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In this thesis, improved sampling algorithms are applied to atomic and molecular 

clusters. The parallel-tempering Monte Carlo procedure is used to characterize the 

(CO2)n, n = 6, 8, 13, 19, and 38, clusters. The heat capacity curves of the n = 13 and 19 

clusters are found to have pronounced peaks that can be associated with cluster melting.  

In addition, there is evidence of a low temperature “solid ↔ solid” transition in the case 

of (CO2)19. The low-energy minima and rearrangement pathways are determined and 

used to examine the complexity of the potential energy surfaces of the clusters.  

An algorithm combining the Tsallis generalized ensemble and the parallel 

tempering algorithm is introduced and applied to a 1D model potential and to Ar38. The 

convergence of parallel tempering Monte Carlo simulations of the 38-atom Lennard-

Jones cluster starting from the Oh global minimum and from the C5v second lowest-

energy minimum is also investigated. It is found that achieving convergence is 

appreciably more difficult, particularly at temperatures in the vicinity of the Oh  C5v 

transformation, when starting from the C5v structure. Compared to PTMC, the hybrid 

algorithm is about 10 times faster for reaching equilibrium in the 1D model potential and 

is about 3 times faster for reaching equilibrium in the LJ38 system when starting from the 
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second lowest energy minimum. The Wang-Landau free random walk algorithm is also 

applied to Ar13 and Ar38. 

 
 

 iv



 
 

TABLE OF CONTENTS 
 
 
1. Chapter 1 Introduction ................................................................................................ 1 

1.1. The Monte Carlo method .................................................................................... 1 
1.2. Statistical Mechanics of equilibrium systems5 ................................................... 1 

1.2.1. Master equation and equilibrium state........................................................ 1 
1.2.2. Fluctuations of energy in Monte Carlo simulations.................................... 3 

1.3. Principles of Monte Carlo simulations and the Metropolis algorithm................ 3 
1.4. Problem of quasi-ergodicity and advanced Monte Carlo algorithms ................. 6 

1.4.1. Jump walking and parallel tempering Monte Carlo algorithm ................... 6 
1.4.2. Multicanonical Monte Carlo algorithm ...................................................... 7 
1.4.3. Tsallis statistics ........................................................................................... 9 
1.4.4. Wang-Landau free random walk in energy space..................................... 11 
1.4.5. Other methods........................................................................................... 11 

1.5. The overview of the thesis and application of advanced sampling algorithms 12 
2. Chapter 2 Finite temperature properties of (CO2)n clusters ...................................... 15 

2.1. Introduction....................................................................................................... 15 
2.2. Methodology..................................................................................................... 16 

2.2.1. Model potential ......................................................................................... 16 
2.2.2. Parallel tempering Monte Carlo procedure............................................... 18 
2.2.3. Disconnectivity graphs.............................................................................. 21 

2.3. Results............................................................................................................... 21 
i) (CO2)6 .................................................................................................................... 22 
ii) (CO2)8 ................................................................................................................... 23 
iii) (CO2)13................................................................................................................. 24 
iv) (CO2)19................................................................................................................. 25 
v) (CO2)38 .................................................................................................................. 27 

2.4. Conclusions....................................................................................................... 27 
3. Chapter 3 On the Convergence of Parallel Tempering Monte Carlo Simulations of 
LJ38................................................................................................................................................................................................... 45 

3.1. Introduction....................................................................................................... 45 
3.2. Methodology..................................................................................................... 47 

3.2.1. PTTS algorithm......................................................................................... 47 
3.2.2. Reweight technology ................................................................................ 48 

3.3. Computational details ....................................................................................... 50 
3.3.1. 1D model potential.................................................................................... 50 
3.3.2. PTMC simulations of Ar38 ........................................................................ 51 
3.3.3. PTTS simulations of Ar38.......................................................................... 52 

3.4. Results............................................................................................................... 52 
3.4.1. 1D model potential.................................................................................... 52 
3.4.2. PTMC simulations of Ar38 ........................................................................ 53 
3.4.3. PTTS simulations of Ar38.......................................................................... 57 

3.5. Conclusions....................................................................................................... 58 

 v



4. Chapter 4 The application of Wang-Laudau free random walk algorithm on Ar 
cluster................................................................................................................................ 72 

4.1. Introduction....................................................................................................... 72 
4.2. Method .............................................................................................................. 73 
4.3. Simulation details.............................................................................................. 74 
4.4. Results and discussion ...................................................................................... 75 

BIBLIOGRAPHY............................................................................................................. 78 
Appendix A................................................................................................................... 84 
Computational study about the stereochemistry of the cyclization of a secondary 
alkyllithium................................................................................................................... 84 
I. Introduction ............................................................................................................... 84 
II. Computational details............................................................................................... 85 
III. Result and Discussion ............................................................................................. 86 
IV. Conclusions............................................................................................................. 88 
References..................................................................................................................... 90 
Appendix B ................................................................................................................... 98 
Theoretical characterization of the (H2O)21 cluster....................................................... 98 
I. Introduction ............................................................................................................... 99 
II. Computational details............................................................................................. 100 
III. Results and Discussion ......................................................................................... 101 
IV. Conclusions........................................................................................................... 103 
References................................................................................................................... 105 

 

 vi



 
 
 
 

LIST OF TABLES 
 
 

Table  2.1 Location of the point charges in the Murthy CO2 potential.............................. 17 

Table  2.2 Lennard-Jones parameters for the Murthy CO2 model potentiala..................... 17 

 
 

 vii



 
 

LIST OF FIGURES 
 

Figure  1.1 Schematic of the parallel tempering algorithm. Simulations at the N 
temperatures of interest, T1,T2…TN  are carried out in parallel, one temperature per 
processor. In each simulation, most moves are carried out with the Metropolis 
algorithm, represented by the filled circles, and the remaining moves involve 
exchanges, represented by the unfilled rectangles, between the configurations at 
adjacent temperatures. The figure was adapted from Arnold Tharrington’s thesis. . 14 

Figure  2.1 Heat capacity curves of the (CO2)n clusters calculated by means of parallel 
tempering Monte Carlo simulations. For each cluster, run1 denotes the simulation 
starting from global minimum and run2 denotes the simulation starting from a 
random geometry. ..................................................................................................... 29 

Figure  2.2 Energy level diagram for the (CO2)n clusters. Each horizontal line corresponds 
to the energy of a local minimum as determined from quenching calculations. ...... 30 

Figure  2.3 Structures of  the six lowest-energy minima of (CO2)6 from eigenmode-
following optimizations. ........................................................................................... 31 

Figure  2.4 Distributions of local minima generated by quenching configurations from 
parallel tempering Monte Carlo simulations on (CO2)6............................................ 32 

Figure  2.5 Disconnectivity graph for the (CO2)6 cluster. The numbers designate the low-
energy structures depicted in Figure 2.3. .................................................................. 33 

Figure  2.6  Structures of the six lowest-energy minima of (CO2)8 from eigenmode-
following optimizations. ........................................................................................... 34 

Figure  2.7 Distributions of local minima generated by quenching configurations from 
parallel tempering Monte Carlo simulations on (CO2)8............................................ 35 

Figure  2.8  Disconnectivity graph for the (CO2)8 cluster. The numbers designate the low-
energy structures depicted in Figure 2.6. .................................................................. 36 

Figure  2.9  Structures of the six lowest-energy minima of (CO2)13  from eigenmode-
following optimizations. ........................................................................................... 37 

Figure  2.10 Distributions of local minima generated by quenching configurations from 
parallel tempering Monte Carlo simulations on (CO2)13. ......................................... 38 

Figure  2.11 Disconnectivity graph for the (CO2)13 cluster. The numbers designate the 
low-energy structures depicted in Figure 2.9............................................................ 39 

 viii



Figure  2.12  Structures of the six lowest-energy minima of (CO2)19 from eigenmode-
following optimizations. ........................................................................................... 40 

Figure  2.13 Distributions of local minima generated by quenching configurations from 
parallel tempering Monte Carlo simulations on (CO2)19. ......................................... 41 

Figure  2.14 Disconnectivity graph for the (CO2)19 cluster. The numbers designate the 
low-energy structures depicted in Figure 2.12.......................................................... 42 

Figure  2.15 Heat capacity curves of (CO2)19 calculated by means of parallel tempering 
Monte Carlo simulations. The run 1 denotes the simulations carried out with 24 
temperatures spanning from 20 – 200 K, which is the same figure reported in Figure 
2.1; run 2 denotes the simulation carried out with 28 temperatures spanning from 20 
– 150 K; run 3 denotes the simulation carried out with the same temperature grid as 
run 2, but starting from a random geometry. ............................................................ 43 

Figure  2.16 Heat capacity curves of (CO2)38 calculated by means of parallel tempering 
Monte Carlo simulation. Run1 and run2 denote simulations starting from different 
randomly picked starting geometries. ....................................................................... 44 

Figure  3.1 Disconnectivity diagram of Ar38. .................................................................... 60 

Figure  3.2 Two lowest energy isomers of Ar38................................................................. 61 

Figure  3.3 One-dimensional potential energy V(x) vs. position x and the analytical 
distributions ρ1 and ρ2 at T = 24 and 0.094, respectively. ......................................... 62 

Figure  3.4 Ergodicity of the various simulation methods for the one-dimensional model 
and T= 0.093. MMC denotes Metropolis Monte Carlo algorithm, TS denotes Tsallis 
statistics, PTMC denotes parallel tempering Monte Carlo, and PTTS denotes parallel 
tempering Tsallis statistics........................................................................................ 63 

Figure  3.5 Ergodicity for the various simulation methods for the one-dimensional model 
at different temperatures. MMC denotes Metropolis Monte Carlo algorithm, TS 
denotes Tsallis statistics, PTMC denotes parallel tempering Monte Carlo, and PTTS 
denotes parallel tempering Tsallis statistics.............................................................. 64 

