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The immune system may contribute to associations between disturbed sleep and 

increased disease risk.  Until recently, however, much of the work examining immune correlates 

of sleep employed in vitro measures of immunity of unknown clinical relevance.  To address this 

limitation, we prospectively examined associations of several sleep parameters (sleep duration, 

efficiency, and quality) with the magnitude of primary and secondary antibody responses to the 

hepatitis B vaccination series among a community sample of 125 relatively healthy, older adults.  

Participants completed electronic sleep diaries for 7 consecutive days (3 days prior, the day of, 

and 3 days following) at each of the 3 hepatitis B injections.  In addition, a subset of participants 

(n=104) wore an actigraph on the 3 days prior and 3 days following the first injection to provide 

an objective measure of sleep behavior.   

In regard to primary antibody responses following the first dose of the vaccine, poorer 

sleep efficiency, greater sleep fragmentation, and greater night to night variability in sleep 

duration were associated with higher antibody responses; however, these associations were 

reduced after adjustment for sociodemographic covariates, including age, gender, race, and body 

mass index (BMI).  In contrast, shorter sleep duration, measured via actigraphy alone or 

averaged across all available nights of sleep assessment, was associated with lower secondary 

antibody levels, assessed 5-months after the second injection, and a poorer likelihood of being a 

clinically protected at the conclusion of the vaccination series.  Participants with low and high 
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variability in sleep duration also displayed lower secondary antibody levels and decreased 

likelihood of being clinically protected.  These findings remained largely significant after 

adjustment for sociodemographic covariates.   

Taken together, these findings provide preliminary evidence for the influence of sleep on 

primary and secondary antibody responses to the hepatitis B vaccine.  Further exploration of the 

role of poor sleep in susceptibility to infectious illness is warranted. 
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1.0  INTRODUCTION 

A growing literature demonstrates that sleep is associated with health and disease. Short 

sleep duration and poor sleep efficiency have been associated with increased incidence and 

progression of several medical conditions, including type 2 diabetes (Ayas, White, Al-Delaimy 

et al., 2003; Gangwisch et al., 2007), coronary artery disease (Ayas, White, Manson et al., 2003; 

Mallon, Broman, & Hetta, 2002; Meisinger, Heier, Lowel, Schneider, & Doring, 2007), 

metabolic syndrome (Hall et al., 2008), and infectious illness (Cohen, Doyle, Alper, Janicki-

Deverts, & Turner, 2009; Cohen, Doyle, Skoner, Rabin, & Gwaltney, 1997) as well as elevated 

mortality risk (Heslop, Smith, Metcalfe, Macleod, & Hart, 2002; Kripke, Garfinkel, Wingard, 

Klauber, & Marler, 2002; Patel et al., 2004).  In addition, poor subjective sleep quality often 

covaries with health complaints among healthy, sleep-disordered, and diseased populations 

(Meisinger et al., 2007; Patil, Schneider, Schwartz, & Smith, 2007; Phillips & Mannino, 2005; 

Prinz, 1995).    

To date, the mechanisms linking sleep and disease remain unclear; however, compelling 

experimental evidence supports an association between disrupted sleep and alterations in aspects 

of innate and adaptive immunity (Bryant, Trinder, & Curtis, 2004; Irwin, 2002; Moldofsky, Lue, 

Davidson, & Gorczynski, 1989; Opp, Born, & Irwin, 2007), raising the possibility that 

modulation of immune function may be a potential pathway to increased disease risk.  Although 

reliable, the clinical significance of these sleep-related immune changes is unknown.  In part, this 
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is because most studies have relied on in vitro markers of immunocompetence that provide a 

poor estimate of the body’s host resistance to disease (Vedhara, Fox, & Wang, 1999).  To 

address this gap in the literature, researchers have turned to an examination of the effects of sleep 

on immune function in the living organism.  

One in vivo method that capitalizes on a naturally occurring immune response central to 

the body’s protection against infectious pathogens is measurement of antibody production 

following vaccination.  Using this method, individuals are inoculated with a foreign antigen and 

their antigen-specific antibodies are then quantified.  In general, increases in antigen-specific 

antibodies are associated with reduced incidence of clinical illness on future exposure to the 

antigen (Rabin, 1999).  Thus, this method is proposed to provide a proximate and clinically-

relevant measure of immune function that may inform associations among biobehavioral 

variables, including sleep and immunity (Cohen, Miller, & Rabin, 2001; Prather & Marsland, 

2008; Rabin, 1999). 

 A growing body of evidence shows that sleep regulates aspects of immunity that 

facilitate antibody production and maintenance (Opp et al., 2007), with preliminary evidence 

linking disturbed sleep to poorer antibody responses in humans.  To date, much of this work has 

relied on laboratory based sleep deprivation paradigms to investigate of the effects of sleep loss 

on vaccination response.  Here, acute sleep loss during the days prior to and immediately 

following vaccination significantly impairs antibody production in response to foreign antigens 

(Lange, Perras, Fehm, & Born, 2003; Spiegel, Sheridan, & Van Cauter, 2002).  Notably, these 

findings are limited by the use of small samples of largely healthy, young adults and sleep 

manipulations that may not generalize beyond the laboratory setting.   In regard to the latter, one 

exception is an unpublished study of healthy college freshman that examines the association of 
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normative variation in sleep with antibody response to vaccination (Pressman, Miller, & Cohen, 

2005).  Here, shorter sleep duration, averaged over 13 consecutive days of electronic diary 

assessment, was associated with lower secondary antibody production to the A/Caledonia strain 

of the trivalent influenza vaccine, as measured 1 and 4 months post-vaccination.  Furthermore, 

relationship, providing preliminary evidence that sleep on the days prior to vaccination may be 

particularly relevant for subsequent antibody production.  While compelling, it remains unclear 

whether natural variation in objective measures of sleep prospectively predict antibody responses 

to immunization.  Furthermore, it remains unknown if these associations generalize to older and 

thus potentially more immunologically vulnerable populations.    

Antibody response to vaccination is directly related to susceptibility to infectious disease 

(CDC, 1987; Zinkernagel et al., 1996).  Accordingly, determining whether modifiable behavioral 

processes, such as sleep, modulate antibody production is of potential clinical utility.  The aim of 

the proposed study is to examine whether three dimensions of sleep (duration, efficiency, and 

quality) are significant predictors of primary and secondary antibody responses to a novel 

antigen (hepatitis B).  It is anticipated that findings from this study may inform not only our 

understanding of the association between sleep and host-resistance in older adults but may also 

assist in distinguishing relevant time points when sleep interventions may increase vaccination 

efficacy in vulnerable populations. 
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2.0  LITERATURE REVIEW 

2.1 DIMENSIONS OF SLEEP 

Sleep has been defined as a physiological state marked by bouts of reduced 

consciousness, lessened skeletal movement, and slowed metabolism (Buysse, 2005; Carskadon 

& Dement, 2000; Zisapel, 2007).  Human sleep is regulated by two complementary processes 1) 

a homeostatic factor and 2) a circadian sleep rhythm (Mongrain, Lavoie, Selmaoui, Paquet, & 

Dumont, 2004; Zisapel, 2007).  Referred to as a sleep “drive”, the homeostatic factor is a 

function of prior wakefulness.  As wakefulness accrues during the day, the drive to sleep rises, 

and decreases precipitously during subsequent sleep (Carskadon & Dement, 2000).  The 

circadian sleep rhythm is an endogenous rhythm generated and controlled by the central nervous 

system (CNS) (Buysse, 2005; Jones, 2005) and entrained to the external environment by 

zeitgebers (e.g. daylight, meals) (Carskadon & Dement, 2000; Roenneberg & Merrow, 2007).   

The pacemaker for this circadian “clock” is localized in the suprachiasmatic nucleus (SCN) of 

the hypothalamus, with efferent pathways that transmits timing information to other areas of the 

CNS (Colwell & Michel, 2003).  On average, humans have an endogenous circadian sleep 

rhythm of just over 24 hours (Czeisler & Klerman, 1999).  Sleep behavior is also influenced by 

cognitive arousal and related psychological factors, including stress and anxiety (Morin, 

Rodrigue, & Ivers, 2003; Ohayon, 2005). Conversely, disrupted sleep can have a negative impact 
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on psychological states. For example, sleep restriction is associated with increased negative 

mood, anxiety, and heightened stress sensitivity (Baldwin & Daugherty, 2004; Drake, 

Richardson, Roehrs, Scofield, & Roth, 2004).  

 Generally, human adult sleep is consolidated into periods lasting between 7 and 8 hours  

and, if disturbed, results in problems in wakefulness, including feelings of tiredness, difficulties 

in concentration, poor motor performance, and poor memory consolidation (Ohayon, 2005; 

Vgontzas et al., 2004; Walker & Stickgold, 2004). Substantial individual differences exist in 

both sleep need and circadian rhythm. In regard to the latter, there is mounting evidence for 

stable differences in an individual’s propensity for early morning rising (known as morning 

larks) versus a tendency to stay up until the late evening hours (known as night owls); such 

individual differences are known as chronotypes (Mongrain, Carrier, & Dumont, 2006; 

Mongrain et al., 2004; Paine, Gander, & Travier, 2006).  

Sleep consists of two major phases that alternate across the night, rapid eye-movement 

(REM) sleep and non-REM sleep.  Non-REM can be further divided into stages 1, 2, 3, and 4.  

The stages of non-REM sleep are thought to parallel depth of sleep with stage 4 marking the 

deepest and stage 1 being the transition from wakefulness to sleep (Buysse, 2005).  Sleep stages 

are defined by physiologic parameters, namely patterns in electrical activity that change in the 

brain as individuals move in and out of different sleep stages.  Assessment of these stages is 

obtained through polysomnography (PSG), which is considered the “gold standard” for 

differentiating stages of sleep from wakefulness (Buysse, 2005; Carskadon & Dement, 2000).  

However, other dimensions of sleep, including duration, efficiency, and quality can be reliably 

assessed using alternate methods, such as actigraphy and self-report measures.   



 6 

Actigraphy is an objective method of estimating several sleep parameters, including sleep 

duration, sleep latency, fragmented sleep, and sleep efficiency (Sadeh, Hauri, Kripke, & Lavie, 

1995). Guidelines specified by the American Academy of Sleep Medicine support actigraphy as 

a reliable and valid method for detecting and quantifying sleep in healthy, normal sleepers 

(Ancoli-Israel et al., 2003; Littner et al., 2003).  Moreover, a review of experimental evidence 

shows that among healthy subjects the agreement between polysomnography and actigraphy is 

high (>90%) (Sadeh et al., 1995).  When compared with self-report measures, which are subject 

to recall bias, actigraphy provides a more objective method for estimating sleep latency and 

number of nighttime awakenings (i.e. sleep fragmentation) (Kushida et al., 2001; Rogers, 

Caruso, & Aldrich, 1993; Wilson, Watson, & Currie, 1998) with  agreement between actigraphy 

and diary sleep logs for indices of sleep duration ranging between 72%-97% (Usui et al., 1998, 

1999).  

2.1.1 Sleep Duration 

Sleep duration is the amount of time a person is asleep during the night.  The average 

duration of adult sleep has decreased by around 25% over the past 4 decades to around 6.9 hours 

per night (National Sleep Foundation, 2002),with prospective epidemiologic data showing the 

average duration across multiple nights to range from 5.5 to 6.5 hours (Knutson, Rathouz, Yan, 

Liu, & Lauderdale, 2007; Lauderdale et al., 2006; Redline et al., 2004).  Experimental 

manipulation of sleep duration (i.e. sleep deprivation) shows that shortened duration is not only 

associated with daytime sleepiness (Vgontzas et al., 2004), but also alters biologic processes that 

may have long term implications for health (Irwin, 2002; Knutson, Spiegel, Penev, & Van 

Cauter, 2007; Van Cauter et al., 2007; Vgontzas et al., 2004).   
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2.1.2 Sleep Efficiency 

Sleep efficiency generally refers to the proportion of time an individual spends asleep 

once he or she has attempted to fall asleep.  As such, longer sleep latencies (i.e. the time it takes 

to fall asleep) and the more minutes spent awake after initial sleep onset (i.e. greater sleep 

fragmentation) contribute to lower sleep efficiency.  It has been suggested that sleep efficiency 

of 85% or greater is indicative of “good sleepers” (Morin, 1993). However, epidemiologic 

evidence among relatively healthy sleepers indicates appreciable variability.  For instance, 

Lauderdale and colleagues found that among 647 participants (38-50 years old) from the 

Coronary Artery Risk Development in Young Adults (CARDIA) study the average actigraphy-

based sleep efficiency was 80.8% (SD=11.3).  Race and gender differences in sleep efficiency 

have also been documented, with both African American and men showing lower sleep 

efficiency relative to their Caucasian, female counter parts (Mezick et al., 2008; Lauderdale et 

al., 2006).  Evidence also shows a decline in sleep efficiency across the lifespan.  For instance,  

the Sleep Heart Health Study, a longitudinal study of over 5,000 community volunteers, found an 

age-related decline in sleep efficiency with  the lowest sleep efficiency observed among the 

elderly (Unruh et al., 2008).    

2.1.3 Sleep Quality 

Though difficult to define, sleep quality is generally conceptualized as an individual’s 

subjective satisfaction with their sleep (i.e. its restfulness) and is often, but not always, associated 

with their sleep continuity throughout the night (Grandner & Kripke, 2004; Lichstein, Durrence, 

Riedel, Taylor, & Bush, 2004).  Indeed, laboratory studies show that fragmented sleep (i.e. poor 
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sleep efficiency) is associated with poorer reported sleep quality the following day (Bonnet & 

Arand, 2003; Seneviratne & Puvanendran, 2004).  Further evidence that disturbed sleep 

contributes to perceived sleep quality comes from large epidemiologic studies (Ohayon, 2005; 

Ohayon, Caulet, & Guilleminault, 1997; Ohayon & Zulley, 2001); for instance, in a study of over 

25,000 sleepers, those who reported difficulty initiating sleep and frequent night awakenings at 

least 2 nights/week were more likely to report nonrestorative, unrefreshing sleep than those 

whose sleep was more efficient (Ohayon, 2005).  Psychological factors, including stressful life 

events and psychiatric conditions (e.g. depression, anxiety) are also associated with poor sleep 

quality (Jean-Louis, Kripke, & Ancoli-Israel, 2000).  

2.2 SLEEP AS A RISK FACTOR FOR DISEASE 

2.2.1 Sleep duration and disease 

Cross-sectional and prospective epidemiologic evidence demonstrate that short and long 

sleepers (less than 5 or 6 hours/night or greater than 9 hours/night) are at heightened risk for a 

number of chronic health conditions, including coronary heart disease (Ayas, White, Manson et 

al., 2003), diabetes (Ayas, White, Al-Delaimy et al., 2003; Gangwisch et al., 2007; Mallon, 

Broman, & Hetta, 2005), and the metabolic syndrome (Hall et al., 2008).  For instance, in an 8- 

to 10 year follow-up of the first National Health and Nutritional Examination Survey (NHANES-

1), being a short sleeper (5 hours or fewer) or a long sleeper (9 or more hours) was a significant 

risk factor for developing type 2 diabetes, after controlling for a variety of other 

sociodemographic and health risk factors, including physical activity, depression, alcohol 



 9 

consumption, ethnicity, education, marital status, and age (Gangwisch et al., 2007). This finding 

is consistent with experimental evidence that modest sleep deprivation (i.e. restricting sleep to 4 

hours per night) is associated with alterations in metabolic activity, including reduced glucose 

tolerance, which may contribute to disease risk (Spiegel, Leproult, & Van Cauter, 1999).  

Emerging evidence also suggests that shortened sleep duration is associated with 

decreased host-resistance to infectious disease (Cohen et al., 2009).  For instance, Cohen and 

colleagues (2009) recently reported on 153 healthy volunteers who completed sleep diaries for 

14 consecutive days prior to being experimentally inoculated with rhinovirus.  Participants were 

subsequently followed for 5 days to assess subjective reports of an upper respiratory infection 

(URI), and biologically verified disease.  Here, shorter sleep duration (i.e. sleeping less than 7 

hours) predicted increased risk of developing a cold by objective and subjective criterion, 

independently of age, race, gender, BMI, income, education, perceived socioeconomic rank, 

physical activity, season of exposure, and baseline antibody titers.       

 

2.2.2 Sleep efficiency and disease 

Like duration, sleep efficiency has been related to health status in several large 

epidemiologic investigations, with poorer sleep efficiency being associated with increased frailty 

(Ensrud et al., 2009), incidence of cardiovascular disease ((Mallon et al., 2002), and type 2 

diabetes; (Mallon et al., 2005).  Moreover, in a longitudinal study of healthy older adults, 

individuals displaying a sleep efficiency of <80%, assessed using electroencephalography 

(EEG), were nearly twice as likely (OR=1.93) to die from all-causes when compared to 
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participants with a sleep efficiency of ≥80% (Dew et al., 2003).  Recent evidence suggests that 

poor sleep efficiency is also a risk factor for the common cold (Cohen et al., 2009)  with sleep 

efficiency measured prior to viral exposure being inversely associated with risk of developing a 

biologically-verified cold.  Interestingly, this effect was independent of sleep duration, 

suggesting that they both contribute uniquely to risk for infectious disease.   

2.2.3 Sleep quality and disease 

Poor sleep quality, assessed as a subjective report of low sleep satisfaction has been 

associated with number of disease outcomes (Cappuccio, D'Elia, Strazzullo, & Miller, in press-

a; Jennings, Muldoon, Hall, Buysse, & Manuck, 2007; Leineweber, Kecklund, Janszky, 

Akerstedt, & Orth-Gomer, 2003; Mallon et al., 2002, 2005), including poorer prognosis for 

coronary heart disease, fibromyalgia, and chronic fatigue syndrome (Leineweber et al., 2003; 

Moldofsky, 1993). For example, Leineweber and colleagues (2003) found that women who 

reported “not feeling well rested” some or most of the time were 2.4 times more likely to 

experience an incident cardiac event when followed prospectively  for 5 years than those 

reporting rest on a regular basis. These findings were independent of age, BMI, cardiovascular 

symptoms, smoking status, and education.  Poor sleep quality has also been related to risk factors 

for cardiovascular disease, including hypertension, obesity, insulin resistance, and elevated 

glucose (Fiorentini, Valente, Perciaccante, & Tubani, 2007; Jennings et al., 2007; Resta et al., 

2003; Scheen & Van Cauter, 1998).    

Few studies have investigated whether sleep complaints predict decreased host resistance 

to disease.  In part, this may be because diminished sleep quality can be a subclinical symptom 

of infectious illness. Indeed, growing evidence shows that peripheral immune activation that 
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accompanies infection communicates with the CNS and results in “sickness symptoms,” 

including increased sleep and daytime fatigue, which are thought to conserve metabolic energy 

necessary for fighting the infection (Maier & Watkins, 1998).  That said, Pressman and 

colleagues (2005) found that poorer sleep quality, averaged over 13 days of assessment, was 

associated with a poor antibody response to the A/New Caledonia strain of the influenza vaccine 

1-month post-immunization.  Furthermore, evidence does show that rotating shift workers, a 

population marked by poor sleep quality, are at greater risk for infectious illness than day 

workers. For instance, in a cross-sectional investigation of over 12,000 employees, rotating shift 

workers were significantly more likely to report developing a cold, experiencing a flu-like 

illness, or gastroenteritis than stable day workers (Mohren et al., 2002).  

Taken together, these findings suggest that shortened sleep duration, poor sleep 

efficiency, and poor sleep quality are associated with increased risk for disease. To date, 

however, the mechanisms through which sleep confers increased disease susceptibility remain 

unclear.  It is possible that disturbed sleep contributes to the pathogenesis of health problems; 

however, the existing sleep literature focuses on chronic health conditions (e.g. diabetes, 

coronary heart disease) that develop over years, making it difficult to identify specific underlying 

pathways or critical periods when poor sleep might promote disease. In contrast, it is possible to 

examine whether sleep is related to susceptibility to acute illnesses, such as infections. Here, 

compelling experimental evidence shows that shortened sleep and poor sleep efficiency, 

measured prior to viral exposure, increases susceptibility to URIs (Cohen et al., 2009), raising 

the possibility that the immune system is a mechanism linking sleep to increased disease risk.  In 

this regard, a growing literature shows an association of sleep with immune function, including 

experimental evidence that sleep restriction is associated with alterations in immune processes 
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that play a role in host-resistance to infection.  However, before reviewing the literature linking 

sleep and immunity, a brief overview of the immune system is provided to orient the reader.   

