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BOUNDED INFLUENCE APPROACHES TO CONSTRAINED MIXED

VECTOR AUTOREGRESSIVE MODELS

Mark Amper Gamalo, PhD

University of Pittsburgh, 2006

The proliferation of many clinical studies obtaining multiple biophysical signals from several

individuals repeatedly in time is increasingly recognized, a recognition generating growth in

statistical models that analyze cross-sectional time series data. In general, these statistical

models try to answer two questions: (i) intra-individual dynamics of the response and its

relation to some covariates; and, (ii) how this dynamics can be aggregated consistently in

a group. In response to the first question, we propose a covariate-adjusted constrained

Vector Autoregressive model, a technique similar to the the STARMAX model (Stoffer,

JASA 81, 762-772), to describe serial dependence of observations. In this way, the number

of parameters to be estimated is kept minimal while offering flexibility for the model to

explore higher order dependence. In response to (ii), we use mixed effects analysis that

accommodates modelling of heterogeneity among cross-sections arising from covariate effects

that vary from one cross-section to another.

Although estimation of the model can proceed using standard maximum likelihood tech-

niques, we believed it is advantageous to use bounded influence procedures in the modelling

(such as choosing constraints) and parameter estimation so that the effects of outliers can

be controlled. In particular, we use M-estimation with a redescending bounding function

because its influence function is always bounded. Furthermore, assuming consistency, this

influence function is useful to obtain the limiting distribution of the estimates. However, this

distribution may not necessarily yield accurate inference in the presence of contamination as

the actual asymptotic distribution might have wider tails. This led us to investigate boot-
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strap approximation techniques. A sampling scheme based on IID innovations is modified

to accommodate the cross-sectional structure of the data. Then the M-estimation is applied

to each bootstrap sample naively to obtain the asymptotic distribution of the estimates.

We apply these strategies to the extracted BOLD activation from several regions of the

brain from a group of individuals to describe joint dynamic behavior between these locations.

We used simulated data with both innovation and additive outliers to test whether the

estimation procedure is accurate despite contamination.
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1.0 INTRODUCTION

Economic, financial, environmental, and recently, biophysical data are usually characterized

by multiple responses collected at roughly equally spaced time intervals. Such time series

observations can come from a single entity or a finite number of individuals that are nested

within naturally occurring groups. Analyzing and modelling the series jointly is important

not only to improve accuracy of forecasts but also to understand dynamic relationship among

them. For example, in studying interaction among distributed neural systems in the brain

one may look at measurements of blood oxygenation level dependent (BOLD) signal from

several brain regions to see if they are contemporaneously related, if one location leads the

others or if there is any feedback relationship among them.

In the past 35 years, since the work of Box and Jenkins [17], the class of Vector Autore-

gressive (VAR) models of the form

zt = α +
n∑

h=1

Πhzt−h + εt, (1.1)

where zt = (z1t, . . . , zpt) is the p-dimensional vector of observations at time t, have been

investigated extensively and were found useful in representing dynamic serially dependent

relationship of time series data. Since then numerous methods and considerations relating

them to actual data have been discussed in literature, e.g. accounting for influence of ex-

ogenous variables known or suspected to be related to the series of interest using vector

ARMAX model [42], removing replication bias in repeated measurements of autoregressions

[3], incorporating random effects on coefficients of cross-sectional time series [77], jointly

modelling spatio-temporal structure of spatial time series [75, 93].

In this chapter, the problem of modelling interaction of distributed neural systems in

the brain and its relation to vector autoregressive models will be introduced. This will
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serve as the background from which a general modelling strategy will be developed. We will

also present some characteristics of the data set that influence our modelling strategy and

estimation.

1.1 MODELLING INTERACTION OF DISTRIBUTED NEURAL

SYSTEMS IN THE BRAIN

Historically, functional magnetic resonance imaging (fMRI) was just concerned with localiza-

tion of neurological function to the neuroanatomy, i.e., mapping where in the brain neural

computations mediate a cognitive process of interest. This is accomplished through lin-

ear time-invariant models relating the time course of an experimentally controlled stimulus

with reports of neural activity detected as blood oxygen level dependent (BOLD) signal

[74, 7, 8, 57] for each voxel or three dimensional pixel in the brain. These models may be

able to determine focal activations but are incapable of determining causal mechanisms trans-

lating local neural dynamics into BOLD signals, i.e., how functionally specialized neuronal

systems influence another local neuronal response.

Integration as a principle of organization for distributed neural systems in the brain is

best understood in terms of effective connectivity. Effective connectivity is a dynamic and

context-dependent causal model that replicates observed timing relationships between the

recorded neurons [1]. This definition implies that such analysis is based on hypothesis driven

statistical models that restricts inference to networks comprising a number of preselected

regions. Early examples of these statistical procedures are linear model variants such as

structural equation modelling [71, 19] that makes a priori causal semantics between regions

that would minimize the discrepancy between the observed and implied correlations. A major

criticism in regression models, however, is that they only quantify instantaneous correlations

and ignore any temporal information in the measurement of directed influence.

VAR models fit into this scheme of incorporating temporal effects in modelling interre-

gional dependencies in the data in the sense that the nature of interaction is characterized

in terms of the historical influence one variable has on another. It must be noted, however,
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that these models are really not concerned with causality of the regions of interest per se;

rather, they address the temporal aspects of causality by explaining regional BOLD sig-

nals at time zt as a linear combination of n previous vector values, whose contributions are

weighted by the parameter matrices Πh, plus an error term εt as given by (1.1). Information

regarding directed influence one region has on another is inferred only through their mutual

predictability from the past data points.

Although the VAR models has been an established statistical technique, its use in fMRI

has only been suggested quite recently with the work of Harrison et al. [43]. Their approach

augmented the usual p-dimensional vector series with a series obtained by coupling certain

components of the vector to represent modulatory effects on connections and used Bayesian

schemes to estimate the parameters. Shortly after, deviations from using explicit models of

interaction were investigated with the application of classical VAR model on the whole brain.

This methodology was presented by Valdes-Sosa [100] with the objective of obtaining whole-

brain connectivity maps that also accounts for the underlying continuous spatial manifold of

the brain. The same goal but using complementary VAR approach in the context of Granger

causality [37, 38] was pursued, just recently, by Roebroeck et al. [80]. Their technique calls

for the evaluation of linear dependence [34] among all voxel pairs throughout the whole brain

image to determine the existence and direction of influence.

The vector autoregressive model may serve well the purpose of quantifying directed

influence but it can still be further improved to obtain better results and render accurate

conclusions. One such improvement is the evaluation of the context-dependent network

of influences in the brain over a sample of individuals to test the hypothesis with greater

sensitivity and to determine if the underlying connectivity generalizes to a certain population.

Most of the autoregressive techniques mentioned above do this by analyzing data from each

subject separately. This approach, however, can lead to inconsistent maps [35] as each

individual may adopt varying cognitive strategies or the brain adopts degenerative solutions

to perform the same task and may be reflected as changes in the network. On the other hand,

pooling observations together as if they come from one subject ignores variation between

individuals and, although it may increase sensitivity, a pronounced variation from a single

subject can have a dramatic effect on the network. This raises an interesting question of how
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to determine consistent network influences while still allowing certain individual variation

[72].

Another area of improvement, as suggested by Valdez-Sosa [100], relies on the fact that

neuroimaging data is a spatio-temporal data, i.e., it is a vector valued time series sampled

over space. Hence, it must be modelled jointly in space and time. However, the additional di-

mension complicates the modelling of an already highly parameterized model. The challenge

then is how to model a network that accommodates the spatial structure while maintaining

model parsimony. Moreover, it is desired that this procedure adhere to the autoregressive

principle of the mutual predictability of the current value upon its past.

1.2 CHARACTERIZING THE DATASET: ITS INFLUENCE IN

MODELING STRATEGY

In this research, we will use data from an fMRI study investigating cortical and subcortical

brain regions that are thought to initiate and represent blood pressure reactions to behav-

ioral stressors (see [33] for details). Three of these cortical regions include the anterior and

perigenual cingulate and the insula which will serve as a testbed for the technique that will

be developed. In each of these regions, representative BOLD activity are extracted from the

fMRI scans of the 19 subjects who participated in the experiment. Details of the data set

are described in Chapter 4.

Inspecting the three time series plots from each of the subjects reveal some characteristics

which are worth noting. While figure 1 exhibits the BOLD activity time course extracted

from the three regions of interest for subjects H07, H09, and H11, most of the time series

courses often have spike-like transients at any particular time point or range of time points.

These spikes are actually effects of magnetic gradient changes during scan acquisition that,

from a statistical point of view, are simply outliers. If not accounted for in a statistical model,

these outliers can have deleterious effects such as model misspecification, biased parameter

estimates and poor forecasts. However, the detection of outliers and the removal of its effects

in a multivariate process is a difficult task [96]. For example, an outlier in one component
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Figure 1: BOLD activity extracted from three regions of interest for subjects H07, H09 and

H11.

maybe caused by an outlier in other components so that a moderate size outlier affecting all

the others maybe unnoticed if univariate techniques are used.

Another characteristic that should be manifested in each of the time series courses is the

intervening effect of the stimulus on the BOLD activity in each region being studied. In

fact, it has been reported that greater fMRI BOLD response amplitudes correlate with the

stress or stimulus induced increase in mean arterial pressure [33]. Although this effect might

be noticeable in some subjects, for example H11 in figure 1 where the curve superimposed

along the diagonal plots is the amplitude modulated hypothesized hemodynamic response,

others apparently do not exhibit it at all. One reason might be due to the varying strategies

the subject employs to complete the task so that activity might be subdued in these regions

because it is being mediated by other regions elsewhere. Another reason is the diverging

levels of noise to the MR signal that contributes to the variance of the data. However, if one

looks at the spectral envelope [94], which is frequency based principal components technique

that determines common cyclic component present among a set of time series, the stimulus

5



0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency

am
pli

tud
e

left insula

0 0.2 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

frequency

am
pli

tud
e

anterior cingulate

0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

frequency

am
pli

tud
e

perigenual cingulate

Figure 2: Spectral envelope of the BOLD activity time course at each region of interest.

is actually reflected as the predominant cyclic component in all locations across individuals

(see figure 2).

The above observations influence the modelling and model estimation procedure that will

be adopted. In particular, a random effect may be appropriate when including the stimulus

as an explanatory variable to the variation in the time series BOLD activity. Moreover, the

estimation procedure employed must take into account how to impair effects of aberrant

observations to obtain accurate parameter estimates.

1.3 TOWARD A GENERAL STATISTICAL MODEL AND ESTIMATION

TECHNIQUE

Ultimately, this research aims to develop a general statistical model which can be applied not

only for modelling joint dynamic behavior of brain subsystems but also to problems in various

disciplines that have a similar challenge. In addition, it is desired that this model allows one
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to answer the question of whether significant changes in temporal dynamics can be attributed

to differences in group membership, i.e., the model permits comparison of dynamic behavior

between groups. These goals can be pursued along the lines of the VAR models which will

be modified appropriately to accommodate the following modelling considerations:

1. maintain a manageable number of parameters for flexibility in model specification;

2. incorporate approximate spatial description or hypothesis driven weights among time

series components to quantify known or unknown marginal spatial or experimental in-

teraction among them;

3. include random effect for covariates that may have unit-specific effect to accommodate

heterogeneity among units arising from covariate effects that vary from one unit to an-

other;

4. estimate the parameters using procedure that is resistant to the effects of outlying ob-

servations and departures from prescribed distributions.

One way of reducing the number of parameters is to create a matrix constraint to the

autoregressive parameters that carry some information, a method suggested by Stoffer for

space-time ARMAX models [93]. In fact, this matrix can be chosen to accommodate spatial

description of the component series, constructed through spatial ordering [11, 75] or approx-

imated by geostatistical methods [70, 50, 29]. As a result, this strategy gives both a spatial

and temporal structure to the model while reducing the parameters to be estimated.

In general, the model being considered is an extension of (1.1) and is of the form

zit = α +
n∑

h=1

DhΠ
diag
h zi,t−h + Γiuit + εt, (1.2)

where Γi, which is randomly selected from a certain distribution, weights the covariate uit and

is associated specifically to unit i, and D is a matrix constraint. This model is essentially a

replicated version of this constrained-VAR, adjusted by exogenous covariates whose sampled

effect is specific to a particular replicate. Details of this model will be elaborated in the next

chapter.

Replications in autoregressive models have been widely used in many panel and longi-

tudinal data analysis when cross-sections or repeated measurements of a similar process are

7



observed and a variety of techniques have also been suggested to analyze them. For exam-

ple, estimation using least squares technique, in simple autoregressions, can be seen in the

work of Anderson [3] who also provided asymptotic frameworks for inference. Goodrich and

Caines [36] used maximum likelihood (ML) estimation to obtain the parameters of an equiv-

alent model, parameterized in state-space, which includes some input process. Although the

least squares and ML estimates are consistent, asymptotically normal, and efficient under

Gaussianity, they can be seriously biased under contamination. It is advantageous to use

robust methods where bias can be bounded.

Robust estimation, particularly in vector time series, have not received much attention.

Most of the treatises that can be found in literature concentrate on the univariate case such

as M and GM-estimates (see for e.g. [31, 67, 69]) and residual autocovariance (RA) estimates

[23]. To date, the only strategies aimed at robustly estimating VAR or VARMA (MA for

moving average) is by bounding residual autocovariance (RA) components pairwise [61] or

by weighting multivariate residuals by a function of their distance [9] while all other exoge-

nous and location parameters that may be included in the model are estimated separately.

This strategy, however, may not be desirable with the inclusion of a random effect in the

exogenous variable. Some useful techniques are actually just based on robustifying the likeli-

hood function itself by bounding the scaled residual by a redescending function in a manner

similar to robustifying linear mixed models [47, 48, 78, 101]. In this way, the procedure

jointly estimates the autoregressive, location, and exogenous parameters. However, usually

the bounding function is applied componentwise to the stacked observations to bound the

effect of an observation. In multivariate data, this may not necessarily produce nice, affine

equivariant, estimates.

The proposed robust estimation technique, discussed in Chapter 2, is a multivariate

extension of redescending M-estimates for univariate AR process (see [31] for a discussion)

and is similar to the redescending M-estimates for location and scatter [51] but applied to

dependent data. In this method, the redescending function is directly applied to the squared

Mahalanobis distance of each row of the design matrix instead of scaling the residuals by

the Cholesky factor of the compound covariance matrix. Simplistically, the average of these

bounded terms is then minimized to obtain the fixed parameters of the model. Prediction
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of random effects through empirical Bayes’ method are also modified since these parameters

are still susceptible to effects of outliers even if the fixed parameters have been robustly

estimated.

The rest of the chapters are organized as follows: In Chapter 3, the asymptotic behavior

of the fixed effects are investigated and the bias caused by the contamination will be assessed

through the influence function. Assuming consistency of the estimator, we obtain an expres-

sion for this influence function and determine whether it is bounded pointwise. Then we can

use this expression to obtain the limiting distribution of the estimates. Since the presence

of contamination invalidates accurate inference through the asymptotic variance, Chapter 4

discusses the naive bootstrap approximation as an alternative tool for assessing significance

of model parameters. Although this is computationally intensive, it has been shown that the

true sampling distribution of the estimator, even for a simple AR(1) model, could be heavily

skewed for moderate sample sizes so that a naive bootstrap approximation may be a better

alternative. Identification of the final model order will also be obtained through a modified

version of the Akaike Information Criterion (AIC) for robust autoregressions. Moreover, the

asymptotic validity of the bootstrap estimates will be established. Chapter 5 shows some

simulation results to test the accuracy of the estimation procedure in the presence of two

common types of outliers: innovation and additive outliers. A positive result gives us as-

surance of the reliability of the procedure when applied to the neuroimaging data. Finally,

Chapter 6 summarizes the results obtained from the previous chapters. Some extensions and

possible research directions are also pointed out.
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2.0 THE CONSTRAINED MIXED-VARX MODEL

In this chapter, we focus on the specification and estimation of the constrained version

of the VARX model with mixed-effects. A special interest is geared towards modelling

and estimating the parameters of in a manner that is resistant to the effects of atypical

observations. In particular, we develop robust techniques for creating constraint matrix,

estimating parameters, and predicting individual random effects by imposing weights on the

observations that controls the effect of the observation on the value achieved by the estimate.

2.1 MODEL SPECIFICATION

Let the data on each individual or cross-section be denoted by a p × T matrix yi = {yijk},
where yijk is the observation on the kth response variable at the jth time or occasion for

the ith cross-section; where i = 1, . . . , N , j = 1, . . . , T , and k = 1, . . . , p. Influencing the

response for each of the N cross-sections is a sequence of inputs xj that varies across time and

an r×1 vector ui = {uil}, l = 1, . . . , r, of non-time-varying exogenous covariates. The inputs

xj may or may not vary for each cross-section and the observation uil is the measurement of

lth non-time varying covariate for the ith cross-section. The association of these covariates

with each cross-section may give insight about the strength of the relation between them,

thereby providing useful information in predicting future values of the response given their

values. For instance, in the MR study mentioned previously, a subject’s performance rate

in a task may have implications in neurologic strategies adopted to perform the task. In the

same way, other clinical and demographic factors (eg. age, affect score etc.) may also have

an effect in the response.
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Assuming that the set of multivariate sequences of observations come from the same

covariate adjusted autoregressive vector-valued process, we consider that the model of the

current state on column j of yi, i.e., yij = [yij1, . . . , yijp]
>, be described in terms of its previ-

ous states yi,j−1, . . . ,yi,j−n, the time-varying inputs xj, . . . , xj−m and the non-time-varying

covariates ui = [ui1, . . . , uir]
>. Furthermore, we also consider constraining the autoregressive

parameters by some known weight matrix as well as introducing subject specific input effect

so that the desired model has the following parametrization:

yij = α +
n∑

h=1

DhΠ
diag
h yi,j−h +

m∑

k=0

Γikxj−k + Υui + εij (2.1)

for i = 1, . . . , N and j = n+1, . . . , T and where α is a p×1 vector which is related to the mean

of yij, Πdiag
h (h = 1, . . . , n) is the p × p diagonally constrained transition matrix expressing

the dependence of the current response and the response at lag h, Dh is a p × p matrix of

known constraint matrix that expresses the relationship between different dimensions at lag

h, Γik (k = 0, . . . , m) is a p × q matrix of random individual effects such that, marginally,

vec(Γik) ∼ N(Γ̃ik, ΣΓik
), Υ is a p×r matrix of regression coefficients, and {εij} is a sequence of

random vectors such that εij is independent of yi,j−1, . . . with E(εij) = 0 and E(εijε
>
ij) = Σε.

In addition, we assume that εij is independent both of the input xj and its effect on an

individual Γ̃i. For the moment we take the general case that the input covariate, which

is either stochastic or non-stochastic, may have both momentary and building-up effect of

activity in each location or component. If it is stochastic, it is assumed that the observed

xij, for all i = 1, . . . , N , is generated by some general linear process, xij =
∑∞

h1=0 Aihεi,j−h,

where
∑∞

h=0 ||Aih|| < ∞, and that εij and εij are mutually independent for each i and every

j = 1, . . . , T . This assumption ensures that the input process is non-explosive. Furthermore,

we assume that yij is stationary for each i so that the characteristic roots of

| − λnI +
n∑

j=1

λn−jΠj| = 0 (2.2)

are less than 1 in absolute value.

