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A CAUSAL INTERPRETATION OF SELECTION THEORY 
 

Peter Gildenhuys, PhD 
 

University of Pittsburgh, 2009 
 
 
The following dissertation is an inferentialist account of classical population genetics. I present 

the theory as a definite body of interconnected inferential rules for generating mathematical 

models of population dynamics. To state those rules, I use the notion of causation as a primitive. 

First, I put forward a rule stating the circumstances of application of the theory, one that uses 

causal language to pick out the types of entities over which the theory may be deployed. Next, I 

offer a rule for grouping such entities into populations based on their competitive causal 

relationships. Then I offer a general algorithm for generating classical population genetics 

models for such populations on the basis of what causal influences operate within them. 

Dynamical models in population genetics are designed to demystify natural phenomena, 

chiefly to show how adaptation, altruism, and genetic polymorphism can be explained in terms 

of natural rather than supernatural processes. In order for the theory to serve this purpose, it must 

be possible to understand, in a principled fashion, when and how to deploy the theory. By 

presenting the theory as a system of ordered inferential rules that takes causal information as its 

critical input and yields dynamical models as its outputs, I show explicitly how classical 

population genetics functions as a non-circular theoretical apparatus for generating explanations. 

The generalization of the theory achieved by presenting it using causal vocabulary shows how 

the scope of the theory of natural selection extends beyond its traditional domain of systems of 

individuals distinguished by genetic variations. 
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1.0 SELECTION THEORY 

 

My subject is selection theory, the study of natural selection. This opening section serves simply 

to set the boundaries of that term, as well as is possible, with respect to nearby vocabulary that is 

more widely deployed.  

What I call selection theory would be treated by most people as evolutionary theory, or at 

least a part of evolutionary theory. But the term “evolutionary theory” is indeterminate and may 

include subject matter that falls outside the purview of my concern. For instance, developmental 

systems theorists explicitly endorse an integrated approach to the study of evolution and 

development, one designed to explain far more than just the spread of variations within 

populations (Griffiths and Gray 2001, 196). Such an integrated approach is not undertaken here. 

Others understand evolutionary theory as nothing more than a diffuse collection of models, 

principles, generalizations, and explanations. One recent writer listed Wright’s shifting balance 

theory, Fisher’s fundamental theorem of natural selection, Eldredge and Gould’s theory of 

punctuated equilibria, and the thermoregulatory theory of the origin of feathers to get across the 

content of evolutionary theory (Shanahan 2003, 164). So while evolutionary theory is many 

things to many people, selection theory is a term that is not so widespread as to invite 

misunderstanding. 

Besides the indeterminate reference of “evolutionary theory,” there are a couple of 

additional reasons to reject that label for my subject matter: natural selection can explain a lack 

of evolution, as in frequency-dependent selection for stable polymorphisms, and some 

 



evolutionary change may be inexplicable on the basis of selection theory, such as that prompted 

not by competition between variants but by global warming, which has certainly caused 

evolutionary change within some taxa. It would be a mistake to put the word “evolutionary” into 

the name of a theory that both explains more than just evolution and also fails to explain some of 

it. 

Population genetics is the theory that probably comes closest to picking out what I intend 

to mean by the term “selection theory,” but population genetics, as it is usually presented, is too 

closely connected with specifically genetic variations to fully serve my purposes. Officially, my 

view is that chromatin marking schemes, cell membranes, ideas, even whole organisms, can be 

treated in the way that alleles are treated in classical population genetics models, at least 

sometimes. So while alleles are the paradigm entities over which selection theory is deployed, its 

use is not restricted to them. In Chapter 3 I put forth the term “competitor” as a generalization of 

“allele”; in that chapter I take an explicit and rigid stance on the question of what sorts of 

systems can be understood using selection theory. For now, what I am calling selection theory 

should be understood as a generalization of population genetics. It is a theory that provides the 

means for inferring the dynamics of a subset of natural systems, ones containing competitors, 

where competitors include at least alleles. 

 

1.1 EXPLANATION AND DEMYSTIFICATION 

Historically, Darwin, the founder of selection theory, sought to demonstrate that evolution and 

adaptation were explicable using his new theory of natural selection (Lennox 1991). But the 

imaginary scenarios that Darwin deploys in the Origin to show how otherwise mysterious 

phenomena are explicable in terms of evolution by natural selection are not explanations of those 
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phenomena. Indeed, they are not even putative explanations: Darwin’s imaginary scenarios are 

not even supposed to capture how the evolution of real populations actually occurred. 

Nonetheless Darwinian demonstrations that biological structures are explicable in terms of 

natural selection remain legitimate argumentative tools against the stance that the same structures 

could not have evolved by natural selection. Such demonstrations show that otherwise puzzling 

and designed-appearing structures could indeed have evolved by natural selection, and these 

form part of a broader assault by Darwin on the creationist invocation of the supernatural to 

explain features of the biological world. We do not need supernatural explanations of adaptations 

to make sense of their designed-appearing character.  

While Gould and Lewontin’s (1979) are right to attack uses of imaginary scenarios in 

which they are presented as full-fledged explanations, Darwin’s imaginary illustrations find a 

role in a more modest use of the theory of natural selection: they show how an adaptation is 

explicable by natural selection, how it is possible for such adaptations to exist, and so act as 

counters to the impossibility arguments, launched by Darwin’s opponents, to the effect that 

organs of extreme perfection, such as the eye, could not have evolved by natural selection 

(Lennox 1991; see discussion in Brandon 1990, 176-184). 
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Contemporary selection theory provides a means for inferring the dynamics of biological 

systems, but the point of having a theory that makes this possible is to have something that 

demystifies biological phenomena. I pick out three biological phenomena that it is the point of 

contemporary selection theory to demystify: adaptation, genetic polymorphism, and altruism. 

The presence of designed-appearing structures in the natural world is the chief mystery that 

selection theory is used to solve, but genetic polymorphism and altruism are mysterious 

phenomena too, though probably not quite as mysterious. Selection theory makes sense of the 

mysterious phenomena just listed by showing how they could be explained. 

Using a theory to explain phenomena and using it to show how they are explicable are 

not the same things. However, both tasks can only be effected using with a theory that has an 

explanatory structure. So the main thrust of this work is to offer an explicit account of the 

workings of selection theory that demonstrates how the theory can function as an explanatory 

theory. 

While the most straightforward way to argue that selection theory must have an 

explanatory structure would be to argue that it explains, I do not argue this way, even though I 

believe that selection theory can be, and indeed is, used to explain things. For instance, we have 

very good evidence that spatially and temporally variable selection is responsible for the 

persistence of a color polymorphism in Linanthus parryae (Schemske and Bierzychudek 2001; 

Turelli, Schemske, and Bierzychudek 2001; Schemske and Bierzychudek 2007). Instead, I argue 

1) that the chief (though not sole) role of selection theory is to demystify adaptations, genetic 

polymorphism, and altruism, but not necessarily to explain them; 2) that a theory that demystifies 

must have an explanatory structure, for it must explain the dynamics of plausible but imaginary 

populations, and hence 3) that selection theory must have an explanatory structure. I argue in this 
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way because I regard deployments of the theory over imaginary populations, ones that do not 

even purport to explain anything as legitimate, indeed seminal, deployments of the theory.  

Actual explanatory deployments of selection theory over real systems take a backseat to 

imaginary ones not only historically, but in other ways too. Actual explanatory uses of selection 

theory are much more dispensable, for instance. Were it to turn out that many actual 

deployments of selection theory were misguided, we would be left without an explanation of the 

target structures, but we would still be left with a theory that showed how adaptations could 

evolve. Even if selection theory could never be used to actually explain anything owing, say, to 

insuperable epistemic limitations, it would still have its demystification function, and it would 

have to have an explanatory structure to fulfill that function. Were the theory to cease to fulfill its 

function in making mysterious biological structure explicable, however, we would be left with a 

major mystery on our hands, for we would lack any account of how designed-appearing 

biological structures even could have come to be. 

While I think it is interesting and important that the main point of selection theory is 

demystification, and it is because selection theory must demystify that it must have an 

explanatory structure, I nonetheless propose to move on and simply show that my stance is 

coherent not only with evolutionary theory as Darwin understood it, but also with research in 

contemporary population genetics. Someone who would contend with me over this issue would 

almost certainly argue that the role of selection theory is not to make organic phenomena 

explicable, but instead to explain them. Someone who takes that view effectively grants me the 

claim that I ultimately want to secure, namely that selection theory must have an explanatory 

structure, but undertakes the claim for different reasons. So we can simply agree to disagree 

about the justification, and agree that selection theory must have an explanatory structure. 
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1.2 EXPLICABILITY AND POPULATION GENETICS 

The view that the main point of selection theory is about demonstrating the explicability of 

biological phenomena jibes nicely with population genetics practice (Plutynski 2004). Crucial to 

the project of using population genetics to demystify, or to provide of “how possibly” 

explanations, is the drawing of analytic results from population genetics models concerning the 

dynamics of the systems to which the models apply. Historically, the main research activity of 

population geneticists has been to develop models from which analytic results concerning the 

dynamics of populations of alleles can be drawn. These models are almost always concerned 

with the long-term dynamics of populations (Gale 1990, 40). 

Consider, for example, Fisher’s “fundamental theorem of natural selection.” In one 

interpretation of this principle, Fisher is taken to have shown that the rate of increase in mean 

fitness in a population is equal to the additive component of the genetic variance in fitness, at 

least for a subset of evolutionary situations. Ewens argues that the fundamental theorem of 

Fisher is deeper and more general than this (2004, 18, 64-67), but matters of historical 

interpretation aside, my point remains the same: Fisher contributed to the program of 

demystifying adaptation by showing how, for a certain range of cases, selection leads to 

increased fitness, thereby providing a rigorous mathematical formulation of how selection 

promotes the spread of more adaptive structures (This is true, provided mutant alleles that 

produce incrementally superior variations in such structures recur in the population, something 

that can be ascertained independently.) 

 From the same perspective, consider population genetics models that show how genetic 

variation is maintained in populations by selection. Genetic polymorphism has been a major 
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explanatory target among population geneticists since the 1940s (Levins 2004, 22); Gillespie 

begins the preface to his treatise challenging the neutral theory, The Causes of Molecular 

Evolution, with the claim, “naturally occurring genetic variation is an enigma” (Gillespie 1991, 

vii) . Models of overdominance, in which the relative fitness of the heterozygote is greater than 

that of either homozygotes, are the best known models that show how genetic variation can 

persist in a population owing to selection, but the persistence of genetic variation is also an 

outcome, too, of variable selection models, sex-dependent selection models, frequency-

dependent selection models, and many others. Models demonstrating how such variation could 

persist in population owing to a variety of different sorts of selection regimes contribute to the 

project of demystifying genetic polymorphism. Often, no effort is made to apply polymorphism-

yielding models to actual populations; many variable selection models, for instance, are far too 

complicated for this. But such models nonetheless contribute to demystifying the extent of 

genetic polymorphism by showing how it is explicable as the result of selection. 

As another illustration of how population genetics is used to demystify genetic 

polymorphism, consider how the neutral theory, the rival contender to selectionist accounts of 

genetic polymorphism, explains genetic polymorphism as the result of random drift.1 The debate 

between balancing selectionists and neutralists over how much genetic polymorphism can be 

accounted for by each camp is ongoing. But they are competing for the same territory, 

population geneticists in both camps seek to account for polymorphism by offering models that 

yield persistent polymorphisms as their inferential outputs. 

 As one last example of this sort of thing, consider the mystery of biological altruism. At 

first glance, we should expect very little, indeed no, instances of behaviors in the natural world 

that benefit others at the expense of the individual performing them, for we would expect that 
                                                 
1 See chapter 7 for a specification of the causal notion of drift. 
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selfish individuals would do not act in such a fashion would invade populations of altruists and 

spread at the expense of their counterparts until no altruists remained. But altruism exists in 

nature. Accordingly, population geneticists have been in the business of demystifying altruism 

too, generating specialized models in which altruism spreads, or is at least maintained, in 

populations despite its having some negative consequences for the relative fitness of the altruists 

(e.g., Hamilton 1964; Sober and Wilson 1998; Michod 1999; Dessalles 2007). Sober and Wilson 

note that even the most famous case of altruism in nature, that of the brainworm parasite D. 

dentriticum, is not one over which population genetics models have actually been deployed 

(Sober and Wilson 1998, 30). All that has been shown is that it is the sort of system in which 

altruism could be explained by (a class of) formal population genetics models. Population 

geneticists settle for demystifying altruism. 

 How do models for which mean fitness increase, the maintenance of polymorphism, and 

the persistence of altruism are the explananda serve to discharge the mysteries generated by the 

biological phenomena in the natural world that they target given that such models are rarely if 

ever applied to actual populations? The models are rarely even tested on natural populations (an 

interesting fact in its own right). So such models do not explain by showing how populations do 

indeed evolve in accordance with what the models predict. Furthermore, the models from which 

analytic results can be drawn are necessarily simple. Many selection processes in nature will be 

much more complex than those that can be captured by a model from which analytic results can 

be drawn. Multilocus selection is the standard example of a complicated but potentially 

widespread phenomenon that is analytically intractable. 

Models of mean fitness increase, persistent polymorphism, and altruism do not explain so 

much as they demystify: they contribute to showing how adaptation, genetic polymorphism, and 
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altruism are explicable using the formal techniques of population genetics. Phenomena such as 

biological altruism are alarming until it is shown, by means of a variety of models, that 

biological altruism can be maintained in populations. Researchers do not go on to try to fit every 

last altruistic behavior to this or that evolutionary model; rather, the idea is that those to whom 

the models are presented will no longer find the various instances of altruistic behavior in the 

biological world so mysterious.  

Because the central function of selection theory, both as used by Darwin and as used in 

quantitative form by his intellectual descendants, is to demystify rather than to explain, I do not 

go so far as to claim that selection theory explains adaptation. But nonetheless, I claim that the 

theory must be structured as an explanatory theory if it is to fulfill its function as a 

demystification device. This claim is true not only of the theory in its qualitative form, as Darwin 

initially conceived; it is equally true of the quantitative formulations of population genetics 

theory. Demonstrating that biological traits are explicable requires one to have an explanatory 

theory, the sort of theory that could explain them. That polymorphism and altruism are 

explicable in terms of selection theory is demonstrated by exhibiting these as the inferential 

outputs of a formal mathematical theory with an explanatory structure. 

That selection theory must be shown to have an explanatory structure places some 

constraints on what an account of selection theory must be like. In the next three sections of this 

chapter, I explore three of those constraints.  

 

1.3 SELECTION THEORY AS A SET OF INFERENCE RULES 

A theory with an explanatory structure must be one with an inferential structure. Not all 

inferences are explanatory, but all explanations are inferences of some sort or another. I do not 
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motivate this constraint on explanation, but it is quite a weak constraint, and I expect my reader 

to grant it. It is very difficult to imagine a putative explanans not inferentially related to its 

explanandum nonetheless being counted as an explanation of it. 

Perhaps advocates of the semantic view of scientific theories might contest the 

connection between inferences and explanation being assumed, most likely on the grounds that, 

on the semantic view, models are regarded as extra-linguistic entities, while inferences must 

involve linguistic components. But this technicality will not matter to what follows. I seek to 

portray selection theory as a set of rules, rules that I think are quite naturally called inference 

rules. But even if the use of some logical machinery to calculate system dynamics does not count 

as inference, the deployment and manipulation of formal mathematical structures is surely rule-

governed, and that is what matters. I propose simply to regard rule-governed formal 

manipulation of mathematical structures as a type of inference, if only for ease of presentation in 

what follows. Besides, the rules with which I will be most concerned are ones that state under 

what circumstances it is appropriate which models, rather than with the inferences made using 

the formal machinery. 
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Selection theory, then, provides a general way of making inferences about the sorts of 

systems to which it is applied. Accordingly, it must embody a set of general inferential rules for 

making explanatory inferences about the spread of variations through populations. I choose to 

present selection theory using nothing stronger than the notion of inferential rule because I 

embrace an approach to philosophical analysis that uses the notions of rule and norm as 

fundamental explanatory devices. But not everyone will share that broader theoretical 

perspective, so some discussion of its merits for the project at hand is necessary. Here are a 

couple of reasons why I think it is beneficial, or at least harmless, to approach selection theory as 

embodying a set of inference rules. 

While selection theory is typically presented as consisting in principles, or models, or 

laws of nature, rather than rules of inference, thinkers who do not share my philosophical 

perspective should have little difficulty translating what I write about the rules of selection 

theory into those terms with which they are more comfortable, or at least more familiar. Laws of 

nature (principles, models, etc) provide us with rules of inference. Pragmatics aside, would 

someone really take it that a law of nature does not provide grounds for making inferences about 

system dynamics? This makes it possible to evaluate a proposed law of nature (or whatever) on 

the basis of its suitability as a rule of inference. A true law of nature should not induce someone 

to make incorrect inferences about empirical matters; it should not take them from truths to 

falsehoods. So my choice to present selection theory as a set of rules should turn out to be 

harmless from the perspective of those who would prefer more muscular vocabulary. Readers are 

encouraged to evaluate what I propose as rules of inference for selection theory as laws of 

nature, or principles, or models, or whatever, whenever it suits them to do so.  
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Secondly, presenting selection theory as embodying a set of inferential rules rather than 

natural laws or models allows me to avoid terms that are ambiguous and hotly contested notions 

in the philosophy of science. Even the rules from selection theory that are most naturally 

interpreted as expressing laws of nature, such as the inference licenses embodied in the equations 

of population genetics, will not count as laws of nature according to Earman, Roberts, and Smith 

(Earman, Roberts, and Smith 2002; Earman and Roberts 1999). These authors are the staunchest 

contemporary advocates of the view that a law of nature must be exceptionless and universal. In 

this hardline approach, only the inferential rules of fundamental physics express laws of nature. 

It will come as no surprise that selection theorists do not and cannot make the inferences they 

make about the dynamics of natural (though often imaginary) populations by means of the laws 

of fundamental physics. So presenting selection theory as consisting in inferential rules allows 

me to present selection theory in a manner that is acceptable to a wider audience, including both 

those who accept and those who deny that the rules of selection theory should be counted among 

the laws of nature. 

In some ways, I am picking my battles by avoiding ambiguous or controversial 

alternative language that could be used to present selection theory. But I also mean to expose the 

value of a normative, rule-based approach to the study of a scientific theory. One can get a lot 

done, and do a lot of explaining, without using more determinate notion than that of inferential 

rule to do the work that that notion does here, though I recognize that the proof of this assertion 

is the pudding. 

 In the body of the work, I draw close attention to what must be inferred on the basis of 

what else. My greatest difficulties with rival theoretical presentations of selection theory on the 

part of both biologists and philosophers have to do with an insufficient attentiveness to the 
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inferential relationships among the components of the theory, and how these inferential 

relationships have consequences for the possibility of using selection theory to generate non-

circular explanations. 

 

1.4 THE DEFINITENESS OF SELECTION THEORY AS A PRECONDITION FOR 

EXPLICABILITY 

I present selection theory as a definite body, a single, though intricate and complex, inferential 

tool that can be used to generate explanations of the dynamics of a subset of systems in the 

natural world, ones whose members are competitors. I present selection theory as having not 

only a definite function but also a definite content. That content consists in a series of rules for 

deploying the theory such that it ultimately yields systems of equations that can explain the 

dynamics of such systems. 

If we introduce imaginary or hypothetical populations into this framework, we get 

accounts of what would happen to such systems. If it is plausible that the hypothetical 

populations are ancestors of contemporary ones, the theory yields an account of how 

contemporary populations could have come to instantiate the present day features that they do. It 

is through these sorts of real deployments of the theory over imaginary systems that 

demystification is achieved. 

The motivation for laying out selection theory as a definite body has to do with how it 

functions to demystify. For adaptation, say, to be explicable in terms of selection theory, it must 

be possible to invoke how selection theory could or would be applied to a hypothetical 

population without actually applying it to a natural system. If we cannot circumscribe selection 

theory as a specific sort of thing, then our claim that some particular adaptation is explicable 
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using selection theory will amount to little more than the claim that the adaptation is explicable 

somehow. That sort of assertion does little to demystify. But if instead we can point to a definite 

set of explanatory techniques that are applicable in definite situations, of which our mysterious 

adaptation is an instance, the claim that the adaptation is explicable in terms of the theory will 

have real bite.2 

 

1.5 GENERALITY 

That selection theory can be deployed over systems that differ in important respects, ways that 

matter to their dynamics, presents a challenge for anyone who would give the theory a definite 

content. That selection theory may apply to different sorts of systems that undergo different sorts 

of dynamics then presents a further line drawing challenge: if the theory can handle a diversity of 

systems, how do we know which systems are those that undergo selection? Since the theory 

already encompasses a diversity of systems, how can other, perhaps merely slightly different 

sorts of systems, be excluded from its scope? On what grounds do we exclude systems that share 

some features with those considered to undergo selection? If we plump for a particular rule to 

decide this issue, how do we know whether the rule has too narrow or too broad an application? 

I propose to set aside this question for the moment and to return to it in the conclusion. 

We need not decide the question upfront, and it will be easier to arbitrate it later on, when the 

presentation of selection theory being pursued here has been completed. It seems harmless to put 

off the generality issue for a couple of reasons. For one thing, a generalization of selection theory 

that falls short of full generality need not be considered a total failure, especially if it can be 

further generalized in the future. Moreover, the approach taken to generalization in this work has 

                                                 
2 While selection theory should be applicable in each and every instance of what looks like an adaptation, this 
attitude need not commit us to the view that everything that looks like it resulted from adaptive evolution actually 
did so. 
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a broader mandate than just its generality. As I discuss at greater length in section 1.10 below, I 

use causal vocabulary to generalize the vocabulary found in classical population genetics and by 

doing so I provide grounds for thinking that selection theory has an explanatory structure. My 

use of causal vocabulary to present the theory is generalizing, but it also exposes how the theory 

explains. 

 It should be noted, too, that my view that it is possible to decide on some definite grounds 

whether selection theory is applicable to some system is a mainstream view, though few other 

writers would put the point quite in the fashion I do. At least one strand in the units of selection 

debate is about the requirements for selection: Dawkins claims that selection requires replicators 

and calls them “units of selection.” Though they sharply disagree with Dawkins on this point, 

Lewontin and advocates of DST have also invoked a set of requirements for selection (Lewontin 

1970, 1978; Griffiths and Gray 1997; Griffiths and Gray 1994; Griffiths and Gray 2001; Griffiths 

and Gray 2004; Griffiths, Gray, and Oyama 2001; Griffiths and Knight 1998). Brandon (1990) 

has engaged in the project of saying how critical components of selection theory are interrelated 

and how they should be deployed, especially “adaptation” and “environment.” So, my reasons 

for doing so aside, that I regard selection theory as a definite body featuring concepts that must 

be deployed in definite fashion in the generation of explanations of system dynamics is not 

something that separates me from my interlocutors.  

 

1.6 CIRCULARITIES 

One aspect of showing how selection theory is an explanatory theory is showing how the 

inferences involved are of the explanatory sort. That is a burden taken up later. But something 

further follows from the claim that explanations are inferences: bad inferences are bad 
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explanations. Anything that undermines a putative inferential relationship will by extension 

undermine whatever explanatory power that inferential relationship might be supposed to have. 

The specific kind of undermining feature with which I will be especially concerned in this 

section is circularity. Circular inferences do not explain. Hence, an account of selection theory 

had better not be circular if it is to expose the theory as an explanatory theory. 

In the approach taken here, the constraint that selection theory must not embody 

circularities becomes quite severe, for selection theory is being treated as a complex set of 

inferentially interrelated rules. The ban on circularity applies not only to individual rules that 

make explicit, say, how to circumscribe populations or when to weight relative frequency 

variables with fitness coefficients, but also to the theory as a whole, thereby banning sets of rules 

that put in place circularities among them. For instance, one cannot make an even implicit appeal 

to the notion of population in setting down a rule for deploying fitness coefficients if one’s rule 

for circumscribing populations makes appeal to the notion of fitness. Sets of rules that exemplify 

circularities cannot contribute to an understanding of how selection theory as a whole should be 

deployed as an explanatory tool. 

Circularities also appear in accounts of selection theory in which the explanatory output 

of the theory is used to make sense of elements internal to it. This particular sort of circularity 

merits discussion if only because of the large literature that has built up around the “tautology 

problem.” When we define fitness in terms of relative reproduction rate, we undertake this sort 

of circularity, at least if we mean our definition of fitness to be relevant to the deployment of 

fitness coefficients in mathematical models. When we define drift as random change in allele 

frequency, we do the same sort of thing.3  

                                                 
3 I will offer alternative ways to understand fitness coefficients and drift in chapters 6 and 7. 
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The last sort of circularities I confront are ones that connect statements of the 

requirements for selection with other elements of the theory, either the explanatory output of the 

theory, or theoretical terms from the body of the theory. So, for instance, we should not make 

evolution, or differences in relative reproduction rates or relative fitnesses a requirement for 

selection. I criticize some candidate statements of the requirements for selection on the grounds 

that they involve one in circular reasoning of this sort. 

 

1.7 DISTINGUISHING NECESSARY AND SUFFICIENT CONDITIONS 

I have promised a philosophical account of selection theory, a theory that makes explicable 

otherwise mysterious phenomena, chiefly adaptation, genetic polymorphism, and altruism. That 

selection theory must make mysterious phenomena explicable means the theory must be 

structured in an appropriate fashion to do so. In other words, that selection theory demystifies 

adaptation implies further facts about the theory. These features are the necessary conditions of 

the theory. Anything that does not show how selection theory has these features is simply not 

recognizable as an explication of selection theory. Conversely, anything putatively sufficient to 

meet these obligations deserves consideration as a candidate explication of selection theory.4 

                                                 
4 I recognize that this commits me to regarding a strange amalgam of what I call selection theory and another 
unrelated theory such as quantum mechanics as an instance of selection theory. Such things should not be counted as 
instances of selection theory, but acknowledging them as such here just makes my life more difficult, for it increases 
the number of theories I am forced to consider as rivals, so it should not bother us for the present. I come back to 
discussing this sort of amalgam in the conclusion (chapter 8). 
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I summarize and review the necessary conditions of selection theory. For something to 

count as selection theory, it must be a fit tool for making our trio of mysterious phenomena 

explicable. That necessary condition begets several more requirements in turn. First, selection 

theory must have an explanatory structure and (consequently) an inferential or at least rule-

governed one. Second, it must not violate strictures on what is a good sort of inference. 

Particularly, it had better not be somehow circular. Last, selection theory must be isolatable as a 

definite body in order to fulfill its function of demystification.  

 The remainder of this work consists in an account of selection theory that shows how the 

theory has the features just reviewed. What I offer as at least a version of selection theory meets 

the necessary conditions that an account of selection theory must meet. Indeed, I justify my rules 

for how selection theory should be understood in terms of how they allow one to accomplish the 

point of the theory, the demystification of features of the organic world, especially adaptation 

and adaptive evolutionary change. My suggestion for how selection theory is structured fulfills 

the necessary conditions for an account of selection theory, it has the various features that any 

such account must have: it is inferential, explanatory, non-circular, and can be isolated as a 

definite body. 

Justifying a proposed understanding of a theory, or indeed an understanding of any 

fragment of language, on the basis its point involves an appeal to pragmatics, an appeal to the 

interests of individuals who would deploy it. It is only those of us who are interested in 

understanding what could explain adaptations and other curious phenomena who can get 

something out of an understanding of the rules that follow. But the rules of reasoning I offer 

below apply only to those interested in making adaptation explicable. 
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 I am not the only person interested in the functioning of selection theory who argues in 

this way. Another writer who does so is John Damuth (1985). Concerned to argue that clades are 

unsuitable as populations over which to deploy selection theory, he repeatedly argues against so 

treating them on the grounds that selection theory is not “designed” to study such populations, 

that it would not “effective way to study” clades and that doing so would result in an 

“undesirable alternation in the explanatory scope of the theory” (Damuth 1985, 1134`; 1136). 

Clades are spread out over great distances and include organisms that do not interact with 

each other or with similar environments. These are certainly not the sort of populations over 

which selection theory is typically deployed. However, Damuth is clear that there is no logical 

bar to a version of selection theory in which clades function as populations, it’s just that such a 

theory would not yield the sort of explanations that we are after when applying selection theory: 

The overall effect of treating changes in non-localized entities 
[such as many clades] as results of a pure, simple selection process 
operating on each entity as whole would be to drastically alter the 
sorts of questions about causation that could be addressed by this 
modified theory. In conventional simple selection, fitness values 
and observed or predicted changes represent the effects of the 
relative quality under given circumstances, of different phenotypes 
in the population. In this new, expanded usage of simple selection, 
this would no longer be the case. … But, it is the conventional 
theory that provides the explanations of interest to us. We have no 
use for a theory of pure selection that explains or predicts that a 
population of type A, experiencing particular conditions in Africa, 
will shrink, while a population of type B, experiencing different 
conditions in North America, will grow—and that thus the 
proportions of the two types will change. Rather, we want a 
selection theory that deals with the relative abilities of the two 
types under particular circumstances, and we want it to tell us how 
these relative abilities cause populations in each place to change in 
response to local conditions (i.e. to adapt). The more complex, 
global picture involving change in the non-localized entity is a job 
for a different kind of model (Damuth 1985, 1134; italics in 
original) 
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Note how Damuth repeatedly makes reference to what we expect from our models, what their 

jobs are, what they tell us about what interests us. Below, I repeatedly make reference to the 

point of selection theory, to what it is supposed to tell us, to justify my decisions about how to 

understand the theory. These justifications only work on individuals who are interested in 

acquiring what selection theory provides for us, the demystification of adaptation, genetic 

polymorphism, and altruism.  

It should be stressed, too, that what is on offer below is nothing more than one suggestion 

for how the point of selection theory might be fulfilled. What I offer is not logically compelled 

by the necessary conditions that an account of selection theory must fulfill. An account of 

selection theory must make it clear how one proposes to meet the explanatory obligations of 

selection theory, how to fulfill its point. But to show one way of doing so is not to show the only 

way to do so. This section thus forms a bridge: the features of selection theory discussed earlier 

are the necessary conditions that any account of selection theory must meet, what comes next are 

a set of sufficient conditions for meeting these. 

 

1.8 ENTRANCE RULES, EXIT RULES, AND THE BODY OF SELECTION THEORY 

In this section I will make a little more precise my ideas about how selection theory functions to 

demystify. The discussion that follows is placed firmly in the sufficient conditions segment of 

the dissertation. It might well be possible to fulfill the requirements that a presentation of 

selection theory must fulfill in some alternative fashion. What follows is one way to present 

selection theory as an explanatory theory. The strategy I adopt is neither that of the semantic nor 

the syntactic view of scientific theories. For the sake of having a label, I will call my approach 

inferentialist. 
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As presented here, the theory consists in three sorts of inferential rules. The first sort of 

rule I call an entrance rule. An entrance rule is a statement of what sorts of features some system 

must have for it to be correct to deploy selection theory over that system.5 Equivalently, an 

entrance rule states the circumstances of application of selection theory. In chapter 2, I consider a 

number of statements by other writers concerning the requirements for selection. I evaluate, and 

ultimately reject, these as candidate entrance rules for selection theory. While the authors of the 

statements of the requirements for selection I consider would probably not have called their 

statements “entrance rules,” it remains a widespread intuition among philosophers of biology and 

biologists that it should be possible to say what sorts of features some system must have for it to 

make sense to treat its dynamics using selection theory. I offer my own stance on the entrance 

rule for selection theory in chapter 3.  

 Skipping ahead, the sorts of rules that come last in selection theory are the exit rules of 

the theory. The exit rules of the theory are systems of equations or mathematical models, ones 

that are constructed in the manner of classical population genetics. I speak of exit rules rather 

than a single exit rule because there are many mathematical structures that are used to model the 

dynamics of populations under selection. 

The last set of rules, the ones that make up the body of selection theory, consists in rules 

for connecting a system that meets the entrance rule for the theory to some particular exit rule, a 

mathematical model that governs the dynamics of the system. Selection theory has a simple 

entrance rule, one that sorts systems into two piles, those over which it makes sense to deploy the 

theory and those it does not. Somehow, the systems over which the theory is applicable must be 

further sorted so that it is possible to say which ones are associated with which mathematical 

                                                 
5 By using the terms entrance rule and exit rule, I am deliberately trying to invoke the Gentzen-style approach to the 
introduction and elimination of logical vocabulary. The idea behind my presentation of selection theory is much the 
same, though I am talking about the deployment of a theory, not a term, a concept, or a logical operator. 
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structures among the exit rules of the theory. There are rules for making these sorting decisions, 

indeed a quite intricate set. Those rules constitute the body of the theory; they are what come 

between the entrance and the exit rules and link the two. 

Though it should in general be possible to state which mathematical structures are 

appropriate for which sorts of systems, I do not attempt to do this for the entirety of population 

genetics. Instead, I focus my attention of sub-class of mathematical models, Wright-Fisher 

discrete generation models. I have chosen to deal with discrete generation models for a couple of 

reasons. Discrete generation models are mathematically the least sophisticated of population 

genetics models, making them the easiest to understand. But this lack of mathematical 

sophistication brings with it the possibility of modeling a great variety of causal scenarios, far 

more than can be handled by diffusion theory, Cannings models, Moran models, age-structured 

models, or a number of other alternatives.6 

  

                                                 
6 Indeed, philosophers interested in evolutionary theory have often failed to get a grip on how the sophisticated 
models of selection theory can accommodate the existence of contextual causal influences over population dynamics 
(e.g., Glymour 2006) 
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As part of my discussion of the body of selection theory, I first offer, in chapter 4, an 

account of how to group the entities over which the theory may be applied into populations. In 

chapter 5, I offer some definitions for use in an algorithm for making judgments about the 

appropriate deterministic Wright-Fisher model for an arbitrary population. In chapter 6, I present 

the algorithm for generating a deterministic Wright-Fisher mathematical model appropriate for 

some population based on causal facts about it. In chapter 7, I briefly show how to deploy 

stochastic versions of Wright-Fisher models by taking into account random influences over 

dynamics, ones that the deterministic versions generated by the algorithm of the sixth chapter 

leave out. Those chapters together comprise an account of how to connect systems over which 

selection theory can be applied to mathematical models of their dynamics, at least for a 

considerable subset of population genetics models.  

 

1.9 SELECTION THEORY AS A CAUSAL THEORY: EXPLANATION 

I have claimed that anything that counts as selection theory must have an explanatory structure, 

for it must demystify adaptation. One way a theory can earn its credentials as an explanatory 

theory is for it to be a causal theory. While equations and principles that expose correlations 

might make reliable inference rules, ones that establish causal relations are explanatory. 
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Merely demonstrating that selection theory can be used to draw conclusions about the 

dynamics of populations is not enough to show that the theory is explanatory because some 

phenomena may be inferred without being explained. The standard contemporary example of an 

inferential relationship that is non-explanatory is the flagpole/shadow case: the length of the 

shadow of a flagpole, along with some additional information, can be used to infer the height of 

the flagpole itself, but the length of the shadow hardly explains the height of the pole. Most 

would say the reverse is true. 

As presented here, selection theory culminates in exit rules that consist in causally 

interpretable equations. In these equations, variables picking out individuals distinguished by 

their genetic variations are functioning as causes and for this reason the equations should be 

regarded as explanatory. That causation is at least sufficient for explanation is a stance endorsed 

by several recent writers on the topic (Salmon 1998; Woodward 2003). We will be concerned to 

demonstrate how to infer the deployment of one or another system of causally interpretable 

equations for some system. 

One way to secure a causal interpretation for systems of equations is to infer them from 

causal graphs, graphs that are themselves produced on the basis of statistical data about a system 

coupled with a variety of assumptions (Glymour, Scheines, and Spirtes 1993; Pearl 2000; 

Woodward 2003). I do not follow this approach. Instead, I make critical use of causal facts in an 

algorithm that yields as its output a system of equations that can be used to calculate system 

dynamics. The use of causal information in the algorithm is what is supposed to show that the 

resulting equations are causally interpretable. The algorithm does not take advantage of nothing 

but causal information; I also make use of mathematical, and more generally logical vocabulary, 
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along with statistical vocabulary. However, it is the critical contribution made by causal 

vocabulary that underwrites my claim that the algorithm yields systems of equations that explain. 

While I claim that the equations of population genetics explain because they are causally 

interpretable, I do not claim that causation is necessary for explanation. For one thing, there 

might be moral or mathematical explanations, but also, by defining terms one can explain them, 

though such explanations are clearly not causal in character. So, showing how selection theory 

functions as a causal theory is not necessarily the only fashion one might demonstrate that it 

functions as an explanatory theory; it is merely the line pursued here. 

A further issue concerning the relationship between causation and explanation merits 

consideration. The claim that causal relationships are explanatory might invite a reductio: there 

are seemingly innumerably many causes of a particular event, many of which do not strike us as 

explanatory, so causation cannot be sufficient for explanation. For instance, the Hindenburg 

would not have burnt up had there been no oxygen in the atmosphere, so in some sense at least, 

the presence of oxygen is a cause of that disaster. 

If we refine our interest a little and ask why the Hindenburg burned to the ground rather 

than landing safely, then we can rule out oxygen as a cause of its burning, since the Hindenburg 

would not have landed safely in a world without oxygen; indeed it would never have been built 

or piloted by humans who rely on oxygen to breathe. This sort of contrastive thinking about why 

one thing happens rather than another can help focus our explanatory interests so as to exclude 

non-explanatory causes. To turn to the case at hand, when we deploy selection theory, we are 

interested in explaining why one rival type achieved the relative frequency that it did within 

some population rather than achieving a different frequency; many causes, such as the non-

destruction of the Earth by a meteor, cannot help us explain why the population arrived at one 
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relative frequency rather than another. Furthermore, some causes of population dynamics are null 

causes, ones that, were they represented in causally interpretable equations, could be dropped 

from the equations without this having any impact on calculated quantities. Null causes need not 

be regarded as explanatory either (for a fuller discussion of null causes, see Gildenhuys 

(forthcoming)). So, officially, my stance that causes explain is really more specific: non-null 

causes that allow us to infer why one member of a contrast class of eventualities of interest 

occurred rather than another member of the contrast class are explanatory. In classical population 

genetics, the contrast class is easy to pick out, since the equations are used to infer relative 

frequency terms, the contrast class includes all the possible relative frequencies, including those 

that eventuated and those that did not 

My reasons for taking causation to be sufficient for explanation are those of Woodward; I 

really have nothing to add to Woodward’s argument that causally interpretable equations are 

explanatory (Woodward 2003, ch. 5). In the remainder of this section, I merely present a 

summary of the Woodward account of causation and discuss it; I do not argue for it. 

Woodward’s definition of causation is rather involved, though as he notes himself, it is 

less complicated than it looks. Here’s the definition: 

(M) A necessary and sufficient condition for X to be a (type-level) 
direct cause of Y with respect to a variable set V is that there be a 
possible intervention on X that will change Y or the probability 
distribution for Y when one holds fixed at some value all other 
variables Zi in V. A necessary and sufficient condition for X to be 
a (type-level) contributing cause of Y with respect to variable set 
V is that (i) there be a directed path from X to Y such that each ink 
in this path is a direct causal relationship; that is, a set of variables 
Z1 … Zn such that X is a direct cause of Z1, which in turn is a 
direct cause of Z2, which is a direct cause of … Zn, which is a 
direct cause of Y, and that (ii) there be some intervention on X that 
will change Y when all other variables in V that are not on this 
path are fixed at some value. If there is only one path P from X to 
Y or if the only alternative path from X to Y besides P contains no 
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intermediate variables (i.e., is direct), then X is a contributing 
cause of Y as long as there is some intervention on X that will 
change the value of Y, for some values of the other variables in V. 
(Woodward 2003, 59) 
 

It should be noted that Woodward’s definition makes reference to interventions that are 

themselves defined in causal terms. Here is Woodward’s definition of an intervening variable (I) 

for X (a possible cause) with respect to Y (a possible effect of X): 

I1. I causes X. 
I2. I acts as a switch for all the other variables that cause X. 
That is, certain values of I are such that when I attains those 
values, X ceases to depend on the values of other variables that 
cause X and instead depends on the value taken by I. 
I3. Any directed path from I to Y goes through X. That is, I 
does not directly cause Y and is not a cause of any causes of Y that 
are distinct from X except, of course, for those causes of Y, if any, 
that are built into the I-X-Y connection itself; that is, except for (a) 
any causes of Y that are effects of X (i.e. variables that are causally 
between X and Y) and (b) any causes of Y that are between I and X 
and have no effect on Y independently of X. 
I4. I is (statistically) independent of any variable Z that causes 
Y and that is on a directed path that does not go through X. 

 

Interventions, then, get defined this way: 

(IN) I’s assuming some value I = zi, is an intervention on X with 
respect to Y if and only if I is an intervention variable for X with 
respect to Y and I = zi is an actual cause of the value taken by X. 
(Woodward 2003, 98) 
 

Woodward’s definition makes explicit mention of node-and-directed-edge graphs popular in 

contemporary thinking about causation (Glymour, Scheines, and Spirtes 1993; Pearl 2000). Later 

on, I use such graphs to offer causal representations of what is going on in systems to which 

selection theory models are applied. With such graphs at hand, it is easy to check what causes 

what. More importantly, once they are coupled with functions to represent the extent and 
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character of the dependencies among the variables that they portray, such graphs can be used to 

secure the causal interpretation of the mathematical equations that can be extracted from them. 

 

1.10 CAUSATION AS A PRIMITIVE 

Though I regard Woodward’s construal of causation as valuable, I do not consider it an 

explanatory account of that notion. For one thing, the fact that the definition makes appeal to 

causal notions means it cannot supply a general understanding of what we are to treat as causes. 

We must already understand and know how to deploy the notion of causation to use Woodward’s 

definition to get a grip on whether or not two variables are causally related. We cannot in general 

infer causal relations using Woodward’s definition, so we cannot in general explain what causal 

relationships are using it either. 
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Another similar reason to refuse to regard Woodward’s definition as explanatory is that 

we cannot in general use causal graphs to pin down causal facts, so we cannot in general explain 

what it means to be a cause by appeal to them. We generate causal graphs in two ways, but 

neither way provides us with a general way of understanding what causes are. We use causal 

facts as inputs for causal graphs, as we do when we teach people how to use graphs to portray 

causal relationships. In these cases, the graphs cannot be used to explain the causal relations; 

rather, the reverse is going on. We can also generate causal graphs using algorithms for causal 

inference of the sort offered by Pearl, Scheines, Glymour and Spirtes and their students. These 

take statistical facts as their input, but unique causally interpretable graph structures are not 

always implied by statistical data. Not only do the algorithms sometimes take advantage of 

assumptions, such as faithfulness, which need not hold of some causal system, but they also 

sometimes yield patterns, graphs that do not pick out a specific causal structure as what the 

evidence implies. 

Generally, it is not the case that there exist causal relationships among a set of variables 

whenever we can arrive at graphs to represent those relationships. The causal relationships exist 

in the system even when we cannot use any particular algorithm to decide what they are. So we 

cannot make sense of what it means to be a cause by appeal to our abilities to draw causal 

graphs, just as we cannot use facts about the behavior of scales that measure weight to explain 

what it means to say of objects that they have mass. Even in cases where we cannot compose a 

graph for some data set that shows the causal connection between two variables, a causal 

relationship between them may nonetheless exist, just as an object may have mass even when we 

cannot weigh it on any particular scale. 
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In light of this, and the circularity of Woodward’s definition, I propose to treat causation 

as a primitive theoretical term in the same way that “mass” or “force” are theoretical terms in 

classical physics. “Cause” for me will function as an unexplained explainer. We can sometimes 

put ourselves in a position to affirm causal relationships on the basis of evidence, and that is 

what algorithms for causal inference allow us to do, but we do not have a hard and fast rule, 

versed in some more basic vocabulary, for deciding what counts as a cause, and hence we cannot 

use a rule, an algorithm or a definition, to explain the circumstances of application of “cause.”  

The situation matches that of fundamental physics where the deployment of values for 

theoretical terms can be established in specific cases on the basis of evidence. Both claims about 

causal relationships and claims about unobservables have implications for system dynamics, but 

the meanings of some of their crucial bits of vocabulary cannot be specified in antecedently 

available vocabulary (Suppe 1974). So the fact that a scientific theory should harbor theoretical 

terms that cannot be defined or otherwise discharged in favor of a more basic sort of vocabulary, 

such as the language of observation, should not surprise us. Though the undischarged vocabulary 

is different in each case, being versed in undischargeable vocabulary is something that 

fundamental physical theories and causal theories, such as selection theory, share. 

One might worry that my stance is too strong here, and that one ought to regard the 

Woodward definition of causation as providing an explanatory account of causation. Equally, 

one might worry that the algorithms used to generate causal graphs from statistical data really 

should be regarded as providing a robust account of how the notion of causation is deployed. I 

have argued against both views, but there is little point in pursuing a debate with those who 

would take either of these stronger views about causation. Those who would take up the stance 

that “cause” can be defined in an explanatory fashion, and those who believe that algorithms can 

 30



be used to provide the circumstances of application of causal relationships, will find nothing 

amiss with my use of causation as a key explainer. Instead, they will simply take the view that 

what are here treated as primitives can be explained in even more basic vocabulary.  

 Although treating causation as a primitive in this way gives up a lot of ground, I see no 

alternative to doing so. Causation is, anyhow, a notion with which any well-educated competent 

English speaker is familiar. Indeed, Woodward repeatedly takes advantage of this fact to argue 

against competing accounts of causation and explanation. For instance, because we are already 

willing to grant that there are cases of causation by omission, but which do not involve energy 

transfer, we should count it against an account of causation as energy transfer that it cannot 

accommodate such causal relations (Woodward 2003, 91).  

Officially, then, selection theory can be used to explain population dynamics because it 

yields causally interpretable equations that provide a means of inferring those dynamics. In the 

account of selection theory that follows, equations for population dynamics will be assigned to 

specific systems on the basis of an understanding of the causes operative in them. But the 

explanation I offer of how to model population dynamics hits rock bottom at the level of 

causation: I do not try to say when we should regard what systems as exhibiting which sorts of 

causal relationships. It should be noted, too, that I present the Woodward construal of causation 

as the preferred understanding of that notion, but little hinges on this. Any alternative account 

that makes the equations of population genetics come out causal will do just as well.  

 

1.11 SELECTION THEORY AS A CAUSAL THEORY: HISTORY 

It is a lead claim of this work that the theoretical vocabulary from selection theory can be 

defined; specifically, theoretical terms in selection theory can each be defined by making use of 
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the notion of causation. Explications of the meanings of critical terms in selection theory, 

including the variables that refer to different types of individual, can be constructed out of a 

regimented version of the causal vocabulary of ordinary English, indeed, the sort of English 

available to biologists and other educated persons of both the mid-Nineteenth Century and today.  

Selection theory is a causal theory in a double sense, then. While the equations of 

population genetics that form the exit rules of selection theory are susceptible to causal 

interpretation insofar as they feature causes of the right and effects on the left, its theoretical 

terms are susceptible to causal explication, too. They are either susceptible to causal definition, 

as is the case with population, or their deployment can be specified as part of the algorithm that 

takes causal facts as inputs and yields equations featuring the theoretical terms as outputs.  

That selection theory can be understood by making critical use of the notion of causation 

as an explainer fits well with the history of its inception. Understanding the variables of selection 

theory as getting their meanings by way of the notion of causation helps to understand how 

selection theory can at once contain no novel undefinable vocabulary referring to novel 

unobservable entities, forces, or the like, and yet also be a theory whose articulation by Darwin 

was a tremendous scientific achievement, one that required great insight. As a concluding section 

to this preliminary chapter, I will argue that the approach pursued here jibes well with the history 

of selection theory as first put forward by Darwin. Specifically, I will be concerned to show that 

the causal explication of selection theory pursued here fits more naturally with its history than an 

account of selection theory according to which it gets it explanatory power from positing novel 

unobservable phenomena. 

 Selection theory is not obvious. An understanding of selection theory involves 

recognizing how an array of features of (paradigmatically) organic populations can lead to 
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evolutionary change (or other sorts of dynamics) within them. Yet despite the fact that selection 

theory is not obvious, Darwin’s Origin of Species contains none of the sort of discussion one 

would expect from a founding work in a scientific discipline that brings to the attention of the 

scientific community the existence of previously unobservable or unknown phenomena with 

novel explanatory power. Selection theory is unlike fundamental physics and chemistry in this 

respect; something that is clear from the character of its founding text. Darwin did not posit 

novel unobservables as explainers but instead drew out previously unrecognized implications of 

causal relationships.  

Prior to the publication of The Origin, Darwin was at work applying his theory of natural 

selection in an effort to form a broad inductive base for his assertion that evolution occurs and is 

explicable in terms of the process of natural selection. Though Darwin was dismayed by his 

reception of Wallace’s letter in June, 1858, in which Wallace proposed a theory similar to 

Darwin’s, he nonetheless wrote, in a letter to Lyell, that his work applying the theory would not 

go to waste: “So all my originality, whatever it may amount to, will be smashed. Though my 

Book, if it will ever have any value, will not be deteriorated; as all the labor consists in the 

application of the theory” (letter to Lyell, 18 June 1858). 

Wallace’s letter prompted Darwin to postpone his project of applying his theory to 

natural populations in favor of publishing the Origin, a much shorter work than the one in which 

he had initially planned to introduce his theory, and one notably lacking in just the sort of 

evidence of the operation of natural selection in nature that Darwin had been busy gathering. As 

James Lennox has argued about Darwin’s argument strategy in the Origin, “whatever else 

Darwin was doing in the first four chapters, he was not establishing that natural selection had 

operated as he claimed in nature” (Lennox 1991, 226). It is in the first four chapters that Darwin 
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establishes the existence of natural selection, and there Darwin does not even offer the right sort 

of evidence in the Origin to mount an explanationist defense of the existence of something new 

with novel explanatory power. 

This is not to say that selection theory cannot be used to generate novel predictions and 

explanations, nor is it to say that an explanationist defense of the veracity of the theory of natural 

selection is impossible. Rather the successful deployment of selection theory to explain natural 

phenomena was not what was supposed to convince Darwin’s readers of the existence of natural 

selection. Instead of demonstrating the explanatory power of his theory by deploying it over 

natural systems, the sort of thing that would function to justify novel theoretical posits therein, 

Darwin argues for the existence of natural selection by way of a Herschelian generalization of 

the artificial selection, a principle already understood to operate upon organisms under 

domestication. 

As I have discussed more fully elsewhere (Gildenhuys 2003), Darwin’s argument for the 

existence of natural selection is a step-by-step generalization that extends the principle of 

selection from domestic populations to natural populations. Having cemented in chapter 1 how 

artificial selection explains the bulk of evolutionary change in domestic organisms by way of the 

accumulation of variations in one or more directions, Darwin goes on to show how other 

practices institute selection regimes, too, each one departing a little bit further from the base case 

of artificial selection. Darwin discusses roguing, the removal from seedbeds of deviant forms, the 

import of choice animals from foreign countries for breeding, and the “unconscious selection” of 

owners who breed only their best animals without trying to create forms with specific traits. He 

then considers domestic animals kept by “savages” who are too unsophisticated to control which 

of their animals breed. Animals in their stock nonetheless differentially reproduce, despite the 
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inattention of their masters, because of their variant constitutions and structures, a process 

leading to evolution. It is a short step from this last scenario to evolution by selection in nature; 

indeed, Darwin regards the domestic animals kept by inattentive savages as evolving by natural 

selection despite the fact that they live in under domestication (Darwin 1988[1859], 38). 

Darwin’s generalization of the process of artificial selection is a matter of exposing how 

the same causal process that goes on under domestication can go own in nature too. Selection 

theory does not explain by positing the existence of previously unknown and unobservable 

forces or entities, ones whose properties, relations, and activities can be shown to result in the 

sorts of things that selection theory is designed to explain. Rather, selection theory explains by 

exposing how a process already well-understood in one domain (domestication) can also occur in 

another domain (nature). 

It should be noted that while Darwin does not establish the existence of natural selection 

by way of an explanationist defense of the value of it as a theoretical posit, Darwin does not in 

general shun explanationist modes of reasoning. As Philip Kitcher (1985) has argued, Darwin’s 

argument to the effect that evolution by natural selection does a better job than creationism of 

explaining biogeography, comparative anatomy, and embryology, is very much explanationist in 

character: 

Darwin’s approach [in the later chapters of the Origin] is to 
marshal an impressive array of puzzling cases of geographical 
distribution, affinity of organisms, adaptation, and so forth, aiming 
to convince his reader that there are numerous questions to which 
answers hitting his schemata would bring welcome relief. (Kitcher 
1985, 150). 
 

Though he does use an explanationist strategy to demonstrate that evolution is a better account 

than creationism of a diverse collection of facts, Darwin does not use an explanationist approach 

early on in the Origin to justify the existence of natural selection.  
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For the sake of a contrast, consider how Darwin’s extension of previously understood 

processes and principles to novel domains contrasts with Mendel’s argumentative strategy in his 

essay “Experiments in Plant Hybridization.” Mendel argues for the existence of “differentiating 

elements” of egg and pollen cells that are tied to variable characters on the grounds that the 

existence and activities of these elements can explain patterns of hybridization in his 

experimental plants. Mendel offers his theory as a hypothesis, indeed a tentative one requiring 

further testing: 

The attribution attempted here of the essential difference in the 
development of hybrids to a permanent or temporary union of the 
differing cell elements can, of course, only claim the value of an 
hypothesis for which the lack of definite data offers a wide scope. 
Some justification of the opinion expressed lies in the evidence 
afforded by Pisum that the behavior of each pair of differentiating 
characters in hybrid union is independent of the other differences 
between the two original plants, and, further, that the hybrid 
produces just as many kinds of egg and pollen cells as there are 
possible constant combination forms. (Mendel 1901[1865]) 
 

Unlike readers of Mendel’s work, who must acquire a novel piece of vocabulary, “differentiating 

cell element,” with novel implications for the distributions of traits in hybrid crosses, those who 

learn selection theory do not need to learn new words for new things, ones with novel influences, 

effects, and activities, and ones of whose existence they were previously unaware. This is true 

even for “natural selection.” 

While “natural selection” is certainly a novel idea, its existence is established by Darwin 

by means of a Herschelian analogy, not by its ability to explain. Natural selection is best 

conceived as a process (Hull 1988), and while this process can explain the evolution of species, 

the process itself is explained in other terms. For Darwin these are variation, inheritance, and the 

struggle for existence, conditions that were antecedently understood to obtain in nature. Where 
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such conditions obtain, a process of selection is instantiated, itself a sort of process also 

previously understood to go under domestication (making that process a vera causa).  

Indeed, it is not at all clear what one might choose to play the role of a theoretical term in 

selection theory were one to reconstruct selection theory as a theory involving novel entities 

picked out by antecedently unused terminology. As will become clear from the discussion later 

on, the most inferentially powerful idea in Darwin’s theory is that of the struggle for existence in 

natural populations, but Lyell had already discussed that phenomenon at length well before 

Darwin’s Origin (Lyell 1969[1830], 131-140), and the struggle for existence hardly qualifies as 

the sort of thing we believe in because of what it can explain. Darwin saw farther than Lyell into 

the implications of the struggle for existence, but he was not the first to register the existence of 

the phenomenon in the natural world. 

 37



“Fitness” might make a more natural choice as a theoretical term, as its interpretation has 

been subject to intense debate throughout the history of evolutionary biology. But, as a noun, 

“fitness” surfaces only once in The Origin, and then long after the work presenting the theory of 

natural selection has been completed. Darwin does formulate claims about different varieties and 

types within populations as being fitted to their environments more or less well, but these claims 

are always closely connected to a definite example, one in which observable variations among 

organisms form the inferential basis for the comparisons. What’s more, talk of organisms being 

more or less fit appears only once prior to the argument establishing the existence of natural 

selection in a discussion of domesticated sheep (Darwin 1988[1859], 30). And of course, 

“fitting” better or worse into a broader environmental context is hardly the sort of thing that is 

unobservable. So the Origin gives us not reason to think that “fitness” forms an essential 

component of the theory of natural selection by picking out a hidden, previously unknown 

feature of organisms that contributes to the generation of explanations that cannot be conducted 

in other terms. 

 Instead of conceiving of selection theory as getting its explanatory “oomph” from 

positing the existence of novel unobservable theoretical entities, I explore an alternative view. In 

the account proffered below, selection theory is a theory that brings to light previously 

unexplored causal relationships, and draws implications from these. The explanatory power of 

the theory lies in its elucidation of causal relationships among macroscopic phenomena, causal 

relationships whose impact on the dynamics of populations had gone unrecognized prior to 

Darwin. Such causal relationships are that to which we must appeal in order to delineate the sorts 

of entities that play the various causal/inferential roles they do in the theory. 
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Consider briefly, as an example of a term that requires causal definition, the notion of 

“population” in selection theory. Darwin did not understand his theory as applying to species. 

Darwin famously rejected the possibility of distinguishing in some principled fashion between 

individual variations, varieties, and species (Darwin 1988[1859], 52). Darwin saw a continuum 

of differences here. Besides, if the process of natural selection is supposed to show how species 

emerge, it can hardly be a requirement that members of a population be members of the same 

species for the theory to be applicable to them unless “species” is explicitly taken to be a vague 

term. What’s more, as Damuth (1985) has pointed out, populations circumscribed on taxonomic 

grounds do not necessarily make for good populations over which to deploy selection theory. So 

Darwin was right not to delineate the populations that evolve by natural selection using pre-

existing ways of carving up the biological world. 

Furthermore, selection can go on between members of different species. Consider how, to 

get his concept of natural selection across, Darwin invites his reader to understand the spread of 

variant forms within a local population analogously to the parallel process that occurs when 

immigrants arrive at a territory that has recently undergone a physical change, such as a change 

in climate: 

If the country were open on its borders, new forms would certainly 
immigrate, and this would also seriously disturb the relations of 
some of the former inhabitants. Let it be remembered how 
powerful the influence of a single introduced tree or mammal has 
been shown to be. But in the case of an island, or of a country 
partly surrounded by barriers, into which new and better adapted 
forms could not freely enter, we should then have places in the 
economy of nature which would assuredly be better filled up, if 
some of the original inhabitants were in some manner modified; 
for had the area been open to immigration, these same places 
would have been seized on by intruders. (Darwin 1988[1859], 81-
82) 
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As the quotation shows, a selection process can go between rival contenders for the same place 

in an ecosystem, no matter what the origin of the rival variants. Darwin is quite explicit that 

members of different species can struggle for existence with one another (Darwin 1988[1859], 

63).  