2.3 OVERVIEW OF THE IMMUNE SYSTEM 

The immune system is comprised of highly complex and integrated network of cells and 

soluble molecules that work in concert to protect the body (i.e. self) from potentially harmful 

(i.e. non-self) agents (i.e. antigens).  When discussing the components of the immune system, it 

is useful to distinguish between natural and acquired immunity.  Natural immunity is functional 

at birth and is activated quickly (minutes to hours) to protect the individual from any compounds 

not recognized as self.  Conversely, acquired immunity provides a slower (days to weeks) and 

more specialized form of protective response that remains inactive unless cells come in contact 

with their specific (cognate) antigens (Delves & Roitt, 2000a, 2000b; Rabin, 1999).  

Natural immune components include physical and anatomical barriers (e.g., skin, mucus 

membranes) and specialized cells that do not require the specific recognition of an antigen to 

carry out their functions, such as natural killer (NK) cells and granulocytes (e.g. neutrophils, 

dendritic cells, and macrophages). NK cells react to and kill malignant cells and cells infected 

with viruses, while cells like macrophages, in addition to destroying material recognized as non-

self, can process antigens and present them to cells of the acquired immune system to initiate a 

more specific immune response. Macrophages also produce and release cytokines, which are 

chemical messengers that facilitate cell-to-cell communication and orchestrate immune 

processes.  When activated by pathogens or tissue damage, macrophages release pro-

inflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, 
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which, in turn, recruit lymphocytes to the area of injury, up-regulate the expression of cellular 

adhesion molecules on the endothelium, and promote the systemic release of acute phase 

proteins (e.g. C-reactive protein) (Maier & Watkins, 1998). 

Acquired immunity is traditionally subdivided into two major components. The first is 

humoral immunity, which is mediated by soluble factors called antibodies that circulate 

systemically and defend against bacteria and viruses. The second major component is cell-

mediated immunity. Here, defense responses are mediated by specialized cells (lymphocytes) 

that have evolved to recognize and eliminate foreign antigens. Although there are many types of 

lymphocytes, each with distinct functions, immune cells are interdependent and respond in a 

coordinated fashion to achieve immunocompetence.  

A cellular immune response is activated when a macrophage or dendritic cell engulfs an 

antigen and presents it to a T-lymphocyte that is specific to the antigen’s surface properties. This 

initiates a cascade of events beginning with the activation and subsequent proliferation of T 

lymphocytes. There are two main populations of T cells: cytotoxic T cells and helper T cells. 

Cytotoxic T (CD8+) cells are able to detect altered self-cells (e.g., virally infected or tumor cells) 

and enzymatically digest (lyse) them.  Activated helper T (CD4+) cells release several cytokines 

that stimulate the actions of other lymphocytes and macrophages. For example, IL-2, released by 

a subset of helper T cells called Th1 cells, stimulates B lymphocytes to activate and produce 

antibodies as well as promotes the proliferation (i.e. cellular division) of T lymphocytes and the 

activation of monocytes and NK cells. Other cytokines released by Th1 cells include IL-12 and 

interferon (IFN)-γ.  IL-4, IL-5, and IL-10 are produced by another subset of helper T cells, Th2 

cells.  These cytokines stimulate T-cell division and promote the differentiation of B-cells. 
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Hence, T-lymphocytes, and the cytokines they produce, regulate the activity of the humoral 

immune system.   

Humoral immune processes are mediated by B-lymphocytes and their antibody products. 

Here, the immune response begins with the initial recognition of a specific antigen by membrane 

antibodies on B-cells. Then, with the aid of activating cytokines secreted by helper-T cells and 

monocytes, B-lymphocytes proliferate and differentiate to form (1) plasma cells which actively 

secrete antibodies to the invading antigen and (2) memory cells. Antibody molecules bind to the 

specific antigen, forming antibody-antigen complexes that inactivate viruses and mark them for 

destruction by phagocytic cells such as macrophages and neutrophils. Some of the progeny of 

antigen-stimulated B and T lymphocytes become memory cells, which are capable of surviving 

for long periods (months to years). These cells recognize the specific antigen and enable a faster 

and more vigorous secondary response to be mounted to repeat infections in the future. This 

immunologic memory is the basis of protective vaccination against infectious disease.   The first 

time a novel antigen is encountered by the immune system it elicits a primary immune response, 

while any subsequent exposure promotes a secondary immune response.   

2.3.1 Measurement of immunity 

Measures of the human immune system are largely limited to enumerative and functional 

parameters that can be assessed in peripheral circulation.  Enumerative measures include 

quantifying the absolute numbers or percentages of specific populations of immune cells and 

their biochemical mediators (e.g. cytokines).  Changes in the relative distribution of cell subtypes 

are often assessed as an indication of immune activation. For example, acute infectious disease is 

associated with an increase in circulating numbers of lymphocytes.  Moreover, it is possible that 
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changes in the absolute numbers of various cell subsets in circulation reflect the redistribution of 

immune cells between the peripheral blood and lymphoid organs. These changes may influence 

immunocompetence by determining whether immune cells are likely to encounter a foreign 

antigen at a particular location. 

Beyond enumerative measures, several in vitro assays allow for the assessment of 

functional aspects of immunity.  For instance, lymphocyte division (proliferation) can be 

assessed by stimulating cell subsets in the laboratory (e.g. T cells) with non-specific mitogens 

(e.g. phytohemagglutinin (PHA)).  Greater proliferation is thought to be associated with a more 

effective immune response (Vedhara, Fox et al., 1999). Cytotoxicity (i.e. a cell’s ability to kill) 

can also be assessed in vitro.  NK cell cytotoxicity is routinely assayed as a measure of innate 

immunity, and provides information about NK cells’ cytotoxic potential.  Finally, researchers 

routinely quantify the magnitude of cellular production of cytokines following in vitro 

stimulation. For instance, levels of pro-inflammatory cytokines (e.g. IL-6) are measured after 

monocytes/macrophages are stimulated with endotoxin.  The magnitude of the pro-inflammatory 

cytokine response to immune activation is critical; insufficient response may leave the organism 

vulnerable to infection, whereas excessive response can increase risk for inflammatory diseases 

(Nathan, 2002; Pavlov & Tracey, 2004).   

In vitro assays provide valuable information about the functional capacity of specific cell 

populations.  However, in order to accurately quantify such immune changes, immune cells are 

removed from the host environment and thus provide a poor estimation of in vivo host resistance. 

In contrast, in vivo measures assess integrated immune responses within the organism.  For 

instance, measuring the number of antigen-specific antibodies produced following vaccination 

offers a functional estimate of the coordinated innate and acquired immune response.   
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The immune system is a dynamic network that acts quickly to meet the demands of an 

ever-changing environment, with the goal of protecting the organism from pathogens and the 

onset of disease.  It is well documented that aspects of immunity are modulated by several 

psychological and behavioral processes, including sleep (Rabin, 1999; Segerstrom & Miller, 

2004).  In this regard, a growing body of literature demonstrates that disrupted sleep can have 

deleterious effects on immune function (Benca & Quintas, 1997; Opp et al., 2007).   

2.4 SLEEP AND IMMUNITY 

2.4.1 Normal sleep and the immune system 

To date, a number of studies have examined diurnal changes in immune parameters 

across 24-hour cycles that include a period of regular, undisturbed nocturnal sleep (for reviews, 

Benca & Quintas, 1997; Irwin, 2002; Moldofsky, 1995; Opp et al., 2007).  Findings show that 

cell subtypes in peripheral circulation vary markedly across the sleep-wake cycle.  For instance, 

circulating numbers of granulocytes, monocytes, and lymphocyte subsets, including T-helper 

cells, cytotoxic T-cells, and B-cells, peak in the evening or early night and gradually decline to a 

nadir in the morning hours (Born, Lange, Hansen, Molle, & Fehm, 1997; Born et al., 1995; Irwin 

et al., 1996).  Conversely, peripheral NK cell numbers reach their highest level in the mid-

afternoon, with a decrease in number and function by around midnight (Born et al., 1997).  It is 

likely that diurnal changes in peripheral cell numbers reflect migration of cells to and from 

lymphoid tissue and immune organs (e.g., spleen), and changes in the marginalization (i.e. 

stickiness) of cells to walls of blood vessels, rather than absolute changes in cell number.   
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 Concomitant with diurnal changes in circulating cell numbers, the production of T-cell 

derived cytokines also varies across the sleep-wake cycle. For example, levels of IFN-y 

produced by Th1 cells are elevated during the early part of the night (Dimitrov, Lange, Tieken, 

Fehm, & Born, 2004) as is the production of IL-12 by monocytes and dendritic cell precursors, 

the latter of which is integral to the antigen presentation that initiates the adaptive immune 

response (Dimitrov, Lange, Nohroudi, & Born, 2007).  IL-2 activity is also markedly increased 

during sleep as compared with levels during nocturnal wakefulness (Born et al., 1997; Irwin, 

Thompson, Miller, Gillin, & Ziegler, 1999; Lissoni, Rovelli, Brivio, Brivio, & Fumagalli, 1998).   

2.4.2 Sleep deprivation and immune function 

The hypothesis that sleep loss might impair host immune defenses in clinically significant 

ways is supported by an association between decreased sleep and increased morbidity in humans 

(e.g. Ayas, White, Al-Delaimy et al., 2003; Ayas, White, Manson et al., 2003) and by the finding 

that prolonged sleep deprivation results in death in an animal model (Rechtschaffen & 

Bergmann, 2002; Rechtschaffen, Bergmann, Everson, Kushida, & Gilliland, 1989).  In regards to 

the latter, biopsies of chronically sleep deprived rats reveal elevated rates of bacteremia, 

suggesting that breakdown in immune function and subsequent infection may have contributed to 

death (Benca & Quintas, 1997; Everson, 1993).   

In humans, researchers have relied on in vitro measures of immunity to investigate the 

impact of sleep loss on host resistance. Here, total sleep deprivation ranging from 24 to 48 hours 

has been associated with elevated numbers of lymphocytes, decreased numbers of NK cells, and 

increased systemic levels of pro-inflammatory cytokines, such as IL-6, IL-1, and TNF-α (Born 

et al., 1997; Heiser et al., 2000; Moldofsky et al., 1989; Vgontzas et al., 1999).  Furthermore, 
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sleep deprivation results in the down-regulation of a number of measures of immune function, 

including reduced T-cell proliferation following stimulation with a nonspecific mitogen (e.g. 

phytohemagglutinin) (Palmblad, Petrini, Wasserman, & Akerstedt, 1979), and diminished NK 

cell cytotoxicity (Moldofsky et al., 1989).  Restricting sleep to only a couple hours per night (i.e. 

partial sleep deprivation) results in similar immune changes, including reduced NK cell activity 

and IL-2 production (Irwin et al., 1994; Irwin et al., 1996; Uthgenannt, Schoolmann, Pietrowsky, 

Fehm, & Born, 1995) and increased systemic and monocyte-derived production of IL-6 and 

TNF-α (Irwin, Wang, Campomayor, Collado-Hidalgo, & Cole, 2006; Uthgenannt et al., 1995; 

Vgontzas et al., 2004). Notably, these enumerative and functional immune changes are short-

lived, returning to baseline levels quickly when sleep returns to normal. 

In sum, growing evidence supports an association between sleep and immunity. Sleep 

deprivation experiments show the down-regulation of several immune processes integral to the 

development of host resistance to infectious pathogens (e.g. T-cell division, cytokine 

production).  To date, however, it remains to be determined whether these sleep-related changes 

in immune function translate to greater susceptibility to disease.  A first step in examining this 

possibility is to employ an in vivo model of immune response to a novel pathogen, a measure that 

is more proximally related to host resistance to infectious disease. Here, researchers have begun 

to investigate whether sleep disturbances are associated with antibody response to vaccination. 

Prophylactic vaccination is designed to simulate infection and induce the formation of memory T 

and B lymphocytes and the production of antibodies specific to the targeted pathogen.  As 

antibody levels are directly related to protection against infectious illness, the magnitude of 

antibody response to vaccination provides a clinically-relevant measure of host resistance to 

disease.  Importantly, individuals vary substantially in their ability to mount and maintain 
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antibody responses to vaccination.  This variability is of health interest as poor responders are 

likely to be at risk of clinical illness on exposure to the specific pathogen (CDC, 1987; Francis et 

al., 1982; Hadler et al., 1986). Before describing the preliminary literature supporting a 

relationship between sleep and vaccination response, a brief discussion of several other factors 

known to influence vaccination response are presented.   

 

2.5 FACTORS THAT INFLUENCE VACCINATION 

2.5.1 Sociodemographic factors and vaccination response 

Several sociodemographic factors are associated with variability in antibody response to 

vaccination, including age, gender, and body mass. It is well documented that aging is associated 

with a decline in immune function, known as immunosenescence, which includes deterioration 

of innate and adaptive components of immunity (Weinberger, Herndler-Brandstetter, 

Schwanninger, Weiskopf, & Grubeck-Loebenstein, 2008).  In regard to vaccination response, 

randomized clinical trials demonstrate that influenza vaccinations are 70-90% effective among 

young healthy adults, but only 17-53% effective among the elderly (Goodwin, Viboud, & 

Simonsen, 2006).  Similar age-effects have been observed in antibody response to hepatitis B 

vaccination (Averhoff et al., 1998; Bock et al., 1996; Roome, Walsh, Cartter, & Hadler, 1993; 

Wood et al., 1993).  For example, in a study of over 1,700 health care workers administered the 

hepatitis B vaccine, those over 40 years of age were 2.2 times more likely to be non-responders 

to the vaccine relative to those 40 years old or under (Averhoff et al., 1998).      
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Men and overweight individuals also tend to display poorer antibody responses to 

vaccination than females and leaner individuals (Averhoff et al., 1998; Bock et al., 1996; Hui et 

al., 2006; Zuckerman, 2006).  For instance, Wood and colleagues (1993) found that, among 

nearly 600 hospital workers receiving the hepatitis B vaccination series, being male (p<.03) or 

having a BMI of over 29 (p<.01) was significantly associated with being a non-responder, as 

measured 6 months post-vaccination.  Moreover, BMI and gender remained independent 

predictors after controlling for other sociodemographic and behavioral factors (e.g. age, smoking 

status).     

2.5.2 Psychological factors and vaccination response 

In addition to sociodemographic factors, it is well documented that psychosocial factors 

modulate antibody responses to vaccination. Consistent with a large body of evidence showing 

that psychological stress modulates aspects of innate and adaptive immunity (for review, see 

Segerstrom & Miller, 2004), a number of studies have demonstrated an inverse association 

between psychological stress and antibody titers (for review, see Burns, Carroll, Ring, & 

Drayson, 2003; Cohen et al., 2001; Marsland, Bachen, Cohen, & Manuck, 2001; Pedersen, 

Zachariae, & Bovbjerg, 2009). To date, these studies have focused primarily on the magnitude of 

secondary antibody responses in response to vaccination (e.g. influenza vaccination) and have 

found that chronic stress (e.g. caregiving for a chronically ill family member)(Glaser, Kiecolt-

Glaser, Malarkey, & Sheridan, 1998; Kiecolt-Glaser, Glaser, Gravenstein, Malarkey, & 

Sheridan, 1996; Phillips et al., 2006; Vedhara, Cox et al., 1999), reporting higher perceived 

stress (Burns, Carroll, Drayson, Whitham, & Ring, 2003; Jabaaij et al., 1993; Miller et al., 2004), 

and more stressful life events (Burns, Carroll, Ring, Harrison, & Drayson, 2002) are associated 
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with lower secondary antibody levels.  However, not all studies are consistent (Glaser et al., 

1992; Jabaaij et al., 1996; Petry, Weems, & Livingstone, 1991) and interpretations of findings 

are complicated by variability in the timing of stress relative to the immune outcome and in the 

nature and duration of the stressors (Miller et al., 2004).   The importance of timing is 

exemplified by the fact that both acute stress and eccentric exercise experienced immediately 

prior to vaccination enhance secondary antibody responses (Edwards, Burns, Allen et al., 2007; 

Edwards et al., 2006) suggesting that psychological and behavioral factors may influence 

immune processes early in antibody production.  

While there is accumulating evidence that psychosocial factors influence secondary 

antibody responses, research on primary antibody production is limited.  In this regard, the 

hepatitis B vaccination model provides an opportunity to explore these associations because it is 

possible to identify individuals who are naïve to the antigen.   Petrie and colleagues (1995) 

reported no differences in primary antibody responses among participants assigned to a 

“disclosure” intervention designed to reduce stress and controls (Petrie, Booth, Pennebaker, 

Davison, & Thomas, 1995).  In contrast, Glaser and colleagues (1992) found that medical 

students who reported higher levels of stress during examinations were less likely to produce 

antibodies in response to the first vaccination.  Unfortunately this association was based on 

composite of stress reported across the six month vaccination period, making it unclear whether 

stress around the time of the first vaccination was related to primary antibody response.  

Although evidence demonstrates that sociodemographic and psychosocial factors 

contribute to individual differences in magnitude of antibody responses to vaccination, a large 

portion of the variance remains unexplained. Given evidence that disturbed sleep modulates 

aspects of immune function that are involved in antibody production as well as covaries with 
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psychological stress and sociodemographic factors shown to impact humoral immunity, it is 

plausible that sleep contributes to variation in antibody response. In this regard, a small, but 

compelling, literature has investigated the relationship between sleep and vaccination response.    

2.5.3 Sleep and vaccination response 

Preliminary animal and human literature supports an association between sleep and 

antibody response.  In a provocative study of mice challenged with influenza, animals deprived 

of sleep for 7 hours prior to immunization displayed reduced viral-specific antibodies, increased 

viral titers, and failure to clear the virus relative to non-sleep-deprived mice (Brown, Pang, 

Husband, & King, 1989).  Subsequent studies, however, have failed to replicate these findings 

(Renegar, Crouse, Floyd, & Krueger, 2000; Renegar, Floyd, & Krueger, 1998a; Renegar, Floyd, 

& Krueger, 1998b).   

 To date, two human studies have investigated the effects of acute sleep deprivation on 

antibody response.  In one study, Lange and colleagues (2003) randomly assigned nine healthy, 

young participants to 36 hours of sleep deprivation following vaccination against hepatitis A.  

All participants were naïve to hepatitis A prior to vaccination and antibody responses were 

assessed 14 and 28 days later.  Participants subjected to sleep deprivation showed a reduction in 

antibody production 2 weeks post vaccination when compared with 10 non-sleep deprived 

controls. Moreover, at 28 days post-vaccine, maximum antibody levels were nearly 100% greater 

in the non-sleep deprived control group. This finding is compelling for two reasons 1) it suggests 

that deviations from one’s normal sleep pattern may affect the primary immune response and 2) 

it indicates that modulation of this response may occur early in antibody development. 



 23 

 Similar results were obtained in another study that employed a more generalizable sleep 

deprivation protocol. Here, Spiegel, Sheridan, and Van Cauter (2002) assigned 11 participants to 

6 nights of partial sleep deprivation (4 hours/night) followed by 7 nights of extended sleep (12 

hours/night) to recover from sleep loss. All participants were seropositive for anti-influenza 

antibody titers at baseline; hence, this study focused on secondary immune responses. 

Participants were vaccinated against influenza on the morning of the fifth day and followed for 

approximately 30 days.  Ten days post-vaccination, antibody titers from sleep deprived 

participants were significantly lower than a normal sleep control group.  However, group 

differences disappeared by the 30-day follow-up. 

 Finally, one unpublished study examined the relationship between sleep and secondary 

antibody responses to influenza vaccination in the natural environment (Pressman et al., 2005).  

