvesiculated 
Intrusion 

Tabular, non-vesicular intrusion with linear dike 
margins, either micro-porphyritic or aphyric. 
Unpillowed and non-peperitic margins.  3 

IP1 
Pillowed 
Intrusion 

Pillowed or dense with pillowed margins. Non-
peperitic. 1, 2, 3 

IPep1 
Peperitic 
Intrusion 

Intrusion with peperitic margins emplaced within 
tephra. Pillow forms may or may not be present or 
identifiable. n/a 
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LAPILLI TUFFS 
Code Name Description Log 

LT1 

Bedded 
heterolithic 
lapilli tuff 

Beds of lapilli sized clasts (>2 mm) of dark vesicular 
glass fragments and lighter altered material, sub 
angular to sub rounded. Abundant rounded outside 
clasts (5-20 cm) of vesicular bombs, pillow fragments, 
and/or older tephra. Cross bedding may be present. 
Lenticular forms or zones containing very coarse lapilli 
and larger clasts may also be present. 

1, 2, 3, 
4, 5, 7 

LT2 
Bedded lapilli 
tuff 

Same as LT1 but lacks outsize clasts. Beds of lapilli 
sized clasts (>2 mm) of dark vesicular glass fragments 
and lighter altered material, sub angular to sub 
rounded. Average clast size is 2mm.   1, 2, 3 

LT3 
Glassy massive 
lapilli tuff 

Poorly consolidated clast-supported lapilli tuff 
fragments and dark vesicular glass, average clast size is 
about 2 cm and maximum outside clasts are up to 2 
cm and sub-angular to sub-round. Dark vesicular clasts 
make up 50% of the unit. Outcrop faces are weathered 
to a smooth appearance and crumble easily. 4, 5, 6 

LT4 
Massive coarse 
lapilli tuff 

A massive clast-supported lapilli tuff with coarse, sub-
angular to sub-round clasts of tuff and dark vesicular 
glass. Average clast size is 7 mm. May contain dark, 
vesicular, sub-rounded outsize clasts up to 10 cm.  2, 3 

LT5 
Bedded coarse 
lapilli tuff 

Bedded and generally normally graded clast-supported 
lapilli tuff with coarse, sub-angular to sub-round clasts 
of tuff and dark vesicular glass. Average clast size is 7 
mm. Contains dark, vesicular, sub-rounded outsize 
clasts up to 5 cm. Normally graded and may be very 
weakly bedded in well-sorted zones. 1, 3, 7 

LT6 
Massive glassy 
lapilli tuff 

A massive, glassy matrix-supported lapilli tuff with 
coarse, sub-angular to sub-round clasts of tuff and 
dark vesicular glass. Average clast size is 3 mm. 
Contains dark, vesicular, sub-rounded outsize clasts up 
to 5 cm.  

1, 2, 5, 
6 

LT7 

Massive bomb 
or pillow-
bearing lapilli 
tuff 

Massive fine-grained tuff to lapilli tuff containing 
pillow fragments or other clasts up to 10 cm and/or 
intact discrete pillows up to 35 cm. Average clast size 
ranges from 3 mm to 7 mm. May contain lenses of 
pillow breccia.  

1, 2, 
4,7 
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ASH TUFFS 
Code Name Description Log 

AT1 
Laminated  ash 
tuff 

Fine-grained (<2 mm) ash fragments alternating with 
beds of lapilli sized (>2 mm) fragments. Rare outsize 
dark glassy clasts up to 5 mm. Normally graded. May 
be cross-bedded. May contain lenses of lapilli clasts. 
May also contain ripple marks and climbing ripples. 

1, 2, 4, 
6 

AT2 
Laminated 
coarse ash tuff 

Repeating laminated beds of 1-2 mm ash fragments.    
May be cross-bedded. Outsize clasts may be present, 
but not in all cases.  1, 2, 4 

AT3 
Laminated 
swirly ash tuff 

Swirled and/or deformed ashy laminations up to 5 cm 
in width. Individual laminae are generally less than 3 
mm wide.  1, 2, 3 

AT4 
Massive glassy 
ash tuff 

Very glassy tuff with some lapilli-sized glassy clasts.  
No outsize clasts larger than 64 mm. 2 

AT5 

Massive bomb 
or pillow-
bearing ash tuff 

Massive tuff containing angular to sub-rounded clasts 
of unaltered glass. Average clast size is 1 mm with rare 
bombs up to 35 cm. Host tuff is very glassy, sparkly 
and dark. Clasts are very frothy with >50% void space. 
Thin section may show tricuspoidal glassy clasts and 
long, limu-type glass fragments.  6 

AT6 

Bedded bomb 
or pillow-
bearing ash tuff 

>50% ash fragments (<2 mm) in 1-3 cm beds, 
containing 2-5 cm beds of clast-supported lapilli 
fragments (>2 mm, average size of 5 mm) of dark 
vesicular glass and lighter altered material. Facies may 
contain intact or broken bombs or pillows up to 20 cm. 1, 7 

AT7 

Bedded 
heterolithic ash 
tuff 

A matrix-supported bedded tuff of glassy vesiculated 
clasts (average 1 mm clasts). Beds contain abundant 
lithics and/or pillow fragments up to 15 cm in size.  2, 3 
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2.2 LITHOFACIES ARCHITECTURE 

The lithofacies architecture of Sveifluháls was analyzed using annotated photo-mosaics of the 

ridge flanks and a series of logs that were developed at key depositional centers within the ridge 

complex. The photos were mosaiced together in Adobe Photoshop and exported as JPG files. 

These files were then brought into Corel Draw and annotated to describe unit/facies contacts, 

topographic lows, intrusions, and any other discernable feature that assisted in interpretation of 

lithofacies architecture and ridge construction. Many of these mosaics were ground-truthed 

during the second and third field seasons (in 2009 and 2010).  

Most field data collected in this study were focused on distinct depositional centers at 

Sveifluháls, in an effort to better understand how the fissure complex was constructed, how it 

evolved through time, and how the products of the eruptions related to eruption processes present 

during changing paleo-environments. Targeted depositional centers at Sveifluháls were as 

follows; ridge base, ridge flank, ridge crest (topographic highs, or vents), inter-ridge flat zones, 

topographic lows, and meltwater drainage areas. 

Seven logs were therefore created of Sveifluháls deposits at key depositional areas along 

the ridge (Figure 66). Transect Logs 1, 2 and 3 illustrate the facies architecture and associations 

commonly found along the ridge flank, including subaqueously emplaced and re-worked tephra 

beds. Transect Log 2 is a representation of a complete tuff cone, from base to crest. Stratigraphic 

Logs 4, 5 and 6 represent the variations observed in deposits formed by mass flood events. Log 7 

is a complete representation of a Sveifluháls basal pillow sequence.  
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Figure 66: A map showing the locations of depositional centers, topographic highs, fissure segments, 

and log locations. 

 

In addition to the photomosaics and logs, 244 strike and dip measurements (Figure 67) 

were collected during the three field seasons at Sveifluháls. A high concentration of strike and 

dips were collected at Miðdegishnjukur, a topographic high on Sveifluháls that was logged and 

seen in Log 2 (Chapter 2.2.2 of this dissertation). Across the ridge, the highest concentration of 
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dips over 40° was found at higher elevations of the ridge. Dips under 40° were found all over 

Sveifluháls, but were most common at moderate and lower elevations. 

 

 

Figure 67: Map showing the distribution, strike attitude and dip angle of bedding at Sveifluháls. 

High angle dips over 40° are indicative of bedding that was over-steepened or was deformed and remained 

steeply dipping after emplacement.  
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In a gross sense, the ridge complex is constructed of pillow basalt at the base, massive 

tuff in the middle elevations, and bedded material at the peaks of the cone. However, upon closer 

inspection of the ridge and its deposits, this model fails to accurately describe the complexity of 

tindar and the range of facies that appear at Sveifluháls. The following sections describe seven 

logs that more precisely define the lithofacies architecture at Sveifluháls. While these seven logs 

do not describe all depositional centers at Sveifluháls, they do provide information on the most 

common ones (Figure 66). 

The X axis of the Transect Logs featured in Logs 1, 2 and 3 represents the vertical 

distance traversed in (in meters), and the Y axis represents the elevation above sea level (in 

meters). Symbology of the deposit type is drawn on the resulting grid and these symbols reflect 

the actual thickness and location of the facies as observed in the field. Additional data included 

along the transect log are; field photos of the lithofacies, strike and dip measurements, and the 

locations of samples. All of these data are provided at the actual x/y location of their collection, 

so that these data can be cross-referenced with the other information included on each transect. 

The transect profiles were generated in ESRI ArcGIS, based on DEMs and field data. The 

ArcGIS-generated profile figure was exported as a JPG and annotated in Corel Draw to create 

the facies symbols inside the profile. The attitude at which bedding is drawn within the annotated 

facies reflects the dip angle measured at the field points. This dip attitude is extended to the 

surrounding bedding annotations where gaps of strike and dip measurements exist between field 

points.  

Stratigraphic Logs 4, 5, 6 and 7 are vertical logs that show grain size along the X axis and 

unit thickness (in meters) along the Y axis. These logs were drawn and annotated in Corel Draw 



 94 

and are based on field data and measurements collected at the time of their observation. Field 

photos and thin sections complement these logs.  

2.2.1 Transect Log 1 

Transect Log 1 represents a 65 m thick sequence of mostly bedded vitric 

phreatomagmatic tuff that was found towards the northern end of Sveifluháls and about 200 m 

from the northern shore of Kleifarvatn (detailed in Figures 68, 69 and 71). Similar deposits were 

found 100 m to the east of this transect. In Log 1, five rock samples were collected and thin 

section images of these samples were taken (Figure 70).   

 

 

Figure 68: Annotated field photos showing the transect line as viewed from near the base of the Log 1 

area. 
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Figure 69: The Log 1 transect line (green), in map view. The red symbols in this map represent the locations 

where strike and dip measurements were collected.
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Figure 70: Microphotographs of Log 1 rock samples. 
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Figure 71: Transect Log 1.
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Beginning at the top of Log 1, towards the transect top and above Point 13, bedding 

becomes diffuse to nearly nonexistent in LT6. The top of the unit is capped by pillow basalt IP1 

and pillow breccia PB2. Swirled, sparse, and finely laminated ashy deposits of facies type AT3 

are also found. Above Point 12, bedding is finer, darker and contains fewer lithics (LT2). Below 

Point 12, there are abundant lithics and bedding is coarse (LT5). Bedding is dipping away from 

the ridge. 

A vesiculated bomb was found above Point 11. Below Point 11, bedding alternates 

between coarse and fine (LT1). Some beds are laminated (AT2). Some cross-bedding is present 

and low-angle truncation of beds is also found.  Bedding is near-horizontal between Points 11 

and 10, and then dips shallowly towards the ridge at Point 10. Below Point 10, bedding is well-

sorted and normally graded (LT1). Some large (20 cm), flattened bombs are found between Point 

10 and Point 9. Directly below Point 9, bedding is mostly finely laminated, well sorted and some 

cross-bedding present (AT1). Below this, the unit coarsens with clasts up to 4 cm, and some 

large lithics are present (LT1). Lithics are made of sub-rounded scoria and pillow fragments up 

to 20 cm in size. AT1 appears again after LT3. At Point 7, an intact pillow was found lodged in 

finely bedded tuff (AT6). 

Below Point 7, the unit is massive (LT7) and coarsens towards the bottom of the deposit. 

Basaltic bombs and abundant lithics of older tephra are found at the base. Below this lithic-rich 

zone, the deposit becomes bedded near Point 6 (AT6). This bedding is dipping towards the ridge. 

At the very bottom of the deposit near Point 4, the unit is mostly massive (LT6) with a small (1 

m) bed of overturned scoria and tuff breccia (LB1). Some swirled, sparse, and finely laminated 

ashy deposits are also found near Point 4 (AT3).  
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2.2.2 Transect Log 2  

Transect Log 2 is the longest of the three transect logs and represents an entire flank of an 

individual eruptive center (thin sections of samples shown in Figure 74 and transect shown in 

Figure 75). The log begins at the base of the elongated tuff ―cone‖, the shape of which is due to 

the eruption of deposits from an elongated fissure segment. The transect goes up the ridge flank, 

across the peak, and then goes down slope on the other side of the edifice until topography levels 

out at an inter-ridge flat area (Figures 72 and 73). The edifice that was examined in Log 2 is the 

peak called Miðdegishnjukur (pronounced ―MYTH-day-is-nyoo-kur‖), which can be translated 

as ―mid-day mountain‖, as it was once used by local farmers and sheep herders as a kind of 

sundial. Miðdegishnjukur is also referred to as ―M-Vent‖ in this dissertation.   

 

 

Figure 72: Annotated air photo map of the transect line for Log 2. 



 100 

 

Figure 73: Annotated field photo of the transect line of Log 2 as viewed from the east.
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Figure 74: Microphotographs from samples collected on the Log 2 transect. 
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Figure 75: The Log 2 transect.



 103 

On the western flank of Miðdegishnjukur (at Points 29, 19, 21 and 49), bedded rocks dip 

steeply away from the ridge axis. Bedding in these rocks is apparent but individual beds are 

generally poorly sorted or alternating between very fine and very coarse sand to lapilli sized 

clasts. Semi-angular outsize lithics of 3 to 5 cm are abundant and consist of blocky scoria or lava 

fragments. Rare boulder sized fragments (max size up to 15 cm) are also found (LT1). Host 

material is a moderately palagonitized, fine and glassy matrix. 

The red star on Log 2 marks a transition of dip directions near the peak of 

Miðdegishnjukur. To the east of the red star at Point 28, bedding dips steeply to the east, and 

away from the ridge axis. This pattern follows at several sites along the ridge axis at 

Miðdegishnjukur. 

At and above Point 84, the rocks are weakly bedded, and consist of glassy, sub-angular, 

lapilli-sized clasts hosted in a lapilli-sized, altered and glassy matrix (LT2).  The unit is 

moderately sorted but faint bedding is visible.  The unit is about 20 to 25 m thick.  Below Point 

84, the unit transitions into a bed of massive, coarse‐grained, altered, poorly sorted, and 

lapilli‐sized clasts in a sand matrix (LT4).  (A few meters further to the north on the slope of 

Miðdegishnjukur, this unit contacts a dike of pillow lava (IP1) and pillow breccias (PB1). 

However, these areas were not crossed by the Log 2 transect.) Just below this unit of LT5 sits a 

pillow breccia at Point 81 (PB1). The strike and dip here represents the contact between the two 

units. Below Point 81, the unit is dominated by a pillow fragment-bearing lapilli tuff (LT7), but a 

pocket of a massive, dark grey, glassy and highly fragmented ash to lapilli-sized clasts is also 

present  (AT4). At Point 19 is a pile of intrusive pillows (IP1). Just below Point 19 is a massive 

pillow fragment-bearing lapilli tuff (LT7) containing fine ash laminations (AT3).  
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Above Point 17 is a unit of pillows (IP1) and pillow breccias (PB1). Between Points 17 

and 16 is a bed of poorly sorted, massive slumped tephra (AT4) containing pockets of bedded 

material (AT1) with variable strikes and dips.  Between Points 16 and 15 is a unit of pillows 

(IP1) and pillow breccias (PB1). 

Between Points 15 and 14 is a massive and palagonitized tuff (AT4) containing some 

flattened scoria fragments. Pockets of unpalagonitized, cross-bedded finer material are present 

within this unit (AT1). Syn-sedimentary faulting is also found.  

Between Point 14 and Point 12 is a sequence of intruded pillow lavas (IP1) sandwiched 

between bedded tephra (AT2). Some pillow breccias (PB1) are found at the margins of the 

intrusion. Just below Point 12 is a thin pillow breccia layer (PB1) that caps yet another unit of 

intruded pillow lavas (IP1) whose base is represented by Point 11. Between Point 11 and Point 

10 is tephra ―drape‖ consisting of a mostly massive, poorly sorted glassy tuff with a 

palagonitized matrix and containing some outsized glassy clasts (LT6). 

Below Point 10 is a matrix-supported pillow breccia with an average clast size of 5 cm 

(PB2). The matrix of this pillow breccia is also palagonitized. This breccia meets a diffuse 

contact with float at Point 9.  This float appears until Point 8. Below this point, a massive, poorly 

sorted lapilli tuff is present that contains glassy clasts in an unpalagonitized matrix (LT6). Some 

swirly ashy lenses are present here (AT3). At Points 7 and 5, the rocks are comprised of 

palagonitized bedded tuff with glassy black clasts less than 1 mm (AT7). Some outsize clasts up 

to 20 cm are also found.  

Just below Point 5, the rocks are more massive (some weak bedding is seen, 068/55) and 

comprised of a palagonitized ash tuff with 1 mm average clast size (AT7). The unit also contains 

outsize glassy clasts up to 15-20 cm.  A patch of float obscures the rocks between here and Point 



 105 

3, where a bedded tuff was found shallowly dipping  towards the ridge axis. This tuff contained 

glassy clasts of 1 mm average size in a palagonitized matrix (AT7). Lithics of vesicular pillow 

fragments up to 15 cm in size were found embedded in the unit.  

2.2.3 Transect Log 3  

Transect Log 3 represents a zone of mid-slope dike intrusion into host tuff (Figures 76 through 

79). Intrusions are common across the Sveifluháls ridge complex and this log is just one example 

of how these intrusions are exposed in the field. Because of poor field conditions and heavy rain 

on the day that information for this log was collected, no photographs are available of these 

rocks.  

 

 

Figure 76: Annotated air photo of the Log 3 transect line in map view. 
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Figure 77: An annotated field photo showing the Log 3 transect from the east. 
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Figure 78: Microphotographs from Log 3 samples. 
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Figure 79: The Log 3 transect. Question marks indicate poor exposure or talus on transect slopes.
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Beginning at the top of the transect, Point 35 represents the base of an intrusive 

kubbaberg (I1) that sits atop rotated beds of tephra. Between Point 35 and Point 34, the unit is 

deformed and contains rotated blocks of ash tuff (AT7). The host ash tuff contains abundant 

outsize clasts up to 10 cm. Swirled, ashy ribbons run through the deposit (AT3). 

Between Point 34 and Point 33 is an intrusion containing intact pillows (IP1), broken 

pillows, and clast-supported pillow breccia (PB1).  There are a few lenses of massive, coarse 

lapilli tuff (LT4) wedged in this mostly pillowed unit. 

A topographic rise lay between Point 33 and Point 26. The western flank of this 

topographic high was mostly obscured by talus. On the eastern flank, bedded tuff was observed 

dipping to the east at 46° and some cross-bedding was observed (LT1). 

At Point 25b, the bedding contained more abundant outside clasts (LT1), up to 10 cm in 

diameter, and the bedding was dipping steeply to the east at 77°.  Talus obscured the slope 

between Points 25b and 25a, but at Point 25a and below, bedding became more shallowly 

dipping.  

The unit at Point 23 was a bedded coarse lapilli tuff (LT5). At Point 24, the lapilli clast 

size became smaller (LT2). Below Point 24, the unit was massive, coarse lapilli tuff (LT4).  

2.2.4 Stratigraphic Log 4 

Log 4 is the first of four stratigraphic vertical logs collected at Sveifluháls (Figure 80).  
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Figure 80: Stratigraphic Log 4 showing fluvial deposits near an inter-ridge flat zone. 

 

Log 4 shows a succession of facies that become coarser and more massive up section. 

Fine, laminated ash tuff crops out at the base of the log (AT2) which gradually transitions into an 

alternating unit of laminated ash tuff and bedded lapilli tuff (AT1 and LT3). Truncated beds, 
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antidunes and cross-bedding are seen in these deposits, and are particularly common in AT1. 

Moving up section, the bedded facies LT1 is coarser grained, more poorly-sorted, and contains 

outsize heterolithic clasts of scoria fragments (up to 12 cm) and reworked tuff fragments (up to 

20 cm). At the top of the log, the unit is mostly massive unit of LT7 with some weak bedding 

structures near the contact with the lower unit of LT1.  

The strike and dip at the base of the log was 285/10, and ripples measured at the same 

location show a current direction of 9° N. 

2.2.5 Stratigraphic Log 5 

Log 5 represents a layer of bedded heterolithic lapilli tuff (LT1) in between two massive facies 

(LT3 on the bottom and LT6 on the top). The main feature that differentiates the two massive 

facies is that LT6 contains coarser clasts and larger outsize clasts. Log 5 was observed near the 

same location of Log 4 and adjacent to an inter-ridge flat zone (Figure 66). No samples were 

collected of this log, so no thin section images are available. 
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Figure 81: Log 5. 
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2.2.6 Stratigraphic Log 6 

Log 6 represents a sequence of massive to bedded deposits (Figure 82), and is found near Logs 4 

and 5 which are adjacent to an inter-ridge flat zone (Figure 66). The facies at the base of this log 

is a massive, bomb-bearing ash tuff (AT5) with a thickness of about 4 m. Within this facies, 

glassy clasts similar to Limu O’Pele are found (Maicher et al., 2000; Maicher et al., 2001). 

Immediately above this facies is thin (<10 cm) exposure of laminated ash tuff (AT1) that grades 

into a massive, glassy, coarse lapilli tuff (LT6). The outcrop becomes finer above this lapilli unit 

and alternates between laminated ash tuff and lapilli tuff (AT1 and LT3).  



 114 

 

 

Figure 82: Log 6, showing fine-grained, subaqueously emplaced flow deposits.
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2.2.7 Stratigraphic Log 7 

The outcrop that is represented by Log 7 (Figure 83) is an excellent example of a basal pillow 

lava succession found at the very lowest elevation at Sveifluháls. This outcrop was found at the 

shore of Kleifarvatn and represented one of the best exposed and freshest basal pillow units 

within the ridge complex. The outcrop is comprised of a 6 m thick unit of basal pillow basalts 

(PL1) that extend beyond the outcrop and into the lake, so the actual thickness of the pillow 

basalts is greater than the observable 6 m. The pillow facies is topped by a unit of clast-supported 

pillow breccia (PB1) that transitions upward into a matrix-supported lithic breccia (LB1). Above 

this is a unit of LT7, or massive bomb or pillow-bearing lapilli tuff (in the case of Log 7 it was 

pillow-bearing). This unit of LT7 was heavily slumped and lenses of pillow fragments were 

contained within the unit. Next was a unit of LT1, a bedded facies of heterolithic lapilli tuff. This 

unit of LT1 was shallowly dipping south at 16 degrees and no slump structures or cross bedding 

was observed. Another lapilli tuff, LT5, was found above this, and was observed to be a bedded 

coarse lapilli tuff with a dip towards the east at 26 degrees. This was covered by a bedded 

pillow-bearing ash tuff (AT6) that was dipping shallowly to the west at 16 degrees. The outcrop 

was capped by a bedded heterolithic lapilli tuff (LT1) of varying strike orientations, but dipping 

no greater than 26 degrees to the east. 
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Figure 83: Log 7, showing a basal pillow sequence.
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2.3 INTERPRETATION OF LITHOFACIES 

In this section, the lithofacies described in Section 2.1 will be interpreted with respect to their 

depositional processes and the paleo-environments that were present at the time of their 

emplacement. This section is divided into subsections in a similar manner to Section 2.1. 

2.3.1 Lavas 

Pillow lava PL1 at Sveifluháls, specifically the basal pillow basalts found at the lowest 

elevations of the ridge complex (i.e., Log 7), likely represent the onset of the fissure eruption 

beneath ice. Such basal pillow lavas commonly form because explosions from fuel-coolant 

interactions (FCI) were suppressed by high confining pressures from overlaying ice and 

meltwater at the onset of the eruption (Gudmundsson, 2005). Pillows may also form at 1 

atmosphere (atm) when degassed or low volatile content magma comes in contact with water, or 

when the dynamics of water, magma and sediment mingling do not allow the generation of 

suitable pre-FCI mixes (Tuffen, 2010). As in the case of pillows formed from intrusions, it is 

possible that these pillows could also be the product of an intrusion into unconsolidated wet 

tephra that formed pillow lavas at other locations at Sveifluháls. However, the pillow lavas as the 

base of the ridge are different than those found elsewhere because they have no peperitic margins 

and no observable lateral dike trace.    

Subaerial lava SL1 is suggestive meltwater drainage away from the fissure complex. 

Pahoehoe-topped subaerial lava was confirmed at one location in the field area at 240 m asl, 
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indicating that water drainage occurred at least 300 to 350 m below the original ice surface. It is 

possible that the draining meltwater vault was not open to the air but was completely encased by 

ice, but there is no evidence indicating either scenario. The vent for these subaerial lavas was not 

found, but it is highly likely that the lava erupted from an intrusion since no observable evidence 

of vent focusing was found near the lavas. See Table 3 for a summary of the lava facies. 

 

Table 3: Lava interpretation summary table. 

LAVAS 

Code Name Interpretation 

PL1 Pillow lava 

Basal pillow lavas that represent the onset of the 

Sveifluháls eruption beneath a former ice sheet. 

SL1 

Subaerial 

lava 

Lava with a pahoehoe surface that was erupted in 

a subaerial environment. 

 

2.3.2 Breccias 

There were three breccia facies distinguished in the Sveifluháls field area: clast-supported pillow 

breccia (PB1), matrix-supported pillow breccia (PB2), and matrix-supported heterolithic tuff 

breccia (LB1).  

PB1 is comprised of clast-supported broken pillow fragments from 2 to 50 cm in size. 

This facies is usually found along the margins of a pillow mound and the deposition mechanism 

likely varies depending on if the unit was generated by non-intrusive basal pillow lavas or by 

pillow lava intrusions. If located adjacent to basal pillow lavas, PB1 probably formed by over-

steepening and collapse of a growing pillow pile. It may also be formed explosively from a 

pillow lava if the overburden pressure of the ice cavity is falling, due to meltwater drainage 
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and/or thinning of ice (Höskuldsson et al., 2006). In this scenario, the reduction of overburden 

pressure causes the pillow lava to destabilize and explode into fragments. Evidence of these 

decreasing cavity pressures can be found within the pillow lava cores, which become highly 

vesiculated in response to the lowering pressures (Höskuldsson et al., 2006). Where PB1 is found 

near intrusive pillows, the mechanism for emplacement may be similar as to that found near non-

intrusive basal pillow lavas (i.e., collapse breccias or explosive fragmentation due to decreasing 

cavity pressures, whereby the breccias could be classified as peperitic).   

PB2 is a hyaloclastite matrix-supported pillow breccia that has been found in association 

with non-intrusive basal pillows and intrusive pillow dikes. In the former setting, PB2 was likely 

formed by the mixing of PB1 with ash-sized tuff fragments that either formed by glass that 

spalled off of pillow lavas (Höskuldsson et al., 2006), or came from explosive fragmentation of 

tephra that formed by FCIs. For PB2 formed near intrusive pillows, the facies may have formed 

by processes similar to the non-intrusive basal pillow setting, or they may have formed from 

collapse of the pillow pile and subsequent incorporation of host tuff before emplacement. In the 

later scenario, the PB2 will generally have a higher amount of matrix material in comparison to 

PB2 found in association with non-intrusive basal pillows. Unfortunate, no samples of the matrix 

from PB2 was preserved in this sections prepared for this research, so it is difficult to 

characterize this breccia in terms of the differences with the facies.  In general, PB2 is similar to 

PB1 but is has a smaller average clast size and is hyaloclastite matrix-supported.   

LB1 is an ashy vitric matrix-supported heterolithic tuff breccia with clasts that consist of 

vesicular basalt, pillow fragments, and/or reworked tephra. Typically, the proportions of LB1 are 

less than 25% matrix, 10-20% reworked tuff, and >50% pillow fragments and/or vesicular basalt. 

The average clast size is about 2 cm and clasts larger than 10 cm are uncommon. While the 



 120 

majority of breccia clasts come from broken intrusive pillows, a significant portion of material is 

made up of tuff that came from above or below the basal pillow zone. The formation mechanism 

is similar to that of PB2, but this facies contains a much high volumes of intraclasts of tuff in 

comparison to that of pillow or scoriaceous fragments. LB1 is found near the basal pillows of 

Log 7 and also within the deposits in Log 1. In Log 7, this facies represents a zone where non-

intrusive basal pillow fragments from a collapsing pillow pile combined with collapsing tuff 

found higher on the ridge. These materials mingled during transport and were emplaced at lower 

elevations. In Log 1, LB1 similarly appears near the base of the log and contains a mixture of 

broken vesicular bombs, pillow fragments and tephra. The appearance of LB1 at this location 

suggests that the breccia was assembled from materials found higher up on the ridge and may 

have been a product of a debris flow or slump. 

See Table 4 for a summary table of these breccia facies. 

 

Table 4: Breccia interpretation summary table. 

BRECCIAS 

Code Name Interpretation 

PB1 

Clast-

supported 

pillow 

breccia 

Depending on setting, may have formed by 

collapse of over-steepened pillow lavas or by 

the initial transition to explosive fragmentation 

at a pillow lava domain. 

PB2 

Matrix-

supported 

pillow 

breccia 

Formed similar to PB1, but matrix material 

added due to the spalling off of true 

hyaloclastite from pillow lavas. Matrix may 

have also come from incorporation of a small 

amount of tuff into the breccia.   

LB1 

Matrix-

supported 

heterolithic 

tuff breccia 

Mingling of tuff and/or bomb fragments as the 

breccia was formed, most likely be collapse and 

remobilization from an over-steepened pillow 

lava stack or intrusive pillow lavas.  
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2.3.3 Intrusions 

Intrusions play a major role in the morphology and structure of the ridge complex and appear in 

several forms. It is beyond the scope of this thesis to detail all manifestations of intrusions found 

at Sveifluháls, but this dissertation groups the intrusions at Sveifluháls into three main 

categories: non-pillowed unvesiculated intrusion I1, pillowed intrusion IP1, and peperitic 

intrusion IPep1. It is important to note that not all intrusions at Sveifluháls exhibited peperitic 

behavior, but peperitic intrusions could exhibit non-pillowed and pillowed margins or interiors. 

The intrusions observed during this study were found to be no more than 2-3 m wide, but varied 

greatly in length. Some dike traces visible for several tens of meters.  

 It is important to note here that the intrusive facies of Sveifluháls were not always 

constant along the same dike outcrop. It was observed that the facies type could vary locally 

along the same outcrop, which indicates that the intrusion behaved differently depending on a 

number of variables, including but not limited to: hydrology of host tuff; propagation/flow rate 

of the dike; cooling rate; and competency of and confining pressure within the host tuff. 

Generally, these local variations were only observed in especially long intrusions (several tens of 

m), and the shorter outcrops were usually limited to one intrusive facies. The non-pillowed 

unvesiculated intrusions I1 described in Section 2.1.3.1 have sharp, unpillowed and non-peperitic 

margins, are not vesiculated, have cube or box-type jointing (sometimes referred to as 

―kubbaberg‖), and have a sharp contact with the host tephra. The appearance of box-type jointing 

typically indicates that the intrusion propagated rapidly through the tephra and cooled quickly 

(Bergh and Sigvaldason, 1991).   

Non-peperitic pillowed intrusions IP1 were commonly found within Sveifluháls field area 

and were observed throughout the ridge complex, particularly at mid-slope elevations. They are 
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defined by their intact and non-peperitic pillowed margins, sometimes forming clusters or 

―haystacks‖ of pillows up to 2-3 m in height within the host tuff. Where exposed, the interiors of 

the intrusion may more closely resemble I1, but will have a pillowed margin, thus designating it 

as IP1. The formation of pillows from these intrusions provided much of the source materials for 

some pillow breccia facies, and also supplied the fragments of broken pillows found in several 

facies of lapilli and ash tuffs. This was due to the slope failures that commonly occurred near 

these intrusions, allowing fragments to completely detach from the intrusion and mechanically 

mix with tephra from the collapsing ridge flank. Generally, the tuff surrounding the pillowed 

intrusion is more orange-red in color due to the circulation of hydrothermal fluids in the tuff, 

which were likely heated by the cooling intrusion.   

In thin section and in the field, there may be little difference between non-intrusive basal 

pillow lava PL1 (i.e., that representing the onset of the eruption in an ice-confined setting and 

later covered by vitric phreatomagmatic tephra), and pillows from a pillowed intrusion (IP1) 

hosted in tephra, and care must be taken in distinguishing the two. There are several ways in 

which to help characterize intrusive pillows from non-intrusive basal pillow lavas. First, intrusive 

zones tend to very heavily palagonitize and redden the surrounding tephra. Even though 

palagonitized tephra may be seen near the basal pillow lavas (nearly all tephra at Sveifluháls has 

some degree of palagonitization), a high degree of hydrothermal alteration and reddening is not 

widely observed in outcrops of basal pillow lavas. Second, the intrusions may show pillowed 

fringes or lobes at the margins that are not detached from the main body of the intrusion, unlike 

the basal pillows which do not have these structures. Lastly, the tephra surrounding the intrusions 

may display deformation, rotation, and/or ―dragging‖ effects in the bedding. These effects 

clearly show that the tephra was intruded into the host and caused deformation during 
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propagation. Non-intrusive basal pillow lavas will not have these types of adjacent bedding 

structures.   

As the intrusions propagated through the tephra, field evidence shows that they also 

caused localized bedding deformation, and potentially caused slope failure along ridge flanks 

(Figure 84). Evidence of these intrusions causing slope failure, particularly IP1 intrusions, can be 

seen by the presence of outsize clasts of broken pillows that are entrained within otherwise well-

sorted ash and lapilli tuff facies located down slope of these intrusions.  

 

 

Figure 84: Annotated field photo showing over steepened bedding found adjacent to pillowed 

intrusion IP1. The elevation at this intrusive zone is approximately 200 m asl. This image shows a 

topographic low directly below an area of over steepened bedding. This low likely represents a slump scar, 

indicating that the tephra at this location may have failed and contemporaneously slid down the ridge flank. 
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In addition to the non-pillowed unvesiculated intrusions (I1) and the pillowed intrusions 

(IP1), there are also peperitic intrusions (IPep1) at Sveifluháls. These are mainly characterized 

by their peperitic margins whereby intrusive material mixed with the host tuff and created 2-4 m 

wide peperitic margins. The peperitic zones are distinguished from the surrounding tephra by 

magma-sediment mixing zones that form lobate structures attached to the parent intrusion. The 

tephra found in these palagonitized zones is also heavily palagonitized or reddened, similar to 

that found near other intrusions at Sveifluháls.  

