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ABSTRACT

ANALYSIS OF LONGITUDINAL RANDOM LENGTH DATA

Ana-Maria Iosif, PhD

University of Pittsburgh, 2007

In some clinical trials, data are gathered longitudinally on both the frequency of an event

and its severity. Oftentimes, it is not feasible to obtain the exact time of the events, and the

events are collected over fixed follow-up intervals. We refer to this type of data as longitudi-

nal random length data, since the subjects are observed repeatedly and, at each assessment

time, the data can be viewed as vectors of severities with lengths determined by the number

of events experienced during the assessment.

Suppose the interest is in comparing two treatments, and the treatments are evaluated

at multiple points in time. Treatment effect is reflected in simultaneous changes in both

the number of events and the severity of each event. Consequently, one needs to jointly

model the two outcomes to better evaluate treatment effects. The main objective of this

dissertation is to introduce a framework for longitudinal random length data.

We propose two multiple population models for such data. We parameterize the models

such that, at each measurement time, both the distribution of the random lengths and the

distributional mean of each component of the severity vectors depend on the underlying pa-

rameter reflecting the treatment effect at that time. Given the random lengths, we assume

the distribution of the severities to be multivariate normal. Conditional on the number of

events, the dependence in the vector of severities recorded at a single measurement time is

modeled using compound symmetry.
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The first model assumes the numbers of events for a subject at different time points to

be independent Poisson random variables and dependence over time is built into the severity

measures. The second model generalizes the first one, by adding another layer of dependence

over time. We further assume the numbers of the events experienced by a subject across

time to be dependent and use a multivariate Poisson distribution to model them. For each

model we describe the maximum likelihood estimation procedure and provide the asymptotic

properties for the estimators. We apply both models to analyze a data set containing stressful

life events in adolescents with major depressive disorder.

Keywords: longitudinal random length, repeated measurements, informative cluster size,

clustered data, multivariate Poisson distribution.
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1.0 INTRODUCTION

In certain clinical trials, data are gathered longitudinally on both the frequency of an event

and its severity. Oftentimes, it is not feasible to obtain the exact time of the events, and

collecting the events over fixed follow-up intervals is how the information is obtained. A

change in disease status is reflected in simultaneous changes in both the number of events

and the severity of each event. Since both the frequency and the severity are important,

the interest is in jointly modeling the two outcomes. This type of data can arise in many

situations. A typical example of such an experiment is a clinical trial of a migraine drug;

data are recorded monthly and in addition to the total number of migraines occurring during

the respective month, the pain levels corresponding to each migraine are reported as well.

Both the number of migraines and the pain level of each migraine at each measurement time

are informative about the treatment progress. If the drug is efficacious, the patients that

received the drug are expected to improve; in time they will have fewer migraines and their

pain levels will be lower, as well. We refer to this type of data, when subjects are observed

repeatedly and their multivariate random length measurements are recorded over time as

longitudinal random length data.

If the data are collected only once, at the end of the follow-up, so that there are no

longitudinal measurements, the obtained data are the type introduced by Barnhart [5],

Barnhart and Sampson [6]. They term such data multivariate random length data, since

it can be viewed as vectors of severities with lengths determined by the number of events.

They treat the lengths of the random vectors as random variables and the distributional

mean of each component of the random vectors depends on an underlying parameter, as do

the distributions of the random length variables. For example, in diseases such as epilepsy or

migraine headaches, both the number of events and the severity of each event for a patient
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tend to depend on that patient’s overall disease status. In order to arrive at a full picture of

the treatment effect, one needs to jointly model the number of events and their associated

severity measures.

The overall aim of our research is to develop a methodology for dealing with longitudinal

multivariate random length data when the length is informative. Informative length refers

to a phenomenon where the expected number of observations within a follow-up interval

is related to the continuous outcome of interest. Consider the case of a longitudinal trial

of a new anti-epileptic drug for epileptic patients. Epilepsy is a disorder characterized by

episodes of seizure activity of variable length and intensity. Anti-epileptic medication can be

effective in reducing seizures. Patients are evaluated periodically during the trial. At each

measurement time we record the number of observed seizures and rate them each according

to severity. If the drug is effective, in time we expect the patients to have fewer seizures and

we expect the corresponding severity levels to decrease.

Models for longitudinal random length data are necessarily complex because they must

consider three types of dependence within a subject: first, between measurements on the

continuous severity measures at a single time point; second, between severity measurements

at different time points and third; between the number of events experienced at different

time points.

1.1 MOTIVATING DATA: LIFE EVENTS AND DIFFICULTIES

SCHEDULE DATA

This research was motivated in part by the LEDS data set, collected as part of a larger

study at the University of Pittsburgh Western Psychiatric Institute and Clinic (WPIC).

This data set contains information about stressful life events in depressed adolescents. Since

the first study in 1967 by Holmes and Rahe [18], stressful life events have been a topic of

great interest in psychiatric epidemiology. Although a number of studies have focused on

the complex association between life events and depression onset, knowledge concerning their

temporal relationship is still limited. Severe events and major difficulties have been shown
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to be critical in the development of depression in adults (Brown and Harris [10]). Recent

research [24] has established that many of the adult forms of psychopathology, particularly

depression, have their first manifestation in adolescence. In light of the number of adolescents

who experience depression, with the associated serious implications for later functioning, it is

important to understand the role that stressful life events play in the first onset of depression.

Several reports have found that subjects who experience depression have significantly more

stressful life events prior to the onset of a depressive episode than non-depressed controls

[10]. However, most of this body of research is still concentrated on adults. In the effort

to design effective prevention and intervention strategies, additional studies are needed that

examine models of the developmental trajectories of depression across adolescence.

The objective of the larger study that generated the data we consider here was to examine

the occurrence in adolescents of acute and chronic stressors prior to and during a recent de-

pressive episode. Adolescents with major depressive disorder (MDD) were recruited through

the outpatient Child and Adolescent Depression Program at the University of Pittsburgh

Western Psychiatric Institute and Clinic, where they presented for treatment. Normal control

(NC) adolescents were recruited from existing community controls participating in research

protocols being conducted at WPIC ([9], [11]). For the current study, adolescents were

classified as NC only if they had never met the criteria for any psychiatric disorder. The

NCs were group matched on age, sex, and ethnicity with the MDDs resulting in comparable

demographic characteristics between the two groups. Stress exposure was examined using

the investigator-based Life Events and Difficulties Schedule (LEDS) [10], adapted for use

with adolescents [31], via direct interview with the adolescent themselves. This interview

is designed to draw out exhaustive information for acute and chronic stressors. Acute stres-

sors are those life events occurring at one point in time (”death of a pet”, ”fight with the

boyfriend”). Chronic stressors are required to last at least 4 weeks (for example ”living in

an overcrowded, damp flat”). The severity of each stressor was rated on a 4-point scale

(4-marked, 3-moderate, 2-some, 1-little or none).

The subjects we consider are 32 depressed (MDD) and 30 normal control (NC) subjects,

all of whom are female between the ages of 13 and 18 years. We examine the occurrence

of the acute stressors in the 12-month period prior to the onset of the depressive episode in

3



depressed adolescents and during a comparable ”linked” period in normal control adolescents.

At the time of the life events interview, all the MDD subjects were remitted (no longer

fulfilling criteria for depression) for at least two weeks and asked to recall stressful life events

experienced the year before their MDD onset. The ”linked” period refers to the 12-month

period which preceded the onset of the depressive episode among the depressed adolescents.

For example, if an MDD subject was remitted for one month at the time of the LEDS

interview and the duration of his depressive episode was 6 months, the matched NC had

Table 1: LEDS Data. Frequency of acute stressors by group. (Percentages represent subjects

experiencing stress).

Number of acute stressors

0 1 2 3 4 5 6 7 9 11

1-st three month period before MDD onset

MDD1 n(%) 6(19) 8(25) 2(6) 3(9) 7(22) 1(3) 2(6) 2(6) - 1(3)

NC2 n(%) 6(20) 9(30) 6(20) 6(20) 1(3) 2(7) - - - -

2-nd three month period before MDD onset

MDD n(%) 6(19) 4(13) 7(22) 4(13) 4(13) 3(9) 1(3) 2(6) - 1(3)

NC n(%) 6(20) 8(27) 3(10) 6(20) 4(13) 2(7) 1(3) - - -

3-rd three month period before MDD onset

MDD n(%) 8(25) 5(16) 8(25) 5(16) 2(6) 4(13) - - -

NC n(%) 11(37) 3(10) 4(13) 9(30) 1(3) 1(3) 1(3) - - -

4-th three month period before MDD onset3

MDD n(%) 5(16) 9(28) 5(16) 7(22) 2(6) 3(9) - - 1(3) -

NC n(%) 13(43) 4(13) 6(20) 5(17) 1(3) - 1(3) - - -

1MDD = major depressive disorder (sample size is 32)
2NC = normal control (sample size is 30)
313 subjects have the last month in the study replicated once or twice since they did not have the whole

quarter available

to recall the stressful live events experienced during the period of time starting 19 months
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ago and ending 7 months ago. The reason behind using such a ”linked” period in normal

control adolescents is that the average length of recall for stressful life events was the same

for depressed and normal control adolescents. Therefore, it is unlikely that the rates of events

were artificially inflated in the normal control group. Tables 1 and 2 summarize the LEDS

data.

Table 2: LEDS Data. Severity of acute stressors by group. (Percentages represent stressors).

Severity of Acute Stressors

1 2 3 4 Total (acute stressors)

1-st three month period before MDD onset

MDD4 n(%) 41(45) 32(35) 18(20) 0(0) 91

NC5 n(%) 27(51) 20(38) 6(11) 0(0) 53

2-nd three month period before MDD onset

MDD n(%) 36(39) 39(42) 15(16) 2(2) 92

NC n(%) 38(59) 20(31) 3(5) 3(5) 64

3-rd three month period before MDD onset

MDD n(%) 28(40) 21(30) 20(29) 1(1) 70

NC n(%) 38(72) 8(15) 6(11) 1(2) 53

4-th three month period before MDD onset6

MDD n(%) 31(43) 26(36) 13(18) 2(3) 72

NC n(%) 22(54) 14(34) 4(10) 1(2) 41

4 MDD = major depressive disorder (sample size is 32)
5 NC = normal control (sample size is 30)
613 subjects have the last month in the study replicated once or twice since they did not have the whole

quarter available

The common practice when analyzing this type of data is to reduce the dimensionality. One

way of accomplishing this reduction in dimensionality is to quantify the life stress experienced

by adding together the severities previously assigned to each event stated to have occurred
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and creating a single observation per subject at each time-point. Another way of reducing the

dimensionality to a single observation is to create models for accumulation and dissipation

of stress (see Surtees and Ingham [34]). Under such models, it is postulated that the life

events summate in their stressful effect and that the stressful effect of a life event dissipates

with time. Choosing different decay functions for the way in which life stress dissipates over

time will generate different stress outcomes.

Our approach is to preserve the richness of the LEDS data and analyze it, prior to

the onset of depression, by treating the acute stressors as longitudinal multivariate random

length data with informative length. Each quarter of a year, data for the subjects consists

of a vector of severities with length determined by the number of acute stressors experienced

during that quarter of a year. We propose that as subjects draw closer in time to the onset

Figure 1: LEDS Data. Length and severity of acute stressors for MDD group (circles) and

NC group (triangles)

of their episode of MDD (major depressive disorder), both the number of stressors and their
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severities tend to increase. Specifically, the closer that subjects in the MDD group get to

the onset, the more likely we will observe a larger number of acute stressors and the more

likely their severities will be higher. We would expect that those in the NC group will have

relatively constant numbers of acute stressors and severities over time.

Figure 1 contains a plot of the average severity and average length of the acute stressors

for the two groups, graphed starting 4 quarters before the MDD episode onset until 1 quarter

before MDD episode onset. Throughout the whole period, the MDD group has more acute

stressors than the NC, and the gap is larger closer to the MDD onset. The same holds for

the average severity of acute stressors, but MDDs’ average severity does not have the same

increasing trend that their average length shows.

Although our motivation was drawn from a study examining stressful life events in ado-

lescents, the scope of our research is broader and our methods can be used to analyze

longitudinally collected data from prospective randomized studies in which the interest is

combining the information from the two outcomes to better evaluate the treatment effect.

For many diseases or health conditions, an individual may have repeated episodes collected

over assessment intervals, together with a measure of the episodes’ intensity or severity. For

example, in a clinical trial of a new anti-epileptic drug, subjects are randomized to the treat-

ment groups. If the new drug is working, we would expect the subjects in that group to

improve, in that, over time they will have fewer seizures and more likely their severities will

be lower.

1.2 DISSERTATION OUTLINE

This dissertation is organized in the following fashion. We start Chapter 2 by presenting in

Section 2.1 relevant research dealing with random length data in the non-repeated case. Sec-

tion 2.2 reviews research involving analysis of clustered data when cluster size is informative.

In Chapter 3 we introduce models to analyze longitudinal random length data. We build

dependence over time into the severity measures. The models are given and we describe the

maximum likelihood (ML) algorithm to estimate the parameters. Before obtaining multiple
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population models for longitudinal random length data, we first, for methodological reasons,

develop a one population model. In Section 3.1.1 we introduce the model designed to handle

longitudinal multivariate random length data for only one population, along with giving a

description of the ML estimation algorithm. Section 3.2 generalizes the results from the

previous section to create a likelihood based multiple population model. We model jointly

the number of events and their corresponding severities over time. We describe the ML esti-

mation and the large sample behavior of the estimators. We perform a simulation study to

evaluate the accuracy of the asymptotic approximation of our estimator in finite samples in

Section 3.3. In Section 3.4 we illustrate the proposed methodology using the LEDS data. In

Chapter 4 we construct more general models for longitudinal random length data by adding

dependence over time into the random lengths. We present the models and describe the ML

algorithm to estimate the parameters. In Section 4.1 we introduce a one population model,

designed to handle longitudinal multivariate random length data for only one population,

along with the description of the ML estimation algorithm and asymptotic properties of

the estimators for the particular case when we have only two time measurements. Section

4.2 generalizes the approach from the previous section to handle multiple populations. We

describe the ML estimation and the large sample properties of the estimators. We examine

the small sample properties of these estimators in a simulation study in Section 4.3. In

Section 4.4 we illustrate the methodology using the LEDS data. In Chapter 5 we explore

potential generalizations of our research. In Sections 5.1 and 5.2 we give a description of

how to generalize the models of Chapters 3 and 4, respectively, to handle more complex cor-

relation structures between severity measurements and between random lengths at different

time points within a subject. We briefly present other issues, such as introducing covariates

in the model and using other distributions than Poisson to model the random lengths. We

conclude with Section 5.3, in which we discuss how one might generalize one of the methods

of Section 2.2 (Within Cluster Resampling) to handle longitudinal clustered data when the

cluster size is informative.

8



2.0 LITERATURE REVIEW

2.1 RANDOM LENGTH DATA AND RELATED RESEARCH

2.1.1 Barnhart’s Shared Parameter Multiple Population Model

Before embarking on modeling longitudinal random length data, we first take a look at exist-

ing approaches for the non-repeated case. This involves data collected on both the frequency

of an event and its severity. Data of this type are often dealt with by two different analyses:

one for the severities (ignoring the information in the lengths) and another for their number

(treating the frequency of the events as the outcome). However, in order to get a full picture

of a drug or treatment performance, one needs to jointly model the number of events and

their associated severity measures. Properly formulated models increase the power of studies

to discern treatment effects.

Barnhart [4], introduced the notion of multivariate random length data, since data on

each observational unit can be viewed as vectors of severities with lengths determined by

the number of events. The motivation for her research came from a coronary intervention

study, where the outcomes of interest were the number of lesions and the sizes of the lesions.

The dimensions of the random vectors are treated as random variables (random lengths)

and the distributional mean of each of the component of these random vectors depends on

an underlying parameter, as do the distributions of the random length variables. Barnhart

and Sampson [6] proposed a model to deal with multivariate data without covariates. Their

method employs maximum likelihood and assumes that, conditional on the number of events,

the event severities are distributed as multivariate normal. The numbers of events are
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assumed to follow a generalized linear model. Barnhart, Kosinski and Sampson [8] extended

the above approach to incorporate covariates. Barnhart [7] also proposed a probit model for

multivariate random length data. Recently, Allen and Barnhart [2] introduced a model for

multivariate random length ordinal data.

2.1.1.1 Description of the Multiple Population Model without Covariates First,

we describe the model proposed by Barnhart and Sampson [6] to jointly model the number of

occurrences of an event and their associated severities. Their model is based on the idea that

the disease status affects both the number of lesions and their sizes. Thus, the parameter

reflecting the underlying disease status appears in specification of both the distribution of

the random lengths and the conditional distribution of the vectors of severities given the

random lengths.

Suppose we have m populations, with distinct population parameters µ1, ..., µm (µi1 6= µi2

whenever i1 6= i2) characterizing each population’s underlying disease status. For each

i = 1, ..., m and j = 1, ..., ni, where ni represents the number of subjects sampled from

population i, the data for the j-th subject from population i consist of the random vectors Xij

and their corresponding lengths Kij. The model they propose has two important features:

(a) The components of the vector of severities Xij given the corresponding random length

are exchangeable random variables. This assumption is motivated by the coronary inter-

vention data where the components of the random vectors, sizes of lesions, are considered

to be permutation invariant, since lesion sites are non comparable across subjects.

(b) They introduce a parameter γ, whose sign and magnitude control the association of

the random length with the multivariate severities. If γ = 0 there is no additional

information about the number of events that is brought by knowing their severities and

conversely, knowing the number of events provides no additional information about their

severities. If γ > 0, Ki1j1 is stochastically larger than Ki2j2 for µi1 > µi2 and any

j1 = 1, ..., ni1 , j2 = 1, ..., ni2 and if γ < 0, Ki2j2 is stochastically larger than Ki1j1 for

µi1 > µi2 and any j1 = 1, ..., ni1 , j2 = 1, ..., ni2 . (In other words, if γ > 0, the larger the

underlying parameter µ is, the more likely it is to observe higher severities and a larger

frequency of them. If γ < 0, the larger the underlying parameter µ is, the more likely it
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is to observe higher severities, but a smaller number of them.)

Specifically, they make the following model assumptions:

(1) The random length variable Kij for population i has a discrete distribution

P(Kij = k) = gk(δ + γµi), k = 0, 1, 2, ..., L (2.1)

where L > 0 is assumed known (possibly infinite), gk(α) is differentiable in α (k =

0, 1, ..., L) and the distribution determined by g0(α), ..., gL(α) is stochastically increasing

in α.

(2) The random vector Xi with random length Kij from population i, has the conditional

distribution:

Xij|Kij = k ∼ MVNk(µiek, σ
2Rk(ρ)), k = 1, 2, ... , (2.2)

where ek is the k-dimensional vector with all the entries 1, Ik is the k-dimensional identity

matrix , Rk(ρ) = (1 − ρ)Ik + ρeke
′
k is the intraclass correlation matrix of dimension k

and 0 ≤ ρ < 1 is assumed to be positive.

(3) The observations (Kij,Xij), i = 1, ..., m, j = 1, ..., ni are independent.

Note that ρ is required to be nonnegative to ensure the positive definiteness of the covariance

matrix σ2Rk(ρ) for any k = 1, ..., L and any L.

To simplify the expression of the likelihood, we transform the data using canonical re-

duction techniques. Given the random length Kij = kij, the corresponding data vector Xij,

of length greater than one, gets multiplied by a corresponding matrix Γkij
, where Γk is a

k × k dimensional matrix of form

Γk =




1
k
e′k

Uk


 ,

Uk is a (k − 1) × k matrix so that UkU
′
k = Ik−1 and Ukek = 0. With the application

of the appropriate transformation Yij = Γkij
Xij it follows that given Kij, Yij also has a

kij-dimensional multivariate normal distribution with mean ξi = (µi, 0, ..., 0) and covariance

matrix σ2Mkij
, where Mkij

= Diag
(

1
τkij

, 1
τ0

, . . . , 1
τ0

)
, τk = k

1+(k−1)ρ
for k ≥ 1 and τ0 = 1

1−ρ
.
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The conditional density of the random length vector Yij is given by

f(yij|kij) =

(
1√

2πσ2

)kij ∣∣Mkij

∣∣−1/2
exp

{
−

(ykij
− ξi)

′M−1
kij

(ykij
− ξi)

2σ2

}

Due to the diagonal form of Mkij
, this can be easily be written as

f(yij|kij) =

(
1√

2πσ2

)kij (
τkij

τ
kij−1
0

)1/2

exp



−

1

2σ2


τkij

(yij1 − µi)
2 + τ0

kij∑

l=2

y2
ijl






 .

We can write the joint density for this one observation as:

f(yij, kij) = P(Kij = kij)f(yij|kij)
δ(kij),

where

δ(k) =





1 if k ≥ 1

0 if k = 0

Taking the logarithm of the above, we obtain:

log f(yij, kij) = log P(Kij = kij) + δ(kij) log f(yij|kij)

Hence

log f(yij, kij) = log gkij
(δ + γµi)

−δ(kij)

2


kij log

(
σ2

)− log
(
τkij

τ
kij−1
0

)
+

1

σ2


τkij

(yij1 − µi)
2 + τ0

kij∑

l=2

y2
ijl





 .

Denoting the m+4 parameters of the model by θ = (δ, γ, µ1, ..., µm, σ2, ρ)
′
, we can write the

log-likelihood of the whole data as

l(θ) =
m∑

i=1

ni∑
j=1

log gkij
(δ + γµi)

−1

2

m∑
i=1

ni∑
j=1

δ(kij)


kij log

(
σ2

)− log
(
τkij

τ
kij−1
0

)
+

1

σ2


τkij

(yij1 − µi)
2 + τ0

kij∑

l=2

y2
ijl





 .
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It follows that the m + 4 score equations are :

m∑
i=1

ni∑
j=1

g′kij
(δ + γµi)

gkij
(δ + γµi)

= 0

m∑
i=1

ni∑
j=1

µig
′
kij

(δ + γµi)

gkij
(δ + γµi)

= 0

for i = 1, ...,m,

ni∑
j=1

γg′kij
(δ + γµi)

gkij
(δ + γµi)

+
1

σ2

ni∑
j=1

δ(kij)τkij
(yij1 − µi) = 0

− 1

2σ2

m∑
i=1

ni∑
j=1

δ(kij)kij +
1

2σ4

m∑
i=1

ni∑
j=1

δ(kij)


τkij

(yij1 − µi)
2 + τ0

kij∑

l=2

y2
ijl


 = 0

1

2

m∑
i=1

ni∑
j=1

δ(kij)


(kij − 1)

(
−τkij

kij

+ τ0

)
+

1

σ2


kij − 1

kij

τ 2
kij

(yij1 − µi)
2 − τ 2

0

kij∑

l=2

y2
ijl





 = 0 .

We use the fact that ∂τk

∂ρ
= −k−1

k
τ 2
k and ∂τ0

∂ρ
= τ 2

0 .

2.1.1.2 Maximum Likelihood Estimation and Asymptotic Properties Let us de-

note by I(θ) the information matrix for θ contained in the n =
m∑

i=1

ni multivariate random

length vectors Xij with random lengths Kij, i = 1, ..., m, j = 1, ..., ni. I(θ) can be computed

as

I(θ) = I∗(θ) +
m∑

i=1

ni∑
j=1

L∑

k=1

P (Kij = k)I(θ|k)

where I∗(θ) is the information matrix about θ contained in the random lengths Kij , i =

1, ..., m, j = 1, ..., ni and I(θ|k) is the information matrix contained in Xij|Kij = k ,

k = 1, ..., L.

Barnhart [4] showed that, under regularity conditions, the MLE is consistent and has an

asymptotic normal distribution.
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2.2 INFORMATIVE CLUSTER SIZE, WITHIN CLUSTER RESAMPLING

AND RELATED RESEARCH

2.2.1 Within Cluster Resampling

An alternative way of looking at the multivariate random length data is to treat it as clustered

data. Under the Barnhart model, the disease status affects both the number of events

and their severities. For clustered data, this assumption translates into what is termed

informative cluster size. Informative cluster size refers to a phenomenon where the expected

number of observations within a cluster is related to the outcome of interest. In applications

that involve clustered data, the number of subunits within a cluster, i.e the number of events,

is often related to the outcomes measured on the individual subunits, i.e. the severities of

the events. Standard analysis methods for correlated data (Liang and Zeger [29], Zeger and

Liang [36]) are not appropriate for this type of data, since they rely on the assumption that

the cluster size is not related to the outcome (missing at random). Analyses that ignore this

dependency can lead to biased inference.

Hoffman, Sen and Weinberg [15] introduced Within Cluster Resampling (WCR) as a new

procedure to analyze clustered data when the cluster size is related to the outcome. Suppose

we have I independent clusters. The WCR procedure is carried out by randomly selecting

one observation from each cluster. In this manner, a new data set is formed, consisting of

independent univariate observations, one from each cluster. The resampled data set is then

analyzed using a generalized linear model (GLM). This resampling procedure is repeated

a large number of times (Q), producing Q dependent parameter estimates. Each of the

resampled data sets generates β̂(q), the maximum likelihood estimator from a GLM and

Σ̂(q), the estimate of the asymptotic variance-covariance matrix of
√

I(β̂(q)−β), q = 1, ..., Q.

Averaging over the Q resampled data sets produces the WCR parameter estimate:

β̂WCR =
1

Q

Q∑
q=1

β̂(q). (2.3)
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The WCR asymptotic variance-covariance estimator of
√

I(β̂WCR − β) is

V̂WCR =
1

Q

Q∑
q=1

Σ̂(q)− 1

Q

Q∑
q=1

(β̂(q)− β̂WCR)(β̂(q)− β̂WCR)
′
. (2.4)

Note that each resampled estimator β̂(q) is the solution of a score equation

S(q, β) =
I∑

i=1

ni∑
j=1

UijI[(i, j) ∈ rq] = 0,

where Uij is the derivative of the contribution of the j-th member of the i-th cluster to the

log-likelihood and rq is the set of indices (i, j) that are randomly resampled in the q-th data

set. For a large number of clusters and a large number of resamples, Hoffman’s procedure

produces β̂WCR, an overall WCR parameter estimator, that is approximately multivariate

normal.

A method asymptotically equivalent to WCR was proposed by Williamson, Datta and

Satten [35]. Note that in WCR,

β̂(q) ≈ β − 1√
I
S(q, β)H−1(β),

where

H(q, β) =
∂S(q, β)

∂β

and

H−1(β) =
1

I
E(H(q, β)).

Instead of averaging the β̂(q) as in WCR, Williamson, Datta and Satten’s [35] approach is

to estimate β by solving

1

Q

Q∑
q=1

S(q, β) = 0.

They name this method cluster weighted generalized estimating equation (CWGEE) and

show that it is asymptotically equivalent to WCR.

Dunson, Chen and Harry [12] introduced a general Bayesian framework for jointly model-

ing cluster size and multiple categorical and continuous subunit-level outcomes. The multiple
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outcomes measured for the individual subunits are assigned an underlying model that ac-

counts for dependency between outcomes by incorporating shared latent variables within

outcome-specific regression models. They allow the same latent variables to affect both

cluster size and the subunit-level outcomes.

Follmann, Proschan and Leifer [13] extend WCR approach to a broader range of data.

They call their method ”multiple outputation” and prove its applicability to other types of

clustered data. The only requirement is having a valid statistical procedure for independent

data.

A major drawback of all the above methods (except Barnhart’s) to analyze clustered data

when the sample size is informative is their apparent failure to explicitly use the additional

information in the lengths. For example, WCR does not require specifying a correlation

structure among the members of the same cluster. While this method removes the bias of

the estimates from GEE models applied to informative clustered data, it does not apparently

use the information in the lengths. A second drawback is the incapability to handle empty

clusters. Consider the case of a periodontitis study, where the participants are the clusters

and each tooth is an ”observation”. If a person does not have any teeth, this might be

highly informative since the disease could have been the cause of the missing teeth. Allen

and Barnhart [2] call the phenomenon ”zero length bias”, and argue that subjects with at

least one observation may represent a biased sample of the test population.

2.2.2 Within Cluster Resampling for the Multiple Population Model

Recall that the setting of the multiple population model without covariates proposed by

Barnhart and Sampson [6] jointly models the number of events and their correlated severities

when we have data from m populations. For each subject we observe a random length

vector of severities. WCR randomly samples just one entry from each random length vector

(provided that the length is non-zero) and applies a GLM to the resulting data set. After

repeating this procedure Q times, we average the estimates.

Suppose the m populations have the separate population parameters µ1, ..., µm (µi1 6= µi2

for i1 6= i2) characterizing each population’s underlying disease status. The data consist of
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the random vectors Xij and their corresponding lengths Kij, with i = 1, ..., m and j =

1, ..., ni, where the observations (Kij,Xij), i = 1, ..., m, j = 1, ..., ni are independent. Given

the lengths, the distribution of the vectors of severities is multivariate normal.

For each q = 1, ..., Q the data for WCR is : Xq
ij, i = 1, ...,m, j = 1, ..., ni, where Xq

ij is the

element of Xij randomly sampled in the q-th data set. These observations are independent.

For them we apply a one-way anova model

Xq
ij = µi + εq

ij (2.5)

where εq
ij are independent, identically distributed normal random variables with mean zero.

Maximum likelihood estimation will generate µ̂(q) = (µ̂1(q), ..., µ̂m(q)) and Σ̂(q), the

estimate of the asymptotic covariance matrix. The WCR estimator is

µ̂WCR =
1

Q

Q∑
q=1

µ̂(q), (2.6)

and the WCR asymptotic covariance is

V̂WCR =
1

Q

Q∑
q=1

Σ̂(q)− 1

Q

Q∑
q=1

(µ̂(q)− µ̂WCR)(µ̂(q)− µ̂WCR)
′
. (2.7)
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3.0 BUILDING DEPENDENCE INTO SEVERITIES. MULTIPLE

POPULATION MODEL WITH INDEPENDENT POISSON LENGTHS

The aim of our research is introducing methodology for modeling and analyzing data collected

longitudinally on both the frequency of an event and its severity when both the frequency and

the severity are important. We model the two outcomes together and pool the information

from both to discern treatment effects. A typical example of such a study is the clinical

trial of a migraine drug. The two outcomes being measured on each subject at monthly

clinic visits are the number of migraines experienced and the pain level of each migraine.

Both the frequency of the migraines and the pain level of each migraine during the month

are informative about the treatment progress. If the drug is efficacious, the patients that

received the active are expected to improve in that, over time, they will have fewer migraines

and their pain levels will be lower. We referred to this type of data, when subjects are

observed longitudinally and their random length measurements are recorded periodically

over time, as longitudinal random length data. The goal of this chapter is to construct a

multiple population model for dealing with longitudinal random length data. For clarity of

methodology, the analysis of a one population model, introduced in Section 3.1, is extensively

presented. The main results of this analysis, the maximum likelihood equations and the

asymptotic distributions for the MLE, are then easily generalized in the multiple population

model of Section 3.2.

We assume the number of times at which measurements are taken to be the same for

all subjects. Handling data from longitudinal studies requires special techniques which take

into account the fact that the measurements over time within one subject are dependent.

In longitudinal random length data, we observe repeated measurements over time on two

different outcomes: the number of events, and their multivariate severities. In this chapter,
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we build dependence over time in only one of the two outcomes of interest. Specifically,

we assume that the random lengths giving the number of events for a subject at different

time points are independent random variables and we build dependence over time into the

severity measures. We employ independent Poisson random variables to model the number

of events experienced by a subject throughout the T time points. The Poisson distribution

is used to model the random lengths since it is the natural choice for modeling occurrences

of an event of interest. Given the random lengths, we assume that the distribution of the

severities is multivariate normal. We parametrize the model in such a way that, at each

measurement time, both the distribution of the random lengths and the distributional mean

of each component of the random vectors depend on an underlying parameter, reflecting

the disease status at that time. Conditional on the number of events, the dependence in

the vector of severities recorded at a single measurement time on each subject is modeled

using compound symmetry. Hence, we assume that any two severity measures registered

at the same measurement time for a subject are equally correlated , with the correlation

coefficient equal to ρ, independent of the measurement time. Furthermore, conditional on

all the numbers of events experienced by a subject, we assume that any two severity measures

recorded at two different measurement times within a subject have the same correlation and

that correlation, ρ∗, is smaller than ρ.

