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Lymphatic endothelial cells (LECs) line lymphatic vessels and are present at mucosal portals of 

entry for many pathogens, including simian immunodeficiency virus (SIV) and human 

immunodeficiency virus type-1 (HIV-1).  Recent studies have shown that LECs express pattern 

recognition receptors (PRRs), such as Toll-like receptors (TLRs), capable of recognizing 

pathogen-associated molecular patterns (PAMPs).  P AMPs are structurally similar molecules 

expressed by groups of pathogens.  LECs have also been shown to express chemokines, a group 

of small molecules secreted by cells that induce chemotaxis in responsive cells, such as CCL21, 

which is used by CCR7+ mature antigen presenting dendritic cells (DCs) to migrate to draining 

lymph nodes (LNs).  These previous findings indicate that LECs might play an integral role in 

innate immune responses to a wide variety of microbes.  In this study, I set out to characterize 

the expression of antiviral restriction factors as well as possible viral entry receptors for 

SIV/HIV-1 within three populations of human LECs.  Real-time RT-PCR and 

immunofluorescent staining techniques were used to determine the relative expression of the 

restriction factors BST-2/Tetherin, APOBEC3G, and TRIM5-α.  All of these factors have been 

shown to inhibit the replicative cycle of HIV-1 and have othologs present in nonhuman primates 

(NHPs).  E xpression of the viral entry receptors CD4, CXCR4, CCR5, DEC-205/CD205, 

D6/CCBP2, and CD209 as well as the LEC-specific markers podoplanin and LYVE-1 was also 

investigated.  In addition, LEC populations were exposed to SIV, HIV-1, and markers 
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internalization to determine to what extent LECs interact with virus in vitro.  Data from 

populations exposed to HIV-1 as well as other substrates for internalization of extracellular 

materials illustrate the ability of LECs to actively monitor the extracellular milieu.  LECs 

exposed to SIV showed multi-spliced viral transcripts possibly due to de novo transcription.  

Taken together, this study provides evidence that LECs are equipped with tools not only to bind 

and internalize pathogens, but may also serve as a low-level replicative cellular substrate for 

virus.  Further studies to characterize LECs are of great public health relevance, particularly at 

mucosa sites of microbial exposure, due to their potential roles during transmission/infection. 
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1.0  INTRODUCTION  

 

1.1 LYMPHATICS 

The lymphatic system is a collection of vessels and organs that serves as a unidirectional conduit 

for lymph, a fluid from peripheral tissues containing excess water, cellular waste products, 

protein, lymphocytes from peripheral tissues, and other macromolecules (105).  These lymphatic 

vessels serve to regulate the amount of fluid present in peripheral tissues and removes excess 

fluid that is eventually returned to the blood stream via the left and right lymphatic ducts (34).  

The lymphoid organs (i.e. thymus, spleen, and bone marrow) serve as the main production sites 

of lymphocytes that actively survey peripheral tissues for foreign pathogens (111).  Th e 

lymphatic network functions in a similar manner to the blood vascular system, and as such has 

distinct yet parallel characteristics.  

 

Lymphatic vessels are lined with a specialized population of epithelial cells termed 

lymphatic endothelial cells (LECs) which function similarly to the related blood vascular 

endothelial cells (BVECs) which line the interior wall of blood vasculature creating a smooth 
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inner surface ideal for free flowing of blood (92,111).  A lthough similar to BVECs, LECs 

display unique markers and function in a markedly different manner (38).  LECs line the 

lymphoid vessels responsible for the drainage of interstitial fluid from the periphery to secondary 

lymphoid tissues.  Mucosal portals of entry, used by HIV-1 and other disease-causing pathogens, 

are ever changing environments that display a complex interaction between host and agent.  

Lymphatic structures are key features associated with the mucosa, such as the gut-associated 

lymphoid tissue (GALT), bronchus-associated LT (BALT) (102), and eye-associated LT (EALT) 

(104)  along with many other specialized tissues, commonly referred to collectively as mucosa-

associated lymphoid tissue (MALT) (103) (Figure 1).  Due to the fact lymphatic vessels function 

as a conduit for interstitial fluid, LECs are much more permeable to allow for the uptake of fluids 

and molecules from the periphery.  There is evidence that lymphatic vessels have a poorly 

developed basement membrane and are not associated with pericytes, a connective tissue cell 

population associated with the support of blood vessels (34).  LECs also express the homeostatic 

chemokine CCL21, used by mature, antigen loaded CCR7+ APCs during migration to secondary 

lymphoid tissues (32).  Not only do LECs secrete immune regulating molecules, they also 

express functional TLRs that can recognize PAMPs implying a more active role in immune 

surveillance (23).   

 

The lymphatic system is important in a number of conditions including the build-up of 

interstitial fluid in peripheral compartments (lymphedema) as well as metastasis of tumors 

(34,38).  Tumor vascularization by lymphatic vessels is often a measure of prognosis.  T he 

lymphatic system can be damaged to the point where proper functioning is impaired.  Decreased 

ability to remove excess lymph can lead to pooling of fluid in peripheral extremities.  A singular 
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cause of primary lymphedema is still unknown, although a growing genetic relationship, 

including missense mutations in the vascular endothelial growth factor receptor 3 (VEGFR-3) 

has been observed (106).  During times of increased inflammation, such as during radiation 

therapy, surgery, or LN dissection, secondary lymphedema can occur resulting in similar 

lymphatic defect.  The afflicted tissues are often susceptible to infection as a result of this 

condition because lymphocyte migration is disrupted (107).  There is also evidence that LECs 

themselves are involved in infection by different pathogens.  Kaposi’s sarcoma-associated 

herpesvirus, a highly vascularized tumor-causing virus, infects endothelial derived spindle cells 

and seems to up-regulate the expression of LEC specific markers (108).  There is even evidence 

that shows endothelial cells express the receptor for influenza virus (109).   

 

Until recently, it had been difficult to isolate pure populations of LECs from BVECs.  

With the identification of LEC specific markers, studies on hom ogenous populations are now 

capable.  LECs can be isolated from mixed endothelial populations by using antibodies to 

surface molecules. VEGFR-3, LYVE-1, podoplanin, and Prox1 have all been shown to be 

effective markers for isolating LECs (35,36,37,38).   

1.1.1 LYMPHATIC ENDOTHELIAL CELL MARKERS 

LEC research in vivo can be very difficult as the lymphatic system is very complex.  Therefore, 

in vitro studies have been used to characterize LECs.  Until recently, it had proved difficult to 

adequately isolate LECs, but with the discovery of the LEC specific markers LYVE-1, 

podoplanin, VEGFR-3, and Prox1, in vitro experiments are now possible.   
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1.1.1.1  LYVE-1 

Lymphatic endothelial hyaluronan receptor-1 (LYVE-1) is a receptor for the glycosaminoglycan 

hyaluronan (an integral protein in extracellular matrix).  LYVE-1 is thought to play a role in 

lymphangiogenesis due to its ability to interact with the extracellular matrix (ECM).  Hyaluronan 

is thought to be important both in tumor metastasis and migration of leukocytes (39).  LYVE-1 is 

generally thought to aid in the turnover and processing of hyaluronan possibly indicating a 

potential mechanism by which LECs contribute to tumor metastasis and immune migration. 

LYVE-1 has been shown to be present on LECs while BVECs are negative (5).  

1.1.1.2  PODOPLANIN 

Podoplanin is expressed on LECs but not BVECs, making it an important marker (5). A mucin-

type-I, 43 kDa integral membrane glycoprotein, podoplanin is thought to function as a regulator 

of lymphatic vascular formation as well as platelet aggregation (6). The EDxxVTPG 

extracellular domain of podoplanin (platelet aggregation-stimulating domain, (PLAG) has been 

shown to be important in platelet aggregation, particularly the threonine residue (40).  Platelet 

aggregation is essential for separation of lymphatic vessels and blood vessels, making 

podoplanin an important factor critical for proper LEC function (7).  Podoplanin has been shown 

to be expressed by glomerular podocytes and Bowman’s capsule epithelial kidney cells along 

with LECs, rat neuronal, alveolar type I cells, mouse keratinocytes, and epithelial cells 

(41,42,43,98).  P odoplanin has also been shown to play a critical role in tube formation, as 

lymphangiogenesis is inhibited by RNAi silencing of podoplanin (44). Similar inhibition of 

lymphangiogenesis and tube formation is seen when an inhibitor of the GTPase RhoA pathway  
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in the human primary lung endothelial cell population HMVEC-LLy (44).  RhoA is known to 

regulate the cell cytoskeleton indicating a potential role in cytoskeleton regulation by podoplanin 

signaling.  

1.1.1.3 VEGFR-3 

The lymphatic vasculature plays a critical role during cancer progression, as invasion of this 

system can lead to metastasis of tumors.  Expression of the growth factors VEGF-C and VEGF-

D by tumor cells can lead to lymphangiogenesis and tumor metastasis (29,30).  V ascular 

endothelial growth factor receptor 3 ( VEGFR-3) is a member of the fms-like tyrosine kinase 

family and binds to ligands VEGF-C and VEGF-D, but not VEGF-A (4).  VEGFR-3 has been 

shown to be expressed on both blood and lymph vessels during embryogenesis.  H owever, 

VEGFR-3 expression becomes restricted to LECs in post-embryonic tissue (36).  Incubation of 

VEGFR-3+ cells with VEGF-C and VEGF-D has been shown to induce proliferation of an LEC-

specific lineage (4,34).  VEGFR-3 has been shown to be important in the induction of sprouting 

angiogenesis, in which endothelial cells encounter growth factors causing the dissociation of the 

basement membrane, allowing endothelial cells to migrate and proliferate “sprouting” newly 

formed lymphatic tubes (45).  LECs have been shown to secrete VEGF-C, indicating possible 

autocrine modulation of LECs (45).   

1.1.1.4  PROX1 

The evolutionarily conserved transcription factor Prospero-related homeobox-1 (Prox1) has also 

been shown to be an effective marker of LEC populations.  Prox1 has been shown to repress the 

characteristic BVEC-specific markers induced by Notch (arterial) and COUP-TFII (venous) on 

BVECs and induce the expression of lymphatic endothelial cell markers leading to the  
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derivation of LECs from a progenitor source (47,48).  The Drosophila melanogaster equivalent 

to human Prox1 is Prospero, which has been shown to control neural cell development (46). 

Prox1 is also thought to be a tumor suppressor and has been shown to bind the liver receptor 

homolog-1 (LRH-1), a member of the fushi tarazu factor-1 sub-family of nuclear receptors, 

resulting in the repression of the bile acid-synthesizing enzyme Cholesterol 7-α-hydroxylase 

(CYP7A1) (49). 

