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The goal of this study is to investigate the roles of steady-state speech sounds and transitions 

between these sounds in the intelligibility of speech. The motivation for this approach is that the 

auditory system may be particularly sensitive to time-varying frequency edges, which in speech 

are produced primarily by transitions between vowels and consonants and within vowels. The 

possibility that selectively amplifying these edges may enhance speech intelligibility is 

examined.  

Computer algorithms to decompose speech into two different components were developed. One 

component, which is defined as a tonal component, was intended to predominately include 

formant activity. The second component, which is defined as a non-tonal component, was 

intended to predominately include transitions between and within formants. 

The approach to the decomposition is to use a set of time-varying filters whose center 

frequencies and bandwidths are controlled to identify the strongest formant components in 

speech. Each center frequency and bandwidth is estimated based on FM and AM information of 

each formant component. The tonal component is composed of the sum of the filter outputs. The 

non-tonal component is defined as the difference between the original speech signal and the tonal 

component. 

The relative energy and intelligibility of the tonal and non-tonal components were compared to 

the original speech. Psychoacoustic growth functions were used to assess the intelligibility. Most 

of the speech energy was in the tonal component, but this component had a significantly lower 
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maximum word recognition than the original and non-tonal component had. The non-tonal 

component averaged 2% of the original speech energy, but this component had almost equal 

maximum word recognition as the original speech.  

The non-tonal component was amplified and recombined with the original speech to generate 

enhanced speech. The energy of the enhanced speech was adjusted to be equal to the original 

speech, and the intelligibility of the enhanced speech was compared to the original speech in 

background noise. The enhanced speech showed higher recognition scores at lower SNRs, and 

the differences were significant. The original and enhanced speech showed similar recognition 

scores at higher SNRs. These results suggest that amplification of transient information can 

enhance the speech in noise and this enhancement method is more effective at severe noise 

conditions. 
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1.0 INTRODUCTION 

 

1.1 DECOMPOSITION AND ENHANCEMENT OF SPEECH 

 
The goal of this study is to investigate the roles of steady-state speech sounds and 

transitions between these sounds on the intelligibility of speech. Computer algorithms to 

decompose speech into a “quasi-steady-state” component and a “transition” component are 

developed, and the energy and intelligibility of the components are compared to the original 

speech. The quasi-steady-state component includes signal energy with frequency content and 

amplitude that are relatively constant over short time periods (minimum 10-20 msec.). The 

transition component represents changes in frequency content and amplitude between quasi-

steady-state components. A method to enhance the intelligibility of speech in noise, based on the 

speech decomposition, is developed, and the intelligibility of original and enhanced speech in 

background noise is examined by psychoacoustic tests. 

Speech sounds can be classified as vowels or consonants. Vowels are voiced sounds that 

are characterized by the size and shape of the vocal tract [1], [2], [3]. Changing the size and 

shape of the vocal tract produces a change in frequency content of speech sounds. The frequency 

region where the speech energy is concentrated is called a formant [4]. Consonants are usually 

generated by a narrowing or by complete obstruction of region of the vocal tract [1], [2], [3].  

Quasi-steady-state components are the dominant characteristic of vowels. Although 

consonants are predominantly brief transients, some include quasi-steady-state components as 

well. These quasi-steady-state parts of consonants are called hubs. Since the onset and offset of 
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speech sounds are inherently transient, both vowels and consonants contain transient events. The 

transitions are observed between vowels and consonants and within vowels (e.g. diphthong). The 

articulators cannot move instantly from one position to another, and initial portions of formants 

often show brief frequency shifts that, for a given vowel, may differ among different consonant-

vowel combinations [1]. Consequently, the transient energy is included in both vowels and 

consonants. Conventional vowel-consonant classifications and concepts of spectral composition 

de-emphasize this transition information. 

Most human sensory systems are sensitive to abrupt changes in stimuli. If the auditory 

system shows the same characteristics in the frequency domain, it would probably be particularly 

sensitive to time-varying frequency edges that reflect transition components in speech. Although 

these transitions represent a small proportion of the total speech energy compared to quasi-steady 

state portions of both vowels and consonants, they may be critical to the perception of speech by 

humans. 

Traditional methods of studying the auditory system and speech intelligibility have 

emphasized frequency-domain techniques, a perspective that also has dominated concepts of 

speech intelligibility [5], [6], [7], [8], [9]. While it is generally recognized that voicing and 

steady vowel sounds are largely low frequency and that consonants are dominated by higher 

frequencies, no single cutoff frequency uniquely separates them. Information on transitions 

between and within vowel sounds is even more difficult to isolate using fixed-frequency filters, 

as this information is inherently dynamic and can be rather broad band.  

In this project, an algorithm to emphasize transition components in speech is developed 

in order to investigate the role of these components in speech intelligibility. The algorithm 

decomposes speech into two components. One component is intended to predominately include 
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quasi-steady-state formant activity representing primarily vowels and hubs of consonants, and it 

is referred to as the “tonal” component. The second component is intended to emphasize 

transitions between vowels and consonants and within vowels, and it is defined as the “non-

tonal” component. We compare the energy and intelligibility of the tonal and non-tonal 

components to the original speech. We expect the intelligibility of the tonal and non-tonal speech 

components to be different, and we suggest that the non-tonal component, since it emphasizes 

the transition information in speech, may be critical to the perception of speech.  

We expect the tonal component to contain most of the energy of original speech and the 

non-tonal component to contain less energy. Thus, noise would affect the non-tonal component 

more than it affects the tonal component. To enhance speech, the non-tonal component is 

amplified and recombined with the original speech. The energy of the enhanced speech is 

adjusted to be equal to that of the original speech. The intelligibility of the enhanced speech in 

noise is compared to the intelligibility of the original speech in noise.  

Our approach to speech decomposition is to first highpass filter (at 700 Hz) the speech 

signal to remove most of the voicing energy. Then three time-varying filters whose center 

frequencies and bandwidths are controlled to pass most of the energy in the three largest formant 

components in the signal are used. Each center frequency and bandwidth is estimated using 

frequency modulation (FM) and amplitude modulation (AM) information of each formant 

component. The tonal component is composed of the sum of the filter outputs. It is subtracted 

from the original speech signal to yield the non-tonal component. The decomposition can be 

viewed as removing as much of the quasi-steady-state energy from the original speech signal as 

possible, while maintaining reasonable intelligibility in the remaining speech signal. That is, the 
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energy of the tonal component is maximized, while keeping reasonable intelligibility in the non-

tonal component. 

 

1.2 OUTLINE 

 
This dissertation is organized as follows. Relevant literature for this study is summarized 

in Chapter 2. Chapter 3 describes the decomposition method, which is based on time-varying 

filters, and explains how the center frequency and bandwidth of the time-varying filters are 

determined. Synthetic tone signals are presented to illustrate the proposed decomposition 

algorithm. The characteristics of the time-varying filters are described by analyzing their 

response to synthetic chirp signals, and software modifications for processing long speech 

samples and issues related to computation times are discussed. Results for real speech samples 

are presented in Chapter 4, and the effects of parameter variations on filter performance are 

described. Psychoacoustic evaluations of the intelligibility of the speech components and of the 

enhanced speech in noise are presented in Chapter 5.  Finally, implications of this study and 

future research areas are discussed in Chapter 6. 
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2.0 BACKGROUND 

 
A general background on speech and previous studies on speech processing techniques 

are reviewed in this chapter. The nature of speech intelligibility and methods to test speech 

intelligibility are also briefly described. 

   

2.1 STRUCTURE OF SPEECH 

 
The characteristics of speech formants, which dominate the tonal component, and 

transitions between and within formants, which dominate the non-tonal component, are 

described in this section. The effects of noise on speech intelligibility are also discussed. 

 
 

2.1.1 Formants and Vowels  

 
A formant can be defined as a natural mode or resonance of the vocal tract [1], [2], [3], 

[4]. There are an infinite number of formants for speech, but only the lowest three or four 

formants are typically considered in practice. Each formant can be characterized by the formant 

frequency, which represents the frequency content (center frequency) of a certain formant.  

A formant is generally seen as a peak in the acoustic spectrum of a speech sound [1], [2]. 

The vocal tract can be viewed as an energy modifier, and its transfer function can be 

characterized by the first three or four formants. The vocal tract does not generate sound energy 

but modifies sound energy provided by a source of sound. 
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In some views, vowels are considered simple sounds to analyze and describe because of 

the quasi-steady-state acoustic pattern in vowel sounds [2]. Each vowel sound has different 

formant frequencies.  

 
 
2.1.2 Transitions  

 
The acoustic characteristics of consonants are more complicated and more difficult to 

describe than vowel sounds. A momentary narrowing or obstruction of the vocal tract can 

produce a stop consonant (in English /p b t d k g/). Transition sounds are associated with changes 

of the vocal tract configuration between vowels, such as the change from a stop to a relatively 

open position for the following vowel.  

A speech sound can not go to the next sound without producing transition events. The 

transition from consonant to vowel or vowel to consonant is related to changing or shifting of the 

formants [2]. These changes of formants are caused by the changes of the resonating cavities of 

the vocal tract, which can be characterized by frequency changes of the formants. The transitions 

have information on the place of stop articulations and voicing features of the vocal tract. The 

transitions also contain information on timing of the articulatory changes because the acoustic 

changes have the same duration as the articulatory changes [2]. The transitions are probably 

important acoustic cues for speech intelligibility. However, it is not easy to detect or measure the 

transitions because of the variability in their durations, rates of changes, and start and end points. 

 
2.1.3 Effects of Noise 

 
Speech intelligibility is degraded when speech is corrupted by noise. In some situations, 

an otherwise clearly audible sound can be masked by another sound. For example, conversation 
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at a bus stop can be completely impossible if a loud bus is driving past. This phenomenon is 

called masking. A quieter sound is masked if it is made inaudible in the presence of a louder 

sound. The presence of noise can cause masking of all or part of the speech. Once the noise 

energy has increased above an effective level, a noise increment results in a corresponding 

increase in speech threshold. In general, the intelligibility of consonants, which have lower 

energy, is more affected by a given noise level than the intelligibility of vowels, which have 

higher energy [10]. 

 

2.2 ANALYSIS OF SPEECH 

 
Attempts to decompose speech into different components have been reported, but these 

decompositions were primarily performed for speech coding or production of synthetic speech. 

Speech decomposition for speech enhancement or to study the relation between components of 

speech and overall speech intelligibility has been rarely described. Many investigators have 

addressed the problem of identifying the start and end of phonemes or word segments for 

automated speech recognition, but only a few studies have focused specifically on transition 

components in speech. In this section, literature on speech decomposition, time-varying filtering, 

tracking algorithms, and noise reduction are reviewed. Background on the tracking algorithm 

that is used in this study is described, and the advantages and disadvantages of the various 

approaches are addressed. 
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2.2.1 Periodic and Aperiodic Decomposition  

 
Yegnanarayana et al. proposed an iterative algorithm to identify and separate periodic 

and aperiodic components of speech signal [11]. They considered a speech signal to be the 

output of a vocal tract excited by pulses of quasi-periodic (periodic component) and random 

(aperiodic component) sequences. The decomposition was performed on an approximation to the 

excitation signal of the vocal tract (residual signal) rather than on the speech signal directly. 

Linear prediction analysis was performed on speech data and the residual signal was obtained by 

passing the speech signal through the inverse filter calculated from these linear prediction 

coefficients. Voiced and unvoiced parts of the residual signal were determined. The voiced part 

was decomposed into periodic and aperiodic parts by identifying frequency regions of harmonic 

and noise components of the voiced part. A first approximation to the aperiodic component was 

obtained from the signal corresponding to the noise frequency region, and then the aperiodic 

component in the harmonic frequency region was estimated by an iterative algorithm. The 

estimated aperiodic component was subtracted from the residual signal to obtain the periodic 

component.  

The periodic and aperiodic components of the residual signal were passed through an all-

pole filter of the vocal tract, which was derived from the linear prediction analysis, to generate 

the corresponding components of the speech signal. A synthetic voiced segment generated by a 

formant synthesizer with white Gaussian noise was tested to demonstrate the capability of their 

decomposition algorithm. The authors mentioned some computational problems to implement 

the algorithm in real-time and suggested possible applications to speech synthesis and production 

of voice with desired source characteristics. 
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This study primarily investigated the modeling and decomposition of speech signals for 

speech synthesis or speech production. The authors were not particularly concerned with speech 

perception or intelligibility.  

 

2.2.2 Wavelet Decompositions 

 
Daubechies and Maes proposed a nonlinear squeezing of the continuous wavelet 

transform for estimating the modulated components of speech and the parameters characterizing 

them [12]. First, they noted the similarities between the cochlea and the natural wavelet 

transform. They pointed out the disadvantages of the discrete wavelet transform (at low 

frequency, poor time resolution and at high frequency, poor frequency resolution) and focused 

on reassigning or weighting the important (desired) components in the time-frequency plane in 

order to remedy this blurring in time and frequency resolutions. They transformed the original 

time-scale plane to a time-instantaneous frequency plane by reassigning contributions with the 

same instantaneous frequencies to the same bin, weighted by amplitude. As a result, the 

reassigned (synchrosqueezed) wavelet transform showed an improved resolution of the speech 

signal. After reassigning, the speech structures were well identified. From the reassigning 

representation, they determined more clearly the central frequency of speech signal. 

Daudet and Torresani proposed a decomposition method including tonal, transient, and 

stochastic components of an audio signal [13]. They applied a modulated discrete cosine 

transform to extract the tonal component, which is a locally stationary signal, and defined the 

non-tonal component as the difference between original and tonal components. The tonal 

component contained most of the energy of the signal. A discrete wavelet transform was then 

used to obtain a transient component, which exhibited rapid variations, from the non-tonal 
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component. The stochastic component was defined as the difference between the non-tonal and 

transient components. They illustrated the decomposition results using musical sounds. The 

transient component captured most of the rapid activity (attack) in a musical sample. The 

stochastic component was composed of a relatively white noise component with much smaller 

dynamic range than the tonal or transient components, although the stochastic component still 

included some tonal quality. They applied these decompositions to audio signal encoding, using 

a musical sound. The three components were estimated and individually encoded for high sound 

quality with high compression ratio. The musical sound was originally recorded at 16 bit per 

sample, and the encoding of the tonal and transient components using their method required 

about 0.167 bits per sample and 0.8 bits per sample respectively.  

These studies primarily investigated modeling, feature extraction, and decomposition of 

audio and speech signals for coding purposes. They were not particularly concerned with speech 

perception or intelligibility.  

 
 
2.2.3 Identifying Transition Segments 

 
Zhu and Alwan focused on transitional information in speech recognition. They 

suggested that computing frames every 10 msec was not sufficient to represent transitional 

information, and they proposed a simple method, using variable frame rates, to detect transitions 

[14]. The frame size was constant, but the overlap between windows was increased (resulting in 

windows being applied more frequently) when speech models showed that the speech was 

changing rapidly. The rate of change was described by calculating an energy-weighted Euclidean 

distance between Mel-frequency cepstral coefficients in consecutive frames. The Euclidean 

distance increased when the speech was rapidly changing.   If the Euclidean distance exceeded a 
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certain threshold, the overlap was increased, so that the algorithm effectively detected the rapidly 

changing speech (transitions). They showed that the variable frame rate speech processing 

improved the performance of automated recognition of noisy speech.  

Yu and Chan proposed a transient model for speech coding [15]. They used an 8th order 

all-pole filter with random noise excitation to model the unvoiced part of speech. The voiced part 

was modeled by low frequency harmonic components. The transitions were characterized by the 

onset time and growth rate of each harmonic component of the transient speech segment. They 

applied the transient model to a 2.4 kbps speech coder to improve the quality at the transition 

region of the speech signal. They performed an informal listening test and reported that the 

speech quality of the proposed coder is preferable, especially at the transition parts. 

Zhao et al. proposed a method to model and detect spectral transitions for applications of 

speech or speaker recognition [16]. They investigated the detection of the spectral transition 

based on time-frequency analysis using models of transitions by linear and quadratic frequency 

modulation signals. They applied two different detection methods, the Randon-Wigner transform 

and Randon-Ambiguity transform, and concluded that the detection of spectral transitions helped 

in the modeling of correlations among parameters of speech frames both in time and in 

frequency. 

These studies were concerned with the detection and modeling of speech transitions for 

automatic speech recognition and for speech coding. The importance of transitional information 

to perceptual problems and the relations between energy and intelligibility of the various speech 

components were not discussed in these studies.  
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2.2.4 AM and FM Separation and Time-varying Filters 

 
Voelcker suggested that representing signals by sums of sinusoidal components as in 

Fourier analysis was not appropriate for a time localized description of signals [17]. He proposed 

a unique way to represent signals as products rather than sums by modeling complex-valued 

signals as polynomials in complex time. By extending his idea, Rao and Kumaresan developed a 

method to represent a speech signal as a product of components [18]. They proposed a pole-zero 

model of a signal by considering periodic extensions of the signal and an algorithm to 

decompose the speech signal into modulated components. Their motivation for time-domain 

processing came from a study of the auditory periphery, as opposed to LPC/cepstral analysis 

motivated by vocal-tract models. They suggested that the human auditory system may be 

sensitive to modulations. If so, characterizing signals by these modulations may reveal new 

insight into the nature of speech signals and speaker-specific information. They also suggested 

that the modulations could be used as AM/FM features in applications such as computer 

processing of speech. They used a bank of adaptive filters to track each formant component of a 

speech signal. Each tracked formant component was then decomposed into minimum and all-

phase parts, from which the envelope (AM) and instantaneous frequency (FM) information 

respectively of a tracked formant component were estimated.  

Quatieri et al. proposed a filter to estimate sine-wave AM and FM information [19]. 

Their estimation was based on the transformation of FM into AM by filters that were motivated 

by the hypothesis that the human auditory system uses a transformation of FM into AM for the 

identification of sine-wave FM. The basic idea of the transformation was that the filter output 

could be estimated by sweeping the instantaneous frequency (FM) through the filter’s frequency 

range. They described an AM-FM separation algorithm that used two distinct filters. The two 
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filters had piecewise-linear spectral shapes and were closely overlapped in frequency. The AM 

and FM components were calculated by utilizing the differences of amplitude envelopes of the 

two filter outputs.  The particular cases of AM-FM decomposition using Gaussian, gamma tone, 

and auditory filters derived from measured auditory-nerve tuning curves were presented. They 

emphasized that their algorithm was simply one possible candidate mechanism for auditory FM 

demodulation. They mentioned that the demodulation assumed that the filter shapes were 

constant. In the cochlea, however, there may be a fast-acting automatic gain control that can 

provide nonlinear compression in the main part of the first pass band (the tip of the filter), while 

leaving the gain in the low-frequency portion of the filter (the tail) unaffected. They suggested 

that this nonlinear compression could both cause fluctuations in the auditory system output for a 

low-frequency sinusoid with constant amplitude and reduce the fluctuations in an AM-FM 

modulated tone. They emphasized that this nonlinearity should be incorporated to understand the 

complexity of the auditory system.    

Boashash and White proposed a method to estimate instantaneous frequency and to 

design an automatic time-varying filter for non-stationary signals [20]. Their purpose was to 

reduce noise. The automatic time-varying filter was based on two-dimensional windowing in the 

time-frequency plane around the estimated instantaneous frequency of the signal, followed by 

signal synthesis using the Wigner-Ville distribution. The instantaneous frequency of the input 

signal was estimated by peak magnitude estimation in the short time Fourier transform, and the 

two-dimensional time-varying windows were designed from the instantaneous frequency and 

bandwidth. The two-dimensional window was applied to the Wigner-Ville distribution of the 

input signal, and the output signal was reconstructed from the synthesized Wigner-Ville 

distribution. The choice of the estimation algorithm for instantaneous frequency determined the 
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performance of the method. The instantaneous frequency estimation and time-varying filtering 

were evaluated by applying them to an FM signal with additive noise. The major disadvantages, 

however, were that the performance of the proposed method depended on the estimation quality 

of instantaneous frequency and bandwidth.  

Francos and Porat suggested a new approach to the design of time-frequency filter banks 

for non-stationary noisy signals [21]. Multi-component signals were represented by the minimum 

cross entropy time-frequency distribution, and time-varying filters were applied to the 

distribution. Each filter processed one component of the signal according to its specific time-

frequency support. The outputs of the time-frequency filters were a set of signal components. 

Their estimation of instantaneous frequency and design of time-varying filters were described as 

follows. First, they located the peak energy of the minimum cross entropy time-frequency 

distribution followed by the estimation of time support of the ridge containing the peak energy in 

the time-frequency plane. They estimated the instantaneous frequency of the located component 

by a least-square-fit method, and the phase information was estimated from the instantaneous 

frequency by integration. They de-chirped the multi-component signal by the estimated phase 

information. As a result, the located component was translated to the low frequency region of the 

spectrum. They isolated this component by a lowpass filter and estimated its amplitude 

information. They designed the time-varying filters from the estimated instantaneous frequency 

and bandwidth information and then repeated the above procedures until all components were 

processed. They used a synthetic example with white Gaussian noise to illustrate their algorithm. 

One advantage of their algorithm was that it could identify multi-component signals. However, 

their algorithm still largely depended on the estimation quality of instantaneous frequency and 

bandwidth. 