Depending on a number of variables described by Skilling et al., (Skilling et al., 2002a), 

the concentrations of magma vs. sediment will vary locally (Figure 28), and the peperitic 

morphologies will vary (Figure 29). These intrusions underwent an episode of mixing with the 

meltwater-saturated host tuff, which was waterlogged and subsequently over-pressured to 

prevent explosive fragmentation, yet unconsolidated enough to allow magma to mix in with the 

tephra and produce peperite.  The tephra in the peperitic margins are also more intensely 

palagonitized due to the heating and circulation of water caused by direct contact with the 

cooling intrusive body. At Sveifluháls, intrusions were formed in both bedded and massive 

tephra and dike trends were generally parallel to that of the main ridge complex. The question of 

why some intrusions formed peperitic margins while others did not can be explained by the 

many variables that dictate the formation of peperite. The list of variables that influence peperite 

formation includes: the rheology of the host and of the magma; the volatile and vesicle content of 

the magma; the grain size, sorting and permeability of the host; the magma/water mixing ratio; 

the total volume of mingled magma and sediments; the rate of mingling; the magma injection 

velocity; total volume of pore water heated; confining pressure, and; variations of local and 

regional stress fields (Skilling et al., 2002a). At Sveifluháls, it is possible that all of these 
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variables may have been factors in peperite formation and it is beyond the limits of this study to 

determine how each variable may have influenced the process of peperite formation. However, 

the fact that there is variation in non-peperitic and peperitic intrusions at Sveifluháls shows that 

the sediment-magma mingling processes present during ridge construction were likely very 

anisotropic.  

See Table 5 for a summary of the intrusive facies. 

 

Table 5: Intrusion interpretation summary table. 

INTRUSIONS 

Code Name Interpretation 

I1 

Unvesiculated 

Intrusion 

Rapidly cooled intrusions that likely propagated 

rapidly and did not develop pillowed margins 

within the host tuff. 

IP1 

Non-peperitic 

pillowed 

Intrusion 

Intrusions that formed pillows in the host tuff, 

most likely in a submerged setting.   

IPep1 

Peperitic 

Intrusion 

Intrusions that experienced sediment-magma 

mixing at the intrusive margins due to 

fluidization of the host. 

 

2.3.4 Lapilli Tuffs 

Seven lapilli tuffs were distinguished within the Sveifluháls field area. An interpretation for each 

is provided below. 
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2.3.4.1 Bedded heterolithic lapilli tuff (LT1)  

This facies likely represents subaqueous deposition by hyperconcentrated density 

currents (Duller et al., 2008) and is one of the most common types of lapilli tuffs found at 

Sveifluháls. Evidence for subaqueous emplacement at this and other lapilli and ash tuffs at 

Sveifluháls is based on the observation of turbidites, the absence of subaerial lavas, and the 

absence of bomb sags. All of the facies presented in this dissertation were deposited 

subaqueously unless otherwise noted, as in Logs 4, 5 and 6. 

At moderate and low elevation, the appearance of fine bedding and cross bedding 

indicates that the sediments were deposited by a combination of traction currents and suspension 

fall-out (White, 2000; Mulder and Alexander, 2001). This facies here is most likely reflective of 

a succession of transitional concentrated density flows (Mulder et al., 2001), as evidenced by the 

appearance of planar and laminated bedding, and cross bedding. Generally, deposits of LT1 

found at moderate to low elevations are shallowly dipping. 

This facies is also found at high elevations, specifically near the peaks of the ridges in 

typically over-steepened (>40°) bedded units found near the vents. This variety of LT1 is similar 

to that found at lower elevations but lacks the cross bedding that is common to LT1 at lower 

elevations. It is assumed that LT1 at these higher elevations are representative of in-place 

subaqueous density flow deposits that were not re-worked through collapse and remobilization 

(i.e., ―primary‖ deposits). The units of LT1 at high elevations were likely part of the source 

material that formed other massive and bedded lapilli (and possibly ash) facies at lower 

elevations (Figure 85).  
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Figure 85: Field photo showing an example of pre-failure LT1 found near the top of M-Vent at 

around 368 m asl, close to the peak of Miðdegishnjukur and in a saddle between Miðdegishnjukur and 

another vent to the South. The strike and dip of this outcrop was 171/46 and the outcrop was approximately 4 

m thick. Note the appearance of wavy bedding and semi-disarticulated segments within individual beds, 

possibly indicating that the unit was on the brink of failure yet never collapsed. 

  

 In a fluvial setting as shown in Logs 4 and 5, facies LT1 was formed from planar 

or cross-stratified flow of reworked tuff that followed the main surge from a jökulhlaup-type 

mass flood event (Duller et al., 2008) and is described in further detail in Sections 2.4.4 and 2.4.5 

of this thesis.  

2.3.4.2 Bedded lapilli tuff (LT2)  

This facies is very similar to LT1 above, but contains few outsize clasts larger than 3 cm, and 

has a smaller mean clast size of 2 mm. The depositional process of LT2 is thus similar to LT1 but the 

lack of larger clasts indicated that either the source material for this tuff did not include such coarser 
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clasts (i.e., intrusion-generated clasts or broken bombs), or the facies underwent a longer episode of 

sorting in comparison to LT1, with the larger clasts first depositing further upslope. The smaller grain 

size of the bedded units also suggests that the facies was of lower energy than LT1, and probably 

more similar to a surge-like turbidity flow (Mulder, 2001). 

2.3.4.3 Glassy massive lapilli tuff (LT3) 

The glassy, massive lapilli tuff is a very distinctive facies found at Sveifluháls. While 

featured in Logs 4, 5 and 6, it is found throughout the ridge and most commonly at higher 

elevations. This unit is characterized by its smooth, weathered appearance in the field and glassy, 

vesicular, unaltered lapilli-sized clasts that are evident upon closer inspection of the rock. The 

unit is typically well sorted and contains few to no outsize clasts. The facies is mostly 

structureless, but some very diffuse stratification and/or slump structures may be found within 

the facies. Stringers of AT3 (laminated swirly ash tuff) were found within a few LT3 units near 

the top of the ridge, and helped to define the slump surface of these units. Based on these 

observations, the facies was likely emplaced quickly through en masse deposition (White, 2000) 

that occurred from the main surge of a jökulhlaup-type mass flood event (Duller et al., 2008).   

This facies also formed by subaqueous hyperconcentrated density flow (Mulder et al., 

2001) at other observed locations on the ridge (Figure 86). The source material for a 

subaqueously emplaced LT3 deposit is suggestive of something akin to a ―continuous uprush‖ 

type of eruptive event (Moore, 1985; Kokelaar, 1986; Smellie and Hole, 1997), where great 

volumes of tephra are subaqueously erupted, fragmented, quenched and rapidly deposited 

(Figure 87).  
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Figure 86: Location map of LT3 near M-Vent and Log 5, representing two different depositional centers 

(fluvial at Log 5 and subaqueous standing water near M-vent). 
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Figure 87: Annotated field photo of a thick unit of LT3 near M-Vent. The extreme thickness of LT3 at this 

location suggests that the tuff was rapidly deposited very close to the source of the eruption and into a large 

volume of cool meltwater, such that the glass fragments quenched rapidly and thus foregoing significant 

palagonitization (White, 1996). This deposit likely underwent a small level of reworking by a short slump 

episode, but may otherwise be considered a primary deposit. 

 

2.3.4.4 Massive coarse lapilli tuff (LT4) 

Massive lapilli tuff LT4 is characterized by a relatively coarse lapilli size (average clast 

size is 7 mm) with outsize clasts up to 10 cm. Like other massive tuffs, it was likely emplaced 

rapidly. Unlike the LT3 unit, which is well-sorted and lacks outsize clasts, LT4 contains outsize 

clasts that are suggestive of entrainment of scoriatious fragments and/or pillow fragments as the 

flow traveled down slope. LT4 was likely formed by grain-to-grain flow of a slug of remobilized 
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subaqueous sediments that probably resulted from slope failure, either from over steepening of a 

bedded tuff pile, slope failure by intrusive activity along the ridge flank, or slope failure by 

seismic activity or even by ice retreat. Once deposited, the hyperconcentrated density flow that 

emplaced the coarse grains and outsize clasts that make up LT4 likely continued on down the 

slope, whereupon the flow may have transitioned into a concentrated density flow and later, a 

turbidity flow. Evidence of these lower concentrated deposits are typically found in the 

shallowly-dipping, laminated or finely bedded ash and lapilli tuff facies found at lower 

elevations along the base of the ridge complex. Transect Log 1 is a good example that shows 

finer-grained facies are found at the base of the ridge. This depositional pattern is also further 

discussed in Chapter 2.7 of this thesis. 

2.3.4.5 Bedded coarse lapilli tuff (LT5) 

The lapilli that comprise LT5 are similar to those found in LT4, but are organized into 

normally-graded 3-10 cm thick beds which contain smaller outsize clasts (up to 5 cm). This 

facies does not generally have dips over 30°, and only appear in mid-slope and lower along the 

ridge flank. The presence of outsize clasts indicates that the facies is likely representative of 

subaqueous deposition of remobilized tephra and entrainment of intrusive and/or scoriatious 

clasts from higher up on the ridge flank. The lapilli-sized bedding is indicative of a concentrated 

density flow, and may represent the next stage after a hyperconcentrated density flow has 

emplaced a more massive and poorly-sorted facies, such as a more dilute current after LT4. 

Some cross-bedding and lenticular bed forms were observed in these deposits. The alternating 

coarse bedding of LT5 also suggest pulses of concentrated density flows that were sourced from 

consolidated tuff and clastic materials originating from higher up on the ridge, either due to 

eruptive episodes or slope failure. 
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2.3.4.6 Massive glassy coarse lapilli tuff (LT6) 

This poorly sorted facies has a smaller average lapilli size (3 mm), a smaller outsize clast 

size (up to 5 cm), and is matrix supported. This facies is interpreted as the deposits of a 

hyperconcentrated density flows within an ice-confined meltwater lake before becoming quickly 

emplaced on the ridge flank, as evidenced by the coarse lapilli size and uniformity of vesicular 

glass within the facies. The outsize clasts tend to be very glassy and highly vesiculated, and 

many of the lapilli and smaller fragments appear to be broken off from the larger clasts along the 

vesicle walls. This indicates that within the unit, the components were sourced mainly by the 

same eruptive event. This facies was observed at moderate to low elevations in units no thicker 

than 2 m. The thin outcrop units and moderate vesicularity of the clasts (up to 50% in some 

clasts) suggests small but powerful explosive pulses that likely caused eruptive fragments to jet 

far from the vent and into water.  

2.3.4.7 Massive bomb or pillow-bearing lapilli tuff (LT7) 

This facies consists of at least 50% lapilli sized tuff that contains fragmented pillows or 

bombs up to 10 cm and/or intact bombs and pillows up to 35 cm. The average clast size ranges 

between 3 mm to 7 mm. The defining feature of this unit is the massive, mostly lapilli sized tuff 

that contains bomb and pillow fragments within the tuff. It is likely that this facies was formed 

by hyperconcentrated density flows similar to LT4, but entrained large bomb and pillow clasts as 

it flowed down the ridge flank. Because these bomb and pillows are particularly well-preserved 

and unbroken, it is likely that the source of the bombs and/or pillows was close to the area of 

entrainment.   

See Table 6 for a summary of all lapilli tuff facies interpretations. 
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Table 6: Lapilli Tuff interpretation summary table. 

LAPILLI TUFFS 

Code Name Interpretation 

LT1 

Bedded 

heterolithic 

lapilli tuff 

Formed in ponded water or fluvial depositional settings. Subaqueous 

deposition is by transitional concentrated density flows (especially at 

higher elevations) or suspension fall-out (more likely at lower 

elevations). Fluvial deposition occurred in planar flow following the 

main surge from a mass flood event. 

LT2 

Bedded 

lapilli tuff 

Subaqueous depositional process similar to LT1 but represents a more 

dilute and finer-grained version that was similar to a surge-like 

turbidity flow. 

LT3 

Glassy 

massive 

lapilli tuff 

If fluvial deposition, LT3 represents the main surge from a mass flood 

event. If deposited in ponded water, the facies represents rapid 

emplacement of a large slug of quickly cooled glassy tuff within an 

ice-confined meltwater lake, and the tephra may have been sourced by 

a continuous uprush-type event. 

LT4 

Massive 

coarse lapilli 

tuff 

A subaqueously emplaced unit of coarse lapilli tuff that was likely 

formed by slope failure. The tuff was rapidly emplaced to retain a 

structureless bedform.  

LT5 

Bedded 

coarse lapilli 

tuff 

A subaqueously emplaced bedded unit of coarse lapilli tuff that was 

likely formed by remobilized tephra that entrained larger clasts as it 

traveled down-slope. The facies was deposited by concentrated 

density flows that originated from slope failure at mid-to-high 

elevations on the ridge flank.  

LT6 

Massive 

glassy 

coarse lapilli 

tuff Similar to LT3, but overall this facies is coarser. 

LT7 

Massive 

bomb or 

pillow-

bearing 

lapilli tuff 

Formed by subaqueous hyperconcentrated density flows similar to that 

which formed LT4, but were rapidly emplaced, thus preventing 

bedding structures. Large and/or intact bomb and pillows within the 

unit were likely entrained in the flow from a nearby source. Smaller 

fragments likely traveled a greater distance or were broken before they 

were entrained by the flow. 
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2.3.5 Ash Tuffs 

Seven ash tuffs were distinguished within the Sveifluháls field area. An interpretation for each is 

provided below. 

2.3.5.1 Laminated alternating ash and lapilli tuff (AT1) 

This ash tuff is similar to LT1 but contains over 50% ash fragments, and ash clasts form 

laminae (≤1 cm thickness) rather than beds (which are > 1 cm). It was observed predominantly at 

middle elevations and near inter-ridge flat zones, and likely represents deposits of subaqueous 

turbidity flows that sometimes alternated with transitional concentrated density flows whenever 

coarser beds of LT3 are present (Mulder et al., 2001).  

The laminae in AT1 are characteristic of transitional concentrated density flows or surge-

like turbidity flows, and/or suspension and settling (White, 1996; Smellie et al., 1997; Mulder et 

al., 2001). This facies is not found at higher elevations, and generally appears in the field below 

250 m, as seen in Logs 1 and 2. Tin the case of these two logs, AT1 was likely a finer distal 

equivalent of a lapilli tuff facies such as LT 2 or LT5. Field observations of AT1 show that the 

facies can be laterally continuous for tens of meters, indicating a wide zone of deposition by 

subaqueous currents. The presence of outsize clasts suggests that the sediments in AT1 are re-

worked primary or secondary deposits from higher up on the ridge flank, likely remobilized by 

slope failure.  

2.3.5.2 Laminated coarse ash tuff (AT2) 

This laminated facies is very similar in content and structure to AT1, but the clast sizes 

are larger and can be classified as coarse ash (1-2 mm). The larger clast size may indicate a 
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deposition style that is similar to a higher energy turbidity current but not quite approaching the 

energy of a concentrated density flow (White, 1996; Mulder et al., 2001).  

2.3.5.3 Laminated swirly ash tuff (AT3) 

This facies was markedly different than any of the ash tuffs found at Sveifluháls and does 

not appear to be a product of subaqueous density flows, but rather seems to be a result of 

fluidized injection of ash-rich slurry into a host tuff. This facies was often found along the slide 

plane of slumped structures, where it formed swirly, deformed, blob-like shapes within the tuff. 

It also appeared as ashy ―ribbons‖ in bedded tuff and usually followed the bedding plane. In 

massive tuff, AT3 would form seemingly random, ribbon-like stringers or blob-like masses 

within the deposits. The deposition mechanism for this facies is likely due to hydrofracturing of 

fluidized or liquefied tephra that formed adjacent to a subaqueous vitric phreatomagmatic tuff as 

a consequence of loading and slumping (Kattenhorn, 2010). Similarities between this facies and 

others formed by liquefaction, fluidization and hydrofracturing of slumping sands have been 

described by D.R. Lowe (Lowe, 1976, 1982) and his studies provide a good foundation for 

understanding similar subaqueous processes that may have formed the swirly ash tuff in AT3.  

2.3.5.4 Massive glassy ash tuff (AT4) 

This massive glassy ash tuff facies is characterized by very glassy, poorly sorted ash 

(>50%) and lapilli sized fragments. This facies is featured in Log 2 where it was located just 

below the bedded lapilli tuffs LT1 that are present at the top of the ridge. AT4 at this location 

may represent a slug of explosively jetted subaqueous vitric phreatomagmatic tuff that was 

emplaced rapidly near the vent and did not have time to sort or form bedding structures, or 

remained in place due to a paleo-ice wall or other barrier. It is also possible that this facies may 
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also form by rapid emplacement of remobilized lapilli tuff from higher up on the ridge, but no 

evidence of this scenario was observed in the field.   

2.3.5.5 Massive bomb or pillow-bearing ash tuff (AT5) 

The massive bomb-bearing ash tuff is a distinctive ash facies at Sveifluháls because it is 

comprised of highly vesiculated ash fragments, many of which have Limu O’Pele-type 

morphologies (Maicher et al., 2000; Maicher et al., 2001). The estimated vesicle size of these 

limu-type clasts was calculated to be no greater than 2 mm. This estimate was computed by 

treating un-deformed limu fragments in thin section as arcs of a circle. The arc width (c) and 

height (d) were photographed in thin section and measured, and the corresponding circle (i.e., 

vesicle) radius (r) was calculated based on the equation:  

    r = (d
2
 + 0.25c

2
)/2d.  

Vesicles of 2 mm are generally too small to be considered ―typical‖ limu (Maicher et al., 

2001). However, the presence of glassy, vesicular bombs and ash in this tuff suggests that the 

facies was likely formed by a subaqueous explosion of highly vesicular magma (>50% vesicles 

and up to 80% in some clasts) that was jetted and deposited into the meltwater vault where it was 

emplaced by hyperconcentrated density flows that traveled down the flanks of the ridge.  

This facies is documented in Log 6 where it forms the main surge deposit of a mass flood 

event. Here, LT6 was likely deposited relatively close to the eruption source, and the explosive 

activity that formed the bombs and pillows found within the tuff may have been associated with 

the generation of the mass flood event that was documented by Log 6. 
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2.3.5.6 Bedded bomb or pillow-bearing ash tuff (AT6) 

This facies is suggestive of rapidly emplaced tuff that entrained or originally contained 

bombs and/or pillows at the time of emplacement. These bombs and pillows may have been part 

of the original slug of tuff that erupted directly from the vent, or may have been entrained in the 

flow of remobilized tephra before the deposit was rapidly emplaced.  This facies AT6 is a finer-

grained version of LT7.  

2.3.5.7 Bedded heterolithic ash tuff (AT7) 

This facies is matrix-supported and in addition to bomb and/or pillow fragments, also 

contains large (up to 15 cm) angular to sub-angular intraclasts of older ash or lapilli tuff. Many 

of these older tuff fragments and blocks can be clearly discerned from the host tuff because they 

exhibit bedding or laminations that dip in a different orientation than that found in the host tuff. 

This facies clearly indicates subaqueous remobilization of older, consolidated or semi-

consolidated tephra, and probably suggests slope failures that occurred as short as several months 

after the cessation of the eruption.   

All of the ash tuff facies interpretations are summarized in Table 7.  
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Table 7: Ash Tuff interpretation summary table. 

ASH TUFFS 

Code Name Interpretation 

AT1 

Laminated  ash 

tuff 

Where subaqueously emplaced, this low-elevation facies 

represents deposition by dilute density flows, surge like 

trubidity flows and/or suspension and settling. Where 

fluvial, the facies represents deposition following the main 

surge from a mass flood event.  

AT2 

Laminated coarse 

ash tuff 

Similar to AT1, but coarser. Where subaqueously 

emplaced, may represent a higher-energy density flow than 

that attributed for AT1 formation. 

AT3 

Laminated swirly 

ash tuff 

Fluidization and/or liquidization of tuff due to slumping 

events. AT3 usually forms along the slump plane of such 

structures. Only found with subaqueously emplaced tuff 

units.  

AT4 

Massive glassy ash 

tuff 

Quickly cooled tuff that was rapidly emplaced in a large 

volume of cool water near the eruption source. 

AT5 

Massive bomb or 

pillow-bearing ash 

tuff 

Highly vesiculated tephra with bombs and/or older pillow 

fragments that erupted explosively. Where deposited in 

ponded water, was emplaced rapidly by hyperconcentrated 

flow deposits. Where fluvial, may be associated with 

explosions that could have triggered a jökulhlaup-type 

mass flood event. 

AT6 

Bedded bomb or 

pillow-bearing ash 

tuff A finer-grained version of LT7. 

AT7 

Bedded 

heterolithic ash 

tuff 

Subaqueous remobilization and deposition of older, 

consolidated tephra. May have been generated by slope 

failures and emplaced as short as several months from the 

end of the eruptions. 
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2.4 INTERPRETATION OF FACIES ARCHITECTURE: EDIFICES AND 

DEPOSITIONAL SETTINGS 

In this section, the logs described previously in this Section will be interpreted, with 

particular emphasis paid to the relationship between facies architecture and the respective 

eruptive edifices and depositional settings they are associated with. To support these analyses, 

annotated photo-mosaics of the ridge are also interpreted. The photo-mosaics of the ridge were 

developed at 39 locations along both sides of the entire Sveifluháls ridge axis (Figure 88). An 

interpretation of each log will be provided in the following subsections.  
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Figure 88: Location map of photo-mosaic vantage points and their respective photo areas, in yellow. Log 

locations are also shown in green.  
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In regards to the annotated photo-mosaics shown in this section, the chart below (Table 

8) provides an explanation for the symbols used in them. Individual facies names are only 

provided in some cases where the facies was confirmed by corresponding logs, or where space 

allowed the inclusion of the facies name.  

 

Table 8: Explanation of symbols used in annotated photo-mosaics 

Symbol Definition Possible Facies 

Yellow dashed line Major change in lithology n/a 

White dashed line Bedding trace n/a 

I Unvesiculated intrusion I1 

IP Pillowed intrusion IP1 

IPep Peperitic intrusion IPep1 

PB Pillow breccia PB1, PB2, LB1 

BLT Bedded lapilli tuff LT1, LT2, LT5 

MLT Massive lapilli tuff LT3, LT4, LY6, LT7 

BAT Bedded ash tuff AT6, AT7 

MAT Massive ash tuff AT4, AT5 

LAT Laminated ash tuff AT1, AT2 
 

2.4.1 Interpretation of Transect Log 1: Subaqueously Emplaced Concentrated Flow 

Deposits 

Transect Log 1 represents a sequence of subaqueously emplaced hyperconcentrated flow 

deposits that originated from remobilized tephra from higher up on the ridge flanks. The majority 

of this log is represented by a thick sequence (about 45 m) of repeating bedded lapilli tuffs and 

bedded or laminated ash tuffs. Many of these tuffs contain outsize clasts of pillow and/or scoria 

fragments, and bedding is shallow with the exception of one overturned unit at the base of the 
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log. The mode of emplacement of these bedded deposits varies between concentrated density 

flow and turbidity flow, which is suggestive of varying degrees of energy of the subaqueous flow 

regimes and the distance from the source of the components. At the top of this log is an outcrop 

of a pillowed intrusion and pillow breccia, and directly below this is a thin unit of AT3, a facies 

that represents the injection of fluidized ash along fractures. Just below AT3 is a 10 m thick unit 

of weakly bedded lapilli tuff containing outsize clasts of pillow fragments. The lack of distinct, 

measureable bedding shows that the intrusion likely deformed and fluidized any of the bedding 

structures in the lapilli tuff as it pushed through the host tephra.  

The well-bedded sequence of facies between 225 m and 185 m at Log 1 shows a subtle 

change in dip directions. At the top of the sequence, the facies are dipping away from the ridge 

axis, but near the base of the sequence, the facies are dipping towards the ridge. This may be due 

to several factors. It is possible that the lower units, which deposited first, represent a portion of 

the density current that reflected after hitting a paleo-ice wall. This would theoretically produce a 

dip back towards the direction of flow. The dip may also have been caused by slumping that 

occurred soon after emplacement. This could have been the result of slippage of the subaqueous 

sequence due to gravity, or possibly due to sliding of the sequence en masse after the removal (or 

thinning) of a paleo-ice wall that previously held the sediments in place. 

Below the thick bedded/laminated sequence (near 185 m asl), the nature of the facies 

types change and represent a much more highly varied depositional setting. Here, massive units 

are emplaced among bedded lapilli and laminated ash tuffs, and a higher amount of pillow and 

bomb fragments are found. Additionally, intact bombs and pillows are found within the facies 

below 185 m. These units and are particularly noteworthy because the intact bombs and intrusive 

pillows are hosted in otherwise well-sorted and relatively fine grained tuffs. It is unclear where 
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the sources of these intact pillows and bombs are (they may be buried), but they must have 

originated above 225 m, as no evidence of intrusions or edifices exist below this elevation.  

At the very base of the log, the facies are massive. An overturned bed of LB1 was found 

within these massive tuffs, with a bedding contact dipping 78° towards the ridge axis. Facies 

AT3 is also found near this overturned zone, further supporting that slumped deposits are very 

common at lower elevations.  

The photo-mosaic at location E_4 (Figure 89) includes the area described by Transect 

Log 1. Placing this log within the context of the ridge is helpful in better understanding how 

these deposits were emplaced at Sveifluháls. The top of this segment of the ridge is capped by 

several domains of intrusions, most of which have observable pillowed margins. Slump scars are 

observed around these intrusions, and in many cases, the slump block can be seen forming a 

mound of tephra below it (see Figure 97 for a clear graphical representation of this). In other 

cases, the slump block is not present but a sequence of layered sediments can be found more 

distally from the scar, indicating that the slumped tephra traveled a farther distance before 

deposition. Bedded lapilli tuff is the most common facies type found along this section of the 

ridge. However, it is possible that many of the massive facies are obscured by talus, particularly 

near slump blocks, as material continued to fall down these notched zones of the slump scar 

through mass wasting.  
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Figure 89: Annotated photo-mosaic E_4, showing the generalized location of Transect Log 1. In the foreground, a 13 m wide deformation structure in 

the shape of an upside-down “V” can be seen in bedded lapilli tuff. The cause of this deformation is uncertain, but may be related to glacio-tectonic 

stress caused by ice that was concurrent with the eruption or was re-established following the cessation of eruptive activity at Sveifluháls.
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The section of Sveifluháls that includes Transect Log 1 (Figure 89) indicates an area of 

the ridge generated by subaqueous emplacement of tephra, followed by slumping and 

remobilization of material into both bedded and massive units. The bedded units are laterally 

continuous for several tens of meters before becoming discontinuous, either to pinching out, 

slumping, erosion, or contact with a different facies. The deposits, however, are very similar to a 

sequence of similar facies found 100 m to the east of the transect area, suggesting that the deposit 

has a high degree of continuity in comparison to most other deposits at Sveifluháls. The majority 

of the facies within this section are bedded lapilli tuffs with some traction current structures and 

no bomb sags, which indicated subaqueous deposition by suspension and settling and/or 

subaqueous concentrated density flow. The sources of the tephra are in the form of two end 

members: materials that were erupted directly from the erupting edifice or materials sourced 

from preexisting tephra that was remobilized by slope failure. The best evidence for re-

mobilization of tephra can be seen by the incorporation of intact pillows or other large lithics into 

a uniformly graded or well-sorted rock unit. This suggests that outsize clasts were entrained 

within the density flow as it traveled down slope. It is theoretically possible that all the outsize 

clasts are bombs or pillow fragments erupted explosively from the vent (and behaved as bombs), 

and that these bombs erupted subaerially onto wet tephra. In such a scenario, it is also possible 

that all evidence of bomb sags could be destroyed by remobilization of tephra. However, the lack 

of other subaerial features such as subaerial lavas and other evidence makes this later scenario 

more difficult to prove than the former subaqueous one. 

The appearance of the bedded ash and lapilli tuffs found at Transect Log 1 are suggestive 

of alternating concentrated density flows and turbidity flows. Cross-bedding is observed at only a 

few locations in this planar sequence. This sequence is only laterally continuous for 
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approximately 40 m before abruptly ending in near vertical exposures, suggesting that a larger 

extent of the sequence had once existed but has since eroded away. The source of the tuffs 

emplaced in this sequence is not obvious. The nearest topographic high (320 m asl) is 

approximately 430 m to the west and the deposits do not show any obvious association with an 

eruptive center, as opposed to the deposits at Transect Log 2, which are more directly related to 

the vent at Miðdegishnjukur. Transect Log 1 is located towards the northern portion of the ridge, 

which generally has lower topography and a more weathered appearance that the middle portion 

of Sveifluháls.  

Below 185 m, the nature of the facies at this portion of the ridge are generally coarser 

grained and alternate between massive lapilli tuffs and bedded ash and lapilli tuffs. Note that the 

ash tuffs do not appear on the ridge flank above 185 m asl, suggesting that the deposition 

mechanism for these fine-grained facies is through turbidity flows or lower-energy transitional 

concentrated density flows that were formed after the coarser flows deposited at higher 

elevations. These ashy units indicate the extent of the density flows where flow ceased or was 

stopped due to immobilization by a paleo-ice wall. The origin of the massive facies found at the 

base of Log 1 below 175 m asl is unclear, but are likely associated with slumping and 

remobilization of tephra and rapid emplacement due to interaction with a paleo-ice barrier.  

Further evidence of slumping here is suggested by the appearance of AT3. 

2.4.2 Interpretation of Transect Log 2: A Tuff “Cone” Eruptive Center 

Transect Log 2 represents the facies found at a single eruptive center, in particular at the peak 

known as Miðdegishnjukur (also called ―M-vent‖ in this dissertation). Even though it resembles 

a cone-type eruptive center, the edifice is actually more like an elongated cone, due to the 
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elongated eruptive center along an initial eruptive fissure. Strike and dip measurements taken 

near the peak of M-vent shows that bedding along each side of the ridge dips away from the 

ridge axis along an elongated zone (Figure 90). In Log 2 (Figure 75), this fissure axis is 

represented by a red star near the peak of the edifice.  

 

 

Figure 90: Map of strike and dip measurements that show oppositely-dipping bedded tephra flanking the 

fissure axis at M-vent. The fissure axis (dashed red line) is drawn along the axis of opposing dip directions. 

This zone is wavering in appearance due to slumping and deformation that occurred near the peak of the tuff 

cone.  

 

Because these bedded lapilli tuff units are present at the top of the edifice, it is likely that 

they represent the end or near-end of the eruption, when weaker, lower-energy, episodic jetting 

was occurring. These materials were likely deposited into water where they were sorted and 

settled into multiple normally-graded beds.  
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Bedding near the peak of M-vent is also steeply dipping (over 40°) but have no 

overturned or slumped. Typically, unconsolidated tephra deposited along the slopes of the ridge 

flank would certainly fail at dip angles over 40°. It is possible that the tuff originally deposited 

with dips under 40° at this location, but that the material rotated to steeper dips after the units had 

cemented or at least strongly consolidated. Additionally, no soft-sediment deformation was 

observed in these deposits at this location, and there were no observed slump scars near these 

steeply bedded units. It is unclear how these units slumped here, but it is possible that the failure 

of lower, less competent and less palagonitized facies found below these lapilli tuffs may have 

triggered movement in the upper units. This region remains seismically active in the present day 

(Clifton et al., 2003) and these steeply dipping lapilli tuffs currently experience failure. A rock 

fall from these deposits was observed in the field in 2008, and numerous fresh scars from these 

recent rock falls can be seen near the peak of M-vent. The western face of M-vent is nearly 

vertical for tens of meters, indicating a significant amount of slope failure since final ice retreat 

from the LGM. 

Other facies along the Log 2 transect also show steeply dipping bedding or unit contacts, 

and these are likely due to slumping and overturning of units emplaced higher up on the ridge. 

These steeply dipping units below the ridge peaks are often associated with nearby intrusions, 

and the overturned deposits themselves generally contain clasts of broken pillow fragments. This 

pattern is found throughout the ridge and shows that when intrusions propagated through wet 

unconsolidated tephra, they tended to ―drag‖ tephra along their margins and distort bedding in 

host sediments that were adjacent to the dike (see Figure 84). These intrusive events also likely 

caused slope failure in the tephra units above and below the dike, and these tephra would then 

remobilize and travel down the flanks of the ridge, carrying fragments from the intrusion with it. 
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At 190 m asl, a >40° rotated block of laminated ash tuff was found within a massive unit of ash 

tuff, suggestive of remobilization of partially consolidated materials originally emplaced by 

subaqueous turbidity flow. Bedding dips over 40° in the mid-section of the ridge were also 

commonly observed, showing that slumping and slope failure was a major aspect of ridge 

construction and evolution. At the base of Log 2 (which represents the base of M-vent), beds of 

ash tuff are shallowly dipping towards the ridge axis, and is very similar to what is observed near 

the base of Transect Log 1. 

The annotated photo-mosaic E_13 (Figure 91) contains the area covered by Transect Log 

2 and shows several slumps and overturned bedding with respect to the ridge. Bedded lapilli tuffs 

occupy the topmost reaches of the tuff cones, and massive lapilli tiffs comprise most of the mid-

section of the ridge. Pillowed intrusions and associated pillow breccias crop out below these 

massive facies and below them are a patchwork of slump scars and slump blocks interspersed 

with mostly massive ash tuffs. At the base of the ridge, bedded ash tuff facies are present.  
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Figure 91: Annotated photo-mosaic E_13, which includes the Transect Log 2 area.
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M-vent represents the best-exposed and best-described single tuff cone at Sveifluháls to 

date. Log 2 is therefore vital in understanding the nature of edifice construction and evolution at 

Sveifluháls. From these data collected at M-vent, we can begin to unravel the complex history of 

ridge construction. Log 2 shows that numerous emplacement mechanisms were present during 

the construction of the individual tuff cones. Evidence of primary but rotated deposition (i.e., 

tephra that was deposited and rotated but not remobilized to form another facies type) was only 

found near the peak, where bedded lapilli tuffs mantled the ridge crest and represented the 

episodic and/or intermittent ejection of tephra. Massive tephra found under these bedded tuffs, 

particularly the unconsolidated LT4, likely represented a phase of ―continuous uprush‖. These 

loose deposits are prone to slippage and failure, and may be responsible for the current over 

steepened dips found in the overlying bedded tuff. It is likely that the depositional mechanisms 

described by Transect Log 1 were also at work here at M-vent, but that M-vent experienced a 

higher degree of mass wasting and slumping which caused remobilization of these deposits, with 

only small slump blocks remaining that illustrate the slopes’ former facies types. The 

prominence of intrusions are also important in the construction of M-vent, as they were a major 

trigger for slope failure and also contributed  clasts found in the many facies below them.   