The upshot of Darwin’s refusal to circumscribe populations suitable for his theory in 

terms of species membership means that his theory applies to populations delineated in some 

other way. For Darwin, population members must be engaged in the struggle for existence, 

something that means they must be engaged in a specific sort of causal relationship with one 

another. While Darwin does not define this sort of causal relationship, he does discuss it at length 

in the third chapter of the Origin, analyzing what produces the struggle for existence, offering 

characteristic instances, and distinguishing cases in which two organisms can correctly be said to 

be struggling for existence in the sense important to Darwin from cases in which they cannot 

(Darwin 1988[1859], 62-3).7 I discuss a regimented version of how to circumscribe populations 

in chapter 3 that takes the form of a definition of “population” in selection theory, a definition 

that makes critical use of the concept of causation. 

Causal relationships are not themselves observable or definable in non-circular terms. So, 

to use the last example, using the struggle for existence to parse organisms into populations 

requires seeing the value of doing so, seeing the consequences that the struggle for existence has 

among entities that vary. Presenting selection theory as a theory whose critical explanatory 

vocabulary should be understood in causal terms, then, helps explain the history of how the 

existence of natural selection was surmised. 

                                                 
7 I note that the sense in which a lone cactus at the edge of the desert struggles is not the sense in which creatures 
struggle for existence. 
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The remainder of the dissertation deploys cause-talk to make sense not only of how 

populations are delineated, but also to state an entrance rule for selection theory, to define other 

variables, and to describe how the various mathematical models of population genetics attach to 

real world systems. The completed project is a set of rules for applying the theory that allow one, 

in principle, to understand the dynamics of systems over which the theory may be deployed. An 

understanding of these rules allows one to understand how adaptation, genetic polymorphism, 

and altruism are explicable, for it shows how it may be inferred by means of an explanatory 

theory for systems whose features are described in causal terms.  
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2.0 THE REQUIREMENTS FOR SELECTION 

 

The explanatory apparatus of selection theory is deployable only upon some systems. This makes 

selection theory no different from other scientific theories, with the possible exception of 

fundamental theories of physics. Because selection theory can be deployed only over some sorts 

of things, it may be possible to pick out those systems explicitly. Indeed, if selection theory is to 

make adaptation and other mysterious phenomena explicable, it had better be possible to invoke 

its applicability to some system without actually applying it to that system. So, those who would 

use selection theory to demystify adaptation, polymorphism, and altruism must have some 

understanding of the sorts of systems over which the theory may be deployed. Accordingly, we 

need, or at least should value, some rule to distinguish those systems over which selection theory 

may be deployed from those over which it may not. 

I call the rule that distinguishes between systems over which selection theory may be 

deployed and systems over which it may not be deployed the entrance rule for the theory, since 

meeting the entrance rule triggers the deployment of the rest of the rules over the system that 

constitute selection theory. Stating my proposal for the entrance rule for selection theory is the 

order of business of the next chapter of this work. In this chapter, I will first consider some 

accounts of the requirements for selection and show that they do not function effectively as 

entrance rules for selection theory. 
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While no other author has characterized selection theory as having an entrance rule, 

plenty of other authors have sought to state the requirements for selection. It is not always clear 

whether other writers’ stances on the requirements for selection amount to stances on what I 

would call the entrance rule for selection theory. Still, for each of the authors I consider below, I 

make a case that what they have written about the requirements for selection are reasonably 

interpreted as statements of an entrance rule for selection theory. But whether or not the authors 

of statements of the requirements for selection intend their statements as what I call entrance 

rules is really a secondary issue. My main purpose in this chapter will be to show that prominent 

statements of the requirements for selection currently on offer in the literature fail to function 

adequately as entrance rules for selection theory. Achieving this purpose will motivate my own 

proposal. 

That the requirements for selection, or the entrance rule for selection theory, should be 

the subject of philosophical investigation may strike the reader as initially strange. Do not 

population genetics textbooks specify what systems fit their models? In one sense they do: 

population genetic models are deployed in the face of genetic variation among biological 

organisms. However, the suspicion at work here, and one shared by almost everyone who has 

considered the topic of the requirements for selection, is that genetic variation is not a 

requirement for selection. An entrance rule for selection theory should be pick out a broader 

range of systems that just those exhibiting genetic variation as ones over which it is appropriate 

to deploy the theory. 

The attitude that more than just genes undergo selection is shared by a wide range of 

writers. Griffiths and Gray, advocates of expanded inheritance in the framework of 

developmental systems theory, suggest that such things as chromatin marking schemes and 

 43



habitat imprints should count as inheritance mechanisms on a par with DNA. They even claim 

that aphids that vary in the endosymbiotic bacteria they harbor may be subject to selection on 

variant lineages of the bacteria (2001, 198). Dawkins, who shares few of Griffiths and Gray’s 

views about selection, defines the notion of replicator explicitly so as not to “prejudge the 

empirical issues” concerning whether an entity is of the right sort to undergo natural selection 

(quoted in Hull 1980, 317; see Dawkins 2004 for his attitude to putative non-genetic inheritance 

mechanisms). Once the possibility of selection without specifically genetic variation is 

acknowledged, stating the requirements for selection in a manner that does not let in too much or 

too little becomes a real challenge and a recognizably philosophical one.  

In the remainder of this chapter I lay out some general constraints on what features an 

entrance rule for selection theory must have. Then, I argue against what I call resemblance 

selectionist accounts of selection in this chapter, ones developed out of Lewontin’s (1970) 

statement of the requirements for selection. In the next chapter, I develop my own type 

selectionist stance on the entrance rule for selection theory alongside a consideration of 

Dawkins’ replicator selectionist approach. If we make the modifications I propose to Dawkins’ 

view that selection requires replicators, we end up with my own view that selection requires 

competitors.  
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2.1 CONSTRAINTS ON AN ENTRANCE RULE FOR SELECTION THEORY 

Lewontin is the author of the most widely referenced statement the requirements for selection, a 

set of three principles that together putatively embody the “principle of natural selection” 

(Lewontin 1970). Though Lewontin’s three principles are often modified a little by subsequent 

writers, Lewontin’s text is also treated as authoritative; he is even sometimes said to have 

provided an argument that his principles set out the requirements for selection (e.g., Godfrey 

Smith 2000, 2). But Lewontin provides no such thing; rather he simply declares that his three 

principles embody Darwin’s theory (Lewontin 1970, 1). In this section, I offer an account of 

what sorts of features a set of requirements for selection must have if they are to function as an 

entrance rule for selection theory. This will provide a basis for arguing over whether some 

putative set of requirements for selection can actually function adequately as such. By clarifying 

what we want from an entrance rule for selection theory, we can set out criteria by which to 

evaluate different proposals.  

There are many ways in which a statement of the requirements for selection could fail to 

pass muster as an entrance rule for selection theory. The constraints on an entrance rule for 

selection theory include at least these:  

 

• An entrance rule should not be too restrictive. An entrance rule for selection theory is 

too strong if it restricts the application of the theory to only a subset of those systems 

over which the rest of the rules of the theory could be exercised so as to generate the 

sorts of conclusions that we use selection theory to draw. An entrance rule for selection 

theory that requires the existence of genetic variation is too restrictive. 
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• An entrance rule for selection should make the theory deployable only over those 

systems that actually behave in the ways that we infer they will behave when we use 

the theory to makes inferences about their dynamics. This is the counterpart to the first 

constraint: an entrance rule for selection theory should not be too weak and let in too 

much, such that the inferences one makes using the theory are false for a system that 

meets the conditions stated in the entrance rule. 

 

• An entrance rule for selection theory should be complete. It must be possible to follow 

the entrance rule for selection theory without already knowing anything about what 

sorts of systems meet the requirements for selection. An entrance rule for selection 

theory should not presume even a partial understanding of what sorts of systems fit 

selection theory. An entrance rule that is incomplete is not a real entrance rule for the 

theory; it is at best a contribution to our understanding of the entrance rule for selection 

theory, one that requires supplementation with some prior understanding that the reader 

is presumed already to have. Insofar as Lewontin makes appeal to the notion of 

population in stating his three principles, his entrance rule remains incomplete (see 

section 2.5.4). 

 

• An entrance rule for selection theory should not require that, in order to determine that 

selection theory is deployable upon some systems, the theorist must recognize that the 

system exhibits what is to be explained by the theory. The danger here is that of 

circular inference. In order to deploy selection theory to explain some phenomenon, we 

must infer that phenomenon. Whatever more determinate features inferences must have 
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in order to be explanatory, an explanans had better provide inferential grounds for its 

explanandum. However, if we have already inferred the applicability of selection 

theory on the basis of what we are seeking to explain, we will be inferring in a circle if 

we go on to infer the explanandum from the explanans. When evolution is made a 

requirement for selection, a mistake of this sort is made. 

 

• An entrance rule for selection theory should imply that the system picked out has 

values for all the variables that are deployed in selection theory models. Consider that 

it should not happen, for instance, that some system might fit the entrance rule for 

selection theory but fail to be the sort of thing that is found in populations, for it is 

impossible to deploy selection theory models without considering relative frequencies. 

The same is true for any variable used in selection theory models. The entrance rule for 

selection theory triggers the deployment of the whole theoretical apparatus, and it 

should be possible to follow the rules that characterize the use of that apparatus for 

every system that meets the requirements for selection. I do not discuss any takes on 

the requirements for selection below that violate this last constraint, but I mention it 

because it strikes me as correct, and it’s a constraint that my own account of the 

entrance rule for selection theory fulfills. 

 

In the next few sections, I use the above criteria to evaluate various proposals for the 

requirements for selection. There are certainly a great many statements of the requirements for 

selection to be found in both the philosophy and biology literature, so I will concentrate my 

attention on only some of the most prominent among them. I have chosen my targets because 
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they say things that indicate they are treating their statements of the requirements for selection as 

(what I would call) entrance rules for selection theory. But the point is not to clear the field of all 

rival statements of entrance rules for selection theory before my own proposal is made. 

 

2.2 THE “INTERACTOR” DOES NOT HELP STATE THE REQUIREMENTS FOR 

SELECTION 

In this section, I quickly note that David Hull’s notion of “interactor” is not designed to 

contribute to a statement of the requirements for selection. Hull’s notion of replicator can be used 

to state the requirements for selection, and below I consider Dawkins’ use of “replicator” to state 

the requirements for selection. But Hull’s interactor is not even supposed to delineate the 

applicability of selection theory any more finely than does the notion of replicator on its own. 

Hull offers his replicator/interactor pair as a solution to an ambiguity inherent in the 

phrase, “unit of selection” (Hull 1988, 414). Hull is almost apologetic about his reliance on 

Dawkins’ work, but he sees himself as adding to it, filling out Dawkins’ view: “My emphasis on 

Dawkins is also in part idiosyncratic because it was through my efforts to find out what was 

missing in Dawkins’s analysis that I came up with my own” (Hull 1988, 414). Though Hull 

thought the concept of interactor was a necessary complement to the replicator, what is critical 

for our purposes is that his adding of interactors into the picture does nothing to further constrain 

what sorts of things can undergo selection. I say this because genes, the paradigm replicators, 

may count simultaneously as replicators and interactors: 
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Many other entities may function as interactors—even genes. 
Genes have “phenotypes.” DNA is a double helix that can unwind 
and replicate itself. In doing so it interacts with its cellular 
environment. In the beginning, the same entities had to perform 
both functions necessary for selection. They had to replicate, and 
they had to interact with their environments in such a way that 
replication was differential. (Hull 1988, 409) 
 

Because alleles are paradigm replicators, and they can function as interactors, I propose simply 

to take it that a replicator without any higher-level interactors is a replicator and an interactor, 

and hence that there are no replicators that fail to undergo selection because of the lack of some 

interactor to figure in the process.  

 The work of other authors on the units of selection question can equally be set aside as 

irrelevant to the entrance rule for selection theory. For instance, Sterelny, Smith, and Dickison’s 

discussion of the extended genotype is clearly not intended as an entrance rule for selection 

theory (1996). Those writers isolate genes and a few other developmental resources as 

adaptations for the transmission of information down lineages. Since they are treated as 

adaptations, Sterelny et al. must take the attitude that genes evolved by natural selection to 

transmit information; accordingly they cannot be requisite for selection to occur. 

 

2.3 RESEMBLANCE AND TYPE SELECTIONIST APPROACHES TO THE 

REQUIREMENTS FOR SELECTION 

The formulations of Darwin’s theory found in Lewontin (1970; 1978), Maynard Smith (1983; 

1987; 1988; 1991), and Griffiths and Gray (2001; 2004) are reasonably interpreted as putative 

entrance rules for selection theory. These works share something more in common; they all 

invoke what I call resemblance selectionist stances on the requirements for selection. 
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I call these stances resemblance selectionists because they pick out large macro-systems, 

organisms or developmental systems, which are said to undergo selection provided they produce 

offspring that resemble them (and have other features). In stating the requirements for selection, 

resemblance selectionists make crucial use of the notion of inheritance to secure the resemblance 

relationship between parents and offspring. Informally, heredity is typically understood by 

resemblance selectionists as a matter of resemblance between parents and offspring, a correlation 

or a covariance in traits or fitness between ancestors and descendants (Lewontin 1970; Brandon 

1990, 6; Godfrey Smith 2000, 13; Arnold and Fristrup 1982, 116; Wimsatt 1980, 143). Heredity 

is also often presented as a formal notion, often in connection with representations of selection 

that involve the Price equation (e.g., Okasha 2006). The notion of heritability at work there is the 

narrow sense of heritability, namely the quotient of the covariance of ancestor traits with 

descendant traits and the variance in the ancestor traits:8 

)(
),'(
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zzCovh =  

Systems are said to undergo selection provided that this quantity takes on a positive value (and 

other conditions obtain). 

In contrast to the resemblance selectionist approach, Dawkins offers a type selectionist 

take on the requirements for selection; for Dawkins, the applicability of selection theory is 

triggered by relatively small things, paradigmatically rival alleles, which institute selection 

regimes by virtue of producing descendants of the same type as themselves. For Dawkins, 

descendants must literally be copies of their ancestors, though this especially strong connection 

between ancestor and descendant is not a necessary component of type selectionism. The key 

                                                 
8 Heritability sometimes means “heredity in the broad sense” but I ignore that notion, trusting Rice that “heritability 
in the broad sense plays no role in evolutionary theory” (Rice 2004, 194). 
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contrast between resemblance selectionism and type selectionism lies here: Resemblance 

selectionists claim that selection requires, among other things, entities that produce descendants 

that resemble them, ones that inherit at least some traits; type selectionists claim that selection 

requires, among other things, entities that produce descendants of the same type as themselves. 

I mean to use the notions of resemblance selectionism and type selectionism as handy 

labels in what follows. My opposition to resemblance selectionism does not have solely to do 

with the fact that it posits resemblances between parents and offspring as necessary for selection. 

Similarly, though my own view is type selectionist, I do not require that descendants be exact 

copies of their ancestors. 

 

2.4 VERSIONS OF RESEMBLANCE SELECTIONISM 

In what remains of this chapter, I will first lay out some resemblance selectionist approaches to 

the requirements for selection and then criticize these.  

2.4.1 The inheritance of fitness as a requirement for selection 

Here are the three principles that form the “logical skeleton” of Darwin’s argument, according to 

the first of two articles in which Lewontin discusses the requirements for selection. Together 

these principles are supposed to embody the principle of evolution by natural selection: 

1. Different individuals in a population have different morphologies, physiologies, and 
behaviors (phenotypic variation). 

2. Different phenotypes have different rates of survival and reproduction in different 
environments (differential fitness). 

3. There is a correlation between parents and offspring in the contribution of each to future 
generations (fitness is heritable) (Lewontin 1970, 1) 

 
Lewontin writes that the logical skeleton of Darwin’s argument “turns out to be a powerful 

predictive system for changes at all levels of biological organization” (1970, 1). In treating 

Darwin’s argument as a predictive system, Lewontin is essentially treating it as a theory. 
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Lewontin regards Darwin’s argument as providing a means of generating predictions about the 

evolution of biological systems, and providing predictions is the sort of thing that theories can in 

general be expected to do. The main point of Lewontin’s article is to expose the generality of the 

three principles. Provided the principles apply to some population, Lewontin writes, “the 

population [will] evolve whether the correlation between parent and offspring arose from 

Mendelian, cytoplasmic, or cultural inheritance” (1970, 1). Lewontin goes on to consider a 

number of different non-conventional sorts of systems over which might evolve by natural 

selection. Presumably, because the same “skeletal” features are present in every application of 

the theory, Lewontin seems to be offering these principles as an account of the features shared by 

every system that evolves by natural selection. Other writers have offered similar statements to 

Lewontin’s; Sober writes: “Natural selection impinges on a set of objects if there are (heritable) 

differences in fitness between them” (1984, 216). 

2.4.2 The inheritance of traits as a requirement for selection 

Lewontin’s (1970) statement of the requirements for selection should be contrasted with a 

similar statement in a later work (1978), in which that author once again states that the theory of 

evolution by natural selection rests on three principles: 

Different individuals within a species differ from one another in 
physiology, morphology, and behavior (the principle of variation); 
the variation is in some way heritable, so that on the average 
offspring resemble their parents more than they resemble other 
individuals (the principle of heredity); different variants leave 
different numbers of offspring either immediately or in remote 
generations (the principle of natural selection). (1978, 220) 

 
This later statement is in many ways similar to the earlier one, but there are some crucial 

differences in the formulations. For instance, according to the later article, the different 
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individuals must be within the same species. Most crucially for our purposes here is how, in the 

later formulation, it is phenotypic variations, rather than fitness, that must be inherited. 

The idea that traits must be inherited (among other things) for selection to occur has had 

broad appeal among philosophers of biology. Here is a sample of how others have understood 

Lewontin’s principles. Citing Lewontin, Brandon writes that variation, inheritance, and 

differential reproductive success are necessary conditions for the evolutionary process to work 

(1990, 6-9). Godfrey-Smith claims “evolution requires a population in which there is variation in 

phenotype, differential reproduction on the basis of phenotype, and heredity of the traits 

associated with differential reproduction (2000, 13). Arnold and Fristrup treat their versions of 

Lewontin’s principles as the “conditions necessary for the operation of natural selection” (1982, 

116). Wimsatt has written of Lewontin principles that “where (and while) these three principles 

hold, evolutionary change will occur” (1980, 143). While some of these authors offer variations 

on Lewontin’s three principles, none of the variations is such that the alternative formulation on 

offer allows its advocate to escape the criticisms below. 

2.4.3 Okasha’s requirements for selection 

Okasha (2006) offers an interesting perspective on the requirements for selection, one motivated 

by an investigation of how evolution is represented using the Price Equation. While he writes 

early on that “Lewontin’s formulation seems to capture the essence of the Darwinian process 

very neatly” (Okasha 2006, 13), Okasha later requires that the relative fitness of ancestors covary 

with the values for traits among descendants rather than ancestors. The point arises due to the 

non-transitivity of covariance:  

It is possible for x [ancestor trait values] to covary with y [ancestor 
offspring production], and y [ancestor offspring production] to 
covary with z [descendant trait values], but x not to covary with z. 
So even if character and fitness covary, that is, if Cov (x, y) ≠ 0, it 
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does not follow that Cov (x, z); and the latter is the fundamental 
condition that must be satisfied if selection is to lead to 
evolutionary change. (Okasha 2006, 37) 
 

Ultimately, however, Okasha considers a case in which the “change due to selection” is exactly 

counterbalanced by “transmission bias,” as those quantities are represented in the Price Equation. 

Effectively, the case is one in which 

 

h • Cov(w,z) = -E(∆z) 

 

where h is heritability, w is relative fitness, z is ancestor trait values, E is the expectation 

operator, and ∆z is change in trait value between ancestors and descendants. Okasha writes of the 

circumstance in which selection is counterbalanced by transmission by saying that “this is not an 

objection to the sufficiency of the Lewontin conditions; in such a circumstance selection does 

still produce an evolutionary response, it is just exactly offset by transmission bias” (Okasha 

2006, 39). Effectively, then, Okasha is treating it a sufficient condition for selection that  

 

h • Cov(w,z) ≠ 0. 

 

Provided that the above condition holds, Okasha will allow that some population is undergoing 

selection, even if the relative frequency of types within it, or values for traits within it, remains 

the same over generations. Although this is an interesting perspective on the requirements for 

selection, the counterexamples considered in Section 2.5 below are still counterexamples to this 

view, since they are cases of selection in which heritability is zero. 
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2.4.4 Maynard Smith’s formulation of the requirements for selection 

Similar to Lewontin’s (1970) characterization of the requirements for selection is the formulation 

of Darwin’s theory we find in Maynard Smith’s writings. While this formulation is played down 

in his most recent work where replicators take center stage (e.g., Maynard Smith and Szathmáry 

1995; see also Maynard Smith 1987, 124), Maynard Smith put forward a characterization of 

selection in earlier writings that is worth quoting: 

Darwin’s theory can be summarized as follows: Suppose there is a 
population of entities with the three properties of multiplication 
(one can give rise to two), variation (not all entities are alike), and 
heredity (like usually begets like in the multiplication process), and 
suppose also that some of the differences between entities 
influence their likelihood of surviving and reproducing (i.e., their 
“fitness”). Such a population will change in time—“it will evolve.” 
Further, the individual entities will come to possess traits that 
increase their likelihood of survival and reproduction—i.e., 
“adaptations.” This statement, I think, is not a testable scientific 
theory but follows necessarily from the original assumptions 
(including the assumption that there is a continual supply of new 
variations, some of which increase fitness). (Maynard Smith 1991, 
27; see also Maynard Smith 1988, 222; and Maynard-Smith 1983, 
316) 

 

Note that, like Lewontin, Maynard Smith takes himself to be characterizing a theory, specifically 

Darwin’s theory. Once again, evolution is made a feature of the formulation, though it is 

presented as consequence of variation, multiplication, and heredity when an additional 

supposition is made, there are differences among population members that influence their 

likelihood of survival and reproduction. Like Lewontin, Maynard Smith offers no argument that 

his characterization is an adequate formulation of Darwin’s theory, but he is also explicit about 

why he does not do so. Maynard Smith regards the statement as a logical truth (1991, 27). 
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2.5 CRITICISMS OF RESEMBLANCE SELECTIONISM 

In this section, I criticize the various resemblance selectionist approaches just considered on 

three grounds. Whether it is phenotypic traits or fitness that putatively must heritable for 

selection to occur, either way, the notion of inheritance is simply inadequate to formulate the 

requirements for selection. Moreover, the notion of “population” at work in resemblance 

selectionism is left dangerously unspecified. Finally, the macro-systems, the things which 

putatively must exhibit ancestor-descendant resemblance relationships, are either left undefined 

and indeterminate, or are defined in a manner that makes it impossible for them to figure in a 

statement of the requirements for selection, as is the case with developmental systems theory. 

2.5.1 Inheritance of fitness is not a requirement for selection: selection for polymorphisms 

In the 1970 article in which Lewontin proposed that the inheritance of fitness was a requirement 

for selection, Lewontin was explicit that he is not seeking to state the requirements for selection 

but rather the requirements for evolution by natural selection. That systems undergoing selection 

must evolve is a consequence of Lewontin’s criterion that selection requires the inheritance of 

fitness. Lewontin recognizes this; he explicitly excludes a case of overdominance, in which 

heterozygotes outcompete homozygotes leading the population to rest at a stable polymorphism, 

from the purview of Darwin’s theory (1970, 1). 

From the perspective of the current work, Lewontin’s exclusion seems strange. For one 

thing, the development of models of selection that yield polymorphisms is one of the most active 

fields of research in population genetics modeling of selection (Levins 2004, 22). What’s more, 

the various population genetics models that yield persistent polymorphisms may be 

indistinguishable from those that yield fixation of one type or another in the population except 

insofar as they involve different values for their constituent variables. 
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The best known model that yields a stable polymorphism is a diploid selection model 

with overdominance, in which heterozygotes have the greatest viability. Alter nothing in such a 

model but a single fitness coefficient, such that the heterozygotes have a fitness value between 

those of the two homozygotes, and the model becomes a model of directional selection, yielding 

evolutionary change toward fixation. Surely it is a weird categorization that places in different 

theories these two models that differ only in the value for one their variables. Indeed, things are 

worse than this, for Lewontin and his followers will be forced to regard a population which is 

evolving toward a stable equilibrium as undergoing selection, but must then cease to regard it as 

undergoing selection once it has already attained the equilibrium point and remains stuck there. 

Since the same model yields evolution when the population is away from its intermediate 

equilibrium frequency, but stasis once that equilibrium is reached, Lewontin is in the awkward 

position that he must regard a population governed by a single model over an extended time 

period as undergoing selection at early times when evolving toward a stable equilibrium but not 

at later times once it has reached it. 

Even worse still for the resemblance selectionist view that makes evolution requisite for 

selection, some sustained polymorphisms may also be adaptations, the sorts of things we need 

“Darwinian theory” to explain, or at least make explicable. Here is a compelling example of a 

polymorphism that is an adaptation. The bacteria, Haemophilus influenzae, develop appendages 

called fimbriae that allow them to bind to host mucous and epithelial cells and are therefore 

useful in colonization. The fimbriae become deleterious, however, once the host has been 

infected and the pathogens have infiltrated the spinal cord fluid, because the fimbriae make the 

invaders easier to detect by the host’s immune system at that point in their lifecycle. 

 57



The expression of fimbriae is controlled by what Moxon et al. call discriminate stochastic 

mechanisms of gene expression, also known as contingency genes (Moxon et al. 1994, 23-27). 

Contingency genes control a wide range of pathogen features involving evasion of immune 

system responses. These genes mutate often enough that descendants are likely to express 

different phenotypes than did their ancestors, allowing the bacteria to have offspring displaying 

different phenotypes, at least some which will be well-suited to develop in an environment that 

their ancestors invaded, but which they did not initially inhabit. 

This sustained polymorphism makes for a compelling case of an adaptation, one that not 

only evolved by selection, but which also persists by selection. The ongoing presence of this 

polymorphism can be made explicable by appeal to how it is conducive to the reproduction of 

lineages of bacteria that have it: 

Genomes can respond to unanticipated challenges. This is because 
natural selection has selected genomes that best survived 
unexpected challenges in the past. For many bacteria species, this 
flexibility results from the presence in the genome of hypermutable 
contingency loci, which provide a repertoire of variation, allowing 
the population to adapt rapidly in the face of unpredictable 
contingencies, such as changes in the host environment. (Bayliss, 
Field, and Moxon 2001, 657) 
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If we imagine competition between lineages of H. influenzae with the tendency to mutate 

at contingency loci and other rival lineages of bacteria that do not tend to mutate at these loci and 

are either fixed for fimbriae expression or the lack thereof, we can see how the hypermutants 

would outcompete their rivals. Hypermutants with fimbriae that aided them in gaining access to 

a host’s spinal fluid will produce a significant number of descendants who lack fimbriae and are 

harder to spot within the fluid. These will produce descendants who go on to colonize other hosts 

aided by the fimbriae that they develop owing to yet another mutation. In contrast, one stage of 

the lifecycle or the other will institute severe selection against any lineage fixed either for 

fimbriae or the lack of fimbriae. 

While Lewontin’s principles make evolution requisite for the application of “Darwin’s 

theory,” Darwin himself offered selectionist explanations of polymorphisms too. His study of 

heterostyled plants is a case in point (1989[1884])9. Plants exhibiting heterostyly develop two, or 

sometimes three, different forms of flower whose reproductive organisms vary in a number of 

ways, principally length. Some plants exhibit different forms of flower on the same plant, while 

some are dimorphic and trimorphic, with only one sort of flower per plant. Darwin interpreted 

the flower variations as conducive to intercrossing, which he thought was beneficial, at least for 

many organisms. All the plants exhibiting heterostyly that Darwin considers are pollinated by 

insects, and the varying lengths of the different sex organs of the plants cause the organs to brush 

against different parts of insect bodies (Darwin 1989[1884], 69; 105). Thus, pollen from the 

anthers of flowers with long stamens will be deposited on the stigma of flowers with long pistils, 

and mutatis mutandis for the reproductive organs of converse lengths. Darwin thinks it clear that 

heterostyly is an adaptation: 

                                                 
9 Thanks to Prof. Lennox for pointing me to this example in Darwin’s work. 
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The benefit which heterostyled dimorphic plants derive from the 
existence of the two forms is sufficiently obvious, namely, the 
intercrossing of distinct plants being thus ensured. Nothing can be 
better adapted for this end than the relative positions of the anthers 
and stigmas in the two forms” (1989[1884], 22) 

 
The fact that heterostyly is scattered among diverse groups of plants is further evidence that it is 

the product of evolution by natural selection: 

It has been shown that heterostyled plants occur in fourteen natural 
families, dispersed throughout the whole vegetable kingdom, and 
that even with the family of the Rubiaceae they are dispersed in 
eight of the tribes. We may therefore conclude that this structure 
has been acquired by various plants independently of inheritance 
from a common progenitor, and that it can be acquired without any 
great difficulty – that is, without any very unusual combination of 
circumstances” (Darwin 1989[1884], 189). 

 
While Darwin is confident that heterostyly is an adaptation designed to promote cross 

fertilization, he does struggle a little bit to explain how heterostyly could have evolved by natural 

selection. He imagines that heterostyled species initially exhibited variability in their 

reproductive organs and, though already fertilized by insects, could have gained from even 

greater cross-fertilization. Darwin imagines that the “law of compensation,” according to which 

enhancements in some plant structures are paired with reductions elsewhere, could have 

facilitated the division of a continuously varying population of into a dimorphic one by 

associating short pistils with long stamens and vice-versa. Selection could then have cemented 

the dimorphism, as those plants that demonstrated it would intercross more freely and hence 

spread in the population. 

The chief difficulty that Darwin’s explanation faces is that he cannot account for why 

heterostyly should evolve as a mechanism to facilitate intercrossing rather than alternative 

mechanisms, ones that do not have the consequence that the plant cannot reproduce with half of 

its conspecifics, a liability for heterostyled plants. Indeed, heterostyly is but one of several forms 
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of polymorphism that are adaptations for intercrossing; Darwin also regards as adapted for 

intercrossing plants that display self-sterility and plants that display dichogamy, in which the 

timing of maturation of the male and female sex organs differs (1989[1884], 7; 190-191). Darwin 

simply supposes that heterostyled species did not possess the right sort of variations to evolve 

alternative means of ensuring cross-fertilization: 

It might well happen that our supposed species did not vary in 
function in the right manner, so as to become either dichogamous 
or completely self-sterile, or in structure so as to ensure cross-
fertilization. If it had thus varied, it would never have been 
rendered heterostyled, as this state would then have been 
superfluous.” (1989[1884], 189). 

 
Whatever the fate of Darwin’s demonstration of the explicability of heterostyly, it remains the 

case that he regarded his theory as one that could explain the persistence of polymorphisms in 

populations. So it is critical that one not make the same mistake as did Lewontin and his many 

followers of presenting Darwin’s theory as one for which evolution is a necessary condition. 
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I think that heterostyly and the fimbriae polymorphism of the bacteria studied by Moxon 

and others make for compelling cases of adaptations, adaptive polymorphisms whose designed-

appearing character invites demystification by selection theory. However, it is difficult to 

determine whether they are adaptations because the term “adaptation” is vague. As it is being 

used here, the term adaptation refers to designed-appearing characteristics, and it is hard to judge 

what exactly counts as “designed-appearing” in borderline cases. “Adaptation” can be made 

rigorous by attaching it explicitly to selection theory in this sort of way: adaptations are what are 

produced as a result of selection. That proposal, however, makes it impossible to use selection 

theory to make adaptations explicable, since selection produces adaptation by definition. So 

whether or not we should count as adaptations those characteristics that persist as 

polymorphisms depends on whether or not they are sufficiently designed-appearing, a difficult 

judgment to make.  

However, the very indeterminacy of the term “adaptation,” when used in its non-rigorous 

sense as “designed-appearing character,” stands as a further reason to think that refusing to 

countenance polymorphisms as adaptations is a bad idea. It is simply unclear what traits exactly 

should count as adaptations. We are better off, then, stating the conditions necessary for the 

deployment of selection theory rather than the conditions necessary for adaptive evolution, since 

selection theory can make explicable adaptations and at least some polymorphisms, whether or 

not we count the latter as adaptations. 

2.5.2 Inheritance of fitness is not a requirement for selection: circularity 

In his 1970 article in which Lewontin claims the inheritance of fitness is a requirement for 

selection, Lewontin could only mean by “fitness” actual reproductive output, rather than what is 

represented by fitness coefficients in population genetics equations, for the latter may vary even 
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when the population has reached a stable polymorphism. But Lewontin’s requirement that actual 

reproductive output be heritable creates another set of problems. To determine whether or not 

fitness is heritable, we must first know whether or not the population will be one in which 

evolution is ongoing, something that should bar us from inferring (and hence bar us from 

explaining) that evolution. We have to know whether individuals that tend to produce especially 

many offspring tend to have descendants that do so too. The difficulty is that there is no way to 

know that without first checking how many descendants the descendants go on to produce. 

Evolution can reach stable polymorphisms such that selection leads one generation of 

individuals to produce especially many offspring while their descendants, now more frequent, do 

not do so. So we cannot infer from the fact that especially fertile parents have offspring that 

share their genes, or even are identical to them in every respect, to the fact that the offspring they 

produce will be especially fertile. So by stipulating that there must be heritability of fitness for 

evolution by natural selection, Lewontin is effectively requiring that the theorist first recognize 

that the system of interest is one whose dynamics are already understood, prior to recognizing 

that selection theory is deployable over it. Other authors explicitly require evolution as a 

necessary condition for selection (Arnold and Fristrup 1982, 116; Sober 1984, 216), and these 

writers follow Lewontin in violating constraint number four. If Darwin’s theory is to function to 

explain the evolution of some system, or more generally the dynamics of some system, it must be 

possible to infer that evolution is taking place within it. On pain of circular reasoning, we must 

not use Lewontin’s requirements for selection as a basis for inferring that selection theory is 

applicable to some system, at least if we plan to use selection theory to do any explanatory work. 
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2.5.3 Inheritance of traits is not a requirement for selection 

While the inheritance of fitness is not a requirement for selection, neither is the heritability of 

phenotype. This is true as long as one conceives of inheritance in one of the standard 

resemblance selectionist fashions, as a relationship between the traits of ancestor and descendant 

macro systems, paradigmatically organisms. Heritability in the narrow sense will be zero if 

ancestor and descendant trait values do not covary. As the following counterexamples show, the 

phenotypes of macrosystems need not covary with the phenotypes or fitnesses of their 

descendants for selection to go on in some population.  

 It is quite easy to set up a population genetics model in which selection occurs among 

macro systems whose traits, and indeed whose reproduction rates too, are not inherited, that is, a 

model in which the organisms are just as likely to resemble the parents of their rivals as they are 

to resemble their own parents in their phenotypic traits. Consider a variable selection model 

featuring the random assortment into two equally common sub-environments of diploid 

individuals differentiated by genetic variation at a single locus exhibiting complete dominance. 

The selection is symmetrical and paradoxical, such that each individual has the same relative 

fitness as does its rival in the opposite sub-environment because each individual has the same 

phenotype as does its rival in the opposite sub-environment. 

We can imagine that the phenotype in question is camouflage, imagining prey insects of 

different tints living in a patchy forest. In one sub-environment, one phenotype is well 

camouflaged but the other is highly conspicuous, while in the other sub-environment, the 

opposite is true. A population under selection of this sort will produce a stable polymorphism at 

equal relative frequency for both variants (Levene 1953, see section 6.3.5.2.3 where I generate 

such a model using the cause-to-model algorithm developed later on). What’s more, population 

 64



members are just as likely to resemble the parents of their rivals as their own parents, since they 

are just as likely to turn up in one sub-environment as the other because of the random 

assortment of individuals into sub-environments is assumed. So, by using standard population 

genetics theory, one can easily produce a model in which there is selection, selection that 

explains the dynamics of the population, but in which there is no inheritance of the phenotypic 

trait of camouflage. Because the fitness values in the model are symmetric, too, there is no 

inheritance of fitness, either. 
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As another example, consider a sex-dependent selection model with genetic variation at a 

single locus that contributes in a paradoxical fashion to a quantitative trait. Assume an 

intermediate level of dominance, and imagine that one allele is beneficial among males and 

elevates the value for the quantitative trait, while among females, the allele is deleterious and 

depresses values for the trait. Just as in the scenario just considered, an allele with this sort of 

influence will persist in the population at a stable intermediate frequency because of the action of 

selection (Hedrick 2005, 179; see section 6.2.3.3.2.2 where I generate a sex-dependent selection 

model of this sort). . Furthermore, since individuals are just as likely to have male offspring as 

female offspring (let’s imagine), the heritability of the quantitative trait the allele impacts will be 

nil. The heritability of fitness will be nil, too. The male and female homozygotes who take on 

values for the trait that deviate from the mean are just as likely to have offspring that have values 

that deviate from the mean in either direction. Their descendants do not inherit their parents’ 

deviations. This is because the parents are just as likely to have homozygote offspring that are 

males as ones that are females, while their heterozygote offspring are average. Heterozygotes are 

just as likely to have both sorts of deviant offspring too. Once again, this is a simple scenario 

involving a simple population genetics model, and it is a strange conception of the requirements 

for selection that does not treat the scenario as an instance of selection.  

Presumably, that some scenario can be captured using textbook classical population 

genetics theory through attributions of relative fitness values to variant types is sufficient 

grounds for regarding the scenario as an instance of selection. Indeed, this sort of sex-dependent 

selection model has been applied to human populations in an attempt to explain male 

homosexuality as the result of genetic variations that persist in human populations because of 

their sex-dependent impact on fertility. Male homosexuality is posited to be the result of a 
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variant allele that increases female fecundity but, because it causes homosexuality in males, 

lowers male fecundity (Gavrilets and Rice 2006). At equilibrium frequencies, such a gene will 

not produce heritable deviations in fecundity because especially fecund females will be just as 

likely to produce especially infertile males as especially fecund females.  

The above sorts of counterexamples could be multiplied. Generally, parents may fail to 

resemble their offspring because the alleles that they pass on to their descendants interact with 

causal contexts that are distinct from the causal contexts with which the alleles interacted among 

the parents. Phenotypes are the causal product of more than just alleles; they are the causal 

products of alleles and other causal factors that interact with alleles. Set up the impact of the 

other causal factors in just the right way, and one can produce a situation in which the 

phenotypes of offspring do not resemble those of the parents and equally cases in which the 

fitness of offspring does not covary with that of their parents, fitness being just another 

phenotype. 

Surely, classical population genetics must be understood as one of the central ways in 

which selection is modeled: Population genetics models of the sort I put forward as 

counterexamples to the resemblance selectionist view include differences in relative fitness 

between individuals, and they are the sorts of models that are discussed in population genetics 

textbooks in chapters dealing with natural selection, and they are the sorts of models used to 

make explicable natural phenomena as the result of selection. Accordingly, such models can 

hardly be treated as ones that do not fall under purview of selection theory. So the scenarios 

should be regarded as counterexamples to the resemblance selectionist view that inheritance is a 

necessary condition for selection. They demonstrate that neither phenotypes nor fitness must be 

heritable in the formal or informal sense for selection to occur. 
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In each of the counterexamples above, I set up the causal impact of a single non-allelic 

factor (environment or sex) in such a way that descendants do not resemble parents. Presumably 

there are more complex ways in which this same lack of resemblance can occur, ones involving 

more than two alleles, multilocus selection, more complex forms of variable selection, sex-

dependent selection, antagonistic pleiotropy, or combinations of these. 

Because whether or not a system exhibits inheritance of traits and whether it exhibits 

inheritance of fitness are independent, we can generate models similar to the ones above, but in 

which different sorts of dynamics are possible. For instance, we can imagine an allele that 

spreads to fixation despite producing a trait that is not heritable. Imagine an allele that impacts 

height, making males taller and females shorter. Such an allele will not induce heritable 

differences in height in a population with an even sex ratio. But if males profit from their extra 

stature while females do not suffer from being short, then the allele will spread to fixation in 

short order.  

A further difficulty with the resemblance selectionist view of selection is that it is 

ambiguous: whether we judge selection to be occurring or not will depend on what trait we use 

to assess whether the population exhibits inheritance. To see this, let’s return to the first 

counterexample scenario, and consider the pair of alleles at a single locus that contribute to 

fecundity in a paradoxical and sex-dependent fashion. Let’s imagine further that the alleles do so 

by way of a causal intermediary, say a hormone, quantitative values for which are independent of 

sex. One allele produces elevated levels of the hormone in both sexes. Elevated levels of the 

hormone in turn have paradoxical effects in females and males, increasing the fertility of the 

former while reducing that of the latter. 
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In this sort of scenario, if we consider fecundity to be the trait of interest, the trait will not 

be heritable for populations fitting our sex-dependent selection model. But if we count the 

hormone as the phenotype of interest, the trait of elevated or depressed hormone levels will be 

heritable, for population members with elevated levels of the hormone will tend to have 

offspring with elevated levels too. By trading in tint for camouflage in the spatially variable 

selection model considered earlier, the same transformation from a system that fails to meet the 

requirements for selection into one that does is effected, since tint can be inherited while 

camouflage is not.  

The dynamics of the fertility of a population under sex-dependent selection are the same 

whether we assess the population as undergoing selection or not. The dynamics of the hormone 

that impacts fertility are the same, too, no matter what our assessments, as are the dynamics of 

camouflage and tint in the variable selection scenario considered. The dynamics of all these 

traits, along with the alleles that causally contribute to them, are the result of selection; we can 

model the active alleles that contribute to the development of these traits using classical 

population genetics models of selection. But if the selection dynamics of the alleles and traits do 

not depend upon what we identify as the trait of interest, while whether or not the population 

exhibits the inheritance of traits does depend on the trait upon which we choose to focus, then 

inheritance cannot effectively contribute to a statement of the requirements for selection.  
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That there are heritable developmentally primitive traits lying beneath every more 

developmentally remote non-heritable trait might seem to offer an escape route for the 

resemblance selectionist. It appears as though the resemblance selectionist can ward off the 

counter-examples I propose provided that individuals applying selection theory are required, 

somehow, to focus on the heritable traits that are the developmental antecedents of the non-

heritable ones when assessing whether a system is undergoing selection. There are two 

difficulties with this escape plan. 

First, the resemblance selectionist will need some non-circular way of making sure that 

the right traits are considered when it is assessed whether some system meets the requirements 

for selection. The counter-examples make untenable the possibility of deciding whether the 

dynamics of some trait in a population is undergoing selection on the basis of its heritability. 

What the escape route offers to the resemblance selectionist is the possibility of judging whether 

some system is undergoing selection on the basis of inheritance. If the resemblance selectionist is 

to maintain her view, she will have to offer some recipe for picking out traits when using 

inheritance of traits to assess whether a system is undergoing selection, a recipe that will always 

dictate that a heritable trait is chosen whenever the system actually is undergoing selection. 

Without such a recipe, the resemblance selectionist stance on the requirements for selection 

cannot be trusted. So, at best, the resemblance selectionist account of the requirements for 

selection is incomplete and in its current form cannot function as a statement of the requirements 

for selection. 

The second problem with the escape route we are considering is that it leads ultimately to 

the type selectionist view. To see this, recall how in the sex-dependent selection model we 

imagined that fertility was not heritable while hormone levels were heritable. Hormone levels 
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causally interact with sex differences, so even though they are heritable, they do not have a 

single, sex-independent impact on fertility, which is why fertility is not heritable too. But the 

same dynamics for fertility will result if we imagine that hormone levels are themselves the 

result of an even more developmentally primitive cause that interacts with sex differences. We 

could imagine that one of our alleles has a sex-independent impact on a structural feature of the 

endocrine system. That structural feature then has a sex-dependent impact on hormone 

production, causing elevated production of the hormone in males and reducing it in females. The 

hormone in turn has a sex-independent influence on fertility. In this sort of case, fertility will not 

be heritable, hormone levels will not be heritable, but structural features of the endocrine system 

will be heritable. 

We can equally imagine a population of insects in which neither camouflage nor tint is 

inherited, again by bringing into the picture more primitive developmental causes. Imagine that 

the insects’ environment features two different food resources, and that the tint of the 

homozygotes is contingent upon the food they consume. Make the distribution of food resources 

even, determine what food an insect consumes randomly, and have one type of homozygote 

come out dark when it consumes the first resource and light when it consumes the second, while 

the opposite occurs in the other homozygote. In such a case, we have a system in which 

camouflage is not inherited, tint is not inherited, but divergent developmental responses to food 

resources are inherited.  

All we have done in the above transformations of our earlier cases is to push the causal 

interaction between the alleles and their causal context to a more developmental primitive stage. 

Presumably, we could pursue this sort of regress still further. If we do so, the resemblance 

selectionist who seeks to avoid the counter-examples will have to insist at each step that what 
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before was the phenotype used to assess whether the system is undergoing selection should no 

longer be used. At each step, she must tell us to judge whether the system is undergoing selection 

by assessing the heritability of a more developmentally primitive phenotype. She cannot say, 

anyway, “look not to fertility, but to hormones,” or, “look not to camouflage, but to tint.” 

There is a firm stopping point to this regress, however. That stopping point occurs at the 

genetic variations whose developmental impact is contingent upon the interactive contextual 

causes posited in the models. It will never come out that a population genetics model of selection 

shows that the trait of bearing a specific allele is not heritable.10 This suggests that the 

resemblance selectionist is best off simply making the trait whose heritability should be assessed 

when deploying her requirements for selection the trait of bearing one or another causally active 

allele at one or more loci. But in doing so, the resemblance selectionist is effectively undertaking 

the type selectionist stance, since the inheritance of alleles requires their germ-line replication, 

the production of copies of the alleles, and vice-versa. Even when the resemblance selectionist 

could pick out some trait other than bearing one allele rather than another as the heritable trait 

she uses to affirm that selection is going in some system, it is nonetheless always possible for her 

to check for the inheritance of genetic variations that causally contribute to the trait. So, type 

selectionism stands as a simpler and more general alternative to resemblance selectionism, at 

least for the sorts of cases considered above. 

                                                 
10 This is true, anyway, for mutation rates of less than 0.5. 
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What parents have in common with their offspring is the alleles they contribute to them, 

alleles that may then react with environmental parameters in genotype-specific ways. The 

deployment of classical population genetics at least requires the transmission of alleles from 

parents to offspring, and hence the creation of descendant alleles that are of the same kind as the 

parental alleles. Even if we generalize to include cases of expanded inheritance, then the 

deployment of population genetics models requires the transmission of developmental resources 

that can be treated as alleles are treated in classical population genetics theory.  

So the resemblance selectionist perspective that depends upon the inheritance of traits to 

state the requirements for selection accordingly fails to do so adequately because inheritance of 

traits is simply not a requirement for selection. Only if we regard the alleles themselves as 

“traits” that are inherited will we avoid the sorts of counter-examples just discussed, but to do so 

is simply to give up the resemblance selectionist view to undertake the type selectionist one. 

2.5.4 Resemblance selectionist requirements for selection are incomplete: the notion of 

population 

The third way noted above in which statements of the requirements for selection can fail to pass 

muster as entrance rules for selection theory is to be incomplete. Ideally, an entrance rule for 

selection theory will tell you each and every feature requisite for the applicability of the theory. 

A candidate entrance rule is incomplete if it cannot be deployed effectively unless one already 

understands at least some of the features a system must have to undergo selection. Any statement 

of the requirements for selection that leaves the notion of “population” unspecified, such as 

Lewontin’s initial statement, is incomplete in just this way. 

As stressed in the introduction, populations can be delimited in correct and incorrect 

ways for the purposes of doing selection theory. One need only imagine wholly wrong-headed 
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putative populations to see this, such as ones that bring together individuals living great distances 

apart and separated by insurmountable geographical barriers, or ones involving organisms that 

hardy interact with each other despite living in the same region (see discussion in Damuth 1985). 

If there are incorrect ways for delimiting populations for deploying selection theory, there 

must be rules, or at least norms, for delimiting them in a suitable fashion for deploying selection 

theory. Lewontin is requiring of his readership that they understand such rules or norms, for were 

his three principles applied to an unsuitable population, the usual consequences of natural 

selection would not result. The interpretation of “population” made on the part of Lewontin’s 

readership is making a substantial contribution to Lewontin’s principles; the principles only have 

a shot at correctly picking out systems over which selection theory may be deployed when 

population is interpreted in the right way. So by using the term “population” in his statement of 

the requirements for selection, Lewontin is effectively requiring that his readership already know 

something about the requirements for selection. 

While Lewontin does not mention the term “population” in the second set of principles 

(1978), he there uses a taxonomic category, “species,” to delimit populations. This is a step 

backward, for there is no reason to restrict the deployment of selection theory to populations 

composed of conspecifics. Furthermore, members of a single species need not be anywhere near 

each other on Earth, and the dynamics of such disjoint populations need not have anything to do 

with one another.  

2.5.4.1 An objection. Lewontin might retort that any statement of the requirements for selection, 

indeed any statement of the requirements for anything, is put forward under the presumption that 

one’s audience already knows how the bits of vocabulary used to state the requirements should 

be understood. If failing to state the use of each bit of vocabulary used in formulating a set of 
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requirements is a mistake, then such mistakes are inevitable. There is a clear regress here, one in 

which rules are required for the use of terms that state rules, and rules required for the use of the 

terms that state the rules for stating the rules, and so on. This sort of regress has nothing special 

to do with selection theory, and it would seem that I am making the impossible demand upon 

Lewontin that he halt it. 

The sort of retort just considered is unavailable to Lewontin. It would be available were 

the notion of “population” at work in selection theory not a specialized one proper to selection 

theory alone. However, as I have already pointed out, the use we make of the notion of 

population in selection theory is indeed a specialized one, proper to selection theory alone. 

Populations circumscribed for the purposes of taxonomy make poor populations over which to 

deploy selection theory. So do the ones used in ecology and so do ones from systematics (these 

points are developed further in the following chapter). Indeed, in his 1970 article, Lewontin 

himself recognizes that members of a population need not be conspecific organisms, or even 

organisms at all, for selection theory to be deployed over them. He discusses all sorts of non-

standard cases of selection, including selection among molecules, organelles, and groups. No 

other science considers groupings of such wide variety of entities such that selection theorists 

could simply borrow the notion of population at work in that science and use it for their own 

purposes. Lisa Gannett has argued that biologists group entities into populations in different 

ways for different theoretical and explanatory purposes (2003); she gives good reasons for us not 

to assume that a population that is circumscribed by biologists for a given purpose will serve 

well as a population over which to deploy the apparatus of selection theory.  

That “population” in selection theory is a specialized notion, one proper to selection 

theory alone, means that implicit knowledge of how to group entities into populations for the 
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purposes of doing selection theory must be implicit knowledge about how to deploy selection 

theory. Because Lewontin assumes such knowledge on the part of his audience, his statement of 

the requirements for selection is incomplete. Knowledge of how to group entities into 

populations for the purposes of deploying selection theory is not the sort of knowledge one could 

come by in any other way except through an understanding of the theory itself (though not 

necessarily an explicit understanding that would take the form of a definition). 

Contrast “different,” another bit of vocabulary from Lewontin’s principles. In using the 

term “different” to state his three principles, Lewontin is presuming that his readership 

understands what “different” means; he does not define the term. But an understanding of 

“different” is something one could acquire without having any understanding of selection, 

evolution, or anything else even remotely Darwinian in provenance. “Population suitable for 

selection theory” is not like this precisely because an understanding of how to group entities into 

populations gleaned in other circumstances, say, from an understanding of theories in 

systematics or ecology, does not translate over to the case of selection theory.  
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So by presuming that his readership understands what “population” means, Lewontin is 

in effect presuming that his readerships understands at least something about the requirements 

for selection. This makes Lewontin’s principles incomplete when considered as an entrance rule 

for selection theory. The point is a delicate one, because my own proposal for how to state the 

requirements for selection does not include a description of how populations should be 

circumscribed. I am not susceptible to the criticism, however, because I do not deploy the notion 

of “population” in my definition. It is thus possible for me to regard some system as one over 

which selection theory is deployable, but yet for which the value of its population size remains a 

mystery. I say how to group the sorts of entities over which selection theory is to be deployed in 

to populations (chapter 4) after having said how to pick them out (chapter 3). 

2.5.5 Resemblance selectionist requirements for selection are incomplete: macro-systems in 

selection theory 

The last argument showed that statements of the requirements for selection that leave the notion 

of “population” unspecified are incomplete; they presume a partial understanding of selection 

theory on the part of those who would deploy them. A similar difficulty emerges when we ask of 

what sorts of things the populations must be composed. The traditional response to this question 

might well be organisms, but that response is worrisomely narrow. Classical population genetics 

models include relative frequency terms for gametes, zygotes, and mating pairs, as well as 

haploid organisms. Furthermore, the organisms only response rules out any non-traditional 

deployments of selection theory over such things as colonial organisms, such as Portuguese man-

o-wars, or fragments of culture. Moreover, as noted earlier, resemblance selectionists such as 

Lewontin often explicitly seek generality in their understanding of selection and consider 

legitimate the application of the theory over populations of entities that are not organisms. 
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The problem posed by saying exactly what sorts of macrosystems must exhibit 

inheritance (and other things) to undergo selection has largely gone unrecognized by disputants 

over the requirements for selection. Griffiths and Gray, two prominent exponents of 

developmental systems theory, have sought to answer this question because they seek a 

statement of the requirements for selection that is consonant with the broader tenets of their 

developmental systems perspective, a novel approach to biological theorizing quite generally. 

Griffiths and Gray seek (among other things) to generalize the theory of selection by arguing that 

it should be deployed over developmental systems, a novel type of macro-system that they 

define. Though they are not the only authors working in developmental systems theory (DST), 

they have made the greatest effort to show how Darwinism works within the DST viewpoint. So 

in what follows, I treat their views as constitutive of DST, though there are more workers in the 

DST tradition than just them. 

Inspired by Lewontin, Griffiths and Gray state the requirements for selection in this way: 

“natural selection occurs because individuals vary, some of these variations are linked to 

differences in fitness, and some of those variants are heritable” (Griffiths and Gray 2004, 1). Just 

like those of Lewontin, Griffiths and Gray’s principles at least seem designed to function as an 

entrance rule for selection theory. Griffiths and Gray write that “natural selection occurs because 

individuals vary, some of these variations are linked to differences in fitness, and some of those 

variants are heritable” (Griffiths and Gray 2004, 1; my italics). There is clearly an inferential 

connection between the three requirements and the occurrence of natural selection, the latter 

happens because the former are fulfilled.  

The first thing to note about the Griffiths and Gray formulation of the Lewontin 

principles is that it does not make the mistake made by most other resemblance selectionists of 
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tying selection to evolution. Another difference between the DST approach and traditional 

resemblance selectionist ones is that Griffiths and Gray claim that selection theory is to be 

deployed over evolutionary developmental systems (henceforth just developmental systems), 

which are defined this way: “the developmental system contains all those features which reliably 

recur in each generation and which help to reconstruct the normal life cycle of the evolving 

lineage” (Griffiths and Gray 2001, 207). So the sorts of things that exhibit the features of 

heritability, variation, and fitness differences in the DST account are evolutionary developmental 

systems, rather than organisms or other sorts of macro-systems. 

Note, too, that Griffiths and Gray define the notion of inheritance at work in their 

requirements for selection in an unusual way: inheritance is the reliable reproduction of 

resources down lineages (Griffiths and Gray 2001, 214). The DST notion of inheritance is 

designed to be deliberately accommodating, allowing all sorts of features of developmental 

systems to count as heritable ones, not just genetic variations. What’s most important about it for 

our purposes is that it is stated in such a fashion that the counterexamples to the standard 

resemblance selectionist view that selection requires inheritance that I offered above do not work 

against Griffiths and Gray. For these writers, inheritance is a matter of the transmission of 

resources, not the recurrence of traits in ancestors and descendants, or covariance in values for 

trait variables between parents and offspring. Though they would be surprised to hear it, Griffiths 

and Gray are type selectionists like Dawkins and myself, not resemblance selectionists like 

Lewontin. 

To see this, recall that the difficulty with using inheritance in the standard fashion to state 

the requirements for selection was that more than just the developmental resources whose 

dynamics are governed by selection causally contribute to the development of traits. These other 
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causes can be set up such that even though developmental resources have their dynamics 

governed by selection, their causal effects, phenotypes, are not heritable. The developmental 

resources we considered initially were alleles, but the point holds more generally. So, if one 

makes inheritance a matter of passing on alleles and other developmental resources, as do 

Griffiths and Gray, then the above counterexamples are evaded. Accordingly, Griffiths and Gray 

can correctly construe cases of paradoxical symmetrical variable selection and cases of 

paradoxical symmetrical sex-dependent selection as cases of selection, since in those 

circumstances, developmental resources (alleles) that matter to fitness are being reliably 

reproduced down lineages. 

Still, there are other ways in which Griffiths and Gray’s suggestion for stating the 

requirements for selection runs into difficulties, ones that are proper to their perspective. 

Griffiths and Gray violate the fourth constraint from section 2.1; they do not state a complete 

account of the requirements of selection. One would have to already have a grip on how to 

deploy selection theory in order to assess whether their requirements hold over some system. 

Specifically, there is no way to get a grip on what developmental systems are without a prior 

understanding of selection theory. As we will see, the theorist must know how to deploy 

selection theory already before she can even make sense of what Griffiths and Gray postulate as 

the requirements for the theory, for she must understand selection theory to understand what 

developmental systems are. Accordingly, she cannot use Griffiths and Gray’s requirements to 

determine the applicability of the theory, for the requirements cannot state anything she does not 

already have to know. 

 To make good on their novel theoretical term “developmental system,” Griffiths and 

Gray must explain two things, how developmental are to be delineated, and how they are to be 
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individuated. The explanations Griffiths and Gary offer for how the delineation and 

individuation of developmental systems are to be performed are what undermine their statement 

of the requirements for selection, for we must already understand selection theory in order to 

understand these accounts. An explanation of how developmental systems are to be delineated 

consists in saying how to tell apart what sorts of features are to be included in evolutionary 

developmental systems and what sorts of features must be excluded. Criteria of individuation 

will allow one to tell whether multiple traits and features that each lie within some 

developmental system also belong to a single developmental system, rather than belonging to 

multiple distinct developmental systems. 