The model in (2.1) can be extended to permit inquiry whether the set of time series,

despite belonging to different groups, is homogeneous. In other words, whether they have
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the same vector autoregressive coefficients. In this case, groups specific parameters need

to be included to accommodate group specific effect. Then (2.1) can be extended in the

following manner:

yij = α + I{i ∈ g1}α1 +
n∑

h=1

Dh[Π
diag
h + I{i ∈ g1}Πdiag

h ]yi,j−h

+
m∑

k=0

Γkxj−k + Υui + εij (2.3)

where I{i ∈ g1} is an indicator function which has a value of 1 if the argument is true and

0 if i ∈ g2. This specification translates inference of group difference to testing whether the

group specific term significantly deviates from zero.

The specification of the matrix of constraints can be done in ways that fit the experi-

menters belief. In fact, this can be exploited to include known variation or physical character-

istics coupling the components of the vector time series. In spatial time series, for example,

this constraint usually incorporates spatial information that describes the underlying phe-

nomenon relating the different time series locations. The matrix D can be viewed as the

expected weighting measure of inverse “distance” between neighboring locations or compo-

nents in the target population. This specification assumes that, in every subject, neighboring

locations that are close to each other exert the most influence. For instance, the distance

can be the order or contiguity that describes locations which is common in regularly spaced

systems [11, 75], or it can also be a function of the Euclidean distance between locations [25]

in irregularly spaced systems. In particular, this “distance” measure can be the variation of

the observed values between locations such as the sample variogram [70, 50, 29] given by

2Vl(δij) = var[yi,t+h − yjt] (2.4)

and its sample estimator

2V̂ (δ) =
1

Nl(δ)

Nl(δ)∑

k=1

(yi,k+h − yi+δ,k)
2 (2.5)

where (yi,t+l, yi+δ,t) is a pair of observations that are l time units apart and δ distance apart,

and N(δ) is the number of such pairs. Notice, however, that since distance can never be
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negative, “distance” based constraint matrix always describe concordance among spatial

locations. From experience, this results in predicted values having larger magnitude than

the observed values themselves.

A natural alternative to the constraint matrix regardless of any available spatial de-

scription is the expected population cross-correlation matrix, ρ(h) = {ρij}, whose diagonal

elements are fixed to 1. If this is not known, it can be estimated using the sample estimator

ρ̂ij(h) = γ̂ij(h)/{γ̂ii(0)γ̂jj(0)}1/2 where γ̂ij(h) = T−1
∑T−h

k=1 (yik− ȳi)(yj,k+h− ȳj) and ȳν is the

sample mean of the νth component series. In the stationary case, ρ(h) is actually related

to the variogram by the relation Vl(δij) = γij(0) − γij(h), but the former can allow inverse

co-variation between component series. Note that the problem with using the sample auto-

correlation, inherent to all estimators based on unbounded functions of data, is susceptibility

to the effects of atypical observations. From the expression of γ̂ij(h) it is apparent that any

outlier can inflate or deflate the average artificially. A work around would be to modify the

sample autocorrelation so that the effect of large observations can be bounded. To this end,

let ψ be an odd and bounded continuous function and define the weight function

w(x) =
ψ(x)

x
(2.6)

so that w is a non-negative decreasing weight function defined on [0,∞) with w(0) = 1,

w(∞) = 0. Some commonly used ψ functions are Huber’s monotone ψ-function ψH,k(x) =

max{min(t, k)−k} and Tukey’s redescending bisquare function ψB,k(x) = x(1−(x/k)2)2, |x| ≤
k, ψB,k(x) = 0, |x| > k. Then, replace the sample mean adjusted observations ζij = yij − ȳi

by ζ̃ij defined as

ζ̃ij = ζijw
(
[ζ>ijζij]

1
2

)
(2.7)

The idea behind (2.6) is to reduce the influence of high leverage observations in the sense

that observations which are very far from the mean are down-weighted.

To see what is the effect of the constraint on the autoregressive model, we consider an ex-

pansion of a specific model by working out the matrix operations at a particular component.

For a second order (n = 2) Mixed-VARX model that depends on a deterministic stimulus
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covariate and a non-time varying covariate, an expansion of (2.3) at the lth component,

1 ≤ l ≤ p, yields

yijl = αl + αl(1) +

p∑

k1=1

{d1,lk1 [π1k1 + π1k1(1)]yi,j−1,k1 + d2,lk1 [π2k1 + π2k1(g)]yi,j−2,k1}

+ γilxj +
r∑

k2=1

τlk2uik2 + εijl. (2.8)

It is clear that the model is essentially a constrained regression of the present state at

component l, yijl, on the past values yi,j−1,1, . . . , yi,j−1,p, yi,j−2,1, . . . , yi,j−2,p weighted by dh,lk1

from component l to k at lag h, 1 ≤ h ≤ n, 1 ≤ l, k ≤ p and on the covariates xj, uik2 ,

1 ≤ k2 ≤ r. Consequently, it gives a similar interpretation as the classical covariate adjusted

VAR model that the current value at a particular component can be explained jointly by the

past values of itself, by the modulated values of the other components, and by the exogenous

covariates.

Henceforth, we call model (2.1) and its extension (2.3) as the constrained Mixed VARX

models where the “X” is for the eXogenous covariates present. The constraining approach

offers a way of generalizing both autoregressive time series models and the simultaneous

specified physical properties the observations purported to have. It also significantly reduces

the number of parameters to be estimated from O(p2) to O(p).

For ease of notation, we can rewrite (2.1) more compactly using the linear mixed model

notation given by

yij = ΠDzij + Γiwij + εij (2.9)

for i = 1, . . . , N and j = n+1, . . . , T and where zij = [1,y>i,j−1, . . . ,y
>
i,j−n,u

>
i ]>, wj = [xj, . . . ,

xj−m]> , ΠD is the p× (pn + r) matrix of parameters α,D1Π
diag
1 , . . . , DnΠdiag

n , Υ, and Γi is

the p×m matrix of random effects Γi1, . . . , Γim. Since Γi = Γ̃+Γ∗i = [Γ̃1 +Γ∗i , . . . , Γ̃n +Γ∗in],

augment ΠD into ΠD∗ = [α,D1Π
diag
1 , . . . ,DnΠdiag

n , Γ̃, Υ] and z∗ij = [1,y>i,j−1, . . . ,y
>
i,j−n, xj, . . . ,

x>j−m,u>i ]> to accommodate the mean Γ̃ so that we have

yij = ΠD∗z∗ij + Γ∗i wj + εij (2.10)

From hereafter, we will just concentrate our attention on (2.1) since (2.3) can always be

written in the form similar to (2.1) by augmenting zij appropriately when yij ∈ g1. Then

14



using the fact that vec(ABC) = (C> ⊗A)vec(B) for any conformable matrices A, B, and

C, (2.10) can be written into the “workable” linear form

yij = (z∗>ij ⊗ Ip)vec(ΠD∗) + (w>
j ⊗ Ip)vec(Γ∗i ) + εij (2.11)

where the vec notation concatenates the columns of ΠD∗ and ⊗ is the Kronecker product.

From this, we translate some of the assumptions made earlier in this chapter into the mul-

tivariate regression setting, particularly

1. vec(Γ∗i ) are independent pm× 1 vector with zero mean and E[vec(Γ∗i )vec>(Γ∗i )] = ΣΓ;

2. εij are p × 1 random variables which is independent both across time and cross-section

with mean zero and E[εijε
>
ij] = Σε;

3. εij and wj are independent;

4. εij and vec(Γ∗i ) are uncorrelated, i.e., E[εijvec>(Γ∗i )] = 0 for all i = 1, . . . , N and j =

n + 1, . . . , T .

Then, our goal is to estimate Π, Σε, and ΣΓ, predict the individual random effects Γ∗i for

each i and make inferences about the significance of these parameters.

2.2 REDESCENDING M-ESTIMATION

In the sequel, let yk
ij = (yij, . . . ,yik), k ≤ j and i = 1, . . . , N denote the finite sets of

contiguous yij, where yij given in (2.1) or (2.3). Since the observations are made for j =

1, . . . , T , the model maybe specified by the marginal distribution of y1
in and the innovations

ri,n+1, . . . , riT where rij = yij − (z∗>ij ⊗ Ip)vec(ΠD∗). For simplicity, we assume that the

elements in the set y1
in be independent and identically distributed N(0,G). From (2.11) it

is apparent that E[yij|z∗ij] = (z∗>ij ⊗ Ip)vec(ΠD∗) so that E[rij|z∗ij] = 0 and the covariance

matrix Ωj of rij is given by

Ωj = (w>
j ⊗ Ip)ΣΓ(wj ⊗ Ip) + Σε. (2.12)

Let Θ be the set of all nonzero elements of vec(Π∗, Σε, ΣΓ). Then denote by fNT (y1
1T ,

. . . ,y1
NT ; Θ,G) the joint likelihood of y1

1T , . . . ,y1
NT and let the innovations be normally
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distributed. By the Markovian property of an autoregressive process, we obtain for all j > n

that

fNT (y1
1T , . . . ,y1

NT ; Θ,G) = fNn(y1
1n, . . . ,y

1
Nn; Θ,G)

×
N∏

i=1

T∏
j=n+1

c exp{−1

2
(r>ijΩ

−1
j rij)}|Ωj|− 1

2 . (2.13)

From this, we have the following:

λNT (y1
1T , . . . ,y1

NT ; Θ,G) =
∂

∂Θ
log fNT (y1

1T , . . . ,y1
NT ; Θ,G) (2.14)

κ(yj
1,j+n, . . . ,yj

N,j+n; Θ) =
∂

∂Θ
c exp{−1

2
(r>ijΩ

−1
j rij)}|Ωj|− 1

2 (2.15)

so that from (2.14) we have

λNT (y1
1T , . . . ,y1

NT ; Θ,G) = λNn(y1
1n, . . . ,y1

Nn; Θ,G) +
N∑

i=1

T−n∑
j=1

κ(yj
1,j+n, . . . ,yj

N,j+n; Θ).

(2.16)

Condional on y1
1n, . . . , y1

Nn, the maximum likelihood estimator (MLE) for Θ based on

yn+1
1,T , . . . ,yn+1

N,T is the solution to the following equations:

N∑
i=1

T−n∑
j=1

κ(yj
1,j+n, . . . ,yj

N,j+n; Θ̂) = 0. (2.17)

It is quite well known that the maximum likelihood estimates are sensitive to the effects

of outliers and other atypical observations. This can be directly inferred by taking the

logarithm of (2.13) and by noting that it has a component which is the sum of squared

Mahalanobis distances. If there are some outliers, some of the terms in the summation will

be large and may have considerable influence on the likelihood. Moreover, in practice, we

can never be sure that the εij are multivariate normal. So we are usually in the position

of using a method which assumes normality when normality does not necessarily hold. In

this circumstance, the estimand is no longer the true value of the parameters but the true

value plus an unknown bias that for classical or non-robust methods maybe infinite. In fact,

non-robust methods can be extremely inefficient when the model distribution does not hold

[92]. It is preferable to use a method for which the potential bias is always bounded, that
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is both reasonably efficient when normality holds and more efficient than methods derived

under normality when normality does not hold [101].

To overcome this problem we bound the squared distances by a function that grows

more slowly in the sense that it has a bounded derivative. In this way, the influence of

outlying observations can be muted; which is the basic idea behind robust estimation. In

the following, we define the redescending M-estimators for the constrained Mixed-VARX

model:

Definition 1. Let YNT = {(y∗11,u1, x1), . . . , (y
∗
NT ,uNT , xT )} be a data set in Rp+r+1 coming

from N subjects at T time points, and let SNT denote the set of symmetric positive definite

pairs of matrices which can be written jointly as Σ = diag{Σε, ΣΓ}. The redescending M-

estimators for the constrained Mixed-VARX model is the pair (Π̂(YNT ), Σ̂(YNT )) which

minimizes

N∑
i=1

T−n∑
j=1

ξ log |Ωj|+
N∑

i=1

T−n∑
j=1

ρ(r>ijΩ
−1
j rij) (2.18)

among all (Π(Y), Σ(Y)) ∈ Θ = Rs × SNT .

The constant ξ is an adjustment so that the Ω̂j will be a consistent estimator for Ωj. Its

value is usually chosen to be E(dψ(d)), where ψ(d) = ρ′(d) and the expectation is carried

out from the distribution of d. Along with this, we also have the following assumptions for

the ρ-function:

(A1) ρ is symmetric, twice continuously differentiable and ρ(0) = 0.

(A2) ρ is strictly increasing on [0, k] and constant on [k,∞) for some k < ∞.

Note that from the definition, the parameters Σε and ΣΓ are essentially constrained to

be symmetric positive definite. We can optimize the objective function (2.18) instead as a

function of the nonzero entries of Lε and LΓ, which are the Cholesky factors of Σε and ΣΓ,

resp. (i.e., Σε = LεL
>
ε and ΣΓ = LΓL>Γ ). This transforms the constrained problem to an

unconstrained one and ensures positive definiteness of Σε and ΣΓ.

For ease of notation, let S = [s1, . . . , sr] be the set of all non-zero entries of Lε, and

LΓ. Since ρ is differentiable by A1, the derivatives with respect to vec(ΠD∗) and S give the
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following estimating equations:

N∑
i=1

T∑
j=n+1

u(dij)Q
∗Ω−1

j rij = 0 (2.19)

where u(dij) = 2ψ(dij), dij = r>ijΩ
−1
j rij, and Q∗ is obtained by deleting some entries in

Q =




1 ⊗ Ip

yi,j−1 ⊗ D1

...

yi,j−n ⊗ Dn

xj−1 ⊗ Ip

...

xj−n ⊗ Ip

ui ⊗ Ip




corresponding to the zero entries in Π∗ and

N∑
i=1

T∑
j=n+1

u(dij)r
>
ijΩ

−1
j Ω̇jkΩ

−1
j rij −

N∑
i=1

T∑
j=n+1

ξtr(Ω−1
j Ω̇jk) = 0 (2.20)

for all sk and where

Ω̇jk =
∂Ωj

∂sk

=





LεJ
>
k + JkL

>
ε sk ∈ {Lε}

(w>
j ⊗ Ip)(LΓJ>k + JkL

>
Γ )(wj ⊗ Ip) sk ∈ {LΓ}

(2.21)

Jk denotes a single non-zero entry matrix with 1 at the position of the kth non-zero compo-

nent in either Lε or LΓ.

Using the fact that ∂Σ/∂vech(L) = (∂Σ/∂L)(∂L/vech(L)), where vech concatenates the

lower triangular half of a symmetric matrix, (2.20) can be written in the following closed

form
T∑

j=n+1

vec>
(

N∑
i=1

u(dij)rijr
>
ij − ξNΩj

)
(Ω−1

j ⊗ Ω−1
j )LjU = 0 (2.22)

where Lj = diag{L>Γ ,L>ε } = 0 with LΓ = [(wj ⊗ Ip) ⊗ (wj ⊗ Ip)](Ip2 + Tp,p)(Ip ⊗ L>Γ ) and

Fε = (Ip2 +Tp,p)(Ip⊗L>ε ), where Tp,p is a p2×p2 permutation matrix and U = diag{S>pm, S>p }
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is a (p(p+1)+ pm(pm+1))/2× p2 of 0s and 1s so that the relation vechA = SnvecA is true.

For unstructured covariance matrices, the above equation is generalized by

T∑
j=n+1

vec>
(

N∑
i=1

u(dij)rijr
>
ij − ξNΩj

)
(Ω−1

j ⊗ Ω−1
j )Fj = 0 (2.23)

where Fj = diag{F>Γ ,F>ε } with FΓ = (wj ⊗ Ip)⊗ (wj ⊗ Ip) and Fε = Ip2 .

As mentioned previously, the robustness property actually depend on the derivatives of

the ρ-functions denoted by ψ(x). In this research, we are interested in redescending M-

estimates, i.e., estimates for which d1/2u(d) is increasing for d near zero and decreasing for

d near ∞. This eliminates the need for imposing another set of weights on (2.18), like in

GM-estimates [67], since the effect of large ‖z‖ and, consequently large d, can always be

muted by a redescending ψ. This condition, however, does not imply boundedness of (2.20)

which only happens when du(d) is also bounded. The latter condition, of course, implies

that d1/2u(d) must redescend. The drawback with the use of such kinds of functions is the

possibility that the estimating equations may admit multiple solutions for Π∗ especially when

Σε and ΣΓ are fixed. Uniqueness is only guaranteed if one imposes a strict condition that

du(d) is monotonic [51] which could result in a zero breakdown point [66], i.e., the fraction

of outliers which could result in an infinite bias in the estimator. We do not, however, make

any assertions here both on positive breakdown points and uniqueness of the estimators. It

is a conservative belief that the observed cross-sectional structure in the data, such as the

one we will consider, makes it easier for breakdown points to occur so that the procedure

on consideration probably has very low breakdown point. In the case of uniqueness, the

experimenter can always determine a method on the desirability of a particular estimator

from among a set of solutions.

2.3 PREDICTING RANDOM EFFECTS

Using the assumption that the realized random effects which determine the data are just

random selections from a conceptual population, it can be shown that the best predictor of

Γi, in the sense of mean squared error, is the conditional mean E[Γ∗i |y1
iT ], i.e., the expected
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value of the random effect in the light of the observed data. Due to its form, the estimation

can be derived by straightforward application of Bayes’ theorem [84, 59]. In our model, we

have the following distributions:

y1
iT |ΠD∗, Σε, ΣΓ, Γ∗i ∼ N(T−1

T∑
j=n+1

[(z>ij ⊗ Ip)vec(ΠD∗) + (w>
j ⊗ Ip)vec(Γ∗i )], T

−1Σε) (2.24)

and

vec(Γ∗i )|ΣΓ ∼ N(0, ΣΓ). (2.25)

Then we obtain

vec(Γ∗i )|y1
iT , ΠD∗, Σε, ΣΓ ∼ N(vec(Γ̃i),U

−1
i ) (2.26)

where

vec(Γ̃i) = T−1Ui

T∑
j=n+1

(w>
j ⊗ Ip)Σ

−1
ε

T∑
j=n+1

rij (2.27)

= T−1Ui

T∑
j=n+1

(
T∑

j=n+1

wj ⊗ Σ−1
ε

)
rij (2.28)

Ui =

[
Σ−1

Γ + T−1

T∑
j=n+1

(w>
j ⊗ Ip)Σ

−1
ε

T∑
j=n+1

(wj ⊗ Ip)

]−1

. (2.29)

From the expression in (2.27) it is clear that the predictor for the random effect is

susceptible to outlying observations observed through the large residuals. Therefore, it is

not sufficient to just use robust estimates ΣΓ, Σε, and ΠD∗. To get robust empirical Bayes

predictors, we place weights to rij given by

w(rij) =

ψ

(√
r>ijΩ̂ijr>ij

)

√
r>ijΩ̂jr>ij

(2.30)

so that we have the robustified estimate for the random effect:

vec(Γ̃i) = T−2Ui

T∑
j=n+1

(w>
j ⊗ Ip)Σ

−1
ε

T∑
j=n+1

w(rij)rij. (2.31)

Then the estimate is obtained by substituting the values of Π̂D∗, Σ̂ε and Σ̂Γ into ΠD∗, Σε and

ΣΓ, respectively.
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3.0 ASYMPTOTIC BEHAVIOR OF THE M-ESTIMATES

In order to establish asymptotic behavior of the redescending M-estimates, we focus our

attention to a model, general enough, to encompass the model specified in Chapter 2. In

particular, we partition the covariates into stochastic and non-stochastic or deterministic

component with finite achievable levels and whose effect is random for each cross-section.

This makes it easier to specify a measure associated with the process for each level of the

deterministic input. The stochastic covariates may vary within subjects in incremental

manner across time or constant within but varies across cross-section.