Here, Pressman and colleagues examined whether dimensions of sleep (duration, quality, and 

efficiency) collected using sleep diaries for 13 days (2 days prior, the day of, and 10 days 

following vaccination) predicted antibody titers to the influenza vaccine 1 and 4 months later 

among 83 healthy freshman undergraduates.  Prospective analyses showed that lower average 

sleep duration across the 13 days of monitoring predicted lower antibody response at both 

follow-up times.  Poor average sleep quality predicted lower antibody levels 1 month post-

immunization. When analyzed day by day, however, shorter sleep duration and poor sleep 

quality the night before vaccination predicted lower antibody responses at 1 month and 4 months 

follow-up.  Notably, this relationship was only observed for one of the three viral strains (A/New 

Caledonia) in the influenza vaccine and relied solely on self-reported sleep. Nevertheless, these 

findings provide initial evidence that short sleep duration and poor sleep are associated with 

diminished secondary antibody responses to vaccination. 
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3.0  SUMMARY AND STATEMENT OF PURPOSE 

It has become clear that sleep plays an important role in the maintenance of health.  Short 

sleep duration, poor sleep efficiency, and poor sleep quality are associated with increased risk for 

chronic disease and susceptibility to acute infectious illness.  Growing evidence suggests that the 

immune system may be one pathway linking sleep disturbance to health risk, with acute sleep 

loss modulating immune processes responsible for maintaining host-resistance to disease.  

However, until recently, studies demonstrating an association between sleep and immunity have 

relied upon in vitro markers of immunocompetence that are of unknown clinical significance and 

provide a poor overall estimate of the body’s ability to resist disease. For this reason, recent 

attention has turned to examining the impact of sleep on immune function in the living organism. 

One naturally occurring immune response relevant to protection from infectious pathogens is 

antibody production in response to vaccination.  Use of in vivo vaccination models, provides a 

unique opportunity to examine sleep-immune associations that are directly related to host 

resistance to infectious disease.    

Preliminary evidence suggests that modest sleep disruption on the days surrounding 

vaccination is associated with diminished primary and secondary antibody responses; the 

literature is in its infancy and it remains to be determined whether initial findings are reliable and 

generalize beyond young, healthy adults.  In this regard, it might be expected that the association 

between sleep and antibody response would be stronger, and perhaps more clinically meaningful, 
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among older populations who show greater sleep disruption and immunosenescence.  

Furthermore, prior evidence for an association between sleep and antibody levels has relied on 

either experimental manipulation or self-reported sleep behavior, which may not generalize to 

the natural environment or accurately estimate sleep parameters.  No study, to date, has 

examined whether natural variation in sleep behavior, measured objectively (e.g. via actigraphy), 

is associated with magnitude of primary and secondary antibody production to vaccination.   

To address these gaps in the extant literature, the primary aims of the current study are to 

investigate whether sleep parameters, including duration, efficiency, and quality assessed 

through subjective and objective means, predict primary and secondary antibody responses to the 

hepatitis B vaccination series among a sample of relatively healthy, older community volunteers.   
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4.0  STUDY QUESTIONS AND HYPOTHESES 

Question 1: Do sleep parameters, measured prior to the first vaccination, predict primary 

antibody responses to hepatitis B immunization?  

Growing epidemiologic and experimental evidence suggests that short sleep duration, 

poor sleep efficiency, and poor sleep quality are associated with onset and progression of chronic 

disease and infectious illness (Ayas, White, Al-Delaimy et al., 2003; Ayas, White, Manson et al., 

2003; Cohen et al., 2009; Gangwisch et al., 2006; Hall et al., 2008; Leineweber et al., 2003; 

Mallon et al., 2002; Meisinger et al., 2007) .  To date, no study has investigated whether natural 

variation in sleep duration, efficiency, or quality prior to vaccination is associated with 

magnitude of primary antibody response. Based on the existing evidence, we make the following 

hypotheses:  

Hypothesis 1: Shorter sleep duration, as measured using actigraphy over the 3 days prior to the 

first immunization, will be associated with lower primary antibody responses to the hepatitis B 

vaccination.   

Hypothesis 2: Poorer sleep efficiency, as measured using actigraphy over the 3 days prior to the 

first immunization, will be associated with lower primary antibody responses to the hepatitis B 

vaccination. 
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Hypothesis 3: Poorer subjective sleep quality, as measure using electronic sleep diaries over the 

4 days prior to the first immunization, will be associated with lower primary antibody responses 

to the hepatitis B vaccination.   

 

Question 2: Do sleep parameters, measured prior to second vaccination, predict secondary 

antibody responses to hepatitis B immunization? 

In contrast to the limited literature examining psychological and behavioral correlates of 

primary antibody responses, a larger number of studies have examined secondary antibody 

responses. Consistent evidence shows that prolonged stress is associated with lower secondary 

antibody responses to a number of vaccinations, including influenza and hepatitis B (Glaser et 

al., 1998; Kiecolt-Glaser et al., 1996; Miller et al., 2004; Phillips et al., 2006; Vedhara, Cox et 

al., 1999). In regard to sleep, initial evidence suggests that poor sleep in the laboratory and the 

field is associated with lower secondary antibody responses measured months later (Pressman et 

al., 2005; Spiegel et al., 2002).  Nevertheless, no study has examined the influence of sleep, 

measured objectively in the natural environment, on secondary antibody response to the hepatitis 

B vaccine.  Based on the existing literature we make the following hypotheses: 

Hypothesis 4: Shorter sleep duration, as measured using both electronic sleep diaries over the 4 

days prior to the second vaccination and actigraphy over the 3 days prior to the first 

immunization, will be associated with lower secondary antibody responses to hepatitis B 

vaccination. 

Hypothesis 5: Poorer sleep efficiency, as measured using actigraphy over the 3 days prior to the 

first vaccination, will be associated with lower secondary antibody responses to hepatitis B 

immunization. 
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Hypothesis 6: Poorer sleep quality, as measured across 4 days prior to the second vaccination, 

will be associated with lower secondary antibody responses to hepatitis B immunization. 

 

Question 3: Do sleep parameters, measured prior to the first vaccination, predict secondary 

antibody responses to hepatitis B immunization independent of sleep parameters measured 

prior to the second vaccination period? 

 Psychological and behavioral factors experienced immediately prior to vaccination 

appear to have a substantial impact on secondary antibody response, with preliminary evidence 

supporting the impact of acute stress, partial sleep deprivation, and exercise in the laboratory on 

secondary antibody responses (Edwards, Burns, Allen et al., 2007; Edwards et al., 2006; 

Pressman et al., 2005).  It is possible that variation in sleep on the days prior to initiating the 

hepatitis B vaccination series may significantly influence secondary antibody responses 

independent of sleep that occurs prior to the second vaccination.  Accordingly, we hypothesize 

the following:  

Hypothesis 7: Shorter sleep duration, as measured using actigraphy over the 3 days prior to the 

first vaccination, will be associated with lower secondary antibody responses to hepatitis B 

immunization after adjusting for sleep duration measured prior to the second vaccination.   

Hypothesis 8: Poor sleep efficiency, as measured using actigraphy over the 3 days prior to the 

first vaccination, will be associated with lower secondary antibody responses to hepatitis B 

immunization after adjusting for sleep efficiency measured prior to the second vaccination. 

Hypothesis 9: Poorer sleep quality, as measured using sleep diaries over the 4 days prior to the 

first vaccination, will be associated with lower secondary antibody responses to hepatitis B 

immunization after adjusting for sleep quality measured prior to the second vaccination.     
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In addition to addressing these primary hypotheses, this study will also investigate in 

secondary (i.e. exploratory) analyses whether sleep fragmentation and intra-individual variability 

in sleep behavior are associated with primary and secondary antibody responses.  Moreover, we 

will explore, using all available measurement days, whether individual differences in sleep 

duration, efficiency, or quality predict primary and secondary antibody levels.  Finally, in 

instances where sleep is related to secondary antibody responses, an additional set of analyses 

will be computed to test whether these sleep parameters predict the likelihood of clinical 

protection (i.e. mounting anti-HBa ≥10 mIU/ml), thus providing prospective evidence that sleep 

impacts susceptibility to infectious illness. 
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5.0  METHODS 

5.1 PARTICIPANTS 

Participants were 70 women and 55 men (91.3% Caucasian), aged between 40 and 60 

years old (Mean=50.1 ± 5.4) who were recruited via mass mail solicitation in Western 

Pennsylvania (primarily Allegheny County).  Eligible participants were non-smokers, reported 

being in good general health (including no history or symptoms of myocardial infarction, 

asthma, cancer treatment in the past year, current or past psychiatric illness, or other systemic 

disease known to affect the immune system), and free from medications known to affect the 

nervous, endocrine, or immune systems in the past 3 months (not including oral contraceptives).  

Women who were pregnant or lactating were ineligible.  In addition, participants more than 30% 

overweight, as estimated by BMI, were excluded.  Prior to full enrollment, otherwise eligible 

participants underwent a blood draw to assess levels of hepatitis B core (HBc), surface antigens 

(HBsA), and surface antibodies (anti-HBa), indicating current or past exposure or prior 

vaccination.  Individuals who showed any serological evidence of prior exposure to the antigen 

were excluded.   
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5.2 PROCEDURES 

The VIP project was a prospective study that consisted of three separate phases 1) a 

laboratory based reactivity phase, 2) a vaccination phase, and 3) a follow-up period, as displayed 

in Figure 1.  In the reactivity phase, participants underwent an acute laboratory challenge (an 

evaluative speech task) on two occasions, scheduled one month apart, during which time 

immune, cardiovascular, and endocrine measures were obtained.  This was followed by the 

vaccination phase of the study when all participants received the standard 3 dose hepatitis B 

vaccination sequence. The first dose of the hepatitis B vaccine was administered approximately 1 

month after the reactivity phase followed by the second and third dose administered 1 month and 

6 months after the first immunization, respectively.  Each vaccination period included daily 

assessment of health behaviors using electronic diaries that were completed for 7 days 

surrounding each of the vaccinations (see “Ecological Momentary Assessment” below).  A 

subgroup of participants also wore actigraph watches over the same 7 day assessment period 

surrounding the first immunization providing 6 nights of behavioral sleep data (see “Actigraphy” 

below).  Blood draws were obtained moments before administration of the second and third dose 

of the vaccine to assess antibody levels (i.e. primary and secondary responses to vaccination) as 

well as 6 and 12 months following completion of the vaccination series (i.e. follow-up phase).  

Subjects were paid $230 for completing this study in its entirety.  Data included in the present 

analysis was largely restricted to the vaccination phase of the VIP project and focuses on sleep 

data and primary and secondary antibody responses to vaccination; however, secondary analyses 

investigating the relation between sleep and clinical protection status, which was assessed at the 

conclusion of the vaccination series (i.e. 6 months following the third injection), will also be 

presented.   
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Figure 1: Diagram of the study design for Vaccination Immunity Project 
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5.2.1  Hepatitis B Vaccination 

Participants received three 20 microgram doses of recombinant hepatitis B vaccine 

(Engerix-B, Glaxo SmithKline), administered intramuscularly into the deltoid muscle. The first 

two immunizations were spaced 1 month apart, and the third booster dose was administered 6 

months after the first.  The first injection stimulated a primary immune response with subsequent 

doses activating secondary processes.  To assess primary and secondary antibody responses to 

the hepatitis B vaccination, 10 ml blood samples were drawn on visits when participants received 

the second and third immunizations but prior to these injections.  Antibody levels were also 

measured 6 and 12 months after the third immunization to assess clinical protection (i.e. anti-

HBa ≥10mIU/ml) and antibody maintenance.  

5.2.2 Ecological Momentary Assessment 

In order to assess the influence of sleep on antibody responses, participants completed 

electronic diaries for 7 consecutive days (3 days prior to, the day of, and 3 days after the 

immunization) at all three vaccination time points.  To facilitate data collection, participants 

were trained to use an electronic palm-pilot type computer (Palm Zire21).  Four times per day (1, 

4, 9, and 11 hours after scheduled awakening) participants were signaled to complete questions 

about a variety of daily experiences, including affect, levels of stress, and health behaviors.  

Assessment of sleep duration, latency, and quality was included in the first assessment of each 

day regarding the previous night.  This method of data collection, also known as ecological 

momentary assessment (EMA), has been demonstrated to be a more valid method of capturing 

day-to-day variability in psychosocial processes than retrospective reports, which are subject to 
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recall bias (Stone et al., 1998).  In order to limit data lost to diary malfunction, data was uploaded 

to the study database when participants came in for their vaccination visit (day 4 of EMA data 

collection) and immediately following the 7-day collection period.     

5.2.3 Actigraphy 

A subset of participants (n=104) wore an actigraph watch (Actiwatch-64,Respironics, 

Inc.) on their non-dominant wrists continuously for 7 days around the first hepatitis B 

inoculation, providing behavioral sleep data for 6 consecutive nights (3 nights before and 3 

nights after the first immunization).  Actigraphy measures movement as a proxy for wakefulness 

and, when used in sleep research, capitalizes on the fact that sleep is marked by prolonged 

inactivity.  In this study, actigraphy was used as a more objective assessment of sleep duration, 

efficiency, and sleep fragmentation. Experimental evidence supports actigraphy as a reliable and 

valid measure of sleep behavior in healthy, community samples (Ancoli-Israel et al., 2003; 

Littner et al., 2003) that does not suffer the methodological weaknesses associated with 

retrospective reporting.   

5.3 MEASURES 

5.3.1 Background Variables 

Demographic information, including age, gender, race, and BMI (kg/m
2
), was obtained 

by the study nurse at the time of the first study visit.   



 35 

5.3.2 Predictor Variables (Primary) 

5.3.2.1 Sleep Diary Measures 

The electronic daily diary included questions aimed at assessing sleep duration, sleep 

onset latency, and sleep quality.  Each morning participants were prompted to respond to the 

following questions: “What time did you go to bed last night?” and “What time did you wake up 

this morning?”  In addition, they recorded how long, in minutes, “after the lights went out” it 

took until they fell asleep (i.e. sleep onset latency) and rated the quality of that night’s sleep 

(1=very poor thru 4=very good).   

Sleep Duration 

Diary-based sleep duration was calculated for each diary entry as follows: [(Time Went 

to Bed - Time Woke Up) - Time Until Fell Asleep].  This calculation considers the amount of 

time an individual reports sleeping once able to fall asleep, but does not account for awakenings 

during the night.  Pre-vaccination averages of diary-based sleep duration were calculated using 

data collected on Day 1 thru Day 4 of the diary assessment at each immunization period, yielding 

measures of diary-based sleep duration prior to the first, second, and third vaccination.  

However, the primary hypotheses of this study focus on sleep measures collected prior to the 

first and second hepatitis B immunizations.   

Sleep Efficiency 

Diary-based sleep efficiency was calculated for each diary entry as follows: [(Sleep 

duration)/(Time Went to Bed- Time Woke Up)*100].  This calculation estimates the proportion 

of time an individual is asleep after attempting going to bed.  Unfortunately, the electronic diary 
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did not include a question regarding perceived minutes awake after sleep onset. Therefore, 

variation in the diary-based sleep efficiency is completely accounted for by sleep onset latency.  

Pre-vaccination averages of diary-based sleep efficiency were calculated using data collected on 

Day 1 thru Day 4 of the diary assessment at each immunization period.  

Sleep Quality 

 Diary-based measures of sleep quality were calculated by averaging sleep quality scores 

during the pre-vaccination days for each immunization period (Day 1 thru Day 4).  Again, 

primary hypotheses of this study focus on sleep measures collected prior to the first and second 

hepatitis B immunizations.   

5.3.2.2 Actigraphy Sleep Measures 

Actigraphy provides an objective measure of activity level and employs a software 

algorithm to determine sleep based on inactivity.  While not a direct measure of sleep behavior, 

per se, it has been shown to be reliable when compared to polysomnography (Ancoli-Israel et al., 

2003; de Souza et al., 2003).   Analysis of actigraphy data was conducted using the 

manufacture’s supplied software (Actiware 5.02, Minimitter, Inc).  Data was stored in 1 minute 

epochs.  The software scores each 1 minute epoch as either sleep or wake based on the activity 

counts within that epoch as well as the counts registered in the epochs 2 minutes before and 2 

minutes after.  The selected threshold for scoring an epoch as wake was set at 40 activity counts 

(medium threshold).  The sleep/wake algorithm per 1 minute epoch is as follows:  

D= A-2*(1/25) +A-1*(1/5) +A0*(1) +A+1*(1/5) +A+2*(1/25) 

where AX= accelerometer activity count for that minute.  If D>40, participants were scored 

as awake. Sleep onset was defined as 10 consecutive minutes of D<40.    
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The algorithm requires that “rest” intervals are set to calculate sleep parameters.  

Bedtimes and wake times were set by researchers based primarily on electronic diary responses.  

However, when diary data were unavailable (46 data points), rest intervals were set based on 

careful visual inspection of actigraphy data.  In this regard, actigraphy rest intervals were set 

based on the longest period of inactivity during nighttime hours.  Complete actigraphy data from 

5 participants was independently scored by an experienced technician (r=.84). Moreover, files 

that were particularly difficult to interpret were discussed with experienced editors and 

consensus was reached regarding rest interval periods.  Once rest intervals were set, sleep onset 

was automatically calculated by the software.  Sleep onset is defined as 10 consecutive minutes 

in which the maximum of one epoch has an activity count of 40 (medium threshold).  Sleep end 

is identified as the last 1 minute epoch in the last 10 minute period with no more than one epoch 

that has an activity count of greater than 40. The primary actigraphy-based sleep measures of 

interest in this study were sleep duration and sleep efficiency. However, sleep fragmentation was 

also examined in secondary analyses.   

Sleep Duration 

Assumed sleep duration was calculated as the length of time between the actigraph-

estimated sleep start and end times and does not subtract actigraph-identified awakenings 

throughout the night.  Therefore, it is an estimate of general sleep-wake patterns and less highly 

associated with sleep efficiency (r=.29) and sleep fragmentation (r= -.12) than total sleep time 

(TST) (r=.61 and r= -.45, respectively).  In the present study this measure of sleep duration was 

preferred over TST because it was operationally more similar to the diary-based measure of sleep 

duration collected at the second vaccination period, thus providing consistency in analyses where 

actigraphy-derived sleep duration at the first vaccination period was treated as a predictor of 
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secondary antibody responses, after adjusting for diary-based sleep duration at the second 

vaccination period (i.e. hypothesis 7).  However, because TST is commonly reported in the 

literature as a measure of actigraphy-based sleep duration, analyses were re-run using TST as a 

predictor of primary and secondary antibody responses and are presented in Appendix A.  Pre-

vaccination averages of actigraphy-based sleep duration used in the analyses were calculated 

using data from the first three days of measurement (Day 2 through Day 4) prior to the first 

immunization.   

Sleep Efficiency 

Assumed sleep efficiency was calculated based on the following equation:  

Sleep efficiency= (Total Sleep Time/Rest interval)*100 

Sleep efficiency was calculated by the software algorithm to estimate the proportion of time 

scored asleep given the specified rest interval.  Unlike actigraphy-based sleep duration, 

efficiency accounts for sleep lost during the night/early morning prior to the final awakening.  

Measures of pre-vaccination sleep efficiency were calculated using the three consecutive days of 

actigraphy data (Day 2 thru Day 4) collected prior to the first immunization.   

5.3.3 Predictor Variables (Secondary) 

Sleep Fragmentation 

Though not a primary sleep variable of interest, emerging evidence suggests that 

fragmented sleep may be related to physiologic (e.g. catecholamines) and psychological factors 

(i.e. psychological stress) known to impact immunity (Irwin, Clark, Kennedy, Christian Gillin, & 

Ziegler, 2003; Mezick et al., 2009; Sadeh, Keinan, & Daon, 2004).  Therefore, pre-vaccination 



 39 

averages of sleep fragmentation were calculated to determine their effect on primary and 

secondary vaccination responses in secondary analyses.  This measure of nocturnal awakening is 

derived from indices of nocturnal movement and is calculated as follows:  

(% of 1-minute intervals of movement during sleep+ % of 1-minute intervals of 

immobility)/total 1-minute immobility intervals 

This calculation provides an estimation of the proportion of awakening after sleep onset, with a 

higher score indicating more fragmented sleep.  Measures of average sleep fragmentation were 

calculated using the three consecutive days of actigraphy data (Day 2 thru Day 4) collected prior 

to the first immunization.   