14 



 

Nie, Stickney, and Zeng proposed a method to extract slowly varying amplitude and 

frequency modulations from speech signals for cochlear implants [22]. A speech sound was 

divided into fixed sub-bands by a bank of bandpass filters. The amplitude modulations were 

extracted by full-wave rectifications of the sub-band signals, followed by a lowpass filter. A pair 

of orthogonal sinusoidal signals at the center frequencies of the sub-bands was used to remove 

the center frequencies from the sub-band signals, and then the instantaneous frequencies 

(frequency modulations) were calculated from the in-phase and out-of-phase signals. They 

pointed out possible inaccurate modulation extractions due to the specific setting of band number 

and center frequency.  They recognized the importance of frequency modulation and suggested 

to use both amplitude and frequency modulations in order to improve performance of the 

cochlear implant for noisy speech. They encoded the amplitude and frequency modulations in a 

limited number of frequency bands to generate synthetic sounds, and the intelligibility of these 

synthetic sounds was compared to synthetic sounds generated by amplitude modulation only. 

They conducted psychoacoustic tests with normal hearing listeners and showed improvement in 

recognition scores when both amplitude and frequency modulations were encoded. They 

concluded that frequency modulation cues were critical for speech recognition in noise and 

suggested their use in cochlear implants. 

The decomposition proposed in this thesis is intended to produce a “quasi-steady-state” 

component and a “transition” component. The latter may provide important cues for speech 

perception [23], [24], [25], [26]. Rao and Kumaresan [18] did not model speech as a sum of AM 

and FM components. They extracted waveforms for dominant spectral energies (formants) and 

calculated AM and FM for these waveforms. Specifically, they captured the positive modulations 

of slowly-varying and dominant energy components on speech with finer time-localized details 
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of the signal. One advantage of their algorithm is that they provided intuitively reasonable 

estimates of the AM and FM of the tracked formant. Their estimates of modulations always 

guaranteed positive AM and FM, and unlike conventional AM and FM decomposition methods, 

the bandwidths of their estimated modulations did not exceed the bandwidths of the original 

bandlimited speech when the modulations of bandlimited speech were estimated. 

Rao and Kumaresan’s algorithm does not require the assumption of a constant filter 

center frequency, as does the method suggested by Quatieri et al. [18]. For a signal with a 

stationary spectrum (e.g. tone), a fixed bank of bandpass filters may be enough to extract smooth 

modulations. For non-stationary signals (e.g. speech), bandpass filters, such as Rao and 

Kumaresan adopted, whose center frequencies are slowly-varying with time to be centered 

roughly at dominant spectral content may be required to extract the modulations of slowly-

varying components. In this study, Rao and Kumaresan’s algorithm will be used to identify AM 

and FM information of “quasi-steady-state” formant components from speech signals. Details of 

their algorithm are described in Chapter 3. A time-varying tracking filter is developed from the 

AM and FM information of the formant.  

 
 
2.2.5 Basis for Tracking Filter Bandwidth 

 
Li et al. suggested a perceptual time-frequency algorithm for noise reduction in hearing 

aids [27]. Their approach provides the basis for the bandwidth of the tracking filters developed in 

this thesis. They emphasized that existing hearing aids provide little improvement in 

intelligibility of the signal when background noise is present. This paper presented an integrated 

approach to the design of a digital hearing aid, based on a wavelet transform, as well as the 

formation of a temporal and spectral psychoacoustic model of masking. With this model, a 
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perceptual time-frequency subtraction algorithm was developed to simulate the masking 

phenomenon and reduce noise in a single input system. A reference noise signal was estimated 

during quiet periods, and this noise information was used to calculate a weighting function that 

was computed according to the (signal+noise)-to-noise ratio in each critical band (auditory 

filter). This weighting function was used to suppress the wavelet coefficients. The weighting 

function had three different regions: noise masking region in which noise power was strong 

enough to make the speech inaudible; signal-noise region in which both noise and speech were 

audible; signal masking region in which the speech was so strong that the noise was inaudible. In 

the noise masking region, the weighting function was set to zero to minimize the noise signal. 

The weighting function had a maximum value to pass as much speech as possible in the signal 

masking region. In the signal-noise region, the weighting function was increased with increasing 

speech power. The characteristics of the weighting function for the perceptual time-frequency 

subtraction algorithm are illustrated in Figure 1. For comparison purposes, the transfer function 

of conventional spectral subtraction, in which the estimated filter is based on the SNR in each 

frequency band, is also illustrated. Results showed that the use of the perceptual time-frequency 

subtraction algorithm yielded an improvement in speech quality (increasing noise reduction 

gain), especially in unvoiced portions. Additionally, the noise component during periods of 

silence was attenuated significantly.           

In the formant-tracking algorithm developed here, the weighting function developed by 

Li et al. will be used to define the bandwidth of the tracking filters. In general, the steady-state 

portions of formants contain higher energy and the transients contain lower energy. The higher 

energy is expected to involve more harmonics and to be distributed over broader frequency 

bands. The bandwidth of the time-varying filter was adjusted, based on the energy of the formant 
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component, to change with time as the formant energy changes with time, so that the filter would 

pass most of the high formant energy but reject most of the lower energy portion during 

transitions. 

 
Figure 1: Weighting function to applied perceptual time-frequency algorithm showing the 

comparison with conventional spectral subtraction. From Li et al. [27]. 

 
 

2.3 PSYCHOACOUSTIC TESTS 

 
A psychoacoustic test is an evaluation of auditory perception through audiometric 

measures requiring voluntary responses from a subject [2], [28], [29]. In general, stimulus 

sounds are delivered to human ears, and the behavioral responses elicited by these sounds are 

measured. The stimulus sounds can be controlled by changing their physical parameters (e.g. 

intensities, SNRs, etc.). If one-to-one relations between the physical parameters and perception 

differences exist, the perception characteristics can be quantified by the attributes of the physical 
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parameters of the stimulus sounds. The purpose of psychoacoustics is to find relations between 

the physical parameters and perception differences by well designed experiments. Procedures 

used in this project to evaluate intelligibility of speech, based on [1], [30], [31], and [32], are 

reviewed in this section. 

 

2.3.1 Intelligibility Test 

 
In order to quantify speech intelligibility, tests based on psychoacoustics are often 

conducted. Subjects listen to the test words (stimuli) and respond to them. The responses are 

recorded by the experimenter. Specifically, the subject may write down or speak the words that 

are heard or choose the closest match from two or more alternatives. The experimenter can 

control physical parameters of the test words and record how recognition changes due to the 

parameter changes. For example, the experimenter may vary the intensity of stimulus sounds 

while asking the subject to identify words that the subject heard and measure the ratio of correct 

responses as a function of intensity levels. From these results, a psychometric function that 

shows the percentage of correct responses for different intensities of a stimulus sound can be 

calculated to establish the relation between intensity levels and intelligibility [1]. The difficulty 

with intelligibility tests is that the responses are affected by subjects’ attentiveness and hearing 

sensitivity, and test results may vary significantly from subject to subject and from task to task.  

The test words can be recorded from one or multiple speakers and presented in quiet or 

with background noise. Different voice characteristics may cause different results in 

intelligibility tests. The ability to discriminate speech sounds varies in subjects, and the selection 

of subject groups depends on the purposes of the experiments. 
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In intelligibility tests, the number of test words that are correctly recognized by a subject 

is counted and scored as a percent of correct responses. Mono-syllable consonant-vowel-

consonant words can be used in the test [30]. The subject is asked to speak the words that are 

heard, and the test scores are based on the number of words correctly identified by the subject. 

The test words can be presented at several intensity levels. A drawback of this test is that direct 

comparisons of the test scores obtained at different times or different laboratories are difficult 

because the test scores can gradually increase with repeated testing due to learning. This 

intelligibility test was used to compare speech intelligibility between original, highpass filtered, 

tonal, and non-tonal components obtained in this project.       

 

2.3.2 Rhyme Test 

         
Another approach to speech intelligibility testing is the rhyme test. The original rhyme 

test is a five-alternative closed response test in which the subject is given five word choices in a 

multiple choice format, and the subject selects one word that most closely matches the word 

heard [33]. The test was designed to compare performances with different noise canceling 

microphones. The advantage of this test is that it provides a direct quantitative measure of the 

intelligibility of a message spoken over any system and requires minimal training of the listeners. 

In addition, the test stimuli can be repeatedly used with the same listeners with minimal learning 

effects. Stimulus words are chosen from 250 common mono-syllable words, consisting of 50 sets 

of five rhyming words. One stimulus word is drawn from each set to form a 50-word test. The 

rhyming words within a set have a single discriminative feature in the initial consonant (e.g. hot-

got-not-pot-lot). Test words can be presented in a quiet background or with background noise. A 

response sheet shows the 50 sets of rhyming words in order of presentation, and the subject is 
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asked to mark the words that are heard on the answer sheet. The test scores are calculated from 

the fraction of the number of words correctly identified.  

The modified rhyme test was designed to quantify the performance of voice 

communication systems to transmit intelligible speech [31]. The test format is similar to the 

rhyme test described above. The major differences between the two tests are that six alternative 

words are used instead of five and the test words within sets vary with phonemic elements in 

word-initial as well as word-final position. Three hundred mono-syllable words are used for test 

words. This vocabulary consists of 50 sets of six rhyming words each. Twenty five sets differ in 

the initial word positions, and twenty five sets differ in the final word positions. The attractive 

feature of this test is the high degree of phonemic balance between the rhyming words, 

permitting accurate repeated tests. The subject is provided with a response sheet showing the 50 

sets of rhyming words in order of presentation. The subject is instructed to mark the word that is 

heard on the response sheet. The stimulus words are mixed with speech-weighted noise (six 

different signal-to-noise ratios) before presentation to the subject. The correct and incorrect 

responses are calculated for each signal-to-noise ratio.  

A modification of this word-monitoring task was recently proposed in an effort to 

improve speech recognition testing sensitivity by incorporating response time measures [32]. The 

basic idea is that response time can be a supplementary measure to the correct word score. At the 

beginning of each trial, the target word appears on a computer monitor and remains until all six 

alternative words are presented. The subjects are instructed to push a button as soon as they hear 

the target word displayed on the computer monitor. The subjects do not have a second chance to 

hear the test words. The response time is measured from the end of word presentation to the 

moment when the subject pushes the button. The test words were presented with speech-
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weighted noises at six different signal-to-noise ratios, and correct scores and response times were 

estimated for each signal-to-noise ratio. The test results showed that response time measures 

were less sensitive to these different signal-to-noise ratios than were correct word scores. These 

six different signal-to-noise ratios, however, were selected to show the greatest changes of 

recognition scores to different signal-to-noise ratios. That is, these six different signal-to-noise 

ratios were not selected to emphasize the sensitivity of response times to different signal-to-noise 

ratios). If new signal-to-noise ratios were selected to yield similar recognition scores specifically 

for the response time experiments, the sensitivity of response times to these new signal-to-noise 

ratios may be increased. In this study, the word-monitoring task is used to compare speech 

intelligibility between original and enhanced speech processed by proposed algorithm.    
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3.0 DECOMPOSITION ALGORITHM 

 
The goal of this study is to decompose speech into tonal and non-tonal components by a 

bank of time-varying filters and to investigate the intelligibility and energy of the resulting tonal 

and non-tonal components. The algorithm to be used is described in this chapter. Software 

modifications for fast computation are also described. 

 

3.1 CONCEPT OF REMOVING FORMANT ENERGY 

 
We assume that a speech signal is a superposition of tonal and non-tonal components as 

x(t) = xton(t) + xnton(t)          (3.1) 

where x(t), xton(t), and xnton(t) are original, tonal, and non-tonal components of a speech signal, 

respectively. The estimate of the tonal component is based on the proposed time-varying filters, 

with center frequencies and bandwidths controlled by the speech signal formants.     

We apply three time-varying filters to track the three largest formants. The tracking of 

formants is implemented using a bank of all-zero filters (AZFs) and dynamic tracking filters 

(DTFs), in which the center frequency of each of the DTFs tracks a formant of the speech [18]. 

The FM information of the tracked formants, estimated by linear prediction in the spectral 

domain, is used to determine the center frequencies of the time-varying filters and to update the 

pole and zero locations of the AZFs and DTFs. The bandwidths of the time-varying filters are 

based on the AM information of the tracked formants obtained from the outputs of the DTFs.    

23 



 

The output of each time-varying filter is considered to be an estimate of one of the 

formants, and the sum of the outputs of the filters estimates the tonal component of the speech. 

The non-tonal component of the speech signal is estimated by subtracting the tonal component 

from the original speech signal.  

A block diagram of the speech decomposition algorithm, illustrated using two time-

varying filters, is shown in Figure 2. The input speech signal is filtered by an AZF and a DTF, 

and then the FM information (formant frequency) of the output of the DTF is estimated. The 

estimated formant frequency for the particular formant is used to specify the pole location of the 

DTF, and the estimated formant frequency from the other filter bank is used to specify the zero 

location of the AZF. As a result, the AZF suppresses the formant tracked by the other channel so 

that the DTF follows only one formant of the input speech signal.    

The DTF is realized by a difference equation 

)()1()1()( )(2 nsrnserns Ip
nfj

p −+−= π           (3.2) 

where sI(n) is the input signal, s(n) is the output of the DTF, and f(n) is the estimated frequency 

of s(n) [18]. Given a bandwidth of B Hz, the radius of the DTF’s single pole, rp, can be computed 

as )/exp( sp fBr π−= , where fs represents the sampling frequency. 

The description of tracking for multiple formants proceeds as follows. Assume there are 

L formants in a speech signal, and fl(n) (l=1,2,…,L) represent the individual formants that are to 

be tracked. To reduce effects of strong neighboring formants, an AZF is applied before the DTF. 

The zeros of the AZF are adjusted so that a particular DTF effectively filters only one formant. 

For example, to track the kth formant with frequency trajectory fk(n), the zeros of kth AZF are 

located at fl(n)s (l=1,2,…,L, l k), using frequency information from the other channels. The 

center frequency information of the DTFs tracking f

≠

l(n)s (l=1,2,…,L, l≠ k) are used to determine 
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the zero locations of the kth AZF. Thus, the kth AZF’s output will have only components 

consisting of the kth formant, and the following kth DTF will track this formant.  

 

Figure 2: Block diagrams of speech decompositions 
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The transfer function of the AZF of the kth tracker is 
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and rz is the radius of the AZF’s zeroes. The transfer function of the DTF tracking fk(n) is  

1)(21
1
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−
=

zer
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znH nfj
p

p
DK kπ           (3.5) 

where rp is as given in Eq. 3.2. 

 

3.2 TRACKING FILTERS 

 
The previous section described the concept of tracking formants using an adaptive filter 

bank. Each formant of the speech signal is tracked by a combination of an AZF and a DTF. The 

estimation of envelope (AM) and instantaneous frequency (FM) information from the output of 

the DTF is described in this section. The method to estimate center frequency and bandwidth of 

the time-varying filter is presented in Section 3.3. 

One method for speech decomposition into AM and FM is to model each individual 

harmonic component by an AM and an FM component. The AM and FM information can be 

estimated from the outputs of several narrow filters. The advantage of this approach is that it 

provides a large number of smooth modulations. The development presented here follows Rao 

and Kumaresan [18]. 
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A minimum phase signal can be defined as an analytic signal whose log-envelope and 

phase angle are related by the Hilbert transform. The significance of the minimum phase signal is 

that all zeros are located inside the unit circle. Hence the minimum phase signal can be 

completely characterized by its envelope. An analytic signal can be an all-phase signal if its 

envelope is constant (pure phase signal). The significance of the all-phase signal is that it has a 

one-sided spectrum and a positive definite instantaneous frequency. 

We assume that s(t) is an analytic signal generated from a real finite speech signal by 

Hilbert transform and filtered by a bank of complex  filters. sk(t) is the output of the kth filter, 

with a finite bandwidth, B. It is periodic with period T  = 1 /B sec, and the fundamental angular 

frequency of sk(t) can be denoted by Ω = 2π / T. Because the spectrum of sk(t) is concentrated 

around the center frequency of the kth bandpass filter, sk(t) can be modeled as a polynomial of 

sufficiently large degree M in the complex variable  tje Ω

sk(t) =           (3.6) ∑
=

Ω
M

k

tjk
k

tj eae t

0

ω

where  are the complex amplitudes of the sinusoids, ka tω  is the nominal carrier frequency of the 

signal, and  represents a frequency translation. We may consider that a polynomial of degree 

M in the complex variable  represents the complex envelope of the signal s

tj te ω

tje Ω
k(t), and this 

polynomial can be factored into M=P+Q factors, where P and Q are the number of roots inside 

and outside the unit circle, respectively. Then, 
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where  represent the polynomial’s roots inside the unit circle and  

represent the polynomial’s roots outside the unit circle:  

Pppp ,...,, 21 Qqqq ,...,, 21

ij
ii epp θ= and ij

ii eqq φ= . These 

roots are referred as the complex zeros of the signal sk(t).   

Alternatively Eq. (3.7) can be expressed by grouping the zeros so that the signal can be 

factored into a minimum phase part that has only envelope information and an all-phase part that 

has only phase information. The zeros outside the unit circle ( ) can be reflected to inside the 

unit circle ( ) and then canceled by poles at . Therefore, the minimum phase part of the 

signal is expressed by all the zeros inside the unit circle, and the all-phase part of the signal is 

expressed by the zeros outside the circle and the poles reflected to inside the unit circle, as  
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                                   --------------------------------  ------------------ 

                                        minimum phase part        all-phase part 

 

Each factor corresponding to a zero or pole in Eq. (3.8) is referred to as an elementary 

signal. By expressing the elementary signals as an infinite series, sk(t) can be represented as a 

product of a minimum phase signal and an all-phase signal as, 

))(~2())(~)(~()()()( ttjttjtt
ck

ceeAts βωβαβα −+++=           (3.9) 

                                       -----------------------  ------------ 

                                    minimum phase part  all-phase part 
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where cω  is the fundamental frequency (Ω ) multiplied by Q plus the arbitrary frequency 

translation tω , , the modulation functions of s)(
10 i

Q

ic qaA −Π=
=

k(t) are given by  
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and “α~ ” represents the Hilbert transform of α . Eq. (3.9) describes the Hilbert transform 

relationship between the log-envelope and phase of the minimum-phase signal. The derivative of 

the phase function of the all-phase signal is always positive and greater than cω , in contrast to 

the derivative of the sk(t) can have negative values [34]. The AM (envelope) and the FM 

(positive instantaneous frequency) can be estimated from the separated minimum and all-phase 

parts of the signal. The first and second exponents in Eq. (3.9) represent minimum and all-phase 

parts of the analytic signal, respectively. That is, any analytic signal can be represented as a 

product of two parts; a minimum phase part and an all-phase part (with a positive instantaneous 

frequency).        

  To separate the minimum and all-phase parts, the sk(t) are represented by an all-pole 

signal model as 

)(
)(

)(
th
te

ts
k

k
k =           (3.12) 

where the error signal, e(t), has a constant (unity) envelope,  with order H 

and 

∑
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Ω+=
H
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tjn
nkk ehth

1

1)(

T/2π=Ω .  The decomposition is performed by minimizing the energy of the error signal. 
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This minimization is accomplished by adjusting the shape of hk(t) by choosing appropriate 

coefficients . hnkh k(t) can be thought of as an output waveform of shape adjustment.  

This procedure is similar to the autocorrelation method of linear prediction in terms of 

flattening the envelope of the input spectrum by error minimization. The major difference 

between autocorrelation and this procedure is that, in this case, linear prediction is performed on 

the Fourier coefficients of the signal sk(t), instead of the signal samples.  

The minimization of the energy of the error signal results in hk(t) being a minimum phase 

signal whose zeros are inside the unit circle. Since the minimization of the error signal results in 

an approximation to sk(t)’s envelope, hk(t) will be an inverse approximation to the minimum 

phase part of sk(t) as 

))(~)(~())()(()( ttjtt
k eeth βαβα +−+−≈           (3.13) 

for sufficiently large H. 

The residual signal, ek(t), will be an approximation to the all-phase part of sk(t)    

))(~2()( ttj
k

cAete βω −≈           (3.14). 

The FM information, )(~2 tc βω &− , can be found as the instantaneous frequency of the error 

signal, ek(t), which can be computed from the phase difference between neighboring samples. 

This decomposition procedure, illustrated by the block diagram in Figure 3, is called linear 

prediction in the spectral domain.  

In this section, we described the characteristics of the minimum and all-phase parts of an 

analytic signal. Linear prediction in the spectral domain, which separates the minimum and all-

phase components from an analytic signal, was also described. Each formant of speech can be 

tracked by the combination of an AZF and a DTF, and the FM (positive instantaneous frequency) 
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and AM (envelope) information can be estimated from the tracked formant. The output of each 

DTF is decomposed into minimum phase and all-phase parts by linear prediction in the spectral 

domain, and a unique FM and AM information are estimated from the all-phase and minimum 

phase parts, respectively. The AM and FM information is used to determine the bandwidths and 

center frequencies of a bank of time-varying bandpass filters to identify the tonal component of 

speech. 

 

Figure 3: Block diagram of the linear prediction in the spectral domain algorithm. 1/hk(t) is the 

decomposed minimum phase part and ek(t) is the decomposed all-phase part. Note that the 

instantaneous frequency of ek(t) is positive. From Rao and Kumaresan [18]. 

 
 
 

3.3 DECOMPOSITION DETAILS 

 
Each time-varying bandpass filter in this bank is a FIR filter with 150 coefficients to 

provide high frequency resolution between pass and stop bands. The FM information of each 
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formant (output of DTF) is used as the center frequency of one of the time-varying bandpass 

filters. Thus, each time-varying bandpass filter will follow the trajectory of one formant of the 

speech signal.  