3.1 ONE POPULATION MODEL WITH INDEPENDENT POISSON

LENGTHS

This section introduces a one population model designed to deal with repeated measurements

over time of random length data. The model is appropriate for instances in which only one

treatment is involved, and the treatment is evaluated at different points in time. We assume

that the population is characterized by the parameters µ1, ..., µT , reflecting the underlying

disease status at measurement times 1, 2 ,..., T . The subjects are followed longitudinally

and their vectors of severities are recorded repeatedly for a fixed number of time periods T .

Hence, at each regularly scheduled measurement time, the data for a subject are a vector of
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severities with random length. We assume that the random lengths for different times are

independent Poisson random variables. At each measurement time, both the distribution of

the random lengths and the conditional distributional of the vectors of severities given the

random lengths depend on the underlying parameter reflecting the disease status at that

time point. Specifically, we assume a log-linear dependence of the average number of events

on the average severity.

In the LEDS data mentioned in the Introduction, the relevant quantities are the number

of stressful life events that MDD subjects experience throughout the four quarters of a year,

and their severity levels. For modeling purposes it makes sense to assume that there is an

underlying depression status affecting both the number of events and how severe these events

are. We expect that as subjects in the MDD group draw closer to their MDD onset, they

will have more stressful life events and their severity levels will be higher.

3.1.1 Model Description

To formalize the above, let us introduce some notation. Each subject i, i = 1, ..., n is

observed T times. At each measurement time j = 1, ..., T , the subject i reports a random

number of events Kij and the corresponding measurements are recorded into the vector

Xij. Hence all the data for subject i can be summarized by a
T∑

j=1

Kij - dimensional vector

Xi, X
′
i =

(
X

′
i1, ..., X

′
iT

)
and the corresponding T -dimensional vector of random lengths

Ki = (Ki1, ..., KiT ), with i = 1, ..., n. Let ki = (ki1, ..., kiT ) be a realization of the T -

dimensional vector of lengths Ki. Some of the the components of ki might be zero. Let

us denote by l(ki) the number of nonzero components of ki. Using the notation from the

previous chapter, we may write l(ki) =
T∑

j=1

δ(kij), where

δ(k) =





1 if k ≥ 1

0 if k = 0
.

Let us denote

δ(k) =





1 if
T∑

i=1

ki ≥ 1

0 if
T∑

i=1

ki = 0

.
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If the vector of random lengths ki has at least one nonzero component, it follows that

δ(ki) = 1. If l(ki) > 0 we denote by k̃i the l(ki)-dimensional vector composed of the nonzero

elements of ki. Hence k̃i = (kiri1
, kiri2

, ..., kiril(ki)
), where 1 ≤ ri1 < ri2 < ... < ril(ki) ≤ T are

indices corresponding to the elements in the original vector ki. We denote this set of ordered

indices by ri = (ri1, ri2, ..., ril(ki)), which are the times at which a nonzero length vector Xij

is observed.

We make the following model assumptions. For each observational unit i, i = 1, ..., n,

(1) The T random length variables Ki1, Ki2, ..., KiT are independent, Poisson(λj) distributed

random variables, where λj = exp(δ + γµj), j = 1, ..., T , so that

P(Kij = k) =
e−λjλk

j

k!
, k = 0, 1, 2, ... . (3.1)

(2) Conditional on the random lengths Ki = (Ki1, ..., KiT ) = (ki1, ..., kiT ), the distribution

of Xi for the i-th subject, is a
T∑

l=1

kil-dimensional multivariate normal

Xi| (Ki = (ki1, ..., kiT )) ∼ MVN TP
t=1

kit

(
µki

, σ2Ski
(ρ, ρ∗)

)
, (3.2)

for
T∑

t=1

kit = 1, 2, ..., where

µki
= µki1,...,kiT

=




µri1
ekiri1

µri2
ekiri2

...

µril(ki)
ekiril(ki)




(3.3)

and

Ski
(ρ, ρ∗) = Ski1,...,kiT

(ρ, ρ∗)

=




Rkiri1
(ρ) ρ∗Jkiri1

,kiri2
... ρ∗Jkiri1

,kiril(ki)

ρ∗Jkiri2
,kiri1

Rkiri2
(ρ) ... ρ∗Jkiri2

,kiril(ki)

... ... ...

ρ∗Jkiril(ki)
,kiri1

ρ∗Jkiril(ki)
,kiri2

... Rkiril(ki)
(ρ)




. (3.4)
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We denote by Rk(ρ) = (1− ρ)Ik + ρeke
′
k, the intraclass correlation matrix of dimension

k; Jk,l is the k×l-dimensional matrix having all entries equal to 1, Ik is the k-dimensional

identity matrix, and ek is the k-dimensional vector with all the entries 1. In order for

the matrix Sk1,...,kT
(ρ, ρ∗) to be positive definite for all possible choices of (k1, ..., kT ), we

impose the sufficient condition 0 ≤ ρ∗ ≤ ρ < 1.

(3) The data (Ki,Xi) and (Kj,Xj), for subject i and j, respectively, are independent for

i 6= j.

As we can see from the expressions of the mean and covariance of the multivariate

normal in (3.3) and (3.4), if one of the lengths for a time point is zero, it means there is no

corresponding entry for that time point in both the mean vector and the covariance matrix.

This is one of the main difficulties in handling the model, since not only the number of events,

but also the number of blocks that constitute the mean and covariance structures in (3.3) and

(3.4) can change from subject to subject. Thus, strict attentiveness and a significant amount

of bookkeeping need to be conveyed in working with the conditional density functions for the

multivariate severity measurements. Consider the following example of two subjects from

the one population model described above, both followed for 3 time measurements. Suppose

both subjects have either zero or two events recorded at every measurement; subject 1 has

0 events recorded at the first time measurement and two events recorded at each of the next

two time points; subject 2 has two events recorded for each of the first two measurements

and zero events collected at the last measurement. Their situation might look similar, but

the structure of the means differs. Conditional on the total number of events experienced

during the three measurement, subject 1’s severity mean is (µ2, µ2, µ3, µ3), while subject 2’s

is (µ1, µ1, µ2, µ2). Moreover, the conditional covariance for the multivariate severities looks

the same, being equal to


 R2(ρ) ρ∗J2,2

ρ∗J2,2 R2(ρ)


 , (3.5)

but one needs to take into account the fact that this structure corresponds to the last two

time measurements for subject 1 and to the first two time measurements for subject 2.
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The proposed model has the following features:

(a). The (T+5) parameters are collectively denoted by θ, θ = (δ, γ, µ1, ..., µT , σ2, ρ, ρ∗)
′
. The

parameter space for the above model is

Θ =
{

θ = (δ, γ, µ1, ..., µT , σ2, ρ, ρ∗)
′| −∞ < δ, γ, µ1, ..., µT < ∞, σ2 > 0, 0 ≤ ρ∗ ≤ ρ < 1

}

(b). The parameter γ acts as a scaling parameter and also controls the association of µt with

the random length. γ being zero implies that the population means (µt, t = 1, ..., T )

have no effect on the distribution of the random lengths. Parameter γ > 0 implies that

the larger the underlying parameter µ is, the larger the severity measures tend to be,

and the higher their frequency tends to be. Parameter γ < 0 implies that the larger

the underlying parameter µ is, the larger the severity measures tend to be, but their

frequency tends to be smaller.

(c). The support of the random lengths includes zero. Any of the components of the vector

Ki may be zero. If all of them are zero we observe no quantitative data for subject i.

In this case, the multivariate normal distribution defined in (3.2) is not meaningful. We

deal with this situation by defining the density of a vector with zero length to be equal

to 1 with probability 1.

(d). We build dependence over time by means of the parameter ρ∗; therefore, any severity

measure recorded for an individual at measurement time t1 is equally correlated to any

other severity measure recorded for the same individual at measurement time t2, where

t1 6= t2. This assumption may seem unrealistic in the case of life events (an AR(1)-type

covariance might be more suitable), but it is appropriate for other type of data sets and

it was chosen to reduce the complexity of the model.

3.1.2 Maximum Likelihood Estimation

Consider one of these T−random length measurements, Xi, with the random length vector

Ki = (Ki1, ..., KiT ). Given the random lengths Ki1 = ki1, ..., KiT = kiT , Xi has a
T∑

t=1

kit - di-

mensional multivariate normal distribution with mean µki
and covariance matrix σ2Ski

(ρ, ρ∗)

23



given by (3.3) and (3.4) respectively. For each subject i, k̃i = (kir1 , kir2 , ..., kirl(ki)
) is the sub-

vector of ki composed only with nonzero elements.

We apply a matrix version of the canonical transformation technique used in the Barnhart

model described in Section 2.1.1 and, given Ki = ki, let Yi = Γki
Xi, where

Γki
= Γki1,...,kiT

=




Γkiri1
Okiri1

,kiri2
... Okiri1

,kiril(ki)

Okiri2
,kiri1

Γkiri2
... Okiri2

,kiril(ki)

... ... ... ...

Okiril(ki)
,kiri1

Okiril(ki)
,kiri2

... Γkiril(ki)




,

Xi =




Xiri1

Xiri2

...

Xiril(ki)




.

and Ok,l is the k × l matrix with all the entries equal to 0.

It follows that given Ki = (ki1, ..., kiT ), Yi =
(
Y

′
i1, ..., Y

′
iT

)′
also has a multivariate normal

distribution with mean ξki1,...,kiT
and covariance matrix σ2∆ki1,...,kiT

, where

ξ
′
k1,...,kT

= ((µri1
0 ... 0), (µri2

0 ... 0), ..., (µril(ki)
0 ... 0))

and

∆k1,...,kT
=




Mkiri1
ρ∗Ekiri1

,kiri2
... ρ∗Ekiri1

,kiril(ki)

ρ∗Ekiri2
,kiri1

Mkiri2
... ρ∗Ekiri2

,kiril(ki)

... ... ... ...

ρ∗Ekiril(ki)
,kiri1

ρ∗Ekiril(ki)
,kiri2

... Mkiril(ki)




.

Recall that Mk = Diag
(

1
τk

, 1
τ0

, ..., 1
τ0

)
, τk = k

1+(k−1)ρ
for k ≥ 1, and τ0 = 1

1−ρ
. We use Ek,l

to denote the k× l-dimensional matrix having the (1, 1) entry equal to 1 and the remaining

elements equal to zero.

To simplify the notation, we express all the quantities concerning the elements of the normal
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distribution in terms of the k̃i, not ki, since only the nonzero length vectors do actually

contribute to the multivariate normal. Thus,

∆ki1,...,kiT
= ∆ eki

=




Meki1
ρ∗Eeki1,eki2

... ρ∗Eeki1,ekil(ki)

ρ∗Eeki2,eki1
Meki2

... ρ∗Eeki2,ekil(ki)

... ... ... ...

ρ∗Eekil(ki)
,eki1

ρ∗Eekil(ki)
,eki2

... Mekil(ki)




.

We notice that, given Ki, the only correlated components in the vector Yi are the first

entries in each of the subvectors Yij, j = 1, ..., T , provided that the corresponding length

Kij is nonzero. All the remaining entries in the Yi vector are conditionally independent,

identically distributed univariate normal random variables, with mean 0 and variance σ2/τ0.

We have

Yi =
(
Yiri11 Yiri12 ... Yiri1kiri1

Yiri21 Yiri22 ... Yiri2kiri2
... Yiril(ki)

1 Yiril(ki)
2 ... Yiril(ki)

kiril(ki)

)′
.

Denote by Zi the vector composed with the first entries in the nonzero length vectors Yij

Zi =
(
Yiri11 Yiri21 ... Yiril(ki)

1

)′
=

(
Zi1 Zi2 ... Zi(ki)

)′

and by Ŷi the vector containing the remaining components of Yi

Ŷi =
(
Yiri12 ... Yiri1kiri1

Yiri22 ... Yiri2kiri2
... Yiril(ki)

2 ... Yiril(ki)
kiril(ki)

)′
.

Note that Zi has dimension l(ki) =
T∑

t=1

δ(kit) and Ŷi has dimension
T∑

t=1

kit − l(ki). Further

denoting

µ∗
i = (µri1

µri2
... µril(ki)

)
′
= (µ∗1 µ∗2 ... µ∗l(ki)

),

we can readily show that the conditional density of the random length vector Yi can be

expressed as

f(yi|ki) =

(
1√

2πσ2

)l(ki)

|Σki
|−1/2

× exp

{
−(zi − µ∗

i )
′
Σ−1

ki
(zi − µ∗

i )

2σ2

}
l(ki)∏
j=1

kirij∏

l=2

exp− y2
irij l

2σ2/τ0√
2πσ2/τ0

,
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where

Σki
= Σeki

=




1
τeki1

ρ∗ ... ρ∗

ρ∗ 1
τeki2

... ρ∗

... ... ... ...

ρ∗ ρ∗ ... 1
τekil(ki)




. (3.6)

This can be written as

f(yi|ki) =

(
1√

2πσ2

) TP
l=1

kil

τ

1
2

 
TP

l=1
kil−l(ki)

!
0 |Σki

|−1/2

× exp

{
−(zi − µ∗

i )
′Σ−1

ki
(zi − µ∗

i )

2σ2

}
exp



−

l(ki)∑
j=1

kirij∑
l=2

y2
irij l

2σ2/τ0




.

We can now write the joint density for the i-th subject’s data as

f(yi,ki) = P(Ki1 = ki1, ..., KiT = kiT )f(yi|ki1, ..., kiT )δ(ki).

Taking the logarithm of the above and using the independence of the lengths, we obtain

log f(yi,ki) = log P(Ki1 = ki1, ..., KiT = kiT ) + δ(ki) log f(yi|ki1, ..., kiT )

=
T∑

j=1

log P(Kij = kij) + δ(ki) log f(yi|ki1, ..., kiT ).

Hence, the contribution of the i−th subject to the log-likelihood is

log f(yi,ki) =
T∑

j=1

(−λj + kij log λj) + δ(ki)

[
− log σ2

2

T∑
j=1

kij +
log τ0

2

(
T∑

j=1

kij −
T∑

j=1

δ(kij)

)

−1

2
log |Σki

| − 1

2σ2
(zi − µ∗

i )
′Σ−1

ki
(zi − µ∗

i )−
τ0

2σ2

l(ki)∑
j=1

kirij∑

l=2

y2
irij l


 .
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Recalling that λj has the form λj = exp (δ + γµj), we can write

log f(yi,ki) =
T∑

j=1

[−eδ+γµj + kij (δ + γµj)
]− log σ2

2

T∑
j=1

kij +
log τ0

2

(
T∑

j=1

kij −
T∑

j=1

δ(kij)

)

−1

2
log |Σki

| − 1

2σ2
(zi − µ∗

i )
′
Σ−1

ki
(zi − µ∗

i )−
τ0

2σ2

l(ki)∑
j=1

kirij∑

l=2

y2
irij l,

where to keep the notation simple, we give up multiplying the last 5 terms in the right hand

side of the equation by δ(ki). Instead, we make the convention to consider these 5 terms

equal to zero for the case when δ(ki) is zero (i.e. when all the random lengths for a subject

are zero). The log-likelihood of the entire data set is

l(θ) =
n∑

i=1

T∑
j=1

[−eδ+γµj + kij (δ + γµj)
]− log σ2

2

n∑
i=1

T∑
j=1

kij +
log τ0

2

n∑
i=1

(
T∑

j=1

kij −
T∑

j=1

δ(kij)

)

−1

2

n∑
i=1

log |Σki
| − 1

2σ2

n∑
i=1

(zi − µ∗
i )
′
Σ−1

ki
(zi − µ∗

i )−
τ0

2σ2

n∑
i=1

l(ki)∑
j=1

,

kirij∑

l=2

y2
irij l (3.7)

where the parameter vector is θ = (δ, γ, µ1, ..., µT , σ2, ρ, ρ∗)
′
.

From the results (A.5) - (A.8) in Appendix A, it follows that the T + 5 score equations are
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given by

n∑
i=1

T∑
j=1

(−eδ+γµj + kij

)
= 0 (3.8)

n∑
i=1

T∑
j=1

(−µje
δ+γµj + kijµj

)
= 0 (3.9)

γ




−nλ1 +
n∑

i=1

ki1

−nλ2 +
n∑

i=1

ki2

...

−nλT +
n∑

i=1

kiT




+
1

σ2

n∑
i=1

Σ−1
ki

(zi − µ∗
i ) = 0T (3.10)

− 1

2σ2

n∑
i=1

T∑
j=1

kij +
1

2σ4

n∑
i=1

(zi − µ∗
i )
′
Σ−1

ki
(zi − µ∗

i ) +
τ0

2σ4

n∑
i=1

ŷ
′
iŷi = 0 (3.11)

1

1− ρ

n∑
i=1

T∑
j=1

(kij − δ(kij))−
n∑

i=1

tr

(
Σ−1

ki

[
IT −Diag

(
1

ki1

, ...,
1

kiT

)])

+
1

σ2

n∑
i=1

(zi − µ∗
i )
′
Σ−1

ki

[
IT −Diag

(
1

ki1

, ...,
1

kiT

)]
Σ−1

ki
(zi − µ∗

i )

− τ0

σ2(1− ρ)2

n∑
i=1

ŷ
′
iŷi = 0 (3.12)

−
n∑

i=1

tr
(
Σ−1

ki
(eT e

′
T − IT )

)

+
1

σ2

n∑
i=1

(zi − µ∗
i )
′
Σ−1

ki
(eT e

′
T − IT )Σ−1

ki
(zi − µ∗

i ) = 0. (3.13)

We denote by 0T the T -dimensional vector with all entries equal to zero. Note that the fact

that
l(ki)∑
j=1

kirij∑
l=2

y2
irij l = ŷ

′
iŷi has been used to simplify the last three score equations.

Further note that if all the observations consist of random length vectors with length

zero, none of the equations (3.8) - (3.13) make sense; hence none of the parameters are

estimable. If we observe only vectors with length zero or 1 then the parameter ρ is not

estimable. If each subject has at most one nonzero length measurement, then parameter ρ∗

is not estimable.
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The maximum likelihood estimator for θ can be obtained through a Fisher scoring

algorithm or by numerical maximization of the likelihood through a standard optimiza-

tion with restriction algorithm. When performing maximization, one needs to adjust for

the constraints in the model. The estimates need to satisfy the restrictions σ2 > 0 and

0 ≤ ρ∗ ≤ ρ < 1.

3.1.3 Asymptotic Distribution of the Maximum Likelihood Estimators

Let us denote by In(θ) the information matrix for θ contained in the n multivariate random

length vectors Xi with random lengths Ki = (Ki1, ..., KiT ), i = 1, ..., n. Conceptually, it

makes sense to think of In(θ) as a sum of the information about θ contained in the lengths

and the sum of information about θ contributed by the vectors of severities, over all possible

lengths. We show in Appendix A that the information about the parameter θ contained in a

single observation from the one population model, X with random lengths K = (K1, ..., KT )

has the form

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),

where I∗(θ) is the information matrix about θ contained in the random lengths K =

(K1, ..., KT ) and I(θ|k) is the information matrix contained in Xi|K = k, where k ∈ Υ.

We denote

Υ =

{
k = (k1, ...kT )| ki = 0, 1, ... for ∀i = 1, ..., T and

T∑
i=1

ki ≥ 1

}
.

Using a general result from Barnhart [4] (Theorem A.3.1.1) we can compute the infor-

mation matrix In(θ) about θ = (δ, γ, µ1, ..., µT , σ2, ρ, ρ∗)
′

contained in the n independent

observations from the one population model as

In(θ) = nI∗(θ) + n
∑

k∈Υ

Pθ(K = k)I(θ|k).

We show in (A.21), that In(θ) has a block diagonal form

In(θ) =




In(δ, γ, µ1, ..., µT ) O(T+2)×3

O3×(T+2) n
∑
k∈Υ

Pθ(K = k)Ik(σ2, ρ, ρ∗)


 ,
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where

In(δ, γ, µ1, ..., µT ) = nI(δ, γ, µ1, ..., µT ) = nG +




O2×2 O2×T

OT×2 n 1
σ2

∑
k∈Υ

[
T∏

j=1

e−λj λj
kj

kj !

]
Σ−1

k


 ,

G denotes the matrix

G =




T∑
j=1

λj

T∑
j=1

µjλj γλ1 γλ2 ... γλT

T∑
j=1

µjλj

T∑
j=1

µ2
jλj γµ1λ1 γµ2λ2 ... γµT λT

γλ1 γµ1λ1 γ2λ1 0 ... 0

γλ2 γµ2λ2 0 γ2λ2 ... 0

... ... ... ... ... ...

γλT γµT λT 0 0 ... γ2λT




, (3.14)

the elements of the matrix Ik(σ2, ρ, ρ∗) are defined by (A.10) - (A.15), and Σk is given

by (3.6). Is is apparent from its expression that In(δ, γ, µ1, ..., µT ) is obtained as the sum

of the information nG contributed by the random lengths, and the information from the

multivariate severities.

As can be seen from (3.8) - (3.13), there is no closed form solution for θ̂n. Hence, the

exact distribution of θ̂n is not available. We can apply a general result on the efficiency of

maximum likelihood estimators for random length data (Theorem A.3.2 in Barnhart [4]) to

derive the asymptotic distribution for θ̂n, the MLE. The asymptotic covariance matrix of θ̂n,

is obtained as the inverse of the information matrix In(θ) and it is estimated by I−1
n (θ̂n).

Theorem 1. Let θ̂n = (δ̂n, γ̂n, µ̂
(n)
1 , ..., µ̂

(n)
T , σ̂2

n, ρ̂n, ρ̂∗n)
′
be the MLEs for a sample of size n

from the one population model. Then, as n →∞

(1). θ̂n is consistent.
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(2).

√
n

(
θ̂n − θ

)
L→MVNT+5(0, I−1(θ)),

where

I(θ) =




I(δ, γ, µ1, ..., µT ) O(T+2)×3

O3×(T+2)

∑
k∈Υ

Pθ(K = k)Ik(σ2, ρ, ρ∗)


 ,

and

I(δ, γ, µ1, ..., µT ) = G +




O2×2 O2×T

OT×2
1
σ2

∑
k∈Υ

[
T∏

j=1

e−λj λj
kj

kj !

]
Σ−1

k


 ,

where G is given by (3.14) and the elements of the matrix Ik(σ2, ρ, ρ∗) are defined by

(A.10) - (A.15).

3.2 MULTIPLE POPULATION MODEL WITH INDEPENDENT POISSON

LENGTHS

This section furthers the model introduced in Section 3.1.1 to accommodate two or more

populations. The proposed model is appropriate for studies in which more than one treat-

ment is involved. For example, in a clinical trial of a new anti-epileptic drug, patients are

randomized to two treatment groups; one is the new drug and the second one is placebo (or

an alternative medication). A change in disease status is reflected in simultaneous changes in

both the number of seizures events and the severity of each seizure. Our proposed method-

ology jointly models the number of events and the vectors of severity measures. The shared

parametrization exploits this notion, improving efficiency over separate parameterizations.

We use the log-linear functional dependence between the two mean structures from Section

3.1.1 and allow the different populations to share the scaling parameters δ and γ, while µ’s,

reflecting the underlying disease status are population specific. The model is motivated by

our belief that γ and δ are parameters of the process linking the underlying ”disease” status
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to the number of events. Thus, they should remain the same, regardless of population. What

changes is the underlying ”disease” status. The dependence in the vectors of severities within

a subject is modeled using the same parameters σ2, ρ and ρ∗, regardless of population.

3.2.1 Model Description

To formalize the above considerations, we generalize the notation from Section 3.1. We

have data from m different populations. Each subject j, j = 1, ..., ni, from population i,

i = 1, ...,m is observed T times. At each time point t = 1, ..., T , subject j from popula-

tion i has a random number of events Kijt and the corresponding severity measurements

are recorded into the vector Xijt. Hence all the data for this subject i can be condensed

into a
T∑

t=1

Kijt-dimensional vector Xij, X
′
ij =

(
X

′
ij1, ..., X

′
ijT

)
and the corresponding T -

dimensional vector of random lengths Kij = (Kij1, ..., KijT ), with i = 1, ..., m, j = 1, ..., ni.

Let kij = (kij1, ..., kijT ) be a realization of the T -dimensional vector of lengths Kij. Some

of the the components of kij might be zero. Let us denote by l(kij) the number of nonzero

components of kij. Using the notation from Chapter 2, l(kij) =
T∑

t=1

δ(kijt). If l(kij) > 0 we

denote by k̃ij the l(kij)-dimensional vector composed of the nonzero elements of kij. Hence

k̃ij = (kijrij1
, kijrij2

, ..., kijrijl(kij)
), where 1 ≤ rij1 < rij2 < ... < rijl(kij) ≤ T are indices corre-

sponding to the elements in the original vector ki. We denote this set of ordered indices by

rij = (rij1, rij2, ..., rijl(kij)).

To specify the model, we assume that for each population i = 1, 2, ..., m, and for each

observational unit j, j = 1, ..., ni,

(1) The random length variables Kij1, Kij2, ..., KijT are independent and distributed Pois-

son(λit), where λit = exp(δ + γµit), t = 1, ..., T . Hence,

Pθ(Kijt = k) =
e−λitλk

it

k!
, k = 0, 1, 2, ... . (3.15)

(2) The random vector Xij with random lengths Kij = (Kij1, ..., KijT ) for the j-th subject

in the i-th population, has the conditional distribution

Xij| (Kij = (kij1, ..., kijT )) ∼ MVN TP
l=1

kijl

(
µkij

, σ2Skij
(ρ, ρ∗)

)
, (3.16)
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for
T∑

l=1

kijl = 1, 2, ..., where

µkij
= µkij1,...,kijT

=




µirij1
ekijrij1

µirij2
ekijrij2

...

µirijl(kij)
ekijrijl(kij)




(3.17)

and

Skij (ρ, ρ∗) = Skij1,...,kijT
(ρ, ρ∗)

=




Rkijrij1
(ρ) ρ∗Jkijrij1

,kijrij2
... ρ∗Jkijrij1

,kijrijl(kij)

ρ∗Jkijrij2
,kijrij1

Rkijrij2
(ρ) ... ρ∗Jkijri2

,kijrijl(kij)

... ... ...
ρ∗Jkijrijl(kij)

,kijrij1
ρ∗Jkijrijl(kij)

,kijrij2
... Rkijrijl(kij)

(ρ)



(3.18)

In ensure that the matrix Sk1,...,kT
(ρ, ρ∗) is positive definite for all possible lengths

(k1, ..., kT ), we assume that 0 ≤ ρ∗ ≤ ρ < 1.

(3) The data (Ki1j1 ,Xi1j1) and (Ki2j2 ,Xi2j2), for subject j1 from population i1 and j2 from

population i2, respectively, are independent for (i1, j1) 6= (i2, j2).

The model exhibits the following features:

(a). The (mT+5) parameters are collectively denoted by θ, where

θ = (δ, γ, µ11, ..., µ1T , ..., µm1, ..., µmT , σ2, ρ, ρ∗)
′
.

The parameter space for the above model is

Θ =
{

θ = (δ, γ, µ11, ..., µmT , σ2, ρ, ρ∗)
′|

−∞ < δ, γ, µ11, ..., µmT < ∞, σ2 > 0, 0 ≤ ρ∗ ≤ ρ < 1
}

(b). The parameter γ acts as a scaling parameter and also controls the association of µ with

the random lengths and has the same interpretation as in the one population model

introduced in Section 3.1.
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(c). The support of the random lengths includes zero. Any of the components of the vector

Ki may be zero. If all of them are zero, we observe no quantitative data. In this case, we

define f(xi|Ki = 0) = 1 with probability 1. As we can see from the expressions above, if

one of the lengths is zero, it means there is no corresponding entry for that time point in

both the mean vector and the covariance matrix defined by 3.17 and 3.18, respectively.

3.2.2 Maximum Likelihood Estimation

Consider one of these T -random length measurements, Xij, with the random length vector

Kij = (Kij1, ..., KijT ). Given the random lengths Kij1 = kij1, ..., KijT = kijT , Xij has a
T∑

t=1

kijt - dimensional multivariate normal distribution with mean µkij
and covariance matrix

σ2Skij
(ρ, ρ∗) given by (3.17) and (3.18), respectively. Each subject j, from population i can

be thought as coming from a one population model of the type introduced in the previous

section, with parameter vector θi = (δ, γ, µi1, ..., µiT , σ2, ρ, ρ∗)
′
. Thus, given Kij = kij , we

apply the appropriate transformation and define Yij = Γkij
Xij, where

Γkij
= Γkij1,...,kijT

=




Γkijrij1
Okijrij1

,kijrij2
... Okijrij1

,kijrijl(kij)

Okijrij2
,kijrij1

Γkijrij2
... Okijrij2

,kijrijl(kij)

... ... ... ...

Okijrijl(kij)
,kijrij1

Okijrijl(kij)
,kijrij2

... Γkijrijl(kij)




.

As before, Ok,l denotes the k × l matrix with all the entries equal to 0. We notice that,

given Kij = kij, the only uncorrelated entries in the vector Yij are the first entries in each of

the subvectors Yijt, t = 1, ..., T , provided that the corresponding length Kijt is nonzero. All

the remaining entries in the vector Yij are conditionally independent, identically distributed

univariate normal random variables, with mean 0 and variance σ2/τ0. We have

Yij =
(
(Yijrij11 Yijrij21 ... Yijrijl(kij)1) (Yijrij12 ... Yijrij1kijrij1

Yijrij22 ... Yiri2kiri2
... Yiril(ki)

2 ... Yiril(ki)
kiril(ki)

)
)′

.

Denote by Zij the vector composed with the first entries in the nonzero length vectors Yijt

Zij =
(
Yijrij11 Yijrij21 ... Yijrijl(kij)1

)′
=

(
Zij1 Zij2 ... Zijl(kij)

)′
,
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and by Ŷij the vector containing the remaining components of Yij

Ŷij =
(
Yijrij12 ... Yijrij1kijrij1

Yijrij22 ... Yijrij2kijrij2
... Yijrijl(kij)2 ... Yijrijl(kij)kijrijl(kij)

)′
.

Note that Zij has dimension l(kij) =
T∑

t=1

δ(kijt) and Ŷij has dimension
T∑

t=1

kijt−l(kij). Further

denoting

µ∗
ij = (µirij1

µirij2
... µirijl(kij)

)
′
= (µ∗ij1 µ∗ij2 ... µ∗ijl(kij)

)
′
,

we can readily show that the contribution of the j−th subject from population i to the

log-likelihood is

log f(yij,kij) =
T∑

t=1

(−λit + kijt log λit) + δ(kij)

[
− log σ2

2

T∑
t=1

kijt +
log τ0

2

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)

−1

2
log

∣∣Σkij

∣∣− 1

2σ2
(zij − µ∗

ij)
′Σ−1

kij
(zij − µ∗

ij)−
τ0

2σ2

l(kij)∑
t=1

kijrijt∑

l=2

y2
ijrijtl


 ,

where

Σkij
= Σfkij

=




1
τekij1

ρ∗ ... ρ∗

ρ∗ 1
τekij2

... ρ∗

... ... ... ...