Intra-Individual Variability in Sleep Parameters 

There is growing evidence that night to night variability in sleep is substantial, often 

eclipsing the variability observed between individuals (Buysse et al., in press; Knutson, Rathouz 

et al., 2007; Mezick et al., 2009; van Hilten et al., 1993).  To examine whether intra-individual 

variability in sleep parameters predict vaccination response, standard deviations (SD) for each 

sleep parameter were computed for each participant.   For instance, using all 6 consecutive days 

of actigraphy-based measures of sleep duration (i.e. measurements that occurred 3 days prior to 

and 3 days following the primary vaccination), a SD score was calculated for each individual.  

This score reflects the degree to which that person deviates from his or her own average sleep, 

with a higher SDs indicating greater variability in sleep duration.  Similar SDs were calculated 

for the other actigraphy-based measures (i.e. sleep efficiency and sleep fragmentation).  In 

contrast, SDs based on electronic diary sleep measures (i.e. diary-based sleep duration, 

efficiency, and quality) were computed using all available measurements across the three 
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vaccination time points.  Therefore, diary-based SDs were computed using as many as 21 days of 

measurement for each participant.   

Individual Differences in Sleep 

Epidemiologic evidence suggests that individual differences in sleep parameters (i.e. 

habitual sleep), particularly shortened sleep duration, are associated with increased morbidity 

and mortality (Cappuccio, D'Elia, Strazzullo, & Miller, in press-b; Hall et al., 2008; Mallon et 

al., 2002).  To examine whether dispositional differences in sleep duration, efficiency, and 

quality are associated with magnitude of primary and secondary antibody responses to the 

hepatitis B vaccination, we computed averages of sleep duration, efficiency, and quality for each 

participant using all available actigraphy and electronic diary measures.  For instance, to 

calculate individual differences in sleep efficiency, we averaged the 6 days of actigraphy 

collected around the first vaccination period, the 7 days of electronic sleep diary measures 

obtained around the both second and third vaccination periods.  As sleep quality was obtained by 

electronic sleep diary at each vaccination period, we averaged diary-based sleep quality over the 

21days of assessment for each study participant.   

5.3.4 Outcome Variables 

5.3.4.1 Hepatitis B Antibody Response 

At the second and third vaccination, 10 mls of blood were collected for quantifying levels 

of antigen-specific antibodies to hepatitis B (anti-HBa).    Fresh blood samples were sent to 

Central Laboratory Services (University of Pittsburgh Medical Center) for antibody assessment.  

When antibody levels exceeded levels of detection by Central Laboratory Services (>1000 
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mIU/ml), frozen serum samples were sent to a commercial laboratory (Arup Laboratories; Salt 

Lake City, UT) for further analysis.  Preliminary testing showed good reliability between both 

laboratories (r=.998). 

Primary Antibody Response 

To determine the primary antibody response to the initial vaccination, 10 mls of blood 

was drawn immediately prior to receiving the second vaccination (i.e. 1-month following the 

initial immunization), and anti-HBa levels were quantified.  In healthy populations, it is expected 

that only 25% of participants produce quantifiable levels of antibodies to this initial vaccination.  

Consequently, this variable was dichotomized with those producing quantifiable levels identified 

as “responders” and those without antibodies following the initial immunization as “non-

responders.”   

Secondary Antibody Response 

The secondary antibody response was determined by obtaining 10 mls of blood 

immediately prior to the third immunization, which occurred approximately 5 months after the 

second vaccination.  This outcome variable was treated as a continuous variable.  

Clinical Protection 

Though not a primary outcome of the present study, we assessed clinical protection 

against the hepatitis B virus using a 10 ml blood sample drawn 6 months following the third 

vaccination.  A circulating anti-HBa antibody level of ≥10 mIU/ml is the clinical threshold for 

protection (CDC, 1987).   In this sample, 18 participants (14.6%) failed to mount ≥10 mIU/ml of 

anti-HBa. This clinical protection variable was dichotomized, categorizing participants as 

“protected” or “not protected”.   
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5.4 DATA ANALYSIS 

Preliminary analyses were conducted to examine distribution of all continuous variables.  

Inter-correlations between covariates (gender, age, race, BMI), pre-vaccination sleep averages, 

and antibody levels were calculated using Pearson’s r (continuous) and point biserial (continuous 

and dichotomous) and phi-correlation (dichotomous) coefficients All statistical analyses were 

performed using SPSS 17.0. 

5.4.1 Primary Hypotheses 

Hypotheses 1-3 examined whether sleep duration, efficiency, and quality, measured prior 

to the first immunization, predicted the likelihood of mounting a detectable antibody response to 

the first hepatitis B vaccination.  To this end, separate unadjusted logistic regressions were 

computed, followed by hierarchical logistic regressions, entering sociodemographic variables 

(age, gender, race, BMI) in the first step of the model, followed by the sleep parameter of interest 

in the second step.   

Hypotheses 4-6 examined whether sleep duration, efficiency and quality, measured prior 

to the second vaccination, predicted antibody responses to the second immunization. In general, 

each hypothesis was tested using an unadjusted linear regression followed by a hierarchical 

linear regression; however, in addition to adjusting for sociodemographic variables in the each 

model, we also controlled for responder status to the initial vaccination (i.e. whether an 

individual mounted a detectable primary antibody response).  Indeed, individuals who displayed 

detectable antibodies in response to the first immunization also showed higher antibody levels in 

response to the second vaccination (r=.22, p<.05).   
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To test hypothesis 4, we utilized two analytic strategies.  First, to capitalize on the 

objective nature of actigraphy, it was initially proposed to treat actigraphy-based sleep duration, 

measured prior to the first immunization, as a stable construct and use it as a predictor of 

secondary antibody responses.  However, test-retest reliability over the pre-vaccination period 

suggested poor stability (ICC=.49; see Psychometric Data).  Accordingly, we relied on diary-

based measures of sleep duration assessed prior to the second vaccination period.  Using 

unadjusted linear regression followed by hierarchical linear regression, where sociodemographic 

variables (age, gender, race, and BMI) and responder status were entered in the first step and pre-

vaccination averages of diary-based sleep duration in the second step.   

While psychometric data failed to support stability in actigraphy-based sleep duration 

over the 3 days of assessment prior to the first vaccination, test-retest reliability appeared 

sufficiently high over the 6 days of measurement (3 days prior to and 3 days following the first 

immunization; ICC=.68; see Psychometric Data).  Therefore, in a second analytic strategy, we 

computed another unadjusted linear regression followed by a hierarchical linear regression 

entering sociodemographic variables and responder status in the first step and actigraphy-based 

sleep duration, averaged over 6 days of assessment, in the second step.   

Hypothesis 5 examined whether sleep efficiency predicted secondary antibody levels in 

response to the second hepatitis B vaccination.  Sleep efficiency displayed adequate reliability 

(ICC=.75).  Accordingly, actigraphy-based sleep efficiency was treated as a stable construct and 

used as a predictor of secondary antibody responses.  First an unadjusted linear regression was 

computed followed by a hierarchical linear regression, again entering sociodemographic 

characteristics and responder status in the first step and then actigraphy-derived pre-vaccination 

sleep efficiency in the second step.   
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Hypothesis 6 investigated the influence of subjective sleep quality, assessed prior to the 

second vaccination, on secondary antibody responses.  Here, we relied on electronic sleep diaries 

completed on the four consecutive days prior to the second immunization.  An unadjusted linear 

regression was computed followed by a hierarchical linear regression, entering 

sociodemographic variables and responder status in the first step, followed by diary-based pre-

vaccination sleep quality in the second step. 

Hypotheses 7-9 tested the independent contribution of sleep duration, efficiency, and 

quality measured prior to the first vaccination on secondary antibody responses.  To this end, we 

computed separate hierarchical linear regression analyses first adjusted for sleep measures that 

occurred immediately prior to the second vaccination followed by the sleep measures prior to 

second vaccination.  We then computed another hierarchical regression, entering 

sociodemographic characteristics and responder status in the first step, the pre-vaccination sleep 

measure prior to the second vaccination in the second step, followed by the pre-vaccination sleep 

measure from the first immunization in the final step. 

5.4.2 Secondary Analyses 

In secondary analyses, we sought to investigate the influence of sleep fragmentation and 

intra-individual variability of sleep measures and individual differences in sleep on antibody 

responses to hepatitis B vaccination.  To this end, we employed unadjusted and adjusted logistic 

regression to examine whether pre-vaccination averages in sleep fragmentation, intra-individual 

variability in sleep parameters, and averages of sleep duration, efficiency, and quality predicted 

primary antibody responses (i.e. responder status).  To address these sleep effects on secondary 
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antibody responses, we employed unadjusted and hierarchical linear regression analyses. All 

analyses were adjusted for sociodemographic variables (i.e. age, gender, race, and BMI).  

We also investigated whether sleep parameters predicted the likelihood of being 

clinically protected from the hepatitis B virus at the conclusion of the vaccination series. Clinical 

protection was defined by displaying ≥10mIU/ml anti-HBa in peripheral circulation 6 months 

following the third immunization.  In this study, clinical protection was significantly related to 

higher antibody levels following the second immunization (r=.54) but not to responder status 

following the initial vaccination (r=.09).  Accordingly, analyses of clinical protection were 

limited to sleep parameters found to be statistically significant predictors of secondary antibody 

responses. We employed hierarchical logistic regressions to examine the effects of sleep on 

likelihood of being clinically protected.  All analyses were adjusted for sociodemographic 

variables.     

5.4.3 Non-linear Relationships 

It is plausible that several of the relations between sleep parameters and antibody 

production may be non-linear in nature.  This was determined post-hoc based upon graphical 

representation of the data.  If a non-linear relationship was indicated, regression models were 

recomputed using the appropriate non-linear function (e.g. quadratic term); however, to correct 

for the multi-collinearity that may result by entering the linear and non-linear effect in the same 

regression model, non-linear variables were first regressed onto their related linear effects and 

the standardized residuals were saved.  Regression models were computed, entering any relevant 

covariates in the first step followed by the linear term in the second step.  In the final step, the 

saved standardized residual was entered, which represents the non-linear effect.    
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5.5 DATA TRANSFORMATIONS 

5.5.1 Background Variables 

Measures of age, gender, and body mass index (BMI) were normally distributed.  With 

respect to racial make-up, the sample was comprised of 114 Caucasians, 9 African-Americans, 1 

Hispanic-American, and 1 Asian-American.  As such, race was dichotomized as “Caucasian” 

and “non-Caucasian.”  Complete background variable data was available for all 125 participants 

in this study.  

5.5.2 Electronic Sleep Diaries 

Each of the 125 participants completed electronic diaries to assess sleep behavior four 

days prior to and three days after the first, second, and third hepatitis B vaccination.  At the end 

of the first vaccination period, 66.4% (n=83) of participants provided data on all 7 days of 

collection and 90% provided data on 5 of 7 days (n=112).  With regards to the pre-vaccination 

period (Day 1 thru Day 4), data was complete on 80% (n=100) of participants, with 113 (90.4%) 

participants providing data for at least 2 of the 4 days of measurement.  Similar results were 

observed during the second vaccination period 75.8% of participants (n=94) provided sleep data 

for all 7 collection days and 94% (n=117) providing diary data on 5 of 7 days.  Complete pre-

vaccination data was available for 78.4% (n=96) of participants, with 118 (94.4%) completing 

sleep diary measures on 2 of the 4 days prior to the second hepatitis B injection.  Finally, 62.4% 

(n=78) provided data on all 7 days of diary collection during the third vaccination and 91.2% 

(n=114) provided data on at least 5 of the 7 days of collection.  Pre-vaccination data (Day 1 thru 
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Day 4) was complete on 76% (n=96) of participants, with 119 (95.2%) of participants providing 

sleep data for 2 of the 4 nights prior to the final injections.  In all instances, missing data points 

were due to hardware/software malfunction.   

Because the primary hypotheses of this study focus exclusively on sleep measures 

collected prior to the first and second hepatitis B immunization (i.e. pre-vaccination periods), 

averages of diary-based sleep duration and sleep quality were calculated using data collected on 

Day 1 thru Day4.  Pre-vaccination averages were only calculated if a participant completed at 

least 2 diary entries. As a result, data on 12 participants were lost at the first vaccination and data 

on 7 participants were lost at the second vaccination, yielding a full sample of 113 and 118 

participants for later hypothesis testing.   

5.5.3 Actigraphy 

Actigraphy collection was initiated after beginning the VIP study.  As such, data were 

collected continuously on 104 participants for 7 consecutive days around the first vaccination, 

providing behavioral sleep data for 6 consecutive nights (Day 2 thru Day 7; 3 days prior to and 3 

days following the initial vaccination).  Data were lost on 9 participants due to 

hardware/software malfunction and on 2 participants due to removal of the actigraph watch 

during sleep periods on all collection nights.  As such, data on 93 participants were available for 

editing.   

As mentioned, diary-based bedtimes and wake-up times were used to set the rest intervals 

for actigraphy data.  In the event that bedtime or wake time estimates differed by more than 2 

hours between the electronic diary and actigraphy, they were considered to be outliers and 

treated as missing (Mezick et al., 2009).  This resulted in 18 missing data points (3.2%) across 14 
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participants.  Actigraphy-based averages of pre-vaccination sleep duration, efficiency, and 

fragmentation were calculated for participants who had at least 2 available nights of data.  This 

resulted in the loss of 4 participants and yielded a final sample of 89 participants with whom 

averages in actigraphy sleep data were available for hypothesis testing.   

5.5.4 Antibody Levels 

Raw antibody levels were obtained prior to the second and third vaccination, representing 

primary and secondary antibody responses to the first and second vaccination, respectively.  

Only 31 of 125 participants (24.8%) responded to the first vaccination with detectable antibody 

levels.  Therefore, a dichotomized variable (responder vs. non-responder) was created to 

examine associations between sleep measures and primary immune responses to immunization.  

Antibody levels assessed five months after the second vaccination were available on 124 

participants; however, one sample was lost to laboratory error and one sample was deemed an 

outlier (11, 600 mIU/ml; >9 standard deviations above the mean) and was subsequently dropped 

from the analyses, leaving 122 participants with available secondary antibody data.  Secondary 

antibody levels were positively skewed, and were normalized using a natural log transformation.  

The raw distribution of secondary antibody levels is displayed in Figure 2.  Finally, antibody 

levels measured 6 months after the final vaccination were used to assess clinical protection to the 

hepatitis B virus (n=123).  In this regard, 14.6% of participants (n=18) failed to meet the clinical 

threshold for protection (anti-HBa ≥ 10 mIU/ml).  Consequently, a dichotomous variable was 

created (protected vs. non-protected) to examine associations between sleep measures and 

protection status.  
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Figure 2: Raw distribution of secondary antibody levels. 

 

5.6 DATA IMPUTATION 

Quantitative researchers have advocated for the use of imputation techniques over 

conventional listwise deletion (Babyak, 2005; Schafer & Olsen, 1998).  Therefore, two sets of 

analyses were conducted when testing the primary study hypotheses.  The first set of analyses 

was based on sleep averages for participants who had at least 2 days of pre-vaccination sleep 

measurements.  The second set of analyses employed imputed data to create pre-vaccination 

averages, generally resulting in an increased sample size.  In this second set of analyses, missing 

sleep parameters were imputed using the expectation maximization (EM) approach (Little & 
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Rubin, 1987).  This approach is characterized by a two-step iterative procedure marked first by 

an expectation step where an expected value of the completed data set is computed.  Next, in the 

maximization step, the expected values are substituted in for missing values and a maximum 

likelihood function is estimated until convergence is achieved.  Imputed data were used only if 

this approach resulted in an increase in sample size.   Moreover, imputed values were only 

substituted for participants who had at least one day of data to contribute to the imputed average 

(i.e. averages comprised of entirely imputed data were not included in these analyses). Notably, 

while use of imputed data modestly increased our sample size in these analyses, it did not 

appreciably influence the study findings.  As such, imputed analyses are provided in Appendix 

B.  
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6.0  RESULTS 

6.1 SAMPLE DESCRIPTION 

The present sample included 125 medically healthy participants (56% female, 91.2% 

Caucasian) aged between 40 and 60 years old (M=50.1 ± 5.4) derived from the Vaccination 

Immunity Project (N=208); 83 participants were excluded from the present analysis because they 

did not receive the hepatitis B vaccination series or were deemed ineligible once enrolled due to 

prior hepatitis B exposure.  Sociodemographic characteristics for the included and excluded 

samples are provided in Table 1.  Participants included in the present analyses were similar in 

age, gender composition, and BMI to those excluded, but differed in racial composition.  

Specifically, participants included in this study were less racially diverse (91.2% Caucasian) 

when compared to those excluded (68% Caucasian; Χ
2
(1)=17.31, p<.001).  
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Table 1: Sociodemographic characteristics among those included and excluded in the present analyses. 

Displayed as means and (standard deviations) or percentages. 

 Included (n=125) Excluded 

(n=83) 

Gender (% Female) 56% 63.9% 

Age (years) 50.1 (5.4) 50.1 (5.5) 

Race (% Caucasian) 91.2%* 68.7% 

Body Mass Index (kg/m2) 25.2 (3.3) 25.5 (3.2) 

Education: Some college (%)  92.5%  

Employment Status (% Full time) 64.8%  

Family Income (%)   

     <$50,000 31.2%  

     $50,000-$74,999 20.0%  

     $75,000-$99,999 13.6%  

     ≥ $100,000 24.8%  

     No response 10.4%  

*p<.05 

 

 

 

Table 2 displays pre-vaccination sleep averages captured by both actigraphy and 

electronic diary during this study as well as antibody responses to the first and second 

immunization. Prior to testing the primary and secondary study hypotheses, we investigated the 

reliability/stability and relative validity of the sleep measures employed in this study.   
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Table 2: Pre-vaccination sleep averages and antibody responses among the study participants. 

 Mean (SD) or % [Range] 

Vaccination 1    

   Actigraphy-based measures  n=89  

       Total sleep time (mins) 344.3 (53.5) [184.5-456] 

       Sleep onset latency (mins) 24.8 (22.0)  [0-105] 

       Sleep duration (hrs) 6.5 (1.0)  [3.9-8.6] 

       Sleep efficiency (%) 80.0 (8.5)  [47-94.6] 

       Sleep fragmentation (%) 30.2 (11.8) [8-76.2] 

   

   Diary-based measures  n=113  

       Sleep onset latency (mins) 13.1 (9.6) [1-53.8] 

       Sleep duration (hrs) 7.0 (0.8) [4.5-8.7] 

       Sleep efficiency (%) 96.9 (2.3) [86.8-99.7] 

       Sleep quality (very poor [0-4]       

                              very good) 

3.1 (0.5) [1.3-4.0] 

   

Vaccination 2    

   Diary-based measures  n=118  

       Sleep onset latency (mins) 12.2 (8.6) [1-53.3] 

       Sleep duration (hrs) 7.1 (0.9) [4.5-9.7] 

       Sleep efficiency (%) 97.1 (2.1) [87.2-99.8] 

       Sleep quality (very poor [0-4]  

                              very good) 

3.3 (0.5) [1.8-4.0] 

   

Vaccination 3    

   Diary-based measures  n=119  

       Sleep onset latency (mins) 11.8 (7.8) [1-58.3] 

       Sleep duration (hrs) 7.0 (0.9) [4.4-9.6] 

       Sleep efficiency (%) 97.3 (1.7) [87.8-99.8] 

       Sleep quality (very poor [0-4]  

                              very good) 

3.2 (0.5) [1.8-4.0] 

Antibody response   

 Primary antibody levels (mIU/ml)
a
 4.76 (26.5) 

 median=0.0  

[0-252] 

   Primary antibody responder status                

   (% with detectable antibodies) 

24.8%  

   Secondary antibody levels 

   (mIU/ml)
b
 

96.0 (217.4) 

median= 23.1 

[0-1780] 

   % Clinically protected  

   (≥10 mIU/ml)
c
 

84.8%  

a
=125, 

b
=122, 

c
=123 
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6.2 PSYCHOMETRIC DATA 

6.2.1 Reliability of Sleep Parameters 

Test-retest reliability analyses were conducted on all primary sleep measures to assess the 

stability of sleep from night to night.  These analyses yielded aggregated intraclass correlation 

(ICC) coefficients for sleep measures assessed prior to each vaccination (Day 1 thru Day 4), 

post-vaccination (Day 5 thru Day 7), and across all nights of measurement (Day 1 thru Day 7). 