The bandwidths of the time-varying bandpass filters are determined by the envelope 

energy of each tracked formant (output of DTF). We assumed that as energy of a formant 

increases, its bandwidth increases. The basic idea is that the bandwidth of a time-varying 

bandpass filter following a particular formant should depend on the energy of that formant and 

should change with time as the energy of the formant changes with time. The concept of 

bandwidth estimation was developed from the weighting function of Li et al. [27]. The 

decomposition is intended to remove as much of the dominant quasi-steady-state formant energy 

from the original speech signal as possible, while maintaining reasonable intelligibility in the 

remaining speech signal. That is, the energy of the tonal component is maximized, while keeping 

reasonable intelligibility in the non-tonal component. Therefore, if the formant has large energy 

at a particular time, the time-varying bandpass filter is designed to have a wide bandwidth to 

successfully pass the wide spread of formant energy. On the contrary, if the formant has small 

energy at a particular time, the speech is assumed to have significant transient (non-tonal) 

energy, and the time-varying bandpass filter has a narrow bandwidth to pass only the formant 

energy. 

A maximum bandwidth (B) for the time-varying bandpass filters is selected, and then a 

function MBW(t) for the bandwidth is computed according to the signal-to-noise ratio (SNR) of 

the tracked formant-energy-to-reference-noise energy. The reference noise is recorded from quiet 

intervals in the utterance. The SNR is defined as 

2/12 ])([
)(

tnE
ts

SNR e=           (3.15) 

32 



 

where n(t) is the reference noise signal, and se(t) is the formant envelope (envelope of each 

DTF’s output), estimated as described in Section 3.2. The MBW(t) is computed as 

                                        MBW(t) = 0    for SNR ≤  α  

MBW(t) = 
SNR
α

−1     for SNR > α            (3.16) 

whereα  is the bandwidth threshold. The time-varying bandwidth BW(t) is computed as 

)()( tMBWBtBW ×=           (3.17). 

The time-varying bandwidths are calculated by the relations between reference noise and 

formant strengths. That is, the characteristics of the time-varying bandwidths can be described by 

the SNR of the speech formant energy to the reference noise energy.  

The relation of bandwidth to SNR in this approach is illustrated in Figure 4. The SNR is 

measured by computing an SNR for each short time frame (10 msec.), and the bandwidth is 

calculated from Eq. (3.17). The bandwidth is set to zero unless the energy in the tracked 

envelope exceeds the bandwidth threshold. The MBW(t) increases to 1 as SNR increases above 

the threshold. Zero bandwidth corresponds to the time-varying bandpass filter being “off”, and 

we refer to the filter as being closed. Once SNR exceeds the bandwidth threshold, the bandwidth 

is increased with increasing SNR, approaching B asymptotically. When the bandwidth is non-

zero, we refer to the filter as being open. If the energy in the envelope being tracked is large, the 

time-varying bandpass filter has a wide bandwidth. On the contrary, if the envelope energy is 

small, the filter has a narrow bandwidth.  
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Figure 4: Relation of bandwidth of time-varying bandpass filter to SNR. Based on Li et al. [27]. 

(see section 2.2.5) 

 
 

Each time-varying bandpass filter depends on two parameters: the maximum bandwidth 

(B) and a bandwidth threshold (α) at which the filter is activated. The selection of these 

parameters is important in the decomposition algorithm. The maximum bandwidth should be 

large enough to capture most of the energy in the spectral band being tracked but small enough 

to be restricted to a single band. The activation threshold is based on the ratio of speech to 

reference noise power in a spectral band. It should be low enough to assure that the filter is 

active during a sustained sound and high enough to not be active during speech transitions or 

noise. We examined several maximum bandwidths and bandwidth thresholds for several words, 

and picked the values 900 Hz for maximum bandwidth and 15 dB for bandwidth threshold as the 

best tradeoff. The data on which these decisions were based are presented in section 4.3. 
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The algorithm as described assumes that filter parameters are updated at every sample. 

The tonal component is dominated by slow-varying formants or “quasi-steady-state” components 

of speech, and the estimated formant frequency and envelope tend to slowly change with time. A 

method to improve computation efficiency for tonal estimation is to block speech samples for 

short time intervals and estimate the formant information by linear prediction in the spectral 

domain for the first sample in the block. Then, if the formant information does not change within 

the block, those speech samples within the block have the same formant information. If blocks 

are small enough for this assumption to be valid, the blocking method provides significant 

improvement in computation efficiency without affecting the tonal component estimation. 

Results with different blocking sizes to test this approach are presented in section 3.6.   

 

3.4 ILLUSTRATION 

 
A simple synthetic signal was analyzed to illustrate how the proposed time-varying 

bandpass filter is formed and how the decomposition algorithm can extract transitional 

information. The synthetic signal was synthesized at 11.025 kHz and the duration was 127 msec. 

The signal consisted of three tones with frequencies of 1.5 kHz, 2.8 kHz, and 4.0 kHz and equal 

amplitudes. The duration of each tone was 53 msec, with linear onset and offset of 7 msec. The 

synthetic signal was chosen because these three tones and onsets and offsets are similar to the 

vowel sounds of a simple speech signal. 

The number of DTFs in the filter bank was set to 3 to match the number of tones. A white 

Gaussian waveform was generated and only used as a reference noise signal for SNR calculation. 

The reference noise signal was not added to the original synthetic signal. The amplitude of the 

reference noise signal was adjusted so that the SNRs during onsets and offsets changed from 0 to 
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23 dB. The maximum bandwidth was set to 900 Hz and bandwidth threshold was set to 15 dB 

SNR. 

If the decomposition algorithm is working properly, the tonal component should contain 

most of the energy of the three tones of the synthetic signal. The non-tonal component should be 

dominated by onsets and offsets of the tones and contain little energy. 

The waveform, spectra, and spectrogram of the synthetic signal are shown in Figure 5. 

The spectrogram was calculated to describe the time-varying characteristics of the components. 

The spectrograms were obtained as follows. First, the signal was windowed with a Hanning 

window with length of 1/10 of the signal, and the spectrum of the windowed signal was 

estimated by a fast Fourier transform. The estimated spectrum formed one time section of the 

spectrogram. The window was translated 1 msec and then the above processing was repeated 

until the sliding window covered the entire synthetic signal. The time-varying characteristics and 

frequency content of the synthetic signal are effectively described in this spectral plot. 

As described in Section 3.1 and 3.2, each tonal component (formant) was tracked by the 

bank of AZF and DTF, and then FM and AM information of the tracked components was 

estimated using linear prediction in the spectral domain algorithm. The FM information provided 

the center frequencies of the time-varying bandpass filters, and the AM information was used to 

estimate of the bandwidths of the time-varying filters. Figure 6 shows the FM and AM 

information of the tracked components. The solid, dashed, and dotted lines are associated with 

the 1st, 2nd, and 3rd time-varying bandpass filters, respectively. As shown in the figures, both 

FM and AM information properly represent the tonal characteristics of the synthetic signal. The 

FM information from 0 to 0.030 seconds and 0.097 to 0.127 seconds shows the FM estimation 

during silent parts. 
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Figure 5: Synthetic signal used to illustrate the algorithm: (a) waveform, (b) amplitude spectrum, 

and (c) spectrogram  
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The bandwidths of the time-varying bandpass filters were adjusted following Eq. (3.16) 

using the SNR values. The SNRs and time-varying bandwidths of each bandpass filter are shown 

in Figure 7, (a1-3) and (b1-3). The number represents the first, second, and third time-varying 

bandpass filter, respectively. Each bandwidth is estimated based on the envelope amplitude over 

a frequency band of the time-varying bandpass filter. When a tonal component is strong, the 

filter tracking that tonal component has a wide bandwidth, and when the tonal component is 

weak, the filter has a narrow bandwidth. As illustrated in the figures, the time-varying 

bandwidths appropriately follow the change of SNRs. 

The upper and lower edges of bandwidths of each time-varying bandpass filter are shown 

in Figure 8 (a). The solid, dashed, and dotted lines are associated with the first, second, and third 

time-varying bandpass filters, respectively. Each upper and lower edge of bandwidth was 

calculated for each tracked tonal frequency, estimated from the DTF’s output by linear prediction 

in the spectral domain algorithm. Edges were plotted at plus/minus one-half of the estimated 

time-varying bandwidth. These upper and lower edges of bandwidths of each time-varying 

bandpass filter are superimposed on the spectrogram of the original speech in Figure 8 (b). The 

bandwidths are zero during silent parts of the synthetic signal and gradually opened and closed 

by increases and decreases in signal energy during onsets and offsets (transitions). The 

bandwidths are opened enough to pass all tonal components during “quasi-steady-state” parts. 

Figure 9 shows the frequency responses of AZF, DTF, and time-varying bandpass filter 

at a particular moment (0.06 sec. - “quasi-steady-state” part). Note that these plots represent only 

the one channel that tracks the 1st tone. The AZF suppresses the frequency of adjacent 2nd and 

3rd tones, and the center frequency of the DTF is located at the frequency of the 1st tone that the 

DTF tracks. The center frequency of the time-varying bandpass filter is exactly located at the 
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frequency of the 1st tone, and the bandwidth is opened enough to pass “quasi-steady-state” 

energy of the tone.       
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Figure 6: (a) estimated FMs (center frequencies of time-varying bandpass filters) and (b) AMs 

for a synthetic signal. The solid, dashed, and dotted lines are associated with the 1st, 2nd, and 3rd 

time-varying bandpass filters, respectively. The bar in (a) indicates the silent part. 
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Figure 7: SNRs and time-varying bandwidths of each time-varying bandpass filter for a synthetic 

signal : (a1-3) SNRs, (b1-3) time-varying bandwidths.  
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Figure 8: (a) upper and lower edges of time-varying bandwidths and (b) upper and lower edges 

of bandwidth superimposed on the spectrogram of the original speech. Solid, dashed, and dotted 

lines are associated with 1st, 2nd, and 3rd time-varying bandpass filters, respectively.  
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Figure 10 shows the individual outputs of each time-varying bandpass filter. As expected, 

each filter output includes only the “quasi-steady-state” part of one tone and effectively excludes 

onset and offset parts (transitions). The waveform, spectra, and spectrogram of the estimated 

tonal component of the synthetic signal are shown in Figure 11. The steady-state parts of the 

three tones are effectively passed through the time- varying bandpass filters, and the sum of these 

filter outputs comprise the tonal component. 

The difference between original and tonal components is the non-tonal component. The 

waveform, spectra, and spectrogram of the estimated non-tonal component of the synthetic signal 

are shown in Figure 12. The onsets and offsets (transitional components) are appropriately 

filtered out by the time-varying bandpass filters and shown as the non-tonal component. The 

tonal and non-tonal components contain 96% and 4% of the total energy of the synthetic signal, 

respectively. 

The results obtained with the synthetic signal demonstrate that the proposed algorithm is 

able to identify the onset and offset (transition components) of tones. Results with a more 

complex synthetic signal are given in next section. 
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Figure 9: Frequency responses of (a) AZF (b) DTF, and (c) time-varying bandpass filter at 0.06 

sec. (“quasi-steady-state” part). Note that these plots represent only the channel that tracks the 

first tone. 

43 



 

0 0.02 0.04 0.06 0.08 0.1 0.12
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
(a)

am
pl

itu
de

0 0.02 0.04 0.06 0.08 0.1 0.12
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
(b)

am
pl

itu
de

0 0.02 0.04 0.06 0.08 0.1 0.12
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
(c)

am
pl

itu
de

time (sec)

 

Figure 10: Individual output of each time-varying bandpass filter for a synthetic signal: (a) 1st 

bandpass filter, (b) 2nd bandpass filter, and (c) 3rd bandpass filter   
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Figure 11: The tonal component of the synthetic signal: (a) waveform, (b) spectra, and (c) 

spectrogram 
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Figure 12: The non-tonal component of the synthetic signal: (a) waveform, (b) spectra, and (c) 

spectrogram  
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3.5 FILTER CHARACTERISTICS 

 
The decomposition method used filters with time-varying parameters.  Characterizing the 

filter characteristics is important in describing the decomposition.  In this study, the 

characteristics of the time-varying filters are described by analyzing their response to synthetic 

chirp signals, known signals with controlled frequency transitions. The chirp rate (Hz/msec) of 

the synthetic signal was changed by varying either the duration or the frequency change of the 

chirp.  Since the effects of chirp duration and frequency change were not known, both 

approaches were investigated.  

The synthetic chirp signals were intended to represent frequency transitions observed in 

speech. The time-varying filters should track low chirp rates, so that the chirp portion of the 

signal is included in the tonal component.  The filters should not track high chirp rates, which 

will be included in the non-tonal component.  The purpose of experiments with chirps with 

varying rates was to determine what rate of frequency transition the filter could follow and how 

sharply the filters separated tonal and non-tonal components.  This study also verified that chirp 

rate is an appropriate parameter to characterize filter performance. 

 

3.5.1 Synthetic Chirp Signal 

 
The synthetic chirp signal, with structure shown in Figure 13, was sampled at 11025 Hz. 

The duration was 180 msec. It consisted of three tones (frequencies at F1, F2, and F3), followed 

by three positive chirps, and then followed by three tones (frequencies at F4, F5, and F6). The 

duration of each tone+chirp+tone was 140 msec, and each onset and offset was 7 msec.    
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Figure 13: Structure of the synthetic chirp signal  

 

The chirp rate (Hz/msec) of the synthetic signal was changed by varying either the 

frequency change in the chirp (e.g. fixed chirp duration with different frequency transitions in the 

chirp) or the chirp duration (e.g. fixed frequency transition in the chirp with different chirp 

durations).  The chirp rates were varied from 24 to 133 Hz/msec.   

For the fixed chirp duration with different frequency transitions, the chirp duration was 

20 msec and the frequency transitions were varied to produce chirp rates from 24 to 133 

Hz/msec. 

When the chirp duration was varied, the total length of each tone+chirp+tone was fixed at 

140 msec, and the middle of the chirp was always positioned at 90 msec.  Therefore, the length 
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of each tone was varied by the same amount as varying the chirp duration.  For example, if the 

chirp duration was increased by 10 msec, the lengths of the first and last tone were decreased by 

5 msec each. 

For the experiments with a fixed frequency transition, chirp durations varied from 60 to 

11 msec to produce chirp rates from 24 to 133 Hz/msec.  Therefore, the chirp intervals ranged 

from 60-120 msec for 60 msec chirp duration to 84.5-95.5 msec for 11 msec chirp duration.   

Synthetic chirp signals, having seventeen different chirp rates, were decomposed into 

tonal and non-tonal components by the time-varying bandpass filters.  The filter characteristics 

were analyzed by estimating energy of each component in the chirp interval.  The energies of the 

original, tonal, and non-tonal components from 84 to 96 msec were estimated and referred to as 

chirp energies.  The energies of the original, tonal, and non-tonal components from 34 to 46 

msec were estimated and referred to as steady-state energies. These chirp and steady-state 

energies are the energy measurement in a 12 msec window over transition and steady-state 

intervals respectively, and not measurements of the total energy. The chirp and steady-state 

energies of the decomposed components were computed as a fraction of the chirp and steady-

state energies of the original signal. 

We assume that a signal, x(t),  is a superposition of tonal, xton(t), and non-tonal, xnton(t), 

components as described in Eq. 3.1. Then, the energy of the original signal can be written as 

∫∫ ∫∫ ++= dttxtxdttxdttxdttx ntontonntonton )()(2)()()( 222           (3.18). 

That is, the energy of the original signal is the sum of the energy of the tonal and non-tonal 

components as well as a cross-term ∫= dttxtx ntonton )()(2ρ .  If the decomposition is orthogonal, 

the cross-term is zero.  If the tonal and non-tonal components are positively correlated (e.g. 

positive cross-term), the sum of the relative energies of the tonal and non-tonal components is 
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less than the energy of the original signal.  If the tonal and non-tonal components are negatively 

correlated (e.g. negative cross-terms), the sum of the relative energy of the tonal and non-tonal 

components is more than the energy of the original signal.   

 

3.5.2 Analysis Results 

 
Decomposition examples of the synthetic chirp signal are shown in Figures 14 to 16. The 

synthetic signal consisted of three tones, having frequencies of 574 Hz, 1786 Hz, and 2999 kHz 

for 60 msec., followed by three positive chirps, having frequencies increasing from 574 Hz to 

2514 Hz, 1786 Hz to 3726 Hz, and 2999 Hz to 4939 Hz for 20 msec., and followed by three 

tones, having frequencies of 2514 Hz, 3726 Hz, and 4939 Hz for 60 msec.  The chirp rate for this 

signal was 97 Hz/msec. 

The tonal component is expected to contain the “quasi-steady-state” energy of the 

synthetic signal, and the non-tonal component should be dominated by onset and offset parts of 

the tones as well as the chirps between tones. This component should contain relatively little 

energy of the synthetic signal.  The number of DTFs in the filter bank was set to 3 to match the 

number of tones and chirps. The maximum bandwidth was set to 900 Hz and bandwidth 

threshold was set to 15 dB SNR. These values were selected for speech analysis based on the 

results to be presented in section 4.3. 

The original, tonal, and non-tonal waveforms decomposed by time-varying bandpass 

filters are shown in Figure 14, and their corresponding spectrograms are shown in Figure 15. The 

three tones are effectively extracted by the time-varying bandpass filters as the tonal component. 

The transitional components (onsets, offsets, and chirps) are appropriately left in the non-tonal 

component (the difference between the original signal and the tonal component). The tonal and 
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non-tonal components contain 80% and 20% of the energy of the synthetic signal, respectively. 

The time-varying characteristics of the decomposed tonal and non-tonal components are 

illustrated in spectrograms as shown in Figure 15, which demonstrate that tonal and non-tonal 

components clearly separate the tonal and transitional parts of the signal. 

The SNRs and time-varying bandwidths of each bandpass filter are shown in Figure 16, 

(a1-a3) and (b1-b3). The Arabic number represents the first, second, and third time-varying 

bandpass filters, respectively. The dashed lines in (a1-a3) represent the 15 dB bandwidth 

thresholds. The upper and lower edges of bandwidths of each time-varying bandpass filter are 

shown in Figure 16 (c). The solid, dashed, and dotted lines are associated with the first, second, 

and third time-varying bandpass filters, respectively.  

These upper and lower edges of bandwidths of each time-varying bandpass filter are 

superimposed on the spectrogram of the original speech signal in Figure 16 (d).  The bandwidths 

are zero during silent parts of the synthetic signal and gradually increase as signal energy 

increases. The bandwidths are opened enough to pass all “quasi-steady-state” parts but rarely 

opened during chirps. 

The relative chirp energies of tonal components for the fixed frequency transition and the 

fixed chirp duration are summarized in Table 1 and Table 2, respectively. The relative chirp 

energies increase with decreasing chirp rates. These results suggest that the time-varying 

bandpass filters capture more energy when chirps are slowly changing. There are only small 

differences between constant frequency change and constant chirp duration, suggesting that chirp 

rate is the most relevant variable to identify the filter characteristics.  The chirp energies of the 

tonal components increased as chirp rate decreased. Changes in relative chirp energy for the 

51 



 

tonal component using constant frequency change and constant chirp duration (dashed line) are 

plotted together in Figure 17. 
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Figure 14: Waveforms of decomposed synthetic chirp signal: (a) original, (b) tonal, and (c) non-

tonal components 
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Figure 15: Spectrograms of decomposed synthetic chirp signal: (a) original, (b) tonal, and (c) 

non-tonal components 
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Figure 16: SNRs and time-varying bandwidths of each time-varying bandpass filter for a 

synthetic chirp signal: (a) SNRs, (b) time-varying bandwidths, (c) upper and lower edges of 

time-varying bandwidths, and (d) upper and lower edges of time-varying bandwidths plotted 

with spectrogram. The solid, dashed, and dotted lines are associated with the 1st, 2nd, and 3rd 

time-varying bandpass filters, respectively. 
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The chirps can be classified as either tonal or non-tonal components, based on the relative 

chirp energies. If chirps are slowly changing (slower chirp rates), so that the time-varying 

bandpass filters capture relatively larger chirp energy (>50%), these chirps are defined as part of 

the tonal component by the decomposition method. Relative chirp energies are below 50% for 

chirp rates faster than 73 Hz/msec. Based on this classification method, chirps having chirp rates 

slower than 73 Hz/msec are classified as tonal components and chirps with faster rates (above 73 

Hz/msec) are defined as non-tonal components. 

 

 

Table 1: Relative chirp energies of tonal components for the fixed frequency transition in chirp 

and constant chirp duration. Key: Eo: Chirp energy of original synthetic signal, Et: Chirp energy 

of tonal component 

Chirp rate (Hz/msec) Chirp duration 
(msec) for fixed 

frequency transition 
(1460 Hz) in chirp  

Relative chirp energy in tonal 
component for fixed frequency 
transition (1460 Hz) in chirp 

100 x (Et / Eo) 
(%) 

133 11 11 
122 12 12 
112 13 15 
104 14 18 
97 15  26 
86 17 36 
81 18 40 
73 20 47 
63 23 63 
58 25 68 
49 30 79 
42 35 87 
37 40 94 
32 45 99 
29 50 102 
27 55 102 
24 60 103 
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Table 2: Relative chirp energies of tonal components for the fixed chirp duration. Key: Eo: Chirp 

energy of original synthetic signal, Et: Chirp energy of tonal component 

Chirp rate (Hz/msec) Frequency transition 
in chirp (Hz) for 

fixed chirp duration 
(20 msec) 

Relative chirp energy in tonal 
component for fixed chirp 

duration (20 msec) 
100 x (Et / Eo) 

(%) 
133 2660 11 
122 2440 15 
112 2240 17 
104 2080 20 
97 1940  28 
86 1720  37 
81 1620  41 
73 1460  47 
63 1260  61 
58 1160  69 
49 980  87 
42 840  96 
37 740  99 
32 640  104 
29 580  107 
27 540  108 
24 480  108 
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Figure 17: Relative chirp energies of the tonal components for the constant frequency change in 

chirp (solid) and constant chirp duration (dashed) 

 

 

The correlation of the cross-term at different chirp rates was examined.  The sum of the 

relative chirp energy (energy measurement in a 12 msec window over transition chirp interval) of 

the tonal and non-tonal components is illustrated in Figure 18.  The solid and dashed lines are 

associated with the constant frequency change in chirp and constant chirp duration, respectively.  