ρ∗ ρ∗ ... 1
τekijl(kij)




. (3.19)

Recalling that λit has the form λit = exp (δ + γµit), we can write

log f(yij,kij) =
T∑

t=1

[−eδ+γµit + kijt (δ + γµit)
]− log σ2

2

T∑
t=1

kijt +
log τ0

2

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)

−1

2
log

∣∣Σkij

∣∣− 1

2σ2
(zij − µ∗

ij)
′Σ−1

kij
(zij − µ∗

ij)−
τ0

2σ2

l(kij)∑
t=1

kijrijt∑

l=2

y2
ijrijtl

.

Instead of multiplying by δ(kij) the last 5 terms in the right hand side of the above equation,

we make the convention to consider them equal to zero for the case when δ(kij) is zero (i.e.,
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when all the random lengths for a subject are zero). The log-likelihood of the entire data

set is

l(θ) =
m∑

i=1

ni∑
j=1

T∑
t=1

[−eδ+γµit + kijt (δ + γµit)
]− log σ2

2

m∑
i=1

ni∑
j=1

T∑
t=1

kijt

+
log τ0

2

m∑
i=1

ni∑
j=1

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)
− 1

2

m∑
i=1

ni∑
j=1

log
∣∣Σkij

∣∣

− 1

2σ2

m∑
i=1

ni∑
j=1

(zij − µ∗
ij)
′Σ−1

kij
(zij − µ∗

ij)−
τ0

2σ2

m∑
i=1

ni∑
j=1

l(kij)∑
t=1

kijrijt∑

l=2

y2
ijrijtl

, (3.20)

where the parameter vector is θ = (δ, γ, µ11, ..., µ1T , ..., µm1, ..., µmT , σ2, ρ, ρ∗)
′
.

Using the results (A.5) - (A.8) from Appendix A, we obtain that the mT +5 score equations
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are given by

m∑
i=1

ni∑
j=1

T∑
t=1

(−eδ+γµit + kijt

)
= 0 (3.21)

m∑
i=1

ni∑
j=1

T∑
t=1

(−µite
δ+γµit + kijtµit

)
= 0 (3.22)

γ




−n1λ11 +
n1∑

j=1

k1j1

−n1λ12 +
n1∑

j=1

k1j2

...

−n1λ1T +
n1∑

j=1

k1jT




+
1

σ2

n1∑
j=1

Σ−1
k1j

(z1j − µ∗
1j) = 0T (3.23)

...

γ




−nmλm1 +
nm∑
j=1

kmj1

−nmλm2 +
nm∑
j=1

kmj2

...− nmλmT +
nm∑
j=1

kmjT




+
1

σ2

nm∑
j=1

Σ−1
kmj

(zmj − µ∗
mj) = 0T (3.24)

− 1

σ2

m∑
i=1

ni∑
j=1

T∑
t=1

kijt +
1

σ4

m∑
i=1

ni∑
j=1

(zij − µ∗
ij)
′Σ−1

kij
(zij − µ∗

ij)

+
τ0

σ4

m∑
i=1

ni∑
j=1

ŷ
′
ijŷij = 0 (3.25)

1

1− ρ

m∑
i=1

ni∑
j=1

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)

−
m∑

i=1

ni∑
j=1

tr

(
Σ−1

kij

[
IT −Diag

(
1

kij1

, ...,
1

kijT

)])

+
1

σ2

m∑
i=1

ni∑
j=1

(zij − µ∗
ij)

′
Σ−1

kij

[
IT −Diag

(
1

kij1

, ...,
1

kijT

)]
Σ−1

kij
(zij − µ∗

ij)

− τ0

σ2(1− ρ)2

m∑
i=1

ni∑
j=1

ŷ
′
ijŷij = 0 (3.26)

−
m∑

i=1

ni∑
j=1

tr
(
Σ−1

kij
(eT e

′
T − IT )

)

+
1

σ2

m∑
i=1

ni∑
j=1

(zij − µ∗
ij)

′
Σ−1

kij
(eT e

′
T − IT )Σ−1

kij
(zij − µ∗

ij) = 0. (3.27)
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We use the fact that
l(ki)∑
j=1

kirij∑
l=2

y2
irij l = ŷ

′
ijŷij to simplify the above expressions.

In the complete analogy with the one population model, if all the observation consist of

random length vectors with length zero, none of the equations (3.21) - (3.27) make sense;

hence, none of the parameters are estimable. If we observe only vectors with length zero

or 1 then the parameter ρ is not estimable. If each subject has at most one nonzero length

measurement, then parameter ρ∗ is not estimable. As in the case of the one population

model, the maximum likelihood estimator for θ can be obtained through standard numerical

techniques where one needs to adjust for the constraints in the model, since the estimates

need to satisfy the restrictions σ2 > 0 and 0 ≤ ρ∗ ≤ ρ < 1. We further discuss numerical

estimation of the MLE for the multiple population model in Section 3.3.3.

3.2.3 Asymptotic Distribution of the Maximum Likelihood Estimators

Let us denote by In(θ) the information matrix for θ contained in the n =
m∑

i=1

ni indepen-

dent observations from the multiple population model, Xij with random lengths Kij =

(Kij1, ..., KijT ), i = 1, ..., m, j = 1, ..., ni. Using the same principle of adding the information

about θ contained in the lengths and the information about θ contributed by the vectors of

severities, over all possible lengths, we compute in Appendix A the information about the

parameter θ contained in a single observation X with random lengths K = (K1, ..., KT ) as

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),

where I∗(θ) is the information matrix about θ contained in the random lengths K =

(K1, ..., KT ), I(θ|k) is the information matrix contained in Xi|K = k, where k ∈ Υ, and

Υ =

{
k = (k1, ...kT )| ki = 0, 1, ... for ∀i = 1, ..., T and

T∑
i=1

ki ≥ 1

}
.

Using the same result from Barnhart [4](Theorem A.3.1.1) as in Section 3.1, we compute

the information matrix In(θ) about θ = (δ, γ, µ11, ..., µmT , σ2, ρ, ρ∗)
′

contained in these n

independent observations from the multiple population model (see (A.23)) as

In(θ) =
m∑

i=1

niI
∗
i (θ) +

m∑
i=1

ni

∑

k∈Υ

[
T∏

j=1

e−eδ+γµij ekj(δ+γµij)

kj!

]
Ii(θ|ki). (3.28)
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We show in Appendix A (A.24), that In(θ) has a block diagonal form

In(θ) =




In(δ, γ, µ11, ..., µmT ) O(mT+2)×3

O3×(mT+2)

m∑
i=1

ni

∑
k∈Υ

Pθ(K = k)Ik(σ2, ρ, ρ∗)


 ,

where

In(δ, γ, µ11, ..., µmT ) =
m∑

i=1

ni




G
(i)
11 O2×T (i−1) G

(i)
12 O2×T (m−i)

OT (i−1)×2 OT (i−1)×T (i−1) OT (i−1)×T OT (i−1)×T (m−i)

G
(i)′
12 OT×T (i−1) G

(i)
22 OT×T (m−i)

OT (m−i)×2 OT (m−i)×T (i−1) OT (m−i)×T OT (m−i)×T (m−i)




+




O2×2 O2×mT

OmT×2

m∑
i=1

ni

∑
k∈Υ

T∏
t=1

e−eδ+γµit ekt(δ+γµit)

kt!
Σ−1

k


 ,

the matrices G
(i)
kl ’s (k, l = 1, 2) are given in (A.22) and the elements of the matrix Ik(σ2, ρ, ρ∗)

are defined by (A.10) - (A.15).

As in the case of the one population model, the exact distribution of θ̂n is not available

and we can apply a general result on the efficiency of maximum likelihood estimators for

random length data (see Theorem A.3.2 in Barnhart [4]) to derive the asymptotic distribution

for θ̂n, the MLE. The asymptotic covariance matrix of the MLE θ̂n is obtained as the inverse

of the above information matrix and is estimated by I−1
n (θ̂n).

Theorem 2. Let θ̂n = (δ̂n, γ̂n, µ̂
(n)
1 , ..., µ̂

(n)
11 , ..., µ̂

(n)
1T , ..., µ̂

(n)
mT , σ̂2

n, ρ̂n, ρ̂∗n)
′

be the MLEs for a

sample of size n from the one population model. If ni/n → ηi with 0 < ηi < 1 as n → ∞,

then

(1). θ̂n is consistent.

(2).

√
n

(
θ̂n − θ

)
L→MVNmT+5(0, I−1(θ)),

where

I(θ) =




I(δ, γ, µ11, ..., µmT ) O(mT+2)×3

O3×(mT+2)

m∑
i=1

ηi

∑
k∈Υ

Pθ(K = k)Ik(σ2, ρ, ρ∗)


 ,
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and

I(δ, γ, µ11, ..., µmT ) =
m∑

i=1

ηi




G
(i)
11 O2×T (i−1) G

(i)
12 O2×T (m−i)

OT (i−1)×2 OT (i−1)×T (i−1) OT (i−1)×T OT (i−1)×T (m−i)

G
(i)′
12 OT×T (i−1) G

(i)
22 OT×T (m−i)

OT (m−i)×2 OT (m−i)×T (i−1) OT (m−i)×T OT (m−i)×T (m−i)




+




O2×2 O2×mT

OmT×2

m∑
i=1

ηi

∑
k∈Υ

T∏
t=1

e−eδ+γµit ekt(δ+γµit)

kt!
Σ−1

k


 ,

and the elements of the matrix Ik(σ2, ρ, ρ∗) are defined by (A.10)-(A.15).

3.2.4 Inference and Hypothesis Testing

Researchers are usually interested in describing the trend over time, and in whether there

are significant differences in the trend across groups of subjects. For example, in the LEDS

data one could be interested in examining the ”profiles” of the severities. We have repeated

measures of severities over the four quarters of the year. Then there is a between-subjects

grouping factor with two categories: MDD and NC. For the two groups, the mean severities

for each of the four quarters of the years are typically termed ”profiles”. One can ask a

number of questions; for instance, if the profiles are parallel (similar in shape across time);

given that the profiles are parallel, if they are equal or separated; furthermore, given that

the profiles are coincident, if the mean severities are the same for each of the four quarters

of the year. Based on the large-sample normality of our estimators, we can perform Wald

tests to answer these types of questions.

More generally, consider tests of the composite hypothesis

H0 : g(θ) = 0 vs

Ha : g(θ) 6= 0

where g is a vector-valued function from Rk to Rq and the MLE of θ, θ̂n satisfies

√
n(θ̂n − θ)

d→ MV Nk(0, I−1(θ)).
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Assume gi is differentiable and let D = D(θ) denote the q × k matrix with (i, j) entry

∂gi(y1,...,yk)
∂yj

evaluated at θ. Then, it can be shown (see Lehmann [28], or Sen [33]) that

n(g(θ̂n)− g(θ0))
′
V −1(θ̂n)(g(θ̂n)− g(θ0))

d→ χ2
q,

where V (θ) = D(θ)I−1(θ)D
′
(θ).

Because we test H0 : g(θ) = 0, the level α Wald test rejects H0 when

Wn = ng(θ̂n)
′
V −1(θ̂n)g(θ̂n)

is larger than χ2
q(1− α).

3.3 SIMULATION STUDY

In this section we report the results of a simulation study conducted to evaluate the finite

sample properties of our estimators. Several different scenarios are analyzed, with longitu-

dinal random length data generated according to the multiple population model described

in Section 3.2. The simulation studies allow us to compare the estimated parameters with

the true underlying values and assess the accuracy of our estimators. A natural question

we address is how many subjects are necessary in order for the large-sample theory to pro-

duce the desired results. In doing this, we compare the empirical standard deviations of our

estimates with their theoretical asymptotic standard deviations.

3.3.1 General Framework and Quantities Computed

The simulation study was designed to mimic a hypothetical clinical trial with two different

treatment groups and the same number of subjects per treatment group. Different scenarios

were created to explore various parameter configurations. When choosing these configura-

tions we took into consideration all possible combinations of two factors, each having two

levels. The first factor involves the relationship between the severities and the lengths. We
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think the two interesting levels for the first factor are those reflecting contradictory informa-

tion from lengths and severities. Thus, the first level considered for this factor mirrors the

case when the average severities across time and groups are close, but the numbers of events

differ. The second level corresponds to the situation in which there is little difference among

the numbers of events, but the average severity is well spread across time and treatment

groups. The second factor concerns the relationship between the mean severity ”profiles”

for the two populations. The first level of this factor corresponds to the situation in which

µ1 and µ2 are parallel and well separated (average severities in the two groups are parallel

but not coincident across time) and the second one to the case when µ1 and µ2 are not well

separated (the average severities in the two groups intersect across time).

Table 3: Choice of parameters for simulation study. T=4

µ’s close and λ’s far µ’s far and λ’s close

µ1 and µ2 µ1 = (1.0, 1.1, 1.2, 1.3) µ1 = (1, 2, 3, 4)

well separated µ2 = (1.5, 1.6, 1.7, 1.8) µ2 = (1.5, 2.5, 3.5, 4.5)

(δ, γ) = (−1.3, 2.3) (δ, γ) = (2.5, 0.01)

(σ2, ρ, ρ∗) = (1, 0.5, 0.2) (σ2, ρ, ρ∗) = (1, 0.5, 0.2)

λ1 = (2.72, 3.42, 4.31, 5.42) λ1 = (12.30, 12.43, 12.55, 12.68)

λ2 = (8.58, 10.80, 13.60, 17.12) λ2 = (12.37, 12.49, 12.62, 12.74)

µ1 and µ2 µ1 = (1.3, 1.2, 1.1, 1.0) µ1 = (4, 3, 2, 1)

close µ2 = (1.0, 1.1, 1.2, 1.3) µ2 = (1, 2, 3, 4)

(δ, γ) = (−1, 2.5) (δ, γ) = (1.5, 0.05)

(σ2, ρ, ρ∗) = (1, 0.5, 0.2) (σ2, ρ, ρ∗) = (1, 0.5, 0.2)

λ1 = (4.48, 5.75, 7.39, 9.49) λ1 = (5.47, 5.21, 4.95, 4.71)

λ2 = (9.49, 7.39, 5.75, 4.48) λ2 = (4.71, 4.95, 5.21, 5.47)

The simulations try to cover four different scenarios obtained by considering all the

combinations of the levels of the two factors; in the first scenario µ1 and µ2 are parallel and

not coincident, while within the same treatment group the mean severities are close and the

number of events are well separated across time; the second scenario depicts the situation in
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which µ1 and µ2 intersect while within the same group the mean severities are close and the

number of events are well separated across time; in the third scenario µ1 and µ2 are parallel

and not coincident, but over time the values of the mean severities are well separated, while

the number of events change very little; finally, in the fourth scenario µ1 and µ2 intersect,

while across time we have changes in the mean severities but little variation in the number

of events.

Under each scenario, subjects are followed for the same number of time points, T . To

match the LEDS data, the values chosen are T = 4 and T = 2. For each choice of the

parameters δ, γ, µ11, ..., µ2T , we keep the same values for σ2, ρ and ρ∗ across simulation. The

choice of parameters for simulations are given in Table 3 for T = 4 and in Table 4 for T = 2.

Table 4: Choice of parameters for simulation study. T=2

µ’s close and λ’s far µ’s far and λ’s close

µ1 and µ2

well separated µ1 = (1.0, 1.1) µ1 = (1, 2)

µ2 = (1.5, 1.6) µ2 = (1.5, 2.5)

(δ, γ) = (−1.3, 2.3) (δ, γ = (2.5, 0.01)

(σ2, ρ, ρ∗) = (1, 0.5, 0.2) (σ2, ρ, ρ∗) = (1, 0.5, 0.2)

λ1 = (2.72, 3.42) λ1 = (12.30, 12.43)

λ2 = (8.58, 10.80) λ2 = (12.37, 12.49)

µ1 and µ2

close µ1 = (1.3, 1.2) µ1 = (4, 3)

µ2 = (1.2, 1.3) µ2 = (3, 4)

(δ, γ) = (−1, 2.5) (δ, γ = (1.5, 0.05)

(σ2, ρ, ρ∗) = (1, 0.5, 0.2) (σ2, ρ, ρ∗) = (1, 0.5, 0.2)

λ1 = (4.48, 5.75) λ1 = (5.47, 5.21)

λ2 = (5.75, 4.48) λ2 = (5.21, 5.47)
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For each of the two choices of T , we considered D = 1000 independent data sets with

n=20, 50 and 100, respectively, subjects per population. Thus, for example, when T = 4

and n = 50, we needed to simulate 50 subjects with 4 repeated random length vectors of

severities for the first group and the same for the second group. For each simulated data set

d, d = 1, ..., D, we fit our multiple population model. The parameter of interest is the vector

θ = (δ, γ, µ11, ..., µ1T , µ21, ..., µ2T , σ2, ρ, ρ∗). By maximizing the likelihood, we compute the

numerical value of the (2T +5) - dimensional ML estimator θ̂d and its theoretical asymptotic

variance.

Repeating the aforementioned procedure for each simulated data set provides us with

D independent ML estimators, corresponding to the D simulations performed. Let θ be a

generic notation for the one-dimensional parameters of interest in our models (the compo-

nents of θ) and let θ̂ be the corresponding maximum likelihood estimator.

We compute the empirical bias, ebias, for each of the estimators by

ebias(θ̂) = θ̂ − θ =
1

D

D∑

d=1

θ̂d − θ, (3.29)

where D denotes the number of simulated data sets and θ̂d represents the estimated param-

eter vector from the d-th simulation and θ is the true value of the parameter vector.

Using the notation in 3.29, we also compute the empirical standard deviation of all the

parameter estimates in the model, as

esd(θ̂) =

√√√√ 1

D − 1

D∑

d=1

(
θ̂d − θ̂

)2

and the square root of their MSE :

mse1/2(θ̂) =

√√√√ 1

D

D∑

d=1

(θ̂d − θ)2 =

√
SD(θ̂)2 + Bias(θ̂)2.

The asymptotic covariance matrix of the MLE θ̂ is obtained as the inverse of the information

matrix and is estimated by its plug-in estimator, I−1
n (θ̂). Ideally, we would compute the
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average of the estimated asymptotic standard deviations for each of the estimators in our

model by

V̂ ar(θ̂)
1/2

= I(θ̂)
−1/2

=
1

D

D∑

d=1

̂
V ar(θ̂d)

1/2

=
1

D

D∑

d=1

I(θ̂d)
−1/2

and compare this value with the empirical standard deviations of our estimates. However,

calculating I−1
n (θ̂) is an extremely challenging computation. For only one data set with 100

subjects per group and T = 4 repeated measurements, provided that the average number of

events is large, the program that calculates the information matrix needs to run overnight.

Thus, we will not report this quantity. Instead we plug in the true parameters and report

I−1
n (θ) .

3.3.2 Data Generation

In the multiple population model with independent lengths, the probability to observe a

vector of random lengths K = (k1, ..., kT ) in population i is P (K = k) =
T∏

t=1

e−λit
λ

kt
it

kt!
, where

λit = eδ+γµit . With probability P (K = 0) =
T∏

t=1

e−λit we observe only zero-length severities

at all T measurement times.

Given the vector of random lengths K = (k1, ..., kT ), and provided that not all the

components of the vector k are zero, the conditional distribution of each random vector X

from population i with random lengths K = (k1, ..., kT ) corresponding to all T measurements

of severities that were recorded for the respective subject is MVN TP
i=1

ki

(µk, σ2Sk(ρ, ρ∗)),

where the expression of µk and Sk(ρ, ρ∗) are given by 3.17 and 3.18, respectively.

To generate a data set containing n observations per population from the multiple pop-

ulation model, we repeat the following two-step procedure, n times for each population i.

Step 1 (Generate the random lengths)

Take λit = eδ+γµit , for i = 1, 2 and t = 1, ..., T .

Generate T independent observations, each from a Poisson(λit) distribution t = 1, ..., T . This

is the vector of random lengths ki = (ki1, ki2, . . . , kiT ).

Step 2 (Generate the severities )
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For i = 1, 2 and t = 1, . . . , T , if
T∑

t=1

kit = 0 we observe a zero length vector of severities.

If
T∑

t=1

kit > 0, then generate Xi from a MVN TP
t=1

kit

(µki
, σ2Ski

(ρ, ρ∗)).

3.3.3 Numerical Considerations

Using a shared parameter model in the specification of the distribution of the random lengths

and the conditional distribution of the vectors of severities given the random lengths increases

the efficiency, because we pool information from both outcomes. The cost is an increase in

the computational burden, since the shared parameters need to be estimated simultaneously

from the two models.

Specifically, there are several difficulties that arise in modeling longitudinal random

length data. First, the full likelihood approach to random length data is computationally

complex when the number of events is large, since higher dimension matrices are involved in

the conditional distribution of the multivariate severity measures.

Second, the complexity increases as the number of repeated measurements becomes larger

and the number of parameters to be estimated increases. Since the number of time points

with quantitative measures changes with every subject, the mean and covariance structures

for the distribution of the severities change. Moreover, numerical computing of the in-

formation matrix involves summation over all possible values of the random lengths. For

T measurement times that means summation of matrices over all the possible values of a

T -dimensional vector of lengths. If the average number of events is large, in numerically

computing the information matrix one needs to set the maximum values that the random

lengths can have quite high in order to ensure that the corresponding probabilities in the

right tails of the Poisson distributions are zero.

Finally, a third difficulty is associated to modeling of the slopes. We have encountered

examples when the maximization procedure produced results different than the ones ex-

pected. If µ11 = ...µ1T = .... = µmT , the parameters δ and γ are not identifiable. When data

are generated from populations with means not well separated, the likelihood can be flat

over certain regions and the R function we use to numerically maximize the log-likelihood

converges to some strange solutions, particularly for the parameters δ and γ. However, even
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in these cases, the average event lengths are estimated correctly. We present such a case in

the next section.

All the simulations were performed in R programming language (www.r-project.org)

using PittGrid, which is the University of Pittsburgh’s campus-wide computing environment.

PittGrid provides the ability to access additional CPU time and memory in order to run

complex calculations using existing, underutilized CPUs participating in the PittGrid net-

work. Users are allowed to submit jobs online and monitor their jobs. Upon submission of a

job, this service searches for available workstations and clusters that participate in PittGrid

and that can meet the requirements of the job. Since every one of the jobs we needed to

run involved complex computations for 1000 data sets, we separated each of the jobs into

20 sub-jobs, each involving only 50 data sets, which we submitted to PittGrid. After the

jobs were completed, we gathered the results. The gain in efficiency was tremendous: while

a normal computer needs more than five days to complete a single job involving 1000 data

sets with 100 subjects per group and T = 4 repeated measurements, using PittGrid allowed

us to run the same job divided into 20 sub-jobs in less than 24 hours.

The R function nlm was used to carry out the unrestricted maximization of the log-

likelihood. This function carries out a minimization of the negative log-likelihood using a

Newton-type algorithm. It requires specification of initial values for the parameters to be

optimized over. Numerical derivatives were used in the calculation of updated parameter

values. We started with good initial values and performed unrestricted maximizations. In

our extended simulations we found no violations of the restrictions: σ2 > 0, 0 ≤ ρ∗ ≤
ρ < 1. Alternatively, one could use the R function optim to perform the optimization with

restrictions. This function allows specification of box constraints; that is each variable can

be given a lower and/or upper bound. The initial value must satisfy the constraints. Optim

uses a modification of the BFGS quasi-Newton method. Method ”BFGS” is a quasi-Newton

method (also known as a variable metric algorithm) that uses function values and gradients

to build up a picture of the surface to be optimized. We conducted limited simulations and

compared the results obtained from nlm and optim. We found no major differences between

the results, so we decided to use nlm, because it has a faster convergence rate.

To obtain good initial estimates of the parameters, we adopt the following scheme. For
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the parameters µit reflecting the underlying disease status, the initial values are obtained

using

µ
(0)
it =

n∑
j=1

zijt

n∑
j=1

δ(Kijt)
, (3.30)

We find the starting values for δ and γ by fitting a Poisson regression model,

log(λijt) = δ + γµ
(0)
it i = 1, 2 j = 1, 2, ..., n T = 1, ..., 4, (3.31)

where λijt = E(Kijt).

We solve for σ2 in the corresponding likelihood equation

σ2 = σ2(ρ, ρ∗) =

m∑
i=1

ni∑
j=1

(zij − µ
∗(0)
ij )

′
Σ−1

kij
(zij − µ

∗(∗)
ij ) + τ0

m∑
i=1

ŷ
′
ijŷij

m∑
i=1

ni∑
j=1

2∑
t=1

kijt

(3.32)

and replace this value in the expression of the conditional likelihood to get an expression

that depends only on the unknown ρ and ρ∗

l(ρ, ρ∗) = −log σ2

m∑
i=1

ni∑
j=1

T∑
t=1

kijt + log τ0

m∑
i=1

ni∑
j=1

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)
−

m∑
i=1

ni∑
j=1

log
∣∣Σkij

∣∣

− 1

2σ2

m∑
i=1

ni∑
j=1

(zij − µ
∗(0)
ij )′Σ−1

kij
(zij − µ

∗(0)
ij )− τ0

2σ2

m∑
i=1

ni∑
j=1

l(kij)∑
t=1

kijrijt∑

l=2

y2
ijrijtl

.

Maximizing the above likelihood with respect to ρ and ρ∗ by using nlm with 0 as starting

values for both parameters gives us the initial values ρ(0) and ρ∗(0). Plugging these values into

(3.32) gives us the initial value σ2(0). If any of the initial values for σ2, ρ and ρ∗ were negative,

they were assigned the value zero. Once all the initial estimates are set, the optimization

procedure proceeds by using the R function nlm.
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3.3.4 Simulation Results

We report here the results of the simulations for T = 4. The results of the simulations for two

time points will be presented in Chapter 4, to allow for comparison with the model introduced

there. Tables 6 to 17 pool the results across the 4 parameter value combinations and the

3 different choices of the sample size n and Table 5 summarizes these results. Specifically,

Tables 6 to 8 show results for the first scenario, when µ1 and µ2 are well separated and

the average severities within each group are close while the average numbers of events are

far apart across time. Tables 9 to 11 show results for the second scenario, when µ1 and µ2

are close, and the average severities within each group are close while the average numbers

of events are far apart across time. The results for scenario 3 are displayed in Tables 12

to 14. In this case µ1 and µ2 are well separated, and the average severities are far apart

while the average numbers of events are similar across time and groups. Finally, the results

for scenario 4 are presented in Tables 15 to 17. In this scenario µ1 and µ2 are close, and

the average severities are far apart while the average numbers of events are similar across

time and groups. The tables report the average parameter estimates, empirical standard

deviations and square-root MSE. By comparing the standard deviations of the parameter

estimates to the theoretical large-sample standard deviations, we have one assessment of the

adequacy of the asymptotic covariance matrix for the sample size under consideration as

approximation to the finite sample covariance.

The main parameters of interest are the µ’s, representing the underlying disease status.

In each of the cases we are able to estimate their true values with biases being practically

insignificant. The results obtained from the simulation studies indicate that the estimates

of the true µ’s were unbiased for any sample size (n = 20, 50, 100), under all four different

scenarios. The same was true for the parameters σ2, ρ and ρ∗. The bias of these latter

estimates was slightly higher for the smaller values of the sample size. In contrast, as shown

by Tables 6, 9 and 10, the estimates for δ and γ were quite different from the true values

for small sample sizes. For small values of n, the estimates for δ and γ are strongly biased

in both scenario 1 and scenario 2. In scenarios 3 and 4 (see Tables 12 - 14 and 15 - 17),

the estimation for small sample sizes works as well as in the cases with n large. The main
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source of this difference of results obtained from the first 2 scenarios and the last 2 is the

Table 5: Summary of the simulations’ results. T=4

Scenario 1 Scenario 3
n = 20 n = 20
• bias only in δ and γ • no bias
• asymptotic variance does not approximate • asymptotic variance approximates the finite
the finite sample variance for δ and γ sample variance
• δ and γ not normal • all estimates look normally distributed
n = 50 n = 50
• no bias • no bias
• asymptotic variance approximates the finite • asymptotic variance approximates the finite
sample variance sample variance
• all estimates look normally distributed • all estimates look normally distributed
n = 100 n = 100
• no bias • no bias
• asymptotic variance approximates the finite • asymptotic variance approximates the finite
sample variance sample variance
• all estimates look normally distributed • all estimates look normally distributed
Scenario 2 Scenario 4
n = 20 n = 20
• bias only in δ and γ • no bias
• asymptotic variance does not approximate • asymptotic variance approximates the finite
the finite sample variance for δ and γ sample variance
• δ and γ not normal • all estimates look normally distributed
n = 50 n = 50
• small bias for δ and γ • no bias
• asymptotic variance approximates reasonably • asymptotic variance approximates the finite
the finite sample variance for δ and γ sample variance
• all estimates look normally distributed • all estimates look normally distributed
n = 100 n = 100
• no bias • no bias
• asymptotic variance approximates the finite • asymptotic variance approximates the finite
sample variance sample variance
• all estimates look normally distributed • all estimates look normally distributed

disproportion between the average severities and the variance σ2. In the first 2 scenarios, the

theoretical severities are not well separated across time and treatment group with respect

to σ2, while in the latter scenarios they are well separated. In addition, in scenario 2 the

severities for the two groups intersect across time, making the estimation more difficult.

QQ-plots (not presented), were generated for each simulated scenario. By examining

them, we found the empirical distribution of all the MLE’s except δ and γ to be symmetrical
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and approximately normal, as expected. Non-normal behavior was found for δ and γ in

scenario 1 and scenario 2 for small sample sizes. The asymmetry decreased with increasing

sample size. Investigating the behavior of the sample standard deviations produces conclu-

sions analogous to the ones obtained from exploring the bias and normality. The empirical
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Figure 2: QQ plots for scenario 1 with n = 20. Although estimates for δ and γ are not

normal, estimates for µ11 and λ11 are normal

standard deviations are close to the large sample theoretical ones in all scenarios and for all

sample sizes except for the parameters δ and γ in scenarios with small sample size (n = 20)

and large variability in the events’ severities (scenario 1 and 2). Summarizing all the above

we conclude that the asymptotic results in section 3.2 are applicable for sample sizes which

are greater than 50.

Estimation results show that the algorithm gives acceptable results even for choices of n

as small as 20. Figure 2 presents qq-plots for one of the ”problem” scenarios, scenario 1, when
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the sample size is small (n = 20) and the average severities across time and treatment groups

are close relative to their variances. We show only the qq-plots for the parameters δ and γ

(not well estimated), and for one of the µ’s (µ11), as well as for the corresponding length,

λ11). Although the qq-plots for the parameters δ and γ do not look normal, as expected,

we notice that both the plots for the estimated severity and length are reasonably close to a

straight line, an indication of their normality. As noted before, even when the estimates for

the scaling parameters are not close to the theoretical values, the method produces correct

estimates for the main parameters of interest, the mean severities and lengths.
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3.4 APPLICATION TO LEDS DATA

In this section we apply the multiple population model to the LEDS data. The data were

collected at the University of Pittsburgh Western Psychiatric Institute and Clinic as part

of a larger study investigating stressful live events in depressed adolescents. The objective

of this study was to examine the occurrence of acute and chronic stressors prior to and

during a recent depressive episode in adolescents. Stress exposure was examined using the

investigator-based Life Events and Difficulties Schedule (LEDS), adapted for use with ado-

lescents. This interview is designed to exhaustively draw out information for stressors. The

severity of each stressor was rated on a 4-point scale (4-marked, 3-moderate, 2-some, 1-little

or none). The subjects we consider are 32 depressed (MDD) females and 30 normal control

(NC) females between the ages of 13 and 18 years. The occurrence of stressors was examined

quarterly in the 12-month period prior to the onset of the depressive episode in depressed

adolescents and during a comparable ”linked” period in normal control adolescents.

Our model depends on the normality assumption for the distribution of the multivariate

severities. In LEDS data, the severity measurements are actually ordinal (1=”little or none”,

2=”some”, 3=”moderate” and 4=”marked”) and we approximate them with continuous

normal random variables. This is common use in life events data analysis. Furthermore,

as many of the pain severity measurements encountered in practice are assessed by visual

analogous scale, there is a interest in models for continuous severity measurements.