An ICC ≥ .70 is generally considered the threshold for adequate test-retest reliability in sleep 

research (Acebo et al., 1999; Sadeh, Sharkey, & Carskadon, 1994).  When ICC values were 

calculated using all available days of measurement, all of the sleep variables were considered 

reliable (Table 3), with the exception of actigraphy-based sleep duration across the first 

vaccination period (ICC=.68) and diary-based duration and efficiency across the third 

vaccination period (ICC=.66 and .68), all of which approached adequate reliability.   

When reliability was calculated using only measurements that occurred prior to 

immunization, only actigraphy-based sleep efficiency and fragmentation were adequately 

reliable (ICC=.75 and .84, respectively). These findings are consistent with previous research 

showing that at least 6 days of consecutive measurement in necessary to reliably assess most 

sleep parameters, including sleep duration (Knutson, Rathouz et al., 2007; van Hilten et al., 

1993).  
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Table 3: Test-retest reliability: Intraclass Correlation Coefficients (ICC) estimates from aggregated mean values over successive numbers of recording 

nights (pre-vaccination Day 1( or 2) thru 4; post vaccination Day 5 thru Day 7; across pre and post vaccination Day 1(or 2) thru Day 7). ICC≥.70 

indicates adequate reliability. 

 

 Pre-vaccination Post-vaccination Across pre and post vaccination 

Sleep Duration ICC    

     V1 Act. sleep duration  .49 .58 .68 

     V1 Diary sleep duration  .59 .66 .75 

     V2 Diary sleep duration  .64 .63 .76 

     V3 Diary sleep duration .63 .55 .66 

    

Sleep Efficiency ICC    

     V1 Act. sleep efficiency  .75 .71 .83 

     V1 Diary sleep efficiency .62 .79 .77 

     V2 Diary sleep efficiency  .68 .69 .78 

     V3 Diary sleep efficiency .58 .70 .68 

    

Sleep Quality ICC    

     V1 Diary sleep quality  .66 .60 .74 

     V2 Diary sleep quality  .63 .59 .79 

     V3 Diary sleep quality .69 .69 .78 

    

Sleep Fragmentation ICC    

     V1 Act. fragmentation  .84 .74 .90 
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6.2.2 Validity of Sleep Parameters 

While this study did not employ polysomnography, considered as the “gold standard” in 

sleep assessment, high correlations between sleep diaries and actigraphy within each day of 

assessment would provide some evidence that these tools are measuring a similar construct.   

Here, sleep duration and efficiency were assessed using both actigraphy and electronic diary 

across the first vaccination period.  Actigraphy-based sleep duration differed from diary-based 

assessment by an average of 38.6 minutes (S.D. =30.0 minutes).  Day to day correlations 

between actigraphy and diary-based sleep duration were very high (r’s= .86-.93) and are 

provided in Table 4.  This was not surprising, however, given that the rest intervals used to 

calculate actigraphy derived sleep measures were based on the bedtimes and wake times 

obtained via electronic sleep diaries.  

Day to day correlations between actigraphy and diary-based sleep efficiency are provided 

in Table 5.  Unlike sleep duration, daily sleep efficiency measured using electronic diaries was 

not highly correlated with concomitant actigraphy-based measures of sleep efficiency (r’s= -.03-

.33).  In part, this may be due to the fact that sleep efficiency calculated using actigraphy 

accounts for awakenings during the nighttime.  The electronic sleep diary did not include a 

question regarding the amount of awakening a participant experienced after sleep onset, thus 

likely overestimating his or her sleep efficiency on any given night.   
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Table 4: Day to day correlations between actigraphy and diary-based measures of sleep duration assessed 

during the first vaccination period. 
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Actigraphy-based sleep efficiency 

 Day1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Day 1 -- .08 -.14 .06 .15 .21 -.08 

Day 2 -- .33 .08 .31 -.03 .20 -.02 

Day 3 -- .13 .11 .13 .05 .09 -.06 

Day 4 -- .05 -.09 .31 -.10 .06 -.16 

Day 5 -- .09 -.05 .27 .09 .21 -.15 

Day 6 -- .16 -.05 .18 .09 .28 -.07 

Day 7 -- .15 .21 .51 .04 .21 -.03 

 

 

Table 5: Day to day correlations between actigraphy and diary-based sleep efficiency measured during the 

first vaccination period. 
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Actigraphy-based sleep efficiency 

 Day1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Day 1 -- .08 -.14 .06 .15 .21 -.08 

Day 2 -- .33 .08 .31 -.03 .20 -.02 

Day 3 -- .13 .11 .13 .05 .09 -.06 

Day 4 -- .05 -.09 .31 -.10 .06 -.16 

Day 5 -- .09 -.05 .27 .09 .21 -.15 

Day 6 -- .16 -.05 .18 .09 .28 -.07 

Day 7 -- .15 .21 .51 .04 .21 -.03 
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6.2.3 Stability of Sleep Averages Over Time 

Diary-based measures of sleep duration, efficiency, and quality were assessed over 7 days 

at each of the three immunization periods.  Accordingly, we were able to assess the stability of 

sleep averages over 1-month (i.e. test-retest reliability between V1 and V2), 5-month (i.e. test-

retest reliability between V2 and V3), and 6-month (i.e. test-retest reliability between V1 and 

V3) periods.  Aggregate intra-class correlation (ICC) coefficients for diary-based averages of 

sleep duration, efficiency, and quality are provided in Table 6.  In general, diary-based sleep 

duration was relatively stable over time when averaged across the pre-vaccination, post-

vaccination, and all days of measurement (ICC’s .60-.82).  In contrast, diary-based sleep 

efficiency appeared to be stable over a 1-month period (i.e. from V1 to V2; ICC=.59-.78), but 

not over longer periods of time.  Finally, diary-based sleep quality displayed moderate stability 

over time (ICC’s .68-.80).  

Table 6: Intraclass Correlation Coefficients estimates from aggregated mean values of pre-vaccination, post-

vaccination, and consecutive 7 days of assessment to assess stability in averages of diary-based sleep duration, 

efficiency and quality over one month (V1 and V2), five months (V2 and V3), and six months (V1 and V3).  

 

 Pre-vaccination  Post-vaccination  Across Pre and Post  

Sleep Duration ICC     

    V1 and V2 .69 .74 .81 

    V2 and V3 .73 .66 .82 

    V1 and V3 .72 .60 .78 

    

Sleep Efficiency ICC    

    V1 and V2 .59 .78 .74 

    V2 and V3 .49 .54 .62 

    V1 and V3 .49 .67 .54 

    

Sleep Quality ICC     

    V1 and V2 .63 .71 .80 

    V2 and V3 .75 .61 .77 

    V1 and V3 .53 .64 .68 
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6.2.4 Impact of Vaccination on Sleep Parameters 

While the primary aim of this study was to examine the influence of sleep on antibody 

responses, experimental animal and human evidence suggest that vaccination-related immune 

activation can also affect sleep (Bryant et al., 2004; Imeri & Opp, 2009).  To address this 

possibility, paired t-tests were employed to test differences in sleep parameters assessed pre and 

post the first, second, and third vaccination.  Results showed an increase in sleep duration from 

before to after the first vaccination (measured via actigraphy: t(86)= -2.81, p<.01; via electronic 

diary: t(106)=  -2.74, p<.01).  In addition, subjective sleep quality and diary-based sleep 

efficiency improved across the same period (sleep quality: t(110)= -2.05, p<.05; sleep efficiency: 

t(106)=-2.26, p<.05, respectively).  As displayed in Table 7, no other significant differences in 

sleep parameters pre and post vaccination were observed.  Post hoc examination of day-to-day 

differences in sleep across first vaccination period revealed that shorter sleep duration, poorer 

efficiency and poorer sleep quality on the night before the immunization (i.e. Day 4) accounted 

for the apparent improvements in sleep observed following the vaccination, possibly as a 

consequence of anxiety and waking up early for the vaccination appointment.  Indeed, removal 

of Day 4 data from the pre-vaccination averages resulted in non-significant pre/post differences 

in sleep duration (measured via actigraphy: t(79)= -1.91, p=.06; via electronic diary; t(102)=-

1.40, p=.16), efficiency (t(106)=-1.29, p=.20), and quality (t(106)=-1.06, p=.29). Nevertheless, 

Day 4 data remained in our calculations of pre-vaccination sleep averages as removal of this data 

led to additional reductions in reliability and sample size. 
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Table 7: Pre and post-vaccination means (sd) for actigraphy and diary-based sleep measures. P-values based 

on paired t-tests. 

 Pre- 

vaccination 

Post- 

vaccination 

p-value 

    

Sleep Duration     

  V1 actigraphy sleep duration (hrs) (n=87) 6.5 (0.9) 6.8 (0.9) <.01 

  V1 diary sleep duration (hrs) (n=107) 7.0 (0.8) 7.2 (0.9) <.01 

  V2 diary sleep duration (hrs) (n=115) 7.0 (0.9) 7.1 (1.0) .20 

  V3 diary sleep duration (hrs) (n=107) 7.0 (0.9) 7.1 (0.9) .28 

    

Sleep Efficiency     

  V1 actigraphy sleep efficiency (%) (n=87) 80.4 (7.8) 80.8 (7.8) .54 

  V1 diary sleep efficiency (%) (n=107) 96.9 (2.3) 97.3 (1.0) .03 

  V2 diary sleep efficiency (%) (n=115) 97.1 (2.1) 97.2 (2.2) .50 

  V3 diary sleep efficiency (%) (n=107) 97.2 (1.8) 97.3 (1.8) .33 

    

Sleep Quality     

  V1 diary sleep quality (n=111) 3.1 (0.5) 3.2 (0.5) .04 

  V2 diary sleep quality (n=115) 3.2 (0.5) 3.2 (0.5) .20 

  V3 diary sleep quality (n=107) 3.2 (0.5) 3.2 (0.5) .58 

    

Sleep Fragmentation     

  V1 actigraphy fragmentation (%) (n=87) 29.9 (11.7) 29.1 (12.5) .37 

 

 

6.3 PRELIMINARY RESULTS 

6.3.1 Associations among Sleep Parameters and Background Variables 

Pearson-product moment and point-biserial correlations of the primary pre-vaccination 

sleep measures and background variables (i.e. gender, age, race, and BMI) are displayed in Table 

8.  In general, men showed more sleep fragmentation prior to the initial vaccination (r=.33, 

p<.01) and poorer sleep efficiency (r=-.19, p<.05) prior to the third immunization than women.  
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Age was inversely associated with sleep duration prior to the third vaccination (r=-.18, p<.05).  

Finally, poorer actigraphy-based sleep efficiency prior to the first immunization and longer 

diary-based sleep duration prior to the second vaccination were observed among non-Caucasian 

participants when compared with Caucasian participants (r=-.26, p<.05; r=.30, p<.05, 

respectively).  There were no significant relations between BMI and sleep measures.   

Table 9 displays correlations among pre-vaccination sleep measures.  As expected, 

poorer sleep efficiency was associated with shorter sleep duration (r=.32, p<.01) and greater 

sleep fragmentation (r=-.66, p<.001).  Moreover, actigraphy-based sleep duration and efficiency 

were significantly associated with diary-based measures of duration and efficiency obtained prior 

to the first immunization (r=.75 and r=.25, respectively).  In addition, diary-based measures of 

duration, efficiency, and quality were correlated significantly across all three vaccination periods 

(p’s <.05).   
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Table 8: Bivariate correlations among sociodemographic characteristics and actigraphy and diary-based pre-

vaccination sleep measures.   
 

 Age Gender(female=1, 

male=2) 

Race(Caucasian=1, 

non-Caucasian=2) 

BMI 

Vaccination 1     

Actigraphy     

  Sleep duration -.05 -.15 -.16 -.06 

  Sleep efficiency .15 -.11 -.26* -.10 

  Sleep fragmentation -.17 .33* .16 -.01 

Diary     

  Sleep duration -.02 -.17 -.04 -.14 

  Sleep efficiency .15 -.03 -.11 -.16 

  Sleep quality .14 -.06 .02 .00 

     

Vaccination 2     

Diary     

  Sleep duration -.14 -.01 .30* -.09 

  Sleep efficiency .07 -.02 .06 -.16 

  Sleep quality .18 -.10 .03 .01 

     

Vaccination 3     

Diary     

  Sleep duration -.18* -.10 .02 -.12 

  Sleep efficiency .13 -.19* -.04 -.17 

  Sleep quality .07 -.07 -.16 -.08 

 *p<.05 

 

6.3.2 Associations among Background Variables and Vaccination Response 

Pearson, point biserial, and phi-correlations were computed to examine associations of 

background variables (age, gender, race, and BMI) and primary and secondary antibody response 

to hepatitis B vaccination.  Here, females produced higher levels of secondary antibodies in 

response to the second hepatitis B immunization than males (r=-.33, p<.001).  Moreover, a 

greater proportion of females was clinically protected (i.e. displaying anti-HBa  ≥ 10 mIU/ml) 6 
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months after the third immunization relative to males (r=-.25, p<.05).   There were no other 

significant associations. 

Table 9: Bivariate correlations among pre-vaccination sleep averages at each vaccination time point.  

 1 2 3 4 5 6 7 8 9 10 11 12 

Vaccination 1             

1. Act. Sleep duration --            

2. Act. Sleep efficiency .32* --           

3. Act. Sleep fragmentation -.04 -.66* --          

4. Diary Sleep duration .75* -.10 .10 --         

5. Diary Sleep efficiency .10 .25* -.20 .29* --        

6. Diary Sleep quality -.09 .20 -.19 .11 .39* --       

             

Vaccination 2             

7. Diary Sleep duration .29* -.19 .15 .54* -.07 -.01 --      

8. Diary Sleep efficiency -.06 .05 -.09 .08 .42* .10 .29* --     

9. Diary Sleep quality .00 .04 -.12 .09 .24* .51* .14 .29* --    

             

Vaccination 3             

10. Diary Sleep duration .49* -.06 .15 .57* .02 .05 .57* .04 -.03 --   

11. Diary Sleep efficiency -.03 .05 -.15 .04 .36 .10 -.05 .33* .20* .10 --  

12. Diary Sleep quality -.05 .08 -.10 -.09 .08 .38* -.11 .08 .60* -.05 .22* --  

 *p<.05 

6.4 PRIMARY HYPOTHESIS TESTING 

Question 1: Do sleep parameters, measured prior to the first vaccination, predict primary 

antibody responses to hepatitis B immunization?  

H1: Shorter sleep duration, as measured using actigraphy over the 3 days prior to the first 

immunization, will be associated with lower primary antibody responses to the hepatitis B 

vaccination.   

Experimental evidence suggests that acute sleep loss can negatively influence primary 

antibody response to vaccination (Lange et al., 2003). However, as displayed in Table 10, 

logistic regression analyses revealed no association of sleep duration with likelihood of 
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responding (i.e. displaying detectable antibody levels) to the first dose of vaccine (OR, 0.82; 

95% CI, 0.46-1.46, p=.50).  This relationship remained non-significant after adjustment for the 

standard set of covariates (age, gender, race, BMI).     

H2: Poorer sleep efficiency, as measured using actigraphy over the 3 days prior to the first 

immunization, will be associated with lower primary antibody responses to the hepatitis B 

vaccination. 

Growing evidence suggests that poor sleep efficiency negatively impacts host resistance 

to infectious illness (Cohen et al., 2009).  On the contrary, in the present study, logistic 

regression analyses revealed that individuals showing poorer actigraphy-based sleep efficiency 

were more likely to respond to the first vaccination (OR, 0.93; 95% CI, .88-.99, p=.02; Table 

10).  Based on this logit model, a participant with a pre-vaccination sleep efficiency of 85% 

would have a 12% probability of responding with detectable primary antibody levels, while a 

participant with a sleep efficiency of 75% would have a 22% probability of being a responder, 

nearly a doubling in likelihood.  After adjusting for age, gender, race, and BMI, however, this 

prospective association fell below statistical significance (OR, 0.94; 95% CI, .88-1.00, p=.06). 

To illustrate the unadjusted association between sleep efficiency and response status, 

sleep efficiency was categorized into approximate tertiles (low efficiency <80%, n=34; medium 

efficiency= 80-85%, n=30; high efficiency>85% n= 25).  As displayed in Figure 3, the 

relationship appears non-linear.  Accordingly, this relationship was re-analyzed, including sleep 

efficiency as a quadratic term in addition to modeling the linear effect.  As displayed in Table 10, 

the addition of this quadratic term did not improve the model fit of the association between sleep 

efficiency and responder status.   



 65 

Table 10: Unadjusted and adjusted logistic regression analyses examining whether pre-vaccination sleep duration, efficiency, and quality predicts 

likelihood of mounting detectable antibodies (i.e. being a responder) in response to the first hepatitis B injection. Analyses employed listwise deletion. 

 

a 
age, gender, race, BMI 

 

 

 

 B SE Wald p-value Odds Ratio 95% C.I. 

DV: Responder Status       

       

Sleep Duration (n=89)       

1. V1 actigraphy pre-vac. sleep duration -.20 .29 .46 .50 .82 .49-1.46 

  After covariate adjustment       

1. Covariates
a
       

2. V1 actigraphy pre-vac. sleep duration -.15 .31 .25 .62 .86 .47-1.57 

       

Sleep Efficiency (n=89)       

1. V1 actigraphy pre-vac. sleep efficiency -.07 .03 5.98 .02 .93 .88-.99 

  After covariate adjustment       

1. Covariates
a
       

2. V1 actigraphy pre-vac. sleep efficiency -.06 .03 3.64 .06 .94 .88-1.00 

3. V1 act. pre-vac. sleep efficiency (quadratic 

effect) 

.18 .30 .38 .54 1.20 .67-2.16 

       

Sleep Quality (n=113)       

1.  V1 diary-based sleep quality -.36 .42 .72 .40 .70 .31-1.59 

  After covariate adjustment       

1. Covariates
a
       

2. V1 diary-based sleep quality -.25 .43 .32 .57 .78 .33-1.83 
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Figure 3: Percentage of participants mounting detectable antibodies 1-month after receiving the first hepatitis 

B vaccination as categorized by actigraphy-based pre-vaccination sleep efficiency.   
 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

<80%                     
(n=34)

80-85%                          
(n= 30)

>85%                      
(n=25)

%
  
R

e
sp

o
n

d
e
r
s 

Actigraphy based pre-vaccination sleep efficiency

 

 

H3: Poorer subjective sleep quality, as measure using electronic sleep diaries over the 4 days 

prior to the first immunization, will be associated with lower primary antibody responses to the 

hepatitis B vaccination.   

Subjective sleep quality averaged over the 4 days prior to the first vaccination did not 

predict responder status to the first vaccination with or without covariates in the model (Table 

10).  

Question 2: Do sleep parameters, measured prior to the second vaccination, predict 

secondary antibody responses to hepatitis B immunization? 

H4: Shorter sleep duration, as measured using both sleep diaries over the 4 days prior to the 

second vaccination and actigraphy over the 3 days prior to the first immunization, will be 

associated with lower secondary antibody responses to hepatitis B vaccination. 
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Two analytic strategies were employed to test whether sleep duration was associated with 

secondary antibody responses to the hepatitis B vaccination.  First, because actigraphy data was 

not collected on the days immediately prior to the second vaccination, we relied on diary 

measures of sleep duration averaged over the 4 days prior to the second immunization.  As 

displayed in Table 11, linear regression analyses revealed no significant association of diary-

based sleep duration with secondary antibody levels, either without or with adjustment for 

covariates (i.e. gender, age, race, BMI, and primary responder status).  

Psychometric data suggested poor reliability in our actigraphy-based measure of sleep 

duration averaged over 3 days (pre-vaccination; ICC=.49); however, we observed modest 

reliability when averaged over 6 days of measurement (ICC=.68; Table 3).  Accordingly, we also 

used this measure as predictor of secondary antibody responses to vaccination.  Linear regression 

analyses showed that shorter average sleep duration, as assessed by actigraphy, was associated 

with lower secondary antibody levels (F(1, 84)=4.50, p=.04; b=.50, SE=.23, p=.04).  This 

association remained significant after adjustment for age, gender, race, BMI, and responder 

status (F(6, 78)=4.50, p<.001; ∆R
2
=.03; b=.43, SE=.22, p=.05; Table 11).   