Using the joint empirical marginal distribution of the data, we will find an expression

for the influence function of an observation to the estimator of the parameters of the model.

This influence function gives a heuristic way of assessing robustness of the estimates against

departures from the core distributions and is also useful in obtaining the limiting distribution

of the estimates.

In the sequel, keep in mind that yj−n+1
ij = (yij, . . . ,yi,j−n+1) as previously used in the

last section. The continuation observation (y>ij, . . . ,y
>
i,j−n,u>ij) = (yj−n+1

ij ,uij) is usually

denoted by z which is in Rq but if the former is augmented by x then z resides in Rq+1.

Denote the unknown fixed and variance parameters by t which can take on values (i) T

when the underlying distribution is µn, or equivalently T(µn) or T(0, µn) (ii) TNT when

the underlying distribution is the empirical distribution µn
NT , or equivalently T(µn

NT ) and

(iii) T(µn,ε) = T(ε, µn) when the distribution is µn,ε. The unknown parameter t is usually

split into (π,S) and is considered on the space Θ = Rs × SNT , where S denotes the set of

symmetric positive definite matrices, and Rs × SNT is an open subset of Rs+ 1
2
p(p+1).

The vector function Ψij has the same form as Ψ but the subscript in the former is a

device to designate the dependence of the function on a particular data. Asymptotically,
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Ψij becomes Ψ and we also drop the indices in the data (yj−n+1
ij ,uij, xj) and use (y,u, x)

instead.

The covariance Ωj generally depends on xj so that when xj = 1 it assumes a compound

form (w>
j ⊗ Ip)ΣΓ(wj ⊗ Ip) + Σε. Otherwise it is given by Σε. For brevity, the subscript j

in Ωj is sometimes dropped but this does not mean that it loses its dependence on xj.

Oftentimes, the symbol ‖ · ‖ denotes the Euclidean norm unless, otherwise, indicated,

while λ1 is the smallest eigenvalue of Σ.

3.1 M-FUNCTIONAL OF THE CONSTRAINED MIXED-VARX MODEL

Assume that the sequence of observations (yij,uij, xj), i = 1, . . . , N and j = 1, . . . , T follow

model (2.10) for some arbitrary n. The exogenous input uij is a random variable either

within and or between cross-sections and that the inputs xj follow a deterministic box car

pattern, i.e.

xj =





1 for j = 1, . . . , q, 2q + 1, . . . , 3q

0 for j = q + 1, . . . , 2q, 3q + 1, . . . , 4q
(3.1)

From the previous chapter, we assumed that for the duration of any particular input level x,

the sequence (yij,uij) is a stationary and ergodic process which is defined on Rp(−∞,∞)×
Rr(−∞,∞), with associated probability space (Rp+r(−∞,∞),B, µ), B being the increas-

ing family of Borel sets in Rp+r(−∞,∞) and µ in the set M of all stationary and ergodic

measures on (Rp+r(−∞,∞),B). The estimators for the parameters of the model are, more

generally, obtained through the joint empirical q-dimensional (q = np + r) marginal distrib-

ution function µn
NT defined by

µn
NT = (NT )−1

N∑
i=1

T∑
j=n+1

δ(y>ij, . . . ,y
>
i,j−n,u>ij) (3.2)

where yij = yi,j−T for j > T and δz is a pointmass at z ∈ Rq. µn
NT can be viewed as a

random measure in M n = {q-dimensional marginals of a p-variate stationary process} and

we can then consider our estimator as a functional T(µn) which can also be defined in a

natural way for other measures in M n. In particular, when T is defined over µn
NT we obtain
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the model parameters estimates TNT that are solutions to the estimating equation defined

in (2.19-2.20) which can generally be written in the form similar to (2.17), i.e.,

N∑
i=1

T∑
j=n+1

Ψij(y
j−n+1
ij ,uij, xj;TNT ) = 0. (3.3)

where TNT = (Ψ̂(YNT ), Σ̂(YNT )) and Ψ = (Ψ
(1)
ij ,Ψ

(2)
ij )

Ψ
(1)
ij := u(dij)Q

∗Ω−1
j rij (3.4)

Ψ
(2)
ij := u(dij)r

>
ijΩ

−1
j Ω̇jkΩ

−1
j rij − ξtr(Ω−1

j Ω̇jk) (3.5)

The subscript ij in Ψij is a devise used by Martin [68] to denote “edge effects” from the

cross-section and continuation of observations within cross-section, which vanishes after a

finite number of observations so that a fixed value of Ψ can be used, eventually.

When (yij,uij) comes from a stationary and ergodic process, µn
NT converges by the

ergodic theorem weakly to the q-dimensional marginal µn almost surely as T goes to infinity.

So if T is continuous in the weak topology then one expects to have, under some regularity

conditions, that

lim
T→∞

1

NT

N∑
i=1

T∑
j=n+1

Ψij(y
j−n+1
ij ,uij, xj; t) =

1

N

N∑
i=1

EΨi(y
2n
i,n+1,ui1, x; t)

= EΨ(y,u, x; t). (3.6)

Therefore we assume that the asymptotic value T(µn) is given by

∫
Ψ(y,u, x,T)dµn = 0. (3.7)

We assume that (3.7) has a unique root t0 = T(µn), or that a well-defined solution is available

in the case of multiple roots. T is then defined on M n
0 consisting of all measures µn in M n

for which the integral in (3.7) exists and is finite. We also specify that the structure of Ψ has

the representation Ψ(y,u, x;T) = Ψ1(y,u, 1;T) + Ψ0(y,u, 0;T) and that µ is a product of

two measures µ1 and µ0 so that Ψ1 is associated with µ1 and Ψ0 is associated with µ0.
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3.2 CONSISTENCY

Important to the problem of determining whether the estimator is consistent is the problem

of whether a solution exists for any sample and whether the obtained solution at that sample

is unique. Since the redescending M-estimates are solutions to a set of implicit equations we

may encounter situations when the solution does not exist for some data, and even if it does

exist the solution may not be the only one. It is therefore of interest to know the conditions

warranting the existence and uniqueness of solutions.

Given that the parametric equation Gµn(t) :=
∫

Ψ(y u, x, t)dµn = 0 and the empirical

equation GNT (t) := (NT )−1
∑N

i=1

∑T
j=n+1 Ψij(y

j+n
i,j ,u, x; t). By regression equivariance, it

is possible to translate the fixed parameters to 0 so that the problem boils down to the

usual location and scatter problem. Therefore the conditions given by Tyler and Kent [51]

and Lopuhaa [63] can always be translated to the linear model case to shed light on what

conditions are needed for the existence of solutions. In particular, they agreed that data

should not be contained in some arbitrarily thin strips in the space Rq which is equivalent to

the condition that λ1(Σ) →∞, i.e., the distribution does not become degenerate. However,

even if this condition is satisfied, it is not guaranteed of a unique solution. One way to

overcome this problem is to look at the solution to the estimating equation as that associated

to the minimization problem in (2.18). The situation can be seen as the minimization of the

negative log likelihood of some elliptical distribution exp{−ρ(r>Ωr)}, with r := y − (z∗> ⊗
Ip)vec(ΠD∗), so that when dw(d), d = r>Ωr, is increasing for d > 0 then the distribution

is strongly unimodal and that the minimization is done over a strictly convex parameter

space and both the parametric and empirical equation is assured a single solution. For a

redescending function ψ, convexity of the parameter space no longer holds and thus do not

guarantee uniqueness of solution but generally the most desirable solution can be obtained

if we think of the solution not as a zero of the parametric equation but as the minimum of

the objective function.

If the solution is not unique, there is a difficulty of identifying a consistent solution

sequence TNT for T, and in practice, one needs to go further than consistency results by

Huber [45] and Boos [18] to establish consistency for a particular solution sequence obtained
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by a specified algorithm. Boos and Serfling [14] suggested that if ψ is bounded, then the

functional T(µn) may be defined so that it is continuous at µn with respect to ‖·‖∞ and thus

satisfy TNT → T w.p. 1. This however is contingent on the condition that GNT (t) = 0 has

an isolated root t0 = TNT at a certain neighborhood. Portnoy [76], while assuming µn to be

symmetric and absolutely continuous with density satisfying certain regularity properties,

and that ψ is bounded and has a derivative which is bounded and uniformly continuous

almost surely, established consistency of a solution TNT of GNT (t) = 0 nearest to a given

consistent estimator T̃NT for t0 = T.

Using the fact that the S-estimators [85] also turns out to be a solution to (3.6), we can

use the result of Lopuhaa [63] to establish consistency of the M-estimators.

Theorem 1 (Lopuhaa, 1989). Let C be the class of all measureable convex sets in Rq

and suppose that every E ∈ C is a Pµn-continuity set, i.e., Pµn(∂E) = 0. Suppose that µn

satisfies (Cε) for some 0 < ε < 1−r, and assume that the solution T of (3.5) is unique. Then

for N, T sufficiently large, GNT (t) = 0 has at least one solution TNT and for any sequence

of solutions TNT , limN,T→∞TNT = T.

Proof. See Lopuhaa [63]

The above theorem is primarily for the location and scatter problem but can be adopted

for the multivariate regression problem. Theorem 1 assures that GNT (t) = 0 has at least

one solution T(µn
NT ) when λ1(Σ̂) → ∞ and that one expects that T(µn

NT ) → T(µn) as

N, T → 0. This implies that there is a neighborhood O ⊂ Θ around T(µn) which contains

all T(µn
NT ) for N, T sufficiently large. The proof goes on with showing that all solutions

eventually stay within a fixed compact set.

3.3 INFLUENCE FUNCTION

From the functional estimator T we wish to investigate its behavior when an atypical addi-

tional observation is thrown in resulting in a contamination measure µn,ε ∈ M n. With some
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care, this can be approximated by the segment

µn,ε = (1− ε)µn + ενn, νn ∈ M n (3.8)

where ε ∈ [0, 1]. In some cases, µn,ε /∈ M n and we may need to extend the definition of

Ψ so that it also holds for non-stationary and non-ergodic measure. A heuristic way of

evaluating the effect of such a contamination is through Hampel’s influence function. It has

been shown, and by the close relationship between autoregression and ordinary regression,

that this definition is still valid [55, 68] and is given in the following:

Definition 2. Let T(·) be a vector-valued mapping from M n into Θ and let µn lie in the

domain of T(·). If νn = δz denotes the atomic probability distribution concentrated at

z ∈ Rq+1, then the influence function of T(·) at µn is defined pointwise by

IF(y,u, x;T, µn) = lim
ε↓0

T(µn,ε)−T(µn)

ε
(3.9)

providing the limit exists.

Note that if µn in (3.8) is replaced by the empirical distribution µNT and ε by 1/NT ,

we realize that the IF measures a standardized change of the value of the estimator when

one additional observation is added to a large sample of size NT − 1. The importance of

the influence function lies in its heuristic interpretation that it describes the effect of an

infinitesimal contamination at point z on the estimate, i.e., it gives an approximation to the

effect of the inclusion or deletion of a single observation. It is therefore desired that this effect

is bounded so that no observation has a dominant influence on the value achieved by the

estimator. As such, bounded influence function is thus considered to be a good robustness

property.

Theorem 2. Let ρ : R → [0,∞) satisfy (A1) and (A2). Assume that ρ has a second

derivative ψ′ and suppose that

(A3) ψ′(x) and u(x) = 2ψ(x) are bounded and continuous.

Suppose that the conditions similar to that in Theorem 1 hold. Let Ψ be defined as in (3.4-

3.5) and let Gµn(t) = Eµn [Ψ(y,u, x, t)]. Suppose that Gµn(·) has a nonsingular derivative
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M at T(µn) = (Π(µn), Σ(µn)). Then the influence function IF(y,u, x;T, µn) exists and

satisfies

IF(y,u, x;T, µn) = −M−1Ψ(y,u, x;T). (3.10)

Theorem 1 assures that Gµn,ε(t) = 0 has at least one solution T(µn,ε). So we have to

specify that we are only interested in the solution of Gµn(t) = 0 given by the functional

T(µn). This also implies that to derive the influence function at a distribution µn it is

required that, for sufficiently small ε, T(·) is uniquely defined at (1 − ε)µn + εδz for all

z ∈ Rq+1, and that the limit in (3.9) exists. The version of Implicit Function Theorem (IFT)

by Lopuhaa [63] applied to Gµn(t) = 0 will assure the uniqueness of T(µn,ε) at Gµn,ε(t) = 0

for ε sufficiently small. The rest of the proof proceeds with the application of the same

theorem [63].

Proof. Define the function W(·;y,u, x) : [0, 1]× O, O ⊂ Θ by

W(ε, t;y,u, x) =

∫
Ψ(y,u, x; t)dµn,ε (3.11)

= (1− ε)

∫
Ψ(y,u, x; t)dµn + εΨ(y,u, x; t). (3.12)

Let W(ε, t;y,u, x) satisfy conditions 1-3 of the Implicit Function Theorem of Lopuhaa [63]

(see Appendix) and let t0 = (π(µn),S(µn)) be the unique solution of 3.7, i.e., W(0, t0;y,u, x)

= 0. Condition 4 of IFT [63] guarantees that, for sufficiently small ε, if Gµn,ε(t) = 0 has two

solutions, i.e., they are both a zeros of W(ε, ty,u, x), then they are contained inside a small

neighborhood around T(µn). Furthermore, it can be argued that they are actually equal for

sufficiently small ε so that the functional T(µn,ε) is thus uniquely defined.

When the limit exists

∂W

∂ε
(0, t0;y,u, x) = lim

ε↓0
W(ε, t0;y,u, x)−W(0, t0;y,u, x)

ε
(3.13)

and by the applying implicit differentiation the left hand side of (3.13) is given by

∂W

∂ε
(0, t0;y,u, x) =

∂W

∂t
(0, t0;y,u, x)

∂W

∂ε
(0, t0;y,u, x) (3.14)
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so that the function T(·; µn) also has a right derivative at ε = 0 with

∂T(0, µn)

∂ε
= −

[
∂W

∂t
(0, t0;y,u, x)

]−1
∂W

∂ε
(0, t0;y,u, x). (3.15)

To show that the above limit exists we have to establish that (1) Ψ(y,u, x; t) is bounded and

continuous on Rs × SNT and that (2) ∂Ψ/∂t is also bounded and continuous on Rs × SNT .

Requirement (1) is obvious through the function ψ. Hence W(ε, t;y,u, x) is continuous in

[0, 1]× O for every (y,u, x) ∈ Rq+1. For (2) we compute ∂Ψ/∂t:

∂Ψ(1)

∂π
= Q∗Ω−1[2u′(d)rr> − ξu(d)Ω]Ω−1Q∗> (3.16)

∂Ψ(2)

∂π
= Q∗Ω−1[u′(d)rr>Ω−1Ω̇k + ξu(d)Ω̇k]Ω

−1r =

{
∂Ψ(1)

∂sl

}>

(3.17)

∂Ψ(2)

∂sl

= u′(d)r>Ω−1Ω̇lΩ
−1rr>Ω−1Ω̇kΩ

−1r− u(d)r>Ω−1[Ω̇lΩ
−1Ω̇k − Ω̇l + Ω̇kΩ

−1Ω̇l]

− ξtr[Ω−1Ω̇lΩ
−1Ωk + Ω−1Ω̈kl] (3.18)

Notice that ‖Q∗‖ ≤ ‖z∗‖ ≤ ‖r‖ + ‖y‖ which is bounded in probability since y, and con-

sequently r, is stationary and because ‖rr>‖/d2 ≤ ‖Ω‖ ≤ ‖ΣΓ‖ + ‖Σε‖. Then ∂Ψ/∂t is

bounded by a constant that depends only on ‖Σε‖ and ‖ΣΓ‖. This and by (A3) yields

requirement 2. Then the dominated convergence, in view of the above result, allows

∂W

∂t
(ε, t;y,u, x) = (1− ε)

∫
∂Ψ

∂t
(y,u, x; t)dµn + ε

∂Ψ

∂t
(y,u, x; t) (3.19)

which is also a continuous function on [0, 1]× O and that

∂W

∂t
(0, t0;y,u, x) =

∫
∂Ψ

∂t
(y,u, x; t)dµn|t=t0 = M (3.20)

which is nonsingular. Then since ∂W/∂ε = Ψ(y,u, x; t0) so the theorem follows.
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A sample estimate of the influence of one observation to the value achieved by the

estimator can be obtained by replacing the M by MNT given by

MNT =


 MΠD∗ΠD∗,NT M>

ΠD∗S,NT

MΠD∗S,NT MSS,NT




where

MΠD∗ΠD∗,NT =
N∑

i=1

T∑
j=n+1

Q∗Ω−1
j [u′(dij)rijr

>
ij − ξu(dij)Ωj]Ω

−1
j Q∗> (3.21)

{MΠD∗S,NT}k = −
N∑

i=1

T∑
j=n+1

Q∗Ω−1
j [u′(dij)rijr

>
ijΩ

−1
j Ω̇jk + ξu(dij)Ω̇jk]Ω

−1
j rij (3.22)

{MSS,NT}kl =
N∑

i=1

T∑
j=n+1

u′(dij)r
>
ijΩ

−1
j Ω̇jlΩ

−1
j rijr

>
ijΩ

−1
j Ω̇jkΩ

−1
j rij

−u(dij)r
>
ijΩ

−1
j [Ω̇jlΩ

−1
j Ω̇jk − Ω̇jl + Ω̇jkΩ

−1
j Ω̇jl]

− ξtr[Ω−1
j Ω̇jlΩ

−1
j Ωjk + Ω−1

j Ω̈jkl] (3.23)

Note that the influence function in (3.10) and its sample counterpart is just proportional to

Ψ. Thus the principle of M-estimation possesses the nice feature that the desired properties

for an influence curve maybe achieved simply by choosing a ψ with the given properties.

In particular, if ψ is given by the Tukey’s bisquare function then it can be seen that the

influence if a single observation on the model parameters is always bounded.

3.4 ASYMPTOTIC NORMALITY

When (3.6) determines t0 = T uniquely or that a well defined solution exists through

its corresponding minimization problem, then following Huber [46], Serfling [89], Collins

[26], Portnoy [76] and Lopuhaa [63] there exists a sequence of M-estimators TNT such that

TNT → T as N → ∞ and T → ∞ or equivalently there exists M-estimators T(µn,ε) such

that T(µn,ε) → T(µn) as ε → 0. Since Ψ(y,u, x; t) is differentiable with respect to t then
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so is GNT (t). Using appropriate regularity conditions, the Mean Value Theorem (MVT)

applied to GNT (t) gives

GNT (TNT ) = GNT (T) + ĠNT (T̃)(TNT −T) (3.24)

where ĠNT (T̃) = [∂GNT (t)/∂t]t=T̃ and ‖T̃−T‖ ≤ ‖TNT −T‖ or that T̃ lies in the segment

connecting TNT and T. Because GNT (TNT ) = 0, we expect upon arrangement that (3.24)

yields
√

NT (TNT −T) = [−ĠNT (T̃)]−1
√

NTGNT (T). (3.25)

The asymptotic normality of TNT follows if the matrix ĠNT (T̃) behaves properly, i.e., if it

converges appropriately and if
√

NTGNT (T) has the CLT.

Prior to establishing asymptotic normality, we state the following theorem which outlines

the conditions for it to happen.