The two outcomes recorded for each subject are the number of stessors and the severity

of each of the stessors. These outcomes are recorded for each of the four quarters of the

year. Each quarter, the data for a individual subject are random vectors of event severities

with the random length given by the number of events the subject experienced that quarter

of year. We denote the MDD group as population 1 with mean µ11 reflecting the underlying

depression status at the first quarter before the onset of depression, µ12 reflecting the un-

derlying depression status at the second quarter before the onset of depression, µ13 at the

third quarter before the onset of depression, and mean µ14 at the forth quarter before the

onset of depression. Similarly, we denote the NC group as population 2 with means µ21 at

the first quarter before the onset of depression, µ22 at the second quarter before the onset
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of depression, µ23 at the third quarter before the onset of depression, and mean µ24 at the

forth quarter before the onset of depression. The multiple population model introduced in

Section 3.2 can be applied now to this data set. We have n1 = 32 and n2 = 30. The data

are summarized in Tables 1 and 2.

As in the previous section, we use the R function nlm to maximize the likelihood. The

initial values for the parameters are computed using the technique described in Section 3.3.3.

Table 18 reports the solution θ̂ of the maximization procedure and the estimated standard

deviations based on I−1
n (θ̂), as well as the initial values for the maximization procedure. The

Table 18: Maximum likelihood estimates for LEDS data

Parameter θ̂ estimated SD of θ̂ Initial values

δ -16.6291 27.91 -0.1986

γ 9.4031 15.08 0.5683

MDD

µ11 1.8799 0.06 1.8039

µ12 1.8804 0.06 1.7364

µ13 1.8515 0.04 1.8917

µ14 1.8563 0.04 1.8605

NC

µ21 1.8287 0.06 1.6917

µ22 1.8481 0.04 1.4479

µ23 1.8271 0.06 1.4430

µ24 1.8034 0.09 1.6814

σ2 0.5250 0.03 0.5324

ρ 0.1702 0.05 0.1846

ρ∗ 0.0689 0.04 0.0787

estimated asymptotic covariance matrix of θ̂ is computed using (A.24) to be

I−1
n (θ̂) =


 I−1

n (δ̂, γ̂, µ̂11, ..., µ̂24) O10×3

O3×10 I−1
n (σ̂2, ρ̂, ρ̂∗)


 ,
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where I−1
n (δ̂, γ̂, µ̂11, ..., µ̂24) is given by




779.2287 −420.8131 1.2455 1.2666 −0.0031 0.2079 −1.0157 −0.1637 −1.088 −2.1259
−420.8131 227.3005 −0.6816 −0.693 −0.0072 −0.1212 0.5398 0.0796 0.5789 1.1395

1.2455 −0.6816 0.0039 0.0038 0.0017 0.0021 1e− 04 0.0015 0 −0.0017
1.2666 −0.693 0.0038 0.004 0.0017 0.0021 1e− 04 0.0015 0 −0.0018

−0.0031 −0.0072 0.0017 0.0017 0.0019 0.0017 0.0017 0.0017 0.0017 0.0017
0.2079 −0.1212 0.0021 0.0021 0.0017 0.0019 0.0014 0.0017 0.0014 0.0011

−1.0157 0.5398 1e− 04 1e− 04 0.0017 0.0014 0.0032 0.0019 0.0031 0.0044
−0.1637 0.0796 0.0015 0.0015 0.0017 0.0017 0.0019 0.0019 0.0019 0.0021
−1.088 0.5789 0 0 0.0017 0.0014 0.0031 0.0019 0.0034 0.0046
−2.1259 1.1395 −0.0017 −0.0018 0.0017 0.0011 0.0044 0.0021 0.0046 0.0077




and

I−1
n (σ̂2, ρ̂, ρ̂∗) =




0.0011 0.0005 0.0003

0.0005 0.0026 0.0006

0.0003 0.0006 0.0015


 .

The estimated parameter γ has a positive sign indicating a positive relationship between

the average number of events and the average severity (larger severities and higher number

of events). Its estimated standard deviation is large, indicating that γ is not significantly

different than zero. We conclude that there is no additional information about the severities

supplied by knowing the lengths, and similarly, knowing the severities would not provide any

information about the average lengths. Another question of interest is testing if the profiles

of the two groups are parallel. This is equivalent to testing that there is no interaction

between time and group. This composite hypothesis can be written as

H0 : (µ12 − µ11)− (µ22 − µ21) = 0

(µ13 − µ12)− (µ23 − µ22) = 0

(µ14 − µ13)− (µ24 − µ23) = 0.

We set up the corresponding matrix

C =




−1 1 0 0 1 −1 0 0

0 −1 1 0 0 1 −1 0

0 0 −1 1 0 0 1 −1


 ,
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Figure 3: Severity of events profile plot for LEDS data

write the hypothesis in matrix form

H0 : Cµ = 0,

where µ = (µ11, ..., µ14, µ21, ..., µ24). It follows that the value of the test statistic is

(Cµ̂)
′
[
CI−1(µ̂)C

′
]−1

Cµ̂ = 0.3237,

which is not significant with respect to a chi-square distribution with 3 degrees of freedom.

This means that the two profiles are not significantly different in shape and we conclude that

the profiles are parallel. Given that the profiles are parallel, we are interested to see if they

are also coincident. The corresponding null hypothesis of equal treatment effects is

H0 : µ11 + µ12 + µ13 + µ14 = µ21 + µ22 + µ23 + µ24.

We can state this hypothesis in matrix form as

H0 : cµ = 0,

where c = (1 1 1 1 − 1 − 1 − 1 − 1). The value of the test statistic can be found as

(cµ̂)
′
[
cI−1(µ̂)c

′
]−1

cµ̂ = 0.3904,
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which is not significant with respect to a chi-square distribution with 1 degree of freedom.

We conclude that the two profiles are coincident and we proceed to test the hypothesis of

equal response effects

H0 : µ11 + µ21 = µ12 + µ22 = µ13 + µ23 = µ14 + µ24.

In matrix form, we state the hypothesis as

H0 : Dµ = 0,

where

D =




−1 1 0 0 −1 1 0 0

0 −1 1 0 0 −1 1 0

0 0 −1 1 0 0 −1 1


 .

We obtain the value of the test statistic as

(Dµ̂)
′
[
DI−1(µ̂)D

′
]−1

Dµ̂ = 0.3243,

which is not significant with respect to a chi-square distribution with 3 degrees of freedom.
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4.0 BUILDING DEPENDENCE INTO SEVERITIES AND LENGTHS.

MULTIPLE POPULATION MODEL WITH DEPENDENT POISSON

LENGTHS

An individual’s disease condition may affect both the frequency and the severity of events

that occur repeatedly and are collected over assessment intervals. We termed this type of

data as longitudinal random length data and the overall aim of our research is to develop new

methods for dealing with this kind of data, methods which incorporate information from both

the frequencies of the events and their severities and allow their joint modeling. One of the

biggest challenges when constructing models for longitudinal random length data is related

to the problem of accounting for the dependence among the outcomes for a given subject.

Within a subject, not only are the repeated severity measures recorded at different times

correlated, so are the severity measures recorded within a single time point measurement, as

well as the number of events reported by a subject at different time points.

Dependence over time can be built in two ways: into the vectors of severities and in the

random lengths. In Chapter 3 we address this problem by considering that the number of

events, i.e. the random lengths are independent across time and set up dependence over

time into the severities. Specifically, we assumed that within a subject, conditional on all

the number of events experienced by the subject, any two severity measures recorded at two

different measurement times have the same correlation, ρ∗, independent of the measurement

times. In this chapter we generalize the model of Chapter 3, by adding another layer of

dependence over time, built into the random lengths. Note that we are still assuming that

within an assessment period, conditional on the number of events experienced, the severi-

ties are correlated, and model this dependence in the vector of severities using compound

symmetry. Furthermore, we consider that, conditional on the total number of events expe-
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rienced by an individual the severity measurements taken at different times are dependent,

and, additionally, the number of these reported severities are dependent. This assumption

is motivated by our belief that in certain scenarios, it is likely that the number of events

experienced by a subject over time are dependent. In the context of the LEDS data, it makes

sense to assume the number of these stressful life events collected at the end of each quarter

of year would be dependent.

We employ a multivariate Poisson distribution to model the lengths dependency. While

the univariate Poisson distribution has been widely used as a modeling approach for numbers

of events, the use of its multivariate counterpart has been rather limited in the literature.

The main obstacle that appears to limit the usage of the multivariate Poisson distribution

in practice is the difficulty of calculating its probability function and the complexity of the

likelihood (see Johnson et al.,[19]). This has led to the use of a simplified model with just one

covariance term for all pairs of variables (see Karlis [20]). Even for this simplified version,

likelihood inference is quite complex. We model the joint distribution of the number of events

recorded throughout the follow-up using this simplified multivariate Poisson distribution.

Given all the events experienced by a subject throughout the repeated measurements, we

assume that the vector of severities has a multivariate normal distribution. We parametrize

the model in such a way that, at each measurement time, both the distribution of the

number of events and the conditional distribution of the severities depend on an underlying

parameter, reflecting the disease status at that time point.

As in Chapter 3, because the notation becomes cumbersome and to help cement the

concepts, the analysis of a one population model, introduced in Section 4.1, is extensively

presented. The main results of this analysis, the maximum likelihood equations and the

asymptotic distributions for the MLE, are then easily generalized to the corresponding mul-

tiple population case in Section 4.2.
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4.1 ONE POPULATION MODEL WITH DEPENDENT POISSON

LENGTHS

This chapter generalizes the model introduced in Section 3.1.1 by adding dependency in

the random lengths. The model is appropriate for instances in which only one treatment

is involved, and the treatment is evaluated at different points in time. The subjects are

followed longitudinally and their vectors of severities are recorded repeatedly for a fixed

number of time periods T . The disease status at measurement times 1, 2 ,..., T is reflected

by the parameters µ1, ..., µT . The model we introduce here is similar in structure to the one

of Chapter 3 . However it differs from it in that it has an additional parameter reflecting

dependence over time. This parameter, λ0 appears in the specification of the distribution of

the total number of events experienced by subjects throughout the repeated measurement

times.

In the LEDS data, the two outcomes of interest are the number of stressful life events

that subjects experience throughout the four quarters of a year and their respective severity

levels. Conceptually, it makes sense to assume that there is an underlying subject depression

status affecting both the number of events and how severe these events are. We expect that,

as they draw closer to their MDD onset, the subjects in the MDD group will have more

stressful life events and their severity levels will be higher.

4.1.1 Model Description

The notation introduced in Chapter 3 is used, with each subject i, i = 1, ..., n being ob-

served T times. At each measurement time j = 1, ..., T , each subject i has a random

number of events Kij and the corresponding measurements are recorded into the vector

Xij. Hence all the data for subject i can be condensed into the
T∑

j=1

Kij-dimensional vec-

tor Xi, X
′
i =

(
X

′
i1, ..., X

′
iT

)
and the corresponding T -dimensional vector of random lengths

Ki = (Ki1, ..., KiT ), with i = 1, ..., n. If ki = (ki1, ..., kiT ) is a realization of the T -dimensional

vector of lengths Ki, we denote by l(ki) the number of non-zero components of ki. As in

67



Chapter 3, if l(ki) > 0 we denote by k̃i the l(ki)-dimensional vector composed of the non-

zero elements of ki. Hence k̃i = (kiri1
, kiri2

, ..., kiril(ki)
), where 1 ≤ ri1 < ri2 < ... < ril(ki) ≤ T

are indices corresponding to the elements in the original vector ki. We denote this set of or-

dered indices by r(ki) = (ri1, ri2, ..., ril(ki)). Furthermore, both the distribution of the random

lengths and the conditional density of the severities given the random lengths we allow the

parameter Specifically, we make the following model assumptions. For each observational

unit i, i = 1, ..., n,

(1) The T -dimensional vector of length variables Ki = (Ki1, Ki2, ..., KiT ) has a multivariate

Poisson(λ0, λ1, ..., λT ) distribution, as described in Appendix B, where λj = exp(δ+γµj),

j = 1, ..., T . Hence,

P(Ki1 = ki1,Ki2 = ki2, ...,KiT = kiT ) = e
−

TP
j=0

λj
T∏

j=1

λ
kij

j

kij !




s∑

l=0

T∏

j=1

(
kij

l

)
l!




λ0

T∏
k=1

λk




l
 , (4.1)

where s = min(ki1, ki2, ..., kiT ).

(2) The random vector Xi with random lengths Ki = (Ki1, ..., KiT ) for the i-th subject, has

the conditional distribution:

Xi| (Ki = (ki1, ..., kiT )) ∼ MVN TP
l=1

kil

(
µki

, σ2Ski
(ρ, ρ∗)

)
, (4.2)

for
T∑

l=1

kil = 1, 2, ..., where

µki
= µki1,...,kiT

=




µri1
ekiri1

µri2
ekiri2

...

µril(ki)
ekiril(ki)




(4.3)
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and

Ski
(ρ, ρ∗) = Ski1,...,kiT

(ρ) =




Rkiri1
(ρ, ρ∗) ρ∗Jkiri1

,kiri2
... ρ∗Jkiri1

,kiril(ki)

ρ∗Jkiri2
,kiri1

Rkiri2
(ρ) ... ρ∗Jkiri2

,kiril(ki)

... ... ...

ρ∗Jkiril(ki)
,kiri1

ρ∗Jkiril(ki)
,kiri2

... Rkiril(ki)
(ρ)




.(4.4)

As before, we denote by Rk(ρ) = (1− ρ)Ik + ρeke
′
k, the intraclass correlation matrix of

dimension k; Ik is the k-dimensional identity matrix, ek is the k-dimensional vector with

all the entries 1 and Jk×l is a k × l-dimensional matrix of ones.

In order for the matrix Sk1,...,kT
(ρ, ρ∗) to be positive definite, for all possible combinations

of lengths (k1, ..., kT ), we impose 0 ≤ ρ∗ ≤ ρ < 1.

(3) The data (Ki,Xi) and (Kj,Xj), for subject i and j, respectively, are independent for

i 6= j.

The main features of the proposed model are summarized by:

(a). The (T+6) parameters are collectively denoted by θ, θ = (δ, γ, λ0, µ1, ..., µT , σ2, ρ, ρ∗)
′
.

The parameter space for the above model is

Θ =
{

θ = (δ, γ, λ0, µ1, ..., µT , σ2, ρ, ρ∗)
′| −∞ < δ, γ, µ1, ..., µT < ∞,

σ2, λ0 > 0, 0 ≤ ρ∗ ≤ ρ < 1
}

(b). The support of the random lengths includes zero. Any of the components of the vector

Ki may be zero. If all of them are zero, we observe no quantitative data. We deal with

this situation as in Chapter 3 by defining the density of a zero-length vector to be equal

to 1 with probability 1. As we can see from the expressions of the mean and covariance

of the multivariate normal in (4.3) and (4.4), if one of the lengths is zero, it means there

is no corresponding entry for that time point in both the mean vector and the covariance

matrix.
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(c). The parameter γ has the same interpretation as in Chapter 3, acting as a scaling param-

eter and also controlling the association of µ with the random length. The parameter γ

being zero implies that the population means µt, t = 1, ..., T have no effect on the distri-

bution of the random lengths. Parameter γ > 0 implies that, the larger the underlying

parameter µt is, the larger the corresponding observed severity measures tend to be, and

the higher their frequency tends to be. Parameter γ < 0 implies that, the larger the

underlying parameter µt is, the larger the severity measures observed tend to be, but

their frequency tends to be smaller.

(d). Marginally each Kij is a Poisson random variable with E(Kij) = λj + λ0. Moreover,

Cov(Kij1 , Kij2) = λ0 for any j1 6= j2. Hence λ0 measures the dependence between any

pair of random lengths for a subject. If λ0 = 0 then the random lengths are indepen-

dent and the multivariate Poisson distribution reduces to the product of T independent

Poisson distributions and this model reduces to the model of Section 3.1.1.

4.1.2 Maximum Likelihood Estimation

Consider the data corresponding to the T repeated measurements of random length vectors

of severities on the same subject, Xi, with the vector of random lengths Ki = (Ki1, ..., KiT ).

Given the random lengths Ki1 = ki1, ..., KiT = kiT , Xi has a
T∑

l=1

kil - dimensional multivari-

ate normal distribution with mean µki
and covariance matrix σ2Ski

(ρ, ρ∗) given by (4.3)

and (4.4), respectively. For each subject i, k̃i = (kir1 , kir2 , ..., kirl(ki)
) is the subvector of ki

composed only with non-zero elements.

We employ the same matrix version of the canonical transformation technique used in Chap-

ter 3 and define Yi = Γki
Xi, where

Γki
= Γki1,...,kiT

=




Γkiri1
Okiri1

,kiri2
... Okiri1

,kiril(ki)

Okiri2
,kiri1

Γkiri2
... Okiri2

,kiril(ki)

... ... ... ...

Okiril(ki)
,kiri1

Okiril(ki)
,kiri2

... Γkiril(ki)




, Xi =




Xiri1

Xiri2

...

Xiril(ki)




,

and Ok,l is the k × l matrix with all the entries equal to 0.

As described in Chapter 3, it follows that given Ki = (ki1, ..., kiT ), Yi =
(
Y

′
i1, ..., Y

′
iT

)′
also
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has a multivariate normal distribution, but with simpler mean and covariance structures. The

only correlated components in the vector Yi are the first entries in each of the subvectors

Yij, j = 1, ..., T , provided that the corresponding length Kij is nonzero. All the remaining

entries in the Yi vector are conditionally independent, identically distributed univariate

normal random variables, with mean 0 and variance σ2/τ0. We have

Yi =
(
Yiri11 Yiri12 ... Yiri1kiri1

Yiri21 Yiri22 ... Yiri2kiri2
... Yiril(ki)

1 Yiril(ki)
2 ... Yiril(ki)

kiril(ki)

)′
.

Denote by Zi the vector composed with the first entries in the non-zero length vectors Yij

Zi =
(
Yiri11 Yiri21 ... Yiril(ki)

1

)′
=

(
Zi1 Zi2 ... Zi(ki)

)′

and by Ŷi the vector containing the remaining components of Yi, which are conditionally

independent, identically distributed univariate normal random variables, with mean 0 and

variance σ2/τ0.

Ŷi =
(
Yiri12 ... Yiri1kiri1

Yiri22 ... Yiri2kiri2
... Yiril(ki)

2 ... Yiril(ki)
kiril(ki)

)′
.

Note that Zi has dimension l(ki) =
T∑

l=1

δ(kil) and Ŷi has dimension
T∑

l=1

kil − l(ki). Further

denoting

µ∗
i = (µri1

µri2
... µril(ki)

)
′
=

(
µ∗i1 µ∗i2 ... µ∗il(ki)

)′
,

we can write the conditional density of the random length vector Yi as

f(yi|ki) =

(
1√

2πσ2

)l(ki)

|Σki
|−1/2

× exp

{
−(zi − µ∗

i )
′
Σ−1

ki
(zi − µ∗

i )

2σ2

}
l(ki)∏
j=1

kirij∏

l=2

exp

(
− y2

irij l

2σ2/τ0

)

√
2πσ2/τ0

,

where

Σki
= Σeki

=




1
τeki1

ρ∗ ... ρ∗

ρ∗ 1
τeki2

... ρ∗

... ... ... ...

ρ∗ ρ∗ ... 1
τekil(ki)




. (4.5)
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This can be written as

f(yi|ki) =

(
1√

2πσ2

) TP
l=1

kil

τ

1
2

 
TP

l=1
kil−l(ki)

!
0 |Σki

|−1/2

× exp

{
−(zi − µ∗

i )
′Σ−1

ki
(zi − µ∗

i )

2σ2

}
exp



−

l(ki)∑
j=1

kirij∑
l=2

y2
irij l

2σ2/τ0




.

We can write the joint density for this one observation as

f(yi,ki) = P(Ki1 = ki1, ..., KiT = kiT )f(yi|ki1, ..., kiT )δ(ki).

Taking the logarithm of the above, we obtain

log f(yi,ki) = log P(Ki1 = ki1, ..., KiT = kiT ) + δ(ki) log f(yi|ki1, ..., kiT ).

The contribution of the i−th subject to the log-likelihood is given by

log f(yi,ki) = −λ0 +
T∑

j=1

(−λj + kij log λj) + log




s∑

l=0

T∏
j=1

(
kij

l

)
l!




λ0

T∏
k=1

λk




l


+δ(ki)

[
− log σ2

2

T∑
j=1

kij +
log τ0

2

(
T∑

j=1

kij −
T∑

j=1

δ(kij)

)

−1

2
log |Σki

| − 1

2σ2
(zi − µ∗

i )
′Σ−1

ki
(zi − µ∗

i )−
τ0

2σ2

l(ki)∑
j=1

kirij∑

l=2

y2
irij l


 .

Recalling that λj has the form λj = exp (δ + γµj), we can write

log f(yi, ki) = −λ0 +
T∑

j=1

[−eδ+γµj + kij (δ + γµj)
]
+ log




s∑

l=0

T∏
j=1

(
kij

l

)
l!




λ0

T∏
k=1

λk




l


− log σ2

2

T∑
j=1

kij +
log τ0

2

(
T∑

j=1

kij − l(ki)

)

−1

2
log |Σki

| − 1

2σ2
(zi − µ∗

i )
′Σ−1

ki
(zi − µ∗

i )−
τ0

2σ2

l(ki)∑
j=1

kirij∑

l=2

y2
irij l.
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To keep the notation simple, we give up multiplying the last 5 terms in the right hand side

of the above equation by δ(ki). Instead, we make the convention to consider these five terms

equal to zero for the case when δ(ki) is zero (i.e. when all the random lengths for a subject

are zero). The log-likelihood of the entire data set is

l(θ) = −nλ0 +
n∑

i=1

T∑
j=1

[−eδ+γµj + kij (δ + γµj)
]
+

n∑
i=1

log




s∑

l=0

T∏
j=1

(
kij

l

)
l!




λ0

T∏
k=1

λk




l


− log σ2

2

n∑
i=1

T∑
j=1

kij +
log τ0

2

n∑
i=1

(
T∑

j=1

kij − l(ki)

)

−1

2

n∑
i=1

log |Σki
| − 1

2σ2

n∑
i=1

(zi − µ∗
i )
′Σ−1

ki
(zi − µ∗

i )−
τ0

2σ2

n∑
i=1

l(ki)∑
j=1

kirij∑

l=2

y2
irij l, (4.6)

where the parameter vector is θ = (δ, γ, λ0, µ1, ..., µT , σ2, ρ, ρ∗)
′
.

Denoting by

Qki
(λ0, λ1, ..., λT ) =

min(ki1,...,kiT )∑

l=0

T∏
j=1

(
kij

l

)
l!




λ0

T∏
k=1

λk




l

(4.7)

73



and using the results (A.5) - (A.8) from Appendix A, it follows that the T +6 score equations
are given by

n∑

i=1

T∑

j=1

(−eδ+γµj + kij

)
+

n∑

i=1

∂

∂δ
log Qki(λ0, λ1, ..., λT ) = 0 (4.8)

n∑

i=1

T∑

j=1

(−µje
δ+γµj + kijµj

)
+

n∑

i=1

∂

∂γ
log Qki(λ0, λ1, ..., λT ) = 0 (4.9)

−n +
n∑

i=1

∂

∂λ0
log Qki

(λ0, λ1, ..., λT ) = 0 (4.10)

γ




−nλ1 +
n∑

i=1

ki1

−nλ2 +
n∑

i=1

ki2

...

−nλT +
n∑

i=1

kiT




+




n∑
i=1

∂
∂µ1

log Qki
(λ0, λ1, ..., λT )

n∑
i=1

∂
∂µ2

log Qki
(λ0, λ1, ..., λT )

...
n∑

i=1

∂
∂µT

log Qki(λ0, λ1, ..., λT )




+
1
σ2

n∑

i=1

Σ−1
ki

(zi − µ∗i ) = 0T (4.11)

− 1
2σ2

n∑

i=1

T∑

j=1

kij +
1

2σ4

n∑

i=1

(zi − µ∗i )
′
Σ−1

ki
(zi − µ∗i ) +

τ0

2σ4

n∑

i=1

ŷ
′
iŷi = 0 (4.12)

1
1− ρ

n∑

i=1

T∑

j=1

(kij − δ(kij))−
n∑

i=1

tr

(
Σ−1

ki

[
IT −Diag

(
1

ki1
, ...,

1
kiT

)])

+
1
σ2

n∑

i=1

(zi − µ∗i )
′
Σ−1

ki

[
IT −Diag

(
1

ki1
, ...,

1
kiT

)]
Σ−1

ki
(zi − µ∗i )−

τ0

σ2(1− ρ)2

n∑

i=1

ŷ
′
iŷi = 0 (4.13)

−
n∑

i=1

tr
(
Σ−1

ki
(eT e

′
T − IT )

)
+

1
σ2

n∑

i=1

(zi − µ∗i )
′
Σ−1

ki
(eT e

′
T − IT )Σ−1

ki
(zi − µ∗i ) = 0. (4.14)

We use the fact that
l(ki)∑
j=1

kirij∑
l=2

y2
irij l = ŷ

′
iŷi in the above expressions.

As in Chapter 3, if all the observations consist of random length vectors with length zero,

none of the equations (4.8) - (4.14) make sense; hence, none of the parameters are estimable.

If we observe only vectors with length zero or 1 then the parameter ρ is not estimable. Due to

the complexity of the expression Qki
(λ0, λ1, ..., λT ) and to the computational burden of the

multivariate Poisson probability mass function, we do not present the explicit expressions

for the score equations for the general case, but only for the simpler scenario where we have

two measurements for each subject.
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4.1.2.1 Maximum Likelihood Estimation for 2 Time Points Let us assume each

subject was observed only T = 2 times. Thus, the random lengths are distributed jointly

as bivariate Poisson(λ0, λ1, λ2) random variables, where this joint bivariate probability mass

function is given by

f(r, s) = P(K1 = r,K2 = s)

= e
−

2P
i=0

λi λr
1

r!

λs
2

s!

min(r,s)∑
i=0

(
r

i

)(
s

i

)
i!

(
λ0

λ1λ2

)i

. (4.15)

Taking into account the expression of the score equations for the vector of lengths in (C.5)

- (C.9) and using f to denote the pmf in (4.15), we may explicitly write the score equations

for the one population with 2 time points model as

−
n∑

i=1

2∑
j=1

eδ+γµj +
n∑

i=1

[
λ1

f(ki1 − 1, ki2)

f(ki1, ki2)
+ λ2

f(ki1, ki2 − 1)

f(ki1, ki2)

]
= 0 (4.16)

−
n∑

i=1

T∑
j=1

µje
δ+γµj +

n∑
i=1

[
λ1

f(ki1 − 1, ki2)

f(ki1, ki2)
+ λ2

f(ki1, ki2 − 1)

f(ki1, ki2)

]
= 0 (4.17)

+
n∑

i=1

f(ki1, ki2)− f(ki1 − 1, ki2)− f(ki1, ki2 − 1) + f(ki1 − 1, ki2)− 1

f(ki1, ki2)
= 0 (4.18)

γ



−nλ1 + λ1

n∑
i=1

f(ki1−1,ki2)
f(ki1,ki2)

−nλ2 + λ2

n∑
i=1

f(ki1,ki2−1)
f(ki1,ki2)


 +

1

σ2

n∑
i=1

Σ−1
ki

(zi − µ∗
i ) = 02 (4.19)

− 1

2σ2

n∑
i=1

T∑
j=1

kij +
1

2σ4

n∑
i=1

(zi − µ∗
i )
′
Σ−1

ki
(zi − µ∗

i ) +
τ0

2σ4

n∑
i=1

ŷ
′
iŷi = 0 (4.20)

1

1− ρ

n∑
i=1

T∑
j=1

(kij − δ(kij))−
n∑

i=1

tr

(
Σ−1

ki
Diag

(
1− 1

ki1

, 1− 1

ki2

))

+
1

σ2

n∑
i=1

(zi − µ∗
i )
′
Σ−1

ki
Diag

(
1− 1

ki1

, 1− 1

ki2

)
Σ−1

ki
(zi − µ∗

i )

− τ0

σ2(1− ρ)2

n∑
i=1

ŷ
′
iŷi = 0

n∑
i=1

tr
(
Σ−1

ki
(e2e

′
2 − I2)

)
− 1

σ2

n∑
i=1

(zi − µ∗
i )
′
Σ−1

ki
(e2e

′
2 − I2)Σ

−1
ki

(zi − µ∗
i ) = 0. (4.21)

We discus in additional detail how to numerically obtain the MLE’s in Section 4.3.3.
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4.1.3 Asymptotic Distribution of the Maximum Likelihood Estimates for T = 2

Let us denote by In(θ) the information matrix for θ contained in the n multivariate random

length vectors Xi with random lengths Ki = (Ki1, Ki2), i = 1, ..., n. As in the one population

model of Chapter 3, In(θ) can be computed as a sum of the information about θ contained

in the lengths and the sum of information about θ contributed by the vectors of severities

over all possible lengths. In Appendix C, we show that the information about the parameter

θ contained in a single observation from the one population model, X with random lengths

K = (K1, ..., KT ) has the form

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),

where I∗(θ) is the information matrix about θ contained in the random lengths K =

(K1, ..., KT ) and I(θ|k) is the information matrix contained in Xi|K = k, k ∈ Υ, where we

denote

Υ =

{
k = (k1, k2)| ki = 0, 1, ... for ∀i = 1, 2 and

2∑
i=1

ki ≥ 1

}
.

Using the independence of the subjects, we can compute the information matrix In(θ)

about θ = (δ, γ, λ0, µ1, µ2, σ
2, ρ, ρ∗)

′
contained in the n independent observations from the

one population model as

In(θ) = nI∗(θ) + n
∑

k∈Υ

Pθ(K = k)I(θ|k).

As in Appendix C, denote

δ1 = λ0 [1− λ0(τ − 1)] (4.22)

δ2 = −(λ1 + λ2) +
[
λ∗1λ

∗
2 − λ2

0

]
(τ − 1) (4.23)

δ3 =
[
(λ∗1λ

∗
2 − λ2

0

]
[τ − 1− (λ1 + λ2)] (4.24)

τ =
∞∑

r,s=1

f 2(r − 1, s− 1)

f(r, s)
, (4.25)

where λ∗i = λi + λ0, i = 1, 2 and f is the probability mass function for the bivariate distri-

bution from (4.15). We show in (C.21), that In(θ) has a block diagonal form
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In(θ) =




In(δ, γ, λ0, µ1, µ2) O5×3

O3×5 n
∑

k∈Υ


e

−
2P

i=0
λi λ

k1
1

k1!
λ

k2
2

k2!

min(k1,k2)∑
i=0

(
k1
i

)(
k2
i

)
i!

(
λ0

λ1λ2

)i


 Ik(σ2, ρ, ρ∗)


(4.26)

where

In(δ, γ, λ0, µ1, µ2) = nI(δ, γ, λ0, µ1, µ2)

= nH +




O3×3 O3×2

O2×3 n 1
σ2

∑
k∈Υ

[
e
−

2P
i=0

λi λ
k1
1

k1!