To better illustrate this relationship, sleep duration was categorized into approximate 

tertiles (< 6 hours per night n=19; 6-7 hours per night, n=37; >7 hours per night n= 29).  As 

displayed in Figure 4, the association was largely linear, suggesting that the more hours of sleep 

individuals obtained on the days prior to and following the initial vaccination resulted in higher 

antibody levels in response to the second vaccination.  Because secondary antibody levels were 

natural log transformed, we calculated predicted geometric means to evaluate the magnitude of 

this effect.  Accordingly, it was predicted that a participant sleeping 6 hours would mount 85.4 

mIU/ml antibodies compared to 131.3 mIU/ml antibodies for a participant sleeping 7 hours per 
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night on average.  Based on this model
1
, it can be inferred that for each additional hour of sleep, 

we can expect a 54% increase in secondary antibody response.  

 

Figure 4: Actigraphy-based sleep duration, averaged over 6 consecutive days (3 days prior to and 3 days 

following the initial vaccination), predicts secondary antibody levels after adjustment for age, gender, race, 

BMI, and responder status. 
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H5: Poorer sleep efficiency, as measured using actigraphy over the 3 days prior to the first 

vaccination, will be associated with lower secondary antibody responses to hepatitis B 

immunization.  

Actigraphy-based sleep efficiency displayed adequate reliability in as few as 3 days of 

measurement (ICC=.78), providing evidence that sleep efficiency may be relatively stable over 

time.  Accordingly, we examined whether actigraphy-based sleep efficiency predicted antibody 

                                                 

1 Model adjusted for age (50.4 years old), gender (female), race (Caucasian), BMI (25.3 kg/m2), responder status (non-responder) 
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levels in response to the second immunization.   Here, linear regression analyses revealed no 

association between sleep efficiency and secondary antibody levels with and without covariates 

in the model (Table 11).   

H6: Poorer sleep quality, as measured across 4 days prior to the second vaccination, will be 

associated with lower secondary antibody responses to hepatitis B immunization. 

There were no significant associations of pre-vaccination sleep quality with secondary 

antibody levels in unadjusted and covariate adjusted models (Table 11).   
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Table 11: Unadjusted and adjusted linear regression models examining whether sleep measures predict secondary antibody levels following the second 

vaccination.  Analyses employed listwise deletion.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a
age, gender, race, BMI, and responder status 

 B SE p-value R
2
 ∆R

2
 

DV: Secondary Antibody Levels (nat. log)      

      

Sleep duration (diary based; n=115)      

1. V2 diary pre-vac. sleep duration  .02 .20 .94 .00 --- 

  After covariate adjustment      

1. Covariates
a
    .22 --- 

2. V2 diary pre-vac. sleep duration -.08 .19 .67 .21 -.01 

      

Sleep duration (actigraphy based; n=85)      

1. V1 actigraphy sleep duration .50 .23 .04 .04 --- 

  After covariate adjustment      

1. Covariates
a
    .17 --- 

2. V1 actigraphy sleep duration .43 .22 .05 .20 .03 

      

Sleep efficiency (n=86)      

1. V1 actigraphy pre.-vac. sleep efficiency .02 .02 .35 .00 --- 

  After covariate adjustment      

1. Covariates
a
    .16 --- 

2. V1 actigraphy pre.-vac. sleep efficiency .03 .02 .15 .18 .02 

      

Sleep quality (n=115)      

1. V2 diary pre.-vac. sleep quality .18 .37 .64 .00 --- 

  After covariate adjustment      

1. Covariates
a
    .22 --- 

2. V2 diary pre.-vac. sleep quality .04 .34 .90 .21 -.01 
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Question 3: Do sleep parameters, measured prior to the first vaccination, predict secondary 

antibody responses to hepatitis B immunization independent of sleep parameters measured 

prior to the second vaccination period? 

Emerging evidence suggests that perturbation around the time of the initial exposure to 

antigen can impact the magnitude of subsequent secondary antibody response. For example, 

acute sleep loss, psychological stress, and eccentric exercise on the day prior to vaccination 

influence the magnitude of antibody responses captured months later (Edwards, Burns, Allen et 

al., 2007; Edwards et al., 2006; Lange et al., 2003; Spiegel et al., 2002).  Accordingly, we 

investigated whether natural variation in sleep duration, efficiency, and quality assessed prior to 

the initial vaccination predicted secondary antibody responses independent of the influence of 

sleep measured on the days immediately prior to the second vaccination.   

H7: Shorter sleep duration, as measured using actigraphy over the 3 days prior to the first 

vaccination, will be associated with lower secondary antibody responses to hepatitis B 

immunization after adjusting for sleep duration measured prior to the second vaccination.   

Analyses revealed that actigraphy-derived sleep duration measured prior to the first 

vaccination did not predict antibody levels to the second vaccination after adjustment for sleep 

duration measured on the 4 days prior to the second vaccination (F(2, 80)= 1.92, p=.154; 

∆R
2
=.02; b=.40, SE=.21, p=.07).  Further adjustment for demographic variables and responder 

status did not alter this finding (Table 12).  
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H8: Poor sleep efficiency, as measured using actigraphy over the 3 days prior to the first 

vaccination, will be associated with poorer secondary antibody responses after adjusting for 

sleep efficiency measured prior to the second vaccination. 

Next, we explored the possibility that poor sleep efficiency on the days prior to the initial 

vaccination would influence magnitude of secondary antibody responses independently of levels 

of sleep efficiency prior to the second immunization. As shown in Table 12, actigraphy-based 

sleep efficiency was unrelated to the magnitude of secondary antibody production. This finding 

remained the same in analyses that adjusted for covariates, including gender, age, race, BMI, and 

responder status.   

H9: Poorer sleep quality, as measured using sleep diaries over the 4 days prior to the first 

vaccination, will be associated with lower secondary antibody responses to hepatitis B 

immunization after adjusting for sleep quality measured prior to the second vaccination.     

We investigated whether poor sleep quality prior to the initial vaccination was associated 

with lower secondary antibody levels independently of sleep quality observed on the days 

preceding the second immunization.  Again, hierarchical linear regressions revealed no 

significant relationships in the initial models when adjusting for covariates (Table 12).   
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Table 12: Unadjusted and adjusted linear regression analyses examining whether actigraphy and diary-based measures of sleep, assessed prior to the 

first vaccination, predict secondary antibody levels after controlling for the effects of sleep occurring prior to the second vaccination .  Analyses 

employed listwise deletion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     a age, gender, race, BMI, and responder status 

 B SE p-value R
2
 ∆R

2
 

DV: Secondary Antibody Levels (nat. log)      

      

Sleep duration (n=83)      

1. V2 diary pre-vac. sleep duration     .00 --- 

2. V1 actigraphy pre-vac. sleep duration .39 .21 .07 .02 .02 

  After covariate adjustment      

1. Covariatesa    .18 --- 

2. V2 diary pre-vac. sleep duration     .18 .00 

3. V1 actigraphy pre-vac. sleep duration .33 .20 .11 .20 .02 

      

Sleep efficiency (n=83)      

1. V2 diary pre-vac. sleep efficiency    .00 --- 

2. V1 actigraphy pre-vac. sleep efficiency .02 .02 .36 .00 .00 

  After covariate adjustment      

1. Covariatesa    .18 --- 

2. V2 diary pre-vac. sleep efficiency    .18 .00 

3. V1 actigraphy pre-vac. sleep efficiency .03 .02 .14 .19 .01 

      

Sleep quality (n=105)      

1. V2 diary pre-vac. sleep quality    .00 --- 

2. V1 diary pre-vac. sleep quality .08 .42 .85 .00 .00 

  After covariate adjustment      

1. Covariatesa    .27 --- 

2. V2 diary pre-vac. sleep quality    .27 .00 

3. V1 diary pre-vac. sleep quality .22 .37 .56 .27 .00 
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6.5 SECONDARY ANALYSES 

Secondary analyses were conducted to explore the association between less well 

understood sleep parameters and antibody response to vaccination.  Table 13 provides 

descriptive statistics for actigraphy-based sleep fragmentation, intra-individual variability in 

sleep parameters, and individual differences in sleep measures (averaged across all three 

immunization time points). 

6.5.1 Sleep Fragmentation 

One advantage of using actigraphy is the opportunity to obtain an objective measure of 

sleep fragmentation.  To date, no study has examined whether sleep fragmentation impacts 

immune function, including antibody responses to vaccination.  While sleep fragmentation was 

not assessed prior the second vaccination period, it was measured before the initial immunization 

providing an opportunity to determine whether fragmented sleep predicts responder status.  

Moreover, the aggregated ICC value for pre-vaccination sleep fragmentation was .84 (see Table 

3), suggesting adequate stability over 3 days of measurement.  Accordingly, we treated 

fragmentation as a stable individual difference and explored whether fragmentation predicted 

antibody responses.   

First, logistic regression was employed to determine whether actigraphy-based 

fragmentation predicted responder status.   Here, greater sleep fragmentation was associated with 

increased likelihood of mounting detectable antibodies in response to the initial vaccination (OR, 
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1.05; CI 95% 1.00-1.10, p=.03). However, after for covariates this association was no longer 

statistically significant.   Next, we investigated whether sleep fragmentation predicted secondary 

antibody levels.  Here, an unadjusted linear regression model showed no significant association 

before (F(1, 84)=0.73, p=.40; ∆R
2
=.00; b=-.01, SE=.02, p=.40) or after adjustment for covariates 

(F(6, 79)=3.56, p=.004; ∆R
2
=.00; b=.00, SE=.02, p=.86).    

6.5.2 Intra-individual Variability in Sleep Parameters 

There is growing interest in the impact of night to night variability in sleep on health.  

Indeed, individuals with marked variability in sleep patterns, such as rotating shift workers, are 

at increased risk of several medical conditions (e.g. cardiovascular disease) as well as report 

greater incidence of infectious illness, including the common cold (Fujino et al., 2006; Mohren et 

al., 2002).  There is widespread within person variability in sleep, often eclipsing the variability 

observed between individuals.   Mixed models were utilized to determine the proportion of 

variance in sleep parameters attributable to within and between participants’ factors.  For this 

purpose, we computed single measure intra class correlation (ICCs) coefficients.  This type of 

ICC (denoted here on as ICCs) differs from the aggregated ICC discussed earlier as it describes 

the reliability at the level of the individual (i.e. each participant).  In contrast, the aggregated ICC 

provides an average measure of reliability at the group level (i.e. study sample).    

ICCs values indicate that proportion of variance that can be attributed to between person 

differences; therefore, [1-ICCs] is the proportion of the total variance attributable to within 

person differences.  As displayed in Table 13, ICCs values ranged from .19 to .61, suggesting 

that 39%-81% of the variability in our sleep measures were due to within person differences.  

This is consistent with a small but compelling set of studies that support high intra-individual 
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variability in presumed healthy sleepers (Knutson, Rathouz et al., 2007; Mezick et al., 2009; van 

Hilten et al., 1993). Estimates of intra-individual variability for each sleep parameter were 

obtained by calculating standard deviations (SD) over the 6 days of actigraphy measurement and 

as many as 21 days of electronic sleep diary measurement for each participant.   

Logistic and linear regression models were computed to quantify the effect of intra-

individual variability in sleep parameters on primary and secondary antibody responses to 

vaccination.  Sociodemographic variables (age, gender, race, and BMI) were included as 

covariates in all models; responder status was also included in models predicting secondary 

antibody responses.  In addition, in separate models, we adjusted for mean sleep parameters, 

averaged over all measurement time points, in the final step of each respective regression model 

to test whether the relationship between intra-individual sleep variability and antibody response 

was independent of average sleep.  

Table 13: Descriptive statistics for secondary sleep variables 

Sleep Variable Mean (SD) ICCs 

    

V1 Pre-vac. sleep fragmentation (%) 30.2 (11.8) --- 

   

Intra-individual variability   

1. Actigraphy-based measures     

         Sleep duration (mins) 60.2 (29.1) .26 

         Sleep efficiency (%) 6.0 (3.6) .46 

         Sleep fragmentation (%) 9.1 (4.9) .61 

   

2. Diary-based measures   

         Sleep duration (mins) 57.7 (18.2) .23 

         Sleep efficiency (%) 1.8 (1.4) .19 

         Sleep quality (very poor [0-4] very good) 0.56 (0.20) .32 

   

Individual differences in sleep    

         Sleep duration (hrs)  6.9 (0.7) --- 

         Sleep efficiency (%) 88.8 (3.9) --- 

         Sleep quality (very poor [0-4] very good) 3.2 (0.4) --- 

 



 77 

6.5.2.1 Intra-individual Variability in Sleep Duration 

To investigate whether intra-individual variability in sleep duration predicted primary and 

secondary antibody responses, we relied on measures derived from both actigraphy and 

electronic sleep diaries.  With respect to actigraphy, an unadjusted logistic regression model 

suggested that greater night to night variability in sleep duration, measured over 6 nights of 

actigraphy assessment, was associated with a greater likelihood of displaying detectable antibody 

titers one month following the first vaccination (OR, 3.07; 95% CI, 1.07-8.84, p=.04; Table 14). 

However, this association fell below statistical significance after adjusting for covariates and 

average sleep duration. 

With respect to whether intra-individual variability in sleep duration influences secondary 

antibody response, hierarchical linear regression analyses did not support an effect of variability 

in actigraphy-based sleep duration (Table 15); on the contrary, variability in electronic diary-

based duration did significantly predict secondary antibody levels.  Here, hierarchical linear 

regression analyses revealed that, controlling for the effects of age, gender, race, BMI, and 

responder status, greater variability was associated with lower secondary antibody responses 

(F(6, 115)=6.11, p<.001; ∆R
2
=.04; b=-1.35, SE=.55, p=.02).  Furthermore, this relationship was 

independent of average sleep duration assessed across all three vaccination periods (Table 15). 

To further illustrate this association, we categorized participants into tertiles based on 

variability in diary-based sleep duration (< 45 minutes, n=37; 45 to 65 minutes, n=44; >65 

minutes, n=41).  As displayed in Figure 5, the association between variability in diary-based 

sleep duration and natural log transformed secondary antibody levels appeared non-linear.  

Accordingly, an additional hierarchical linear regression was computed including a negative 
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quadratic term in the final step of a regression to model this curvilinear relationship.  The 

negative quadratic term was a significant predictor of secondary antibody production (Table 15).  

 

Table 14: Unadjusted and adjusted logistic regression analyses examining whether intra-individual 

variability (IIV) in sleep duration, efficiency, quality, and fragmentation predicts likelihood of mounting 

detectable antibodies (i.e. being a responder) in response to the first hepatitis B injection. 

 

 

a 
age, gender, race, BMI 
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Table 15: Unadjusted and adjusted linear regression analyses examining whether intra-individual variability 

(IIV) in sleep predicts secondary antibody responses to the second vaccination.   
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Figure 5: Intra-individual variability in diary-based sleep duration predicts the magnitude of secondary 

antibody responses to the second immunization.  This association is adjusted age, gender, race, BMI, 

responder status, and diary-based sleep duration averaged over the three vaccination periods. 
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6.5.2.2 Intra-individual Variability in Sleep Efficiency 

Night-to-night variability in sleep efficiency was assessed using actigraphy over 6 days at 

the time of the first immunization and via electronic diaries for 7 days at each of the 3 

vaccination periods.  Logistic regression analyses showed no significant associations of 

actigraphy or diary derived measures of variability in sleep efficiency and probability of 

responding to the first vaccination, including after controlling for sociodemographic 

characteristics and average sleep efficiency across the same period (Table 14).   

Similar analyses examining the associations of variability in sleep efficiency with 

secondary antibody levels revealed an inverse relationship between actigraphy-based measures 

and antibody response that withstood adjustment for covariates (F(6, 80)=4.65, p<.001; ∆R
2
=.04; 

b=-.10, SE=.05, p=.05); however, this association was not independent of average actigraphy-
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based sleep efficiency measured over this same time period.  Intra-individual variability in diary-

based sleep efficiency was unrelated to secondary antibody responses, with and without 

covariate adjustment (Table 15). 

6.5.2.3 Intra-individual Variability in Sleep Quality 

Variability in subjective sleep quality was assessed across 7 consecutive days at each of 

the three vaccination periods.  However, there were no associations between this measure and 

either probability of mounting a primary response or magnitude of secondary antibody response 

(Tables 14 and 15).   

6.5.2.4 Intra-individual Variability in Sleep Fragmentation 

Finally, variability in sleep fragmentation was assessed across the first vaccination period 

using the actigraphy data.  Regression analyses revealed no significant associations of this 

measure with probability of mounting a detectable antibody response to the first vaccine or 

magnitude of secondary response.  These associations remained non-significant in models that 

controlled for sociodemographic characteristics and average sleep fragmentation over the first 

vaccination period (Tables 14 and 15).   

6.5.3 Individual Differences in Sleep 

Much of the work linking sleep and health comes from large epidemiologic samples that 

focus on dispositional differences in sleep parameters.  For instance, “short” sleepers (e.g. 

sleeping less than 6 hours per night) and, to some extent, “long” sleepers (i.e. sleeping longer the 

8 or 9 hours per night) are at increased risk for several chronic medical conditions, including 
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hypertension, diabetes, and the metabolic syndrome (Gangwisch et al., 2006, 2007; Hall et al., 

2008).  While the present study was designed to examine prospectively whether variation in 

sleep prior to either the first or second vaccination period influenced the magnitude of primary 

and secondary antibody responses, it is also plausible that dispositional differences in sleep affect 

antibody production.   

6.5.3.1 Individual Differences in Sleep Duration 

 

Average sleep duration was calculated by averaging actigraphy-based measures of sleep 

duration obtained over the first vaccination period and electronic diary-based data obtained over 

the second and third vaccination period.   With respect to the primary antibody response, logistic 

regression revealed no significant relationship between average sleep duration and responder 

status before and after covariate adjustment (Table 16).  In contrast, linear models revealed a 

significant positive association of dispositional sleep duration and magnitude of secondary 

antibody response (F(1, 85)=4.84, p=.03; R
2
=.04; b= .62, SE=.28, p=.03).  However, this 

association was only marginally significant after adjusting for sociodemographic characteristics 

and responder status (p=.06; Table 17).    
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Table 16: Unadjusted and adjusted logistic regression analyses examining whether individual differences in sleep duration, efficiency, and quality 

predicts likelihood of mounting detectable antibodies (i.e. being a responder) in response to the first hepatitis B injection. 

 

 B SE Wald p-value Odds Ratio 95% C.I. 

DV: Responder Status       

       

Average sleep duration (n=90)       

1. Average sleep duration .21 .42 .26 .61 1.23 .55-2.79 

  After covariate adjustment       

1. Covariates
a
       

2. Average sleep duration .10 .43 .05 .82 1.10 .48-2.54 

       

Average sleep efficiency (n=90)       

1. Average sleep efficiency -.18 .07 7.09 .01 .84 .73-.95 

  After covariate adjustment       

1. Covariates
a
       

2. Average sleep efficiency -.14 .08 3.48 .06 .87 .75-1.01 

       

Average sleep quality (n=125)       

1.  Average sleep quality -.81 .56 2.10 .15 .44 .15-1.33 

  After covariate adjustment       

1. Covariates
a
       

2. Average sleep quality -.66 .57 1.34 .25 .52 .17-1.58 

 
a
 age, gender, race, BMI 
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Table 17: Unadjusted and adjusted linear regression analyses examining whether sleep duration, efficiency, 

and quality, averaged across all three vaccination periods, predicts secondary antibody levels following the 

second vaccination. 