1.1.1.5 RELEVANCE 

Early time points in the transmission of HIV-1 are of great interest to researchers today.  Due to 

the fact that LECs are in close juxtaposition to mucosal barriers where transmission of many 

pathogens, including SIV and HIV-1 (Figure 1) occurs, studies aimed at characterizing LECs 

could prove to be important in understanding these early time points of infection.  Determining if 

LECs expressed viral entry receptors capable of binding and internalizing virus, and if LECs 

expressed restriction factors capable of inhibiting viral replication would be important in 

characterizing this cellular population and discerning if LECs can recognize virus.  If LECs were 

actively taking up vi rus, they could potentially elicit an immune response or could serve as a 

compartment of replication.  Interactions between LECs and virus, in particular SIV and HIV-1, 

has huge implications, as the worldwide AIDS epidemic is a major public health concern, and 

therapeutic vaccines still elude us. LEC research in vivo can be very difficult as the lymphatic 

system is very complex.  T herefore, in vitro studies, using podoplanin and LYVE-1+ primary 

dermal, lung and long-lived hTERT-transduced LEC populations could evaluate the relationship 

between virus lymphatics.   
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1.2 HIV 

1.2.1 HIV/AIDS BURDEN AND DISEASE 

HIV-1 is a member of the Retroviridae family and Lentivirus genus.  The Lentivirus genus also 

contains SIV as well as other complex retroviruses.  HIV-1 and SIV are the etiological agents of 

acquired immunodeficiency syndrome (AIDS) in humans and non-human primates (NHPs), 

respectively (25, 26). Lentiviruses infect CD4+ cell subsets such as resting T-cells, macrophages, 

and DCs by binding to CD4 through viral glycoprotein gp120.  Gp120 is a 120 kDa viral protein 

present on the surface of a virion as a homotrimer and is anchored to the viral membrane by the 

transmembrane protein gp41 (27).   Binding of CD4 by gp120 leads to conformational changes 

in viral protein structure, revealing a chemokine binding epitope leading to interaction with the 

viral co-receptors CXCR4 by T-cell tropic (T-tropic) viral variants and CCR5 by macrophage 

tropic (M-tropic) variants (22).  V irus is then internalized via receptor-mediated endocytosis 

where the viral envelope fuses with the host cellular membrane.  Viral genome as well as reverse 

transcriptase are released from the viral capsid and reverse transcription takes place whereupon  

the reverse transcribed viral genome migrates to the nucleus.  Integrase incorporates the lentiviral 

genome into the host genomic material, after which host machinery is use for the transcription of 

the single, primary viral transcript.  Viral transcripts must then migrate or be chaperoned to the 

cytoplasm where they can be translated into viral proteins by host machinery or migrate to the 

plasma membrane where packaging, budding, and eventual virion maturation can occur.  Initial 

infection takes place at mucosal portals such as the vagina or rectum where SIV and HIV-1 are 
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Figure 1: Schematic of LECs role in migration of virus to secondary lymphoid organs. 
LECs line the inner surface of afferent lymphatic vessels which are in close juxtaposition to the mucosal surface as 
seen by the immunohistochemical analysis for the LEC marker LYVE-1.  Virus can be loaded on permissive cell 
types which then migrate to secondary lymphoid organs interacting with LECs along the way, or cell free virus can 
freely migrate to potential target cells.  LECs are in close proximity to virus at the moment of infection. 
 

 

able to establish infection in activated and resting T-lymphocytes, as well as be taken up b y 

APCs (96,97).  Migration to secondary lymphoid tissues allows the virus to come into contact 

with a large population of target CD4+ cells, leading to the dissemination of infection. Disease 

progression is characterized by an initial acute phase where viral load increases with an initial 

loss of CD4+ T-cell populations.  H ost control of infection leads to a viral set point which is 

directly correlated to disease prognosis (93).  Infection leads to eventual loss of CD4+ T-cell 

populations, which concurs with increase in plasma viremia. This loss of CD4+ T-cell 

populations leads to deficiencies in cell-mediated immunity, allowing for the occurrence of 

opportunistic infections (94).  

 



 9 

HIV/AIDS has a profound effect on worldwide public health as there are approximately 

35 million cases worldwide (~25 million in Sub-Saharan Africa) and 3 million deaths annually 

accounting for the fourth highest cause of death worldwide (28).  HIV not only has an profound 

effects in a public health context, but also socio-economic effects as labor, productivity, and 

average national growth are detrimentally effected by HIV/AIDS, particularly in developing 

equatorial nations in Sub-Saharan Africa and southeast Asia.    

1.2.2 INNATE ANTIVIRAL FACTORS 

Retroviruses have been around for a long time.  There is evidence that ancient retroviruses have 

become permanently integrated in germ-line cells and these viruses, termed human endogenous 

retroviruses (HERVs), have been shown to play a role in autoimmune diseases. HERVs may 

have even helped speed up t he evolutionary rate of humans (68,69).  As with any foreign 

microbe that has been infecting a host population for thousands of years, the host has developed 

a multitude of cellular factors that are efficient at inhibiting replication at a number of viral life-

cycle stages (Figure 2).  These families of factors can be found in primates and many other high-

order mammals, supporting their evolutionary importance (Table 1).  Host factors that are able to 

effectively inhibit HIV-1 replication have been identified and their potential to counteract 

retrovirus infection and the possibility of developing synthetic therapeutics based on the 

activities of these factors underscores their importance.  These viral restriction factors include the 

following. 
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1.2.2.1  APOBEC3G 

 A recently described group of restriction factors is the apoplipoprotein B mRNA-editing, 

enzyme-catalytic, polypeptide-like (APOBEC) super-family of cytidine deaminases, and more 

specifically the APOBEC3 subfamily.  The APOBEC superfamily contains 11 cytidine 

deaminase proteins, of which APOBEC3 has four different members (APOBEC3A-H) that all 

have been shown to have some inhibitory effect on HIV-1 replication (8,10).  AP OBEC3G in 

particular has been extensively researched and has been shown to be encapsidated within newly 

synthesized virions by interacting with the nucleocapsid region of the HIV-1 genome. This 

interaction is facilitated by an N-terminal catalytic domain present in APOBEC proteins (8, 9).  

Once encapsidated in immature virions, a C-terminal domain induces deamination of cytosines 

within the viral genome.  These mutations effectively curtail the newly formed virion’s ability to 

replicate (31).    It has also been proposed that APOBEC3G inserts itself within lipid rafts in host 

cellular plasma membranes and that this interaction facilitates the proper encapsidation and 

future inhibitory effect on HIV-1 replication by APOBEC3G (9).  The cytidine deaminase 

activity of APOBEC3G has been shown to act specifically on single stranded DNA rather than 

free nucleotides or RNA, in contrast to other members of the cytidine deaminase family (51).  

This property is essential for APOBEC3G to act as a strong viral restriction factor.   

 

Lentiviruses have evolved to contain an accessory protein called viral infectivity factor 

(Vif) a 23 kDa accessory protein that is able to interact with host APOBEC3G through highly 

conserved motifs and acts as an adaptor protein resulting in recruitment of the Cul-5/E3 ubiquitin 

ligase complex comprised of ElonginB, ElonginC, Cullin5 and RING-box-1 (13).  This 

interaction leads to the recruitment of a protein complex that directs the polyubiquitination and  
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eventual degradation of a substantial amount of cellular APOBEC3G via the proteasomal 

pathway (50). The Vif-mediated degradation of APOBEC3G contributes to the efficient 

replication of Vif-competent virions (11).  Virions deficient in Vif are susceptible to 

APOBEC3G encapsidation and eventual mutational inhibition of replication (12). 

1.2.2.2 TRIM5-α 

Along with the APOBEC family of restriction factors, tripartite motif (TRIM)  containing 

factors, in particular TRIM5-α, are another large family of restriction factors with many 

orthologs in humans and NHPs and that have been shown to induce some sort of  antiviral 

activity (50,52). TRIM5-α is able to effectively inhibit infection of Old World monkeys with  

 

 

Figure 2: Host factors inhibit replication at multiple steps in the viral life-cycle. 
Along with APOBEC3G, TRIM5-α, and BST-2 inhibiting replication at RT, uncoating, and budding respectively, 
host factors have been shown to inhibit viral replication at almost every step of the viral life-cycle indicating a long-
lived battle between host and retroviruses. Reprinted from Molecular Cell, 16/6, Stephen P. Goff, Retrovirus 
Restriction Factors, 849-859, 2004, with permission from Elsevier. 
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Table 1: Properties of Dominant Retrovirus Resistance Genes. 

Species Restriction System Time of Block Restricted Viruses Unrestricted Viruses 

Mouse Fv4 Entry Ecotropic MuLV Amphotropic MuLV lentiviruses 
Human, Chimpanzee APOBEC3G Viral DNA formation Vif-negative HIV-1 Vif-positive HIV-1 

   SIVAGM  
   EIAV  
   HBV  
African green monkey APOBEC3G Viral DNA formation HIV-1 Vif-positive SIVAGM 

    Vif-negative SIVAGM 
Human APOBEC3F Viral DNA formation Vif-negative HIV-1 Vif-positive HIV-1 

    Vif-positive HIV-2 

    MuLV 
Mouse APOBEC3 Viral DNA formation HIV-1 MuLV 
Mouse Fv1n Viral DNA trafficking B-MuLV N-MuLV 

    NB-MuLV 

    HIV-1 
Mouse Fv1b Viral DNA trafficking N-MuLV B-MuLV 

    NB-MuLV 
Rhesus macaque TRIM5α (Lv1) Early postentry HIV-1 N-MuLV 

    B-MuLV 

    SIVmac 
African green monkey TRIM5α (Lv1/Ref1) Early postentry N-MuLV B-MuLV 

   HIV-1 SIVAGM 

   HIV-2  
   SIVmac  
   EIAV  
Squirrel monkey TRIM5α (Lv1) Early postentry SIVmac N-MuLV 

    B-MuLV 

    HIV-1 
Rabbit Lv1 Early postentry HIV-1 – 
Human TRIM5α (Ref1) Early postentry N-MuLV B-MuLV 

   EIAV NB-MuLV 

    HIV-1 

    HIV-2 

    SIVmac 

    SIVAGM 
Chimpanzee Ref1 Early postentry N-MuLV – 
Cow, Pig, Bat Ref1 Early postentry N-MuLV B-MuLV 
Owl monkey TRIM-Cyp Early postentry HIV-1 N-MuLV 

    B-MuLV 

    SIVmac 
Rodent ZAP Viral RNA expression MuLV alphaviruses HIV-1 

    VSV 

    Poliovirus 

    DNA viruses 
 
Reprinted from Molecular Cell, 16/6, Stephen P. Goff, Retrovirus Restriction Factors, 849-859, 2004, with 
permission from Elsevier. 
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HIV-1.  However, antiviral activity in humans is not as potent.  TRIM factors contain a ring-

finger zinc domain which is responsible for ubiquitination of targets for degradation (15).  A 

coiled-coil domain allows TRIM factors to form multimers, which bind HIV-1 capsid protein 

through the PRY/SPRY (B30.2) motif leading to eventual degradation via the proteasomal 

pathway (16,53).  Multiple TRIM isoforms formed by alternative splicing patterns have been 

described and viral restriction activity has been observed for multiple viruses (54).  The isoform 

TRIM5-α also contains a C-terminal SPRY domain that is not conserved amongst all TRIM 

isoforms and may be important for the effective protection against certain lentiviruses (14).  

Better understanding of the inhibitory effect TRIM5-α confers upon old world monkeys could 

lead to a better understanding of overall SIV and HIV-1 immunity as well as eventual 

therapeutics. 

1.2.2.3 BST-2 

Tetherin, or bone marrow stromal antigen 2 (BST-2), is an interferon induced, type-II 

transmembrane protein with a cytoplasmic N-terminus and one membrane-spanning domain as 

well as a C-terminal  glycosyl-phosphatidylinositol (GPI) anchor.  This GPI anchor is capable of 

binding retroviruses at the cell surface thus inhibiting budding and maturation of infectious 

particles (17).  There has also been evidence that BST-2 is capable of binding other pathogens, 

such as Ebola, at the cell surface through interactions with Ebola viral glycoprotein (Gp) (18).  