Figure  3.6 Heat capacity vs. T of Ar38 from PTMC simulations starting from the global 
minimum isomer. All production runs were carried out for 1 billion moves. 
Equilibrium periods ranged from 0.4 to 6.4x109. ..................................................... 65 

Figure  3.7 Heat capacity vs. T of Ar38 from PTMC simulations starting from second 
lowest energy minimum isomer. All production runs were carried out for 1 billion 
moves. Equilibrium periods ranged from 0.4 to 6.4x109.......................................... 66 

Figure  3.8 Heat capacity vs. T of Ar38 from PTMC simulations starting from the global 
minimum and from the second lowest energy isomer. The equilibrium periods were 
3.4x109 moves, and the production runs were carried out for 4x109 moves. ........... 67 

 ix



Figure  3.9 Inherent structures at the end of various length equilibration periods for PTMC 
simulations of Ar38: (a) starting from the global minimum, (b) starting from the 
second lowest energy minimum. The number of moves in each equilibration period 
is specified in the figure............................................................................................ 68 

Figure  3.10 Inherent structure distributions from PTMC simulations of Ar38 starting from 
the second lowest energy minimum. Simulations were carried out with a production 
period of 1×109 moves and differ in the length of the equilibrium period. The 
inherent structures are labeled as follows: E = -41.821 (■), -41.659 (●), -41.630 (
▲), -41.588 (▼), -41.569 (♦) and > -41.569 kcal/mol (+). The inherent structures 
with energies of -41.821 and -41.659 kcal/mol are the global minimum and the 
second lowest energy minimum, respectively. ......................................................... 69 

Figure  3.11 Inherent structure distributions from PTMC simulations of Ar38 starting from: 
(a) the global minimum and (b) the second lowest energy minimum. The simulations 
were carried out with an equilibration period of 3.4x109 moves and production runs 
of 4x109 moves. The inherent structures are labeled as follows: E = -41.821 (■), -
41.659 (●), -41.630 (▲), -41.588 (▼), -41.569 (♦) and > -41.569 kcal/mol (+).... 70 

Figure  3.12 Heat capacity vs. T of Ar38 from PTTS simulations starting from the second 
lowest energy minimum. Equilibration periods ranged from 0.4x108 to 2.6x109 
moves, and production periods were 1x109 moves for the case of an equilibration 
period of 0.4x108 moves and 0.6x109 moves in the other four cases. ...................... 71 

Figure  4.1 Heat capacity vs. temperature curves of the Ar13 cluster. The blue line denotes 
the result obtained using the WL algorithm, the purple line denotes results obtained 
using the jump walk algorithm. ................................................................................ 76 

Figure  4.2 Heat capacity vs. temperature curve of Ar38 obtained using the WL algorithm 
and PTTS algorithm.................................................................................................. 77 

 

 

 

 x



PREFACE 
 

First and foremost, I would like to thank my advisor Ken Jordan with my deepest 

gratitude.  He guided me into the wonderful area of computational chemistry.  He is 

always there to help when I have difficulties in my research. Besides his comprehensive 

knowledge in chemistry, his zeal for science, work ethic, patience and life attitude 

impressed me a lot. He serves as my role model of a scientist and an educator. 

I would also like to thank Professors Rob Coalson, David Pratt and Jeffery 

Madura for serving on my thesis committee and Professor Maria Kurnikova at Carnegie 

Mellon University for stimulating discussions on my proposal project.  Their willingness 

to share their expertise and provide valuable advice is greatly appreciated. 

I want to thank all the members in Jordan group, past or present, for their help and 

friendship.  Especially, I want to thank Drs. Arnold Tharrington and Dominic Alfonso for 

there valuable help when I just started my research here; Dr. Feng Wang and Dr. Richard 

Christie, Brad M-K Tsai, Jun Cui, Kadir Diri, and Alex Bayden helped me a lot in many 

valuable discussions. I enjoyed working with all the members of Jordan group and expect 

to be a life long friend with them. 

I want to thank my family, whose constant love and understanding supports me 

during the past five years. I thank my husband Kai Deng for his encouraging and love. I 

thank my parents, my sister Hantao and her family for their unconditional love and help. I 

would not be able to obtain this degree without my family’s support.  I am proud to be 

the Mom of my son David Deng. He was born and grew up with me during my PhD 

study at Pittsburgh. He is a great gift from God. I would like to thank God for everything.

 xi



 
 

1. Chapter 1 Introduction 

1.1. The Monte Carlo method 

 Monte Carlo simulation methods are used routinely in many fields, including 

chemistry, biology, physics, engineering, and economics. The name “Monte Carlo” was 

coined by Metropolis (inspired by Ulam's interest in poker) during the Manhattan Project 

of World War II at Los Alamos1,2.  

The basic idea in Monte Carlo simulations is to simulate the random fluctuation 

of a system from state to state. In a Monte Carlo simulation, we directly simulate this 

process, creating a model on our computer and making it pass through a sequence of 

states in such a way that the probability of  being in any particular state u at a given time t 

is equal to the weight Wu(t) which that state would have in a real system. The advantage 

of the Monte Carlo approach in statistical mechanics is that we only need to sample a 

small fraction of the states of the system in order to obtain accurate estimates of the 

partition function. 3-5

1.2. Statistical Mechanics of equilibrium systems5 

1.2.1. Master equation and equilibrium state 

Suppose that )( νµ →P is the rate of the transition from state µ to state ν, and 

)(tµω  represents the probability that the system will be in state µ at time t. Then the 

master equation for the evolution of )(tµω in terms of the rates )( νµ →P  can be written 

as: 

)].()()()([ νµωµνω
ω

ν
µν

µ →−→=∑ PtPt
dt

d
                                       (1.1) 
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The first term on the right-hand side of this equation represents the rate of transitions into 

state µ, and the second term represents the rate of transitions out of state µ. The 

probabilities )(tµω obey the sum rule 

1)( =∑ t
µ

µω .                                                                                        (1.2) 

If the system reaches equilibrium, then 0=
dt

d µω , and the weights of all states become 

constant. 

Gibbs showed that for a system in thermal equilibrium with a reservoir at 

temperature T, the equilibrium occupation probabilities are 

µβ
µ

Ee
Z

p −=
1 ,                                                                                     (1.3) 

where β denotes 1/kT, k is the Boltzmann constant and Z is the partition function. For an 

equilibrium state, the probability distribution is known as the Boltzmann distribution. 

From Equation 1.3, the expectation of an observable Q for a system in 

equilibrium is 

∑ −=
µ

β
µ

µEeQQ
Ζ

1 .                                                                        (1.4) 

Based on Equation 1.4, the internal energy, heat capacity, entropy, and Helmholtz free 

energy, F, of the system can be expressed 

,11
β

µβ

µ
µ ∂

∂
−== −∑ Z

Z Z
eEU E                                                             (1.5) 

  ,log
2

2
22

β
β

β
β

∂
∂

=
∂
∂

−=
∂
∂

=
ZkUk

T
UC                                                   (1.6) 

,loglog
Z

Z kkS +
∂

∂
−=

β
β                                                                   (1.7) 
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and  

ZkTTSUF log−=−= .                                                                      (1.8) 

In performing Monte Carlo simulations, one often calculates the quantities of interest 

directly without first evaluating the partition function.  

1.2.2. Fluctuations of energy in Monte Carlo simulations 

For studies of phase changes, it is useful to calculate the energy fluctuations, 

which are given by 

222)( EEEE −=−    ,                                                           (1.9) 

since 

2

2
22 11

βµ

β
µ

µ

∂
∂

== ∑ − Z
Z

eE
Z

E E    .                                                 (1.10) 

Combining Equations 1.6 and 1.9, we get 

2
22

βk
CEE =−  .                                                                    (1.11) 

This shows that the heat capacity is proportional to the energy fluctuations of the 

equilibrium system. 

1.3. Principles of Monte Carlo simulations and the Metropolis algorithm 

The Monte Carlo method in statistical mechanics generally uses Markov chains to 

sample a state (or configuration) C with a probability P(C) to replace multivariate 

integrations 

∑=
C

CPCff )()(                                                                   (1.12) 

by simple averages 
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)(1
1
∑
=

≅
M

i
iCf

M
f  .                                                                 (1.13) 

It is very important to generate an appropriate random set of states according to the 

Boltzmann probability. In a Markov process, given a system in one state µ, the 

probability of accept moves from state µ to ν is only based on the state µ. Almost all 

Monte Carlo schemes rely on Markov processes for generating the set of states used, 

since it is impossible to choose states at random and accept or reject them with a 

probability proportional to , which would end up rejecting almost all states because 

the probabilities for their acceptance would be exponentially small.  

µβEe−

 Detail balance condition ensures that the Boltzmann probability distribution is 

achieved when the system has come to equilibrium. The condition for detailed balance is  

)()( µννµµ →=→ PpPp v  .                                                              (1.14) 

where pµ is the probability of the system at state in equilibrium and P(µ ν) is the 

transition probability for state µ to state ν.  