The components have negative correlations at high chirp rates and positive correlations at 

low chirp rates.  For the highest chirp rate, 133 Hz/msec, the sum of the relative chirp energies of 

the tonal and non-tonal components was 92% for constant frequency change in chirp and 88% 

for constant chirp duration.  For the lowest chirp rate, 24 Hz/msec, the sum of the relative chirp 
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energies of the tonal and non-tonal components was 106% for constant frequency change in 

chirp and 109% for constant chirp duration. The relative energy of the cross-term in the steady-

state energy (energy measurement in a 12 msec window over quasi-steady-state interval) was 

also investigated.  The cross-term energy was less than ± 0.01% (mean : -0.0002 %).  

 

 

Figure 18: Relative energies of cross-terms for the constant frequency change in chirp (solid) and 

constant chirp duration (dashed) 

 

The relative energies of these cross-terms were also investigated for real speech samples.  

Forty three mono-syllable words (twenty three by female speakers and twenty by male speakers) 

and twelve two-syllable words (spoken by a female and by a male speaker) were examined, as 
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described in Section 4.2.  The relative energies of the cross-terms were less than ± 0.5% (mean : 

0.08%) in real speech samples. 

Filter characteristics with three negative chirps instead of the three positive chirps were 

also examined. (Results are summarized in Appendix B.) The structure of the synthetic signal 

was the same as the positive synthetic chirp signal, except that the first three tones and last three 

tones were exchanged with each other and the positive chirps were replaced by negative chirps. 

The same chirp rates were tested, and chirp energy at each chirp rate was estimated. The 

differences between positive and negative chirp energies were less than 3% in total energy, 

showing that the algorithm responds the same to positive and negative chirps. 

Synthetic chirp signals with an additional 4th tone+chirp+tone were also investigated to 

determine the effect of a smaller component that is not being tracked. All four 

tones+chirps+tones had 38 Hz/msec of chirp rates and the chirp durations were fixed at 20 msec. 

The 4th tone+chirp+tone had 30% of the energy of the other tones+chirps+tones. The 4th 

tone+chirp+tone was added at either a low frequency (below F1+chirp+F4) or high frequency 

(above F3+chirp+F6) region. The frequency separations between 4th tone+chirp+tone and 

F1+chirp+F4 or F3+chirp+F6 were 1 kHz. The tracking filter was not affected by the 4th 

tone+chirp+tone. (Results are presented in Appendix C.) 

 

3.6 SOFTWARE MODIFICATIONS 

 
The results discussed in section 3.4 and 3.5 involved only synthetic examples, having 

relatively short durations and identified beginning and ending of sounds. To apply the 

decomposition algorithm to long speech signals, the speech must be divided into separate 

segments. To verify that this segmentation does not affect the performance of the algorithm, 
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several speech samples were analyzed using 0.5 second segments. The energies of the tonal and 

non-tonal components for five two-syllable and three mono-syllable words were computed using 

and not using 0.5-second segments, and the energy changes are summarized in Figure 19 (The 

significance of the 0.9, 1.8, and 2.7 msec. blocks is discussed below.). The relative energies in 

the tonal and non-tonal components were used to compare the performance of each software 

modification. Each line represents one word and the average energies across all eight words are 

indicated by the markers. The windowing method has little effect on the tonal component 

estimation, as shown in the Figure 19.  
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Figure 19: Relative energies in the tonal and non-tonal components with software modifications. 

The markers represent the average energy of the whole words. 
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The computation of time-varying filters for the decomposition takes substantial 

computation time. The software for the speech decomposition is divided into two major parts. 

The first part consists of calculating the AZFs and DTFs and linear prediction in the spectral 

domain, and the second part implements the time-varying filtering to estimate the tonal 

component. The processing times were approximately 314 times real time by a personal 

computer with 1.6 GHz CPU speeding. Approximately 70% of the total computation time is 

required for the first part of the algorithm. 

As mentioned in the section 3.3, one method to increase computation efficiency is to 

block speech samples for short time intervals and then estimate the formant information by linear 

prediction in the spectral domain for the first sample in the block rather than for every sample in 

the block. To determine an appropriate block size, the synthetic tone signal (same signal as 

shown in the section 3.4) and synthetic chirp signal (same signal as shown in the section 3.5.1 

with 20 msec chirp duration, 580 Hz chirp frequency, and 29 Hz/msec chirp rate) were analyzed 

using different block sizes. Results are shown in Figure 20. The tonal component estimation is 

not significantly affected by blocking until 0.9 msec. block. (Energy differences are less than 

1.5%.) The energy of the tonal component, however, decreased over 4% and 8% for synthetic 

tone and synthetic chirp signal for 1.8 msec. block size, respectively. For 2.7 msec. block size, 

the relative energies of tonal components decreased over 7% and 12% for the synthetic tone and 

synthetic chirp signals, respectively.  

To test this blocking method, the software was modified to apply 10, 20, and 30 data 

point blocks (0.9, 1.8, and 2.7 msec.). The energy of the tonal and non-tonal components for five 

two-syllable and three mono-syllable words were computed using the three different block sizes 

with 0.5 seconds windowing. The energy changes are summarized in the Figure 19. The blocking 
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method has little effect on the tonal estimation. The energy of the tonal component decreased by 

an average of 1% as block size increased from 0 to 2.7 msec. The preliminary tests show that this 

blocking method (10 data point block) can reduce the computation times by approximately 1/6. 
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Figure 20: Relative energies in the tonal and non-tonal components of the synthetic tone and 

synthetic chirp signals  with software modifications 

 

 

One of objectives of this study was to compare the intelligibility of the non-tonal 

component to the intelligibility of both the original speech and the tonal component. To provide 

a preliminary test of speech intelligibility, the intelligibility of each component was evaluated 

subjectively by the author, using a scale from 1 to 5: 1 corresponded to unintelligible and 5 

corresponded to the same intelligibility as the original speech. The original speech and each 
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component were compared by listening through the speaker of a personal computer. Each sound 

was played by Matlab software (The MathWorks, Inc., USA), and one of the intelligibility levels 

was assigned to each component. 

The intelligibility of the tonal and non-tonal components with data processing using 0.5-

second windows and different block sizes was assessed and is shown in the Table 3. As 

summarized in this table, the intelligibility of the tonal and non-tonal components was not 

changed by these software modifications. Based on these results, the 0.9 msec. block size was 

selected as the largest that should be used for speech decomposition. This length had little effect 

on the test words, and it minimized the effect of blocking on how quickly the filters responded to 

frequency changes in the test chirps. 

 
 

 

Table 3: Relative intelligibility in the tonal and non-tonal components with software 

modifications 

 

 

Words \ 

Modification 

 

 

Without 

modification 

 

 

0.5 sec. data 

processing 

0.5 sec. data 

processing & 

0.9 msec. 

blocking 

0.5 sec. data 

processing & 

1.8 msec. 

blocking 

0.5 sec. data 

processing & 

2.7 msec. 

blocking 

 Tonal Non-

tonal 

Tonal Non-

tonal 

Tonal Non-

tonal 

Tonal Non-

tonal 

Tonal Non-

tonal 

Sunset2 1 5 1 5 1 5 1 5 1 5 

Cowboy1 1 5 1 5 1 5 1 5 1 5 

Cowboy2 2 5 2 5 2 5 2 5 2 5 

Headlight1 1 5 1 5 1 5 1 5 1 5 

Headlight2 1 5 1 5 1 5 1 5 1 5 

Nice1 1 5 1 5 1 5 1 5 1 5 

Room1 2 4 2 4 2 4 2 4 2 4 

Juice1 1 5 1 5 1 5 1 5 1 5 
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A long sentence was analyzed to examine possible artifacts due to the software 

modifications. Examples for a long sentence decomposed by the modified software using a 0.5-

second window and 0.9 msec. blocking are illustrated in Figures 21-24. The sentence (“How to 

feel about changing the time when we began work”) was spoken by a male speaker and is 

approximately 2.76 seconds long. The original, highpass filtered at 700 Hz, tonal, and non-tonal 

components are shown in Figure 21 (The reason for interest in highpass filtered speech is 

presented in the next chapter.). The energy in the highpass filtered speech is 6% of the energy in 

the original speech. The energy in the tonal component is 74% of the energy in the highpass 

filtered speech (4% of the original speech energy). The remaining 26% of the energy of the 

highpass filtered speech is in the non-tonal component (2% of the original speech energy). The 

spectrograms were calculated to describe time-varying characteristics of decomposed 

components and are shown in Figure 22.  

The waveforms and spectrograms of the long sentence from 0.25 to 0.75 seconds are 

shown in Figures 23-24. Possible artifacts due to the software modifications (windowing) were 

examined by listening to the sounds and zooming the plot of the signal. The tonal and non-tonal 

components sounded similar to results obtained with individual words. No artifacts were 

detected from the examination. 
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Figure 21: Waveforms of decomposed long speech signal spoken by a male speaker 

(corresponding to “How to feel about changing the time when we began work”): (a) original, (b) 

highpass filtered, (c) tonal, and (d) non-tonal components 
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Figure 22: Spectrograms of decomposed long speech signal spoken by a male speaker 

(corresponding to “How to feel about changing the time when we began work”): (a) original, (b) 

highpass filtered, (c) tonal, (d) non-tonal components 
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Figure 23: Waveforms of decomposed long speech signal from 0.25 to 0.75 seconds: (a) original, 

(b) highpass filtered, (c) tonal, and (d) non-tonal components 

 

67 



 

fre
q 

(H
z)

(a)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

2000

4000

fre
q 

(H
z)

(b)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

2000

4000

fre
q 

(H
z)

(c)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

2000

4000

fre
q 

(H
z)

time (sec)

(d)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

2000

4000

 

Figure 24: Spectrograms of decomposed long speech signal from 0.25 to 0.75 seconds: (a) 

original, (b) highpass filtered, (c) tonal, (d) non-tonal components 
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4.0 PRELIMINARY SPEECH RESULTS 

 
The decomposition of real speech signals with one female and two male speakers was 

examined. Twelve two-syllable words, spoken by a male and by a female speaker, twenty mono-

syllable (Consonant-Vowel-Consonant) words spoken by two male speakers, and twenty three 

mono-syllable (Consonant-Vowel-Consonant) words spoken by a female speaker (from the audio 

CDROM that accompanies Contemporary Perspectives in Hearing Assessment, by Frank E. 

Musiek and William F. Rintelmann, Allyn and Bacon, 1999) were investigated. Speech words 

were decomposed using the time-varying bandpass filters and results of speech decompositions 

are described in this chapter. Preliminary intelligibility tests for decomposed components are 

also presented. These studies were used to select filter parameters.  

 

4.1 DATA PROCESSING DETAILS 

 
Speech signals, sampled at 44.1 kHz, were down-sampled to 11.025 kHz, and highpass 

filtered with 700 Hz cutoff frequency. Highpass filtering was used because, in unfiltered speech, 

the first DTF usually tracked a tonal component below 700 Hz. The power near the center 

frequency of the first tracker was usually large enough to hold the filter open, and the first time-

varying bandpass filter effectively functioned as a lowpass filter with approximately a 700 Hz 

cutoff frequency. The energy of the tonal and non-tonal components obtained from unfiltered 

speech with four trackers and highpass filtered speech with three trackers showed little 

difference, and the intelligibility of the tonal and non-tonal components was not changed 
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between the two methods. Highpass filtering does not affect speech intelligibility [35] but it 

significantly improved the computational efficiency of the decomposition.  

The number of DTFs was set to three because most vowel sounds that have been 

highpass filtered at 700 Hz are composed of two or three dominant formant components. For 

each filter, the maximum bandwidth (B) was set to 900 Hz, and the filter activation threshold 

(bandwidth threshold) was set to 15 dB. These values were selected based on the results 

described in section 4.3. 

If two adjacent formant components are too close in frequency, the bandwidths of these 

bandpass filters may overlap in some time intervals, and the outputs of these adjacent filters may 

contain some energy from the same formant. This overlapping of energy results in the tonal 

component having too much energy. This situation was avoided by limiting the bandwidth of one 

of the bandpass filters to avoid overlap between bandwidths. Specifically, if two adjacent 

bandwidths are close enough to be overlapped, the algorithm increases the low-end bandwidth of 

the filter tracking the higher formant frequency to prevent overlapping. 

Constant reference noise energy, derived from silent parts of a single speech phrase, was 

used in the preliminary word decompositions. In essence, time-varying bandwidth was computed 

based on speech signal power.   

The intelligibility of original speech, tonal, and non-tonal components was evaluated 

subjectively by the author as described in section 3.6 (1 corresponded to unintelligible and 5 

corresponded to the same intelligibility as the original speech). The energy of each decomposed 

component relative to the highpass filtered speech was estimated. The amount of relative energy 

is used as an indicator of how effectively formant information is being removed from the 

highpass filtered speech while maintaining intelligibility of the non-tonal component. The 
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conclusions drawn from these subjectively evaluations were verified by psychoacoustic growth 

functions, as described in chapter 5. 

 

4.2 PRELIMINARY RESULTS 

 
An example of decomposition of a real speech signal spoken by a female speaker is 

illustrated in Figures 25-28. A mono-syllable word (“Juice”, represented phonetically as /dzu:s/) 

was decomposed into tonal and non-tonal components as described above. The original, highpass 

filtered, tonal, and non-tonal components decomposed by time-varying bandpass filters are 

shown in Figure 25. The energy in the highpass filtered speech is 9% of the energy in the 

original speech. The energy in the tonal component is 78% of the energy in the highpass filtered 

speech (7% of the original speech energy). The tonal component is dominated by the consonant 

hub (/dz/) at approximately 0.01 to 0.07 seconds, and it also includes some fricative sound (/s/) at 

around 0.37 seconds. The remaining 22% of the energy of the highpass filtered speech is in the 

non-tonal component (2% of the original speech energy) and includes energy associated with the 

onset and offset of the consonant hub at around 0.01 seconds and 0.07 seconds and the beginning 

and ending of fricative sound at around 0.35 and 0.38 seconds. 

Spectrograms of these signals were calculated using the procedures presented in the 

previous chapter to present time-varying characteristics of decomposed components. As shown 

in Figure 26, the spectrograms clearly show that most of the sustained consonant hub in "Juice" 

is included in the tonal component and most of the transition activities, onset and offset of the 

consonant hub, and beginning and ending of fricative sound are in the non-tonal component. 
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Figure 25: Waveforms of decomposed real speech signal “Juice” spoken by a female speaker: (a) 

original, (b) highpass filtered, (c) tonal, and (d) non-tonal components 
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Figure 26: Spectrograms of decomposed real speech signal “Juice” spoken by a female speaker: 

(a) highpass filtered, (b) tonal, (c) non-tonal components 
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The sound of the tonal component was very garbled and not identifiable as the word 

“Juice”. On the contrary, the non-tonal component was perceptually almost identical to the 

highpass filtered speech, despite having much less energy. 

SNRs and time-varying bandwidths of each bandpass filter are shown in Figure 27, (a1-

a3) and (b1-b3). The bandwidths open to pass the vowel sounds, /u:/ at around 0.01-0.1 seconds 

and closed to stop other activities. These characteristics are manifest in Figure 27 (c), which 

shows the upper and lower edges of bandwidths of each time-varying bandpass filter. The solid, 

dashed, and dotted lines are associated with the first, second, and third time-varying bandpass 

filters, respectively. The bandwidths are only opened enough to pass vowel sounds and closed to 

block other sounds from the tonal component. Figure 28 shows the output of each time-varying 

bandpass filter. 

Another example of decomposition for a real speech signal spoken by a female speaker is 

illustrated in Figures 29-30. A mono-syllable word (“Pike”, represented phonetically as /paIk/) 

was decomposed into tonal and non-tonal components. The original, highpass filtered, tonal, and 

non-tonal components decomposed by time-varying bandpass filters are shown in Figure 29. The 

energy in the highpass filtered speech is 16% of the energy in the original speech and the energy 

in the tonal component is 87% of the energy in the highpass filtered speech (14% of the original 

speech energy). The tonal component is dominated by the vowel /aI/, from approximately 0.07 to 

0.17sec. The remaining 13% of the highpass filtered energy is in the non-tonal component (2% 

of the original speech energy) which includes energy associated with the noise burst 

accompanying the articulatory release of /p/ from approximately 0.01 to 0.07 sec., and the 

articulatory release of /k/ at around 0.38 sec. The sound of the tonal component was very garbled 
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and difficult to identify as the word “pike”. On the contrary, the non-tonal component was 

perceptually similar to the highpass filtered speech, despite having much less energy.  
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Figure 27: SNRs and time-varying bandwidths of each time-varying bandpass filter for a real 

speech signal “Juice”: (a) SNRs, (b) time-varying bandwidths, and (c) upper and lower edges of 

time-varying bandwidths. The solid, dashed, and dotted lines are associated with the 1st, 2nd, 

and 3rd time-varying bandpass filters, respectively. 
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Figure 28: Individual output of each time-varying bandpass filter for a real speech signal “Juice” 

spoken by a female speaker:  (a) 1st bandpass filter, (b) 2nd bandpass filter, and (c) 3rd bandpass 

filter  
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The spectrograms of highpass filtered, tonal, and non-tonal components were calculated 

to describe time-varying characteristics of decomposed components.  As shown in Figure 30, 

most of the sustained vowel energy is included in the tonal component, and the non-tonal 

component emphasizes energy at the beginning and end of the tonal component. In particular, the 

non-tonal component includes spectral characteristics of both the /p/ and /k/ releases, as well as 

formant transitions from the /p/ release into the vowel /aI/. The location of the spectral energy in 

these transients contributes to the perception of place of articulation for both the consonants and 

the vowel. 

Results obtained from the forty three mono-syllable words (twenty-three by a female 

speaker and twenty by a male speaker) and twelve two-syllable words (spoken by a female and 

by a male speaker) were similar to the results shown in this section. Figures 31 and 32 show the 

energy in the tonal and non-tonal components as a percent of the energy in the highpass filtered 

speech signal and the relative intelligibility of the tonal and non-tonal components, as evaluated 

subjectively by the author. The numbers 1 and 2 represent the female and male speaker 

respectively. 

For the mono-syllable words (Figure 31), the relative energy in the tonal component 

ranged from 50% to 94% for the male speaker and from 31% to 89% for the female speaker. 

Overall, approximately 71% of the energy was in the tonal component, although that component 

was essentially unintelligible (1 by intelligibility assessment). The relative energy in the non-

tonal component for the mono-syllable words ranged from 6% to 50% for the male speaker and 

from 11% to 69% for the female speaker. Overall, approximately 29% of the energy was in the 

non- tonal component, which was about as intelligible as but slightly less loud than the highpass 

filtered speech (4 or 5 by intelligibility assessment). 

77 



 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-1

-0.5

0

0.5

1

am
pl

itu
de

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-1

-0.5

0

0.5

1

am
pl

itu
de

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-1

-0.5

0

0.5

1

am
pl

itu
de

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-1

-0.5

0

0.5

1

am
pl

itu
de

time (sec)

(d)

 

Figure 29: Waveforms of decomposed real speech signal “Pike” spoken by a female speaker: (a) 

original, (b) highpass filtered, (c) tonal, and (d) non-tonal components 
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Figure 30: Spectrograms of decomposed real speech signal “Pike” spoken by a female speaker : 

(a) highpass filtered, (b) tonal, (c) non-tonal components 
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Similar results were found in the two-syllable words. As shown in Figure 32, the relative 

energy in the tonal component ranged from 76% to 91% for the male speaker and from 41% to 

83% for the female speaker. Overall, approximately 74% of the energy was in the tonal 

component but the intelligibility of that component was very low (1 by intelligibility 

assessment). The relative energy in the non-tonal component for the two- syllable words ranged 

from 9% to 24% for the male speaker and from 17% to 59% for the female speaker. Overall, 

approximately 26% of the energy was in the non-tonal component but that component retained 

almost all of the speech signal’s intelligibility (4 or 5 by intelligibility assessment). 
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Figure 31: (a) relative energies in the tonal and non-tonal components and (b) relative 

intelligibility of the tonal and non-tonal components for mono-syllable words 
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Figure 32: (a) relative energies in the tonal and non-tonal components and (b) relative 

intelligibility of the tonal and non-tonal components for two-syllable words 
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4.3 ALGORITHM PARAMETER SELECTIONS 

 
As mentioned in the previous chapter, each time-varying bandpass filter requires two 

parameters: maximum bandwidth and bandwidth threshold (speech-to-noise ratio) at which the 

filter is activated. The maximum bandwidth should be large enough to capture most of the 

energy in the spectral band being tracked but small enough to be restricted to a single band. The 

bandwidth threshold is based on the ratio of speech to noise energy in a spectral band. It should 

be low enough to assure that the filter is active during a sustained sound and high enough to not 

be active during speech transitions or noise. The selections of maximum bandwidth and 

bandwidth threshold are based on the criteria of removing as much of the quasi-steady-state 

energy from the original speech as possible, while maintaining reasonable intelligibility in the 

non-tonal component. We believe this criterion reflects the optimal separation of tonal and non-

tonal components. 

The effects of variations of these parameters on energy and intelligibility of the tonal and 

non-tonal components were investigated by applying several maximum bandwidths and 

bandwidth thresholds to five two-syllable and three mono-syllable words. After preliminary 

evaluations, three different bandwidth thresholds (12 dB, 15 dB, and 18 dB) with 900 Hz of 

maximum bandwidth and three different maximum bandwidths (700 Hz, 900 Hz, and 1100 Hz) 

with 15 dB of bandwidth threshold were investigated.  