λ
k2
2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λ1λ2

)i
]

Σ−1
k


 ,

and the elements of the matrix Ik(σ2, ρ, ρ∗) are defined by (A.10) - (A.15). H denotes the

matrix

H =




λ1 + λ2 − 4δ1

2∑
i=1

µi(λi − 2δ1) − 2δ2λ0
λ1λ2

γ(λ1 − 2δ1) γ(λ2 − 2δ1)

2∑
i=1

µi(λi − 2δ1)
2∑

i=1

µ2
i λi − δ1(

2∑
i=1

µi)2 − δ2λ0(µ1+µ2)
λ1λ2

γ(µ1λ1 − δ1

2∑
i=1

µi) γ(µ2λ2 − δ1

2∑
i=1

µi)

− 2δ2λ0
λ1λ2

− δ2λ0(µ1+µ2)
λ1λ2

δ3
λ2

1λ2
2

−γδ2λ0
λ1λ2

−γδ2λ0
λ1λ2

γ(λ1 − 2δ1) γ(µ1λ1 − δ1

2∑
i=1

µi) −γδ2λ0
λ1λ2

γ2(λ1 − δ1) −γ2δ1

γ(λ2 − 2δ1) γ(µ2λ2 − δ1

2∑
i=1

µi) −γδ2λ0
λ1λ2

−γ2δ1 γ2(λ2 − δ1)




.

From the expression of the score equations, it is clear that there is no closed form solu-

tion for θ̂n, and asymptotic results are required for distributional results. We can apply a

general result on the efficiency of maximum likelihood estimators for random length data

(see Theorem A.3.2 in Barnhart [4]) to derive the asymptotic distribution for θ̂n, the MLE.

The asymptotic covariance matrix of θ̂n, is obtained as the inverse of the above information

matrix and is estimated by I−1
n (θ̂n).

Theorem 3. Let θ̂n = (δ̂n, γ̂n, λ̂
(n)
0 , µ̂

(n)
1 , µ̂

(n)
2 , σ̂2

n, ρ̂n, ρ̂
∗
n)
′
be the MLEs for a sample of size n

from the one population model. Then, as n →∞

(1). θ̂n is consistent.
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(2).

√
n

(
θ̂n − θ

)
L→MVN8(0, I−1(θ)),

where

I(θ) =




I(δ, γ, λ0, µ1, µ2) O5×3

O3×5 n
∑

k∈Υ


e

−
2P

i=0
λi λ

k1
1

k1!
λ

k2
2

k2!

min(k1,k2)∑
i=0

(
k1
i

)(
k2
i

)
i!

(
λ0

λ1λ2

)i


 Ik(σ2, ρ, ρ∗)


(4.27)

and

I(δ, γ, λ0, µ1, µ2) = H +




O3×3 O3×2

O2×3
1
σ2

∑
k∈Υ

[
e
−

2P
i=0

λi λ
k1
1

k1!

λ
k2
2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λ1λ2

)i
]
Σ−1

k


 .

The matrix H is defined above and the elements of the matrix Ik(σ2, ρ, ρ∗) are given by

(A.10) - (A.15). We denote

Υ =

{
k = (k1, k2)| ki = 0, 1, ... for ∀i = 1, 2 and

2∑
i=1

ki ≥ 1

}
.

4.2 MULTIPLE POPULATION MODEL

This section generalizes the model introduced in Section 4.1 to accommodate two or more

populations. We allow the different populations to share the scaling parameters δ and γ and

the parameter λ0, while µ’s are population specific. The model is motivated by our belief

that γ and δ are parameters of the process linking the the underlying ”disease” status to the

length, while λ0 is a parameter describing the dependency of the number of events over time.

Thus, they should remain the same, regardless of population. What changes is the underlying

”disease” status. For example, in the context of the migraine example, is the disease status

that is affected by the drug, and not the relationship between the disease status and severity

of migraines, or the relationship between the number of events experienced every quarter of

a year.
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4.2.1 Model Description

Using the notation of Chapter 3, suppose that we have data from m different populations.

Each subject j, j = 1, ..., ni, from population i, i = 1, ..., m is observed T times. At

each time point t = 1, ..., T , each subject j from population i has a random number of

events Kijt and the corresponding severity measurements are recorded into the vector Xijt.

Hence all the data for this subject i can be condensed into a
T∑

t=1

Kijt-dimensional vector Xij,

X
′
ij =

(
X

′
ij1, ..., X

′
ijT

)
and the corresponding T -dimensional vector of random lengths Kij =

(Kij1, ..., KijT ), with i = 1, ..., m, j = 1, ..., n1. Let kij = (kij1, ..., kijT ) be a realization of the

T -dimensional vector of lengths Kij. Some of the the components of kij might be zero. Let

us denote by l(kij) the number of non-zero components of kij. We have l(kij) =
T∑

t=1

δ(kijt). If

l(kij) > 0 we denote by k̃ij the l(kij)-dimensional vector composed of the non-zero elements

of kij. Hence k̃ij = (kijrij1
, kijrij2

, ..., kijrijl(kij)
), where 1 ≤ rij1 < rij2 < ... < rijl(kij) ≤ T are

indices corresponding to the elements in the original vector ki. We denote this set of ordered

indices by rij = (rij1, rij2, ..., rijl(kij)).

We make the following model assumptions. For each population i = 1, 2, ...,m, and each

observational unit j, j = 1, ..., ni,

(1) The random length variables (Kij1, Kij2, ..., KijT ) are dependent and follow a multivariate

Poisson(λ0, λi1, ..., λiT ) distribution, where λit = exp(δ + γµit), t = 1, ..., T . Hence,

Pθ(Kij1 = kij1, ..., KijT = kijT ) = e
−

TP
t=0

λit
T∏

t=1

λ
kijt

it

kijt!

min(kij1,...,kijT )∑

l=0

T∏
t=1

(
kijt

l

)
l!




λ0

T∏
k=1

λik




l

.(4.28)

(2) The random vector Xij with random lengths Kij = (Kij1, ..., KijT ) for the j-th subject

in the i-th population, has the conditional distribution

Xi| (Kij = (kij1, ..., kijT )) ∼ MVN TP
l=1

kijl

(
µkij

, σ2Skij
(ρ, ρ∗)

)
, (4.29)
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for
T∑

t=1

kijt = 1, 2, ..., where

µkij
= µkij1,...,kijT

=




µirij1
ekijrij1

µirij2
ekijrij2

...

µirijl(kij)
ekijrijl(kij)




(4.30)

and

Skij (ρ, ρ∗) = Skij1,...,kijT
(ρ, ρ∗)

=




Rkijrij1
(ρ) ρ∗Jkijrij1

,kijrij2
... ρ∗Jkijrij1

,kijrijl(kij)

ρ∗Jkijrij2
,kijrij1

Rkijrij2
(ρ) ... ρ∗Jkijri2

,kijrijl(kij)

... ... ...
ρ∗Jkijrijl(kij)

,kijrij1
ρ∗Jkijrijl(kij)

,kijrij2
... Rkijrijl(kij)

(ρ)



(4.31)

As before, Jk,l denotes the k × l matrix with all the entries equal to 1. In order for the

the matrix Sk1,...,kT
(ρ, ρ∗) to be positive definite for all combinations of random lengths,

we impose that 0 ≤ ρ∗ ≤ ρ < 1.

(3) The data (Ki1j1 ,Xi1j1) and (Ki2j2 ,Xi2j2), for subject j1 from population i1 and j2 from

population i2, respectively, are independent for (i1, j1) 6= (i2, j2).

The covariance structure used to model the dependency of the random lengths mirrors

the one used in Chapter 3 to model the dependency of the severities over time. There we

assumed that, conditional on the number of events experienced throughout the follow-up, any

two severities recorded at different measurement times have the same correlation, ρ∗. In this

model, we further assume that any pair of random lengths recorded at different measurement

times have the same covariance, λ0. Having the covariance of any pair of random lengths

for any population equal to λ0 is parallel in concept with the assumption of Chapter 3 that

any two severities recorded at different measurement times have the same correlation, ρ∗,

regardless of population and the measurement times.

The multiple population model has the following features:
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(a). The (mT+6) parameters are collectively denoted by θ = (δ, γ, λ0, µ1, ..., µmT , σ2, ρ, ρ∗)
′
.

The parameter space for the above model is

Θ =
{

θ = (δ, γ, λ0, µ11, ..., µmT , σ2, ρ)
′| −∞ < δ, γ, µ11, ..., µmT < ∞,

σ2, λ0 > 0, 0 ≤ ρ∗ ≤ ρ < 1
}

(b). The support of the random lengths includes zero. Any of the components of the vector

Ki may be zero. If all of them are zero, we observe no quantitative data. In this case,

the multivariate normal distribution defined in (4.29) does not exist. We deal with this

situation by defining the density of a vector with zero length to be equal to 1 with

probability 1. As we can see from the expressions of the mean and covariance of the

multivariate normal in (4.30) and (4.31), if one of the lengths is zero, it means there is

no corresponding entry for that time point in both the mean vector and the covariance

matrix.

(c). The parameter γ has the same interpretation as in Section 4.1, controlling the association

of µ with the random lengths.

(d). Marginally each Kijt is a Poisson random variable with E(Kijt) = λit + λ0. Moreover,

Cov(Kijt1 , Kijt2) = λ0 for any t1 6= t2. Hence λ0 is a measure of dependence between any

pair of random lengths for a subject. If λ0 = 0 then the random lengths are indepen-

dent and the multivariate Poisson distribution reduces to the product of T independent

Poisson distributions.

4.2.2 Maximum Likelihood Estimation

Consider one of these T -random length measurements, Xij, with the random length vec-

tor Kij = (Kij1, ..., KijT ). Given the vector of random lengths Kij = (Kij1, ..., KijT ) =

(kij1, ..., = kijT ), Xij has a
T∑

t=1

kijt - dimensional multivariate normal distribution with mean

µkij
and covariance matrix σ2Skij

(ρ, ρ∗) given by (4.30) and (4.31) respectively. Each sub-

ject j, from population i can be thought as coming from a one population model of the type

introduced in the previous section, with parameter vector θi = (δ, γ, λ0, µi1, ..., µiT , σ2, ρ, ρ∗)
′
.
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Thus, we apply the appropriate transformation from Section 4.1 and define Yij = Γkij
Xij,

where

Γkij
= Γkij1,...,kijT

=




Γkijrij1
Okijrij1

,kijrij2
... Okijrij1

,kijrijl(kij)

Okijrij2
,kijrij1

Γkijrij2
... Okijrij2

,kijrijl(kij)

... ... ... ...

Okijrijl(kij)
,kijrij1

Okijrijl(kij)
,kijrij2

... Γkijrijl(kij)




.

As before, Ok,l denotes the k × l matrix with all the entries equal to 0. We notice that

the entries in the vector Yij are uncorrelated; furthermore, except for the first entries in each

of the subvectors Yijt, t = 1, ..., T , provided that the corresponding length Kijt is nonzero,

all entries have the same mean 0 and variance σ2/τ0. We have

Yij =
(
(Yijrij11 Yijrij21 ... Yijrijl(kij)1) (Yijrij12 ... Yijrij1kijrij1

Yijrij22 ... Yiri2kiri2
... Yiril(ki)

2 ... Yiril(ki)
kiril(ki)

)
)′

.

Denote by Zij the vector composed with the first entries in the non-zero length vectors Yijt

Zij =
(
Yijrij11 Yijrij21 ... Yijrijl(kij)1

)′
=

(
Zij1 Zij2 ... Zijl(kij)

)′
,

and by Ŷij the vector containing the remaining components of Yij, which are conditionally

independent, identically distributed univariate normal random variables, with mean 0 and

variance σ2/τ0

Ŷij =
(
Yijrij12 ... Yijrij1kijrij1

Yijrij22 ... Yijrij2kijrij2
... Yijrijl(kij)2 ... Yijrijl(kij)kijrijl(kij)

)′
.

Note that Zij has dimension l(kij) =
T∑

t=1

δ(kijt) and Ŷij has dimension
T∑

t=1

kijt − l(kij).

Denoting

µ∗
ij = µij(kij) = (µirij1

µirij2
... µirijl(kij)

)
′
= (µ∗ij1 µ∗ij2 ... µ∗ijl(kij)

)
′
,
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it is straightforward to show that the contribution of the j−th subject from population i to

the log-likelihood is:

log f(yij,kij) = −λ0 +
T∑

t=1

(−λit + kijt log λit) + log




s∑

l=0

T∏
t=1

(
kijt

l

)
l!




λ0

T∏
k=1

λik




l


+δ(kij)

[
− log σ2

2

T∑
t=1

kijt +
log τ0

2

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)

−1

2
log

∣∣Σkij

∣∣− 1

2σ2
(zij − µ∗

ij)
′Σ−1

kij
(zij − µ∗

ij)−
τ0

2σ2

l(kij)∑
t=1

kijrijt∑

l=2

y2
ijrijtl


 ,

where

Σkij
= Σekij

=




1
τekij1

ρ∗ ... ρ∗

ρ∗ 1
τekij2

... ρ∗

... ... ... ...

ρ∗ ρ∗ ... 1
τekijl(kij)




(4.32)

Recalling that λit has the form λit = exp (δ + γµit), we can write

log f(yij,kij) = −λ0 +
T∑

t=1

(− exp (δ + γµit) + kijt log λit) + log




s∑

l=0

T∏
t=1

(
kijt

l

)
l!




λ0

T∏
k=1

λik




l


− log σ2

2

T∑
t=1

kijt +
log τ0

2

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)

−1

2
log

∣∣Σkij

∣∣− 1

2σ2
(zij − µ∗

ij)
′Σ−1

kij
(zij − µ∗

ij)−
τ0

2σ2

l(kij)∑
t=1

kijrijt∑

l=2

y2
ijrijtl

.

Instead of multiplying by δ(kij) the last 5 terms in the right hand side of the above equation,

we make the convention to consider them equal to zero for the case when δ(kij) is zero (i.e.
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when all the random lengths for a subject are zero). The log-likelihood of the entire data

set is

l(θ) = −λ0

m∑
i=1

ni +
m∑

i=1

ni∑
j=1

T∑
t=1

[−eδ+γµit + kijt (δ + γµit)
]

+
m∑

i=1

ni∑
j=1

log




s∑

l=0

T∏
t=1

(
kijt

l

)
l!




λ0

T∏
k=1

λik




l


− log σ2

2

m∑
i=1

ni∑
j=1

T∑
t=1

kijt

+
log τ0

2

m∑
i=1

ni∑
j=1

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)
− 1

2

m∑
i=1

ni∑
j=1

log
∣∣Σkij

∣∣

− 1

2σ2

m∑
i=1

ni∑
j=1

(zij − µ∗
ij)
′Σ−1

kij
(zij − µ∗

ij)−
τ0

2σ2

m∑
i=1

ni∑
j=1

l(kij)∑
t=1

kijrijt∑

l=2

y2
ijrijtl

, (4.33)

where the parameter vector is θ = (δ, γ, λ0, µ11, ..., µmT , σ2, ρ, ρ∗)
′
.

Denoting by

Qkij
(λ0, λi1, ..., λiT ) =

min(kij1,...,kijT )∑

l=0

T∏
t=1

(
kijt

l

)
l!




λ0

T∏
k=1

λik




l

(4.34)

and using the results (A.5) - (A.8) from Appendix A, it follows that the mT + 6 score

84



equations are given by

m∑

i=1

ni∑

j=1

T∑

j=1

(−eδ+γµj + kijt

)
+

m∑

i=1

ni∑

j=1

∂

∂δ
log Qkij (λ0, λi1, ..., λiT ) = 0

m∑

i=1

ni∑

j=1

T∑
t=1

(−µite
δ+γµit + kijtµit

)
+

m∑

i=1

ni∑

j=1

∂

∂γ
log Qkij

(λ0, λi1, ..., λiT ) = 0

−
m∑

j=1

ni +
m∑

i=1

ni∑

j=1

∂

∂λ0
log Qk1j

(λ0, λi1, ..., λiT ) = 0

γ




−n1λ11 +
n1∑

j=1

k1j1

−n1λ12 +
n1∑

j=1

k1j2

...

−n1λ1T +
n1∑

j=1

k1jT




+




n1∑
j=1

∂
∂µ11

log Qk1j (λ0, λ11, ..., λ1T )
n1∑

j=1

∂
∂µ12

log Qk1j
(λ0, λ11, ..., λ1T )

...
n1∑

j=1

∂
∂µ1T

log Qk1j (λ0, λ11, ..., λ1T )




+
1
σ2

n1∑

j=1

Σ−1
k1j

(z1j − µ∗1j) = 0T

...

γ




−nmλm1 +
nm∑
j=1

kmj1

−nmλm2 +
nm∑
j=1

kmj2

...

−nmλmT +
nm∑
j=1

kmjT




+




nm∑
j=1

∂
∂µm1

log Qkmj (λ0, λm1, ..., λmT )
nm∑
j=1

∂
∂µm2

log Qkmj (λ0, λm1, ..., λmT )

...
nm∑
j=1

∂
∂µmT

log Qkmj (λ0, λm1, ..., λmT )




+
1
σ2

nm∑

j=1

Σ−1
kmj

(zmj − µ∗mj) = 0T

− 1
σ2

m∑

i=1

ni∑

j=1

T∑
t=1

kijt +
1
σ4

m∑

i=1

ni∑

j=1

(zij − µ∗ij)
′Σ−1

kij
(zij − µ∗ij) +

τ0

σ4

m∑

i=1

ni∑

j=1

ŷ
′
ij ŷij = 0

1
1− ρ

m∑

i=1

ni∑

j=1

(
T∑

t=1

kijt −
T∑

t=1

δ(kijt)

)
−

m∑

i=1

ni∑

j=1

tr

(
Σ−1

kij

[
IT −Diag

(
1

kij1
, ...,

1
kijT

)])

+
1
σ2

m∑

i=1

ni∑

j=1

(zij − µ∗ij)
′
Σ−1

kij

[
IT −Diag

(
1

kij1
, ...,

1
kijT

)]
Σ−1

kij
(zij − µ∗ij)

− τ0

σ2(1− ρ)2

m∑

i=1

ni∑

j=1

ŷ
′
ij ŷij = 0

m∑

i=1

ni∑

j=1

tr
(
Σ−1

kij
(eT e

′
T − IT )

)
− 1

σ2

m∑

i=1

ni∑

j=1

(zij − µ∗ij)
′
Σ−1

kij
(eT e

′
T − IT )Σ−1

kij
(zij − µ∗ij) = 0.

We use the fact that
l(kij)∑
t=1

kijrijt∑
l=2

y2
ijrijtl

= ŷ
′
ijŷij to simplify the above expressions. 0T denotes

the T -dimensional null vector.
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As noted before, if all the observations consist of random length vectors with length zero,

none of the equations above make sense; hence none of the parameters are estimable. If we

observe only vectors with length zero or 1 then the parameter ρ is not estimable.

Similar to the approach taken in the one population model, the explicit expressions for

the score equations are presented only for the case T = 2.

4.2.2.1 Maximum Likelihood Estimation for 2 Time points Let us assume each

subject was observed only T = 2 times. Thus, the random lengths for a subject from

population i are distributed jointly as bivariate Poisson(λ0, λi1, λi2) random variables. Let

us denote this joint probability mass function by

fi(r, s) = Pθ(Ki1 = r,Ki2 = s)

= e
−

2P
i=0

λi λr
i1

r!

λs
i2

s!

min(r,s)∑
i=0

(
r

i

)(
s

i

)
i!

(
λ0

λi1λi2

)i

. (4.35)

Taking into account the expression of the score equations for the vector of lengths in (C.5)

- (C.9), we may explicitly write the score equations for the multiple population model for

T = 2 time points as
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−
m∑

i=1

ni∑

j=1

2∑
t=1

eδ+γµit +
m∑

i=1

ni∑

j=1

[
λi1

fi(kij1 − 1, kij2)
fi(kij1, kij2)

+ λi2
fi(kij1, kij2 − 1)

fi(kij1, kij2)

]
= 0 (4.36)

−
m∑

i=1

ni∑

j=1

2∑
t=1

µite
δ+γµit +

m∑

i=1

ni∑

j=1

[
λi1

fi(kij1 − 1, kij2)
fi(kij1, kij2)

+ λi2
fi(kij1, kij2 − 1)

fi(kij1, kij2)

]
= 0 (4.37)

m∑

i=1

ni∑

j=1

fi(kij1, kij2)− fi(kij1 − 1, kij2)− fi(kij1, kij2 − 1) + fi(kij1 − 1, kij2)− 1
f(kij1, kij2)

= 0 (4.38)

γ



−n1λ11 + λ11

n1∑
j=1

f(k1j1−1,k1j2)
f(k1j1,k1j2)

−n1λ12 + λ12

n1∑
j=1

f(k1j1,k1j2−1)
f(k1j1,k1j2)


 +

1
σ2

n1∑

j=1

Σ−1
k1j

(z1j − µ∗1j) = 02 (4.39)

...

γ



−nmλm1 + λm1

nm∑
j=1

f(kmj1−1,kmj2)
f(kmj1,kmj2)

−nmλm2 +
nm∑
j=1

f(kmj1,kmj2−1)
f(kmj1,kmj2)


 +

1
σ2

nm∑

j=1

Σ−1
kmj

(zmj − µ∗mj) = 02 (4.40)

− 1
σ2

m∑

i=1

ni∑

j=1

2∑
t=1

kijt +
1
σ4

m∑

i=1

ni∑

j=1

(zij − µ∗ij)
′Σ−1

kij
(zij − µ∗ij) +

τ0

σ4

m∑

i=1

ni∑

j=1

ŷ
′
ij ŷij = 0 (4.41)

1
1− ρ

m∑

i=1

ni∑

j=1

(
2∑

t=1

kijt − l(kij)

)
−

m∑

i=1

ni∑

j=1

tr

(
Σ−1

kij
Diag

(
1− 1

kij1
, 1− 1

kij2

))

+
1
σ2

m∑

i=1

ni∑

j=1

(zij − µ∗ij)
′
Σ−1

kij
Diag

(
1− 1

kij1
, 1− 1

kij2

)
Σ−1

kij
(zij − µ∗ij)

− τ0

σ2(1− ρ)2

m∑

i=1

ni∑

j=1

ŷ
′
ij ŷij = 0 (4.42)

m∑

i=1

ni∑

j=1

tr
(
Σ−1

kij
(e2e2

′ − I2)
)

− 1
σ2

m∑

i=1

ni∑

j=1

(zij − µ∗ij)
′
Σ−1

kij
(e2e2

′ − I2)Σ−1
kij

(zij − µ∗ij) = 0. (4.43)

We discuss numerical estimation of the MLE’s in Section 4.3.3, along with considerations

about the technical difficulties we encountered.

4.2.3 Asymptotic Distribution of the MLE for T = 2

Let us denote by In(θ) the information matrix for θ contained in the n =
m∑

i=1

ni indepen-

dent observations from the multiple population model, Xij with random lengths Kij =

(Kij1, ..., KijT ), i = 1, ..., m, j = 1, ..., ni. It makes sense to think of In(θ) as a sum of the in-

formation about θ contained in the lengths and the sum of information about θ contributed
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by the vectors of severities, over all possible lengths. Using the results from Appendix C, we

compute the information about the parameter θ contained in a single observation from the

one population model, X with random lengths K = (K1, ..., KT ) as

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),

where I∗(θ) is the information matrix about θ contained in the random lengths K =

(K1, ..., KT ) and I(θ|k) is the information matrix contained in Xi|K = k, where k ∈ Υ.

We denote

Υ =

{
k = (k1, ...kT )| ki = 0, 1, ... for ∀i = 1, ..., T and

T∑
i=1

ki ≥ 1

}
.

We compute the information matrix In(θ) about θ = (δ, γ, λ0, µ11, ..., µmT , σ2, ρ, ρ∗)
′

con-

tained in these n =
m∑

i=1

ni independent observations from the multiple population model (see

C.27) as

In(θ) =
m∑

i=1

niI
∗
i (θ) +

m∑

i=1

ni

∑

k∈Υ


e

−λ0−
2P

t=1
λit λk1

i1

k1!
λk2

i2

k2!

min(k1,k2)∑

i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λi1λi2

)i

 Ii(θ|ki). (4.44)

We show in Appendix C, relation C.27, that In(θ) has a block diagonal form

In(θ) =




In(δ, γ, λ0, µ11, ..., µm2) O(2m+3)×3

O3×(2m+3)

m∑
i=1

ni

∑
k∈Υ

fi(k1, k2)Ik(σ2, ρ, ρ∗)


 , (4.45)

where

fi(k1, k2) = e
−λ0−

2P
t=1

λit λk1
i1

k1!

λk2
i2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λi1λi2

)i

,

In(δ, γ, λ0, µ11, ..., µm2) =
m∑

i=1

ni




H
(i)
11 O3×2(i−1) H

(i)
12 O3×2(m−i)

O2(i−1)×3 O2(i−1)×2(i−1) O2(i−1)×2 O2(i−1)×2(m−i)

H
(i)′
12 O2×2(i−1) H

(i)
22 O2×2(m−i)

O2(m−i)×3 O2(m−i)×2(i−1) O2(m−i)×2 O2(m−i)×2(m−i)




+




O3×3 O3×2m

O2m×3

m∑
i=1

ni

∑
k∈Υ

fi(k1, k2)Σ
−1
k


 ,
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the matrices H
(i)
kl ’s (k, l = 1, 2) are given in (C.26) and the elements of the matrix Ik(σ2, ρ, ρ∗)

are defined by (A.10) - (A.15).

From the expression of the score equations it is apparent that there is no closed form solution

for θ̂n. Hence, the exact distribution of θ̂n is not available. We can apply a general result

on the efficiency of maximum likelihood estimators for random length data (see Theorem

A.3.2 in Barnhart [4]) to derive the asymptotic distribution for θ̂n, the MLE. We obtain its

asymptotic covariance matrix as the inverse of the above information matrix and estimate

it by I−1
n (θ̂n).

Theorem 4. Let θ̂n = (δ̂n, γ̂n, λ̂
(n)
0 , µ̂

(n)
11 , µ̂

(n)
12 , ..., µ̂

(n)
m1, µ̂

(n)
m2, σ̂

2
n, ρ̂n, ρ̂

∗
n)
′
be the MLEs for a sam-

ple of size n =
m∑

i=1

n1 from the multiple population model. If ni/n → ηi with 0 < ηi < 1 as

n →∞, then

(1). θ̂n is consistent.

(2).

√
n

(
θ̂n − θ

)
L→MVN2m+6(0, I−1(θ)),

where

I(θ) =




I(δ, γ, λ0, µ11, ..., µm2) O(2m+3)×3

O3×(2m+3)

m∑
i=1

ηi

∑
k∈Υ

fi(k1, k2)Ik(σ2, ρ, ρ∗)


 , (4.46)

where

fi(k1, k2) = e
−λ0−

2P
t=1

λit λk1
i1

k1!

λk2
i2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λi1λi2

)i

,

I(δ, γ, λ0, µ11, ..., µm2) =
m∑

i=1

ηi




H
(i)
11 O3×2(i−1) H

(i)
12 O3×2(m−i)

O2(i−1)×3 O2(i−1)×2(i−1) O2(i−1)×2 O2(i−1)×2(m−i)

H
(i)′
12 O2×2(i−1) H

(i)
22 O2×2(m−i)

O2(m−i)×3 O2(m−i)×2(i−1) O2(m−i)×2 O2(m−i)×2(m−i)




+




O3×3 O3×2m

O2m×3

m∑
i=1

ηi

∑
k∈Υ

fi(k1, k2)Σ
−1
k


 ,
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the matrices H
(i)
kl ’s (k, l = 1, 2) are given in (C.26), the elements of Ik(σ2, ρ, ρ∗) are de-

fined by (A.10) - (A.15), and Υ =

{
k = (k1, k2)| ki = 0, 1, ... ∀i = 1, 2 and

2∑
i=1

ki ≥ 1

}
.

4.3 SIMULATION STUDY

In this section we report the results of a simulation study conducted to explore the behav-

ior of the proposed model for T = 2 and to evaluate the finite sample properties of our

estimators. Several different scenarios are analyzed, with longitudinal random length data

generated according to the multiple population model described in Section 4.2. We com-

pare the estimated parameters with the true underlying values, investigate how close the

asymptotic variance approximates the finite sample variance and examine the normality of

the estimators. In addition we examine how large the groups need to be in order for the

large-sample theory to hold.

4.3.1 Description of the Simulations

The simulation study was designed to resemble the LEDS data; we create a hypothetical

trial with patients divided evenly between a treatment and a control group and followed up

for the same number of time periods T = 2. To allow for comparisons, we find it useful to

report here the results of the simulations for T = 2 from Chapter 3.

In order to be able to compare the results from the two multiple population models, we

keep the same parameter configurations for δ, γ, µ11, ..., µ22, σ2, ρ and ρ∗ as in the simulation

study from Chapter 3 and set the value of λ0 to 1 across all simulations. We try to cover the

same four different scenarios obtained by considering all possible combinations of the two

factors taken into account; the first factor involves the relationship between the severities

and the lengths and the second one concerns the relationship between the mean severity

”profiles” for the two populations. In the first scenario µ1 and µ2 are parallel and not

coincident, while within the same treatment group the mean severities are close but the

number of events are well separated across time; the second scenario depicts the situation in
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which µ1 and µ2 intersect while within the same group the mean severities are close and the

number of events are well separated across time; in the third scenario µ1 and µ2 are parallel

Table 19: Choice of parameters for simulation study. T=2

µ’s close and λ’s far µ’s far and λ’s close

µ1 and µ2

well separated µ1 = (1.0, 1.1) µ1 = (1, 2)

µ2 = (1.5, 1.6) µ2 = (1.5, 2.5)

(δ, γ, λ0) = (−1.3, 2.3, 1) (δ, γ, λ0) = (2.5, 0.01, 1)

(σ2, ρ, ρ∗) = (1, 0.5, 0.2) (σ2, ρ, ρ∗) = (1, 0.5, 0.2)

λ1 = (2.72, 3.42) λ1 = (12.30, 12.43)

λ2 = (8.58, 10.80) λ2 = (12.37, 12.49)

µ1 and µ2

close µ1 = (1.3, 1.2) µ1 = (4, 3)

µ2 = (1.2, 1.3) µ2 = (3, 4)

(δ, γ, λ0) = (−1, 2.5, 1) (δ, γ, λ0) = (1.5, 0.05, 1)

(σ2, ρ, ρ∗) = (1, 0.5, 0.2) (σ2, ρ, ρ∗) = (1, 0.5, 0.2)

λ1 = (4.48, 5.75) λ1 = (5.47, 5.21)

λ2 = (5.75, 4.48) λ2 = (5.21, 5.47)

and not coincident, but over time the values of the mean severities are well separated, while

the number of events change very little; finally, in the fourth scenario µ1 and µ2 intersect,

while across time we have changes in the mean severities but little variation in the number

of events. The explicit parameter configurations are shown in Table 19.

As in the case of the simulation study from Chapter 3, the data are generated and the

analyses are performed using the R programming language and PittGrid’s computational

framework.

In each scenario, we generate D = 1000 independent data sets under the model intro-

duced in Section 4.2 (Model 2), with two different populations and T = 2 time points. For

each population i, i = 1, 2 we simulate the same number of subjects n = 20, 50 and 100.
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For each data set d, d = 1, ..., D, we fit our multiple population model with T = 2 and,

by maximizing the likelihood, we compute the numerical value of the 10 - dimensional ML

estimator θ̂, where θ = (δ, γ, λ0, µ11, µ12, µ21, µ22, σ
2, ρ, ρ∗). For each of the 10 parameters,

we compute the empirical bias, standard deviation and square-root of MSE, as described in

Section 3.3.1. As in Chapter 3, we are not able to report estimated asymptotic variances for

the parameters, because calculating them is extremely computationally challenging. Thus,

we report instead the theoretical value I−1
n (θ).

4.3.2 Data Generation

The bivariate Poisson distribution described in Appendix B is employed to model the dis-

tribution of the random lengths. Thus, the random lengths of a subject from population i

have the joint pmf given by

P (Ki1 = k1, Ki2 = k2) = e
−λ0−

2P
t=1

λit λk1
i1

k1!

λk2
i2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λi1λi2

)i

.

Given the random lengths Ki = (ki1, ki2), the distribution of the vector of severities Xi,

corresponding to the two measurement times is MVN 2P
t=1

kit

(µk, σ2Sk(ρ, ρ∗)). With proba-

bility P (K = 0) = e−λ0−λi1−λi2 we observe a zero-length vector for each of the two time

measurements.