2.4.3 Interpretation of Transect Log 3: Mid-Slope Intrusions 

Transect Log 3 provides a detailed account of intrusions that are commonly found along the 

flanks of Sveifluháls. This transect log spanned between approximately 155 m and 190 m asl, 

which are relatively low in elevation in comparison to the ridge, which itself spans from 145 m 

to 400 m asl. Due to poor weather on the day this transect was compiled, no pictures of the 

deposits were taken, but two rock samples were collected; one at the base and one at the top of 
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the transect. Because of inaccessible slopes in some locations, the transect follows a zig-zag type 

path (Figure 76).  

Between 163 m and 169 m asl, an exposure of a pillowed intrusion crops out over a 

horizontal distance of 50 m. Below this intrusive zone, over-steepened (>40°) beds of lapilli tuff 

(LT1) were observed dipping away from the ridge complex, and the facies of these tuffs is 

similar to that found on the peaks of the ridges. Below 160 m, the beds of lapilli tuff dip more 

shallowly away from the ridge axis. Below 155 m, the facies are observed to be massive lapilli 

tuff. This low-elevation sequence is almost identical to the bases of the Transect Logs 1 and 2, 

showing that a similar process of emplacement was taking place at low elevations near the 

present lake shore. The massive lapilli tuffs at the bases of Transect Logs 1 and 3 are also very 

similar, as shown in the thin sections for each of these facies: the glass fragments in each are 

unaltered and well vesiculated (between 50 to 75%), with the large clasts of the sample from Log 

1 being the more vesiculated of the two logs. 

Above 169 m, the facies are best described as rotated blocks and clasts of bedded ash tuff 

containing other lithics (e.g., pillow fragments, vesiculated lava fragments, and older tephra 

intraclasts). At around 188 m, a 2-3 m outcrop of an unvesiculated intrusion was found. This 

dike had blocky jointing and represented the top of Transect Log 3. It is of note that the two 

intrusions shown in Log 3 are only 20 m apart vertically, and only 50 m apart horizontally. 

The annotated photo-mosaic E_12 that includes the location of Transect Log 3 (Figure 

92) shows outcrops of bedded lapilli tuffs at the peak of the tuff cone. Below this are a series of 

slump scars and slump blocks that are positioned above units of mostly massive ash and lapilli 

tuffs with some bedded lapilli tuffs found in the area near Log 3. One large outcrop of a pillowed 



 153 

intrusion can be seen in the foreground, but as Log 3 shows, additional intrusion outcrops are 

found higher up on the ridge flank.  

Photo-mosaic E_12 shows once again the pattern seen in many of the annotated photo-

mosaics. Bedded lapilli tuffs are found at the highest elevations of the tuff cones and a series of 

slump scars and slump blocks dominate the middle elevations of the ridge flank. Massive lapilli 

tuffs generally dominate the areas in and around these slumped zones, and some bedded lapilli 

tuffs may also be present but are less common in these areas. The lower elevations of this ridge 

segment are generally comprised of massive ash tuffs and bedded lapilli tuffs, as detailed in Log 

3.
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Figure 92: Annotated photo-mosaic E_12, which includes the area described by Transect Log 3.
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A construction history for this ridge segment is very similar to that described in previous 

sections for Logs 1 and 2. Slumping, remobilization, and rapid subaqueous remobilization of tuff 

was the dominant construction mechanism here, but the bedded lapilli tuffs found in the lower 

half of Log 3 indicate emplacement by subaqueous concentrated density flows. These flow 

deposits were likely overturned by flank collapse or were pushed over by the large nearby 

intrusion, or both.  

2.4.4 Interpretation of Stratigraphic Log 4: Fluvial Mass Flow Deposits Near an Inter-

Ridge Basin 

Stratigraphic Log 4 is located near the opening of a 1 km long, 0.25 km wide, inter-ridge basin 

that was likely the former location of an ice-confined area of ponded water. The basin currently 

forms ephemeral ponds which fill and evaporate with seasonal climate fluctuations (show in map 

view in Figure 93 and in the field in Figure 94). The Log 4 location is situated adjacent to a 

notch 20 m above the inter-ridge basin, and likely represents a spillway for meltwater flowing 

from the ridge flanks into the basin during the construction of Sveifluháls. The facies in Log 4 

show clear evidence of fluvial emplacement. Trough cross bedding, bed truncation and scouring, 

migrating antidunes and ripple marks were found at Log 4, and the sequence of facies have an 

overall trend of coarsening up the stratigraphic section before becoming massive at the top of the 

exposure which may correspond to a return to ponded water conditions, as no bomb sags were 

seen in this unit. The log is situated 0.5 km from the nearest topographic high (Figure 93), which 

is consequently the highest peak on Sveifluháls, informally named ―Hnífurhnjúkur‖ by this 

study, or H-vent (translated as ―knife mountain‖ from Icelandic, due to the peak’s knife-edged 

ridge crest). The meltwater flowing through the area around Log 4 therefore did not likely travel 
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far from the ridge crest and its multiple eruption centers, and therefore these deposits represent 

proximal fluvial deposits.     

 

 

Figure 93: Map showing the location of Logs 4, 5 and 6. Ripple mark direction at Log 4 shown by 

white arrow. The present-day inter-ridge basin is outlined by a blue dashed line. 

 

These deposits bear a striking resemblance to known jökulhlaup deposits described 

elsewhere in Iceland (Russell and Knudsen, 1999; Tweed and Russell, 1999; Russell et al., 2001; 
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Duller et al., 2008; Russell et al., 2010), particularly those at Mýrdalssandur in southern Iceland, 

which are associated with the 1918 ice-confined eruption of Katla (Duller et al., 2008). These 

jökulhlaup deposits are associated with transcritical and supercritical flow dynamics that 

characteristically emplace tabular and lenticular sets that possess concave-up erosional basal 

surfaces, and show a structureless to diffusely stratified texture (Duller et al., 2008). The 

jökulhlaup deposits described by Duller et al. in 2008 are much thicker, more laterally 

continuous and described in greater complexity than the deposits found at Log 4 in this study, 

but the similarities in lenticular bed forms, basal scours and traction structures are very similar 

and suggest similar depositional mechanisms (i.e., jökulhlaups). The facies at Log 4 imply that it 

is possible for jökulhlaups to deposit very close to the source of the eruption (less than 0.5 km), 

and that deposits from these jökulhlaup-triggered flood events are not limited to distal glacial 

outwash plains. Until now, jökulhlaup deposits have not been described this proximally to an 

eruption center. 
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Figure 94: Field photo of a view looking northward into the inter-ridge basin near Log 4. 

 

The sub-surface morphology of these present day basins at Sveifluháls are not known, as 

they have filled with sediments since the time of their formation. The passage of water out of 

these basins is also unclear, as there was no observable evidence of outflow channels or other 

indicators of meltwater flow leading away from the basin. Based on these observations, it is 

likely that these and other now buried inter-ridge basins were enclosed by the ridge segments 

that grew up around them, whereupon they began filling with water and subaqueously emplaced 

tephra. Channelized flow at Log 4 likely followed as a result of a mass flood event triggered by 

an outburst of a meltwater lake. Large volumes of meltwater likely passed through the area near 

Log 4 and towards the northeast into the large inter-ridge basin, where it was held for an 

unknown period of time.  
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2.4.5 Interpretation of Stratigraphic Log 5: Jökulhlaup Deposits and a Return to Ponded 

Water Conditions 

Log 5 is situated approximately 0.3 km south-southwest of Log 4, and is located 240 m east-

northeast of a present day bowl-like structure found on the western flank of Sveifluháls, halfway 

between the M-vent and H-vent edifices (an ―inter-vent‖ area) (Figure 95). A bowl-like structure 

is found near Logs 5 and 6 (Figures 95 and 96). 

The massive to diffusely stratified (note that some very diffuse stratification is seen but 

for classification purposes, it was labeled as LT5) and glassy lapilli tuff at the base of Log 5 

indicates rapid emplacement of a moderately well-sorted material. A coarser massive lapilli tuff 

(LT6) is located at the top of the outcrop. In between these massive facies is a cross-bedded unit 

of bedded and laminated lapilli and ash tuff that contains a lens of mostly clast-supported 

scoriaceous (possibly broken pillow) fragments.  
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Figure 95: Location map of the bowl-like structure found in the inter-vent area between the M-vent and H-

vent edifices. The bowl structure may be a slump scar or possibly a glacial cirque. 
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Figure 96: An annotated field image showing the locations of Logs 5 and 6 in relation to the bowl 

structure shown in Figure 99. 

 

The bottom contact of this facies with the massive tuff below is diffuse, suggesting that 

the depositional environment gradually transitioned from ponded water to fluvial. The upper 

contact of the bedded facies with the massive tuff above is sharper and likely represents an 

erosional contact, as bedding units are scoured off on the top of the lower unit. This suggests that 

a period of time had elapsed and subaqueous conditions were re-established that enabled rapid 

emplacement of the massive tuff. The upper massive tuff unit is also much more palagonitized 

and reddened than the lower units, indicating that the upper unit was closer to a source of heat 

and hydrothermal alteration (likely an intrusion) in comparison with the lower units.  

The bowl structure (Figures 95 and 96) may possibly be a glacial cirque, but it is more 

likely that it is slump scar triggered by over-steepening near the peak of the ridge or by slope 
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failure triggered by an intrusion. This intrusion may have been the fissure segment that formed 

the peak of the ridge crest (see Figure 97).  Log 5 is located inside an incised channel that drains 

water away from the bowl-like depression upslope (clearly seen in Figure 96). Based on the 

evidence provided above, it is highly likely that the deposits of Log 5 were formed by 

remobilization of material in a depositional setting that transitioned from ponded water to fluvial, 

and then back to ponded water. The massive tuff LT5 at the base of the log indicates rapid 

emplacement in a subaqueous environment. As the ice-confined meltwater lake drained at this 

location, the depositional process changed to a fluvial one and a bedded, cross-bedded unit of 

LT1 was built. This unit was coarser grained than the lower massive lapilli tuff and also 

contained lenses of angular and vesicular lava fragments. The LT5 and LT1 unit here closely 

resemble a deposit from the 1918 Katla jökulhlaups described by Duller et al. in 2008 (Duller et 

al., 2008). In this study, mostly massive and structureless tuff units (some very diffuse 

stratification was observed in some instances) were indicative of the main flood surge produced 

by these jökulhlaups. These massive units were overlain by post-surge trough-cross beds and 

horizontally bedded deposits (Duller et al., 2008). Of particular note in the Duller et al. 2008 

study is the description of a very thin layer of fine to medium sand-sized clasts that define the 

base of all bedsets within the Katla 1918 jökulhlaup units. Very similar structures are found 

separating the LT5 and LT1 facies at Log 5. These comparisons provide good evidence to 

support that the LT5 and LT1 units at this location are representative of jökulhlaup-type high 

discharge flood events at Sveifluháls. As mentioned in the previous section for Log 4, this 

finding is significant because it shows that these types of events can occur very close to the 

eruption source. 
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The deposits at Log 5 are also significant because they show that the depositional 

environments within the ice-confined meltwater lake were capable of varying dramatically from 

subaqueous to fluvial conditions (indicative of draining and establishment of a subaerial 

depositional environment) before returning to a subaqueous depositional regime. These 

variations depend on the flow of meltwater away from the emplacement site, either by drainage 

into inter-ridge containment ponds, or by flow along the base of the ice sheet and onto a glacial 

outwash zone.  

2.4.6 Interpretation of Stratigraphic Log 6: Jökulhlaup Sequence 

Log 6 is situated approximately 0.25 km south-southeast from Log 4 (and about 125 m east of 

Log 5), and is located within the interior of the bowl-like structure described above for Log 5. It 

is comprised of a 4 m thick deposit of massive ash tuff at the base, a mostly massive 0.6 m thick 

lapilli tuff unit in the middle (the two massive units are separated by thin laminations of ash), and 

a 1.5 m thick unit of alternating laminated ash tuff and bedded lapilli tuff at the top. The thick 

massive ash facies at the base coarsens upwards and contains up to 35 cm clasts of very glassy 

and moderately vesicular (maximum of around 50%) fragments. Some of these clasts are found 

in concentrated lenses or domains within the unit. Ash clasts in this deposit are composed of 

broken fragments from bubble walls, likely sourced from the same material that make up the 

larger clasts found it the deposit.  

 Just to the north of Log 6 is a mound of tephra that may represent a large portion of the 

materials that slumped from the slump scar (Figure 97). Strike and dips taken here show that 

most beds here dip down slope of their respective topography, and many dip away from the 

slump structure. Another interesting feature found on the southern edge of this slump mound is a 
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―plastering‖ effect of tephra along the length of the mound (Figure 98), formed as sediments 

embanked against the sides as they traveled down the channel.  

 

 

Figure 97: Annotated air photo of the bowl-like slump structure on the western flank of Sveifluháls. 
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Figure 98: Annotated field photo of tephra plastering along the side of the slump mound. Plastering indicates 

tephra was wet and cohesive at the time of emplacement. 

 

Like the depositional scenario attributed to Log 5, a similar jökulhlaup sequence seems to 

be represented by Log 6 and the deposits here bear a striking similarity to those described by 

Duller et al. in 2008 (Duller et al., 2008). The thin laminated ash seen at the base of the 1918 

Katla bedsets (formed in relation to in-phase surface waves) are also found at the base of the Log 

6 facies units and are particularly well represented at the base of facies unit LT6. The massive 

units at Log 6 (AT5 and LT6) are very similar to the main surge deposits described in the 1918 

Katla jökulhlaup units. At Log 6, the group of massive facies are overlaid by a horizontally 

bedded and alternating units of AT1 and LT3, which are mostly planar but some faint trough 

cross beds were present. This is very similar to the post-surge deposits in the 1918 Katla 

jökulhlaup sequence. 
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Like Log 6, these deposits may represent a jökulhlaup-type mass flood event that 

occurred very close to the eruption source. It also represents a zone of meltwater drainage and 

subaerial conditions within the ice-bound cavity at Sveifluháls.   

2.4.7 Interpretation of Stratigraphic Log 7: Basal Pillow Lava Sequence 

Log 7 represents a typical sequence of basal pillow lavas found at the lowest elevations of 

Sveifluháls along the lakeshore of Kleifarvatn. The sequence begins with a 6 m thick unit of 

vesiculated and concentrically-banded pillow lava, but is likely thicker as this deposit was 

partially submerged by the lake. These pillow lavas probably represent the onset of the eruption 

as magma erupting from a fissure segment interacted directly with ice and meltwater. It is 

unlikely that these pillow lavas were the result of a pillowed intrusion because there is no 

overturned tuff near these pillow units and the surrounding tuff is not highly palagonitized, in 

contrast to the tuff found adjacent to nearly all intrusions found at Sveifluháls.  

 The overburden pressure of ice probably suppressed the explosive fragmentation of the 

lava. Above the pillow unit was a 3.5 m thick unit of pillow breccia, which may represent the 

collapse and flow of the over-steepened pillow pile. Above this breccia unit, vitric lapilli tuff was 

found in a 3.5 m thick unit. This tuff unit contained slumped areas, pillow fragments and 

occasional intact pillows, indicating that the unit formed from materials found higher up on the 

slope and may have entrained loose pillows from the lower pillow pile prior to emplacement. 

The remainder of the log shows a sequence of mostly bedded facies, many of which have 

abundant pillow fragments and/or intact pillows in them.  

Overall, Log 7 shows a typical transition from an effusive to an explosive eruption. The 

inclusion of pillows and pillow fragments in the bedded tuffs found in the log show that the 
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subaqueous density flows traveled over pillow lava zones prior to emplacement, and that the 

pillows in the bedded facies are likely from higher up on the same pillow sequence represented 

by the basal pillows.  

2.5 CHEMISTRY OF COHERENT LITHOFACIES AT SVEIFLUHÁLS 

Fresh, unaltered samples of coherent (non-clastic) lava rocks at Sveifluháls were collected for 

XRF analysis from several locations; from basal pillow interiors, from intrusions along the flanks 

of Sveifluháls, and from the subaerial lava found in the study area (Figure 99). Twelve lava 

samples were analyzed using X-Ray Fluorescence spectrometry (XRF). Six samples were run in 

2009 at Dickinson College (Carlisle, Pennsylvania) and an additional six were analyzed in 2010-

2011 at McGill University (Montreal, Canada) (Table 9). Small differences in instrument 

calibration between the equipment at Dickinson and McGill are possible, which is why the two 

groups of samples are reported separately. Overall, the McGill samples are generally higher in 

SiO2 compared to the Dickinson samples, but it is difficult to say if this is due to error or if it is a 

higher SiO2 content in the samples. The average standard deviation of SiO2 XRF values from the 

instrumentation at McGill is 0.06, which was calculated from replicate analyses of a basalt 

sample provided by Dr. Benjamin Edwards at Dickinson College. 
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Table 9: Rock sample names and types. See Figure 100 for a map showing the locations of these 

samples. 

 
Samples Run at Dickinson College 

Sample 
Type 

basal 
pillow intrusion 

unvesiculated 
intrusion 

intrusion 
(pillow) 

intrusion 
(pillow) intrusion 

Sample 
Name 080808-S1 081409-1 081009-L3-2 081208-M1 081009-L2-7 081409-6 

  Samples Run at McGill University 

Sample 
Type intrusion intrusion 

basal pillow 
rind 

basal pillow 
interior 

subaerial 
lava 

basal pillow 
rind 

Sample 
Name 071210 - 4 071210 - 5 071510 - 1 071510 - 2 080809 - S1 080908 - L2 
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Figure 99: Location map and names of lava samples analyzed with XRF.
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Table 10: XRF results of Sveifluháls lava samples.  

 



 171 

As the XRF data indicate (Table 10), the lava samples have low Na2O + K2O percent 

weight and are similarly low in SiO2. This is typical for tholeiitic basalts in the Reykjanes 

Peninsula (Jakobsson et al., 2008b). The Sveifluháls samples plot slightly lower in SiO2 and 

slightly higher in Na2O+K2O than Mid-Atlantic Ridge basalts south of Iceland from 29°N to 

73°N (Schilling et al., 1983) (termed ―normal‖ MARs in Figure 100) and fit within the low end 

of the tholeiitic series for Icelandic basalts. Sample 081208-M1 (run at Dickinson), a pillow lava 

collected on the slopes of Miðdegishnjukur (i.e., M-vent), is particularly low in SiO2 and is less 

than the standard tholeiitic range for Iceland basalts.  To better understand the elemental 

differences in the Sveifluháls samples, the standard deviations from XRF analyses of the samples 

were compared to replicate tholeiitic basalt sample analyses done at McGill in a project by Dr. 

Benjamin Edwards (Table 11). This comparison was also done to better determine which 

elements seemed to vary more than expected. The results of this comparison show that the 

standard deviations of weight percentages for major elements (SiO2 through P2O5, Table 11) 

were greater than expected from analytical error. The trace elements (in ppm for Ba through Zr, 

Table 11) are highly varied. In particular, Cr, Ni, V and Zr had standard deviations much higher 

than what was found to be expected from the replicate analyses.  
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Table 11: A comparison of Sveifluháls sample chemistry with that of replicate samples analyzed at 

McGill University. 

 

McGill Replicates 

Sveifluháls Samples 

(McGill) 

Sveifluháls 
Samples 

(Dickinson) 

Analysis Average Std. Dev. Average Std. Dev. Average Std. Dev. 

SiO2 46.004 0.068 48.212 0.559 47.473 0.885 

TiO2 2.963 0.019 1.797 0.095 1.801 0.196 

Al2O3 14.646 0.067 14.575 0.632 15.464 1.443 

Fe2O3 13.688 0.049 13.862 0.737 13.297 1.341 

MnO 0.189 0.002 0.219 0.013 0.202 0.020 

MgO 8.974 0.048 7.133 0.429 6.871 0.593 

CaO 9.930 0.038 11.968 0.183 12.302 0.719 

Na2O 2.868 0.010 2.219 0.064 2.098 0.148 

K2O 0.640 0.007 0.227 0.048 0.161 0.036 

P2O5 0.407 0.003 0.192 0.020 0.179 0.033 

Ba 189.486 6.948 56.533 11.367 72.183 11.855 

Ce 64.000 6.892 18.500 10.232 26.750 5.179 

Co 54.800 2.490 49.167 3.312 73.817 21.619 

Cr 471.016 4.467 259.183 133.035 293.400 93.438 

Cu 130.200 7.050 260.667 28.633 174.700 15.041 

Ni 220.600 3.362 90.167 22.113 92.833 23.317 

V 287.904 3.081 363.467 20.888 378.400 47.282 

Ga 21.140 0.270 17.317 0.519 17.833 1.528 

Nb 25.280 0.205 12.400 2.166 14.000 1.823 

Y 28.820 0.311 25.533 2.036 27.700 2.920 

Zr 201.460 1.050 91.100 7.368 95.967 12.662 
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Figure 100: A plot of the SiO2 vs. Na2O + K2O weight percents for Icelandic rocks, showing the 

approximate range for Sveifluháls lavas (green oval) (Modified from Jakobsson, 2008a and Schilling et al., 

1983).  

 

As a starting point to test if the chemical variation among the coherent samples was due 

solely to mineral fractionation, Pearce Element Ratio (PER) analysis was used to more closely 

examine the influence of olivine mineral sorting. The PER technique is valuable for 

distinguishing between chemical differences due to mineral sorting of a single magma batch as 

opposed to chemical differences resulting among samples that come from separate magma 

batches (Russell et al., 1990). For example, Russell et al. (1990) used a simple PER diagram to 
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illustrate that chemical differences between samples from Uwekahuna laccolith (a sheet intrusion 

formed between host rock layers) in Hawaii can be simply explained by differential sorting of 

olivine (Figure 101). 

 

 

Figure 101: A plot of the mineral sorting slopes within a Pearce Element Ratio (from Russell et al., 

1990), showing slopes for Plagioclase (PL) at 0 and Olivine (OL) at 1. 

 

The XRF data show that the lavas at Sveifluháls were not related by olivine sorting 

(Figure 102). The slope of the line for this test is 0.184, which is well under the slope of 1 

needed to assume that the fractionation of olivine was occurring from the same batch of magma. 

However, slopes of 0 and 0.33 for the PER is indicative of fractionation by plagioclase and 

augite (clinopyroxene), respectively (Figure 102) (Stanley and Russell, 1989; Russell et al., 

1990). This seems to be much more indicative of the Sveifluháls lavas, as plagioclase was the 
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most abundant phenocryst in thin sections of the samples (clinopyroxene was the second most), 

and plagioclase was the only identifiable type of xenolith mineral found in hand sample. 

 

 

Figure 102: Pearce Element Ratios testing the olivine fractionation process in Sveifluháls lava samples. 

Samples from both labs (McGill and Dickinson) are included in this plot. Average slope of the line is 0.184, 

indicative of augite and/or plagioclase fractionation may have influenced magma evolution. 

 

To test the hypothesis of sorting of plagioclase and clinopyroxene, a battery of 

Assemblage Tests using each mineral plus each possible combination of the three were done to 

determine if and how these minerals influenced fractionation (indicated by a slope of 1). These 

were evaluated against Ti, an element not likely to be found in these minerals. Results from these 
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Assemblage Tests can be found in Appendix C. Of all of the combinations, the only test that had 

a slope of 1 (all samples combined) was the combination of olivine, clinopyroxene and 

plagioclase. In the chart for this test (Figure 103), a black dashed line with a slope of 1 was 

drawn to symbolize what the slope would have looked like for a positive PER olivine test. The 

sample used as the ―parent‖ composition (i.e., had the highest MgO and Ni content) was sample 

071210-5 and is indicated on the figure with a black arrow. This sample was analyzed at McGill 

and came from an intrusion located near the highest peak of Sveifluháls. If the test for olivine 

sorting was positive, the line with a slope of 1 would have likely passed through a string of 

points strung along this line (as in Figure 101).  

This positive three phase Assemblage Test for Sveifluháls samples may indicate that the 

lavas are related by the sorting of these three minerals. However, it is also equally possible that 

the ridge was erupted from multiple batches of magma rather than a single magma chamber, 

based on the geochemical variation of the samples and the morphology of the multi-vent and 

multi-ridge nature of the complex. More information on the plumbing structure of the complex 

chamber is discussed in Chapter 4.   
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Figure 103: Assemblage Test plot used to test the sorting of plagioclase, olivine and augite (clinopyroxene), 

showing that the ratios are consistent of sourcing by a single magma chamber. Slope of all points combined is 

equal to 1, indicating a positive test. 

 

An unusual finding in the XRF results is the highly varied amounts of Cr in the 

Sveifluháls lavas (Figure 104). While none of these Cr values for Sveifluháls samples were 

particularly atypical for lavas from the Reykjanes Peninsula and offshore Reykjanes Ridge 

(Peate et al., 2009), the amount of variation within the Sveifluháls samples was unusual, as Cr 

amounts varied from 56.5 ppm (from the subaerial lava sample) to 435.9 ppm (from an 

unvesiculated intrusion) within the ridge complex. High Cr values were also found from pillow 
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samples within a basal pillow sequence near the shore of Lake Kleifarvatn (358.5 ppm) (the 

standard deviation of Cr measurements by the XRF equipment at McGill University is 3.995, 

based on the replicate analysis of a sample of basalt provided by Dr. Benjamin Edwards at 

Dickinson). At Sveifluháls, the highest levels of Cr were found proximal to the tallest peaks in 

the fissure complex and in a basal pillow sequence found at the base of these tall edifices. The 

lowest Cr level was found in a subaerial lava that likely formed some time after the onset of the 

eruption, when the meltwater vault had drained away, leaving a void in the ice within which lava 

erupted subaerially. It is difficult to determine why the Cr fluctuation is present without further 

analysis of additional samples and an investigation on the behavior of Cr in tholeiitic basalts.  
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Figure 104: A map featuring Cr amounts of Sveifluháls lavas, in ppm. The lowest amount (56.5 ppm) 

is from the subaerial lava, and the highest (435.9 ppm) is from a pillowed intrusion on the upper flanks of 

Miðdegishnjukur (M-Vent). 
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Lastly, an interesting aspect of coherent rock chemistry of Sveifluháls samples is how it 

compares with that of subglacial lavas on the Reykjanes Peninsula, and how these comparisons 

may help confirm the age of Sveifluháls deposits. In a 2009 study by Peate et al. (2009) a suite of 

lavas of varying ages and locations across the Reykjanes Peninsula were analyzed and a trend of 

increasing SiO2 content was observed in these lavas over the past 100,000 years. The oldest of 

the samples used in the study were from Stapafell subglacial lavas (25 km west of Sveifluháls) 

and are estimated to be between 20,000 to 100,000 years old. These lavas are classified as 

―enriched‖, meaning they have a Nb/Zr ratio greater than 0.08 (Peate et al., 2009) (usually 

between 0.10 and 0.14) and are similar to mantle Nb/Zr ratios (Pearce and Norry, 1979; Fitton et 

al., 1997; Gee et al., 1998). At Sveifluháls, the Nb/Zr ratios varied between 0.108 and 0.151, 

with an average of 0.141, and average SiO2 content was 47.84 wt% (includes both McGill and 

Dickinson samples). The Stapafell lavas have an average Nb/Zr ratio of 0.158 and an average 

SiO2 content of 46.92 wt%. The next oldest group of lavas analyzed by Peate et al. (2009) was 

from the Brennisteinsfjöll (Bláfjöll) volcanic system, located 5 km east of Sveifluháls. These 

were post-glacial lavas less than 1,100 years old and had an average Nb/Zr ratio of 0.135 wt% 

and an average SiO2 content of 47.60 wt%.  

 

Table 12: Comparisons of Sveifluháls, Brennisteinsfjöll and Stapafell lavas. 

 
Lavas 

 
Brennisteinsfjöll  Sveifluháls  Stapafell  

Est. age (ka) 1.1 12.4 to 40 20 to100 

Average SiO2 47.60 47.84 46.92 

Nb/Zr ratio 0.135 0.141 0.158 

 

Using the Stapafell and Brennisteinsfjöll samples as end members, the enriched 

Sveifluháls lavas fall somewhere in between the two (Table 12) and are overall more chemically 
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similar to the nearby Brennisteinsfjöll lavas than those at Stapafell. If Nb/Zr ratios are any 

indication to ages of lavas on the Reykjanes Peninsula, then the enrichment at Sveifluháls may 

support an age range that is fitting between these two end members.   

2.6 LAKE KLEIFARVATN 

Directly adjacent to the eastern flank of Sveifluháls is Lake Kleifarvatn, a 6 km long, 2.5 km 

wide and 102 m deep lake (from 2010 shore level of 145 m asl) and is bound by constructional 

volcanic features on the west and by faults on the east (Clifton et al., 2003) (Figure 105). The 

origin and age of the lake is uncertain, as little to no information exists on Kleifarvatn aside from 

a bathymetric map of the lake bed (Figure 106). During the course of this research, it was 

determined that the lake is likely related to the construction of Sveifluháls in some way, and that 

it was likely present in some form during the time of the eruption based on the depositional 

patterns found on the eastern flank of the ridge. This section will describe Kleifarvatn and will 

then discuss the relationship between it and Sveifluháls. 

 The lake is located within a closed catchment basin with no outflow at the surface. Lake 

inflow is from a small stream that collects drainage from the area to the south of Kleifarvatn, 

including flow draining from the Seltún geothermal area (Figure 105). The northern and western 

lakeshore is defined by a series of scalloped shorelines, some of which form steep cliffs that 

plunge into the lake. It is of note that the highest elevation of the ridge (400 m asl) is adjacent to 

the deepest part of the lake (Orkustofnun, 1964), creating a 357 m elevation difference between 

the two features. This region of Iceland has experienced significant normal faulting as a result of 

extension from rifting (Clifton et al., 2003; Clifton and Kattenhorn, 2006). It is possible that the 
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construction of Kleifarvatn and the depth of the lake may have been influenced by grabens that 

formed by normal faulting that occurred on the sides of extensional ridges, similar to the pattern 

observed offshore along the Reykjanes Ridge (Höskuldsson et al., 2007). The lake also sits on a 

northeast-trending right-lateral strike-slip fault (Sigurdsson, 1985) that parallels the ridge axis. 

Two known maar explosion craters named Grænavatn and Gestsstadavatn (Thorarinsson, 1952) 

are located 3.5 km to the southwest of Kleifarvatn, in the same orientation as the axes of 

Kleifarvatn and Sveifluháls. Three known geothermal springs are present in the southern half of 

the lake (Clifton et al., 2003). 

 The name ―Kleifarvatn‖ is translated to ―climbing water‖ in Icelandic, and is a 

descriptive title for this lake. In June 2000, a swarm of earthquakes occurred in the southern 

region of Sveifluháls and Kleifarvatn, and the lake level subsequently drained through an open 

fissure in the lake bed. From June 2000 to December 2001, lake water drained 4 m through two 

large fractures 58 and 47 m in length and 30 cm in width (maximum), and striking 023° and 

028°, respectively (Clifton et al., 2003) (see Figure 105 for the location of these lake-draining 

fractures). During this time, the lake lost approximately 12% of its volume. In 2002, the fractures 

were visually inspected by Clifton, and were noted to be filling in with sediment and 

subsequently slowing the outflow of lake water (Clifton et al., 2003). Inspection and 

measurement of the lake level in 2010 as part of this study show that the lake is now 5 meters 

above the level described in the 1964 bathymetric map (140 m asl) produced by Orkustofnun 

(Orkustofnun, 1964) (Figure 106). Before Clifton, 2003, no previous publications detailing the 

drainage of Kleifarvatn exist, but lake level measurements have been recorded regularly since 

1930 by the Hydrological Service of the National Energy Authority (Clifton et al., 2003) and the 

lake was known to have drained several times in the past following seismic events. 
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Figure 105: A map of Kleifarvatn and locations of key features and structures.
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Figure 106: Kleifarvatn bathymetry in 1964. (Orkustofnun, 1964).
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2.6.1 The Sveifluháls-Kleifarvatn Connection 

Lake Kleifarvatn is important to the evolution of the Sveifluháls fissure complex. The lake 

obscures some of the basal lavas and deposits that represent the early phases of tindar-forming 

events. For example, the pillow sequence represented by Log 7 is partially covered by lake water 

such that the maximum thickness of the basal pillow unit is unknown. It is also likely that the 

lake contains large volumes of alluvium from the eastern flank of the ridge, which is better 

exposed than the western flank. It is not easy to determine if Kleifarvatn was present as an ice-

confined lake during the Sveifluháls eruption(s) or if it was formed by glacial and tectonic forces 

some time after the ridge was emplaced. However, there are several pieces of evidence that 

indicate the former.  

Prior to the 1996 Gjálp eruption, jökulhlaups originating from Grímsvötn were reported 

every 4 to 6 years (Gudmundsson et al., 1997).  During the October 1996 Gjálp eruption, 

Grímsvötn played a major role in the transport and collection of meltwater away from the Gjálp 

fissure eruption. The lake was a major catchment for meltwater collecting at the Gjálp eruption 

site, and caused the lake to swell in size and volume. On November 5-6, 1996, a jökulhlaup 

drained Grímsvötn 50-60 m below pre-eruption levels and released 3.2 km
3
 of water 

(Gudmundsson et al., 1997).  

The Grímsvötn model is an appealing analog to Kleifarvatn for several reasons. 