The energy of the tonal and non-tonal components as a percent of the energy in the 

highpass filtered speech was computed. Results are summarized in Figures 33 and 34. The 

energy of the tonal component decreased by an average 10.5% as bandwidth threshold  
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Figure 33: Relative energies in the tonal and non-tonal components with different bandwidth 

thresholds 
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Figure 34: Relative energies in the tonal and non-tonal components with different maximum 

bandwidths 

84 



 

increased from 12 dB to 18 dB, and it increased by an average of 4.5% as maximum bandwidth 

increased from 700 Hz to 1100 Hz. The energy changes in the tonal and non-tonal components 

for different parameter values were relatively small, as shown in the Figure 33 and 34.  

The intelligibility of the tonal and non-tonal components was assessed as described above 

and is shown in Tables 4 and 5. The average intelligibilities for the tonal components with 12 

dB, 15 dB, and 18 dB bandwidth thresholds were 1.5, 1.3, and 1.1, respectively and for the non-

tonal components with 12 dB, 15 dB, and 18 dB bandwidth thresholds were 3.9, 4.9, and 5.0, 

respectively. The tonal components were essentially unintelligible in all the sets of bandwidth 

thresholds. The non-tonal components are highly intelligible in the 15 dB and 18 dB bandwidth 

thresholds but began to lose intelligibility in the 12 dB bandwidth threshold. The non-tonal 

components with 12 dB bandwidth threshold were slightly less loud than the non-tonal 

components with 15 dB and 18 dB bandwidth thresholds.  

The average intelligibility for the tonal components with 700 Hz, 900 Hz, and 1100 Hz 

maximum bandwidths were 1.1, 1.3, and 1.3, respectively and the non-tonal components with 

700 Hz, 900 Hz, and 1100 Hz maximum bandwidths were 4.9, 4.9, and 5.0, respectively. The 

decomposition performance was not critically dependent on the maximum bandwidths. The tonal 

components were essentially unintelligible in all the sets of maximum bandwidths. The non-tonal 

components were highly intelligible for all maximum bandwidths tested, but the non-tonal 

components with maximum bandwidth of 1100 Hz were a little less loud than the non-tonal 

components with 700 Hz and 900 Hz of maximum bandwidths. 

Based on these results, the 15 dB for bandwidth threshold and 900 Hz for maximum 

bandwidth were selected for the speech decompositions because they provided minimum energy 

in the non-tonal components with least loss of intelligibility. 
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Table 4: Relative intelligibility in the tonal and non-tonal components with different bandwidth 

thresholds 

12 dB 15 dB 18 dB Words \ 

Bandwidth 

Threshold 

 

Tonal 

 

Non-tonal 

 

Tonal 

 

Non-tonal 

 

Tonal 

 

Non-tonal 

Sunset2 1 5 1 5 1 5 

Cowboy1 2 4 1 5 1 5 

Cowboy2 2 4 2 5 2 5 

Headlight1 1 4 1 5 1 5 

Headlight2 1 4 1 5 1 5 

Nice1 2 4 1 5 1 5 

Room1 2 3 2 4 1 5 

Juice1 1 4 1 5 1 5 

 

 

Table 5: Relative intelligibility in the tonal and non-tonal components with different maximum 

bandwidths 

700 Hz 900 Hz 1100 Hz Words \ 

Maximum 

bandwidth 

 

Tonal 

 

Non-tonal 

 

Tonal 

 

Non-tonal 

 

Tonal 

 

Non-tonal 

Sunset2 1 5 1 5 1 5 

Cowboy1 1 5 1 5 1 5 

Cowboy2 1 5 2 5 2 5 

Headlight1 1 5 1 5 1 5 

Headlight2 1 5 1 5 1 5 

Nice1 1 5 1 5 1 5 

Room1 2 4 2 4 2 5 

Juice1 1 5 1 5 1 5 
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5.0 PSYCHOACOUSTIC EVALUATIONS 

The goal of this study was to investigate the roles of steady-state speech sounds and 

transitions between these sounds on the intelligibility of speech and the possibility of speech 

enhancement, based on the transitions, in background noise. The intelligibility of the different 

speech components and of enhanced speech is evaluated by psychoacoustic tests and the results 

are presented in this chapter. Intelligibility growth functions of speech were generated from the 

results of psychoacoustic intelligibility tests as described in section 2.3.1, and parameters 

extracted from the growth functions were analyzed statistically. A method of speech 

enhancement is described, and word identification scores and subjects’ response times for 

original and enhanced speech in background noise were determined using the modified rhyme 

protocol to determine whether the enhanced speech provides improvement in word identification.  

An experiment was also conducted to determine whether a fixed filter can produce 

enhanced speech as effectively as the time-varying filter. A filter function generating the long-

term averaged spectrum of enhanced speech from the long-term averaged spectrum of original 

speech was calculated, and original speech was filtered by this filter function. Psychoacoustic 

evaluations with enhanced speech and the filtered original speech are also presented in this 

chapter. 
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5.1 TESTS ON SPEECH COMPONENTS 

 
To evaluate the relative intelligibility of original, highpass filtered, tonal, and non-tonal 

speech components, psychometric functions to show growth of intelligibility for each component 

as signal amplitude increased were determined. 

 

5.1.1 Methods 

 
Three hundred consonant-vowel-consonant (CVC) words from the NU-6 word lists were 

decomposed to provide highpass filtered, tonal, and non-tonal components for each word [36]. 

Test words were presented in a quiet background. Five volunteer subjects with negative otologic 

histories and hearing sensitivity of 15 dB HL or better by conventional audiometry (250 – 8 kHz) 

were tested. Subjects sat in a sound-attenuated booth, and test words were delivered monaurally 

though headphones. Subjects were asked to repeat the words presented, and the number of errors 

in word identification was recorded by skilled examiners under supervision of a certified clinical 

audiologist. For each component, stimuli were presented at five intensity levels from 0% 

recognition until recognition reached 100% or did not increase.  

Recognition results for each subject were fit to an error function, using the nonlinear 

least-squares fit routine ‘lsqcurvefit’ (MATLAB, The Mathworks, Inc.). The function minimum 

was set to zero, and estimates of the maximum (PBmax or maximum word recognition rate), 

midpoint (50% recognition point used to define threshold in classical signal detection studies but 

not related to the threshold measure in hearing sensitivity function), and slope (measured by the 

standard deviation parameter of the error function) were obtained. The mean squared difference 

between the fitted function and the original data divided by the total mean square of the data (R2) 

was calculated to assess the adequacy of the fit, with R2 > 0.8 being taken to indicate a 
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satisfactory fit. An example of growth function fit is illustrated in Figure 35, where the diamond 

symbols represent actual recognition scores and the solid line represents the error function fit to 

the data.  
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Figure 35: Example of growth function fit (R2 = 0.99). 

 
 

The growth function parameters obtained for the original, highpass filtered, tonal and 

non-tonal versions of the words were tested for significant differences across versions. Because 

of the potential for the data to be skewed (most of the data points were between 50% and 100%, 

with 100% as the maximum), a Friedman’s test was used as a non-parametric analysis of 

variance, followed by Wilcoxon paired comparison tests of significant Friedman’s results. P-

values less than 0.05 were taken to indicate significant differences. Although this approach has 
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less power than parametric tests, sufficient data were not available to verify that the data were 

not significantly skewed. 

 

5.1.2 Results 

 
Table 6 shows the energy in the tonal and non-tonal components, averaged over the 300 

CVC words, as a fraction of the energy in the original speech and highpass filtered speech. The 

non-tonal components averaged 2% of the original speech energy (18% of the highpass filtered 

speech energy), and the tonal component averaged 18% of the original speech energy (82% of 

the highpass filtered speech energy). The tonal component had loudness approximately equal to 

the highpass filtered speech, but the non-tonal component sounded less loud, as would be 

expected due to the lower energy. 

 
 

Table 6: Mean of energy in the tonal and non-tonal components of mono-syllable words relative 

to energy in the highpass filtered speech and in the original speech.  Standard deviation in 

parenthesis. 

 Tonal component Non-tonal component 

% of HPF speech 82% (6.7) 18% (6.7) 

% of original speech 12% (5.5) 2% (0.9) 

 

 
Word recognition rates for each subject were successfully fit to error functions. Of the 20 

sets of data (4 different word versions for 5 subjects), 18 were fit with R2 > 0.9 and 2 with R2 

between 0.8 and 0.9. The upper graph in Figure 36 shows the growth of word recognition, based 

on error function parameters averaged across subjects for each version of the test words, as a 
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function of unadjusted speech level (the components were tested with amplitudes obtained 

directly from the algorithm). Highpass filtered speech, despite having much less energy than the 

original speech, was recognized at similar speech levels, while tonal and non-tonal components 

were recognized at similar, but higher levels. The lower graph shows sound level adjusted to 

compensate for the different component energies. That is, 0 dB represents the same energy level 

(original speech at 50% recognition) in each component. Highpass filtered speech had about the 

same maximum intelligibility as original speech, and the non-tonal component had only slightly 

lower maximum intelligibility. The tonal component had lower maximum intelligibility.  
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Figure 36: Growth of word recognition based on error function parameters: solid: original 

speech; dotted: highpass filtered speech; +-+: tonal component; o-o: non-tonal component. 
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Means and standard deviations of the parameters are summarized in Table 7. For the 

adjusted midpoint, sound levels were adjusted to compensate for the different component 

energies (the bottom graph in figure 36). The adjusted midpoint (p = 0.027) and PBmax (p = 

0.016) were significantly different. Wilcoxon paired comparison results for these two parameters 

are summarized in Table 8. For PBmax, the tonal component was significantly different from the 

other three versions, and for adjusted midpoint, the highpass filtered version was significantly 

different from the other three versions. The tonal component, despite having most of the energy 

of highpass filtered speech, had significantly lower PBmax than the other components. The 

adjusted growth function midpoint of the highpass filtered speech was significantly smaller than 

for original speech, suggesting that this component was picked out of noise at lower stimulus 

levels. The standard deviations of growth functions were the same for all versions, showing that 

the slopes of the growth functions showed no significant differences.  

 
 

 

Table 7: Growth function parameters. Standard deviation in parenthesis. 

 PBmax Midpoint Adjusted 
midpoint 

Slope 

Original speech 98.7 (3.0) 17.9 (2.7) 0.3 7.1 (3.2) 

Highpass filtered speech 96.5 (2.1) 15.0 (3.8) -11.2* 7.2 (2.5) 

Tonal component 45.1 (19.3)* 29.2 (11.3) 2.2 5.6 (8.5) 

Non-tonal component 84.9 (14.4) 34.4 (4.6) 0.5 12.1 (6.3) 

* p < 0.05 for pair-wise comparisons with other components. 
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Table 8: Results of the Wilcoxon paired comparison tests 

 PBmax Adjusted midpoint 
Original – Highpass filtered 0.144 0.043*

Original – Tonal 0.043* 0.893 
Original – Non-tonal 0.109 0.893 

Highpass filtered – Tonal 0.043* 0.043*

Highpass filtered – Non-tonal 0.225 0.043*

Tonal – Non-tonal 0.043* 0.715 
* p < 0.05 for pair-wise comparisons with other components. 

 

These results showed that highpass filtered speech was about as intelligible as original 

speech and the non-tonal component was only slightly less intelligible than the original and 

highpass filtered speech. The tonal component, however, was much less intelligible. These 

results support our hypothesis that transitional information in speech may be important to speech 

perception.   

 

5.2 TESTS ON ENHANCED SPEECH 

 
The motivation for using the non-tonal component for speech enhancement is that the 

non-tonal component, which emphasizes transitional information in speech, may be critical to the 

speech perception. As shown in section 5.1.2, the non-tonal component, despite having much 

less energy than the original and highpass filtered speech, had only slightly lower maximum 

intelligibility. We suggest that the transition information in the non-tonal component may be 

critical to speech perception but that it is particularly susceptible to noise. Selectively amplifying 

this component may improve the recognition of speech in noise.  
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To generate enhanced speech, speech sounds were decomposed, and the non-tonal 

component was amplified and then recombined with the original speech. The energy of enhanced 

speech was adjusted to be equal to the energy of the original speech, and the intelligibility of 

these two speech versions was evaluated using the modified rhyme protocol described in section 

2.3.2 [31], [32]. 

 

5.2.1 Methods 

 
Three hundred mono-syllable words (50 sets of rhyming words) were recorded by a male 

speaker, and these words were decomposed into tonal and non-tonal components, as described 

previously. These 300 words are presented in Appendix D. Bandwidth thresholds and maximum 

bandwidths for time-varying filters were 15 dB and 900 Hz respectively, based on the results in 

section 4.3.  

To generate enhanced speech, the non-tonal component was multiplied by amplification 

factor k and then recombined with the base speech as 

Xenh(t) = m * (Xbase(t) + k * Xnont(t))          (5.1) 

where Xenh(t), Xbase(t), and Xnont(t) represent the enhanced speech, base speech, and non-tonal 

component respectively and m represents energy adjustment constant (the energy of enhanced 

speech was adjusted to be equal to the energy of the base speech). Enhancements by three 

different amplification factors (4, 8, and 12) and two different base speech types (recombining 

with the original and highpass filtered speech) were preliminarily evaluated by the author. 

Amplification factors greater than 12 were also tested, but the enhancement effect was less than 

with lower factors. Based on these evaluations, an amplification factor 12 and original speech 

base were selected for speech enhancement.  
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Each stimulus set consisted of 6 mono-syllable words. An additional seventy two mono-

syllable words (12 sets of rhyming words) were also processed for training purposes. These 

seventy two words were recorded by the same male speaker and did not include any of the first 

set of words. Test administration was computerized. Test words were presented with six different 

SNR levels (-25 dB, -20 dB, -15 dB, -10 dB, -5 dB, and 0 dB) of speech-weighted background 

noise. The sound pressure spectrum level of the noise was constant from 100 Hz to 1000 Hz and 

decreased at a rate of 12 dB/octave from 1000 Hz to 5513 Hz [37]. Because speech-weighted 

noise approximates the long-term sound pressure spectrum level of speech, it effectively 

interferes with the recognitions of speech sounds (increases auditory thresholds). The lowpass 

spectral shape of speech-weighted noise creates evenly distributed noise energy across critical 

bands in the auditory system because the bandwidths of critical bands increase with increasing 

frequency.  

Each word was normalized to unit root-mean-square amplitude. The background noise 

was presented for 1.83 sec. and windowed by a Tukey window for a smooth onset and offset. 

The window rise and fall times were 0.25 sec. The amplitude of the background noise was 

adjusted to one of the six SNR levels for the word, and the word was presented with this 

background noise. Each SNR was defined by the amplitude ratio of the word and noise over the 

same time-interval. The interval between stimuli was 0.25 sec. The structure of the stimuli is 

illustrated in Figure 37. The order of presentations and noise levels were randomized. Subject 

responses were recorded by the computer, and the test results, including number of correct 

responses and response times, were saved.  
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Figure 37: Structure of the stimuli  

 

Eleven volunteer subjects with negative otologic histories and hearing sensitivity of 15 

dB HL or better by conventional audiometry (250 – 8 kHz) were tested. Subjects sat in a sound-

attenuated booth, and test words with background noise were delivered monaurally though 

headphones. At the beginning of each trial, a target word appeared on the computer monitor and 

remained until all six alternative words were presented. The first word among six alternative 

words was presented one second after the target word appeared on the computer monitor. The 

subjects were asked to push a mouse button as soon as they heard the target word. The subjects 

did not have a second chance to hear the test words. The response time was measured from the 

end of word presentation to the moment when the subject pushed the button. 

Each subject had a training trial consisting of 12 sets of rhyming words (total 72 words). 

Among these 12 sets, 6 sets of rhyming words were presented as original speech and the 

remaining 6 sets were presented as enhanced speech. Among these two 6 sets of original and 
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enhanced speech, 3 sets were presented in quiet and the remaining 3 sets were presented with 

speech-weighted noise at different SNR levels.  

In the main trial, 50 sets of rhyming words were repeated 6 times for each subject (total 

300 sets of rhyming words per subject). One hundred fifty of the 300 sets were presented as 

original speech and the remaining 150 sets were presented as enhanced speech. The target words 

were randomly selected from the 300 mono-syllable words, and the selected target word was 

excluded in the future selections (the same target word did not appear more than once.). The sets 

were presented at 6 different SNR levels of speech-weighted noise (25 sets for each noise level 

and speech type). The order of presentations and noise levels were randomized. Subject 

responses were recorded by the computer, and the test results, including number of correct 

responses and response times, were saved. The test procedures were monitored by skilled 

examiners under supervision of a certified clinical audiologist.  

Means, standard deviations, and 95% confidence intervals of recognition scores and 

response times for each subject and each noise condition were computed using MATLAB (The 

Mathworks, Inc.). The data distributions of recognition scores and response times for original 

and enhanced speech from 11 subjects were examined and confirmed to be normally distributed. 

Because the data appeared to be normally distributed, parametric statistical procedures (paired t-

tests) were used to test for significant differences. A preliminary test with two additional subjects 

showed that, at SNR = -20 dB, recognition rates were reasonably high but that enhanced speech 

was substantially more recognizable. We hypothesized that enhanced speech would show a 

significantly better recognition and tested both recognition rates and response times at this SNR 

using a paired t-test procedure. Ninety-five percent confidence intervals were used to describe 

the results at all SNR levels.  
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5.2.2 Results 

 
The average energy in the tonal and non-tonal components, averaged over the 50 sets of 

rhyming words for the main trial, as a fraction of the energy in the original speech and highpass 

filtered speech, is shown in Table 9. The non-tonal components averaged 5.8% of the original 

speech energy (36.6% of the highpass filtered speech energy), and the tonal component averaged 

11.2% of the original speech energy (63.4% of the highpass filtered speech energy). 

 
 
 

Table 9: Mean of energy in the tonal and non-tonal components of 50 sets of rhyming words 

used in main trials relative to energy in the highpass filtered speech and in the original speech.  

Standard deviation in parenthesis. 

 Tonal component Non-tonal component 

% of HPF speech 63.4% (18.8) 36.6% (18.8) 

% of original speech 11.2% (4.9) 5.8% (5.0) 

 
 

The recognition rates and response times were averaged across subjects for summary 

graphs. Means and 95% confidence intervals of the word recognition scores for original and 

enhanced speech are shown in Figure 38, where the dashed line represents intelligibility of 

enhanced speech and the solid line represents intelligibility of original speech. For both speech 

versions, percent correct scores increased as the SNRs increased from -25 to 0 dB. The enhanced 

speech showed higher recognition scores at most SNR levels. 

At lower SNRs (-25, -20, and -15 dB), the 95% confidence intervals for recognition of 

original and enhanced speech did not overlap, showing that the subjects could identify the 
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enhanced speech better than the original speech under more severe noise conditions. For 

example, at -25 dB SNR, the mean recognition scores from original and enhanced versions were 

22% and 54% respectively. The differences were not significant at higher SNRs (-10, -5, and 0 

dB). 

The null hypothesis that there is no difference in speech recognition rates between 

original and enhanced speech at SNR = -20 dB was tested using a paired t-test. The mean 

difference across subjects of 25.5%, with standard deviation 7.4%, is significantly different from 

zero at p<0.05, and the null hypothesis was rejected. Paired test results are summarized, using 

95% confidence interval of the differences averaged across subjects, for all SNRs in Table 10. 

Means and 95% confidence intervals of the response times for original and enhanced 

speech are shown in Figure 39, where the dashed line represents response times for enhanced 

speech and the solid line represents response times for original speech. Paired test results are 

summarized, using 95% confidence interval of the differences averaged across subjects, for all 

SNRs in Table 11. Note that Figure 39 represents averages across subjects for each condition 

separately. The paired t-test results in Tables 10 and 11, however, compare differences between 

conditions within a given subject and are then averaged across subjects. 

At -20 and -15 dB SNRs, the differences between original and enhanced speech versions 

were significant, showing that the subjects respond the enhanced speech faster than the original 

speech under severe noise conditions. However, the difference between original and enhanced 

speech for -25 dB SNR was not significant. At 0 dB SNR, the differences between original and 

enhanced speech versions were significant, showing that the subjects respond to the original 

speech faster than the enhanced speech at this SNR level. The differences between original and 

enhanced speech for -10 and -5 dB SNR were not significant. 
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Figure 38: Means and 95% confidence intervals of word recognitions (%) for original (solid) and 

enhanced (dashed) speech. (* : paired differences not equal zero) 

 
 
 

Table 10: Differences (enhanced speech – original speech) of means, standard deviations (SDs), 

and 95% confidence intervals (CIs) of word recognition scores. 

SNR Mean difference SD difference 95% CI difference 
-25 dB 32.0 12.1 23.85 ~ 40.15 
-20 dB 25.5 7.4 20.46 ~ 30.45 
-15 dB 17.8 12.2 9.64 ~ 26.00 
-10 dB 10.5 18.6 -1.96 ~ 23.05 
-5 dB -2.5 6.3 -6.76 ~ 1.66 
0 dB 0 9.3 -6.24 ~ 6.24 
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Figure 39: Means of response times (sec) for original (solid) and enhanced (dashed) speech. (* : 

paired difference not equal zero) 

 
 
 

 
 

Table 11: Differences (enhanced speech – original speech) of means, standard deviations (SDs), 

and 95% confidence intervals (CIs) of response times. 