Complex lentiviruses as well as Ebola have adapted to avoid BST-2 inhibition.  HIV-1 encodes 

for an accessory protein, viral protein u (Vpu) that associates with BST-2 located in membrane 

lipid rafts (17,99).  Vpu binds cell-surface BST-2 through transmembrane interactions, leading to 

lysosomal degradation, partially in a β_TrCP-dependent manner (55).  E bola virus produces a 

secreted, soluble viral Gp that binds to BST-2, inhibiting its antiviral activity (18,99,113).    The 
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incorporation of a BST-2 transmembrane domain into a budding enveloped virus tethers the 

newly synthesized virion to the surface of the infected cell, inhibiting release of virus.   

1.2.3 HIV-1 AND SIV ALTERNATIVE ENTRY RECEPTORS 

HIV-1 and SIV infect cells primarily in a CD4-dependent manner, through binding of HIV-1 

gp120 to CD4, leading to conformational changes in gp120, which allows binding to a 

chemokine co-receptor leading to membrane fusion.  T here has been evidence however that 

HIV-1 and SIV can be internalized by permissive cells in a CD4-independent fashion.  Certain 

HIV-1 isolates have been shown to be able to use the atypical scavenger chemokine receptor 

chemokine binding protein 2 ( CCBP-2 or D6), the C-type lectin DC-SIGN (CD209) that is 

expressed on m acrophages and dendritic cells, DEC-205 (CD205) expressed primarily by 

lymphoid and myeloid DCs, as well as through CD4-dependent mechanisms (1,19,20). 

Investigation of these alternative receptors has been extensive, describing multiple cell 

populations that show expression of these receptors.  Characterizing the presence or absence of 

these receptors in LECs is important as their expression could lead to binding and subsequent 

internalization of virus into endothelial cells, either ending in a degradative manner or possibly 

leading to latent or productive replication of infectious virions. 

1.2.3.1 CHEMOKINE BINDING PROTEIN 2 (CCBP-2 or D6) 

Chemokine binding protein (CCBP2/ D6) is an atypical, scavenger, seven transmembrane 

spanning, chemokine receptor that acts as a chemokine sink (71).  D 6 is called a “silent” 

chemokine receptor, as upon bi nding to a chemokine ligand, D6 does not signal through a G 

protein pathway, but rather quickly internalizes and degrades the chemokine leading to the 
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theory that D6 acts to regulate chemokine levels (73,74).  D 6 shows incredible breadth in its 

ability to bind a variety of different CC chemokine including CCL3, CCL4, and CCL5 (72).  D6 

has been shown to be expressed in lymphatic endothelium of the skin and lungs, as well as 

placental tissue and secondary lymphatic tissues (74).  There is evidence that D6 can bind HIV-1 

isolates and act as a receptor for HIV-1 in a CD4-independent manner (1).  Our laboratory has 

previously shown that D6 is expressed by hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy 

LEC populations and that expression was sensitive to treatment with TLR agonists (23). 

1.2.3.2 DC-SIGN 

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a 

C-type lectin type II transmembrane receptor with a single carbohydrate recognition domain 

(CRD) expressed primarily by DCs and macrophages that acts as a PRR, binding mannose type 

carbohydrates found on many viruses (76,77,78).  DC-SIGN has been shown to internalize a 

wide variety of pathogens such as hepatitis C virus (HCV), Ebola, and Mycobacterium 

tuberculosis (114,115,116).  There is evidence that DC-SIGN is able to bind HIV-1 through 

interaction with viral gp120 leading to efficient internalization but not degradation, allowing 

virus to traffic within DCs to secondary lymphoid tissues that are rich in CD4+ targets (76).  It 

has also been seen that DC-SIGN on activated B-cell sub-populations can bind HIV-1 and lead 

to infection of CD4+ T-cells in trans (79).  DC-SIGN seems to play a role in internalizing virus 

and in trans infection making cell populations that express DC-SIGN potential intermediaries of 

infection. 
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1.2.3.3 DEC-205 

DEC-205 or CD205, is a C-type multi-lectin type-1 cell surface protein, similar to DC-SIGN, 

that is present on D Cs, macrophages, T-cells, and B-cells (80,81).  DEC-205 contains 10 

extracellular CRDs allowing DEC-205 to play a role in antigen uptake and processing as binding 

of antigen results in efficient internalization within early proteasomes and eventual antigen 

presentation at the cellular surface via MHC class II (82).  DEC-205 is efficiently shuttled into 

and out of DCs similar to the PRR macrophage mannose receptor (MMR) in a m anner that 

allows the immune system to survey the environment for foreign antigen PAMPs.  H owever, 

DEC-205 is associated with late-endosome MHC class II complexes while MMR is not (83).  

There is evidence that DEC-205 can efficiently mediate the presentation HIV-1 Gag antigen 

from DCs to CD8+ T-cells, inducing a potent response (84).  There is also evidence that DEC-

205-specific internalization of HIV-1 can lead to a non-productive infection of certain cell 

populations, such as renal tubular cells (19).  

1.3 SUMMARY 

The lymphatic system regulates interstitial fluid and surveys peripheral tissue for pathogens.  

LECs are present at mucosal portals of entry for many pathogens, including SIV and HIV-1.  

LECs also express PRRs and secrete migratory chemokines, indicating an active role during an 

immune response to infection.  Previously, it had been difficult to isolate LECs form 

heterogeneous populations, until LEC-specific surface markers such as LYVE-1 and podoplanin 

were discovered.  Lentiviruses such as SIV and HIV-1 infect CD4+ T-cells, but there is evidence 

that HIV-1 can gain access to CD4- cell populations through a variety of different entry 
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receptors.  Over time, host populations have evolved a number of different ways to combat 

disease, some host factors have been shown to have antiviral activity; inhibiting viral replication 

at a number of different steps in the viral life-cycle.  LECs possibly could express any number of 

these entry receptors and restriction factors, allowing them to possibly bind and internalize virus, 

and may serve as a  low-level replication site.  Researching and characterizing LECs in the 

context of susceptibility is important as LECs potentially come into contact with virus at sites of 

transmission. 
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2.0   STATEMENT OF THE PROBLEM 

 

The lymphatic endothelium is a major conduit for draining lymph fluid and cells from peripheral 

tissues to lymph nodes (LNs) via the afferent lymphatics. LECs line the interior surface of 

lymphatic vessels and are localized at mucosal portals of entry for many pathogens, including the 

natural route of infection of HIV-1 and SIV.  HIV-1 is taken up at mucosal portals by peripheral 

dendritic cells (DCs) as well as CD4+ T-cells and macrophages.  Cell free virus as well as virus 

carried by professional antigen presenting cells (pAPC) can be transported to draining LNs via 

the afferent lymphatics. Once there, virus comes into contact with susceptible cell populations 

leading to propagation of infection. LECs could play a critical role during infection by producing 

migratory chemokines like CCL21, which play a role in DC and lymphocyte migration, or 

possibly by actively interacting with pathogens or pathogen-loaded APCs.  L ECs have been 

shown to express PRRs such as TLRs 1-6 and TLR 9, which recognize PAMPs leading to 

induction of innate immune responses (23). Because LECs are proximally located to portals of 

infection used by many pathogens, express multiple innate immune receptors, and regulate 

migration of immune cells, it is possible that LECs could actively engage in eliciting innate 

immune responses at early time pints of infection by foreign pathogens. Therefore, LECs could 

participate in HIV-1 infection and disease progression, and this has not been explored thus far.  

The objective of this study is to examine the expression of innate antiviral restriction 
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factors and viral entry receptors in model LECs and determine if LECs can engage virus, 

and other markers of uptake, in a variety of ways in vitro. 

2.1  SPECIFIC AIM 1: DEFINE THE EXPRESSION PROFILE OF VIRAL ENTRY 

AND RESTRICTION FACTORS IN MODEL LECS 

Virus entry has been well studied for many pathogens and is often dependent on binding to a 

host cell receptor.  The majority of viruses gain access to permissive host cell types by receptor-

mediated endocytosis.  HIV-1 uses the receptor CD4 as well as co-receptors CCR5 and CXCR4 

to infect permissive cell populations.  There is evidence that atypical viral receptors such as the 

chemokine scavenger receptor D6 and the c-type lectin DC-SIGN can be used to internalize 

HIV-1 isolates.  To date, research not been conducted focusing on the specific expression of 

restriction factors such as TRIM5-α, BST-2, and APOBEC3G in LECs.   Global expression 

profile data through microarray analysis (88,89,90,91) of LECs has been conducted, but specific 

expression profiles for entry receptors and restriction factors has not been analyzed. The 

expression of entry receptors and restriction factors on LECs would be intriguing as their 

presence could increase the potential for LECs to recognize virus.  Using real-time RT-PCR, I 

examined the levels of mRNA for these target genes of interest present in three LEC populations 

and determined if primary human dermal, lung, or long lived hTERT-transduced LECs, which 

have a longer life span than primary dermal and lung LEC populations, expressd entry and 

antiviral factors associated with viral replication.  Additionally, I characterized these cell 

populations further by determining if protein expression correlated with RNA profiles in these 

populations by immunofluorescent (IF) staining.  Through these studies, I found that while 
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model LECs did not express the typical CD4 viral receptor, they did express a variety of atypical 

viral entry receptors along with a multitude of restriction factors.  

2.2 SPECIFIC AIM 2: DETERMINE THE OUTCOME AFTER LEC EXPOSURE TO 

VIRUS 

It is well established that HIV-1 and SIV productively infect CD4+ cells that are in peripheral 

tissues and secondary lymphoid organs.  T here has been little research however, dedicated to 

understanding the interaction between endothelial cells, present in peripheral mucosa and 

lymphatic vessels, and cell free virus.  SIV and HIV-1 could possibly encounter LECs during the 

natural route of infection; therefore, it would be beneficial to understand the outcomes of LEC 

exposure to virus.  V irus could either not interact with LECs, be degraded in some endocytic 

pathway, enter LECs and terminate replication at some abortive stage, or productively infect 

LECs.  Human LEC cultures were exposed to SIV and HIV-1, as well as other immune 

activating compounds, such as the mimetic dsRNA polyI:C, to determine if virus is degraded by 

LECs, actively taken up by LECs, or productively infected LECs.  

 

Using markers of endocytosis and phagocytosis, I also characterized the ability of LECs 

to actively engage and internalize target molecules.  Finally, using an HIV-eGFP construct that 

has eGFP tagged Vpr incorporated into virions, I examined if LEC populations were able to bind 

virus in vitro.  Through these studies I have found that LECs are able to internalize different 

markers of endocytosis and phagocytosis in vitro, while LECs exposed to virus had multi-spliced 
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viral transcripts present in total RNA samples and seemed to actively take up virus, though future 

experiments will elucidate to what extent.  
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3.0  MATERIALS AND METHODS 

 

3.1  CELL CULTURE 

Long-lived human dermal LECs transduced with human telomerase reverse transcriptase 

(hTERT-HELEC) (21) between passage number 22-25, as well as commercially available 

primary dermal (HMVEC-DLy) and lung (HMVEC-LLy) LECs (Cambrex Bio Science) between 

passage number 3-5, were cultured in EGM-2MV microvascular endothelial growth medium 

(Clonectics) at 37oC and 5% CO2 in T-25 and T-75 vented culture flasks (Falcon) .  W hen 

collecting RNA samples, T-25 flasks were seeded at a concentration of 5,000 cells/cm2 and 

allowed to grow for 3 days.   