Geothermal areas are present on the Kleifarvatn lake bottom and it is possible that these 

geothermal areas were similarly present during the LGM at the time of Sveifluháls construction. 

If so, this would infer that Kleifarvatn was also present as an ice-confined lake during the LGM, 

and may have been involved in the eruption of Sveifluháls in some way. It is unlikely that the 
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lake was the same shape and volume as it appears today, as the morphology of the lake today is 

largely due to faulting and post-glacial lavas on the east and Sveifluháls constructional features 

on the west. However, it is possible that the lake was smaller and shallower at the time of 

Sveifluháls eruption, and served as a meltwater catchment similar to Grímsvötn.  It is also 

possible that the area now occupied by Kleifarvatn behaved similar to a Sveifluháls inter-ridge 

flat zone and became a catch basin for water and sediments much like the areas between the 

ridges did.  The eastern flank of Sveifluháls is very well exposed, with deeply incised channels 

that allow for easy access to rock units. While there are numerous slump features and along the 

eastern flank and several large alluvial fans branching off from Sveifluháls, there are 

conspicuously few depositional features that would help explain where the large volume of 

eastern flank sediments may have collected, except for Kleifarvatn itself.  

One clue linking the flow of glacial meltwater and Sveifluháls sediments is the 

observation of ripples and imbricated clasts in a bedded fluvial deposit (Figure 107) along a 

stretch of the western Kleifarvatn shoreline (Figure 108).  
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Figure 107: Field photos of examples of channelized flow (A), imbricated clasts (B) and slumping in 

bedded concentrated flow deposits (C) near the western Kleifarvatn lakeshore (same location as ripple marks 

shown in Figure 108). The components of the deposits are reworked fragments of consolidated tephra and 

coherent rock (i.e., lava). 
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Cross-bedding, scour and fill structures, ripple marks, imbrication, and soft sediment 

deformation were observed in these bedded units. Some beds and/or lenses in these deposits 

contain matrix-supported and sub-rounded to rounded (i.e., eroded) clasts of lavas from 

intrusions and pillows, and appear to have been substantially reworked. The fluvial deposits at 

this location may be younger than the bulk or all of the eruption of Sveifluháls and be associated 

with a braided stream type of environment. Orientation measurements collected from these 

deposits show southern flow directions of 165 and 138 from north. 

 

 

Figure 108: A map of southern flow directions, as indicated by imbrications and ripple marks from 

bedded flow deposits at the Kleifarvatn western lake shore (yellow symbols showing flow at 165 and 138 from 

north). Inset map shows the location of the flow directions within the study area. 
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It is likely that much of the materials that were transported off the eastern flank of 

Sveifluháls, and allowed for excellent exposures of the facies therein, were most likely removed 

by mass wasting events. If Kleifarvatn was not yet present, it is likely that these materials were 

carried further to the south towards the ocean and along the glacial flow direction by mass flood 

type events. If Kleifarvatn were present, these materials were then likely deposited into the lake 

similar to the behavior of Grímsvötn during the 1996 Gjálp eruption. One difference between the 

two scenarios is that Grímsvötn was located nearly 10 km to the south of the eruption site and the 

meltwater flowed up and over the ice-land boundary from the eruption site (Gudmundsson et al., 

2004), while Kleifarvatn was located directly adjacent to the eruption site and the meltwater had 

a more direct path to the lake. Another difference is that the two lakes are intrinsically different 

in that Grímsvötn is a caldera and Kleifarvatn likely originated by normal faulting and/or 

possibly volcano-tectonic events of an unknown age. However, if it was present in some form 

during the time of Sveifluháls eruption, the role Grímsvötn as an influence on meltwater flow 

and collection from a nearby ice-confined eruption (i.e., Gjálp) may be a useful analog for better 

understanding the potential role that Kleifarvatn may have played in the construction of 

Sveifluháls. 

2.7 SUMMARY OF THE EVOLUTION OF SVEIFLUHÁLS 

Field observations indicate that the Sveifluháls complex began as a series of at least 30 regularly-

spaced fissures (average of 0.7 km spacing) that intruded into an overlying ice sheet. There is no 

clear evidence of the order of eruptions along the main Sveifluháls fissures or adjacent smaller 

segments. The first materials to be erupted were pillow basalts that likely erupted under as much 
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as 600 m of overlying ice (discussed further in Chapters 3 and 4). It is likely that a high 

overlying confining pressure prevented the explosion of lava at the onset of the eruption, but it is 

important to note that several other factors can influence explosivity at this stage, including 

eruption rate, lava rheology, and gas content (Batiza and White, 1999; Tuffen, 2007). 

Nevertheless, basal pillow lavas (PL1) are observed at several locations in the lowest elevations 

of the Sveifluháls fissure complex and likely erupted through evenly spaced, echelon fractures 

along the dominant stress direction (Pollard et al., 1982) of what would become the Sveifluháls 

fissure complex (this is further discussed in Chapter 4). As the eruption progressed, some of the 

cracks joined together to form longer segments, and other new fissures formed in between and 

parallel to these lengthening segments.  

 Some pillow sequences are located as far as 900 m from the primary fissure axis at 

Sveifluháls (e.g., Log 7), indicating that the initial activity at Sveifluháls may have began several 

hundred meters away from where the eruption focused at the primary ridge axis, or they traveled 

beneath the ice away from the main fissure through ice tunnels. Following the initial eruption of 

pillow lavas within the complex, the pillows began to pile up and over-steepen, which led to the 

formation of breccias due to collapse. These breccias were either clast-supported (PB1) or 

matrix-supported (PB2), and the type and degree of matrix support seems to be tied to the 

distance traveled by broken pillows and/or the onset of fragmentation of the pillow lavas. For 

PB2 facies where true hyaloclastite (in this case derived from spalling pillow rinds) is the matrix, 

it is likely that the pillow breccia formed in close proximity to the pillow pile or did not entrain 

phreatomagmatic tephra if the breccia formed from farther away. For PB2 facies where 

phreatomagmatic tephra comprises the matrix, it can be assumed that the breccia entraining tuff 

prior to deposition. The interpretation of these facies is therefore dependent on where they are 
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located (near basal or intrusive pillow lavas), so it is difficult to make blanket statements about 

these breccias when taken out of context with surrounding deposits. 

Explosive phreatomagmatic tephra fragmentation eventually became the primary eruption 

style at Sveifluháls. Explosively fragmented variably vesicular vitric tuff overlie basal pillow 

lavas and pillow breccias at nearly every basal pillow sequence at Sveifluháls, and some 

fragmental material has been found within pillow breccias located within basal pillow sequences, 

as in facies LB1.  

After this point, it is likely that the fissures that originally supplied the ridge with basal 

pillow lavas and pillow breccias began to focus into centralized edifices along a row of 

regularly-spaced (0.7 km average spacing) locations along the ridge (this process is explained in 

detail in Chapter 4). As the pillow lava eruption progressed, fissures lengthened, widened and 

connected along the length of the fissure so that elongated eruption centers were developed. As 

the edifices grew, confining pressures were reduced due to the transition from an effusive style 

(lower heat flux) to an explosive style (higher heat flux), which resulted in the faster melting of 

ice (Tuffen, 2007). As ice melted and meltwater escaped through the base of the glacier, 

confining pressures were reduced, allowing for the onset of fragmental phases of ridge 

construction which developed into a series of elongated tuff cones along the axis of the fissure 

complex. At this time, lapilli and ash tuffs were generated from multiple and possibly 

simultaneously erupting edifices that formed the growing Sveifluháls fissure complex. Intrusions 

continued to play a role in the construction of these tuff cones and influenced the morphology 

and stability of the ridge flanks as well as contributed significant fragmental material to the 

lapilli and ash deposits.  
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Slumping, remobilization and re-deposition of tephra along with the dislodging, sliding 

and rotation of tephra blocks during the construction phase of the ridge (due to slope 

destabilization from over steepening, intrusions, seismic activity, retreat of ice walls, etc.) was 

widely observed across the ridge and adds to the overall chaotic nature of Sveifluháls deposits 

(Figure 109). About 40% of all recorded strikes and dips at Sveifluháls were greater than or 

equal to 40°. By analyzing the morphology and topography of the ridge flanks, it is possible to 

trace the origin of these deformed tephra units to present day slump scars upslope of the slump 

features. Intrusions are commonly (but not always) found perched above these slump scars, 

suggesting that the propagation of dikes into unconsolidated and submerged wet tephra was an 

important cause for slope failure for the tephra under these dikes, and also caused adjacent tephra 

to rotate and dip over  40° (Figure 110).  



 193 

 

 

Figure 109: Annotated photo-mosaic E_9, showing interbedded tephra units, massive tuffs, and slump structures that partially causes the 

hummocky topography observed here. Other factors to this geomorphologic texture include erosion and possibly buried pillow lava piles. 
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Figure 110: Annotated photo-mosaic E_11, showing slump scars and slumps below intrusions. Note the deformation of bedding surrounding 

the intrusion.
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During the growth of the tuff cone rows, the edifices were likely submerged by an ever-

increasing volume of meltwater that collected in ice-confined subglacial vaults. As the multi-

fissure complex grew, water became trapped between the rows of tuff cones and fissure 

segments in ponded areas represented today as inter-ridge flat zones found to the west of the 

main fissure axis on the western flank of the complex. These fissure-confined ponds collected 

meltwater and volcaniclastic sediments, possibly filling them to their brims with tephra. No field 

evidence suggests that these basins were open to the air above (i.e., did not have an ice layer over 

them), but it is possible that they were due to the high rates of melting associated with the 

formation of tuff cones and ridges that bound the basins.  

It is likely that some of these ponds were the reservoirs of water from and/or sources of 

water for jökulhlaups that transported water and sediments away to the west and north from the 

fissure complex in mass flood episodes. Deposits suggestive of these jökulhlaups have been 

identified in proximity to these inter-ridge flat zones. Kleifarvatn may also have been a reservoir 

of water from and/or a water source for jökulhlaups that flowed to the east and south of the 

complex and possibly into the North Atlantic ocean, located just 3 km away from the southern 

end of Sveifluháls. 

2.7.1 Challenges in Interpretation of Sveifluháls Tuff Facies 

Many of the lapilli and ash tuff facies at Sveifluháls present a challenge in depositional 

environment interpretation and mechanisms of emplacement. There are several potential 

emplacement mechanisms for the tuffs at Sveifluháls, and each is a function of one or more 

factors, including: eruption rate, eruption style (e.g., jetting, continuous uprush, etc.), explosivity 

and energy of the eruptive pulse, steam content in the water column during the time of eruption 
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(White et al., 2006), volume of water in the meltwater vault, and degree of ice confinement. In 

addition, emplaced wet tephra undergoes remobilization one or more times and in one or more 

subaqueous emplacement mechanisms (e.g., hyperconcentrated density flow, concentrated 

density flow, turbidity flow, etc), resulting in a completely different depositional and/or bedding 

style than the tephra originated.  

To further complicate emplacement, the failure of slopes and the addition of fragmental 

material by intrusions played a significant role, and thus presents a challenge in understanding if 

clasts of lava in facies units are a result of these intrusions or if they were sourced by the edifice 

in the form of bombs, rip-up clasts, or talus. Nearly all the tephra units at Sveifluháls are only 

continuous for a few tens of meters at most. Also, the facies can change rapidly from one unit to 

the next, making it difficult to relate process-driven emplacement characteristics from one unit to 

another as there is little relationship among neighboring tephra packets. Additionally, there 

seems to be little to no difference between tephra units from different edifices. The discontinuous 

units run together and intermingle such that the only quality that distinguished one tuff cone 

from the next is the elevation of the edifices themselves (Figure 111). It is therefore highly likely 

that the tuff and lava fragments comprising remobilized tephra units were likely been sourced by 

more than one edifice, particularly in inter-vent regions of the complex. 
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Figure 111: Annotated photo-mosaic E_14, showing the deposits between and below two vents, and the indistinguishable nature of deposits from one 

vent to another.
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Another difficulty in deciphering these facies is that it is unclear which are remobilized 

facies and which represent original emplacement (no remobilization). The only units that 

definitely appear not to have been remobilized after original emplacement are the bedded lapilli 

tuffs found at the highest elevation of the ridge (see LT1 in Log 2). These tuffs are over 

steepened and display deformation textures that suggest the bedding was prone to failure. It is 

highly likely that many such units failed, but a few remained coherent. The high dip angle of 

these beds (>40°) is likely due to post-depositional slippage along a scarp near the ridge axis.  

It is more difficult to tell if massive facies were the results of remobilization. Massive tuff 

facies are particularly difficult to interpret because they have no bedding indicators that would 

otherwise assist in understanding the nature of the deposit. Some massive lapilli and ash facies at 

Sveifluháls may be primary products fed from a continuous uprush style of eruption (Kokelaar, 

1983, 1986; White, 1996), particularly those located at higher elevations of the ridge, and 

deposited rapidly. However, they may have also experienced a small degree of remobilization 

which may not have necessarily altered the composition of the unit but may have resulted in the 

formation of slump structures and fluid escape conduits. The massive facies may also represent 

rapid deposition of a subaqueous hyperconcentrated density flow of remobilized tephra. In the 

field, it is nearly impossible to distinguish the two depositional scenarios for massive tuff facies 

aside from the fact that uprush-type massive facies are more likely to preserve bomb sags (no 

bomb sags were observed at Sveifluháls). 

Another challenge in interpreting the architecture of Sveifluháls is the high degree of 

slumping and deformation found on blocks of tephra along the ridge flanks. As strike and dip 

measurements of Sveifluháls show, the order of bedding orientations are chaotic in many parts of 

the ridge and do not seem to follow any overarching pattern. Many of these chaotic bedding 
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orientations have dips over 40°, indicating that these units are not primary deposits (i.e., first 

emplacement).  

The observation of talus-covered mounds located at the base of the ridge, particularly on 

the eastern side of Sveifluháls (visible in Figures 111, 112, and 113) may have formed by a 

number of ways during the evolution of the complex. These mounds were largely ignored in the 

field because no discernable stratigraphy could be seen on or within them, but their presence was 

common across the field area and requires some discussion here. Firstly, is possible that some of 

these mounds were basal pillow lava piles formed at the onset of the eruption (and possibly 

formed in subglacial tunnels), and later were completely covered by tephra such that the core of 

the mound was obscured. It is also possible that some of these mounds were emplaced by 

slumping, like that described at other locations and elevations along the ridge. Lastly, it may be 

possible that the mounds are the product of glacial retreat and subsequent collapse of buttressed 

tephra (see Section 4.2.3). When ice walls melted, the resultant unsupported materials they once 

held in place may have formed a series of debris avalanches that emplaced mounds of 

structureless talus at the base of the complex. The collapse of these materials on the eastern side 

of the ridge may also help explain why this side of the complex is well-exposed today.   

Without a more detailed study (and partial excavation of these mounds), it is difficult to 

ascertain how they may have formed. It is possible that all three scenarios may have formed 

these structures at various locations along the ridge. However, it is important to consider the role 

that retreating ice had on the morphology of the ridge, particularly since previous ice-confined 

eruption models show that tephra is in direct and steep contact with ice walls during an ice-

confined eruption (Bennett et al., 2009), implying that the removal of these walls would thereby 

cause collapse of material. It is therefore important to include the role of ice retreat in the 
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evolution of Sveifluháls, as it is probable that the deglaciation of the complex contributed to its 

geomorphology in some way.  

2.7.2 Emplacement of Lapilli and Ash Tuff Facies at Sveifluháls 

The bedded lapilli and ash tuff facies at Sveifluháls are interpreted as largely a product of 

emplacement by subaqueous density currents. The subaqueous density currents that emplaced 

these tuffs were of varying concentration (i.e., hyperconcentrated, concentrated and turbidity 

currents), which is reflected in the grain size and thickness of the bedded units. It is of note that 

none of the tuff deposits at Sveifluháls were continuous for more than several tens of meters, 

indicating that the process of deposition for each unit was localized to discrete areas of the ridge.  

The main source of the lapilli and ash tuff facies at Sveifluháls was from subaqueous and 

explosively erupted tephra at the edifice. The growth of the Sveifluháls complex likely involved 

episodes of continuous uprush and periods of Surtseyan jetting to build up the tuff cones and 

ridges. Evidence for Surtseyan ―cocks-tail‖ jetting can be found in some tuff facies by the 

presence of laterally discontinuous units with highly vesicular bombs and bomb fragments 

(representing the head of the jet) found within lapilli and ash tuff facies.  

Emplacement mechanisms varied across the fissure complex and were as much a function 

of depositional zones as they were of depositional mechanism. Overall, the primary depositional 

mechanism of ash and lapilli tuffs seems to be subaqueous density flows of varying 

concentrations. Facies of this type were found across all elevations and all locations at 

Sveifluháls. The paths of these subaqueous currents, and emplacement of the tuff they 

transported, were dependent on topography and location of meltwater collection zones. The 

currents flowed down slope, but were likely interrupted and/or influenced by obstructions such 
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as previously slumped blocks of tephra, ice blocks, ice walls, fissure segments, gullies and 

intrusions. Inter-ridge flat areas and other meltwater collection areas (possibly Kleifarvatn), also 

influenced the deposition of tuff because they served as a collection and burial area for 

descending flows.  Generally, many of the bedded units dip towards these meltwater collection 

areas, indicating that the tuff was deposited in the direction of these zones.  

Meltwater drainage also influenced the emplacement of tuff within the Sveifluháls 

complex. The rate of meltwater drainage varied both at different places along the complex and at 

different times throughout the eruptive history of the ridge. Fluvially-emplaced units are found at 

multiple locations below 300 m asl throughout the complex, most notably near inter-ridge flat 

zones on the western side of the complex and near Kleifarvatn on the eastern side. These show 

that meltwater was draining below this elevation and formed channels that cut through the slopes 

of the tuff cone. Like the subaqueous density flows, the bedding of these fluvial deposits 

generally dip towards meltwater collection zones. The fluvial deposits are located in broad, deep 

scour-like areas and show evidence of mass flood, jökulhlaup-type events consisting of a main 

surge (massive facies) to fluvial conditions (bedded, cross-bedded and scour and fill facies) 

observed at several locations near a large inter-ridge meltwater basin at Sveifluháls. These 

deposits are described and interpreted in Chapter 2.4.4 to 2.4.6 and are based on very similar 

deposits found at other known jökulhlaups in Iceland (Russell et al., 2001; Duller et al., 2008; 

Russell et al., 2010). This indicated that the rate of meltwater drainage at Sveifluháls varied and 

was prone to sudden outbursts of meltwater, and these outbursts may have been linked to the 

sudden drainage of inter-ridge meltwater-filled basins.    

Laminated ash tuff facies appear at a few mid-slope locations but are mainly observed 

near the base of Sveifluháls and are rarely laterally continuous for more than 3 to 4 m (Figure 
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109). Parallel and cross-bedded laminations have been observed in the facies units, and they are 

sometimes inter-bedded with coarser ash or lapilli tuffs. The ash tuffs were likely emplaced by 

subaqueous turbidity currents and generally do not dip steeper than 20° at any location. It is 

possible that these laminated ash tuffs represent the end of a subaqueous density flow unit, after 

all larger-grained clasts have dropped out of the flow and leaving only the smallest clasts. They 

may also represent suspension and settling of tuff in some cases, particularly where cross-

bedding is not found in the laminated beds. 

2.7.3 Intrusions at Sveifluháls 

The intrusions generally followed the same northeastern orientation of the ridge axis and 

were observed at all elevations along the flanks of tuff cones. The intrusions exercised 

significant structural control of the ridge flanks and were a cause for slope failure, localized 

deformation, and hummocky topographic along the ridge flank (Figure 110). The intrusions also 

had a localized ―dragging‖ effect on host tephra, and carried some of the tuff along with the 

intrusive margin as the dikes propagated through the subaqueous tephra (Figure 112).   
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Figure 112: Annotated photo-mosaic E_8, showing slumped tuff, overturned bedding, and deformation of beds adjacent to intrusions (on left side of 

image).
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Some of these intrusions were non-pillowed and dense, and some formed peperitic 

margins within the host tephra while others formed isolated and/or detached pillowed margins or 

detached pillows within the surrounding host (a form of peperite) (Figure 113 shows all three 

examples in one photo-mosaic). Out of the three types of intrusions described in this dissertation, 

the pillowed intrusions seem to be the most prevalent at Sveifluháls and pillow fragments (and 

sometimes intact pillows) are found in many tuff facies located down slope of the intrusion. This 

suggests that the subaqueous density flows entrained materials from the slopes they descended 

on, including the pillows that formed within the host tuff along these slopes and later became 

talus as the pillows collapsed onto the tephra slope.   

In the southern part of the study area, it is possible that lava erupted onto areas of the 

ridge that had been drained of meltwater. These eruptions formed small subaerial lava flows that 

flowed for several tens of meters down the ridge flanks. This will be explained in more detail in 

the following section. 
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Figure 113: Annotated photo-mosaic E_2, showing all three types of intrusion in one area, and some associated slumping below these intrusions.
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2.7.4 Subaerial Lava 

 Very fresh-looking, pahoehoe-topped subaerial lavas found at 240 m asl, described in 

detail in Section 2.1.1.2, were emplaced on top of tuffs and in areas that had drained of 

meltwater. No central edifice was found in connection to the eruption of the subaerial lava, but 

the lava appeared as though it erupted mid-way down the slope of a small ridge flank and flowed 

down the flank and into a depression at the base. It is highly probable that the source of the lava 

for this subaerial flow was an intrusion that propagated through wet tephra and then erupted 

effusively into the air (see Chapter 4). The extent of the subaerial lava is small (tens of meters) 

and only a fraction of the originally emplaced flow can be seen today. The tephra under the lava 

has weathered faster than the overlying lava, causing the remaining portions of the flow to break 

into pieces that now lay strewn about the area. It is possible that other subaerial lava flows are 

present at Sveifluháls, but likely exist outside the study area as shown on a 1978 map by Jónsson 

(Jónsson, 1978). These other subaerial lavas were not visited or confirmed, but on the Jónsson 

map are located about 1 km to the southwest of the observed subglacial lava in the study area just 

below a series of tuff cones at around 260 m asl.  

 The subaerial lavas were likely erupted towards the end of the construction of 

Sveifluháls, based on the fact that no tuffs were observed covering these lavas, and also because 

it is more likely that the meltwater vault had drained to below 240 m asl towards the final phases 

of ridge construction. 
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2.8 COMPARISON WITH SIMILAR EDIFICES 

In this section, Sveifluháls will be compared with tindar structures on land, offshore on the 

Reykjanes Ridge, and similar structures on Mars.  

 

2.8.1 Similar Structures on Land 

There are a few published research exists on other similar tindar structures found on land 

(Gudmundsson et al., 1997; Gudmundsson et al., 2002a; Gudmundsson et al., 2002b; 

Gudmundsson et al., 2004; Schopka et al., 2006; Bennett et al., 2009), and some parallels can be 

drawn between Sveifluháls and the tindar described in these previous studies.   

 The 2 km long Helgafell differs significantly from Sveifluháls because it is a 

monogenetic tindar and lacks the multiple eruption centers that helped to shape the 21 km long 

complex of multi-vent, multi-fissure ridges at Sveifluháls. However, the deposits share many 

similarities and nearly identical bedded and massive ash and lapilli tuff facies were described at 

Helgafell. Also, the observation of significant intrusions is another similarity also found at 

Sveifluháls, although the Sveifluháls intrusions tend to be smaller and more planar in comparison 

to those at Helgafell. The appearance of pillow lavas within vitric tuff facies at middle elevations 

was similarly observed at Helgafell, and the emplacement of these were attributed to 

remobilization due to mass wasting or explosive magma-water interaction (Schopka et al., 2006) 

(these mechanisms may have also taken place at Sveifluháls), and not by slope failure triggered 

by the intrusions as in the case of Sveifluháls.  Unlike Sveifluháls, no basal pillows were found 

at Helgafell, suggesting that the entire eruption of the tindar was by explosive magma-water 
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interaction, or that they do exist but are buried. Mid-slope pillow formation at Helgafell was not 

clearly explained by Schopka et al., 2006, but it is possible that they were formed in a similar 

manner to Sveifluháls pillows; by intrusion of basaltic dikes into subaqueous, water-laden tephra 

that provided the required confining pressures needed to avoid fragmentation.  

In the 2009 paper by Bennett et al. (Bennett et al., 2009), the Brekknafjöll-Jarlhettur 

tindar in central Iceland was examined in detail with respect to glaciovolcanic features and 

glaciotectonic deformation. Morphologically, the study area analyzed by Bennett et al. at the 

Brekknafjöll-Jarlhettur tindar is very similar to that at Sveifluháls in that it consisted of multiple 

topographic highs (as many as 10) across a nearly 10 km long area. These topographic highs 

represented multiple tuff cone edifices and were spaced regularly (generally less than 1 km apart) 

as in the case of Sveifluháls. The edifices are Brekknafjöll-Jarlhettur are generally higher (up to 

675 m asl) than at Sveifluháls (400 m asl) and are likewise thicker (approximate maximum of 

375 m thickness) (Bennett et al., 2009) in comparison to Sveifluháls (maximum of 255 m 

observable thickness), and possible subaerial lava caps were identified at Brekknafjöll-Jarlhettur.  

Bennett et al., 2009 provides great detail on the bedded and massive ash and lapilli tuff facies 

and fluvial deposits at Brekknafjöll-Jarlhettur, and many of these facies descriptions bear a 

strong similarity to those at Sveifluháls. The major difference between the two is that Sveifluháls 

clearly lacked the glacial diamictons that formed a major aspect of the Bennett et al., 2009 study.  

Brekknafjöll-Jarlhettur also contained similar slump features as those found at 

Sveifluháls and the Bennett et al., 2009 study clearly shows how these deformational structures 

played an important aspect in the formation of the tindar. The appearance of thick pillow lavas 

described at Brekknafjöll-Jarlhettur are attributed to eruption under deep water or thick ice, as 

per the widely accepted model for ice-confined pillow formation (Werner et al., 1999). The 
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major difference between the Brekknafjöll-Jarlhettur lavas and those at Sveifluháls is that thick 

pillow piles within the ridge flanks and edifices, the possible subaerial lava cap was described at 

Brekknafjöll-Jarlhettur, and these features are not observed at Sveifluháls. Another difference is 

that Brekknafjöll-Jarlhettur also displays large areas of deformation in the diamictons and 

hyaloclastite sands (i.e., phreatomagmatic lapilli tuffs) found at the base of the ridge (Bennett et 

al., 2009). It is thought that this deformation was caused by the load of the diamicton, volcanic 

sediments and lavas in the growing pile (Bennett et al., 2009). At Sveifluháls, the deformation 

observed across the ridge was attributed to slope failure due to over steepening and undercutting 

due to intrusions, as diamictons were not identified at Sveifluháls. While the Bennett et al. 2009 

study is extremely helpful in better understanding similar ash and lapilli facies found at 

Sveifluháls, the glacio-tectonic influence at Brekknafjöll-Jarlhettur bears little resemblance to 

what is observed in this current study.  

The 1996 Gjálp eruption, as described by Gudmundsson (Gudmundsson et al., 1997; 

Gudmundsson et al., 2002a; Gudmundsson et al., 2002b; Gudmundsson et al., 2004)  is more 

difficult to compare to Sveifluháls because the tindar remains confined within ice and can’t be 

directly observed. However, the studies of Gjálp show that the movement of meltwater away 

from the growing volcanic pile may be similar to how meltwater traveled during the construction 

of Sveifluháls. The role of meltwater was a major influence on the location of glacio-lacustrine 

and fluvial depositional centers at Sveifluháls, and from Gjálp we better understand the complex 

meltwater pathways and hydrostatic conditions that might exist in an ice-confined volcanic 

system. The movement of meltwater away from Gjálp and towards Grímsvötn (Gudmundsson et 

al., 2004) showed that englacial lakes located near the eruption site can become a primary 

collection center for meltwater as well as a source for jökulhlaup origination. The Sveifluháls-
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Kleifarvatn relationship may parallel that of the Gjálp-Grímsvötn system that was clearly 

presented by Gudmundsson et al., in 2004. 

2.8.2 Comparison with the Submarine Reykjanes Ridge 

In 2007, Höskuldsson et al. published a paper detailing the Reykjanes Ridge between 

63°10’N and Iceland, as imaged by a Simrad EM300 high resolution multibeam mapping system 

(Höskuldsson et al., 2007). This mapping system produced bathymetry at a 5 m contour interval. 

Using these images as a comparison, it is possible to examine the similarities and differences 

between these submarine fissure-fed complexes with ice-confined landforms at Sveifluháls, 

located about 70 km to the northeast. Within the Reykjanes Ridge, volcanic activity is confined 

to and superimposed on the axial volcanic ridges (AVRs) (Höskuldsson et al., 2007). The 

features formed in this submarine environment are analogous to fissures, cones, shields, tindar 

and tuyas found on land in Iceland. The morphology of features along this portion of the 

Reykjanes Ridge range 3-15 km wide and 5 to 35 km long (Höskuldsson et al., 2007).   

The 65 km long area mapped by Höskuldsson et al. (Figure 114) contains a series of 

northeast-trending en echelon axial ridges with a total relief of about 300 m from the base of the 

sea floor to the top of the highest point known as the Fuglasker seamount. Some of the 

seamounts (protruding from the image shown in Figure 114) rise up from grabens (tectonic 

basins, shown in dashed lines), and the height of the seamounts can be seen in contrast with the 

low relief associated with the grabens.   
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Figure 114: A sonar bathymetry map of the Reykjanes Ridge above 63°10’N (after Höskuldsson, 2007). The area of interest outlined in the black box is 

further analyzed in Figure 115.
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Figure 115: A map comparison of the Sveifluháls study area with a section of the Reykjanes Ridge (upper 

image is after Höskuldsson, 2007). Note the location of the Húllið graben to the northeast of Eldey. 

 

A feature of note in a subset of the Höskuldsson et al. study area is a 10 km long ridge-

type segment named Eldey, located just to the north of the Fuglasker seamount (Figure 115). 
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Both Eldey and the field area are subsets of a comparatively larger complex; Eldey with the 

Fuglasker seamount and other Reykjanes Ridge structures, and the field area with the 21 km long 

Sveifluháls ridge (Figure 115). The two areas share similar orientation, but morphologically, the 

two differ in several ways.  

Firstly, Eldey is much broader and flatter than Sveifluháls with an average width of 5 km 

and maximum thickness of 175 m. Secondly, there also appears to be fewer bathymetric highs 

(likely vents) in comparison to the numerous topographic highs at Sveifluháls that are spaced an 

average of 0.7 km apart. Just two possible vents were located along the 10 km length of Eldey. 

Lastly, the edifice does not appear to be a complex of multiple fissures as in the case at 

Sveifluháls, and is arguable that just one fissure was responsible for the formation of Eldey. 

Other features along the Reykjanes Ridge may be the result of multiple fissures and multiple 

vents (i.e., Fuglasker seamount), but these edifices are more shield-like are less analogous to 

submarine expressions of tindar.  

One similarity worth mentioning are the graben structures that surround the seamounts 

and high-relief ridge structures like Eldey. At Sveifluháls, a similar tectonic situation may exist 

and may help explain the formation of Lake Kleifarvatn (Chapter 2.6), a topographic depression 

of uncertain age that is approximately 100 m lower than the base of Sveifluháls. It is difficult to 

assess potential graben structures adjacent to the western side of Sveifluháls because this area is 

covered by post-glacial lavas. 

Overall, the submarine analogs for tindar does not bear much morphological resemblance 

to their respective on-land structures, but structurally the two may potentially share some 

similarities in the effects of grabens on the topography of the ridge and adjacent terrain. The 

broader morphology of the Eldey ridge leads to a lower aspect ratio in comparison to Sveifluháls 
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(height/width; 0.035 at Eldey and 0.167 at Sveifluháls), but this is due to the fact that the 

Reykjanes Ridge structures did not have the constraints of ice-confinement (and subsequent 

growth of the tephra pile against an ice barrier) when they were erupted. This helps to explain the 

thinner and broader morphology of Eldey in comparison to Sveifluháls.  

The depth of water at the base of the structures on the Reykjanes Ridge north of 63°10’N  

is approximately 300 m in present day, and no mention of a basal pillow phase in the submarine 

edifices was provided in Höskuldsson et al., 2007. Unlike Sveifluháls, it is possible that the 

structures did not begin with a pillow phase, due to the relatively low confining pressures under 

300 m of water. 

2.8.3 Comparisons with Mars 

 Examples of possible tindar on Mars  (Wilson and Mouginis-Mark, 2003; Wilson and 

Head III, 2004; Wilson et al., 2009) were compared with Sveifluháls (Mercurio et al., 2009). In a 

2003 paper by Wilson and Mouginis-Mark (Wilson et al., 2003), 10 linear ridges were examined 

10-60 km north of Olympus Mons. The images of these features were captured by the Mars 

Orbiter Camera, which has a spatial resolution of 6.85 m. The Mars ridges appear to made of 

unconsolidated, stratigraphically uniform materials and are superimposed over underlying, older 

lava flows that are not diverted by the ridges (Wilson et al., 2003). It is thought that these ridges 

were formed ―instantaneously‖, by dike intrusion into an ice-rich regolith substrate estimated to 

have been 1000 to 2000m thick. The forms of these ridges on Mars vary, but most are linear and 

show some evidence of explosion craters (Figure 116).  
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Figure 116: MOC images of tindar-like ridges north of Olympus Mons on Mars (after Wilson et al., 2003). 
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Compared to Sveifluháls (Figure 117), the Martian ridges are longer than Sveifluháls 

examples, but are generally shorter and lower than Sveifluháls. The ridges on Mars are much 

more weathered than the Sveifluháls examples, which may account for the low relief observed 

on these structures. For example, Martian ridge ―a‖ in the Wilson et al. study (Figure 116) is 4.15 

km long, 1 km wide, and 54 m high. The individual Sveifluháls ridge segments shown in Figure 

118 below are shorter with an average length of 1 km, and are narrower with an average width of 

0.65 km. The thickness of the Sveifluháls examples varies, but on average is approximately 250 

m for the examples shown.  