SNR Mean difference SD difference 95% CI difference 
-25 dB -0.04 0.08 -0.10 ~ 0.02 
-20 dB -0.05 0.03 -0.07 ~ -0.03 
-15 dB -0.07 0.04 -0.10 ~ -0.04 
-10 dB 0.005 0.05 -0.03 ~ 0.04 
-5 dB 0.02 0.03 -0.001 ~ 0.04 
0 dB 0.03 0.04 0.01 ~ 0.06 
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These results showed that at lower SNRs (-25, -20, and -15 dB), speech could be 

enhanced by selectively amplifying the non-tonal component, suggesting that transitional 

information in speech may be an important cue to the speech discrimination in severe noise. At 

higher SNRs, the recognition score of enhanced speech was similar to the recognition score of 

the original speech. The response times for enhanced speech were shorter than the response 

times for original speech at lower SNRs but longer at the highest SNR.   

 

5.3 TESTS ON ENHANCED AND PSEUDO-ENHANCED SPEECH 

 
The objective of this evaluation is to examine whether speech can be enhanced by fixed 

frequency filtering as effectively as by the time-varying filter described in the previous section. 

The fixed filter function should mimic the speech enhancement process of the time-varying filter 

algorithm by producing an output signal that is as close to the enhanced speech generated by the 

time-varying filtering as possible. To achieve this, the long-term averaged spectra for original 

and enhanced speech were calculated for the rhyming words, and a filter function to provide 

output speech with the same long-term averaged spectrum as the enhanced speech was 

calculated. Each original word was filtered by this filter function to generate what is referred to 

as pseudo-enhanced speech. The relative intelligibility of the enhanced and pseudo-enhanced 

speech versions were compared, using the modified rhyme protocol described in section 2.3.2.  

 

5.3.1 Methods 

 
Three hundred mono-syllable words (50 sets of rhyming words) described in section 

5.2.1 were used to calculate the long-term averaged spectra of original and enhanced speech. A 
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periodogram was calculated for each word, and the averaged square-roots of the long-term 

spectra (ASRLSs) for original and enhanced speech were calculated by averaging the square-

roots of these periodograms for the original and enhanced words. A pseudo-enhanced filter 

function to generate the ASRLS of enhanced speech from the ASRLS of original speech was 

calculated as  

)(
)(

)(
wX
wX

wF
Orig

Enha=           (5.2) 

where  is the pseudo-enhanced filter function,  is the ASRLS of original speech, 

and  is the ASRLS of enhanced speech. Pseudo-enhanced speech was obtained by 

applying this zero-phase filter to original speech as shown in Figure 40.  

)(wF )(wX Orig

)(wX Enha

 
Figure 40: A block diagram of pseudo-enhanced filter function 

 

The long-term averaged spectra of original and enhanced speech are shown in Figure 41 

(a) and (b). The long-term averaged spectrum of original speech shows that most of the spectral 

energy is located in the low frequency region. The energy of the long-term averaged spectrum of 

the enhanced speech is more evenly distributed across frequencies. The information from 2500 

Hz to 3300 Hz is relatively emphasized in the enhanced speech. The pseudo-enhanced filter 
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function, calculated as the ratio of these ASRLSs, is shown in Figure 41 (c). The filter function 

shows energy attenuation in the lower frequency regions and energy amplification in the middle 

to high frequency regions. 

Each test word was passed through the pseudo-enhanced filter to create a pseudo-

enhanced word. The energy of the pseudo-enhanced word was adjusted to be equal to the energy 

of the enhanced word. The long-term averaged spectra of enhanced and pseudo-enhanced speech 

are shown in Figure 42, where the solid line represents enhanced speech and the dashed line 

represents pseudo-enhanced speech. These two spectra show similar energy distributions at most 

frequencies, although the magnitude of pseudo-enhanced speech is a few dB higher than the 

magnitude of enhanced speech from 800 Hz to 1500 Hz. 

The original, enhanced, and pseudo-enhanced speech are compared to investigate 

whether the speech structures of enhanced and pseudo-enhanced speech are different and 

whether the transient information is more effectively amplified in the enhanced speech than in 

the pseudo-enhanced speech. Waveforms and spectrograms for original, enhanced, and pseudo-

enhanced speech (mono-syllable word “Meat” - represented phonetically as /mit/) are compared 

in Figure 43 and 44. The energies of the enhanced and pseudo-enhanced speech were adjusted to 

be equal to the energy of the original speech. The enhanced speech is dominated by the onset of 

/i/ at approximately 0.12 seconds (marked by an arrow on figure), and it also emphasizes the stop 

/t/ at 0.42 seconds. The pseudo-enhanced speech shows characteristics similar to the enhanced 

speech, but the onset of /i/ and stop /t/ are less emphasized in the pseudo-enhanced speech. In 

addition, the original harmonic structure of the vowel sound /i/ from 0.12 to 0.26 seconds is 

clearly retained in the pseudo-enhanced speech. Although the enhanced speech contains these 

harmonic energies (because a base speech in enhancement was the original speech), they are not 
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as regular as in the pseudo-enhanced speech. These differences between enhanced and pseudo-

enhanced speech structures were typical through the 300 rhyming words.  
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Figure 41: The long-term averaged spectra of (a) original and (b) enhanced speech and (c) the 

pseudo-enhanced filter function. 
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Figure 42: The long-term averaged spectra of enhanced (solid) and pseudo-enhanced (dashed) 

speech.  

 

The relative intelligibility of the enhanced and pseudo-enhanced speech versions were 

compared by the modified rhyme protocol described in sections 2.3.2 and 5.2.1. Most test 

procedures were the same as described in section 5.2.1. Test words were only presented at -20 

dB SNR level of speech-weighted background noise rather than 6 different SNR levels as 

described in section 5.2.1. The goal of this test was to examine whether speech can be enhanced 

by fixed frequency filtering as effectively as by time-varying filtering, so that testing with only 

one SNR level that well discriminates the recognitions of original and enhanced speech and 

provides reasonable intelligibility of the enhanced speech was adequate. Also, this test setting 

provided more statistical power in the test (more words presented at one SNR level for a 

hypothesis test.). 
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Five volunteer subjects with negative otologic histories and hearing sensitivity of 15 dB 

HL or better by conventional audiometry (250 – 8 kHz) were tested. These subjects were 

different subjects than those used in the previous experiment (section 5.2.1). Each subject had a 

training trial consisting with 12 sets of rhyming words (total 72 words) as described in section 

5.2.1. In the main trial, 50 sets of rhyming words were repeated 4 times for each subject (total 

200 sets of rhyming words per subject). One hundred sets were presented as enhanced speech 

and 100 sets were presented as pseudo-enhanced speech. The order of presentations was 

randomized. The 200 target words were randomly selected from the 300 mono-syllable words 

and the selected target word was excluded in the future selections (the same target word did not 

appear more than once.). Subject responses were recorded by the computer, and the test results, 

including number of correct responses and response times, were saved. 

The test procedures were monitored by skilled examiners under supervision of a certified 

clinical audiologist. Means and standard deviations of recognition scores and response times for 

each subject and each speech type were computed using MATLAB (The Mathworks, Inc.). The 

data distributions of recognition scores and response times for enhanced and pseudo-enhanced 

speech were examined and the data appeared to be normally distributed. The recognition scores 

and response times obtained for the enhanced and pseudo-enhanced versions of the words were 

compared by the paired t-test.  
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Figure 43: Waveforms of a mono-syllable word “Meat” spoken by a male speaker: (a) original, 

(b) enhanced, (c) pseudo-enhanced speech 
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Figure 44: Spectrograms of a mono-syllable word “Meat” spoken by a male speaker: (a) original, 

(b) enhanced, (c) pseudo-enhanced speech 
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5.3.2 Results 

 
The recognition rate and response time of enhanced speech were about the same as in the 

previous test (section 5.2.2). Differences of means, standard deviations, and 95% confidence 

intervals of the word recognition scores and response times for enhanced and pseudo-enhanced 

speech are shown in Table 12. The differences of recognition scores and response times between 

enhanced and pseudo-enhanced speech versions were not significant.  

 

Table 12: Differences (pseudo-enhanced speech – enhanced speech) of means, standard 

deviations (SDs), and 95% confidence intervals (CIs) of word recognition scores (WRSs) and 

response times (RTs). 

 Mean difference SD difference 95% CI difference 
WRS (%) 5.2 5.4 -1.57 – 11.97 
RT (sec) -0.001 0.02 -0.03 – 0.03 

 

 

These results showed that at -20 dB SNR, speech can be enhanced by fixed frequency 

filtering as effectively as by the time-varying filter. Although, qualitatively, enhanced speech 

appears to emphasize transitions in speech more effectively than pseudo-enhanced, the 

recognition scores and response times were not significantly different.     
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6.0 DISCUSSION AND FUTURE RESEARCH 

 

6.1 DISCUSSION 

 
We have introduced a new dynamic method to extract transient information from speech. 

Time-varying bandpass filters whose center frequencies and bandwidths are controlled to pass 

most of the energy in the three largest formant components in highpass filtered speech were 

designed to extract tonal energy. The tonal component was composed of the sum of the filter 

outputs, and we referred to the signal with the tonal component removed as the non-tonal 

component of speech. Rao and Kumareasan’s study focused on the slowly-varying tonal 

component, but we are focusing on what they eliminated – non-tonal component [18]. We 

suggest that the non-tonal component primarily represents transitions between and within vowels 

and hubs of consonants.  

Speech sounds can be classified as vowels and consonants. Vowels contain most of the 

speech energy and are dominated by lower frequencies. Consonants contain less energy and the 

energy is distributed in higher frequency regions. Traditional methods of studying the auditory 

system and speech recognition have generally emphasized the steady-state vowel sounds rather 

than consonant sounds. In this study, most of the steady-state vowel energy was removed from 

speech signals, and the remaining sounds which contained most of the consonant energy were 

analyzed.  

The basic idea of this study is that the auditory system may be particularly sensitive to 

time-varying frequency edges, which probably reflect the transition components in speech. 
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Although these transitions represent a small proportion of the total speech energy, they may be 

critical to speech perception. In order to investigate the role of non-tonal speech components on 

speech intelligibility, mono-syllable words were decomposed into tonal and non-tonal 

components, and the energy and intelligibility of each component was tested psychoacoustically. 

The non-tonal components have less energy than the original speech, but psychometric measures 

of maximum word intelligibility showed almost equal intelligibility to original speech. The tonal 

components had much greater energy but were significantly less intelligible. We suggest that the 

tonal component corresponds to speech energy that characterizes sustained vowel sounds and 

consonant hubs.  

These results suggest that non-tonal components are important in speech perception. If 

the auditory system is sensitive to transient information, emphasis of the non-tonal components 

may provide a method to enhance intelligibility, especially in noisy conditions. The transients are 

expected to be distributed across time and frequency and may require time-frequency techniques 

to identify them. The decomposition algorithm described in this study provides one method of 

extracting a signal that emphasizes transient speech components. 

Most traditional studies of speech enhancement have focused on noise reduction. In this 

study, the speech signal itself was enhanced by the time-varying filters. The non-tonal 

component was amplified and recombined with the original speech, and the intelligibility of the 

enhanced speech was compared to the original speech in background noise. The psychometric 

measures of word intelligibility demonstrate that the enhanced speech can provide significant 

improvement in speech intelligibility at low SNR levels. At higher SNR, the differences between 

original and enhanced speech were not significant because the noise was relatively soft so that 

the transient information for both original and enhanced speech was not greatly affected.  
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At lower SNR levels (-20 and -15 dB), the response times for enhanced speech were 

shorter than the response times for the original speech. At these SNR levels, the enhanced speech 

showed higher word recognition scores than the original speech. These results – higher word 

recognition scores with shorter response times and lower word recognition scores with longer 

response times - support the relations between word recognition scores and response times 

observed by Mackersie et al. [32].  At the highest SNR level (0 dB), the response times for 

original speech were shorter than the response times for the enhanced speech. The word 

recognition scores between original and enhanced speech were not significantly different at this 

SNR level. These results may indicate that, compared to original speech, subjects increase 

listening efforts to identify the enhanced speech at high SNR level [38]. 

These results suggest that amplification of transient information can enhance speech in 

noise. This enhancement method can be applied to any speech communication system where 

clean speech can be accessed but outside noises interrupt the communications, such as cellular 

phone communications in a loud restaurant, communications between control office and 

firefighters, battle field communications between command center and soldiers etc.  

Another way to implement the enhancement method was evaluated. A fixed frequency 

filter function designed to generate the long-term averaged spectrum of enhanced speech from 

the long-term averaged spectrum of original speech was calculated, and pseudo-enhanced speech 

was generated by filtering the original speech by this filter function. The relative intelligibility of 

the enhanced and pseudo-enhanced speech versions were compared by the modified rhyme 

protocol.  

The difference between enhanced and pseudo-enhanced speech versions was not 

significant. In general, the transient information is distributed in higher frequency regions, and 
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the transient information may be emphasized in the pseudo-enhanced speech because of the 

frequency characteristics of the filter function. These results suggest that for a specific speech 

material and speaker, speech enhancement similar to that obtained with a time-varying filtering 

can be archived by a fixed frequency filter [5], [6], [7]. However, this experiment was 

constrained to a certain condition (i.e. single speaker, single speech material, word identification 

rather than conversational task, etc.) and the fixed filter may not be robust to speaker, speech 

material, or environment. Preliminary studies suggest that different filter functions are obtained 

under different conditions (Appendix E). Since the pseudo-enhanced speech was calculated 

based on the time-frequency techniques, time-frequency techniques may be required to define 

the filter functions for various conditions. 

Waveforms and spectrograms of original, enhanced, and pseudo-enhanced speech sounds 

were compared. The pseudo-enhanced speech shows characteristics similar to the enhanced 

speech, but the harmonic structures of vowel sounds were more clearly retained in the pseudo-

enhanced speech. Although pseudo-enhanced speech may contain some of the same amplified 

transient information, the enhanced speech appears to emphasize it more than the pseudo-

enhanced speech does. These differences may be caused by the time-varying filtering, and the 

time-frequency techniques may be more effective to emphasize transition information in speech.  

 

6.2 FUTURE RESEARCH 

 
• The first task for future work would be to establish a better understanding of the tonal and 

non-tonal components. Quantitative measures of the component differences, including 

definitions of component characteristics in terms of time and frequency and role in 

speech perception, could be a significant contribution to the field of speech enhancement. 
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• The decomposition algorithm is based on the computation of time-varying filters. Other 

approaches for speech decomposition are interesting for future studies. For examples, 

wavelets and cosine transform can be applied for new decompositions. Comparisons 

between the time-varying filter approach and other candidates may refine the speech 

decomposition as well as provide a solution to speed up the processing. 

• Recent findings in auditory research suggest that a nonlinear active process in outer hair 

cells (OHCs) may play a role in the processing of noisy speech, and this role may be 

related to the processing of transition information. Measuring otoacoustic emissions, 

sounds produced by outer hair cells as a byproduct of signal transduction in the cochlea, 

is a non-invasive method to measure the response of OHCs to different types of acoustic 

stimuli. Comparisons between otoacoustic emissions derived from tonal and non-tonal 

components will be an interesting subject for future research. These comparisons will 

characterize the responses of OHCs to transition and quasi-steady-state stimuli and 

provide better understanding of OHC functions. These studies will facilitate the design of 

algorithms to identify and process transition components in speech. 

• Psychoacoustic evaluations to examine whether speech can be enhanced by fixed 

frequency filtering rather than time-varying filtering were performed. The intelligibility 

difference between the two versions was not significant for a specific speaker, 

environment, and speech material. Psychoacoustic evaluations for the enhanced and 

pseudo-enhanced speech with different speakers, speech materials, and environments will 

be interesting for future study. These evaluations will characterize the differences 

between enhanced and pseudo-enhanced speech that were not revealed at the previous 
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evaluation and possibly identify the optimal filters across speakers, speech materials, and 

languages.  

• Waveforms of original, enhanced, and pseudo-enhanced speech were illustrated in 

section 5.3.1. Quantitative measures of the waveform differences and effects of these 

differences to the results of psychoacoustic tests will be interesting for future research.  
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APPENDIX A 
 
 
 

ANALYTICAL TESTS OF SPEECH INTELLIGIBILITY 
 

 
 
This appendix describes preliminary evaluations of some analytical techniques to 

quantify the effectiveness of speech enhancement procedures. The articulation index (AI) and 

speech intelligibility index (SII) were calculated from statistical models, developed from 

articulation theory. Two different automatic speech recognition systems (BBN Byblos and 

Dragon systems) were used to estimate recognition scores for original speech, highpass filtered 

speech, tonal component, and non-tonal component. The purpose of this investigation was to 

determine whether these models and systems could indicate the same differences in speech 

intelligibility that were observed in psychoacoustic tests (section 5.1) and hence provide a 

preliminary indication of speech enhancement effectiveness to guide psychoacoustic testing. 

 

Articulation Index And Speech Intelligibility Index 
 

 
The intelligibility of speech usually improves as speech energy increases from barely 

audible levels to higher levels [24]. The intelligibility of speech, however, may not improve if 

the energy of speech is increased to excessive levels.  

The relations between frequency and speech intelligibility were studied by French and 

Steinberg [5]. They investigated the intelligibility of highpass and lowpass filtered speech with 
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varying cut-off frequencies and found that increasing amounts of either highpass or lowpass 

filtering resulted in reduced intelligibility. Increasing the cut-off frequency of a highpass filter 

above 1.5 kHz or lowering the cut-off frequency of a lowpass filter below 3 kHz caused 

intelligibility to drop below 80% of the unfiltered speech, respectively. 

In general, speech intelligibility tests with human subjects require extensive time and 

effort. To avoid these complex tests, statistical models based on articulation theory have been 

proposed [5], [6], [7], [8]. Articulation theory has been developed from the results of speech 

intelligibility tests and used to calculate articulation indices (AIs) based on the statistics of the 

tests [5], [6], [7], [8]. The AI is basically designed to predict what the intelligibility of speech 

would be when transmitted over a particular communication system. Thus, the AI is a physical 

measure of the communication system. The speech intelligibility index (SII) was developed from 

the AI to provide a reliable and easily applicable method to predict speech intelligibility [9]. 

Recently, this method was introduced as an ANSI standard [9].  

 

Implementations of AI and SII 
 
 

In this study, the AI model by Fletcher and Galt was implemented because their model 

has been suggested to predict speech intelligibility more accurately than other models [5], [6], 

[7], [8], [39].  The major difference between Fletcher and Galt’s AI model and other models is 

perceptional considerations.  In Fletcher and Galt’s model, various parameters (e.g. loudness, 

critical bands, masking by noise and speech itself, and speech detection thresholds) are used to 

transform physical measurements on speech into the perceptional domain, and the AI was 

calculated from not only physical measurements of speech but also perceptional correlations of 

these parameters.  In the other AI models, the AIs are directly calculated from the physical 
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measurements of speech with only minor consideration of perceptional correlations.  Rankovic 

compared Fletcher and Galt’s AI model with ANSI S3.5 (1969) [39].  He compared these AIs 

with recognition scores obtained from speech intelligibility tests by human subjects and 

concluded that Fletcher and Galt’s calculation was more accurate than ANSI S3.5 (1969).   

 The AIs by Fletcher and Galt were calculated from the system response (transfer 

function) of the transmission channel, estimated by the ratio of the output to input spectrum.  The 

system response was divided into 20 fixed narrow frequency bands, and the spectral energy of 

the system response in each band was estimated [7].  The AI was calculated from these spectral 

energies as a function of the channel gain.   

Speech intelligibility index (SII) was a measure that was correlated with the intelligibility 

of speech under various listening conditions. The SII was calculated from the input variables, 

including speech spectrum level, noise spectrum level, and hearing threshold level. Different 

frequencies contributed different amounts to speech intelligibility and a higher SNR contributed 

to intelligibility within a certain range. For SII calculations, the speech spectrum was divided 

into 18 fixed narrow frequency bands defined in the standard [9].  For each band, a spectral 

energy was calculated, and the SII was determined from the spectral energy as a function of the 

channel gain.  

  

Results of AI and SII 
 
 

Five mono-syllable words spoken by a female speaker were randomly selected for 

examination (from the audio CDROM that accompanies Contemporary Perspectives in Hearing 

Assessment, by Frank E. Musiek and William F. Rintelmann, Allyn and Bacon, 1999).  These 

speech samples were “South”, “Dab”, “Juice”, “Nice”, and “Pick”.  For each word, the AIs and 
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SIIs for the original signal, highpass filtered signal, tonal component, and non-tonal component 

were calculated.  The spectra of the original signals were considered as input spectra to the 

transmission channels in the AI calculations.  Average spectral energy, used in the AI and the SII 

calculations, for the five speech samples is shown in Figure A1 and A2.  The solid, dashed, 

dotted, and dot-dashed lines are associated with the original signal, highpass filtered signal, tonal 

component, and non-tonal component, respectively.  The differences in spectral energies 

between the original speech and the other components are more pronounced in the low frequency 

bands, below 750 Hz, than in the high frequency bands.  These differences in the low frequency 

bands should not affect the intelligibility of these components [35].    

 

 

Figure A1: Ensemble spectral energies in each band for five speech samples, original speech 

signal (solid), highpass filtered speech signal (dashed), tonal component (dotted), and non-tonal 

component (dot-dashed). These spectral energies were used in the AI calculations. 
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Figure A2: Ensemble spectral energies - original speech signal (solid), highpass filtered speech 

signal (dashed), tonal component (dotted), and non-tonal component (dot-dashed) – for the five 

speech samples. These spectral energies were used in the SII calculations. 