Detailed balance implies that on average the probability for the system going from µ to ν 

should be the same as from ν to µ. In this case the transition probabilities should satisfy 

)(

)(
)( µνβ

µ

ν

µν
νµ EEe

p
p

P
P −−==

→
→  ,                                                              (1.15) 

as well as the constraint 

∑ =→
ν

νµ 1)(P  .                                                                              (1.16) 

The Metropolis Monte Carlo algorithm, introduced by Nicolas Metropolis and his 

co-workers in 19536, is the most famous and widely used Monte Carlo algorithm. 
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Metropolis Monte Carlo follows equations 1.15 and 1.16. The transition probability P 

(µ ν) can be broken into two parts: 

)()()( νµνµνµ →→=→ AgP  ,                                                   (1.17) 

where g(u v) is the selection probability, and A(u v) is the acceptance ratio. In the 

Metropolis Monte Carlo algorithm, the selection probability g(u v) = g(v u), so the 

detailed balance equation can be written as 

)(

)(
)(

)()(
)()(

)(
)( µνβ

µν
νµ

µνµν
νµνµ

µν
νµ EEe

A
A

Ag
Ag

P
P −−=

→
→

=
→→
→→

=
→
→ .                (1.18) 

Metropolis Monte Carlo chooses the acceptance ratio as: 

)1,min()( )( µνβνµ EEeA −−=→ ,                                                      (1.19) 

This means that if the new state (or new configuration) has a lower energy, it will always 

be accepted, and if it has higher energy than the old state (or configuration), it will be 

accepted based on the probability of . The Metropolis algorithm satisfies the 

condition of detailed balance in Eq. 1.15 and the constraint condition of Eq. 1.16. 

Averages of the properties of interest are obtained by averaging over the sampled 

configurations. In order to obtain the value of a property such as energy E as a function of 

T, the simulation is repeated for a range of temperatures. 

)( µνβ EEe −−

The Metropolis sampling technique has been successfully applied to study the 

equilibrium properties of liquids and polymers and to investigate protein folding. 

However, if there are high-energy barriers between the potential energy minima in a 

system, then Metropolis Monte Carlo simulations may become trapped in low energy 

minima regions and fail to reach equilibrium.  
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1.4. Problem of quasi-ergodicity and advanced Monte Carlo algorithms 

The condition of ergodicity is the requirement that it should be possible for the 

Markov process to reach any state of the system from any other state, if the simulation is 

run long enough. As mentioned above, Metropolis Monte Carlo simulations may fail to 

reach equilibrium because of the existence of high energy barriers. The simulations then 

will not properly sample the potential energy surface and will give results which are 

incorrect. Such a simulation is often referred to as quasi-ergodic.7 A variety of methods 

have been suggested for tackling this problem.  

These approaches can be classified into two groups. The first group modifies the 

Boltzmann weight factor. Sampling using non-Boltzmann weight factors allows the 

simulation to overcome energy barrier and to sample much wider regions of phase space 

than by conventional methods.8,9 The most well-known generalized-ensemble methods 

include umbrella sampling,10-14 the multicanonical algorithm,15-24 and Tsallis generalized 

thermostatistics.25-28 Umbrella sampling was the first generalized ensemble method. 

Multicanonical Monte Carlo simulations perform random walks in a energy-phase space. 

The second group of methods takes advantage of ergodicity present at higher 

temperatures by allowing the exchange of configurations between low and high 

temperatures. By exchanging states at different temperatures, the higher-temperature 

simulations can thus “help” the lower-temperature ones cross the energy barriers between 

different basins. Jump walk29-33 and parallel tempering Monte Carlo34-37 are examples of 

this second group of algorithms. 

1.4.1. Jump walking and parallel tempering Monte Carlo algorithm 

The jump walking algorithm was first introduced by Frantz et al.30 In this 

approach, a low-temperature simulation is permitted to attempt jumps to configurations 

 6



that were sampled in a simulation that was run at a higher temperature. A Metropolis 

criterion is applied when deciding whether or not to accept the move. To implement the 

jump walk algorithm, one usually first performs a high-temperature simulation and stores 

a subset of configurations from the high-temperature simulation. Then a low-temperature 

simulation reads the stored configurations and randomly picks one for the jump. This 

approach obviously requires large disk space to save the high temperature configurations.  

The parallel tempering algorithm34,35 is similar to the jump walking algorithm. In 

the parallel-tempering Monte Carlo procedure one performs in parallel Monte Carlo 

simulations at N different temperatures. Configurations from the simulations at adjacent 

temperatures are exchanged from time to time. The parallel tempering algorithm uses the 

ergodicty achieved at high temperature to help the simulations at low temperatures reach 

equilibrium. Since configuration generation and exchange are on the fly; thus the 

algorithm avoids hard disk storage space which speeds up the simulation. Better sampling 

of phase space is achieved than the jump walking algorithim. Figure 1.1 depicts 

schematically the parallel tempering Monte Carlo procedure. The parallel tempering (also 

called replica exchange) algorithm has been found to be a very powerful sampling 

algorithm38-53 and it can overcome the quasi erogidicty problem caused by multiple-

minima and high energy barriers between the minima. The parallel tempering algorithm 

has been widely used in many fields recently and has been used in combination with 

molecular dynamics simulations. 

1.4.2. Multicanonical Monte Carlo algorithm 

The multicanonical MC (MUCA) method was developed by Bergs15 and first 

applied to lattice spin models. The MUCA ensemble is based on a probability function in 
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which different energies are equally probable. The conventional Boltzmann weight is 

replaced by a non-Boltzmann weight, wNB, which gives a flat energy distribution. As 

shown below, 

≡∝ )()()( EWEgEP mumu constant .                                                           (1.20) 

The flat distribution implies that a free random walk in the potential energy space is 

realized in this ensemble. This allows the simulation to escape from local minima and to 

sample the configurational space much more widely than the conventional canonical MC. 

From the definition in Equation 1.20, the multicanonical weight factor is inversely 

proportional to the density of states, and can be written as: 

)(
1)( );(0

Eg
eEW TEE

mu
mu =≡ −β .                                                               (1.21) 

Thus, 

)()(ln);( 00 ESTEgTkTEE Bmu == .                                                     (1.22) 

Here, S(E) is the entropy in the multicanonical ensemble.  Since the density of states of 

the system is usually unknown, the multicanonical weight factor has to be determined 

numerically before the simulation starts. This is a nontrivial task. 

After the optimal multicanonical weight factor is determined, a multicanonical 

Monte Carlo simulation is performed with the usual Metropolis criterion; the transition 

probability of state x with potential energy E ′  is given by 

),1min()( 0' muEexxw ∆−=→ β ,                                                               (1.23) 

where 

);();( 00
' TEETEEE mumumu −≡∆ .                                                            (1.24) 
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Once the estimate of the density of states is obtained, the multicanonical weight factor 

can be directly determined by the formula below: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−
∂

∂
=

+−
∂

∂

=

=

=

);()(
);(

)(ln);(

);()(
);(

);(

0
0

00

0
0

0

TEEEE
E

TEE
EgkTTEE

TEEEE
E

TEE

TEE

HmuHEE
mu

mu

lmulEE
mu

mu

H

l

                         (1.25) 

where  
1

1 T
EE = , and 

HTH EE = . The expectation value of a physical quantity A 

at any temperature T is then calculated from 

∑
∑

−

−

=

E

E
E

E

T eEg

eEgEA
A β

β

)(

)()(
                                                                  (1.26) 

It is a very difficult task to calculate density of states directly with high accuracy for large 

systems. Almost all the methods to generate density of states are based on an 

accumulation of the energy histogram. On the other hand, in a multicanonical simulation, 

the density of states need not be very accurate. The re-weighting procedure does not 

depend on the accuracy of the density of the states as long as the histogram can cover all 

important energy levels with sufficient statistics.  

1.4.3. Tsallis statistics 

Tsallis statistics avoids the problem presented by the need to predetermine the 

weight function in MUCA.25

The generalized thermostatistics proposed by Tsallis defines the generalized 

entropy as 

1

)(])(1[ 1

−

−
=

−∫
q

rprpdr
kS

N
Tsallis

qN
Tsallis

N

Bq ,                       (1.27) 
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with the constraints  

∫ = 1)( N
Tsallis

N rpdr , and ∫ )()]([ NqN
Tsallis

N rErpdr =constant,         (1.28) 

where q is a parameter greater than 1. 

)1/(1)]()1(1[1)( qN

q

N
Tsallis rEq

Z
rp −−−= β ,                (1.29) 

where  

)1/(1)]()1(1[( qNN
q rEqdrZ −∫ −−= β .               (1.30) 

When q  1, the Tsallis distribution becomes the Boltzman distribution.  

The configurations are sampled with the distribution  using the 

effective energy  

qN
Tsallis rp )]([

                                                                                                             (1.31) )],

 

((ln[ Eqq
−−− β)11

)1( 0E
q

Eeff −
=
β

where E0 is chosen so as to lie below the energy of the global minimum.                              

When q = 1, the acceptance probability becomes equal to Metropolis Monte Carlo 

method. For q < 1, the energy distributions become narrower and more focused around 

minima, while for q > 1, they become broader and exhibit greater probability in barrier 

regions. 

The acceptance ratio of the Tsallis generalized MC method is 

),1min(
)(

ieffjeff EE
ji eP

−−

→ =
β

                                                                           (1.32) 

and the thermodynamic average of any physical quantity f can be calculated over a wide 

temperature range by 

 10



∑
∑

⋅

⋅⋅
= −

−−

E

E
E

E

T ew

ewf
f β

β

1

1

                                                                               (1.33) 

1.4.4. Wang-Landau free random walk in energy space 

The free random walk in energy space with a flat histogram54,55 has become 

known as “Wang-Landau sampling”. This algorithm is based on the observation that if 

one performs a random walk in energy space and the probability to visit a given energy 

level E is proportional to the reciprocal of the density of states 1/g(E), then a flat 

histogram is generated for the energy distribution.  

The partition function can be written as a sum over all states or over all energies 

E, 

∑∑ −− ==
E

E

i

E eEgeZ i ββ )( ,                                                                           (1.34) 

where g(E) is the density of states. Since g(E) is independent of temperature, it can be 

used to find all properties of the system at different temperatures. 