To generate a data set containing n observations per population from the multiple pop-

ulation model introduced in Section 4.2, we repeat n times the following two-step procedure

for each of the populations i = 1, 2.

Step 1 (Generate the random lengths)

Generate 3 independent observations: one from a Poisson(λit) distribution, t = 1, 2 and

one observation from a Poisson(λ0) distribution. Adding the value generated from the

Poisson(λ0) distribution to each of the other two values generated from Poisson(λit) dis-

tributions produces the vector of random lengths ki = (ki1, ki2).

Step 2 (Generate the severities)
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If
2∑

t=1

kit = 0 we observe two zero-length vectors of severities.

If
2∑

t=1

kit > 0, then generate Xi from a MVN TP
t=1

kit

(µki
, σ2Ski

(ρ, ρ∗)).

4.3.3 Numerical Considerations

The difficulties that arose in this simulation study are the same as in the case of T = 4

and described in Section 3.4. Having T = 2 alleviates to some extent the computational

complexity because there are fewer parameters to estimate. However, when the number of

events is large, the algorithm is quite slow. In the case of the model with dependent lengths,

an additional burden of complexity is brought by the probability mass function of the multi-

variate Poisson distribution. The complicated structure of the likelihood for the multivariate

Poisson distribution is the main reason for us not being able to present the score equations

and asymptotic distribution for the general model introduced in Chapter 4. Although there

is a rich recent body of research involving the multivariate Poisson (see Karlis, [20]-[23]),

numerical methods are implemented only for the bivariate Poisson case (Karlis [21]). We

performed the simulation using our own program to compute the probability mass function

for the bivariate Poisson distribution. We validated the program when T = 2, showing that

the results were the same as those obtained by using the R package bivpois, implemented

by Karlis [21], which allows efficient calculation of the bivariate Poisson probabilities. We

did write a general program, capable of handling cases with T > 2, but for reasons we do

not fully understand, while the program produces results, in some cases they appear to be

meaningless.

As described in Section 3.3.4, the number of time points with quantitative measures

changes with every subject. As the number of time points with quantitative measures

changes, the mean and covariance structures for the distribution of the severities change.

Furthermore, numerical computing of the information matrix involves summation over all

possible values of the random lengths. For T = 2 measurement times that means summation

of matrices over all the possible values of a bi-dimensional vector of lengths. In numerical

computation of the information matrix, one needs to set threshold values for the summation

indices. These thresholds are chosen such that the bivariate Poisson probability is negligible
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beyond them. The larger the average number of events is, the larger the thresholds become

and making the summation more difficult. Furthermore, these matrices are weighted by

a bivariate Poisson probability mass function. Having to compute this quantity for every

combination of bivariate vector of random lengths adds another layer of complexity to the

computation of the information matrix.

As in the case of the model of Chapter 3, the third complicating element is related to

the difficulty associated with modeling slopes. If µ11 = ... = µ22 the parameters δ and γ

are not identifiable. When data comes from populations with poorly separated means, the

likelihood can be flat over certain regions and nlm sometimes converges to some strange

solutions, particularly for δ and γ. This was the case for the sample size n = 20 in scenario

2, when the theoretical means were close µ11 = µ22 = 1.3 and µ12 = µ21 = 1.2. However,

even in these cases, the average severities and event lengths are estimated correctly.

The R function nlm was used to carry out the unrestricted maximization of the log-

likelihood. This function requires specification of initial values for the parameters. We

obtain the initial values of the parameters in a similar manner as in Chapter 3. For λ0, we

start with the method of moments estimator.

λ
(0)
0 =

1

2n

2∑
i=1

n∑
j=1

(kij1 − k1)(kij2 − k2), (4.47)

where

k1 =
1

2n

2∑
i=1

n∑
j=1

kij1

k2 =
1

2n

2∑
i=1

n∑
j=1

kij2.

If the above λ
(0)
0 < 0 we assign 0 as an initial value for λ0. For all the other parameters

in the model, we assign the initial values according to the algorithm described in Section

3.3.3. Having all the initial estimates set, the optimization procedure proceeds by using the

R function nlm.

94



4.3.4 Simulation Results

Appendix D contains the results of the simulations for the different scenarios and choices of

the sample size n for the multiple population model of Chapter 3 (Model 1) and 4 (Model 2),

respectively. Tables 24 to 35 show the results of the simulations, and Table 20 summarizes

these results.

Table 20: Summary of the simulations’ results. T=2

Scenario 1 Scenario 3
n = 20 n = 20
• bias only in λ0, δ and γ • no bias
• asymptotic variance does not approximate • asymptotic variance approximates the finite
the finite sample variance for λ0, δ and γ sample variance
• λ0, δ and γ not normal • all estimates look normally distributed
n = 50 n = 50
• no bias • no bias
• asymptotic variance approximates the finite • asymptotic variance approximates the finite
sample variance sample variance
• all estimates look normally distributed • all estimates look normally distributed
n = 100 n = 100
• no bias • no bias
• asymptotic variance approximates the finite • asymptotic variance approximates the finite
sample variance sample variance
• all estimates look normally distributed • all estimates look normally distributed
Scenario 2 Scenario 4
n = 20 n = 20
• bias only in λ0, δ and γ • bias only in λ0

• asymptotic variance does not approximate • asymptotic variance does not approximate
the finite sample variance for λ0, δ and γ the finite sample variance for λ0

• λ0, δ and γ not normal • λ0 not normal
n = 50 n = 50
• small bias for δ and γ • no bias
• asymptotic variance approximates reasonably • asymptotic variance approximates the finite
the finite sample variance for δ and γ sample variance
• some evidence of non-normality • all estimates look normally distributed
n = 100 n = 100
• slight bias for δ and γ • no bias
• asymptotic variance approximates the finite • asymptotic variance approximates the finite
sample variance sample variance
• all estimates look normally distributed • all estimates look normally distributed

A quick glance at the tables tells us that the results from the two models are very similar.
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Furthermore, the pattern of bias in the estimators is similar to the one in Chapter 3. The

main parameters of interest are the µ’s, representing the underlying disease status. For each

of the four parameter combinations and for each of the sample sizes, biases in most of the

estimates are very small. Specifically, as in the case of the simulations with T = 4, the results

obtained from the simulation studies suggest that the estimates of the true µ’s are unbiased

for all choices of n = 20, 50, 100, under all four different scenarios and for both Model 1 and

Model 2. The same is true for the parameters σ2, ρ and ρ∗. This is not always the case for

λ0, δ and γ. For small samples (n = 20), the estimates for λ0 are far from the true value

in all scenarios except scenario 3 (see Tables 24, 27, and 33). For sample sizes larger than

n = 50, the estimates for λ0 appear unbiased, regardless of the parameter configuration.

For small values of n, the averages of the estimates for δ and γ are strongly biased in both

scenario 1 and scenario 2. Scenario 2 actually produces average estimates for δ and γ that

have incorrect signs. (see Tables 27 and 28). The bias decreases with increasing the sample

size, but even for n = 100, scenario 2 produces slightly biased estimates for δ and γ. In the

remaining two scenarios (see Tables 30 - 35), the estimation works well, even for n small.

This is due mainly to the fact that the severities are generated from distributions with well

separated means with respect to σ2.

We generated qq-plots (not presented), for each simulated scenario. By examining them,

we found the empirical distribution of the MLEs to be symmetrical and approximately

normal, as expected. The exceptions from this normal behavior parallel the findings from

investigating the bias. Evidence of non-normal behavior was exhibited by the estimates of

λ0 when the sample size is small (n = 20) in scenarios 1, 2 and 4, and by estimates of δ and

γ for n = 20 in scenario 1 and for n = 20, 50 in scenario 2.

Inspecting the behavior of the sample standard deviations produces the same type of

conclusions as the ones from investigating the bias and normality of the estimators. The

asymptotic variances approximate quite well the finite sample variances in most instances,

even for sample sizes as small as n = 20. Different comportment is shown by the estimates

of δ and γ in scenarios with small sample size and large variability in the events’ severities

(scenario 1, n = 20 and 2, n = 20, 50), and by estimates of λ0 in scenarios with small

sample size (scenario 1, 2 and 4 with n = 20). An interesting fact is that in these ”problem”

96



scenarios, the finite sample variances for δ and γ are smaller in Model 2 than in Model 1.

To summarize our findings, we conclude that the asymptotic results in section 3.2 and

4.2 for T = 2 are applicable for sample sizes which are greater than 50. Estimation results

show that the algorithm gives acceptable results even for choices of n as small as 20, provided

that the theoretical values of the mean severities are not extremely poorly separated relative

to their variance. Furthermore, even for ”problem” scenarios, in which δ and γ are not well

estimated, we found the parameter of interest (µ’s and λ’s) to be well estimated.

4.4 APPLICATION TO LEDS DATA

In this section, we apply the method introduced in Section 4.2 to the LEDS data. Since

the score equations and information matrix are available only for the particular case when

T = 2, we analyze the data divided semi-annually. We also apply the multiple population

model of 3.2 with T = 2 to this data and compare the results from the two models. Thus

we obtain comparisons between dependence caused only by the event severities in different

time periods and dependence built in both the number of events and severities across the

two time periods.

As described in Section 3.4, LEDS data refers to stressful life events in 62 subjects, out of

which 30 are normal controls (NC) and 32 had a major depressive disorder episode (MDD).

The two outcomes recorded for each subject are the number of stessors and the severity of

each of the stessors. These outcomes are recorded for each of the 2 halves of the year. Each

half year, the data for an individual subject are random vectors of event severities with the

random length given by the number of events the subject experienced that half year. Table

21 gives a description of the number of events experienced by the subjects in the LEDS data

and Table 22 presents the severities of the events stratified by group. We denote the MDD

group as population 1 with mean µ11 reflecting the underlying depression status at the first

half year before the onset of depression and µ12 at the second half year before the onset of

depression. Similarly, denote the subjects in the NC group as population 2 with means µ21 at

measurement 1 (underlying disease severity at time 1) and µ22 at measurement 2 (underlying
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disease severity at time 2). The multiple population models described in Section 4.2 and 3.2

with m = 2 and T = 2 are applicable to this data. We have n1 = 32 and n2 = 30.

Table 21: LEDS Data. Frequency of acute stressors by group.

Number of acute stressors

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16

1-st half year before MDD onset

MDD1 2 3 2 6 1 3 2 4 2 1 2 1 1 1 1

NC2 2 3 4 8 2 2 3 3 2 1 0 0 0 0 0

2-nd half year before MDD onset3

MDD 2 2 6 5 5 2 2 2 2 1 1 2 0 0 0

NC 8 1 4 5 4 3 2 1 0 1 0 1 0 0 0

1MDD = major depressive disorder (sample size is 32)
2NC = normal control (sample size is 30)
313 subjects have the last month in the study replicated once or twice since they did not have the whole

quarter available

As seen when examining the data quarterly, a quick look at the Tables 21 and 22 suggests

that even from a semi-annual viewpoint, the MDDs have more events than the NCs and

the severity of the events experienced by the MDDs is higher. Moreover, both the number

of events and their severity seem to increase as the MDDs draw closer to their episode of

depression. We observe that there are subjects in both groups and during both periods

with no events, which, nonetheless our models handle. The data for these subjects at the

corresponding measurement time are treated as zero-length random length vectors. We

notice that overall the MDD group experienced more events than the NC group (183 during

the first half year before the onset of depression and 142 during the second half year before

the onset of depression as compared to 117 and 94, respectively). Furthermore, from Table

21, the largest number of stressors the NCs experienced is 11, while the MDD group contains

subjects that undergo up to 16 events during a half of a year. During the half of the year
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Table 22: LEDS Data. Severity of acute stressors by group. (Percentages represent stressors).

Severity of Acute Stressors

1 2 3 4 Total (acute stressors)

1-st half year before MDD onset

MDD n(%) 77(42) 71(39) 33(18) 2(1) 183

NC n(%) 65(56) 40(34) 9(8) 3(2) 117

2-nd half year before MDD onset

MDD n(%) 59(42) 47(33) 33(14) 3(1) 142

NC n(%) 60(64) 22(23) 10(11) 2(2) 94

immediately preceding the onset of depression the number of events experienced by MDD

group has more spread than during the prior half year.

To ensure that the constraints of the model are verified we use the R function op-

tim to maximize the likelihood. This function is similar to nlm, but includes an op-

tion for box-constrained optimization. The initial values for the parameters are computed

using the techniques described in Sections 3.3.3 and 4.3.3, respectively. We denote by

θ̂ = (δ̂, γ̂, µ̂11, µ̂12, µ̂21, µ̂22, σ̂
2, ρ̂, ρ̂∗) the MLE for the multiple population model with in-

dependent lengths (Model 1) and θ̃ = (δ̃, γ̃, λ̃0, µ̃11, µ̃12, µ̃21, µ̃22, σ̃
2, ρ̃, ρ̃∗) the MLE for for

the multiple population model with dependent lengths (Model 2). Table 23 gives the solu-

tions θ̂ of the maximization procedure for the models in Chapter 3 (Model 1) and 4 (Model

2), respectively, and their corresponding estimated standard deviations based on I−1
n (θ̂) and

I−1
n (θ̃), respectively.

The first thing to notice is that the estimates from the two models are essentially identical.

This is a result of the fact that Model 2 produces an estimate equal to zero for the parameter

reflecting dependence over time, λ0. Note that when the parameter λ0 is equal to zero, the

two models are identical. In addition, the model estimates ρ∗ = 0.

The estimated parameter γ has a positive sign indicating a positive relationship between
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the average number of events and the average severity (larger severities and higher number

of events). Its estimated standard deviation is small and the Wald tests for both models

have p-values smaller than 0.001, indicating that γ is significantly different than zero. This

result is different from the one in Section 3.4, where we analyzed the LEDS data quarterly,

and it is probably due to the fact that there is a lot more variation in the quarterly data.

Table 23: Maximum likelihood solution for the two models

Model 1 Model 2

Parameter θ̂ estimated SD of θ̂ θ̃ estimated SD of θ̃

δ -1.0964 1.024 -1.0963 1.024

γ 1.5195 0.604 1.5195 1.604

MDD

µ11 1.8332 0.066 1.8332 0.066

µ12 1.7433 0.057 1.7433 0.058

NC

µ21 1.5849 0.066 1.5849 0.065

µ22 1.5150 0.077 1.5150 0.077

σ2 0.5854 0.037 0.5854 0.037

ρ 0.1241 0.041 0.1241 0.041

ρ∗ 0.0000 0.044 0.0000 0.044

λ0 - - 0.0000 0.791

Further, we want to test if the profiles of the two groups are parallel. This is equivalent

to testing that there is no interaction between time and group. This composite hypothesis

can be written as

H0 : (µ12 − µ11)− (µ22 − µ21) = 0

We set up the corresponding matrix

C =
(
−1 1 1 −1

)
,
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and write the hypothesis in matrix form

H0 : Cµ = 0,

where µ = (µ11, µ12, µ21, µ22). It follows that the value of the test statistic is

(Cµ̂)
′
[
CI−1(µ̂)C

′
]−1

Cµ̂ = 0.0441

which is not significant with respect to a chi-square distribution with 1 degree of freedom.

This means that the two profiles are not significantly different in shape and we conclude that

the profiles are parallel. Given that the profiles are parallel, we are interested to see if they

are also coincident. The corresponding null hypothesis of equal treatment effects is

H0 : µ11 + µ12 = µ21 + µ22.

We can state this hypothesis in matrix form as

H0 : cµ = 0,

where c = (1 1 − 1 − 1). The value of the test can be found as

(cµ̂)
′
[
cI−1(µ̂)c

′
]−1

cµ̂ = 9.1031,

which is significant with respect to a chi-square distribution with 1 degree of freedom. We

conclude that the two profiles are not coincident. -

Overall, the two models are providing us with the same insight into the LEDS data ;

while there is some correlation between the severities within a time measurement, there is no

dependence over time, neither in the severity measures, nor in the random lengths. Model

1 estimates ρ∗ = 0 as an estimate for the correlation between two severities recorded at

different halves of the year. In addition to estimating ρ∗ = 0, Model 2 estimates λ0 = 0

for the covariance between the random number of events recorded during the first half year

before the onset of depression and the random number of events recorded during the second

half year before the onset of depression. Thus, these semi-annual LEDS data could have

been analyzed with a simple non-repeated four population model, in which we treat every

half year of data as an independent population.
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5.0 DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH

Our goal is to build models that allow us to analyze data gathered longitudinally on both

the frequency of an event and its severity when both the frequency and the severity are

important for the experimenter and the interest is in modeling the two outcomes together

to draw inference about the treatment effect.

We refer to this type of data as longitudinal random length data. Building models for

such data is a complex task. For instance, not only does the number of events that a

subject experiences change over time; the number of time points with observed quantitative

measures changes with every subject. Another complicating issue is that the mean and

covariance structures for the distribution of the severities change with the change of the

number of time points with observed quantitative measures. When the number of repeated

time measurements increases, the number of parameters that need to be estimated increases.

As the number of recorded events experienced by subjects and time measurements with

quantitative measure increases, the difficulty of numerically estimating the parameters in

the model increases, as well.

In this dissertation we propose two types of models to deal with longitudinal random

length data, one with dependence over time built into the severity measures and a more

complex second one with two layers of dependence over time. Although our motivation

was drawn from a study examining stressful life events in adolescents, the methods appear

to be more broadly useful. For many diseases or health conditions, an individual may

have repeated episodes collected over assessment intervals, together with a measure of each

episode’s intensity or severity. Since the data that motivated our research refers to life

events, the natural distribution to be considered in modeling the number of events is Poisson.

However, other discrete distributions may be applicable and provide better fits, for example,
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the negative binomial distribution or, more generally, a family of discrete distribution with

appropriate behavior.

In the proposed models, we treat the severity measures as continuous random variables.

However, many of the severity measures encountered in practice are categorical (e.g. in

LEDS data, 1=”little or none”, 2=”some”, 3=”moderate” and 4=”marked”). Thus, there

is interest in developing models for longitudinal ordinal random length data.

We did make a first step into analyzing longitudinal random length data, but there are

a number of interesting directions we see to further this research. The following sections

describe some of the ideas that can be used to generalize our methods.

5.1 BUILDING DEPENDENCE INTO SEVERITIES

5.1.1 Introducing Covariates

The model introduced in Chapter 3 accommodates multiple populations but does not include

covariates. Because both the number of events recorded at a measurement time and their

severities both reflect the depression status, it is reasonable to assume that certain covariates

that could impact the depression status may affect both the number of events and their

severities in a similar way. We plan to develop models to accommodate covariates and

account for their influence on both the lengths and the severities. For example, in the LEDS

data, age, socio-economical status, and race could all be considered as covariates.

5.1.2 Using Different Covariance Structures to Model Severities’ Dependence

over Time

In Chapter 3 we considered a simple covariance structure; any two severity measurements

recorded at different time measurements have the same correlation coefficient, independent

of the measurement times. Possible extensions of the multiple population model incorporate

more general correlation structures for modeling the dependence between severity measure-

ments at different time points within a subject. For example, one simple assumption is that
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correlation between severities observed at time t1 and t2 has the form ρ|t1−t2|, i.e., decays

geometrically with |t1− t2|; this makes sense in that the degree of correlation may tend to be

greater for observations that are closer in time than for severities that are far apart. Thus,

one way to further our research is by exploring other covariance structures.

5.2 BUILDING DEPENDENCE INTO LENGTHS WITH MULTIVARIATE

POISSON

5.2.1 Using More Complex Structures to Model the Dependence of the Lengths

over Time

The multivariate Poisson model that we considered for modeling the vector of random lengths

assumes one common positive covariance term for all pairs of random lengths. Using the

models introduced by Karlis [20], we could relax the assumption of equal covariance among

all pairs of random lengths and propose models with different covariances for pairs of random

lengths observed at different measurement times.

Furthermore, in the multivariate Poisson model we use, the marginal mean and variance

of each random length coincide, an assumption that is not appropriate for overdispersed

number of events. As an alternative way of modeling the vector of random lengths, we could

consider finite multivariate Poisson mixtures (see Karlis [22], [23]), which allow for both

negative correlations and overdispersion.

5.2.2 Building Dependence into both Lengths and Severities. Extending the

Supermodel

The main drawback of the model of Section 4.2 is the availability of the score equations and

information matrix for only the case T = 2. There are possible approaches to more efficiently

estimate the parameters of the multivariate Poisson distribution, like those proposed by

Karlis [20], [21]. We plan on implementing them to simplify the most computational part of

our estimation algorithm and extend the method to values of T larger than 2.
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We first introduced models with only one layer of dependence over time. The multiple

population model of Chapter 3 treats the random lengths as independent random variables

and assumes that, given the total number of events, the vectors of severities are correlated

over time. We then generalized these models in Chapter 4, by adding another layer of

dependence over time. While still assuming the vectors of severities as dependent over time,

we add dependence among the random lengths by using the multivariate Poisson distribution.

The natural question that arises is which of the two models fits a certain data set better?

Unfortunately, we can not give an answer to this question yet. To do so, we plan to extend

the supermodel from Chapter 4, designed to build time dependence into both the severity

measures and the lengths. This extension refers to solving the score equations and deriving

the asymptotic distribution for the general case when T > 2. This supermodel will allow us

to test the goodness-of-fit of the models introduced in Chapter 3 and Chapter 4.

5.3 GENERALIZING HOFFMAN’S APPROACH FOR LONGITUDINAL

CLUSTERED DATA

Before building models for longitudinal random length data, we reviewed the existing ap-

proaches for dealing with longitudinal and clustered data. We decided to move forward

by means of joint modeling of the severities and numbers of events, because this approach

made efficient use of the information in the two outcomes. However, another provocative

research idea is to develop a Within Cluster Resampling-like approach for longitudinal data

and contrast it with the previous methods proposed in Chapter 4. In this setting, each

subject has a cluster of severities at each of the T time points. The sizes of the clusters

may be informative: in the context of the LEDS data, for example, as they get closer to the

onset of their MDD episode, the subjects have more events and the severities increase. Thus,

the sizes of the clusters are correlated to the outcome. Since standard methods ([36],[29])

for analyzing clustered data usually assume that the size is non-informative, thus producing

biased estimates when the size is actually informative, it might be of interest to develop a

method that debiases the GEE-type estimators.
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In our attempt to model longitudinal random length data, we first compared the existing

approaches for the non-repeated case. We simulated data under the Barnhart paradigm

and then fitted both the model proposed by Barnhart and WCR. While the likelihood based

method performed better, as expected, the results of the estimation for WCR were unbiased.

Thus, we are confident that a method that debiases the GEE-type estimators when the cluster

size is informative based on WCR technique will produce reasonable results. Roughly, the

idea is to apply WCR to random sample a observation from each cluster, at every time. For

this T -dimensional vector, we plan to apply a GEE-type analysis and repeat the procedure

Q-times. Averaging these Q results will produce a WCR-type estimator. We plan to perform

simulation studies to explore the finite-sample behavior of this estimator and prove that for a

large number of clusters and a large number of resampling Q this estimator is asymptotically

normal.
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APPENDIX A

DERIVATION OF THE SCORE EQUATIONS AND INFORMATION

MATRIX FOR THE MODEL IN CHAPTER 3

A.1 PRELIMINARY RESULT

Consider the following p-dimensional vector of lengths, k = (k1, ..., kp). To simplify things,

we assume all components of k are non-zero. We first need to find Σ−1
k = Σk1,...,kp , for Σk as

defined in 4.5. Recall that ∂τk

∂ρ
= −k−1

k
τ 2
k and ∂τ0

∂ρ
= τ 2

0 . Furthermore, Σk can be written as

Σk = Diag

(
1

τk1

− ρ∗,
1

τk2

− ρ∗, ...,
1

τkp

− ρ∗
)

+ ρ∗epe
′
p = Ωk + ρ∗epe

′
p,

where ep is the p-dimensional vector with all entries 1 and Σk is a matrix of dimensions

p× p. Using a result from Rao [32](pg 33, eg 2.8) we can write

Σ−1
k = Ω−1

k
− ρ∗Ω−1

k epe
′
pΩ

−1
k

1 + ρ∗e′pΩ
−1
k ep

(A.1)

Since,

Ω−1
k = Diag

(
1

1/τk1 − ρ∗
,

1

1/τk2 − ρ∗
, ...,

1

1/τkp − ρ∗

)

(A.1) can be written as

Σ−1
k = Ω−1

k − ρ∗

1 + ρ∗
∑

1/ωi

∆k,

where ∆k has the form

∆k = [δij]1≤i,j≤p =

[
1

ωi

1

ωj

]

1≤i,j≤p

.
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A.2 DERIVATION OF THE SCORE EQUATIONS AND INFORMATION

MATRIX FOR ONE OBSERVATION FROM THE ONE

POPULATION MODEL

Let us consider one observation from the one population model introduced in Section 3.1.

The data are condensed into a
T∑

j=1

Kj - dimensional vector X, X
′

=
(
X

′
1, ..., X

′
T

)
and

the corresponding T - dimensional vector of random lengths K = (K1, ..., KT ). Let k =

(k1, ..., kT ) be a realization of the T -dimensional vector of lengths K. Some of the the

components of k might be zero. Let us denote by l(k) the number of non-zero components

of k. k̃ the l(k)-dimensional vector composed of the non-zero elements of k. Hence k̃ =

(kr1 , kr2 , ..., krl(k)
), where 1 ≤ r1 < r2 < ... < rl(k) ≤ T are indices corresponding to the

elements in the original vector k. We denote this set of ordered indices by r = (r1, r2, ..., rl(k)).

The parameter vector is θ = (δ, γ, µ1, ..., µT , σ2, ρ, ρ∗)
′
. Let us denote by I(θ) the infor-

mation matrix for θ contained in the one multivariate random length vector X with random

lengths K = (K1, ..., KT ). Conceptually, it makes sense to think of I(θ) as a sum of the in-

formation about θ contained in the lengths and the sum of information about θ contributed

by the vectors of severities, over all possible lengths. Using a general result from Barnhart

[4](Theorem A.3.1.1) we can compute I(θ) as:

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),

where I∗(θ) is the information matrix about θ contained in the random lengths K =

(K1, ..., KT ) and I(θ|k) is the information matrix contained in X|K = k, k ∈ Υ. We

denote

Υ =

{
k = (k1, ..., kT )|ki = 0, 1, ... for ∀i = 1, ..., T and

T∑
i=1

ki ≥ 1

}
.

Recall that after applying the appropriate transformation for the severities, we can write

the log-likelihood for one observation from the one population model described in Section 3,

log f(y,k) as

log f(y,k) = log Pθ(K1 = k1, ..., KT = kT ) + δ(k) log f(y|k).
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Provided that k has at least one non-zero component (i.e. δ(k) = 1), the conditional dis-

tribution of f(y) given k, f(y|k) is a multivariate normal. Thus, we will use a result from

McCulloch and Searle [30] who give the expressions of the score function and information ma-

trix for the general model under the multivariate normality assumption, Y ∼ MVN(µ,V)

with E(Y ) = µ and V ar(Y ) = V .

Consider a general parametrization of µ and V such that each element of µ is a function

of elements of a parameter vector β and each element of V is a function of the elements of

a d - dimensional parameter vector ϕ, unrelated to β. Thus,

µ = µ(β) and V = V(ϕ) .

It follows that the first order derivatives are

∂l

∂β
=

∂µ
′

∂β
V−1(y − µ) (A.2)

∂l

∂ϕk

= −1

2

[
tr

(
V−1 ∂V

∂ϕk

)
− (y − µ)

′
V−1 ∂V

∂ϕk

V−1(y − µ)

]
, (A.3)

for k = 1, 2, ..., d, where ϕk is the k-th element of the d - dimensional parameter vector ϕ.

Equating the expressions in A.2-A.3 to zero gives the score equations.

Furthermore, the information matrix is given by

− E




∂2l
∂β∂β

′
∂2l

∂β∂ϕ
′(

∂2l
∂β∂ϕ′

)′
∂2l

∂ϕ∂ϕ′


 =




∂µ
′

∂β
V−1 ∂µ

∂β
O

O
′ 1

2

{
tr

(
V−1 ∂V

∂ϕk
V−1 ∂V

∂ϕs

)}
1≤k,s≤d


 , (A.4)

where d is, as before, the dimension of the parameter vector ϕ.

We are going to use the above result to find the score function and information matrix

generated by the conditional density part of the log-likelihood log f(y|k), where

log f(y,k) = log Pθ(K1 = k1, ..., KT = kT ) + log f(y|k)

The conditional distribution f(y|k) given k is a multivariate normal of the typed described

above, with µ = (µ1, µ2, ..., µT , 0, ..., 0)
′
and

V = σ2


 Σk O

O
′ 1

τ0
Ik+−T


 ,
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where k+ =
T∑

i=1

ki and O is the T × (k+−T ) - dimensional matrix with all the entries equal

to 0. To keep the notation simple, we drop the indices representing the dimensions of the

matrix O. For now, let us assume that all the components of k are nonzero.

Following the notation in McCulloch and Searle [30] we have β = (µ1, µ2, ..., µT ) and ϕ =

(σ2, ρ, ρ∗), where µ = µ(β) and V = V(ϕ). It follows easily that

V−1 =
1

σ2


 Σ−1

k O

O
′

τ0Ik+−T


 .

As described in Section A.1, we have

Σk = Diag

(
1

τk1

− ρ∗,
1

τk2

− ρ∗, ...,
1

τkT

− ρ∗
)

+ ρ∗eT e
′
T = Ωk + ρ∗eT e

′
T ,

and

Σ−1
k = Ω−1

k − ρ∗

1 + ρ∗
∑

1/ωi

∆k,

where

∆k = Ω−1
k eT e

′
TΩ−1

k = [δij]1≤i,j≤T =

[
1

ωi

1

ωj

]

1≤i,j≤T

and ωi is the i-th diagonal element of the matrix Ω.

Noting that

∂

∂ρ

(
1

τki

)
=

ki − 1

ki

= 1− 1

ki

,

it follows that

∂Σk

∂ρ
= Diag

(
1− 1

k1

, ..., 1− 1

kT

)
= IT −Diag

(
1

k1

, ...,
1

kT

)

and

∂Σk

∂ρ∗
= Diag (−1, ...,−1) + eT e

′
T = eT e

′
T − IT .
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Thus, the components of ∂V
∂ϕ

are

∂V

∂σ2
=


 Σk O

O
′ 1

τ0
Ik+−T


 =

1

σ2
V

∂V

∂ρ
= σ2


 IT −Diag

(
1
k1

, ..., 1
kT

)
O

O
′ −Ik+−T




∂V

∂ρ∗
= σ2


 eT e

′
T − IT O

O
′

O


 .