Theorem 3. Let ρ : R→ [0,∞) satisfy (A1)-(A3) and suppose that the conditions similar

to Theorem 1 hold. Let Ψ be defined similar to (3.4-3.5) and let Gµn(t) = Eµn [Ψ(y,u, x, t)]

and GNT (t) := (NT )−1
∑N

i=1

∑T
j=n+1 Ψij(y

j+n
i,j ,u, x; t). Suppose that the solution T(µn) of

Gµn(t) = 0 is unique and let TNT be the solution of GNT (t) = 0. Then
√

NT (TNT −T) ∼
N(0,M−1ΛM), where Λ is the covariance matrix of Ψ(y,u, x;T).

Proof. Let

U(y,u, x; t, d) = sup
‖τ−t0‖≤d

‖Ψ(y,u, x; τ )−Ψ(y,u, x; t)‖. (3.26)

Theorem 3 of Huber [46] and its corollary suggests that it is sufficient to prove the following

conditions:

1. There exists a t0 = T ∈ Θ such that Gµn(y,u, x;T) = 0.

2. There exists positive numbers b, c, d, d0 such that (i) EµnU(y,u, x; t, d) ≤ bd for ‖t −
t0‖+ d ≤ d0; and (ii)Eµn [U(y,u, x; t, d)2] ≤ cd for ‖t− t0‖+ d ≤ d0.

3. The expectation Eµn(‖Ψ(y,u, x; t)‖2) is nonzero and finite.

30



Condition 1 is clear since a solution T(µn) if it exists must satisfy Gµn(t), i.e. t0 =

(Π(µn), Σ(µn)) is a zero of Gµn(t) and that both ‖Σε‖ and ‖ΣΓ‖ are bounded away from

0 and ∞. On the other hand, part of the proof of theorem 2 requires boundedness of

Ψ(y,u, x; t) by a constant and hence proves condition 3.

Let t0 ∈ K where K ⊂ Θ, K compact. Since Bd(t) ⊂ K, the application of MVT yields

‖Ψ(y,u, x; t)−Ψ(y,u, x; t0)‖ ≤ ‖∂Ψ

∂t
(y,u, x; t)|t=T̃‖‖t− t0‖. (3.27)

Again since ∂Ψ/∂t is bounded, there exists b > 0 such that ‖∂Ψ
∂t

(y,u, x; t)|t=T̃‖ ≤ b so that

‖Ψ(y,u, x; t)−Ψ(y,u, x; t0)‖ ≤ b‖t− t0‖ ≤ bd (3.28)

Hence EµnU(y,u, x; t, d) ≤ bd and consequently Eµn [U(y,u, x; t, d)2] ≤ cd for ‖t− t0‖+d ≤
d0.

The rest of the proof follows using Theorem 3 of Huber [46] which establishes that

‖ĠNT (TNT )− Ġµn(T)‖ → 0 (3.29)

in probability. Because TNT → T and T̃ is a suitable mean value

‖ĠNT (T̃)− Ġµn(T)‖ → 0, (3.30)

i.e., ĠNT (T̃) → M. The Central Limit Theorem ensures that
√

NTGNT (T) → N(0, Λ).

A sample estimate of Λ can be obtained using ΛNT = (NT )−1
∑N

i=1

∑T
j=n+1 ΨijΨ

>
ij. The

ensuing result has the feature that the asymptotic covariance matrix is actually given by

the influence function. Therefore, one way of looking at bounded-influence estimation is to

impose a bound on the influence and find an estimator that has the smallest variance subject

to the chosen bound.
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4.0 BOOTSTRAP APPROXIMATION

In the previous chapter, we note that the M-estimates have a normal limiting distribution.

Inference can be based on the asymptotic variance through the sample estimate but this is

not expected to give accurate results when outliers are present. Moreover, the expression

for the variance using the sample estimate is quite intractable. An alternative approach is

through nonparametric bootstrap which does not rely on any distributional assumptions.

This can be done either by taking the linear fixed point representation of the estimator or by

naive bootstrap. The former is computationally efficient but has the drawback that higher

order asymptotic behavior equivalence may not exist. Thus, although the naive bootstrap

has more computational burden, its results are generally more accurate [2].

In this chapter, we will describe a scheme to generate bootstrap samples that adopts to

the cross-sectional structure of the data and a scheme to approximate the limiting distri-

bution by naive bootstrap estimation. Then it will be shown that this scheme adheres to

the bootstrap principle by establishing some asymptotic results for the validity of bootstrap

approximation. Moreover, we will discuss model selection, in view of bounded-influence esti-

mation, under a general elliptical response distribution. Inference through bootstrap in any

statistical analysis is usually based on the final model which is treated as the “true model”.

The accuracy of the final model as an approximation to the “true model” thus have an effect

on any statistical results. Therefore, it is to our best interest to determine appropriate model

order prior to obtaining bootstrap approximation.

Here and elsewhere, oP (1) stands for convergence in probability while OP (1) means

boundedness in probability. In the course of the discussion, we will use the device that

unobservable errors and some resulting constructs associated to it are denoted by ε̆, the

empirical unobservables are denoted in plain symbols while bootstrap related observations
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and parameters are denoted with an ∗.

4.1 ROBUST MODEL SELECTION

Determining the correct order for the VARX component in model (2.1) and (2.2) is a crucial

issue when obtaining reliable bootstrap estimates. Observations derived from simulations in

simple univariate ARMA and AR models alone suggest that bootstrap approximation can

only be expected to perform well when the parametric model provides a good approximation

to the true model [24]. This is also true when underestimating the true model order of a

general AR(n) model so that it is imperative that the probability of this happening should

be kept asymptotically at zero [53]. The lag order selection criterion for the same model,

however, need not be consistent for the lag order for the bootstrap algorithm to be asymp-

totically valid [53]. This suggests that, providing the range of lag orders considered includes

the true lag order, a wide range of information based lag order selection criteria including

Akaike Information Criterion (AIC) are potentially valid.

Developing a robustified Akaike-type model selection criterion to determine lag order

in univariate autoregression has been investigated by a number of authors (see for example

[67], [40], [10], [82]. An analog criterion for linear mixed effects multivariate autoregression

models can be also be developed by adopting their methods as well as techniques from

multivariate regression. This is because, when inquiry is regarding population or marginal

focus the criterion coincides with the usual penalized marginal likelihood [99].

To proceed, we consider fitting the linearized form of (2.1) and (2.2) and make a sim-

plification that the input term is a deterministic function with finite levels as discussed in

the previous section. This model can be written in the form of (2.18), i.e. we consider the

approximating model to be

FA : yij = ΠD∗z∗ij + Γ∗i xj + εij (4.1)

where ΠD∗ = [α,D1Π
diag
1 , . . . ,DnΠdiag

n , Γ̃, Υ] depends implicitly on the lag order n, z∗ij =

[1,y>i,j−1, . . . ,y
>
i,j−n, xj,u

>
i ]> and the innovation rij has an underlying marginal density cor-
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responding to the least favorable distribution proportional to exp{−τ(yj−n+1
ij ,uij, xj;T)},

T = (ΠD∗, Σ = (Σε, ΣΓ)), which accommodates possible contamination of the core density.

Let this approximating model be denoted by h(·|t), t ∈ Θ. Then a useful measure of dis-

crepancy between the operating model F operating and approximating model h(·|t) is the

Kullback-Leibler information

I(F, ht) = EF {−2 log h(·; t)} (4.2)

= EF log F (y,u, x)− EF log h(y,u, x; t) (4.3)

where the expectation is carried under the true model F . In this setting, smaller values

of I(F, ht) correspond to better approximation of F by ht while the minimum value is

obtained for some t0 ∈ Θ. On the other hand, when F belongs to the fitted class of models

H = {ht, t ∈ Θ}, then F = ht0 and I(F, ht0) = 0. However, in general, F many not be in

H and so I(F, ht) > 0.

In practice, t is estimated from the data. In our case, this estimate is given by the

redescending M-estimator defined as a solution to the first order condition in (3.3) where

Ψ(yj−n+1
ij uij, xj; t) = ∂

∂T
τ(yj−n+1

ij ,uij, xj; t), and can be thought of as a maximum likelihood

estimator with respect to the underlying density. Then, I(F, ht) is approximated by the loss

function I(F, hTNT
) given by

I(F, hTNT
) = −2EF log{(−2π)−

1
2
pN(T−n)

T∏
j=n+1

|Ωj|−
Np
2 exp[−1

2

N∑
i=1

T∑
j=n+1

ρ(r>ijΩ
−1
j rij)]}

∝ EF{Np

T∑
j=n+1

|Ωj|+
N∑

i=1

T∑
j=n+1

ρ(r>ijΩ
−1
j rij)}. (4.4)

Hence, a reasonable criterion for judging the quality of the approximating model is I(F, hTNT
)

where TNT is the M-estimator in (3.3). Given a collection of competing approximating

models, the one that minimizes I(F, hTNT
) is preferred [6].

The robustified Akaike function given by

AICR(n, α, ρk) = 2
N∑

i=1

T∑
j=n+1

τ(yj−n+1
ij ,uij, xj;TNT ) + αn, (4.5)
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where αn is the generalized penalty criterion for a fixed α [12], is supposed to give an

unbiased estimate and at least approximately mininimize I(F, hTNT
). Assuming consistency

of the M-estimate, the penalty constant α, following the proposition of Ronchetti, [81], and

Behrens [10], can be defined as tr(M−1Λ) with M = −E[∂Ψ/∂t] and Λ = E[ΨΨ>]. This

choice of α follows from the asymptotic equivalence of the AIC with cross-validation given in

Stone [95]. For the redescending M-estimate with the Tukey’s bisquare function ρB,k as the

bounding function M and Λ can be approximated by MNT and ΛNT , respectively, which are

given in the previous chapter. The danger here is that in the multivariate setting, the finite

difference approximation to the Hessian matrix corresponding to the variance components

do not result in a positive definite matrix. As an alternative, one can follow the heuristic

argument of Martin [67] that the penalty term can be the number of parameters in the

model. This follows from the fact that an M-estimator is a maximum likelihood estimate

under the least favorable distribution. In this case, a robust maximum-likelihood type order

selection criterion would be obtained by choosing n to minimize

AICR(n, 2, ρk) = 2
N∑

i=1

T∑
j=n+1

τ(yj−n+1
ij ,uij, xj;TNT ) + 2φ(d, n)

=
T−n∑
i=1

ρ(r̂>ijΩ̂
−1
j r̂ij) + N

T∑
j=n+1

log |Ω̂j|+ 2(n + 1)p + p(p + 1) (4.6)

where φ(p, n) is the penalty function which in this case is the number of parameters estimated

in the model.

4.2 NAIVE BOOTSTRAP APPROXIMATION

It is possible to adapt basic ideas behind bootstrapping autoregressive and linear mixed

effects models to obtain an appropriate resampling technique to generate an appropriate

bootstrap sample for Mixed-VARX model. In autoregressive bootstrap, the most common

resampling technique is to reconstruct the autoregressive process based on conditionally

independent innovations. Details on this technique are laid out in earlier papers such as

Bose [15, 16], Basawa et al. [5], Kreiss and Franke [54], and Allen and Datta [2]. To
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accommodate the mixed model case, this method has to be augmented by incorporating a

prior resampling scheme for the random effect parameters.

In general, we will assume that {(yij,uij)}j∈Z+ , is an ergodic and stationary autoregres-

sive process of order n for each i = 1, . . . , N and satisfies the following linear difference

equation induced by model (2.1) or (2.3)

yij = h(yj−n
i,j−1,ui, xj;T, Γi) + εij, j ∈ Z+ (4.7)

where n ∈ N and εij is a stationary and ergodic sequence of zero mean iid random vec-

tors, with common distribution function µε, that are independent of both {(y11,u11), . . . ,

(yNT ,uNT )} and {Γ1, . . . , ΓN}. We also assumed previously that the autoregressive para-

meters satisfy the condition that the roots of the characteristic function (2.2) is never zero

in the unit sphere so that dependence on initial values vanish exponentially fast.

Once the appropriate model order has been selected, the first step is to use data YNT =

{(y11,u11, x1), . . . , (yNT ,uNT , xT )} to calculate a preliminary parameter estimate TNT =

(Π̂D∗, Σ̂) and the BLUP {Γ̂1, . . . , Γ̂N} for the random effect parameters which allows us to

estimate the errors by the residuals ε̂ij = yij−h(yj−n
i,j−1,ui, xj;TNT , Γ̂i). The BLUP’s form an

empirical distribution µ̂Γ from which we take a sample size r with replacement and call these

{Γ̂∗1, . . . , Γ̂∗r}. The residuals ε̂ij, on the other hand, need to be centered ε̃ij = ε̂ij − ε̄, with

centering value ε̄ = (NT )−1
∑N

i=1

∑T
j=1 ε̂ij, to generate a valid approximation. Centering

is important since it is presumed from the form of the bounding function requires that,

componentwise, Eψ(ε) = 0. If not done, it can cause random bias that does not vanish in

the limit and renders the approximation useless (see, for example, Bickel and Freedman [13],

Shorack [90], and Lahiri [58] that treats a similar bias phenomenon in regression problems).

From these centered residuals, we can define the following centered empirical distribution

function

µ̃NT (x) = (NT )−1

N∑
i=1

T∑
j=1

δ(x) x ∈ Rp

from which we draw a simple random sample ε̃∗i,n+1, . . . , ε̃
∗
im of size m − n for each i with

replacement from the collection of centered residuals {ε̃1
1T , . . . , ε̃1

NT}. Alternatively, the

residuals could be kept in groups by individuals, so that for each individual, a random i∗ is
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selected from {1, . . . , r}, then a sample of size m−n is taken with replacement from {ε̃1
i∗T}.

Then we can we transform ε̃∗ij or ε̃∗i∗j recursively using (4.7) as

y∗ij = yij for j = 1, . . . , n and

y∗ij = h(yj−n∗
i,j−1,u

∗
ij, xj;TNT , Γ̂∗i ) for j = n + 1, . . . ,m (4.8)

with initial values ε̃∗ij = 0 for j = 1, . . . , n to obtain the bootstrap sample Y∗
rm = {(y∗11,

u∗11, x1), . . . , (y∗rm,u∗rm, xm)}. Then the bootstrap version of the random variable TNT is

given by T∗
rm which is the solution to the equation

r∑
i=1

m∑
j=n+1

Ψ∗
ij(y

j−n+1∗
ij ,u∗ij, xj;T

∗
rm) = 0. (4.9)

Consequently, the naive bootstrap approximation to the sampling distribution
√

NT (TNT −
T) is found by looking at the conditional distribution of T∗

rm given Y∗
rm.

4.3 ASYMPTOTIC VALIDITY

Since the distribution of
√

NT (TNT − T) is approximated by the conditional distribution

given the original data YNT of a quantity T∗
rm which can be calculated from the bootstrap

data Y∗
rm and the residuals ε̃∗ij, we have to justify that the purported conditional distribution

is a reasonable approximation. Hence, it is important to deal with the problem of estimating

the distributions of the centered residuals and the estimated random effects and making

sure that their empirical distribution µ̃NT and µ̂Γ conforms with the prescribed operating

distribution µε of the true residuals and µΓ of the true random effects in the suitable sense

as N, T →∞, respectively. This result is essential since if they do not match, the bootstrap

data can create a bias in the estimates that do not necessarily vanish even with large numbers

of resampled observations.

Let dr(r ≥ 1) be the Mallows metric [13] defined for probability measures µX on Rk with
∫ ‖x‖dµX < ∞ such that for any two probability measures µX and µY their distance dr is

given by

dr(µX , µY ) = inf(E‖X − Y ‖r)1/r (4.10)
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where the minimum is taken over all pairs (X, Y ) with X ∼ µX and Y ∼ µY . Using this

metric we have the following result similar to Theorem 3.1 in Kreiss and Franke [54] in the

case of ARMA models.

Theorem 4. d2(µ̃NT , µε) → 0 in probability as N, T →∞.

Proof. When µεNT
denotes the empirical distribution function of the unobservable residuals

εi1, . . . , εNT , Bickel and Freedman [13] (Lemma 8.4) showed that d2(µεNT
, µε) → 0 as N, T →

∞ almost everywhere. Then it suffices to show that d2(µεNT
, µ̃NT ) → 0.

Let I, J be uniformly distributed over the lattice with I = {1, . . . , N}, J = {1, . . . , T}
and define a random variable X1 and Y1 with marginals µεNT

and µ̃NT , respectively, according

to

X1 = εIJ Y1 = ε̂ij − ε̄ (4.11)

and observe that

{d2(µεNT
, µε)}2 = inf E‖X − Y ‖2 ≤ E‖X1 − Y1‖2

=
1

NT

N∑
i=1

T∑
j=1

∥∥∥∥∥ε̂ij − εij − 1

NT

N∑
i=1

T∑
j=1

ε̂ij

∥∥∥∥∥

2

≤ 2

NT

N∑
i=1

T∑
j=1

‖ε̂ij − εij)‖2 +
1

(NT )2

∥∥∥∥∥
N∑

i=1

T∑
j=1

εij

∥∥∥∥∥

2

≤ 2

NT

N∑
i=1

T∑
j=1

|Π̂D∗ − ΠD∗|2‖z∗ij‖2 + |Γ̂i − Γi|2‖wij)‖2 +

1

(NT )2

∥∥∥∥∥
N∑

i=1

T∑
j=1

εij

∥∥∥∥∥

2

Note that |wj| is bounded by a constant and ‖z∗ij‖2 = OP (1) due to the stationarity of yij.

Then since
√

NT (TNT −T) = OP (1) and
√

N(Γ̂i−Γi) = OP (1) [49] we expect that the first

term is oP (1). The central limit theorem assures that 1/
√

NT
∑N

i=1

∑T
j=1 εij is also OP (1)

so the second term is oP (1). Thus we obtain the assertion of the theorem.

The result that the empirical distribution of the predicted random effects converges

suitably to its corresponding true distribution, i.e., d2(µ̂Γ, µΓ) → 0, is established in Jiang
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[49]. Given these equivalence relations in distributions, we only need to show that the

distribution of T∗
rm is “close” to the distribution of TNT .

In practice, one calculates TNT in (3.3) by a finite iteration of the Newton’s method start-

ing with a
√

NT -consistent solution as an initial value, e.g. least squares estimates. This

implies that any subsequent estimate update inherits the same
√

NT -consistency. In fact, us-

ing an arbitrary but
√

NT -consistent estimator for T as an initial estimator, it can be shown

that the M-estimator TNT which fulfills
∑N

i=1

∑T
j=n+1 Ψij(y

j−n+1
ij ,uij, xj;TNT ) = Op(

√
NT )

can be obtained by a one-step Newton iteration [54]. Hence, the definition of the M-estimator

in (3.3) can actually be broadened by considering
√

NT -consistent estimators which solves

the same equation only in an asymptotic sense, i.e.,
∑N

i=1

∑T
j=n+1 Ψij(y

j−n+1
ij ,uij, xj;TNT ) =

Op(
√

NT ), while preserving the asymptotic distribution theory of the estimates.