The idea of Wang-Laudau is very similar to multicanonical methods. An accurate 

knowledge of the weight factors used in multicanonical methods is equivalent to a 

knowledge of the density of states of the system. The Wang-Landau method directly and 

self-consistently determines the density of states by performing a random walk in the 

energy space, with a probability proportional to the reciprocal of the density of states. A 

convertion factor is defined at the beginning of the simulation, starting with a big number 

compared to 1. It will iteratively be updated when a flat energy histogram has been 

achieved during the simulation. When the convertion factor is close to 1, a reliable and 

accurate estimate of g(E) will be obtained.  

1.4.5. Other methods 
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There are many more new sampling methods in Monte Carlo simulation besides 

the four widely used algorithms described earlier. Hetenyi et al. introduced the multiple 

“time step” Monte Carlo by divided the potential into a short- and long-range part56; 

Berne et al. introduced catalytic Monte Carlo57; Brown et al. developed cool walking 

algorithm58; and Transition Matrix Monte Carlo method59-61. Thus far, the most popular 

methods using in sampling are parallel tempering Monte Carlo and multicanonical Monte 

Carlo.  

1.5. The overview of the thesis and application of advanced sampling algorithms 

The thesis is mainly focused on using the advanced sampling method to 

investigate weakly bound clusters. One of the reasons often stated for studying small 

weakly bound clusters is that they provide a bridge between micro-systems and bulk 

systems. Clusters can provide insights into the transformation from finite to bulk 

behavior. They can also exhibit properties that are different from both the properties of 

the individual atom or molecule and those of bulk matter.  

In Chapter 2, the parallel tempering Monte Carlo procedure is applied to 

investigate CO2 clusters. In spite of the importance of CO2 as a solvent, relatively little is 

known about CO2 clusters. Exceptions are the CO2 dimer and trimer which have been the 

subject of several experimental and theoretical studies. We are especially intrigued by the 

thermodynamic properties, in particular the melting behavior, of CO2 clusters and how 

this behavior depends on the details of the underlying potential energy surface.  

In Chapter 3, a hybrid algorithm of parallel tempering Monte Carlo simulation 

and Tsallis statistics has been introduced and applied on a 1D model potential. The LJ38 

cluster, which is known to have an extremely rugged potential energy surface has been 
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investigate using both parallel tempering Monte Carlo and the hybrid algorithm. The 

results show the when the simulation starting from the second minima, the simulations 

tend to very hard to reach equilibrium and it shows the potential to be a very good test 

system for new algorithm development. Comparing to PTMC, the hybrid algorithm is 

about 10 times faster for reaching equilibrium in the 1D model potential and is about 3 

times faster for reaching equilibrium in the Ar38 system when starting from the second 

lowest energy minimum. 

In Chapter 4, the Wang-Landau free random walk algorithm is used in simulation 

of Ar13 and Ar38. The algorithm is found to work well for Ar13 which has a simple 

potential energy landscape. However, in the Ar38 system, difficulties are met in reaching 

a flat distribution because of the difficulty in generating configurations in the low-energy 

regions. 

Appendix A is a separated project collaborated with professor Cohen. The 

research is focused on computational study of the stereochemistry of intramolecular 

carbolithiation of a secondary alkyllithium to produce a 2-substituted 

cyclopentylmethyllithium using DFT theory. 

Appendix B is a project that I have involved. My major contribution for that 

project is using eigenmode following algorithm to locate the global minima of (H2O)21. 

,   
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Figure  1.1 Schematic of the parallel tempering algorithm. Simulations at the N temperatures of interest, 
T1,T2…TN  are carried out in parallel, one temperature per processor. In each simulation, most moves are 
carried out with the Metropolis algorithm, represented by the filled circles, and the remaining moves 
involve exchanges, represented by the unfilled rectangles, between the configurations at adjacent 
temperatures. The figure was adapted from Arnold Tharrington’s thesis. 
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2. Chapter 2 Finite temperature properties of (CO2)n clusters 

2.1. Introduction 

Carbon dioxide has attracted considerable experimental and theoretical attention 

both because of the importance of its supercritical state for chemical separations and 

because it is a prototype for molecules for which the dominant electrostatic interactions 

are quadrupole-quadrupole in nature.62 Although the net dipole moment for CO2 is zero, 

there is a clear charge separation in CO2 molecule with the bond electron density being 

polarized more towards the oxygen atoms, leaving the carbon atom with a partial positive 

charge and the two oxygen atoms with partial negative charges. Because the molecular 

charge is very well characterized, CO2 has attracted attention from the theorists. For 

example, the crystal structure, volume compression and vibrational properties of solid 

CO2 have been calculated with various model potentials and compared with the 

experimental results.63-65  

In spite of this, our knowledge of the properties of CO2 clusters lags behind that 

for clusters of polar molecules such as water. Although several Monte Carlo and 

molecular dynamic simulations of (CO2)n clusters have been carried out,66-70  there remain 

unresolved issues including the connections between the thermodynamic behavior and 

the topology of the underlying potential energy surfaces. Also, it appears that some of 

these simulations failed to achieve equilibrium, particularly at the lowest temperatures 

considered.  

In the present study the parallel-tempering Monte Carlo method,71 which is well 

suited for achieving equilibrium in low-temperature simulations when there are large 

energy barriers separating low-lying local potential energy minima, is combined with 

long production cycles to calculate the finite-temperature behavior of (CO2)n, n = 6, 8, 13, 
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and 19, clusters. To aid in analyzing the nature of the transitions associated with peaks in 

the heat capacity curves, the populations of inherent structures are calculated as a 

function of temperature. Stillinger and Weber proposed the idea to partitioning the 

potential surface into basins of attractions72. The inherent structures of quenching provide 

insight into the accessible local minima of the potential energy surface for a temperature 

of simulation. Later, Becker and Karplus introduced disconnecitivity diagrams to 

represent the topology of the potential energy surface73. Those two methods are 

combined in our analysis to help describe the potential energy surface. For each 

simulation, the saved configurations are quenched (minimized) to their closed local 

minimum. For each cluster considered, the low-energy minima and transition states are 

located using the eigenmode-following method74-76 and used to construct disconnectivity 

graphs to provide insight into the topology of the potential energy surface, in particular, 

the accessibility of different regions of configuration space as a function of energy. 

Simulations of (CO2)38 are also performed using parallel tempering Monte Carlo method.  

2.2.Methodology 

2.2.1. Model potential 

The CO2 - CO2 interactions are described by a two-body model potential due to 

Murthy et al.77 This is a rigid monomer model with CO bond lengths equal to the 

experimental (Re) value and interactions between monomers described by electrostatic 

and 6-12 Lennard-Jones terms. The former are incorporated by means of five point 

charges on each monomer, the locations and values of which are given in Table 1. The 

Lennard - Jones terms are atom-atom in nature, with the parameters being given in Table 

2.  
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The CO2 molecule is set to be rigid and the potential between CO2 atom i and CO2 

atom j can be written as: 

elecLJij UUU ∑∑ += . 

 

Table  2.1 Location of the point charges in the Murthy CO2 potential 

Site Z(Å) Q(e) 

1 -1.5232 0.1216 

2 -1.0663 -0.6418 

3/Cb 0 1.0404 

4 1.0663 -0.6418 

5 1.5232 0.1216 

a From Ref. 77. 
b The third point charge is located on the C atom.  

Table  2.2 Lennard-Jones parameters for the Murthy CO2 model potentiala

Atom pair ε(K) σ(Å) 

C-C 26.3 2.824 

O-O 75.2 3.026 

C-O 44.5 2.925 

a From Ref. 77. 

 
For  (CO2)2 and (CO2)3 the Murthy potential gives structures and binding energies 

in good agreement with the results of experiment and MP2 calculations.78,79 At first sight, 

the success of the Murthy potential for describing (CO2)2 and (CO2)3 is somewhat 

surprising since it does not include an explicit induction contribution, which has been 

shown by symmetry-adapted perturbation theory (SAPT) calculations to be important for  
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these clusters.80 This suggests that either the LJ or the electrostatic term (or perhaps both) 

in the Murthy potential is too attractive, thereby “mimicking” the induction interactions. 

The use of enhanced electrostatic terms to incorporate induction is a common procedure, 

with a representative example being the TIP4P model for water.81  

2.2.2. Parallel tempering Monte Carlo procedure 

Monte Carlo simulations were carried out using the parallel tempering 

algorithm,34,35 in which simulations over the range of temperatures of interest are carried 

out in parallel. The sets of configurations generated at the various temperatures are called 

“replicas”. Most moves are “local”, i.e., confined to individual replicas, with trial moves 

translations or rotations of individual molecules, being accepted or rejected according to 

the Metropolis algorithm: 

{ )](exp[,1min ijji EEP }−−=→ β   ,                                       (2.1) 

where Pi→j is the probability for accepting a move from configuration “i” with 

energy Ei to configuration “j” with energy Ej, and β is related to the inverse temperature 

via β=(kT)-1. In the implementation of the parallel tempering algorithm used in the 

present study, the local moves were carried out by attempting, in succession, translation 

and rotation of molecules selected at random. The maximum step sizes were chosen so as 

to maintain close to 50% acceptance ratios.  The remaining moves involved attempted 

swaps of configurations between replicas at adjacent temperature. The acceptance 

probability for an attempted exchange of configurations from the Ti and Ti+1 replicas is 

given by  

{ })])((exp[,1min 111 +++↔ −−−= iiiiii EEP ββ  ,                        (2.2) 
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where βi = (kTi)-1. Exchanges were attempted once every 100 moves, and were 

made only between replicas at adjacent temperatures. On odd swap cycles, the attempted 

exchanges were between the (T1, T2), (T3, T4), etc. replicas, and on even cycles, between 

the (T2, T3), (T4, T5), etc. replicas. Additional details on the parallel tempering code used 

to carry out the simulations are given in Ref. 82. 