It is easiest to show that developmental systems cannot be individuated in DST without 

recourse to an understanding of selection theory because Griffiths and Gray overtly require 

theorists to understand natural selection in order to individuate developmental systems. Griffiths 

and Gray discuss the problem of delineation separately from the problem of individuation; the 

problem of delineation is discussed at length in two early pieces of Griffiths and Gray (1994; 

1997), whereas Griffiths and Gray’s most recent take on the problem of individuation can be 

found in a later work (2001, 209-214).  

2.5.5.1 Individuating developmental systems. To deploy the requirements for selection theory 

that Griffiths and Gray offer, we will need to be able to individuate developmental systems. 

Individuating biological systems is a problem not just for DST but for biologists generally. There 

are several well-known examples of systems that are hard to individuate, such as slime molds, 

colonial organisms, and tight symbioses among organisms in different lineages. One promising 

route to making individuation judgments in such cases is through selection theory. The cost of 

taking this route, however, is that one cannot use principles for individuation that are arrived at 
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in this way as inputs to selection theory without engaging in circular reasoning, so requirements 

for selection that function as requirements for the deployment of selection theory must not make 

reference to individuals that are picked out in ways that depend upon an understanding of 

selection theory. 

Griffiths and Gray tackle the problem of individuation in a manner similar to that 

employed by Sober and Wilson. Griffiths and Gray write, “an individual is a system in which the 

parts form a trait group with respect to most future evolutionary processes” (2001, 213). 

Following Sober and Wilson (1994), trait groups are in turn defined as “a set of organisms 

relative to which some adaptation is, in economic terms, a public good” (Griffiths and Gray 

2001, 210-11). Notice the use of the notions of adaptation and future evolutionary processes. 

Griffiths and Gray further assert, “an adaptation is anything that results from natural selection” 

(2001, 209). This last definition completes the circle: ultimately one must be able to tell what 

results from natural selection, and hence be able to understand the theory of natural selection, in 

order to individuate the systems over which the theory is supposed to be deployed. Presumably, 

however, if one already understands the theory of natural selection, one already knows over what 

sorts of systems the theory is to be deployed. The Griffiths and Gray requirements for selection 

cannot be deployed in a non-circular manner because one cannot individuate developmental 

systems without already knowing what will go on in “most future evolutionary processes” and 

what counts as an adaptation produced by natural selection, things that one cannot understand 

without first understanding selection theory and hence understanding over what systems it may 

be deployed. 

2.5.5.2 Delineating developmental systems. Not only is the Griffiths and Gray statement of the 

requirements for selection circular because of how they individuate developmental systems, but 
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it is also circular owing to how they delineate them. To successfully delineate developmental 

systems, one must be able to tell what sorts of things fall within developmental systems and what 

sorts of things fall without. It is more difficult to show the development systems cannot be 

delineated without recourse to the use of selection theory because doing so requires that I argue 

that one putative means that advocates of DST use to delineate the developmental systems does 

not work. Griffiths and Gray have two putative means to delineate developmental systems, one 

of which deploys theoretical language from selection theory and one that does not do so. The 

delineation criterion that does not deploy theoretical language from selection theory fails to 

perform its delineation function, while the strategy that involves theoretical language from 

selection theory embroils its user in the same sort of circularity as was exposed in the previous 

section.  

 The pressure on advocates of DST to offer rigorous means of delineating developmental 

systems has its source in Kim Sterelny’s “Elvis Presley Problem,” a problem Sterelny developed 

in correspondence with Griffiths and Gray: 

Elvis Presley is part of my [Sterelny’s] developmental system, 
being as he was causally relevant to the development of my 
musical sensibilities, such as they are. Yet surely there is no 
system, no sequence, no biologically meaningful unit, that includes 
me and Elvis. (Griffiths and Gray 1994, 286) 

  
Advocates of DST claim that they have the Elvis Presley problem under control; they are 

interested only in heritable developmental interactions: 
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The theory is interested in those developmental resources whose 
presence in each generation is responsible for the characteristics 
that are stably replicated in that lineage. For example, we might 
contrast two influences on a newborn bird. The interaction between 
the newborn bird and the song of its species, which occurs in each 
generation and helps explain how the characteristic song is 
produced, is part of the bird’s developmental process. The 
interaction between the newborn bird and the noise that ruptures its 
eardrums plays no such role, and is not part of the process. 
(Griffiths and Gray 1994, 296) 

 
Griffiths and Gray also offer other examples of features that are not produced by characteristic 

interactions of developmental systems, such as human autism (1997, 476). Indeed, the study of 

developmental abnormalities requires them to delineate another sort of developmental system 

entirely (Griffiths and Gray 1994, 287; 1997, 476). 

The DST notion of inheritance, however, cannot be successfully used to distinguish 

between what can and cannot make it into the developmental system or developmental process. 

The difficulty comes from polymorphisms: while every peculiarity of the development of every 

individual within a lineage cannot be included as part of the developmental system, there are 

certainly cases where different developmental interactions should be included within the same 

developmental system. These include cases where developmental outcomes and processes are 

only slightly different among descendants than among their ancestors. More interesting are cases 

in which two clearly distinguishable and exclusive traits should both count as features of single 

type of developmental system. I will use one of Griffiths and Gray’s examples of this last sort of 

thing, involving two beetle morph that I call macho morphs and mini morphs: 

The successful developmental systems in certain beetle lineages 
have been those which produce one outcome in response to one 
sort of interaction, and another in response to a different 
interaction. The first produces a large, well-armed morph, the 
second a smaller morph that avoids conflict. Morphs of one type 
regularly give rise to the other morph. Both morphs are 
expressions of the same developmental system. (1994, 296-97): 
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So, clearly, when it comes to being a part of the developmental system, some polymorphisms are 

in and some polymorphisms are out. Beetle morphs, yes; deafened robins, no. 

If a trait must be heritable to form part of an evolutionary developmental system, and 

both the mini and the macho morphs are parts of the same developmental system, there must be a 

way to conceive of the macho and mini morphs as expressions of a single heritable trait. This is 

not hard to do: the feature that is reliably replicated among the members of the beetle lineage is 

the trait of interacting with its environment so as to become either a mini morph or a macho 

morph. Griffiths and Gray are explicit that the developmental process can include discontinuous 

variation of this sort (1997, 476), and of course the beetle morph example is theirs. 

 However, the fact that we can conceive of heritable traits as encompassing discontinuous 

variation in this way is just the problem, for it will always be possible to take it that two distinct 

morphologies are versions of a heritable trait for which there is discontinuous variation. It will 

equally always be possible to take two distinct morphologies and treat the more common one as 

the heritable trait and the other as a developmental abnormality. What the notion of heritability 

does not tell us is when we should do which. Why treat the two morphologies of human wrist, 

scarred and unscathed in one way, while treating the two morphologies of the beetle in another 

way? After all, the two situations could be treated as parallel cases: sometimes humans in our 

lineage end up with scars on their wrists, and sometimes they do not; sometimes beetles turn out 

macho and sometimes mini, so we could treat the trait, wrist-scarred-or-not-wrist-scarred, as a 

heritable trait in the human developmental system, a trait expressing discontinuous variation. At 

least the restriction that the features of a developmental process must be heritable will not keep 

us from treating the human developmental system in this fashion. 
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Generally, if there are some occasions where one of two distinct interactions is 

considered part of the developmental system while the other is not, and there are other occasions 

where both of two distinct interactions fall inside the developmental system, the notion of 

inheritance cannot help us tell these situations apart. Such cases will have to be told apart; 

otherwise DST will collapse into the sort of holism that Sterelny found lurking in the DST 

program when he proposed his Elvis Presley problem. Everything that makes an individual 

developmental system distinct could be treated as an instance of a polymorphic trait for that sort 

of evolutionary developmental system. The result of treating all variations as versions of a 

heritable trait would be to construe the evolutionary developmental system as including all the 

developmental resources that produce any outcome exhibited by any individuals that are 

instances (or parts) of the system. 

I should now note that Griffiths and Gray do indeed have a way of telling these cases 

apart. Recall that advocates of DST give two ways of delineating developmental systems. 

Developmental systems can successfully be delineated by appeal to adaptive historical 

explanations. The wrist-scarring interaction is not a part of the human developmental system 

because there is no adaptive-historical explanation for the wrist-scarred outcome that is Paul 

Griffiths (Griffiths and Gray 1997, 476). In contrast to the cases of the scarred wrist, the 

deafened robin, and the autistic human, both the two beetle morphologies, the macho-morph and 

the mini-morph, have adaptive-historical explanations, so that’s why we should treat the beetle 

developmental system as encompassing this sort of discontinuous variation. 

The problem with this second evolutionary criterion is that it makes DST’s statement of 

the requirements for selection circular: in order to assess whether or not DST’s putative 

requirements for selection are fulfilled, we must be able to delineate developmental systems 
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using our understanding of what does not and does have an adaptive-historical explanation, 

which presupposes an understanding of selection theory. This is essentially the same criticism as 

I deployed earlier with respect to Griffiths and Gray’s criteria of individuation. 

 

2.6 SUMMARY: THE PROBLEMS FOR RESEMBLANCE SELECTIONISM 

In summary, the chief obstacles besetting resemblance selectionist approaches to the 

requirements for selection are the problems posed by 1) the notion of inheritance, 2) the 

delineation/individuation of appropriate macrosystems that must exhibit inheritance 

relationships, and 3) the grouping of entities into populations. My criticisms are these: The 

stances that the inheritance of fitness and the inheritance of phenotypes are requirement for 

selection are susceptible to counterexample; it is unclear how the macro-systems that are 

supposed to exhibit heritable traits are to be picked out; and, in order to make sense of the notion 

of inheritance, we have to have already grouped macro-systems into populations in the right way 

so as to use selection theory to make good inferences about system dynamics, meaning we 

already have to understand something about the sorts of systems over which we can deploy 

selection theory before understanding its requirements. 

As we will see in the next chapter, the type selectionist approaches I consider below do 

not confront these difficulties. Inheritance is not used in stating the entrance rule for the theory, 

and how the entities that meet the entrance rule for the theory make up populations along with 

how macro-systems such as organisms can be delineated are presented later on, once the 

entrance rule for the theory has been specified. 
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3.0 TYPE SELECTIONISM 

 

I now turn to consider Dawkins’ type selectionist stance on the entrance rule for selection theory 

alongside my own type selectionist proposal. Recall that a stance on the entrance rule for 

selection theory is type selectionist if it requires that systems over which we deploy the theory 

feature entities that produce descendants of the same type as themselves. Dawkins’ definition of 

the active germ-line replicator amounts to a stance on the entrance rule for (something much 

like) selection theory; my definition of the competitor is explicitly such. I consider my proposal 

alongside that of Dawkins because of what they have in common. Both are type selectionist, both 

avoid deploying the notions of inheritance and population, and both avoid reference to macro-

systems. 

The ways replicators and competitors are different have to do with features of Dawkins’ 

definition of replicator that I think are either superfluous or implicit in his broader discussion of 

replicators. Dawkins both deploys criteria in his entrance rule for selection theory that I deem 

unnecessary and leaves implicit certain features of replicators that should be brought out into the 

open. Despite my difficulties with some aspects of Dawkins’ view, and despite the superficial 

dissimilarities between the definitions of replicator and competitor, it should be acknowledged 

that the definitions that Dawkins and I propose will capture nearly all the same entities. The 

differences in our definitions of the entrance rule for selection theory should not obscure a broad 

agreement on how the deployment of selection theory is provoked. 
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In the next section, I set out definitions of both the replicator and the competitor. I then 

quickly discuss some objections to the notion of competitor that might immediately spring to 

mind in those who encounter the definition. From there, I consider Dawkins’ account of the 

entrance rule for selection theory more fully, and use that discussion to motivate my own take on 

the entrance rule for selection theory. 

 

3.1 REPLICATORS AND COMPETITORS 

Replicators are anything in the universe of which copies are made. Germ-line replicators have 

the potential to have indefinitely many descendants. Active replicators have some causal 

influence on their probability of being copied (Dawkins 1982, 83). According to Dawkins, 

natural selection will occur whenever we find active germ-line replicators. Translated into the 

idiom of this work, Dawkins’ claim is that selection theory may be deployed upon systems of 

active germ-line replicators. Note how the view is type selectionist: replicators produce 

descendants of the same type as themselves, not descendants that resemble them. 

My notion of competitor is meant to function as an entrance rule for selection theory too, 

but I define it differently. An entity is a competitor by virtue of what it does: competitors 

struggle for existence with other competitors. We pick out competitors by finding entities that 

are struggling with existence with one another; entities that do so I call rivals. In order to pick 

out competitors in these terms, we need a precise notion of what relationship two entities have 

when they struggle for existence. Building on Darwin’s discussion of the struggle for existence 

in the Origin, I claim that two entities struggle for existence with one another if each performs 

activities that both cause their own descendant production and inhibit (negatively cause) the 

descendant production of the other entity. 
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A paradigm example of the sort of activity that institutes the struggle for existence the 

consumption or monopolization of a limited resource, such as food. Darwin’s first example of 

the struggle for existence in chapter 3 of the Origin, which is dedicated to consideration of that 

notion and how it functions as a prerequisite for selection, involves two dogs competing for food 

in a time of dearth (Darwin 1988[1859], 62). If there is only so much food to go around, and one 

individual in a population consumes some of it, this will not only facilitate the descendant 

production of the consumer, but it will also make it more difficult for other population members 

to produce descendants, since there will be less food for them. 

More generally, competition of the sort I define above may arise in a number of other 

ways. Avoidance of a predator leaves it circling and hungry, and therefore raises the probability 

that other prey organisms nearby will get eaten instead. Taking a partner as a mate decreases the 

number available to others, too. These, too, are examples discussed by in the third chapter of 

Darwin’s Origin of the sorts of relationships that institute the struggle for existence 

(1988[1859]).  

If we pick out entities using the relationship of competition, we get a rather awkward 

definition. To make the definition more tractable, I will mean by “descendant production” to 

cause the production of descendants that are of the same type as the individual that produces 

them. Equally, I will mean by “inhibit” negatively cause. I also make heavy use of very general 

vocabulary, specifically “entity” and “type,” and I promise to discuss this usage below. Here is 

the definition of competitor:  

Competitor – An entity that i) produces descendants ii) does by means of at least one activity that 
inhibits the descendant production of a different type of entity, which iii) in turn produces 
descendants by an activity that inhibits the descendant production of the other entity. 
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While the definition may seem bizarre, the core idea behind the definition of the competitor is 

that competitors must struggle for existence to count as such. The activities that constitute 

competition are easily pictured using a directed causal graph: 

 

 

Figure 3.1 Graphical representation of competition 

If any two individuals act in the above manner, both count as competitors. Below is an 

alternative presentation of competition, one in which the edges are weighted with a “+” for a 

positive causal connection and a “-” for an inhibitory connection: 

 

Figure 3.2 Alternative graphical representation of competition 
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3.1.1 Competition and the struggle for existence 

The above characterization of competition is my own, but it is supposed to capture in causal 

terms the relationship that Darwin understood as the struggle for existence. Darwin himself does 

not define the struggle for existence; he gives the reader instances of the sort of checks on 

organic beings, and interrelationships among them, that create the struggle for existence. He 

thereby gives the reader an idea, indeed a very good idea, of what he means by the term. 

Darwin discusses two cases of relationships that do not count as instances of the struggle 

for existence, despite being superficially similar to real cases of the struggle for existence, that I 

want to note. First, Darwin writes that a lone cactus at the edge of the desert may be said to 

struggle, but not in the sense in which creatures struggle for existence; “more properly it should 

be said to be dependent upon moisture” (Darwin 1988[1859], 62). I note this for two reasons. 

First, it highlights how struggling is a relationship between individuals. Second, Lewontin quotes 

this same passage as defense for the claim that the struggle for existence is not presented by 

Darwin as a necessary condition for selection (Lewontin 1970, 1). Lewontin misreads Darwin in 

doing so. 

Darwin also writes that mistletoe, a parasite, does not struggle with apple trees, its prey, 

though several mistletoe seedlings on the same branch of an apple tree struggle with each other 

(1988[1859], 63). The dynamics of predator and prey populations do not in general resemble 

those of variant types of organisms, or variant alleles, as these are modeled in population 

genetics, so they had better be left outside the purview of the theory. We will make bad 

inferences about the dynamics of foxes and hares if we treat them as different types of 

individuals in a population genetics model, something we know because we know how to 

effectively model them using a different theory, evolutionary ecology. 
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Predators and preys are often said to compete; indeed, competition between individuals in 

the same species is often discussed alongside competition between predators and preys (e.g., 

Leigh 1999, 15). However, predators and preys do not compete in the sense specified above. 

Preys do not inhibit the reproduction of predators; rather, they promote their reproduction by 

serving as food for them. One might suspect that competition exists between predators and preys 

nonetheless because preys often deploy defense mechanisms to avoid their consumption. Are not 

predators and preys competing when such defense mechanisms are deployed? 

In order to see that the answer to that last question is “no,” we must divide up the cases of 

the deployment of defense mechanisms, say, flight from a fox by a hare, into two kinds: cases in 

which the hare flees the fox but the hare is caught anyway, and cases in which the fox merely 

chases the hare, but does not catch it. In the first sort of case, the hare does not impede the 

descendant production of the fox, because the hare serves as the fox’s food. In the second sort of 

case, the fox does not cause its own descendant production by merely chasing the hare. 

Contrast the relationship between two mistletoe plants parasitizing the same tree. These 

inhibit one another’s reproduction as they each draw on the same limited resources provided by 

the tree. Each mistletoe draws resources from the tree thereby not only benefiting itself by 

acquiring the resources, but also inhibiting the reproduction of its rival.  

Finally, note that population members compete even in very one-sided contests. The 

competition criterion does not require that rival types in a population fight one another to a 

standstill. If a heavily favored type spreads throughout a niche a little more slowly than it would 

have had it had no rivals, the process by which the favored type displaces the disfavored one may 

still be counted as an instance of selection in a single population. The loser in the competition 

nonetheless inhibited the descendant production of its rival, however weakly, even though its 
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causal influence over the process was overwhelmed by that of its rival. Generally, a process may 

terminate in a single outcome despite the impact of multiple causal influences. One should not 

confuse component causes with the results of causally complex processes to which they make a 

contribution. 

3.1.2 “Type” and “entity” 

I should briefly discuss my use of the notions of “type” and “entity” in the above definition. I am 

not the only person to use these terms in a specification of something like an entrance rule for 

selection theory. Dawkins defines replicators in terms of copying, and Szathmáry writes that 

entities qualify as units of evolution if they meet these criteria: 

1. Multiplication. Entities should give rise to more entities of the same kind. 
2. Heredity. Like begets like; A-type entities produce A-type entities; B-type 

entities produce B-type entities, etc. 
3. Variability. Heredity is not exact; occasionally A type objects give rise to 

A΄ type objects (it may be that A΄ = B) (Szathmáry 1999, 31) 
 
The concepts of entity and type may strike the reader as dangerously unspecified: How are we to 

decide what constitutes a different type of entity? In the case of alleles, our paradigm 

competitors, a rival type will have a different chemical structure. But the definition is supposed 

to apply more broadly. Griesemer raises this issue with respect to Maynard Smith’s stance that 

evolution requires multiplication: “The precise nature of this condition on multiplication is 

vague. Any two things are similar in an indefinite number of ways, so every two objects 

produced by multiplication are of the same kind” (Griesemer 2000, 73). The threat here is that 

selection theory might be triggered too easily, most threateningly by populations of entities 

whose dynamics turn out not to be what selection theory would lead us to expect. Systems 

undergoing the wrong sorts of dynamics might be taken to be made up of competitors, if 
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“competitor” is defined in such a way that it is too easy to say what makes ancestors and 

descendants instances of the same type of entity. So how are “type” and “entity” to be used? 

 On the approach to that question pursued here, variant types of entities must compete, 

that is, engage in a specific sort of causal relationship, for it to be appropriate to deploy selection 

theory to explain their dynamics, but I want to leave open what other features the variants might 

have. That is the reason I use the terms “type” and “entity” in the above definition; I do not want 

use anything but causal features of systems to constrain the application of the term “competitor.” 

It would a mistake to replace the notion of “type” in the above definition with “type of …” for 

fear that whatever phrase was used in place of the ellipses would circumscribe the application of 

selection theory too narrowly.  

Officially, then, one can distinguish competing entities on any grounds, one can classify 

them into different types in any way, provided that the causal relationships specified in the 

definition hold of them. It is really the causal criteria that function to constrain the application of 

the definition; “type” is meant to be accommodating, to allow the theory to be deployed over 

variations that are not genetic variations or indeed any other more determinate type of variation.  

Indeed, “type” functions in the above definition much as does the word “thing” in other 

contexts. If we want to talk about everything that shares some feature that is picked out using an 

adjective, such as “red,” we often have to couple “red” with the word “thing”; for instance, if I 

want to say that no matter what other features something has, if it is red then it makes you 

hungry, I write “red things make you hungry.” It’s not that in order to make you hungry 

something has to be red and something else too, both red and a thing. Rather, “thing” is playing 

the role of a placeholder, allowing me to make the desired assertion about the relationship 

between redness and hunger without further limiting the sorts of things that make one hungry 
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beyond the constraint that they be red. When it comes to properties, the analogous notion for 

“thing” is “type” (and maybe “sort”); “thing” and “type” are both maximally general notions. 

Just as yellow garages are yellow buildings are yellow structures are yellow man-made objects 

are … are yellow things, red lenses are colored lenses are tinted lenses are visible lenses are … 

are types of lens. I want the causal criteria to do all the work in picking out competitors, so I 

forced to use words like “entity” and “type” in the definition to achieve the sought after level of 

generality. 

Accordingly, those who would assail my entrance rule are invited to use, indeed even to 

abuse, the notion of type as they see fit in attempts to develop counterexamples to my position. 

My expectation is that they will find that while it is easy to come up with silly ways of 

distinguishing between different types of entities, but that not just any way of carving entities 

into types will yield ones that have the sorts of causal influences that the definition mandates. In 

particular, types that produces descendants of the same type as themselves will be hard to find, 

and ones that compete still harder. The causal criteria will restrict the application of the 

definition to thwart the proposed counterexamples, and that is how things are supposed to go. 

 

3.2 REPLICATORS AS FULFILLING THE REQUIREMENTS FOR SELECTION 

I turn now to consider more closely Dawkins’ definition of the replicator. One must trace out 

some inferential connections in order to show that by saying that the active germ-line replicator 

is the “unit of selection,” Dawkins can be interpreted as making a statement about the 

requirements for selection, or as stating an entrance rule for selection theory. I make this case 

first before I go on to discuss how well Dawkins’ notion of “replicator” functions as an entrance 

rule for selection theory. 
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First and foremost, Dawkins’ definition of the active germ-line replicator is meant to pick 

out the beneficiaries of adaptation. Replicators are optimons (Dawkins 1982, 84), and optimons 

are in turn characterized as “the ‘something’ to which we refer when we speak of a adaptation 

being ‘for the good of’ something” (Dawkins 1982, 81). Dawkins thinks of optimons as crucial 

contributors to teleonomy, what G. C. Williams (1966) proposed as the science of adaptation. 

Dawkins writes: “The central theoretical problem of teleonomy will be that of the nature of the 

entity for whose benefit adaptations may be said to exist” (Dawkins 1982, 81). 

 Wherever one has adaptations one should expect to find their beneficiaries, what 

Dawkins eventually picks out as active germ-line replicators. Adaptations must nearly always be 

the result of evolution by natural selection, and it is by virtue of this connection that the link 

between selection theory and Dawkins’ specification of the optimon is secured: “The reason 

active germ-line replicators are important units is that, wherever in the universe they may be 

found, they are likely to become the basis for natural selection and hence evolution” (Dawkins 

1982, 84). Dawkins’ definition of the active germ-line replicator (henceforth just “replicator”), 

can accordingly be understood as a statement of the requirements for selection: It is where we 

find replicators that we find selection and adaptive evolution. It is in this sense that replicators 

are supposed to be fundamental to selection: wherever you get selection, you have replicators. 

While we might find adaptations that can be understood as for bodily survival or even for group 

survival, “all these adaptations will exist, fundamentally, through differential replicator survival. 

The basic beneficiary of any adaptation is the active germ-line replicator, the optimon” (Dawkins 

1982, 85) 

 Unlike the many of the writers considered in the previous chapter, Dawkins does not 

make the mistake of treating evolution as a requirement for selection because there is nothing in 
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the definition of replicator that implies differential replication. First and foremost, replicators are 

what are responsible for selection, though Dawkins’ way of putting this is a little odd: he has 

replicators being the beneficiaries of adaptations. However, there are other senses of 

“beneficiary” according to which other entities might be counted as beneficiaries of adaptations 

(Lloyd 1992). For this reason, I simply treat replicators as the things that institute a selection 

regime, or better, the things that trigger the deployment of selection theory, and leave behind the 

slippery language of benefit and adaptation. 

3.2.1 What replicators do not do 

It is worth noting that once one has picked out the entities that trigger the application of selection 

theory, one has not picked out either of two other sorts of things. First, one has not picked out all 

the entities that must be picked out in order to say how selection theory should be modeled in a 

given population. Second, one has not picked out entities that replicate autonomously, that is, 

without depending in any way on their causal context. Dawkins’ claim that replicators are the 

units of selection has been criticized because there are entities besides replicators that must be 

invoked in selectionist explanations, and because replicators cannot replicate without their causal 

context taking very specific forms. 

 98



That Dawkins has been criticized in these ways is at least partly his own fault because he 

claims that replicators are the units of selection, and the notion, “unit of selection,” has an 

unstable meaning. Dawkins uses the term “unit of selection” to refer to those entities that are the 

beneficiaries of adaptations, while Lewontin uses it to refer to another sort of entity, populations 

of which may evolve by natural selection when certain conditions are met. Indeed, if anyone is 

entitled to say what “unit of selection” means, then Lewontin gets the benefit of the dubbed, 

since he was deploying the term “unit of selection” long before Dawkins was (Lewontin 1970; 

Franklin and Lewontin 1970). 

Nonetheless, because Dawkins puts forth the replicator as the unit of selection, he has 

come under criticism for the failure of his definition to pick out entities that are regarded as units 

of selection when that term is used differently. Dawkins has been criticized for claiming that 

selection is at the level of the gene when it is genotypes that are assigned relative fitness 

coefficients (Sober and Lewontin 1982; Sober 1987). Similarly, Griffiths and Neumann-Held 

point to models in which multiple alleles contribute to phenotypic variations that have a more 

proximate impact on organismic survival and reproduction than do the genes that cause them in 

an effort to undermine Dawkins’ view (Griffiths and Neumann-Held 1999, 661). Dawkins has 

also been accused of giving alleles a sort of mythical ability to replicate themselves without 

having to rely on the scaffolding provided by various bits of cellular and environmental context 

(Lewontin 1991, 48). As I interpret Dawkins, the aim of his definition of the replicator was 

neither to provide a description of what sorts of entities can or must be assigned relative fitness 

coefficients in selection-theoretic models, nor what sorts of entities or features have the most 

causally proximate relationship to descendant production, nor what sorts of things can produce 

descendants independently of their causal contexts. 
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With respect to the first criticism, it should be acknowledged that there may be more 

entities at work in the process of selection than just those that need to be found to trigger the 

applicability of the theory. Most important among these additional non-replicators are those that 

bear relative fitness coefficients, principally gametes, zygotes, and mating pairs. While gametes, 

zygotes, and mating pairs (or generalizations of these notions) do play a role in selection theory, 

it is not the same role as that played by replicators and competitors. Replicators/competitors are 

what you must have in order for selection to go on. One need not have gametes, zygotes, or 

mating pairs or indeed any sort of interactors that are distinct from replicators in order for 

selection to occur (Hull 1988, 409). Rather, one gets different sorts of selection processes in 

populations featuring these different sorts of entities. 

While the sorts of entities that deserve relative fitness coefficients in selection theory can 

indeed be defined (see chapter 5), this definition is different from the one that is used to trigger 

the deployment of the theory. Indeed, this is just what one would expect, since one needs already 

to have a grip on the notion of allele in order to say how gametes, zygotes, and mating pairs are 

recognized and differentiated in classical population genetics, because these individuals are 

distinguished in terms of the alleles they bear. Indeed, the trio of notions, “gamete,” “zygote,” 

and “mating pair,” at least as they are used in selection theory, are inferentially dependent upon 

the notion of allele or some generalization of it for this reason. 
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Provided it is recognized that there are different sorts of entities that play different roles 

in selection theory and which need to be picked out using different criteria, it does not matter 

what we call the units of selection, whether its alleles, zygotes, mating pairs, or generalizations 

of these notions. All parties in the units of selection debate were on to something, and they all 

picked out as units of selection entities that play key roles in the theory. Instead of saying that 

Dawkins’ replicator is the unit of selection, we should say instead that “replicator” is a 

generalization of “allele” (so is “competitor”). 

Griffiths and Gray provide a nice version of the second, “mythical self-replicating genes” 

criticism that they think works against even the relatively permissive extended replicator 

selectionism of Sterelny et al (1996). Griffiths and Gray claim that replicator selectionism is 

flawed because it will have to take into account non-replicators in order to explain how 

replicators replicate: 

The extended replicator theory also has to model the standing 
features of the physical world which form part of most 
developmental systems. Sunlight, gravity, mineral concentrations 
in the local soil, and many other factors must be present if 
“channels” are to convey and “replicators” to replicate. (Griffiths 
and Gray 2001, 197)  

 
In response, it should be acknowledged that by picking out the entities that trigger the 

deployment of selection theory, replicator selectionists have not described everything that needs 

to be in place for such entities to produce descendants. Alleles require a host of contextual 

resources in order to replicate themselves, including standing features of the world that are not 

alleles, replicators, competitors, or even organic in nature. But insofar as Dawkins has picked out 

replicators as things that get copied, he has effectively, as a matter of logic, picked out only those 

things for which the scaffolding necessary for their descendant production is in place. An allele 

shorn of the developmental context necessary for replication is not, by definition, a replicator. 

 101



Things are much the same with competitors: insofar as I pick out competitors as things with 

causal effects on their own descendant production, a competitor that is an allele must, again by 

definition, have the necessary contextual scaffolding in place to act as a causal influence on its 

descendant production; without the necessary causal scaffolding, a would-be competitor will 

have no causal influence on the production of entities of the same type and hence will not count 

as a competitor at all.11 In sum, Dawkins is best interpreted as offering his definition of the 

replicator as a statement of what sorts of entities can be expected to trigger the deployment of 

selection theory, and the conditions for the application of the theory of natural selection are 

stated fairly well using his notion of the active germ-line replicator. 

                                                 
11 This means that a potential competitor that is not one until conditions change, say, until is begins to struggle for 
existence when a rival invades its niche, does not trigger the deployment of selection theory. 
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3.2.2 Biological vocabulary 

Both Dawkins’ proposed entrance rule for selection theory and mine eschew biological 

vocabulary, leaving it up to applicants of the theory to decide whether some biological structure 

should count as competitor or a replicator. This procedure can be justified in a couple of ways. 

For one thing, we should not “prejudge the empirical issues” and decide ahead of time whether 

some biological structure is fit for playing the role of the replicator or the competitor in selection 

theory. Furthermore, nearly every biological structure is the product of evolution by natural 

selection, including genes (Maynard Smith and Szathmáry 1995); insofar as we want a theory 

that makes such structures explicable, we should not presume that structures of these specific 

biological sorts had to exist for selection to go on (Okasha 2006, 15). A statement of an entrance 

rule for selection theory that deploys no biological vocabulary at all is structured so as to have at 

least the potential to be general enough to apply to any sort of biological structure, including 

both primitive ones that were once essential to the evolution as life on Earth but now may no 

longer exist, as well as novel ones that may yet arise. 

 While I eschew biological vocabulary in this work generally, one specific bit of 

biological vocabulary deserves special mention, namely “gene.” Beyond the benefits of 

generality, I avoid this term for a couple of additional reasons. One is that, even in the context of 

modern population genetics, “gene” is systematically ambiguous, sometimes meaning “allele,” 

and sometimes meaning “genetic locus.” The other reason is that, while alleles are paradigm 

replicators/competitors, “genetic locus” is a much more difficult notion to understand. 

 Whether genetic loci can be individuated, and if so, how, is a much-debated topic in both 

the philosophy of biology and molecular genetics. I take no stand in this debate. I do, however, 

claim that it is easy to understand “allele,” despite the fact that “gene” (in the sense of genetic 
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locus) is hard to specify. “Allele” can be understood more easily than “gene” because we need 

not pick out alleles by first picking out a genetic locus, and then subsequently picking out alleles 

as variations in the DNA at that locus. Rather, we can license our talk of differing alleles by first 

picking out genetic variations and circumscribing them afterwards. 

Once genetic variation has been found, an individual who would apply selection theory to 

that variation must draw borders around it somehow. But we can leave decisions about how to 

draw those sorts of borders to those applying the theory, thereby allowing local considerations, 

including pragmatic ones, to dictate how to carve alleles from chromosomes exhibiting genetic 

variations. For instance, some approaches to multilocus modeling are simplest when there are 

only two alleles at each locus, a set-up that can be most easily achieved when genetic loci are 

treated as single nucleotide sites (Kirkpatrick, Johnson, and Barton 2002, 1731). 

Furthermore, there is no reason to limit what sorts of information can be used to 

circumscribe alleles, either, and especially no reason to ban the use of information concerning 

where the variations are located on a chromosome. Griffiths and Neumann-Held argue that 

because selection may be prompted by variation at a single nucleotide site, replicator 

selectionists such as Dawkins are committed to thinking of single nucleotides as subject to 

selection, something that Griffiths and Neumann-Held think damns the position by reductio 

(Griffiths and Neumann-Held 1999, 660). But recognizing that sickle-cell anemia results from 

variant nucleotides at a specific chromosomal location where the nucleotides have definite 

distinct influences on development need not force one to acknowledge that variant nucleotides, 

when considered absent such positional information, form rival replicators or rival competitors. 

I do not know whether single nucleotides count as replicators in Dawkins’ sense of 

replicator, since I am not sure how to evaluate the question of whether or not they are “active”; 
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but absent positional information that restricts them to a specific chromosomal site, single 

nucleotides do not count as competitors since they do not have inhibitory causal effects on one 

another’s descendant production: cytosine does not, in general, have an inhibitory causal 

influence over the replication of guanine. And even if it did, that would mean a researcher would 

simply be licensed to take up the rather arduous task of deploying a selection-theoretic model to 

make inferences about the dynamics of these two competitors. Only a demonstration that such a 

model would imply a dynamics that are inconsistent with the real dynamics of the nucleotides, as 

assessed on independent grounds, would constitute a reductio of the position endorsed here. 
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3.2.3 The point of the entrance rule definition 

Before we get to my proposed amendments to Dawkins’ view, I should note one last point of 

agreement. One should judge the correctness of the definition of an entrance rule for selection 

theory by reference to the implications that such entrance rules are supposed to have. The 

goodness of any definition is a matter of how well it fulfills the point of the definition. In 

invoking the various criteria for active germ-line replicators that Dawkins does, he has his eye on 

the point of his notion of replicator. He writes in one place that “the whole purpose of our search 

for a ‘unit of selection’ is to discover a suitable actor to play the leading role in our metaphors of 

purpose” (1982, 91). In a similar vein, Dawkins remarks that it does not matter whether genes 

can be circumscribed according to some unitary criterion, for instance, one that would equate 

genes with cistrons: “My unit of selection, whether I called it gene or replicator never had any 

pretensions to unitariness anyway. For the purposes for which it was defined, unitariness is not 

an important consideration” (Dawkins 1982, 86; my emphasis). In my criticisms of Dawkins that 

follow, I argue on the basis of the point of the definition of an entrance rule for selection theory 

in order to establish that the competitor is a better concept to use as an entrance rule for selection 

theory than is the replicator, and Dawkins and I agree, it would seem, on how such arguments 

should work.  

 

3.3 DAWKINS’ DEFINITION OF THE REPLICATOR 

I now turn to consider Dawkins’ definition of the active germ-line replicator as a candidate 

entrance rule for selection theory. I find fault with every aspect of his definition, but the 

difficulties I find are small and easily repaired. Mostly, Dawkins’ definition is too strong: some 

of the conditions he places on the entrance rule for selection theory are unnecessary and some of 
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them could be better stated using different language that allows the more general deployment of 

the entrance rule, generality that Dawkins almost certainly intended his concept of replicator to 

have. 

3.3.1 The germ-line and potential immortality 

In this section, I argue that the germ-line requirement in Dawkins’ definition of the replicator is 

unnecessary. I argue that Dawkins implicitly recognizes this, too, as evinced by his discussion of 

individual replicators that are single nucleotides. Dropping the germ-line condition on replicators 

is harmless, and perhaps even beneficial. 

As Dawkins defines them, germ-line replicators are potentially immortal, or at least have 

the potential to have very many descendants. (I will take it that “germ-line” and “potentially 

immortal” are synonymous, even though the former term has a narrower compass, being limited 

in application to genetic inheritance systems.) Dawkins’ concern with the point of the theory of 

selection motivates his requirement that replicators be germ-line: somatic, “dead-end,” 

replicators will not produce adaptations.  

The criterion of potential immortality functions not only to exclude somatic replicators 

from triggering natural selection, but also to exclude replicators that are so large that they are 

bound to be destroyed by chromosomal recombination among polyploids. A very large chunk of 

chromosome that is bound to undergo recombination will fail to produce anything close to an 

indefinitely long line of descendants. Dawkins appeals to the point of Darwinian theory in 

discussing the problem of the size of replicators; our interest in deploying a theory that will make 

sense of adaptations is what functions to will limit the size of what Dawkins is willing to 

consider a replicator: 

So, how large and how small a portion of chromosome is it useful 
to treat as a replicator? This depends on the answer to another 
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question: ‘useful for what?’ The reason a replicator is interesting to 
Darwinians is that it is potentially immortal, or at least very long-
lived in the form of copies. (Dawkins 1982, 87) 

 
So the requirement that replicators be potentially very long-lived in copy form is part of the 

entrance rule for Darwinian theory because it serves to narrow the focus of the theory to the sorts 

of entities that can produce adaptations. For Dawkins, it is a mistake to think of replicators in 

somatic cells as subject to selection because their lineages will inevitably terminate as the 

organisms that bear them die, and adaptation will not result from this sort of process; it is equally 

a mistake to think of massive chunks of chromosomes as replicators because they will produce 

very few descendants because of recombination. Such short-lived lineages do not contribute to 

the Darwinian science of making adaptation explicable. 

The issue of the point of using the notion of replicator to make adaptation explicable 

comes up again in Dawkins’ discussion of a possible reductio against his position, one based on 

the accusation that his definition makes it possible to treat chunks of chromosome that are too 

small as replicators. Specifically, Dawkins considers the possibility that single nucleotides fit his 

definitions of replicator (1982, 90). This is not a helpful way to deploy the term replicator, 

Dawkins responds. Crucially, however, Dawkins’ criterion of potential immortality cannot help 

him forbid the deployment of selection theory over single nucleotides; the criterion he uses to 

ban chunks of DNA that were too large cannot help him forbid the deployment of the theory 

over entities that are too small. Instead, Dawkins relies on the pointlessness of the enterprise of 

using selection theory to explain the spread of single nucleotides tout court: 

The whole purpose of our search for a ‘unit of selection’ is to 
discover a suitable actor to play the leading role in our metaphors 
of purpose … I am suggesting here that, since we must speak of 
adaptations as being for the good of something, the correct 
something is the active, germ-line replicators And while it may not 
be strictly wrong to say that an adaptation is for the good of the 
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nucleotide, i.e. the smallest replicator responsible for the 
phenotypic differences concerned in evolutionary change, it is not 
helpful to do so. (Dawkins 1982, 91) 

 
This last response of Dawkins’ casts into question the point of requiring that replicators 

be germ-line in the first place. While the criterion of potential immortality can rule out 

deployments of the theory over chunks of chromosome that are too large, ones that will 

inevitably be broken up in short order by recombination, it cannot rule out every non-serious, 

unhelpful deployment of the theory. Specifically, it cannot rule out the unhelpful deployment of 

the theory over replicators that are too small, such as single nucleotides. Instead, Dawkins must 

make a direct appeal to the point of his definition of the active germ-line replicator, rather than 

the concepts that constitute the definition, in order to rule against the selfish nucleotide. If such 

direct appeals to the point are sensible, then why not use them elsewhere too? Why not rule out 

the deployment of the theory over chunks of chromosome that are too big on the same grounds, 

that is, by directly appealing to the pointlessness of doing so? Were we willing to do that, we 

could drop Dawkins’ germ-line requirement altogether. 

 Dawkins’ instincts in responding to the “too little” problem are correct; his requirement 

that replicators be germ-line, which rules out replicators that are too big, is unnecessary. 

Generally, a good entrance rule for a theory need not rule out pointless applications of a theory, 

and that’s what the germ-line condition does, at least in the cases where it is effective. Pointless 

applications of a theory may be a sort of mistake, but such mistakes cast the applicant of the 

theory in poor light, not the theorist. Unhelpful and pointless applications of a theory lead to 

foregone conclusions, not outright errors. 

The measure of an entrance rule for selection theory is not whether or not it successfully 

bans pointless applications. Rather, a good entrance rule will not allow a theory to be applied 
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over systems that do not behave in the way that we infer they will when we deploy the theory 

(though we should not state the entrance rule in this way). When we apply the theory in a 

pointless way, we do not infer that systems will behave in ways that they actually do not; rather, 

we infer that they will behave in ways that we already know they will behave. That’s what makes 

the application of the theory pointless. 

This is easiest to see if one imagines actually applying selection theory to a chunk of 

chromosome that is too big, or to an allele in a somatic cell. The fitness of an “allele” that will 

inevitably be broken up by recombination is zero and hence its future relative frequency is too. 

So if we actually use the theory to infer the future relative frequency of an allele that is so large 

that it is doomed, we get exactly the result that we already knew to expect. Similarly, the 

equilibrium relative frequency of the descendants of variant alleles in different somatic cell lines 

is zero, too. These are foregone conclusions; I make no attempt to convince you of them because 

they are obvious. But they are exactly the conclusions one gets if one bothers to follow the rules 

of deploying selection theory in these sorts of easy cases.12 

The individual who states an entrance rule for selection theory must state a rule that, if 

followed, will not invite someone to draw conclusions that are inconsistent with facts that are 

known on other grounds. Pointless applications of selection theory do not lead one to infer 

falsities of this sort. They need not be ruled out by a good entrance rule. 

 I discuss all this by way of argument for dropping the condition on replicators that they 

be potentially immortal. There are other good reasons for doing this too. “Potentially immortal” 
                                                 
12 Strictly speaking, it might not be obvious how to reach the second conclusion by means of the machinery of 
selection theory. To infer the right long-term relative frequency of zero in the case of the somatic allele, one would 
require a temporally variable selection model that assigned the somatic cell allele an absolute fitness value of zero in 
the nth generation, where n is a reasonable guess at the number of potential cell divisions in the somatic cell line 
before death. Indeed, an entrance rule that allows one to fruitfully monitor the relative frequency of a somatic 
variation up to the nth generation but no further is not flawed for that reason. It may well be possible to use selection 
theory to explain the spread of rival somatic lines within the lifespan of an organism. Okasha, for instance, claims 
that we can think of cancers as outcompeting other non-mutant somatic cell lineages (2006, 11). 
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is a difficult notion to use in a rigorous and precise fashion. What’s more, it may sometimes be 

valuable to deploy selection theory upon some system even if it is known that the rivals singled 

out will inevitably perish. Indeed, the fatalists among us will regard the lineages of all living 

things as doomed. Not only is the germ-line condition unnecessary, it might even be problematic. 

3.3.2 Activity 

Dawkins’ replicator and my competitor are both defined through their causal relations. Dawkins’ 

activity criterion requires that replicators exert phenotypic effects. I require that replicators exert 

a causal influence on their descendant production and on that of their rivals; I require that 

competitors compete. In this section, I argue that my notion of competition is better than 

Dawkins’ notion of “activity” for the purposes of stating an entrance rule for selection theory. 

Dawkins stipulates that replicators must be active, they must exert some influence over 

their probability of being copied (1982, 83). The use of the term “influence” should be 

interpreted as causal influence. This is clear from discussions in which Dawkins talks about 

replicators as exerting “phenotypic power” to increase in relative frequency (1982, 91), and his 

construal of cause-talk as difference-making (1982, 21). Including activity in the definition of 

replicators restricts the application of selection theory in such a way that neutral variations are 

excluded from fitting the requirements of the theory. But more interesting is how Dawkins’ 

deployment of the activity criterion brings rival replicators into play. 

Dawkins writes that his replicators are defined by reference to their alleles (1982, 92). 

Because replicators must be active, they must have causal effects, and these causal influences 

must be judged by reference to those of other replicators that vie for the same locus, hence alleles 

must have rivals. For Dawkins, it would be wrong to say that an allele at a locus at which there 

was no variation was active, because there would be nothing against which to measure the 
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allele’s activity. What Dawkins’ activity criterion involves, then, is the implicit presumption of 

competition between alleles. Indeed, Dawkins even refers to bits of DNA as competitors at one 

point (Dawkins 1982, 92). 

My definition brings out the competitive nature of entities that trigger the deployment of 

the theory explicitly. This has the consequence that I do not rely on the individual applying the 

theory to make good decisions about what to count as a variant allele against which to measure 

the causal effects of a candidate replicator. Presumably, a replicator is not active if halfway 

across the world there is genetic variation at the same locus among members of the same species. 

It is clear, anyway, that the inferences we make about population dynamics using selection 

theory would not hold of a population in which the variants were separated from each other by 

an ocean. But there is nothing in Dawkins’ entrance rule to explicitly eliminate the potential for 

this sort of misunderstanding. By requiring that competitors have rivals upon whose descendant 

production they exert inhibitory causal effects, I eliminate the possibility for this sort of 

misunderstanding and say explicitly against what sort of entity the causal effects of a competitor 

should be evaluated. My mutual inhibition of reproduction criterion plays much the same role as 

does Dawkins’ activity criterion, but it does, I think, a better job of zeroing on the right sorts of 

systems over which to deploy selection theory. 

 My explicit reliance on the language of causation in the formulation of the definition of 

competitor has other benefits. Dawkins relies on cause-talk implicitly, since one evaluates 

whether or not a replicator is active on the basis of how its causal effects diverge from that of its 

rivals. However, Dawkins employs the language actual descendant production in his definition, 

“replicators are anything in the universe of which copies are made.” He would have been better 

off with the language of causation here, saying that replicators are the sorts of things that cause 
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the production of their own descendants. Causal language is better here because effects need not 

happen for causes to cause them. Causes must influence effects, for instance by raising their 

probability. But since plenty of causes can be relevant to a single effect, it is not uncharacteristic 

of causes that they fail to actually produce their effects. Smoking need not produce lung cancer 

in everyone who smokes, yet smoking still causes lung cancer even among those who don’t 

come down with the disease. Something should count as a replicator, and does count as a 

competitor, insofar as it is the sort of thing with a causal influence over its descendant 

production, whether or not it actually produces descendants. Dawkins clearly wants his notion of 

active germ-line replicator to be applied in this way: he writes that “a DNA molecule in the 

germ-line of an individual who happens to die young, or who otherwise fails to reproduce, 

should not be called a dead-end replicator” (1982, 83). But Dawkins must avail himself of the 

notion of potential immortality to secure this use of “replicator,” while deploying cause-talk 

instead gets one the same conclusion without involving such rickety language.13 

In summary, trading the language of “activity” for talk of inhibitory causal effects on 

rivals has only a few consequences for the entrance rule of selection theory: It legitimates the 

deployment of selection theory over neutral variations, and it makes explicit the contrast class 

against which the causal effects of candidate entities should be measured. 

3.3.3 Copying fidelity 

Another fashion in which my competitor differs from Dawkins’ replicator is that I do not require 

any especially strong copying fidelity among the entities that trigger the deployment of selection 

theory. I require only that descendants be of the same type as their ancestors, and leave it to the 

applicant of the theory to find a means to distinguish the types. I am happy to deploy the theory 

                                                 
13 While many might regard cause-talk as itself rickety, we are in business of using it anyway in explicating 
selection theory, so its use here does not add any indeterminacy.  
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over a population consisting of members of different non-interbreeding species such that the type 

differences are the species differences. Dawkins, on the other hand, will not regard an organism 

as a replicator, not even as a crude replicator with poor copying fidelity (1982, 99). Many 

organismic variations will not be passed on to descendants, so organisms cannot be replicators. 

Dawkins has been criticized for this view by those who think it at least possible that early life on 

Earth did not involve entities that had especially good copying fidelity (Maynard Smith and 

Szathmáry 1995; Griesemer 2000). The line of criticism is a good one: an entrance rule for 

selection theory should be sufficiently general that it can at least handle all episodes of adaptive 

evolution that have, or even may have, occurred. 

I regard organisms as competitors, despite the fact that they exhibit poor copying fidelity. 

Provided it is possible to tell apart the descendants of the different types of competitors in the 

population, the lack of strong copying fidelity is no barrier to the deployment of selection theory 

upon the system. My position on this issue is much like that of Hull: 

Organisms behave in ways that make them candidates for 
replicators seldom enough without ruling them out by definition. 
As it turns out, in the most common situation in which one might 
want to view organisms as replicators— asexual reproduction via 
fission—it makes no difference. In asexual reproduction, usually 
the entire genome functions as a single replicator, and there is a 
one-to-one correlation between genomes and phenomes. Hence, 
the numbers will always turn out to be the same. (2001, 28-9) 

 
The one-to-one correlation between phenomes and genomes in populations of individuals that do 

not interbreed is what makes it possible to be indifferent to whether or not genes or organisms 

are treated as replicators in the case that Hull considers: insofar as there is a sameness of type 

relationship between genomes there will be a corresponding one between organisms. 
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3.3.4 Gould’s blending objection 

S.J. Gould has questioned whether selection even requires entities that produce descendants of 

the same type as themselves. He notes that Darwin believed in blending inheritance, but also 

believed in natural selection: 

Blending inheritance marks an ultimate denial of faithful 
replication—for the hereditary basis of any selected character 
becomes degraded by half in breeding with an average individual. 
A paradox therefore arises. If units of selection must be faithful 
replications, and if Darwin both understood natural selection and 
believed in blending inheritance, then why did he ever imagine that 
selection could work as a mechanism? (Gould 2002, 622) 

 
It would appear that by claiming that selection requires entities that produce others of the same 

type, I am ruling out the possibility of selection in cases in which organisms produce descendants 

that are a blend of the characters of their parents. That must be a mistake because Darwin, the 

first selection theorist, believed in blending inheritance. However, there is only an appearance of 

a mistake here, as becomes apparent when one considers that any form of such blending 

inheritance requires a mechanism.  

 We have already seen that the traits of ancestors do not have to covary with those of 

descendants for selection to go on within a population; more generally, the occurrence of 

selection is consistent with any sort of relationship between ancestor traits and descendant traits, 

including a blending relationship between them. So the case of “blending inheritance” should not 

pose special difficulties for selection theory. But any form of trait-level inheritance, blending or 

otherwise, requires a mechanism and it is properties of that mechanism to which one must look 

in order to adjudicate the question of whether selection occurs. Continuous variation of traits is 

compatible with discrete particulate inheritance of alleles. As Fisher (1918) established long ago, 

this makes sustained long-term selection possible despite the tendency of individuals with 
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extreme phenotypes to have less extreme descendants. Selection is possible despite a pattern of 

blending of phenotypes because the mechanism of inheritance is one in which ancestor alleles 

produce descendant alleles of the same type as themselves and do not blend. 

 I suppose it is possible to imagine systems in which there is blending of both phenotypes 

and hereditary material. However, it is not critical that an entrance rule for selection theory deem 

such systems subject to selection. When blending inheritance involves not only phenotypes but 

genotypes too, variation will rapidly disappear in a population (Fisher 1930, 5). A population 

that varied in this way is not one in which we could expect adaptations and other mysterious 

structure to persist; accordingly it is not one over which selection theory must be deployable so 

as to make adaptations or other mysterious phenomena explicable. 

3.3.5 The blemish test 

While Dawkins and I both endorse type selectionist approaches to stating (what I would call) an 

entrance rule for selection theory, unlike Dawkins, I allow organisms and other entities that do 

not make copies to prompt the deployment of selection theory. This is because I do not require 

that competitors pass what I call Dawkins’ blemish test. Dawkins uses this test to justify singling 

out some developmental causes as replicators, paradigmatically alleles, and assigning these a 

special role in the study of natural selection (1982, 98-99). The test asks you to determine 

whether an entity whose structure has been modified will produce descendants that share the 

same modifications. Only replicators have this feature. For Dawkins, it is part of the meaning of 

“replicator” that replicators pass the blemish test: “The special status of genetic factors rather 

than non-genetic factors is deserved for one reason only: genetic factors replicate themselves, 

blemishes and all, but non-genetic factors do not” (Dawkins 1982, 99). 
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 The connection between the blemish test and the requirements for selection is unclear. 

Why does it matter whether something passes the blemish test? The blemish test does rule out 

some things from counting as replicators, such as nests and other developmental products. 

Bateson, who first suggested that nests could be said to make nests by way of genes, recognizes 

that nests do not pass the blemish test while genes do (Bateson 2006). But why is it important to 

rule out nests? Perhaps variant nests could spread by natural selection, even if artificial 

manipulations of their structure were not replicated among their descendants. Provided variations 

in them are passed on from parents to offspring, there is the possibility of selection here, even if 

an individual with a mutilated nest variant produces offspring that construct a non-mutilated 

version. Whether or not variations in the variations get passed on seems to be a different 

question from whether or not variants produce descendants of the same type as themselves. 

To be sure, structures that fail the blemish test are not the sorts of structures that we 

should in general expect to see bearing variations that spread by natural selection. Passing the 

blemish test is a requirement for a specific sort of inheritance mechanism to function as a 

recurring and vital source of variation on which selection can act. Because variations in nests do 

not generally reappear in descendant generations, we should not expect to see nests functioning 

as replicators, at least not very often. In contrast, DNA is the sort of thing we should often see 

functioning as a replicator because it passes the blemish test. So DNA will prove a recurring 

source of variation upon which selection can act while nests will not. But this distinction is 

orthogonal to the one between systems that meet the entrance rule for selection theory those that 

do not. Triggering repeated bouts of selection is not a requirement for triggering selection tout 

court.  

 117



Nothing is lost by refusing to use the blemish test to determine whether or not something 

counts as a competitor. The requirements already in place in the definition of the replicator will 

rule out variant nests from counting as replicators, for as a matter of fact they do not produce 

descendants of the same type as themselves. Besides, one can imagine intermediate mechanisms 

that merely perform so-so on the blemish test, ones that pass on some of their blemishes to 

descendants but not others, and there is no reason to refuse to countenance variations in these as 

fuel for selection. 

One consequence of dropping the blemish test is that variant developmental products, as 

opposed to variant developmental causes, can function as competitors. Consider a simple 

scenario in which a variant haploid allele does nothing but produce a variant organismic trait. In 

this case, what are the competitors, the alleles, the traits, or the organisms with the variant traits? 

If we used the blemish test to answer that question, we would have the say that the alleles are the 

competitors, since one could manipulate the trait artificially and the manipulation would not be 

passed on to descendants. But if we refuse to use the blemish test, we cannot privilege the variant 

alleles as our rival competitors. The fact that we could manipulate the alleles such that the 

manipulations got passed on to descendants does not grant them special status. But when we 

deploy population genetics models for haploid populations, we get the same results whether we 

count variant traits, variant organisms, or alleles. This was just Hull’s point in the quotation from 

the previous section. So it does not matter what we pick out as our variant competitors in cases 

of this sort. 

While developmental products and organisms can function as competitors, there are more 

complicated cases in which we will be forced to pick out genetic variations as our competitors, 

rather than the phenotypic variations they produce. Among diploids, variant alleles produce 
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alleles of the same type as themselves, but variant organisms may have offspring of a different 

type than themselves. This occurs, for instance, in cases of absolute dominance when a recessive 

homozygote has heterozygote progeny. Classifying heterozygotes together with homozygotes as 

entities of the same type would lead one to make faulty inferences using population genetics 

models. With increased causal complexity, such as that produced by interactive environmental 

causes, it becomes increasingly hard to think of phenotypic traits as competitors in populations 

whose members interbreed. Descendants may mature in different environments than did their 

parents and express radically different traits, as in the counterexamples to the resemblance 

selectionist view offered earlier. So we will often be forced to treat the alleles as the competitors 

and not the traits when dealing with phenotypic variations in populations of diploids.  

Sometimes, however, we can harmlessly consider organisms competitors, for instance 

when we apply selection theory to populations composed of members of different species, or, 

more generally, when we consider competition between individuals of different types that do not 

interbreed. Indeed, an early imaginary scenario that Darwin uses to help the reader understand 

the process of selection is one in which a local population must compete with new immigrants 

(1988[1859], 81).14 Here is one case where Dawkins’ blemish test will let us down. Organisms 

do not do very well on the blemish test, since their descendants often do not look exactly like 

their parents, and we will not always be able to use genetic differences between members of 

different species that are competing with one another as grounds for deploying selection theory 

to explain their dynamics. Darwin, anyway, was hardly in such a position. Still, we can know to 

apply selection theory to a system composed of members of different species in the fashion that 

Darwin imagined in the Origin. 

                                                 
14 Darwin then modifies the scenario by having the reader imagine that the new forms are the result of local 
variation. 
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Competition between members of different species or clades may even require treating 

organisms as competitors. Indeed, the same mathematical models of population genetics can be 

used to explain the dynamics of populations of rival haploid alleles and rival members of 

different species, as is remarked in passing by de Meeûs and Goudet (2000, 982). Treating 

organisms as competitors in these sorts of cases is not problematic provided descendants and 

their parents can be classified as of the same type. 

As in similar cases discussed already, dropping one of Dawkins’ rules for picking out 

replicators requires the adoption of a new rule to perform the task that Dawkins’ rule did. 

Dawkins had strict criteria for determining what it takes to produce descendants of the same 

kind, to be a replicator. Exact copying fidelity, the transmission of features “blemishes and all” is 

what it takes to produce descendants of the same kind. Descendants must be exactly the same as 

ancestors. If we do as I suggest and loosen this requirement, we face the question of how we are 

to classify competitors into types so that we can tell when selection will go on. As discussed 

earlier, I think we can be perfectly generic about how we classify competitors into types. The 

causal criteria in the definition of “competitor” should do the work of restricting the applicability 

of the definition; types can be distinguishes in any way. 