Using the expanded definition, assume T∗
rm is the M-estimator calculated from the boot-

strap sample Y∗
rm, i.e., T∗

rm is a function of Y∗
rm satisfying

N∑
i=1

T∑
j=n+1

Ψ∗
ij(y

j−n+1,∗
ij ,u∗ij, xj;T

∗
rm) = OP ∗(

√
NT ) (4.12)

where Ψ∗
ij is analogous to that of Ψij. Since TNT is the parameter of the process from

which the bootstrap data is generated, it is not unreasonable to expect that T∗
rm is

√
NT

consistent, i.e.,
√

NT (T∗
rm −TNT ) = OP ∗(1). (4.13)

In fact, assuming compactness of the neighborhood around TNT , the application of the

Mean Value theorem to G∗
rm(T∗

rm) yields

OP ∗(1) =
√

rmG∗
rm(T∗

rm)

=
√

rmG∗
rm(T∗

NT ) +
√

rmĠ∗
rm(T̃)(TNT −T∗

rm)

where T̃ lies in between TNT and T∗
rm. Since Ġ∗

rm(T̃) is bounded then if rm/NT → 1 we

have
√

NT (TNT −T∗
rm) =

[
−Ġ∗

rm(T̃)
]−1√

NTG∗
rm(TNT ) + OP ∗(1). (4.14)

We then have the following result which establishes equivalence of bootstrap approximation

with the fixed point limiting distribution of the estimates.
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Theorem 5. Let ρ : R→ [0,∞) satisfy (A1)-(A3) and let the conditions similar to Theorem

1 hold. If {T·} ⊂ Θ denotes a sequence of
√

NT -consistent estimators for (Π, Σ) and

‖T− T̃1‖ ≤ ‖T− T̃NT‖ and ‖T− T̃2‖ ≤ ‖T− T̃∗
rm‖ then

d2(
√

NT ĠNT (T̃1),
√

rmĠ∗
rm(T̃2)) → 0 in probability (4.15)

and

d2(
√

NTGNT (TNT ),
√

rmG∗
rm(T∗

rm)) → 0 in probability (4.16)

Recall that the M-estimator we calculated before, under certain regularity conditions,

converges weakly to the normal law. The above expression along with (4.14) ensures that

the conditional distribution of
[
−Ġ∗

rm(t̃)
]−1√

NTG∗
rm(TNT ) also converges weakly to the

same normal law N(0,M−1ΛM) which is the asymptotic distribution of the M-estimates and

affirms the asymptotic validity of the bootstrap in this case.

Proof. We will prove the second assertion only with the first estimating equation. The proof

for the other estimating equation and the first assertion is tedious but follows the same line

of arguments.

The squared Mallows distance in (4.16)

{d2(
√

NTGNT (TNT ),
√

rmG∗
rm(T∗

rm))}2 = inf E‖
√

NTGNT (TNT )−√rmG∗
rm(T∗

rm))‖2.

(4.17)

Note that G or G∗ is a sum of two functions defined on two distributions depending on

whether xj = 1 or xj = 0. Hence the infimum has to be evaluated over {µε, µ̃NT} and

{µε + µΓ, µ̃NT + µ̂Γ}. It is clear that the right hand side of (4.17) has

≤ E

∥∥∥∥∥
1√
NT

N∑
i=1

T∑
j=n+1

Ψij(y̆
j−n+1
ij ,uij, xj;TNT )

− 1√
rm

r∑
i=1

m∑
j=n+1

Ψ∗
ij(y

j−n+1∗
ij ,u∗ij, xj;T

∗
rm)

∥∥∥∥∥

2

≤ 1

min{NT, rm}E

∥∥∥∥∥
N∑

i=1

T∑
j=n+1

u(d̆ij)Q
∗Ω−1

j r̆ij −
r∑

i=1

m∑
j=n+1

u(d∗ij)Q
∗∗Ω∗−1

j r∗ij

∥∥∥∥∥

2

.
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Let NT ′ = min{NT, rm}, N ′ = max{N, r}, and T ′ = max{T, m} then the right hand side

of the last equation is less than

1

NT ′E

∥∥∥∥∥
N ′∑
i=1

T ′∑
j=n+1

(u(d̆ij)− u(d∗ij))Q
∗Ω−1

j r̆ij

∥∥∥∥∥

2

+
1

NT ′E

∥∥∥∥∥
N ′∑
i=1

T ′∑
j=n+1

u(d∗ij)(Q̆
∗Ω−1

j r̆ij −Q∗∗Ω∗−1
j r∗ij)

∥∥∥∥∥

2

(4.18)

Each term of (4.18) can be split into two parts conditional on xj, for example the first term

given in the following, so that the expectation of each part is evaluated over its respective

distribution.

1

NT ′E

∥∥∥∥∥
N ′∑
i=1

T ′∑
j=n+1

(u(d̆ij)− u(d∗ij))Q̆
∗Ω−1

j r̆ij|xj = 0

∥∥∥∥∥

2

+
1

NT ′E

∥∥∥∥∥
N ′∑
i=1

T ′∑
j=n+1

(u(d̆ij − u(d∗ij))Q̆
∗Ω−1

j r̆ij|xj = 1

∥∥∥∥∥

2

(4.19)

Let c̆ be the mean of u(d̆ij) under µε and let c∗ be the mean of u(d∗ij) under µ̃NT . Since u

has a bounded and continuous derivative the MVT and Schwartz’s inequality immediately

imply

‖c∗ − c̆‖ ≤ sup
x
‖u′(x)‖‖d∗ij − d̆ij‖

≤ sup
x
‖u′(x)‖d2(µ̃NT , µε) (4.20)

Since ‖u′(x)‖ is bounded above and d2(µ̃NT , µε) → 0 in probability, then c∗ − c → 0 in

probability as well. Similarly,

d2(u(d̆ij), u(d∗ij)) ≤ sup
x
‖x‖d2(µεNT

, µ̃NT ) → 0 in probability (4.21)

Now consider the expansion of the first term on (4.19) dropping off the notation for its

dependence on xj

1

NT ′E

[
N ′∑
i=1

T ′∑
j=n+1

(u(d̆ij)− u(d∗ij)− c + c∗)Q̆∗Ω−1
j r̆ij

]>

×
[

N ′∑

k=1

T ′∑

l=n+1

(u(d̆kl)− u(d∗kl)− c + c∗)Q̆∗Ω−1
l r̆kl

]
(4.22)
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=
1

NT ′

N ′∑
i=1

T ′∑
j=n+1

E(u(d̆ij)− u(d∗ij)− c + c∗)2E‖Q̆∗Ω−1
j r̆ij‖2 (4.23)

Since, conditional on previous y values, rij is independent of rkl for i 6= k and j 6= l and the

wj’s are independent, while the inequality is by the fact that E‖XY ‖ ≤ E‖X‖E‖Y ‖. By

(4.20-4.21) the first minuend of (4.23) goes to zero in probability while the second minuend

is OP (1) since it can be seen as the estimating equation for ordinary least squares. In fact,

E[r̆>ijΩ
−1
j Q̆∗>Q̆∗Ω−1

j r̆ij] ≤ E[r̆>ijΩ
−1
j Ω−1

j r̆ij z̆
∗>
ij z̆∗ij]

= tr(Ω−1
j E[r̆ij z̆

∗>
ij z̆∗ij r̆

>
ij]Ω

−1
j ) (4.24)

and E[r̆ij z̆
∗>
ij z̆∗ij r̆

>
ij] = OP (1). The former assertion implies that given some ε there is a

positive number K such that when NT ′ ≥ K, |E[·]| ≤ ε, so that (4.23) is bounded by

(NT )−1ε
∑N ′

i=1

∑T ′
j=n+1 tr(Ω−1

j E[r̆ij z̆
∗>
ij z̆∗ij r̆

>
ij]Ω

−1
j ) and it can be seen, by the boundedness of

Ω−1
j , that (4.23) goes to zero in probability. Similarly, the second term of (4.19) also goes to

zero by the same arguments so that the first term of (4.18) goes to zero in probability.

Next we have to show that the second term of (4.18) also goes to zero in probability. To

do this we will find an upper bound for ‖Q̆∗Ω−1
j r̆ij − Q∗∗Ω∗−1

j r∗ij‖2. Since Q̆∗ is obtained

from z̆∗ij ⊗ Ip by deleting some rows, then

‖Q̆∗Ω−1
j r̆ij −Q∗∗Ω∗−1

j r∗ij‖2 ≤ ‖(z̆∗ij ⊗ Ip)Ω
−1
j r̆ij − (z∗∗ij ⊗ Ip)Ω

∗−1
j r∗ij‖2

= ‖vec(Ω−1
j r̆ij z̆

∗>
ij )− vec(Ω∗−1

j r∗ijz
∗∗>
ij )‖2

= ‖Ω−1
j r̆ij z̆

∗>
ij − Ω∗−1

j r∗ijz
∗∗>
ij ‖2

≤ ‖(Ω−1
j − Ω∗−1

j )r∗ijz
∗∗>
ij ‖2

+‖Ω−1
j (r̆ij z̆

∗>
ij − r∗ijz

∗∗>
ij )‖2 (4.25)

Since ‖r∗ijz∗∗>ij ‖ = OP (1) then the first term of (4.25) is bounded by |T − T∗
rm|OP (1). On

the other hand,

‖Ω−1
j (r̆ij z̆

∗>
ij − r∗ijz

∗∗>
ij )‖2 ≤ |Ω−1

j |2‖(y̆ij z̆
∗>
ij − y∗ijz

∗∗>
ij )‖2

+ |Ω−1
j |2‖ΠD∗z̆∗ij z̆

∗>
ij − Π̂D∗z∗∗ij z

∗∗>
ij ‖2 (4.26)
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and

‖ΠD∗z̆∗ij z̆
∗>
ij − Π̂D∗z∗∗ij z

∗∗>
ij ‖2 ≤ ‖(ΠD∗ − Π̂D∗)z∗∗ij z

∗∗>
ij ‖2

+ ‖Π̂D∗(z̆∗ij z̆
∗>
ij − z∗∗ij z

∗∗>
ij )‖2. (4.27)

Note that yij =
∑∞

h=0 γhεi,j−h + ωi for some ωi so that

z>ij =




1
∑∞

h=0 γhεi,j−1−h + ωi

...
∑∞

h=0 γhεi,j−n−h + ωi

ui

xj




. (4.28)

Then ‖(y̆ij z̆
∗>
ij − y∗ijz

∗∗>
ij )‖2 equals

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑∞
h=0 γhε̆i,j−h −

∑∞
h=0 γh(TNT )ε∗i,j−h + ωi − ω̂i

∑∞
h=0 γhε̆i,j−1−hε̆

>
i,j−1−hγ

>
h −

∑∞
h=0 γh(TNT )ε∗i,j−1−hε

∗>
i,j−1−hγ

>
h (TNT ) + ωiω

>
i − ω̂iω̂

>
i

...
∑∞

h=0 γhε̆i,j−n−hε̆
>
i,j−n−hγ

>
h −

∑∞
h=0 γh(TNT )ε∗i,j−n−hε

∗>
i,j−n−hγ

>
h (TNT ) + ωiω

>
i − ω̂iω̂

>
i∑∞

h=0 γhε̆i,j−hui −
∑∞

h=0 γh(TNT )ε∗i,j−hu
∗
i + ωiui − ω̂iu

∗
i∑∞

h=0 γhε̆i,j−hxj −
∑∞

h=0 γh(TNT )ε∗i,j−hxj + ωixj − ω̂ixj

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(4.29)

which is less than

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑∞
h=0(γh − γh(TNT ))ε∗i,j−h + ωi − ω̂i

∑∞
h=0(γh − γh(TNT ))ε∗i,j−1−hε

∗>
i,j−1−h(γh − γh(TNT ))> + ωiω

>
i − ω̂iω̂

>
i

...
∑∞

h=0(γh − γh(TNT ))ε∗i,j−n−hε
∗>
i,j−n−h(γh − γh(TNT ))> + ωiω

>
i − ω̂iω̂

>
i∑∞

h=0(γh − γh(TNT ))ε∗i,j−hui + (ωi − ω̂i)u
∗
i∑∞

h=0(γh − γh(TNT ))ε∗i,j−hxj + (ωi − ω̂i)xj

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2
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+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑∞
h=0 γh(TNT )(ε̆i,j−h − ε∗i,j−h) + ωi − ω̂i

∑∞
h=0 γh(TNT )(ε̆i,j−1−hε̆

>
i,j−1−h − ε∗i,j−1−hε

∗>
i,j−1−h)γh(TNT ) + ωiω

>
i − ω̂iω̂

>
i

...
∑∞

h=0 γh(TNT )(ε̆i,j−n−hε̆
>
i,j−n−h − ε∗i,j−n−hε

∗>
i,j−n−h)γh(TNT ) + ωiω

>
i − ω̂iω̂

>
i∑∞

h=0 γh(TNT )(ε̆i,j−hui − ε∗i,j−hu
∗
i ) + ω̂i(ui − u∗i )∑∞

h=0 γh(TNT )(ε̆i,j−h − ε∗i,j−h)xj

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(4.30)

Let C, κ, and ϑ be appropriately chosen constants. Then we have the following bounds

|γh| ≤ Cκν ν ≥ 0 (4.31)

|γh − γh(TNT )| ≤ C|T−TNT |ϑν ν ≥ 0 (4.32)

|γh(TNT )| ≤ C|T−TNT |κν ν ≥ 0. (4.33)

Consequently,

∥∥∥∥∥
N ′∑
i=1

T ′∑
j=n+1

(y̆ij z̆
∗>
ij − y∗ijz

∗∗>
ij )

∥∥∥∥∥

2

≤ C|T−TNT |2 + N−1C

N∑
i=1

|Γi − Γ̂i|2

+ C‖ε̆ij − ε∗ij‖2 (4.34)

The bound for ‖∑N ′
i=1

∑T ′
j=n+1(z̆ij z̆

∗>
ij − z∗ijz

∗∗>
ij )‖2 can be obtained similarly.

Now consider the expansion of the second term of (4.18)

1

NT ′E

∥∥∥∥∥
N ′∑
i=1

T ′∑
j=n+1

u(d∗ij)(Q̆
∗Ω−1

j r̆ij −Q∗∗Ω∗−1
j r∗ij)

∥∥∥∥∥

2

≤ 1

NT ′E

∥∥∥∥∥
N ′∑
i=1

T ′∑
j=n+1

(u(d∗ij)− c + c∗)(Q̆∗Ω−1
j r̆ij −Q∗∗Ω∗−1

j r∗ij)

∥∥∥∥∥

2

+
1

NT ′E

∥∥∥∥∥(c∗ − c)
N ′∑
i=1

T ′∑
j=n+1

(Q̆∗Ω−1
j r̆ij −Q∗∗Ω∗−1

j r∗ij)

∥∥∥∥∥

2

. (4.35)

Using the same arguments from (4.23-4.24), and by the results obtained in (4.25-4.27, 4.34)

as well as ‖ε̆ij − ε∗ij‖2 = d2
2(µε, µ̃NT ) then it can be seen that the second term of (4.18) goes

to zero in probability.
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The ensuing result implies that

√
NT (T∗

rm −TNT ) ∼ N(0,M−1ΛM−1). (4.36)

Furthermore, since T∗
rm is essentially an M-estimate then

√
NT (T∗

rm−T ) ∼ N(0,M−1ΛM−1).

Therefore, if V denotes M−1ΛM−1 and since VNT = M−1
NT ΛNTM−1

NT converges weakly to V

then we have

sup
x
‖P ∗{

√
NTV

−1/2
NT (T∗

rm−T) ≤ x}−P{
√

NTV
−1/2
NT (TNT −T) ≤ x}‖ → 0 in probability.

(4.37)
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5.0 SIMULATIONS AND APPLICATION TO NEUROIMAGING DATA

Robust estimation in multivariate data models has been considered one of the most difficult

problems in the robust literature [79]. This is even more challenging with multivariate

time series models when autoregressive dependence in observations cannot be ignored. In

this chapter, we apply the estimation procedure for the model specified in Chapter 2 both

on real and simulated data. The simulated data considers two different types of outlier

contamination to see how the estimation works under such circumstances. Some remarks

are given initially with regards to some nuances in its computation.

5.1 NUMERICAL ISSUES

When minimizing (2.18), one must choose a function ρ satisfying the conditions set in Chap-

ter 2. Although there is a broad class of functions one can choose from, we limit our choice

to those whose derivatives redescend to zero when its argument is large. One popular choice

is given by

ρB,k(x) =





k2

2
(1− (1− x2

k2 )
3), |x| ≤ k

k2

6
, |x| > k

(5.1)

and its derivative is the Tukey biweight function ψB,k(x) = k2x(1 − x2

k2 )I(|x| ≤ k). Note

that (5.1) depends on the positive tuning parameter k which is actually associated with the

asymptotic efficiency and breakdown point properties of the redescending M-estimator. For

lack of information on its optimal value we will just assume a particular value based on the

scalar multiple of the median of the squared residuals.
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The choice of the ρ function also has implications both on the existence of the solution

and to the numerical computation alike. For strong redescenders, such as the one given

above where ψ(x) = 0 for large x, |Ωj| → −∞ and so the value of (2.18) also goes out of

bounds. Therefore it may seem that no solution exists to the minimization problem or if such

a solution exists it may not be quite desirable. A similar result can happen when one uses an

initial estimate which is far from the global minimizer. The residuals obtained are usually

large, thus are assigned zero weights by a strongly redescending ψ. Consequently, (2.19) and

(2.20) are close to zero and the optimization terminates prematurely at an unsatisfactory

solution.

To obtain good initial estimates, a resampling scheme can be adopted based on the the

techniques used by Rousseeuw and Leroy [86] and Arslan et al. [4]. The strategy finds good

initial points with non-zero gradients that catch the global minimum with good probability.

Reasonable ΠD∗
0 values can be obtained by simplified fitting using a small subset of the

N(T − n) rows of the design matrix. If ps parameters need to be estimated, we can pick

N(ps + q) equations, i.e., ps + q equations for every cross-section where q is some small

number, at random each time generating a system to be solved for ΠD∗. The goal is to get at

least some samples in each cross-section without outliers, giving good starting points from

where the global minimum can be identified. However, the cross-sectional structure of the

data may require a large number of generated samples to be assured of at least one “good

sample”. In fact, if we assumed that the fraction of outliers is 1% distributed uniformly

among the cross-sections and the number of parameters to be estimated is 27, we may have

to generate some 366 samples to be within 80% sure of getting at least one “good sample”.

If structure in the data is ignored, this number can be significantly reduced.

Once the initial estimates are set, the optimization can proceed by solving (2.19) and

(2.20) jointly. We recommend, however, a two-stage iterative approach since convergence is

more consistent. We have encountered examples when optimization on the whole parameter

space failed to converge but was able to optimize in the partitioned approach with ease. In

this approach, when Σε and ΣΓ are held fixed, we can simplify (2.19) to solve for ΠD∗ in the
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following

N∑
i=1

T∑
j=n+1

ψ(dij)vec(Q∗Ω−1
j yij) =

N∑
i=1

T∑
j=n+1

ψ(dij)vec(Q∗Ω−1
j ΠD∗zij) (5.2)

=
N∑

i=1

T∑
j=n+1

ψ(dij)(zij ⊗Q∗Ω−1
j )vec(ΠD∗). (5.3)

So that

vec(ΠD∗) =
N∑

i=1

T∑
j=n+1

ψ(dij)R
−1(zij ⊗Q∗Ω−1

j )yij (5.4)

where R =
∑N

i=1

∑T
j=n+1 ψ(dij)(zij ⊗ Q∗Ω−1

j ) We then substitute this estimate to (2.20)

to obtain updated estimates of Σε and ΣΓ. The drawback to this procedure is that it can

generally be slow. A multivariate analog of the one-dimensional line search method by Arslan

et al. [4] for Σε and ΣΓ while minimizing for ΠD∗ can be adopted to accelerate it but the

derivatives can be so complicated to be helpful.

5.2 SIMULATIONS

To illustrate the estimation procedure, we generated an artificial data set that is contami-

nated with two distinct outlier types: innovations outliers (IO) and additive outliers (AO).