At the highest temperatures used in the simulations, evaporative events could 

occur, which would seriously impact convergence. This problem was avoided in the 

simulations on the three smaller clusters by rejecting moves that placed one or more of 

the molecules over a specified distance [6 Å for (CO2)6 and (CO2)8 and 8 Å for (CO2)13 ] 

from the center of mass of the cluster. For (CO2)19, moves that placed the C atom of an 

individual monomer more than 5 Å from the C atoms of all other monomers in the cluster 

were rejected. This constraint method is called “maximum group distance” method. The 

difference constraint method for (CO2)19 cluster allows the cluster having extended forms 

as well as compact forms. 

One of the challenges in carrying out parallel-tempering Monte Carlo simulations 

is the choice of an appropriate grid of temperatures covering the temperature range of 

interest. The temperature range should encompass regions over which the structural 

transformations of interest occur.  It is also essential that all important energy barriers are 

readily overcome at the highest temperature employed and that there is appreciable 

overlap between the potential energy distributions from the simulations at adjacent 

temperatures. In the present study, twenty temperatures spanning 20-150 K were used for 

(CO2)n, n = 6, 8, 13, and twenty-four temperatures spanning 20-200 K were used for 

(CO2)19. These temperature ranges were chosen on the basis of series of preliminary 
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parallel-tempering Monte Carlo simulations with different choices of the temperatures.  

Additional simulations, employing up to 28 temperatures, were also carried out, results 

obtained were very close to those from the simulations using fewer temperatures. 

For each cluster studied, two parallel-tempering Monte Carlo simulations were 

carried out, one starting from a configuration chosen at random from a preliminary high-

temperature Metropolis Monte-Carlo simulation, and the other starting from the global 

minimum structure.  Comparison of the results of the two simulations provides a check 

on attainment of equilibrium.  For each simulation, averaging was done over 2×107 

moves following an equilibration period, which ranged from 107 moves for (CO2)6 and 

(CO2)8 to 2×107 moves for (CO2)13 and 3× 107 moves for (CO2)19. The equilibration data 

are not counted on the average. Each standard Monte Carlo move includes a translation 

move of a random picked molecule and a rotational move a random picked molecule. The 

step size of each kind of moved are adjusted every 1000 moves in the equilibration 

period. The acceptance criterion for the translational and rotational moves was 

maintained 50% by adjusting the step size. During the simulation, the configurations are 

saved every 40000 moves for further analysis. 

The heat capacity was calculated using 

2

22

,, )(
RT

UU
TC TVN

−
= ,                                                                               (2.3) 

where R is the gas constant. 

For monitoring convergence of the simulations and for interpreting structural 

transformations, it is useful to examine the distributions of inherent structures, obtained 

by “quenching” configurations sampled in the simulations. In the present study, 500 
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configurations, chosen at equal intervals, were saved from each replica and optimized to 

their inherent structures by use of the eigenmode-following method as implemented in 

the Orient 4.3 program.83

2.2.3. Disconnectivity graphs 

Over the past few years much progress has been made in establishing the 

relationship between the topology of the potential energy surface and the difficulty of 

achieving equilibrium in finite temperature (or energy) simulations.82,84,85 This requires 

locating the local potential energy minima and the transition states connecting the 

minima. In the present study, this was accomplished by carrying out eigenmode-

following (EF)74,76 searches in directions, both parallel and anti-parallel to specific 

eigenvectors of the Hessian, for each of the minima located in the course of the 

optimizations. Searches were done along the eigenvector associated with the lowest 8, 15, 

24 and 50 eigenvalues for (CO2)6, (CO2)8, (CO2)13 and (CO2)19, respectively. For each 

transition state located in this manner, subsequent searches were carried out to identify 

the minima connected to the transition state, allowing construction of the rearrangement 

pathways. These results were used to construct disconnectivity graphs,86 which show the 

minima that are accessible at different energy thresholds and thus provide a convenient 

visual representation of the connectivity/disconnectivity of different regions of the 

potential energy surface.73,86  

2.3. Results 

The heat capacity vs. temperature curves, obtained from the parallel-tempering 

simulations, are shown in Figure 2.1. For each cluster, curves from both the simulation 

started at the global minimum structure and that started from a randomly selected 
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structure are reported and found to be in excellent agreement, providing evidence that the 

calculations have achieved equilibrium.  The heat capacity curves of (CO2)6 and (CO2)8 

display broad, weak peaks centered near T = 70 K. In contrast, the heat capacity curves of 

(CO2)13 and (CO2)19 display pronounced, narrower peaks near T = 90 K.  In analyzing 

these results, it is useful to examine the low-energy minima from the EF optimizations, 

the distributions of inherent structures sampled in the finite temperature simulations, and 

the disconnectivity graphs. The energies of the low-lying local minima of the various 

clusters are indicated in Figure 2.2. The analyses of the results for various clusters are 

presented below. 

i) (CO2)6 

The six lowest-energy minima of (CO2)6 obtained from the EF optimizations are 

shown in Figure 2.3.  These isomers are very close in energy, being spread over only 0.57 

kcal/mol. The global minimum, which can be viewed as two interacting cyclic trimers, is 

only 0.04 kcal/mol more stable than the second lowest-energy isomer with an octahedral-

like structure, which, in turn, is only 0.28 kcal/mol stable than the next lowest-energy 

structure (see Fig. 2.2). 

Figure 2.4 reports the distributions of inherent structures of (CO2)6 sampled in the 

T = 20, 55, 80, and 100 K replicas. In the T = 20 K replica, only the two lowest-energy 

inherent structures have significant population. The populations of these two isomers 

gradually decrease and those of the higher energy structures gradually grow in with 

increasing temperature. At T = 55 K, which corresponds to a weak, low-temperature 

shoulder on the broad peak on the heat capacity curve, the six lowest-energy structures 

account for about 70% of the inherent structure distribution.  Even at T = 100 K, the two 
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lowest-energy structures together still account for about 9% of the population and the six 

lowest-energy structures for about 32% of the population. Although Etters et al.2 

concluded that (CO2)6 undergoes a melting transition near 70 K, in our opinion, the 

density of states near this temperature is not sufficiently high to attribute the broad, weak 

peak in the heat capacity curve to a melting transition. 

The disconnectivity graph for (CO2)6 is shown in Figure 2.5. Overall, the diagram 

is quite simple, and the potential energy surface can be characterized as having a single 

funnel. There is a barrier of about 1 kcal/mol for interconversion of the two lowest energy 

isomers. Thus, it should be possible to achieve sizable populations of both these isomers 

in a seeded expansion. 

ii) (CO2)8

The (CO2)8 cluster possesses a very large number of low-lying potential energy 

minima. In fact, we have identified 158 minima within 1 kcal/mol and 490 minima within 

2 kcal/mol of the global minimum. These are considerably in excess of the number of 

local minima found for the (CO2)6, (CO2)13, and (CO2)19 clusters in the same energy 

ranges.  

The six lowest-energy isomers of (CO2)8, fall within an energy range of 0.24 

kcal/mol and are depicted in Fig. 2.6.  The inherent structure distributions for (CO2)8 are 

reported in Fig. 2.7.  For the T = 20 K replica, the global minimum structure is most 

populated (~73%), with about 20% of the remaining population being associated with the 

second lowest-energy isomer. In the T = 50 K replica, the population of the two lowest-

energy isomers combined has dropped to 40%, with most of the remaining population 

being spread over a group of isomers with inherent structure energies ranging from  -20.3 
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to -19.8 kcal/mol.  In the T = 80 K replica, the net population of the two lowest-energy 

isomers has dropped to about 7%, with the remaining population being spread over a 

large number of isomers.   

The disconnectivity graph for (CO2)8 is shown in Fig. 2.8. The potential energy 

surface of this cluster is characterized by two low-energy basins, each containing about 

20 local minima. There is a barrier of about 1 kcal/mol between the lowest-energy 

structures in one basin to the lowest-energy structure in the other basin.  Comparison of 

Figures 2.7 and 2.8 reveals that near T = 70 K the (CO2)8 cluster has an appreciable 

population of higher-energy structures associated with the two low-energy basins as well 

as  of a large number of structures associated with other regions of the potential energy 

surface.  While, the density of inherent structures is high enough to view the cluster as 

“liquid-like” for temperatures above about 80 K, this system does not possess a sizable 

energy gap between the global minimum or small group of low-energy minima and the 

remaining higher-lying minima (see Fig. 2.2), and it has been argued that such an energy 

gap is required for a cluster to display a well-defined melting transition.87   Due to the 

absence of the energy gap, the broad transition found for (CO2)8 can be viewed as “glass-

like” rather than originating from a well-defined melting transition. 

iii) (CO2)13

The structures of the six lowest-energy isomers of the (CO2)13 cluster are shown 

in Fig. 2.9. In agreement with Ref. 69, the global minimum has an icosahedral-like 

structure of S6 symmetry. The global minimum is predicted to be 1.16 kcal/mol more 

stable than the second lowest-energy isomer, which belongs to a group of isomers with 

distorted icosahedral structures. This situation is analogous to that for the LJ13 cluster, for 
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which the global minimum is a highly stable icosahedral structure, followed in energy by 

a group of distorted-icosahedral isomers, and then by non-icosahedral structures.88 

The inherent structure distributions of (CO2)13 are reported in Fig. 2.10. Only the 

global minimum structure has an appreciable population in the T = 20 K replica. Even at 

T = 60 K, it accounts for over 99% of the total population. However, at T = 90 K, the 

population of the global minimum structure has dropped to about 48%, with the 

remaining population being spread over a large number of higher-energy structures. At T 

= 110 K, the population of the global minimum structure has fallen to below 0.5%.  