 In sum, then, Dawkins’ replicators and my competitors are not all that different. Dawkins 

and I both think our definition can cover instances of “expanded inheritance” and can even be 

used to determine what sorts of expanded inheritance we should really expect to behave as we 

would infer they will when we deploy selection theory (Dawkins 2004). And even insofar as our 

definitions differ, they pick out mostly the same things, though I would claim my use of causal 

language is better than Dawkins’ talk of potential immortality. As far as differences of 
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application go, my notion is can be deployed more broadly than Dawkins’ because it could well 

be used on entities that do not copy themselves in an exact sense of “copy.” 

3.3.6 Inheritance and causally complex intermediaries 

Several authors have offered criticisms of replicator selection, criticisms that, though directed at 

other writers (typically Hull and Dawkins) should be addressed here. Some of these attacks do 

not strike the competitor definition I offer because of how that definition is formulated 

differently from those of Hull and Dawkins. Some of the criticisms work only against those who 

make more ambitious use of the notion of replicator, those who would use the notion of 

replicator to do more than just trigger the deployment of selection theory. I have already 

addressed (section 3.2.1) two prominent concerns about type selectionist approaches to selection 

theory, specifically that these approaches overlook scaffolding causal influences over replication, 

and overlook the importance of entities that bear conglomerations of competitors. Here I 

consider some other criticisms of the replicator selectionist perspective. 
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 Godfrey-Smith (2000) has claimed that replicators are not essential to inheritance and 

evolution on the grounds that the production of descendant copies of replicators may involve 

causally complex paths that are highly contingent. He imagines that reverse transcription is 

possible, such that DNA is never directly causally involved in the production of more DNA, but 

instead produces proteins from which DNA is later generated through reverse transcription. 

Indeed, he goes on to consider the possibility that there might exist systems in which the causal 

connection between ancestor replicators and descendant replicators is even more indirect than 

this. Reverse translation does not occur among Earthly organisms, but the replicator concept is 

supposed to be fully general, so the possibilities that Godfrey-Smith imagines are the sorts of 

things with which advocates of replicator selection must contend. I detect three separate 

difficulties raised by the possibility that Godfrey-Smith’s considers. 

First, Godfrey-Smith claims that the sorts of cases he imagines are ones in which there is 

a lack of a replication event in which an ancestor replicator produces a descendant replicate. That 

there is a complex causal process lying between a replicator and its descendants strains the 

notion of replication. Perhaps it does, but it does not matter whether or not ancestors produce 

descendants by way of a complex causal process or simple copying. Maybe “replication,” 

“replicate,” and “copy,” were bad notions for Dawkins to use when devising his novel 

perspective on selection theory because in using them he would seem to be excluding attenuated 

descendant production processes, though I suspect he chose the notion of replicator because 

replicators pass the blemish test. Anyway, provided we are interested in using the concept of 

replicator for the purposes of saying under what conditions selection theory may be deployed, we 

need not formulate our entrance rule by appeal to simple copying, rather than a multistep 

attenuated process. Maybe causal chains of the sort Godfrey-Smith imagines do not constitute 
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ones in which copies are produced, but they are the sorts of things that can be trigger selection 

processes, provided they are causal chains (see Nanay 2002).  

 Another aspect of Godfrey-Smith’s criticism is based on the notion of causal 

responsibility: when the causal connection between a replicator and its descendant becomes 

attenuated, and many other factors are found to be essential to descendant production, one can no 

longer isolate the original replicator as causally responsible for the production of its descendant: 

The more factors that are involved in creating a new Y that is 
similar to X, and the more places in the network at which 
dissimilarity could be introduced, the less true it is to say that “X 
was causally involved I the production of Y in a way responsible 
for the similarity of Y to X,” as the definition requires. (Godfrey-
Smith 2000, 19) 

 
Godfrey Smith is right that plenty of other things will be causally involved in the production of 

descendants on the part of a single replicator or competitor, and that is enough to show that we 

cannot pick out the entities that trigger the deployment of selection theory as ones that have 

something to do with the production of descendant replicators. But replicators (implicitly) and 

competitors (explicitly) are singled out as special by virtue of being causally engaged in 

competition, and they can be isolated among the causally responsible factors for this reason. The 

scaffolding that makes descendant production possible is not engaged in the mutual inhibition of 

descendant production, or if it is, as in cases of multi-locus selection, then it is rightly counted as 

a competitor too.  

 Another nearby issue is creeping holism, the concern that a liberal notion of replicator 

will allow too many things to count as replicators, so that in the limit, there are no replicators but 

instead, “the entire causal network in the life cycle somehow manages to transmit variation from 

generation to generation” (Godfrey-Smith 2000, 19). Thumbs will count as replicators according 

to a liberal notion of replicator that requires only an attenuated causal connection between 
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ancestors and descendants (Godfrey-Smith 2000, 19). Godfrey-Smith writes that “as the causal 

web gets more complicated, it becomes less and less appropriate to try to identify a replicator, 

where a replicator is a definite entity, or identifiable lineage of related structures, that is 

responsible for heredity” (2000, 19). 

Godfrey-Smith is right about heredity. Conceived as the recurrence of specific 

morphological or phenotypic features between ancestor and descendant entities, such as thumbs, 

inheritance is indeed explained by more than just replicators. In a similar vein, Jablonka and 

Lamb complain that “the replicator concept is associated with a very specialized type of 

information transmission, which does not cover all types of inheritance, and therefore cannot be 

the basis of all evolution” (Avital and Jablonka 2000, 359). They are right, too. Replicators can 

explain neither all evolution, nor all types of information transmission, nor all types of 

inheritance. The replicator and the competitor were never designed to explain recurrence of form 

(Dawkins 1982, 88); they were designed to pick out key entities in selection processes. Selection 

may be triggered by rival replicators/competitors even if inheritance, recurrence of form, 

transmission of information, and even evolution are not explained by them in some cases.  
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This same sort of response as the one just rehearsed can be leveled at some instances of 

expanded inheritance that have been offered as challenges to the replicator-selectionist view. For 

instance, Russell Gray has pointed to the track-and-bowl structures that kakapo parrots inherit 

from their ancestors in an effort to undermine gene selectionism. Gray claims that genic 

selectionists cannot adequately model how the males of these large flightless New Zealand 

parrots modify their environment so as to attract mates. The track-and-bowl adaptation is unusual 

in three ways: the birds actively modify their habitat; males that utilize the system are at a 

reproductive advantage; and the tracks and bowls are inherited across generations and recreated 

in novel environments (1992, 196).  

This is surely an unusual form of inheritance, but it has nothing special to do with 

selection. Of course, that such structures got constructed in the first place probably has 

something to do with selection that occurred long ago: the parrots probably became disposed to 

modify their environments in the fashion that they do because some competitors, specifically 

ones that disposed their bearers to construct track-and-bowl structures, out-competed others in 

the ancestral lineages of the parrots. But that bout of selection explains track-and-bowl 

construction behavior; it does not feature tracks and bowls in the role of competitors. 

Even though track-and-bowl structures are inherited these days and can vary such that 

they have an impact on the reproduction of the parrots that inherit them, those facts should not 

prompt one to deploy selection theory over variations in track-and-bowl structures. Generally, 

organisms may have especially many (or few) offspring because they happen to be 

systematically associated with sub-environments within a broader ecosystem. Mathematical 

models in population genetics have been developed to cope with these sorts of systematic 

influences (Christiansen 1975). This sort of systematic association between members of lineages 
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and ecological contexts is what is going on in the track-and-bowl scenario: better track-and-bowl 

systems are not spreading at the expense of others, rather they are enduring because they 

facilitate the reproduction of members of a lineage that use them and keep them in good shape. 

But what demystifies their occurrence and their perpetuation is the disposition of all parrots, both 

lucky parrots with good bowls and unlucky ones with bad bowls, to create and keep up track-

and-bowl structures in general. 

If you are in the business of demystifying the bowls, you need not, and indeed should not, 

feature them in the role of triggering the applicability of selection theory. One should not apply 

selection theory to the track-and-bowl systems as an instance of “expanded inheritance” in the 

way one might do with rival cell membranes. The bouts of selection that demystify the track-

and-bowl structures have long passed. The real mystery is how these structures came to be in the 

first place, and that mystery is solved by showing how it could result from the spread of alleles 

that disposed their bearers to build them. 

The type selectionist view should be understood as an alternative view to the resemblance 

selectionist one in which inheritance plays a key role in stating the requirements for selection. 

We have seen that using inheritance in this way is a mistake, so we should not be surprised to 

find that there are instances of inheritance that do not trigger the deployment of selection theory. 

 

3.4 JUSTIFYING THE COMPETITOR 

It is difficult to provide a full justification for my definition of the competitor as an entrance rule 

for selection theory. In proposing an explicit generalization of the circumstances of application 

of a scientific theory, I find myself in the standard situation of a theorist. Theorists cannot 

generally prove that their accounts will never invite anyone to infer false conclusions from true 
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premises. I am making a suggestion for how to circumscribe the domain of applicability of 

selection theory, but I cannot establish by a deductive argument that every system within that 

domain will be one over which it is appropriate to deploy the theory. 

Still, the previous section, in which I discuss how the competitor compares Dawkins’ 

replicator, does some of the work of making my proposed entrance rule for selection theory seem 

reasonable. And, unsurprisingly, the competitor fulfills the necessary conditions on an entrance 

rule for selection theory that I put forward in chapter 1. But the true measure of an entrance rule 

for a theory is whether it captures the inferential territory being sought. In the case at hand, that 

requirement amounts to this: it must be possible to show what an explanation of any adaptation, 

instance of altruism, or genetic polymorphism would look like by deploying selection theory as I 

formulate it, where the existence of rival competitors is an explanatory starting point for the 

deployment of the theory. Competitors trigger the application of the theory, and they had better 

trigger it in the right cases, including all the cases in which dynamics of the above sorts are 

possible.  
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While I cannot show that the definition is not subject to counterexample. I can, however, 

argue that what look like deficits of the proposal are not really such. For instance, it would 

appear prima facie that too many entities would end up rivals with one another if the competitor 

formulation of the entrance rule for selection theory is adopted. To mitigate this criticism, I draw 

attention to the special nature of the causal relationship that must exist between two rivals. The 

relationship is no ordinary causal relationship. Surely, lots of biological entities have causal 

effects on another, even effects on the descendant production of other entities. But to be counted 

as rivals, entities must have mutually inhibitory causal relationships on one another’s descendant 

production, and they must promote their own descendant production as well. That sort of 

bidirectional inhibitory causal relationship is special, special enough, I hope, to bring together all 

and only those systems whose dynamics are explicable using selection theory. 

 It is perhaps worth noting that some initially plausible counterexamples do not turn out to 

be such. Consider that predators and prey do not count as rivals, as argued early on in this 

chapter. Consider also that alleles will compete only with different alleles that contend for the 

same place on the genome. Alleles at different loci will not compete. Even two deleterious 

alleles within a single organism will not compete, for though they each have deleterious effects 

on the descendant production of one another, they do not cause their own descendant production, 

but rather impede it. In short, the competitor definition is not as given to blowing up and 

including far too much as first appears. 

On the other hand, the entrance rule that I suggest is fairly flexible and can include a wide 

range of inputs. For instance, while alleles are paradigm competitors, organisms that are 

members of different species can stand in the right sorts of competitive relations to trigger the 

deployment of selection theory too. The evolution of culture is the non-traditional arena in which 

 128



selection theory models, or at least models resembling those of selection theory, have been 

deployed most vigorously. Memes are hard to circumscribe, but it seems reasonable that at least 

some things that are supposed to count as memes will count as competitors too. 

However, my entrance rule is not so flexible that it can accommodate every mathematical 

model that has been developed by researchers concerned with cultural evolution. The moon 

model of Henrich and Boyd (2002) will not fall under the purview of selection theory as I 

conceive it because it involves entities that produce descendants of a different type than 

themselves. I discuss that model at greater length in the conclusion. 

Selection-like models of neural development in which neurons do not produce 

descendants, such as that advocated by Changeux and Dehaene (1989), also fail to count as 

selection theory models according to the entrance rule I offer because neurons do not produce 

entities of the same sort as themselves.15 Selection-like models of the immune system would 

seem to fail to fall under the purview of selection theory, too, since there does not seem to be 

competition between differing antibody-producing B cells (Hull, Glenn, and Langman 2001). 

However, operant conditioning does seem to count as the sort of process that can be modeled 

using selection theory as it is construed here, since there do seem to be conditions in which 

different sorts of behavior mutually inhibit one another (Hull, Glenn, and Langman 2001). So 

some domains in which selection has been said to go on are ones that fit the entrance rule for 

selection theory as I conceive it, and some do not. 

Ultimately, even if the entrance rule carves up the territory of such systems in a queer 

fashion, say, by including some cognitive development applications but excluding neurological 

ones, or including only some models of cultural evolution, the entrance rule need not be regarded 

                                                 
15 A reader asks whether time-slices of neurons might produce time-slices of neurons, thereby qualifying models of 
neural selection as selection theory models. I am not sure whether this will work; I will look into the matter. 
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as totally inadequate for that reason. What is most important is that the entrance rule recovers at 

least the territory it was designed to capture, that is, all instances of selection that lead to 

adaptation, polymorphism, and altruism; whatever else falls under its purview is bonus material. 

Perhaps, too, someone else will come up with an even more general theory with an entrance rule 

that treats competitors as a special case but can also harbor immunology and other applications; I 

would welcome such a generalization. 

However, not just anything will count as a generalization of selection theory. 

Specifically, the mere fact that the same mathematical models can be used to capture both 

changes in the relative frequency of competitors along with the dynamics of other sorts of 

systems is no reason to think that they all must be covered by the same theory. At least, this is 

the case for syntactically identical models. Earlier I argued that Lewontin’s requirements for 

selection, which led to the exclusion of models of overdominance from the purview of selection 

theory, were flawed for that reason. Those models shared with all classical population genetics 

models variables that refer to the same sorts of things, relative frequency terms referring to 

different types of zygotes weighted by relative and average fitness parameters. The diffusion of 

heat in a wire is covered by the same diffusion equation that is used for the spread of alleles in 

large populations undergoing relatively weak selection, but that hardly implies that heat diffusion 

should fall under the purview of selection theory or that selection is an instance of 

thermodynamic change. Those models do not share anything more than syntactic structure. There 

is much more to deploying selection theory than just turning a mathematical crank. Only insofar 

as there are many significant commonalities between, say, the pruning process in neural 

development and the population dynamics of competitors would it seem odd to place these 

processes in different theories. 
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In the sections that follow, I discuss how competitors can interact in special ways so as to 

form gametes, zygotes, mating pairs, subgroups, and substructures. I discuss how they can be 

grouped into populations. I discuss how the causal influences on their dynamics can be botanized 

according to a set of criteria such that inferences can be made about their dynamics on the basis 

of that causal information. As far as I can tell, none of these features of deployment of selection 

theory apply in the case of neural pruning. With this in mind, the fact that the same mathematical 

model can be used to explain neural pruning as can be used to explain some instances of 

selection does not seem, all on its own, to provide very solid grounds for considering neural 

pruning an instance of a process that must be covered by selection theory. 
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 As a final way of motivating my entrance rule for selection theory, I note the importance 

of competition in selection theory generally. Competition is important historically: Darwin made 

the struggle for existence a prerequisite for selection. But in the context of the specific approach 

taken here, it turns out that one can do much of the work of saying not only when but also how 

selection theory should be deployed using the notion of competition. Competition is used in what 

follows as part of the criterion for circumscribing populations in selection theory. It is used to 

justify the attribution of relative rather than absolute fitness values in population genetics 

models. It is used in the definition of the special sort of relationship that alleles in a zygote and 

mates in mating pairs bear to one another. It is used to contrast hard and soft variable selection 

models and to distinguish subgroups and substructures from other sorts of groupings. The picture 

that emerges in the story that follows is that one simply cannot say how to deploy selection 

theory without using the notion of competition to say it. Accordingly, competition needs to be a 

feature of any system that is picked out as one over which selection theory may be deployed. The 

easiest way to make sure that competition is a feature of those systems over which selection 

theory is to be deployed is to make competition part of the entrance rule for the theory. 
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4.0 “POPULATION” IN SELECTION THEORY 

 

In the previous chapter, I offered a definition of what features a system must have in order for it 

to be appropriate to deploy selection theory to explain its dynamics. In this section, I begin my 

exploration of the “guts” of selection theory. The next four chapters aim to say how populations 

of competitors are circumscribed (this chapter); how causal features of those populations can be 

connected to deterministic Wright-Fisher population genetics models (the algorithm of chapters 

5 and 6); and how those models can be transformed into stochastic models through the 

deployment of equations that take as inputs the outputs of the deterministic models coupled with 

a new parameter, variance effective population size (chapter 7). The order in which I present 

these issues is not haphazard: we must have already delineated the scope of a target population 

before we can apply the algorithm to it, and we must have already generated a deterministic 

Wright-Fisher model before we can deploy a stochastic version of one. 

One of the arguments from a previous chapter turned on the claim that there are correct 

and incorrect was of grouping the entities to which selection theory applies into populations. I 

illustrated this by quoting Damuth, who considered an absurd putative population consisting of 

organisms living half a world away from each other. But if one can go about grouping entities 

into populations in the wrong way, one can go about doing so in the right way. The right way for 

grouping entities into populations is the way, or at least a way, of doing so such that were one to 

apply the rest of the apparatus of selection theory to that grouping, one would make correct 

inferences about its dynamics. Even if one follows all the other rules for deploying selection 
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theory correctly (determining gene frequencies, ascribing relative fitness coefficients, etc.), one 

will not derive from the theory good predictions or good explanations if one does not 

circumscribe one’s population correctly. That is just to say that there is nothing about the rest of 

the rules for deploying selection theory that will keep selection theorists from deploying the 

theory over a poorly circumscribed population. We should not think of biological populations as 

a given either. The notion of population cannot be specified in some theory-neutral fashion 

(Gannett 2003). 

Furthermore, as I argued earlier, knowing how to group entities into populations in the 

right way is a part of deploying selection theory correctly, just as ascribing fitness values in the 

right way is part of deploying selection theory correctly. The right way to group entities into 

populations for the purpose of selection theory is surely understood implicitly by selection 

theorists: no one would dream of forming populations whose members spanned different 

continents. An account that seeks to make selection theory explicit must include a rule for 

delineating populations.  

As with the other rules proposed in this dissertation, I am constrained to state a rule for 

determining the scope of a population using causal vocabulary, along with statistical and logical 

vocabulary. Before proposing my own rule for circumscribing populations, however, I will 

consider some definitions of “population” offered by biologists and expose these as inadequate 

for our purpose. I will also discuss some insights that population geneticists and philosophers 

have made about populations in selection theory before presenting my rule for determining 

population size. From there I will draw out some of the subtler aspects of the definition and 

finally go on to defend it as suitable for the purposes of deploying selection theory.  
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4.1 POPULATION AND CENSUS POPULATION SIZE 

My aim is not to offer an account of the notion of census population size (Nc), a variable whose 

value is determined on the basis of the number of breeding adults in the population. There are a 

few reasons for this. For one thing, census population size does not include the individuals who 

struggled for existence with the individuals who went on to become breeding adults, but failed to 

achieve reproductive success, and these individuals’ struggle should be taken into account in a 

determination of why the population ended up with the number of breeding adults that it did. 

Counting only reproducing organisms, or the alleles within them, makes sense for determining a 

value for Nc as it functions in derivations of effective population size, a critical variable in 

stochastic dynamical models. But I am interested in picking out systems over which selection 

theory should be deployed, and this must include more than just the breeding adults. 

Furthermore, while breeding adults die out after reproducing, at least in populations exhibiting 

discrete generations, the systems over which selection theory is deployed must persist in time. So 

a criterion for the notion of population should exhibit populations as enduring sorts of things, 

whose members can come in and out of existence even as the population itself remains.  
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4.2 BIOLOGISTS’ DEFINITIONS OF POPULATION 

There has been a recent surge of interest among evolutionary biologists in the concept of 

population (Waples and Gaggiotti 2006, 1420). The work just cited is a review article of recent 

studies of population structure that have been spurred by the availability of polymorphic DNA 

markers in natural populations. The authors seek to evaluate different procedures for estimating 

the number of substructures that exist within a structured population on the basis of genetic 

samples from it. But before they embark on that project, Waples and Gaggiotti’s discuss the 

notion of population in a general way, drawing on other biologists’ characterizations of it. 

Waples and Gaggiotti bring out several interesting features of biologists’ use of the term, 

“population.” For one thing, biologists interested in evolution have neither settled on a definition 

of the term “population” nor are they trying very hard to do so. Waples and Gaggiotti also note 

that, despite considerable heterogeneity in the proposed definitions, the problem of how 

populations should be circumscribed gets surprisingly little attention from biologists (2006, 

1420). Though biologists do not fiercely defend any of the characterizations, Waples and 

Gaggiotti’s work contains a helpful table of suggested definitions of the term “population” that 

have been proposed by biologists, one the authors claim is representative (2006, 1420). I’ll 

review several of the definitions here, focusing especially on ones that fall under Waples and 

Gaggiotti’s “evolutionary paradigm,” but considering a couple from the “ecological paradigm” 

and “variations” too. 

4.2.1 “Population” under the evolutionary paradigm  

Here is a sample of the definitions from Waples and Gaggiotti (2006, 1420); these ones fall 

under what they call “the evolutionary paradigm”: 

• A community of individuals of a sexually reproducing species within which matings take 
place (Dobzhansky 1970). 
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• A major part of the environment in which selection takes place (Williams 1966). 
• A group of interbreeding individuals that exist together in time and space (Hedrick 2000). 
• A group of conspecific organisms that occupy a more or less well-defined geographical 

region and exhibit reproductive continuity from generation to generation (Futuyama 
1998). 

• A group of individuals of the same species living close enough together that any member 
of the group can potentially mate with any other member (Hartl and Clark 1988). 

 
4.2.2 “Population” under the ecology paradigm 
 
Here is a sample of the definitions said by Waples and Gaggiotti to fall under the ecological 

paradigm (2006, 1420); the last one is from the category “variations”: 

• A group of individuals of the same species that live together in an area of sufficient size 
that all requirements for reproduction, survival and migration can be met (Huffaker, 
Berryman, and Laing 1984). 

• A group of organisms occupying a specific geographical area or biome (Lapedes 1978) 
• A set of individuals that live in the same habitat patch and therefore interact with each 

other (Hanski and Gilpin 1996) 
• Natural population: can only be bounded by natural ecological or genetic barriers 

(Andrewartha and Birch 1984) 
 
4.2.3 Interactions in biologists’ definitions of “population” 

Waples and Gaggiotti write that all the definitions they survey, “imply a cohesive process that 

unites individuals within a population” (2006, 1421). They detect among workers with an 

interest in ecology a focus on the social, behavioral, and competitive interactions that are made 

possible by members residing in the same places and the same times; writers focused on 

evolution are more interested in reproductive interactions and shared genes (2006, 1421). 

Nonetheless, the definitions that fall under the evolutionary paradigm make reference to such 

things as proximity of population members, shared environments or geographic regions, and 

shared space/time locations. We can tentatively conclude, then, that biologists interested in 

population dynamics recognize the importance of interactions among population members and 

evolutionary biologists place special emphasis on reproductive interactions. 
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4.3 CRITICISMS OF BIOLOGISTS’ DEFINITIONS OF “POPULATION” 

The list of definitions of population drawn from Waples and Gaggiotti above is enough to show 

the importance of interbreeding as a criterion for delimiting populations in the minds of 

biologists. Shared ecological and time/space coordinates are also widely mentioned, something I 

call the geographic criterion. Some of the writers also appeal to taxonomic relationships to 

delineate populations. The criterion I offer for delimiting populations below is interaction-based 

too. However, the kind of interaction I postulate is different from those suggested by biologists 

and population geneticists. 

In this section I criticize the ways biologists have suggested for delimiting populations in 

order to motivate my alternative. I note upfront, however, that I recover these criteria as 

convenient ways to operationalize the proposal I make for delimiting populations in selection 

theory, since my criterion cannot be deployed directly (see section 4.4.3). 

4.3.1 Why Interbreeding criteria and geographic criteria will not work 

The interbreeding criterion is of limited scope, applying only to creatures that propagate 

themselves sexually, so it cannot function as part of the general account of selection being 

proffered here. But the interbreeding criterion can be motivated in part by the fact that many 

models in population genetics explicitly make assumptions with respect to breeding relationships 

among population members. It is worth stressing, too, that interbreeding relationships are 

interactive relationships: to delimit populations using the interbreeding criterion is to delimit 

them in terms of whether their members interact with one another in a certain fashion. 

4.3.2 Why the geographic criterion will not work 

The geographic isolation criterion has a clear motivation as well. We have already considered a 

population that is composed of individuals on different continents; clearly organisms that are too 
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far away from each cannot be in the same population. Behind the geographic isolation criterion 

once again lies the requirement that members of populations be capable of some sort of relevant 

interaction: geographic barriers are important because they are barriers to some sort of 

relationship.  

The geographic isolation criterion has a serious weakness: it is possible that populations 

should be treated as distinct for the purposes of selection theory, despite the fact that there is no 

geographic barrier between them. A failure of the right sort of interaction for delimiting 

populations may occur between two groups of entities for reasons other than the lack of 

time/space overlap between them. Indeed, in most places on Earth there are great many groups of 

organisms that must be treated as members of distinct populations for the purposes of deploying 

selection theory: African lions and African dung beetles do not form a single population for the 

purposes of selection theory. On its own, the notion of geographic isolation can do very little 

work in delimiting populations; it functions best as a complement to other ways of drawing 

boundaries around populations, such as the criterion that population members be conspecifics. 

4.3.3 Why taxonomic criteria will not work 

In the face of the difficulties with the geographic criterion just rehearsed, it is tempting to impose 

the requirement that members of a population be of the same species. I noted earlier that 

Lewontin has written that conspecificity is a requirement of selection (1978, 220). Though most 

selection theory models are deployed on entities that are members of the same species, it would 

be wise to avoid deploying the term “species” in selection theory if only because of the well-

known indeterminacy that attaches to that notion. Besides, Darwin rightly considered the 

displacement of a local species by a better-adapted newcomer to the region an instance of 
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selection (1988[1859], 81); for contemporary examples of selection between species, see Human 

and Gordon (1996) and Rosenzweig (2003, ch. 6). 

 

4.4 COMPETITIVE INTERACTIONS 

John Damuth provides an interesting discussion of the notion of population in an article 

concerned to argue that clades do not function well as higher-level units of selection. As already 

noted, he conceives of the point of selection theory in the same way as I do (Damuth 1985, 

1134), and argues in much the same way as I do, by reference to the point of the theory. Damuth 

is concerned to show that a clade is not a good population for the purposes of selection theory, 

and the reason he offers is particularly interesting: 

Consider a set of organisms, all of which are ultimately the 
descendants of a single arbitrarily chosen organism, including 
those that may have emigrated from the region occupied by the 
ancestor and are now dispersed throughout the species’ range in 
various habitats. We do not consider this set of lineage members a 
biological “population,” because at any given time its members are 
not necessarily functioning as economic interactants in a common 
milieu. (Damuth 1985, 1133) 

 
The idea that members of a population interact in a fashion similar to that of economic 

competitors has other backers. Ghiselin requires that candidate populations for selection theory 

be circumscribed in terms of competitive relationships between them, relationships that parallel 

the sort of competition found in the sphere of economics (Ghiselin 1974, 51). Recall, too, that 

Darwin’s notion of the struggle for existence is related to the economist Malthus’ discussion of 

the struggle among people to earn a living in a competitive economy. Lennox and Wilson’s 

insistence that the struggle for existence is necessary for selection invites a similar constraint on 

the determination of population size (1994). The analogy with economics is insightful; my 
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concern will be to state slightly more precisely what sort of competitive interaction is necessary 

among entities for them to be correctly grouped together into a single population in biology. 

I turn now to my proposal for delimiting populations. My idea is to delineate populations 

on the basis of competitive relationships. I contend that the kind of interaction that is relevant for 

circumscribing populations is competitive causal interaction. An interaction is competitive if and 

only if it involves two entities each of which cause the production of their own descendants by 

means of some activity that also inhibits the descendant production of the other entity. Recall 

that I incorporate competition of this sort into my statement of the entrance rule for selection 

theory: selection theory applies to competitors. The systems over which we deploy the theory are 

systems of competitors that compete with each other. What the population criterion adds is a 

means for determining how many and which competitors form part of a single population. 

There are a few reasons I talk about descendant production, rather than reproduction, in 

my definition of competitive causal relationships. Reproduction is a term usually reserved for 

organisms, and not all competitors are organisms. Anyway, it sounds a little odd to talk about 

alleles, not to mention chromatin marking schemes, as engaged in reproduction, as opposed to 

producing descendants. Another reason to talk about descendant production rather than 

reproduction is that I do not require any material overlap between parent and offspring (see 

Godfrey Smith 2000). 

Most importantly, however, ancestor-descendant relationships are multi-generational; we 

are each descendants of our grandparents and, indeed, their grandparents too. Because two 

entities must inhibit each others’ descendant production, rather than each others’ offspring 

production, competitors may count as members of the same population because of what their 

descendants do. Competition between one competitor’s grandparents and another competitor’s 
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grandparents may continue in the form of competition between their descendants. This feature of 

the definition is what allows it to function as a criterion that picks out systems that endure 

through time. 

This feature of the definition is actually critical for another reason. Population geneticists 

often consider populations with sub-groups in which cotemporaneous population members do 

not compete with one another. Equally, they consider discrete generation models in which none 

of the individuals from one generation exist in the next. That the descendants of cotemporaneous 

members of populations with both these may compete provides a mechanism by which 

individuals who are treated in population genetics models as part of the same population are 

counted as such according to my definition. 

Looking back in time, the population will stretch back to the last two rivals that are the 

parents of every contemporary population member, for they are the ones who continue to 

compete by way of their descendants. This means that a population of alleles can stretch no 

further back than its coalescent, the allele (or more generally competitor) that is the ancestor of 

all contemporary alleles in the population. Indeed, the population will stretch back to the 

coalescent if the coalescent produces a mutant descendant whose descendants survive in the 

contemporary population; otherwise, it will stretch back to the first existence of multiple rivals 

that have descendants in the contemporary population. 

4.4.1 Deploying the competition criterion 

What’s perhaps most interesting about the competition criterion is that it allows one to 

circumscribe a population of competitors by first picking out some initial member or members 

and then using the notion of competition to ascertain the scope of the broader population in 

which they are found. In some cases, one initial population member will be enough, though in 
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sexual populations, one member of each sex may need to be chosen as founding population 

members before the competition criterion can be deployed. Obviously, these individuals will 

have to be at least candidate reproductive partners for one another, though they may end up 

breeding with other population members that are added according to the criterion below. 

Beginning with our founding population members, we require that each new candidate 

member of a population engage in mutual competition with at least one individual who is already 

a member of the population, though not necessarily an individual of a different type. This allows 

population members that never causally influence one another’s reproduction to nevertheless be 

counted as members of the same population. For instance, in a population of twenty-six 

competitors, where each is named for each letter of the alphabet, A need not compete directly 

with Z to be grouped in the same population as Z. Rather, A need only compete with B who 

competes with C, who competes with D, …, who competes with Y, who competes with Z. Two 

entities belong in different populations if they do not compete with one another either directly or 

indirectly through intermediaries.  

The competition that is essential to population circumscription is reflected in population 

genetics calculations insofar as the number of offspring that different types contribute to the next 

generation is proportional to the absolute number of offspring produced in the entire population. 

This fact in turn lies behind the standard use of relative frequency variables and relative fitness 

parameters in population genetics (Rice 2004, 10). Population genetics theory implies that the 

reproductive success of individuals of one type requires a corresponding failure on the part of 

other types, and competition is the causal mechanism that I suggest underwrites this relationship. 
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Lastly, the connection with economics should also be clear. Firms compete with other 

firms by doing what it takes to make more profit for themselves. In a free market, the excellence 

of one firm in profit-making imperils rival firms that accordingly lose market share.  

4.4.2 Beneficial interactions  

That members of populations may have non-competitive, even mutually beneficial interactions 

might seem to threaten the definition of population proposed here. Indeed, the reverse of 

inhibitory relationships of descendant production is actually put in play by competitive 

interactions: The inhibition of descendant production between A and B will benefit other 

competitors, such as C. But that A and B benefit C in this way need not imply that C should be 

placed in a different population from A and B. A or B may still have an inhibitory causal 

influence on the descendant production of C despite having promoting C’s descendant 

production too. These inhibitory effects may be direct or indirect (perhaps mediated by a fourth 

population member, D), and they may exist in addition to the beneficial causal relations. 

Similarly, “altruistic” individuals of the sort often modeled as members of populations 

that form sub-groups (e.g., Sober and Wilson 1998) can be admitted into populations even 

though they promote the reproduction of fellow population members because, in addition to their 

altruistic activities, they also do things that inhibit their fellows’ reproduction. Any population 

that is not reproducing without bound is one in which some members are accumulating the 

resources necessary for reproduction at the expense of others who accordingly produce fewer 

descendants. Provided “altruists” do things like accumulate resources and thereby inhibit the 

reproduction of rival population members, they can be admitted into a population despite doing 

other things to promote their fellows’ reproduction as well. 
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4.4.3 Recovering textbook characterizations of “population” as operationalizations 

I noted earlier that the characterizations of population that I criticized above as inadequate 

conceptual definitions of population still work well as operationalizations for delineating 

populations. That’s a good thing, since the criterion I offer is hardly deployable directly. Indeed, 

insofar as the criterion I offer makes critical use of causal vocabulary, and causal facts are not 

observable, the criterion must be deployed indirectly. Standard characterizations of “population” 

provide means to make such assessments. 

Consider the traditional criteria in turn. Interbreeding is surely a sufficient condition for 

competition, for organisms that interbreed will typically compete for mates. They will also 

almost certainly share a niche. Accordingly, they can be expected to adversely affect each others’ 

descendant production and benefit from doing so. Contiguity in space and time can also be used 

as a cue to delimiting populations, for such closeness is surely a necessary condition for 

competition. And, of course, members of the same species will usually share the same food 

supply, mates, predators, and other hazards when they occupy the same ecological range. 

Sameness of species membership will thus provide a reasonable cue for determining population 

membership too.  

 

4.5 CRITICISMS OF THE COMPETITION CRITERION 

In this section I consider some objections to the competition criterion I offer for forming 

populations out of competitors. Specifically, I consider both the possibility that it may be too 

strong and too weak. 
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4.5.1 The competition requirement is not too weak 

The criterion I offer for picking out populations can be motivated by appeal to the failure of 

strategies that fail to abide by it. Suppose that one failed to follow the approach just rehearsed for 

delimiting populations by allowing there to be competition between members of a population 

and other individuals that are not considered members of the same population. Such competitive 

interactions between population members and non-population members could matter to the 

evolutionary trajectory of the population under consideration, and are almost certain to do so if 

the individuals with whom the excluded competitors compete are predominantly of one of 

several rival types. A failure to take these causal influences into account could lead to the 

generation of false predictions or unlicensed explanations of the population’s dynamics, since 

causal influences that could bias relative descendant production rates within the population are 

being systematically ignored. Hence, the rivals who were left out of the population should be 

included in order to get the causal dynamics right. 

That last argument merely shows that the influence of the rivals falling outside the 

population must be handled somehow, but it does not show that this influence must be handled 

by including them in the population of interest. Could we not handle their influence as akin to 

any other sort of environment influence? Such a treatment is perhaps possible, but several 

considerations speak against it as an option. The first is that competitors falling outside the 

population form a particularly impermanent sort of influence, since they will usually die off at 

roughly the same rate as the population members. Should one count the influence of their 

descendants upon the descendants of members of the population as a continuation of the same 

sort of external influence present in the initial generation? If one did so, then the influence of 

such external competitors would be contingent upon evolutionary change both among them and 
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within the target population. This would put the theorist in the business of monitoring 

evolutionary change in the competitors treated as external to the population anyway. And how 

would one tell the descendants of outsiders from the descendants of population members, 

especially if there were migration between these groups or worse interbreeding between 

population members and the individuals falling outside the population? 

Failing to treat individuals that would be counted as population members according to my 

criterion as members of the population and instead treating them as a kind of environmental 

influence brings with it a host of headaches that can be avoided by expanding the population to 

include them. If we are to be in the business of explaining the spread of competitors and their 

adaptations, we might as well do so using a set of rules that makes such explanations tractable. 

Besides, we have variable selection models to handle environmental heterogeneity should the 

population picked out in the way I suggest span multiple niches. So, even if enlarging our 

population makes things more complicated because it means we deal with a population with 

multiple sub-environments, we know how to do that in at least some cases. 
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4.5.2 The competition criterion is not too strong 

The criterion for circumscribing populations that I have offered might also be too strong and 

allow too few competitors to form part of the same population. To counter this criticism, I draw 

attention to the special nature of the causal relationship that must exist between a population 

member and at least one other population member. The relationship is no ordinary causal 

relationship. Surely, lots of biological entities have causal effects on one another. Many have 

adverse causal effects on one another’s descendant production. But to be counted as members of 

a population, candidate individuals must each take actions that cause their own descendant 

production and also inhibit the descendant production of another population member. So, for 

instance, my criterion is much stronger than that used by Sober and Wilson to pick out “groups” 

on the basis of fitness-affecting interactions (1998, 92). 

 To see how the strength of the criterion eliminates potential counterexamples, note that 

should an allele be picked out as a founding population member, it will compete only with 

different alleles that contend for the same place on the genome. Even though alleles have fitness-

affecting interactions with alleles elsewhere on the genome, they do not compete with them in 

sense I define. The detrimental effects that an allele has on other alleles are equally detrimental 

for itself. 

The most worrying case for the criterion I offer is posed by groups of organisms that 

would seem to compete, but only weakly. For instance, warthogs and zebras both suffer from 

predation by lions, but they clearly should not be placed in the same population and treated as 

variants competing with each other. However, I have picked out predator avoidance as a 

mechanism that institutes competition: at least sometimes, the avoidance of a predator by one 

population member will lead the predator to pursue and even catch another population member. 
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Similarly, though I have picked out resource consumption as a mechanism for competition, it 

seems equally a mistake to place in the same population organisms whose resource consumption 

overlaps, but only a little.  

In response to this problem, the zebras/warthogs problem, I claim that competition 

between types does not necessarily result from their sharing resources or from their being subject 

to predation by the same predators. My criterion requires that predation by lions on both 

warthogs and zebras would be grounds for considering them competitors in a single population 

only if, by escaping the lions, the zebras inhibit the reproduction of the warthogs, and vice-versa. 

However, the fact that lions prey upon both zebras and warthogs does not necessarily mean that 

this last condition is fulfilled. As I will argue, the condition will not be fulfilled unless the lions 

are serving to regulate the number of offspring that both the warthogs and the zebras have. 

Warthogs and zebras both produce more offspring than can survive to maturity; their 

ecological environments contain many mortal factors that reduce a large number of juveniles to a 

smaller sample of reproducing adults. But the removal of some mortal influence that kills zebras 

and warthogs need not lead both the warthogs and zebras to have more offspring than they 

otherwise would. The slack created by the removal of one mortal cause might well be taken up 

by another one. Indeed, diversity in the causal influences on the size of a population does not 

imply a small overall population size due to stiffer population regulation. 
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Some natural populations will be such that their size is restricted by a single causal 

influence, such as the availability of nesting sites. Thick-billed parrots in Mexico are like this 

(Lanning and Shiflett 1983). Still, all sorts of mortal causal influences arising from the ecological 

environment may kill off the parrots. Raptors eat them, for instance, yet there is no evidence that 

the raptors serve to regulate the overall population size of the parrots. Generally, populations will 

be beset by a greater variety of mortal causal influences than just those that serve to regulate 

their sizes.  

If, in our imaginary scenario, the lions are not serving to regulate the number of offspring 

that the zebras and warthogs have, just like the raptors are not serving to regulate the number of 

offspring the parrots have, then the avoidance of predation by warthogs does not lead to more 

zebras deaths than would have occurred anyway, and vice versa. Accordingly, the condition for 

treating the zebras and warthogs as members of the same population does not hold, for predator 

avoidance on the part of the zebras does not inhibit the reproduction of the warthogs, or vice 

versa. Much the same result will be obtained if we consider the case of partial overlap in 

resources. Members of two different populations can consume the same resources, without 

depending on the same resources. 

Perhaps somewhat surprisingly, though predation by lions on the zebras and warthogs 

does not institute grounds for uniting them in a single population, if we have other grounds for 

treating the zebras, say, as a forming a single population, then predation by lions can lead to 

selection within the zebra population. A causal influence need not regulate the size of a 

population in order to institute selection within it. Returning to the thick-billed parrot case, it is 

plausible that genes that decrease parrots’ probability of being eaten by a raptor will spread in the 

population by selection because they will increase the probability that their bearers get access to 
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one of the limited number of nesting sites. Predation by raptors can lead to selection among 

parrots. What it cannot do is justify grouping the parrots into a larger population with other birds 

that are also preyed upon by the same raptors. 

Of course, I have assumed in my zebra/warthog thought experiment that lions are not 

serving to regulate both populations. I don’t know enough about zebras and warthogs to affirm 

this as an empirical fact. Perhaps lions, or indeed some other causal influences, do serve to bind 

the zebras and warthogs together into a single population. But that fact would not on its own 

serve to undermine the definition of population I offer. Rather, in such a case, it would make 

sense to think of these two species as competing, as constituting rival types competitors, and 

hence as united into a single population.  

I have already argued that members of different species can act as rival competitors, so I 

am committed already to viewing at least some instances of species-to-species conflict as ones 

governed by selection theory. Were it the case that selection was really going on in the zebra-

and-warthog population between the zebras and warthogs, then we would expect to be able to 

draw inferences about the dynamics of that population using selection-theory models. Only a 

demonstration of such competition, coupled with a demonstration that the dynamics of the zebra-

and-warthog population were not those that we infer using selection theory, would undermine the 

account of population offered here. 

By deploying the above definition, we put ourselves in the position to group competitors 

into populations. It may sometimes be possible to spot competitors without it being possible to 

group them according to the above definition. In such a case, one can proceed no further with 

selection theory. But in cases in which one can group competitors into populations according to 

 151



the above definition, one has put oneself into a position to deploy the rest of the framework of 

selection theory as it is presented here. I turn to discuss that framework next. 
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5.0 CONCEPTUAL RESOURCES FOR THE CAUSE-TO-MODEL ALGORITHM 

 

At this point, two steps toward the explication of selection theory sought here have been taken. I 

have put forward an entrance rule for selection theory, a rule that divides entities into two piles, 

those over which the theory may be deployed and those over which it should not be deployed. 

This initial step is crucial because it is not the case that all systems will behave as do ones 

undergoing selection; if the inferential rules of selection theory are going to permit the drawing 

of true conclusions, their applicability must be restricted to a subset of worldly systems. The 

right sorts of systems over which to deploy selection theory are competitors, as these are defined 

in chapter 3. 

 The second step already taken in the explication of selection theory is the specification of 

a rule that articulates how to determine the scope of the populations in which competitors are 

found. Populations are formed from competitors that compete with each other. That rule 

circumscribes populations without regard to the influences that the causal contexts of 

competitors have upon their descendant production. So on the view undertaken here there is 

nothing illegitimate about populations that span multiple ecological sub-environments, ones that 

are “heterogeneous” in Brandon’s sense (1990). Because populations may be causally different 

from one another, competitors in different populations can be expected to differ in the sorts of 

dynamics they exhibit because the causal influences operating on them vary. Classical 

population genetics exhibits a corresponding variety of equations that apply to this diversity of 

populations. 
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The next three chapters are dedicated to exhibiting the connection between the variations 

in causal influences operative in populations and the various equations of classical population 

genetics that capture the dynamics of those populations. The next chapter consists in an 

algorithm for generating deterministic, “Wright-Fisher,” classical population genetics equations 

from causal information about populations. The chapter that follows that one is dedicated toward 

showing how to use deterministic models as contributors to more general stochastic models of 

population dynamics. Making the cause-to-model connection takes considerable preparation, 

however, and the current chapter does the definitional and explicative work necessary to make 

the algorithm comprehensible.  

That preparatory work, in outline, consists in the following tasks. The causal influences 

operative in a population must be categorized along one set of dimensions and then categorized 

along another set of dimensions before they can be fed into the algorithm. The first 

categorization scheme is counterintuitive, too, and must be motivated. Furthermore, the various 

sorts of entities to which population genetics equations make reference must be defined. While 

we have a definition already of “competitor,” most population genetics models feature relative 

frequency terms that refer to other sorts of entities, including gametes, zygotes, mating pairs, 

sub-groups, and substructures. So this chapter prepares the way for the algorithm offered in the 

next chapter by undertaking to define and motivate some causal notions, as well as to offer a 

principled account of the entities and groupings of competitors that appear the in population 

genetics formalism. 

However, before I get to those matters, I want to give the reader a general sense of what 

the algorithm we will be working towards looks like. I also want to give the reader a sense of 

why an algorithmic approach to generating classical population genetics equations from causal 
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information is sensible. So the next section offers a quick preview of how the algorithm works. 

Knowing where we are headed will perhaps help make sense of why we make the distinctions 

and undertake the definitions that we do in the body of this chapter. 

 

5.1 A PREVIEW OF THE ALGORITHM 

The algorithm I offer follows a constructive approach to modeling population dynamics. The 

driving idea is to present a function for determining, for any given population, an appropriate 

classical population genetics equation that is no more mathematically complex than it needs to be 

to make it possible to accurately model the dynamics of the target system. This means that the 

equations yielded by the algorithm never feature variables that get set to null values such that the 

variables could be dropped from the equations without this impacting what sorts of dynamics are 

inferred from the equations. That is, the equations I generate are never too complex for the 

population at hand, such that they include variables that could represent causal influences were 

they to operate, but which must be set to values that void their inferential import.  

 Because I seek this sort of minimal complexity in the models generated by the algorithm, 

I do not restrict myself to the consideration of equations that are all versions of a single equation. 

I do not begin with a maximally general equation and then show how to set its variables at null 

values to generate simpler equations with narrower scope for populations beset by fewer and less 

various causal influences. Instead, I begin with a decision-tree that determines which of a variety 

of types of basic equation is appropriate for some system. So, for instance, whether the rival 

alleles that have been picked out as the target competitors in some population interact with 

genetic variations elsewhere on the genome is a criterion used to determine whether or not a 

multi-locus model, rather than a single-locus model, is appropriate for that population of 
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competitors. Similarly, querying whether alleles undergo gene-by-sex interactions is used to 

determine whether equations characteristic of sex-dependent selection are appropriate, or 

whether a simpler model in which sex differences are ignored can be used instead. Ultimately, 

six different types of fundamental model are distinguished by means of a decision tree, ones that 

lead to six different sorts of recursive equations that are used to capture the dynamics of the 

systems. I give a set of rules for choosing whether to pursue a model that treats a system using 

recursions on gamete frequencies, zygote frequencies, or sex-dependent versions of these. I also 

say under what circumstances haploid and haplo-diploid models are appropriate.  

While the decision tree just discussed yields an understanding of what sort of model to 

use for a population, it does not yet yield an understanding of how many variant types we must 

consider in that sort of recursive equation. So the second step of the algorithm involves 

composing a directed acyclic causal graph showing transitions between different stages in the 

lifecycle of the entities in the target system, one that yields simple equations that feature 

appropriate relative frequency terms. Classical population genetics equations feature four sorts of 

relative frequency terms, terms for haploid frequencies, gamete frequencies, zygote frequencies, 

and mating pair frequencies. For ease of discussion, I will call haploids, gametes, zygotes, and 

mating pairs, individuals in what follows.16 Equations that are recursions on gamete frequencies 

vary; they may include relative frequency terms for two, three, or more variant gametes, and 

these may turn up in multiple substructures. The whole lifecycle of the population will be 

sensitive to how many variant gametes there are in the population: more variant gametes implies 

                                                 
16 I define “individual” later on; indeed, it is one of the main endeavors of this chapter to do so. Note that allele 
frequencies are not featured in classical population genetics models used to capture population dynamics. Rather, in 
single-locus models, gametes are distinguished by a single genetic variation, leading some writers to refer casually 
to gamete frequency variables as allele frequency variables. But such models are special cases; multi-locus selection 
models, for instance, do not feature any variables that could possibly refer to allele frequencies. To achieve the sort 
of generality pursued here, we must maintain talk of gamete, zygote, and mating pair frequencies when discussing 
diploid selection. 
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more variant zygotes, more variant zygotes implies more variant mating pairs. By graphing each 

step of the lifecycle according to a fixed set of instructions, we generate equations featuring the 

right number of relative frequency terms referring to the right number of individuals, where these 

differentiated in terms of the alleles that they bear. The graphs have other uses too; edges are 

weighted by coefficients in the graph to represent biases in how gametes, zygotes, and mating 

pairs form and produce each other as the lifecycle progresses. Assortative mating parameters are 

a paradigm instance of parameters that measure such biases. 

Below is an example of a lifecycle graph, one appropriate for competitors that are rival 

alleles at a single-locus in diploid organisms undergoing sex-dependent selection. The diamonds 

represent gametes and the rectangles represent zygotes. The one-half coefficients in the second 

graph represent meiosis. The gametes are distinguished using a three-part indexing system, in 

which each index is separated by a comma. I will fully explain it later on. In this graph, the third 

index can be ignored, the second index refers to sex, and the first index refers to the alleles born 

at a single genetic locus: 
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Figure 5.1: A lifecycle graph for a population undergoing sex-dependent selection 
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The graphs for the lifecycle yield either one or two systems of fundamental equations 

which represent the lifecycle of our population; the above lifecycle graph yields two systems of 

equations. The values of variables associated with descendant nodes are fixed mathematical 

functions of the values of variables associated with ancestor nodes. All populations, with the 

exception of haploids, will go through two lifecycle stages and these must be graphed separately, 

as above, such that two systems of equations are generated. 

The equations yielded by the graphs are not sufficiently complex, however, to capture the 

dynamics of the target populations, nor are they intended to be. Indeed, the equations yielded by 

the graphs include no viability selection coefficients at all, the coefficients that represent 

“selection” in its most basic form. However, the equations are all versions of more complex 

equations that are generalizations of them, ones that do include such things as relative fitness 

coefficients. So, in the third step of the algorithm, I take advantage of the possibility of 

generalizing equations by substitution to yield more complex models. Indeed, the guiding idea 

behind the algorithm has been to rely upon this third substitution stage as much as possible.  

 To illustrate the relationship that models have when one is a version of another, such that 

the more general one can be generated by following a substitution rule for transforming the more 

specific one, consider two equations that are components of systems of equations used in two-

locus Wright-Fisher models that are recursions on gamete frequencies. The first equation is 

drawn from a system of equations that governs the evolution of a population in gametic 

disequilibrium; it captures the next generation gamete frequency of A1B1 gametes this way (Rice 

2004, 41-45): 
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Equation 5.1 

 159



The gamete frequencies are all picked out by x variables, with the first subscript picking out 

which of two alleles is borne at the first locus, while the second subscript picks out which of two 

alleles is borne at a second locus. If we add selection into the picture17, we get the following set 

of equations: 

w
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Equation 5.2 

The first model is a version of the second insofar as setting the values for each of the wi variables 

in the second set of equations to 1 yields the first set of equations. 

Whenever values can be deployed in the place of variables, such that a determinate 

version of a more determinable equation is reached, the opposite process can occur too, such that 

a determinable generalization of a determinate equation is generated. Any term in an equation 

can be regarded as having an implicit coefficient of “1” associated with it, and that implicit 

coefficient can be replaced by a variable, or even more generally a function, so as to generalize 

the equation in which the term with the implicit coefficient of “1” is found. This sort of 

generalizing substitution, in which a more general term replaces a more specific one, is a 

legitimate sort of substitution for predicates in our language quite generally (Brandom 1998, ch. 

6). 

For example, if for every xyxz on the right-hand side of (1) above, we make the following 

substitutions: 

zyyzzy xxwxx →  

Equation 5.3 

                                                 
17 In the technical language that is to come, “adding selection” amounts to adding variables such that the impact of a 
pervasive interactive ecological causal influences can be represented in the model. 
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in which the replaced terms is on the left of the arrow and the replacing term on the right, we can 

generate (2). This process of substituting variables into basic equations to replace implicit unitary 

coefficients is the sort of process used in the third step of the algorithm, and it is used to 

accommodate all the causal influences that were not accommodated in the previous stages. 

 The final stage of the algorithm involves the collapse of the two systems of equations that 

are generated at the graphing stage and manipulated at the substitution stage. For instance, when 

considering a simple population, such as one whose individuals are differentiated by their 

bearing one of two alleles at a single locus of interest, we would find ourselves with two systems 

of equations at the end of the substitution stage. This first system of equations is inferred from 

the lifecycle graph for the gamete-to-zygote portion of the lifecycle, and here we are imagining 

that the individuals were not subject to any causal influences that would have had to be 

represented through generalizing substitutions: 
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Equations 5.4 

where p1 refers to a gamete bearing the A1 allele, p2 refers to a gamete bearing the A2 allele, p11 

refers to a homozygote for the A1 allele, p12 refers to a heterozygote, p21 refers to a heterozygote, 

p22 refers to a homozygote for the A2 allele.18 The second system of equations is inferred from 

the lifecycle graph representing the production of next generation gametes from this generation 
                                                 
18 The reason why we have two terms for heterozygotes is discussed in the algorithm proper, where a more 
complicated indexing system is used. 
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zygotes, and these have transformed by generalizing substitutions. The zygote frequencies have 

been weighted by relative fitness coefficients and average fitness parameters: 
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Equations 5.5 

When these two systems of equations are collapsed, we eliminate the zygote frequency variables 

on the right-hand side of the second set of equations by replacing them with the right-hand sides 

of the first system of equations that are set equal to them. This yields a single system of 

equations that function as recursions on gamete frequencies.19 Collapsing the system of 

equations by replacing each zygote frequency in the second system with the function that 

specifies it from the first system of equations, and doing a little mathematical simplification, we 

arrive at the following set of equations: 
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Equations 5.6 

These may be recognizable as the standard single-locus diploid selection model. 

Note how in the last system of equations above, relative frequency variables for zygotes 

do not appear, having been replaced by the right-hand sides of the first system of equations, 

generating a recursive system of equations. The reason why we must keep the systems of 

equations apart until after the substitution phase of the algorithm is so that we can deploy 

                                                 
19 All Wright-Fisher systems of equations are recursions on one type of individual or another; gamete recursions are 
the most analytically tractable.  
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substitution rules on zygote frequencies, something that requires having equations that bear 

zygote frequency terms. We cannot weight the relative frequencies for zygotes in a system of 

equations that does not feature zygote frequency variables; at least, we cannot do so by following 

general rules for making substitutions that reflect causal influences over individuals, no matter 

what sort of individual we consider. Hence, in the algorithm, we put off the sort of collapse of 

equations just illustrated until everything else is done.  

To close this preview section, I trumpet the constructive character of the algorithm. Since 

at each stage the algorithm guides decision-making about how to generate or modify equations to 

capture the dynamics of the system using information about the action of causal influences upon 

it, the result is that the equation includes no more complexity than is required to capture the 

dynamics of the system. We do not make a generalizing substitution, for instance, unless the 

population is beset by causal influences whose impact must be captured by the variables that we 

would introduce by making the substitution. 

The use of a constructive approach is no guarantee, of course, that an analytically 

tractable classical population genetics equation will be yielded by the algorithm, but when such 

an equation can be deployed to capture the dynamics of the system, the algorithm will yield that 

equation rather than a too cumbersome, too general alternative, something that might not be 

analytically tractable. Recall that the point of population genetics is to demystify adaptation, 

polymorphism, and altruism. Analytically tractable equations can be used to prove that a system 

will become better adapted, or remain polymorphic, or consist in part of altruists. Such proofs go 

a long way to showing how adaptation, polymorphism, and altruism could be explained using 

selection theory.  
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5.1.1 Minimally complex population genetics equations are inferred  

While an algorithm for producing classical population genetics models sounds daunting, and 

what I have to offer is not especially simple, it is not so strange that it should be possible to say 

under what conditions minimally complex models are applicable. Population geneticists have 

long been able to understand, at least implicitly, under what conditions analytically tractable 

models are appropriate for populations of interest. We see even the simplest basic types of 

models, single-locus models, being deployed for populations in nature (e.g., Hori 1993; 

Schemske and Bierzychudek 2001; Smith 1993; Stahl et al. 1999). Given that it is possible to 

recognize that a single-locus model rather than a more complex multi-locus model may be 

deployed over some system, it may be possible to make that sort of understanding explicit 

through a rule. The point holds generally: if it possible to recognize that it is appropriate to 

deploy a frequency-dependent selection model for some system (e.g., Hori 1993; Gigord, 

Macnair, and Smithson 2001), then presumably it is possible to say under what conditions it is 

appropriate to do so; if it is possible to recognize that a temporally variable selection model is 

appropriate for some system (e.g., Turelli, Schemske, and Bierzychudek 2001), then presumably 

it possible to say when one should deploy that sort of model too, and so on. 

One might wonder whether that last argument is too strong. There are surely some 

fragments of language, paradigmatically observation concepts, whose applicability we can 

recognize without doing so on the basis of explicit rules. We can recognize when it is appropriate 

to call something red, but few of us can say under what circumstances it is appropriate to call 

something red. Generally, there must be language fragments for which it is not possible to say 

under what conditions it is appropriate to deploy them, at least in a non-circular fashion. 

However, classical population genetics models are probably not among these. 
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The applications of population genetics to natural populations cited above show that 

researchers affirm the (typically approximate) appropriateness of some formal mathematical 

model for their target populations only after extensive research designed to establish what are the 

causal influences of the genetic variations that they have found in their populations. The 

applicability of a classical population genetics model for some system is inferred on the basis of 

an understanding of the causes to which the population members are subject, something that 

itself is affirmed on the basis of empirical evidence. Endler has dubbed this the “functional 

approach” to selection: 

It is an excellent trend that more and more people are working on 
the function and ecology of adaptive traits because the functional 
approach allows one to predict variation in fitness and evolutionary 
change rather than simply proving its existence. A particular 
advantage of knowing the function of a trait in detail is that is 
allows specific predictions about fitness and the direction of 
evolution. (2000, 253-54) 
 

Since it possible to deploy models of population dynamics on the basis of the function and 

ecology of adaptive traits, it might well be possible to understand explicitly when it is 

appropriate to deploy which models on the basis of which features. Making explicit the 

inferential relationships between salient features of populations, here causal features, and 

dynamical models is what the algorithm is designed to do in the general case. 