The observations were generated using the following replacement scheme: let the observed

series be given by

zij = yij + νij (5.5)

so that autoregression is not perfectly observed and where

yij = µ + µg + D(Π + Πg)yi,t−1 + Γiwj + Υui + εij (5.6)

and νij is an independent sequence of variables and independent of the sequence yij. The in-

novation sequence εij is independent and identically distributed with symmetric distribution

G which, in our case, is a mixture of two concentric normal distributions given by

G = (1− ε)N(0, Σε) + εN(0, cΣε). (5.7)
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The variables νij, on the other hand, have distribution H, given by

H = (1− ε)δ0 + εB, (5.8)

where δ0 is the atomic distribution that assigns probability 1 to the origin and B is an

arbitrary distribution chosen to be a Bernoulli distribution that assigns probability π to a

vector of constants C and 1− π to −C. As for the other variables and fixed parameters in

the model, we assume a univariate input covariate uij which has a value of 1 or 0 for some

time duration so that its covariance is given by ΣΓ = σ2⊗ Ip. This specification of the input

covariate mimics the stimulus in the real data set. Finally, a matrix constraint is chosen

arbitrarily.

The magnitude and proportion of outliers present in the data poses a difficult task for

the redescending M-estimation (RM) procedure. Yet despite the situation, we can see from

Table 1 that the RM-estimates are reasonably close to the true parameters compared to the

maximum likelihood estimates whose estimates succumb to the bias caused by the contam-

ination. In fact, the RM procedure still works well even in the presence of additive outliers

which is generally considered more unwieldy than innovational outliers since small propor-

tions of the former can already cause large bias. However, the estimates of the autoregressive

parameters Π and Πg tend to shrink toward zero, confirming the same observation noted

by Denby and Martin [31, 67] within the univariate time series setting. This is because the

contamination causes the data to “look like” multivariate white noise. The ML estimate of

σ2 is even negative which implies that in the presence of severe contamination the random

effect becomes unidentifiable. On the other hand, the standard deviation (in parenthesis)

obtained from RM estimates are, generally, larger than the ML estimates. This arises be-

cause the values of the Hessian matrix become smaller when observations are bounded than

when they are not, hence its inverse will have larger values.

In figure 3 the trajectory of cross-section SH08’s time series at three locations is shown.

Note that the 1-0 stimulus is no longer distinguishable in all locations when contamination is

present. In the figure, the predicted values using RM estimates are usually resistant against

peaks and maintains a conservative prediction along the mean of the series. Although at first

blush, one might have the impression that the prediction is too conservative since second
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True ML RM True ML RM

µ1 0 0.1632 -0.0160 γ1 0.150 -0.0195 0.0058

(0.1286) (0.1563) (0.0369) (0.0436)

µ2 0 0.0580 -0.0443 γ2 0.100 0.1089 0.0142

(0.1296) (0.1497) (0.0372) (0.0432)

µ3 0 0.1493 -0.0191 γ3 -0.050 0.0051 -0.0211

(0.1269) (0.1461) (0.0364) (0.0430)

µg1 0.050 0.0831 0.0459 τ1 0.005 0.0032 0.0052

(0.0382) (0.0447) (0.0024) (0.0029)

µg2 -0.010 0.0286 -0.0198 τ2 -0.003 -0.0050 -0.0024

(0.0375) (0.0436) (0.0024) (0.0028)

µg3 0.030 0.0325 0.0428 τ3 0.001 -0.0014 0.0018

(0.0367) (0.0434) (0.0024) (0.0027)

π11 0.250 0.1979 0.2765 πg11 0.100 0.0704 0.0640

(0.0134) (0.0187) (0.0196) (0.0245)

π22 0.300 0.2135 0.2685 πg22 -0.150 -0.1273 -0.1467

(0.0142) (0.0199) (0.0201) (0.0269)

π33 0.350 0.3167 0.3398 πg33 0.150 0.0513 0.1518

(0.0128) (0.0216) (0.0192) (0.0282)

`1 0.800 1.8078 0.7824 `4 0.800 1.7727 0.7824

(0.0145) —— (0.0153) ——

`2 0 0.4243 -0.0401 `5 0 0.3413 -0.0256

(0.0185) (0.0213) (0.0172) (0.0210)

`3 0 0.5533 -0.0120 `6 0.800 1.6629 0.7541

(0.0177) (0.0215) (0.0137) ——

σ2 0.300 -0.0433 0.2667

(0.0468) ——

Table 1: True and estimated parameters of (5.6) using maximum likelihood (ML) and

redescending-M (RM) estimation in the presence of innovation and additive outliers.
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Figure 3: Time course of cross-section SH08 at three different locations.

location does not vary that much, it must be noted that this effect is actually attributed

to the low magnitude of the linear combination of the observations when the parameter

weights are negligible. On the other hand, figure 4 shows the residual time series from each

location of the same cross-section. All the residual trajectories generally behave like white

noise except for some spurious spikes. These spikes are obtained when the estimated model

is fitted into the data wherein the robust procedure provides good prediction for “good data”

and does not try to fit outliers. Hence the effect of the contamination does inflate prediction

but remains in the heavy-tailed error distribution as shown by the quantile plot.

5.3 NEUROIMAGING DATA

In brief, the experiment was performed on a 3-T MRI scanner on 19 subjects. These subjects

come from two groups: individuals who showed large cardiovascular reactions from an prior
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Figure 4: Residual time course and residual qqplot of cross-section SH08 at three different

locations.

test battery, categorized as High Reactors and those who showed small cardiovascular reac-

tions, categorized as Low Reactors. The stimulus involved was a modified Stroop color-word

interference task where subjects were presented with a sequence of color words on a visual

display and they are to determine the color in which the target word was shown as quickly

and as accurately as possible. The task has two conditions: congruent and incongruent so

that for all of the trials of the Congruent condition, the color of the target word and the

identifier words are the same with the color in which the target word appears, while for all

of the trials of the Incongruent condition, the color of the target word and the identifier

words are incongruent with the color in which the target word appears (see figure 5) . The

subjects complete eight 90-second blocks of each condition (8 Congruent, 8 Incongruent) in

an alternating fixed order, beginning with the incongruent condition. This gives 60 images

for each block for a total of 960 images for the whole experiment.

After image preprocessing, a two level mixed-effects parametric modulation analysis [20]

was implemented using Statistical Parametric Mapping (SPM) to examine the correlation
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Figure 5: A Modified Stroop color-word interference task showing the incongruent and con-

gruent condition.

between the amplitude of the fMRI BOLD hemodynamic response and the concurrent level

of mean arterial pressure across the 8 congruent and 8 incongruent blocks. In the first level

analysis, each subject’s observed BOLD responses were correlated with the hemodynamic

response convolved MAP. The resulting SPM(t) images from each subject were aggregated

to obtain regions in which greater BOLD response amplitudes correlated with a concurrently

high level of MAP. Some of the regions activated are the insular cortex, the anterior cingulate,

and the perigenual cingulate shown in figure 6. A representative time series defined by

the first eigenvariate was then extracted and processed from each of these regions for all

individuals.

With these time series, we want to investigate the dynamic behavior and mutual pre-

dictability of the BOLD response at each location based on its recent past as well as how

information from other regions are utilized to gain better prediction at that location. Based

on initial investigations on an acceptable model order, we came up with n = 3 and m = 1 for

the model in (2.2). The modified AIC, however, recommends a much higher autoregressive

order but for the sake of parsimony and from correlation results on lagged residuals on some

individuals (see for example figure 8, column 3), the chosen AR order maybe sufficient. A
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Figure 6: Sagittal slice of the brain showing regions in which greater hemodynamic BOLD

response amplitudes correlate with concurrent greater levels of MAP during the Stroop

color-word interference task.

more thorough investigation is perhaps needed with regards to this problem. On the other

hand, the effect of the stimulus on the response becomes linear with longer time durations,

such as in block designs, so that it is not necessary to use lagged terms on the stimulus part,

i.e. m = 1 is satisfactory. Hence, the model we will be working on is given by

yij =
3∑

h=1

Dh(Π
diag
h + Πdiag

h(g))yi,j−h + Γixij + Υui + εij (5.9)

where the non-time varying ui is chosen as the age of subject i. The mean of each subjects

multiple time series has been removed so we shall no longer include an intercept term. The

ML and RM estimates of this model are given in Table 2 where the constraint matrix used

are the robust autocorrelations up to lag 3 given by

D1 =




1.0000 0.3269 0.1869

0.3472 1.0000 0.1943

0.1614 0.1618 1.0000


D2 =




1.0000 0.2868 0.1586

0.2838 1.0000 0.1302

0.1458 0.1073 1.0000



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D3 =




1.0000 0.2541 0.1606

0.2567 1.0000 0.1637

0.1197 0.1208 1.0000


 .

The predicting equations for each location up to grouping can be obtained using (5.9).

A plot of the predicted values, using RM estimates, for each location’s time series course

of subject H20 is shown in figure 7. By inspection, the predictions generally have good fit to

the data and the model choice is appropriate since the residuals behave like white noise (see

figure 8) and the lagged correlation between the residuals is almost zero. The latter remark

can be verified by looking at the residual vs. lagged residual plot in figure 8 where the points

concentrate elliptically about the origin. This implies that most of the serial information

has been removed or accounted for in the model. The plots also show a feature of robust

estimation that it exposes the outliers far from the bulk of the data.

Since the asymptotic distribution of the estimates have are complicated closed forms

and are not accurate in the presence of contamination, bootstrap approximations that are

applied directly to the RM-estimator were calculated over 2500 bootstrap samples. The

quantile plots of the estimates are displayed in figures 9-10. The median of the bootstrap

distribution for each parameter can be easily inferred from the plot. The overall shape of

the plots are close to normal at the core and elongated at the tails. In fact, there is also

some evidence of right skewness if one looks at the empirical histogram (not shown here) and

supports the fact that the asymptotic distribution maybe unacceptable for use in inference

which intrinsically relies on tail probabilities. On the other hand, bootstrap distribution for

both the error and random effect variance are difficult to obtain since they easily get trapped

at the initial estimate when it is close to the minimizer of the likelihood.

How do all these estimates relate to the question of temporal dynamics in the brain

data? Temporal information in vector autoregressive models are obtained from the auto-

and cross-covariance functions which are used to estimate the coefficients at different time

lags. In this model, estimation of these coefficients are based on the constraint weighted

auto- and cross-covariance functions and hence temporal information are also influenced by

the constraint used. Temporal profile of the weighted coefficients characterize the temporal
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ML RM ML RM

π1,11 0.3017(0.0150) 0.3567(0.0571) π1,11(1) -0.0378(0.0186) 0.0100(0.1136)

π1,22 0.3026(0.0182) 0.3123(0.0435) π1,22(1) -0.0608(0.0210) 0.1025(0.0660)

π1,33 0.3437(0.0160) 0.2919(0.0409) π1,33(1) 0.0139(0.0203) 0.0635(0.0619)

π2,11 0.1886(0.0155) 0.2133(0.0398) π2,11(1) -0.0654(0.0190) 0.0018(0.0583)

π2,22 0.2298(0.0185) 0.2355(0.0474) π2,22(1) -0.1393(0.0213) -0.0875(0.0612)

π2,33 0.3224(0.0158) 0.4415(0.0450) π2,33(1) -0.0750(0.0204) -0.0128(0.0609)

π3,11 0.0997(0.0148) 0.0426(0.0483) π3,11(1) 0.0580(0.0183) 0.0412(0.0560)

π3,22 0.1358(0.0178) 0.0969(0.0465) π3,22(1) 0.1121(0.0206) -0.0482(0.0478)

π3,33 0.1287(0.0157) 0.0831(0.0353) π3,33(1) -0.0064(0.0199) 0.0082(0.0436)

γ1 0.0425(0.0124) 0.0467(0.0253) τ1 -0.0003(0.0001) -0.0006(0.0003)

γ2 0.0535(0.0182) 0.0946(0.0320) τ2 -0.0004(0.0002) -0.0010(0.0004)

γ3 0.1540(0.0192) 0.0659(0.0315) τ2 -0.0011(0.0002) -0.0002(0.0004)

`1 0.5783(0.0049) 0.3181(——) `4 0.6854(0.0061) 0.2616(——)

`2 0.5045(0.0084) 0.3903(0.0126) `5 0.1480(0.0089) -0.0463(0.0148)

`3 0.3435(0.0093) 0.1772(0.0138) `6 -0.8163(0.0065) -0.4370(——)

σ2 0.0205(0.0052) 0.4926(——)

Table 2: ML and RM estimates of the parameters of (5.9).
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Figure 7: Hemodynamic BOLD response and predicted BOLD response of subject H20 at

three different locations over time.

dependencies of the locations. When the constraint used is based on the correlation which is

geometrically bounded over lags then one’s influence over another cannot exceed its influence

onto itself. Moreover, this influence exerted on another location is only proportional to its

dependence on its past. Temporal decay of weighted coefficients happen much faster than

in the classical vector autoregressive model. On the other hand, oscillations within location

and between locations can happen in two ways, either due to the cross-correlation or the

oscillatory movement of the influencing location itself.

Connectivity among the set of preselected regions depends on the constraint matrix used.

The diagonal elements of Πh are self connections or the dependence of one location on its

past. Since the upper and lower diagonal elements are constrained to be zero then the feed-

forward and the feed-backward influence of a location depends on the propagation of self

connections through the constraint matrix. Therefore, if a spatially informed matrix is used

then connectivity is directed if there is spatial connection between locations. In the case when

the auto- and cross-correlation are used, connectivity can be assessed by the significance of
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Figure 8: Residual diagnostic plots. First column: Univariate residual time course at three

different locations of subject H20. Second column: qqplot or the residual series against the

standard normal quantiles. Third column: residual (t) vs. lagged residual (t− 1) plot.
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Figure 9: The QQ-plots of the autoregressive parameters.

Figure 10: The QQ-plots of the group-related autoregressive parameters.
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the linear combination of the coefficients across all time lags. Generally, the cross-correlation

between location is still significant even if the weighted parameter is already negligible. On

the other hand, feedback within location can be determined using the bootstrap distribution

in figure 9. In the figure, one can infer that, on average, the strength of dependence of the

left insula and the anterior cingulate on their respective past decays over time except for the

perigenual cingulate where the strength of dependence reaches an optimal values at lag 2 (3

secs) and implies delay in the reaction and processing of information in this location.

Other nonlinear interactions such as modulatory interaction whereby one location affects

the connection between two other locations can be modelled using bilinear terms [43], a

term obtained by taking the product of the observations of the modulating and influencing

location over time. Delay in the modulation is obtained by taking the product of the lagged

observation of the influencing location with the current value of the modulating location.

This technique is, however, limited to such types of interaction. There are many other

situations where it can be rendered useless, e.g. inhibiting feedback. In this setting, suppose

locations A influences B but but B reciprocates an effect to A. Working individually A and

B influences location C but the controlling or inhibiting effect of B on A cancels their joint

effect on C. It is obvious that this cannot be modelled through bilinear terms. This requires

a more elaborate technique which will be a topic for future investigations.

Changes in the connectivity induced by group differences failed to attain desired signifi-

cance levels. For High Reactors, the anterior cingulate tends (but not significant) to have a

stronger dependence on itself, which is transmitted also on all the other locations, than for

Low Reactors.
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6.0 CONCLUDING DISCUSSION

In the preceding chapters, we showed the Constrained Mixed-VARX model in terms of its

specification, estimation, asymptotic theory, and bootstrap inference and applied it to a

neuroimaging data. In this chapter, we will summarize the results presented and elucidate

some research problems that can be pursued in the future.

6.1 SUMMARY

Clinical data usually consists of observations or signals recorded from several subjects nested

within naturally occurring groups. One important statistical task is to combine information

obtained from each subject’s data within these groups. The usual problem, pointed earlier

in this manuscript, is that data across individuals or panels is usually not homogeneous so

that imposing the homogeneity assumption can be too restrictive and is likely to be violated

in practice. For example, each individual adopts varying cognitive strategies or the brain

adopts degenerative solutions to perform the same controlled stimulus which may be reflected

in differences in their hemodynamic BOLD response associated to that task. Heterogeneity,

in this situation, might be a bane but this information can actually be helpful because it

reveals how certain factors affect a cross-section specifically and, in some cases, might even

reveal an irregularity. For instance, in the study of growth curves of certain quantities

relating to pregnancy [64] it is important to account for individual effects to see if there are

deviating quantities as this maybe a sign of a pathologic condition. These examples point

out that accounting for individual heterogeneity is an important question in the analysis and

aggregation of cross-sectional data.

61



Despite prevailing heterogeneity, it is logical to ask if it is still possible to determine a

consistent model across subjects and groups? In the same way, is it possible to obtain a

consistent network influences in the brain while still allowing individual variation? Numer-

ous approaches have been used to answer this question, e.g. characterizing the network by

analyzing each subject separately. However, this approach sometimes lead to inconsistent

results [35, 72] and clinical and demographic variables cannot be included. Moreover, aggre-

gation using the ordinary arithmetic average among resulting separate regression estimates

can be heavily biased with just one corrupt individual estimate.

In the application described herein, we have used an aggregation scheme using techniques

in random effects analysis to accommodate individual heterogeneity. The random effect

specification reduces the number of parameters to be estimated substantially in comparison

to individual regressions while still allowing the coefficients to differ from cross-section to

cross-section. Hence, the model is equivalent to postulating a separate regression for each

cross-sectional unit but that some of the free coefficients are assumed to have come from a

certain hypothesized distribution. On the other hand, this stipulation also provides some

method for modelling the cross-sectional units as a group and gives consistent patterns of

influences while allowing one to relate clinical and demographic variables to the response.

Prediction of subject specific variation is obtained via empirical Bayes based upon consistent

estimates of group parameters and with the assumption that the observations are condition-

ally independent given their past. These random effects predictions are shrinkage estimators

in the sense that their variance diminishes in the presence of data and moreover, they are

the best among the class of linear unbiased predictors.

Another important devise used in this application pertains to modelling general dynamic

behavior of the vector series where the components of the vector series are spatially informed

or at least there is an a priori physical correlation other than that which is associated with

temporal sequencing. This complicates correlativeness of observations since it is not only

due to adjacency in time but also because of some other physical phenomenon be it known

or unknown. The method used here asks for an informative constraint to the autoregressive

parameter to provide an alternative approach to describing interregional dependence among

multiple time series cross-sectional data. It is based on space-time ARMAX (STARMAX)
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by Stoffer [93] who successfully used it in spatial time series from a geophysical standpoint.

The technique, whereby off-diagonal autoregressive parameters are set to zero, essentially

removes redundant off-diagonal parameter components and effectively reduces the number

of parameters to be estimated. As a result, the model is more flexible in the sense that

higher order lags can be explored for longer dependence or the vector observation can be

augmented through bilinear terms to model some nonlinear interaction can be pursued.

The constraining approach actually follows an interesting heuristic argument. In general

the autoregressive parameters in an ARMAX model are derived through the auto- and cross-

covariance functions. Since these quantities can be estimated prior to estimating the model,

it is helpful if one uses separate regressions among the vector components and let them

correlate through the auto and cross-covariance functions or by any matrix that provides

information on how these components are related. Some types of constraints were described

in the course of the discussion but we focused on the autocorrelation since this is the same

quantity the autoregressive estimates are derived from. In addition, the auto- and cross-

correlation incorporates both temporal and spatial dependence among locations, i.e., both

types of dependence are collapsed into this single quantity.

While one could use usual estimation techniques for the parameters of the constrained

model, we believe upon inspection of the marginal univariate time series from each location

that a robust procedure is advantageous as the data is contaminated by sporadic outliers. In

this study, we showed that the redescending M-estimation is a valuable tool in estimating the

parameters of multiple time series because is resistant to the effects of aberrant observations.