3.2 RNA ISOLATION 

Trizol (Invitrogen) was used to lyse cells.  Samples were then isolated using phenol/chloroform 

extraction methods according to the Invitrogen instructions to users.  Samples were treated with 

DNA-free DNase system (Ambion) as well as RNeasy column (Qiagen) purification.  Total RNA 
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samples were used to make 80ng/ul working aliquots and cDNAs were synthesized using a 

Reverse Transcription system (Promega) with random hexamer primers for standard RT-PCR or 

by Applied Biosystems specifications for real-time RT-PCR (Table 2) (100). 

 

                              Table 2: cDNA synthesis for real-time RT-PCR 

Reagent Volume (uL) 

10X PCR Buffer (ABI) 10 

25 mM MgCl2 (ABI) 22 

25mM dNTPs (Invitrogen) 2 

125 units Superscript II RT (Invitrogen) .625 

40 units RNAse inhibitor (Promega) 1 

100 uM random hexamers (ABI) 2.5 

Nuclease Free Water (Ambion) 56.875 

400ng cDNA template 5 

Total volume 100 

 

PCR CYCLE 

25ºC for 10min. 
48ºC for 30min. 
95ºC for 5min. 
4ºC forever 
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3.3 REAL-TIME RT-PCR 

Synthesized cDNAs from hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy RNA preperations 

were mixed with TaqMan universal PCR master mix (Applied Biosystems) and ready-made 

commercially available TaqMan assays (Applied Biosystems) for specific targets of interest 

(Table 3) to manufacturers specifications(100).  Samples were loaded into MicroAmp 96 well 

support plates (Applied Biosystems) (101). Ct values were detected by an ABI Prism 7000 

Sequence Detection System (Applied Biosystems).  The level of expression for each target was 

measured using the comparative Ct method and 2ΔCt values presented are relative to the 

expression of the endogenous control β-glucuronidase (101). 

 

                            Table 3: TaqMan ready-made assays for real-time RT-PCR 

Primer Probe Manufacturer (Inventoried/made to order) Catalog # 

LYVE-1 Applied Biosystems (Inventoried) Hs00272659_M1 

Podoplanin Applied Biosystems (Inventoried) Hs00366766_M1 

APOBEC3G Applied Biosystems (Inventoried) Hs00222415_M1  

BST-2 Applied Biosystems (Inventoried) Hs00171632_M1  

TRIM5-α Applied Biosystems (Inventoried) Hs01552559_M1  

DEC-205 Applied Biosystems (Inventoried) Hs00158966_m1 

CD4 Applied Biosystems (Inventoried) Hs00181217_M1  

CCR5 Applied Biosystems (Inventoried) Hs00152917_M1 

CXCR4 Applied Biosystems (Inventoried) Hs00237052_M1 

CD209 Applied Biosystems (Inventoried) Hs01588349_M1  

D6 Applied Biosystems (Inventoried) Hs00174299_M1 

Β-GUS * Applied Biosystems (Inventoried) Hs99999908_M1 
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3.4 IMMUNOFLUORESCENT STAINING 

hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy LECs were seeded at 5,000 cells/cm2 in 4 

well chamber slides (Lab-Tek) and cultured in EGM-2MV (Clonetics) microvascular endothelial 

growth medium at 37oC and 5% CO2.  Samples were then washed 3 times in 1X PBS (Lonza) for 

3 minutes.  Cells were fixed in 2% paraformaldehyde (PFA) for 15 minutes and permeabilized 

with 0.1% Triton X-100 (Sigma-Aldrich) for 10 minutes then blocked with 20% secondary 

antibody specific, donkey sera (Abcam) in 1X PBS.  Cell cultures were incubated for 1 hour in a 

humid chamber with primary goat α-human affinity purified polyclonal antibodies (Abs) for 

TRIM5-α (Abcam), LYVE-1 (R&D Systems), and D6 (Abcam) as well as polyclonal affinity 

purified rabbit α-human antibodies for CXCR4 (Abcam) and APOBEC3G (Abcam) and finally 

polyclonal affinity purified mouse α-human (BST-2 (Abcam), DEC-205 (BD Pharminigen)) and 

monoclonal affinity purified mouse α-human (Podoplanin (Angio Bio)) (Table 4).  Cultures were 

then washed in 1X PBS supplemented with 0.5% bovine serum albumin (BSA) from Sigma-

Aldrich 3 t imes for 5 min.  Secondary antibodies fluorescently conjugated to Alexa Fluor 488 

and Alexa Fluor 647 (Invitrogen) and isotype-specific for primary antibodies were used to bind 

to primary antibodies for 1 hour  in a humid chamber (Table 4).  Slides were washed with 1X 

PBS supplemented with 0.5% BSA 3 times for 5 min.  Slides were then immersed in 1X PBS for 

5 min followed by incubation in 70% ethanol for 5 minutes.  Autofluorescent Eliminator reagent 

(Millipore) was then added to wells for 5 minutes followed by 3 washes with 70% ethanol for 1 

min each.  After washing with 1X PBS 3 times for 3 min, chambers were removed and slides 

were mounted with Prolong Gold antifade with DAPI (Invitrogen).  Images were captured using 
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                              Table 4: Antibodies used for Immunofluorescent Staining 

Primary antibodies Species Specificity Dilution Supplier Catalog #. 

CXCR4 Rabbit α-human 1:100 Abcam Ab2074 

APOBEC3G Rabbit α-human 1:250 Abcam Ab54257 

TRIM5-α Goat α-human 1:100 Abcam Ab4389 

LYVE-1 Goat α-human 1:20 R&D systems Af2089 

D6 Goat α-human 1:200 Abcam Ab1658 

DEC-205 Mouse α-human 1:50 Abcam Ab79458 

Podoplanin Mouse α-human 1:20 Angio Bio 11-003 

BST-2 Mouse α-human 1:100 Abcam Ab88523 

      

Secondary Ab      

Alexa Fluor 647 Rabbit α-human 1:100 Invitrogen A31573 

Alexa Fluor 488 Goat α-human 1:100 Invitrogen A11055 

Alexa Fluor 488 Mouse α-human 1:100 Invitrogen A21202 

      

Control Ab   Stock Conc.   

Rabbit Ig Rabbit α-human 15g/L DAKO X0936 

Goat IgG Goat α-human 1mg/ml R&D Systems AB-108-C 

Mouse IgG Mouse α-human 1mg/ml Vector KO225 
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a SPOT digital camera mounted on a  Nikon E600 microscope fitted with a 20X plan 

Apochromat objective using METAVUE software (Molecular Devices). 

3.5 PHRODO™ BIOPARTICLES® ENDOCYTOSIS/PHAGOCYTOSIS 

hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy were grown to approximately 70% 

confluence in T-25 flasks in EGM-2MV (Clonetics) as previously described.  Cultures were then 

trypsinized and 4-well chamber slides (Lab-tek) were seeded at a density of 5,000 c ells/mm2.  

Cultures were allowed to grow to confluence and then incubated with varying concentrations of 

either pHrodo™ BioParticles® conjugate (pH dependent dye conjugated with E. coli, or 

pHrodo™ BioParticles® dextran MW 10,000 endocytosis kit (Invitrogen)) per the supplier’s 

recommendations.  Cultures were then washed 3 times with 1XPBS (Lonza) to remove excess 

and unbound pHrodo conjugates.  Culture wells were incubated with 1% PFA for 5 minutes and 

again washed 3 times with 1XPBS.  Culture wells were then covered with Prolong gold anti-fade 

with DAPI (Invitrogen) to stain cell nuclei.  Images were captured using a SPOT digital camera 

mounted on a Nikon E600 microscope fitted with a 20X plan Apochromat objective using 

METAVUE software (Molecular Devices). 

3.6 EXPOSURE TO VIRUS 

hTERT-HDLECs were cultured in EGM-2MV microvascular endothelial growth medium 

(Clonectics) at 37oC and 5% CO2 in T-25 and T-75 flasks.  When collecting RNA samples, T-25 
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flasks were seeded at a concentration of 5,000 cells/cm2 and allowed to grow to approximately 

70% confluence.  C ultures were exposed to 1ml of un-titred SIVmac251 stock, the dsRNA 

mimetic poly I:C, or media only.  T otal RNA samples were isolated at 48 a nd 96 h f or SIV 

exposed cultures and 48h for poly I:C and control cultures.  Forward primer PreMSGSDF1_CB 

5’-TGGTCTGTTAGGACCCTTTCTGCT-3’ and reverse primer PostMSGSDR1GagUnspR1_ 

CB 5’-ATGTTCTCGGGCTTAATGGCAGGT-3’ were used for amplifying SIV region flanking 

the major sub-genomic splice donor site and PreMSGSDF1_CB 5’-TGGTCTGTTAG 

GACCCTTTCTGCT-3’ and reverse primer PostRevS.A.MSR3_CB 5’-AGGACTTCTC 

GAATCCTCTGTAGGGT -3’ (Integrated DNA Technologies) were used to identify spliced rev 

RNA in LEC total RNAs exposed to SIVmac251.  LEC cultures were exposed to media only 

(mock), poly I:C (25ug/ml) or lab-adapted , X4 tropic, HIV-1IIIb virus (57 TCID50/ml) (courtesy 

of Deena Ratner and Dr. Phalguni Gupta) for 3 days, at which point cultures were washed 3 

times for 3 min with 1X PBS. Fresh media was added and at day 7 and 10, remaining cultures 

were washed, and lysed for isolation of RNA samples.  Forward primer HIV.MSGSD.F_1_CB 

5’-TCAAGTAGTGTGTGCCCGTCTGTT-3’ and reverse primer HIV.GAG,UnSp_R_1_CB 5’-

ACTTCTGGGCTGAAAGCCTTCTCT-3’ (Integrated DNA Technologies)  (Designed using 

sequences from the Los Alamos National Laboratory HIV Database, which is funded by the 

Division of AIDS of the National Institute of Allergy and Infectious Diseases (NIAID), a part of 

the National Institutes of Health (NIH)) were used to amplify HIV-1 sequences flanking the 

major sub genomic splice donor site from LEC RNA samples.  Supernatant samples were taken 

at each time-point from HIV-1 exposed and mock cultures for ELISA analysis (courtesy of Dr. 

Phalguni Gupta and Mary White). Forward primer BGUS.control.F_1_CB 5’- ACTTCCTG 

AAGTTGGACGAAGCGA-3’ and reverse primer BGUS.control.R_1_CB 5’- TTGGGA 
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CGTTAGCAAAGACGAGGT-3’ (Integrated DNA Technologies) were designed for the 

endogenous control β-glucuronidase based on sequences obtained from NCBI/GenBank 

(accession number = NM_000181). 

3.7 LEC EXPOSURE TO HIV-EGFP 

To visualize the interaction between virus and LECs, I used an HIV-1 construct tagged with 

enhanced green fluorescent protein (eGFP) fused to Vpr  (courtesy of Courtney Zych and Dr. 