5.1.2 The scope of the algorithm 

The algorithm I offer has a less general scope than does selection theory as a whole. Specifically, 

the algorithm I offer shows how to generate causally interpretable Wright-Fisher equations, 

which are suitable for populations with discrete generations. Beyond their mathematical 

simplicity, the reason I choose this subset of classical models is that they involve a particularly 

strict basic assumption about non-overlapping generations, one that gives them an especially 
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flexible recursive structure to model a variety of causally distinct populations, including ones 

that have causally complex relationships to their contexts and to each other. As the algorithm 

makes clear, Wright-Fisher models can be used to address the impact of causal influences arising 

from alleles elsewhere on the genome and across chromosomal pairings, interactions between 

genotypes and sex differences, interactions between individuals and ecological causal influences, 

as well as interactions among the individuals within a population. I am pushing a causal 

interpretation of selection theory, and the crucible for such an interpretation is its adequacy as an 

interpretation of Wright-Fisher models because these models can represent a greater variety of 

causally complex situations than can be represented on alternative approaches, including models 

with overlapping generations, Cannings models, Moran models, and others. Despite its 

limitations, the algorithm I offer for connecting causal information about a population to a 

definite equation governing its dynamics covers a wide enough breadth of population genetics 

models that it should provide substantial evidence for the claim that selection theory, or at the 

very least classical population genetics, is causally interpretable.  

Indeed, the claim that selection theory is causally interpretable is probably more 

interesting than the algorithm deployed to justify the assertion. The algorithm is a awkward, 

multi-step, cumbersome affair, of little use for the generation of interesting population genetics 

models, many of which have been developed already anyhow, and all of which could be 

generated intuitively by an able-minded population geneticist without the use of any sort of 

algorithm, much less an awkward one such as that which I have developed. Indeed, the algorithm 

makes explicit the norms operating behind the intuitive generation of population genetics models 

by population geneticists, norms I simply could not have learned without relying on textbook 

examples of the various sorts of models the algorithm generates. The algorithm does not provide 
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a way of generating novel models so much as it presents explicitly what has already been 

intuitively understood for quite some time by population geneticists who have been generating 

such models without any explicit tools. 

What the algorithm does serve to do is provide a definite sense in which population 

genetics models can be causally interpreted. Whether or not population genetics is a causal 

theory has become a hotly contested issue in the philosophy of biology. The converse view that 

population genetics provides nothing more than a statistical summary of population dynamics 

has come to be known as the statisticalist view (Matthen and Ariew 2002, 2005; Walsh, Lewens, 

and Ariew 2002; Ariew and Lewontin 2004; Walsh 2004, 2007). An algorithm for generating 

population genetics models on the basis of causal information is a powerful counter to the 

statisticalist view; it is a causal interpretation of selection theory in a strong sense. The algorithm 

provides a means of using causal information as an inferential basis for population genetics 

models. Since population genetics models equations yield facts about the dynamics of the 

population to which they are applied, the models can be understood as providing a link between 

causes and dynamical effects, a link that can be understood as explanatory because of its reliance 

on causal information as a critical input. In short, I use a causal interpretation as an argument for 

causal interpretability. 

 

5.2 CAUSAL CLASSIFICATION IN CLASSICAL POPULATION GENETICS 

Officially, at this point, we have know how to pick out systems over which it is appropriate to 

deploy population genetics models, and we know how to group them into populations, but an 

account of which populations have their dynamics explained by which models has not yet been 

offered. In order to say how to model a given population, we have to know how to carve up the 
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causal influences acting on its members. The next section will be concerned with a two-step 

categorization scheme that yields a categorization of contextual causal influences suitable for use 

in the cause-to-model algorithm whose presentation follows. However, that categorization 

scheme functions in a peculiar way: I pick out contextual features of competitors’ circumstances 

as causally responsible for the dynamics of competitors. This requires an understanding of what I 

dub the principle of causal inversion. I discuss this principle before I discuss how causes of 

population dynamics must be broken down for use in the cause-to-model algorithm. 

5.2.1 The Inversion Principle 

I simultaneously embrace two commitments that would seem to be in tension with one another: 

1) a commitment to causally interpreting classical population genetics equations such that the 

key causal variables in those equations are relative frequency terms, paradigmatically picking out 

haploids, gametes, zygotes, and mating pairs; and 2) a commitment to generating many of these 

equations from an algorithm that takes as inputs causal facts about a population, but that, 

curiously, does not feature among those inputs facts about the causal influences of haploids, 

gametes, zygotes, and mating pairs.20 The compatibility of these two commitments rests upon 

what I call the inversion principle. 

The inversion principle is a corollary of Woodward’s account of causality, though any 

account of causality that violates it is likely to be criticized for just that reason. The inversion 

principle states that whenever C is a condition for X to cause Y, C, too, is a cause of Y, provided 

X obtains. Essentially, the inversion principle allows us to invert the roles of condition and 

cause, hence the name I give it. The inversion principle is what allows one to generate classical 

population genetics equations using an algorithm that does pick out haploids, gametes, zygotes, 

                                                 
20 The exceptional cases are models featuring frequency-dependent selection functions. 
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and mating pairs as causes, and yet to nevertheless causally interpret the equations that it yields 

such that these same individuals are regarded as causes of population dynamics. 

The idea that we can exchange causes and conditions in accordance with the inversion 

principle has considerable intuitive appeal. In many cases, causes and contexts can be exchanged 

for one another without jarring our intuitions too much. Consider these examples: thirst, when 

one is offered potable water, causes drinking, so offering potable water to someone who is thirsty 

causes them to drink it; aviophobia, when on an airplane, causes fear, so riding on an airplane, 

when one has aviophobia, causes fear; consuming phenylalanine, when one has the gene for 

PKU, causes retardation, so the gene for PKU, among those who consume phenylalanine, causes 

retardation.  

Population geneticists avail themselves of the inversion principle implicitly when 

modeling populations. Instead of introducing variables into population genetics equations to 

handle the influence of contextual causes, say an ecological causal influence that besets only 

some population members, population geneticists contextualize the types in their populations by 

placing them in distinct sub-environments, ones in which the causal influence is operative and 

ones where it is not. In doing this, they ascribe distinct relative fitness coefficients to the 

different types in the different sub-environments. The relative fitness values assigned to the 

different types in the different sub-environments then reflect the impact of the sub-environmental 

context because that context is a distinct condition in which the different types compete. By 

handling ecological influences in this way, population geneticists maintain the use of fitness 

values that quantify the causal influence of the individuals whose relative frequencies they 

weight. Yet, by placing these individuals in distinct contexts, where the contexts are carved out 
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in terms of the contextual causal influences operative within them, population genetics models 

deploy fitness coefficients that quantify the causal influence of sub-environments too. 

Indeed, we can ask two sorts of “what would have been different questions” of the sort 

that Woodward argues bring out causal relationships (2003, 187-94). We can ask: What would 

have been different if this type A individual had developed in sub-environment 1 rather than sub-

environment 2? By manipulating (if only conjecturally) the sub-environment in which the 

organism develops, we can bring out how “wiggling” the sub-environment of an individual 

produces causal consequences for the individual’s development, and ultimately its fitness. But 

we can also ask what would have been different if an individual developing in sub-environment 

1 had had the genotype characteristic of a type B zygote, rather than that of type A zygote. 

Again, by conjecturally manipulating the genotype of the organism, we can bring out how the 

genotype causally impacts to development and fitness. 

The appropriate response to this situation, in which we have available two contrast 

classes, a contrast in genotype and a contrast in sub-environment location, is to take it that both 

the genotype and the sub-environment membership of an individual have a causal impact on its 

development and fitness. So, population geneticists introduce ecological causal influences into 

their models by placing individuals in distinct causal contexts, and assigning them distinct 

relative fitnesses in each. When they do this, however, they preserve the potential for causally 

interpreting the resultant equations: the sub-environmentally contextualized individuals remain 

causes of population dynamics in the equations, ones whose frequencies can be (at least 

conjecturally) manipulated to alter how the population evolves. What makes this dual 

interpretation possible is the inversion principle. When one is considering whether the genotypes 

of the individuals are a causal influence over population dynamics, one treats the sub-
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environments as parts of the causal context. Similarly, when one is considering whether sub-

environment is a causal influence, one treats the genotypes of the organisms as parts of the 

causal context in which different environmental factors have their influence.  

The inversion principle does lead to some counter-intuitive consequences, especially with 

respect to preventative causation and causation by omission. An absence of antidote technically 

causes death by snakebite, at very least when one has just been bitten by a venomous snake, but 

even perhaps also when such snakes are simply nearby. The difficulties posed by causation by 

absence and preventative causation are discussed by Woodward in chapter 2 of Making Things 

Happen and there’s little point rehearsing them here. It is worth noting, however, that one 

consequence of the fact that the inversion principle makes us treat absences as causes surfaces in 

population genetics models. 

Contextual causal influences that beset only some population members inevitably 

produce two causal contexts, one formed of the individuals struck by the causal influence and 

one formed by the individuals who are not struck by the causal influence. Some varying 

contextual causal influences have natural correlatives that are themselves easily understood as 

causes; for instance moist soil conditions contrast with dry ones. Other contextual causal 

influences lack correlatives that are easy to think of as causes: toxins in one region of the 

ecosystem contrast simply with a lack of toxins in other regions. But no matter how easy to think 

of the correlative of a cause as itself a cause, two sub-environments are warranted whenever one 

considers a causal influence that affects only some population members, one sub-environment 

formed by the presence of the causal influence and another formed by its correlative, even if that 

correlative is just the absence of the cause that strikes elsewhere. An absence of toxins is just as 

much a contextual cause in population genetics modeling as is the presence of toxins for 
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populations that span regions of the ecosystem in which toxins are at work and regions in which 

they are absent. 

5.2.2 Key Concepts of the First Categorization Scheme 

Having established that there is nothing incompatible between, on the one hand, the use of an 

algorithm for the generation of population genetics models that takes as inputs only facts about 

contextual causes, and, on the other hand, causally interpreting the resulting equations such that 

variables not treated as causes in the first stage are interpret as causes in the questions, I now turn 

to discuss the breakdown of contextual causes that will be used in the algorithm. An initial 

dissection of causal influences along three axes is necessary. Causal influences may be either 

interactive or non-interactive, discriminate or indiscriminate, and pervasive or non-pervasive. I 

tackle each of these categories in turn. 

5.2.2.1 Causal interaction. Cartwright (1979) offers a gripping example of an interactive causal 

influence. Imagine I drink an acid poison. Normally, this will kill me since drinking an acid 

poison causes death. However, if I have just drunk an alkali poison, drinking an acid poison will 

save my life. This means that the recent consumption of an alkali poison is an interactive causal 

influence upon acid poison intake. Drinking an acid poison has one sort of effect in one sort of 

context and another sort of effect in another context: in the context of no recent consumption of 

an alkali poison, drinking acid kills, while in the context of recent alkali poison consumption, 

drinking acid saves lives. The influence of any sort of cause can exhibit this sort of contextual 

dependence when combined with another causal factor. 

Cartwright’s acid-drinking scenario contains a nice symmetry. On the one hand, we can 

consider the acid poison to be the causal influence of interest and then consider its influence on 

survival in two distinct contexts. On the other hand, we can consider the consumption of the 
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alkali poison the prime causal variable of interest, one whose influence in contingent upon 

whether an acid poison will shortly be consumed or not. Both these approaches come to the same 

thing, a fact that is most easily expressed formally. Letting s = survival, al = the consumption of 

an alkali poison, ac = the consumption of an acid poison, and allowing all variables to take on 

values of one or negative one to respectively represent occurrence or non-occurrence, we can 

write 

s = ac x al. 

Equation 5.7 

This expression says that drinking an acid poison will kill you unless you drink an alkali poison, 

too; we can also interpret it as saying that drinking an alkali poison will kill you unless you drink 

an acid poison. Indeed, it says both these things at once. 

 The notion of causal interaction at play in Cartwright’s acid example is the one in use in 

what follows. Picking out causal influences as either interactive or not is critical to botanizing 

them such that we can make sense of which models, featuring what sorts of parameters, get 

deployed over which sorts of populations. When I pick out causes as interactive causal 

influences, I mean to pick out ones that affect different types in the population differently, 

depending on what type of individual the individuals are. Just as acid poisons have different 

influences on different types of people depending on whether they have recently drink alkali 

poisons, various contextual causal influences on individuals may affect them differently 

depending on their genotypes, or more generally what competitors they bear. 

5.2.2.2 Pervasiveness. Another key concept in the breakdown of causal influences that forms the 

input for the cause-to-model function is pervasiveness. A causal influence is pervasive if it 

affects all members within some grouping; it is non-pervasive otherwise. We must model 
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contextual causal influences differently depending on whether they are pervasive or non-

pervasive within such things as whole populations, distinct substructures, and distinct subgroups. 

Surprisingly, understanding non-pervasive causal influences over individuals as real and 

legitimate causal influences over population dynamics comes more naturally than does 

understanding pervasive contextual causal influences in this way. If a population spans two sub-

environments, say toxic and non-toxic soil, then it is relatively easy to understand how the 

relative fitness values of the different types in the different sub-environments reflect the causal 

impact of the soil. What’s more, sub-environment membership has the usual implications of a 

causal relationship: were we to move plants from the toxic region to the non-toxic regions, then 

they would have more offspring on average. Understanding toxic soil as an inhibitor of plant 

growth is straightforward, especially when some members of the population grow in non-toxic 

soil and we can imagine moving plants from one region to another. 

In mathematically more basic cases in which we are dealing with causal influences that 

are pervasive, it is more cognitively challenging to think of these causal influences responsible 

for impacting population dynamics. When soil conditions do not vary, when all the soil 

encountered by all the plants is non-toxic, for instance, it would seem odd to blame the dynamics 

of the population on a lack of soil toxicity. It seems odd to do this even if the genotypes of the 

plants would have different causal influences on their relative reproduction rates were they 

growing in toxic soil. Still, causal scenarios featuring organisms whose genotypes have different 

causal influences, causal influences that are contingent upon some invariant environmental 

parameter, are causal scenarios in which that invariant environmental parameter is a causal 

influence upon population dynamics. 
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That last fact is just a consequence of the inversion principle: If the plant genotypes have 

differing causal influences over reproduction only in the context of non-toxic soil, the non-

toxicity of the soil is a cause of the differential reproduction rates of the plants. One of the 

linchpins of the causal analysis conducted here is a stubborn determination to think of population 

dynamics as resulting from contextual causal influences, rather than thinking of those dynamics 

as the result of the causal influences of differing types of individual featured in the model. The 

inversion principle makes either perspective legitimate, but the algorithm requires focusing on 

causal impact of context. 

To see that it possible to trade in the type-centered perspective, according to it is the 

different causal influences of the different types that drive population dynamics, for the context 

perspective, which picks out the causal context as the driving force behind population dynamics, 

consider this imaginary scenario. Hawks with sharper vision react more often, and from greater 

distances, to the movement of prey and accordingly catch more prey, spend less time and energy 

hunting, are less likely to starve, and ultimately have more offspring than their less well-

endowed counterparts. Indeed, it is plausible (though by no means certain!) that there was a time 

in the history of hawk lineages in which alleles spread throughout hawk populations because 

they had just this sort of beneficial causal influence on their bearers’ long-range eyesight. 

Deploying the inversion principle, we can characterize this same episode of evolution as 

resulting from ecological causal influences. Prey movement had a different influence on different 

types of ancestors of our contemporary hawks. At least some instances of motion on the part of 

prey animals caused hawks with some alleles to attack but would have failed to trigger the same 

reaction on the part of their counterparts bearing different genetic variations. The hawks more 

easily provoked to attack by movement on the part of more distant prey, prey so distant that their 
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counterparts would have overlooked its activity, were caused to reproduce by that prey 

movement. It is plausible that prey motion literally caused the differential reproduction of hawk 

alleles. 

Either way of presenting the scenario just considered is legitimate, but the cause-to-

model algorithm of the next chapter requires that we use the second one. Indeed, the hawk 

dynamics just imagined could be blamed on any feature of the causal context. While we could 

just as well blame the spread of hawk alleles for improved eyesight on prey motion as we could 

blame it on the alleles for better and worse eyesight borne by the hawks themselves, we could 

just as easily blame the evolutionary episode on the pervasive influence of sunlight, which is 

requisite for hawks to see at great distances. In the context of moving prey and hawk alleles for 

differing visual sensitivities, sunlight causes the spread of the alleles for sharper vision. Equally, 

in the context of sunlight and moving prey, the hawk alleles cause their differential reproduction, 

and in the context of sunlight and genetic variations, the prey movement causes the differential 

reproduction of hawk alleles. We can alternate between these three ways of presenting the hawk 

scenario because we can at least imagine how things would go differently in the hawk population 

were there no genetic variations, no motile prey, or no sunlight. 

Indeed, we could even blame the evolution of hawk visual acuity on factors that are not 

ecological factors. Genes at other loci that are fixed throughout the population, for instance ones 

that are essential to the hawks’ development of retinas, could be held responsible for the spread 

of other genetic variations in the hawks that matter to eyesight. In the context of differing alleles 

for better or worse vision, as well as sunlight and prey movement, genes that contribute to eye 

development cause the spread of the hawk alleles. Faced with this sort of embarrassment of 

riches we must simply pick out any pervasive feature of the causal context whose presence is 
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requisite for the rival types to have different causal influences and blame that feature of the 

causal context for the differential performance of the rival types. If we do so, we have what we 

need to use as an input for the cause-to-model algorithm. For convenience, I suggest we blame 

ecological factors, since that is typically what population geneticists have in mind when talking 

about the influence of “selection.” 

When we take the perspective I am encouraging, we can understand fitness coefficients, 

the w parameters, in equations such as the familiar diploid selection model: 
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Equation 5.8 

as quantifying the causal influence of the ecological environment on the different genotypes. 

They do this just as much as they quantify the causal influence of the distinct genotypes with 

which those coefficients are paired. The ecological environment simply does not vary in the 

above model (or better, the model is suitable for a population in which the ecological 

environment does not vary); only the alleles and the genotypes of the zygotes vary. But the 

ecological environment is no less a cause of population dynamics just because it affects all the 

zygotes. 

Generally, the difference between population genetics models that feature distinct sub-

environments, and ones that lack distinct sub-environments, is not that contextual causes are at 

work in the former but not the latter. Rather, in the models featuring individuals that are not 

placed in distinct sub-environments, the contextual causes that matter to the dynamics of the 

population are pervasive; the contextual causes of the sub-environments affect all the individuals 

in some grouping in the population.  
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5.2.2.3 Discrimination. So far, we have considered two key concepts that we will use to carve 

up causal influences for use in the cause-to-model algorithm, interactivity and pervasiveness. 

The last key concept we need to complete the first categorization scheme is that of 

discrimination. A causal influence is discriminate if it systematically strikes one type of 

individual more often than it does other types of individual. Otherwise, it is indiscriminate. 

To qualify as a discriminate causal influence over population members’ reproduction, a 

causal influence must be systematically associated with some type of individual in the 

population. The systematic association must arise from some structural feature of the population, 

such as linkage between alleles, or a systematic association between types and an ecological 

causal influence produced, say, by homing tendencies among population members. What is 

critical is that should a causal influence simply turn out to differentially affect the reproduction 

of types in the population in some generation, it should not be counted as a discriminate causal 

influence. Discriminate causal influences are causal influences that are statistically associated 

with types in the model because of structural features of the population, such as linkage or 

habitat imprinting. 

Pervasive causal influences, because they affect all population members, automatically 

count as indiscriminate in their influence. They cannot affect different population members at 

different rates because they affect all population members. It is important, too, to keep the 

notions of discrimination and interactivity apart. A discriminate causal influence need not have a 

different influence on different types of individual; it must merely be strike one type more often 

than others. Interactive causal influences need not be discriminate either; they can strike different 

types at the same rates while having different influences on different individuals. 
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5.2.3 Key concepts of the second categorization scheme 

The three criteria of interactivity, pervasiveness, and discrimination yield a breakdown of six 

different sorts of causal influences. The figure is six and not eight, as one might initially suppose, 

because there can be no discriminate pervasive causes. Of these six initial sorts of causal 

influences, two play no role in the cause-to-model algorithm for generating deterministic models. 

Pervasive non-interactive causal influences do not have any direct impact on the dynamics of 

populations of competitors. They affect different types of individuals in the same way, and they 

affect all individuals. If they exist within a population, they need not be wholly without an 

impact on population dynamics, however. They could matter to census population size by 

serving to regulate the number of offspring that all population members have, and since census 

population size is nearly always relevant to effective population size, the “drift” variable in 

population genetics, pervasive non-interactive causal influences can impact the extent to which 

population dynamics are a stochastic affair. But I set these causal influences aside for now as 

irrelevant to the matter of laying out the cause-to-model algorithm. In chapter 7, I discuss how 

census population size impacts effective population size.  

 Another sort of cause that is not featured in the cause-to-model algorithm for generating 

deterministic classical models is that of non-pervasive, non-interactive, indiscriminate causal 

influences (NINPICs). NINPICs are responsible for introducing a stochastic element into 

population genetics models. It is because populations are beset by NINPICs that it makes sense 

to model their dynamics as a matter of chance. The impact of NINPICs is quantified using 

effective population size parameters; in the most interesting case of non-neutral alleles, the 

variance effective population size parameter is used to model the impact of NINPICs.  

 179



The cause-to-model algorithm initially generates “deterministic” models, one in which 

the impact of NINPICs has been idealized away. In deterministic models, NINPICs are treated in 

each generation as having their most likely impact on population dynamics, which is no impact 

whatsoever. When it is possible to do so, converting a deterministic Wright-Fisher to a stochastic 

model requires going through the entire process of generating the deterministic model and then 

adding the stochastic element into the picture at the very end, once the deterministic model has 

been fully developed. I will discuss how this is done in chapter 7 after the algorithm for 

deterministic equations is presented. For now, what is important is that NINPICs have no impact 

over how the deterministic portion algorithm works; even if one wants to incorporate the impact 

of NINPICs on population dynamics, one must generate a deterministic model first, and then add 

an additional step to include the impact of NINPICs through the introduction of stochasticity.  

 That leaves us with four categories of causal influences that must be countenanced in the 

deterministic portion of the cause-to-model algorithm. These are pervasive interactive causal 

influences, non-pervasive interactive discriminate causal influences, non-pervasive interactive 

indiscriminate causal influences, and non-pervasive non-interactive discriminate causal 

influences. These last four categories of causal influence are not yet enough, however, to 

categorize causal influences sufficiently narrowly for use in the cause-to-model algorithm. They 

must be broken down further in terms of their source. 

In classical population genetics, causal influences over population dynamics, ones that 

may fall into any of the above classifications, have four main sources. Causal influences arise 

among alleles within the same genome; these lead to gene-by-gene causal influences. Causal 

influences also arise from individuals in the population causally influencing one another, as, for 
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instance, altruists do; I call these individual causal influences. Causal influences may arise from 

the ecological environment; and I call these ecological causal influences21. 

One last causal influence over population dynamics that requires separate consideration is 

sex; population geneticists must countenance sexual causal influences. Population genetics 

textbooks nearly always feature a discussion of sex-dependent selection, and usually present sex-

dependent selection as occurring when the relative fitness of at least one genotype is different in 

males and females (e.g., Ewens 2004, 45). By the inversion principle, sex-dependent variation in 

the causal influence of genotypes signals that sex differences themselves are a causal influence 

on the development of zygotes.  

In all, that means we will have to consider gene-by-gene causal influences, individual 

causal influences, ecological causal influences and sexual causal influences, where many of these 

may count as any one of the four basic types of causal influences picked out according to the 

interactive/pervasive/discriminate scheme. The algorithm handles gene-by-gene, individual, 

ecological, and sexual causal influences in very different ways, but gene-by-gene causal 

influences are especially unusual, so I discuss them first.  

Gene-by-gene causal influences are only possible because genes are found together 

within gametes, zygotes and mating pairs. So I will begin with a discussion of the individuals 

that appear in the diploid lifecycle since an understanding of gene-by-gene causal influence 

hinges on this. That discussion will yield definitions of the different sorts of individuals in the 

diploid lifecycle. Defining the different sorts of individuals one finds in classical population 

                                                 
21 I say “ecological” rather than “environmental” because, in one sense of “environment,” the environment of an 
allele includes more than just its ecological environment, and may include its genetic context too. Some writers have 
claimed that gene selectionism involves treating alleles at other loci as part of the environment of some allele of 
interest (e.g., Kitcher and Sterelny 1988). The sense of “environment” in which alleles at other loci and ecological 
factors are both part of the environment of an allele is not a sense of environment that we need in the cause-to-model 
algorithm. 
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genetics causal terms will enable us to state the algorithm that follows by making reference to 

them. 

5.2.3.1 Lifecycles and aspects of fitness. One of the crucial differences among classical 

population genetics models lies in the sorts of relative frequency terms they feature. Organisms 

with different sorts of lifecycles are tackled through different sorts of models featuring different 

relative frequency terms. The commitment to causal interpretation undertaken in this work 

extends to understanding relative frequency variables in causal terms.  

 My approach to relative frequency variables in classical population genetics is to treat 

their deployment as licensed when two or more competitors are causally related to one another in 

a specific fashion. I use causal language to say how competitors must be related so as to form 

gametes, zygotes and mating pairs, or better, how they must be related to form the sorts of 

composite bodies of which gametes, zygotes and mating pairs are our paradigm instances. I 

undertake to specify this relationship now because we must do so before we can consider how 

such things as ecological and individual causal influences must be modeled. 

In classical population genetics modeling, gametes, zygotes, and mating pairs are treated 

as distinct types of entities picked out by distinct relative frequency terms. These individuals are 

arranged in terms of a lifecycle: among some organisms, haploid gametes pair to produce diploid 

zygotes, and among some of those organisms, the zygotes pair up to produce mating pairs.22 The 

lifecycle is usually discussed in reference to the different aspects of fitness. Gametic, zygotic, 

and fertility selection are three of the four traditional aspects of fitness (Christiansen and Prout 

2000).23 The distinction between these aspects of fitness is parasitic on the distinction between 

                                                 
22 Gametes fuse to form zygotes among polyploids, too; however I will be concerned specifically with the diploid 
lifecycle, as this is what population geneticists typically consider. 
23 The last “aspect of fitness” is sexual selection. Sexual selection is an aspect of selection in the same sense as 
gametic, zygotic, and fertility selection are aspects of selection, but the reason why this is so will become clear later. 
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the types of individual whose relative frequencies the fitness coefficients weight: the notion of 

gametic selection is parasitic on that of gamete, zygotic selection is parasitic on “zygote,” and 

fertility selection is parasitic on “mating pair.” So an understanding of how these entities are 

related in the lifecycle is critical to population genetics modeling because these different entities 

are all, at least potentially, weighted by different relative fitness coefficients (as well as other 

parameters).  

The existence of lifecycles among population members has the further consequence that 

one cannot claim that gametic, zygotic, and fertility selection parameters reflect the causal 

influence on the reproduction of the entities with which they are associated. Only in the context 

of very simple models, ones featuring only zygotic selection, could we say that zygotic fitness 

parameters represent the causal influences of the zygotes on their reproduction, provided one 

means reproduction by the zygotes rather than reproduction of the zygotes. But we cannot say 

the same thing about relative fitness coefficients that are paired with gametes; among diploids, 

gametes paired with higher relative fitness values are more likely to form zygotes than are their 

less favored rivals, but they are not necessarily more likely to produce descendants, because they 

could tend to form rather unfit zygotes. Indeed, a zygote may produce gametes of a type from 

which it was not formed, as happens if it is a double heterozygote in which recombination 

occurs. So it does not even generally make sense to think of gametes as producing descendants 

via zygotes; the gametes that make up a zygote need not produce descendants at all and so we 

should not think of classical population genetics models as ones that feature descendant-

producing gametes. 

                                                                                                                                                             
For now, I will simply note that there is no distinct type of entity with which assortative mating parameters, the ones 
that reflect “sexual selection,” are paired. These parameters weight zygote frequencies, but do so in a different way 
than do zygotic selection coefficients; one difference between zygotic selection coefficients and assortative mating 
parameters is that only the latter, weighted by the relative frequencies of the mates, must sum to one. 
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Similarly, in deterministic models featuring variables for mating pair frequencies, zygotes 

with higher fitness values form more mating pairs, but they do not necessarily reproduce more 

because they may form especially infertile mating pairs. So we cannot make sense of the fitness 

coefficients with which zygote frequencies are paired as ones that quantify the causal influence 

of the zygotes on reproduction. Furthermore, just like gametes, zygotes that form mating pairs 

may produce descendants of a different type than either zygote that formed the mating pair: Two 

homozygotes for different alleles will produce only heterozygote offspring for instance. So we 

cannot say that relative fitness values represent the causal influence of zygotes over zygote 

reproduction, where we mean the production of zygotes of the same type. 

What I will say instead is that fitness coefficients quantify the causal influence of 

individuals over their progress on to the next stage of the lifecycle, or more simply their progress. 

For gametes, progress consists in zygote formation. For zygotes, progress consists in mating pair 

formation (in some models) or gamete production (in other models). For mating pairs, progress 

consists in zygote production. Some of these stages of the lifecycle can sometimes be ignored as 

irrelevant to population dynamics, and all of the stages do not occur among at least some 

organisms, but all the stages must be recognized as distinct in an account of selection theory that 

is broad enough to cover standard population genetics models featuring diploids.  

I should note, too, that while Christiansen and Prout divide up the components of fitness 

into multiple aspects, a move that is crucial for understanding the deployment of population 

genetics models, those authors make the mistake of defining these components of fitness in terms 

of the outcomes of selection processes: zygotic selection is the differential survival of zygotes to 

maturity, gametic selection the differential survival of gametes, and so on (2000, 148). It is of 

prime concern in this work that the concepts at work in selection theory be construed such that 
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they can function as part of explanations of population dynamics, and the outcome-based 

definitions offered by Christiansen and Prout undermine the explanatory power of equations in 

which variables representing the various components of selection appear. We do not want our, 

say, zygotic fitness variables to refer to the actual survival rates to maturity of zygotes, because 

we would then have to have a grip on what happened in the zygotic phase of the lifecycle before 

being able to determine zygotic selection coefficients for population members. The same goes 

for the rest of the stages of the lifecycle. If we want to explain populations’ dynamics, we must 

be in a position to infer it in a non-circular fashion, and the definitions offered by Christiansen 

and Prout stymie this ambition. 

5.2.3.2 MICERs. We need to know what gametes, zygotes, and mating pairs are before we can 

set out the algorithm for generating population genetics models. Indeed, we will want a grip on 

what sorts of things these individuals are, because the algorithm is supposed to be a cause-to-

model algorithm, one that takes makes use of causal information as an input. This means we will 

need to characterize what gametes, zygotes, and mating pairs are in causal terms. In a sense that 

will be specified in this section, gametes, zygotes and mating pairs are the causal products of a 

specific kind of causal relationship between competitors. We can get a grip on when it is 

appropriate to deploy a model featuring gametes, zygotes, and mating pairs by getting a grip on 

the special way that competitors are causally related when they together make up a gamete, 

zygote, or mating pair.  

That it is a specific sort of causal relationship that allows us to recognize whether a 

system features individuals of specific kinds might seem like a rather bizarre contention. Surely 

we do not recognize that a system features, say, mating pairs on the basis of a peculiar sort of 

causal relationship that exists among the alleles carried by the pairing organisms. The same goes 
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for gametes and zygotes. I can tell that something is a zygote without checking how the alleles it 

bears are related. I am sure that everyone reading this is a zygote, for instance. However, what I 

seek in this work are explanatory definitions; I seek definitions that pick out entities in terms of 

the features they have that lead them to play the roles in the theory that they do. Gametes are not 

treated in selection theory in the way that they are treated because they are gametes, they are 

treated in the way that they because of how their component alleles are causally related.  

Consider a parallel: while it is the case that all known rights-deserving entities, people, 

are also humans, it is not the case that people deserve rights because they belong to a particular 

clade in the latest taxonomic hierarchy developed by professional systematists. Indeed, it is not 

inconceivable that we might find, elsewhere in the universe, entities that deserve rights despite 

not being humans. Evolutionary history could have gone slightly differently, too, such that other 

lineages of homos survived into the present era, and could talk and play the rights-and-

responsibilities the rest of us do. Their status as members of a different clade would hardly 

legitimate their enslavement. So it is surely at least an evolutionary accident, if not a 

cosmological one, that all rights-deserving entities turn out to be Homo sapiens. 

An account of why rights-deserving entities are such should not make appeal to their 

status as humans, even were the case that all and only humans deserve rights, something that 

would make it possible to assess rights-deservingness on grounds other than personhood. 

Similarly, even though we can spot zygotes without doing so on the basis of a peculiar causal 

relationship into which the alleles they bear have entered, it is because of that peculiar 

relationship among their constituent competitors that zygotes play the role they do in selection 

theory. We need not invoke an explanatory definition in order to deploy a notion every time we 

deploy it. But we can still recognize that the definition supplies the justification for a notion 
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playing a specific role in reasoning, even though we can deploy the notion without using the 

definition.  

Alleles that are bound together in gametes, zygotes, and mating pairs are engaged in a 

special, and temporary, causal relationship with two components. The first component is mutual 

investment. Each stage of the lifecycle terminates in a causal bottleneck: there is no way for an 

allele carried by, say, a dog zygote to produce descendant alleles except insofar as the dog zygote 

bearing it finds a mate. That mating pair, too, had better be fertile for the alleles in both the male 

and the female to have any hope of producing descendants. I dub this aspect of the relationship 

between alleles within the same individuals an instance of mutual investment. The reproduction 

of all the alleles, or more generally all the competitors, within a single individual is contingent 

upon the progress of the individual to the next lifecycle stage. Alleles that are related such that 

their descendant production is each contingent upon the same event exhibit mutual investment. 

Alleles forming parts of the same individual have a further feature. Whatever competitive 

causal influences that competitors within an individual have one another, these causes have no 

impact on the progress of the individual bearing them. Alleles within an individual cannot 

engage in activities that both 1) causally impact the event upon which their descendant 

production is both contingent and 2) function to increase their likelihood of producing 

descendants while inhibiting others that share the same causal bottleneck. Note that I am not 

saying that competitors within an individual cannot both engage in competition and impact the 

reproduction of the individual bearing them. I claim that they cannot do both these things by 

means of the same causal mechanism. 

This last feature of how alleles within an individual are related is a way that members of 

subgroups of the sort featured in “group selection” models are not related. Some subgroups may 
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be formed from individuals in such a way that the alleles in the subgroups are mutually invested 

in the fate of the subgroup as a whole. Insofar as that is the case, subgroups and individuals are 

similar. However, members of the same subgroup can, and indeed always do, compete with one 

another in a fashion that matters to the probability that any members of the subgroup will 

produce descendants. 

For instance, an allele coding for virulence in the mixoma virus will produce more 

descendants within a single infected rabbit than will an allele coding for avirulence (this example 

is drawn from Sober and Wilson 1998). This behavior is competitive: virulent strains of mixoma 

produce descendants at the expense of avirulent ones by using up rabbit resources to do so. But 

this behavior also has an impact on whether any of the viruses in the host rabbit go on to produce 

any future descendants at all. The mixoma virus is passed on by mosquitoes that only bite live 

rabbits. By producing more descendants than do rival strains, virulent strains kill the infected 

rabbit sooner and hence decrease the probability that the rabbit will be bitten by a mosquito, 

something that must occur for any strain within the rabbit to be carried to other rabbits where 

viral replication can continue. The virulence of the strains in a rabbit determines both whether 

any of them make it outside of the context of the subgroup and what proportion of those that do 

are virulent and avirulent.  

In contrast, the causal chain by which the alleles in a zygote causally influence the 

progress of the organism is an autonomous one, one which has nothing to do with how many 

descendants the alleles produce compared to other alleles within the zygote. The developmental 

impact of an allele, and hence its impact on the progress of individual of which it is a part, is 

independent of whatever else the allele might do to generate more descendants than does a rival 

alleles, such as distorting meiosis through meiotic drive. The descendant production of alleles in 
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an individual is contingent upon the progress of the individual of which they form a part, and the 

alleles cannot do anything, that is, they cannot do any one thing, that both 1) influences the 

progress of the individual that bears them and 2) influences their rate of descendant production 

relative to other alleles within the individual. Two alleles within a single zygote, then, are such 

that a single event (the reproduction of the zygote) is a necessary for both to produce any 

descendants and further are such that they cannot causally influence that event by means of some 

activity that inhibits the descendant production of the other allele. The same goes for alleles 

within the same gamete or mating pair. 

I call the relationship between competitors forming an individual a MICER, a mutually 

invested, competition-excluding relationship. When relationships of this sort occur, as they do 

among alleles that together form parts of the same gametes, zygotes, and mating pairs, they 

mandate the deployment of relative frequency variables that refer to individuals formed by 

MICER related alleles and distinguished by the competitors they bear. So, for instance, we can 

tell whether it would make sense to deploy a model featuring zygote frequencies by asking 

whether any competitors within haploid gametes form a MICER with each other. Equally, we 

can tell whether it would make sense to deploy a model featuring mating pair frequencies if the 

zygotes in the population engage in a MICER. Even gametes are formed from MICERs, in this 

case, relationships of mutual investment and competition exclusion among alleles at different 

loci. 

5.2.3.3 Aside about meiotic drive. That alleles within a zygote are related by MICERs is not 

immediately obvious because rival alleles from a single heterozygote clearly compete with one 

another when one of the alleles is a driving allele, and MICERs are supposed to be competition-
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excluding relationships. This fact, however, does not endanger the stance that alleles at the same 

locus in a heterozygote still form a MICER. 

Technically, meiotic drive is a case of gametic selection. An allele may bias the rate at 

which it forms zygotes by biasing meiosis as in meiotic drive or, more commonly, by killing 

rival gametes, as do killer sperm. But the fact that alleles can do this can be accommodated on 

the view undertaken here. The relationship of two alleles that invest in a zygote is always 

temporary, and the relationship ends as the next stage of the lifecycle begins. Meiosis marks the 

beginning of the gametic lifecycle stage and the causal influence of an allele over meiosis is an 

instance of gametic selection, not zygotic selection. 

That last claim is not an idle one. I am not carving up the lifecycle arbitrarily just so that I 

can maintain that meiotic drive is an instance of gametic selection. For one thing, any textbook 

will present it as such. But for another, it matters when modeling meiotic drive mathematically 

that it counts as gametic selection. Gametic selection coefficients weight the frequency terms for 

gametes produced by heterozygotes. Gametic selection coefficients do not weight the 

contributions that heterozygotes make to the average fitness of zygotes. That means that the 

relative fitness coefficients used to represent drive do not quantify the causal influence of the 

zygotes on their relative reproduction rate. Godfrey-Smith and Kerr (2002) overlook this, and 

this error is one source of their mistaken claim that genotypic selection is an instance of group 

selection on alleles. 

The fact that heterozygotes have relative fitness parameters that do not reflect whatever 

meiotic drive may occur between the alleles they bear brings out the special role of individuals in 

selection theory. Alleles in a zygote, even driving alleles, have an impact on the development of 

zygotes that is distinct from whatever influence they may have over meiosis or fertilization. 
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MICERs are formed out of causal relationships; the contributions made by alleles that are part of 

the same genotype to zygote development are not causal influences through which they can 

compete with one another. Whether alleles function as causes in other ways, beyond contributing 

to zygote development, is not relevant to whether they engage in a MICER. So alleles may case 

the deaths of rival sperm, and more generally can influence the gamete formation process such 

that they form parts of more gametes than do other alleles competing for the same locus. They 

can do these things in addition to forming a MICER with those other alleles. The processes of 

zygotic selection on genotypes and gametic selection on gametes are independent.  

5.2.3.4 Distinguishing haploids, gametes, zygotes, and mating pairs. So far, I have argued that 

the special gene-by-gene causal influences that occur among competitors within gametes, 

zygotes, and mating pairs are causal relationships of a particular sort, mutually investing, 

competition-excluding relationships. This relationship is defined causally, so it is a 

generalization of the sort of relationship that alleles have to each other when they form part of 

the same individual; things other than alleles, anyway, could instantiate the relationship. But all 

we know now is that competitors that together make up gametes, zygotes, and mating pairs 

always form MICERs; I must still distinguish gametes, zygotes and mating pairs among the 

individuals whose competitors are related in this way. Once this is done, we will have notions 

stated in causal terms that generalize “gamete,” “zygote,” and “mating pair,” and we will be in a 

position to use these notions in the cause-to-model algorithm. 

The strategy pursued here will be to first get a grip on the notion of gamete and to use 

this to get a grip on the notions of zygote and mating pair. Diploid zygotes are created by 

MICERs formed from competitors found in two gametes, while mating pairs are created by 
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MICERs formed from competitors found in two zygotes. So the critical question is, what are 

gametes? 

To get a grip on the notion of gamete, we must recognize that the alleles within a gamete 

are not members of the same population. One of the features of the definition of population 

offered earlier in chapter 4 is that only types of entities that are competing count as members of 

the same populations, and alleles at different loci cannot compete. That alleles at different loci 

are actually found in different populations has the clear, though not trivial, implication that their 

relative frequencies need not add to 1. But the fact that alleles at different loci are not part of the 

same population also has importance for discerning what gametes are. 

Distinct alleles within the same gamete may be related by MICERs even though they are 

not members of the same population. Zygotes and mating pairs always include competitors that 

are members of the same populations, alleles that are competing for the same genetic loci. So we 

can pick out gametes as those peculiar individuals that bear competitors that are 1) related by 

MICERs, and 2) are not members of the same populations. 

Using the notion of a MICER, along with the notion of population defined earlier we can 

pick out gametes in causal terms as the product of competitors from different populations that are 

related by MICERs. Zygotes, then, are MICERs formed from pairs of MICERs formed from 

competitors from different populations, while mating pairs are MICERs formed from pairs of 

those. 
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Any competitors that do not form any MICERs at all, with members of the same or 

different populations, will be treated as haploids are treated in population genetics models. 

MICERs are temporary relationships, and multiple genetic variations in haploids are permanently 

engaged in relationships of competition exclusion and mutual investment. Not only are alleles in 

a haploid individual mutually invested in the reproduction of the larger individual, all their 

descendants will equally be mutually invested in the reproduction of the same individuals too. In 

contrast, the causal relationships between different alleles at different loci in diploid individuals 

are impermanent; they eventually break down through recombination. Indeed, that this is what 

triggers the deployment of multi-locus models is clear from the fact that two-locus models 

reduce to multi-allelic models as recombination rates approach negligible rates (Hedrick 2005, 

561). Since the lineages of two alleles in the same haploid genome are inexorably bound 

together, and the relationship of competition-exclusion and mutual investment that is used to 

define gametes, zygotes, and mating pairs is, by definition, a temporary relationship, alleles 

within haploid do not form MICERs. 

That the deployment of models featuring haploids is triggered by the existence of 

competitors that do not form MICERs helps explain the scope of such models. They work just as 

well for competition between lineages of organisms from different species that do not interbreed 

as they do for lineages of variant alleles at a locus in haploid organisms that do not engage in 

sexual reproduction. Indeed, that we can be indifferent to what we count as the competitors when 

dealing with haploids—is the competitor the organism or some subset of its genes?—is equally 

explained by the permanence with which genetic variations in the same haploid individual are 

stuck together. It does not matter whether we consider the organisms or its peculiar genetic 

variations as the rival competitors when dealing with haploids because the lineages of the genetic 
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variations and the organisms necessarily overlap. It is really the models that involve sexual 

reproduction that are special, and they are special because they involve competitors that form 

MICERs. The “haploid” models are suitable for all the other sorts of competitors. 

5.2.3.5 Generalizing the second categorization scheme. Earlier I picked out gene-by-gene 

causal influence as one of four sorts of causal influence that must be addressed in the cause-to-

model algorithm. It turned out that gene-by-gene causal influences were a specific sort of causal 

relationship that competitors could have to one another, relationships of mutual investment and 

competition exclusion. Causal influences emanating from alleles and acting on other alleles need 

not take the determinate form of MICERs, however. Just because something is an allele does not 

mean that its causal connection to any other allele can be characterized as one of mutual 

investment and competition-exclusion. In short, alleles can exert causal influences on alleles in 

other individuals, too. Frequency-dependent selection models are deployed to handle causal 

influences of this last sort. In classical population genetics, we weight relative frequency terms 

for individuals by relative fitness functions whose arguments consist in weighted relative 

frequency terms for individuals at the same point in the lifecycle. Those functions must be 

interpreted causally. So if I set the relative fitness of a homozygote according to the following 

function (as in Hedrick 2005, 223): 
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Equation 5.9 

each of the RHS terms picks out the causal influences of each type of zygote on the progress of 

the A1A1 homozygote. 

That frequency-dependent selection models are causally interpretable is important 

because, technically, the causal influences we model using frequency-dependent selection 
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models emanate from genetic variations; the arguments of the functions ultimately quantify the 

causal influences of alleles over other alleles. But to keep them distinct in the algorithm that 

follows, I call these causal influence individual causal influences. I do this just to keep things 

straight, even though such causal influences have their ultimate source in variant competitors. 

 This means that out of the four types of causal influence in the second categorization 

scheme, two have so far been understood entirely in terms of the base language of this work. 

What are known as gene-by-gene causal influences are a specific type of causal influence among 

competitors, a MICER. Other causal influences among competitors are what we will call 

individual causal influences. That leaves sexual causal influences and ecological causal 

influences. Can “sex” and “the environment” be understood in causal terms? In fact, we need not 

understand both in causal terms. All we will need to do is understand one of these in causal 

terms, and the other can be understood as the correlative to the other three types of cause in the 

second categorization scheme. We will thereby have articulated the second categorization 

scheme in entirely causal terms. 

 Sexual causal influences can be understood without reference to the concept of sex. Sex 

differences are manifested in population genetics models as restrictions on MICER formation. 

Quite simply, competitors in one sex cannot form MICERs with competitors that are found in 

individuals of the same sex.24 So we can generalize sex differences as barriers to MICER 

formation. We can say what it means to be of a sex X for an arbitrary X by appealing to what it 

means to form a MICER, something which has been presented in causal terms: Individuals of 

sex-value X cannot form causal relationships of mutual investment and competition-exclusion 

with individuals of sex-value X. 

                                                 
24 Gametes have sex-of-origin differences that are equivalent to sex differences in the fashion being specified here. 
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Having understood sex in the fashion just rehearsed, we can understand “ecological” 

causal influences as all the causal influences modeled in selection theory except for MICERs 

(gene-by-gene causal influences), individual causal influences (gene-by-gene causal influences 

that are not MICERs), sexual causal influences (causal influences due to differences manifested 

by barriers to MICER with other population members), and ecological causal influences 

(everything else). We now have our second categorization scheme laid out in the base 

vocabulary of this work. 

5.2.3.6 Substructures and subgroups. Population geneticists consider a variety of different 

sorts of groupings of competitors and individuals. The most significant sorts of grouping they 

consider are formed from competitors engaged in MICERs, mutual investing, competition-

excluding relationships. Competitors that are part of the same gametes, zygotes, and mating pairs 

are so related. The formation and dissolution of MICERs is represented explicitly in the lifecycle 

graphs. But competitors and other individuals form other sorts of groupings, too. The two main 

sorts of groupings we need to consider henceforth in the algorithm are substructures and 

subgroups. 

Substructures are permanent features of the landscape inhabited by populations. 

Population members in different substructures migrate between substructures at fixed rates; this 

is why members of different substructures still count as members of a single population. But, 

except for the descendants of the migrants, the descendants of members of one substructure 

appear in the same substructure as that in which their parents initially appeared. Crucially, 

barriers between substructures act as barriers to MICER formation: the gametes in one 

substructure form zygotes only with the gametes in the same substructure, and the zygotes in one 

substructure form mating pairs only with their fellow substructure members, too. 
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The barriers between substructures may form barriers to other causal influences too; 

members of different substructures may not directly compete with one another.25 This will 

impact the relative fitness parameter deployed in the substitution phase of the algorithm, and I 

discuss this at length in the substitution phase of the algorithm. 

Insofar as members of a substructure form MICERs only with each other, our rules for 

drawing lifecycle graphs will require that gametes and zygotes share a substructure when 

forming zygotes and mating pairs, respectively. Similarly, later on, when we come to consider 

substitution rules that countenance ecological, sexual, and individual causal influences, we will 

evaluate the extent to which these causal influences are pervasive and the extent to which they 

are discriminate with respect to specific substructures. That substructures play these sorts of roles 

in the algorithm makes them different from subgroups.  

Subgroups are temporary groupings of individuals, ones that last no longer than the 

gametic stage of the lifecycle or the zygotic stage of lifecycle (in principle, mating pairs could 

form subgroups too, but one never sees this). Individuals that end up in one subgroup may form 

MICERs with individuals from other subgroups; this is what makes subgroups different from 

substructures, they dissolve before the next lifecycle stage begins. Subgroups may be familiar to 

philosophers from so-called group selection models (e.g., Wilson 1990; Sober and Wilson 1998; 

Godfrey Smith and Kerr 2002). Subgroups are handled in the substitution stage of the algorithm 

and are not recognized when lifecycle graphs are drawn. 

Some temporary conglomerations of individuals exist only as a means to classify together 

individuals subject to the same causal influences. To keep things straight, I will call these last 

                                                 
25 Recall from chapter 4 that the descendants of co-temporaneous individuals that do not compete directly may 
compete, and so, by the transitivity of competition, cotemporaneous individuals in different groups may compete 
indirectly with each other despite failing to compete directly. 
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sorts of things partitions. Partitions are formed from individuals that share nothing more than 

subjection to the same non-pervasive ecological causal influences. Partitions of these sorts are 

mere mathematical classificatory tools put in place to accurately model ecological causal 

influences; they are not subgroups and we will not be concerned with them until section 6.3.5.2. 

In contrast, true subgroups exist as independent groupings, ones that are not simply 

formed out of whichever individuals happen to be subject to the same ecological causes. These 

subgroups are created by barriers to causal influence between members of different subgroups. 

Such barriers have at least one of two consequences. At a minimum, subgroups provide barriers 

to individual causal influences. Some population genetics models feature individuals that 

causally influence other cotemporaneous individuals in the system; “group selection” models 

featuring altruistic and selfish types are prominent among these. However, because subgroups 

form barriers to causal interaction, they may form barriers to competition too, since competition 

is just a special kind of causal interaction. Such barriers to competition have implications for the 

average fitness parameter that is appropriate for a model featuring subgroups, as I discuss in the 

next section. 

 

5.3 LIMITS TO THE ALGORITHM 

I have set out the key concepts we will use to breakdown all the different causal influences we 

consider in the cause-to-model algorithm. We have a grip on the four fundamental sorts of causal 

influences that matter to the cause-to-model algorithm no matter what their source: pervasive 

interactive causal influences, non-pervasive discriminate non-interactive causal influences, non-

pervasive discriminate interactive causal influences, and non-pervasive, indiscriminate 

interactive causal influences. We have further distinguished as gene-by-gene causal influences, 
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individual causal influences, sexual causal influences and ecological causal influences. We have 

also used the official causal language of this work to get a grip on what gametes, zygotes, and 

matings pairs are. Having a grip on our main types of causal influences and having a grip on the 

entities that will be represented as subject to them, we understand the concepts we need to write 

down the algorithm for generating population genetics models on the basis of causal information 

about populations. 

Before getting to the algorithm itself, I want to set out more fully the limitations of the 

algorithm. The algorithm is not fully general, it does not yield an equation for any sort of 

population whatsoever, and I want to at least mention up front what sorts of populations it can 

handle and what sorts it cannot. First of all, the algorithm works for discrete generation, “Wight-

Fisher” models. Some of these, those that are recursions on two types of gametes and which do 

not involve individual causal influences, can be treated using equations from diffusion theory, in 

which evolution is approximated as a continuous process by imagining ever shorter generations 

(Rice 2004, ch. 5). But the algorithm discussed here does not yield Moran models, Cannings 

models, or age-structured models. Equally, it does not yield models that deploy the formalism of 

quantitative genetics to track population dynamics, what Lewontin calls the “biometric 

approach” (1974, ch. 1). While these limitations are certainly limitations, it is worth noting that, 

even in advanced population genetics textbooks such as Ewens (2004), the vast majority of 

models of non-neutral population dynamics are Wright-Fisher models. Wright-Fisher models 

have been the focus of population researchers’ development of quantitative models of causally 

complex situations, especially models that serve to demystify adaptation, altruism, and genetic 

polymorphism. 
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I also note that Wright-Fisher models are the most flexible population genetics models 

when it comes to representing the impact of contextual causes on population dynamics. Cannings 

models work only for neutral evolution; Moran models work only for haploids, the biometric 

approach generates conclusions about long-term population dynamics only for populations with 

an unlimited supply of genetic variations contributing to the trait under selection, which is an 

unrealistic assumption. Wright-Fisher models are actually some of the hardest models for which 

to state a cause-to-model algorithm, because they can handle the greatest breadth of causally 

diverse populations. This fact is equally linked to their traditional role in demystification. 

 Another limitation to the algorithm is that I consider models of haploid, haplo-diploids, 

and diploid populations only; I do not consider populations that exhibit polyploidy. This is once 

again largely because of the traditional focus of the population genetics research community on 

haploids and diploids. I simply could not find out how selection on polyploids worked from my 

population genetics textbooks, as well as a little research into the primary literature on 

polyploidy. Much the same goes for bacterial populations that do not mate as some diploids do, 

but exchange alleles through any of a number of “parasexual” processes that I have not yet 

learned how to model. My hope is that coming to terms with these unusual populations will 

amount to understanding how to draw appropriate lifecycle graphs for them, such that integrating 

models of selection in these unusual cases will not require adjustments to the substitution rules 

that come later. 

The algorithm is further limited insofar as I use fixed parameters for quantities that 

population geneticists have sometimes treated as functions. The algorithm does not countenance 

homing parameters that are functions of relative frequency terms, for instance, though these are 

widely considered in models of spatially variable selection (e.g., Hedrick 1993). Equally, I use 
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unspecified functions to weight relative frequency variables in the face of individual causal 

influences, even though such functions must be specified for inferences about population 

dynamics to be made. The algorithm is not incompatible with the use of functions for these 

parameters, but it does not mandate them.  

Another serious assumption I make is that individual, sexual, and ecological causal 

influences do not interact with each other, though they may interact with the type differences of 

the individuals they strike. This assumption is an extension of the textbook assumption of the 

multiplicative collapse of viability (Hedrick 2005, 176); I dub my extended version of this 

assumption the multiplicative collapse of fitness assumption.  

One last feature of the algorithm is worth mentioning here. In stating the algorithm, I 

resort to the traditional language of population genetics. Even though I went out of my way to 

define some crucial bits of causal and statistical terminology, and even though I bothered to 

show how one can manufacture generalizations of the notions of gamete, zygote, and mating pair 

from causal notions, and even though I bothered to re-interpret gene-by-gene, individual, sexual, 

and ecological differences in entirely causal terms, I will nevertheless put forward the algorithm 

using the more determinate biological versions of these concepts. So I will talk about alleles 

instead of competitors, gametes instead of individuals formed from competitors in different 

populations involved in a mutually invested, competition-excluding causal relationship, and so 

on.  

While my adoption of biological vocabulary in stating the algorithm clearly limits its 

scope in a fashion that is at odds with the intent of this work to generalize selection theory using 

cause-talk, at least it will be convenient to talk about mating pairs instead of MICERs formed 

from MICERs formed from competitors in distinct populations. Furthermore, the algorithm can 
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be generalized simply by substituting the official understandings of its various bits of 

terminology for the traditional vocabulary actually used in the presentation. Finally, I composed 

the algorithm in the more determinate language of population genetics textbooks because if I 

ever make use of the algorithm outside the context of this dissertation, it would have to be versed 

in the traditional language of population genetics. 

Intellectual honesty provokes me to mention all the above limitations to the cause-to-

model algorithm before presenting it. But it is easier to discuss how severe these limitations are 

after the algorithm has been presented, since it will be clearer then how these limitations function 

as such. So I postpone further consideration of them until after the presentation of the algorithm 

itself. 
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6.0 THE CAUSE TO MODEL ALGORITHM 

 

The algorithm I offer for generating classical population genetics models is a multi-step affair. 

Its main steps are these: 1) the deployment of a decision-tree to determine which among several 

fundamentally different types of classical population genetics model is appropriate for some 

system; 2) the drawing of some specialized directed acyclic causal graphs, ones that portray the 

lifecycle of the target systems and from which equations can be derived that feature an 

appropriate number of relative frequency terms referring to appropriate types of individual; 3) 

the deployment of substitution rules upon the equations yielded by the graphs, substitutions that 

generalize the equations such that the remaining causal influences not tackled at earlier stages of 

the algorithm, specifically individual, ecological, and sexual causal influences, can be taken into 

account; 4) the collapse of two systems of equations to generate a single recursive system of 

equations. 

 

6.1 THE DECISION TREE 

The first stage of the algorithm consists in a decision tree (figure 6.6) that functions to 

distinguish six basically different kinds of classical population genetics models. In this section, I 

show how to make the distinctions made in the decision tree. The stage, the graph-drawing stage 

of the algorithm, will treat each type of model distinguished by the tree using differently. 
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6.1.1 Haploid vs. diploid models 

The definition of MICERs, one of the critical concepts needed for selection theory discussed in 

the previous chapter, is the first concept to be put to use in the cause-to-model algorithm. 

Classical population genetics for populations in which MICERs are formed from members of the 

same population, ones featuring zygotes and perhaps also mating pairs, are different from ones 

designed for populations in which MICERs are not formed among members of the same 

population. I’ll call the latter sorts of model “haploid models,” though they work fine for cases in 

which individuals in different non-interbreeding species function as competitors. If our 

competitors do not form MICERs with members of the same population, then we must deploy a 

haploid model; otherwise we need to know further details about our population to fix on an 

appropriate sort of lifecycle graph. 

 

Figure 6.1 Haploid vs. diploid models 

6.1.2 Fertility selection 

The next thing we need to know in order to follow the decision-tree is whether our population 

forms mating pairs, and if so, whether the zygotes do so discriminately or interactively (or both). 