 

 B SE p-value R
2
 ∆R

2
 

DV: Secondary Antibody Levels (nat. log)      

      

Average sleep duration (n=87)      

1. Average sleep duration  .62 .28 .03 .04 --- 

  After covariate adjustment      

1. Covariates
a
    .17 --- 

2. Average sleep duration .50 .26 .06 .20 .03 

      

Average sleep efficiency (n=87)      

1. Average sleep efficiency .05 .05 .29 .00 --- 

  After covariate adjustment      

1. Covariates
a
    .17 --- 

2. Average sleep efficiency .06 .05 .25 .18 .01 

      

Average Sleep quality (n=122)      

1. Average sleep quality -.06 .45 .90 .00 --- 

  After covariate adjustment      

1. Covariates
a
    .17 --- 

2. Average sleep quality -.13 .42 .75 .17 .00 
a
 age, gender, race, BMI, responder status to initial vaccination 

6.5.3.2 Individual Differences in Sleep Efficiency 

Average sleep efficiency was calculated by combining actigraphy measures across the 

first vaccination period with diary measures assessed during the second and third vaccination 

periods. Logistic regression analysis revealed an inverse association of average sleep efficiency 

with likelihood of mounting a detectable primary antibody response (OR, 0.83; 95% CI, .73-.95, 

p=.01). However, this relationship remained only marginal after adjustment for age, gender, race, 

and BMI (p=.06; Table 16).  There were no associations between average sleep efficiency and 

magnitude of secondary antibody response before or after covariate adjustment.     
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6.5.3.3 Individual Differences in Sleep Quality 

Regression analyses revealed no significant associations of average sleep quality with 

probability of mounting a response to the first immunization or with magnitude of secondary 

antibody response either before or after controlling for covariates (Tables 16 and 17).   

6.5.4 Clinical Protection 

Finally, beyond establishing prospective associations between sleep parameters and 

magnitude of primary and secondary antibody production, this study was able to test whether 

sleep parameters are associated with the probability of mounting a clinically protective response 

to the hepatitis B sequence.  In this regard, the established criterion for clinical protection is a 

circulating antibody level of ≥10 mIU/ml (CDC, 1987).  The present study indicated that shorter 

sleep duration, measured via actigraphy only or when averaged across all available vaccination 

time points, predicted lower secondary antibody responses.  In addition, intra-individual 

variability in sleep duration and efficiency were related to secondary antibody production. 

Therefore, in secondary analyses, we examined whether these parameters were also associated 

with the likelihood of clinical protection 6-months after the conclusion of the vaccination series.   

6.5.4.1 Clinical Protection: Sleep Duration 

Consistent with primary analyses revealing that shorter sleep duration at the time of the 

first immunization predicted lower secondary antibody responses, logistic regression revealed 

that shorter sleep duration was also associated with a decreased likelihood of being clinically 

protected 6-months after the final dose of vaccine (OR, 3.35; 95% CI, 1.34-8.37, p=.01). As 

displayed in Figure 6, 73.7% of participants who slept less than 6 hours per night were protected 
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at the end of the vaccination series.  In comparison, 86.8% participants who slept between 6 and 

7 hours were protected with participants who slept greater than 7 hours showing an even higher 

proportion of clinical protection (93.5%).  With respect to the effect size, this logit model 

indicates that a participant who slept 6 hours on average over the days surrounding the first 

vaccination period would have a 79.9% probability of displaying anti-HBa ≥10 mIU/ml while an 

individual sleeping 7 hours would have a 91.6% probability of being protected.  This association 

remained significant after adjustment for age, gender, race, and BMI (Table 18). 

 

Figure 6: Actigraphy-based sleep duration, averaged over 6 consecutive days (3 days prior to and 3 days 

following) the initial vaccination, is associated with likelihood of being clinically protected (i.e. anti-HBa ≥ 10 

mIU/ml) 6-months following the third immunization.  This association is adjusted for age, gender, race, and 

BMI. 
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6.5.4.2 Clinical Protection: Individual Differences in Sleep Duration 

We assessed whether sleep duration averaged over all three vaccination time points 

predicted likelihood of clinical protection.  Logistic regression revealed that shorter average 

sleep duration was associated with decreased likelihood of clinical protection from the hepatitis 
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B virus 6 months after the vaccination series (OR, 3.57; 95% CI, 1.26-10.11, p=.02; Table 18). 

However, this association was only marginally significant when adjusting for covariates. 

Table 18: Unadjusted and adjusted logistic regression analyses examining whether sleep measures predict the 

likelihood of being clinically protected (i.e. anti-HBa ≥ 10mIU/ml) 6-months following the final hepatitis B 

vaccination. 

 

 

6.5.4.3 Clinical Protection: Intra-individual Variability in Sleep Duration 

Next, we examined whether intra-individual variability in diary-based sleep duration was 

associated with the likelihood of being clinically protected 6-months after the completion of the 

hepatitis B vaccination series.  Regression analyses revealed that high and low sleep duration 

variability were not only associated with lower secondary antibody responses, but also with a 

decreased likelihood of mounting a clinical protective response.  In this regard, logistic 
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regressions were used to explore this relationship including both linear and non-linear effects as 

described earlier.  Here, we found that a non-linear relationship remained statistically significant 

after controlling for age, gender, race, BMI, the linear effect, and sleep duration averaged over 

all three vaccination periods (OR, 2.42; 95% CI, 1.14-5.14, p=.02; Table 18), with those with 

high and low variability less likely to be clinically protected than those with medium variability.  

6.5.4.4 Clinical Protection: Intra-individual Differences in Sleep Efficiency 

Finally, prior analyses indicated that greater stability in sleep efficiency across nights was 

associated with more robust secondary antibody responses.  However, regression analyses did 

not show a similar association between variability in sleep efficiency and probability of 

mounting a clinically protective response (Table 18). 

6.5.5 Influence of Covariates on Dependent Variables  

As expected, several of the study covariates were significantly related to the dependent 

outcomes.  As seen in Tables 10-12, the covariates accounted for 17-25% of the variance in 

antibody responses.  With respect to the influence of specific covariates, younger individuals 

were more likely to mount detectable antibodies to the first vaccination (OR, 0.87; 95% CI, .77-

.98, p=.02).  Conversely, secondary antibody responses were higher among women, those with a 

higher BMI, and participants who mounted detectable antibodies to the initial vaccination 

(p’s<.05).    
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7.0  DISCUSSION 

Despite a large literature linking sleep and health, the mechanisms of these associations 

remain unclear.  Laboratory evidence in animals and humans supports the immune system as a 

plausible biological pathway; however, the majority of this work has been limited to in vitro 

immune measures where the clinical relevance is unclear.  Accordingly, we have turned to a 

more integrated measure of immunity, namely antibody response to vaccination.   

The goal of the present study was to examine whether natural variation in three 

dimensions of sleep (duration, efficiency, and quality) predicted the magnitude of primary and 

secondary antibody responses to the hepatitis B vaccination series among a sample of relatively 

healthy older adults.  In addition, this study explored the impact of several less well researched 

sleep parameters (e.g. sleep fragmentation and intra-individual variability in sleep) on 

vaccination response.  Findings uncovered several intriguing relationships, adding to our 

growing understanding of the influence of sleep on in vivo immune function.  Before turning to 

the potential implications of this work, however, a brief discussion of these findings and how 

they fit within the context of the existing literature is provided.   
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7.1 SLEEP AND PRIMARY ANTIBODY RESPONSE 

It was hypothesized that shorter sleep duration, poorer sleep efficiency, and poorer sleep 

quality prior to the initial vaccination would be associated with fewer primary antibodies as 

assessed 1-month later.  Contrary to expectations, neither duration nor quality predicted 

probability of mounting a detectable primary antibody response. Interestingly, individuals who 

mounted a response to the first dose of the vaccine showed poorer sleep efficiency, measured 

objectively using actigraphy alone (see Figure 3) and when averaged across all three vaccination 

periods; however, neither of these associations withstood adjustment for sociodemographic 

covariates.  Secondary unadjusted analyses also revealed that greater sleep fragmentation and 

greater intra-individual variability in sleep duration around the days of the first immunization 

were associated with probability of mounting a response to the first dose of vaccine, suggesting 

that poorer sleep continuity within and between nights promoted greater antibody production to 

the first immunization.   

To date, only one study has examined the association of sleep parameters with primary 

antibody response (Lange et al., 2003). Findings showed that when compared with normal sleep, 

a 36 hour period of sleep deprivation was associated with lower primary antibody responses to 

the hepatitis A vaccination (Lange et al., 2003).  Our failure to observe a similar effect of sleep 

duration in the current study may be attributable to several methodological differences.  For 

instance, 36 hours of sleep restriction likely confers substantially different effects on the body 

when compared to the natural variation in sleep quantified in our study.  Total and partial sleep 

deprivation have been associated with changes in enumerative and functional measures of 

immunity that precipitously return to baseline levels upon nights of unrestricted sleep (for 

review, Opp et al., 2007).  In contrast, the physiologic cost of naturally occurring sleep loss is 
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less clear, though alterations in immune and autonomic functioning have been reported (Irwin et 

al., 2003).  It is also possible that discrepant findings result from differences in timing and 

outcome measures across studies.  In the current study, only 24.8% of participants mounted 

detectable antibody levels in response to the initial hepatitis B vaccination, leading us to 

dichotomize our dependent outcome (i.e. responders vs. non-responders).  Accordingly, the 

amount of variability that could be explained by sleep duration was limited.  Furthermore, we 

focused on sleep duration prior to administering the first immunization.  Conversely, Lange and 

colleagues (2003) restricted sleep immediately post-vaccination, potentially leading to alterations 

in disparate immune mechanisms.   

Contrary to hypotheses, poorer sleep efficiency, greater sleep fragmentation, and greater 

intra-individual variability in duration predicted a greater likelihood of mounting a detectable 

primary antibody response in the current study. These interesting findings are somewhat 

consistent with an emerging literature suggesting that enhanced physiologic activity can prime 

immune pathways to respond more vigorously to an antigenic challenge (Edwards, Burns, 

Carroll, Drayson, & Ring, 2007; Matzinger, 2002).  In this regard, experimental human and 

animal evidence shows that acute bouts of psychological stress and exercise promote short-lived, 

rapid changes in enumerative and functional measures of innate and adaptive immunity, 

including parameters that facilitate antigen recognition and antibody production (Dhabhar, 2002; 

Marsland, Cohen, Rabin, & Manuck, 2001; Marsland et al., 1997; Matthews et al., 1995; 

Segerstrom & Miller, 2004).   Of particular relevance, recent experimental evidence 

demonstrates that acute mental stress and exercise also enhance antibody responses to 

vaccination (Edwards, Burns, Allen et al., 2007; Edwards et al., 2006).  For example, Edwards 

and colleagues (2006) found that participants randomized to either a 45 minute mental stressor 
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(i.e. serial addition task with social evaluation) or dynamic exercise (i.e. ergonomic cycling) 

displayed higher antibody titers to the A/Panama strain of the influenza vaccine 4 and 20 weeks 

post immunization when compared to a resting control condition.   

To our knowledge, the current findings provide the first prospective evidence for an 

association between poor sleep continuity, measured in the field, and primary antibody 

production.  Fragmented sleep, poor sleep efficiency, and greater intra-individual variability in 

sleep duration have been associated with elevated catecholamine release and alterations in 

sympathovagal balance across the night span (Irwin et al., 2003; Stamatakis & Punjabi, in press; 

Tiemeier, Pelzer, Jonck, Moller, & Rao, 2002), which, in turn, have been associated with the 

modulation of immune parameters that play a role in antibody production (Kin & Sanders, 2006).   

Similarly, patients with obstructive sleep apnea (OSA), who by definition experience fragmented 

sleep, show elevations in inflammatory activity (e.g. higher circulating IL-6) (Arnardottir, 

Mackiewicz, Gislason, Teff, & Pack, 2009; Shamsuzzaman, Gersh, & Somers, 2003) and 

lymphocyte activation (Dyugovskaya, Lavie, & Lavie, 2005) when compared to non-OSA 

sleepers.  Taken together, these findings suggest that poor sleep continuity may contribute to a 

more robust primary immune response to antigen challenge.  

7.2 SLEEP AND SECONDARY ANTIBODY RESPONSE 

While analyses did not reveal prospective associations of sleep efficiency or quality with 

secondary antibody response, shorter actigraphy-based sleep duration was associated with lower 

secondary antibody production.  Furthermore, this finding remained statistically significant after 

adjusting for several relevant covariates, including age, gender, race, BMI, and responder status 
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to the initial vaccination (see Figure 4). This finding was further supported by secondary 

analyses utilizing all available sleep duration data and is consistent with existing laboratory and 

field evidence in humans.  Indeed, partial sleep deprivation (i.e. restricting participants’ sleep 

from 8 to 4 hours/night) for 4 consecutive nights prior to vaccination resulted in a 57% reduction 

in secondary antibody production 10 days post immunization with influenza relative to non-

deprived sleepers (Spiegel et al., 2002).  Similarly, Pressman and colleagues (2005) found that 

among college freshman shorter sleep duration, measured in the field, was associated with lower 

secondary antibodies to the influenza vaccine 1-month and 4-months later.  The current findings 

are also consistent with experimental evidence that short sleep duration is associated with 

increased susceptibility to upper respiratory infection (Cohen et al., 2009).  Taken together, 

growing evidence, including our own, suggests that short sleep duration may place people at 

elevated risk for infectious disease.   

The prospective design of the current study allowed for investigation of temporally 

unique relationships between sleep dimensions and secondary antibody responses (Hypotheses 7 

through 9).  In this regard, shorter actigraphy-based sleep duration prior to the first dose of the 

vaccine was modestly associated with fewer secondary antibody responses, independently of 

sleep occurring on the days prior to the second vaccination (p=.07; Table 12), raising the 

possibility that the days prior to beginning the vaccination series may be a critical period when 

sleep confers unique influence on vaccination.  Adjustment for sociodemographic covariates and 

responder status further diminished the magnitude of this effect.  However, further examination 

of this possibility in a bettered powered sample is warranted. Furthermore, actigraphy 

measurement at all vaccination time points will aid in the elucidation of temporally vulnerable 

periods when sleep may affect antibody production.   
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Unlike much of the sleep-health literature that has relied on single nights of assessment or 

retrospective report to derive habitual sleep averages, this study capitalized on objective and 

subjective sleep data captured serially over multiple nights.  Consistent with prior studies 

(Buysse et al., in press; Knutson, Rathouz et al., 2007; Mezick et al., 2009; van Hilten et al., 

1993), we found that within person variation in sleep from night to night was substantial (Table 

13), eclipsing the between person variation.  Here, intra-individual variability in sleep efficiency, 

measured via actigraphy, and sleep duration (see Figure 5), measured across all three vaccination 

time points, predicted magnitude of secondary antibody responses. Variability in sleep duration 

remained a significant predictor after adjusting for sociodemographic covariates and average 

sleep duration; however, the association with antibody response was non-linear, with lower 

secondary antibody responses among those with low and high night-to-night variability.  Factors 

distinguishing participants with either low or high variability in sleep duration remain to be 

determined.  Differential influences of dispositional characteristics shown to affect antibody 

production (e.g. trait negative and positive affect; Marsland, Cohen et al., 2001; Marsland, 

Cohen, Rabin, & Manuck, 2006; Phillips, Carroll, Burns, & Drayson, 2005) may partially 

account for this non-linear finding.   Nevertheless, this is the first study to document effects of 

intra-individual variability in sleep on in vivo immune function and may provide insight into the 

health risks observed among rotating shift workers, including increased prevalence of infectious 

illness (Mohren et al., 2002).   

Contrary to our hypotheses, subjective sleep quality was unrelated to both primary and 

secondary antibody responses in this study.  This is in contrast to an earlier study that found 

poorer sleep quality prior to the influenza vaccination predicted lower secondary antibodies 1-

month later (Pressman et al., 2005).  Moreover, cross-sectional findings support an association 
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between poor sleep quality and risk factors for disease, including hypertension, obesity, insulin 

resistance, and elevated glucose (Fiorentini et al., 2007; Jennings et al., 2007; Resta et al., 2003; 

Scheen & Van Cauter, 1998).  Although it is plausible that subjective sleep quality is unrelated to 

antibody production, our null finding may be partially accounted for by the restricted range of 

sleep quality responses.  Indeed, the majority of participants described their sleep as either 

“good” or “very good” over the days of the first and second vaccination periods (71.4% and 

72.6% of participants, respectively).  Accordingly, future studies may benefit from employing a 

more sensitive measurement of sleep quality and inclusion of individuals with greater variability 

in their subjective sleep quality.   

7.3 SLEEP AND CLINICAL PROTECTION 

Perhaps the most striking finding from this study was the association of actigraphy-based 

sleep duration with probability of mounting a clinically protected response to the vaccine, as 

assessed 6-months after the final injection (Figure 6).  Indeed, participants sleeping less than 6 

hours per night over the actigraphy measurement period had a 25% lower probability of being 

clinically protected when compared to participants sleeping more than 7 hours per night.  This 

finding remained statistically significant after adjustment for age, gender, race, and BMI.  

Furthermore, shorter sleep duration, averaged across all three vaccination periods, was associated 

with a lower probability of protection, providing additional evidence that individual differences 

in duration may confer risk for infectious illness. Consistent with the association of greater sleep 

variability with magnitude of secondary antibody response, participants with low and high night-
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to-night variability in sleep duration were also less likely to mount a protective response to the 

vaccine.   

Several sociodemographic factors are related to probability of mounting a protective 

response to hepatitis B vaccination. In the current study, the relationship between sleep duration 

and probability of being protected at the conclusion of the vaccination was independent of 

factors known to confer risk, including age, gender, and BMI.  Moreover, the magnitude of the 

sleep effects observed in this study is comparable to risk ratios derived from epidemiologic 

studies that report associations of demographic and health factors with vaccination response.   

For instance, Averhoff and colleagues found that individuals older than 40 years, obese, or 

current smokers had relative risks of 2.2, 1.6, and 1.9, for being unprotected following the 

vaccination series compared to individuals under the age of 40, non-obese, or non-smokers 

(Averhoff et al., 1998).  Comparable risk ratios have been presented in other studies (Zeeshan et 

al., 2007; Zuckerman, 2006). In the current study, participants whose sleep averaged less than 

6.5 hours per night had a risk ratio of 2.3 for not mounting a protective response to the 

vaccination compared to those sleeping 6.5 hours of more per night.  

Taken together, these findings provide intriguing evidence that sleep parameters, 

occurring prior to vaccination, and when averaged over time, influence the magnitude of primary 

and secondary antibody responses to the hepatitis B vaccine.  Moreover, this study provides 

preliminary evidence that night-to-night variability in sleep duration as a previously 

undocumented correlate of magnitude of antibody response. Beyond accounting for variability in 

antibody production, the current findings suggest that short sleep duration may aid in identifying 

individuals at increased risk of not mounting a clinically-protective response to hepatitis B 

vaccination series.   
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7.4 POTENTIAL MECHANISMS LINKING SLEEP AND ANTIBODY 

PRODUCTION 

7.4.1 Immune/Endocrine Mechanisms 

Antibody production requires a complex, integrated set of immune processes, marked by 

antigen uptake, processing and presentation, and proliferation of antigen-specific memory T and 

B cells that facilitate the production and release of antigen-specific antibody into systemic 

circulation (Rabin, 1999).  While the specific underlying pathways by which sleep affects 

antibody production have yet to be determined, several immune processes that contribute to 

antibody production appear sensitive to variability in sleep (Lange, Dimitrov, & Born, in press). 

The immune response to foreign antigens is initiated by macrophages and dendritic cells 

that ingest the antigen and present it to other aspects of the immune system, including T cells.  

Recent human evidence suggests that sleep modulates antigen presentation.  For example, 

Dimitrov and colleagues (2007) found that 24-hours of wakefulness was associated with a 

significant decline in number of myeloid precursor dendritic cells and their capacity to produce 

IL-12, a cytokine critical in orchestrating T-helper cell maturation.  Sleep deprivation has also 

been associated with shifts in the number of T- and B-cells in peripheral circulation, which may 

impact that probability of antigen-presenting cells being able to access lymphocytes in secondary 

lymphoid tissue.   