As before, to keep the notation simple, we use O to denote a matrix with all the entries

equal to 0 and we drop the indices that give the dimensions of the matrix. It follows that

V−1 ∂V

∂σ2
=

1

σ2
V−1V =

1

σ2
Ik+

V−1∂V

∂ρ
= σ2V−1


 IT −Diag

(
1
k1

, ..., 1
kT

)
O

O
′ −Ik+−T




=


 Σ−1

k

(
IT −Diag

(
1
k1

, ..., 1
kT

))
O

O
′ −τ0Ik+−T




V−1 ∂V

∂ρ∗
= σ2V−1


 eT e

′
T − IT O

O
′

O


 =


 Σ−1

k (eT e
′
T − IT ) O

O
′

O




Applying (A.3) and taking into account the above expressions, we get

∂l

∂σ2
= −1

2

[
tr

(
1

σ2
Ik+

)
− 1

σ2
(y − µ)

′
V−1(y − µ)

]

∂l

∂ρ
= −1

2

[
tr

(
Σ−1

k

(
IT −Diag

(
1

k1

, ...,
1

kT

)))
− τ0tr

(
Ik+−T

)]

+
1

2σ2
(y − µ)

′


 Σ−1

k (IT −Diag
(

1
k1

, ..., 1
kT

)
)Σ−1

k O

O
′ −τ 2

0 Ik+−T


 (y − µ)

∂l

∂ρ∗
= −1

2


tr

(
Σ−1

k (eT e
′
T − IT )

)
− 1

σ2
(y − µ)

′


 Σ−1

k (eT e
′
T − IT )Σ−1

k O

O
′

O


 (y − µ)


 .
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Recalling that we separate the elements of y into z and ŷ, we may write

∂l

∂σ2
= −1

2

[
k+

σ2
− 1

σ4
(z − µ̃)

′
Σ−1

k (z − µ∗)− τ0

σ4
ŷ
′
ŷ

]
(A.5)

∂l

∂ρ
= −1

2

[
tr

(
Σ−1

k

[
IT −Diag

(
1

k1

, ...,
1

kT

)])
− τ0(k+ − T )

]

+
1

2σ2
(z − µ∗)

′
Σ−1

k

[
IT −Diag

(
1

k1

, ...,
1

kT

)]
Σ−1

k (z − µ∗)

− τ 2
0

2σ2
ŷ
′
ŷ (A.6)

∂l

∂ρ∗
= −1

2

[
tr

(
Σ−1

k (eT e
′
T − IT )

)
− 1

σ2
(z − µ∗)

′
Σ−1

k (eT e
′
T − IT )Σ−1

k (z − µ∗)
]
(A.7)

Straightforward computations lead to

∂l

∂β
=

∂µ
′

∂β
V−1(y − µ) =

[
IT O

] 1

σ2


 Σ−1

k O

O
′

τ0Ik+−T


 (y − µ)

=
1

σ2

[
Σ−1

k O
]
(y − µ) =

1

σ2

[
Σ−1

k O
]

 z − µ∗

ŷ




=
1

σ2
Σ−1

k (z − µ∗). (A.8)

Equating to zero the expressions in (A.5)-(A.7) and (A.8) gives us the score equations.

Having completed computing the score equations, we proceed to find the information matrix.

To do that, we need the two matrices in the expression of the information matrix in (A.4).

First, we compute the upper left corner matrix,

− E

[
∂2l

∂β∂β′

]
=

∂µ
′

∂β
V−1∂µ

′

∂β
=

[
IT O

] 1

σ2


 Σ−1

k O

O
′

τ0Ik+−T





 IT

O




= 1
σ2Σ

−1
k . (A.9)

Second, let us denote the matrix in the right lower corner by

Ik(ϕ) =
1

2

{
tr

(
V−1 ∂V

∂ϕt

V−1 ∂V

∂ϕs

)}

1≤t,s≤3

,
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where ϕ = (σ2, ρ, ρ∗). We will compute each element of this matrix individually.

Ik(ϕ)11 =
1

2
tr(

1

σ4
Ik+

) =
k+

2σ4
(A.10)

Ik(ϕ)12 =
1

2
tr


V−1


 IT −Diag

(
1
k1

, ..., 1
kT

)
O

O
′ −Ik+−T







=
1

2σ2

[
tr

(
Σ−1

k

(
IT −Diag

(
1

k1

, ...,
1

kT

)))
− τ0tr(Ik+−T )

]
(A.11)

Ik(ϕ)13 =
1

2
tr


V−1


 eT e

′
T − IT O

O
′

Ok+−T )





 =

1

2σ2
tr

(
Σ−1

k (eT e
′
T − IT )

)
(A.12)

Ik(ϕ)22 =
1

2
tr

(
Σ−1

k

(
IT −Diag

(
1

k1

, ...,
1

kT

))
Σ−1

k

(
IT −Diag

(
1

k1

, ...,
1

kT

)))

+
τ 2
0

2
tr(Ik+−T )) (A.13)

Ik(ϕ)23 =
1

2
tr

(
Σ−1

k

(
IT −Diag

(
1

k1

, ...,
1

kT

))
Σ−1

k (eT e
′
T − IT )

)
(A.14)

Ik(ϕ)33 =
1

2
tr

(
Σ−1

k (eT e
′
T − IT )Σ−1

k (eT e
′
T − IT )

)
. (A.15)

We assumed all the components of k to be nonzero. However, our model allows for zero-

length vectors. In this instance, there is no contribution to the mean vector µ̃ brought by

the zero-length vectors. Thus, the corresponding entries in the matrix Σ−1
k are zero and all

the above computations have to be carried out replacing k with its subvector k̃ containing

only nonzero components. The corresponding matrix Σ−1
k is actually obtained by applying

the equations above for the vector of nonzero lengths k̃ and filling in the corresponding

spots with zero so that we obtain a T × T matrix and Ik(ϕ) is actually Iek(ϕ). Thus, the

information matrix about (β,ϕ) ≡ (µ1, ..., µT , σ2, ρ, ρ∗)
′
contained in X|K = k is given by

− E




∂2l
∂β∂β′

∂2l
∂β∂ϕ′(

∂2l
∂β∂ϕ

′

)′
∂2

∂ϕ∂ϕ
′


 =




1
σ2Σ

−1
k O

O
′

Ik(σ2, ρ, ρ∗)


 . (A.16)

Since the expression of f(y|k) involves neither δ nor γ, it follows that the information about

θ = (δ, γ, µ1, ..., µT , σ2, ρ, ρ∗)
′
contributed by the vectors of severities for one subject is given
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by the expression

I(θ|k) =




O O O

O 1
σ2Σ

−1
k O

O O
′

Ik(σ2, ρ, ρ∗)


 . (A.17)

Recall that

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),

where I∗(θ) is the information matrix about θ contained in the random lengths K =

(K1, ..., KT ). We need to compute it. We have

log f(k) =
T∑

j=1

[−eδ+γµj + kj (δ + γµj)
]
.

It follows easily that

∂ log f(k)

∂δ
=

T∑
j=1

(−eδ+γµj + kj

)

∂ log f(k)

∂γ
=

T∑
j=1

(−µje
δ+γµj + kjµj

)

∂ log f(k)

∂µj

= −γeδ+γµj + γkj

and

−∂2 log f(k)

∂δ2
=

T∑
j=1

eδ+γµj =
T∑

j=1

λj

−∂2 log f(k)

∂δ∂γ
=

T∑
j=1

µje
δ+γµj =

T∑
j=1

µjλj

−∂2 log f(k)

∂δ∂µj

= γeδ+γµj = γλj

−∂2 log f(k)

∂γ2
=

T∑
j=1

µ2
je

δ+γµj =
T∑

j=1

µ2
jλj

−∂2 log f(k)

∂γ∂µj

=
T∑

j=1

(
(γµj + 1)eδ+γµj − kj

)
=

T∑
j=1

(λj(γµj + 1)− kj)

−∂2 log f(k)

∂µ2
j

= γ2eδ+γµj = γ2λj.
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Thus, the information matrix for θ contained in the random lengths for one subject has the

expression

I∗(θ) =




T∑
j=1

λj

T∑
j=1

µjλj γλ1 ... γλT 0 0 0

T∑
j=1

µjλj

T∑
j=1

µ2
jλj γµ1λ1 ... γµT λT 0 0 0

γλ1 γµ1λ1 γ2λ1 ... 0 0 0 0

... ... ... ... ... ... ... ...

γλT γµT λT 0 ... γ2λT 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




.

Recall from (A.17) that information contributed by the vectors of severities given the

lengths I(θ|k) can be computed as

I(θ|k) =




O2×2 O2×T O2×3

OT×2
1
σ2Σ

−1
k OT×3

O3×2 O3×T Ik(σ2, ρ, ρ∗)


 .

So, adding the corresponding pieces gives us

I(θ) = I∗(θ) +
∑

k∈Υ

[
T∏

j=1

e−λj
λj

kj

kj!

]
I(θ|k). (A.18)

Denoting

G =




T∑
j=1

λj

T∑
j=1

µjλj γλ1 ... γλT

T∑
j=1

µjλj

T∑
j=1

µ2
jλj γµ1λ1 ... γµT λT

γλ1 γµ1λ1 γ2λ1 ... 0

... ... ... ... ...

γλT γµT λT 0 ... γ2λT




,
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we can further write this as the block diagonal matrix

I(θ) =




I(δ, γ, µ1, ..., µT ) O(T+2)×3

O3×(T+2)

∑
k∈Υ

[
T∏

j=1

e−λj λj
kj

kj !

]
Ik(σ2, ρ, ρ∗)


 , (A.19)

where

I(δ, γ, µ1, ..., µT ) = G +




O2×2 O2×T

OT×2
1
σ2

∑
k∈Υ

[
T∏

j=1

e−λj λj
kj

kj !

]
Σ−1

k


 ,

and the elements of the matrix Ik(σ2, ρ, ρ∗) are defined (A.10)-(A.15).

A.3 DERIVATION OF THE INFORMATION MATRIX FOR THE ONE

POPULATION MODEL

Suppose now that we have n independent observations from the one population model. The

resulting information about the parameter θ from all the data can be computed as the sum

of the information contained in the n independent observations, found using (A.18). Hence,

we get

In(θ) = nI∗(θ) + n
∑

k∈Υ

[
T∏

j=1

e−λj
λj

kj

kj!

]
I(θ|k). (A.20)

Using the expression in (A.19), it easy to show that In(θ) also has a block diagonal form

In(θ) =




In(δ, γ, µ1, ..., µT ) O(T+2)×3

O3×(T+2) n
∑
k∈Υ

[
T∏

j=1

e−λj λj
kj

kj !

]
Ik(σ2, ρ, ρ∗)


 , (A.21)

where

In(δ, γ, µ1, ..., µT ) = nI(δ, γ, µ1, ..., µT ) = nG +




O2×2 O2×T

OT×2 n 1
σ2

∑
k∈Υ

[
T∏

j=1

e−λj λj
kj

kj !

]
Σ−1

k


 ,

and the elements of the matrix Ik(σ2, ρ, ρ∗) are defined by (A.10) - (A.15). As before, we

denote

116



Υ =

{
k = (k1, ...kT )| ki = 0, 1, ... for ∀i = 1, ..., T and

T∑
i=1

ki ≥ 1

}
.

A.4 DERIVATION OF THE INFORMATION MATRIX FOR THE

MULTIPLE POPULATION MODEL

Let us now consider the multiple population model introduced in Chapter 3, Section 3.2.

The parameter vector is θ = (δ, γ, µ11, ..., µ1T , ..., µm1, ..., µmT , σ2, ρ, ρ∗)
′
. Let us denote by

Ii(θ) the information matrix for θ contained in the one multivariate random length vector

Xi from population i with random lengths K = (K1, ..., KT ). This vector belongs to a one

population model with parameter vector θi = (δ, γ, µi1, ..., µiT , σ2, ρ, ρ∗)
′
. We can apply the

results from Section A.2 to find the information matrix about θi.

It follows that the information about θi = (δ, γ, µi1, ..., µiT , σ2, ρ, ρ∗)
′

contained in the

random lengths for one subject has the expression

I∗
i (θi) =




T∑
j=1

λij

T∑
j=1

µijλij γλi1 ... γλiT 0 0 0

T∑
j=1

µijλij

T∑
j=1

µ2
ijλij γµi1λi1 ... γµiT λiT 0 0 0

γλi1 γµi1λi1 γ2λi1 ... 0 0 0 0

... ... ... ... ... ... ... ...

γλiT γµiT λiT 0 ... γ2λiT 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




.

To simplify the notation, let

Gi =




T∑
t=1

λit

T∑
t=1

µitλit γλi1 ... γλiT

T∑
t=1

µitλit

T∑
t=1

µ2
itλit γµi1λi1 ... γµiT λiT

γλi1 γµi1λi1 γ2λi1 ... 0

... ... ... ... ...

γλiT γµiT λiT 0 ... γ2λiT




,
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and partition it into

Gi =


 G

(i)
11 G

(i)
12

G
(i)′
12 G

(i)
22


 , (A.22)

where G
(i)
11 is the upper left-corner 2 × 2 submatrix of Gi. Since there is no information in

these lengths about the other µ’s, the information about θ contained in the random lengths

for one subject in population i has the expression

I∗
i (θ) =




T∑
j=1

λij

T∑
j=1

µijλij 0
′
(i−1)T γλi1 ... γλiT 0

′
(m−i)T 0 0 0

T∑
j=1

µijλij

T∑
j=1

µ2
ijλij 0

′
(i−1)T γµi1λi1 ... γµiT λiT 0

′
(m−i)T 0 0 0

0(i−1)T 0(i−1)T O 0 ... 0 O 0 0 0

γλi1 γµi1λi1 0
′
(i−1)T γ2λi1 ... 0 0

′
(m−i)T 0 0 0

... ... ... ... ... ... ... ... ... ...

γλiT γµiT λiT 0
′
(i−1)T 0 ... γ2λiT 0

′
(m−i)T 0 0 0

0(m−i)T 0(m−i)T O 0 ... 0 O 0 0 0

0 0 0
′
(i−1)T 0 ... 0 0

′
(m−i)T 0 0 0

0 0 0
′
(i−1)T 0 ... 0 0

′
(m−i)T 0 0 0

0 0 0
′
(i−1)T 0 ... 0 0

′
(m−i)T 0 0 0




.

A simpler way of writing the above matrix is

I∗
i (θ) =




G
(i)
11 O2×T (i−1) G

(i)
12 O2×T (m−i) O2×3

OT (i−1)×2 OT (i−1)×T (i−1) OT (i−1)×T OT (i−1)×T (m−i) OT (i−1)×3

G
(i)′
12 OT×T (i−1) G

(i)
22 OT×T (m−i) OT×3

OT (m−i)×2 OT (m−i)×T (i−1) OT (m−i)×T OT (m−i)×T (m−i) OT (m−i)×3

O2×2 O2×T (i−1) O2×T O2×T (m−i) O2×3




.

Using (A.17), the information contributed by the vectors of severities given the lengths

Ii(θi|k) can be computed as

Ii(θi|k) =




O2×2 O2×T O2×3

OT×2
1
σ2Σ

−1
k OT×3

O3×2 O3×T Ik(σ2, ρ, ρ∗)


 .
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Similarly to the above, since θi involves only µij’s, j = 1, ..., T we may write the information

about θ contributed by the vectors of severities given the lengths Ii(θ|k) as

Ii(θ|k) =




O2×2 O2×(i−1)T O2×T O2×(m−i)T O2×3

O(i−1)T×2 O(i−1)T×(i−1)T O(i−1)T×T O(i−1)T×(m−i)T O(i−1)T×3

OT×2 OT×(i−1)T
1
σ2Σ

−1
k OT×(m−i)T OT×3

O(m−i)T×2 O(m−i)T×(i−1)T O(m−i)T×T O(m−i)T×(m−i)T O(m−i)T×3

O3×2 O3×(i−1)T O3×T O3×(m−i)T Ik(σ2, ρ, ρ∗)




.

Finally, adding all the corresponding pieces gives us the information matrix for the

multiple population model from Section 3.2,

In(θ) =
m∑

i=1

niI
∗
i (θ) +

m∑
i=1

ni

∑

k∈Υ

[
T∏

j=1

e−λij
λij

kj

kj!

]
Ii(θ|ki). (A.23)

As before, we denote

Υ =

{
k = (k1, ..., kT )| kj = 0, 1, ... for ∀j = 1, ..., T and

T∑
j=1

k ≥ 1

}
.

It can easily be shown that the information matrix In(θ) about the parameter vector θ,

θ = (δ, γ, µ11, ..., µ1T , ..., µm1, ..., µmT , σ2, ρ, ρ∗)
′
, contained in the n =

m∑
i=1

ni independent

observations from the multiple population model has a block diagonal form

In(θ) =




In(δ, γ, µ11, ..., µmT ) O(mT+2)×3

O3×(mT+2)

m∑
i=1

ni

∑
k∈Υ

[
T∏

j=1

e−λij λij
kj

kj !

]
Ik(σ2, ρ, ρ∗)


 , (A.24)

where

In(δ, γ, µ11, ..., µmT ) =
m∑

i=1

ni




G
(i)
11 O2×T (i−1) G

(i)
12 O2×T (m−i)

OT (i−1)×2 OT (i−1)×T (i−1) OT (i−1)×T OT (i−1)×T (m−i)

G
(i)′
12 OT×T (i−1) G

(i)
22 OT×T (m−i)

OT (m−i)×2 OT (m−i)×T (i−1) OT (m−i)×T OT (m−i)×T (m−i)




+




O2×2 O2×mT

OmT×2

m∑
i=1

ni

∑
k∈Υ

T∏
t=1

e−λit λit
kt

kt!
Σ−1

k


 ,

the matrices G
(i)
kl ’s (k, l = 1, 2) are given in (A.22) and the elements of the matrix Ik(σ2, ρ, ρ∗)

are defined by (A.10) - (A.15).
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APPENDIX B

MULTIVARIATE POISSON DISTRIBUTION

We present here a multivariate Poisson distribution that arises naturally as a multivariate

extension of the univariate Poisson distribution. The marginals of this multivariate Poisson

distribution are univariate Poisson. Such multivariate generalizations are not unique in the

sense that different multivariate distributions may have marginal distributions of the same

family. The generalization we employ is the one used by Karlis [20] and introduced by

Holgate [17].

Suppose that Yi are independent Poisson random variables with mean θi for , i = 0, ...,m.

Define the new random variables

X1 = Y1 + Y0

X2 = Y2 + Y0

· · ·
Xm = Ym + Y0. (B.1)

Then the random variables (X1, ..., Xm) are said to follow jointly an m-variate Poisson dis-

tribution, where m denotes the dimension of the distribution. The joint probability function

is given by

P(X) = P(X1 = x1, ..., Xm = xm)

= exp

(
−

m∑
i=0

θi

)
m∏

i=1

θxi
i

xi!

s∑
i=0

m∏
j=1

(
xj

i

)
i!




θ0
m∏

k=1

θk




i

, (B.2)
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where s = min(x1, x2, ..., xm).

We will denote this distribution MVPoisson(θ0, θ1, θ2, ..., θm). Marginally, each of the Xi’s

follows a Poisson distribution with parameter θ0 + θi. The parameter θ0 is the covariance

between all the pairs of random variables. If θ0 = 0, then the variables are independent

and the multivariate Poisson distribution reduces to the product of independent Poisson

distributions.
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APPENDIX C

DERIVATION OF THE SCORE EQUATIONS AND INFORMATION

MATRIX FOR THE MODEL IN CHAPTER 4 AND TWO TIME

MEASUREMENTS

C.1 DERIVATION OF THE INFORMATION MATRIX FOR ONE

POPULATION MODEL

Let us consider one observation from the one population model introduced in Section 4.1

for the particular case T = 2. Hence the data is condensed into a
2∑

j=1

Kj - dimensional

vector X, X
′
=

(
X

′
1, X

′
2

)
and the corresponding bi-dimensional vector of random lengths

K = (K1, K2). Let k = (k1, k2) be a realization of the bivariate vector of lengths K. Some

of the the components of k might be zero.

The parameter vector is θ = (δ, γ, λ0, µ1, µ2, σ
2, ρ

′
, ρ∗). If we denote by I(θ) the infor-

mation matrix for θ contained in the one multivariate random length vector X with random

lengths K = (K1, K2), it can be computed as a sum of the information about θ contained

in the lengths and the sum of information about θ contributed by the vectors of severities,

over all possible lengths. Using a result similar to the one in Barnhart [4](Theorem 3.3.1)

we obtain I(θ) as

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),
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where I∗(θ) is the information matrix about θ contained in the random lengths K =

(K1, K2) and I(θ|k) is the information matrix contained in X|K = k, k ∈ Υ. We de-

note

Υ =

{
k = (k1, k2)|ki = 0, 1, ... for ∀i = 1, 2 and

2∑
t=1

kt ≥ 1

}
.

Recall that after applying the appropriate transformation for the severities, we can write

the log-likelihood for one observation from the one population model described in Chapter

4, log f(y, k) as

log f(y,k) = log Pθ(K1 = k1, K2 = k2) + log f(y|k).

Provided that k has at least one non-zero component, the conditional distribution of f(y)

given k, f(y|k) is a multivariate normal. We will use the results from Appendix A to give

the expressions of the score function and information matrix for this conditional distribution.

C.1.1 Derivation of the Score Equations and Information Matrix for a Vector

of Bivariate Random Lengths from the One Population Model

The vector of random lengths K = (K1, K2) has a bivariate Poisson distribution that

arises naturally as a multivariate extension of the univariate Poisson distribution. The

the marginals are univariate Poisson random variables. The generalization we employ is the

one used by Holgate [17] and Kocherlakota and Kocherlakota [25]. We obtain the bivariate

vector of lengths K = (K1, K2) from the independent Poisson random variables Gi, with

mean λi for i = 0, 1, 2, by defining

K1 = G1 + G0

K2 = G2 + G0.

The resulting random variables (K1, K2) follow jointly a bivariate Poisson distribution. The

joint probability function is given by

f(r, s) = Pθ(K1 = r,K2 = s)

= e
−

2P
i=0

λi λr
1

r!

λs
2

s!

min(r,s)∑
i=0

(
r

i

)(
s

i

)
i!

(
λ0

λ1λ2

)i

.
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Using the reparametrization

λ∗1 = λ1 + λ0

λ∗2 = λ2 + λ0

and the recurrence relations

rf(r, s) = (λ∗1 − λ0)f(r − 1, s) + λ0f(r − 1, s− 1)

sf(r, s) = (λ∗2 − λ0)f(r, s− 1) + λ0f(r − 1, s− 1),

Kocherlakota and Kocherlakota [25] find the expression of the derivatives of the probability

function and information matrix as

∂f(r, s)

∂λ∗1
= f(r − 1, s)− f(r, s)

∂f(r, s)

∂λ∗2
= f(r, s− 1)− f(r, s)

∂f(r, s)

∂λ0

= f(r, s)− f(r − 1, s)− f(r, s− 1) + f(r − 1, s− 1),

and

I =




λ1−δ1
λ2

1
− δ1

λ1λ2
− δ2λ0

λ2
1λ2

− δ1
λ1λ2

λ2−δ1
λ2

2
− δ2λ0

λ1λ
2
2

− δ2λ0
λ2

1λ2
− δ2λ0

λ1λ
2
2

δ3
λ2

1λ
2
2




.

We denote

δ1 = λ0 [1− λ0(τ − 1)] (C.1)

δ2 = −(λ1 + λ2) +
[
λ∗1λ

∗
2 − λ2

0

]
(τ − 1) (C.2)

δ3 =
[
λ∗1λ

∗
2 − λ2

0

]
[τ − 1− (λ1 + λ2)] (C.3)

τ =
∞∑

r,s=1

f 2(r − 1, s− 1)

f(r, s)
. (C.4)
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Now, taking into consideration that

λ∗1 = λ1 + λ0 = exp(δ + γµ1) + λ0

λ∗2 = λ2 + λ0 = exp(δ + γµ2) + λ0

one can easily show that

∂λ∗1
∂µ1

=
∂λ1

∂µ1

= γλ1

∂λ∗2
∂µ2

=
∂λ2

∂µ2

= γλ2

∂λ∗i
∂δ

=
∂λi

∂δ
= λi

∂λ∗i
∂γ

=
∂λi

∂γ
= µiλi.

It follows that

∂f(r, s)

∂µ1

= γλ1 [f(r − 1, s)− f(r, s)]

∂f(r, s)

∂µ2

= γλ2 [f(r, s− 1)− f(r, s)]

∂f(r, s)

∂δ
= λ1f(r − 1, s) + λ2f(r, s− 1)− (λ1 + λ2)f(r, s)

∂f(r, s)

∂γ
= µ1λ1f(r − 1, s) + µ2λ2f(r, s− 1)− (µ1λ1 + µ2λ2)f(r, s)

∂f(r, s)

∂λ0

= f(r, s)− f(r − 1, s)− f(r, s− 1) + f(r − 1, s− 1).

Furthermore, one can show that

∂ log f(r, s)

∂λ∗1
=

f(r − 1, s)

f(r, s)
− 1

∂ log f(r, s)

∂λ∗2
=

f(r, s− 1)

f(r, s)
− 1

∂ log f(r, s)

∂λ0

=
f(r, s)− f(r − 1, s)− f(r, s− 1) + f(r − 1, s− 1)

f(r, s)
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and

∂ log f(r, s)

∂µ1

= γλ1

[
f(r − 1, s)

f(r, s)
− 1

]
= γλ1

∂ log f(r, s)

∂λ∗1
∂ log f(r, s)

∂µ2

= γλ2

[
f(r, s− 1)

f(r, s)
− 1

]
= γλ2

∂ log f(r, s)

∂λ∗2
∂ log f(r, s)

∂δ
= λ1

f(r − 1, s)

f(r, s)
+ λ2

f(r, s− 1)

f(r, s)
− (λ1 + λ2)

= λ1
∂ log f(r, s)

∂λ∗1
+ λ2

∂ log f(r, s)

∂λ∗2
∂ log f(r, s)

∂γ
= µ1λ1

f(r − 1, s)

f(r, s)
+ µ2λ2

f(r, s− 1)

f(r, s)
− (µ1λ1 + µ2λ2)

= µ1λ1
∂ log f(r, s)

∂λ∗1
+ µ2λ2

∂ log f(r, s)

∂λ∗2
∂ log f(r, s)

∂λ0

=
f(r, s)− f(r − 1, s)− f(r, s− 1) + f(r − 1, s− 1)

f(r, s)
.

We can write the score equations for the vector of lengths belonging to one observation from

the one population model with two time points as

∂ log f(r, s)

∂µ1

= γλ1

[
f(r − 1, s)

f(r, s)
− 1

]
= 0 (C.5)

∂ log f(r, s)

∂µ2

= γλ2

[
f(r, s− 1)

f(r, s)
− 1

]
= 0 (C.6)

∂ log f(r, s)

∂δ
= λ1

f(r − 1, s)

f(r, s)
+ λ2

f(r, s− 1)

f(r, s)
− (λ1 + λ2) = 0 (C.7)

∂ log f(r, s)

∂γ
= µ1λ1

f(r − 1, s)

f(r, s)
+ µ2λ2

f(r, s− 1)

f(r, s)
− (µ1λ1 + µ2λ2) = 0 (C.8)

∂ log f(r, s)

∂λ0

=
f(r, s)− f(r − 1, s)− f(r, s− 1) + f(r − 1, s− 1)

f(r, s)
= 0. (C.9)

We can now proceed to find the expression of the information matrix about the parameter
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vector θ1 = (δ, γ, λ0, µ1, µ2). Simple use of the formulas above gives

E

[
∂ log f(r, s)

∂µ1

]2

= (γλ1)
2E

[
∂ log f(r, s)

∂λ∗1

]2

= γ2(λ1 − δ1)

E

[
∂ log f(r, s)

∂µ2

]2

= (γλ2)
2E

[
∂ log f(r, s)

∂λ∗2

]2

= γ2(λ2 − δ1)

E

[
∂ log f(r, s)

∂µ1

∂ log f(r, s)

∂µ2

]
= γ2λ1λ2E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)

∂λ∗2

]
= −γ2δ1

E

[
∂ log f(r, s)

∂µ1

∂ log f(r, s)

∂λ0

]
= γλ1E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)

∂λ0

]
= −γδ2λ0

λ1λ2

E

[
∂ log f(r, s)

∂µ2

∂ log f(r, s)

∂λ0

]
= γλ2E

[
∂ log f(r, s)

∂λ∗2

∂ log f(r, s)

∂λ0

]
= −γδ2λ0

λ1λ2

.

Observing that

∂ log f(r, s)

∂µ1

∂ log f(r, s)

∂δ
= γλ1

[
f(r − 1, s)

f(r, s)
− 1

] [
λ1

(
f(r − 1, s)

f(r, s)
− 1

)
+ λ2

(
f(r, s− 1)

f(r, s)
− 1

)]
,

we get

E

[
∂ log f(r, s)

∂µ1

∂ log f(r, s)

∂δ

]
= γλ2

1E

[
∂ log f(r, s)

∂λ∗1

]2

+ γλ1λ2E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)

∂λ∗2

]

= γλ2
1

λ1 − δ1

λ2
1

+ γλ1λ2
−δ1

λ1λ2

= γ(λ1 − 2δ1).

Similarly, we obtain

E

[
∂ log f(r, s)

∂µ2

∂ log f(r, s)

∂δ

]
= γ(λ2 − 2δ1).

Applying similar computation we have that

E

[
∂ log f(r, s)

∂δ

∂ log f(r, s)
∂λ0

]
= λ1E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)
∂λ0

]
+ λ2E

[
∂ log f(r, s)

∂λ∗2

∂ log f(r, s)
∂λ0

]

= λ1
−δ2λ0

λ2
1λ2

+ λ2
−δ2λ0

λ1λ2
2

= −2δ2λ0

λ1λ2

E

[
∂ log f(r, s)

∂γ

∂ log f(r, s)
∂λ0

]
= µ1λ1E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)
∂λ0

]
+ µ2λ2E

[
∂ log f(r, s)

∂λ∗2

∂ log f(r, s)
∂λ0

]

= µ1λ1
−δ2λ0

λ2
1λ2

+ µ2λ2
−δ2λ0

λ1λ2
2

= −δ2λ0(µ1 + µ2)
λ1λ2
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and

E

[
∂ log f(r, s)

∂δ

]2

= λ2
1E

[
∂ log f(r, s)

∂λ∗1

]2

+ λ2
2E

[
∂ log f(r, s)

∂λ∗2

]2

+ 2λ1λ2E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)

∂λ∗2

]

= λ2
1

λ1 − δ1

λ2
1

+ λ2
2

λ2 − δ1

λ2
2

+ 2λ1λ2
−δ1

λ1λ2

= λ1 + λ2 − 4δ1

E

[
∂ log f(r, s)

∂γ

]2

= (µ1λ1)
2E

[
∂ log f(r, s)

∂λ∗1

]2

+ (µ2λ2)
2E

[
∂ log f(r, s)

∂λ∗2

]2

+2µ1λ1µ2λ2E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)

∂λ∗2

]

= µ2
1λ

2
1

λ1 − δ1

λ2
1

+ µ2
2λ

2
2

λ2 − δ1

λ2
2

+ 2µ1λ1µ2λ2
−δ1

λ1λ2

= µ2
1λ1 + µ2

2λ2 − δ1(µ1 + µ2)
2.

Furthermore,

E

[
∂ log f(r, s)

∂µ1

∂ log f(r, s)

∂γ

]
= γµ1λ

2
1E

[
∂ log f(r, s)

∂λ∗1

]2

+ γλ1µ2λ2E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)

∂λ∗2

]

= γµ1λ
2
1

λ1 − δ1

λ2
1

+ γλ1µ2λ2
−δ1

λ1λ2

= γµ1λ1 − γδ1(µ1 + µ2)

and similarly,

E

[
∂ log f(r, s)

∂µ2

∂ log f(r, s)

∂γ

]
= γµ2λ2 − γδ1(µ1 + µ2).