If the process of mating pair formation is either discriminate or interactive, such that different 

types of zygotes tend to form mating pairs with other zygotes in a genotype-sensitive fashion or 

such that zygotes do not make mate-independent contributions to fertility but instead have 
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different impacts on fertility depending upon the type zygote with which they mate, then we 

must deploy a model that is a recursion on zygote frequencies and features relative frequency 

terms for mating pairs; otherwise we can use a analytically more tractable model that is a 

recursion on gamete frequencies.26 Different lifecycle graphs are used to generate equations that 

are recursions on zygote frequencies instead of recursions on gamete frequencies. 

 

Figure 6.2 Fertility selection 

6.1.3 Haplo-diploidy 

The next thing we need to know is whether MICERs are formed from alleles in both sexes of a 

diploid species. Hymenoptera exhibit a peculiar genetic structure: the females are diploid while 

the males are haploid. That means the alleles among the males do not form MICERs with 

members of the same population, while those among the females do. Haplo-diploid models 

suitable for Hymenoptera are a unique sort of recursive model, and must be considered 

separately in the graph-drawing stage of algorithm. Haplo-diploid models are suitable for X-

linked genes, too (Hedrick 2005, 75). 

                                                 
26 Because introducing mating pairs into a model is done by assigning relative frequency terms to mating pairs, and 
it is these mating pairs of zygotes that then produce the zygotes of the next generation, models featuring mating 
pairs contain sufficient information to make it possible to connect this-generation mating pair frequencies with next-
generation zygote frequencies. Mating pairs that are more or less successful produce more or fewer zygotes, not 
more or fewer gametes. That is why models that feature mating pairs are recursions on zygote frequencies. 

 205



 

Figure 6.3 Haplo-diploidy 

6.1.4 Sex-dependent selection  

Next we must consider whether sex differences act as interactive causal influences on zygotes. If 

so, we must deploy a sex-dependent selection model so that it is possible to assign the males and 

the females of the different types in the model different relative fitness coefficients. Sex-

dependent selection models are recursions on individuals in which zygotes are differentiated by 

their sex and gametes, if featured, are differentiated by their sex of origin. All diploid selection 

models come with sex-dependent and sex-independent versions, whether or not they are 

recursions on zygote frequencies or gamete frequencies. Note that it is not the case that sex-

dependent models are appropriate for populations in which there are two sexes. Sex differences 

that have no interactive causal impact on the progress of individuals can be ignored. 
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Figure 6.4 Sex-dependent selection 
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6.1.5 The Full Decision tree 

This completes the first step of the algorithm. The decision tree just rehearsed terminates with 11 

fundamentally different types of populations that are associated with 11 fundamentally different 

types of classical population genetics model. I note that there are more types of populations than 

this because I consider neither bacteria that engage in parasexual processes nor polyploids. The 

full decision tree is picture below: 
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Figure 6.5 The full decision tree 

 209



6.2 LIFECYLE GRAPHS 

The next step in the algorithm consists in instructions for drawing directed acyclic causal graphs 

to represent the lifecycle of populations. Each of fundamentally different type of population 

discerned in the last stage is handled differently in the graphing portion of the algorithm, so we 

will consider six sets of graphing rules for each of these different sorts of populations. Before 

actually giving the instructions for drawing graphs appropriate to the 11 different sorts of 

populations just picked out, I will discuss my use of causal graphs, the language in which they 

will be written, and what the graphing instructions allow one to do. 

I avail myself of the sorts of graphs one finds used everywhere nowadays to formalize 

causal knowledge (Glymour, Scheines, and Spirtes 1993; Pearl 2000; Woodward 2003). I stress, 

however, that I do not represent the entirety of the causal information about populations in the 

lifecycle graph. Much of the causal information that will be fed into the algorithm is fed into the 

algorithm later on, specifically through the use of substitution rules at the next stage of the 

algorithm. 

 The main purpose of the graphing portion of the algorithm is to generate equations the 

right number of relative frequency terms for the right sorts of individuals in the model. The 

number of different types of individuals whose relative frequencies must be captured using 

variables in a model is a function of the number of different types of alleles in the population, as 

well as the number of loci used to differentiate the alleles, the number of substructures, and the 

presence of interactive sex differences. Distinct nodes in the graphs are assigned for each distinct 

type of individual, and edges are used to represent how they causally contribute to the 

individuals who make up the next lifecycle stage. Our models will reflect no more variant types 

of individuals than is necessary.  
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The other thing the graphs are used to do is to introduce some coefficients for relative 

frequency variables through weightings on edges that depict formation of the individuals in the 

next stage of the lifecycle. Meiotic drive parameters, recombination rates, and parameters 

representing discriminate MICER formation are all represented by weights on edges of lifecycle 

graphs. Once again, we add these only when necessary. 

6.2.1 Inferring equations from lifecycle graphs 

The purpose to which I put the directed acyclic graphs, specifically generating systems of 

equations, is an unusual use of such graphs. Directed acyclic causal graphs are not typically used 

to show the variables associated with each node are functionally related. As used by Pearl 

(2000), Glymour et al. (1993), and Woodward (2003), directed acyclic causal graphs display 

causal-functional dependencies of a mathematically indeterminate sort. Directed acyclic causal 

graphs are used to show that the value of one variable depends on the value of one or more other 

variables, but they include no information about the precise mathematical nature of this 

dependence. So a variable associated with a node in one of Pearl’s graphs might take on a value 

that is the product of the values of the variables associated with its parent nodes, or perhaps their 

quotient, their sum, their difference, etc. A directed acyclic causal graph for some system merely 

shows that the descendant is somehow functionally dependent on its ancestors, but it says 

nothing about what sort of mathematical function relates them. 

 Things are different with the lifecycle graphs used here. These yield definite equations 

involving definite operators because I assign a definite rule that determines what sort of 

mathematical-functional dependency obtains between parents and children.27 The rule has four 

components: 1) all coefficients on edges weight the variables associated with the nodes at their 

                                                 
27 This is one of the main reasons why more causal information about a population is not represented in the lifecycle 
graph; adding more causal information would make it impossible to lay down general rules concerning how 
equations were to be inferred from the graphs. 
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feet by forming products with them; 2) when ancestors are composing a MICER, that is, when 

gametes are combining to form zygotes, or zygotes are combining to form mating pairs, values 

of variables for descendant nodes are the product of the values of their parents; 3) when a 

MICER is being broken down, that is, when zygotes are producing next generation gametes or 

when mating pairs are producing next generation zygotes, descendant values are the sum of 

parent values; 4) post-migration nodes and haploid nodes are always the sums of their parent 

nodes. 

Lifecycle graphs are used to yield systems of equations, rather than a single equation. 

One equation is yielded for every leaf of the graph, that is, every node that has no descendants 

but does have ancestors. Furthermore, so that the substitution rules we deploy later on work 

correctly, each non-haploid population will be assigned two distinct lifecycle graphs, each graph 

representing a distinct stage of the lifecycle, such that two systems of equations are produced for 

the system.  

6.2.2 Some conventions for lifecycle graphs 

Stating rules for drawing lifecycle graphs can get complex, so here I rehearse a few graph-

theoretic notions that will be useful in stating rules later. Many of the definitions below are 

standard ones; I propose a few of my own notions to use as shortcuts. 

6.2.2.1 Heads, feet, paths, ancestors, children, parents, roots, leaves. The head of a directed 

edge is marked by an arrowhead; the foot has no arrowhead. Paths are sequences of one or more 

directed edges, whose component edges may point in any direction; I repeat, the edges that make 

up a path may point in any direction. An ancestor of a node is another node that can be 

connected to it by a path, all of whose component edges are pointed in the same direction, 

toward the descendant. Descendant is the reciprocal notion to that of ancestor. A node’s parent is 
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its immediate ancestor; a node’s child is its immediate descendant. A root is a node that has no 

ancestors, only descendants. A leaf is a node that has no descendants, only ancestors. In a break 

with convention, I allow that a node may have two parents that are one and the same node if it is 

connected to that node by two edges. This is a non-standard use of edges, but it will be useful to 

have two edges connect two nodes such that the child has two parents that are the same node.  

6.2.2.2 Arrays of nodes. The rules require drawing nodes in arrays; always, several nodes get 

drawn at once, and these make up an array. Typically, one array of initial nodes is drawn, and 

then another array is drawn whose members are attached to members of the first array by 

directed edges. The first array might represent gametes while the next array represents zygotes, 

for instance. Edges between two arrays of nodes are always directed toward the nodes that are on 

the most recently drawn array. Each node on an array is associated with a variable, as is standard 

in directed acyclic causal graphs. In the graphs I draw, the variable associated with a node is 

always a relative frequency variable, and it refers either to a haploid individual, a gamete, a 

zygote, or a mating pair frequency. All nodes on a single array refer to the frequencies of one of 

these four sorts of individual. 

I will refer to the nodes in a graph by the sort of entity to which they refer, so I will talk 

about haploid nodes, gamete nodes, zygote nodes, and mating pair nodes. Graphs will contain 

nodes that refer at most to two out of these three sorts of individuals. 

Nodes that are members of the same array cannot be attached by edges, though they may 

be connected by paths. The last array of nodes drawn for a population will represent the relative 

frequencies of the individuals at the beginning of the subsequent generation, something that I 

will signal by adding a prime symbol to the relative frequency terms associated with them. 
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6.2.2.3 Groupings. I will also often find use for the notion of a grouping. A grouping is a 

population, a substructure, or a subgroup, that is, any sort of conglomeration of competitors of 

the sort considered in selection theory except for individuals formed from MICERs, that is, all 

groupings except gametes, zygotes, and mating pairs. 

6.2.2.4 Indexing of nodes. The third step of the algorithm involves the deployment of 

substitution rules over the relative frequency terms that appear in the equations generated by the 

graphs at this stage. Accordingly, the relative frequency variables used in the graphs are designed 

so that general substitution rules can be deployed over them, no matter what sort of relative 

frequency term is being manipulated by substitution. Accordingly, it will be useful to set down 

rules for indexing the relative frequency variables (always p variables) such that the relative 

frequency terms over which substitution rules are deployed all have indices with identical 

formats. 

The nodes in the graphs will be distinguished by the indices that attach to the relative 

frequency variables with which they are associated. Generally, this will always be our rule for 

assigning indices: assign each node a unique index. I specify about how this is done in each case, 

but the rules for assigning indices to nodes will always be directed at achieving a unique index 

for each node. We want one node for each type of individual in the population, and we will 

ascribe indices to relative frequency terms associated with the types of individual represented by 

the nodes so as to reflect all the possible different types of individual in the system. For the sake 

of brevity, I will often talk about ascribing indices to the nodes or the individuals they represent, 

rather than talking about ascribing indices to the relative frequency variables associated with the 

nodes that pick out the different types of individual in the system.  

 214



The approach I use for indexing relative frequency variables builds on one already 

widespread in population genetics, according to which the relative frequencies of individuals are 

indexed by type, sex, and substructure. One often sees the variable p11 used to refer to organisms 

that are homozygous for allele A1. Similarly, one might see the term p22,3 used to refer to the 

relative frequency of individuals who are homozygous for the A2 allele and live in the third 

substructure in a hierarchically structured model. One also sees the use of m and f as subscripts 

on relative frequency terms to record the sex of the individual bearing a genotype. In the material 

that follows, each relative frequency term will be accorded a three-part index. The first index 

will pick out the individual by type, the second by membership in a substructure, and the third by 

sex; the type, substructure, and sex indices will be separated by commas. 

 Not every population will include substructures, but by convention, all members of 

populations that are not hierarchically structured will be treated as living in substructure 1. 

Haploids and mating pairs do not have sexes, and some diploid organisms lack them, too. Just as 

we assign everybody to substructure 1 when there are no substructures, we will assign all 

population members value 0 for their sex index when sex differences are not in play. Following 

the established practice of the statistical moment approach, we will assign the sex index value 1 

for males and value 2 for females in diploid populations. We assign gametes a sex index, too, 

one reflecting the sex of origin of the gametes, so sperm get value 1 and eggs get value 2. 

 The type index will often be a compound index, one consisting of several elements. 

Individuals that harbor multiple different alleles, as do multi-locus gametes, all zygotes, and all 

mating pairs, will all feature compound type indices. Because type indices might otherwise be 

ambiguous, the following conventions will be used for type indices: Distinct allele types at a 

locus will appear as distinct numbers, and will be referred to as the allelic elements of indices; 
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angle brackets “<>” will surrounding type indices that differentiate gametes, forming gametic 

indices; square brackets “[]” will surround indices that pick out different types of zygote, 

forming zygotic indices; and braces “{}” will surround indices referring to mating pairs, forming 

mating pair indices. The outermost brackets will not appear in the graphs, however, since the 

shapes of the nodes that appear in the graphs will signal what sort of individual is being picked 

out. I use diamond-shaped nodes for gametes to correspond with the angle brackets, square-

shaped nodes for zygotes, and hexagons for mating pairs. 

In addition, round brackets “()” will surround the alleles at a single genetic locus, forming 

genotypic indices. We will make great use of the notion of a genotypic index in stating the rules 

that follow. But for now, I will simply point out that the round brackets are necessary to avoid 

ambiguity. Without the use of the round-brackets, it is not clear whether, say a gamete of type of 

“<11>” refers to a single-locus gamete with the eleventh allele at one locus or a two-locus 

gamete with the first allele at both loci. On the convention used here, the first sort of gamete will 

be ascribed the index <(11)>, while the second will be ascribed the index <(1)(1)>. In models 

featuring types differentiated in terms of their sex and sex of origin, all indices will be written 

such that the contribution of a male will be written first and that of the female second (again, 

following the established practice of the statistical moment approach).  

To see how the indexing system works, consider the relative frequency term, . 

This variable represents the relative frequency of a diploid zygote with alleles of interest at a 

single locus, bearing the A1 allele inherited from its father and the A2 allele inherited from its 

mother, one that is male and living in the second substructure. As another example, the relative 

frequency of a gamete with allelic variants of interest at two distinct loci, descended from a 

female, and living in a population without substructures, will be written p <(1)(2)>, 2, 1. The relative 

2,1)],12[(p
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frequency term p{[(12)(22)(13)][(22)(32)(11)]}, 2, 0 picks out the frequency of a mating pair, one made up 

of two diploid zygotes each bearing variant alleles at three loci. The mating pair lives in the 

second substructure and is sexless. Note that the type indices of mating pairs include allelic 

elements, genotypic indices, and zygotic indices; they consist in mating pair indices. 

6.2.2.5 Genomic imprinting. The equations generated by means of the graphs (though not by 

means of the algorithm as a whole) will sometimes be too complex for the population at hand. 

One way the equations might be more complex than necessary is by featuring distinct relative 

frequency terms for heterozygotes bearing genotypic indices with the same allelic elements, but 

in different orders, e.g., (12) and (21). In populations with distinct sexes, these two genotypic 

indices represent different zygotes. The first is formed from a gamete produced by a male and 

bearing allele A1 and gamete produced by a female bearing allele A2, while the second is formed 

from a gamete produced by a male and bearing allele A2 and gamete produced by a female 

bearing allele A1. However, unless organisms imprint their genomes, the genotypes of 

heterozygotes that are distinct in this way make causally identical contributions to zygote 

development. 

In equations that are recursions on gamete frequencies, the zygote frequency terms will 

eventually be replaced when the two sets of equations derived from the graphs are collapsed after 

the substitution step of the algorithm. So it does not really matter if there are more zygote terms 

than necessary in the systems of equations that emerge from the lifecycle graphs, since there will 

not be any unnecessary terms in the equations issued at the end of the algorithm. For equations 

that are recursions on zygote frequencies, I offer alternative sets of rules for populations with and 

without genomic imprinting (GI).   
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6.2.2.6 Gene-by-gene causal influences. For diploid populations, the rules that follow require 

counting the number of loci that matter to the dynamics of the target alleles. However, no 

population genetics models feature individuals differentiated by all their alleles. That is to be 

expected, since only sometimes must alleles at multiple loci be taken into account in a classical 

population genetics model. We have been imagining that the deployment of selection theory by a 

researcher is triggered by the recognition of the existence of variant competitors, 

paradigmatically rival alleles. To determine the number of loci that must be considered to 

accurately model the dynamics of some target competitors, we must ask whether our target 

alleles causally affected by alleles at other loci. So we can think of the question of whether we 

need a multi-locus model as a question about what the causal influences of alleles at other loci 

have to be like such that we are forced to deploy a multi-locus rather than single-locus model. 

The answer to that question will determine how many loci we must consider. 

 We need a multi-locus model whenever variant alleles at other loci have either interactive 

or discriminate causal influences over the genetic variation at the target locus, the one that 

initially triggered the deployment of the theory. One instance of genetic variation at another 

locus that is either interactive or discriminate forces a two-locus model, two instances of genetic 

variations at two other loci that are either interactive or discriminate forces a three-locus model, 

and so on. I will defend the rule just proposed for cases of discriminate influences and interactive 

ones emanating from other loci in turn. 

That non-neutral alleles at linked loci force the deployment of a multi-locus selection 

model is a consequence of the fact that their impact on population dynamics evolves as the 

population evolves. Statistical associations between alleles gradually breakdown among diploids 

due to recombination among double heterozygotes. Furthermore, such associations may also be 
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strengthened when individuals that bear alleles in combination have especially elevated relative 

fitnesses. We cannot just average over the influence of alleles at other loci when these have 

either a discriminate causal influence on our target alleles, because their impact changes from 

generation to generation, and the fitness coefficients or functions we use to weight the relative 

frequencies of our individuals must remain fixed if our models are to fulfill their role of yielding 

results about long-term evolution. The average fitness individuals with one allele will change as 

the proportions of individuals bearing that allele and other alleles changes; hence, it cannot be 

specified by an unchanging coefficient. Fixed relative fitness coefficients (or sometimes 

functions) are necessary for us to generate analytic results about adaptive evolution, the 

persistence of polymorphism, and the persistence of altruism. 

Non-neutral alleles at other loci that are not statistically associated with our target 

competitors through linkage need not be taken into account unless their causal influence on 

individuals’ progress interacts with that of our target alleles. That is, even if alleles at some 

distant locus have a causal influence on the fate of the individuals harboring our target 

competitors, provided that the alleles at the distant locus have the same influence on each type of 

our target alleles, their presence need not provoke the deployment of a multi-locus model. That it 

is possible to overlook indiscriminate non-interactive causal influences from alleles at other loci 

is a result of the mathematical equivalence of models that do and do not do so (Lewontin 1974, 

277-78).  

The way that interactive or discriminate causal influences of alleles at other loci are 

handled in classical population genetics is by allowing alleles at those loci to contribute to the 

differentiation of gametes, zygotes, and mating pairs. When that is done, an allele of one sort can 

be ascribed one fitness coefficient when paired with one allele at another locus and be assigned a 
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different relative fitness coefficient when paired with a different allele at another locus. By the 

inversion principle, the distinct relative fitness coefficients with which individuals are paired 

reflect the distinct causal influence of the alleles at the other loci. The rates at which these 

pairings are formed and dissolved are then captured in the model by recombination parameters 

that specify how statistical associations among the alleles at the different loci change over time. 

Officially, then, the number of non-pervasive causal influences that are either discriminate or 

interactive arising from alleles at other loci will determine how we differentiate our individuals 

in a population genetics model, one whose deployment was triggered by the recognition of 

variation at a single genetic locus. We differentiate the individuals in a model by the genes they 

bear at n + 1 loci when alleles at n loci have discriminate or interactive causal influences over the 

alleles at a target locus of interest.  

6.2.3 Rules for graph construction 

In this section, I begin to lay out the rules for drawing lifecycle graphs, taking advantage of the 

vocabulary just discussed. While there are rules peculiar to each of the six different sorts of 

systems distinguished by the decision tree in section 6.1, some rules apply to more than one of 

the six sorts of systems. I start with rules with especially broad application, and then finish with 

ones that apply to only one of the six populations distinguished in the previous stage of the 

algorithm. 

6.2.3.1 A general migration rule. I now turn to consider the instructions for drawing lifecycle 

graphs. I first consider a general migration rule that can be applied to all populations. I then 

consider haploid graphs, for which the graph-drawing procedure is especially simple. After that I 

consider models featuring diploids, for which there are once again some general rules.  

 220



While the graph-drawing rules for each of the 11 basic sorts of systems considered in 

what follows are all in some ways different, one fashion in which they are all similar is how 

migration between substructures is modeled in each. It is possible for both gametes and 

organisms to travel from one substructure to another, so each graph may feature up to two 

migration events. Luckily, the rules for drawing a migration event are the same no matter what 

type of individual one is considering or how many substructures exist in the population, so in the 

graph-drawing rules that follow, I will simply mention that one must insert a migration event into 

the graph for populations with multiple substructures when it is appropriate to do so, where a 

migration event will consist in the drawing of an additional array of nodes that is attached to the 

last ones drawn by directed edges in the fashion I now specify. 

 A migration event will involve drawing a duplicate array of nodes, nodes that match 

those of the last array drawn in number and indices. The newly drawn nodes are attached by 

directed edges to the ones last drawn such that any new node sharing its first and third indices 

with a pre-migration node is made its child. The edges are then weighted with migration 

coefficients that are themselves indexed by two numbers, the first number being the value of the 

second index of the node at the foot of the edge and the second number being the value of the 

second index of the node at the head of the edge, e.g., m12 would weight the edge running from a 

node representing an individual in the first substructure to a node representing the same type of 

individual in the second substructure post migration. Note that it is harmless to follow this rule 

for a non-hierarchically structured population featuring no substructures, since doing so will 

result in weighting each type by a migration coefficient m11 which must take the value 1 since, 

for migration coefficients, .  11 =∑
i

im
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 We will see an example of a migration event in the next section. I now turn to consider 

each of the 11 fundamentally different kinds of systems picked out using the decision-tree earlier 

on. I begin with haploids.  

6.2.3.2 Haploid lifecycle graphs. It is especially simple to graph populations in which 

competitors do not form MICERs. There is only one sort of relative frequency term in haploid 

models, unlike the other models we will consider. The initial array of nodes in the graph should 

be equal to the number of substructures times the number of variant competitors, where 

Sbs is a variable picking out the number of substructures in our population, and A is a variable 

picking out the number of variant types of haploid individual. The nodes in the graph must be 

ascribed indexed relative frequency variables that contain information about type and 

substructure membership. Assign each 1/A of the nodes a distinct type index between 1 to A. 

Assign each node a sex index of 0. Assign 1/Sbs of the nodes a distinct substructure index 

between 1 to Sbs, such that no two nodes have identical indices. This means that each node has 

an index that is a permutation of the A types of competitor and each of the Sbs distinct 

substructures. 

,ASbs×

The next thing we need for the haploid lifecycle graph is a depiction of the migration 

across the substructures, and we show migration in accordance with the general migration rule 

above. I put that rule into practice here for illustration. To show migration, we must draw another 

array of nodes, a post-migration array of nodes, equal in number and indexing to the last array 

drawn. We then draw directed edges between the arrays, with the feet always at the initial nodes 

and the heads always at the post-migration nodes. In accordance with the migration rule above, 

draw an edge between a pre-migration node and post-migration one whenever the two share a 

type index and a sex index. Because all our haploids have the same sex index, 0, this requirement 
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reduces to the sharing of a type index. Lastly, again in accordance with the general migration 

rule above, weight these edges with coefficients reflecting migration rates, with parameters mxy, 

where x is the substructure index of the node at the foot of the edge and y is the substructure 

index of the node at its head. 

Haploids are unusual insofar as we need only one graph to generate a system of equations 

that can be generalized by substitution to yield a model of the population’s dynamics no matter 

what causal influences operate upon it. Accordingly, we can just treat the post-migration nodes 

as representing the haploids at the start of the next stage in the lifecycle. Here is an example of a 

lifecycle graph for a population of haploids of two variant types and three substructures. I use 

triangles for haploids because they do not look like brackets of any 

sort.

 

Figure 6.6 Haploid graph with three substructures 

The graph yields the following system of equations: 
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Equations 6.1 

These equations will get manipulated by substitution to reflect the causal influences acting on the 

haploids. 

6.2.3.3 Diploid lifecycle graphs. There are five fundamentally different recursive equations for 

populations in which diploid zygotes are formed: recursions on gametes, recursions on zygotes, 

sex-dependent versions of these, and recursions suitable for haplo-diploids. Each graphing 

strategy associated with each of these will be a two-graph affair. The first graph will show either 

how gametes form zygotes, in case we seek equations that are recursions on gamete frequencies, 

or how zygotes for mating pairs, in case we seek equations that are recursions on zygote 

frequencies. The second part of the graph will show how either how zygotes produce next 

generation gametes, or how mating pairs produce next generation zygotes. The graphs are kept 

separate so that they yield two sets of equations with distinct relative frequency terms for the 

distinct types of individuals featured in the graphs. 

6.2.3.3.1 General rules for diploid lifecycle graphs. Just as there was a general migration rule 

that could be deployed whenever migration between substructures occurred, no matter what sort 

of graph one was composing, there are general rules that can be applied to all diploid graphs, and 

indeed a handful more that can be applied to subsets of these. I rehearse these here. 
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6.2.3.3.1.1 Inverted graphs. In all the instructions that follow, the second graph drawn will be 

the inverse of the first. This means something specific: the second graph will feature the same 

arrays of nodes indexed in the same fashion, but such that the array of nodes featured as roots in 

the first graph form the leaves of the second graph, and vice versa. However, nodes are 

connected by edges differently in each graph, so we will not be able to simply reverse the 

direction of the edges of the first graph to generate its inversion. Still, we will never have to say 

how many nodes with what indices are necessary for the second graph; because the second graph 

is always the inversion of the first, we will only have to say how to connect the nodes in the 

second graph and we will have specified it in its entirety.  

6.2.3.3.1.2 Recombination. The last step in graphical modeling for systems featuring individuals 

differentiated by the alleles they bear at multiple loci involves weighting the last set of edges in 

the second graph with recombination rates. Here I state a general rules for weighting these edges 

so that later I will simply signal that edges must be weighted by recombination parameters. It is 

to be understood that the rule stated below is to be used to make such weightings. 

Recombination may occur as zygotes produce next generation gamete descendants and as 

mating pairs produce next-generation zygote descendants. The rules are slightly different in each 

case. While recombination is a fairly simple matter for two-locus, two-allele models, the rules I 

state for handling recombination are complicated because they are meant to be general and hence 

should work for systems involving individuals that are differentiated by any number of alleles at 

any number of loci.  

In the graph-drawing rules for multi-locus selection that follow, individuals are 

distinguished by the alleles they bear at N loci and hence they feature zygotic indices that contain 

N genotypic indices (recall that these are the round-bracketed entries in the type index that, 
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among zygotes and mating pairs in which recombination occurs, feature two allelic elements 

apiece, while featuring one allelic element among gametes). We will ascribe an index 1 to the 

recombination parameter that expresses the probability of a recombination event occurring 

between the first and second loci, index 2 to the probability of a recombination event occurring 

between the second and third loci, index 3 to the probability of a recombination event occurring 

between the third and fourth loci, and so on, up to N - 1. So, for instance, r2 is the probability of 

recombination between the second and third loci. 

For models that include more than two loci, we will deploy recombination parameters 

with compound indices to reflect the probability that recombination occurs between two loci 

separated by one or more loci. We will have need of these whenever the intermediate loci are 

ones at which the parent individual is homozygous. So, for instance, if an individual is 

homozygous at two loci between the first and the fourth loci at which it is a heterozygote, it will 

not matter whether a single bout of recombination occurs between the first and the second, the 

second and the third, or the third and the fourth locus. I express the probability of recombination 

between two distal loci i and (i + x) using the parameter, ri—i+x. 

The recombination parameter, ri—i+x, reflects the probability that there is not a single, but 

rather an odd number of recombination events between locus i and locus (i + x). Indeed, it is 

generally true that r parameters function in this way, such that even r3 represents the probability 

that there is an odd number, rather than just a single, recombination event between the third and 

fourth loci. This means it is not generally true that, say, r2—4, is equal to r2r3r4. Instead, r2—4 will 

be equal to r2r3r4 + (1 – r2) (1 – r3)r4 + (1 – r3)(1 – r4)r3 + (1 – r4)(1 – r3)r2. Presumably, facts 

about recombination rates between any two loci, no matter how distal, will be assessed 
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statistically such that one need not have a general mathematical function for relating 

recombination parameters. 

I state two sets of rules for weighting edges by recombination parameters. I first consider 

recombination parameters on edges connecting zygotes to next-generation gametes, and then 

consider recombination parameters on edges connecting mating pairs to next-generation zygotes. 

6.2.3.3.1.2.1 Edge-weighting rule for recombination among zygotes. For zygote parent nodes 

with non-matching allelic elements in both the ith and the (i+1)th genotypic indices (the parent is 

a heterozygote at adjacent loci), weight an edge with a parameter to reflect whether 

recombination has occurred. Weight the edge with recombination parameter ri provided the 

(lone) allelic elements of the ith and the (i+1)th genotypic indices of the gamete node’s type index 

do not match both the first, or both the second, allelic elements of the ith and the (i+1)th genotypic 

places of the node at the foot of the edge; otherwise, weight the edge by a the parameter (1 – ri).  

For zygote parents with non-matching allelic elements at genotypic index i, but not at 

genotypic indices (i +1) through (i + x) where x is a natural number, such that the parent has non-

matching allelic indices at the ith and the (i + x + 1)th genotypic indices (the zygote parent is 

homozygous at one or more loci between two loci at which it is heterozygous), weight the edge 

with a parameter reflecting whether recombination has occurred between the distal loci. Weight 

the edge by parameter ri—i+x provided the (lone) allelic elements of the ith and the (i + x + 1)th 

genotypic indices of the gamete node at the head of the edge do not match both the first, or both 

the second, allelic elements of the ith and the (i + x + 1)th genotypic indices of the node at the foot 

of the edge; otherwise, weight the edge by a the parameter (1 - ri—i+x).  

6.2.3.3.1.2.2 Edge-weighting rule for recombination among mating pairs. For mating pair 

parent nodes with non-matching allelic elements in both the ith and the (i+1)th genotypic indices 

 227



of their first zygotic index, weight an edge with a parameter to reflect whether recombination has 

occurred. Weight the edge with recombination parameter ri provided the first allelic elements of 

the ith and the (i + 1)th genotypic indices of the descendant zygote node’s type index do not match 

both the first, or both the second, allelic elements of the ith and the (i + 1)th genotypic indices of 

the first zygotic index of the node at the foot of the edge; otherwise, weight the edge by the 

parameter (1 – ri). Similarly, for mating pair parent nodes with non-matching allelic elements in 

both the ith and the (i + 1)th genotypic indices of their second zygotic index, weight an edge with 

a parameter to reflect whether recombination has occurred. Weight the edge with recombination 

parameter ri provided the second allelic elements of the ith and the (i + 1)th genotypic indices of 

the descendant zygote node’s type index do not match both the first, or both the second, allelic 

elements of the ith and the (i + 1)th genotypic indices of the second zygotic index of the node at 

the foot of the edge; otherwise, weight the edge by a the parameter (1 – ri). 

For mating pair parent nodes with non-matching allelic elements in their first zygotic 

index at genotypic index i, but not at genotypic indices (i + 1) through (i + x) where x ≥ 1, such 

that the parent has non-matching allelic indices at the ith and the (i + x + 1)th genotypic indices of 

its first zygotic index, weight the edge with a parameter reflecting whether recombination has 

occurred between the distal loci. Weight the edge by parameter ri—i+x provided the first allelic 

elements of the ith and the (i + x + 1)th genotypic indices of the zygote node at the head of the 

edge do not match both the first, or both the second, allelic elements of the ith and the (i + x + 1)th 

genotypic indices of the first zygotic index of the node at the foot of the edge; otherwise, weight 

the edge by the parameter (1 - ri—i+x). Similarly, for mating pair parent nodes with non-matching 

allelic elements in their second zygotic index at genotypic index i, but not at genotypic index (i 

+1) through (i + x) where x ≥ 1, such that the parent has non-matching allelic indices at the ith 
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and the (i + x + 1)th genotypic indices of their second zygotic index, weight the edge with a 

parameter reflecting whether recombination has occurred between the distal loci. Weight the 

edge by parameter ri—i+x provided the second allelic elements of the ith and the (i + x + 1)th 

genotypic indices of the zygote node at the head of the edge do not match both the first, or both 

the second, allelic elements of the ith and the (i + x + 1)th genotypic indices of the first zygotic 

index of the node at the foot of the edge; otherwise, weight the edge by a the parameter (1 - ri—

i+x). 

6.2.3.3.1.3 Meiosis and meiotic drive. We must also weight the last set of edges in the second 

graph of diploid organisms using parameters reflecting meiosis. We must equally weight them 

with parameters expressing meiotic drive, when it occurs. The strategy pursued here is to weight 

every edge emerging from heterozygotic parents with a parameter reflecting unbiased meiosis, 

and then to further weight edges emerging from heterozygotes bearing driving alleles to reflect 

meiotic drive. The rules are simpler when stated in this fashion, but the strategy requires that the 

parameters that quantify the extent to which driving alleles and their partners at the same locus 

are favored or disfavored in the process of fertilization will vary from 0 to 2, rather than 0 to 1 as 

is standard. The drive parameters used here take on a greater range of quantities because they are 

used to weight edges already weighted by a coefficient of ½ that represents unbiased meiosis; 

standard meiotic drive functions replace, rather than weight, parameters expressing unbiased 

meiosis. The approach to modeling meiotic drive and the approach pursued here are 

mathematically equivalent. 
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Edges that are candidates for being weighted to reflect meiosis all emerge from the same 

array. Assign an edge a parameter reflecting meiosis provided it emerges from a node in the 

array bearing any genotypic index with non-matching allelic elements. Weight the edge by a 

value of 1/2c, where c is the number of genotypic indices with non-matching allelic elements in 

the type index of the node at the head of the edge. Thus, zygotes that are heterozygotic at one 

locus will produce gametes bearing one of their two variant alleles, double heterozygotes will 

produce four types of gametes, and so on.  

To quantify meiotic drive, weight the edges emerging from a zygote bearing a driving 

allele with functions, k’s. The k parameters should feature two indices in sequence separated by a 

comma, the second reflecting which of the N loci the allele is driving. The first index should 

consist in two numbers, the first number is the index of the allele passed on to the descendant, 

and the second is the other allelic element at the same locus in the parent. So, for instance, k12, 2, 

would represent a drive parameter governing how effectively the A1 allele competes against the 

A2 allele at the locus 2, whenever the A1 allele is passed on. 

Meiotic drive parameters are symmetrical, so that, for any x and y, kxy + kyx = 2. The more 

the meiotic drive parameters deviate from 1, the more the driving allele biases zygote formation. 

Driving alleles will usually bias zygote formation to the same extent no matter what the allele 

with which they are paired, so that kxy will equal kxz for all y and z, but the indexing system we 

have used does not force us to assume this.  

6.2.3.3.1.4 Discriminate union of individuals. Another set of general rules for diploid graphs 

can be stated upfront, one for weighting edges by parameters that express the extent to which the 

union of individuals into higher order individuals is discriminate. The general term, 

“discriminate union of individuals,” covers assortative mating, selfing, gametic self-
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incompatibility, and any other form of discriminate pairing among individuals in the system. 

Gametes may form zygotes discriminately, such that they are more likely to pair with other 

gametes of one type rather than another. Similarly, zygotes may form mating pairs with other 

zygotes discriminately. Both these sorts of facts are captured by weighting the edges of lifecycle 

graphs that represent the formation of such unions. There is a general rule for making such 

weightings, and once again I will state it here and then later simply give the instructions to 

weight the edges by parameters reflecting the discriminate union of individuals when 

appropriate.  

Edges must be weighted by parameters expressing the extent to which individuals pair 

discriminately whenever individuals engage in MICERs discriminately. Edges emerging from 

nodes picking out individuals that pair discriminately must each be weighted by parameters, axy, 

where x is the type index of individual at the foot of the edge, and y is the type index of the other 

parent of the node at the head of the edge (the other member of the pair), and a expresses the 

extent to which one type of pairing is preferred as compared to the others. Discriminate union 

parameters are subject to the constraint that 1)( =×∑
y

yxy pa , where py is the relative frequency 

of the individual with which the pairings are formed. 

In a footnote, I earlier claimed that sexual selection was not an aspect of selection in the 

same sense that gametic, zygotic, and fecundity selection were aspects of selection. Here is my 

reason: capturing “sexual selection” is a matter of deploying parameters that represent the extent 

to which zygotes pair with other zygotes in a discriminate fashion. We will later see that the 

other three of the traditional four aspects of selection represent the impact of ecological causal 

influences over the progress of each type of individual to the next stage in the lifecycle. These 

are very different sorts of things handled very differently.  
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6.2.3.3.2 Sex-dependent selection graphs. Having laid down a set of rules to which we can 

appeal when composing graphs for populations featuring diploids, we now come to consider a 

subset of these, the four sorts of graphs that feature individuals differentiated by sex and sex of 

origin. There is a general rule for drawing graphs under sex-dependent selection and another for 

sex-independent selection. For sex-dependent graphs, it is possible to state a fairly simple 

general rule for connecting arrays of nodes representing sex-of-origin differentiated gametes to 

an array of nodes representing sex-differentiated zygotes. A very similar rule works for 

connecting nodes that represent sex-differentiated zygotes to ones that represent mating pairs that 

are not differentiated by sex (since mating pairs have no sexes). So provided we have indexed 

the nodes in the initial array of nodes in the first graph, we can connect them to the nodes in the 

second array we draw following a simple rule. What’s more, we can index the nodes in the 

second array following a simple rule too, by compounding the indices of their parents. I call the 

rule for performing these actions the sex-dependent connect-and-compound rule.  

6.2.3.3.2.1 Sex-dependent connect-and-compound rule. Join each initial node with a sex index 

of 1 to every other node in the array of initial nodes which it shares its substructure index, but not 

its sex index, by a two-edge path through a secondary node that is so far unattached to any other 

node. Both edges will point from the initial nodes to the secondary nodes, so following a path 

will involve “following” an edge from head to foot. If the secondary nodes that are now leaves in 

the graph are mating pairs, then the edge-drawing procedure is finished. If they are zygotes, 

assign each secondary node so far connected to the initial nodes a sex index of one (these are the 

male zygotes). Then repeat the path-drawing procedure just deployed for the remaining 

secondary nodes, attaching each initial node with sex index one to another initial node with sex 

index of two that shares its substructure index by a two-edge path through a unique so far 
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unattached secondary node. This should exhaust the secondary nodes such that each has exactly 

two parents. Assign the remaining secondary nodes without sex indices a sex index of two (these 

are the female zygotes). Assign each secondary node the same substructure index of its parents. 

Now we assign each secondary node a type index that is the compound of the type 

indices of its parents. Zygote type indices are compounded to form mating pair indices quite 

simply. One simply places the type indices of the parent nodes side by side between a set of 

braces, with the type index of the node with sex index 1 first (the male) and the type index of the 

parent node with sex index 2 second (the female). The resulting bracketed term is the mating pair 

index for the node. So, for instance, if one parent has type index, [(12)(22)], and the other has 

type index, [(22)(33)], the mating pair they form will have type index {[(12)(22)][(22)(33)]}. 

Mating pairs always have sex index zero, and children always inherit the substructure index of 

their parents. 

Compounding gamete indices to form zygote indices is a little more complicated. To 

generate the type index for a zygote node from the gamete indices of its two parents, pair the 

allelic elements of each of the k genotypic indices of the gamete nodes with the allelic element of 

the gamete node with sex index coming one first, to generate an identical number of two-place 

genotypic indices. String the new genotypic indices together, maintaining the order such that the 

first allelic element of the kth genotypic index just generated matches the sole allelic element of 

the kth genotypic index of the parent gamete node with sex index one, and the second allelic 

element of the kth genotypic index just generated matches the sole allelic element of the kth 

genotypic index of the parent gamete node with sex index two. Place the strings of genotypic 

indices within square brackets to yield the type index for the zygote. Once again, the zygote child 

must share the substructure index of its parents. So, for instance, two gamete nodes whose 
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indices are these: <(1)(2)>, 1, 2 and <(2)(3)>, 2, 2 will produce two sorts of children: [(12)(23)], 

1, 2; and [(12)(23)], 2, 2. 

6.2.3.3.2.2 Graphing instructions for sex-dependent recursions on gamete frequencies. 

Draw nodes to represent the gametes picked out by the alleles they bear at 

multiple loci, where Ak is the number of alleles at locus k of N total loci (k = 1 … N), Sbs is the 

number of substructures, and the coefficient of two represents the two sexes. We now seek to 

assign each node a unique index. To do so, first assign each 1/Sbs of the gamete nodes a 

substructure index from 1 to Sbs. Assign half of the nodes with each substructure index sex index 

1 and the other half sex index 2. Next, assign nodes indices such that each gamete node features 

N genotypic places with room for a single allelic element. There are Ak possibilities for the allelic 

elements at each kth genotypic place. Assign each 1/A1 of the nodes sharing the same sex and 

substructure indices each value from 1 to A1 to its first genotypic place. Assign 1/A2 of the nodes 

each value from 1 to A2 to its second genotypic place, and so forth. Generally, assign 1/Ax of the 

nodes sharing sex and substructure indices each value from 1 to Ax to its xth genotypic place for x 

= 1 to N, such that no two nodes sharing a substructure index and a sex also share a type index, 

or, more succinctly, such that no two nodes share an index. Add a migration event here for 

populations with multiple substructures and mobile gametes. 

∏
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expressing the differential rates at which zygotes are formed according to the discriminate union 

of individuals rule. A migration event is now appropriate for populations with mobile zygotes 

and multiple substructures. 

Once again, we need only consider how to connect the nodes in the second graph because 

it is the inversion of the first. A gamete node should be connected to zygote node provided that 

the following conditions hold: 

• the two nodes share a substructure index and a sex index, and 

• the allelic elements in each of the k genotypic indices of the type index of the 

secondary nodes matches at least one of the allelic elements in each of the 

corresponding k genotypic indices of the initial nodes.  

The edges must now be weighted by coefficients representing meiosis, meiotic drive, and 

recombination rates, using the appropriate rules.  

Here is an example of a simple single-locus lifecycle graph featuring two alleles and no 

substructures for sex-dependent selection. Here is the first graph: 

 

Figure 6.7 Single-locus sex-dependent selection graph one 

It yields the following set of equations: 
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Equations 6.2 

Because the graph shows the formation of zygotes from gametes, descendant variables are 

represented as the mathematical products of their ancestors. Note also how I use the shape of the 

node to signal what sorts of individual is being picked out; the diamond-shaped nodes are 

gametes, and the square ones zygotes. Here is the second graph: 

 

Figure 6.8 Single-locus sex-dependent selection graph two 

Note that the edges in the second graph are not the inverses of the edges in the first graph, 

though the arrays of nodes are inverted duplicates of the ones in the first graph. Here are the 

equations we can infer from the second graph: 
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Equations 6.3 

Because the second graph shows the breakdown of zygotes into gametes, the descendant 

variables are the sums of their ancestors. 

 I propose to jump ahead a little here and show how we can get the textbook model of sex-

dependent selection if we 1) weight the zygote frequencies by selection coefficients, and 2) 

collapse the systems of equations. Officially, we have not yet learned the rules for doing this, but 

it might be interesting to see how to finish things off in this particular case. This rest section can 

be skipped by the somewhat incurious (presumably the truly incurious are not even reading this). 

 Weighting the zygote relative frequency parameters in the second set of equations by 

relative fitness and average fitness parameters, where w  is the average zygote fitness, we get 

this result: 
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Equations 6.4 
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Since the only kind of selection we will consider is differential viability of zygotes, we can now 

collapse the equations by using the first set of equations to fix functions for the corresponding 

right-hand side variables of the second set. This yields a set of equations with variables that refer 

only to gametes and hence the equations are recursions on gamete frequencies: 
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Equations 6.5 

If we set the relative fitness values of the heterozygotes equal, as is appropriate for populations 

in which organisms do not engage in sex-dependent genomic imprinting at the locus in equation, 

then the first and fourth equations are the standard equations for the change in frequency of the 

A1 allele under biallelic sex-dependent selection (Ewens 2004, 46). The second and third 

equations are redundant, since and , that is, the 

relative frequency of the A2 allele in males and females is just one minus the relative frequency 

of the A1 allele in each sex-context because there are only two alleles in the population.  

'
1,1,)1(

'
1,1,)2( 1 ><>< −= pp '
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6.2.3.3.2.3 Graphing instructions for sex-dependent recursions on zygote frequencies. The 

number of zygote nodes in the first graph is equal to . For cases without 

genomic imprinting, the formula is this: . 
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Assign 1/Sbs of the nodes a unique substructure index ranging from 1 to Sbs. Assign half of the 

nodes in each substructure a sex index of 1 and the other half a sex index of 2. The type index of 

each node will consist in a square-bracketed zygotic index containing N genotypic places 

featuring for two allelic places apiece. To generate the type indices, permute (if no GI, combine) 

the alleles at each of the Ak loci to generate variant genotypic indices at each locus. Permute 

these variant genotypic indices with each other to generate variant zygotic indices. Assign the 

various zygotic indices to the zygote nodes such that no two nodes have the same index. A 

migration event is appropriate here for populations with multiple substructures and mobile 

zygotes. 

Draw nodes to represent the mating pairs. For cases without genomic 

imprinting, the formula is this: . To attach these nodes to the zygote nodes, 

follow the connect-and-compound rule. The edges just generated must be weighted by 

assortative mating parameters for whichever zygotes form mating pairs discriminately by using 

the discriminate union of individuals rule.  
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In the second graph, a zygote node must be made the descendant of a mating pair node if 

the zygote node shares its substructure index with the mating pair node and the following two 

conditions hold:  

• one of the two allelic elements of each of the k genotypic indices of the first zygotic 

index of the mating pair node matches the first (if no GI: either of the) allelic element 

of each of the corresponding k genotypic indices of the type index of the secondary 

node, and 
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• one of the two allelic elements of each of the k genotypic indices of the second zygotic 

index of the initial node matches the second (if no GI: either of the) allelic element of 

each of the corresponding kth genotypic indices of the type index of the secondary 

node. 

These edges must be weighted to reflect recombination, meiosis, and parameters reflecting 

meiotic drive for any driving alleles. 

Here is an example of the two lifecycle graphs appropriate for a single-locus two-allele 

recursion on zygote frequencies in which females, but not males, mate assortatively, mating pairs 

produce offspring of different sexes in equal proportions, and there is neither genomic imprinting 

nor meiotic drive: 
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Figure 6.9 Graph one of population with female assortative mating 
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Figure 6.10 Graph two of population with female assortative mating 
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The graphs yield these two systems of equations: 
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Equations 6.6 

 and 
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As an aside, I note that if we let the assortative mating parameters take values according to the 

following functions: 
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Equations 6.8 

where Cxy is a correction factor to ensure that the assortative mating parameters sum to one when 

weighted by mate frequencies, we get a model of the dynamics of the human MHC complex 

genes if we make no further modifications and collapse the equations immediately (Hedrick 

2005, 196). Setting the assortative mating parameters in the above way reflects a disposition on 

the part of zygotes to mate with others who share especially few alleles with them at the locus in 

question. Human females have been found in some studies to be especially attracted to 

individuals who share few MHC alleles with them based on their odor, as diagnosed through t-

shirt tests; just the opposite occurs with women taking birth control pills (Wedekind et al. 1995).  

6.2.3.3.3 Sex-independent selection graphs. We now consider the ones in which sex 

differences are not officially registered. For all these models, the sex index of every node is set to 

zero. There is a connect-and-compound rule for models without sex differentiation, too. 

6.2.3.3.3.1 Sex-independent connect-and-compound rule. The rule for connecting the nodes in 

the first array to the nodes in the second array is simple: Join each initial node to every other 
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node in the array of initial nodes which it shares its substructure index, including itself, by a two-

edge path through a secondary node that is so far unattached to any other node.  

If the children are nodes representing mating pairs, assign them type indices in braces 

consisting of the two type indices of their parents strung together in any order. If the children are 

nodes representing zygotes, assign the zygote node a square-bracketed type index featuring as 

many genotypic indices, N, as are used to differentiate the gametes. Assign two allelic elements 

to each k of the N genotypic indices of the type index of the zygote, the first matching the allelic 

element of the kth genotypic index of one parent, and the second matching the allelic element of 

the kth genotypic index of the other parent, such that the value of the first allelic element is also 

less than or equal to the value of the second allelic element. (That last constraint is arbitrary, but 

some constraint must be put in place to avoid confusion, and traditionally heterozygotes are 

picked out using indices such as p12 rather than p21.) Once again, the children must share the 

substructure index of their parents and have sex index zero. 

6.2.3.3.3.2 Graphing instructions for sex-independent recursions on gamete frequencies. 

The number of gamete nodes can be expressed by the following formula: , where Ak 

is the number of alleles at locus k, and Sbs is the number of substructures. Assign each 1/Sbs of 

the initial nodes a substructure index from 1 to Sbs. The type indices will have to feature N 

genotypic places with Ak variant alleles at each locus k. Assign 1/Ax of the nodes each value from 

1 to Ax to its xth genotypic place for x = 1 to N. Do this such that no two nodes sharing a 

substructure index also share a type index, or, more succinctly, such that no two nodes share an 

index. 

∏
=

×
N

k
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The number of zygote nodes is equal to . Join the gamete nodes to 

the zygote nodes using the connect-and-compound rule. For cases in which gametes form 

zygotes in a discriminate fashion, the edges just drawn must be weighted by parameters 

expressing the differential rates at which pair zygotes are formed using the discriminate union of 

individuals rule. A migration event is now appropriate for populations with mobile zygotes and 

multiple substructures. 
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 Connect a zygote node to a gamete node provided that 

• the two nodes share a substructure index, and 

• the allelic elements in each of the 1 to N genotypic indices of the type index of the 

secondary node match at least one of the allelic elements in each of the corresponding 

1 to N genotypic indices of the initial nodes.  

These edges must now be weighted to reflect recombination, meiosis, and, if necessary, meiotic 

drive, all in accordance with the general rules for doing so.  

Here a simple example of a two-allele model featuring meiotic drive: 
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Figure 6.11 Graph of population with meiotic drive 

The equations we get from the first lifecycles graph are these: 
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Equations 6.9 

The equations we get from the second lifecycle graph are these: 
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6.2.3.3.2.3 Graphing instructions for sex-independent recursions on zygote frequencies. The 

number of zygote nodes in the lifecycle graph is equal to , where Sbs is 

substructure number, and Ak is the number of alleles at each of the k loci of interest. For 

populations without GI, the formulation is . As usual, these nodes must be 

indexed such that each has a unique index. First assign 1/Sbs of the nodes a unique substructure 

index ranging from 1 to Sbs. Then assign half of the nodes in each substructure a sex index of 1 
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and the other half a sex index of 2. Lastly, each node must be assigned a type index. Each type 

index will consist of a square-bracketed zygotic index containing N genotypic indices featuring 

two allelic elements apiece. The idea is once again to assign to each node one every possible 

index. To generate these, permute (if no GI: combine) the alleles at each of the Ak loci to 

generate variant genotypic indices. Permute these with each other to generate variant zygotic 

indices. Then assign the zygotic indices to the initial nodes such that no two nodes have the same 

index.  

The secondary array of nodes is used to represent mating pairs. Draw nodes to 

represent the mating pairs. For populations without genomic imprinting, the formula is 

. To attach the mating pair nodes to the zygote nodes and index the former, 

use the connect-and-compound rule.  
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A zygote node is made the child of a mating pair node if the zygote node shares its 

second index with the mating pair node and 

• one of the two allelic elements of each of the (1 to N) genotypic indices of either 

zygotic index of the mating pair node matches either all the first or all the second 

allelic elements of each of the corresponding (1 to N) genotypic indices of the zygotic 

index of the zygote node, and 

• at least one of the two allelic elements of each of the (1 to N) genotypic indices of the 

other zygotic index of the mating pair node matches either all the first or all the second 

allelic elements of each of the corresponding (1 to N) genotypic indices of the zygotic 
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index of the zygote node, whichever allelic elements, the first or the second, were not 

matched to fulfill condition (i). 

These edges must be weighted by coefficients that reflect recombination, meiosis, and, when 

appropriate, meiotic drive using the general rules for doing so. 

6.2.3.4 Haplo-diploid lifecycle graphs. Haplo-diploid models are suitable for hymenoptera, but 

they also work for so-called “X-linked genes,” alleles that are borne by non-hymenoptera on the 

X-chromosome only, such that females have two copies and males one. Haplo-diploid models 

are recursions on zygote frequency variables. 

Draw   zygote nodes. Assign  nodes square-

bracketed type indices containing a N round-bracketed one-place genotypic indices and a sex 

index of 1. Assign 1/Sbs of these each substructure index from 1 to Sbs such that no two 

individual are assigned the same index. There are Ak possibilities for each of the k genotypic 

indices for these nodes. Assign 1/Ax of the nodes each value from 1 to Ax to its xth genotypic 

place for x = 1 to N, such that no two nodes share an index. Assign of the 

initial nodes square-bracketed type indices containing a N round-bracketed two-place genotypic 

places and sex index 2. Assign 1/Sbs of these each substructure index from 1 to Sbs such that no 

two individual are assigned the same index. The type index of each node will consist in a square-

bracketed zygotic index containing N genotypic indices featuring for two allelic placesapiece. To 

generate the type indices for the nodes with sex index 2, combine the alleles at each of the Ak loci 

to generate variant genotypic indices.  Permute these variant genotypic indices with each other to 
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generate variant zygotic indices. Assign the zygotic indices to the zygote nodes such that no two 

nodes have the same index.   

Next, draw  nodes to represent mating pairs. Assign each a sex 

index of zero. Join each the mating pair nodes to the zygotes nodes using the connect-and-

compound rule for sex-dependent selection. The edges just generated must be weighted by 

assortative mating parameters for whichever zygotes form mating pairs discriminately using the 

discriminate union of individuals rule.  
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Once again, the nodes of the second graph are duplicates of the first in the standard 

fashion. Draw an edge between a mating pair node and a zygote node with a sex index 1 if the 

allelic element of each k of the genotypic indices of the zygote node matches either allelic 

element of each of the corresponding kth genotypic indices of the mating pair node. Draw an edge 

between a mating pair node and a zygote node with sex index 2 provided the following 

conditions hold 

• each of the first allelic elements of each of k genotypic indices of the zygote node 

matches each of the allelic element of each of the k genotypic indices of the first 

zygotic index of the mating pair node, and  

• each of the second allelic elements at each of the k genotypic indices of the zygote 

node match either of the allelic elements of the corresponding k genotypic indices of 

the second zygotic index of the mating pair node. 

These edges must be weighted by coefficients that reflect recombination, meiosis and, when 

appropriate, meiotic drive, according to the usual rules. 
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The haplo-diploid models just considered are the last sorts of models I will consider in 

the graph-drawing phase of the algorithm. It is certainly the case that the above graph-drawing 

instructions are not comprehensive. There are systems, at least bacteria and polyploids, whose 

lifecycles cannot be graphed according to the above rules. My hope is that it will be possible, at 

least in principle, to generate appropriate graph-drawing instructions that will play the same role 

as do the above ones for systems for which the above graph-drawing rules are inadequate.  

6.3 SUBSTITUTION RULES 

We now come to substitution portion of the algorithm. The idea in this section is to generalize 

the equations that can be derived from the lifecycle graphs by weighting the relative frequency 

terms that appear in the equations by coefficients and functions that quantify the causal influence 

of ecological, sexual, and individual causal influences. Here we will also deal with subgroup 

formation. 

By putting in values for variables, we can always go from a more determinable model to 

a version of it, that is, from a model that applies to a wider range of systems to a model that 

applies to a more narrow range of systems. But we can equally go the other way to generate a 

more determinable model from a more determinate one by weighting variables in the more 

determinate equation with coefficients. Indeed, we can generalize by weighting with functions as 

well as coefficients. The equations yielded by the algorithm so far are all determinate versions of 

equations that are suitable for populations subject to ecological, sexual, and individual causal 

influences.  We generate systems of equations suitable for such populations by introducing 

coefficients and functions into the equations, ones that generalize the equations by weighting the 

relative frequency terms in the equations. 

 251



The substitution rules we deploy target specific individuals at specific lifecycle stages 

and hence are deployed over RHS terms of one system of equations at a time. Applying the 

substitution rules to only one system of equations at a time allows us to recognize that causal 

influences may function differently at different lifecycle stages. Just because the zygotes in a 

population are subject to a certain sort of causal influence does not mean that the gametes that 

formed them were subject to the same causal influence too. (If different individuals in the 

lifecycle are indeed subject to the same causal influences, then the substitution rules must be 

deployed repeatedly, once for each lifecycle stage.) Indeed, much of the point of drawing two 

separate graphs yielding two separate systems of equations was to make it possible to manipulate 

the equations representing what happens at one lifecycle stage without altering the equations that 

represent what happens at a previous or a subsequent lifecycle stage. 

Here is an example of a system of four equations. The second two equations result from 

generalizing the first two through the introduction of fitness parameters that weight the relative 

frequencies of two different types of haploid individual: 
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Equations 6.10 
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The remainder of this section will be devoted to stating rules for making the above sorts of 

generalizations. 

6.3.1 Some conventions for stating substitution rules 

Here are some conventions I use to state substitution rules: 

• the arrow symbol, “→,” will be used to separate the term being replaced on the left and 

the replacing term on the right 

• Capital letters represent variables and lower-case letters represent variables at values. 

• I use a vertical bar, as in the expression, ixXX = , to indicate a variable at a value. The 

vertical bars reads “such that.” The whole expression reads “variable X such that 

variable X takes value x.”  

• (x) will be to mean “for all xXX = ,” (y) will be to mean “for all yYY = ,” (z) will be 

to mean “for all zZZ = .”  

For example, consider the substitution rule: 

zZZyYYxXXzZZyYYxXXzZZyYYxXX pwpzyx ========= → ,,,,,,))()((
The rule instructs one to replace each relative frequency term in a system of equations that takes 

definite values for its type, sex, and substructure indices with a product consisting of the same 

term with the same index values and another variable, a w variable traditionally used for relative 

fitness, bearing an index that matches that of the relative frequency term with which it is paired. 

The above rule could be used to effect the transformation of equations (1) and (2) into equations 

(3) and (4) above. 

 The annoying use of the vertical bar formalism, along with the “such that” talk, results 

from the fact that I will need to state two different sorts of rules that I cannot distinguish without 
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the vertical bar formalism. Indeed, I need to state three sorts of rules that need to be kept distinct. 