Velpandi Ayyavoo).  The virus stock was diluted in endothelial growth medium and incubated 

with cultures of hTERT-HDLECs and HMVEC-LLys, grown to ~70% confluency in 4-well 

chamber slides, at a Gag concentration of 100 pg/mlin hTERT-HDLECs, 200pg/ml in HMVEC-

LLys, or 0pg/ml (mock control) for 3 hours.  Cultures were then washed 3 times for 3 minutes in 

1X PBS and fixed in 4% PFA for 15 minutes.  Cultures were washed again 3 times for 3 minutes 

in 1X PBS and mounted with ProLong gold antifade with DAPI (Promega) for nuclear staining.   

Images were captured using a SPOT digital camera mounted on a Nikon E600 microscope fitted 

with a 20X plan Apochromat objective using METAVUE software (Molecular Devices). 

3.8 CLONING AND SEQUENCING OF SIV AND HIV-1 PCR PRODUCTS 

Total RNAs from populations exposed to SIV or HIV-1 were used to generate cDNAs as 

previously described.  V iral sequences were amplified using a P TC-200 Peltier thermal cycler 

(MJ Research) and visualized in 2% agarose gels.  Bands of corresponding size to targets were 
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extracted from gels using a Q IAquick gel extraction kit (Qiagen).  Isolated and extracted 

sequences were ligated into pGEMT cloning vector (Promega) and DNA sequenced by the 

Pittsburgh University core sequencing facility. Comparison and analysis of sequence with known 

sequences available on NCBI was conducted using Vector NTI Advance software (Invitrogen). 
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4.0  RESULTS  

 

4.1 LECS EXPRESS MRNAS ENCODING VIRAL UPTAKE AND RESTRICTION 

FACTORS 

To determine if hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy cell populations expressed 

target receptors and antiviral factors, total RNA samples were isolated from LEC cultures.  Real-

time RT-PCR was conducted on c DNA samples synthesized from total RNAs and levels of 

expression were normalized to the levels of the endogenous control β-glucuronidase (β-GUS).  

β-GUS proved to be an acceptable endogenous control because fluctuations in expression levels 

across cell populations and treatments were negligible (<1 cycle threshold (Ct) value at the 

most). For each target gene 2-ΔCt values were calculated allowing for mRNA levels of each target 

to be observed relative to the endogenous control (designated by a dotted-line) (Figure 3).  In 

hTERT-HDLECs the LEC marker LYVE-1 was expressed at levels comparable to the 

endogenous control.  In contrast, the LEC marker podoplanin was expressed at as much as 10 

times the level of the endogenous control, indicating a strong constitutive expression level.  This 

is consistent with podoplanin and LYVE-1 being known markers of LECs.  hT ERT-HDLEC 

populations did not express mRNAs for the typical HIV-1 receptor CD4, as well as the beta-
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chemokine co-receptor CCR5, used by M-tropic variants (Figure 3) within the limits of 

sensitivity of the assay.  However, hTERT-HDLEC populations did express mRNAs for the 

HIV-1 T-tropic co-receptor CXCR4.  hTERT-HDLEC populations that were not stimulated in 

any manner also expressed the innate viral restriction factors BST-2 and TRIM5-α as well as the 

surface receptors D6 and DEC-205, which are capable of binding and internalizing HIV-1 

(Figure 3).  hTERT-HDLEC populations did not express the C-type lectin DC-SIGN, which has 

been shown to play a role in internalization of HIV-1 by DCs, and the antiviral factor 

APOBEC3G, which has been shown to induce mutations that abrogate HIV-1 replication in Vif- 

 

 

 

Figure 3: Real-time RT-PCR analysis of hTERT-HDLEC total RNAs. 
hTERT-HDLEC RNAs were used to analyze the expression profiles for the entry and restriction factors described 
using the comparative Ct method.  All target gene expression levels are relative to the endogenous control β- 
glucuronidase.  E ach data point represents the average of duplicate wells from 1 experiment.  The dotted-line 
represents the expression level of the endogenous control, defined as 1.0. 
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deficient viral variants.  The presence of antiviral factor and surface receptor mRNAs in non-

stimulated cell populations indicates a constitutive expression of factors that play roles in viral 

uptake and replication inhibition.   

 

When investigating the expression profile of these same target genes in the commercially 

available primary dermal HMVEC-DLy LEC population, there were interesting similarities and 

differences.  HMVEC-DLy populations also expressed LYVE-1 at a comparable level to the  

 

 

 

Figure 4: Real-time RT-PCR analysis of HMVEC-DLy total RNAs 
HMVEC-DLy RNAs were used to analyze the expression profiles of viral entry and restriction factors using the 
comparative Ct method.  All target gene expression levels are relative to the endogenous control β- glucuronidase.  
Each data point represents the average of duplicate wells from 1 experiment.  Dotted-line represents the expression 
level of the endogenous control, defined as 1.0. 
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endogenous control, while the LEC marker podoplanin was present at levels higher than β-GUS 

(Figure 4).  HMVEC-DLys also expressed the antiviral factors BST-2 and TRIM5-α. 

 

Conversely, the primary dermal population showed expression of the antiviral factor 

APOBEC3G not present in hTERT-HDLEC populations.  HMVEC-DLy samples were also the 

only populations analyzed in these studies that expressed DC-SIGN mRNA (Figure 4).  The 

expression of APOBEC3G in primary cell populations, and its absence in transduced, long-lived  

 

 

 

Figure 5: Real-time RT-PCR analysis of HMVEC-LLy total RNAs. 
HMVEC-LLy RNAs were used to analyze the expression profiles of viral entry and restriction factors using the 
comparative Ct method.  All target gene expression levels are relative to the endogenous control β- glucuronidase.  
Each data point represents the average of duplicate wells from 1 experiment.  Dotted-line represents the expression 
level of the endogenous control, defined as 1.0.  
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hTERT-HDLEC populations could potentially be due to consequences of transfection and altered 

cell cycle characteristics.  This should be taken into account when conclusions are drawn from in 

vitro studies in transfected cell populations. Expression profiles of different receptors and 

antiviral factors varying throughout populations is biologically plausible as different cell 

populations present at different areas in the body may have specialized functions specific to that 

tissue. Thus differences in the expression of different factors throughout even closely related cell 

population’s occurred. HMVEC-DLy populations also expressed the atypical chemokine 

receptor D6, viral co-receptor CXCR4, and the antigen uptake factor DEC-205 similar to hTERT 

populations (Figure 4) suggesting LECs are equipped with receptors capable of binding and 

internalizing HIV-1 through CD4 independent mechanisms. 

 

A primary lung LEC population, the HMVEC-LLy cells, was also analyzed for the 

expression of the same LEC marker, viral entry, and viral restriction target genes previously 

described.  HMVEC-LLy cells expressed the LYVE-1 and podoplanin LEC markers.  As with all 

populations analyzed thus far, HMVEC-LLy cells were not expressing the viral entry receptors 

CD4 and CCR5.  HMVEC-LLy cells were expressing all three antiviral factors investigated 

(BST-2, APOBEC3G, and TRIM5-α) as well as the atypical entry receptors D6 and DEC-205 

(Figure 5). In summary, three populations of LECs, defined as such by their expression of 

markers of LEC lineage, were also constitutively expressing a wide variety of viral entry and 

restriction factors.  A lthough some differences were seen in expression levels throughout the 

populations, overall expression profiles were similar.  
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4.2 LECS EXPRESS VIRAL ENTRY AND RESTRICTION FACTORS AT THE 

PROTEIN LEVEL 

Having determined the expression profiles of hTERT-HDLEC, HMVEC-DLy, and HMVEC-

LLy LEC populations by real-time RT-PCR, analysis was then conducted to determine if 

corresponding proteins were expressed and what their subcellular distribution was.  Using 

antibodies previously described, hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy populations 

were fluorescently labeled to determine if these cells were expressing protein at levels consistent 

with RNA levels previously measured (Figure 6-8).  Staining for the LEC lineage markers 

LYVE-1 and podoplanin (Figure 6c-h) showed robust cytoplasmic signal throughout the three 

cell populations which correlated with the high levels of mRNA expression previously observed 

relative to the β-GUS (Figure 6a-b).  These data suggest that for these markers, mRNA levels 

observed in real-time RT-PCR analysis correlate with protein expression and thus support the 

concept that mRNA expression levels are a good marker of the overall expression profiles for 

these populations (Figure 6). The expression profiles of the hTERT, DLy, and LLy cell 

populations for the antiviral restriction factors investigated by real-time RT-PCR were also 

examined by immunofluorescent staining.  A ll three populations were expressing TRIM5-α 

which inhibits uncoating of the viral capsid, as well as the membrane associated protein BST-2, 

which inhibits budding virions by tethering them to the host cell surface (Figure 7). Although 

these data correlated with the expression levels of the corresponding mRNAs, there seemed to be 

distinct compartments that both BST-2 and TRIM5-α were sequestered in and the staining 

patterns were not similar to what was seen in the staining for the LEC markers LYVE-1 and 

podoplanin.  There is evidence, however, that suggests both BST-2 and TRIM5-α are 
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Figure 6: Expression of markers of LEC lineage. 
hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy populations were positive for the LEC markers podoplanin and 
LYVE-1.  Real-time RT-PCR data previously described was re-organized to view all populations’ expression of a 
single target. Podopalnain (a,c-e)  and LYVE-1 (b,f-h) analysis showed that not only mRNA (a,b) but protein (c-h) 
for these markers was present.  IgG (LYVE-1) and Isotype (Podoplanin) controls were negative for signal (inset 
images).  Original magnifications = 200X. 
 

 

associated with lipid rafts in the cellular membrane, and this could be a reason as to why staining 

for these restriction factors are distributed unevenly like this throughout the cellular membrane 

(56,57,58).  Lipid rafts are small microenvironments within the cell membrane that are rich in 

cholesterols and sphingolipids which allow for the organization and compartmentalization of 

many cell surface proteins that often have roles in receptor mediated endocytosis and signal  
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Figure 7: Expression of restriction factors by LEC populations. 
Real-time RT-PCR data previously described was re-organized to view all populations expression level for a single 
target(a-c).  Level of expression was measured relative to expression of the endogenous control β- glucuronidase 
using the comparative Ct method. APOBEC3G (d-f) TRIM5-α (g-i) and BST-2 (j-l) protein expression profiles, 
measured by immunofluorescent staining, correlated with real-time analysis.  Inset images are representative IgG 
negative control culture chambers for each target.   Original magnifications= 200X. 
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Figure 8: Expression of alternate entry factors on LEC populations. 
Real-time RT-PCR data previously described was re-organized to view all populations expression level for a single 
target(a-c).  Levels of expression were measured relative to the endogenous control β- glucuronidase using the 
comparative Ct method.  Immunofluorescent staining of the three cell populations for D6 (d-f) CXCR4 (g-i) and 
DEC-205 (j-l) showed positive signal for each target indicating the presence of translated protein.  IgG controls were 
negative for signal (inset images).  Original magnifications = 200X.   
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transduction (59).  Lipid rafts also contain microdomains where progeny virions are assembled 

(61,62).  It is not unreasonable to expect that these lipid rafts would be a key compartment in 

which host antiviral restriction factors would be present to target assembling viruses.   

 

Finally, the expression of alternative entry receptors was investigated based on the initial 

findings that D6, DEC-205, and CXCR4 mRNAs were present in total RNA isolations from 

hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy cell populations (Figure 8 a-c).  All three 

cell populations displayed staining when incubated with primary antibodies specific for the D6, 

CXCR4, and DEC-205 (Figure 8 d-l).  This correlated with the previous real-time RT-PCR data 

that LEC populations were expressing alternative entry receptor mRNA (Figure 8a-c). 