 

 

Ensemble AIs and SIIs for each component across five speech samples are shown in 

Figure A3 and A4.  The AI values at 0 dB of channel gain for the original speech signal, 

highpass filtered speech signal, tonal component, and non-tonal component were 0.95, 0.80, 

0.66, and 0.72, respectively.  The AI curves for the highpass filtered speech signal, tonal 

component, and non-tonal component show shifts in channel gains and smaller maximum scores 

with respect to the original signal.  The SII values at 0 dB of channel gain for the original speech 

signal, highpass filtered speech signal, tonal component, and non-tonal component were 0.99, 

0.97, 0.96, and 0.98, respectively.  The shapes of all four SII curves are similar, except shifts in 

channel gains with respect to the SII curve of original signal.  When the speech level exceeds a 
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critical value, further increases in speech level do not result in increased intelligibility. Rather, 

intelligibility decreases – the so called rollover effect.  The AI and SII models predict the 

rollover effect when the channel gain exceeds 68 dB above the gain which is required to detect 

speech in quiet [7], [9]. 

   

 

Figure A3: Ensemble AIs for original speech signal (solid), highpass filtered speech signal 

(dashed), tonal component (dotted), and non-tonal component (dot-dashed) across five speech 

samples  

 

 

A system with an AI of less than 0.3 is generally considered unsatisfactory for everyday 

speech communications [40].  A system with an AI between 0.3 and 0.5 is generally considered 

barely acceptable and a system with an AI of 0.5 or greater is generally considered as 

satisfactory.  A system with an SII of less than 0.45 is a poor communication system, and a 

system with an SII of 0.75 or greater is considered to be a good communication system [9].  All 
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AIs calculated here are greater than 0.5 and all SIIs are greater than 0.75 at 0 dB of channel gain, 

implying that all four channels (components) are satisfactory in terms of the AI and SII scores. 

 

 

Figure A4: Ensemble SIIs for original speech signal (solid), highpass filtered speech signal 

(dashed), tonal component (dotted), and non-tonal component (dot-dashed) across five speech 

samples 

 

 

AI and SII curves of tonal and non-tonal components are essentially identical.  That is, 

the AI and SII methods do not indicate intelligibility differences between tonal and non- tonal 

components, even though there are clear differences subjectively.  Both AI and SII approaches 

only consider fixed frequency bands, and the spectral computations in mid-to-high frequency 

bands, which have greatest weights in the computations, are similar for both tonal and non-tonal 

components.  Using fixed frequency bands may not be appropriate to explain the intelligibility 

changes caused by the time-varying characteristics of speech, which are captured in the time-
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varying filters.  Hence, it was concluded that the AI and SII methods will probably not be 

effective to evaluate the intelligibility differences observed in the preliminary assessments. 

 

Automatic Speech Recognition Test 
 
 

Speech recognition systems have been developed with various applications from simple 

keyword recognition to complex sentence dictations [41], [42], [43], and [44]. Although the 

performance of speech recognition systems has improved over the past two decades, many 

fundamental questions are still unanswered. The speech signals are time-varying signals, and 

even the same speaker can produce different speech sounds with different times for the same 

word. These variations in speech signals make analyzing and designing automatic speech 

recognition systems difficult.  

Two different automatic speech recognition systems (BBN Byblos and Dragon systems) 

were investigated to test the intelligibility of highpass filtered speech, tonal and non-tonal 

components with respect to the original speech, and the test results are compared to the results 

obtained from psychoacoustic tests with human subjects. The basic structures and concepts of 

automatic speech recognition are introduced below, following references [41], [43], [44], [45], 

and [46].                    

In modern automatic speech recognition, the speech signal is treated as a stochastic 

pattern, and the recognition systems apply statistical pattern recognition approaches to the input 

speech. Generally, automatic speech recognition systems identify the input speech pattern using 

pre-defined acoustic models of speech sounds. The acoustic model is generated from the 

information in a set of speech data, in a process referred to as training. The performances of the 

recognition systems are largely dependent on the selection of the training speech data. Optimal 
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speech data sets are not currently available, and the selection of the sets has depended on 

applications.  

A widely accepted and efficient model used in automatic speech recognition is hidden 

Markov models (HMMs). The HMM is a statistical model having a finite number of states and 

state transitions to model the frequency and time-varying nature of the speech signal. Each state 

of the model has an observation density function that specifies the probability of state 

represented as a combination of Gaussians. The parameters of HMMs are usually estimated from 

training data using the maximum likelihood method.  

The input speech is first sampled and then digitized. The start and end of the digitized 

input speech are detected, and acoustic feature vectors of the input speech are extracted. The 

acoustic feature vectors, consisting of parameters that contain recognition information about the 

sounds in the utterance, are selected to have good discrimination for distinguishing speech 

sounds and statistical properties that are relatively invariant across speakers and speaking 

environments. 

The extracted acoustic feature vectors are compared to the trained acoustic model. This 

process is referred to as recognition. The recognition task can be described as finding the most 

likely sequence of words through the network such that the likelihood of the observed acoustic 

features is maximized. Two methods - modular and integrated approaches - are typically used to 

find the maximum likelihood. In the modular approach, each module is considered as one 

knowledge source and the speech feature of each frame is matched to the acoustic model in a 

sequential manner.  Each module is tested and designed separately, so that the specific module 

can be easily modified and developed without affecting the other modules. The drawback of this 

approach is that in each module, decisions are made without knowledge of the other modules, 
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and decision errors are likely to be propagated from one module to the next and accumulate to 

cause search errors. 

The integrated approach uses all knowledge sources to make a decision. Therefore, all the 

knowledge sources need to be characterized and integrated for the network to achieve high 

performance. This approach is generally used in modern automatic speech recognition systems. 

The drawback of this approach is that, compared to the modular approach, much more 

computation is required because all of the knowledge sources are utilized simultaneously to 

reach recognition decisions. 

In general, automatic speech recognition systems are evaluated by calculating the rates of 

incorrect recognitions – word error rates. The word error rate represents the fraction of input 

speech samples that are not correctly recognized by the recognition system. The improvement of 

system performance can be measured by a reduction in word error rate. In this study, the word 

error rate was used as a measure of the intelligibility of input speech samples.  

 

Automatic Speech Recognition Test - BBN Byblos System 
 
 

The Byblos system (BBN Systems and Technologies) was one of two systems which was 

used in this project for testing the relative intelligibility of highpass filtered speech, tonal and 

non-tonal components with respect to the original speech. In Byblos, speech is modeled 

statistically, and the system attempts to determine the parameters of the model. Then, the system 

compares the acoustic features of input speech to the pre-defined parameters of the model to 

determine the most likely words.   

The Byblos system considers speech as the output of a HMM. The acoustic model of the 

system is produced by acoustic training based on the HMM. A 5-state HMM is used to model 
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each phoneme. The HMM is controlled by the transition probabilities of the Markov chains and 

the output densities associated with the states. These parameters are updated in each speech 

frame to increase the likelihood of the observed speech.   

The Byblos system extracts speech features from raw audio files by examining only one 

frame at a time. The system computes the energy and its cepstral coefficients for every 10 msec 

frame, and these features are grouped as a vector. The entire group of features is used in the 

recognition process. 

The Byblos system uses knowledge of language to increase recognition performance. The 

language model is generated by analyzing the probabilities of word sequences in a series of 

documents. A grammar in the language model is built from the statistical patterns of word 

sequences and forces fewer and more accurate choices in the recognition.  

The recognition step in the Byblos system is performed by comparing the extracted 

speech features to the acoustic and language models. The system first uses less detailed models 

to reduce the number of word candidates and then uses more detailed models to finally choose 

the best word.   

The speech data set used in the training and recognition steps is referred as a corpus, and 

the selection of the data set significantly affects the performance of the Byblos system. In 

general, the selections of the corpus have depended on the type of application. The corpus 

includes information on speaker genders and timing information of beginning and ending of 

sentences.  

The Byblos system was tested to determine whether the system can identify the 

intelligibility differences of decomposed components observed in preliminary intelligibility tests 
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and psychoacoustic tests. The system was trained by the original training corpus, and word error 

rates for decomposed testing corpora were calculated.  

The Byblos system was installed on parallel connected computers. The testing speech 

data were decomposed into highpass filtered speech, tonal component, and non-tonal component 

by Matlab software (The MathWorks, Inc., USA). A 5-state hidden Markov model was used in 

the training process. Speech is analyzed with a 25 msec frame duration at a rate of 100 

frames/sec. Forty LPC coefficients were used for LPC smoothing and 256 FFT points were used 

for processing each frame. The Byblos system was trained by the original training corpus, and 

code books were generated through this training process, by another research group in Electrical 

Engineering at the University of Pittsburgh [47]. The code books contained training information, 

such as acoustic and language model parameters. Based on the code books, the original speech, 

highpass filtered speech, tonal component, and non-tonal component in the testing corpora were 

transcribed (decoded) to compare to the already known correct transcription. The word error 

rates (in %) for original speech, highpass filtered speech, tonal component, and non-tonal 

components were calculated in the decoding process. 

Conversational telephone speech data were used in training experiments [47]. For the 

training corpus, the Swbd40hrs, a gender-balanced 40 hours subset of the Switchboard training 

corpus, was used. The corpus was composed of 364 female and 386 male speakers. The female 

speech, 19 hours 56 minutes long, contained 20,993 utterances, and the male speech, 20 hours 7 

minutes long, contained 18,478 utterances. The speech data were composed of telephone 

conversations between two speakers. The audio files were recorded with two channels, and each 

channel hosted one side of the telephone conversation. The sampling frequency was 8 kHz and 

the format of the audio files was NIST_1A format.  
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For decoding experiments, the Hub5.English.Dev01 corpus was used. This corpus was 

composed of conversational telephone speech data and generated from the 2001 Hub-5 

Evaluation [47]. The corpus composed of 23 female and 25 male speakers. The female speech 

was 1 hour 13 minutes long and contained 1123 utterances. The male speech was 1 hour 18 

minutes long and contained 1135 utterances. This corpus included three different conditions – 

original Switchboard, Switchboard-2 Phase-3, and Switchboard-2 Phase-4 (cellular phone 

conversation). The Hub5.English.Dev01 corpus contained Switchboard-2 Phase-4 conditions 

which were not observed in the training corpus, Swbd40hrs.   

The decoding results for each of the decomposed components are summarized in Table 

A.1. The original speech corpus has a word error rate of 68.6%, while the highpass filtered 

speech corpus displays a 93.4% word error rate. The tonal component corpus shows a word error 

rate of 93.1% and the non-tonal component corpus has a word error rate of 93.3%. The word 

error rate increases by 24.8% in highpass filtered speech corpus compared to the original speech 

corpus. The word error rate of 93.1% in the tonal component corpus is 24.5% greater than the 

word error rate of the original speech corpus. The non-tonal component corpus is 24.7% greater 

than the word error rate of the original speech corpus. In essence, the system was not able to 

recognize the highpass filtered speech, tonal component, or non-tonal component corpora.  

Intelligibility characteristics observed in the psychoacoustic tests (high intelligibility in 

original, highpass filtered, and non-tonal components and low intelligibility in tonal component) 

are not shown in these automatic speech recognition tests. Because the time that would be 

required to decompose all of the training data was prohibitive, no attempt was made to train the 

system on highpass filtered speech or the non-tonal component. 
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Table A1: Decoding results (word error rates) for each decomposed component 

Testing Corpora Word Error Rates (%) 

Original Speech 68.6% 

Highpass Filtered Speech 93.4% 

Tonal Component 93.1% 

Non-tonal Component 93.3% 

 

 

Automatic Speech Recognition Test - Dragon System 
 
 

A commercial system for automatic speech recognition was tested to determine whether 

the system can identify the intelligibility differences of decomposed components observed in the 

psychoacoustic tests. The system was trained by the original and highpass filtered speech sounds, 

and word error rates for each component were calculated.  

The Dragon system was installed on a PC computer. The training speech data consisted 

of multiple paragraphs, including 5 or 6 sentences for each paragraph. The testing speech data 

consisted of forty-five mono-syllable words. Both training and testing speech data were recorded 

from a female speaker. The training of the system was performed as follows. The pre-defined 

training data were decomposed into highpass filtered speech, tonal component, and non-tonal 

component by Matlab software (The MathWorks, Inc., USA). The system has a built-in acoustic 

model, and only detailed parameters of the acoustic model are adjusted during the training 

process. Thus, training speech data, at least, have to be recognized by the built-in acoustic model. 

The system could be trained by the original and highpass filtered speech sounds but could not be 
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trained by the tonal and non-tonal components. That is, the built-in acoustic model could not 

recognize the tonal and non-tonal components at all. The testing speech data were decomposed 

and decoded by the systems trained with original and highpass filtered speech data. The word 

error rates (in %) for original speech, highpass filtered speech, tonal component, and non-tonal 

components were calculated in the decoding process. 

The testing results from the systems trained by the original and highpass filtered speech 

data are presented in Table A.2 and A.3, respectively. When the system was trained by the 

original speech, the original testing data had a word error rate of 4%, while highpass filtered 

testing data displayed a 18% word error rate. The tonal component testing data showed a word 

error rate of 96%, and the non-tonal component testing data had a word error rate of 87%. These 

results show that most tonal and non-tonal components are incorrectly recognized.  

When the system was trained by the highpass filtered speech, the original testing data had 

a word error rate of 24% while highpass filtered testing data had a 27% word error rate. The 

tonal component testing data had a word error rate of 93%, and the non-tonal component testing 

data had a word error rate of 80%. These results demonstrate that most of the tonal component is 

incorrectly recognized, but the word error rate decreased by 7% in non-tonal component 

compared to the system trained by the original speech data. Although the Dragon system 

correctly recognizes original and highpass filtered speech, most tonal and non-tonal components 

are recognized incorrectly. The differences in intelligibility measures on the non-tonal 

component between psychoacoustic tests (section 5.1) and Dragon system may imply differences 

between the human hearing system and the automatic speech recognition systems. 
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Table A2: Decoding results (word error rates) for each decomposed component (trained by 

original speech data) 

Testing data Word Error Rates (%) 

Original Speech 4% 

Highpass Filtered Speech 18% 

Tonal Component 96% 

Non-tonal Component 87% 

 
   

 

Table A3: Decoding Results (word error rates) for each decomposed component (trained by 

highpass filtered data) 

Testing data Word Error Rates (%) 

Original Speech 24% 

Highpass Filtered Speech 27% 

Tonal Component 93% 

Non-tonal Component 80% 

 
 
 

Neither automatic speech recognition system was unable to demonstrate recognition of 

highpass filtered speech and non-tonal component similar to the psychoacoustic results. The 

recognition using automatic speech recognition systems do not extend effectively beyond the 

type of speech that they were trained on. Since human listeners do perform recognition over a 

range of speech types, as demonstrated in the psychoacoustic tests, human listeners probably 

attend to aspects of speech that are not considered by the automatic speech recognition systems. 
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Hence, these automatic speech recognition systems will probably have limited effectiveness in 

evaluating speech enhancement techniques. 
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APPENDIX B 
 
 

 
RELATIVE POSITIVE (NEGATIVE) CHIRP ENERGIES OF TONAL COMPONENTS 

 
 
 

Table B1: Relative positive (negative) chirp energies of tonal components for constant frequency 

change in chirp and constant chirp duration. Key : Eo : Chirp energy of original synthetic signal, 

Et : Chirp energy of tonal component 

Chirp rate 
(Hz/msec) 

Chirp 
duration 

(msec) for 
constant 

frequency 
change 

(1460 Hz) 
in chirp  

Relative chirp 
energy in tonal 
component for 

constant frequency 
change (1460 Hz) 

in chirp 
100 x (Et / Eo) 

(%) 

Frequency 
change in 

chirp 
 (Hz) for 
constant 

chirp 
duration  

(20 msec) 

Relative chirp energy 
in tonal component 
for constant chirp 
duration (20 msec) 

100 x (Et / Eo) 
(%) 

133 11 11 (11) 2660 11 (9) 
122 12 12 (11) 2440 15 (12) 
112 13 15 (14) 2240 17 (14) 
104 14 18 (18) 2080 20 (19) 
97 15  26 (23) 1940  28 (26) 
86 17 36 (34) 1720  37 (34) 
81 18 40 (38) 1620  41 (39) 
73 20 47 (44) 1460  47 (44) 
63 23 63 (61) 1260  61 (59) 
58 25 68 (66) 1160  69 (69) 
49 30 79 (77) 980  87 (86) 
42 35 87 (87) 840  96 (96) 
37 40 94 (95) 740  99 (100) 
32 45 99 (100) 640  104 (105) 
29 50 102 (103) 580  107 (106) 
27 55 102 (103) 540  108 (106) 
24 60 103 (104) 480  108 (107) 
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APPENDIX C 
 
 
 

DECOMPOSITION RESULTS OF SYNTHETIC CHIRP SIGNAL (4 CHIRPS) 
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Figure C1: Waveforms of decomposed synthetic chirp signal (4th tone-chirp-tone in low 

frequency): (a) original, (b) tonal, and (c) non-tonal components. All four tones+chirps+tones 

had 38 Hz/msec of chirp rates and the chirp durations were fixed at 20 msec. 
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Figure C2: Spectrograms of decomposed synthetic chirp signal (4th tone-chirp-tone in low 

frequency): (a) original, (b) tonal, (c) non-tonal components 
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Figure C3: Upper and lower edges of time-varying bandwidths (plotted with spectrogram). 4th 

tone-chirp-tone in low frequency. The solid, dashed, and dotted lines are associated with the 1st, 

2nd, and 3rd time-varying  filters, respectively. No filter tracks 4th  tone-chirp-tone component 

in low frequency and the tracking filter was not affected by the 4th tone+chirp+tone. 
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Figure C4: Waveforms of decomposed synthetic chirp signal (4th tone-chirp-tone in high 

frequency) : (a) original, (b) tonal, and (c) non-tonal components. All four tones+chirps+tones 

had 38 Hz/msec of chirp rates and the chirp durations were fixed at 20 msec. 
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Figure C5: Spectrograms of decomposed synthetic chirp signal (4th tone-chirp-tone in high 

frequency): (a) original, (b) tonal, (c) non-tonal components 
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Figure C6: Upper and lower edges of time-varying bandwidths (plotted with spectrogram). 4th 

tone-chirp-tone in high frequency. The solid, dashed, and dotted lines are associated with the 1st, 

2nd, and 3rd time-varying filters, respectively. No filter tracks 4th tone-chirp-tone component in 

low frequency and the tracking filter was not affected by the 4th tone+chirp+tone. 
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APPENDIX D 
 
 
 

THREE HUNDRED RHYMING WORDS 
 

 
 

  1 2 3 4 5 6 
1 lick pick tick wick sick kick 
2 seat meat beat heat neat feat 
3 pus pup pun puff puck pub 
4 look hook cook book took shook 
5 tip lip rip dip sip hip 
6 rate rave raze race ray rake 
7 bang rang sang gang hang fang 
8 hill till bill fill kill will 
9 mat man mad mass math map 

10 tale pale male bale gale sale 
11 sake sale save same safe sane 
12 peat peak peace peas peal peach 
13 king kit kill kin kid kick 
14 sad sass sag sat sap sack 
15 sip sing sick sin sill sit 
16 sold told hold cold gold fold 
17 buck but bun bus buff bug 
18 lake lace lame lane lay late 
19 gun run nun fun sun bun 
20 rust dust just must bust gust 
21 pan path pad pass pat pack 
22 dim dig dill did din dip 
23 wit fit kit bit sit hit 
24 din tin pin sin win fin 
25 teal teach team tease teak tear 
26 tent bent went sent rent dent 
27 sung sup sun sud sum sub 
28 red wed shed bed led fed 
29 hot got not tot lot pot 
30 dud dub dun dug dung duck 
31 pip pit pick pig pill pin 
32 seem seethe seep seen seed seek 
33 day say way may gay pay 
34 rest best test nest vest west 
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35 pane pay pave pale pace page 
36 bat bad back bath ban bass 
37 cop top mop pop shop hop 
38 fig pig rig dig wig big 
39 tap tack tang tab tan tam 
40 cave cane came cape cake case 
41 game tame name fame same came 
42 oil foil toil boil soil coil 
43 fin fit fig fizz fill fib 
44 cut cub cuff cuss cud cup 
45 feel eel reel heel peel keel 
46 dark lark bark park mark hark 
47 heap heat heave hear heath heal 
48 men then hen ten pen den 
49 raw paw law saw thaw jaw 
50 bead beat bean beach beam beak 
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APPENDIX E 
 
 
 

SENSITIVITY OF THE FILTER FUNCTION FOR PSEUDO-ENHANCED SPEECH 
 
 
 

The sensitivity of the pseudo-enhanced filter functions F(w) (described in section 5.3.1) 

to different speakers and speech materials were examined. Five filter functions were calculated. 

Among the five filter functions, three filter functions were calculated from the same speech 

material with different speakers, and two filter functions were calculated from different speakers 

and speech materials. Each filter function was designed to generate the long-term averaged 

spectrum of enhanced speech from the long-term averaged spectrum of original speech.  

Fifty mono-syllable words spoken by 3 different speakers (1 female and 2 males) were 

used to generate the first three filter functions (same speech material with different speakers). 

These three filter functions are referred as F1(w) - female, F2(w) - male, and F3(w) - male. The 

male speaker for F3(w) was the same speaker who recorded 300 rhyming words in section 5.2.1. 

These 50 words were picked from the 300 rhyming words described in section 5.2.1. The other 

two filter functions (different speech materials and speakers – one female and one male) were 

calculated from forty three CVC words from the NU-6 word lists described in section 5.1.1 [36]. 

These two filter functions were referred as F4(w) – female and F5(w) - male. 