The first sort of rule involves making substitutions on terms that take a specific value for a 

specific variable. The second sort of rule involves making substitutions on terms that take some 

value for a specific variable, but can take any value. The last sort of rule involves making 

substitution on terms by weighting them with expressions involving variables that do not take 

specific values. For an example of the first sort of thing, consider these equations, a pair of 

equations appropriate for a haploid population separated into two (hard) substructures: 

2,0,22,0,11,0,21,0,1

1,0,1'
1,0,1 pppp

p
p

+++
=       

2,0,22,0,11,0,21,0,1

2,0,1'
2,0,1 pppp

p
p

+++
=       

2,0,22,0,11,0,21,0,1

1,0,2'
1,0,2 pppp

p
p

+++
=        

2,0,22,0,11,0,21,0,1

2,0,2'
2,0,2 pppp

p
p

+++
=        

Equations 6.11 

It is possible that the ecological causes operating in one substructure are different from the ones 

operating in the other substructure. If we want to introduce ecological causal influences proper 

only to the first substructure we need this rule: 

1,,1,,1,,))(( ========= → ZZyYYxXXZZyYYxXXZZyYYxXX pwpyx  

Note that the Z index is fixed at a particular value such that the rule commands weighting the 

relative frequency terms by fitness values only in the first substructure. Making the prescribed 

substitutions yields these equations: 
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2,0,22,0,11,0,21,0,21,0,11,0,1

1,0,11,0,1'
1,0,1 pppwpw

pw
p

+++
=       (7) 

2,0,22,0,11,0,21,0,21,0,11,0,1

2,0,1'
2,0,1 pppwpw

p
p

+++
=       (8) 

2,0,22,0,11,0,21,0,21,0,11,0,1

1,0,21,0,2'
1,0,2 pppwpw

pw
p

+++
=       (9) 

2,0,22,0,11,0,21,0,21,0,11,0,1

2,0,2'
2,0,2 pppwpw

p
p

+++
=       (10) 

Equations 6.12 

Note that the terms picking out type frequencies in the substructure two are not transformed. The 

next two sets of rules, the ones for introducing subgroups and for introducing average fitness 

parameters into a system of equations, involve the use of variables that are not set at particular 

values.  

6.3.2 Subgroup formation rules 

The next substitution rules that must be deployed before any of the others can be deployed are 

ones that represent subgroup formation. Recall from earlier that subgroups are distinct from 

substructures insofar as substructures are permanent features of the causal landscape. Except for 

migrants, individuals in a substructure produce descendants in the same substructure; most 

importantly, they form MICERS only with fellow substructure members. In contrast, subgroups 

are temporary conglomerations of individuals that form and dissolve within a single lifecycle 

stage. 

Subgroup formation is only interesting insofar as members of different subgroups are 

exposed to different causal influences, but I recognize the presence of subgroup formation 

among cotemporaneous individuals before considering how things go differently in each 
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subgroup. The reason for doing this will be discussed after the rule is stated. But the policy is to 

form subgroups first and then consider later what goes on differently in each, when substitutions 

are made for sexual, ecological, and individual causal influences. 

Subgroups are always formed from members of the same substructures. We recognize 

subgroups by making substitutions on the relative frequency terms in a system of equations. The 

substitution rule for recognizing the existence of subgroups among individuals at a lifecycle 

stage within a specific substructure is this one (I’ll explain the formalism in a moment). 

For subgroups formed in some substructure Z = z, 

∑ ========= →
S

SzZZyYYxXXSzZZyYYxXXzZZyYYxXX pcpyx ,,,,,,,,))((  

For all other individuals,  

SzZZyYYxXXzZZyYYxXX ppzyx ,,,,,))()(( ====== →  

The second rule simply adds a subgroup index for all individuals that are not found in subgroups. 

This index is a dummy index; it allows simpler statements of other substitution rules later. The 

first rule, one for substructures in which subgroups are formed, divides individuals within a 

specific substructure at a single lifecycle stage into indefinitely many subgroups, each 

distinguished by taking on a different value for the new index, S, which represents in which 

subgroup the individuals are found. The relative frequency of each type is weighted with a sum 

of c parameters that are also indexed by type, sex, substructure, and subgroup. These are used to 

pick out the proportion of entities that enter each subgroup. Because they pick out relative 

frequencies, the c parameters associated with one relative frequency term must together sum to 1. 
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The c parameters need not be fixed parameters; they may be set by functions, most 

plausibly, functions of the relative frequency of types in the model. For instance, Godfrey-Smith 

and Kerr consider a case in which the c parameters are fixed by a binomial sampling function 

(Godfrey Smith and Kerr 2002, 484), which amounts to imagining that individuals in the model 

form subgroups with each other indiscriminately.  

Subgroups are nested within substructures, so the rule is deployed over the members of 

some particular substructure. In contrast, the rule makes the substitution mandatory for each type 

of individual of each sex. Whenever a substitution recognizing subgroups is performed, the Z 

variable must be assigned a value corresponding to the substructure in which the subgroups are 

found. If subgroups are found in more than one substructure, the substitution rule must be 

deployed repeatedly for each substructure.  

 So far, we have not said how selection is going differently in each subgroup. We will do 

so later when subgroups will be treated as contexts against which to measure the pervasiveness 

and discrimination of causal influences. This order of operations may strike the reader as odd. 

Subgroups have been introduced upfront, before consideration of how causal influences operate 

within them in specific ways that make the subgroups different from each other.  

This order was undertaken because the existence of the barriers to causal influence 

provides grounds for modeling the causal influence of individuals as restricted to individuals in 

the same subgroup. That subgroups form barriers to causal interaction of exactly the same 

number and exactly the same size from generation to generation in a recursive model has got to 

be recognized as a structural feature of the population being modeled. Subgroups are not formed 

out of individuals that happen to causally interact in each generation, because if we formed them 

in this way, their number and size could be expected to fluctuate from generation to generation. 
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Rather, individual causal influences go the way they do in each generation because of how the 

population is structured in the same way in each generation. Maynard Smith (1964) famously 

imagined haystacks as producing subgroups in which mice could interact; ants provide subgroup 

contexts for the parasite Dicrocoelium dendriticum, notorious for producing brainworms (Sober 

and Wilson 1998); live rabbits form subgroups in the case of the mixoma virus. In each of these 

cases, there is some persistent fact about the environment faced by individuals in the system that 

accounts for its subgroup formation, hence it makes sense that it should be possible to recognize 

subgroup formation without first understanding how selection goes differently in each subgroup. 

Lastly, I note that while the subgroup formation rule can be stated using a Riemannian 

sum, that sum will have to be written out explicitly, without the Riemannian sum operator for 

later substitution rules to be deployed over the terms making up the sum. Indeed, we will have to 

perform substitutions on terms that refer to members of particular subgroups in order to say how 

things go differently in, say, the first subgroup rather than the second. 

6.3.3 Hard selection, soft selection and average fitness 

In all subgroups, and all substructures, individual causal influences among population members 

are restricted to individual who are members of the same subgroup or, if there are no subgroups, 

members of the same substructures. Soft subgroups and soft substructures pose barriers to 

competition between the members of distinct groupings, as well as barriers to individual causal 

influences. What makes soft selection mathematically distinct is the use of an average fitness 

parameter to which only the members of the grouping make a contribution. Hard subgroups and 

hard substructures form barriers to individual causal influences, but not competition. What 

makes hard selection distinct is the use of an average fitness parameter to which all 

contemporaneous individuals in the population make a contribution. 
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To see that the barriers to individual causal influences and competition can circumscribe 

different groupings, imagine a population of rodents separated into two substructures by a river 

that limits migration between the substructures. The rodents act as individual causal influences 

over one another’s progress, say by engaging in hawk-dove interactions of the sort handled using 

frequency-dependent selection models. The rodents are also preyed upon by hawks that act to 

regulate the population size of the rodents. The hawks do not, however, respect the boundary 

posed by the river. The hawks only eat so many of the rodents and success in avoiding predation 

by rodents on one side of the river leaves more predators circling to devour rodents on both sides 

of the river. Hence, the rodents compete with others across the river, but do not engage face to 

face hawk-dove interactions with them. The rodent population is accordingly separated into hard 

substructures. 

I note that “hard” and “soft” have counter-intuitive implications; the barriers between 

hard subgroups are actually in some sense “softer” than are the barriers between soft subgroups, 

since the former are not barriers to competition while the latter are. I am simply following the 

use of language already in play in discussions of variable selection in my use of the hard/soft 

contrast. Christiansen (1975) adopted the vocabulary of hard and soft from Wallace (Wallace 

1968, 1975). It is now clear that Christiansen’s use of these notions was different from that of 

Wallace, who himself has admitted that he was not terribly clear about the contrast he was trying 

to establish initially. We are, at any rate, stuck with imperfect terminology. 

Additionally, I note that subgroups will automatically count as hard subgroups if they last 

only a fraction of a lifecycle stage, even if barriers between subgroups form barriers to 

competition, because the individuals who were members of the subgroups compete after having 

been isolated. In populations that form subgroups, competition between members of different 
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subgroups occurs if different subgroups can contribute different numbers of members to the next 

lifecycle stage. 

6.3.4 Average fitness substitution rules  

Once we have a grip on whether we are dealing with a population with subgroups or 

substructures that form barriers to competition between cotemporaneous individuals, we can 

decide what sort of average fitness parameter to deploy for our system. Each relative frequency 

term, then, must be weighted by the reciprocal of the sum of the frequencies of types against 

which the individual competes. Note that this means inserting expressions that use variables, not 

variables-at-values. There are two sets of rules below, one for populations in which competitors 

causal influences interact with sex differences, that is, they exhibit gene-by-sex interactions, and 

ones for populations in which they do not.  

6.3.4.1 Average fitness rule for soft subgroups and no gene-by-sex interactions. For 

individuals in soft subgroups, make the following substitutions for each jsS = : 

∑∑ ====

==

====
→

X Y
sSSzZsSSzZZYX

sZZyYYxXX

sSSzZZyYYxXX
jj

j

j c

p
pyx

,,,,

,,

,,,))(( ==

ZYX

SSz

p ,,

,

Note 

that this rule requires a distinct substitution for every type of individual in each subgroup. This 

sort of substitution is only possible if the Riemannian sums used to express subgroup formation 

are broken up such that the system of equations includes a distinct term for each individual in 

each subgroup. 

6.3.4.2 Average fitness rule for soft substructures and no gene-by-sex interactions. For 

individuals in soft substructure zZ = , but not in subgroups, make the following substitutions: 
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∑∑ ==

===
=== →

X Y
SzZZYXSzZZYX

SzZZyYYxXX
SzZZyYYxXX pc

p
pyx

,,,,,,

,,,
,,,))((

 

6.3.4.3 Average fitness rule for populations without soft subgroups, soft substructures, or 

gene-by-sex interactions. For individuals neither in subgroups nor soft substructures, make the 

following substitutions: 

∑∑∑ =

===
=== →

X Y Z
SZyYYX

SzZZyYYxXX
SzZZyYYxXX p

p
pzyx

,,,

,,,
,,,))()((

.Note that we use the above rule for systems of individuals that form hard substructures as well 

as ones that do not. 

6.3.4.4 Average fitness rule for soft subgroups and gene-by-sex interactions. For individuals 

in soft subgroups, make the following substitutions for each jsS = : 

∑ =====

===

====
→

X
sSSzZZyYYXsZyYYX

sSSzZZyX

sSSzZZyYYxXX
jj

j

j pc

p
pyx

,,,,,

,,

,,,))((
=

=

SSzZ

YYxX

,

,

 

Note that this rule requires a distinct substitution for every type of individual in each subgroup. 

This sort of substitution is only possible if the Riemannian sums used to express subgroup 

formation are broken up such that the system of equations includes a distinct term for each 

individual in each subgroup. 
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6.3.4.5 Average fitness rule for soft substructures and gene-by-sex interactions. For 

individuals in soft substructure zZ = , but not in subgroups, make the following substitutions: 

∑ ====

===
=== →

X
SzZZyYYXSzZZyYYX

SzZZyYYxXX
SzZZyYYxXX pc

p
pyx

,,,,,,

,,,
,,,))((

 

6.3.4.6 Average fitness rule for populations without soft subgroups or soft substructures, 

but with gene-by-sex interactions.  

For individuals neither in subgroups nor soft substructures, make the following substitutions: 

∑∑ =

===
=== →

X Z
SZyYYX

SzZZyYYxXX
SzZZyYYxXX p

p
pzyx

,,,

,,,
,,,))()((

. 

6.3.5 Causal influences by substitution 

We are now in a position to consider how an array of causal influences over population dynamics 

can be introduced into population genetics models by substitution. I will consider ecological 

causal influences first, dividing these into the pervasive and non-pervasive sort. I will then 

consider individual causal influences. I then consider ecological causal influences. Lastly, I will 

consider causal influences that have must be modeled using abstract functions, first considering 

the functions used to model individual causal influences and then considering some specialized 

models involving density-dependent and temporally variable selection. 

6.3.5.1 Pervasive Ecological Causes. Modeling the causal impact of pervasive ecological causal 

influences is a matter of weighting relative frequency terms to incorporate their impact 
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individuals’ progress through the lifecycle.28 Recall that we are dealing here with might-as-well-

be-ecological causal influences. Pervasive causal influences can be blamed on any pervasive 

feature of the context of the individual being weighted, as discussed earlier (section 5.2.2.2). It is 

standard to blame something in the ecological environment. When population geneticists write, 

in what from the perspective of this work is an informal way, about how relative fitness values 

represent the impact of “selection” (e.g., Rice 2004, 9), “selection” refers the impact of a 

pervasive might-as-well-be ecological interactive causal influences. Representing the impact of 

pervasive ecological causal influences is a matter of simply weighting, with a relative fitness 

coefficients, the relative frequency terms of individuals that are beset by the causal influence. 

Technically, it is non-null pervasive interactive causal influences, ones that have different 

effects on different types in the model, that require us to introduce weights into the algorithm as 

discussed in what follows. We must also be careful not to count causes twice when they are part 

of the same causal chain that influences some types in an interactive fashion. The presence of 

malarial parasites and the presence of mosquitoes are both causes of the persistence of the sickle-

cell allele among humans in Africa, but they should not be counted as distinct such that 

substitutions are made twice on the same equations to represent each influence, since the 

mosquitoes provide the mechanism for the spread of parasites.  

Pervasive ecological causal influences can be pervasive with respect to the members of a 

subgroup, a sub-structure, or the population as a whole, so we will need several substitution rules 

to recognize the various scopes under which pervasiveness can be evaluated. 

                                                 
28 Strictly speaking, substitutions on every rival type of individual are not absolutely necessary, since we are dealing 
with relative fitness values and we can arbitrarily assign any one type of individual a relative fitness value equal to 
1, and then not make a substitution on the relative frequency variable for that type, but I do not work in this shortcut. 
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6.3.5.1.1 Pervasive ecological causes in subgroups rule. For a pervasive ecological causal 

influence besetting all individuals in subgroup sS = and substructure zZ = , make the following 

substitutions: 

sSSzZZyYYxXXSzZZyYYxXXsSSzZZyYYxXX pwpyx =========== → ,,,,,,,,,))((  

6.3.5.1.2 Pervasive ecological causes in substructures rule. For an ecological causal influence 

besetting all individuals in substructure zZ = , make the following substitutions: 

SzZZyYYxXXSzZZyYYxXXSzZZyYYxXX pwpyx ,,,,,,,,,))(( ========= →  

 

6.3.5.1.3 Pervasive ecological causes in populations rule. For an ecological causal influence 

besetting all individuals in a population, make the following substitutions: 

SzZZyYYxXXSzZZyYYxXXSzZZyYYxXX pwpzyx ,,,,,,,,,))()(( ========= →  

Note that much of the difference between the above rules lies in language of the preamble: the 

first rule applies to individuals in a specific subgroup in a specific substructure, the second rule 

applies to all individuals in a substructure, and the last one applies to all population members. 

6.3.5.2 Non-pervasive ecological causes. These causal influences require us to split up the 

members of a grouping into those individuals beset by the causal influence and those beset by its 

correlatives. Here is where we avail ourselves of partitions. Recall that we must always model a 

non-pervasive causal influence together with its correlatives, even if those correlatives consist in 

nothing more than the absence of the causal influence. The substitution rules for non-pervasive 

ecological causal influences are essentially the same as those for pervasive causal influences, 

expect instead of substituting a fixed relative fitness value into the equation, we substitute a 

 264



function into the equation, specifically a Riemannian sum featuring h parameters reflecting the 

rates at which individuals are struck by each correlative of the ecological cause, along with 

fitness parameters quantifying its impact. All the h values sharing type and substructure indices 

must together sum to 1. The addition of the Riemannian sum function requires adding a fifth 

index to the relative frequency terms that distinguish the individuals in terms of partition 

membership. 

6.3.5.2.1 Non-pervasive ecological causes in subgroups rule. For an non-pervasive ecological 

causal influence besetting individuals in subgroup sS = and substructure zZ = , make the 

following substitutions: 

 

ksSSzZZyYYxXXksSSzZZyYYxXX
k

ksSSzZZyYYxXX

sSSzZZyYYxXX

pwh

pyx

,,,,,,,,,,,,

,,,))((

============

====

∑
→

 

6.3.5.2.2 Non-pervasive ecological causes in substructures rule. For a non-pervasive 

ecological causal influence besetting all individuals in substructure zZ = , make the following 

substitutions: 

kSzZZyYYxXXkSzZZyYYxXX
k

kSzZZyYYxXX

SzZZyYYxXX

pwh

pyx

,,,,,,,,,,,,

,,,))((

=========

===

∑
→
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6.3.5.2.3 Non-pervasive ecological causes in populations rule. For a non-pervasive ecological 

causal influence besetting all individuals in a population: 

kSzZZyYYxXXkSzZZyYYxXX
k

kSzZZyYYxXX

SzZZyYYxXX

pwh

pzyx

,,,,,,,,,,,,

,,,))()((

=========

===

∑
→

 

To illustrate the use of the above rules, here is how to use this rule to generate the paradoxical 

selection on rival diploids with different camouflage discussed in the chapter on the requirements 

for selection. Beginning at the point at which we have systems of equations for a non-

hierarchically structured population with zygote frequencies weighted by an average fitness 

parameter, we have the following two systems of equations for our system, the first representing 

the gamete to zygote lifecycle stage and the second representing the zygote to gamete stage (I 

have dropped the dummy “S” index for subgroup membership):  

1,0,)2(1,0,)2(1,1,0)],2)(2[(

1,0,)1(1,0,)2(1,0)],1)(2[(

1,0,)2(1,0,)1(1,1,0)],2)(1[(

1,0,)1(1,0,)1(1,0)],1)(1[(

><><

><><

><><

><><

•=

•=

•=

•=

ppp

ppp
ppp

ppp

 

1,0)],2)(2[(1,0)],1)(2[(1,0)],2)(1[(1,0)],1)(1[(

1,0)],1)(2[(1,0)],2)(1[(1,0)],2)(2[('
1,0,)2(

1,0)],2)(2[(1,0)],1)(2[(1,0)],2)(1[(1,0)],1)(1[(

1,0)],1)(2[(1,0)],2)(1[(1,0)],1)(1[('
1,0,)1(

pppp
ppp

p

pppp
ppp

p

+++
++

=

++
++

=

><

><

. 

Equations 6.13 

We weight the zygote frequency parameters in a model of two rival types of diploids according 

to the above rule for non-pervasive ecological causal influences within an entire population. For 

our case of two non-pervasive ecological causal influences, we get these equations for the zygote 

stage of the lifecycle: 
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2,1,0)],2)(2[(2,1,0)],2)(2[(2,1,0)],2)(2[(2,1,0)],1)(2[(2,1,0)],1)(2[(2,1,0)],1)(2[(

2,1,0)],2)(1[(2,1,0)],2)(1[(2,1,0)],2)(1[(2,1,0)],1)(1[(2,1,0)],1)(1[(2,1,0)],1)(1[(1,1,0)],2)(2[(1,1,0)],2)(2[(1,1,0)],2)(2[(

1,1,0)],1)(2[(1,1,0)],1)(2[(1,1,0)],1)(2[(1,1,0)],2)(1[(1,1,0)],2)(1[(1,1,0)],2)(1[(1,1,0)],1)(1[(1,1,0)],1)(1[(1,1,0)],1)(1[(

2,1,0)],1)(2[(2,1,0)],1)(2[(2,1,0)],1)(2[(2,1,0)],2)(1[(2,1,0)],2)(1[(2,1,0)],2)(1[(2,1,0)],2)(2[(2,1,0)],2)(2[(2,1,0)],2)(2[(

1,1,0)],1)(2[(1,1,0)],1)(2[(1,1,0)],1)(2[(1,1,0)],2)(1[(1,1,0)],2)(1[(1,1,0)],2)(1[(1,1,0)],2)(2[(1,1,0)],2)(2[(1,1,0)],2)(2[('
1,1,0,)2(

2,1,0)],1)(2[(2,1,0)],1)(2[(2,1,0)],1)(2[(2,1,0)],2)(1[(2,1,0)],2)(1[(2,1,0)],2)(1[(2,1,0)],1)(1[(2,1,0)],1)(1[(2,1,0)],1)(1[(

1,1,0)],1)(2[(1,1,0)],1)(2[(1,1,0)],1)(2[(1,1,0)],2)(1[(1,1,0)],2)(1[(1,1,0)],2)(1[(1,1,0)],1)(1[(1,1,0)],1)(1[(1,1,0)],1)(1[('
1,1,0,)1(

pwhpwh

pwhpwhpwh
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Equations 6.14 

If we collapse the lifecycle stages, specifying zygote frequencies in terms of gamete frequencies, 

add the frequencies of the heterozygotes, we end up with this single system of equations, a 

standard variable selection model: 

2
1,0,)2(2,1,0)],2)(2[(2,1,0)],2)(2[(

2
1,0,)2(1,1,0)],2)(2[(1,1,0)],2)(2[(1,0,)2(1,0,)1(2,1,0)],2)(1[(2,1,0)],2)(1[(

2
1,0,)1(2,1,0)],1)(1[(2,1,0)],1)(1[(1,0,)2(1,0,)1(1,1,0)],2)(1[(1,1,0)],2)(1[(

2
1,0,)1(1,1,0)],1)(1[(1,1,0)],1)(1[(

1,0,)2(1,0,)1(2,1,0)],2)(1[(2,1,0)],2)(1[(
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1,0,)2(1,0,)1(1,1,0)],2)(1[(1,1,0)],2)(1[(
2

1,0,)2(1,1,0)],2)(2[(1,1,0)],2)(2[('
1,1,0,)2(

1,0,)2(1,0,)1(2,1,0)],2)(1[(2,1,0)],2)(1[(
2

1,0,)1(2,1,0)],1)(1[(2,1,0)],1)(1[(

1,0,)2(1,0,)1(1,1,0)],2)(1[(1,1,0)],2)(1[(
2

1,0,)1(1,1,0)],1)(1[(1,1,0)],1)(1[('
1,1,0,)1(

1,0,)2(1,0,)2(1,1,0)],2)(2[(

1,0,)1(1,0,)2(1,0)],1)(2[(

1,0,)2(1,0,)1(1,1,0)],2)(1[(

1,0,)1(1,0,)1(1,0)],1)(1[(

2

2

2

2

2

2

><><><><

><><><><

><><><

><><><
><

><><><

><><><
><

><><

><><

><><

><><

++•+

+•+=

•+

+
•+

=

•+

+
•+

=

•=

•=

•=

•=

pwhpwhppwh

pwhppwhpwhw
where

w
ppwhpwh

w
ppwhpwh

p

w
ppwhpwh

w
ppwhpwh

p

ppp

ppp

ppp

ppp

 

Equations 6.15 
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If we let every h = 0.5, and let == 2,1,1,0,21,1,1,0,1 ww 1.2, 12,1,0)],2)(1[(1,1,0)],2)(1[( == ww , 

and 0.8, we get a paradoxical variable selection model of the sort 

discussed as a counterexample to the claim that selection requires heritable traits in chapter 2.  

== 1,1,1,0,22,1,1,0,1 ww

6.3.5.3 The causal influence of sex. The next sort of causal influence that can be handled by 

substitution rules is the causal influence of sex. Because the individuals in some of our models 

are indexed by differences in sex, accounting for the causal influence of sex is straightforward, a 

matter of weighting relative frequency terms in a sex-sensitive way. One can equally think of 

these causal influences as ecological causal influences that affect different individuals differently 

by virtue of their sex differences. Recall, too, that gametes have sexes, or at least they have sex 

indices that reflect their sex of origin, and this makes it possible to consider the causal influence 

of their having one or another sex of origin in a fashion that parallels how sex differences among 

zygotes may impact dynamics. 

6.3.5.3.1 Sexual causes for males in subgroups rule. To introduce causal influences of being 

male in subgroup sSS = in substructure zZZ = , make the following substitutions: 

sSSzZZYYxXXsSSzZZYYxXXsSSzZZYYxXX vppyx ============ → ,,1,,,1,,,1,))((  

6.3.5.3.2 Sexual causes for males in substructures rule. To introduce causal influences of 

being male in substructure zZZ = , make the following substitutions: 

SzZZYYxXXSzZZYYxXXSzZZYYxXX vppyx ,,1,,,1,,,1,))(( ========= →  
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6.3.5.3.3 Sexual causes for males in populations rule. To introduce causal influences of being 

male in a population, make the following substitutions: 

SzZZYYxXXSzZZYYxXXSzZZYYxXX vppzyx ,,1,,,1,,,1,))()(( ========= →
6.3.5.3.4 Sexual causes for females in subgroups rule. To introduce causal influences of being 

male in subgroup sSS = in substructure zZZ = , make the following substitutions: 

sSSzZZYYxXXsSSzZZYYxXXsSSzZZYYxXX vppyx ============ → ,,21,,,21,,,2,))((  

6.3.5.3.5 Sexual causes for females in substructures rule. To introduce causal influences of 

being male in substructure zZZ = , make the following substitutions: 

sSSzZZYYxXXsSSzZZYYxXXsSSzZZYYxXX vppyx ============ → ,,2,,,2,,,2,))((  

6.3.5.3.6 Sexual causes for females in populations rule. To introduce causal influences of 

being male in a population, make the following substitutions: 

sSSzZZYYxXXsSSzZZYYxXXsSSzZZYYxXX vppzyx ============ → ,,2,,,2,,,2,))()((
 

Here, the v parameters quantify the causal influence of sex on individuals’ progress. Note that 

the only difference between this rule and the rule for handling pervasive ecological causal 

influences is the use of fixed sex parameters, equal to one for males and two for females. 

6.3.5.4 Individual causal influences. The individual causal influences of interest now are ones 

that are either interactive or discriminate causal influences arising among all the individuals at a 

lifecycle stage within some grouping, ones that are not MICER-forming causal influences. 

Because we decided earlier that it was impossible for causal influences to be non-pervasive 

within some subgrouping without being pervasive within some smaller grouping, we need only 
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consider pervasive individual causal influences. Hence we need only a two rules to handle 

individual causal influences. 

 The central component of the strategy for dealing with causal influences emanating from 

individuals is to depend upon causally interpretable frequency-dependent relative fitness 

functions to capture the causal influences of individuals on one another. Frequency-dependent 

selection models provide a vehicle for modeling individual causal influences because the causal 

influence of individuals at a lifecycle stage are contingent upon their relative frequency. The 

extent of the impact of one type of individual on the progress of others will be modulated by how 

many individuals of that type there are in the population. 

What we want is a rule that states how we should weight the relative frequencies of types 

within groupings to reflect the causal influences that all the types upon each others progress. But 

here we encounter the obstacle that individuals may causally influence one another in any 

number of different ways. One option, then, is simply to substitute a general function into the 

equation to represent individual causal influences. I use fX,S(p) as a function taking the (possibly 

weighted) absolute numbers of all the types of individual in the model as arguments. So the 

influence of individuals over each others’ progress could be represented as follows. 

6.3.5.4.1 Individual causal influences in subgroups rule. For a individual causal influences 

among individuals in subgroup in substructure sS = zZ = , make the following substitutions: 

sSSzZZyYYxXXSXsSSzZZyYYxXX ppfpyx ======== → ,,,,,,, )())((  

6.3.5.4.2 Individual causal influences in substructures rule. For a individual causal influences 

among individuals in substructure zZ = , make the following substitutions: 

SzZZyYYxXXSXSzZZyYYxXX ppfpyx ,,,,,,, )())(( ====== →  

 270



6.3.5.4.3 Individual causal influences in populations rule. For a individual causal influences 

among individuals in an entire population, make the following substitutions: 

SzZZyYYxXXSXSzZZyYYxXX ppfpzyx ,,,,,,, )())()(( ====== →  

As stated, however, the substitution rules cannot be used as part of a set of rules that yield 

an equation with which inferences about population dynamics can be made, because nothing 

about the nature of the function relating relative frequencies to progress has been stated. All the 

above substitution rules do is signal that the relative frequency terms within subgroups or 

substructures must be weighted by some function of the relative frequency of the types in the 

subgroups or substructures; the substitution rule does not say which function to use. In principle, 

any function could be used here. 

The function one most commonly finds in textbooks discussions of frequency-dependent 

selection is an additive function (Hedrick 2005, 223). Such a function is appropriate for non-

interactive causal influences stemming from population members, and because this sort of 

function is so common, it makes sense to write down what frequency-dependent selection looks 

like from this viewpoint. For individual interactions among the members of an entire population, 

that function would set  

SzZZyYYxXX
X

XXSX ppf ,,,, )( ===∑= αβ . 

The alpha parameters in the above rule quantify the causal influence of the types they weight on 

the type whose relative frequency is being replaced. They can take any value, including a value 

of 1 for individuals that exert no influence on their fellows. The β parameters represent the extent 

to which such causal influences are discriminate, and the β parameters that share a subscript 

must sum to 1. Discriminate individual causal influences will be appropriate for cases in which 
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individuals, for instance altruists, can recognize one another as such, perhaps by their green 

beards, and direct their altruism accordingly.29 

6.3.5.5 Temporally variable selection and density-dependent selection. There are two more 

kinds of population genetics models that involve substituting functions into basic equations, 

temporally variable selection models and density-dependent selection models. In each case, the 

causal influence of types of individuals in the model is contingent upon some parameter, either 

time or population size. Individual causal influences presented us with our first taste of what is 

probably the most serious problem with the algorithm offered here, namely, that it cannot help 

much with models in which relative frequency variables are weighted by functions that take as 

arguments variables that appear elsewhere in the model. That problem is especially pronounced 

in the cases of temporally variable selection and density-dependent selection. There is no one 

general way in which population size might causally influence the progress of a kind of 

individual, and there is no one general way in which variable environments must vary over time. 

Temporally varying interactive ecological causal influences are especially intractable: they may 

include indefinitely many correlatives, the correlatives may replace one another often or rarely, 

ecological causal influences may vary in a random fashion, or occur in a sequence, and so on. 

 It is interesting to note that, though temporally variable selection models and spatially 

variable selection models are usually presented together and their polymorphism-yielding 

properties often compared, from the current perspective, they are very different in terms of how 

easily they yield to a general analysis. Spatially variable selection models, though complex, yield 

to analysis much more easily, and this seems largely because of the availability of the 

Riemannian sum operator, which allows one to state general rules for handling non-pervasive 

ecological causal influences, no matter how many of these there are, no matter how strongly their 
                                                 
29 For a case of altruism of this sort, see Keller and Ross (1998). 

 272



impact is correlated with the variant types of individuals in the model, and no matter how many 

individuals are beset by each sort in the each generation. “Spatial” differences in the influence of 

ecological causes can be presented all at once and left to recur in each generation. By contrast, 

little can be said, in a general way, about temporally variable selection models because there is 

no single general way to represent different times all at once in a fixed recursive equation. 

 For what it is worth, temporally variable selection models at least get off the ground 

when one replaces relative frequency terms with ones paired with functions of time. Letting t 

range over different times, we can at least write the following sorts of substitution for individuals 

within subgroups and substructures respectively, where t is time in generations: 

6.3.5.5.1 Temporally variable causal influences in subgroups rule. For a temporally variable 

causal influences among individuals in subgroup sS = in substructure zZ = , make the 

following substitutions: 

sSSzZZyYYxXXSXsSSzZZyYYxXX ptfpyx ======== → ,,,,,,, )())((  

6.3.5.5.2 Temporally variable causal influences in substructures rule. For a temporally 

variable causal influences among individuals in substructure zZ = , make the following 

substitutions: 

SzZZyYYxXXSXSzZZyYYxXX ptfpyx ,,,,,,, )())(( ====== →  

6.3.5.5.3 Temporally variable causal influences in populations rule. For a temporally variable 

causal influences among individuals in an entire population, make the following substitutions: 

SzZZyYYxXXSXSzZZyYYxXX ptfpzyx ,,,,,,, )())()(( ====== →  
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For density-dependent selection, we not only substitute in functions, this time functions of 

population size, but also substitute in census population size parameters for all the relative 

frequency terms. All classical population genetics models are in fact mathematical 

simplifications of models featuring absolute numbers of variant types of individuals (see Rice 

2004, 10). Because each type is a member of the same population, and most population genetics 

models feature additive average fitness parameters in their denominators, the census population 

size parameter cancels out of every numerator and every denominator term in all models except 

those featuring density-dependent selection. The approach pursued here is to keep things simple 

and deal with relative frequency terms whenever possible, when absolute numbers of individual 

are needed, we couple each relative frequency term with a census population size variable.  

We must insert census population size variables not only for RHS variables but, 

unusually, for LHS variables too, since we are explicitly representing the consequences of 

changing population size in a population in which the progress of individuals is tied to the 

changing overall size of the population. Thus we must make two sets of substitutions to 

countenance density-dependent selection, we must first replace every RHS and LHS individual 

relative frequency term by a term representing the absolute number of individuals: 

6.3.5.5.4 Population size introduction rules. For populations in which population size is a 

causal influence, make the following substitutions: 

'
,,,

'
,,,

,,,,,,

))()((

))()((

sSzZyYxX

sSzZyYxX

SZYXsSSzZZyYYxXX

SZYXsSSzZZyYYxXX

pNcpzyx

pNcpzyx

====

====

•→

•→

====

====

 

By weighting these relative frequency terms by census population size, we are creating terms 

that refer to absolute numbers of individuals. Then we must make a general substitution 
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representing the causal influence of population size by weighting relative frequency terms by 

functions of Nc. 

6.3.5.5.5 Density-dependent selection in subgroups rule. For a density dependent causal 

influences among individuals in subgroup sS = in substructure zZ = , make the following 

substitutions: 

sSSzZZyYYxXXSXsSSzZZyYYxXX pNcfpyx ======== → ,,,,,,, )())((  

6.3.5.5.6 Density-dependent selection in substructures rule. For a density dependent causal 

influences among individuals in substructure zZ = , make the following substitutions: 

SzZZyYYxXXSXSzZZyYYxXX pNcfpyx ,,,,,,, )())(( ====== →  

6.3.5.5.7 Density-dependent selection in populations rule. For a density dependent causal 

influences among individuals in an entire population, make the following substitutions: 

SzZZyYYxXXSXSzZZyYYxXX pNcfpzyx ,,,,,,, )())()(( ====== →  

Once again, such equations are useless until some determinate function for fX,S (Nc) has been 

specified, but once again, anything is possible here. Roughgarden (1971) considers several 

possibilities. Of course, causal knowledge of the impact of population size will supply the 

function in specific cases, but the algorithm does not do so, and probably cannot do so, in the 

general case. 

6.3.5.6 Mutation. The last substitution rule we deploy is one that injects into our equations terms 

that reflect mutation rates, the rate at which individuals of one type produce individuals of 

another type. Here is the substitution rule for the introduction of mutation parameters:  
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SzZZyYYX
X

xXXXSzZZyYYxXXSzZZyYYxXX puppi ,,,,,,,,,,)( ========= ∑+→

To see the rule in operation, take a simple model featuring three haploid individuals not 

separated into substructures, for which the following system of equations would emerge from the 

graphing stage of the algorithm: 

1,0,3
'

1,0,3

1,0,2
'

1,0,2

1,0,1
'

1,0,1

pp

pp

pp

=

=

=

 

Equations 6.16 

To add mutation, we make these substitutions: 

1,0,

3

1
3,1,0,31,0,3

1,0,

3

1
2,1,0,21,0,2

1,0,

3

1
1,1,0,11,0,1

X
X

X

X
X

X

X
X

X

pupp

pupp

pupp

∑

∑

∑

=

=

=

+→

+→

+→

 

Note how the sum features a variable, X, picking out each rival type. The result of applying the 

last set of substitution rules is the following system of equations: 
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Equations 6.17 

If we expand the sums, we get these equations: 

1,0,13,31,0,23,21,0,13,11,0,31,0,3

1,0,12,31,0,22,21,0,12,11,0,21,0,2

1,0,11,31,0,21,21,0,11,11,0,11,0,1

pupupupp

pupupupp

pupupupp

+++=

+++=

+++=

 

Equations 6.18 

Mutation parameters with identical subscripts represent the rates at which individuals of the type 

picked out by the subscript produce individuals of other types and hence must be negative. Each 

of the u parameters with non-identical subscripts reflects the rate at which individuals whose 

type is picked out by the first subscript on the u are produced by individuals whose type if picked 

out by the second subscript. Thus, u1,1 reflects the rates at which type one individuals produce 

descendants of other types, while u1,3 represents the rate at which individuals of type 1 are 

produced by individuals of type 3. The mutation parameters must add up such that a parameter 

with identical subscripts is the sum of all the others sharing its first subscript. 
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6.4 EQUATIONAL COLLAPSE 

We have now reached the point at which we have equations that represent all the causal 

information acting at each stage of the lifecycle that can be represented in textbook discrete 

generation Wright-Fisher models and can be generated by the algorithm. The last thing we need 

to do is substitute the right-hand sides of the equations generated by the first graph into the RHS 

equations for the second graph, for systems featuring two graphs. We do this by replacing 

variables on the right-hand side of the second system of equations with the entire right-hand side 

of equations from the first system that specify them according to the first set of equations. See 

section 6.2.3.3.2.2 for an example of this sort of collapse. 
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7.0. DRIFT 

 

In this section, I will briefly consider the notion of drift in selection theory. More specifically, I 

am interested in what causal influences are responsible for the stochastic element of selection 

theory, an element that is quantified, in Wright-Fisher models of non-neutral evolution, by the 

parameter, variance effective population size (Nev). My stance is that this parameter quantifies 

the causal influence of NINPICs, non-interactive, non-pervasive, indiscriminate causal 

influences. 

My aim is to keep this section short. Those interested in a more elaborate defense of my 

claim that the notion of drift, when used in its causal sense, refers to NINPICs may consult a 

paper I have written on the subject (Gildenhuys 2008). That paper also includes criticisms of 

rival approaches to understanding “drift” in its causal sense, specifically those of the pairs of 

Millstein and Beatty (Beatty 1984, 1992; Millstein 1996, 2002, 2005), and Rosenberg and 

Bouchard (Rosenberg and Bouchard 2004; Rosenberg and Bouchard 2005). But the reader will 

recall that NINPICs, along with pervasive non-interactive causes, are leftovers from the 

deterministic cause-to-model algorithm. 

Pervasive non-interactive causes have at best an indirect causal influence over population 

dynamics; they are the sorts of things that could affect census population size and, by extension, 

Nev. But pervasive non-interactive causes could not possibly swing population dynamics in one 

way or another directly because they affect all population members in the same way. Indeed, 

pervasive non-interactive causes are hard even to imagine, for they would have to alter the 
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descendant production of all population members to same extent, and it is hard to imagine a 

natural phenomenon affecting a population in so precise a manner. That leaves NINPICs as the 

only thing left that could be responsible the stochastic element of population genetics models.  

Before expanding that last argument that the impact of NINPICs are what is quantified by 

Nev, I will offer a brief discussion of the causal notion of drift, and how that notion functions in 

Wright-Fisher models and the diffusion approximation to those. After that, I discuss how 

NINPICs control the value taken on by a population for Nev.  

 

7.1 THE CAUSAL NOTION OF DRIFT 

My goal is to explicate the causal dimension of drift, to say what is causally responsible for the 

stochastic element of population genetics models, and hence to say what is responsible for the 

randomness of the dynamics of the populations that these models govern. Population geneticists 

often use “drift” in a causal sense, especially when characterizing diffusion theory. Hedrick 

discusses how “the relative impact of genetic drift and selection varies with the population size” 

(Hedrick 2005, 352). Gillespie characterizes drift as a “source of randomness” (Gillespie 1998, 

82). Robertson, in the famous paper in which he develops the notion of the retardation factor, 

writes that “gene frequency changes under the combined effects of selection and drift due to 

finite population size are determined to a good approximation by Ns” (Robertson 1962, 222). In 

those sorts of usages, “drift” is being used to refer to a certain sort of cause, something that has 

effects, and something that can be laid alongside selection such that its influence can be 

combined with it and the extent of its influence contrasted with it. 

In Wright-Fisher and diffusion theory models involving selection and drift operating 

simultaneously on population dynamics, the influence of drift is quantified by the variance 
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effective population size parameter (Nev). We will be able to explicate the causal notion of drift 

when we can say what sorts of causes are in play in populations that have the sort of influence 

that “drift” is supposed to have in these models, causes whose influence is quantified by Nev. 

Indeed, we are better off thinking of the link between NINPICs and Nev as direct, a link 

unmediated by the notion of drift: once we have understood what causes Nev represents in 

population genetics models, we have grasped what we need to understand in order to understand 

the deployment of stochastic models in selection theory, so that it no longer matters what we call 

drift. Given the ambiguity of the term, we should probably not refer to anything as drift. 

It is perhaps worth quickly noting why I regard conceptions of drift one finds in 

population genetics texts as inadequate for the project of understanding what is quantified by 

Nev. Rice calls selection, mutation, and migration “directional factors” and contrasts these with 

drift, which he calls a “non-directional process” and sometimes a “non-directional effect” (Rice 

2004, 131-132; 135). The non-directionality of drift manifests in its tendency to cause the spread 

of any of the rival types within a population with equal likelihood. Thus, drift leads to random 

changes in allele frequency (Gillespie 1998, 19; Jacquard 1974, 164; Gale 1990, 13). Hartl and 

Clark put the point in terms of predetermination: “Because the sampling process does not change 

the allele frequencies in a predetermined way, this process is known as random genetic drift” 

(2007, 95).  

Instead of picking out drift in terms of the sort of influence that it has, as a non-

directional sort of influence, a non-predetermined sort of influence, or a random change-

producing influence, we should instead seek a formulation of drift that defines these non-

directional factors in other terms. A good definition of drift will pick out the non-directional 

factors without reference to their impact on population dynamics and accordingly can be used as 
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part of an explanatory account of why population dynamics are stochastic. If we want to explain 

why population dynamics involve a non-directional component by appeal to the causal influence 

of drift, we cannot do so if we define drift as what produces the non-directionality. 

 

7.2 VARIANCE EFFECTIVE POPULATION SIZE IN POPULATION GENETICS 

We use the variance effective population size parameter as the population size parameter in the 

binomial sampling equation in Wright-Fisher models; we also use it to set values for the variance 

term in diffusion theory, a continuous approximation available for some Wright-Fisher models. 

This last deployment is actually the main deployment of the Nev in classical population genetics 

models, because under the diffusion approximation, one can draw analytic results for the 

dynamics of populations in which NINPICs have not been idealized away. Without the diffusion 

approximation, the derivation of analytic results for Wright-Fisher models is not possible. 

For example, the forward Kolgomorov equation in diffusion theory characterizes 

population dynamics by way of a two term equation: 
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Equation 7.1 

with the psi function representing the time-dependent probability distribution function for the 

relative frequency p of a target allele. The first term on the right, featuring the M function, 

governs directional processes, quantifying the tendency for the probability distribution to flow in 

the direction in which selection and other directional processes (mutation, migration) are 

working. The value of the M function is set using deterministic Wright-fisher population genetics 

equations involving fixed relative fitness values, mutation rates, and migration rates. The second 

term on the right is the variance term featuring the V function, which governs how the density of 
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the probability distribution tends to flow into adjacent regions, both to the left and to the right. 

The variance term involves “non-directional influences” insofar as it governs the rate of flow of 

probability from one allele frequency to both higher and lower frequencies. 

That the variance term is a function of the second derivative of the probability density 

function reflects the fact that net flow into a region of the distribution is positive whenever the 

change in the slope of the distribution at that region is positive, such that there is more net flow 

into the region than there is out of it. So if the probability density to the right (say) of a given 

allele frequency is a little bit smaller than the probability density at the chosen allele frequency, 

while the density to the left is much larger than the density at the chosen allele frequency, 

probability will “flow” into the region from the left. Over time, the non-directional influence 

captured by the variance term will cause the distribution to spread out (Rice 2004, 132); because 

of drift, the probability flows to unoccupied regions, and to regions where the differences in the 

differentials between it and surrounding regions is especially large. The greater the variance 

term, the greater the probability of finding the allele frequency of the modeled population further 

from where it was initially likeliest to be found. 

 When using diffusion theory as a continuous approximation to the discrete generations 

model of Wright and Fisher, the variance term is set by equation for the binomial sampling 

variance (Rice 2004, 140): 

Nev
ppV
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Equation 7.2 

Thus, the smaller the value for Nev taken on by a population, the larger is its variance term. 

Whatever causes contribute to the value taken on by Nev will thus control the extent to which 
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population dynamics involves the sort of non-directional dynamics captured by the variance term 

in diffusion theory.  

In discrete generation models, the probability of that an allele goes from one relative 

frequency to another is represented using a probability transition matrix, one with an entry for 

every possible change in allele frequency. From the matrix, one can read off the probability that 

a population will go from any allele frequency to any other allele frequency. The probabilities in 

the probability transition matrix are set, for the two allele diploid case, using the binomial 

sampling equation: 
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Equation 7.3 

where Nev is the variance effective population size, p’ is the adult (post-selection) allele 

frequency as calculated deterministically, i = p′ · 2Nev and j = (1 – p′) · 2Nev (see Hedrick 2005, 

351). When the variance effective population size is large, the probabilities in the transition 

matrix representing small changes in relative frequency are larger, while those representing 

bigger jumps in the relative frequency are smaller. As Nev gets smaller, the probability of larger 

changes in relative frequencies between generations grows. Thus, here again, we see the 

effective population size controlling the extent to which population dynamics are stochastic, that 

is, the extent to which population are likely to evolve further from their current relative 

frequencies. 

 I said earlier that it is only after a deterministic model has been deployed that we can add 

in the stochastic element to Wright-Fisher models. The above equation shows why. The p′ term, 

which is fed into the binomial sampling equation, is generated using a deterministic model. So it 

is only after we have deployed a deterministic model that we are in a position to deploy the 
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equation that is appropriate for population dynamics that include a stochastic element. It is worth 

noting, too, that only Wright-Fisher models that are recursions on allele frequencies can be fed 

into the above binomial sampling equation. Furthermore, because the equation is a binomial 

sampling equation, the approach is appropriate only for systems consisting of two rival alleles, or 

two rival competitors; the notion of Nev is not defined for multi-allelic systems (Ewens 2004, 

127). I do not know how to quantify the impact of NINPICs on populations whose population 

dynamics cannot be captured using models that are recursions on two alleles. 

 

7.3 NON-INTERACTIVE, NON-PERVASIVE, INDISCRIMINATE CAUSAL 

INFLUENCES MAKE POPULATION DYNAMICS STOCHASTIC 

The argument that NINPICs are what is being referred to as “drift” when that notion is being 

used in a causal sense is simply that nothing else will do. This should not be surprising. Besides 

NINPICs and pervasive non-interactive causes, all other causal influences on population 

dynamics are taken into account in the cause-to-model algorithm. Since pervasive non-

interactive causal influences could not possibility be responsible for the stochasticity in 

population genetics models since they affect all population members in the same way, that leaves 

NINPICs as the only sort of cause remaining that could account for the stochastic character of 

population genetics models. 

Each of the criteria for sorting causes that I deploy, interactivity, discrimination, and 

pervasiveness, is such that any cause must count as either one or the other. All causal influences 

are either interactive or non-interactive. All causal influences are either discriminate or 

indiscriminate. All causal influences are either pervasive or non-pervasive. However, any cause 

that counts as either interactive, or pervasive, or discriminate, or any combination of these, 
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simply cannot exert a “non-directional” influence over population dynamics. Recall that exerting 

a non-directional influence over population dynamics is our criterion of adequacy for an 

explication of the causal dimension of the notion of drift. 

 Consider interaction first. Interactive causes of reproduction among population members 

have different causal influences on the reproduction of the different types in the population. 

Causes with this sort must be handled through the introduction of relative fitness parameters into 

the model. By influencing the reproduction of population members in a type-sensitive fashion, as 

interactive causes must do, they induce the reproduction of one type and impede that of another, 

at least when these are measured relative to one another. This sort of influence will be either 

directional or stabilizing; either way, we can eliminate interactive causes from those that might 

count as drift. 

Non-interactive causal influences on reproduction that are pervasive cannot induce drift. 

These are just the causes left aside along with NINPICs when the deterministic algorithm for 

generating population genetics models was considered. Pervasive causes have no potential to 

influence which population members form a sample of reproducers from a larger sample of 

would-be reproducers, and hence cannot have a stochastic influence over population dynamics. 

Non-interactive, discriminate causes cannot produce non-directional evolution either. If a 

non-interactive causal influence affects reproduction, and differentially affects one type of 

population member, such a cause will either promote or inhibit the spread of the type with which 

it is statistically associated, depending on whether or not it is beneficial. This sort of causal 

influence produces a directional influence, and hence fails to have the sorts of effects that drift is 

supposed to have. 
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7.4 NON-INTERACTIVE, NON-PERVASIVE, INDISCRIMINATE CAUSAL 

INFLUENCES AS A MODULATING CAUSAL INFLUENCE 

NINPICs are the influences that Rice calls “non-directional”; they explain the stochasticity in 

population genetics. However, I want to stress that while I have characterized Nev as 

representing the causal influence of NINPICs on population dynamics, Nev is nonetheless 

sensitive to other causal influences too. Discriminate causal influences, such as those produced 

by linkage of target alleles to other alleles undergoing selection, impact the effective size of the 

target allele populations (Santiago and Caballero 1998).  Furthermore, population size and 

fluctuations therein provide mechanisms by which any sort of causal influence can impact Nev, 

and not all of these influences must be NINPICs. And of course many demographic features of a 

population impact Nev too. Inbreeding produces a situation in which alleles of the same sort tend 

to be destroyed by NINPICs together; sex ratio bias impacts Nev too. I point these things out so 

that it is clear that my claim that NINPICs explain the stochasticity in population genetics is not 

based on the stance that NINPICs, and only NINPICs, impact the value taken by a population for 

Nev. 

My thesis is this: the fact that NINPICs beset a population makes it make sense to treat 

the dynamics of that population as a stochastic affair. I do not claim that there are not alternative 

treatments of natural populations, real or imaginary, that do not involve probabilities. I claim 

only that when we deploy selection theory, what licenses our deployment of the sorts of 

probabilities we deploy as part of the theory is that populations are invariably beset by NINPICs.  

The special importance of NINPICs in selection theory can be brought out in the 

following way: while Nev is sensitive to all the causal influences of the variables that turn up in 

its derivations, the presence of NINPICs is a necessary condition for those parameters to matter 

 287



to Nev in the first place. So while there are lots of causal influences on Nev, NINPICs are special 

among these because their presence is a precondition for the others to have any effect at all, and 

it is in that sense that Nev “represents” the impact of NINPICs. All other causes of stochasticity 

in population genetics are at best modulating causes of stochasticity. 

To see this, imagine a population without NINPICs but with every last variable with an 

impact on effective population size set anywhere you please. Imagine any level of inbreeding, 

any sort of population structure, any variance in offspring number, etc…. Still the dynamics of 

such a population will not be a matter of chance. Conversely, again set all the causal influences 

on Nev anywhere you please and add NINPICs into the picture; stochasticity of the sort typical of 

evolutionary theory will result. Hence my (somewhat awkwardly versed) claim that NINPICs are 

what make it make sense to model population dynamics as stochastic in evolutionary theory: 

without NINPICs we have no reason to deploy an effective population size parameter in 

evolutionary theory at all. 
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8.0 CONCLUSION 

 

In the conclusion, I reconsider the question of just how general is the approach to selection 

theory taken here. This is something I promised to do earlier. I divide the problem of generality 

into two components. I first consider the generality of the algorithm I offer for generating 

dynamical models for those systems that fit my entrance rule. I then consider the question of 

whether the entrance rule for selection theory that I have proposed might itself be too narrow in 

scope. 

 Before getting to those discussions, however, I want to re-iterate a couple of claims made 

in the introduction. The first is that while my use of causal vocabulary to present selection theory 

generalizes the theory (though perhaps not fully or as much as it should), the use of that 

vocabulary accomplishes more than just generalization. Even more important than generalization 

is how the use of causal vocabulary to present the theory exposes why selection theory should be 

regarded as having an explanatory structure. The second claim I want to repeat from the first 

chapter is that even if it should turn out that what I carve out as selection theory is an arbitrarily 

delimited subsection of a broader field of causal models, what would then be the not-quite-

general-enough generalization accomplished above would not be completely undermined. 

Rather, it would be consist in a partial accomplishment of project that could be furthered. 
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8.1 THE GENERALITY OF THE ALGORITHM 

The algorithm offered in the previous chapter has three limitations that bear immediate 

discussion. One is that I effectively assume that some causal influences do not interact; another is 

that the algorithm fails to shed light on the character of some functions that appear in it, 

specifically ones that take as arguments variables that appear in the equations outside the scope 

of the function; a final limitation is that it makes heavy use of the language of genetics.  

8.1.1 The multiplicative collapse of fitness assumption 

By stating the rules for handling individual and ecological causal influences in the fashion that I 

have, I have implicitly been taking advantage of an assumption I dub the multiplicative collapse 

of fitness assumption, the assumption that sexual, individual, and ecological causes operative in a 

population do not interact with other such influences. For example, two ecological causal 

influences do not interact if an individual beset by one ecological causal influence will not react 

to it any differently if it beset by one or another correlative of a non-pervasive ecological cause. 

To see how the assumption that causes introduced by substitution do not interact is 

undertaken, note that the substitution rules are deployed without regard to what other causal 

influences have already been taken into account in the population. For instance, if two pervasive 

ecological causal influences beset the population, one simply deploys the substitution rule for 

pervasive ecological factors twice, once for each. This means that one simply ends up forming a 

product from the coefficients reflecting each ecological causal influence. Hedrick advocates this 

sort of procedure when considering a population of plants that face different environmental 

pressures at different times in their development from germination to maturity. In Hedrick’s 

model, the coefficients representing the impact of each episode of selection are simply multiplied 

together in the mathematical model for the system (Hedrick 2005, 177). He calls the assumption 
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implicit in the procedure the multiplicative collapse of viability; it is from Hedrick that I got the 

name for my more general assumption, the multiplicative collapse of fitness.  

To see how the assumption is limiting, consider how ecological causal influences might 

well interact. For instance, if subjection to some correlative of a non-pervasive ecological causal 

influence E1 is harmful, and equally subjection to another one E2 is also harmful, but subjection 

to both is advantageous, it will not be possible to countenance the impact of E1 and E2 by 

weighting relative frequency parameters by a single coefficient for each. 

Could I discharge the assumption of the multiplicative collapse of fitness? I suspect that 

one could, but I will not try to do so here. For one thing, the assumption of multiplicative fitness 

collapse is widespread when applied to ecological causes. The fact that a population genetics 

textbook deploys a narrower version of the multiplicative collapse of fitness assumption does 

redeem it a little. Nonetheless, I note my undertaking of the assumptions of the multiplicative 

collapse of fitness as a real failure. 

If one did try to discharge this assumption, things would get quite complicated when it 

came to non-pervasive causes that interacted with others or even just co-varied with them. In 

such cases, one would have to get a grip on the extent to which subjection to one of several 

possible correlatives of one cause was statistically associated with subjection to each of several 

correlatives of another non-pervasive cause, where each different correlative of one causal 

influence could potentially interact with each distinct correlative of the other. If one followed the 

practice of partitioning the population into distinct causal contexts, what is perhaps the natural 

way to handle such interactions, the number of partitions would increase very rapidly as more 

causes and correlatives of causes were added to the picture. Accordingly, an algorithm that 

permitted consideration of interactions among the sorts of causes I introduce by substitution 
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would have to be extremely complicated unless a general rule could be developed that reduced 

the handling of all interactions among the causes to a single policy that could be stated in a 

general way, without respect to the number of interacting causes. I have not so far been able to 

think up such a rule. 

8.1.2 Unspecified Functions 

Another limitation of the algorithm I offer is that it cannot be used to specify the character of a 

definite subset of functions that appear in classical population genetics equations. The algorithm 

is unhelpful about the character of function that take as arguments variables that appear 

elsewhere in the equations for the dynamics of the system, though sometimes only implicitly. As 

I noted earlier, frequency-dependent selection, temporally variable selection, and density-

dependent selection all involve modeling the impact of some quantity that is at least implicitly 

already in play in the basic equations used to model selection in simpler cases: relative frequency 

variables are what are weighted by the frequency-dependent selection functions used to model 

the impact of individuals on their contemporaneous fellows; time is implicitly in play in the 

contrast between next-generation frequencies and this generation frequencies (e.g., p′ vs. p); and 

population size must be determined before countenancing any causal influences over population 

dynamics (chapter 4). Moreover, various parameters in population genetics models are often 

functions of relative frequency variables, even though the algorithm does not present them as 

such. As a couple examples of this last sort of thing, consider assortative mating parameters and 

homing parameters. 

Consider the case of assortative mating first. In the algorithm as I have set it up, 

assortative mating functions are fixed parameters. But the disposition of one type of zygote to 

form a mating pair with another type of zygote must be sensitive to the relative frequency of the 
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various types of zygotes in the population, and this sensitivity may manifest itself in a variety of 

ways. Invariant dispositions to pair with the especially attractive types of zygote may be 

unrealistic for populations in which there may not be enough of the attractive zygotes to go 

around. We might expect other zygotes to be more disposed to settle on a less strongly preferred 

mate when the frequency of the preferred mate is low, but to be choosier when there are many of 

the preferred types around. The solution to this sort of difficulty is to present assortative mating 

parameters as complex functions of relative frequency parameters in the model, as is done for 

instance in Seger (1985). 