Finally,

E

[
∂ log f(r, s)

∂δ

∂ log f(r, s)

∂γ

]
= µ1λ

2
1E

[
∂ log f(r, s)

∂λ∗1

]2

+ µ2λ
2
2E

[
∂ log f(r, s)

∂λ∗2

]2

+λ1λ2(µ1 + µ2)E

[
∂ log f(r, s)

∂λ∗1

∂ log f(r, s)

∂λ∗2

]

= µ1λ
2
1

λ1 − δ1

λ2
1

+ µ2λ
2
2

λ2 − δ1

λ2
2

+ 2λ1λ2(µ1 + µ2)
−δ1

λ1λ2

= µ1λ1 + µ2λ2 − 2δ1(µ1 + µ2).
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We put together the pieces above and find that the expression of the information matrix

about θ1 = (δ, γ, λ0, µ1, µ2) is given by

I∗(θ1) =




λ1 + λ2 − 4δ1

2∑
i=1

µi(λi − 2δ1) − 2δ2λ0
λ1λ2

γ(λ1 − 2δ1) γ(λ2 − 2δ1)

2∑
i=1

µi(λi − 2δ1)
2∑

i=1

µ2
i λi − δ1(

2∑
i=1

µi)2 −
δ2λ0

2P
i=1

µi

λ1λ2
γ(µ1λ1 − δ1

2∑
i=1

µi) γ(µ2λ2 − δ1

2∑
i=1

µi)

− 2δ2λ0
λ1λ2

− δ2λ0(µ1+µ2)
λ1λ2

δ3
λ2

1λ2
2

−γδ2λ0
λ1λ2

−γδ2λ0
λ1λ2

γ(λ1 − 2δ1) γ(µ1λ1 − δ1

2∑
i=1

µi) −γδ2λ0
λ1λ2

γ2(λ1 − δ1) −γ2δ1

γ(λ2 − 2δ1) γ(µ2λ2 − δ1

2∑
i=1

µi) −γδ2λ0
λ1λ2

−γ2δ1 γ2(λ2 − δ1)




.

It follows easily that the information about θ = (δ, γ, λ0, µ1, µ2, σ
2, ρ, ρ∗)

′
contributed by the

bivariate vector of random lengths is given by

I∗(θ) =




I∗(θ1) 05 05 05

0
′
5 0 0

0
′
5 0 0

0
′
5 0 0




. (C.10)

C.1.2 Derivation of the Score Equations and Information Matrix for the Vector

of Severities Given the Bivariate Vector of Random Lengths from the

One Population Model

Provided that k has at least one non-zero component, the conditional distribution of f(y)

given k, f(y|k) is a multivariate normal. We will use the results from Appendix A to give

the expressions of the score function and information matrix for this conditional distribution.

Following the notations in Appendix A, we have β = (µ1, µ2) , ϕ = (σ2, ρ, ρ∗) and

∂l

∂σ2
= −1

2

[
k+

σ2
− 1

σ4
(z − µ̃)

′
Σ−1

k (z − µ∗)− τ0

σ4
ŷ
′
ŷ

]
(C.11)

∂l

∂ρ
= −1

2

[
tr

(
Σ−1

k

[
IT −Diag

(
1

k1

, ...,
1

kT

)])
− τ0(k+ − T )

]

+
1

2σ2
(z − µ∗)

′
Σ−1

k

[
IT −Diag

(
1

k1

, ...,
1

kT

)]
Σ−1

k (z − µ∗)

− τ 2
0

2σ2
ŷ
′
ŷ (C.12)

∂l

∂ρ∗
= −1

2

[
tr

(
Σ−1

k (eT e
′
T − IT )

)
− 1

σ2
(z − µ∗)

′
Σ−1

k (eT e
′
T − IT )Σ−1

k (z − µ∗)
]

,(C.13)
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where z is the vector obtained with the first entries in the transformed data corresponding

to first and second time measurements and ŷ contains the rest of the transformed data. As

is Appendix A, we denote

k+ =
2∑

t=1

kt. (C.14)

Furthermore,

∂l

∂β
=

1

σ2
Σ−1

k (z − µ∗). (C.15)

Equating to zero the expressions in (C.11) - (C.13) and (C.15) gives us the score equations.

The information matrix about (β, ϕ) = (µ1, µ2, σ
2, ρ, ρ∗)

′
contained in X|K = k is given by

− E




∂2l
∂β∂β′

∂2l
∂β∂ϕ′(

∂2l
∂β∂ϕ

′

)′
∂2

∂ϕ∂ϕ
′


 =




1
σ2Σ

−1
k O

O
′

Ik(σ2, ρ, ρ∗)


 , (C.16)

where the elements of Ik(σ2, ρ, ρ∗) are given by (A.10) - (A.15) and one needs to account

for the possibility of observing zero-length vectors. Since the expression of f(y|k) does

not involve any of the parameters δ , γ and λ0, it follows that the information about θ =

(δ, γ, λ0, µ1, µ2, σ
2, ρ

′
, ρ∗ contributed by the the vectors of severities for one subject is given

by the expression

I(θ|k) =




O3×3 O3×2 O3×3

O2×3
1
σ2Σ

−1
k O2×3

O3×3 O3×2 Ik(σ2, ρ, ρ∗)


 . (C.17)

Recall that

I(θ) = I∗(θ) +
∑

k∈Υ

Pθ(K = k)I(θ|k),

where I∗(θ) is the information matrix about θ contained in the bivariate vector of ran-

dom lengths K = (K1, K2) and Υ = {(k1, k2)| k1, k2 = 0, 1, ..., k1 + k2 > 0}. Adding the

corresponding pieces gives us

I(θ) = I∗(θ) +
∑

k∈Υ


e

−
2P

i=0
λi λk1

1

k1!

λk2
2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λ1λ2

)i

 I(θ|k). (C.18)
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Denoting

H =




λ1 + λ2 − 4δ1

2∑
i=1

µi(λi − 2δ1) − 2δ2λ0
λ1λ2

γ(λ1 − 2δ1) γ(λ2 − 2δ1)

2∑
i=1

µi(λi − 2δ1)
2∑

i=1

µ2
i λi − δ1(

2∑
i=1

µi)2 − δ2λ0(µ1+µ2)
λ1λ2

γ(µ1λ1 − δ1

2∑
i=1

µi) γ(µ2λ2 − δ1

2∑
i=1

µi)

− 2δ2λ0
λ1λ2

− δ2λ0(µ1+µ2)
λ1λ2

δ3
λ2

1λ2
2

−γδ2λ0
λ1λ2

−γδ2λ0
λ1λ2

γ(λ1 − 2δ1) γ(µ1λ1 − δ1

2∑
i=1

µi) −γδ2λ0
λ1λ2

γ2(λ1 − δ1) −γ2δ1

γ(λ2 − 2δ1) γ(µ2λ2 − δ1

2∑
i=1

µi) −γδ2λ0
λ1λ2

−γ2δ1 γ2(λ2 − δ1)




,

we can further write this as the block diagonal matrix

I(θ) =




I(δ, γ, λ0, µ1, µ2) O5×3

O3×5

∑
k∈Υ


e

−
2P

i=0
λi λ

k1
1

k1!
λ

k2
2

k2!

min(k1,k2)∑
i=0

(
k1
i

)(
k2
i

)
i!

(
λ0

λ1λ2

)i


 Ik(σ2, ρ, , ρ∗)


(C.19)

where

I(δ, γ, λ0, µ1, µ2) = H +




O3×3 O3×2

O2×3
1

σ2

∑
k∈Υ


e

−
2P

i=0
λi λ

k1
1

k1!
λ

k2
2

k2!

min(k1,k2)∑
i=0

(
k1
i

)(
k2
i

)
i!

(
λ0

λ1λ2

)i


Σ−1

k


 ,

and the elements of the matrix Ik(σ2, ρ, ρ∗) are defined by (A.10) - (A.15).

C.1.3 Derivation of the Information Matrix for the One Population Model

Suppose now that we have n independent observations from the one population model. The

resulting information about the parameter θ from all the data can be computed as the sum

of the information contained in the n independent observations, found using (C.18). Hence,

we get

In(θ) = nI∗(θ) + n
∑

k∈Υ


e

−
2P

i=0
λi λk1

1

k1!

λk2
2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λ1λ2

)i

 I(θ|k). (C.20)

Using the expression in (C.19), it easy to show that In(θ) also has a block diagonal form

In(θ) =




In(δ, γ, λ0, µ1, µ2) O5×3

O3×5 n
∑

k∈Υ


e

−
2P

i=0
λi λ

k1
1

k1!
λ

k2
2

k2!

min(k1,k2)∑
i=0

(
k1
i

)(
k2
i

)
i!

(
λ0

λ1λ2

)i


 Ik(σ2, ρ, ρ∗)


(C.21)
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where

In(δ, γ, λ0, µ1, µ2) = nI(δ, γ, λ0, µ1, µ2)

= nH +




O3×3 O3×2

O2×3 n 1
σ2

∑
k∈Υ

[
e
−

2P
i=0

λi λ
k1
1

k1!

λ
k2
2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λ1λ2

)i
]

Σ−1
k


 ,

and the elements of the matrix Ik(σ2, ρ) are defined by (A.10) - (A.15). As before, we denote

Υ =

{
k = (k1, k2)| ki = 0, 1, ... for ∀i = 1, 2 and

2∑
i=1

ki ≥ 1

}
.

C.2 DERIVATION OF THE INFORMATION MATRIX FOR THE

MULTIPLE POPULATION MODEL

Let us now consider the multiple population model introduced in Chapter 4, Section 4.2.

The parameter vector is θ = (δ, γ, λ0, µ11, µ12, ..., µm1, µm2, σ
2, ρ, ρ∗)

′
. We denote by Ii(θ)

the information matrix for θ contained in the one multivariate random length vector Xij

from population i with random lengths K = (Kij1, Kij2). This vector belongs to a one

population model with parameter vector θi = (δ, γ, λ0, µi1, µi2, σ
2, ρ, ρ∗)

′
. We can apply the

results from the previous section to find the information matrix about θi contributed by

this one observation from the multiple population model. The random variables (Kij1, Kij2)

follow jointly a bivariate Poisson distribution and the joint probability function is given by

fi(r, s) = Pθ(Kij1 = r,Kij2 = s)

= e
−λ0−

2P
t=1

λit λr
i1

r!

λs
i2

s!

min(r,s)∑
i=0

(
r

i

)(
s

i

)
i!

(
λ0

λi1λi2

)i

.

We denote

δi1 = λ0 [1− λ0(τi − 1)] (C.22)

δi2 = −(λi1 + λi2) +
[
λ∗i1λ

∗
i2 − λ2

0

]
(τi − 1) (C.23)

δi3 =
[
λ∗i1λ

∗
i2 − λ2

0

]
[τ1 − (λi1 + λi2)] (C.24)

τi =
∞∑

r,s=1

f 2
i (r − 1, s− 1)

fi(r, s)
, (C.25)
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where

λ∗i1 = λi1 + λ0

λ∗i2 = λi2 + λ0.

It follows that the information about θi = (δ, γ, λ0, µi1, µi2, σ
2, ρ, ρ∗)

′
contained in the random

lengths for one subject has the expression

I∗
i (θi) =


 Hi O5×2

O2×5 O2×2


 ,

where we define the matrix Hi as

Hi =




λi1 + λi2 − 4δi1

2P
t=1

µit(λit − 2δi1) − 2δi2λ0
λi1λi2

γ(λi1 − 2δi1) γ(λi2 − 2δi1)

2P
t=1

µit(λit − 2δi1)
2P

t=1
µ2

itλit − δi1(
2P

t=1
µit)

2 −
δi2λ0

2P
t=1

µit

λi1λi2
γ(µi1λi1 − δi1

2P
t=1

µit) γ(µi2λi2 − δi1

2P
t=1

µit)

− 2δi2λ0
λi1λi2

− δi2λ0(µi1+µi2)
λi1λi2

δi3
λ2

i1λ2
i2

− γδi2λ0
λi1λi2

− γδi2λ0
λi1λi2

γ(λi1 − 2δi1) γ(µi1λi1 − δi1

2P
t=1

µit) − γδi2λ0
λi1λi2

γ2(λi1 − δi1) −γ2δi1

γ(λi2 − 2δi1) γ(µi2λi2 − δi1

2P
t=1

µit) − γδi2λ0
λi1λi2

−γ2δi1 γ2(λi2 − δi1)




.

To simplify the notations, we partition the matrix Hi into

Hi =


 H

(i)
11 H

(i)
12

H
(i)′
12 H

(i)
22


 , (C.26)

where H
(i)
11 is the upper left-corner 3 × 3 submatrix of Hi. Since there is no information in

the random lengths about the other µi′ t’s, where i′ 6= i, the information about θ contained

in the random lengths for one subject in population i has the expression

I∗
i (θ) =




H
(i)
11 O3×2(i−1) H

(i)
12 O3×2(m−i) O3×3

O2(i−1)×3 O2(i−1)×2(i−1) O2(i−1)×2 O2(i−1)×2(m−i) O2(i−1)×3

H
(i)′
12 O2×2(i−1) H

(i)
22 O2×2(m−i) O2×3

O2(m−i)×3 O2(m−i)×2(i−1) O2(m−i)×2 O2(m−i)×2(m−i) O2(m−i)×3

O3×3 O3×2(i−1) O3×2 O3×2(m−i) O3×3




.
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Using (C.17), the information contributed by the vectors of severities given the lengths

Ii(θi|k) can be computed as

Ii(θi|k) =




O3×3 O3×2 O3×3

O2×3
1
σ2Σ

−1
k O2×3

O3×3 O3×2 Ik(σ2, ρ, ρ∗)


 .

Similarly to the above, since θi involves only µit’s, t = 1, 2, we may write the information

about θ contributed by the vectors of severities given the lengths Ii(θ|k) as

Ii(θ|k) =




O3×3 O3×2(i−1) O3×2 O3×2(m−i) O3×3

O2(i−1)×3 O2(i−1)×2(i−1) O2(i−1)×2 O2(i−1)×2(m−i) O2(i−1)×3

O3×2 O2×2(i−1)
1
σ2Σ

−1
k O2×2(m−i) O2×3

O2(m−i)×2 O2(m−i)×2(i−1) O2(m−i)×2 O2(m−i)×2(m−i) O2(m−i)×3

O3×2 O3×2(i−1) O3×2 O3×2(m−i) Ik(σ2, ρ, , ρ∗)




.

Finally, adding all the corresponding pieces gives us the information matrix for the multiple

population model from Section 4.2

In(θ) =
m∑

i=1

niI
∗
i (θ) +

m∑

i=1

ni

∑

k∈Υ


e

−λ0−
2P

t=1
λit λk1

i1

k1!
λk2

i2

k2!

min(k1,k2)∑

i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λi1λi2

)i

 Ii(θ|ki).

The summation above is over all the elements of the set

Υ =

{
k = (k1, k2)| kj = 0, 1, ... for ∀j = 1, 2 and

2∑
t=1

kt ≥ 1

}
.

It can easily be shown that the information matrix In(θ) about the parameter vector θ, θ =

(δ, γ, λ0, µ11, µ12, ..., µm1, µm2, σ
2, ρ, ρ∗)

′
, contained in the n =

m∑
i=1

ni independent observations

from the multiple population model with T = 2 has a block diagonal form

In(θ) =




In(δ, γ, λ0, µ11, ..., µm2) O(2m+3)×3

O3×(2m+3)

m∑
i=1

ni

∑
k∈Υ

fi(k1, k2)Ik(σ2, ρ, ρ∗)


 , (C.27)

where

fi(k1, k2) = e
−λ0−

2P
t=1

λit λk1
i1

k1!

λk2
i2

k2!

min(k1,k2)∑
i=0

(
k1

i

)(
k2

i

)
i!

(
λ0

λi1λi2

)i

,
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In(δ, γ, λ0, µ11, ..., µm2) =
m∑

i=1

ni




H
(i)
11 O3×2(i−1) H

(i)
12 O3×2(m−i)

O2(i−1)×3 O2(i−1)×2(i−1) O2(i−1)×2 O2(i−1)×2(m−i)

H
(i)′
12 O2×2(i−1) H

(i)
22 O2×2(m−i)

O2(m−i)×3 O2(m−i)×2(i−1) O2(m−i)×2 O2(m−i)×2(m−i)




+




O3×3 O3×2m

O2m×3

m∑
i=1

ni

∑
k∈Υ

fi(k1, k2)Σ
−1
k


 ,

the matrices H
(i)
kl ’s (k, l = 1, 2) are given in (C.26) and the elements of the matrix Ik(σ2, ρ, ρ∗)

are defined by (A.10) - (A.15).
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APPENDIX D

RESULTS OF THE SIMULATIONS WHEN T = 2 FOR THE MODELS IN

CHAPTER 3 (MODEL 1) AND CHAPTER 4 (MODEL 2)

Table 24: Simulation results for the first choice of parameters, T = 2, n = 20

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1 1.1 1.5 1.6 -1.3 2.3 1 0.5 0.2 1
λ = eδ+γµ 2.72 3.42 8.58 10.80
Model 1
average 0.996 1.095 1.5 1.6 -2.564 3.22 0.966 0.478 0.172
bias -0.004 -0.005 0 0 -1.264 0.92 -0.034 -0.022 -0.028
sd 0.174 0.145 0.127 0.152 11.829 8.579 0.101 0.057 0.095
mse1/2 0.174 0.145 0.127 0.152 11.896 8.628 0.107 0.061 0.099

I
−1/2
n (θ) 0.168 0.142 0.126 0.15 1.267 0.934 0.106 0.055 0.093

Model 2
average 1.005 1.099 1.5 1.595 -1.998 2.831 0.985 0.485 0.185 0.559
bias 0.005 -0.001 0 -0.005 -0.698 0.531 -0.015 -0.015 -0.015 -0.441
sd 0.167 0.142 0.14 0.161 4.064 3.027 0.221 0.057 0.092 4.577
mse1/2 0.167 0.142 0.14 0.161 4.124 3.073 0.221 0.059 0.093 4.598

I
−1/2
n (θ) 0.162 0.137 0.125 0.149 1.251 0.924 0.102 0.053 0.089 0.923
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Table 25: Simulation results for the first choice of parameters, T = 2, n = 50

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1 1.1 1.5 1.6 -1.3 2.3 1 0.5 0.2 1
λ = eδ+γµ 2.72 3.42 8.58 10.80
Model 1
average 0.997 1.097 1.5 1.599 -1.55 2.486 0.981 0.489 0.188
bias -0.003 -0.003 0 -0.001 -0.25 0.186 -0.019 -0.011 -0.012
sd 0.108 0.093 0.08 0.094 1.161 0.852 0.066 0.035 0.057
mse1/2 0.108 0.093 0.08 0.094 1.187 0.872 0.068 0.037 0.058

I
−1/2
n (θ) 0.106 0.09 0.08 0.095 0.801 0.591 0.067 0.035 0.059

Model 2
average 0.993 1.096 1.499 1.599 -1.563 2.5 0.987 0.493 0.191 1.01
bias -0.007 -0.004 -0.001 -0.001 -0.263 0.2 -0.013 -0.007 -0.009 0.01
sd 0.104 0.087 0.083 0.098 1.227 0.913 0.064 0.033 0.057 0.511
mse1/2 0.104 0.087 0.083 0.098 1.255 0.934 0.066 0.034 0.058 0.511

I
−1/2
n (θ) 0.102 0.087 0.079 0.094 0.791 0.585 0.065 0.033 0.056 0.497

Table 26: Simulation results for the first choice of parameters, T = 2, n = 100

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1 1.1 1.5 1.6 -1.3 2.3 1 0.5 0.2 1
λ = eδ+γµ 2.72 3.42 8.58 10.80
Model 1
average 1 1.099 1.498 1.598 -1.428 2.396 0.983 0.492 0.192
bias 0 -0.001 -0.002 -0.002 -0.128 0.096 -0.017 -0.008 -0.008
sd 0.077 0.066 0.055 0.065 0.687 0.503 0.046 0.024 0.04
mse1/2 0.077 0.066 0.055 0.065 0.699 0.512 0.049 0.025 0.041

I
−1/2
n (θ) 0.075 0.063 0.056 0.067 0.566 0.418 0.047 0.025 0.042

Model 2
average 1.004 1.105 1.502 1.602 -1.445 2.402 0.992 0.496 0.195 0.997
bias 0.004 0.005 0.002 0.002 -0.145 0.102 -0.008 -0.004 -0.005 -0.003
sd 0.075 0.062 0.056 0.068 0.722 0.515 0.045 0.023 0.04 0.375
mse1/2 0.075 0.063 0.056 0.068 0.736 0.525 0.046 0.024 0.04 0.375

I
−1/2
n (θ) 0.072 0.061 0.056 0.067 0.559 0.413 0.046 0.024 0.040 0.372

137



Table 27: Simulation results for the second choice of parameters, T = 2, n = 20

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1.3 1.2 1.2 1.3 -1.0 2.5 1 0.5 0.2 1
λ = eδ+γµ 4.48 5.475 5.75 4.48
Model 1
average 1.303 1.195 1.197 1.298 1.323 0.63 0.981 0.487 0.195
bias 0.003 -0.005 -0.003 -0.002 2.323 -1.87 -0.019 -0.013 -0.005
sd 0.13 0.127 0.132 0.13 15.556 12.572 0.099 0.051 0.085
mse1/2 0.13 0.128 0.132 0.13 15.728 12.711 0.101 0.052 0.085

I
−1/2
n (θ) 0.12 0.122 0.122 0.12 4.363 3.48 0.098 0.05 0.085

Model 2
average 1.293 1.201 1.2 1.302 1.196 0.728 0.983 0.488 0.194 0.817
bias -0.007 0.001 0 0.002 2.196 -1.772 -0.017 -0.012 -0.006 -0.183
sd 0.131 0.144 0.142 0.139 10.604 8.499 0.095 0.049 0.084 1.912
mse1/2 0.131 0.144 0.142 0.139 10.829 8.682 0.096 0.05 0.084 1.921

I
−1/2
n (θ) 0.119 0.122 0.122 0.119 4.315 3.443 0.097 0.049 0.084 1.245

Table 28: Simulation results for the second choice of parameters, T = 2, n = 50

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1.3 1.2 1.2 1.3 -1.0 2.5 1 0.5 0.2 1
λ = eδ+γµ 4.48 5.475 5.75 4.48
Model 1
average 1.299 1.199 1.199 1.298 0.602 1.203 0.991 0.494 0.197
bias -0.001 -0.001 -0.001 -0.002 1.602 -1.297 -0.009 -0.006 -0.003
sd 0.082 0.081 0.079 0.077 13.972 11.372 0.062 0.033 0.054
mse1/2 0.082 0.081 0.079 0.077 14.064 11.446 0.063 0.033 0.054

I
−1/2
n (θ) 0.076 0.077 0.077 0.076 2.759 2.201 0.062 0.032 0.054

Model 2
average 1.301 1.198 1.2 1.303 -0.571 2.141 0.993 0.494 0.2 0.908
bias 0.001 -0.002 0 0.003 0.429 -0.359 -0.007 -0.006 0 -0.092
sd 0.081 0.084 0.082 0.082 10.87 8.779 0.061 0.031 0.052 1.158
mse1/2 0.081 0.084 0.082 0.082 10.879 8.786 0.062 0.032 0.052 1.162

I
−1/2
n (θ) 0.076 0.077 0.077 0.076 2.729 2.177 0.061 0.031 0.053 1.023
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Table 29: Simulation results for the second choice of parameters, T = 2, n = 100

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1.3 1.2 1.2 1.3 -1.0 2.5 1 0.5 0.2 1
λ = eδ+γµ 4.48 5.475 5.75 4.48
Model 1
average 1.299 1.201 1.201 1.299 -1.272 2.715 0.996 0.498 0.198
bias -0.001 0.001 0.001 -0.001 -0.272 0.215 -0.004 -0.002 -0.002
sd 0.054 0.057 0.056 0.054 10.427 8.33 0.044 0.022 0.039
mse1/2 0.054 0.057 0.056 0.054 10.431 8.333 0.045 0.022 0.039

I
−1/2
n (θ) 0.054 0.055 0.055 0.054 1.951 1.556 0.044 0.022 0.038

Model 2
average 1.298 1.199 1.199 1.297 -1.695 3.059 0.996 0.498 0.199 0.936
bias -0.002 -0.001 -0.001 -0.003 -0.695 0.559 -0.004 -0.002 -0.001 -0.064
sd 0.056 0.056 0.056 0.056 8.124 6.514 0.043 0.022 0.038 0.763
mse1/2 0.056 0.056 0.056 0.056 8.154 6.538 0.044 0.022 0.038 0.766

I
−1/2
n (θ) 0.053 0.054 0.054 0.053 1.930 1.540 0.043 0.022 0.037 0.742

Table 30: Simulation results for the Third choice of parameters, T = 2, n = 20

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1 2 1.5 2.5 2.5 0.01 1 0.5 0.2 1
λ = eδ+γµ 12.30 12.43 12.37 12.49
Model 1
average 0.996 1.996 1.503 2.498 2.502 0.008 0.97 0.481 0.192
bias -0.004 -0.004 0.003 -0.002 0.002 -0.002 -0.03 -0.019 -0.008
sd 0.171 0.168 0.168 0.163 0.108 0.059 0.091 0.048 0.08
mse1/2 0.171 0.168 0.168 0.163 0.108 0.059 0.096 0.052 0.08

I
−1/2
n (θ) 0.165 0.165 0.165 0.165 0.105 0.057 0.094 0.048 0.081

Model 2
average 0.994 2.004 1.51 2.506 2.462 0.018 0.97 0.48 0.19 0.986
bias -0.006 0.004 0.01 0.006 -0.038 0.008 -0.03 -0.02 -0.01 -0.014
sd 0.17 0.163 0.165 0.163 0.223 0.065 0.088 0.047 0.08 2.312
mse1/2 0.171 0.163 0.166 0.164 0.226 0.065 0.093 0.051 0.08 2.312

I
−1/2
n (θ) 0.164 0.164 0.164 0.164 0.107 0.058 0.089 0.047 0.081 2.297
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Table 31: Simulation results for the third choice of parameters, T = 2, n = 50

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1 2 1.5 2.5 2.5 0.01 1 0.5 0.2 1
λ = eδ+γµ 12.30 12.43 12.37 12.49
Model 1
average 1.003 2 1.499 2.504 2.501 0.009 0.985 0.492 0.194
bias 0.003 0 -0.001 0.004 0.001 -0.001 -0.015 -0.008 -0.006
sd 0.103 0.106 0.105 0.107 0.07 0.038 0.056 0.029 0.051
mse1/2 0.104 0.106 0.105 0.107 0.07 0.038 0.057 0.03 0.051

I
−1/2
n (θ) 0.104 0.104 0.104 0.104 0.066 0.036 0.059 0.03 0.051

Model 2
average 0.998 1.997 1.493 2.491 2.494 0.008 0.989 0.493 0.197 1.053
bias -0.002 -0.003 -0.007 -0.009 -0.006 -0.002 -0.011 -0.007 -0.003 0.053
sd 0.102 0.105 0.102 0.105 0.133 0.039 0.061 0.031 0.05 1.326
smse 0.102 0.105 0.103 0.106 0.133 0.039 0.062 0.032 0.05 1.327

I
−1/2
n (θ) 0.104 0.104 0.104 0.104 0.067 0.036 0.059 0.030 0.051 1.287

Table 32: Simulation results for the third choice of parameters, T = 2, n = 100

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 1 2 1.5 2.5 2.5 0.01 1 0.5 0.2 1
λ = eδ+γµ 12.30 12.43 12.37 12.49
Model 1
average 0.998 1.999 1.498 2.499 2.503 0.008 0.994 0.496 0.198
bias -0.002 -0.001 -0.002 -0.001 0.003 -0.002 -0.006 -0.004 -0.002
sd 0.074 0.072 0.071 0.073 0.048 0.026 0.043 0.022 0.036
mse1/2 0.074 0.072 0.071 0.073 0.049 0.026 0.043 0.022 0.036

I
−1/2
n (θ) 0.074 0.074 0.074 0.074 0.047 0.025 0.042 0.021 0.036

Model 2
average 1.005 2.001 1.501 2.5 2.494 0.012 0.994 0.496 0.199 1.006
bias 0.005 0.001 0.001 0 -0.006 0.002 -0.006 -0.004 -0.001 0.006
sd 0.071 0.074 0.075 0.076 0.091 0.026 0.043 0.022 0.038 0.935
mse1/2 0.071 0.074 0.075 0.076 0.092 0.026 0.043 0.022 0.038 0.935

I
−1/2
n (θ) 0.074 0.073 0.073 0.073 0.048 0.026 0.042 0.021 0.036 0.932
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Table 33: Simulation results for the fourth choice of parameters, T = 2, n = 20

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 4 3 3 4 1.5 0.05 1 0.5 0.2 1
λ = eδ+γµ 5.47 5.21 5.21 5.47
Model 1
average 4.002 3.005 3.011 4.002 1.489 0.053 0.97 0.48 0.187
bias 0.002 0.005 0.011 0.002 -0.011 0.003 -0.03 -0.02 -0.013
sd 0.172 0.179 0.183 0.177 0.37 0.103 0.102 0.055 0.092
mse1/2 0.173 0.179 0.183 0.177 0.37 0.103 0.106 0.059 0.093

I
−1/2
n (θ) 0.174 0.175 0.175 0.174 0.344 0.097 0.106 0.056 0.092

Model 2
average 3.995 2.993 2.995 3.993 1.474 0.054 0.975 0.481 0.19 0.723
bias -0.005 -0.007 -0.005 -0.007 -0.026 0.004 -0.025 -0.019 -0.01 -0.277
sd 0.181 0.17 0.177 0.175 0.455 0.121 0.19 0.056 0.09 5.876
mse1/2 0.182 0.17 0.178 0.176 0.456 0.122 0.192 0.059 0.091 5.883

I
−1/2
n (θ) 0.172 0.172 0.172 0.172 0.346 0.097 0.103 0.055 0.088 1.937

Table 34: Simulation results for the fourth choice of parameters, T = 2, n = 50

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 4 3 3 4 1.5 0.05 1 0.5 0.2 1
λ = eδ+γµ 5.47 5.21 5.21 5.47
Model 1
average 3.996 2.997 3.001 4.004 1.493 0.052 0.989 0.491 0.196
bias -0.004 -0.003 0.001 0.004 -0.007 0.002 -0.011 -0.009 -0.004
sd 0.109 0.116 0.112 0.109 0.221 0.062 0.067 0.036 0.059
mse1/2 0.109 0.116 0.112 0.109 0.221 0.062 0.068 0.037 0.059

I
−1/2
n (θ) 0.11 0.111 0.111 0.11 0.218 0.061 0.067 0.035 0.058

Model 2
average 4.005 3.004 2.997 3.994 1.485 0.05 0.99 0.493 0.197 1.035
bias 0.005 0.004 -0.003 -0.006 -0.015 0 -0.01 -0.007 -0.003 0.035
sd 0.107 0.109 0.108 0.111 0.274 0.064 0.067 0.036 0.056 0.645
mse1/2 0.107 0.109 0.108 0.111 0.274 0.064 0.068 0.036 0.056 0.646

I
−1/2
n (θ) 0.108 0.109 0.109 0.108 0.219 0.061 0.065 0.034 0.056 0.639
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Table 35: Simulation results for the fourth choice of parameters, T = 2, n = 100

µ11 µ12 µ21 µ22 δ γ σ2 ρ ρ∗ λ0

True(θ) 4 3 3 4 1.5 0.05 1 0.5 0.2
λ = eδ+γµ 5.47 5.21 5.21 5.47
Model 1
average 4.004 3.001 3 4.004 1.499 0.05 0.993 0.495 0.199
bias 0.004 0.001 0 0.004 -0.001 0 -0.007 -0.005 -0.001
sd 0.081 0.082 0.08 0.079 0.155 0.043 0.047 0.025 0.041
mse1/2 0.081 0.082 0.08 0.079 0.155 0.043 0.048 0.026 0.041

I
−1/2
n (θ) 0.078 0.078 0.078 0.078 0.154 0.043 0.047 0.025 0.041

Model 2
average 4.029 3.006 3.014 3.999 1.508 0.047 1.003 0.5 0.213 1.025
bias 0.029 0.006 0.014 -0.001 0.008 -0.003 0.003 0 0.013 0.025
sd 0.091 0.072 0.101 0.087 0.175 0.047 0.038 0.015 0.031 0.326
mse1/2 0.095 0.072 0.101 0.087 0.176 0.047 0.038 0.015 0.034 0.327

I
−1/2
n (θ) 0.077 0.077 0.077 0.077 0.155 0.043 0.046 0.024 0.040
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