The long-term averaged spectra of original and enhanced speech and filter function 

F1(w), F2(w), and F3(w) are shown in Figure E1, E2, and E3 respectively. The long-term 

averaged spectra of the original speech show that most spectrum energy is located at the lower 
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frequency region. The energies in the middle to high frequency regions were emphasized in the 

long-term averaged spectra of the enhanced speech. The filter functions show energy 

amplification in the middle to high frequency regions. The long-term averaged spectra of 

enhanced and pseudo-enhanced speech for the F1(w), F2(w), and F3(w) are shown in Figure E4, 

E5, and E6 respectively, where the solid line represents enhanced speech and the dashed line 

represents pseudo-enhanced speech. These two spectra show similar energy distributions at most 

frequencies, but for F2(w) and F3(w),  magnitudes of the pseudo-enhanced speech are a few dB 

higher than the magnitude of the enhanced speech from 800 Hz to 1500 Hz.  

The long-term averaged spectra of original and enhanced speech and filter functions for 

F4(w) and F5(w) are shown in Figure E7 and E8 respectively. The long-term averaged spectra of 

enhanced and pseudo-enhanced speech for the F4(w) and F5(w) are shown in Figure E9 and E10 

respectively, where the solid line represents enhanced speech and the dashed line represents 

pseudo-enhanced speech.  
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Figure E1: The long-term averaged spectra of (a) original and (b) enhanced speech for the F1(w) 

- female speaker and (c) the magnitude of filter function whose input and output were the long-

term averaged spectra of original and enhanced speech respectively. 
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Figure E2: The long-term averaged spectra of (a) original and (b) enhanced speech for the F2(w) 

- male speaker and (c) the magnitude of filter function whose input and output were the long-

term averaged spectra of original and enhanced speech respectively. 
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Figure E3: The long-term averaged spectra of (a) original and (b) enhanced speech for the F3(w) 

- male speaker and (c) the magnitude of filter function whose input and output were the long-

term averaged spectra of original and enhanced speech respectively. 
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Figure E4: The long-term averaged spectra of enhanced (solid) and pseudo-enhanced (dashed)  

speech for the F1(w) - female speaker. 
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Figure E5: The long-term averaged spectra of enhanced (solid) and pseudo-enhanced (dashed)  

speech for the F2(w) - male speaker. 

 

 

 

 

 

 

 

 

150 



 

 

0 1000 2000 3000 4000 5000
-35

-30

-25

-20

-15

-10

-5

0

5

m
ag

ni
tu

de
 (d

B
)

frequency (Hz)

 

Figure E6: The long-term averaged spectra of enhanced (solid) and pseudo-enhanced (dashed)  

speech for the F3(w) - male speaker. 
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Figure E7: The long-term averaged spectra of (a) original and (b) enhanced speech for the F4(w) 

- female speaker and (c) the magnitude of filter function whose input and output were the long-

term averaged spectra of original and enhanced speech respectively. 
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Figure E8: The long-term averaged spectra of (a) original and (b) enhanced speech for the F5(w) 

- male speaker and (c) the magnitude of filter function whose input and output were the long-

term averaged spectra of original and enhanced speech respectively. 
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Figure E9: The long-term averaged spectra of enhanced (solid) and pseudo-enhanced (dashed)  

speech for the F4(w) - female speaker. 
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Figure E10: The long-term averaged spectra of enhanced (solid) and pseudo-enhanced (dashed)  

speech for the F5(w) - male speaker. 

 
 
 
 

Three filter functions - F1(w), F2(w), and F3(w) – from the same speech material with 

different speakers are compared in Figure E11, where the dashed, solid, and dash-dotted lines 

represent filter functions for the F1(w) - female, F2(w) - male, and F3(w) - male respectively. The 

filter function generally shows energy amplification in the middle to high frequency regions. The 

magnitude differences between F1(w) and F2(w) are less than 5 dB across frequencies. Between 

F1(w) and F3(w) or F2(w) and F3(w), approximately, 10 dB differences are shown from 1500 to 

2000 Hz and 5 dB differences are shown from 3300 to 4500 Hz.      
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Figure E11: The magnitudes of three filter functions. Dashed, solid, and dash-dotted lines 

represent a filter function for the F1(w), F2(w), and F3(w) respectively.  

 

 

The two filter functions (F4(w) – female and F5(w) – male) from different speech 

materials and different speakers are compared in Figure E12, where the solid and dashed lines 

represent filter functions for the F4(w) and F5(w) respectively. F4(w) and F5(w) show 

approximately 3-13 dB differences from 1000 to 5000 Hz.    
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Figure E12: The magnitudes of the rest two filter functions. Solid and dashed lines represent a 

filter function for the F4(w) and F5(w) respectively.  

 

 

 
All five filter functions were compared in Figure E13, where the dashed, solid (thick), 

dash-dotted, dotted, and solid (thin) lines represent filter functions for the F1(w), F2(w), F3(w), 

F4(w), and F5(w) respectively. Different filter functions show different magnitudes across 

frequencies. These results suggest that the filter function is sensitive to different speakers and 

speech materials. 
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Figure E13: The magnitude of five filter functions. Dashed, solid (thick), dash-dotted, dotted, 

and solid (thin) lines represent a filter function for the F1(w), F2(w), F3(w), F4(w), and F5(w) 

respectively.  

 
 
 

The variations in filter functions for different speakers and speech materials suggest that 

the fixed frequency filter calculated from the particular speech material and speaker is not robust 

to different speech materials and speakers. These results may imply two things. First, for the 

particular speaker and speech material, the fixed frequency filter may provide easier 

implementation and more computational efficiency than the time-varying filter does. Second, a 

time-frequency technique may be necessary to find an appropriate filter for a specific speaker 

and material because of the unreliable characteristics of the fixed frequency filter for the 
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different speakers and speech materials. Psychoacoustic evaluations for the enhanced and 

pseudo-enhanced speech across conditions will be needed to determine the validity of this 

conclusion.  

   

159 



 

 
 
 
 

BIBLIOGRAPHY 
 
 
 
[1] K. Stevens, Acoustic phonetics, Cambridge: MIT Press, 1998. 

[2] S. Gelfand, Hearing, New York: Marcel Dekker Inc., 1990. 

[3] R. Kent and C. Read, Acoustic analysis of speech, Albany: Singular Thomson    Learning, 
2002. 

[4] J. Durrant and J. Lovrinic, Bases of hearing science, Baltimore: Williams and Wilkins, 
1995. 

[5] N. French and J. Steinberg, “Factors governing the intelligibility of speech,” J. Acoust. 
Soc. Amer., vol. 19, pp. 90-114, 1947.  

[6] K. Kryter, “Methods for the calculation and use of the articulation index,” J. Acoust. Soc, 
Am., vol. 34, pp. 1689-1697, 1962. 

[7] H. Fletcher and R. Galt , “The perception of speech and its relation to telephony,” J. 
Acoust. Soc, Am., vol. 22, pp. 89-151, 1950. 

[8] ANSI S3.5-1969, “American National Standard methods for the calculation of the 
articulation index,” American National Standards Institute, New York, 1969. 

[9] ANSI S3.5-1997, “Methods for calculation of the speech intelligibility index,” American 
National Standards Institute, New York, 1997. 

[10] J. Cunningham, T. Nicol, C. King, S. Zecker, and N. Kraus, “Effects of noise and cue 
enhancement on neural responses to speech in auditory midbrain, thalamus, and cortex,” 
Hearing Research, vol. 169, pp. 97-111, 2002. 

[11] B. Yegnanarayana, C. d'Alessandro, and V. Darsinos, “An iterative algorithm for 
decomposition of speech signals into periodic and aperiodic components,” IEEE Trans. 
on Speech and Audio Processing, vol. 6, pp. 1-11, 1998. 

[12] I. Daubechies and S. Maes, “A nonlinear squeezing of the continuous wavelet transform 
based on auditory nerve model,” Wavelets in Medicine and Biology edited by A. 
Aldroubi and M. Unser, New York : CRC Press, pp.527-546, 1996. 

[13] L. Daudet and B. Torresani, “Hybrid representations for audiophonic signal encoding,” 
Signal Processing, vol. 82, pp. 1595-1617, 2002. 

160 



 

[14] Q. Zhu and A. Alwan, “On the use of variable frame rate analysis in speech recognition,” 
IEEE International Conference on Acoust., Speech, and Signal Processing, vol. 3, pp. 
1783-1786, 2000. 

[15] E. Yu and C. Chan, “Phase and transient modeling for harmonic+noise speech coding,” 
IEEE International Conference on Acoust., Speech, and Signal Processing, vol. 3, pp. 
1467 -1470, 2000. 

[16] Q. Zhao, Q. Gao, and H. Chi, “Detection of spectral transition for speech perception 
based on time-frequency analysis,” ICICS 97, pp. 522-525, 1997. 

[17] H. Voelcker, “Toward a unified theory of modulation-part1:phase-envelope 
relationships,” Proc. IEEE, vol. 54, pp. 340-354, 1966. 

[18] A. Rao and R. Kumaresan, “On decomposing speech into modulated components,” IEEE 
Trans. on Speech and Audio Processing, vol. 8, pp. 240-254, 2000. 

[19] T. Quatieri, T. Hanna, and G. O’Leary, “AM-FM separation using auditory-motivated 
filters,” IEEE Trans. on Speech and Audio Processing, vol. 5, pp. 465-480, 1997. 

[20] B. Boashash and L. White, “Instantaneous frequency estimation and automatic time-
varying filtering,” International Conference on Acoustics, Speech, and Signal 
Processing, vol. 3, pp. 1221-1224, April 1990. 

[21] A. Francos and M. Porat, “Non-stationary signal processing using time-frequency filter 
banks,” 13th International Conference on Digital Signal Proceeding, vol. 2, pp. 765-768, 
July 1997. 

[22] K. Nie, G. Stickney and F. Zeng, “Encoding frequency modulation to improve cochlear 
implant performance in noise,” IEEE Trans. on Biomedical Engineering, vol. 52, pp. 64-
73, 2005.  

[23] S. Yoo, J. R.Boston, J. D. Durrant, A. El-Jaroudi, C. C. Li. “Speech decomposition and 
intelligibility,” Proceedings of the World Congress on Medical Physics and Biomedical 
Engineering, Sydney Australia, August 2003. 

[24] J. Boston, S. Yoo, J. Durrant, K. Kovacyk, S. Karn, C. Li, and A. El-Jaroudi, “Relative 
intelligibility of dynamically extracted transient versus steady-state components of 
speech,” 75th (147th) Meeting of The ASA, May 2004. 

[25] S. Yoo, J. Boston, J. Durrant, K. Kovacyk, S. Karn, S. Shaiman, A. El-Jaroudi, and C. Li, 
“Relative energy and intelligibility of transient speech components,” EUSIPCO, pp. 
1031-1034, Sep. 2004.  

[26] S. Yoo, J. Boston, J. Durrant, K. Kovacyk, S. Karn, S. Shaiman, A. El-Jaroudi, and C. Li, 
“Relative energy and intelligibility of transient speech information,” ICASSP, vol. 1, pp. 
69-72, Mar. 2005.  

161 



 

[27] M. Li, H. McAllister, N. Black, T. De Perez, “Perceptual time-frequency subtraction 
algorithm for noise reduction in hearing aids,” IEEE Trans. on Biomedical Engineering, 
vol. 48, pp. 979-988, 2001.

[28] B. Moore, An introduction to the psychology of hearing, New York: Academic Press, 
2003. 

[29] D. Robinson and C. Watson, Psychophysical methods in modern psychoacoustics, In J. 
Tobias (ed.), Foundation of modern auditory theory, New York: Academic Press, 1973. 

[30] A. Syrdal, R. Bennett, and S. Greenspan, Applied speech technology, Massachusetts: 
CRC Press, 1995. 

[31] A. House, C. Williams, M. Hecker, and K. Kryter, “Psychoacoustic speech tests: A 
modified rhyme test,” Technical Documentary Report No. ESD-TDR-63-403, United 
State Air Force, June 1963. 

[32] C. Mackersie, A. Neuman, and H. Levitt, “A comparison of response time and word 
recognition measures using a word-monitoring and closed-set identification task,” Ear 
and Hearing, vol. 20(2), pp. 140-148, April 1999. 

[33] G. Fairbanks, “Test of phonemic differentiation: The rhyme test,” J. Acoustic Society of 
America, vol. 30, pp. 596-600, July 1958. 

[34] R. Kumaresan and A. Rao, “Model based approach to envelope and positive 
instantaneous frequency estimation of signal with speech applications,” J. Acoustic 
Society of America, vol. 105, pp. 1912-1924, March 1999. 

[35] J. Lim and A. Oppenheim, “Enhancement and bandwidth compression of noisy speech,” 
Proceedings of the IEEE, vol. 67, pp. 1586-1604, Dec. 1979. 

[36] T. Tillman, R. Carhart, “An expanded test for speech discrimination utilizing CNC 
momosyllabic words,” Northwestern Univ. Auditory Test No 6, Technical Report, 1966. 

[37] ANSI S3.6-1996, “American National Standard specification for audiometers,” American 
National Standards Institute, New York, 1996. 

[38] D. Downs and M. Crum, “Processing demands during auditory learning under degraded 
conditions,” J. Speech and Hearing Research, vol. 21, pp. 702-714, 1978. 

[39] C. Rankovic, “Factors governing speech reception benefits of adaptive linear filtering for 
listeners with sensorineural hearing loss,” J. Acoust. Soc, Am., vol. 103, pp. 1043-1057, 
1998. 

[40] K. Kryter, “Validation of the articulation index,” J. Acoust. Soc, Am., vol. 34, pp. 1698-
1702, 1962. 

162 



 

[41] E. Keller, Fundamentals of speech synthesis and speech recognition : basic concepts, 
state of the art and future challenges, New York: Wiley, 1994. 

[42] A. Waibel and K. Lee, Readings in speech recognition, San Mateo: Morgan Kaufmann 
Publishers, 1990. 

[43] L. Rabiner and B. Juang, Fundamentals of speech recognition, New Jersey: Prentice Hall, 
1993. 

[44] C. Lee, F. Soong, and K. Paliwal, Automatic speech and speaker recognition, 
Massachusetts: Kluwer Academic Publishers, 1996. 

[45] F. Jelinek, Statistical methods for speech recognition, Massachusetts: MIT Press, 1997. 

[46] BBN Byblos version 2.0 summer 2001 delivery manual, BBN Systems and Technologies, 
2001. 

[47] P. Dognin, “A bandpass transform for speaker normalization,” Ph.D dissertation, 
University of Pittsburgh, 2003. 

163 


	PREFACE
	INTRODUCTION
	DECOMPOSITION AND ENHANCEMENT OF SPEECH
	OUTLINE
	BACKGROUND
	STRUCTURE OF SPEECH
	Formants and Vowels
	Transitions
	Effects of Noise
	ANALYSIS OF SPEECH
	Periodic and Aperiodic Decomposition
	Wavelet Decompositions
	Identifying Transition Segments
	AM and FM Separation and Time-varying Filters
	Basis for Tracking Filter Bandwidth
	Figure 1: Weighting function to applied perceptual time-freq
	PSYCHOACOUSTIC TESTS
	Intelligibility Test
	Rhyme Test
	DECOMPOSITION ALGORITHM
	CONCEPT OF REMOVING FORMANT ENERGY
	Figure 2: Block diagrams of speech decompositions
	TRACKING FILTERS
	Figure 3: Block diagram of the linear prediction in the spec
	DECOMPOSITION DETAILS
	Figure 4: Relation of bandwidth of time-varying bandpass fil
	ILLUSTRATION
	Figure 5: Synthetic signal used to illustrate the algorithm:
	Figure 6: (a) estimated FMs (center frequencies of time-vary
	Figure 7: SNRs and time-varying bandwidths of each time-vary
	Figure 8: (a) upper and lower edges of time-varying bandwidt
	Figure 9: Frequency responses of (a) AZF (b) DTF, and (c) ti
	Figure 10: Individual output of each time-varying bandpass f
	Figure 11: The tonal component of the synthetic signal: (a) 
	Figure 12: The non-tonal component of the synthetic signal: 
	FILTER CHARACTERISTICS
	Synthetic Chirp Signal
	Figure 13: Structure of the synthetic chirp signal
	Analysis Results
	Figure 14: Waveforms of decomposed synthetic chirp signal: (
	Figure 15: Spectrograms of decomposed synthetic chirp signal
	Figure 16: SNRs and time-varying bandwidths of each time-var
	Table 1: Relative chirp energies of tonal components for the
	Table 2: Relative chirp energies of tonal components for the
	Figure 17: Relative chirp energies of the tonal components f
	Figure 18: Relative energies of cross-terms for the constant
	SOFTWARE MODIFICATIONS
	Figure 19: Relative energies in the tonal and non-tonal comp
	Figure 20: Relative energies in the tonal and non-tonal comp
	Table 3: Relative intelligibility in the tonal and non-tonal
	Figure 21: Waveforms of decomposed long speech signal spoken
	Figure 22: Spectrograms of decomposed long speech signal spo
	Figure 23: Waveforms of decomposed long speech signal from 0
	Figure 24: Spectrograms of decomposed long speech signal fro
	PRELIMINARY SPEECH RESULTS
	DATA PROCESSING DETAILS
	PRELIMINARY RESULTS
	Figure 25: Waveforms of decomposed real speech signal “Juice
	Figure 26: Spectrograms of decomposed real speech signal “Ju
	Figure 27: SNRs and time-varying bandwidths of each time-var
	Figure 28: Individual output of each time-varying bandpass f
	Figure 29: Waveforms of decomposed real speech signal “Pike”
	Figure 30: Spectrograms of decomposed real speech signal “Pi
	Figure 31: (a) relative energies in the tonal and non-tonal 
	Figure 32: (a) relative energies in the tonal and non-tonal 
	ALGORITHM PARAMETER SELECTIONS
	Figure 33: Relative energies in the tonal and non-tonal comp
	Figure 34: Relative energies in the tonal and non-tonal comp
	Table 4: Relative intelligibility in the tonal and non-tonal
	Table 5: Relative intelligibility in the tonal and non-tonal
	PSYCHOACOUSTIC EVALUATIONS
	TESTS ON SPEECH COMPONENTS
	Methods
	Figure 35: Example of growth function fit (R2 = 0.99).
	Results
	Table 6: Mean of energy in the tonal and non-tonal component
	Figure 36: Growth of word recognition based on error functio
	Table 7: Growth function parameters. Standard deviation in p
	Table 8: Results of the Wilcoxon paired comparison tests
	TESTS ON ENHANCED SPEECH
	Methods
	Figure 37: Structure of the stimuli
	Results
	Table 9: Mean of energy in the tonal and non-tonal component
	Figure 38: Means and 95% confidence intervals of word recogn
	Table 10: Differences (enhanced speech – original speech) of
	Figure 39: Means of response times (sec) for original (solid
	Table 11: Differences (enhanced speech – original speech) of
	TESTS ON ENHANCED AND PSEUDO-ENHANCED SPEECH
	Methods
	Figure 40: A block diagram of pseudo-enhanced filter functio
	Figure 41: The long-term averaged spectra of (a) original an
	Figure 42: The long-term averaged spectra of enhanced (solid
	Figure 43: Waveforms of a mono-syllable word “Meat” spoken b
	Figure 44: Spectrograms of a mono-syllable word “Meat” spoke
	Results
	Table 12: Differences (pseudo-enhanced speech – enhanced spe
	DISCUSSION AND FUTURE RESEARCH
	DISCUSSION
	FUTURE RESEARCH
	APPENDIX A
	ANALYTICAL TESTS OF SPEECH INTELLIGIBILITY
	Articulation Index And Speech Intelligibility Index
	Implementations of AI and SII
	Results of AI and SII
	Figure A1: Ensemble spectral energies in each band for five 
	Figure A2: Ensemble spectral energies - original speech sign
	Figure A3: Ensemble AIs for original speech signal (solid), 
	Figure A4: Ensemble SIIs for original speech signal (solid),
	Automatic Speech Recognition Test
	Automatic Speech Recognition Test - BBN Byblos System
	Table A1: Decoding results (word error rates) for each decom
	Automatic Speech Recognition Test - Dragon System
	Table A2: Decoding results (word error rates) for each decom
	Table A3: Decoding Results (word error rates) for each decom
	APPENDIX B
	RELATIVE POSITIVE (NEGATIVE) CHIRP ENERGIES OF TONAL COMPONE
	Table B1: Relative positive (negative) chirp energies of ton
	APPENDIX C
	DECOMPOSITION RESULTS OF SYNTHETIC CHIRP SIGNAL (4 CHIRPS)
	Figure C1: Waveforms of decomposed synthetic chirp signal (4
	Figure C2: Spectrograms of decomposed synthetic chirp signal
	Figure C3: Upper and lower edges of time-varying bandwidths 
	Figure C4: Waveforms of decomposed synthetic chirp signal (4
	Figure C5: Spectrograms of decomposed synthetic chirp signal
	Figure C6: Upper and lower edges of time-varying bandwidths 
	APPENDIX D
	THREE HUNDRED RHYMING WORDS
	APPENDIX E
	SENSITIVITY OF THE FILTER FUNCTION FOR PSEUDO-ENHANCED SPEEC
	Figure E1: The long-term averaged spectra of (a) original an
	Figure E2: The long-term averaged spectra of (a) original an
	Figure E3: The long-term averaged spectra of (a) original an
	Figure E4: The long-term averaged spectra of enhanced (solid
	Figure E5: The long-term averaged spectra of enhanced (solid
	Figure E6: The long-term averaged spectra of enhanced (solid
	Figure E7: The long-term averaged spectra of (a) original an
	Figure E8: The long-term averaged spectra of (a) original an
	Figure E9: The long-term averaged spectra of enhanced (solid
	Figure E10: The long-term averaged spectra of enhanced (soli
	Figure E11: The magnitudes of three filter functions. Dashed
	Figure E12: The magnitudes of the rest two filter functions.
	Figure E13: The magnitude of five filter functions. Dashed, 
	BIBLIOGRAPHY