The algorithm does not say what function to use to set assortative mating parameters, and 

different ones may be appropriate for different populations. The algorithm fails by not being 

informative enough: it does not tell you what features of populations to look for to assign which 

functions for assortative mating parameters.  

As a second example of this phenomenon, consider the case of values for the h 

parameters from the non-pervasive ecological causal influence rule used to quantify the 

dispositions of individuals to be subjected to correlative of a non-pervasive ecological cause 

rather than another. The h parameters can be understood as homing parameters; they specify the 

extent to which individuals of each generation manage to seek out niches in which they are 

subject to a specific variety of non-pervasive causal influence in the environment, most plausibly 

ones especially conducive to their development. Sometimes, homing parameters are simply fixed 

coefficients, but homing parameters may also be presented as functions of relative frequencies, 

too. Again, realism is the motivating factor, as there may not be sufficient room in a preferred 

niche when the relative frequency of the variant that prefers that niche gets sufficiently high. 

Several theorists have suggested a variety of functions for homing parameters to accommodate 
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this (Templeton and Rothman 1981; Garcia-Dorado 1986; Hedrick 1990). Once again, the 

algorithm I developed does not present parameters measuring the extent to which an ecological 

influence is discriminate as functions of relative frequency variables. I present them as fixed 

parameters, even though they ought to be specified by functions in at least some cases. 

To be sure, there is nothing in the algorithm that prevents anyone elaborating it by 

replacing parameters with functions. The algorithm is not incompatible with more elaborate 

approaches to population genetics models that use functions in the place of parameters. Still, the 

failure of the algorithm fails to shed any light on when and how parameters should be specified 

by functions is a real limitation.  

8.1.3 The language of genetics 

We now come to the last of the major limitations of the algorithm: it makes heavy use of 

concepts proper to genetic systems. The reader might accordingly be suspicious of that usage in 

the context of this work, which is supposed to be a general account of selection theory, one that 

is supposed to present the theory as applicable to systems of genetic variations. Before 

embarking on the algorithm, I traded in the official vocabulary of this work, cause-talk, for the 

standard vocabulary of population genetics (allele, genotype, gamete, zygote, mating pair, etc). 

My ostensible reason for doing so was that the standard vocabulary was familiar and that I had 

offered parallel concepts using cause-talk for the vocabulary of population genetics (competitor, 

MICER, etc…). Because such things as gametes, zygotes, and mating pairs had been declared 

instances of more general notions understood in causal terms, the deployment of traditional 

vocabulary in the place of causal notions was deemed harmless and convenient.  

Still, the clear reliance on specifically genetic vocabulary raises the concern that the 

algorithm might not carry the same generality as is sought in this work because it will not work 
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for some competitors that are not alleles. Insofar as the algorithm is known to work, it is known 

to work because it generates textbooks models for the dynamics of systems delineated by their 

genetics variations. But perhaps there are competitors that are not enough like alleles for the 

algorithm to work for them, but are nonetheless still competitors according to my definition, and 

hence cannot be correctly processed by the algorithm. This difficulty is serious, because it brings 

into question whether there really is such a thing as selection theory, that is, whether selection 

theory is something other than just classical population genetics.  

One initial way that I can defend myself from the accusation that my algorithm has a 

more limited scope than my entrance rule is simply to point out that I have already been explicit 

that the algorithm has a more narrow application than does the entrance rule. The algorithm 

applies only to systems with discrete generations, or at most to ones that can be treated as though 

they had discrete generations. It also does not work for polyploids or bacteria that engage in 

parasexual processes. The reader can review section 5.3 where I make explicit all the limitations 

to the scope of the algorithm that I could recognize, though there may be more than I 

countenance there. It should be recognized that population geneticists deploy age-structured 

models as well as a considerable variety of alternative approaches to modeling selection, 

including Moran and Cannings models, the statistical moment approach, and approaches that 

take advantage of the formalism of quantitative genetics, each with their unique arrays of guiding 

assumptions. While all the systems covered by these alternative approaches are populations of 

competitors as I have defined “competitor” and “population,” it would not necessarily be 

appropriate to treat them using the algorithm I present. So my aim was never complete generality 

anyhow. 
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The force of the criticism that my entrance rule has a more general application than my 

cause-to-model algorithm can be further mitigated by pointing out that those who are pushing the 

importance of non-genetic inheritance systems have done little to show how instances of 

expanded inheritance could be mathematically modeled. Advocates of expanded inheritance, 

such as Griffiths and Gray, deploy faulty statements of the requirements for selection and then do 

little more than point out that such things as chromatin marking schemes may meet these 

requirements. Until it is demonstrated by the advocates of a particular sort of expanded 

inheritance how one might model these sorts of things, I will be unable to determine whether or 

not they fit the above algorithm at all. Still, for what it is worth and only as far as I can tell rival 

variant cell templates and rival host imprints could be treated as rival haploids are in the 

algorithm, while rival chromatin marking schemes could be treated as are rival alleles among 

diploids. 

However, even though my best guess is that the above algorithm would not have to be 

adjusted to handle these last cases of expanded inheritance, there is no reason to expect that the 

algorithm should generally be adequate for handling non-genetic systems. However, I think that 

demanding that the algorithm apply as is to novel inheritance structures, ones not yet considered 

by able-minded model-generating population geneticists, is to place too heavy a demand upon it. 

A weaker, and I think more reasonable demand, would be to require that the rules of the 

algorithm be sufficiently flexible that they could be adjusted to take into consideration novel 

sorts of systems, ones that are not, anyway, alleles or the sorts of individuals that I earlier defined 

in terms of the relationships borne by their constituent alleles. 

Few scientific theories are born full-fledged from the minds of their authors. Generally, 

they are expanded and amplified by a number of authors over a considerable length of time; 

 296



classical population genetics has certainly evolved in this way. My algorithm is supposed to be a 

formalization of (a fragment of a generalization of) classical population genetics, and, as 

classical population genetics evolves, the algorithm should accordingly be expected to develop 

with time, too. At least, it must be the sort of thing that could develop with time.  

Consider, for example, the hypothetical phenomenon of a species with three sexes. 

Clearly, the algorithm does not work for such systems since the sex index on the relative 

frequency terms ranges only from 0 to 2. However, it is fairly clear how the algorithm would 

have to be adjusted were we to find species with three sexes. We would permit the sex index to 

take on value 3, we would draw 1.5 times as many nodes representing zygotes as we would draw 

for otherwise similar systems with two sexes, we would make new rules for forming mating pairs 

from three-sex genotypes where three edges from nodes with distinct sex indices would converge 

on nodes representing next generation zygotes, and so on. The algorithm would not completely 

fall apart in the face of populations with three sexes, but rather it would have to be adjusted to 

accommodate the novelty. 

Similarly, it may turn out that colonial organisms, such as Portuguese man-o’wars, are 

MICERs formed from several different lineages of organisms. They may well be similar to 

mating pairs, but with more members. I don’t know enough about colonial organisms to tell 

whether this is the case. But if it did turn out that this was the case, I would have to write a new 

set of rules for drawing lifecycle graphs for such populations, ones in which more than two edges 

from the zygote stage would converge on a single node representing the colonial organism 

formed from zygotes individuated by their genotypes. Other adjustments would undoubtedly 

have to be made too, depending on the details of the reproduction of the colonial organism. But 

again, the algorithm would not fall apart but would simply have to be generalized somewhat. 
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So I claim that if the algorithm’s three main components, the decision tree, the graph-

drawing rules, and the substitution rules could be adjusted to comprise the novel systems, then 

the algorithm I present should not be impugned as a means of presenting the inner workings of 

selection theory, even though it has a more determinate application than does my entrance rule. 

Even though I have in no way provided a comprehensive account of selection theory, one that 

shows how to model every last system of competitors of interest, it may remain the case that I 

have offered a set of techniques for presenting such modeling practice in formal terms. In doing 

so, I have put forward a suggestion for a language that can be used to understand selection-

theoretic modeling. Just as one gets a grip on the natural numbers by learning how to count, 

rather than by counting them all, one can similarly get a grip on systems covered by selection 

theory through learning a set of techniques such as drawing lifecycle graphs, generating 

equations, and making substitutions on these to generate sytstems of equations for them.  
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 So selection theory might thus be something more determinate than just the causal 

modeling of a subset of worldly systems that ultimately bear nothing more in common than 

merely having been traditionally thought interesting by researchers able to generate dynamical 

models of population dynamics using implicit causal modeling techniques. At the same time, it 

might not be something so definite as to be presentable using a finite algorithm. Instead, 

selection theory might contain the resources to generate indefinitely many variant dynamical 

models, but require the deployment of a finite set of modeling techniques to do so, ones that can 

be used repeatedly and in varying combinations. The three main modeling techniques deployed 

in the algorithm, the decision tree, the lifecycle graphs, and the substitution rules, might provide 

a vocabulary sufficient to say what is peculiar about every last system that meets the entrance 

rule for the theory, without providing the means to list them all. If that is the case, then the fact 

that the algorithm functions only for a fragment of systems that fit the entrance rule is not 

damning. 

 

8.2 THE GENERALITY OF THE ENTRANCE RULE 

In the previous section, the concern was that systems that fit the proposed entrance rule might 

not be accurately processed by the algorithm I put forward in chapter 6. I now turn to discuss 

whether the entrance rule itself is too narrow in scope. That discussion will be inconclusive, 

though hopefully not uninformative. Mostly, it consists in a discussion of how one might 

approach the problem of determining whether the entrance rule proposed here is sufficiently 

general. It will turn out that I lack the necessary resources to take anything more than a tentative 

stance on the question. The discussion leads into a consideration of a number of future projects 

of research. 
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 In the first chapter of this work, I presented what I have been calling selection theory as a 

generalization of population genetics. There, I noted that just about everyone who studies natural 

selection in the abstract undertakes the same stance that I do, that the theory of natural selection 

applies to more systems than just those considered in its textbook formulations. I take a 

particular approach to generalizing selection theory: I use causal vocabulary to generalize the 

individual bits of biological vocabulary one finds in classical population genetics.  

 It is natural to wonder just how general is the generalization pursued here. In particular, 

the reader might want to know whether the entrance rule I propose encompasses every last 

system that has been said to undergo natural selection. If the circumstances under which 

selection theory may be deployed are set using my entrance rule, does the theory become 

sufficiently general to capture the dynamics of immunological systems, the dynamics of cultural 

variations, the development of neurological systems, and other systems that have been said by 

others to undergo selection (e.g., Hull, Glenn, and Langman 2001; Heinrich, Boyd, and 

Richerson 2008)?  
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 One possibility is that the generalization pursued above does in fact encompass every 

system that undergoes selection. Since that possibility is not threatening, let us move on to 

consider the possibility that the generalization of selection theory pursued in this work only 

covers some of the systems that undergo selection. The first thing to realize is that this is not the 

sort of determination at which I can arrive by measuring my entrance rule for selection theory 

against some other rule for determining what systems undergo selection, because if I had such an 

alternative rule, I would have used it as my entrance rule for selection theory. However, even 

without such a rule, we can still pursue the threatening possibility that the above account of 

selection theory fails to be as general as it could or should be. We can do this provided we have a 

grip on what would constitute a legitimate generalization of selection theory as I present it. 

For the sake of having some definite examples of systems that a legitimate generalization of 

selection theory might encompass, but which are excluded by the entrance rule that I have 

proposed, let’s consider two sorts of systems said by other writers to be undergoing selection: 

• Heinrich and Boyd (2002) consider a system of cultural variants, differing mental 

representations of the moon. The variants blend into one another on a scale between two 

extremes. At the first extreme is a conception of the moon as lacking in intentional 

attributes, while at the opposite extreme is a conception of the Moon according to which it 

has a full array of folk psychological states. In the model, mental representations tend to 

produce more extreme descendants, rather than producing descendants of the same type as 

themselves. 

• Szathmary (1999) suggests that replicators from the early history of life on Earth did not 

compete, though they underwent selection. Because these early replicators impeded their 

own replication, their dynamics were not marked by the struggle for existence, but instead 
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by the “survival of everybody,” a situation conducive to the maintenance of a variety of 

different types of replicators and hence to the possibility of assembling these into more 

complex systems.  

My entrance rule for selection theory definitely excludes both these sorts of systems because I 

require that entities that undergo selection produce descendants of the same type as themselves 

and I require that they compete. The moon concepts in Heinrich and Boyd’s model do not 

produce descendants of the same type as themselves; Szathmary’s early replicators do not 

compete.30 

 As part of his (1999) work, Szathmary takes an explicit general stance on the 

requirements for selection: 

1. Multiplication. Entities should give rise to more entities of the same kind. 
2. Heredity. Like begets like; A-type entities produce A-type entities; B-type entities 

produce B-type entities; etc. 
3. Variability. Heredity is not exact; occasionally A type objects give rise to A’ type objects 

(it may be that A’ = B). (1999, 31) 
4.  

Szathmary’s statement of the requirements for selection and mine are similar. Szathmary’s first 

two conditions are essentially the same as my condition that competitors produce descendants of 

the same type as themselves. Szathmary gets variation into his system through his third 

condition, something that I do as part of my competition requirement. Since a system with 

competitors is a determinate sort of system with variation, my statement of the requirements for 

selection is more specific than Szathmary’s and accordingly his stands as a generalization of 

mine. 

                                                 
30 I note that Boyd and Richerson, along with Szathmary, mean to use their models for the same purposes that I pick 
out as the purposes of selection theory. Heinrich and Boyd’s model shows how adaptive evolution of culture toward 
improved conceptions could occur; Szathmary means to show how a widespread polymorphism among early 
replicators could occur. So it is not the case that these theorists are pursuing a different type of explanation than that 
provided by selection theory as I construe it.  
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If we are to consider whether my account of selection theory is too narrow for excluding 

the systems said by Heinrich and Boyd and Szathmary to be undergoing selection, we must take 

it that theories are definite sorts of things. Our criterion for what constitutes a legitimate 

generalization of a theory must involve some definite position on what are and are not scientific 

theories. What’s more, it will require a more determinate stance on this question than the ones 

taken up by advocates of the syntactic and semantic views of scientific theories. None of this is 

obvious, so I argue for these claims now. 

To begin, consider how any theory combined with any other theory would yield 

something more general than either one alone. For instance, selection theory plus quantum 

mechanics is more general than just selection theory alone. But a generalization of selection 

theory that combined it with quantum mechanics would produce a strange amalgam; a 

generalization of this sort would not constitute an advance. Though I have not specified where 

the distinction lies, the contrast between legitimate generalizations and illegitimate amalgams 

does make sense: We would all agree that Newton’s classical mechanics is a generalization of 

Kepler’s theory of celestial mechanics and a major scientific advance. In contrast, Newton’s 

theory combined with nineteenth century political economy might be a generalization of both 

theories in some logical sense, but it would not be an advance on either theory. 

Since there is no question that selection theory plus quantum mechanics is more general 

than selection theory, in a strictly logical sense of “general,” and further since we must 

delegitimize amalgams of this sort in some way or another in order even to pursue the question 

of whether the entrance rule for selection theory offered here is too narrow, therefore we must 

ban such amalgams on the grounds that they are not scientific theories, which plainly they are 

not. Thus, negotiating the question of whether one has a sufficiently general account of a theory 
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requires a definite conception of what constitutes a theory, that is, a rule to determine what does 

and does not count as a scientific theory, a rule that would capture the intuitively compelling fact 

that selection theory plus quantum mechanics is not a single scientific theory, and neither is 

classical mechanics plus political economy. Furthermore, the rule that supplies us with those 

judgments must present scientific theories as more definite sorts of things than just collections of 

propositions, families of mathematical models, or systems of partially interpreted equations, 

since our mere amalgams could easily qualify as any of these. 

 I do not have a rule for deciding what does and what does not count as a scientific theory, 

but I think that such a rule is worth pursuing. For one thing, it is worth pursuing because it would 

help settle the issue of when a generalization of a theory constitutes an advance. Furthermore, it 

is worth pursuing because the problem of confirmation is driven to no small extent by 

conceptions of scientific theories that are too permissive. Philosophers have attempted to make 

explicit under what conditions evidence favors some theory, especially how it favors one theory 

over another, but many proposals for understanding the relation between theory and evidence 

have been subject to counterexamples that depend on the legitimacy of conceiving of theories as 

collections of propositions to which one can add propositions at will. The infamous tacking 

problem, for instance, depends on our ability to append an arbitrary proposition to a scientific 

theory for which we have some evidence so as to illegitimately garner evidential support for the 

tacked on claim. If we are to solve the problem of confirmation, to say what the relationship 

between some theory and some evidence must be in order for the latter to confirm the former, I 

suspect that we need to conceive of theories as more definite sorts of things than just collections 

of propositions to do so. Constraining what counts as a scientific theory would, anyway, provide 

a simple way to avoid the tacking problem and many similar problems. 
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 Even though I lack a general rule for deciding what counts as a scientific theory, I do 

have an inferentialist account of one theory, a generalization of classical population genetics. If 

we assume that this sort of account of what scientific theories are is at least somewhat 

generalizable, we can consider the question of what a generalization of selection theory would 

have to look like in order to constitute an advance.  

For starters, it should be clear that one could not tack on the claim, “the sky is blue,” to 

selection theory as presented here because this statement cannot be integrated into the set of 

inferential rules that constitutes the theory. The statement makes no contribution to determining 

over what sorts of systems the theory can be deployed, it does not help us attach specific natural 

systems to specific mathematical models, and it is not a bit of mathematics that allows us to 

calculate system dynamics. 

 Generalizing from this example, I have some ideas about what a generalization of 

selection theory should like look like on the inferentialist approach taken here. A generalization 

of selection theory would constitute a generalization of the rules that constitute the theory. To 

avoid licensing strange amalgams, I suggest that such generalizations must proceed in a 

piecemeal fashion, with the rules being generalized one at a time while those that are not being 

generalized are held fixed. So, a generalization of the entrance rule for the theory would be 

legitimate if the dynamics of the novel systems allowed in could be inferred using the existing 

set of rules for attaching natural systems to mathematical models. At least some of the systems 

that developmental system theorists discuss when advocating for their generalization of selection 

theory are of this sort: variant lineages of endosymbionts among aphids could be treated as are 

variant alleles in selection theory (Griffiths and Gray 2001, 198). Generalizations of the rules for 

assigning dynamical models to systems that already meet the entrance rule for the theory would 

 305



equally constitute legitimate advances, provided they apply to the old sorts of systems. All the 

theoretical advances in population genetics modeling developed after the theory was initially put 

forward, such as Levene’s developmental of variable selection models (Levene 1953), are 

generalizations of this sort, since they apply to systems of individuals differentiated by genetic 

variations. 

  Note that if we don’t hold either the entrance rule or the guts of the theory fixed when 

we generalize the other, we cannot exclude the amalgam of selection theory and quantum 

mechanics from counting as a legitimate generalization of either theory. To see this, assume for 

the sake of argument that quantum mechanics can be understood in the same sort of inferentialist 

terms I have used to understand selection theory. The selection theory/quantum mechanics 

amalgam would just be a theory with a more general entrance rule and a theory with a greater 

number of rules for inferring system dynamics. The entrance rule would require that a target 

system either be a competitor or a system of subatomic particles. The former would be treated 

with the rules offered above and the latter would be treated with quantum mechanics. The very 

first rule in the body of the theory would determine whether the system should be treated using 

the machinery of selection theory or that of quantum mechanics. That machinery would then 

operate just as before, allowing the scientist to draw implications about system dynamics. 

However, if we refuse to allow the guts of the selection theory and the entrance rule for it 

to be generalized at once, we can prohibit the selection theory/quantum mechanics amalgam. 

This is so, anyway, if we add a further proviso against useless rules. To see this, note that the 

dynamics of competitors cannot be calculated in the same fashion as are the dynamics of 

subatomic particles, so we could not generalize selection theory by adding to it the calculational 

machinery of quantum mechanics while holding fixed the entrance rule of selection theory. Such 
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a generalization would simply amount to the addition of useless rules. Similarly, one cannot 

make truth-preserving inferences about the dynamics of subatomic particles using the 

calculational machinery of selection theory, so one could not hold that machinery fixed and 

generalize the entrance rule of selection theory to include subatomic systems. 

A slightly weaker proposal than the one just rehearsed would allow the generalization of 

the entrance rule for the theory coupled with a generalization of some the rules for inferring 

system dynamics, provided that some of the old rules applied to the new sorts of systems. In the 

algorithm of chapter 6, different systems are treated differently in systematically different ways. 

We get different lifecycle graphs for diploids and haploids, for instance, ones from which 

different equations are derived, equations that are then fed into the rules for making generalizing 

substitutions. Those substitution rules, however, are the same for both diploids and haploids. 

Even though these two sorts of systems are treated differently initially, they are treated in the 

same way in other respects later on. A more lenient approach to generalization would allow the 

introduction of novel sorts of systems along with novel calculation machinery for assigning 

mathematical models to systems, provided the new calculation machinery could be integrated 

with old machinery in this sort of way. Wholly new machinery to go with wholly new sorts of 

systems would still be banned. 

I recognize that such talk of the integration of new rules with old ones is indeterminate; I 

have merely pointed to a sort of integration exhibited by the account of selection theory I have 

offered to get the idea across. But the selection theory / quantum mechanics amalgam would not, 

presumably, show this sort of integration. This is because as soon as one had determined that one 

had a system that fit the entrance rule of the amalgam, one would have decide whether to 

calculate its dynamics using the rules drawn from selection theory or those drawn from quantum 
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mechanics. The theory would send each sort of system down a separate stream, where the rules 

for calculating the dynamics of systems on one stream would no appear among the rules for 

calculating the dynamic of systems on the other stream. 

It is worth noting that the arguments used in the second chapter of this work against rival 

conceptions of the requirements for selection fit with the understanding of generalization 

presented here. Besides arguing that circular and incomplete presentations of a theory are faulty, 

I claimed in chapter 2 that resemblance selectionist accounts of the requirements for selection 

were too narrow. They excluded systems that should be included as ones undergoing selection. 

My reasoning in that first chapter was essentially that we can treat the excluded systems using 

the same apparatus that is used for systems already recognized as undergoing selection. For 

instance, Lewontin’s exclusion of systems that do not evolve, such as ones that exhibit 

overdominance, is a mistake because the dynamics of such systems can be handled with the same 

machinery as those that do evolve. Whether or not a system exhibits overdominance is just a 

matter of the values for the variables in the mathematical model of its dynamics, and the same 

goes for many other systems that exhibit stable polymorphisms. The upshot is that we can hold 

fixed the calculational apparatus of the theory, what we use to assign mathematical models to 

systems, and painlessly allow in systems exhibiting overdominance and ones that do not evolve. 

We can do the same with systems that do not exhibit the inheritance of fitness or phenotype 

owing to gene-by-sex, or gene-by-environment interactions.  

 Assuming that we can in fact negotiate the threatening possibility that the account of 

selection theory offered here is too narrow in the manner I have suggested, then we have arrived, 

finally, at a definite way of framing that issue. I earlier asked whether every last system said to 

undergo selection fit my entrance rule for selection theory. Since no one is ever in a position to 
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measure a rule they endorse for determining the scope of some theory against another non-

identical rule that they think really determines the correct scope of a theory, the threatening 

possibility that the account of selection theory offered here is too narrow should instead be 

arbitrated by determining whether the account could be generalized in a non-trivial way that 

generates an advance. So it is now at least possible at least to rigorously pose the question of 

whether Szathmary’s systems of early replicators, and Boyd and Richerson’s moon model, are 

models of selection: can one generalize selection theory to accommodate these sorts of systems 

so as to yield an advance?  

I have not done nearly enough research into the mathematical modeling of early life on 

Earth to determine whether models of the dynamics of early replicators are generalizations of 

selection theory according to the criterion just constructed. As noted earlier, Szathmary’s 

statement of the requirements for selection is a generalization of mine, but the question of 

whether it is a generalization that is also an advance hinges on whether the same set of rules for 

calculating the dynamics of the more determinate set of systems I consider can be deployed over 

systems that I rule out, but that Szathmary lets in. On the face of it, there is a real possibility that 

my rules cannot work for the systems that Szathmary, but not I, would regard as undergoing 

selection, because my rules deploy the notion of competition; most saliently my population 

circumscription rule requires that candidate population members compete with individuals 

already part of the population. But perhaps these rules and others in the “guts” of my proposal, 

ones that feature the notion of competition, could be generalized, too, while other rules from the 

guts of the theory that do not involve competition could be preserved. This would be legitimate 

on the more lenient proposal considered above for what constitutes a generalization that is an 

advance. Here, anyway, is an opportunity for further post-dissertation research. 

 309



 What about the Heinrich and Boyd moon model? My suspicions are that this model 

should not be regarded as part of selection theory. My basis for this view is that those authors use 

the Price equation to calculate the long-run dynamics of their system. Those authors set values 

for variables in the Price equation with functions that are supposed to specify the causal impacts 

of the causes in their model, specifically, the attractiveness of unambiguous moon conceptions 

and the selection pressure against the conception of the moon as having intentionality. This 

means that the system Heinrich and Boyd consider is very different from those over which 

selection theory is deployed, because one cannot calculate the dynamics of systems of 

competitors in this way. Except for a very few systems in which evolution is constant, the Price 

equation cannot be used to explain the dynamics of systems of variant competing alleles. Indeed, 

the Price equation cannot even be used even to infer the dynamics of systems of competitors, for 

it requires one to already understand the dynamics of one’s system in order to fix the values for 

its variables.31  

Thus, insofar as the dynamics of a system can be modeled using the Price equation, the 

system is sufficiently different from the sorts of populations considered in classical population 

genetics that it should be treated as failing under the purview of a different theory. A version of 

selection theory that was general enough to encompass both classical population genetics and the 

Heinrich and Boyd moon model, with its use of the Price equation as a dynamical modeling tool, 

would be an amalgam. Such an amalgam would require one to decide right off the bat whether 

one was dealing with a cultural system of the sort Heinrich and Boyd consider, for which the use 

                                                 
31 There is an approach to modeling systems of the sort treated in classical population genetics using roughly the 
same scheme as the Price equation, in which dynamics are the product of differential selection and transmission 
bias. The approach is exceedingly complex; indeed a two-allele, two-locus system features 255 free coefficients in 
the function used to compute the impact of differential selection (Kirkpatrick, Johnson, and Barton 2002, 1732). 
Anyhow, the Price equation, a simple sum of two statistical parameters, is not up to the task of inferring system 
dynamics. 
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of the Price equation as a recursive model would be legitimate32, or a system of variant alleles 

(or competitors) for which it would (nearly always) fail to be legitimate. Each sorts of system 

would then be handled each according to its own set of rules for generating mathematical mod

of system dynamics. If I am right about all this, then, as it turns out, the dynamics of cultur

variants, at ones of the sort Heinrich and Boyd consider, are handled using a different theory than 

are the dynamics of genetic variants.  

els 

al 

                                                

 

8.3 FUTURE RESEARCH 

At this point, I list and discuss some post-dissertation research projects that grow out of the work 

done here. 

• Many writers the theory of natural selection through consideration of the Price 

equation and it is one of my post-dissertation projects to write a critique of the 

widespread contemporary handling of causal and explanatory questions about 

population dynamics through the formalism provided by the Price equation. This 

would give my work some relevance to the broader philosophy of biology community, 

members of which tend increasingly to see the study of selection through the lens of 

the Price equation. Importantly, the causal construal of what explains population 

dynamics offered here is at odds with what authors working with the Price equation 

claim explains the dynamics of the same systems. If the causal explanation of the 

dynamics of systems that I advocate is correct, the explanations pursued by those who 

 
32 Presuming it would, in fact, be legitimate. While I am suspicious of Heinrich and Boyd’s use of the Price equation 
as a causal model, I cannot contest that usage in the same way I could context the use of the Price equation as a 
causal model for the dynamics of systems of alleles. In this latter case, I can show that the Price equation cannot be 
used to make inferences about long-run system dynamics when its variables are set by fixed functions. This can be 
done by showing that treating systems of alleles in this way would yield inferences that are incompatible with the 
ones generated by classical population genetics equations. But I have no alternative formalism for inferring the 
dynamics of the sort of cultural system that Boyd and Richerson consider.  
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deploy the Price equation must be wrong. My job talk brought this out with respect to a 

single model, the most commonly discussed model of “group selection.” Talk of group 

selection as a causal influence over population dynamics quantified by a covariance 

parameter strikes me as grossly misplaced; my algorithm does not contemplate such 

causal influences yet it generates “group selection” models. Covariances and other 

statistical quantities that are labeled “group selection,” “collective-level selection,” 

“particle-level selection” may arise owing to a variety of different causal scenarios, 

they can occur for a variety of different sorts of groupings, and the explanation of 

dynamics in each case should be different. Furthermore, the Price equation cannot 

function as a tool for making inferences about the long-run dynamics of natural 

populations because its right-hand side quantities change in value as the population 

evolves, and they do so in a way that cannot be inferred using the Price equation. This 

fact has largely gone unnoticed, though Kerr and Godfrey-Smith recognize it (Kerr and 

Godfrey Smith 2008, 533). Anyhow, if inference is understood as a necessary 

condition for explanation, the Price equation cannot be understood as even a candidate 

explainer of the dynamics of systems governed by classical population genetics. 

• I would like to pursue a definite conception of what scientific theories are that is up to 

two tasks: first, it must make sense of our intuitive judgments about which sorts of 

generalizations of scientific theories are advances and which are not; second, it must 

prohibit amalgams of the sort that are offered as counterexamples to accounts of the 

relationship between theory and evidence. The semantic and syntactic accounts of 

scientific theories currently on offer are too loose to perform these tasks, and it is not 

clear to me what work they are supposed to do. The project of delineating scientific 
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theories could be pursued as part of a more general attempt to contribute to our 

understanding of how theory relates to evidence, though that problem looks 

exceedingly difficult to solve. I suspect categorial grammar may be useful as a 

formalism to approach that last problem though. 

• I could initially approach the development of a more general account of scientific 

theories through consideration of other specific theories. One suspicion I have 

developed from this dissertation work is that causal notions may lie behind crucial bits 

of vocabulary and modeling procedures in other special sciences. A natural choice as a 

test case for this possibility is micro-economics owing to the influence of Malthus over 

both Darwin and Wallace. Does classical microeconomics have an entrance rule? Are 

the sorts of systems over which that theory is deployable describable in causal terms? 

Can an account of which equations get deployed over which systems be generated out 

of causal understanding? Is a firm a specific sort of causal system? Perhaps even an 

inferentialist theory of theories is worth pursuing if it turns out that microeconomics 

and other theories can be tackled in the same way as selection theory has been tackled 

here. 

• I am especially interested in the potential to use my NINPICs to explain error terms in 

microeconomics and perhaps elsewhere, too. Error terms, ui, are often treated as 

random variables with definite probability distributions, in favorable cases these ones: 

o E(ui) = 0,  

o homoscedasticity or constancy of the variance of the ui across different values of 

the other RHS variables 

o statistical independence or absence of auto-correlations in the ui 
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o statistical independence of the error term and other RHS variables. (Woodward 

2003, 316) 

The above list is a list of facts about the sort of influence that error terms can be 

expected to have. It is akin to the definition of drift that makes it a “non-directional” 

influence. A better definition of what produces error would define error terms by 

reference to the sorts of causal influences that have the features listed above, that is, 

those that have the above list of features as implications. I suspect that error terms that 

have the above four features quantify the influence of NINPICs. 

• As it currently stands, the algorithm is in need of work. Here are some more significant 

improvements I could make: 

o I could capture a greater number of temporally variable selection models if I drew 

graphs for multiple lifecycles, thereby making it possible to ascribe different 

relative fitness coefficients to different individuals at different times. As it stands, 

temporally variable selection models contain unspecified functions, but these 

could be replaced in at least some instances for systems with multi-generational 

lifecycle graphs.  

o I could add a consideration Kimura’s concept of quasi-linkage equilibrium 

(Kimura 1965), or perhaps a generalization of it of the sort considered by 

Kirkpatrick, Johnson, and Barton for use in the statistical moment approach to 

modeling system dynamics (2002). A population is in quasi-linkage equilibrium 

when the statistical associations between genes at different loci are evolving 

slowly enough that they can be treated as effectively unchanging. Under such 

circumstances, it is possible to deploy single-locus models for populations of 
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alleles even when alleles at other loci exert discriminate and/or interactive causal 

influences over them. Under quasi-linkage equilibrium, one can average over the 

influence of alleles at other loci because the extent and character of their influence 

remains pretty much invariant from generation to generation. In the decision-tree 

portion of the algorithm, I claimed that a multi-locus model is necessary 

whenever genes at other loci exert discriminate or interactive causal influences 

over population dynamics, but in fact that assertion is too strong. Getting a grip on 

when quasi-linkage equilibrium holds in causal language would put me in a 

position to modify the decision-tree portion of the algorithm such that it would 

license a broader deployment of single-locus models, a boon since these are the 

simplest ones. 

o The algorithm could very likely also be modified in more fundamental ways so as 

to be less unwieldy. Ideally, the algorithm could be written such that either the 

graphical stage or the substitutional stage of the algorithm is eliminated. Perhaps I 

could find a way of accomplishing what is accomplished now by the graphical 

portion of the algorithm using substitution rules. I have not tried as hard as I 

might to accomplish this, and it may very well be possible. An algorithm that 

involved only fewer steps would be a tidier affair, even if a large number 

substitution rules had to be constructed. On the other hand, I could accomplish 

what is now accomplished by substitution rules through the use of rules for both 

drawing and manipulating causal graphs to produce a figure that shows and 

quantifies every causal fact necessary to model population dynamics. I did not 

take this approach in the dissertation because doing so would require deploying 
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• Lastly, I would like to pursue research into the major transitions in evolution. This 

would allow me to determine whether the entrance rule for selection theory could be 

generalized in some way that would allow in replicators that do not compete, as 

discussed above. But furthermore, one promising avenue of investigation would be to 

pursue the implications of the distinction between sub-groups and MICERs. 

Sometimes, the question of how multi-cellularity might have evolved is pursued by 

treating composite bodies, such as multi-cellular organisms, as groups of more basic 

components, such as single-celled organisms (e.g., Michod 1999). It is a critical feature 

of population genetics modeling that zygotes and sub-groups are different sorts of 

things. These two sorts of groupings play mathematically distinct roles in population 

genetics, and, accordingly, showing how a population might evolve such that its 

members form subgroups of one sort or another falls short of showing how it might 
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evolve such that its members form MICERs. So, one avenue for investigation would be 

to consider whether the sorts of composite bodies considered in the major transitions 

literature might all be better understood as MICERs than as subgroups, and, if so, 

whether the problem of how these things could have evolved could be advanced by 

relocating the focus from models involving subgroup formation to ones involving 

MICER formation. 

 317



 

 

BIBLIOGRAPHY 

 

Andrewartha, H.G., and L.C. Birch (1984), The Ecological Web. Chicago: University of Chicago 
Press. 

 
Ariew, Andre, and R. C. Lewontin (2004), "The Confusions of Fitness", British Journal for the 

Philosophy of Science 55 (2):347-363. 
 
Arnold, Anthony J., and K. Fristrup (1982), "The Theory of Evolution by Natural Selection: A 

Hierarchical Expansion", Paleobiology 8 (2):113-129. 
 
Avital, E., and Eva Jablonka (2000), Animal Traditions: Behavioral Inheritance in Evolution. 

Cambridge: Cambridge University Press. 
 
Bateson, Patrick (2006), "The Nest's Tale. A reply to Richard Dawkins", Biology and Philosophy 

21:533-558. 
 
Bayliss, Christopher D., Dawn Field, and Richard Moxon (2001), "The Simple Sequence 

Contingency Loci of Haemophilus Influenzae and Neisseria Meningitidis", Journal of 
Clinical Investigation 107 (6):657-662. 

 
Beatty, John (1984), "Chance and Natural Selection", Philosophy of Science 51:183-211. 
 
——— (1992), "Random Drift", in E.K. Keller and Elisabeth Lloyd (eds.), Keywords in 

Evolutionary Biology, Cambridge, MA: Harvard University Press, 273-281. 
 
Boyd, R., and Joseph Heinrich (2002), "Why Cultural Evolution does not Require the 

Replication of Representations", Journal of Cognition and Culture 2 (2):87-112. 
 
Brandom, Robert (1998), Making It Explicit. Cambridge: Cambridge University Press. 
 
Brandon, Robert (1990), Adaptation and Environment. Princeton: Princeton University Press. 
 
Changeux, Jean-Pierre, and Stanislas Dehaene (1989), "Neuronal Models of Cognitive 

Functions", Cognition 33:63-109. 
 
Christiansen, F. B., and T. Prout (2000), "Aspects of Fitness", in Rama S. Singh and Costas B. 

Krimbas (eds.), Evolutionary Genetics: From Molecules to Morphology, Cambridge: 
Cambridge University Press. 

 

 318



Christiansen, Freddy Bugge (1975), "Hard and Soft Selection in a Subdivided Population", 
American Naturalist 109 (965):11-16. 

 
Damuth, John (1985), "Selection among Species: A Formulation in Terms of Natural Functional 

Units", Evolution 39 (5):1132-1146. 
 
Darwin, Charles (1988[1859]), On the Origin of Species: A Facsimile of the First Edition. 

Cambridge, MA: Harvard University Press. 
 
——— (1989[1884]), The Different Forms of Flowers and Plants. Edited by P.H. Barrett and 

R.B. Freeman, The Works of Charles Darwin. New York: New York University Press. 
 
Dawkins, Richard (1982), The Extended Phenotype: the Gene as the Unit of Selection. New 

York: Oxford University Press. 
 
——— (2004), "Extended Phenotype - But not Too Extended.  A Reply to Laland, Turner, and 

Jablonka", Biology and Philosophy 19:377-396. 
 
de Meeûs, T., and J. Goudet (2000), "Adaptive Diversity in Heterogeneous Environments for 

Populations Regulated by a Mixture of Soft and Hard Selection", Evolutionary Ecology 
Research 2:981-995. 

 
Dessalles, Jean-Louis (2007), Why We Talk: The evolutionary origins of language. Translated by 

James Grieve. Cambridge: Oxford University Press. 
 
Dobzhansky, Th. (1970), Genetics of the Evolutionary Process. New York: Columbia University 

Press. 
 
Earman, John, and John Roberts (1999), "Ceteris Paribus There Are No Provisos", Synthese 

118:438-479. 
 
Earman, John, John Roberts, and Sheldon Smith (2002), "Ceteris Paribus Lost", Erkenntnis 57 

(3):281-301. 
 
Endler, John (2000), "Adaptive Genetic Variation in the Wild", in Timothy Mousseau, Barry 

Sinervo and John Endler (eds.), Adaptive Genetic Variation in the Wild, New York: 
Oxford University Press. 

 
Ewens, Walter J. (2004), Mathematical Population Genetics: 1. Theoretical introduction. 

Second ed. New York: Springer-Verlag. 
 
Fisher, R.A. (1918), "The Correlation Between Relatives on the Supposition of Mendelian 

Inheritance", Royal Society of Edinburgh 52:399-433. 
 
——— (1930), The Genetical Theory of Natural Selection. Oxford: Clarendon Press. 
 

 319



Franklin, I., and R. C. Lewontin (1970), "Is the Gene the Unit of Selection?" Genetics 65:707-
734. 

 
Futuyama, D. J. (1998), Evolutionary Biology. Sunderland, MA: Sinauer Associates. 
 
Gale, Jeff (1990), Theoretical Population Genetics. London: Unwin Hyman Ltd. 
 
Gannett, Lisa (2003), "Making Populations: Bounding Genes in Space and in Time", Philosophy 

of Science 70:989-1001. 
 
Garcia-Dorado (1986), "The Effect of Niche Preference on Polymorphism Protection in a 

Heterogenous Environment", Evolution 40:936-945. 
 
Gavrilets, Sergey, and William R. Rice (2006), "Genetic models of homosexuality: generating 

testable predictions", Proceedings of the Royal Society B 273:3031-3038. 
 
Ghiselin, Michael T. (1974), The Economy of Nature and the Evolution of Sex. Berkeley: 

University of California Press. 
 
Gigord, L. D. B., M.R. Macnair, and A. Smithson (2001), "Negative Frequency-Dependent 

Selection Maintains a Dramatic Flower Color Polymorphism in the Rewardless Orchid 
Dactylorhiza sambucina", Proceedings of the National Academy of Sciences, USA 98 
(6253-6255). 

 
Gildenhuys, P. (forthcoming), "Causal Equations without Ceteris Paribus Clauses", Philosophy 

of Science. 
 
Gildenhuys, Peter (2003), "Darwin, Herschel, and the Role of Analogy in Darwin's Origin", 

Studies in History and Philosophy of Biological and Biomedical Sciences 35:593-611. 
 
——— (2008), "An Explication of the Causal Dimension of Drift", British Journal for the 

Philosophy of Science [forthcoming] http://tinyurl.com/4l4e7f. 
 
Gillespie, John (1991), The Causes of Molecular Evolution. Oxford: Oxford University Press. 
 
——— (1998), Population Genetics: A Concise Guide. Baltimore, Maryland: The Johns 

Hopkins University Press. 
 
Glymour, Bruce (2006), "Wayward Modeling: Population Genetics and Natural Selection", 

Philosophy of Science 73:369-389. 
 
Glymour, Clark, Richard Scheines, and Peter Spirtes (1993), Causation, Prediction, and Search. 

Cambridge, MA: MIT Press. 
 
Godfrey-Smith, Peter (2000), "The Replicator in Retrospect", Biology and Philosophy 15 

(3):403-423. 

 320



 
Godfrey Smith, Peter (2000), "The Replicator in Retrospect", Biology and Philosophy 15 

(3):403-423. 
 
Godfrey Smith, Peter, and Benjamin Kerr (2002), "Individualist and Multi-level Perspectives on 

Selection in Structured Populations", Biology and Philosophy 17:477-517. 
 
Gould, Stephen J. (2002), The Structure of Evolutionary Theory. Cambridge: Harvard University 

Press. 
 
Gould, Stephen J., and R. C. Lewontin (1979), "The Spandrels of San Marco and the Panglossian 

Paradigm", Proceedings of the Royal Society of London 205 (1161):581-598. 
 
Griesemer, James (2000), "Development, Culture, and the Units of Inheritance", Philosophy of 

Science 67 (Supplement. Proceedings of the 1998 Biennial Meetings of the Philosophy of 
Science Association. Part II: Symposia Papers):S348-S368. 

 
——— (2000), "The Units of Evolutionary Transition", Selection 1:67-80. 
 
Griffiths, P. E., and R. D. Gray (1994), "Developmental Systems and Evolutionary Explanation", 

The Journal of Philosophy 91 (6):277-304. 
 
——— (2004), "The Developmental Systems Perspective: Organism-environment systems are 

units of evolution", in K Preston and M Pigliucci (eds.), The Evolutionary Biology of 
Complex Phenotypes, New York: Oxford University Press, 1-23. 

 
Griffiths, P. E., R. D. Gray, and Susan Oyama (2001), "What is Developmental Systems 

Theory?" in Susan Oyama, P. E. Griffiths and R. D. Gray (eds.), Cycles of Contingency, 
Cambridge, MA: MIT Press. 

 
Griffiths, P. E., and Russell D. Gray (2001), "Darwinism and Developmental Systems", in Susan 

Oyama (ed.), Cycles of Contingency, Cambridge, MA: MIT Press, 195-218. 
 
Griffiths, P. E., and Eva M. Neumann-Held (1999), "The Many Faces of the Gene", Bioscience 

49 (8):656-662. 
 
Griffiths, Paul E., and Russell D. Gray (1997), "Replicator II--Judgement Day", Biology and 

Philosophy 12 (4):471-492. 
 
Griffiths, Paul E., and Robin D. Knight (1998), "What Is the Developmentalist Challenge?" 

Philosophy of Science 65 (2):253-258. 
 
Hamilton, W.D. (1964), "The Genetical Evolution of Social Behavior I and II", Journal of 

Theoretical Biology 7:1-16; 17-52. 
 

 321



Hanski, I, and M Gilpin, eds. (1996), Metapopulation Dynamics, Ecology, Genetics, and 
Evolution. New York: Academic Press. 

 
Hartl, Daniel, and Andrew Clark (2007), Principles of Population Genetics. Sunderland, MA: 

Sinauer Associates. 
 
Hartl, Daniel., and Andrew Clark (1988), Principles of Population Genetics. Sunderland, MA: 

Sinauer Associated. 
 
Hedrick, Philip W. (1990), "Theoretical Analysis of Habitat Selection and the Maintenance of 

Genetic Variation", in J.S.F. Barker, W.T. Starmer and R. McIntyre (eds.), Ecological 
and Evolutionary Genetics of Drosophila, New York: Plenum. 

 
——— (1993), "Sex-Dependent Habitat Selection and Genetic Polymorphism", American 

Naturalist 141 (3):491-500. 
 
——— (2000), Genetics of Populations. Second ed. Sudbury, MA: Jones and Bartlett 

Publishers. 
 
——— (2005), Genetics of Populations. Third ed. Boston: Jones and Bartlett. 
 
Heinrich, Joseph, R. Boyd, and P.J. Richerson (2008), "Five Misunderstandings about Cultural 

Evolution", Human Nature 19:119-137. 
 
Heinrich, Joseph, and Robert Boyd (2002), "On Modeling Cognition and Culture: Why cultural 

evolution does not require replication of representations", Journal of Cognition and 
Culture 2 (2):87-112. 

 
Hori, Michio (1993), "Frequency-Dependent Natural Selection in the Handedness of Scale-

Eating Cichlid Fish", Science 260:216-219. 
 
Huffaker, C.B., A.A. Berryman, and J.A. Laing (1984), Ecological Entomology. New York: 

Academic Press. 
 
Hull, David L. (1980), "Individuality and Selection", Annual Review of Ecology and Systematics 

11:311-332. 
 
——— (1988), Science as a Process: An Evolutionary Account of the Social and Conceptual 

Development of Science. Chicago: University of Chicago Press. 
 
——— (2001), Science and Selection: Essays on biological evolution and the philosophy of 

science. Cambridge: Cambridge University Press. 
 
Hull, David L., Sigrid Glenn, and Rod Langman (2001), "A General Analysis of Selection", in 

David L. Hull (ed.), Science and Selection, Cambridge: Cambridge University Press. 
 

 322



Human, Kathleen, and Deborah Gordon (1996), "Exploitation and Interference Competition 
between the Invasive Argentine Ant, Linepithema humile, and Native Ant Species", 
Oecologia 105:405-412. 

 
Jacquard, Albert (1974), The Genetic Structure of Populations. New York: Springer-Verlag. 
 
Keller, Laurent, and Kenneth Ross (1998), "Selfish genes: a green beard in the red fire ant", 

Nature 395:572-575. 
 
Kerr, Benjamin, and Peter Godfrey-Smith (2002), "Individualist and Multi-level Perspectives on 

Selection in Structured Populations", Biology and Philosophy 17:477-517. 
 
Kerr, Benjamin, and Peter Godfrey Smith (2008), "Generalization of the Price Equation for 

Evolutionary Change", Evolution 63 (2):531-536. 
 
Kimura, M. (1965), "Attainment of Quasi Linkage Equilibrium when Gene Frequencies Are 

Changing by Natural Selection", Genetics 52 (5):875-890. 
 
Kirkpatrick, Mark, Toby Johnson, and N. H. Barton (2002), "General Models of Multilocus 

Evolution", Genetics 161:1727-1750. 
 
Kitcher, Philip (1985), "Darwin's Achievement", in Nicholas Rescher (ed.), Reason and 

Rationality in Natural Science, Boston, MA: University Press of America, Inc. 
 
Kitcher, Philip, and K. I. M. Sterelny (1988), "The Return of The Gene", Journal of Philosophy 

85:339-361. 
 
Lanning, Dirk V., and James T. Shiflett (1983), "Nesting Ecology of Thick-Billed Parrots", The 

Condor 85 (1):66-73. 
 
Lapedes, D.N., ed. (1978), McGraw-Hill Dictionary of Scientific and Technical Terms. 2nd ed. 

New York: McGraw-Hill. 
 
Leigh, Egbert Giles (1999), "Levels of Selection, Potential Conflicts, and Their Resolution: The 

Role of the "Common Good" ", in H.K. Reeve and E. Keller (eds.), Levels of Selection in 
Evolution, Princeton, NJ: Princeton University Press, 15-30. 

 
Lennox, James (1991), "Darwinian Thought Experiments: A Function For Just So Stories", in T. 

Horowitz and G. Massey (eds.), Thought Experiments in Science and Philosophy, 
Savage, Md.: Rowman and Littlefield, 173-195. 

 
Lennox, James, and Bradley E. Wilson (1994), "Natural Selection and the Struggle for 

Existence", Studies in History and Philosophy of Science 25 (1):65-80. 
 
Levene, H. L. (1953), "Genetic Equilibrium When More Than One Ecological Niche is 

Available", The American Naturalist 87 (836):331-333. 

 323



 
Levins, Richard (2004), "Toward a Population Biology, Still", in Rama S. Singh and Marcy K. 

Uyenoyama (eds.), The Evolution of Population Biology, Cambridge: Cambridge 
University Press, 21-47. 

 
Lewontin, R. C. (1970), "The Units of Selection", Annual Review of Ecology and Systematics 

(1):1-18. 
 
——— (1974), The Genetic Basis of Evolutionary Change. New York: Columbia University 

Press. 
 
——— (1978), "Adaptation", Scientific American 239 (3):213-230. 
 
——— (1991), Biology as Ideology. New York: Harper. 
 
Lloyd, Elisabeth (1992), "Unit of Selection", in Elisabeth Lloyd and E. Keller (eds.), Keywords 

in Evolutionary Biology, Cambridge: Harvard University Press. 
 
Lyell, C. (1969[1830]), Principles of Geology. New York: Johnston Reprint Company. 
 
Matthen, Mohan, and Andre Ariew (2002), "Two Ways of Thinking about Fitness and Natural 

Selection", The Journal of Philosophy XCIX (2):55-83. 
 
——— (2005), "How to Understand Causal Relations in Natural Selection: Reply to Rosenberg 

and Bouchard", Biology and Philosophy 20:355-364. 
 
Maynard-Smith, John (1983), "Models of Evolution", Proceedings of the Royal Society of 

London B 219:315-325. 
 
Maynard Smith, John (1964), "Group Selection and Kin Selection", Nature 201:1145-1147. 
 
——— (1983), "Models of Evolution", Proceedings of the Royal Society of London B 219:315-

325. 
 
——— (1987), "How to Model Evolution", in John Dupre (ed.), The Latest on the Best, 

Cambridge, Mass,: MIT Press. 
 
——— (1988), "Evolutionary Progress and Levels of Selection", in Matthew H. Nitecki (ed.), 

Evolutionary Progress, Chicago: University of Chicago Press, 219-230. 
 
——— (1991), "A Darwinian View of Symbiosis", in Lynn Margulis and René Fester (eds.), 

Symbiosis as a Source of Evolutionary Innovation, Cambridge, MA: MIT Press, 26-39. 
 
Maynard Smith, John, and Szathmáry (1995), The Major Transitions in Evolution. Oxford: 

Oxford University Press. 
 

 324



Mendel, Gregor (1901[1865]), "Experiments in Plant Hybridization". 
 
Michod, Richard E. (1999), Darwinian Dynamics: Evolutionary Transitions in fitness and 

Individuality. Princeton: Princeton University Press. 
 
Millstein, Roberta (1996), "Random Drift and the Omniscient Viewpoint", Philosophy of Science 

63:S10-S18. 
 
——— (2002), "Are Random Drift and Natural Selection Conceptually Distinct?" Biology and 

Philosophy 17 (1):33-53. 
 
——— (2005), "Selection vs. Drift: a response to Brandon's reply", Biology and Philosophy 20 

(1):171-175. 
 
Moxon, Richard, Paul Rainey, Martin Nowak, and Richard Lenski (1994), "Adaptive Evolution 

of Highly Mutable Loci in Pathogenic Bacteria", Current Biology 4 (1):24-33. 
 
Nanay, Bence (2002), "The Return of the Replicator: What is Philosophically Significant in a 

General Account of Replication and Selection", Biology and Philosophy 17:109-121. 
 
Okasha, Samir (2006), Evolution and the Levels of Selection. New York: Oxford University 

Press. 
 
Pearl, Judea (2000), Causality: Models, Reasoning, and Inference. Cambridge: Cambridge 

University Press. 
 
Plutynski, Anya (2004), "Explanation in Classical Population Genetics", Philosophy of Science 

71:1201-1214. 
 
Rice, Sean (2004), Evolutionary Theory: Mathematical and Conceptual Foundations. 

Sunderland, MA: Sinauer and Associates. 
 
Robertson, A. (1962), "Selection for Heterozygotes in Small Populations", Genetics 47:1291-

1300. 
 
Rosenberg, Alexander, and F. Bouchard (2004), "Fitness, Probability and the Principles of 

Natural Selection", British Journal for the Philosophy of Science 55:693-712. 
 
Rosenberg, Alexander, and Frederic Bouchard (2005), "Matthen and Ariew's Obituary for 

Fitness: Reports of its Death Have Been Greatly Exaggerated", Biology and Philosophy 
20:343-353. 

 
Rosenzweig, Michael L. (2003), Win-win Ecology: How the Earth's Species can Survive in the 

Midst of Human Enterprise. New York: Oxford University Press. 
 
Roughgarden, J. (1971), "Density-Dependent Natural Selection", Ecology 52 (3):453-468. 

 325



 
Salmon, Wesley C. (1998), Causality and Explanation. Oxford: Oxford University Press. 
 
Santiago, E., and Armando Caballero (1998), "Effective Size and Polymorphism of Linked 

Neutral Loci in Populations under Directional Selection", Genetics 149:2105-2117. 
 
Schemske, Douglas W., and Paulette Bierzychudek (2001), "Perspective: Evolution of Flower 

Color in the Desert Annual Linanthus parryae: Wright revisited", Evolution 55 (7):1269-
1282. 

 
——— (2007), "Spatial Differentiation for Flower Color in the Desert Annual Linanthus 

Parryae: Was Wright Right?" Evolution 61 (11):2528-2543. 
 
Seger, J (1985), "Unifying Genetic Models for the Evolution of Female Choice", Evolution 

39:1185-1193. 
 
Shanahan, Timothy (2003), "The Evolutionary Indeterminacy Thesis", Bioscience 53 (2):163-

169. 
 
Smith, T. B. (1993), "Disruptive Selection and the Genetic Basis of Bill Size Polymorphism in 

the African Finch Pyrenestes", Nature 363:619-620. 
 
Sober, Elliott (1984), The Nature Of Selection: Evolutionary Theory In Philosophical Focus. 

Cambridge, Mass.: MIT Press. 
 
——— (1987), in John Dupre (ed.), The Latest on the best : essays on evolution and optimality 

Cambridge, Mass.: MIT Press, 359. 
 
Sober, Elliott, and Richard C. Lewontin (1982), "Artifact, Cause, and Genic Selection", 

Philosophy of Science 49 (2):157-180. 
 
Sober, Elliott, and David Sloan Wilson (1994), "A Critical Review of Philosophical Work on the 

Units of Selection Problem", Philosophy of Science 61 (4):534-555. 
 
——— (1998), Unto Others: The Evolution and Psychology of Unselfish Behavior. Cambridge: 

Harvard University Press. 
 
Stahl, Eli A., Greg Dwyer, Rodney Mauricio, Martin Kreitman, and Joy Bergelson (1999), 

"Dynamics of Resistance Polymorphism at the Rpm1 locus of Arabidopsis", Nature 
400:667-671. 

 
Sterelny, Kim, Kelly C. Smith, and Michael Dickison (1996), "The Extended Replicator", 

Biology and Philosophy 11 (3):377-403. 
 
Suppe, Frederick (1974), "Introduction", in Frederick Suppe (ed.), The Structure of Scientific 

Theories, Urbana: University of Illinois Press, 3-243. 

 326



 327

 
Szathmáry, Eors (1999), "The First Replicators", in Laurent Keller (ed.), Levels of Selection in 

Evolution, Princeton: Princeton University Press. 
 
Templeton, A.R., and E.D. Rothman (1981), "Evolution in Fine-Grained Environments", 

Evolution 38:596-608. 
 
Turelli, Michael, Douglas W. Schemske, and Paulette Bierzychudek (2001), "Stable Two-Allele 

Polymorphisms Maintained by Fluctuating Fitnesses and Seed Banks: Protecting the 
Blues in Linanthus parryae", Evolution 55 (7):1283-1298. 

 
Wallace, Bruce (1968), "Polymorphism, Population Size, and Genetic Load", in R. C. Lewontin 

(ed.), Population Biology and Evolution, Syracuse: Syracuse University Press, 87-108. 
 
——— (1975), "Hard and Soft Selection Revisited", Evolution 29 (3):465-473. 
 
Walsh, D. M. (2004), "Bookkeeping or Metaphysics? The Units of Selection Debate", Synthese 

138 (3):337-361. 
 
——— (2007), "The Pomp of Superfluous Causes", Philosophy of Science 74:281-303. 
 
Walsh, Denis M., Tim Lewens, and Andre Ariew (2002), "The Trials of Life: Natural Selection 

and Random Drift", Philosophy of Science 69 (3):452-473. 
 
Waples, Robin S., and Oscar Gaggiotti (2006), "What is a population? An empirical evaluation 

of some genetic methods for identifying the number of gene pools and their degree of 
connectivity", Molecular Ecology 15:1419-1439. 

 
Wedekind, C., T. Seebeck, F. Bettens, and A Paepke (1995), "MHC-dependent mate preferences 

in human", Proceedings of the royal Society of London B. 260:245-249. 
 
Williams, George C (1966), Adaptation and Natural Selection. Princeton, N.J.: Princeton 

University Press. 
 
Wilson, David Sloan (1990), "Weak Altruism, Strong Group Selection", Oikos 59 (1):135-140. 
 
Wimsatt, William C. (1980), "The Units of Selection and the Structure of the Multi-Level 

Genome", PSA: Proceedings of the Biennial Meeting of the Philosophy of Science 
Association 1980 (2):122-183. 

 
Woodward, James (2003), Making Things Happen. New York: Oxford University Press. 
 
 
 


	title page
	abstract
	table of contents
	list of figures
	list of equations
	chapter 1
	chapter 2
	chapter 3
	chapter 4
	chapter 5
	chapter 6
	chapter 7
	chapter 8
	bibliography