 

Taken together, the immunofluorescent staining data provide further characterization of 

the LEC populations.  Not only are LECs actively transcribing mRNAs for LEC markers, 

antiviral restriction factors, and alternative entry receptors, but these populations are also 

translating these mRNAs to proteins, as visualized by immunofluorescent staining in vitro.  

These data suggest that as hypothesized, LECs are well equipped to actively survey the 

surrounding environment (i.e. lymph returning from peripheral tissues) and effectively engage 

microbial targets. If LECs are internalizing virus, they could have a sieve effect on the system, 

removing virus with tropism for these receptors.  More intriguingly, LECs could offer a site of 

productive or latent infection not previously described 
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4.3 HTERT-HDLEC EXPOSURE TO POLY I:C 

Previous studies in our laboratory have shown that LEC populations can respond to a number of 

different PAMPs, including the mimetic dsRNA poly I:C, through signaling via TLRs (23).  Poly 

I:C binding to TLR3 induces signaling through IRF3 and NF-κB leading to the induction of an 

interferon response and subsequent expression of interferon stimulated genes (ISGs) (66,67)  To 

determine if there were any differences in the expression profiles for the entry and restriction 

factors previously described after treatment with poly I:C, as well as after exposure to the X4 

tropic lab-adapted viral strain HIV-IIIB, cultures were incubated with media only (mock 

control), media supplemented with poly I:C, or media with virus.   Total RNAs from hTERT-

HDLEC populations were isolated and the relative expression levels of the three viral restriction 

factors, which are also ISGs, APOBEC3G, TRIM5-α, and BST-2 were measured using real-time 

RT-PCR.  All of these mRNAs increased in expression by at least 5-fold with APOBEC3G and 

BST2 expression increasing dramatically in response to poly I:C exposure (Figure 9a-c).  

Expression levels of these factors also increased in response to virus though not to the same 

extent indicating that exposing LECs to this amount of viral supernatant induced only a slight 

interferon response (Figure 9).  It is interesting to note that APOBEC3G, which was not 

detectable in mock cultures of hTERT-HDLECs, was induced to express at such a high level 

when exposed to poly I:C (Figure 9a).  There was also a significant decrease in the expression of 

CXCR4 from mock cultures to poly I:C treated cultures.  Cultures incubated with poly I:C for 24 

hours showed a significant decrease in expression level of CXCR4 than mock (media only) 

exposed cultures (Figure 9d ). 
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Figure 9: LECs respond to exposure to immunogenic molecules by altering expression profiles. 
hTERT-HDLECs exposed to media only (mock) the mimetic dsRNA poly I:C or the X4 tropic HIV-IIIb showed an 
induction of expression of three ISGs, APOBEC3G (a) BST-2 (b) and TRIM5-α (c).  Increases in expression were 
also seen in cultures exposed to HIV-IIIb.  E xpression of the HIV-1 co-receptor CXCR4 was also significantly 
decreased in cultures that were incubated with poly I:C (d).  Results in a-c represent averages of 2 experiments run 
in duplicate.  Results in d are averages from 3 separate experiments run in duplicate. 
 

 

Taken together, this evidence shows that LECs are not only constitutively expressing 

factors that can recognize foreign molecules, but the expression of these factors can be altered 

depending on the cells exposure to TLR ligands, including a dsRNA mimetic of viral replicative 

intermediates.  These results strongly suggest that LECs are playing active roles in immune 

surveillance and response.  
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4.4 PHRODO BIOPARTICLE EXPOSURE 

To assess whether LECs had the ability to sample the surrounding environment by both 

endocyctic and phagocytic mechanisms, hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy 

cultures were exposed to dextran, a complex sugar that is internalized via early endosomes, that 

was directly conjugated to a pH sensitive rhodamine flurophore.  Upon binding and 

internalization by early endosomes, the reduced pH in the endosome as it matures increases the 

intensity of rhodamine fluorescent signal.  pHrodo dextran at normal pH has minimal emission, 

therefore cells that have actively taken up dextran can be identified directly using fluorescence 

microscopy or flow cytometry.  Cells from hTERT-HDLEC and HMVEC-DLy populations were 

seeded on 4 well chamber slides and allowed to grow to approximately 70% confluence.  Cell 

cultures were incubated with 30ug/ml pHrodo dextran or PBS only for 15 m inutes and then 

visualized (Figure 10).  Cultures incubated with pHrodo-labeled dextran showed robust, cell-

associated, signal whereas mock control cultures were negative.  These results suggest that LEC 

populations are actively engaging their environment in the form of internalization of dextran 

through endocytic pathways and that these endosomes are maturing to low pH late endosomes.  

 

To investigate if LEC populations could internalize microbes through that would be 

recognized by TLRs in their environment, I also exposed cultures to pHrodo labeled K-12 

Escherichia coli (E. coli) bioparticles that are internalized via phagocytosis and that also increase 

in red fluorescent signal as vesicles mature and the pH drops.  E. coli is internalized by TLR4 

mediated binding of LPS on the bacterial surface (63). Our laboratory has previously shown that  
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Figure 10: LEC populations exhibit endocytic activity 
hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy cultures were grown to approximately 70% confluence and 
incubated with media only (d-f) or pHrodo-labeled dextran particles diluted in media for 20 min.  O riginal 
magnifications = 200X with inset images = 600X.  Images representative of repeated experiments.  
 
 

hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy populations express functional TLRs at the 

cell surface (23).  E. coli conjugated particles were re-suspended in HBSS supplemented with 

20nM HEPES uptake solution and diluted to appropriate concentration in endothelial growth 

media. Incubation with approximately 70% confluent monolayers of hTERT-HDLEC, HMVEC-

DLy, and HMVEC-LLy populations occurred at 37°C for 3 hours.  After nuclear staining, 

cultures were visualized and shown to be positive for signal, indicating the ability of all three 

LEC populations to actively phagocytose pHrodo labeled E. coli particles (Figure 11).  Mock  
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Figure 11: LEC populations exhibit phagocytic nature when exposed to pH sensitive rhodamine labeled K-12 
Escherichia coli. 
hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy cultures were grown to 70% confluence and incubated with 
media only (d-f) or pHrodo labeled E. coli particles diluted in media for 3 h.  Original magnifications = 200X with 
inset images = 600X.  Images representative of repeated experiments. 
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Figure 12:  LECs exposed to pHrodo labeled E. coli bioparticles show extra-nuclear staining. 
hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy cultures were grown to approximately 70% confluence and 
incubated with pHrodo-conjugated E. coli particles diluted in media for 3 h.  Nuclear staining (a-c) shows positive 
signal outside of the defined nucleus contributed by E. coli genomic DNA bound by LECs.  pHrodo signal (d-f) 
induced by acidification of vesicles containing internalized E. coli co localize with some of DAPI stain, but other 
areas where pHrodo signal is low is contributed by E. coli not internalized and/or bound to the slide.  O riginal 
imaged= 400X.  Images representative of repeat experiments.  
 

cultures, which were exposed to media supplemented with the appropriate amount of uptake 

solution, did not show cell associated signal.  Cultures exposed to pHrodo labeled E. coli 

particles also displayed an interesting staining pattern that further served as an internal control 

for the system.  Cultures that were incubated with pHrodo labeled E. coli bioparticles were not 

only positive for cell-associated pH sensitive pHrodo signal, but when visualizing the nuclear 

staining by DAPI, there was a clear defined nucleus for each cell, as well as a diffuse granular 

signal that was distributed over the entire cell.   The DNA staining localized with the pHrodo 

signal, and represents the E. coli genetic material (Figure 12).  This signal was not present in 

mock exposed cultures as well as all cultures exposed to pHrodo labeled dextran particles which 

do not contain the genomic DNA present in the E. coli (Figure 10).  This finding, along with the 

evidence of endocytosis and phagocytosis previously described, shows that LECs are actively 
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surveying the environment and are able to bind and internalize microbes, such as E. coli, in 

acidic vesicles through receptors that recognize PAMPs.  

4.5 LECS EXPOSED TO SIV SHOW EVIDENCE OF VIRAL ENTRY 

Characterization of LECs showed populations were actively expressing viral entry and restriction 

factors.  LECs are also able to actively engage their surroundings and alter the expression of 

certain factors due to TLR signaling.  To determine if LECs could bind and internalize virus, I 

exposed LEC cultures to SIV and examined if virus-associated PCR products could be isolated. 

The outcomes from exposure to virus include no interaction, virus degradation through cellular 

mechanisms, sequestering of virus on t he cell surface, or possible replication to some 

downstream endpoint (i.e. latent, abortive, productive).  In order to evaluate this, SIVmac251 

virus was added to T-25 flasks containing hTERT-HDLECs at approximately 70% confluence as 

exploratory first experiment to determine if viral transcripts could be isolated from total RNA 

samples from LEC cultures that had been exposed to virus.  I developed a forward primer that 

was upstream of the major sub-genomic splice donor site (mSD), a splice site located upstream 

of the ψ packaging signal of the viral genome that is responsible for encapsidation (70).  A 

reverse primer was also developed that was downstream of this site.  Amplification of a PCR 

product of expected size was obtained when cDNAs synthesized from total RNAs of LECs 

exposed to SIV were used as input templates.  This PCR product would be present in input viral 

genome as well as de novo synthesized viral primary transcripts.  The presence of this PCR 

product in LEC total RNAs is indicative of SIV primary transcripts being present in LEC RNAs, 

potentially from virus uptake or virus attached to the cellular surface (Figure 13 a,b,d).   
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 Although this finding was interesting, amplification of this target alone could not 

distinguish between input virus that had been added to the system and newly synthesized viral 

mRNA.  To distinguish between these two possibilities, I developed a downstream reverse 

primer within the second coding exon of the rev open reading frame that when paired with the 

forward primer upstream of the mSD previously described, would only amplify a multi-spliced 

rev viral transcript.  Since spliced rev transcripts are not incorporated into virions, the only way 

this PCR product would be present in hTERT-HDLEC total RNAs exposed to virus would be if 

there is some form of de novo replication occurring.  Standard RT-PCR was conducted on 

hTERT-HDLEC RNAs from cultures exposed to media only (mock) or SIVmac251 for 48 or 96 

hours (Figure 13d).  Interestingly, products of appropriate size for both unspliced and spliced 

viral transcripts were amplified from RNAs obtained from cultures exposed to virus for 48 and 

96 hours. Amplification was not observed when template RNAs from mock exposed cultures 

were examined (Figure 13d).  Bands of appropriate size were extracted from the gel and purified, 

and then ligated into the pGEMT cloning vector prior to sequencing.  Sequencing analysis 

showed that the target expected to be derived from the unspliced target RNA was >99% 

homologous to the reference sequence obtained from NCBI (Figure 13b).  This finding indicated 

that SIV bound to hTERT-HDLECs in vitro, and was either staying bound to the surface of 

LECs, being sequestered in some cellular compartment, or possibly replicating to some endpoint, 

whether abortive or productive.   
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Figure 13:: LEC exposed to SIV contain viral transcripts in total RNA samples. 
(a) A schematic of the SIV genome with corresponding designed primer pairs to amplify unspliced and spliced viral 
transcripts.  (b-c) Sequencing results from amplified targets isolated via gel band extraction.  Sequences for both 
unspliced 5’UTR (b) and multi-spliced rev transcripts (c) showed >95% homology to reference sequences from 
NCBI.  Color coding of rev sequence correlates with 1st noncoding exon (red) 1st coding exon (green) and second 
coding exon (purple). Amplified targets sent for sequencing were obtained by Standard RT-PCR of hTERT-HDLEC 
total RNAs exposed to SIV for 48 and 96 hours (d).  Lanes 1-4 correspond with mock exposed samples for each 
primer pair designed.  Lanes 5-8 are 5’UTR, tat, and rev targets respectively in 48 hour SIV exposure samples with 
NRT control (8)  Lanes 9-12 are 5’UTR, tat, and rev targets respectively in 96 hour SIV exposure samples with 
NRT control (12).  Samples isolated from 48 hour lanes were ligated into a pGEMT vector and sent for sequencing 
which is seen in b and c. 
 