The inherent structure distributions and the large peak in the heat capacity curve 

of (CO2)13 are both indicative of a relatively sharp melting transition near 90 K. This is in 

agreement with Maillet et al., who concluded on the basis of molecular dynamics 

simulations that the (CO2)13 cluster melts near T = 95 K. The disconnectivity graph for 

(CO2)13 shown in Fig. 2.11 displays a single-funnel topology similar to that found for 

LJ13. 

iv) (CO2)19 

The geometries of the six lowest-energy isomers of (CO2)19 are shown in figure 

2.12. All of these may be viewed as icosahedral-like with an approximately icosahedal 

(CO2)13 core and with the remaining six molecules forming a surface layer. These six 

isomers are close in energy, being spread over only 0.5 kcal/mol. The inherent structure 

distributions are plotted in figure 2.13. For the T = 20 K replica, about 87% of the 

population is associated with the global minimum, with the remaining population being 

due to the next two-lowest energy isomers. At T = 50 K, these three isomers still 

dominate, but now isomer 2, is most populated at 38%. At T = 80 K, somewhat below the 
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temperature of the maximum in the large peak in the heat capacity curve, the net 

population of the three lowest energy isomers has fallen to about 8%, with the remaining 

population being distributed over a large number of higher-lying isomers. At T = 100 K, 

there is no significant population of the six lowest-energy isomers. The trends in the 

inherent structure distributions provide strong evidence that the large peak near 90 K in 

the heat capacity curve of (CO2)19  is due to a melting-like transition.  This is consistent 

with the conclusion of Maillet et al., who reported, based on molecular dynamics 

simulations, that (CO2)19 melts near T = 95 K.   

The heat capacity curve for (CO2)19 also displays a weak shoulder near T = 50 K. 

This is due to a “solid” to “solid” transition between isomer 1 and isomers 2 and 3. This 

interpretation is supported by the disconnectivity graph of (CO2)19 shown in Fig. 14, 

which reveals that each of the three low-energy isomers is associated with a different 

basin. The barriers to go from the lowest-energy isomer to the basins containing isomers 

2 and 3 are over 3 kcal/mol.  

As we have mentioned before, the simulations of (CO2)19 were also carried out at 

28 temperature replicas for comparation the convergence of the simulations and 

investigation of the influence of temperature spacing. 28 temperatures ranging from 20 – 

150 K have been applied to the simulation. The temperature grids for those extra 

simulations are finer. Figure 2.15 shows the results of heat capacity curves running at 

different temperature grids. From Figure 2.15 we can see there is no distinguishable 

difference among the results of simulations with different temperature grids. The 

simulation using 24 temperatures spanning from 20 – 200 K is good and have enough 

overlap between the sampling distributions.  
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v) (CO2)38

The parallel tempering Monte Carlo algorithms are also applied to the simulation 

of (CO2)38 cluster. Two runs of simulations have been performed with different random 

start geometry and slightly different temperature spacings. 32 temperatures has been used 

from 20K to 200K. The heat capacity results are reported in figure 2.16. For each 

simulation, the average results are calculated over the production cycle of 4x107 cycles, 

which following by the equilibrium cycles is around 4x107 steps. Similar to the 

simulations of (CO2)19, the constraint method to prevent evaporation is so called 

“maximum group distance” method. Moves that placed the C atom of an individual 

monomer more than 8 Å from the C atoms of all other monomers in the cluster were 

rejected. It appears that the system has not reach equilibrium since the agreements in the 

heat capacity curves between the two runs are not very well. But both of them show the 

similar pattern with two peaks in the heat capacity curves.  There is a broad peak around 

100 K and an extra sharp big peak around 180 K. The broad peak about 100 K may be 

described as a solid-solid state transition. The sharp peak around 180 K may be described 

as the melting transition. The temperature of the sharp peak is in a fair good agreement 

with the sublimation temperature of dry ice which is 194.5 K.  

2.4. Conclusions 

In this paper the finite temperature behavior of the (CO2)n, n = 6, 8, 13, and 19, 

clusters has been investigated by means of parallel-tempering Monte Carlo simulations. 

The results have been analyzed in terms of inherent structure distributions and 

disconnectivity graphs. The question of when to characterize a structural transformation 

in a small cluster as a melting transition has been the subject of much discussion in the 
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literature.24, 26-27 For the present purposes, in labeling a transition as “melting”, we require 

that the transition display a pronounced, sharp peak in the heat capacity curve and that, 

over the range of temperatures corresponding to the rapid variation in the heat capacity, 

the system evolves from having appreciably population in a small number of low-energy 

structures to a having the population spread over a large number of higher-lying 

structures.  We have further required that there be a sizable energy gap between the 

structures important on the low-temperature side of the heat capacity peak and those 

important on the high temperature side.  Based on these criteria it is concluded that the 

sharp peaks near T = 90 K in the heat capacity curves of (CO2)13 and (CO2)19 are due to 

melting-type transitions whereas the broad peak in heat capacity curve of (CO2)6 should 

not be taken as indicative of melting. Although the broad peak in the heat capacity curve 

of (CO2)8 is similar in appearance to that of (CO2)6, these two clusters differ appreciably 

in the topologies of their potential energy surface as reflected in their disconnectivity 

graphs. However, due to the absence of a sizable energy gap between a group of low-

energy structures and the higher-energy structures populated near T = 70 K, we conclude 

that (CO2)8 also does not undergo a well-defined melting transition. The broad shoulder 

near T = 50 K in the heat capacity curve of (CO2)19 is attributed to a “solid-solid-like” 

transition. 
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Figure  2.1 Heat capacity curves of the (CO2)n clusters calculated by means of parallel tempering Monte 
Carlo simulations. For each cluster, run1 denotes the simulation starting from global minimum and run2 
denotes the simulation starting from a random geometry. 
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Figure  2.2 Energy level diagram for the (CO2)n clusters. Each horizontal line corresponds to the energy of 
a local minimum as determined from quenching calculations. 
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Figure  2.3 Structures of  the six lowest-energy mi  fro
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Figure  2.4 Distributions of local minima generated by quenching configurations from parallel tempering 
Monte Carlo simulations on (CO2)6. 
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igure  2.5 Disconnectivity graph for the (CO2)6 cluster. The numbers designate the low-energy structures F

depicted in Figure 2.3. 
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Figure  2.7 Distributions of local minima generated by quenching configurations from parallel tempering 
Monte Carlo simulations on (CO2)8. 
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Figure  2.8  Disconnectivity graph for the (CO2)8 cluster. The numbers designate the low-energy structures 
depicted in Figure 2.6.
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Figure  2.11 Disconnectivity graph for the (CO2)13 cluster. The numbers designate the low-energy structures 
depicted in Figure 2.9. 
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Figure  2.13 Distributions of local minima generated by quenching configurations from parallel tempering 
Monte Carlo simulations on (CO2)19. 
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Figure  2.14 Disconnectivity graph for the (CO2)19 cluster. The numbers designate the low-energy structures 
depicted in Figure 2.12. 
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Figure  2.15 Heat capacity curves of (CO2)19 calculated by means of parallel tempering Monte Carlo 
simulations. The run 1 denotes the simulations carried out with 24 temperatures spanning from 20 – 200 K, 
which is the same figure reported in Figure 2.1; run 2 denotes the simulation carried out with 28 
temperatures spanning from 20 – 150 K; run 3 denotes the simulation carried out with the same 
temperature grid as run 2, but starting from a random geometry. 
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Figure  2.16 Heat capacity curves of (CO2)38 calculated by means of parallel tempering Monte Carlo 
simulation. Run1 and run2 denote simulations starting from different randomly picked starting geometries.
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3. Chapter 3 On the Convergence of Parallel Tempering Monte Carlo 
Simulations of LJ38  

3.1. Introduction 

The conventional Metropolis algorithm for sampling the canonical distribution 

has difficulties dealing with the problem of quasi-ergodicity associated with complex 

potential energy landscapes. Recently, considerable progress has been made in 

developing efficient sampling algorithms for dealing with this problem. The parallel 

tempering algorithm has been used extensively as a means of improving sampling. 

However, it suffers from the need to use an increasing number of temperatures with 

increasing system size. The details of the parallel tempering algorithm were given in 

Chapters 1 and 2.    

This chapter, describes an effective hybrid scheme for combining parallel 

tempering Monte Carlo and Tsallis generalized statistics. As mentioned in Chapter 1, 

Tsallis statistics employ more delocalized potential energy distributions than does 

sampling from the Boltzman distribution. Thus, the hybrid scheme might be expected to 

give improved convergence. The strategy is similar in spirit to work of Sugita et al., who 

introduced a parallel tempering multicanonical algorithm89,90. Whitfield et al91. and Jang 

et al92. have previously combined parallel tempering with Tsallis statistics. In both their 

approaches, each replica at a specified target temperature is run with different q values. 

Exchanges of configurations are allowed between simulations with different q values but 

at the same T. Our hybrid scheme is an extension of the original parallel tempering Monte 

Carlo, with sampling being done in the Tsallis generalized ensemble at different 

temperatures, and the exchange of configurations between different replicas 

 45



(temperatures) being permitted. Results for the canonical ensemble are obtained by using 

the histogram reweighting to transform between ensembles. 

Four different approaches – parallel tempering Tsallis statistics, parallel 

tempering Monte Carlo, Metropolis Monte Carlo, and Tsallis statistics based Monte 

Carlo - are applied to a 1D model potential and to the LJ38 cluster. 