From the simulation that was done, the method performed very well compared to the classic

maximum likelihood estimation when the data is contaminated with both additive and inno-

vational outliers. Additive outliers are generally more unwieldy since it inflates a sequence

of innovations, and more alarmingly, may create a pattern into the residuals. Moreover,

the method exceeded expectations that it would breakdown easily because of the inherent

cross-sectional structure of the data albeit more investigations are needed to determine the

amount of contamination this method will eventually fail.

From a theoretical standpoint, we have shown that the general estimation procedure,

assuming stationarity, ergodicity and equivariance, can actually be obtained through M-
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functionals. The M-functional is a function whose expectation is zero at the solution. In this

problem, the M-functional has a compound form due to an alteration on the distribution

depending on which condition the observation happened. Depending on the type of bounding

function, this functional may admit multiple solutions, yet a desirable solution can actually

be determined and in fact this solution is consistent as long as the variance does not become

degenerate. Moreover, assuming consistency and uniqueness of the functional at a certain

neighborhood, the infinitesimal contribution of a single observation on to the estimates

through the M-functional can be obtained by differentiating the statistical functional with

respect to the contamination. It was shown that this functional, both true and empirical,

are actually bounded when a redescending bounding function is used both for the fixed and

variance parameters. Thus, we expect that the effect of a single observation on the estimates

remains bounded. The same influence functional can be used to obtain the asymptotic

distribution of the estimates.

Inference on the parameter estimates were obtained through bootstrap approximation

which gives their limiting distribution conditional on the data. Many papers on robust

estimation use this method instead of the limiting distribution because it gives a better

approximation of the true distribution in the presence of contamination. In this approach,

we adopted the conditional iid resampling scheme for innovations and generated data by

reconstructing the series through these sampled innovations. Innovations were grouped by

subject instead of pooling them altogether and the M-estimate was obtained from each

bootstrap sample. We showed that this scheme actually follows the bootstrap principle that

the empirical distribution of the innovations and the random effects are good approximations

of their corresponding true distributions using the Mallow’s metric. In this way any bootstrap

sample does not cause a bias that does not vanish even in large samples. We also showed that

the limiting distribution of some functions of the estimating equations actually converge to

the derived limiting distribution asymptotically. Unfortunately, this technique is generally

slow. In large samples, alternative methods can be used through bootstrapping the fixed

point representation of the influence functional, i.e., reconstructing the distribution not by

naive estimation but from bootstrap approximations of the“estimating equations”.

Lastly, we also proposed an alternative model selection scheme since the bootstrap dis-
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tribution requires that the correct specification of the model is used so that the distribution

is not biased. This proposition still needs to be improved and will be discussed later in this

chapter.

6.2 FUTURE WORK

6.2.1 Aggregative Methods

In most imaging studies, a typical estimate of group activity is obtained by averaging in-

dividual subject estimates. This could have been an easy and effective approach if all the

estimates are “nice”, i.e. it follows desired distributional assumptions, but since this rarely

happens in practical clinical applications, the resulting estimate can be be greatly distorted

with just one corrupt estimate. One can overcome this problem by using a more robust

estimator but one can also use a data-adaptive strategy which give, as a group estimate, a

linear combination of the individual estimates, where the coefficients are chosen adaptively

from the data. This approach follows an easy procedure: (1) initial subject-specific esti-

mates are computed, e.g. data fusion models with spatiotemporal structure such as Dale

[30]; then (2) group estimate is computed as a weighted average of subject estimates with

data dependent weights. Bunea, Ombao and Auguste [21] argued that using the weighted

average of the curves, rather than the arithmetic average, reduces the bias introduced by

denoising (or smoothing) in the subject estimates and at the same time avoids the poten-

tial problem of distortion that can be caused by some corrupted individual estimates. In

fact, they showed that the data-adaptive estimate of a group mean function is superior (in

minimax error sense) to the arithmetic average.

We can reconstruct the problem we presented in the previous chapter in the following

general context while avoiding robust estimation. Given N data sets {Yi}N
i=1 such that each

subject Yi = (yi1, . . . ,yiT ), a matrix of size p× T , and can be either an observed signal or

brain activity at each voxel in a brain surface or volume over time. Suppose that Yi follows

the general model Yi = fi + εi, where fi = g + hi denotes the subject specific mean, g the
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group specific fixed effect, hi the random effect which is associated with the deviation of

the individual from the group-specific function, and εi is the error which can be correlated

within subject. Then, the first step of the data-adaptive procedure gives N smoothing

estimates {f̂i}N
i=1. The second step, accomplished by finding weights in an adaptive way,

uses the following solution: use data set from the N -th subject and fit the linear model with

response YN and covariates f̂1, . . . , f̂N−1. This can be repeated N times using the leave-

one-out strategy so that the aggregate is not dependent on the particular choice of data.

Each partial aggregate is defined as f̃ i =
∑

` 6=i ŵ`f̂`, where ŵ` is the minimizer over w of the

complexity penalized least squares

1

T

T∑
j=1

(
yij −

∑

` 6=i

w`f̂`

)> (
yij −

∑

` 6=i

w`f̂`

)
+ pen(w). (6.1)

Then ĝ = 1
N

∑N
i=1 f̂i and the subject specific deviation will be predicted by subtracting the

aggregated group estimate from the individual estimates. Variance of the parameters can

be estimated using standard mixed effects procedures. The penalty term in (6.1) has some

theoretical motivations, e.g. LASSO-type, which results in an aggregate having the highest

level of accuracy among other possible aggregates [22] in the fixed effects model.

Then we have the following goals: (1) compare the results of the current approach

with this data adaptive algorithm; (2) explore different penalty functions such as LARS

and investigate their associated accuracy particularly in the mixed case; and (3) incorporate

constraints on coefficients and develop a way of using the same aggregating scheme on signals

coming from different modalities.

6.2.2 Space-time Modelling

The emergence of a wide range of physical processes that involves variability over space

and time generated a tremendous growth in developing statistical models and techniques to

analyze spatio-temporal data. Examples of spatio-temporal processes include applications

in modelling space-time patterns of disease and disease risk [60], population dynamics in

ecology [32]; monitoring office unit price distributions [97], characterizing changes in space-

time pattern of brain signals [100], among others. In all of these applications, the models
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attempt to provide a probabilistic framework for the analysis and prediction that is built on

the joint spatial and temporal dependence of the observations.

For the spatio-temporal data adopted in this study, the model is created through a

spatial augmentation of a model initially developed for temporal distributions. The special

characteristic of this model is that it does not try to create a continuous space over which

the time series are observed. In some applications, such as electroencephalogram (EEG)

recordings or extracted blood oxygenated level dependent (BOLD) responses from several

brain regions, interpolating information or function at an unknown location does not make

any sense. However in more general applications, e.g. determination of space-time trends in

the deposition of pollutants [87, 73], monitoring ozone concentrations [39], characterization

of space-time variability of temperatures [41] etc., where the goal is to make predictions at

some unknown location given a network of observation stations, the model we presented may

not be helpful at all. To date, analytic tools that support both temporal and spatial analysis

of data over continuous space and discrete time are still sorely lacking. The following is just

an attempt to model space-time data in the cross-sectional case.

Consider the model for one subject given by (2.1). Using the state-space representation,

this model can be written in the following observation equation and state equation

zi,j+1 =


 D1Π1 . . . DhΠh

I(h−1)p×(h−1)p 0(h−1)p×p


 zij +




DΠ1

...

DhΠh


 εij, (6.2)

yij = [I, . . . , I︸ ︷︷ ︸
p×(h−1)p

,0]zij +
m∑

k=0

Γikxj−k + Υui + εij, (6.3)

which can be written in the general form

zi,j+1 = Pzij + Kεij (6.4)

yij = H>zij + Γixj + Υui + εij (6.5)

where H and Υ are fixed parameter vectors, Γi is the random effect parameter, P is the

transition matrix, K is the innovation coefficient matrix, zij is the state vector, yij is the

observation vector, and ε is the observation error. This general framework can be augmented
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by featuring some dominant components of variation in (6.5) as seen in the models seen in

Wikle and Cressie [98] and Mardia et al. [65] which we will use and modify to include

individual subject variation. In particular, consider the following equations:

yij(s) = zij(s) + εij(s) (6.6)

zij(s) = µj(s) + ζi(s) + Υui + νij(s) (6.7)

µj(s) =

∫
ωs(q)µj−1(q)dq + ηj(s). (6.8)

Note that (6.6)-(6.7) corresponds to the observation equation (6.5), while (6.8) corresponds

to the state equation (6.4). In the above model, we suppose that the observational process

has a component of measurement error and zij(s) can be thought of as an unobservable

process ’smoother’ than yij(s). While in (6.6), the error term εij(s) is white noise an rep-

resents observation error, the error term in (6.7), νij(s), represents a spatial structure that

is independent of time and cross-section and does not have temporally dynamic behavior.

By contrast, the component zij(s) is assumed to evolve according to the state equation in

(6.8) where ηj(s) is spatially colored process. Furthermore, the former can be decomposed

into dominant components from a set of deterministic basis functions that are complete and

normal. For more details on this topic one can refer to the discussion in Wikle and Cressie

[98], Mardia et al. [65], and Sanso and Guenni [91].

The estimation of the model given by equations (6.6)-(6.8) can proceed by specifying

the joint posterior distribution of the parameters which can be obtained as the product of

the loglikelihood distribution of the hierarchical model and prior distribution of the parame-

ters. In the future, we will investigate the identifiability, estimability, model selection and

covariance estimation, implementation issues and model diagnostics.

6.2.3 Robust Estimation

In a remark made earlier in Chapter 5, we often encounter situations when there seems to

be no solution to the minimization problem (2.18) because the variance parameters Σε and

ΣΓ become degenerate, i.e., log |Ωj| → −∞. This leads us to search other robust procedures

that try to bound the variance parameter away from degeneracy.

68



In the mixed model literature, most of the robust procedures focus on univariate re-

sponses (see for example [78, 101, 27, 28] among others). Recently, high breakdown methods

such as constrained S [27] and MM-estimators [28] were introduced. These types of estima-

tors are known to have good global properties as indicated by their high tolerance for the

proportion of corrupt observations. Unfortunately, these methods have poor local properties

and low efficiency, even for the fixed regression case. Although global properties are desir-

able, in practice, we do not expect conspicuous size of outliers in the data (see for example

Rocke and Woodruff [79]). Rather, we usually expect a small fraction of outliers whose

effect on an estimator can be tremendous. Therefore, it is important to consider estimation

procedures that have good local properties.

In the robust literature, a general measure of local stability is the contamination sensi-

tivity of order q [102] given by

γq
T = lim sup

ε↓0

bT(ε)

εq
(6.9)

where 0 ≤ q and bT(ε) is the maximum bias curve over the neighborhood of ε contaminated

distribution µn given by

bT(ε) = sup
µn∈Nε(µn,ε)

(T(µn)− π)>C0(H0)(T(µn)− π) (6.10)

with C0(H0) a suitable positive definite scatter matrix functional satisfying some equivari-

ance property (see [102] for details of this measurement). Then an estimator T is said to be

locally stable of order q if γq
T < ∞. He [44] proved that the above mentioned estimators, i.e.

S- and MM-estimators, along with the LMS-estimator, 1
2
LTS-estimator and the τ -estimators

have γq
T = ∞ for q > 0.5 and therefore these estimators are not locally robust.

In the future, we will investigate robust procedures geared toward estimation of multi-

variate mixed models subject to the bound on the local sensitivity of order q while having the

maximum achievable breakdown point possible. Examples of such estimation procedure are

the Constrained M-estimation [52] which follows the same objective function as (2.18) with

an added constraint that
∑N

i=1

∑T−n
j=1 ρ(r>ijΩ

−1
j rij) ≤ b and the GM-estimator [102]. These

procedures have known good local and global robustness properties in the multivariate lo-

cation and scatter case [102]. It would be worthwhile to investigate these methods in our
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setting while providing modified testing procedures. e.g. Wald test and the F-test. We will

also compare their results with some established ones.

6.2.4 Bootstrap Approximation

In this study we explored naive bootstrap methods to approximate the limiting distribu-

tion of the the parameters by estimating the parameter of the model repeatedly on several

bootstrap samples of reconstructed time series based on the conditional independence of the

innovations. We said that the procedure is slow and convergence of the estimate of the vari-

ance components is often problematic. Furthermore, even if the estimation method is robust,

the proportion of outlying innovations through the resampling scheme can be high enough to

breakdown the the estimator for the particular resample. To overcome the first concern, we

can bootstrap the fixed point representation of the parameter estimate (see Salibian-Barrera

and Zamar [88] for the MM-estmators of univariate regression and Kreiss and Franke [54]

for univariate ARMA models) instead, i.e., using the linear approximation of limiting value

of the estimate, say T = (π, Σ) given by

TNT = GNT (T) + ĠNT (T)(TNT −T) + R (6.11)

where R is a remainder term. When this remainder term in small, (6.12) can be written as

√
NT (TNT −T) ≈ [I − ĠNT (T)]−1

√
NT (GNT (T)−T). (6.12)

Then the bootstrap equivalents of both sides is obtained by estimating [I − ĠNT (T)]−1 by

[I − ĠNT (TNT )]−1 and by

√
NT (T∗

NT −TNT ) ≈ [I − ĠNT (TNT )]−1
√

NT (G∗
NT (TNT )−TNT ). (6.13)

Therefore, instead of calculating the left hand side of (6.14), we can calculate its right hand

side, i.e., we actually approximate the estimator for each sample by computing the function

G∗
NT in TNT .

On a different note, instead of reconstructing the time series by approximating indepen-

dence of innovations we can use moving block bootstrap (MBB) [56, 62]which resamples blocks
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of consecutive observations at a time. As a result, the dependence structure of the original

observations is preserved within each block while reducing computational time in recon-

structing observations. Moreover, this technique is helpful when the experimenter does not

have enough prior information to specify appropriate models or any parametric assumption.

In the future, we will investigate the properties of above technique and establish its use

in time-series cross-sectional data.

6.2.5 Model Selection

One issue that we encountered in model selection is the tendency of the procedure to choose

higher model order even if there is “not enough” significant information left in the innovations

to warrant the use of extra terms. From experience, the value of either (4.5) or (4.6) regardless

of the penalty function is dependent on the resulting estimator, the order used, and the value

of the constant k in the bounding function ρ. When higher orders are used, say n, the value

of the Ωj becomes very small so that even if the effect of a single outlier reverberates up to

the next n consecutive observations and the bounding function assigns a maximum weight

on the observation the upset is still negligible compared to the value of the former. Hence,

the selection criteria always chooses the model with a higher order.

One procedure which could probably overcome this is to use cross-validation methods

[83]. The basic idea of the selection procedure is to split the sample of size NT into a

construction sample of size NTc and a validation sample of size N(T −Tc) so that we use the

construction sample to fit the model and use the validation sample to evaluate the prediction

error of the model. The splitting of observations can be done using the MBB method

described above to obtain blocks of observations which are approximately independent and

preserves the structure of the time series. Then the final model is chosen as the one which

gives the smallest average of prediction error over different validation samples.
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APPENDIX A

Definition 3 (Regression Equivariance). Let v be any p× 1 vector. The estimator Θ̂ is

regression equivariant if

π̂(z,y + zv) = T(z,y + zv) = T(z,y) + v = π̂ + u. (A.1)

So regression equivariance means that we can assume without loss of generality that

π = 0.

Definition 4 (Affine Equivariance). Let A be any s× s nonsingular matrix. Then π̂ is

affine equivariant if

π̂(zA,y) = T(zA,y) = A−1T(z,y) = A−1π̂. (A.2)

Theorem 6 (Implicit Function Theorem, [Lopuhaa, 1989]). Let Q be a metric space,

(h0, t0) ∈ Ω ⊂ Q × Rs+ 1
2
p(p+1), Ω open. When W : Q × Rs+ 1

2
p(p+1) → Rs+ 1

2
p(p+1), with

W(h0, t0) = 0 is such that

1. W is continuous on Ω,

2. ∂W/∂t is continuous on Ω

3. ∂W/∂t is nonsingular at (h0, t0),

then there exists a neighborhood B1 × B2 of (h0, t0) on which a function t(·) : B1 → B2

exists such that W(h0, t0(h)) = 0. Moreover it holds that:

1. If (h̃, t̃) ∈ B1 ×B2 with W(h̃, t̃) = 0, then t̃ = t(h̃).

2. t(·) is continuous on B1

72



APPENDIX B

Matlab codes for the robust parameter estimation and bootstrap inference of the constrained

Mixed-VARX Model.

function [XP, XS, logL, hessian1, hessian2]=rolex(XP, XS, data,
cov, group, stim, W, n)

%iterative algorithm to compute for the parameters of the no-intercept
%model

%OUTPUT
%XP gives the autoregressive and fixed parameters
%XS gives the scale parameters
%logL is the loglikelihood
%hessian1 and hessian2 are the hessian matrices associated to XP and XS, resp.