D. 



 51 

Sequencing analysis of the target expected to be derived from multi-spliced rev mRNA 

showed >95% homology to the reference sequence with some interesting defining features 

(Figure 13c).  The PCR product contained upstream sequences that were homologous with 

reference sequence expected upstream of the mSD.  At the mSD however, the sequence of the 

PCR product was now homologous with the first coding exon of rev (Figure 13c).  The product 

next contains sequences expected to be present in spliced rev mRNAs, containing an additional 

three nucleotides at the splice site between the first and second coding exons (Figure 13c).  This 

additional three nucleotide stretch is consistent with alternative splice sites regularly seen in viral 

transcripts (112).   Given that the coding regions of rev lay more than 5,000 nuc leotides 

downstream of the mSD and that this stretch of >5kb is not present in the amplified product that 

was obtained, these data show that multi-spliced rev transcripts are present in total RNA samples 

from hTERT-HDLECs exposed to SIVmac251 for 48 hour s.  Spliced viral mRNAs are not 

incorporated into virions and they would not be present if virus was only bound b y LECs, 

strongly suggesting that SIV is somehow being internalized by hTERT-HDLECs and 

transcription and splicing must be occurring. 

4.6 LECS EXPOSED TO HIV-1 SHOWED EVIDENCE OF PRIMARY 

TRANSCRIPTS AND VIRAL PROTEIN SYNTHESIS  

After exposing hTERT-HDLECs to SIV produced intriguing results, LECs were exposed to 

HIV-1 to determine if human cell populations could be infected in a more natural model.  LECs 

were cultured and allowed to grow to approxametaly70% confluence.  Cultures were incubated  
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Figure 14: LECs exposed to HIV-1. 
(a) Experimental design for exposure of hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy to X4 tropic HIV IIIb.  
Standard RT-PCR (b) of hTERT-HDLECs mock exposed (Lane 2,3) or HIV exposed (4,5) for the endogenous 
control  β- glucuronidase (3,5) or for the mSD flanking region (2,4).  NRT controls (6,7).  p24 ELISA of culture 
supernatants from 3 cell populations (c).  C ultures were washed extensively at day 4 and media was replaced.  
Results from 1 experiment run in duplicate. 
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for 3 days with either media only (mock) poly I:C (25 ug/ml) or the X4 tropic HIV IIIb (courtesy 

of Deena Ratner and Dr. Phalguni Gupta).  HIV IIIb, a group-M, lab-adapted virus that utilizes 

the CXCR4 co-receptor, has also been shown to be able to use the CXCR4 receptor in the 

absence of CD4, making it an ideal initial strain to examine as it had been previously shown that 

LECs express CXCR4 but do not express CD4 (24).  Cultures were designated for harvest on 

days 3, 7,  and 10 after initial exposure with all cultures being washed extensively at day 3 and 

fresh media added (Figure 14a).  Using the same strategy that was described for LECs exposed 

to SIVmac251, I developed a forward primer upstream of the mSD for HIV-1 IIIb using 

sequence obtained from the Los Alamos National Laboratory HIV Database.  Primers were also 

designed for the endogenous control β- glucuronidase to serve as an internal control for the 

system.  Standard RT-PCR was conducted on hTERT-HDLEC RNAs from cultures exposed to 

media only (mock) or HIV-1 IIIb (Figure 14b) at 7 days after exposure.  The endogenous control 

β- glucuronidase mRNA was amplified from RNA samples from both mock exposed and HIV-1 

IIIb exposed culture samples.   H owever, amplification of the mSD flanking region was only 

seen in samples from the HIV-1 IIIb exposed cultures (Figure 14 b) .  These data indicate that 

HIV-1 IIIb can bind to hTERT-HDLECs in vitro, but sequence analysis has not succeeded due to 

poor isolation results.  Future studies will focus on t rying to isolate and sequence viral 

transcripts. 

 

Supernatant samples were also taken from HIV-1 IIIb exposed cultures at days 3, 7, and 

10 to determine if there is production of new virus particles by LEC cultures.  U sing a p24 

ELISA kit, supernatant concentrations of viral Gag were measured in day 3 samples exposed to 

media only (control), poly I:C and HIV-1 IIIb exposed (before input virus was removed and 
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cultures were washed) as well as day 7 mock control and virus exposed cultures (Figure 14c).  

Levels of viral Gag were above 2000 n g/ml in day 3 samples.  However, this value includes 

input virus as cultures had not been washed extensively since initial exposure.  Therefore, day 3 

samples are only serving as a positive control for the system.  M ock control and poly I:C 

exposed cultures served as negative controls for the system as neither culture was exposed to 

virus.  Day 7 samples however were washed extensively at day 3 to remove input virus and then 

incubated with fresh media.  V iral Gag was present in each of the three cell population’s 

supernatant samples, where Gag was undetectable in mock samples, indicating that hTERT-

HDLEC, HMVEC-DLy, and HMVEC-LLy cultures incubated with HIV-1 IIIb are likely 

producing newly synthesized viral Gag (Figure 14c).   

4.7 LEC EXPOSURE TO HIV-EGFP SHOWED CELL-ASSOCIATED SIGNAL 

To better understand the interactions that were occurring between virus and LECs in vitro, I used 

an eGFP tagged, virus system based on the pNL4.3 viral vector construct, but with a deleterious 

mutation in the viral accessory protein Vpr (courtesy of Courtney Zych and Dr. Velpandi 

Ayyavoo).  Viral vector deficient in vpr was co-transfected with a v ector expressing eGFP-

tagged vpr in a permissive cell line and viral supernatant contained fluorescently labeld viral 

particles.  This virus can be used to visualize input virus bound t o cells after exposure and 

thorough wash, as eGFP emits a fluorescent signal when exposed to blue light (85,86).  

Fluorescently tagged virus was incubated with hTERT-HDLEC and HMVEC-LLy LECs for 3 

hours and then cultures were extensively washed.  Interestingly enough, fluorescent signal not  
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Figure 15: LECs associate with eGFP tagged HIV-1 
hTERT-HDLEC(a,b) and HMVEC-LLy(c,d) were incubated with virus at a concentration of 100pg/ml(a) 
200pg/ml(c) or media only (b,d).  Nuclei were stained and mounted. Original magnification = 200X 
 
 

seen in mock control cultures was associated with hTERT-HDLECs and HMVEC-LLys (Figure 

15). Signal however was seen at relatively low magnification, where typically signal from single 

viral particles would not be observed.  If virus was sequestered into a general sub-cellular 

compartment, the signal in that area would increase, possibly resulting in the images observed.  

The results for this experiment were from preliminary data, and future studies will be focused on 

definitively determining if these virus particles are indeed interacting with LECs in vitro.  Other 

viral constructs which can determine to what extent virus is interacting with cells in culture such 

as viral luciferase constructs may be employed to further understand this complex relationship. 
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4.8 RESULTS CONCLUSION 

LECs are expressing the LEC lineage markers LYVE-1 and podoplanin, the antiviral restriction 

factors APOBEC3G, TRIM5-α, and BST-2, as well as the viral entry receptors D6, DEC-205, 

DC-SIGN and CXCR4. Expression levels of some targets are different across cell populations 

and could reflect differences in tissue derivations or effects of altering cell populations via 

transduction with hTERT cDNA .  Expression levels of these factors are also sensitive to the 

surrounding environment, as exposure to the dsRNA mimetic poly I:C induced changes in 

expression profiles.  mRNA expression correlated with protein expression in these cell 

populations.  LECs are actively engaging the environment through endocytic and phagocytic 

mechanisms.  LECs exposed to SIV in vitro had viral elements present in total RNA samples that 

are multi-spliced, indicating de novo transcription is occurring to some extent.  In addition, LECs 

exposed to HIV had viral Gag present in culture supernatants 4 days after virus was removed and 

cultures were washed extensively. 

 

 Taken together, it is clear that the perception of LECs as just a constituent of lymphatics 

that forms vessels has to change.  LECs are important players in the surveillance of peripheral 

tissues via lymph, as well as in early innate immunity, by actively recognizing foreign pathogens 

through PRRs and engaging in the migration of pAPCs by secretion of chemokines.  This initial 

evidence argues for more research focused on these specialized populations of cells and defining 

their role in the immune system.  
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5.0  DISCUSSION 

 

The lymphatic endothelium plays a necessary role in removing residual fluid, cells, and 

metabolic particulates produced in tissues by peripheral lymphatic vessels (33,34).  In 

circumstances where the lymphatic system fails, the body’s ability to regulate internal fluid 

levels can be disrupted.  Disorders of lymphatic vessels, such as lymphedema, Hodgkin’s 

disease, and different lymphomas can disrupt the normal regulation of interstitial fluid.  The 

lymphatic system has until now been described as a conduit for migrating DCs, lymphocytes, 

and interstitial fluid from peripheral tissues to the LNs. Lymph collects via the left and right 

lymphatic ducts and is eventually re-circulated through the blood stream (110).  I believe, 

however, that the lymphatic endothelium has a much more active role by not only facilitating the 

migration of mature APCs and lymphocytes, but actively surveying interstitial fluid and 

engaging foreign pathogens via surface receptors and intracellular restriction factors.  The 

objective of this study was to examine the expression of innate restriction factors and viral entry 

receptors on model LECs.  Therefore, three cell populations (hTERT-HDLEC, HMVEC-DLy, 

and HMVEC-LLy) were used to assess in LECs the expression pattern of a w ide variety of 

factors, known to play roles in a multitude of immune responses.  In addition, I also exposed 

LECs to SIVmac251, the lab-adapted, X4 tropic, HIV-IIIb variant, and an eGFP tagged HIV-1 

variant to evaluate if LECs can bind virus, and if so, to what extent virus replicates. 
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There is previous evidence that suggests LECs express alternative receptors for viral 

entry and viral restriction factors.  A recent study analyzed the expression profile of human 

dermal LECs treated with the inflammation-inducible cytokine tumor necrosis factor-α (TNF-α) 

by microarray analysis (87).  Expression profiles were then measured using GeneChip software 

and the level of expression for each gene was ranked.  Genes were then placed into percentiles 

according to their expression levels relative to other genes.  The expression levels for the specific 

genes of interest measured in the studies described in this thesis strongly correlated with the 

observed expression pattern in the microarray study (Table 5).  Dermal LEC populations showed 

high levels of expression for the standard LEC lineage markers podoplanin and LYVE-1 as they 

both were ranked in the >90th percentile.  Expression of CXCR4, DEC-205, D6 (though at low 

levels similar to what I observed), and DC-SIGN, was seen in microarray analysis.  T he 

restriction factors TRIM5-α, APOBEC3G, and BST-2 (87) were also expressed, supporting the 

data presented in this thesis.  Interestingly, there was detectable expression of the HIV-1 receptor 

CD4 and co-receptor CCR5 in the microarray data, however at low percentile levels compared to 

other genes.  T hese findings support the data in this thesis, showing that LECs are actively 

expressing these factors.  There are other microarray studies published that show that not only do 

LECs express the genes examined here, but they are able to effectively regulate expression 

profiles in reaction to IFN-α, IFN-γ, and a wide variety of different immune regulatory 

compounds (88,89,90,91). 
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Table 5: Percentile ranks for level of gene expression in control (mock) and TNF-α exposed primary 
human dermal LECs 

Levels of gene expression measured by microarray analysis were ranked based on overall expression in mock and 
TNF-α exposed dermal LEC cultures.  These ranks and expression levels are similar to the data presented in this 
thesis. 