The 38-atom Lennard Jones (LJ38) cluster has a global minimum with an Oh 

symmetry FCC-like structure followed by a C5v symmetry icosahedral isomer lying only 

slightly higher in energy, see figure 3.2.  These two minima are separated by a 

complicated rearrangement pathway with a high overall barrier. The funnel leading to the 

C5v potential energy minimum is much broader than that leading to the FCC minimum,85 

and, as a result, it is difficult to locate the global minimum starting from an arbitrary 

structure and to achieve equilibrium in low temperature Monte Carlo simulations. For 

these reasons the LJ38 cluster has proven to be a valuable system for testing global 

optimization and Monte Carlo simulation algorithms.71,93-95 Figure 3.1 shows the 

disconnectivity diagram of LJ38.74 This diagram helps convery a sense of the complexity 

of the potential energy surface of LJ38.  

The LJ38 cluster, with parameters appropriate for Ar, and referred to here as Ar38, 

has been employed by Neirotti et al.,71 Calvo et al.,94 and Frantz29 to demonstrate the 

utility of parallel-tempering Monte Carlo (PTMC) procedure34,96-98 for achieving 

equilibrium in systems prone to quasiergodic behavior. The heat capacity curve of Ar38 as 

treated classically has a pronounced peak near T = 20 K due to cluster melting and a 

weak shoulder near T = 15 K due to the FCC  icosahedral transition. Traditional Monte 

Carlo simulations with Metropolis sampling6 are unable to properly characterize the Ar38 
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cluster at temperatures in the vicinity of the latter transition. Neirotti et al. were able to 

overcome this problem by use the PTMC procedure in which Monte Carlo simulations 

are carried out for a range of temperatures and exchanges of configurations between 

different temperature simulations (replicas) are permitted. The PTMC simulations of 

Neirotti et al. employed 32 temperatures (from 0.5 to 30 K), an equilibration period of 

2.85x108 moves, and production cycles of 1.3x1010 moves at each temperature. Most 

moves for each replica were carried out using the Metropolis algorithm. An exchange of 

configurations between replicas at adjacent temperatures was attempted every 380 

moves.  PTMC simulations starting from the global minimum and from a randomly 

generated structure were found to give similar heat capacity (Cv) vs. T curves. 

In testing a generalized ensemble PTMC algorithm, described below, we found 

that equilibration of Ar38 is much harder to achieve when starting the simulation from the 

C5v minimum than from the global minimum. This led us to reexamine the convergence 

of traditional PTMC simulations of Ar38 starting from both the FCC global minimum and 

the C5v local minimum. In addition, we present results obtained using a parallel 

tempering Monte Carlo algorithm based on Tsallis statistics12-14 (PTTS).  

3.2. Methodology 

3.2.1. PTTS algorithm 

In the Tsallis generalized ensemble25-28 the entropy is defined as 

1

)(])(1[ 1

−

−
=

−∫
q

rprpdr
kS

N
Tsallis

qN
Tsallis

N

Bq ,           (3.2) 

with the constraints  
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where q is a parameter greater than 1. 

The generalized probability is defined as  

)1/(1)]()1(1[1)( qN

q

N
Tsallis rEq

Z
rp −−−= β ,                      (3.4) 

where  

)1/(1)]()1(1[( qNN
q rEqdrZ −∫ −−= β .                (3.5) 

When q  1, the Tsallis distribution becomes the Boltzmann distribution.  

The PTTS procedure carries out parallel tempering simulations with Tsallis 

weight functions. The implementation of the algorithm is similar to that of PTMC. The 

configurations are sampled with the distribution  using the effective energy  qN
Tsallis rp )]([

                                                                                                                         (3.6) )],

 

((ln[ Eqq
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)1( 0E
q

Eeff −β

where E0 is chosen so as to lie below the energy of the global minimum. 

The probability of acceptance of moves within individual replicas in the PTTS 

algorithm is given by the usual Metropolis criterion 
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and that for exchanges of configurations between replicas m and n, is given by 
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where                                                                                                                            (3.8) 
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3.2.2. Reweight technology 
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Since the PTTS and TS simulations are carried out in a generalized ensemble, it is 

essential to transform back to the canonical ensemble in order to obtain physically 

meaningful values for the potential energy, heat capacity, and other properties of interest. 

This is accomplished by histogram reweighting. In the histogram method, the frequency 

of observing a energy range between bin is recorded which denoted H(E). E is the media 

value f the energy range in the bin.  The probability of observing a particular value E is 

given by 

EeEW
Z

EP β−= )(1)( ,             (3.9) 

where β=1/(kT), Z is the partition function, and W(E) is the number of states with energy 

E.  

If we generate Nc configurations, the expectation value of the number of 

occurrences of E  is given by  

E
c eEWZNEH β−−= )()( 1                                     (3.10) 

so 

EZeEHEW β)()( = .                                                                                        (3.11) 

Still consider the energy, the sampling over generalized Tsallis statics ensemble can be 

reweight as: 
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where Eeff is the effective energy is the Tsallis statistics. 

The histogram procedure is very simple to implement, however the sum over all 

energy levels can result in overflows. This problem can be solved by the strategy of Ref 
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5, in which the terms in equation 3.12 are calculated using logarithms. The basic idea is: 

if  l1 and l2 are the logarithms of two numbers x1 and x2, and that l1 ≥ l2, then the logarithm 

of the sum x1 + x2 is 

).1log())1(log()log()log( 1212121
121

lllllll eleeeexx −− ++=+=+=+                       (3.13) 

3.3. Computational details 

3.3.1. 1D model potential 

We wish to compare the rates of convergence of parallel tempering Monte Carlo 

(PTMC), parallel tempering Tsallis statistics (PTTS), Metropolis Monte Carlo (MMC) 

and Tsallis statistics (TS). To accomplish this, we employ a 1D-model potential as a test. 

Since the exact distribution can be calculated analytically for the model potential, the 

ergodicity can be readily monitored throughout the simulation. The potential energy 

function used is  

∑
=

−−−−+− +−−−=
4

1

)3(3)2(3)8(100 )10/2sin(100.505.470.50)(
222

n
n

xxx xnCeeexV π ,  

(3.14) 

where x belongs to (-10, 10) and C1, C2, C3, C4 are chosen to be -0.466516, -0.834376,                 

-0.714529, and -0.0245586, respectively. A plot of the potential energy function is shown 

in Figure 3.3,  from which it is seen that it has two low-lying minima of almost the same 

energy, one with a narrow funnel (global minimum) and one with a broad funnel.  

The exact distribution is calculated explicitly from the formula: 

∫ −
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The numerical distribution corresponding to a simulation of length steps is 

denoted by ).;( stepsxnumρ  The ergodicity during the simulations is calculated using  

∑
∑ −
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2

2

)]([

)]();([
)(

ρ

ρρ
χ .                                            (3.16) 

The simulations were carried out at temperatures of 24.0, 6.0, 1.5, 0.375, and 

0.09375. In the PTMC and PTTS simulations exchanges between adjacent temperatures 

were attempted every 500 moves. The highest temperature used, 24.0, is high enough to 

avoid trapping even in the Metropolis MC simulations (as seen from Fig. 3.3). All 

simulations were carried out for 108 moves at each temperature. The maxima step sizes of 

the various simulations (MMC, TS, PTMC and PTTS) were adjusted to maintain a 50% 

acceptance ratio during the simulations. The q values in the Tsallis statistic and parallel 

tempering Tsallis statistics have been set to 1.1. 

3.3.2. PTMC simulations of Ar38 

The PTMC simulations of Ar38 carried out in the present study used the same 32 

temperatures employed by Neirotti et al. Every 38th move an exchange of configurations 

from replicas at adjacent temperatures (Ti and Ti+1) was attempted, with Ti also being 

selected at random. This gave an attempted exchange rate of once every 38 x 31 moves, 

approximately three times less frequent than that used in the study of Neirotti et al. The 

remaining moves involved attempted displacements of individual atoms, selected at 

random and with acceptance/rejection being based on the Metropolis procedure. In 

carrying out PTMC simulations on cluster systems it is essential to exclude evaporative 

events. This was accomplished in the present study by using a constraint sphere with a 

radius of 8.5 Å. The maximum step sizes for the production runs were determined from 
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preliminary PTMC simulations in which the maximum step sizes were adjusted so that 

about 50% of the moves were accepted in each replica. 

To monitor convergence, the simulations were carried out for different length 

equilibration periods, followed by production runs comprised of 109 move blocks. The 

equilibration periods ranged from 0.4x109 to 6.4x109 moves. The heat capacity for each 

simulation was calculated using  

)(1 22
2 EE

kT
Cv −= .                                                                             (3.17) 

For each replica, every millionth configuration was saved for subsequent analysis.   

3.3.3. PTTS simulations of Ar38 

In our application of the PTTS algorithm we used the same temperature grid as 

employed for the PTMC simulations. Evaporative events were again excluded by using a 

8.5 Å constraint sphere. After completion of the simulation, the energies were reweighted 

by using the histogram method99 to transform back to the canonical ensemble. 

Hansmann et al.100 recommended choosing q = 1+1/N, where N is the number of 

degrees of freedom, in the system of interest. In the case of Ar38 this would give q = 

1.009. However, we were unable to achieve well converged results for our PTTS 

simulations of Ar38 with a q value this large, and we adopted instead q = 1.001. 

 

3.4. Results 

3.4.1. 1D model potential 

Figure 3.4 and 3.5 plot the ergodicity curves for the simulations carried out on the 

1D model potential at different temperatures. The simulations were started from a 
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random position between x = 0 and x = 10, which are around the broad energy funnel. 

The distributions during the simulation are calculated using the histogram method. A 

total of 10,000 bins are used along the x axis, giving a bin size of 0.002. For T = 24 all 

simulation methods rapidly achieve equilibrium. At T = 0.094, neither Metropolis Monte 

Carlo nor Tsallis statistics sampling is able to achieve equilibrium even after 108 steps. In 

particular, in this case the system remains localized in the broad funnel, and is unable to 

sample the deeper, narrow funnel. In contrast, both PTMC and PTTS sample the 

Boltzmann distribution with a relative error of less than 1% even for s as short as 5x105 

moves. For simulations longer than about 1x107 moves, PTTS performs significantly 

better than PTMC.  