%INPUT
%XP and XS are the initial values corresponding to the autoregressive and
%variance parameters, respectively.
%data is the data matrix
%cov is the non-time varying covariate, e.g. age.
%group is the vector of 1s and 0s corresponding to group membership of
%subjects
%W is the constraint matrix
%stim is the time-varying covariate, e.g. stimulus
%n is the autoregressive order

options1=optimset(’Display’, ’final’, ’GradObj’, ’on’,
’LargeScale’, ’on’); tol=1e-3; iter=0; iterlim=30;

iter=0;
while(iter==0 | norm(XP-xp0)>tol | norm(XS-xs0)>tol)

iter=iter+1;
if (iter>iterlim), warning(’Iteration limit reached.’); break; end;
xs0=XS;
xp0=XP;
[XP,logL, exitflag1, output1, grad1, hessian1]=fminunc(@(XP)

Phi(XS, XP, Kz((j-1)*s+1:j*s,:), Y((j-1)*p+1:j*p,:),
stim((j-1)*m+1:j*m,:), W, n), xp0, options1);
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[XS,logL, exitflag2, output2, grad2, hessian2]=fminunc(@(XS)
LSS(XS, XP, Kz((j-1)*s+1:j*s,:), Y((j-1)*p+1:j*p,:),
stim((j-1)*m+1:j*m,:), W, n), xs0, options1);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [logL, glogLp] = Phi(XP, XS, data, cov, group, stim, W, n)

%function for solving unknown autoregressive parameters
%OUTPUT: loglikelihood and its corresponding gradient

%some constants
p=3; m=1; s=2*n*p+m+1; sd=2*n+m+1; [T,Np]=size(data); N=Np/p;
pm=p*m; ps=p*s; psd=p*sd; r1=0.5*p*(p+1); r2=0.5*pm*(pm+1);
r3=ps+r1+r2; r3d=psd+r1+r2; C=(N*(T-n))^(-1);

%to reshape vectorized parameters
ematS=mat(p);
ematSgma=mat(pm);

%partitioning initial parameters and reshaping vecp, S and Sgma
vecp=XP;
Psi_hat=zeros(p,s);
for k=1:n;

Psi_hat(:,(k-1)*p+1:k*p)=W(:,(k-1)*p+1:k*p)*diag(vecp((k-1)*p+1:k*p));
Psi_hat(:,n*p+(k-1)*p+1:n*p+k*p)=W(:,(k-1)*p+1:k*p)

*diag(vecp(n*p+(k-1)*p+1:n*p+k*p));
end;
Psi_hat(:,2*n*p+1:s-1)=vecp(2*n*p+1:p*2*n+m*p);
Psi_hat(:,s)=vecp(psd-2:psd);
Phi=Psi_hat;
vecp=Phi(:);

%forming the variance matrices
vechS=XS(1:r1, 1);
LSgma=XS(r1+1, 1);
lS=ematS’*vechS;
LS=reshape(lS,p,p);
S=LS*LS’;
Sgma=LSgma*eye(pm);

%response and design matrix
Y=response(data,n);
Kz=design(data, cov, stim, group, n, m);

Wstim=zeros(m,T-n);
for j=1:T-n

for k=1:m
Wstim(k,j)=stim(j+n-k,1)’;

end;
end;

L1=0;
for j=1:T-n

A2=kron(Wstim(:,j)’, eye(p));
A3=A2*Sgma*A2’+S;
A4=log(det(A3));
L1=L1+A4;

74



end;
logL1=N*L1;

D=zeros(N*(T-n),1);
for i=1:N

for j=1:T-n
A1=kron(Kz(:,(i-1)*(T-n)+j), eye(p));
A2=kron(Wstim(:,j)’, eye(p));
A3=A2*Sgma*A2’+S;
iOmegaj=inv(A3);
R=Y(:,(i-1)*(T-n)+j)-A1’*vecp;
D((i-1)*(T-n)+j,1)=R’*iOmegaj*R;

end;
end;
c=max(4.835,(1/0.6748)*median(D));

L2=zeros(1,N);
for i=1:N

l2=0;
for j=1:T-n

A1=kron(Kz(:,(i-1)*(T-n)+j), eye(p));
A2=kron(Wstim(:,j)’, eye(p));
A3=A2*Sgma*A2’+S;
iOmegaj=inv(A3);
R=Y(:,(i-1)*(T-n)+j)-A1’*vecp;
Dij=R’*iOmegaj*R;
h1=tukeyc(Dij,c,0);
l2=l2+h1;

end;
L2(:,i)=l2;

end;
logL2=sum(L2,2);

logL=logL1+logL2;

if nargout > 1
H1=derivLp(data, cov, stim, group, W, n, c, vecp, LS, LSgma);
glogLp=H1;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [logL, glogLS] = LSS(XS, XP, data, cov, group, stim, W, n)

%function for solving unknown scale parameters
%OUTPUT: loglikelihood and its corresponding gradient

%some constants
p=3; m=1; s=2*n*p+m+1; sd=2*n+m+1; [T,Np]=size(data); N=Np/p;
pm=p*m; ps=p*s; psd=p*sd; r1=0.5*p*(p+1); r2=0.5*pm*(pm+1);
r3=ps+r1+r2; r3d=psd+r1+r2; C=(N*(T-n))^(-1);

%to reshape vectorized parameters
ematS=mat(p);
ematSgma=mat(pm);

%partitioning initial parameters and reshaping vecp, S and Sgma
vecp=XP;
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Psi_hat=zeros(p,s);
for k=1:n;

Psi_hat(:,(k-1)*p+1:k*p)=W(:,(k-1)*p+1:k*p)*diag(vecp((k-1)*p+1:k*p));
Psi_hat(:,n*p+(k-1)*p+1:n*p+k*p)=W(:,(k-1)*p+1:k*p)

*diag(vecp(n*p+(k-1)*p+1:n*p+k*p));
end;
Psi_hat(:,2*n*p+1:s-1)=vecp(2*n*p+1:p*2*n+m*p);
Psi_hat(:,s)=vecp(psd-2:psd);
Phi=Psi_hat;
vecp=Phi(:);

%forming the variance matrices
vechS=XS(1:r1, 1);
LSgma=XS(r1+1, 1);
lS=ematS’*vechS;
LS=reshape(lS,p,p);
S=LS*LS’;
Sgma=LSgma*eye(pm);

%response and design matrix
Y=response(data,n);
Kz=design(data, cov, stim, group, n, m);

Wstim=zeros(m,T-n);
for j=1:T-n

for k=1:m
Wstim(k,j)=stim(j+n-k,1)’;

end;
end;

L1=0;
for j=1:T-n

A2=kron(Wstim(:,j)’, eye(p));
A3=A2*Sgma*A2’+S;
A4=log(det(A3));
L1=L1+A4;

end;
logL1=N*L1;

D=zeros(N*(T-n),1);
for i=1:N

for j=1:T-n
A1=kron(Kz(:,(i-1)*(T-n)+j), eye(p));
A2=kron(Wstim(:,j)’, eye(p));
A3=A2*Sgma*A2’+S;
iOmegaj=inv(A3);
R=Y(:,(i-1)*(T-n)+j)-A1’*vecp;
D((i-1)*(T-n)+j,1)=R’*iOmegaj*R;

end;
end;
c=max(7,(1/0.6748)*median(D));

L2=zeros(1,N);
for i=1:N

l2=0;
for j=1:T-n

A1=kron(Kz(:,(i-1)*(T-n)+j), eye(p));
A2=kron(Wstim(:,j)’, eye(p));
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A3=A2*Sgma*A2’+S;
iOmegaj=inv(A3);
R=Y(:,(i-1)*(T-n)+j)-A1’*vecp;
Dij=R’*iOmegaj*R;
h1=tukeyc(Dij,c,0);
l2=l2+h1;

end;
L2(:,i)=l2;

end;
logL2=sum(L2,2);

logL=logL1+logL2;

if nargout > 1
[H2,H3]=derivLs(data, cov, stim, group, W, n, c, vecp, LS, LSgma);
glogLS=[H2; H3];

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Y = response(data, n)

%gives the appropriate response vector

[T,Np]=size(data);
p=3;
N=Np/p;

%removing the first n observations for the response vector
data_trunc=data(n+1:T,:);

data_cat=zeros(N*(T-n),p);
for i=1:N;

data_cat((i-1)*(T-n)+1:i*(T-n),1:p)=data_trunc(:,(i-1)*p+1:i*p);
%[y_11,...,y_1T,..., y_N1,...,y_NT]’

end;

Y=data_cat’;
%ycat=Y(:); %concatenates data_cat’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Kz = design(data, cov, stim, group, n, m)

%design matrix for the no-intercept model

[T,Np]=size(data);
p=3;
N=Np/p;

%creating the design matrix
%Kz=[Z1,...,ZN]
Kz=zeros(2*n*p+m+1,N*(T-n)); %first row is mean of the process

for i=1:N
for j=1:T-n

for k=1:n
Kz((k-1)*p+1:k*p,(i-1)*(T-n)+j)=data(j+n-k,(i-1)*p+1:i*p )’;
Kz(p*n+(k-1)*p+1:p*n+k*p,(i-1)*(T-n)+j)=group(1,i)

*data(j+n-k,(i-1)*p+1:i*p )’;
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end;
end;

end;
for i=1:N

for j=1:T-n
for k=1:m

Kz(2*n*p+k, (i-1)*(T-n)+j)=stim(j+n+1-k,1);
end;

end;
end;

for i=1:N
Kz(2*n*p+m+1,(i-1)*(T-n)+1:i*(T-n))=cov(n+1:T,i)’;
%adding the covariates(age)

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function W=crosscorr(D, n)

%gives the constraint matrix based on auto- and cross-correlations
%D is data matrix

[T,Np]=size(D);
p=3;
N=Np/p;
mean_data=zeros(1,Np);
for i=1:Np

mean_data(i)=mean(D(:,i));
end;

num=zeros(p,n*p);
den=zeros(p,n*p);
W=zeros(p,n*p);
for k=1:n

WS=zeros(p,p);
for i=1:N

R=(D(1:T-k,(i-1)*p+1:i*p)-ones(T-k,1)*mean_data(1,(i-1)*p+1:i*p));
S=(D(1+k:T,(i-1)*p+1:i*p)-ones(T-k,1)*mean_data(1,(i-1)*p+1:i*p));
RSC=zeros(T-k,1);
SSC=zeros(T-k,1);
for j=1:T-k

rr=sqrt(R(j,1:p)*R(j,1:p)’);
RSC(j)=tukeyc(rr,4.18,1)/rr;
ss=S(j,1:p)*S(j,1:p)’;
SSC(j)=tukeyc(ss,4,1)/ss;

end;
RR=diag(RSC)*R;
SS=diag(SSC)*S;
Q=diag(SS’*SS)*diag(SS’*SS)’;
den(:,(k-1)*p+1:k*p)=Q.^(-0.5);
num(:,(k-1)*p+1:k*p)=RR’*SS;
WS=WS+den(:,(k-1)*p+1:k*p).* num(:,(k-1)*p+1:k*p);

end;
W(:,(k-1)*p+1:k*p)=N^(-1)*WS;

end

for k=1:n
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W(:,(k-1)*p+1:k*p)=W(:,(k-1)*p+1:k*p)-diag(diag(W(:,(k-1)*p+1:k*p)))+eye(p);
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function v = tukeyc(d,c,diff)

% TUKEY The Tukey rho-function.
% r is a vector quantity which is usually the mahalanobis distances
% of the residuals.
% c is the tuning parameter
% diff is the order of differentiation

sid = find(abs(d)<=c);
lid = find(abs(d)>c);

v = zeros(size(d));
switch diff
case 0

v(sid) = (c^2)/6*(1 - (1 - (1/c)*d(sid)).^3);
v(lid) = c^2/6*ones(size(lid));

case 1
v(sid) = sqrt(d(sid)).*(1 - (1/c)*d(sid)).^2;

case 2
d2 = (1/c)*d(sid);
v(sid) = (-2/c)*(1 - d2);

otherwise
error(’Illegal order of differentiation’)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function H1=derivLp(data, cov, stim, group, W, n, c, vecp, LS, LSgma)

%gives the derivatives with respect to Phi in the no-intercept model
%vecp is the vectorized matrix parameter
%LS is the Cholesky factor of S
%LSgma is the Cholesky factor of Sgma
%c is the tuning parameter

m=1; Y=response(data,n);
Kz=design(data,cov, stim, group, n, m);

p=3; s=2*n*p+m+1; [T,Np]=size(data); N=Np/p; pm=p*m; ps=p*s;
r1=0.5*p*(p+1); r2=0.5*pm*(pm+1); r3=ps+r1+r2;

%positions of variance components to be used in derivatives
lS=tril(ones(p));
[iS,jS,vS]=find(lS);
S=LS*LS’;
Sgma=LSgma*eye(pm);

%stimulus design matrix
Wstim=zeros(m,T-n);
for j=1:T-n

for k=1:m
Wstim(k,j)=stim(j+n-k,1)’;

end;
end;
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%first derivative broken down into three components
HH1=zeros(2*p*n,1);
HH2=zeros(p,1);
HH3=zeros(pm,1);
Hh1=zeros(2*p*n,N);
Hh2=zeros(p,N);
Hh3=zeros(pm,N);
for i=1:N

Hh1(:,i)=zeros(2*p*n,1);
Hh2(1:p,i)=zeros(p,1);
Hh3(:,i)=zeros(pm,1);
for j=1:T-n

A1=kron(Kz(:,(i-1)*(T-n)+j), eye(p));
A2=kron(Wstim(:,j)’, eye(p));
A3=A2*Sgma*A2’+S;
iOmegaj=inv(A3);
R=Y(:,(i-1)*(T-n)+j)-A1’*vecp;
Dij=R’*iOmegaj*R;
for k=1:n

h1d=tukeyc(Dij,c,1)*kron(Kz((k-1)*p+1:k*p,(i-1)*(T-n)+j),
W(:,(k-1)*p+1:k*p)’)*iOmegaj*R;

h1=[h1d(1);h1d(p+2); h1d(3*p)];
h11d=tukeyc(Dij,c,1)*kron(Kz(n*p+(k-1)*p+1:n*p+k*p,(i-1)*(T-n)+j),

W(:,(k-1)*p+1:k*p)’)*iOmegaj*R;
h11=[h11d(1);h11d(p+2); h11d(3*p)];
Hh1((k-1)*p+1:k*p,i)=Hh1((k-1)*p+1:k*p,i)+h1;
Hh1(n*p+(k-1)*p+1:n*p+k*p,i)=Hh1(n*p+(k-1)*p+1:n*p+k*p,i)+h11;

end;
h2=tukeyc(Dij,c,1)*iOmegaj*R * Kz(s,(i-1)*(T-n)+j)’;
Hh2(1:p,i)=Hh2(1:p,i)+h2;
for km=1:m

h3=tukeyc(Dij,c,1)*iOmegaj*R * Kz(2*n*p+km,(i-1)*(T-n)+j)’;
Hh3((km-1)*p+1:km*p,i)=Hh3((km-1)*p+1:km*p,i)+h3;

end;
end;

end;
HH1=-2*sum(Hh1,2);
HH2=-2*sum(Hh2,2);
HH3=-2*sum(Hh3,2);
H1=[HH1; HH3; HH2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [H2,H3]=derivLs(data, cov, stim, group, W, n, c, vecp, LS, LSgma)

%derivatives of the scale parameters: H2 for LS and H3 for LSgma

m=1;
Y=response(data,n);
Kz=design(data,cov, stim, group, n, m);

p=3; s=2*n*p+m+1; [T,Np]=size(data); N=Np/p; pm=p*m; ps=p*s;
r1=0.5*p*(p+1); r2=0.5*pm*(pm+1); r3=ps+r1+r2;

%positions of variance components to be used in derivatives
lS=tril(ones(p));
lSgma=tril(ones(pm));
[iS,jS,vS]=find(lS);
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S=LS*LS’;
Sgma=LSgma*eye(pm);

%stimulus design matrix
Wstim=zeros(m,T-n);
for j=1:T-n

for k=1:m
Wstim(k,j)=stim(j+n-k,1)’;

end;
end;

%first derivative broken down into three components

H2=zeros(r1,1);
H3=zeros(1,1);
for i=1:N

for j=1:T-n
A1=kron(Kz(:,(i-1)*(T-n)+j), eye(p));
A2=kron(Wstim(:,j)’, eye(p));
A3=A2*Sgma*A2’+S;
iOmegaj=inv(A3);
R=Y(:,(i-1)*(T-n)+j)-A1’*vecp;
Dij=R’*iOmegaj*R;
for k=1:length(iS)

Sdot=zeros(p,p);
Sdot(iS(k),jS(k))=1;
A4=-tukeyc(Dij,c,1)*trace(iOmegaj*R*R’*iOmegaj*(LS*Sdot’

+ Sdot*LS’))+trace(iOmegaj*(LS*Sdot’+Sdot*LS’));
H2(k,1)=H2(k,1)+A4;

end;
A4=-tukeyc(Dij,c,1)*trace(iOmegaj*R*R’*iOmegaj*A2*A2’)

+trace(iOmegaj*A2*A2’);
H3=H3+A4;

end;
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [FXP, FXS, FlogL, FXPH, FXSH]=rolexbstrap(data, cov,
stim, group, W, n, c, xp, xs)

%OUTPUT
%FXP a set of bootstrap estimates for the autoregressive parameters
%FXS a set of bootstrap estimates for the scale parameters
%FlogL corresponding loglikehood evaluated at each column of FXP and FXS
%FXPH and FXSH diagonal of the hessian matices at
%each column of FXP and FXS

%INPUT
%xp initial value for autoregressive parameters
%xs initial value for scale parameters

n=1; m=1; q=10; p=3; s=2*n*p+m+1; sd=2*n+m+1; [T,Np]=size(data);
N=Np/p; pm=p*m; ps=p*s; psd=p*sd; r1=0.5*p*(p+1);
r2=0.5*pm*(pm+1); r3d=psd+r1+r2; rps=r3d+2;

Y=response(data, n); Kz=design(data, cov, stim, group, n, m);
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%generating bootstrap data
RqN=zeros(q*(T-n), N); iRqN=zeros(size(RqN));
for j=1:q

for i=1:N;
RqN((j-1)*(T-n)+1:j*(T-n), i)=randperm(T-n)’;
[RqN((j-1)*(T-n)+1:j*(T-n), i), iRqN((j-1)*(T-n)+1:j*(T-n), i)]=

sort(RqN((j-1)*(T-n)+1:j*(T-n), i));
end;

end;

RKz=zeros(q*s, N*rps); for j=1:q;
for i=1:N

iKz=iRqN((j-1)*(T-n)+1:j*(T-n), i);
RKz((j-1)*s+1:j*s,(i-1)*rps+1:i*rps)=Kz(:, iKz(1:rps));

end;
end;

RY=zeros(q*p, N*rps); for j=1:q;
for i=1:N

iKz=iRqN((j-1)*(T-n)+1:j*(T-n), i);
RY((j-1)*p+1:j*p,(i-1)*rps+1:i*rps)=Y(:, iKz(1:rps));

end;
end;

Wstim=zeros(m,T-n); for j=1:T-n
for k=1:m

Wstim(k,j)=stim(j+n-k,1)’;
end;

end;

Rstim=zeros(q*m, N*rps);
for j=1:q;

for i=1:N
iKz=iRqN((j-1)*(T-n)+1:j*(T-n), i);
Rstim((j-1)*m+1:j*m,(i-1)*rps+1:i*rps)=Wstim(:, iKz(1:rps));

end;
end;

RXP=zeros(psd,q); RXS=zeros(r1+r2, q); xpr=repmat(xp, 1, q);
xsr=repmat(xs, 1, q);

options1=optimset(’Display’, ’final’, ’GradObj’, ’on’,
’LargeScale’, ’on’); tol=1e-3; iter=0; iterlim=30;
for j=1:10

XP=xpr(:, j);
XS=xsr(:,j);
iter=0;
while(iter==0 | norm(XP-xp0)>tol | norm(XS-xs0)>tol)

iter=iter+1;
if (iter>iterlim), warning(’Iteration limit reached.’); break; end;
xs0=XS;
xp0=XP;
[XP,logL]=fminunc(@(XP) Phi2(XS, XP, RKz((j-1)*s+1:j*s,:),

RY((j-1)*p+1:j*p,:), Rstim((j-1)*m+1:j*m,:), W, n), xp0, options1);
[XS,logL]=fminunc(@(XS) LSS2(XS, XP, RKz((j-1)*s+1:j*s,:),

RY((j-1)*p+1:j*p,:), Rstim((j-1)*m+1:j*m,:), W, n), xs0, options1);
end;
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RXP(:,j)=XP;
RXS(:,j)=XS;

end;

%NOTE: An alternative way would be to use a set of initial values obtained by
%perturbing the estimate. In addition since the variance parameters usually get
%stucked when the initial estimate is already close to the minimizer at that
%bootstrap data, it is practical to just perform the bootstrap over the
%autoregressive parameters since these estimates are assymptotically
%inddependent.

options2=optimset(’Display’, ’iter’, ’GradObj’, ’on’,
’LargeScale’, ’off’);

FXP=zeros(psd,q); FXS=zeros(r1+r2, q); FXPG=zeros(psd,q);
FXSG=zeros(r1+r2, q); FXPH=zeros(psd,q); FXSH=zeros(r1+r2,q);
FlogL=zeros(1,q);
for j=1:5

XS=RXS(:,j);
XP=RXP(:,j);
iter=0;
while(iter==0 | norm(XP-xp0)>tol | norm(XS-xs0)>tol)

iter=iter+1;
if (iter>iterlim), warning(’Iteration limit reached.’); break; end;
xs0=XS;
xp0=XP;
[XP,logL, exitflag, output, grad1, hessian1]=fminunc(@(XP)

Phi(XP, XS, data, cov, group, stim, W, n), xp0, options2);
[XS,logL, exitflag, output, grad2, hessian2]=fminunc(@(XS)

LSS(XS, XP, data, cov, group, stim, W, n), xs0, options2);
end;
FXP(:,j)=XP;
FXS(:,j)=XS;
FlogL(j)=logL;
FXPG(:,j)=grad1;
FXSG(:,j)=grad2;
FXPH(:,j)=diag(inv(hessian1));
FXSH(:,j)=diag(inv(hessian2));

end;
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