 

 

Figure 117: Air photo images of Sveifluháls ridge segments for comparison with ridges on Mars. 
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When comparing the volume of Mars and Sveifluháls ridge segments, the Sveifluháls 

volumes are roughly an order of magnitude less than the Mars example.  Using the volume of a 

prism as the basis for the volume calculation, the Mars example has a volume of 0.11 km
3
 and 

the Sveifluháls examples have an average volume of 0.08 km
3 

for individual edifices. Therefore, 

the examples of ridge segments on Mars discussed in Wilson and Mouginis-Mark, 2003 are 

slightly larger volumetrically than those at Sveifluháls. However, the total ridge volume of 

Sveifluháls itself is much higher, with 17 eruptive centers within the study area alone, totaling to 

approximately 1.38 km
3
 just within the study area, which is half the total length of the 

Sveifluháls complex (with a total estimated volume of around 2.76 km
3
). The total estimated 

volume for the 10 Mars examples in Wilson and Mouginis-Mark, 2003 is 1.1205 km
3
. Therefore, 

even though individual fissure segments on Mars and Sveifluháls are volumetrically comparable, 

overall the entire Sveifluháls tindar complex is twice the volume of the amassed Mars ridges. 

Upon detailed examination of the two, the Mars and Sveifluháls examples share several 

similarities. They both have a steep ridge crest and have semi-linear forms and shapes. A 

―broken‖ ridge appearance is common in both cases, and the ridges themselves are both 

comprised of unconsolidated material. There also appears to be multiple minor fissures or 

intrusions within a single fissure segment, and it appears that vent focusing may have similarly 

taken place in the Mars examples, as shown by the presence of peaks at the top of the Martian 

examples. In some Martian cases, there appears to be inter-fissure flat areas, much like the 

Sveifluháls ridge, indicating the possibility that these inter-ridge flat zones on Mars may have 

similarly been collection zones for meltwater and fragmental material erupting form the fissures. 

The major differences between the Mars and Sveifluháls examples are more difficult to 

ascertain, as the pixel resolution of the Mars Orbiter Camera (MOC) used to capture the images 
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(shown in Figure 116) may be too coarse to notice subtle details. Overall, it appears that the 

Mars examples are not stratigraphically diverse, unlike the Sveifluháls ridge flanks which have 

lavas (from intrusions) and fragmental massive and bedded tuff units. The Mars examples also 

have explosion craters, which are not observed at Sveifluháls. Slump features and deformed 

beds, a common occurrence at Sveifluháls, are not observed in the Mars examples, but the spatial 

resolution of the MOC may be obscured these finer details.   

Overall, the Mars and Sveifluháls share more similarities than differences, but improved 

spatial resolution of the Mars images is required to make a more confident conclusion about the 

similarity between the two sets of fissure ridge segments.  
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3.0  EVIDENCE OF FORMER ICE PRESENCE AND THICKNESS AT 

SVEIFLUHÁLS 

At Sveifluháls, clear evidence of former ice presence is observed throughout the multi-

vent, multi-fissure complex. As shown in Chapter 2.8.2, the morphology of deposits at 

Sveifluháls differ significantly from those erupted along the submarine Reykjanes Ridge, but the 

fragmental nature of most deposits at Sveifluháls are also the result of eruption in water. It is 

evident that these units are the result of explosive fragmentation due to eruption of magma into 

glacial meltwater, and this is supported by; the appearance of rapidly quenched glass fragments 

comprising these deposits, the observation of ice-contact structures along the ridge complex 

(explained in Chapter 3.1), and the nature of the bedded and laminated ash and lapilli tuff 

deposits, which indicate emplacement by subaqueous density currents. Also, the appearance of 

subaerial lava at one confirmed location at Sveifluháls indicates that at some point in ridge 

construction, the meltwater had drained, allowing lava to erupt and flow down the ridge flank. 

These findings clearly demonstrate the presence of ice at the time of ridge construction. 

Ice thickness is a more difficult parameter to define. It is likely that Sveifluháls was 

erupted during the Weichselian glaciation period (see Chapter 1.6), and using the Rundgren et al. 

study (Figure 8) as a guide, the maximum ice thickness at Sveifluháls during the time of eruption 

was likely between 500 and 600 m (Rundgren et al., 1999). This is further supported by findings 

from this research. Sveifluháls has the unique position of being on a Weichselian ice divide 
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(Figure 7), and evidence of this can be also found at Sveifluháls. These findings will be 

discussed later in this chapter. 

3.1 ICE-CONTACT STRUCTURES AT SVEIFLUHÁLS 

At several locations at Sveifluháls, bedded outcrops have a ―swooping‖ or sway-backed 

appearance that is suggestive of ponding of the subaqueous density flow deposits against a 

barrier, interpreted as a paleo-ice wall. Upon collision with ice, bedding from subaqueous density 

flows began to ramp up the obstruction and create a swooping bedding pattern. The subaqueous 

density currents that emplaced these tuffs may have also flowed back on themselves after 

collision with the ice wall, thereby contributing to the ramping-up effect (Kneller and 

McCaffrey, 1990; Muck and Underwood, 1990), or may have simply back-rotated as they slid 

down the ridge flanks until they came at rest against an ice barrier. This swooping bedding was 

found at several locations across the fissure complex (Figures 118 and 119).  

During ridge construction, it is likely that the deposits frequently collided with ice walls 

that were continually melting away from the growing edifice. All of these structures face away 

from the ridge axis and have some degree of back-rotation. Many also display slumping or 

deformation in addition to the swooping, back-rotated beds. Facies AT3 (laminated swirly ash 

tuff) is often found with these slumped and deformed units associated with back-rotated beds, 

which suggests that the ice-contact features behaved similarly to other subaqueously emplaced 

density current deposits that also experienced slumping due to over-steepening or failure due to 

intrusions.  
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Figure 118: Location map of swooping bedding within the Sveifluháls field area. These bedding 

morphologies may be indicative of abutment against a paleo-ice wall. Each point on the map is marked with 

the photo ID number referenced below in Figure 119. 
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Figure 119: Field photos of likely ice-contact features (swooping beds) found in bedding along the 

flanks of Sveifluháls. 
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The melting back of the ice barriers likely caused failure of the tuff units they previously 

supported. As a result, few of these swooping ice-contact structures remain except for several 

excellent examples at various locations along the ridge (Figure 119). In addition to slope 

destabilization by over steepening and by intrusions, the retreat of ice during the ridge 

construction process was probably another major trigger of slope failure during the evolution of 

fissure complex, particularly during the ridge construction phase when thermal flux was at its 

highest.   

3.2 ESTIMATED ICE THICKNESS AT SVEIFLUHÁLS 

Basal pillow lavas at Sveifluháls may also be interpreted as indicators of an ice-confined 

eruption. These pillows have chilled, glassy rinds and radial-jointed interiors that are indicative 

of rapid cooling in water. In the fall of 2010, samples of these pillow rinds were sent off for 

FTIR analysis by Dr. Barry Cameron at the University of Wisconsin Milwaukee, Department of 

Geosciences. However, analyses of these samples were not completed by Dr. Cameron at the 

time of this dissertation, due to extenuating personal circumstances.  

However, there are other means by which ice thickness at Sveifluháls can be estimated, 

namely by the thickness and elevation of the deposits themselves.  Basal pillow lavas are found 

at around 140 m asl at Sveifluháls (see Log 7) and are about 5 m thick (above the lake shore), but 

are not necessarily a reliable indicator of confining pressures that were present at the time of 

their eruption. It is commonly believed that to form basal pillow lava, confining pressures must 

be at least 5 MPa (corresponding to about 450 m ice thickness) (Gudmundsson et al., 1997; 

Gudmundsson et al., 2004), but it is also possible that lower pressures of 1-2 MPa (90 to 180 m 
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ice) may be sufficient to form pillows (Tuffen, 2007), but is dependent on other factors such as 

slope of the eruption site, volatile content, and viscosity of the lava.  

During the Weichselian, it is possible that the estimated ice thickness in the area around 

Sveifluháls was a maximum of around 600 m thick (Rundgren et al., 1999). The basal pillows 

units, where exposed, show that the eruption moved from an effusive, pillow-forming stage to an 

explosive, fragmental stage after the pillow piles had reached an unknown thickness (possibly 

between 5 m and 10 m based on evidence collected during this study). After the pillow piles had 

reached a certain thickness (simultaneously melting ice above the eruption centers), the 

confining pressure was such that the edifice grew by explosive fragmentation until it reached at 

least 289 m above the pre-eruption bedrock (current Sveifluháls thickness of 250 m plus an 

additional 15% added to account for erosion, after Schopka at al., 2006). Using Gjálp as a 

reference, it is possible that Sveifluháls reached a height of 66% of the original ice thickness 

(Gudmundsson et al., 2004). If so, the minimum ice thickness must have been a minimum of 400 

m thick, but could have been up to 600 m thick based on the limits defined by previously 

mentioned studies.  Because of the high heat flux rates associated with explosive fragmentation 

of erupting lavas (Smellie et al., 1997; Gudmundsson et al., 2004; Tuffen, 2007), it is entirely 

possible that the eruptions at Sveifluháls melted through the ice and eventually formed elongated 

tuff cones that became emergent. While there is no direct evidence at the tops of the tuff cones 

that the complex became exposed to the air above the ice (or of subaerial tephra that erupted onto 

the ice surface), it is evident that the complex was exposed to subaerial conditions at some point 

during the evolution of the ridge in order to form the subaerial lava discussed in the following 

section. It is possible that the combination of meltwater drainage and the emergence of tuff cones 

above the water allowed for the formation of subaerial lavas which have now largely been 
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eroded away. A model created for this dissertation (Figure 120) shows the growing edifice 

nearing emergence from the ice-confined lake (Figure 120A). Drainage of the meltwater cavity 

follows and thin subaerial lavas are seen erupting from both intrusions and vents, forming lava 

flows that travel down the steep sides of the ridge flanks (Figure 120B). No evidence of lava 

deltas exist at Sveifluháls, so these subaerial lavas are not necessarily indicators of passage zones 

but are suggestive of subaerial conditions at certain locations on the ridge. 
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Figure 120: Ice-bound lake model during Sveifluháls construction. Figure A represents static lake water 

levels. The tuff cone(s) may have partially emerged above these levels during ridge construction. Figure B 

shows the emergence of the tuff cone following drainage of the meltwater. Subaerial lavas remain at lower 

elevations today and are evidence of former subaerial conditions. 
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3.3 MELTWATER BEHAVIOR AT SVEIFLUHÁLS 

 Using the estimated dense rock equivalent (DRE) volume of Sveifluháls (2.0 km
3
) as a 

guide, and assuming a single short-lived eruptive event (days to months) similar to the Laki 

eruptions (Thordarson and Self, 1993), the total volume of meltwater generated during eruption 

is estimated at about 17.25 km
3
 (based on Gjálp 1996 eruption as described by Gudmundsson in 

1997), corresponding to about 19 km
3
 of melted ice. A total meltwater volume estimate of 17.25 

km
3
 for Sveifluháls is about five times the volume of Gjálp 1996 (Gudmundsson et al., 2004) and 

at least twice the volume of Katla 1918 floods (Gudmundsson et al., 1997).   

 This section will discuss how meltwater behaved at Sveifluháls in the ice-confined 

meltwater lake both before and after significant drainage had occurred. 

3.3.1 Behavior of Meltwater in the Ice-Confined Lake 

The majority of deposits at Sveifluháls are fragmental in nature and were likely deposited 

subaqueously in cavity pressures less than 5 MPa (Tuffen, 2007). The absence of bomb sags and 

paucity of subaerial lavas, combined with the presence of concentrated density flows, turbidity 

flows and fluvial deposits, clearly indicate that subaqueous deposition of tephra was the primary 

emplacement mechanism during ridge construction.  

 As described by Gudmundsson et al. (2004) for the Gjálp eruption, meltwater likely 

flowed along the base of the glacier (per the slope of the fluid potential) and quickly formed a 

tunnel that drained the meltwater reservoir. Flow directions of meltwater passing through these 

passageways are heavily influenced by the pressure difference between the ends of the tunnels 

(Gudmundsson et al., 2004). Like Grímsvötn, Lake Kleifarvatn like had significant bearing on 
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the morphology of and flow within these meltwater tunnels, as Kleifarvatn was likely a large 

catchment area for a large volume for meltwater coming from the eastern side of the ridge 

complex. 

While it is likely that meltwater was draining along the base of the glacier as the 

eruptions at Sveifluháls were taking place, the rate of drainage was such that a relatively stable 

lake water level was maintained in order to keep the tuff cones submerged and allowing for 

explosive fragmentation to occur at the vent. As the meltwater drained away at the base of the 

ice, the englacial meltwater lake continued to fill from the melting of ice that formerly confined 

the growing edifices. Once the ice-confined eruption cavity was filled with meltwater, it is 

possible that the water level stayed more or less constant as the amounts of meltwater entering 

the ice-confined lake was roughly equal to that exiting the system through tunnels in the base of 

the ice. At some point later in time, this balance was disrupted by the formation of jökulhlaups 

that drained massive amounts of meltwater away from the fissure complex (described further in 

Chapter 3.3.2). As tuff was erupted from the vents, the jetted materials (many or all of which 

may have emerged above the surface of the water) entered the meltwater where they formed 

subaqueous density flows or suspensions that settled in the water column. Depending on the 

paleo-topography at the time of the eruption and on the location of paleo-ice walls, the distance 

traveled by the flows and the locations of settling varied.    

3.3.2 Meltwater Drainage and Jökulhlaups 

While several possible subaerial lavas were observed, only one confirmed subaerial lava was 

found at Sveifluháls, as discussed in Chapters 2.1.1.2, 2.3.1 and 2.7.4. This lava had a pahoehoe 

surface and may have erupted from an intrusion or from a vent. The altitude of this lava, at 250 
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m asl, indicates that meltwater drained this location that was at least 180 m below the pre-

erosional top of the ridge and as much as 500 m below the pre-eruptive paleo-ice surface (Figure 

120). Drainage of water in the ice-confined meltwater vault likely occurred rapidly and towards 

the end of ridge construction, as this was the only confirmed subaerial feature found within the 

field area. Also, no other evidence of subaerial lava or vitric lapilli tuff can be seen within the 

complex, and no other materials were superimposed on the subaerial lava. An analysis of 

meltwater behavior, and how it may have influenced the formation of subaerial lava(s) at 

Sveifluháls, is discussed here. 

 Water drainage at Sveifluháls is also indicated by the fluvial deposits identified 

throughout the ridge and described by Logs 4, 5 and 6. These deposits are usually found at 

Sveifluháls in proximity to inter-ridge flat zones that served as catch basins for sediments and 

meltwater flowing away from the ridge. The fluvial deposits were emplaced by movement of 

water at the surface as opposed to deposition by subaqueous density currents. The elevations of 

the fluvial features at Logs 4, 5 and 6 (256 m, 278 m and 292 m asl, respectively) are therefore 

good indicators of water levels within the draining meltwater vault. They are just as important as 

subaerial lavas in determining the exposure of the ridge to subaerial conditions by receding 

meltwater during the evolution of Sveifluháls.  

A model of meltwater draining away from the complex was created for this dissertation 

(Figure 121). The model was developed by ―flooding‖ the DEM at 25 m increments between 350 

m and 225 m asl.  
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Figure 121: A drainage model showing the extent of ice-confined lake water levels over 25 m increments. This 

model shows how meltwater and sediments may have been contained within inter-ridge basins during ridge 

construction and drainage. These basins may have also played in a role in jökulhlaups that were generated in 

close proximity to eruption centers (at Logs 4, 5 and 6). 

 

These images help to better understand the location of meltwater in relation to observed 

subaerial features. The fluvial features found in Logs 4, 5 and 6 were likely associated with the 
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drainage of meltwater around 250 m asl. Log 4 seems to be associated with the flow of meltwater 

into the inter-ridge lake to the northeast (seen clearly in Figure 121, model E) while Log 5 is 

seems to be related to channelized flow headed to the west-northwest (seen in Figure 121, model 

D). Ripple marks and flow directions from flowing surface water were measured in the field at 

three locations (shown in red, Figure 121). The location in the north of the field area had a flow 

direction of 70° from north, and the two locations in the southeastern portion of the field area 

(also shown in detail in Figure 108) had flow directions of 165° and 138° from north. These do 

not seem to have much association with the drainage of the ridge and may have been the result of 

post-eruption processes that took place an unknown time after the ridge was constructed. 

The major significance of the drainage model (Figure 121) is the role that inter-ridge flat 

zones had in the evolution of the complex. These areas were formed by smaller fissure segments 

(named ―ridgelets‖ in this research) or large slumped blocks that formed between the major ridge 

axes, thus creating a dammed area within which meltwater and tuff could be collected as the 

ridge was constructed. These basins also served as a catchment for water and sediments. Today, 

a few small inter-ridge lakes remain at Sveifluháls (e.g., the perched lake Arnavatn shown in 

Figure 122) while others are ephemeral, such as the basin found to the north of the fluvial Logs 

4, 5 and 6.  If or when these catchments were breached, they may have contributed to the 

formation of catastrophic jökulhlaup type mass flood events that were generated from the ice-

confined complex. Evidence of mass flood events has been documented at Sveifluháls mainly by 

the interpretation of Logs 4, 5 and 6. These interpretations were supported by the description of 

similar deposits found in historic volcanogenic jökulhlaups from Mýrdalsjökull (Abdelhgafoor, 

2007; Duller et al., 2008; Russell et al., 2010).    
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Figure 122: The perched lake Arnavatn within the Sveifluháls complex. Map A shows the location of 

inset box featured in image B. The field photo of Arnavatn in C was photographed while standing on M-vent 

and looking to the southwest. 
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 Aside from Logs 4, 5 and 6, there are several other locations at Sveifluháls where 

fluvial deposits are found. One of these locations is located 1 km to the northeast of the fluvial 

logs on the western edge of the large ephemeral lake found on the western side of Sveifluháls 

(Figure 123). At this location, fluvial deposits of lapilli ash tuff were found intercalated with 

horizontal ash and lapilli tuffs (Figure 124).  

 

 

Figure 123: The map location of the fluvial deposits found near the ephemeral lake (yellow star). 
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Figure 124: Annotated field photos of the fluvial deposits found at the northern end of the large ephemeral 

lake (A and B). Green ruler used for scale is 6 inches in length (15.24 cm). The microphotograph in C shows 

the laminated ash tuff (LAT) in thin section.  

 

Some syn-sedimentary faulting was seen at the base of the outcrop, indicating that some 

slumping or movement may have occurred prior to consolidation of the deposit. The trough cross 

beds at the base are about 1 m thick and are comprised of facies LT1, a bedded lapilli tuff with 

some larger clasts up to 10 cm and is. Above this facies is a 10 cm thick unit of laminated ash 

tuff (AT1) that shares a diffuse boundary with the bedded lapilli tuff above it (LT1). Both of 

these tuffs are horizontally bedded. Another trough cross-bedded unit of LT1 is found above the 

horizontal beds, but it seems to have been disturbed as only a few troughs are visible. A pocket 

of diffusely laminated ash tuff is found within this upper LT1 unit. The sequence is capped by a 
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very coarse massive lapilli tuff or tuff breccia, but only a small portion of the unit remained and 

it was difficult to make an assessment on the facies type or emplacement mechanism.  

These trough cross-bedded and planar sedimentary structures are nearly identical to those 

described by Russell et al. (2010) for the 1918 Mýrdalsjökull jökulhlaup and are indicative of 

post-surge fluvial conditions and lower discharge rates (Duller et al., 2008; Russell et al., 2010). 

The elevation of the fluvial deposits (Figure 124) is at 268 m asl, similar to the range of 

elevations of Logs 4, 5, and 6. This further supports that the flood event drained the ice-bound 

meltwater lake as far as 500 m below the original ice surface (Figure 120). 

Farther to the north of this location (800 m northeast) at 266 m asl is an outcrop of cross-

bedded ash tuff (AT2) that contained ripple marks (the red flow symbol at the northern end of 

the field area in Figure 121). At this location, ripple spacing was about 4.5 cm and the dominant 

flow direction was to the northeast (Figure 128).  

 

 

Figure 125: Annotated field photo of ripple marks indicating flow to the northeast. Ripple spacing is 4.5 cm. 
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The ripple marks indicate fluvial processes caused by draining water from the ice-bound 

lake, and the elevation of these ripples supports the drainage of meltwater to an estimated 500 m 

below the original ice surface (assuming the ice sheet was 600 m thick). Note that these fluvial 

structures were mainly found on the western side of Sveifluháls’ main axis, and were most often 

observed in proximity to inter-ridge basins. This suggests that the mass flood activities at 

Sveifluháls may have been associated with the filling and draining of these inter-ridge basins, 

and that these basins had some influence on the drainage of meltwater away from the ridge. It is 

unclear as to where the glacial outwash areas were with respect to the meltwater from 

Sveifluháls as these channels have most likely been covered by post-glacial lavas.    

Based on these ripple marks, the trough cross beds, and the interpretation of Logs 4, 5 an 

6, it is clear that fluvial processes and likely jökulhlaup-type events were occurring less than 600 

m to the eruption source. Additional research would be helpful in better understanding the 

extents, elevations and structures of these fluvially deposited units and how mass flood events 

influenced ridge construction. 

Flow directions were also collected from channel structures found adjacent to 

Kleifarvatn. These deposits were described in Section 2.6.2 and seem to have been emplaced by 

fluvial processes that likely post-dated the eruption at an unknown period of time. They also 

support the hypothesis that in the past, Kleifarvatn was a catchment area for water and sediments 

and may have played a significant role in the collection of draining meltwater during Sveifluháls 

construction, particularly for the eastern portion of the ridge complex.  
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4.0  CONCEPTUAL MODELS OF BASALTIC ICE-CONFINED FISSURE-FED 

TINDAR VOLCANISM 

This chapter attempts to build on existing models of ice-confined and fissure-fed basaltic ridges 

(Gudmundsson et al., 1997; Gudmundsson et al., 2002a; Gudmundsson et al., 2004; Schopka et 

al., 2006; Bennett et al., 2009; Edwards et al., 2009). The models are based on the observations 

and information gathered at Sveifluháls and are specific to a multi-vent, multi-ridge, ice-confined 

basaltic fissure eruption. The models help to better constrain ice thickness estimates at the time 

of their eruption and improve the understanding of how these fissure eruptions behaved and 

interacted with the ice and meltwater that surrounded them.  

These models were based on the extensive use of GIS analyses of field data and images 

collected during this research and are the first of their kind to describe a large, multi-ridge 

glaciovolcanic complex. The models take into account important constructional processes that 

have never been described before, including the deformation and slumping of tephra by 

intrusions, the formation of inter-ridge basins, and the generation of mass floods in close 

proximity to eruptive centers. 
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4.1 A REVIEW OF EXISTING ICE-CONFINED BASALTIC FISSURE ERUPTION 

MODELS 

Previous models of ice-confined basaltic fissure volcanism have been published by 

several authors, including Schopka et al. (2006), Gudmundsson et al., (1997, 2002, 2004, 2005), 

Bennett et al. (2009) and Edwards et al. (2009) (described in Section 1.5 of this dissertation).  

The Schopka et al. (2006) model for Helgafell, a 2 km long, 0.8 km wide, 300 m high tuff 

ridge, describes an ice-confined monogenetic fissure eruption that created an elongated tuff cone 

similar to an individual vent at Sveifluháls, which are generally not as long as Helgafell but are 

similar in width and height. The eruption at Helgafell is thought to have occurred under ice that 

was at least 500 m thick (based on the original height of the edifice), and was reported as entirely 

explosive. No basal pillow lava sequences were identified by the authors, but it is possible that 

pillow lavas were erupted at Helgafell but were later obscured by tuff, as is often the case at 

Sveifluháls. Helgafell contains large crystalline domains (intrusions) on the eastern flank, and 

bedded tuff units are more commonly found on the north western flank of the tindar, while 

massive tuff is more common on the south eastern flank (Figure 126).  
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Figure 126: Asymmetrical stratigraphy at Helgafell, modified from Schopka et al., 2006. The inferred 

meltwater envelope is represented by the dashed blue line. 

 

This asymmetry was attributed to the westward flow of the ice sheet during the time of 

eruption that influenced the behavior of meltwater at the eruption site (Figure 127). In this 

model, the eastern side of the edifice deposited massive tuff against paleo-ice walls from the 

flow of ice to the northwest, thus inhibiting the formation of a meltwater vault on this side of 

Helgafell. On the northwestern side of the edifice, a pocket of meltwater formed on the leeward 

side of the flowing ice, thereby allowing the subaqueously erupted tephra to undergo suspension 

and settling and/or subaqueous deposition by density currents (Figure 127B). According to the 

authors, this helps to explain why bedded facies were much more common on the western side of 

the ridge.  
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At Helgafell, the ice cauldron above the edifice was estimated to have been up to 200 m 

below the original ice surface (Figure 127C) based on prior observations of ice behavior at Gjálp 

in 1996 and Katla in 1918 (Gudmundsson et al., 1997; Schopka et al., 2006). The Helgafell 

eruption may have erupted through the glacier surface but during the Holocene, the top of the 

edifice was likely removed by aeolian erosion (Figure 127D). The original thickness of Helgafell 

(around 300 m) and volume of Helgafell (between 0.15 - 0.17 km
3
) was estimated based on the 

basal diameter and using that measurement to determine the theoretical height of the intact tuff 

cone, and comparing that with what is observed today.  

 

 

Figure 127: Helgafell eruption model and associated ice behavior, from Schopka et al., 2006. 
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This model of Helgafell is particularly useful in understanding the role of paleo-ice walls 

on the development of massive facies at Sveifluháls. Massive ash and lapilli tuff facies are very 

common at Sveifluháls, particularly at middle elevations (between 200 and 350 m asl) along the 

eastern flank of Sveifluháls (this side similarly faced the ice flow direction, as at Helgafell). It is 

possible that some of the massive facies formed this way, but bedded facies are also present 

among these massive units, so it is difficult to determine how much of a role the paleo-ice walls 

had on the development of massive facies at Sveifluháls during the eruption.  

While the depositional dynamics and ice conditions at the time of Helgafell and 

Sveifluháls construction may have been similar, the two tindar are very different both in spatial 

extent and morphology. This is mostly due to the fact that Sveifluháls is a multi-fissure, multi-

vent complex, while Helgafell is a monogentic, short fissure-fed edifice.  

The Gjálp model presented by Gudmundsson et al. (1997, 2002, 2004, 2005) (Figure 

128) was probably more like the conditions surrounding Sveifluháls construction, and 

particularly resonates with the role of ice-confined lakes as catchments for meltwater and 

sediments from the eruption. Even though Gjálp is smaller (around 6 km in length, <2 km width 

and between 150 to 500 m high), it is an ice-confined, multi-vent ridge complex and seems to 

better represent the morphology of Sveifluháls in comparison to Helgafell, even though it seems 

to lack the numerous, offset, semi-parallel and discontinuous fissure segments characteristic of 

Sveifluháls. The two tindar share several similarities: the ice thickness estimates fall within 

similar ranges (550-750 m at Gjálp, 500 to 600 m estimated at Sveifluháls); the edifice heights 

are comparable (150-500 m at Gjálp, 289 m estimated at Sveifluháls), and; both likely drained 

into a nearby sub-ice or ice-confined lake. 
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Figure 128: An illustration of the Gjálp edifice showing the flow of meltwater and sediments into 

Grímsvötn along the base of the ice. From Gudmundsson, 2005.   

 

The basaltic subglacial eruption models summarized by Gudmundsson (Gudmundsson, 

2003, 2005) feature a pattern of ice melting that is focused towards the top of an individual tuff 

cone where the erupting vent is directly causing melting of ice, and ice walls on the sides of the 

edifice are continually being filled by tephra (Figure 129). In the cases of Katla 1918 and Gjálp 

1996 (Gudmundsson, 2005), the resultant meltwater envelope is limited to the top and to one 

side of the growing cone before it flows out of the system along the base of the ice (Figure 130), 

similar to the ice and meltwater behavior at Helgafell (Schopka et al., 2006). This implies, as 

seen at Helgafell, that bedded facies are less likely to form on the side of the cone where it makes 

contact with the ice wall.  
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Figure 129: Ice melt behavior of an erupting subglacial tuff cone (b) and the phases of ice-confined 

eruptions (1, 2, and 3), from Gudmundsson 2003. 
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Figure 130: Cross-sectional models of historic ice-confined eruptions at Gjálp showing the shape and location 

of the meltwater envelope and the behavior of meltwater drainage according to Gudmundsson, 2005. 

  

While these models provide valuable insight into the dynamics of ice melting and 

meltwater drainage within an ice-confined tuff cone eruption, they leave out the complexities 

that arise when two or more tuff cones and ridges are forming within the ice, such as inter-vent 

and inter-ridge and/or basal pooling of meltwater and the deposition of tephra into localized 

topographic lows. These above models also over-simplify the shape and location of the 

meltwater envelope that surrounds these growing edifices and assumes that location of this 

envelope will tend to favor one side of the edifice over another, based on the dominant ice flow 
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direction. At Sveifluháls, bedded facies are observed throughout the ridge complex and there is 

no indication from the facies or from paleo-drainage indicators that the collection of meltwater 

was concentrated one any particular side of the complex. The Schopka et al. and Gudmundsson 

models are helpful in understanding monogenetic or small tindar formation in an ice-confined 

setting, but they do not satisfy the complex tephra deposition and meltwater drainage dynamics 

associated with multi-vent and multi-fissure tindar construction.   

Brekknafjöll-Jarlhettur ridge is likely the most useful comparison to construction and 

depositional environments at Sveifluháls, though this paper focuses on the glaciotectonic 

deformation found at the complex (Bennett et al., 2009). Like at Sveifluháls, the Brekknafjöll-

Jarlhettur complex consists of two northeast to southwest-trending sub-parallel ridges, and each 

ridge contains multiple tuff cones that are manifested as a series of topographic highs and lows 

(9 tuff cone structures have been identified) along the approximately 10 km long ridge complex 

(Figure 131). Individual topographic highs (vents) or ridge segments were 1 to 1.6 km long, 0.3 

to 0.8 km wide, and were between 80 to 160 m in height. The vents appear to be evenly spaced 

about 0.9 km apart, comparable to the 0.7 km vent spacing at Sveifluháls. The dimensions of 

these edifices were similar to that found at Sveifluháls, but overall the Sveifluháls is twice and 

long (21 km) and thicker than Brekknafjöll-Jarlhettur (250 m today but likely up to 300 m thick 

originally). Adjacent to the western side of the complex is Hagavatn, an 8 m deep proglacial lake 

that collects meltwater draining from the eastern Hagasfelljökull glacial lobe (Figure 132). This 

lake likely formed between 4,030 and 2,820 BP when the drainage from Hagasfelljökull became 

blocked by the eruption of a nearby shield volcano (Lambahraun) (Bennett et al., 2000).  
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Even though it is smaller in length than the entire Sveifluháls complex (21 km long), the 

Brekknafjöll-Jarlhettur tindar provides a good comparison for the subset of Sveifluháls used as a 

study area in this research.  

 

Figure 131: Location of the Brekknafjöll-Jarlhettur study area (red box) in A. Illustration B shows a 

lengthwise topographic transect of the Jarlhettur ridge showing topographic highs and lows. From Bennett et 

al., 2009. 
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Figure 132: Detailed location map of the Bennett et al. 2009 study area. Proglacial lake Hagavatn is 

indicated by the red arrow. From Bennett et al., 2009. 
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The Bennett et al. (2009) study identified several bedded and massive vitric 

phreatomagmatic tuff facies that are very similar to that found at Sveifluháls, but were labeled as 

―hyaloclastite‖ sands, gravels and breccias. Of particular importance in the Brekknafjöll-

Jarlhettur research was the identification and location of glaciogenic diamictons that were 

heavily deformed by the adjacent volcanic pile (Figure 133) (Bennett et al., 2009). These types 

of features were not observed at Sveifluháls, but it is possible that they have been lost due to 

erosion, are covered by post-glacial lava flows or by water at Kleifarvatn.  

 

 

Figure 133: From Bennett et al., 2009. A three-stage model showing a possible explanation of the 

large deformation structures found within glaciogenic diamictons at Brekknafjöll-Jarlhettur. 
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In relation to the construction of Sveifluháls, the most significant aspect of the Bennett et 

al. models is that they take into account the variations in tephra-ice interaction within a multi-

vent/multi-fissure ridge complex, unlike previous models of subglacial basaltic volcanism. The 

Bennett et al. 6-phase eruption model (Figure 134) mainly shows longitudinal ridge growth over 

time. Phases 1 through 3 depict ridge growth at several simultaneously erupting edifices, and 

show a relatively small meltwater pocket directly above them. As seen in Phase 3, the deposits 

from some edifices have merged together while others are separated by ice (likely because they 

were separated far from each other). It is highly unlikely that this separation was present at 

Sveifluháls, because field evidence shows that tuff deposits from individual vents are virtually 

indistinguishable from one another; they are interbedded and merge with those found in adjacent 

tuff cones, indicating that they probably formed at the same time (or within close temporal 

proximity). It is also probable that the Sveifluháls tuff cones formed inside an elongated ice-

confined meltwater lake that encompassed several, if not many, erupting edifices at the same 

time.  

Phase 4 of the Bennett model shows a period of quiescence and healing of ice over the 

Brekknafjöll-Jarlhettur complex, followed by the eruption of ice-contact basalt domes in Phase 5 

which eventually melted through the ice (the meltwater from which drained through the pile) and 

formed a subaerial lava flow in the drained cavity in Phase 6. These last three phases of ridge 

growth described by Bennett et al. describe a different scenario of ridge growth that that 

observed at Sveifluháls, as no ice-contact basalts were found in relation to the subaerial lava 

confirmed in the study area. Also, there is no evidence of water draining through the pile as the 

tephra was likely already water-laden and circulating hydrothermal fluids as part of the 

palagonitization process. Furthermore, evidence at Sveifluháls shows the drainage of meltwater 
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away from the ridge in the form on inter-ridge lakes and fluvial deposits from mass floods and 

surface flow along ridge flanks, but no deposits of this type were described at Brekknafjöll-

Jarlhettur. The Phase 5 eruption of the basalt domes at the peak of Fagradalfall (a tuff cone on 

Brekknafjöll-Jarlhettur) was associated with eruption into dry air or steam-filled cavities within 

the ice.  The Brekknafjöll-Jarlhettur model shows that the ridge experienced periods of inactivity 

that influenced the depositional dynamics of ridge construction, and likely contributed to the 

formation of diamictons at the ridge due to the melting, re-formation, and re-melting of ice. No 

diamictons were found at Sveifluháls, and it is possible that this is because it did not undergo 

periods of quiescence and ice healing and re-melting before final deglaciation at the end of the 

Weichselian.      