Diurnal fluctuations in immune parameters are primarily regulated by the neuroendocrine 

axis and autonomic nervous system (Lange et al., in press).  Cortisol and catecholamines (e.g. 

epinephrine and norepinephrine) reach their relative nadirs in the early and late evening during 

normal sleep.  Variation in these hormonal systems is intimately related to the distribution of 
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immune cells in the periphery.   Indeed, administration of exogenous epinephrine or cortisol at 

physiologic levels has been shown to modulate several leukocyte subsets, including NK cells, 

naïve and memory helper and cytotoxic T cells (Dimitrov et al., 2009).  Similar changes have 

been observed in response to acute sleep deprivation (Opp et al., 2007).  Furthermore, it has been 

speculated that low levels of cortisol and epinephrine observed during normal sleep enable naïve 

T helper cells to travel from the bone marrow to lymphatic tissue (Lange et al., in press). Thus, it 

is possible that disrupted sleep may modulate adaptive immune function as a result of disruptions 

in the circadian regulation of hormones.    

Interleukin (IL)-6 is thought to play an important role in switching T helper cells from 

Type 1 phenotype to Type 2 cells that promote humoral immune activity, including antibody 

production (Diehl & Rincon, 2002).  Interestingly, elevations in inflammatory activity, including 

IL-6, have been observed the morning following partial sleep deprivation (Irwin et al., 2006).  

Furthermore, stress-related elevations in circulating IL-6 were found to statistically mediate the 

effect of acute stress and enhanced antibody production to the influenza vaccine (Edwards et al., 

2006).  Epidemiologic evidence also supports an association between shorter sleep duration and 

elevations in systemic levels of inflammation (Miller et al., 2009; Patel et al., 2009); however, 

not all studies are consistent (Prather et al., 2009) and often vary by inflammatory marker (Patel 

et al., 2009).   

Mounting laboratory evidence shows that peripheral inflammatory mediators act on the 

brain to regulate aspects of sleep (Imeri & Opp, 2009), making it is impossible to discern the 

direction of associations between sleep and levels of systemic inflammation using cross-sectional 

data.  While inflammation went unmeasured during the vaccination phase of the present study, 

the prospective design would aid in disentangling important temporal links among systemic 
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inflammation, sleep, and antibody response.  Accordingly, longitudinal data collection tracking 

underlying neuroendocrine, autonomic, and immune parameters over time is necessary to 

characterize biological mechanisms that are responsible for coordinating antibody production 

and vary by fluctuations in sleep behavior.   

7.4.2 Genetics 

Growing evidence indicates that several sleep dimensions are, in part, genetically 

determined.  For instance, studies have found the genetic contributions to chronotypes 

(heritability estimates for usual bedtime=0.23-0.47; Klei et al., 2005; Vink, Groot, Kerkhof, & 

Boomsma, 2001) and sleep duration (heritability (h) estimates= 0.23-0.40; Heath, Kendler, 

Eaves, & Martin, 1990; Klei et al., 2005; Watson, Buchwald, Vitiello, Noonan, & Goldberg) to 

be sizeable. In much the same way, antibody response to the hepatitis B vaccination series is 

heritable (h=0.61), with 25% of the genetic contribution accounted for by genes integral to 

antigen-presentation (Hohler et al., 2002).  Circadian clock genes are proposed to contribute to 

individual differences in sleep by affecting circadian rhythmicity at the level of the SCN 

(Franken & Dijk, 2009).  Moreover, variability in clock genes have also been observed in 

peripheral immune cells, raising the possibility that individual differences in clock gene activity 

contribute to both sleep and immune function.  In this regard, individuals with 4/5 or 5/5 54-base 

pair tandem repeat in Period (Per)3 clock gene, which has been related to variability in sleep 

structure (Viola et al., 2007), displayed elevated circulating IL-6 relative to those with the 4/4 

genotype (Guess et al., 2009).  Other studies support Period clock genes as integral to the 

regulation of innate immunity (Arjona & Sarkar, 2005, 2006). To date, no study has explored the 

association between clock genes and aspects of the adaptive immune system; however, it is 
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plausible that variability in clock gene activity may have contributed to both sleep and antibody 

production in this study. 

7.4.3 Psychological Stress 

Psychological stress is the best researched psychosocial correlate of antibody production.  

Several comprehensive reviews support an inverse relationship between stress and antibody 

levels, including responses to the hepatitis B vaccine (Burns, Carroll, Ring et al., 2003; Cohen et 

al., 2001; Pedersen et al., 2009).  This raises the question of whether the influence of sleep on 

antibody response in this study merely reflects variation in psychological stress. Indeed, sleep is 

readily disrupted at times of acute and chronic stress, potentially leading to clinical sleep 

disorders (e.g. primary insomnia; Spielman, Caruso, & Glovinsky, 1987).  Conversely, poor 

sleep has been shown to foster heightened stress reactivity (Franzen, Buysse, Dahl, Thompson, 

& Siegle, 2009; Yoo, Gujar, Hu, Jolesz, & Walker, 2007) and diminished coping (Morin et al., 

2003), suggesting a dynamic bidirectional relationship.   

 Several studies have failed to demonstrate that sleep mediates the association of stress 

with antibody response (Burns et al., 2002; Kiecolt-Glaser et al., 1996); in part, this may be due 

to the fact that researchers have relied on broad measures of habitual sleep duration, which is 

subject to recall bias, thus supporting the need for objective measures of sleep to be assessed 

over multiple nights. Using serial measurement of stress and sleep, Miller and colleagues (2004) 

found that sleep duration, averaged over 12 days, was marginally associated with antibody 

response to influenza vaccination and partially mediated the relationship between stress, 

averaged over the same 12 days, and antibody production (Miller et al., 2004).  In addition, 

because they had multiple days of assessment, they were able to examine the direction of these 
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associations.  Consistent with bidirectional influences, they found that shorter nighttime sleep 

predicted greater stress the following day, controlling for the stress the previous day.  Similarly, 

higher levels of stress during the day predicted fewer hours of sleep that night, after controlling 

for sleep quantity the prior night.  Accordingly, it will be important in future work to monitor 

sleep and stress longitudinally across the vaccination series to explore potential additive and 

synergistic effects of the sleep-stress relationship on antibody production.   

7.5 STUDY LIMITATIONS 

There are a number of study limitations that must be considered when interpreting these 

findings.  First, actigraphy, which served as a more objective measure of sleep behavior, was 

only assessed at the first vaccination period.  Furthermore, this period of sleep assessment was 

interrupted by the vaccination itself. While our data suggested that any effects of the vaccination 

on sleep were negligible, it is impossible to disentangle subtle influences that may have 

contributed to observed associations between sleep and antibody response.  Relatedly, our serial 

sleep data suggests that at least 6 days are necessary to obtain a reliable average for most sleep 

parameters, which is consistent with prior studies (Knutson, Rathouz et al., 2007; van Hilten et 

al., 1993); however, other measures of temporal stability suggest that several weeks of data are 

needed (Wohlgemuth, Edinger, Fins, & Sullivan, 1999).   Accordingly, our findings would have 

been strengthened by additional nights of consecutive actigraphy measurement prior to each of 

the vaccination periods. Furthermore, it is important to recognize that actigraphy assesses 

activity, not sleep, and merely capitalizes on the fact that sleep is characterized by extended 

periods of inactivity.  As such, a confirmatory study utilizing home-based polysomnography is 
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indicated.  That said, actigraphy is much less cumbersome than PSG and potentially provides a 

better window into natural sleep patterns (Littner et al., 2003).   

There were a number of limitations to the electronic sleep diaries in the present study.  

First, we failed to discriminate between “going to bed” and “attempting to go to sleep (i.e. lights 

out).”  As such, an individual who reported going to bed and watched television for 2 hours 

would have an inflated measure of sleep duration.  This limitation also affected actigraphy 

scoring, which relied on the electronic diary data to establish “rest intervals.”  In addition, we did 

not include an estimate of minutes awake after sleep onset in our set of diary questions.  This 

likely resulted in an overestimation of diary-based sleep efficiency, as any sleep loss was related 

to sleep onset latency.   Furthermore, napping was not assessed in this study, potentially 

obscuring our interpretation of sleep duration and efficiency that can be influenced substantially 

by chronic napping behavior (Ancoli-Israel & Martin, 2006).  Relatedly, this study would be 

strengthened by a measure of perceived sleep need and daytime sleepiness, as it would improve 

our ability to differentiate individuals who are sleep deprived versus those with a lower sleep 

need (Anderson & Horne, 2008; Dinges, 2005; Klerman & Dijk, 2005). Finally, we did not 

distinguish between sleep occurring on weekdays or weekends in our analyses.  This is important 

because individuals may attempt to “pay off” their sleep debt from the week on weekend nights 

(Dinges, 2005).  That said, this omission is likely of little consequence when considering 

measures of sleep across all days of measurement, as each vaccination time point spanned 7 

days; however, it is plausible that a portion of pre-vaccination averages included weekend sleep, 

which may differentially influence immune function.   

The present study is strengthened by its prospective design; however, in the absence of an 

experimental sleep manipulation and proper control conditions, we cannot determine 
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conclusively that variation in sleep leads to alterations in primary or secondary antibody 

responses to the hepatitis B vaccination.  It is plausible that a third unmeasured variable, such as 

personality characteristics, psychological stress, or genetics may be related to both to sleep 

disturbance and diminished antibody response.   Furthermore, clinical protection conferred by 

the hepatitis B vaccination cannot be verified without experimentally exposing participants to the 

hepatitis B virus; however, epidemiologic studies support clinical protection over time among 

“protected” individuals at high risk of hepatitis B exposure (Hadler et al., 1986). 

Finally, the presence of clinical sleep disorders, such as obstructive sleep apnea (OSA), 

was not assessed in the current sample.  Epidemiological evidence suggests that approximately 

6% of the U.S. population suffers with sleep apnea (Gliklich, Taghizadeh, & Winkelman, 2000).  

Given the high correlation between obesity and clinical sleep disorders, adjustment for BMI in 

our regression analyses would have limited the influence of OSA on our outcomes.  Moreover, a 

recent study found no differences in antibody responses to the influenza vaccination between 

untreated patients with OSA and normal sleepers (Dopp et al., 2007).  Nevertheless, OSA has 

been associated with modulation in immune function, including elevated inflammation 

(Mohamed-Ali et al., 1997), which may, in turn, influence antibody production.   

7.6 FUTURE DIRECTIONS AND IMPLICATIONS 

There are several directions in which to take this work.  First and foremost, study 

replication addressing the limitations listed above is needed.  If research continues to support 

sleep duration, efficiency, and intra-individual variability in sleep duration as predictive of 

antibody production, future work is warranted to better identify “critical periods” when sleep 
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may exert influence on vaccination response.  In this study, we began to explore these temporal 

associations; however, a lack of actigraphy sleep measures at the second vaccination period 

limited our ability to appropriately test independent effects of objectively assessed sleep 

parameters at specific time periods on antibody production.    

Poor sleep continuity prior to the initial vaccination predicted a more robust primary 

antibody response; however, our understanding of the underlying mechanisms are unclear.  

While Edwards and colleagues posit that activation of inflammatory pathways prime aspects of 

the innate and adaptive immune system to respond more vigorously to antigenic challenge, 

evidence is limited to acute stress and exercise (Edwards, Burns, Carroll et al., 2007).  The extent 

to which inefficient or fragmented sleep may produce similar immune effects under laboratory 

conditions is unknown.  Further exploration of this potential pathway will contribute to growing 

knowledge about psychosocial correlates of vaccination response.   

 Epidemiologic studies show that approximately 20-30% of individuals mount low, 

transient antibody responses to the hepatitis B vaccination series (Averhoff et al., 1998; Pasko & 

Beam, 1990).  Moreover, individuals who initially mount a protective response show greater 

declines in antibody levels over time, with a steeper decline associated with increasing age 

(Zuckerman, 2006).  Accordingly, beyond establishing a relationship between sleep behavior and 

antibody response, determining how variation in sleep affects antibody maintenance is 

warranted.  

Shorter sleep duration and night-to-night variability in duration prospectively predicted 

lower secondary antibody responses and decreased likelihood of being clinically protected at the 

conclusion of the hepatitis B vaccination series, raising questions about ways to improve vaccine 

efficacy.  On one hand, efficacy could be improved among poor sleepers by withholding the 



 105 

vaccine until their sleep improved.  On the other hand, disturbed sleep is a risk factor for several 

medical conditions, suggesting that sleep interventions may confer the most long term benefit.  

In this regard, several pharmacologic and behavioral therapies have been developed to treat sleep 

complaints with good success (Edinger, Wohlgemuth, Radtke, Marsh, & Quillian, 2001; Smith et 

al., 2002).  Behavioral sleep interventions may be particularly helpful for older adults who, as a 

demographic, report more disturbed sleep, show greater immunosenescence, and are more likely 

than younger adults to have medical co-morbidities potentially complicating pharmacologic 

treatment. 
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8.0  CONCLUSIONS 

The goal of this study was broadly to investigate how natural variation in sleep influences 

the magnitude of antibody response to vaccination, an in vivo measure related to susceptibility to 

infectious disease. Recognizing the constraints of prior laboratory research, we employed unique 

strategies to prospectively investigate the influence of sleep in the field, measured objectively 

and subjectively using actigraphy and electronic diaries, on an integrated and clinically relevant 

measure of immune function, namely antibody response to the hepatitis B vaccine.  This study 

revealed several intriguing relationships between sleep and antibody production. In this regard, 

shorter sleep duration was associated with both lower secondary antibody levels and decreased 

likelihood of being clinically protected at the conclusion of the vaccination series.  These 

findings were independent of the effects of age, gender, race, body mass index and consistent 

with a larger epidemiologic literature describing the negative health correlates of habitually short 

sleep.  Additionally, we provide preliminary evidence that night-to-night variability in sleep 

duration is related to magnitude of antibody response, suggesting that variability in sleep may be 

another sleep dimension that affects health.  

 Contrary to our hypotheses, poorer sleep continuity, particularly poor sleep efficiency, 

predicted a greater likelihood of mounting a detectable response to the first vaccination, which is 

consistent with an emerging literature that immune activation may prime the adaptive immune 
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system to respond more robustly.  However, these findings did not withstand covariate 

adjustment.  As such, future research is needed to clarify this association. 

 Taken together, our findings provide preliminary evidence supporting variation in sleep 

as a significant contributor to an integrated immune response.  If replicated, future work 

identifying “critical periods” when sleep may exert a disproportionate influence on immunity is 

warranted.  An examination of the biological and psychological pathways that contribute to 

sleep-related variation in antibody response would also be interesting and may assist in the 

development of therapeutic strategies, including targeted behavioral sleep interventions to 

improve vaccination efficacy among vulnerable populations, including elderly, chronically-ill, 

and otherwise immunocompromised individuals.  



 108 

APPENDIX A 

Appendix A 1: Unadjusted and adjusted logistic and linear regressions using total sleep time (TST) to test 

hypotheses 1, 4, and 7 from the primary study analyses 

 

 B SE Wald p-

value 

Odds 

Ratio 

95% 

C.I. 

DV: Responder Status (hypothesis 1)       

       

Total Sleep Time (TST) (n=89)       

1. V1 actigraphy pre-vac. TST -.01 .01 2.68 .10 .99 .98-

1.00 

  After covariate adjustment       

1. Covariates
a
       

2. V1 actigraphy pre-vac. TST -.01 .01 1.51 .22 .99 .98-

1.00 

       

 B SE p-

value 

R
2
 ∆R

2
  

DV: Secondary antibody levels 

(hypothesis 4) 

      

Total Sleep Time (TST) (n=85)       

1. V1 actigraphy TST .007 .004 .06 .04 ---  

  After covariate adjustment       

1. Covariates
b
    .17 ---  

2. V1 actigraphy TST .007 .004 .09 .19 .02  

       

DV: Secondary antibody levels 

(hypothesis 7) 

      

Total Sleep Time (TST) (n=83)       

1. V2 diary pre-vac. sleep duration     .00 ---  

2. V1 actigraphy pre-vac. TST .007 .004 .07 .02 .02  

  After covariate adjustment       

1. Covariates
b
    .18 ---  

2. V2 diary pre-vac. sleep duration     .18 .00  

3. V1 actigraphy pre-vac. TST .006 .004 .11 .20 .02  
a
 age, gender, race, BMI; 

b
 age, gender, race, BMI, responder status to initial vaccination 



 109 

APPENDIX B 

Appendix B 1: Unadjusted and adjusted logistic regression analyses examining whether pre-vaccination sleep duration, efficiency, and quality predicts 

likelihood of mounting detectable antibodies (i.e. being a responder) in response to the first hepatitis B injection. Analyses based on imputed data. 

 

 B SE Wald p-value Odds Ratio 95% C.I. 

DV: Responder Status       

Sleep Duration (n=90)       

1. V1 actigraphy pre-vac. sleep duration -.12 .31 .14 .71 .89 .49-1.63 

  After covariate adjustment       

1. Covariates
a
       

2. V1 actigraphy pre-vac. sleep duration -.08 .33 .05 .82 .93 .49-1.75 

Sleep Efficiency (n=90)       

1. V1 actigraphy pre-vac. sleep efficiency -.08 .03 6.17 .03 .93 .87-.98 

  After covariate adjustment       

1. Covariates
a
       

2. V1 actigraphy pre-vac. sleep efficiency -.07 .03 3.65 .06 .94 .88-1.00 

3. V1 act. pre-vac. sleep efficiency (quadratic effect) .18 .29 .39 .53 1.20 .68-2.12 

Sleep Quality (n=117)       

1.  V1 diary pre-vac. sleep quality -.41 .42 .97 .33 .66 .29-1.51 

  After covariate adjustment       

1. Covariates
a
       

2. V1 diary pre-vac. sleep quality -.31 .44 .51 .48 .73 .31-1.72 
a
age, gender, race, BMI 
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Appendix B 2: Unadjusted and adjusted linear regression analyses examining whether actigraphy-based measures of sleep predicts secondary antibody 

levels following the second hepatitis B vaccination.  Analyses based on imputed data. 

 

 B SE p-value R
2
 ∆R

2
 

DV: Secondary Antibody Levels (nat. log)      

      

Sleep duration (n=87)      

1. V1 actigraphy sleep duration .57 .24 .02 .05 --- 

  After covariate adjustment      

1. Covariates
a
    .17 --- 

2. V1 actigraphy sleep duration .49 .22 .03 .21 .04 

      

Sleep efficiency (n=87)      

1. V1 actigraphy pre.-vac. sleep efficiency .02 .02 .45 .00 --- 

  After covariate adjustment      

1. Covariates
a
    .17 --- 

2. V1 actigraphy pre.-vac. sleep efficiency .03 .02 .19 .18 .01 

 
a
 age, gender, race, BMI, and responder status to initial vaccination 
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Appendix B 3: Unadjusted and adjusted linear regression analyses examining whether actigraphy and diary-

based measures of sleep, assessed prior to the first vaccination, predict secondary antibody levels after 

controlling for the effects of sleep occurring prior to the second vaccination.  Analyses used imputed data. 

 

 B SE p-value R
2
 ∆R

2
 

DV: Secondary Antibody Levels (nat. log)      

      

Sleep duration ( n=84)      

1. V2 diary pre-vac. sleep duration     .00 --- 

2. V1 actigraphy pre-vac. sleep duration .47 .22 .04 .03 .03 

  After covariate adjustment      

1. Covariates
a
    .19 --- 

2. V2 diary pre-vac. sleep duration     .19 .00 

3. V1 actigraphy pre-vac. sleep duration .39 .21 .07 .21 .02 

      

Sleep efficiency (n=84)      

1. V2 diary pre-vac. sleep efficiency    .00 --- 

2. V1 actigraphy pre-vac. sleep 

efficiency 

.02 .02 .47 .00 .00 

  After covariate adjustment      

1. Covariates
a
    .19 --- 

2. V2 diary pre-vac. sleep efficiency    .19 .00 

3. V1 actigraphy pre-vac. sleep 

efficiency 

.03 .02 .19 .20 .01 

      

Sleep quality (n=107)      

1. V2 diary pre-vac. sleep quality    .00 --- 

2. V1 diary pre-vac. sleep quality .00 .42 .99 .00 .00 

  After covariate adjustment      

1. Covariates
a
    .23 --- 

2. V2 diary pre-vac. sleep quality    .22 -.01 

3. V1 diary pre-vac. sleep quality .18 .37 .63 .22 .00 

 
a
 age, gender, race, BMI, and responder status to initial vaccination
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