Accession # GSE6257 

Target Gene %ile control %ile Treatment (TNF-α) 

LYVE-1 98 81 

Podoplanin 94 96 

CXCR4 87 77 

DEC-205 75 79 

D6 17 17 

DC-SIGN 60 60 

TRIM5-α 92 93 

APOBEC3G 81 89 

BST-2 7 87 

CD4 29 29 

CCR5 42 43 

Β-GUS 95 93 

   

 

LECs were expressing different restriction and entry factors.  Previous work has shown 

that LECs effectively regulate migration and maturation of DCs, can mediate inflammation by 

secreting factors, and possibly control infection of microbes recognizable by PAMPs (23,95).  

The role LECs play during infection and subsequent immune responses is an active one (Figure 

16).  LECs express a wide variety of surface receptors that can bind PAMPs, efficiently take up 

and process antigen, and internalize an assortment of pathogens (Table 6).  LECs can respond to  

 



 60 

Table 6: Comparison of DCs, T-cells, and LECs 

 DCs T-cells LECs 

Endocytosis Yes Yes Yes 

Phagocytosis Yes No Yes 

PRRs & Restriction Factors Yes Yes Yes 

Chemokine/Cytokine secretion Yes Yes Yes 

Typical and Atypical Viral Receptors Yes Yes Yes 

Virus Uptake Yes Yes Possibly 

Antigen presentation Yes No ??? 

Immune effector function No Yes ??? 

 

 

their environment by regulating the expression of restriction factors and even express 

chemokines that regulate trafficking of APCs to secondary lymphoid tissues (Table 6). LECs 

also maintain this arsenal of restriction factors that are able to inhibit replication at different 

stages of the viral life cycle.  This characterization of LECs highlights the fact that LECs are able 

to actively monitor the environment, and elicit a response if necessary, possibly in a manner 

similar to DCs and T-cells (Table 6).  LEC cultures were able to efficiently internalize both 

pHrodo-labeled dextran and pHrodo-labeled E. coli bioparticles (Figure 10-12).  T hese 

mechanisms highlight the ability of LECs to actively engage the environment through endocytic 

and phagocytic mechanisms, possibly in a manner similar to DCs.   

 

LECs exposed to SIVmac251 had not only un-spliced, viral genomic RNA but multi-

spliced viral transcripts that would only be present in LEC total RNAs if some sort of de novo 

viral replication was occurring.  The presence of rev transcripts indicated that virus is not only 
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bound to the surface of LECs but internalized, possibly through some receptor I have described, 

and replicating (Figure 13) to either productive replication or some downstream abortive stage.  

Although HIV-1 PCR products obtained with LEC total RNAs as templates has not been 

sequenced yet, viral Gag protein was found in day 7 supernatant samples that were exposed to 

virus for 3 da ys and then washed, indicating that these cultures were producing newly 

synthesized viral protein (Figure 14).  Finally, preliminary findings indicate that LEC were 

interacting with eGFP tagged virus, yet more experiments are required to fully understand this 

(Figure 15).   

 

 

 

Figure 16: Model LEC and potential roles during infection 
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The fact that LECs express a wide variety of entry factors could have major implications 

in the transmission of SIV and HIV-1.  It is largely acknowledged R5 tropic viral variants are 

responsible for the vast majority of transmission events and that co-receptor switching occurs at 

a later time point of infection.  Viral isolates from newly infected patients are R5 predominate 

(118).  High mutation rates lead to variances in viral envelope, allowing for co-receptor 

ambiguity (117).  LECs express CXCR4 as well as other entry receptors and are present at areas 

where transmission events occur.  LECs could potentially act as a v iral sieve, removing X4-

tropic viral variants from the environment while allowing R5-tropic variants to pass (Figure 16) 

whereupon they can infect other target cells (i.e., T-cells and DCs).  This could have some effect 

on the viral heterogeneity seen in newly infected patients.  If LECs are internalizing virus, they 

are potentially able to inhibit replication, as antiviral factors that are able to inhibit replication in 

a number of different ways are being expressed by LECs.      

 

In summary, these results have shown that LECs constitutively express viral entry 

receptors and restriction factors.  LECs have proved to be more than a subset of endothelial cells 

that line the inner walls of vessels, but rather an active player in the surveillance of peripheral 

tissues for infection.  A complex relationship between APCs, peripheral migrating lymphocytes, 

and the afferent lymphatics (specifically LECs) is likely occurring.  The preliminary data 

indicating active engagement and internalization of virus provides exciting possibilities.  If LECs 

are actively engaging and internalizing virus in vitro, they could potentially be doing the same 

thing in vivo, serving as a v iral sieve, taking up cell free virus as it migrates to LNs.  M ore 

intriguingly, LECs could potentially act as a viral reservoir or auxiliary site of replication.  This 
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possibility in itself makes researching the lymphatic endothelium during healthy and disease 

states very important.     
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6.0  FUTURE DIRECTIONS/ PUBLIC HEALTH RELAVENCE 

To date, LECs have been characterized for the expression of markers of LEC lineage, antiviral 

restriction factors, and alternate receptors for HIV-1 on three human LEC populations.  Spliced 

and un-spliced viral transcripts could be retrieved from LEC populations that had been exposed 

to SIVmac251, suggesting de novo transcription was occurring.  Cell populations have also been 

exposed to a number of microbes and molecules able to visualize the endocytic and phagocytic 

nature of LECs.  The work to date has effectively characterized LECs in a manner that highlights 

their ability to actively survey the environment as well as their capability of effectively engaging 

foreign microbes through a multitude of different receptors and mechanisms.  The following 

experiments could be conducted to further describe LECs’ roles in immune responses. 

6.1 PROTEIN ANALYSIS OF LECS 

To elucidate further the expression of the restriction and entry factors previously described on 

LECs, flow cytometry analysis of hTERT-HDLEC, HMVEC-DLy, and HMVEC-LLy could be 

conducted in coordination with previous immunofluorescent staining.  Flow cytometry would be 

able to not only detect positive cells within the population, but could establish if expression is 

homogeneous throughout the population.  Flow cytometry analysis would also be able to 

determine differences in expression after treatment with stimulating molecules, such as poly I:C, 
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to determine if protein expression changes in response to the environment.  Whole cell lysate of 

LEC populations could be used to support the data already collected. 

6.2 VIRUS EXPOSURE  

Evidence from experiments conducted thus far indicates that not only are LEC populations able 

to bind and internalize virus in vitro, they are also permissive for SIV de novo transcription of 

multi-spliced viral transcripts.  Data from exposure to HIV variants has been less conclusive in 

defining the relationship between virus and LEC.  Future experiments could focus on 

determining exactly to what extent virus can interact with LEC populations in vitro.  In 

experiments where LEC populations were exposed to eGFP tagged virus, preliminary results 

were obtained.  Exposure to a luciferase lentiviral construct would prove valuable as presence of 

signal from this viral construct not only indicates entry, but productive reverse transcription and 

integration leading to replication.  LTR-circle and Alu-PCR could be conducted to determine if 

virus is actively integrating into the host genome, as well as to establish to what endpoint 

infection of LEC cultures is occurring.  

6.3 CONFOCAL MICROSCOPY 

Although immunofluorescent staining done to date has provided evidence regarding expression 

of certain targets of interest, confocal microscopy would be able to better  illustrate the cellular 

distribution of these targets.  Confocal microscopy would also allow for co-localization 
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experiments to be conducted thus determining what factors expressed by LECs does virus 

interact with, possibly identifying a pathway not previously described in LEC populations.  

Finally, confocal images of the endocytic and phagocytic reactions to pHrodo bioparticles would 

produce images of a section of the cell, better identifying particular vesicles instead of the 

cumulative fluorescent signal of the cell seen in traditional immunofluorescent images.  

6.4 PUBLIC HEALTH RELAVENCE 

It is widely known that HIV-1 infected individuals often have a replication-competent reservoir 

of virus in resting, memory CD4 T-cells (65), even when plasma viral levels are undetectable. In 

times of immunosuppression or non-adherence to drug regimens, however, virus from latent 

reservoirs can induce productive replication leading to increased viremia and possible 

complications due to infection (i.e. drug resistant strains, opportunistic infections).  It has also 

been established that there are alternative entry mechanisms that HIV-1 can use to gain entry to a 

wide variety of cell populations other than the typical CD4+ T-cell populations.  To date, 

research has not been conducted, however, on the specific role LECs could play in both topics.  

LECs express many of the factors previously described as used by HIV to gain entry, and are 

present at portals of transmission where virus contact likely occurs.   If there is some low level 

replication of virus in LECs as described, then LECs could potentially be another target for 

infection.  Either way, there is evidence now that LECs are actively expressing many factors that 

are important in many innate immune responses to a wide array of foreign pathogens.  T he 

presence of LECs proximal to mucosal portals of transmission means that the potential for LECs 

to come directly into contact with virus either presented by APCs or cell free virus is high.  It is 
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therefore biologically relevant and important in a therapeutic context to better understand the 

possible interactions and outcomes between virus and LECs. 
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7.0  CONCLUDING REMARKS 

June 5th, 2011 marked the 30th anniversary of the first publication from the CDC regarding the 

AIDS epidemic.  G reat strides have been taken to transform the disease from a devastating 

illness, which took seemingly healthy young adults and ravaged their immune system, to a now 

chronic and manageable disease.  The discovery of different classes of antiretroviral drugs, and 

the ability of HAART to control viral replication has allowed many infected patients to live 

active lives with very little disturbance.  This has led some to believe that the battle is won.  I 

however believe there is much still to be accomplished.  The lack of a prophylactic vaccine that 

can effectively protect the population is still out of reach.  The access to healthcare disparities 

between races and socioeconomic classes is still a major problem even in developed countries.     

The spread of new cases may have plateaued in developed countries but more people are living 

with AIDS now than ever before.  Other complications from long-term HAART are now being 

observed as patients are starting to reach older ages that they previously have not survived to. 

Research on the lymphatic system’s role in immune surveillance and its ability to effectively 

traffic lymphocytes to sites of infection has been extensive.  The ability of LECs to contribute to 

such a response however has not.  Recent evidence has suggested that for a therapeutic vaccine 

to be efficacious, it will need to be able to protect every cell at the portal of entry from infection, 

and be able to sustain this ability over time.  For this to occur, I believe that the role of the 
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lymphatic system, in particularly LECs, must further be described and understood if we ever 

hope to develop efficacious vaccines. 
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