It is not clear in the Bennett et al. models what happened when the ice retreated from the 

tindar complex (Figure 134, Phase 6) or how the ice-supported sediments behaved once melting 

occurred at the end of the ice age. In this model, the retreat of ice would have had a significant 

impact on how the ridge appears today, particularly if large, over-steepened sections of the ridge 

were supported by paleo-ice walls as the model indicates (Figure 134).  
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Figure 134: A schematic of the Brekknafjöll-Jarlhettur complex, showing six phases of ridge construction. From Bennett et al., 2009.
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4.2 A MULTI-VENT, MULTI-FISSURE, ICE-CONFINED BASALTIC ERUPTION 

MODEL (BASED ON SVEIFLUHÁLS) 

Based on previous ice-confined models (particularly that of Bennet et al., 2009) and on 

current information collected and analyzed for this dissertation, new models of multi-vent, multi-

ridge, and ice-confined basaltic eruption have been developed. This section will describe these 

models in detail and will present new information on the growth of such complexes over space 

and time. 

4.2.1 Phase 1: Onset of the Eruption 

Basaltic fissure eruptions under ice are based on the concept of a magma dike 

propagating through the lithosphere and subsequently causing the overlying ice-covered terrain 

to open at the surface and possibly intrude into the overlying ice if a strong coupling between the 

ice and land surface interface is present (Wilson et al., 2003; Gudmundsson et al., 2004; Head 

and Wilson, 2007; Wilson and Head III, 2007). In the Reykjanes Peninsula, these fissure 

eruptions are related to the onshore continuation of the divergent plate boundary from the marine 

Reykjanes Ridge portion of the Mid-Atlantic Ridge. This divergent boundary forms a weakness 

in the lithosphere that allows magma to propagate through the crust and onto the surface.  

If confining pressures are high, and/or if other factors are present that favor pillow lava 

formation (described in Sections 2.7 and 3.2) (Batiza et al., 1999; Tuffen et al., 2007), the first 

eruption products under the ice will be a pile of basal pillow lavas that either formed in sub-ice 
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tunnels or erupted through pre-existing fractures. However, previous sub-ice eruption onset 

models only account for a single eruption center. Within the multi-vent, multi-ridge fissure 

complex at Sveifluháls, a more complex pattern of basal pillow formation was observed.  The 

basal pillow lavas were found at the base of the ridge as far as 0.9 km away from the closest vent 

center and at 45°N from the main ridge axis (Figure 135). While it is possible that these pillow 

lavas may have formed in sub-ice tunnels, the morphology and orientation of the basal pillow 

lavas with respect to the vent locations presents another intriguing possibility that is suggestive 

of large-scale echelon cracking at the surface during the onset of rifting and extension at 

Sveifluháls, forming fractures at 45° to the tensile principal stress (sigma 3)  (Xia and 

Hutchinson, 1994; Mandal, 1995; Hieronymus, 2004; Clifton et al., 2006). Similar echelon-type 

fracture patterns known as Riedel shears are found in other tectonic systems but are typically 

attributed to the early stages of strike-slip motion and are typically oriented less than 45° 

(Dresen, 1991; Davis et al., 1999; Ahlgren, 2001; Katz et al., 2004). Other similar fractures 

oriented 45° to the axis of extension were modeled in transtensional faulting experiments by 

Basile and Brun in 1999 (Basile and Brun, 1999), and the results from this study seem to echo 

the pattern observed at Sveifluháls.   

As extension at Sveifluháls continued, these cracks gradually joined together at their 

centers by fissure segments (Pollard et al., 1982; Xia et al., 1994; Mandal, 1995; Basile et al., 

1999; Hieronymus, 2004) to create a chain of ridge-like pillow lava mounds that ultimately 

formed the base of the inter-vent topographic lows along the ridge (Fiske and Jackson, 1972). 

Shortly after this period of continued extension and connection between cracks, cooling at the 

ends of the cracks and along the sides of the connecting fissures (Delaney and Pollard, 1982; 

Bruce and Huppert, 1989) caused flow localization within the magma feeder conduits of these 
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structures. This in turn caused vent focusing towards the intersection of the cracks and fissures 

where flow rate was likely the highest (Delaney et al., 1982; Bruce et al., 1989; Wylie et al., 

1999). During this time, or possibly shortly after, the eruption may shifted from an effusive, 

pillow lava-forming style to an explosive, tephra-forming one that occurred from a chain of 

fairly regularly-spaced elongated vents and/or fissure segments. This hypothesis is supported by 

the field observation of relatively thin basal pillow lava sequences (6 m or less observed in the 

field, but may be significantly thicker) that are mantled by a succession of pillow breccia (likely 

collapse-talus deposits that came from the pillow lavas) and vitric phreatomagmatic tuff (see Log 

7) that was erupted under explosive conditions. Therefore, this transition to explosive 

fragmentation probably occurred when the ice was still relatively thick but probably under 500 

m. 
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Figure 135: A map showing the location of basal pillow lavas and their relationship to vents and ridge 

morphology. The dashed line representing a possible echelon fracture represents a location where significant 

erosion of the ridge has taken place due to extensive geothermal activity. It is likely that a vent existed here in 

the past but has now been removed by the weakening of the rock due to hydrothermal alteration and 

subsequent erosion by wind and also by water coming from geothermal centers in this area.  
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The cause for such regular vent spacing in Icelandic tindar is not yet certain, but the 

phenomenon was examined in a previous study by Jenness et al. (Jenness et al., 2009). This 

study was based on the vent spacing of a Holocene crater row on the Reykjanes Peninsula that 

erupted during ice-free conditions, and states that spacing was largely controlled by the flow of 

magma through pre-existing fractures (Jenness et al., 2009). These pre-existing structures 

originally formed as a response to stress fields related to strike-slip faults and rifting during the 

evolution of the Reykjanes Peninsula over time (Grant and Kattenhorn, 2004; Jenness et al., 

2009). It is very possible that similar pre-existing fractures related to strike-slip motion (Dresen, 

1991; Davis et al., 1999; Ahlgren, 2001; Katz et al., 2004; Jenness et al., 2009) had an influence 

on the locations of eruptions at Sveifluháls, but more research is required to make a confident 

assertion on this association and how fractures may have become magma conduits at a later time 

(Morley, 1999), and vice-versa (Rubin and Pollard, 1988).  

A model of the early stages of Sveifluháls construction based on effusive eruptions from 

cracks that formed 45° to the dominant direction of extension (represented in Figures 136, 137, 

and 138). This model of early Sveifluháls development shows: the formation of cracks (Figure 

136); the opening of fissures that connect the cracks and development of smaller and shorter 

inter-ridge fissures (Figure 137), and; the simultaneous focusing of vents and fissures towards 

more narrow eruption centers (Figure 138). These stylized models show how the magma 

conduits narrow after initial onset of the eruption and help to focus the eruption centers, in turn 

forming a chain of topographic highs and lows that are characteristic of tindar morphology. The 

across-strike and along-strike representation used in these models for the magma chamber and 

conduits (a.k.a., ―cupolas‖) are based on models of mid-ocean ridge magma chambers 

(Macdonald, 1982).  
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Figure 136: Phase 1 crack formation.



 258 

 

Figure 137: Phase 1 fissure growth. 
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Figure 138: Phase 1 vent and fissure focusing. 
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Because pillow basalts have a relatively low heat flux in comparison to fragmental tuff 

(Gudmundsson, 2003), it is likely that the meltwater envelope generated by Phase 1 was 

relatively thin compared with that formed by explosive eruptions characteristic of Phase 2 

growth of the fissure complex. The Phase 1 meltwater likely drained away along the base of the 

glacier similar to that shown by Gudmundsson’s models for the 1918 Katla and 1996 Gjálp 

eruptions (Figure 130) (Gudmundsson, 2005) and did not form englacial lakes that are more 

characteristic of increased heat flux resulting from explosive activity. Cavity pressures under the 

ice during most of Phase 1 were likely high enough to suppress explosions but it is possible that 

these pressures began to drop as vent focusing occurred, causing some individual edifices to 

thicken vertically and thereby thin the overlying ice and enabling a shift toward explosive 

eruption of tephra. The resultant increasing meltwater continued to flow along the base of the 

glacier, but the formation of topography among the growing vents and fissures may have also 

established numerous depositional centers sites for future englacial and/or ice-confined lakes in 

following phases of ridge construction. 

4.2.2 Phase 2: Explosive Eruption and Ridge Growth 

Following the construction of eruptive centers and inter-vent fissure ridges, the activity at 

Sveifluháls continued explosively within an ice-confined environment, forming elongated tuff 

cones and tuff ridges. These higher-elevation (up to 400 m asl) elongated tuff cones were 

connected by lower-elevation (generally less than 350 m asl) tuff ridge segments that erupted 

tephra from narrow fissures and deposited tephra on both sides of the segment. Because heat 

transfer from fragmental ice-confined eruptions can be as efficient as 70-80% (Gudmundsson, 
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2003), the ice likely thinned rapidly during this phase of Sveifluháls construction, and an 

increased volume of meltwater was generated as a result.  

 At the same time, the eruption of fragmental tuff and subsequent growth of vents and 

fissures continued through deposition of subaqueous density currents and suspension and settling 

(followed by slumping and remobilization in many locations). Many of these deposits collided 

against ice walls, and some of these ice walls reacted to the hot tephra and warm meltwater by 

melting back even more, thus removing the support that previously held these tuff units in place 

and remobilizing the tephra again (which may have than collided against another ice wall). As 

the complex grew, the meltwater envelope became wider and deeper, and it is likely that the ice 

thinned and melted completely through to the surface per the Gjálp 1996 eruption 

(Gudmundsson et al., 1997; Gudmundsson et al., 2002b; Gudmundsson, 2003; Gudmundsson et 

al., 2004). It is also possible that the Sveifluháls tuff cones became emergent during tindar 

construction, but no strong evidence of emergent edifices was found during the course of this 

research. 

Intrusions likely propagated throughout the Sveifluháls complex during construction, but 

intrusions were also propagating into subaqueous phreatomagmatic tephra contemporaneous to 

Phase 2 ridge growth at Sveifluháls. Field evidence clearly shows that these intrusions 

propagated into wet, unconsolidated sediments that sometimes formed pillow lavas and peperites 

along the margins of the dikes. The intrusions asserted some constructional control over the 

morphology of the ridge, because they triggered down-slope failure at many locations 

(particularly well-exposed on the eastern flank), as described in Log 2 and elsewhere at 

Sveifluháls. However, some of these intrusions, particularly the larger ones which went on to 

form small fissure ridges or ―ridgelets‖ within the complex, provided a topographic barrier 
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against which up-slope tephra deposited. At certain locations along the ridge, these ridgelets 

helped to form inter-ridge basins that collected sediments and meltwater during evolution of the 

complex.  

As the ridge complex grew, so did the formation of inter-ridge basins. These were formed 

by enclosure of space within the ridge complex as it was confined by ridgelets (small ridges 

formed by minor fissures in between major fissures), tuff cones and major fissures. Tectonic 

activity may have assisted in the formation of these basins, as normal faulting and grabens 

oriented parallel to the ridge axis are common in the area (Clifton et al., 2003; Clifton et al., 

2006; Jenness et al., 2009) and offshore (Höskuldsson et al., 2007), and may have been active 

during seismic episodes that occurred during formation of the ridge.  

The inter-ridge basins became major depositional areas for tuff and meltwater and likely 

filled rapidly with clastic materials as the eruption progressed. Field evidence shows that bedded 

facies at Sveifluháls are commonly (more than 50% of the time) found dipping towards present-

day topographic depressions, indicating that these basins influenced flow directions (and thereby 

the morphology of the ridge) as subaqueous density currents carried tuff down the flanks of 

erupting cones and fissures. These basins also acted as containment areas for large volumes of 

meltwater within the ice-confined lake(s) that likely covered many of the eruption centers at 

Sveifluháls. As the ice-confined lake(s) drained (see the following Section 4.2.3) meltwater may 

have remained in these basins unless they were breached, whereupon they may have contributed 

to the formation of jökulhlaups. Today these basins are flat-bottomed and filled with tuff, scree 

and Holocene lacustrine deposits. These basins may contain closed-catchment perched lakes at 

Sveifluháls (e.g., Arnavatn) while other form ephemeral lakes, depending on the season.  
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The Phase 2 model (Figure 139) shows the growth of the ridge and topographic basins, 

and the slumping of deposits due to ice retreat, over-steepening of the tephra pile, and/or 

destabilization by intrusions. The edifices are thickening within a growing, under-pressured, and 

ice-confined meltwater lake that is periodically draining away from the complex along the base 

of the ice sheet. 
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Figure 139: Phase 2 explosive eruption and ridge growth. This diagram illustrates the growth of the ridge, the creation of inter-ridge basins, and the 

interaction of slumping tephra with ice barriers.
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4.2.3 Phase 3: Drainage and Subaerial Lava Flow 

During Phase 3, the eruption at Sveifluháls continued and tuff cones may have become emergent 

above the meltwater lake and possibly the ice surface. Field evidence of mass flooding events 

and stream flow has been documented at Sveifluháls and is described in Chapter 3.3.2, and 

elevation data from confirmed subaerial lava (found at 240 m asl) and from mass flood-type 

deposits (found at 250 m asl) show that the meltwater at Sveifluháls had drained to a minimum 

of 189 m below the top of the tallest edifice at Sveifluháls, and as much as 500 m below the pre-

eruptive ice surface. Ripple marks found at 266 m asl on the northern end of the field area at 

Sveifluháls also indicate the flow of meltwater away from the ridge are waning flow conditions 

from the fluvial processes that followed the main surge from a jökulhlaup-type mass flood event. 

Aside from these ripples, the direction and pathway of meltwater flow away from the western 

side of the ridge following mass flood events is not certain, and the base of Sveifluháls’ western 

flank is now covered by 60 m thick post-glacial lava flows that obscure any evidence of 

meltwater flow away from this portion of the ridge. Additionally, it is probable that large 

amounts of tephra were scoured away during these flood events, thus eliminating much of the 

evidence of their passage. On the eastern side of the ridge, bedding orientations, dips, ripple 

marks, trough cross beds and migrating anti-dunes suggest that the meltwater probably drained 

into the area now covered by Lake Kleifarvatn.  

 Following drainage of the ice-confined meltwater lake that engulfed the Sveifluháls 

complex, a few edifices continued to erupt effusively under subaerial conditions. It is highly 

likely that prior to the drainage at Sveifluháls, the eruptions had slowed down significantly. This 

assumption is based on the fact that very little subaerial lava was found on the ridge after 
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drainage, and also because there is no evidence that suggests these subaerial lavas were covered 

by tephra or additional lava flows after emplacement. 

It is also possible that much more subaerial lava than observed today was erupted at 

Sveifluháls following drainage of the meltwater lake, but based on observations within and 

outside the field area this does not appear to be the case. Therefore, the post-drainage effusive 

eruption model (shown in Figure 140) is representative of thin subaerial flows that originated 

from only a few eruptive centers within the complex.  

During the deglaciation of Sveifluháls, it is assumed that some previously ice-supported 

tephra packets collapsed into debris flows or avalanches that now appear as mounds completely 

covered by talus at the base of the ridge, particularly noticeable on the eastern side of the 

complex. Glacially-reworked lavas and tuff may have also formed diamictons. Although no 

confirmed diamictons were found at Sveifluháls (they may have eroded, or now be covered by 

lava flows or Kleifarvatn), some channelized fluvial deposits found near the Kleifarvatn lake 

shore appear to be diamicton-like. These deposits were previously featured and discussed in 

Figures 108 and 109, and contain imbricated, bimodal and rounded clasts organized into bedded 

and channelized units. It is highly likely that these deposits were emplaced some time after the 

eruption of Sveifluháls. Reworking by glacio-fluvial braided stream flows is suggested here due 

to the rounded to semi-round appearance of many of the clasts. 
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Figure 140: Phase 3 drainage and subaerial lava formation signifying the end of the eruption. Mass flood 

deposits are shown near an inter-ridge lake, and subaerial lavas are erupting from intrusions and from vents. 
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4.3 A COMPARISON WITH THE 1783-1784 LAKI FISSURE ERUPTION 

Although the 27-km long 1783-1784 Laki fissure eruption in southern Iceland was not ice-

confined, it is important to compare with the 21-km long Sveifluháls because the two complexes 

share several similar eruptive qualities. The Laki eruption spanned over eight months and 

produced about 14.7 km
3
 of lava (the majority of which was erupted within the first five 

months), making it one of the largest basaltic eruptions in written history (Thordarson et al., 

1993). The complex is 27 km long and consists of ten sinstral en echelon eruptive fissures, each 

(except for one) containing a row of fairly evenly spaced craters (Thordarson et al., 1993). The 

fissures are oriented 047°-048° and range from 1.6 to 5.1 km in length, and were erupted in 

succession from south to north (Thordarson et al., 1993) in a zipper-like fashion. Also, a 150-300 

m graben is present at Laki mountain, and is thought to have formed during the construction of 

the complex, and possibly toward the end of the eruption (Thordarson et al., 1993). 

While Sveifluháls only produced about 2.0 km
3
 of eruption products (dense rock 

equivalent), the Laki eruption is very useful in helping to understand Sveifluháls because it 

shows that multi-vent, multi-fissure basaltic complexes can be constructed in a relatively short 

amount of time. While no evidence of the timing of the individual fissure eruptions exists at 

Sveifluháls, the Laki model of north to south fissure progression is interesting because it shows 

that the spatial and temporal proximity from one vent to another can easily support the 

hypothesis that within an ice-confined setting, such eruptions would cause overlapping of tephra 

from one eruption center to the next.  

The en echelon pattern described for Laki fissures is also reminiscent of the orientation 

and arrangement of the Sveifluháls fissures (not to be confused with the echelon cracks described 

in relation to the eruption of pillow basalts at the onset of the eruption). Similarly, the formation 
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of grabens in association with development of the complex seems to be a defining characteristic 

common in fissure eruptions, including those offshore on the Reykjanes Ridge (Höskuldsson et 

al., 2007). These are likely attributed to the extension and rifting at the eruption site, but may 

also be related to the emptying of the magma chamber, especially if it occurred towards the end 

of the eruption.  

Future detailed comparisons between ice-confined fissure eruptions and modern fissure 

eruptions like Laki are critical for improved understanding of how these complexes are 

constructed and how ice-confinement may affect eruption rates and total erupted volumes. 

Compared to Laki, the amount of material erupted at Sveifluháls was an order of magnitude 

lower yet the length of the ridge and number of edifices and fissures are comparable. 

Comparisons of modern, ice-free, multi-vent and multi-fissure complexes with formerly ice-

confined, multi-vent, and multi-fissure ridges are also very useful for better understanding the 

volcano-tectonic setting of these eruptions, particularly because the ice-confined complexes have 

a tendency to obscure important tectonic features with tephra, or because the underlying 

structures may be partially covered by post-glacial lava flows. It is beyond the scope of this 

dissertation to make these comparisons, but future work on these topics is strongly 

recommended. 
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5.0  CONCLUSIONS  

This research provided new and important information on the construction and evolution of 

multi-vent, multi-fissure, basaltic and ice-confined eruptions that can be used to compare similar 

tindar structures elsewhere in Iceland and beyond. A summary of the major findings of this 

research are detailed in the following sections. 

5.1 RIDGE CONSTRUCTION 

A summary of ridge construction as described by this research is as follows. The onset of 

the eruption began with a sub-ice eruption of pillow lavas that likely erupted from regularly-

spaced cracks whose centers later joined to form fissures that connected the cracks. As the 

eruption progressed, vent focusing at the intersection of the fissure and cracks occurred, and 

explosive eruption of tephra commenced as cavity pressure was reduced by the thinning of ice 

and the flow of meltwater away from the complex. The explosive eruption formed elongated tuff 

cones and tuff ridges that reflected the shape of the elongated vents and fissure segments that fed 

the eruption. Subaqueous density currents deposited many, if not most, of the bedded tuff facies 

found at Sveifluháls but suspension and settling may have formed some of the bedded tuffs 

including the parallel laminated tuff facies found at middle to low elevations along the ridge 

flanks. Massive tuff facies were emplaced rapidly due to one or more several possible causes, but 
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most likely due to sudden emplacement against a barrier or into a topographic low. Large 

subaqueous slumps occurred near the peaks of the tuff cones and along the flanks of ridges due 

to over-steepening of the tephra pile or destabilization by intrusions. Some of these slumps 

preserved bedding structures of the slump block, and are found steeply dipping (over 40°) at 

middle to low elevations along the ridge flank (i.e., between 300 and 150 m asl.). However, the 

bedding in the majority of these subaqueous slump blocks was not preserved and in many 

locations nearest to the slump origin, the larger clasts were sorted by water and rapidly deposited 

along the flank, usually at middle elevations (i.e., between 300 and 200 m asl.) and forming 

massive lapilli tuff facies at these locations. As the subaqueous density current continued along 

the ridge flank, it slowed, diluted and continued to sort and deposit finer tephra into bedded units 

that dip less than 40°. These beds are typically found along the ridge flanks below 250 m asl. 

Beds of laminated ash tuff are found at locations most distal from the ridge axis. At these 

locations, the laminated beds may represent the materials entrained within the head of the 

subaqueous density current before it slowed to a halt. At various locations along the ridge, some 

bedded tuff facies are found back-rotated and dipping towards the ridge axis in a swooping form. 

This likely represents the collision of these beds with a paleo-ice wall. 

During the deposition process, intrusive dikes contemporaneously propagated into the 

growing tephra pile and influenced the morphology of the ridge. Exposed remains of these 

intrusions regularly exhibit pillowed margins that were formed by the overburden pressure from 

subaqueous tephra piles. Intact pillows and more frequently, pillow fragments, are commonly 

found within the massive and bedded tephra units at Sveifluháls. Higher concentrations of pillow 

basalt are generally found nearest to these intrusions. The intrusions are also responsible for the 

deformation of adjacent tephra and slumping and/or collapse of slopes below the intrusion. 
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Where bedded, these warped tephra units generally follow the strike and dip of the intrusive 

contact, indicating that the tephra was not yet coherent during the time of dike emplacement and 

was dragged along and/or pushed aside as the intrusion propagated through subaqueous and 

unlithified material.   

As ridge construction progressed, inter-ridge topographic lows or basins were formed by 

the enclosure of space by smaller fissures located between larger tuff cone and tuff ridge 

segments, particularly along the center of the tindar (it is also possible that Kleifarvatn served in 

a similar way on the eastern side of the ridge, based on the nature of deposits located near the 

lake shore). The inter-ridge basins acted as collection zones for meltwater and tephra during the 

eruption and may have contributed to jökulhlaup events. These mass floods drained the ice-

bound lake up to 500 m below the original ice surface, based on the observation of jökulhlaup-

type deposits found at approximately 250 m asl. These deposits were less than 600 m away from 

the nearest vent, and are the first to show that jökulhlaups can originate in close proximity to an 

ice-confined eruption. The jökulhlaups probably occurred towards the end of the eruptions at 

Sveifluháls, as little to no overlying tephra cover these deposits. 

There is no indication at Sveifluháls that contradicts the possibility that contemporaneous 

eruptions were occurring along the fissure complex. Deposits from individual eruption centers 

are virtually indistinguishable from one another, indicating that the eruptions were probably 

occurring at the same time or within a few weeks to months of each other. The degree of 

palagonitization across the ridge complex is relatively uniform aside from the generally higher 

levels found in close proximity to intrusions. The least palagonitized units are found in massive 

and glassy tuff deposits located in discrete pockets near the peaks of tuff cons. These 
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unpalagonitized units were likely deposited rapidly and quickly cooled in large volumes of 

relatively cool meltwater. 

Following drainage of the ice-confined eruption complex, subaerial lava erupted from at 

least one location and likely signifying the end of the eruptions at Sveifluháls. Following ice 

retreat from the complex at the end of the Weichselian, steep ice-buttressed eruption materials 

likely collapsed, forming debris avalanches. Some of these collapsed tephra packets may have 

formed talus mounds that can be observed at the base of the ridge.  

Post-glacial lavas of 60 m thickness now cover the base of Sveifluháls’ western side, and 

Kleifarvatn obscures many basal formations along the eastern side of the complex. It is difficult 

to confirm if Kleifarvatn was present during the time of Sveifluháls eruption, but is highly likely 

that a depression in the land surface now occupied by the lake was present during ridge 

construction and likely served as an important collection area for meltwater and tephra.  

5.2 COMPARISON WITH OTHER TINDAR 

Very little previous research exists on the processes, products and depositional environments of 

tindar (Gudmundsson et al., 1997; Gudmundsson et al., 2002a; Gudmundsson et al., 2002b; 

Gudmundsson et al., 2004; Schopka et al., 2006; Bennett et al., 2009), but there are some major 

conclusions that can be drawn on how Sveifluháls compares with previously studied basaltic 

ridges such as Gjálp, Helgafell and Brekknafjöll-Jarlhettur.  In general, it is difficult to develop a 

detailed comparison between Sveifluháls and the tindar examined in previous studies because too 

little information exists in order to develop an adequate comparison. However, from this current 

and other studies it is possible to establish a set of parameters by which tindar can be compared 
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in future studies, thereby improving the way tindar can be evaluated in future work. Based on 

currently available information, a basic comparison of Sveifluháls and other studied tindar will 

be provided in the following. 

 Sveifluháls is much longer than Gjálp and is comprised of not just one but several rows 

of eruption centers. The Gjálp complex is expressed as a 6 km long single row of eruption 

centers of varying height and size (Gudmundsson et al., 2004), and does not match as a good 

tindar analog with the multi-vent, multi-fissure Sveifluháls complex. However, the studies of 

Gjálp provides an important basis for understand ice-confined eruptions and the response of ice 

to multi-vent complexes, particularly by how an ice-confined meltwater lake can cover several 

edifices and how this meltwater lake can be open to the air through an ice canyon (Gudmundsson 

et al., 2004). The drainage of meltwater from Gjálp into the nearby sub-ice lake Grímsvötn is 

also an interesting potential analog for the flow of Sveifluháls meltwater into Kleifarvatn. Of 

course, it is difficult to prove that Kleifarvatn was present at the time of Sveifluháls eruption, but 

the possibility of a similar scenario is intriguing and would help explain the overall declination 

of bedding towards the lake. 

 Because Gjálp is still covered by ice, it is impossible to compare the types of eruption 

products and the nature of tuff facies with Sveifluháls’. Using geophysical surveying and gravity 

profiling techniques at Gjálp, Gudmundsson et al. in 2004 determined that the entire ridge was 

comprised of fragmented tuff and that no basal pillow lavas were present (Gudmundsson et al., 

2004). This is in direct contract to Sveifluháls, where basal pillow lavas were exposed at several 

locations along the ridge, thus indicating that the complex is likely underlain by a core of pillow 

lavas. Furthermore, Gudmundsson et al. continues to say that an initial ice thickness greater than 

600-700 m is required for basal pillow lavas to form for similar eruptions with high initial 
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magma discharge (Gudmundsson et al., 2004). Previous studies and data collected for this 

dissertation indicate that ice thicker than 600 m is unlikely at Sveifluháls, confirming that other 

factors in addition to ice thickness play an important role in the formation of pillow lava (Tuffen, 

2007). 

Compared to the monogenetic, 2 km long and 0.8 km wide Helgafell, Sveifluháls is again 

different in that it has multiple eruption centers and eruptive fissures, and is a much larger 

complex. Nevertheless, the analysis of Helgafell by Schopka et al. in 2006 is a very useful 

analog for a single elongated tuff cone. Furthermore, because Helgafell is just 2 km northeast of 

Sveifluháls and was likely erupted during a similar time during the Pleistocene (Schopka et al., 

2006), it can be used as a good basis for understanding the thickness of ice during the time of 

Sveifluháls eruption.   

There are several differences between Helgafell and Sveifluháls that clearly show that 

different depositional environments were present during the time of their construction. An 

absence of bedded tuff facies on the eastern side of Helgafell is in direct contrast to Sveifluháls, 

where bedded and massive facies are found on both sides of the complex. Schopka et al. 

attributed this lack of bedded facies to the rapid emplacement of tuff against an ice wall that was 

pushing against the eastern flank of the edifice and thus inhibiting the flow of subaqueous 

density currents to deposit bedded tuff (found on the western flank) (Schopka et al., 2006). Also, 

no basal pillow lavas were found at Helgafell and no subaerial phase occurred (Schopka et al., 

2006). Schopka et al. report the observation of mid-slope pillow lavas, but say that these were 

not emplaced in situ and were likely remobilized from another nearby location. The authors do 

not say where these pillows were formed, but vaguely associate their appearance with the 

observation of intrusive bodies within the tuff. Pillow rinds were analyzed in the Schopka et al. 
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2006 study, but results from these were inconclusive (Schopka et al., 2006). This is not 

surprising since the pillow lava samples used were not from basal pillows but were likely formed 

from intrusions, and as such would not record the overburden pressure of overlying ice but rather 

the variable pressures of overlying subaqueous tephra. Lastly, mid-slope domains of 

amorphously-shaped crystalline intrusions were described in the Helgafell study (Schopka et al., 

2006), providing a good analog for intrusions at Sveifluháls. However, the behavior of the 

Helgafell intrusions is very different from what is observed at Sveifluháls. For example, the 

formation of pillow lavas at the margins of these intrusions was not described at Helgafell, and 

the effect these intrusions played on the surrounding tephra (e.g., slumping, deformation, 

reddening from palagonitization) was not mentioned. Also, the shapes of the intrusions at 

Helgafell seem to be amorphous and more sill-like than the intrusive dikes at Sveifluháls that 

generally parallel the axis of the ridge. 

Brekknafjöll-Jarlhettur is probably the most similar tindar studied to date in comparison 

to Sveifluháls. The Brekknafjöll-Jarlhettur complex is a 10 km long multi-vent and multi-fissure 

tindar and was the subject of a 2009 study by Bennett et al. on the glaciotectonic deformation of 

diamictons and tephra found within the complex. While the focus of the paper was not on the 

depositional environments of the ridge, it nevertheless provided a detailed description of the 

facies found at Brekknafjöll-Jarlhettur which closely resemble those found at Sveifluháls, except 

for the diamictons which were not observed at Sveifluháls.  

The depositional model of Brekknafjöll-Jarlhettur (described in Chapter 4.1 and shown in 

Figure 134) depicts a multi-vent and multi-fissure tindar and shows how tephra from individual 

tuff cones can merge together during the eruption process, causing the deposits to become 

indistinguishable from one another (Bennett et al., 2009). However, little attention was paid to 
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the role of meltwater in the construction of Brekknafjöll-Jarlhettur (only a narrow meltwater 

envelope is shown for early stages of the explosive eruptions), and the authors state that the final 

phase of the eruption was limited and likely occurred under dry conditions with little meltwater 

ponding above the tephra, but rather moving quickly away from the eruption through the 

volcanic pile (Bennett et al., 2009). This is in contrast with the Sveifluháls model, which shows 

that high heat flux (Gudmundsson, 2003; Tuffen, 2007) from multiple and coincident eruptive 

centers caused rapid melting of ice and the formation of an ice-confined meltwater lake that 

encompassed large portions of the complex within a vertically-walled ice canyon. The 

Brekknafjöll-Jarlhettur depositional models also showed ―perched‖ tephra packets within the ice 

(Figure 134), a phenomenon not typically ascribed to ice-confined eruptions, and a scenario that 

seems unlikely considering the fact that several vents and/or fissure segments were erupting at 

once and melting more ice than suggested in all phases of the Bennett et al. models. This study 

also did not mention how these perched tephra units may have responded during ice retreat and 

how this may have affected the morphology of the ridge and the interpretation of deposits 

therein.  

Therefore, in comparison with the three other tindar examined through previous research, 

there is no matching analog for what is observed at Sveifluháls, but elements from former 

previous studies seem similar to many of the processes and depositional environments that were 

likely present during Sveifluháls construction. Clearly, more research is required on multi-vent, 

multi-fissure, basaltic and ice-confined eruptions before any meaningful similarities can be 

attributed among tindar. As it stands, even though there are some similarities between these 

tindar, each seems to have its own unique set of construction mechanisms and depositional 

parameters that are not common to the other complexes.  
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5.3 IMPACT OF RESEARCH  

This research has provided important new information that helps to better understand the 

processes, products and depositional environments present during the construction of a multi-

vent, multi-fissure, basaltic and ice-confined ridge, and the relationship these structures have on 

the ice within which they are formed. 

5.3.1 Impact on Understanding Ice History in SW Iceland 

Based on previous ice-thickness estimates and from data generated from this research (and in 

lieu of results from FTIR analyses of glassy pillow lava rinds), it is probable that the ice 

thickness at the time of Sveifluháls eruption during the Late Weichselian was between 500 to 

600 m. These findings are in agreement with previously reported estimates of Weichselian ice 

thickness on the Reykjanes Peninsula (Ingólfsson et al., 2001; Schopka et al., 2006; Norðdahl et 

al., 2008). 

 The maximum height of the complex was likely no more than about 300 m, and the 

elevations of subaerial lava and mass flood deposits indicate that meltwater drained from the 

eruption complex to about 500 m below the maximum estimated original ice surface. It is 

probable that the eruption caused thinning and eventual complete melting of the ice above the 

elongated tuff cones, and that the majority of the deposits at Sveifluháls were erupted and 

emplaced within a long, crevasse-like, and ice-confined meltwater lake that likely encompassed 

numerous eruption centers at the same time. These findings indicate that multi-vent, multi-

fissure, basaltic and ice-confined eruptions have the potential to melt through more than 500 m 

of ice due to the high heat flux caused by multiple, explosively erupting rows of edifices.   
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 Unlike the flow of meltwater at Helgafell (Schopka et al., 2006), the meltwater flow at 

Sveifluháls did not seem to follow the glacial flow directions to the west, and seems to have been 

more influenced by local topography and by the inter-ridge basins that were formed between 

fissure segments and oriented parallel to the ridge axis. It is difficult to determine where the 

major meltwater exit pathways were on the western side of the complex due to the postglacial 

lavas that now cover the area. However, the drainage of water towards Kleifarvatn, or towards a 

tectonic depression (graben) located where the lake is today, was a likely influence of meltwater 

flow on the eastern side of the complex.  

5.3.2 Impact on the Understanding of Tindar Eruptions 

This study provided much-needed information on the products and processes found within a 

multi-vent, multi-fissure tindar and gave new insights into the behavior of meltwater and 

depositional environments that were present during the time of ridge construction. Overall, this 

research helped to unravel the complex and seemingly chaotic nature of tuff facies found at 

tindar, allowing better understanding of the conditions present during the eruption and 

emplacement of the deposits. A summary of these new and significant findings are summarized 

in the following list: 

 

1) Intrusions played an important role in the morphology and structure of the ridge. 

These caused slope failures at numerous locations and deformed host tephra units 

located immediately adjacent to the intrusion. Higher degrees of palagonitization 

were also observed in proximity to these intrusions. Pillow lavas regularly formed 

at the margins of these dikes, indicating high overburden pressure of the 
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subaqueous host tephra within which the intrusions propagated. These pillows 

should not be confused with basal pillow lavas, and should not be used to 

constrain ice thickness in FTIR analyses of glassy pillow rinds.  

2) The tuff cones at Sveifluháls are elongated NE-SW and may reflect an underlying 

influence of fissure segments as the vent focused and grew vertically. 

3) Vents at Sveifluháls are regularly spaced (on average about 0.7 km) and seem to 

share a relationship with the observed location of basal pillow lavas; these vents 

may have formed where pre-fissure echelon cracks and subsequent fissure 

segments coincided. 

4) This research revealed that the complex was highly prone to slumping due to 

slope failure from over-steepening of the subaqueous volcanic pile or by 

intrusions. Remnants of slump blocks can be found along the flanks of the ridge 

and these contribute to the hummocky morphology of the complex.  

5) Meltwater within the ice-confined lake drained almost completely to at least 500 

m below the original maximum estimated ice surface (600 m). This finding was 

consistent across the study area and suggests that a spatially continuous meltwater 

lake may have encompassed the entire complex prior to drainage. 

6) It is likely that the ice melted completely through and that the meltwater lake was 

open to the air within a vertically-walled ice canyon that paralleled the strike of 

the ridge. 

7) Individual eruption centers were likely active at the same time, or in close 

temporal proximity to one another, such that deposits from one eruption center to 

the next are indistinguishable from one another. 
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8) Most of the facies at Sveifluháls are subaqueous and are manifested as bedded or 

massive units, depending on the depositional rate, slope, and distance traveled of 

the tephra. The deposits at Sveifluháls may have been remobilized several times 

before final emplacement and may entrain fragments of lava, bombs and older 

tephra blocks or fragments. Some laminated facies may have been the result of 

diluted turbidity flows or suspension and settling, and are typically found at lower 

elevations of the ridge. 

9) Some fluvially emplaced units exist at Sveifluháls and many of these are 

indicative of jökulhlaup-type mass flooding events. These deposits are located in 

close proximity to vents and suggest that jökulhlaups may be triggered in close 

proximity to the eruption source. 

10) Inter-ridge basins were important collection areas for meltwater and sediments, 

and may have influenced the formation of jökulhlaup-type mass flood events that 

drained large volumes of meltwater rapidly away from the ridge complex. 

11) Evidence of ice-contact in the form of back-rotated bedded units exists at several 

locations along the study area. This shows that tephra embanked against steep 

paleo-ice walls. Following deglaciation, the removal of support from these tephra 

packets likely caused debris avalanches to form, depositing talus mounds at the 

base of the complex. The appearance of these mounds at the base of the eastern 

flank of the ridge may help explain why such good exposure is found on this side 

of the complex. 

12) Based on topographic analysis of the submarine Reykjanes Ridge and on the 

extensive pattern of normal faulting on the Reykjanes Peninsula, it is possible that 
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the origins of Lake Kleifarvatn was related to a graben that formed beside 

Sveifluháls. This tectonic depression may have been present during ridge 

construction and was a likely source of meltwater collection on the eastern flank 

of the ridge. 

 

At a minimum, this research sets the stage for future research on other similarly constructed 

ridges that may have similar facies as those observed at Sveifluháls. The methods used and 

questions asked in this work may serve as an example for future studies, and showed how 

research on such landforms may be conducted by leveraging tools such as GIS, rock sampling 

and thin sections, logs, and chemical analyses of coherent rocks. The methods employed in this 

research therefore may provide a protocol for other studies of tindar.  

5.4 SUGGESTIONS FOR FUTURE RESEARCH 

In general, more studies are needed of tindar and the products, processes, and depositional 

mechanisms that are responsible for their formation and morphology. This study was the first of 

its kind that examined the construction and evolution of such landforms over space and time, and 

additional similar studies of other tindar across Iceland are necessary for understanding if and 

how the findings of this research are translatable to other locations. Aside from this general call 

for future study of tindar on Iceland, the following list details several other research topics that 

would significantly improve the understanding of tindar and the unknowns encountered during 

the course of this research: 
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1) A complete FTIR analysis of basal pillow lavas is needed per the description 

provided by Tuffen in 2010 (Tuffen, 2010) in order to estimate how laboratory 

results of ice thickness compare to that which was observed in the field. These 

analyses include the use of other gas species such as Cl, Fl, and SO2 in addition to 

CO2 and H2O.  

2) Improved dating methods for young tholeiitic basalts are desperately needed in 

order to better understand when ice thickness estimated from the above methods 

are tied to age. This would dramatically improve the understanding of paleo-ice 

morphologies and thicknesses over time. 

3) Additional study is needed on the origins and evolution of Kleifarvatn in order to 

better understand the tectono-volcanogenic nature of this lake and how it fits in 

with the regional structural and volcanic regime of the Reykjanes Peninsula. 

4) Additional examination of the Cr anomaly found in coherent rock samples from 

Sveifluháls is needed.  Of particular interest is the wide range of values found 

within these samples and how these variations may be tied to the construction and 

timing of the tuff cones within the complex. 

5) Because this study was the first to describe jökulhlaup-type mass flood deposits in 

close proximity to eruption centers, additional research on this finding is 

suggested so that the mechanisms behind such events can be better understood. 

This may have important impacts on the understanding of how jökulhlaups are 

generated within ice-confined fissure eruptions and may lead to better 

preparedness for when they occur. 
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6) A closer examination into the effects ice confinement has on the eruption of 

basaltic fissures is needed, and should include a comprehensive comparison of 

ice-confined fissure eruptions with modern fissure eruptions at Laki and 

elsewhere. 
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APPENDIX A: FIELD POINTS 

The following is a tabular record of all the field points collected at Sveifluháls during this 

research from 2008 to 2010. The last column in the table provides the name of the PDF file 

containing the field notes and photos for that corresponding point. These PDF files can be found 

at the University of Pittsburgh Department of Geology and Planetary Science. 

 

 

 

 

 

 

 

 

 

 

 

 



 286 

Table 13: List of all field points collected during this project, including the coordinates, elevation, sample name (if taken), and name of the field 

note PDF file associated for each point. 

Year Point Date Easting Northing Elevation Strike Dip Sample Type 

Field Notes PDF 

Name 

2008 1 8/8/2008 454100 7094869 216 n/a n/a 

080808_U1 

and 

080808_U2 pillow 2008_08_08_P1.pdf 

2008 2 8/8/2008 454104 7094864 212 n/a n/a 080808_U3 

basal 

pillows 2008_08_08_P2.pdf 

2008 3 8/8/2008 450322 7087637 146 n/a n/a   bedded 2008_08_08_P3.pdf 

2008 4 8/8/2008 451828 7090354 146 n/a n/a   intrusion 2008_08_08_P4.pdf 

2008 5 8/8/2008 451885 7090402 146 n/a n/a   intrusion 2008_08_08_P5.pdf 

2008 6 8/8/2008 451838 7090392 174 n/a n/a   bedded 2008_08_08_P6.pdf 

2008 7 8/8/2008 451869 7090909 158 n/a n/a 080808_S1 

basal 

pillows 2008_08_08_P7.pdf 

2008 8 8/8/2008 452057 7091130 160 n/a n/a       

2008 9 8/9/2008 449444 7088925 316 n/a n/a     2008_08_09_P9.pdf 

2008 10 8/9/2008 448816 7086341 154 n/a n/a   

basal 

pillows 2008_08_09_P10.pdf 

2008 11 8/9/2008 453152 7091004 146 n/a n/a   

basal 

pillows 2008_08_09_P11.pdf 

2008 12 8/9/2008 453151 7090923 146 n/a n/a 

080908_L1 

and 

080908_L2 

basal 

pillows   

2008 13 8/9/2008 443359 7081964 146 n/a n/a 080908_M1 

basal 

pillows   
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2008 14 8/9/2008 441631 7081887 232 n/a n/a       

2008 15 8/10/2008 449286 7088560 390 n/a n/a   bedded 2008_08_10_P15.pdf 

2008 16 8/10/2008 449283 7088560 390 n/a n/a   bedded 2008_08_10_P16.pdf 

2008 17 8/10/2008 449294 7088576 390 165 52   bedded 2008_08_10_P17.pdf 

2008 18 8/10/2008 449286 7088545 390 187 44   bedded   

2008 19 8/10/2008 449291 7088550 390 194 56   bedded 2008_08_10_P19.pdf 

2008 20 8/10/2008 449288 7088538 390 192 47   bedded 2008_08_10_P20.pdf 

2008 21 8/10/2008 449267 7088524 388 188 32   bedded 2008_08_10_P21.pdf 

2008 22 8/10/2008 449268 7088502 380 166 63   bedded 2008_08_10_P22.pdf 

2008 23 8/10/2008 449303 7088505 384 75 285   bedded 2008_08_10_P23.pdf 

2008 24 8/10/2008 449306 7088508 382 43 45   bedded   

2008 25 8/10/2008 449298 7088513 384 186 54   bedded 2008_08_10_P25.pdf 

2008 26 8/10/2008 449309 7088538 380 342 66   bedded 2008_08_10_P26.pdf 

2008 27 8/10/2008 449304 7088537 384 185 60   bedded 2008_08_10_P27.pdf 

2008 28 8/10/2008 449308 7088563 384 350 46   bedded 2008_08_10_P28.pdf 

2008 29 8/10/2008 449300 7088564 388 178 50   bedded   

2008 30 8/10/2008 449310 7088489 380 309 56 081008_M1 bedded 2008_08_10_P30.pdf 

2008 31 8/10/2008 449304 7088484 380 168 56   bedded 2008_08_10_P31.pdf 
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2008 32 8/10/2008 449304 7088486 380 290 62   bedded 2008_08_10_P32.pdf 

2008 33 8/10/2008 449297 7088474 378 139 59 081008_M2 bedded 2008_08_10_P33.pdf 

2008 34 8/10/2008 449290 7088471 380 156 76   bedded   

2008 35 8/10/2008 449270 7088488 376 185 65   bedded 2008_08_10_P35.pdf 

2008 36 8/10/2008 449262 7088471 372 181 62   bedded 2008_08_10_P36.pdf 

2008 37 8/10/2008 449254 7088462 368 171 46   bedded 2008_08_10_P37.pdf 

2008 38 8/10/2008 449255 7088459 368 187 62   bedded 2008_08_10_P38.pdf 

2008 39 8/10/2008 449244 7088434 358 203 52   bedded 2008_08_10_P39.pdf 

2008 40 8/10/2008 449228 7088421 352 161 78   bedded 2008_08_10_P40.pdf 

2008 41 8/10/2008 449219 7088418 350 216 78   bedded 2008_08_10_P41.pdf 

2008 42 8/10/2008 449201 7088409 350 206 49   bedded 2008_08_10_P42.pdf 

2008 43 8/10/2008 449194 7088419 350 229 56   bedded 2008_08_10_P43.pdf 

2008 44 8/10/2008 449197 7088407 350 215 42 

081008_M3 

and 

081008_M4 bedded 2008_08_10_P44.pdf 

2008 45 8/10/2008 449201 7088437 350 202 28   bedded 2008_08_10_P45.pdf 

2008 46 8/10/2008 449228 7088472 350 173 52   bedded 2008_08_10_P46.pdf 

2008 47 8/10/2008 449229 7088483 352 182 87   bedded 2008_08_10_P47.pdf 
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2008 48 8/10/2008 449213 7088498 342 146 43   bedded 2008_08_10_P48.pdf 

2008 49 8/10/2008 449193 7088490 338 105 55   bedded 2008_08_10_P49.pdf 

2008 50 8/10/2008 449191 7088529 330 158 60   bedded 2008_08_10_P50.pdf 

2008 51 8/10/2008 449210 7088557 340 82 40   bedded 2008_08_10_P51.pdf 

2008 52 8/10/2008 449207 7088607 330 n/a n/a   massive 2008_08_10_P52.pdf 

2008 53 8/10/2008 449150 7088608 308 n/a n/a   massive 2008_08_10_P53.pdf 

2008 54 8/10/2008 449152 7088623 312 n/a n/a   massive 2008_08_10_P54.pdf 

2008 55 8/10/2008 449214 7088672 316 n/a n/a   massive 2008_08_10_P55.pdf 

2008 56 8/10/2008 449229 7088703 314 265 24   bedded 2008_08_10_P56.pdf 

2008 57 8/10/2008 449224 7088699 314 175 4 081008_M5 bedded 2008_08_10_P57.pdf 

2008 58 8/10/2008 449233 7088731 306 273 30   bedded 2008_08_10_P58.pdf 

2008 59 8/10/2008 449234 7088729 306 173 30   bedded 2008_08_10_P59.pdf 

2008 60 8/10/2008 449239 7088745 300 n/a n/a   massive 2008_08_10_P60.pdf 

2008 61 8/10/2008 449341 7088727 304 329 49   bedded 2008_08_10_P61.pdf 

2008 62 8/10/2008 449355 7088716 304 328 49   bedded 2008_08_10_P62.pdf 

2008 63 8/10/2008 449353 7088794 298 310 48   bedded   

2008 64 8/12/2008 453942 7104709 146 n/a n/a       
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2008 65 8/12/2008 449564 7088186 202 n/a n/a 081208_M1 intrusion 2008_08_12_P65.pdf 

2008 66 8/12/2008 449540 7088197 214 n/a n/a 081208_M2 intrusion 2008_08_12_P66.pdf 

2008 67 8/12/2008 449457 7088228 236 124 48   bedded 2008_08_12_P67.pdf 

2008 68 8/12/2008 449423 7088270 252 n/a n/a   massive 2008_08_12_P68.pdf 

2008 69 8/12/2008 449344 7088291 270 175 45   bedded 2008_08_12_P69.pdf 

2008 70 8/12/2008 449396 7088328 270 46 72   bedded 2008_08_12_P70.pdf 

2008 71 8/12/2008 449359 7088361 282 n/a n/a   massive 2008_08_12_P71.pdf 

2008 72 8/12/2008 449319 7088388 302 n/a n/a       

2008 73 8/12/2008 449292 7088413 332 251 26   bedded 2008_08_12_P73.pdf 

2008 74 8/12/2008 449325 7088391 300 272 72 081208_M3 intrusion 2008_08_12_P74.pdf 

2008 75 8/12/2008 449361 7088427 294 n/a n/a 081208_M4 intrusion 2008_08_12_P75.pdf 

2008 76 8/12/2008 449357 7088423 296 n/a n/a   intrusion 2008_08_12_P76.pdf 

2008 77 8/12/2008 449367 7088422 288 222 60 081208_M5 intrusion 2008_08_12_P77.pdf 

2008 78 8/12/2008 449368 7088423 288 n/a n/a   intrusion 2008_08_12_P78.pdf 

2008 79 8/12/2008 449375 7088434 288 n/a n/a   massive 2008_08_12_P79.pdf 

2008 80 8/12/2008 449357 7088460 306 n/a n/a   intrusion 2008_08_12_P80.pdf 

2008 81 8/12/2008 449351 7088457 310 20 79   bedded 2008_08_12_P81.pdf 
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2008 82 8/12/2008 449361 7088472 306 n/a n/a       

2008 83 8/12/2008 449381 7088468 294 n/a 0       

2008 84 8/12/2008 449348 7088495 318 225 26   bedded 2008_08_12_P84.pdf 

2008 85 8/12/2008 449456 7088418 260 170 23 

081208_M6 

and 

081208_M7 intrusion 2008_08_12_P85.pdf 

2008 86 8/12/2008 449507 7088405 246 n/a n/a   intrusion 2008_08_12_P86.pdf 

2008 87 8/12/2008 449525 7088386 240 n/a n/a 081208_M8 intrusion 2008_08_12_P87.pdf 

2008 88 8/12/2008 449540 7088353 232 n/a n/a   intrusion 2008_08_12_P88.pdf 

2008 89 8/12/2008 449605 7088310 208 n/a n/a   massive 2008_08_12_P89.pdf 

2008 90 8/13/2008 453251.8956 7092264.662 156 n/a n/a       

2008 91 8/13/2008 453134.2525 7092029.71 152 n/a n/a       

2008 92 8/13/2008 452945.1749 7091711.438 148 n/a n/a       

2008 93 8/13/2008 452714.7818 7091436.308 146 n/a n/a       

2008 94 8/13/2008 452342.5374 7091342.406 146 n/a n/a       

2008 95 8/13/2008 451781.523 7090628.437 164 n/a n/a       

2008 96 8/13/2008 451477.5351 7090351.377 156 n/a n/a       

2008 97 8/13/2008 451242.0765 7090002.238 152 n/a n/a       

2008 98 8/13/2008 450846.7203 7089149.047 158 n/a n/a       

2008 99 8/13/2008 450569.7188 7088829.241 146 n/a n/a       

2008 100 8/13/2008 450219.2297 7088463.551 154 n/a n/a       

2008 101 8/13/2008 449770.2487 7088043.866 146 n/a n/a       

2008 102 8/13/2008 449401.445 7087675.995 154 n/a n/a       

2008 103 8/13/2008 449151.2795 7087247.881 150 n/a n/a       
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2008 104 8/13/2008 448926.2689 7086748.527 148 n/a n/a       

2008 105 8/13/2008 448754.4664 7086262.304 156 n/a n/a       

2008 106 8/13/2008 448550.1109 7085877.074 160 n/a n/a       

2008 107 8/13/2008 448288.1637 7085570.176 164 n/a n/a       

2008 108 8/13/2008 448085.7531 7085100.017 162 n/a n/a       

2008 109 8/13/2008 447985.2421 7084612.786 162 n/a n/a       

2008 110 8/13/2008 448139.4307 7083943.671 148 n/a n/a       

2008 111 8/13/2008 447134.2173 7082606.409 146 n/a n/a       

2008 112 8/13/2008 442794.8305 7083588.785 276 n/a n/a       

2008 113 8/13/2008 443644.989 7084017.839 276 n/a n/a       

2008 114 8/13/2008 444115.1917 7084589.187 146 n/a n/a       

2008 115 8/13/2008 444289.8851 7085105.067 246 n/a n/a       

2008 116 8/13/2008 444956.2132 7085566.226 228 n/a n/a       

2008 117 8/13/2008 445978.7312 7085872.504 146 n/a n/a       

2008 118 8/13/2008 445830.1769 7086739.134 146 n/a n/a       

2008 119 8/13/2008 446434.9286 7088106.382 198 n/a n/a       

2008 120 8/13/2008 446554.7785 7088472.714 198 n/a n/a       

2008 121 8/13/2008 447250.3913 7088643.978 200 n/a n/a       

2008 122 8/13/2008 448891.1618 7089107.067 206 n/a n/a       

2008 123 8/13/2008 449381.6923 7089721.259 210 n/a n/a       

2008 124 8/13/2008 450550.1146 7091112.127 218 n/a n/a       

2008 125 8/13/2008 450997.6585 7091598.607 232 n/a n/a       

2008 126 8/13/2008 451948.6263 7092849.993 202 n/a n/a       

2008 127 8/13/2008 452386.9112 7092820.278 166 n/a n/a       

2008 128 8/13/2008 452824.5269 7093491.998 146 n/a n/a       

2008 129 8/14/2008 452569.8954 7091717.781 188 n/a n/a   laminated 2008_08_14_P129.pdf 
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2008 130 8/14/2008 452599.9854 7091714.493 184 283 21   laminated 2008_08_14_P130.pdf 

2008 131 8/14/2008 452701.1183 7091760.805 186 n/a n/a   laminated 2008_08_14_P131.pdf 

2008 132 8/14/2008 452747.9976 7091934.111 194 20 13   bedded 2008_08_14_P132.pdf 

2008 133 8/14/2008 452770.5375 7091892.802 182 250 12       

2008 134 8/14/2008 452657.5775 7091677.812 178 240 46   laminated 2008_08_14_P134.pdf 

2008 135 8/14/2008 452703.37 7091466.304 146 n/a n/a   bedded 2008_08_14_P135.pdf 

2008 136 8/14/2008 451181.0529 7089546.842 176 n/a n/a   laminated 2008_08_14_P136.pdf 

2008 137 8/14/2008 451204.7757 7089576.441 178 23 16   laminated 2008_08_14_P137.pdf 

2008 138 8/14/2008 450601.2439 7089108.658 174 285 10   laminated 2008_08_14_P138.pdf 

2008 139 8/14/2008 450617.3818 7089056.19 168 60 15   bedded 2008_08_14_P139.pdf 

2008 140 8/14/2008 451107.0538 7089062.818 172 n/a n/a 

081608_S1 

and 

081608_S2 massive 2008_08_14_P140.pdf 

2008 141 8/14/2008 451138.2716 7089114.143 170 255 12   laminated 2008_08_14_P141.pdf 
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2008 142 8/16/2008 449585 7088135 186 n/a n/a 081608_M1 intrusion 2008_08_14_P142.pdf 

2009 1 8/7/2009 449488.4576 7089338.36 250 315 29   bedded 2009_08_07_P0.pdf 

2009 2 8/7/2009 449503.1269 7089269.767 268 252 34   bedded 2009_08_07_P1.pdf 

2009 3 8/7/2009 449491.7966 7089135.096 296 n/a n/a   massive 2009_08_07_P2.pdf 

2009 4 8/7/2009 449521.0444 7089128.865 300 n/a n/a     2009_08_07_P3.pdf 

2009 5 8/7/2009 449533.945 7089112.683 308 30 50   bedded 2009_08_07_P4.pdf 

2009 6 8/7/2009 449249.9687 7088963.105 292 n/a n/a   massive 2009_08_07_P5.pdf 

2009 7 8/7/2009 449445.1933 7089311.753 264 n/a n/a     2009_08_07_P6.pdf 

2009 7 8/7/2009 449453.8877 7089323.687 264 n/a n/a ? intrusion 2009_08_07_P7.pdf 

2009 8 8/7/2009 449451.6384 7089326.138 264 n/a n/a   intrusion 2009_08_07_P8.pdf 

2009 1 8/14/2009 452877.5016 7092073.508 168 n/a n/a     2009_08_14_P1.pdf 

2009 3 8/14/2009 452817.7332 7092112.302 176 n/a n/a   intrusion 2009_08_14_P3.pdf 

2009 4 8/14/2009 452810.6991 7092127.825 180 n/a n/a   intrusion 2009_08_14_P4.pdf 

2009 5 8/14/2009 452810.7777 7092133.025 180 189 26 081409-2 massive 2009_08_14_P5.pdf 

2009 6 8/14/2009 452809.8509 7092141.955 188 n/a n/a   intrusion 2009_08_14_P6.pdf 

2009 7 8/14/2009 452799.29 7092140.257 192 n/a n/a   intrusion 2009_08_14_P7.pdf 
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2009 8 8/14/2009 449384.2955 7088023.266 198 114 82   intrusion 2009_08_14_P8.pdf 

2009 9 8/14/2009 449394.7775 7088054.488 204 12 12   bedded 2009_08_14_P9.pdf 

2009 10 8/14/2009 449388.564 7088100.097 218 n/a n/a 081409-3 massive 2009_08_14_P10.pdf 

2009 11 8/14/2009 449375.6688 7088283.641 264 n/a n/a     2009_08_14_P11.pdf 

2009 12 8/14/2009 449336.9875 7088293.554 270 n/a n/a   massive 2009_08_14_P12.pdf 

2009 13 8/14/2009 449313.7483 7088272.384 264 n/a n/a 081409-4 massive 2009_08_14_P13.pdf 

2009 14 8/14/2009 449298.0285 7088235.86 256 n/a n/a 081009-5 massive 2009_08_14_P14.pdf 

2009 15 8/14/2009 449214.9957 7088112.94 214 n/a n/a   massive 2009_08_14_P15.pdf 

2009 16 8/14/2009 449180.9931 7088134.11 222 35 39   bedded 2009_08_14_P16.pdf 

2009 17 8/14/2009 449210.2503 7087840.708 174 n/a n/a 081009-6 intrusion 2009_08_14_P17.pdf 

2009 18 8/14/2009 449311.7589 7087659.815 158 n/a n/a   intrusion 2009_08_14_P18.pdf 

2009 19 8/14/2009 449360.5053 7087533.459 150 n/a n/a     2009_08_14_P19.pdf 

2009 20 8/14/2009 450389.5769 7088681.804 152 177 31   bedded 2009_08_14_P20.pdf 

2009 21 8/14/2009 450312.0713 7088676.905 150 96 22 081009-7 bedded 2009_08_14_P21.pdf 

2009 22 8/14/2009 450290.9405 7088340.107 148 42 15   bedded 2009_08_14_P22.pdf 

2009 23 8/14/2009 450277.2506 7088307.076 148 327 17 081009-8 bedded 2009_08_14_P23.pdf 
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2009 24 8/14/2009 450254.7942 7088283.286 150 342 21   bedded 2009_08_14_P24.pdf 

2009 25 8/14/2009 450251.2791 7088267.924 150 n/a n/a   bedded 2009_08_14_P25.pdf 

2009 26 8/14/2009 450230.5991 7088237.605 148 49 9   laminated 2009_08_14_P26.pdf 

2009 27 8/14/2009 450219.6218 7088179.826 148 n/a n/a     2009_08_14_P27.pdf 

2009 28 8/14/2009 450701.8535 7088787.574 146 84 24   bedded 2009_08_14_P28.pdf 

2009 29 8/14/2009 450680.76 7088803.137 146 80 20   bedded 2009_08_14_P29.pdf 

2009 30 8/14/2009 450718.4019 7088768.924 142 172 12   bedded 2009_08_14_P30.pdf 

2009 31 8/14/2009 451210.376 7089593.918 180 93 14 081009-9 laminated 2009_08_14_P31.pdf 

2009 32 8/14/2009 451219.0158 7089608.085 178 n/a n/a   laminated 2009_08_14_P32.pdf 

2009 33 8/14/2009 451179.7163 7089551.488 178 80 10   laminated 2009_08_14_P33.pdf 

2009 34 8/14/2009 451158.6715 7089313.503 156 40 20   laminated 2009_08_14_P34.pdf 

2009 35 8/14/2009 451183.0602 7089393.922 156 19 18   laminated 2009_08_14_P35.pdf 

2009 36 8/14/2009 451145.0374 7089382.628 162 52 18   bedded 2009_08_14_P36.pdf 

2009 1 8/12/2009 450299.2671 7090602.392 252 20 35 081209-1 massive 2009_08_12_P1.pdf 

2009 2 8/12/2009 450415.681 7090672.985 250 298 14 081209-2 bedded 2009_08_12_P2.pdf 

2009 3 8/12/2009 450429.698 7090742.79 256 318 23 081209-3 bedded 2009_08_12_P3.pdf 
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2009 4 8/12/2009 450548.5501 7090854.4 260 231 14 081209-4 laminated 2009_08_12_P4.pdf 

2009 5 8/12/2009 450602.6478 7090880.849 264 36 68   bedded 2009_08_12_P5.pdf 

2009 6 8/12/2009 450616.8174 7090919.261 262 343 47   bedded 2009_08_12_P6.pdf 

2009 7 8/12/2009 450633.3987 7090882.778 268 n/a n/a 081209-5 bedded 2009_08_12_P7.pdf 

2009 8 8/12/2009 450766.4936 7090908.727 248 19 37   bedded 2009_08_12_P8.pdf 

2009 9 8/12/2009 450790.4228 7090970.39 260 55 17 081209-6 bedded 2009_08_12_P9.pdf 

2009 10 8/12/2009 450839.6996 7090965.9 252 n/a n/a   laminated 2009_08_12_P10.pdf 

2009 11 8/12/2009 450857.3485 7090971.195 252 308 4 081209-7 bedded 2009_08_12_P11.pdf 

2009 12 8/12/2009 450895.2162 7090947.752 246 355 35   laminated 2009_08_12_P12.pdf 

2009 13 8/12/2009 450901.7887 7090898.054 246 371 20   bedded 2009_08_12_P13.pdf 

2009 14 8/12/2009 450834.8423 7090812.919 244 178 45   bedded 2009_08_12_P14.pdf 

2009 15 8/12/2009 450846.319 7090810.139 246 96 12   bedded 2009_08_12_P15.pdf 

2009 16 8/12/2009 450722.3537 7090710.486 242 272 27   bedded 2009_08_12_P16.pdf 

2009 17 8/12/2009 450697.8586 7090654.591 244 215 20 081209-8 laminated 2009_08_12_P17.pdf 

2009 18 8/12/2009 450705.8056 7090650.75 244 337 7   laminated 2009_08_12_P18.pdf 

2009 19 8/12/2009 450593.3652 7090577.854 250 73 49   bedded 2009_08_12_P19.pdf 
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2009 20 8/12/2009 450483.3126 7090485.793 248 95 10 081209-9 bedded 2009_08_12_P20.pdf 

2009 21 8/12/2009 450446.4379 7090515.354 242 n/a n/a   massive 2009_08_12_P21.pdf 

2009 22 8/12/2009 450439.9484 7090219.374 254 n/a n/a   massive 2009_08_12_P22.pdf 

2009 23 8/12/2009 450495.5347 7090225.551 268 208 10 081209-10 bedded 2009_08_12_P23.pdf 

2009 24 8/12/2009 450462.729 7090202.667 264 n/a n/a   massive 2009_08_12_P24.pdf 

2009 25 8/12/2009 450454.9551 7090176.228 270 46 35 081209-11 bedded 2009_08_12_P25.pdf 

2009 26 8/12/2009 450146.103 7090015.821 250 223 20 081209-12 bedded 2009_08_12_P26.pdf 

2009 27 8/12/2009 449987.2941 7089968.948 242 n/a n/a   bedded 2009_08_12_P27.pdf 

2009 28 8/12/2009 449927.6478 7089949.47 242 n/a n/a     2009_08_12_P28.pdf 

2009 29 8/12/2009 450106.1585 7090329.445 252 n/a n/a   intrusion 2009_08_12_P29.pdf 

2009 30 8/12/2009 450173.6943 7090500.928 254 n/a n/a   massive 2009_08_12_P30.pdf 

2009 0 8/11/2009 449263.0598 7089402.191 208 n/a n/a       

2009 1 8/11/2009 449677.4226 7089397.539 284 145 3   laminated 2009_08_11_P1.pdf 

2009 2 8/11/2009 449687.6925 7089410.934 286 65 11   laminated 2009_08_11_P2.pdf 

2009 3 8/11/2009 449696.4744 7089418.223 288 241 44   bedded 2009_08_11_P3.pdf 

2009 4 8/11/2009 449696.1136 7089421.2 288 73 40   bedded 2009_08_11_P4.pdf 

2009 5 8/11/2009 449735.1043 7089431.347 298 41 43   bedded 2009_08_11_P5.pdf 
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2009 6 8/11/2009 449737.3418 7089428.153 298 20 42   bedded 2009_08_11_P6.pdf 

2009 7 8/11/2009 449861.1943 7089541.144 302 211 45 

081109-L4-

1/2 bedded 2009_08_11_P7.pdf 

2009 8 8/11/2009 449858.2359 7089580.942 294 215 68   bedded 2009_08_11_P8.pdf 

2009 9 8/11/2009 449829.3702 7089610.753 286 266 36   laminated 2009_08_11_P9.pdf 

2009 10 8/11/2009 449795.1244 7089626.162 282 15 23   bedded 2009_08_11_P10.pdf 

2009 11 8/11/2009 449794.9441 7089645.483 282 195 26   bedded 2009_08_11_P11.pdf 

2009 12 8/11/2009 449796.0003 7089670.542 286 112 16   bedded 2009_08_11_P12.pdf 

2009 13 8/11/2009 449807.3371 7089684.292 288 n/a n/a   massive 2009_08_11_P13.pdf 

2009 23 8/11/2009 449978.4201 7089311.91 328 170 35   bedded 2009_08_11_P23.pdf 

2009 24 8/11/2009 450060.2754 7089426.323 332 300 22   bedded 2009_08_11_P24.pdf 

2009 25 8/11/2009 450148.6735 7089525.96 342 162 55   bedded 2009_08_11_P25.pdf 

2009 26 8/11/2009 450102.1769 7089629.235 328 126 35   bedded 2009_08_11_P26.pdf 

2009 27 8/11/2009 450112.0268 7089642.081 330 177 34   bedded 2009_08_11_P27.pdf 

2009 33 8/11/2009 449655.3842 7089658.5 270 29 11     2009_08_11_P33.pdf 

2009 1 8/10/2009 450480.3753 7088700.055 146 n/a n/a     2009_08_10_P1.pdf 

2009 2 8/10/2009 449996.7009 7088220.53 145 n/a n/a     2009_08_10_P2.pdf 
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2009 3 8/10/2009 449843.0548 7088277.042 150 186 13 

081009-L2-

1   2009_08_10_P3.pdf 

2009 4 8/10/2009 449765.045 7088343.306 160 n/a n/a       

2009 5 8/10/2009 449754.1921 7088324.348 164 91 71       

2009 6 8/10/2009 449761.0233 7088322.009 164 68 55 

081009-L2-

2     

2009 7 8/10/2009 449749.7359 7088321.819 166 74 45 

081009-L2-

3     

2009 8 8/10/2009 449734.6014 7088316.304 170 n/a n/a       

2009 9 8/10/2009 449734.4504 7088327.265 170 n/a n/a 

081009-L2-

5     

2009 10 8/10/2009 449707.4604 7088316.74 176 n/a n/a 

081009-L2-

6     

2009 11 8/10/2009 449703.6909 7088316.243 178 n/a n/a 

081009-L2-

7     

2009 12 8/10/2009 449690.6527 7088319.053 180 n/a n/a       

2009 13 8/10/2009 449685.8294 7088319.131 182 308 13 

081009-L2-

8     

2009 14 8/10/2009 449649.319 7088326.777 190 n/a n/a 

081009-L2-

9/10     

2009 15 8/10/2009 449599.7337 7088324.789 210 n/a n/a       

2009 16 8/10/2009 449558.5011 7088343.842 228 n/a n/a       

2009 17 8/10/2009 449537.3849 7088347.712 234 n/a n/a       

2009 18 8/10/2009 449431.0376 7088395.495 262 n/a n/a       

2009 19 8/10/2009 449369.34 7088438.286 292 n/a n/a 

081009-L2-

12     

2009 20 8/10/2009 449393.9812 7088328.853 270 n/a n/a 

081009-L2-

11 intrusion 2009_08_10_P20.pdf 

2009 21 8/10/2009 449486.9475 7088242.278 236 n/a n/a   intrusion 2009_08_10_P21.pdf 
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2009 22 8/10/2009 449981.4879 7088481.193 154 n/a n/a 

081009-L3-

1   2009_08_10_P22.pdf 

2009 23 8/10/2009 449982.5828 7088503.651 158 98 27       

2009 24 8/10/2009 449979.4515 7088486.798 156 72 35       

2009 25 8/10/2009 449973.8151 7088512.707 160 86 25       

2009 25 8/10/2009 449973.6392 7088542.615 166 35 77       

2009 26 8/10/2009 449962.9129 7088541.672 168 105 46       

2009 28 8/10/2009 449973.7966 7088552.457 168 17 47       

2009 29 8/10/2009 449988.8898 7088606.64 168 303 46       

2009 30 8/10/2009 449978.8739 7088619.431 172 339 8       

2009 31 8/10/2009 449982.5952 7088627.173 172 282 26       

2009 32 8/10/2009 449945.7974 7088514.455 166 83 35       

2009 33 8/10/2009 449868.9003 7088491.725 164 n/a n/a       

2009 34 8/10/2009 449839.6659 7088524.7 168 n/a n/a       

2009 35 8/10/2009 449805.0153 7088571.692 190 n/a n/a 

081009-L3-

2     

2009 1 8/15/2009 449978.9515 7089845.93 290 152 40   bedded 2009_08_15_P1.pdf 

2009 2 8/15/2009 449937.7488 7089855.505 284 144 14   bedded 2009_08_15_P2.pdf 

2009 4 8/15/2009 449923.8931 7089806.875 282 255 15   bedded 2009_08_15_P4.pdf 

2009 6 8/15/2009 449845.3388 7089841.94 270 n/a n/a   massive 2009_08_15_P6.pdf 

2009 8 8/15/2009 449718.9372 7089630.73 274 227 69   bedded 2009_08_15_P8.pdf 

2009 9 8/15/2009 449725.6648 7089632.294 274 n/a n/a   massive 2009_08_15_P9.pdf 

2009 10 8/15/2009 449766.7457 7089635.348 278 n/a n/a     2009_08_15_P10.pdf 
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2009 11 8/15/2009 449598.1372 7089565.248 280 n/a n/a     2009_08_15_P11.pdf 

2009 12 8/15/2009 449482.2243 7089387.684 238 n/a n/a   intrusion 2009_08_15_P12.pdf 

2009 13 8/15/2009 449903.3349 7089666.406 292 267 16 

081509-

2/3/4/5 intrusion 2009_08_15_P13.pdf 

2009 1 8/8/2009 447231.2837 7086073.334 280 n/a n/a   massive 2009_08_08_P1.pdf 

2009 2 8/8/2009 447340.8666 7086146.904 304 336 33   bedded 2009_08_08_P2.pdf 

2009 3 8/8/2009 447393.7498 7086445.261 290 n/a n/a   massive 2009_08_08_P3.pdf 

2009 4 8/8/2009 447422.3822 7086659.322 288 n/a n/a   massive 2009_08_08_P4.pdf 

2009 5 8/8/2009 447418.0838 7086666.453 290 208 25   bedded 2009_08_08_P5.pdf 

2009 6 8/8/2009 447641.2968 7086887.657 300 230 14   bedded 2009_08_08_P6.pdf 

2009 7 8/8/2009 447871.5321 7086721.84 300 n/a n/a   massive 2009_08_08_P7.pdf 

2009 8 8/8/2009 447107.7638 7086269.9 292 231 10   bedded 2009_08_08_P8.pdf 

2009 9 8/8/2009 447082.7688 7086509.756 280 n/a n/a     2009_08_08_P9.pdf 

2009 10 8/8/2009 446960.1225 7086664.519 242 n/a n/a 080809-S1 lava 2009_08_08_P10.pdf 

2009 11 8/8/2009 446953.0158 7086607.242 242 123 65 080809-S2 massive 2009_08_08_P11.pdf 

2009 12 8/8/2009 446924.6735 7086576.33 254 n/a n/a   massive 2009_08_08_P12.pdf 

2009 13 8/8/2009 446886.1795 7086289.439 266 n/a n/a       

2009 1 8/9/2009 452703.5885 7091763.524 186 223 22   bedded 2009_08_09_P1.pdf 
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2009 2 8/9/2009 452696.1068 7091765.681 188 215 14   laminated 2009_08_09_P2.pdf 

2009 3 8/9/2009 452614.1625 7091645.816 168 0 0 

080909-L1-

1 intrusion 2009_08_09_P3.pdf 

2009 4 8/9/2009 452617.5613 7091649.108 170 247 78 

080909-L1-

2     

2009 5 8/9/2009 452618.5469 7091660.238 170 n/a n/a       

2009 6 8/9/2009 452624.8124 7091669.43 172 307 26 

080909-L1-

3     

2009 7 8/9/2009 452638.4696 7091681.296 176 247 15       

2009 8 8/9/2009 452657.2068 7091678.041 178 240 36       

2009 9 8/9/2009 452623.4663 7091720.716 186 302 16 

080909-L1-

5     

2009 10 8/9/2009 452573.901 7091727.041 190 270 15   laminated 2009_08_09_P10.pdf 

2009 11 8/9/2009 452588.116 7091759.516 204 84 4   bedded 2009_08_09_P11.pdf 

2009 14 8/9/2009 452557.1068 7091847.474 238 n/a n/a   intrusion 2009_08_09_P14.pdf 

2009 12 8/9/2009 452609.5307 7091792.812 212 9 23 

080909-L1-

4 bedded 2009_08_09_P12.pdf 

2009 1 8/6/2009 449652 7088477 212 5 77   massive 2009_08_06_P183.pdf 

2009 2 8/6/2009 449642 7088496 218 320 2   massive 2009_08_06_P184.pdf 

2009 3 8/6/2009 449630 7088486 216 210 25   bedded 2009_08_06_P185.pdf 

2009 4 8/6/2009 449641 7088496 218 250 19   bedded 2009_08_06_P186.pdf 
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2009 5 8/6/2009 449645 7088510 220 n/a n/a   massive 2009_08_06_P187.pdf 

2009 6 8/6/2009 449640 7088502 220 128 41   bedded 2009_08_06_P188.pdf 

2009 7 8/6/2009 449625 7088525 226 206 41   bedded 2009_08_06_P189.pdf 

2009 8 8/6/2009 449621 7088519 224 n/a n/a   intrusion 2009_08_06_P190.pdf 

2009 9 8/6/2009 449620 7088549 228 165 33   bedded 2009_08_06_P191.pdf 

2009 10 8/6/2009 449594 7088558 232 117 24   bedded 2009_08_06_P192.pdf 

2009 11 8/6/2009 449581 7088379 224 240 45   bedded 2009_08_06_P193.pdf 

2009 1 8/16/2009 449181 7088487 336 301 56   bedded   

2009 2 8/16/2009 449187 7088415 350 244 21   bedded   

2009 3 8/16/2009 449086 7088398 346 176 65   bedded   

2009 4 8/16/2009 449047 7088426 330 180 57   bedded   

2009 5 8/16/2009 448972 7088426 308 175 11   bedded   

2009 6 8/16/2009 448825 7088448 314 2 21   bedded   

2009 7 8/16/2009 448845 7088360 296 135 2   bedded   

2009 8 8/16/2009 448741 7088313 276 265 45   bedded   

2009 9 8/16/2009 448650 7088292 282 134 45   bedded   

2009 10 8/16/2009 448630 7088321 304 35 21   bedded   
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2009 11 8/16/2009 448561 7088282 320 223 11   bedded   

2009 12 8/16/2009 448463 7088020 270 13 9   bedded   

2009 13 8/16/2009 448511 7088001 256 123 10   bedded   

2009 14 8/16/2009 448524 7087913 286 239 12   bedded   

2009 15 8/16/2009 448342 7087979 316 126 30   bedded   

2009 16 8/16/2009 448479 7088494 282 356 27   bedded   

2009 13 8/9/2009 452592 7091836 226 343 20   bedded   

2010 1 7/11/2010 449645.3907 7089489.629 284 115 42   bedded 2010_07_11_P01.pdf 

2010 2 7/11/2010 449893.5025 7089675.108 292 n/a n/a 071110-1 intrusion 2010_07_11_P02.pdf 

2010 3 7/11/2010 450093.9214 7089716.297 310 156 35   bedded 2010_07_11_P03.pdf 

2010 4 7/11/2010 450090.4137 7089716.725 310 167 34   laminated 2010_07_11_P04.pdf 

2010 5 7/11/2010 450853.9566 7091020.471 260 n/a n/a   massive 2010_07_11_P05.pdf 

2010 6 7/11/2010 450850.8236 7091018.663 260 310 53   bedded 2010_07_11_P06.pdf 

2010 7 7/11/2010 450899.4321 7091236.896 276 301 15   bedded 2010_07_11_P07.pdf 

2010 8 7/11/2010 451022.6001 7091370.745 264 n/a n/a   intrusion 2010_07_11_P08.pdf 

2010 9 7/11/2010 451158.3474 7091484.342 266 325 4   laminated 2010_07_11_P09.pdf 

2010 10 7/11/2010 449217.3172 7088704.329 310 n/a n/a   laminated 2010_07_11_P10.pdf 

2010 11 7/12/2010 448809.7126 7088897.836 226 n/a n/a 071210-1 intrusion 2010_07_12_P11.pdf 

2010 12 7/12/2010 449048.0143 7088786.211 310 n/a n/a     2010_07_12_P12.pdf 

2010 13 7/12/2010 449044.0608 7088774.387 310 n/a n/a   intrusion 2010_07_12_P13.pdf 

2010 14 7/12/2010 448963.133 7088705.122 304 n/a n/a 071210-2 massive 2010_07_12_P14.pdf 

2010 16 7/12/2010 448909.0528 7088537.715 310 242 25   bedded 2010_07_12_P16.pdf 

2010 17 7/12/2010 448900.7111 7088512.589 312 n/a n/a     2010_07_12_P17.pdf 

2010 19 7/12/2010 448995.7564 7088519.583 302 n/a n/a 071210-6   2010_07_12_P19.pdf 

2010 20 7/12/2010 448865.604 7088460.781 306 n/a n/a   massive 2010_07_12_P20.pdf 

2010 21 7/12/2010 448905.2063 7088372.275 312 274 13   bedded 2010_07_12_P21.pdf 

2010 22 7/12/2010 448979.5007 7088345.057 330 45 72   bedded 2010_07_12_P22.pdf 
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2010 23 7/12/2010 448983.2642 7088320.106 334 55 41   bedded 2010_07_12_P23.pdf 

2010 24 7/12/2010 449011.2742 7088317.791 346 n/a n/a   massive 2010_07_12_P24.pdf 

2010 25 7/12/2010 449021.8895 7088326.906 348 335 30   bedded 2010_07_12_P25.pdf 

2010 26 7/12/2010 449014.6441 7088328.882 346 15 11   bedded 2010_07_12_P26.pdf 

2010 27 7/12/2010 449026.0161 7088354.33 354 35 23   bedded 2010_07_12_P27.pdf 

2010 28 7/12/2010 449027.5994 7088366.192 352 85 37   bedded 2010_07_12_P28.pdf 

2010 29 7/12/2010 449054.8788 7088389.338 354 162 58   massive 2010_07_12_P29.pdf 

2010 30 7/12/2010 449057.7964 7088437.957 328 5 52   massive 2010_07_12_P30.pdf 

2010 31 7/13/2010 449204.4135 7088765.65 294 51 50   bedded 2010_07_13_P31.pdf 

2010 32 7/13/2010 448751.4921 7088303.275 278 68 22   bedded 2010_07_13_P32.pdf 

2010 33 7/13/2010 448730.6814 7088295.814 274 n/a n/a   massive 2010_07_13_P33.pdf 

2010 34 7/13/2010 448677.9464 7088206.59 256 n/a n/a     2010_07_13_P34.pdf 

2010 35 7/13/2010 448390.7572 7087854.859 282 n/a n/a     2010_07_13_P35.pdf 

2010 36 7/13/2010 448504.8275 7087769.206 290 257 20   bedded 2010_07_13_P36.pdf 

2010 37 7/13/2010 448151.8033 7087629.035 290 n/a n/a   intrusion 2010_07_13_P37.pdf 

2010 38 7/13/2010 448076.3584 7087715.731 288 n/a n/a   massive 2010_07_13_P38.pdf 

2010 39 7/13/2010 448029.4086 7087631.808 294 n/a n/a   bedded 2010_07_13_P39.pdf 

2010 40 7/13/2010 447982.5206 7087763.356 336 358 21   bedded 2010_07_13_P40.pdf 

2010 41 7/13/2010 447877.5798 7087448.582 296 310 18   intrusion 2010_07_13_P41.pdf 

2010 42 7/13/2010 447797.8431 7087238.526 268 n/a n/a   intrusion 2010_07_13_P42.pdf 

2010 43 7/13/2010 447786.7641 7087157.91 268 n/a n/a   intrusion 2010_07_13_P43.pdf 

2010 44 7/15/2010 451255.9955 7089426.777 146 n/a n/a     2010_07_15_P44.pdf 

2010 45 7/15/2010 451316.7275 7089531.707 146 n/a n/a 071510-1, 2 

basal 

pillows 2010_07_15_P45.pdf 

2010 46 7/15/2010 451310.7243 7089550.375 146 n/a n/a 071510-3 

basal 

pillows 2010_07_15_P45.pdf 

2010 47 7/15/2010 451262.4789 7089528.094 150 n/a n/a   

basal 

pillows 2010_07_15_P45.pdf 

2010 48 7/15/2010 451241.2842 7089531.767 154 176 16 071510-4 bedded 2010_07_15_P45.pdf 
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2010 49 7/15/2010 451242.5717 7089551.437 164 255 26   bedded 2010_07_15_P45.pdf 

2010 50 7/15/2010 451227.8847 7089537.363 162 62 16   bedded 2010_07_15_P45.pdf 

2010 51 7/15/2010 451222.9218 7089549.328 170 270 25   bedded 2010_07_15_P45.pdf 

2010 52 7/15/2010 451251.4879 7089572.844 172 n/a n/a   intrusion 2010_07_15_P52.pdf 

2010 53 7/15/2010 450274.3223 7088308.051 148 255 0   bedded 2010_07_15_P53.pdf 

2010 54 7/15/2010 450263.4704 7088294.107 148 n/a n/a   bedded 2010_07_15_P54.pdf 

2010 55 7/15/2010 450737.1863 7088741.694 146 n/a n/a 071510-5,6 massive 2010_07_15_P55.pdf 

2010 56 7/15/2010 450722.7926 7088777.771 146 198 20   bedded 2010_07_15_P56.pdf 

2010 57 7/16/2010 450298.3582 7088879.031 168 273 76   intrusion 2010_07_16_P57.pdf 

2010 58 7/16/2010 450111.7332 7088870.3 184 55 14   bedded 2010_07_16_P58.pdf 

2010 59 7/16/2010 450112.6697 7088893.132 186 282 39   bedded 2010_07_16_P59.pdf 

2010 60 7/16/2010 450097.5321 7088897.46 194 142 23   bedded 2010_07_16_P60.pdf 

2010 61 7/16/2010 450083.5113 7088982.013 210 201 20   bedded 2010_07_16_P61.pdf 

2010 62 7/16/2010 450081.6321 7089033.31 220 n/a n/a   intrusion 2010_07_16_P62.pdf 

2010 63 7/16/2010 450102.2745 7089117.868 230 198 54   intrusion 2010_07_16_P63.pdf 

2010 64 7/16/2010 450059.4202 7089239.66 286 295 40   bedded 2010_07_16_P64.pdf 

2010 65 7/16/2010 450017.1089 7089282.686 318 120 15   bedded 2010_07_16_P65.pdf 

2010 66 7/16/2010 449956.717 7089365.567 336 190 38   bedded 2010_07_16_P66.pdf 

2010 67 7/16/2010 450061.7197 7089424.629 332 302 15   bedded 2010_07_16_P67.pdf 

2010 68 7/16/2010 450323.5906 7089566.828 362 60 5   bedded 2010_07_16_P68.pdf 

2010 69 7/16/2010 450340.304 7089579.565 366 122 13   bedded 2010_07_16_P69.pdf 

2010 70 7/16/2010 450353.2042 7089619.853 374 352 16   bedded 2010_07_16_P70.pdf 

2010 71 7/16/2010 450370.4283 7089597.847 372 311 43   bedded 2010_07_16_P71.pdf 

2010 72 7/16/2010 450374.7968 7089594.992 370 277 33 071610-1 bedded 2010_07_16_P72.pdf 

2010 73 7/16/2010 450382.116 7089592.647 368 255 48   bedded 2010_07_16_P73.pdf 

2010 74 7/16/2010 450384.7861 7089590.933 366 275 50   bedded 2010_07_16_P74.pdf 

2010 75 7/16/2010 450367.1115 7089625.762 376 34 41   bedded 2010_07_16_P75.pdf 
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2010 76 7/16/2010 450385.0249 7089626.592 374 n/a n/a 071610-2 massive 2010_07_16_P76.pdf 

2010 77 7/16/2010 450384.3704 7089621.402 372 233 28 071610-3 bedded 2010_07_16_P77.pdf 

2010 78 7/16/2010 450387.9858 7089617.444 370 46 23 071610-4 bedded 2010_07_16_P78.pdf 

2010 79 7/16/2010 450398.4249 7089636.596 370 230 43   bedded 2010_07_16_P79.pdf 

2010 80 7/16/2010 450403.3699 7089664.937 378 214 47   bedded 2010_07_16_P80.pdf 

2010 81 7/16/2010 450432.161 7089738.408 400 63 46   bedded 2010_07_16_P81.pdf 

2010 82 7/16/2010 450428.1635 7089635.753 362 293 78   bedded 2010_07_16_P82.pdf 

2010 83 7/16/2010 450277.3143 7089370.67 264 250 71   bedded 2010_07_16_P83.pdf 

2010 84 7/16/2010 450287.4518 7089293.609 242 51 45   bedded 2010_07_16_P84.pdf 

2010 85 7/16/2010 450353.9683 7089189.091 188 175 20   bedded 2010_07_16_P85.pdf 

2010 86 7/16/2010 450396.0954 7089185.636 184 54 21   bedded 2010_07_16_P86.pdf 

2010 87 7/10/2010 449626 7089452 278 n/a n/a   massive 2010_07_10_P87.pdf 

2010 88 7/10/2010 449791 7089599 284 n/a n/a   laminated 2010_07_10_P88.pdf 

2010 89 7/10/2010 449927 7089634 292 n/a n/a   laminated 2010_07_10_P89.pdf 
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APPENDIX B: ROCK SAMPLES 

The following is a tabular compilation of the samples collected at Sveifluháls that specifies what 

kinds of analyses were done on these samples. Not all analyses indicated by the table were 

completed for the corresponding samples, but this table may be used by potential future research 

to show which samples are best suited for the various analyses listed. 

The thin sections prepared for this research (77 were made) are stored at the University of 

Pittsburgh Department of Geology and Planetary Science. 
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Table 14: Master list of Sveifluháls samples, showing the sample name, description, and if a thin section was obtained from the sample. 

Year Date 

Altitude 

(m) Sample Description 

Section 

Sent 

Section 

Received 

2008 8/8/08 147 

080808_U1 

and 

080808_U2 Pillow rind (U1) and interior (U2) from Undirhilðar. N   

2008 8/8/08 154 080808_U3 Another pillow rind sample from Undirhilðar. N   

2008 8/8/08 153 080808_S1 

A pillow rind from a pile of pillows at a road cut in Sveifluháls, eastern 

edge (near giant slump structure). Y Y 

2008 8/9/08 153 

080908_L1 

and 

080908_L2 

Lambhangi pillow (L1) and rind (L2) samples in peninsula extending into 

Lake Kleifarvatn. Y Y 

2008 8/9/08 118 080908_M1 Sample of pillow rind from Maelifell, on western shore of Kleifarvatn. N   

2008 8/10/08 385 081008_M1 Glassy rock sample from near peak of Miðdegishnjukur. Y Y 

2008 8/10/08 383 081008_M2 

Rock sample of more massive rock near peak of Miðdegishnjukur 

(abbreviated Mi). Y Y 

2008 8/10/08 358 

081008_M3 

and 

081008_M4 

Samples from an ashy, bedded lens of material inside coarser, glassy 

massive beds. M3 is interior of lens, M4 is exterior. From southern slope of 

Mi. 

Y-M3  

N-M4 Y, M3 

2008 8/10/08 318 081008_M5 

Massive, fine grained, finely layered rock sample. From western slopes of 

Mi. Y Y 

2008 8/12/08 195 081208_M1 Pillow rind from eastern slope of Mi. Not very glassy. Y Y 

2008 8/12/08 221 081208_M2 Another pillow rind, glassier, from higher up on eastern slope of Mi. N   

2008 8/12/08 305 081208_M3 

A rock sample from a very glassy, coarse grained, non-palagonitized, well-

sorted bed near peak of Mi. Y Y 

2008 8/12/08 297 081208_M4 Pillow rind sample, very glassy and iridescent, from eastern slopes of Mi. N   

2008 8/12/08 298 081208_M5 

Rock sample of contact margin of pillows. Also found on eastern slopes of 

Mi. Y Y 
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2008 8/12/08 260 

081208_M6 

and 

081208_M7 

Pillow rind sample from eastern slope of Mi (M6) and the bed of massive, 

glassy, well-sorted material above the pillows (M7). N   

2008 8/12/08 239 081208_M8 

Pillow rind sample from a thick deposit of pillows near the base of the 

eastern slope of Mi. N   

2008 8/16/08 162 

081608_S1 

and 

081608_S2 

Strange basketball-sized spheres of glassy, coarse-grained material 

(Interior of sphere is S1) and the material covering them in a rind-like 

fashion (S2). Y(both) Y, BOTH 

2008 8/16/08 194 081608_M1 

Pillow interior sample near the base of eastern slope of Mi. Rich in 

plagioclase. N   

2009 8/5/09   08-05-09-S1 

Scoria near bedded deposits (probably not maar) found near northern end 

of Kleifarvatn. Non-juvenile material N   

2009 8/5/09   08-05-09-S2 Matrix material found around scoria from Stop 1 N   

2009 8/5/09   08-05-09-S3 

sample of float taken in valley, under what looks like a subaerial flow or an 

intrusion Y Y 

2009 ?   080909? Non-palagonitized black rocks Y Y 

2009 8/8/09   080809-S1 

2 samples taken of sub aerial lavas. sample is of float, aphyrric med grey 

lava with scoriatious top and bottom, very glassy, try to date these samples.  Y Y 

2009 8/8/09   080809-S2 Bomb fragment? Y Y 

2009 8/9/09   080909-L1-1 Massive LT, 2 m exposed, no outsize clasts Y Y 

2009 8/9/09   080909-L1-2 Fine-grained LT, angular clast-supported.  Y Y 

2009 8/9/09   080909-L1-3 

Bedded T. sharp contact w upper unit. Below, a few intact bombs up to 20 

cm.  Y Y 

2009 8/9/09   080909-L1-4 Unit is about 2 m thick, non-palagonitized w/slight cross bedding  Y Y 

2009 8/9/09   080909-L1-5 

FG  LT-T, within a bedded uniform graded well sorted deposit. Entire 

deposit above pillow layer. This sample is just the finer grained stuff 

within the unit. Y Y 

2009 8/10/09   081009-L2-1 

Tuff (T) w/ palagonitized matrix, glassy clasts, average of 1 mm size 

clasts, lithics of vesicular pillow fragments up to 15 cm max. glassy clasts 

less palagonitized. Outcrop here about 1.5 m thick. Y Y 
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2009 8/10/09   081009-L2-2 

Large outcrop of massively bedded T, palagonitized matrix. average clast 

size less than 1 mm, contains many glassy clasts of about 4 mm. also 

contains lithics up to 15-20 cm. Y Y 

2009 8/10/09   081009-L2-3 

Smaller beds,T, palag, glassy black clasts less than 1 mm, fewer larger 

clasts, with max size of 20 cm. more finely bedded Y Y 

2009 8/10/09   081009-L2-5 

PB w/ palag matrix, average clast size of about 5 cm. palag matrix, matrix 

supported. Y Y 

2009 8/10/09   081009-L2-6 Palag matrix, v glassy, T w/some darker glassy clasts Y Y 

2009 8/10/09   081009-L2-7 Pillow from intrusive layer. Just above this is a PB. Y Y 

2009 8/10/09   081009-L2-8 

tephra drape. Tephra is filing in a cavity. AT, highly palag w/ dark glassy 

clasts Y Y 

2009 8/10/09   081009-L2-9 

massive T, clastic palag matrix, some larger squashed scoria pieces, no 

bedding, swirled in with finer tephra Y Y 

2009 8/10/09   

081009-L2-

10 finer, cross bedded, syn-sedimentary faults @photo 95. finer stuff not palag Y Y 

2009 8/10/09   

081009-L2-

11 

dark non-palag, all glass, coarser at base with pillow fragments. Dark tuff 

sample, v massive Y Y 

2009 8/10/09   

081009-L2-

12 

large pillow pile, wedge of what looks like L2U3, massive and fine swirled 

mix at point 18. material is more palag, fine laminate ashy deposit. Sample 

is at top of pillow tuff Y N   

2009 8/10/09   081009-L3-1 

massive T, palag, black glassy clasts up to 1.5 cm. bedded a little, coarser 

toward top. Y Y 

2009 8/10/09   081009-L3-2 

kubbaberg above rotated tephra bed. Sample of kubbaberg. More pillows 

along edges. Y Y 

2009 8/11/09   081109-L4-1 dark , glassy finely laminated T with clasts up to 2 cm Y Y 

2009 8/11/09   081109-L4-2 This is an outcrop on LT with 10 cm clasts, palag matrix w/glassy clasts. Y Y 

2009 8/11/09   081109-L4-3 

massive matrix supported PB, max lithic size 30 cm. lichen on sample, 

photos 151-152 Y Y 

2009 8/11/09   081109-L4-4 

finely laminated sediments w/large PB boulders, some intact pillows. 

Sample is of Tuff w/ palag matrix and black glassy clasts. Y Y 

2009 8/12/09   081209-1 

LT, not well bedded, matrix supported, palag matrix w/glassy clasts up to 1 

cm maximum. Pretty massive Y Y 
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2009 8/12/09   081209-2 coarser LT, lots of PB frag, up to 35-40 cm Y Y 

2009 8/12/09   081209-3 

really hard to see bedding, more massive LT, randomly clustered PB frag 

up to 30 cm, very glassy, palag matrix with black glassy clasts, 3 cm clasts 

in addition to larger pillow frag Y Y 

2009 8/12/09   081209-4 

Bedded LT on top of ridge segment, more sorting in the beds. Matrix is 

clast-supported, w/some palag in smaller clasts Y Y 

2009 8/12/09   081209-5 

Fine grained, well rounded clasts, reworked fluvial deposit w/x-bedding 

and truncated beds. Well sorted. Large clasts are likely pillow frags. 

Bedding is sub-horizontal Y Y 

2009 8/12/09   081209-6 laminated, ashy layer. Y Y 

2009 8/12/09   081209-7 finely bedded LT Y Y 

2009 8/12/09   081209-8 in a notch along the lake bed, finely lam, smoothly weathered Y Y 

2009 8/12/09   081209-9 

LT, poorly sorted weakly bedded, w/ample angular to sub-angular clasts of 

PB and lighter colored less vesicular lava, also likely pillow frags. 

Probably a paleo-gully or gap between 2 cones. Y Y 

2009 8/12/09   081209-10 LT w/x-bedding Y Y 

2009 8/12/09   081209-11 no description N   

2009 8/12/09   081209-12 no description Y Y 

2009 8/14/09   081409-1 

sample is from base of intrusive outcrop, aphyric, a few vugs about 3 mm, 

grey, look at air photos for this dike. Pillow formed near this contact. Y Y 

2009 8/14/09   081409-2 lenses of injected AT material Y Y 

2009 8/14/09   081409-3 

sample of FG injected stuff of fluidization blobs within a LT w/large 

angular PB clasts (do we only find these in massive units? Occurrence 

from disturbance/slumping?) Y Y 

2009 8/14/09   081409-4 black unpalag LT, poorly consolidated, very loose Y Y 

2009 8/14/09   081409-5 eroded out of the center of a possible vent. Float sample. Y Y 

2009 8/14/09   081409-6 

cropping out of intrusion along flank. Dike is very feldspar-phyric. Dikes 

may be feeding larger tephra. Use for Hilary's work. Y Y 
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2009 8/14/09   081409-7 

very well bedded LT, heavily altered, scant glassy clasts, well sorted 

w/lithics up to 10 cm. angular clasts. Finely laminated in places. Buff-

colored. Compare with massive units at the base of cones. Y Y 

2009 8/14/09   081409-8 glassy matrix, compare with other deposits. Bedded? Y Y 

2009 8/14/09   081409-9 

finely laminated, well sorted beds of T w/beds of coarser, graded LT. 

glassy clasts, sub-angular. Some of the youngest tephra found. Y Y 

2009 8/15/09   081509-1 T near flood deposits. Compare with other flood deposits. Y Y 

2009 8/15/09   081509-2 

massive T, units are well sorted w/larger scoriatious clasts up to 35 cm. 

clasts are very frothy, greater than 65%? void space, matrix is very dark 

and glassy, sparkling, average clast size about 1 mm. gets more clasts 

towards top. some bedding. 
Y Y 

2009 8/15/09   081509-3 

At the base of a unit with sample 081509-4, a thinly laminated material. 

Forms contact with lower unit of 081509-2. Y Y 

2009 8/15/09   081509-4 mostly massive LT, very glassy scoriatious clasts. Y Y 

2009 8/15/09   081509-5 

alternating layers of dark glassy fine grained T beds w/ more dull, more 

massive ones Y Y 

2010 7/11/10   071110-1 All glass; clasts are dark, glassy, highly vesiculated fragments.  Y Y 

2010 7/12/10   071210-1 Palagonitized ridgelet.  Y Y 

2010 7/12/10   071210-2 

Highly palagonitized, mostly massive unity with pillow fragments. 

Overturned/slumped. Y Y 

2010 7/12/10   071210-3 Vesiculated lava from dike. Y Y 

2010 7/12/10   071210-4 Non-vesiculated lava from same site Y Y 

2010 7/12/10   071210-5 Mound of lava south of M-vent, likely from dike.  Y Y 

2010 7/12/10   071210-6 Banded pillow lava (float from valley floor) Y Y 

2010 7/15/10   071510-1 Pillow rinds from pillow pile of lake shore Y Y 
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2010 7/15/10   071510-2 Pillow interiors from lakeshore pillows Y Y 

2010 7/15/10   071510-3 More pillow rinds from higher up in pillow pile near lakeshore Y Y 

2010 7/15/10   071510-4 Finely bedded LT, some bands of coarser material. Unit coarsens upwards Y Y, a AND b 

2010 7/15/10   071510-5 On shoreline, a flat, grey, fine grained deposit containing zeolite. Y Y 

2010 7/15/10   071510-6 Kleifarvatn beach sand N   

2010 7/15/10   071510-7 From sandbar in Markarfljot N   

2010 7/15/10   071510-8 From bank at Markarfljot N   

2010 7/16/10   071610-1 From top of N-vent (swoop) Y Y 

2010 7/16/10   071610-2 Throat of N-vent Y Y 

2010 7/16/10   071610-3 west side of throat of N-vent Y Y 

2010 7/16/10   071610-4 

east side of throat of N-vent. Alternating beds of fine, glassy, well sorted 

beds with coarser beds with 1-3 cm clasts of vesiculated glassy fragments.  Y 

Y- EITHER 

071510-4A 

OR 4B 
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APPENDIX C: ASSEMBLAGE TESTS RESULTS 

 

The following is a compilation of all single mineral and mineral combinations for olivine, 

plagioclase and augite (clinopyroxene) Assemblage Tests done for Sveifluháls coherent rock 

samples.  

 

 

Figure 141: Assemblage test for olivine. 
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Figure 142: Assemblage test for plagioclase. 
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Figure 143: Assemblage test for augite (clinopyroxene). 
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Figure 144: Assemblage test for olivine plus plagioclase 
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Figure 145: Assemblage test for olivine plus augite (clinopyroxene) 
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Figure 146: Assemblage test for plagioclase plus augite (clinopyroxene). 
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Figure 147: Assemblage text for olivine plus augite (clinopyroxene) plus plagioclase. 
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