3.4.2. PTMC simulations of Ar38 

Figures 3.6 and 3.7 report the heat capacity curves obtained from the PTMC 

simulations initiated from the Oh and C5v minima, respectively. The various curves were 

obtained from simulations with production periods of 1x109 moves, and with 

equilibration periods ranging from 0.4x109 to 6.4x109 moves. The curves from the 

simulations starting from the global minimum (Fig. 3.1) are in fairly good agreement 

with one another, with the greatest sensitivity to the length of the equilibration period 

being for temperatures near 12 K, i.e., in the vicinity of the Oh  icosahedral 

transformation.  The agreement in this case is even better if we consider only the 

simulations with equilibration periods of 3.4x109 or more moves. The remaining small 

spread in the heat capacity curves near T = 12 K reflects the need for use of longer 

production runs.  
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From a comparison of Fig. 3.6 and 3.7 it is seen that the agreement between the 

heat capacity curves from the various simulations started from the C5v minimum is much 

poorer than that found between the heat capacity curves from the various simulations 

started from the Oh minimum.  In particular, when starting from the C5v minimum, the 

simulations employing equilibration periods of 0.4x109, 1.4x109, and 2.4x109 moves 

display a spurious peak at temperatures below that anticipated for the Oh  icosahedral 

transformation.  This peak is especially pronounced in the simulation with an 

equilibration period of only 0.4x109 moves, where it appears near 3 K. The spurious peak 

moves up in temperature and decreases in height as the equilibration period is increased, 

approaching the physically meaningful shoulder near T =12 K for equilibration periods of 

3.4x109 or more moves. However, even when using these longer equilibration periods, 

the heat capacity curves from the various simulations show more scatter, especially in the 

region of the Oh  icosahedral transformation, when starting from the C5v than from the 

Oh minimum. This indicates that the need for a longer production period is more acute 

when starting the simulation from the C5v minimum.   

Figure 3.8 displays heat capacity curves obtained from PTMC simulations starting 

from the global minimum and from the C5v minimum, with equilibration periods of 

3.4x109 moves and averaging over four consecutive blocks of 1x109 production moves.  

The two heat capacity curves are in close agreement with one another as well as with that 

published previously by Neirotti et al. even in the region of the shoulder due to the Oh  

icosahedral transformation. However, the agreement is deceptive as is revealed by 

comparing with the results obtained from still longer simulations with averages 

calculated using the configurations sampled in the moves between 7.4x109 and 11.4x109 
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and between 11.4x109 and 17.4x109. For the case that the simulations were started from 

the global minimum, the resulting heat capacity curves are nearly identical to that 

obtained by averaging over the configurations sampled over the moves 3.4x109 to 

7.4x109 and which is shown in Fig. 3.8. On the other hand, in the case that the 

simulations were started from the second lowest energy minimum, the heat capacity 

curve obtained by averaging over configurations sampled in the 7.4x109 to 11.4x109 

range of moves is much more pronounced than that reported in Fig. 3.8, whereas that 

obtained by averaging over moves in the 11.4x109 – 17.4x109 range is similar to that 

reported in Fig. 3.8. These results show that very long production runs are required to 

achieve convergence of PTMC simulations in the vicinity of the Oh  icosahedral 

transformation when starting from the C5v minimum. 

Additional insight into the origin of the difficulty in converging the PTMC 

simulations of LJ38 when starting from the C5v minimum can be gained by determining 

the inherent structures associated with the configurations present at the end of each 

equilibration period.  The inherent structures were obtained by optimized the structures 

with the eigenmode-following algorithm as implemented in the Orient program.101  

Figure 3.9a reports for the simulations starting from the global minimum the energies of 

the resulting inherent structure at the end of various equilibration periods. The resulting 

inherent structure distributions are similar for various length equilibration periods, with 

the first ten replicas (i.e., those for the ten lowest temperatures) giving the global 

minimum and at most three of the 17 lowest temperature replicas giving an inherent 

structure other than the global minimum.  Similar results are found for the inherent 

structures populated at the end of the production runs for the simulations starting from the 
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C5v local minimum for the cases of equilibration periods of 3.4x109 or more moves. (Fig. 

3.9b)  However, in the simulations with equilibration periods of 2.4x109 or fewer moves, 

fewer low-temperature replicas have inherent structure associated with the global 

minimum at the end of the equilibration runs. In fact, with the equilibration period of 

only 0.4x109 moves, only the lowest temperature replica is associated with the global 

minimum inherent structure at the end of the equilibration. As the production runs 

increase from 4x108 to 3.4x109 moves, the number of low-temperature replicas associated 

with the global minimum at the end of the run increases.  The spurious low-temperature 

peak in the heat capacity curve in the simulations starting from the second lowest energy 

minimum structure and with equilibration periods of less than 3.4x109 moves, is a 

consequence of the global minimum structure not being adequately sampled in the 

equilibration runs in the low-temperatures replicas. In these cases, during the course of 

the production runs, there is a shift in the population in the low temperature replicas from 

minima in the icosahedral funnel to the Oh funnel. This shift in population is responsible 

for the spurious low-temperature peak in Cv. While this problem could be overcome by 

use of very long production cycles, this is less computationally efficient than using 

equilibration runs of adequate length. 

We next examine the distributions of inherent structures obtained from the 

production runs associated with PTMC simulations starting from both the global 

minimum structure as well as from the C5v minimum. Fig. 3.10 shows the distributions 

obtained for the simulations started from the C5v local minima, using production runs of 

1x109 moves, and employing various length equilibration periods. For each simulation, 

every millionth configuration was saved and optimized to its inherent structure. It is clear 
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from the results reported in this figure that the simulations using equilibration periods of 

only 1.4x109 and 2.4x109 moves are far from converged.  

Fig. 3.11 reports the distributions of inherent structures from simulation starting 

from the Oh and C5v minima, and carried out for equilibration periods of 3.4x109 moves 

and production periods of 4x109 moves. The inherent structure distributions from these 

two simulations are nearly identical although, as pointed out above, simulations starting 

from the second lowest energy minimum are not actually converged. The population of 

low-energy structures associated with the icosahedral funnel grows rapidly as the 

temperature increases from about 10 K, and reaches a maximum around 18 K.  

Interestingly, both the third and fifth lowest energy isomers of Ar38 acquire considerably 

more population than does the second-lowest energy (C5v) isomer. At T = 18.5 K, 65% of 

the total population is associated with the four-lowest energy inherent structures 

associated with the icosahedral funnel.  

3.4.3. PTTS simulations of Ar38 

Figure 3.12 shows the heat capacity curves obtained from the PTTS simulations 

of Ar38 initiated from the second lowest energy minimum. The equilibration periods 

ranged from 0.4 to 3.2x109 moves and the production cycles were either 1.0x109 or 

0.6x109 moves. PTTS simulations with an equilibration period as short as 2.0x109 moves 

and a production period as short as 0.6x109 moves, give a nearly converged Cv vs. T 

curve, with the exception being that the shoulder near 12 K is slightly more pronounced 

than found from the PTMC simulations starting from the global minimum. Upon adoption 

of an equilibration period of 3.2x109 moves, while remaining a production period of only 

0.6x109 moves, the low-temperature shoulder is attenuated, bringing it more in line with 
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the results from the PTMC simulations starting from the global minimum structure. The 

more rapid convergence of the PTTS simulations compared to the PTMC simulations 

may be a consequence of the broader potential energy distributions associated with the 

former. 

3.5. Conclusions 

The present study demonstrates that it is much more difficult to achieve 

equilibrium in PTMC simulations on the Ar38 cluster when starting from the second 

lowest energy minima than when starting from the global minimum.  Although not 

discussed in the text, we have also found that simulations starting from the third lowest 

energy minimum, which like the second lowest energy isomer is associated with the 

icosahedral funnel, also require long production and equilibration periods to achieve 

convergence.  We anticipate that this is also the case for other low-energy minima 

associated with the icosahedral funnel.  It is known from the work of Wales and Doye102 

that starting from an arbitrary structure it is easier to locate the C5v than the Oh minimum 

of LJ38.  Based on the results of the present study, we conclude that it is more difficult to 

escape from the C5v minimum than from the Oh minimum. This is consistent with the 

finding of Wales,103 who, using information on the minima and transition states of LJ38, 

calculated  rates for escaping from these two minima, and is a consequence of the Oh 

minimum being associated with a narrow funnel and the C5v minimum with a broad 

funnel on the potential energy surface.  Thus the LJ38 cluster with the initial configuration 

chosen to be a minimum in the icosahedral funnel should serve as a valuable test case for 

new Monte Carlo simulation algorithms. 
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A new algorithm combining parallel tempering Monte Carlo and Tsallis statistics 

is introduced and tested on a 1 – dimensional model potential and on LJ38. The model 

potential results demonstrate significantly better convergence of the PTTS algorithm than 

for the PTMC algorithm. The PTTS algorithm also displays improved convergence in the 

case of LJ38. Further work is needed to determine whether this hybrid algorithm will in 

fact require fewer temperatures than does the PTMC algorithm. 
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Figure  3.1 Disconnectivity diagram of Ar38.  
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Figure  3.3 One-dimensional potential energy V(x) vs. position x and the analytical distributions ρ1 and ρ2 at 
T = 24 and 0.094, respectively. 
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Figure  3.4 Ergodicity of the various simulation methods for the one-dimensional model and T= 0.093. 
MMC denotes Metropolis Monte Carlo algorithm, TS denotes Tsallis statistics, PTMC denotes parallel 
tempering Monte Carlo, and PTTS denotes parallel tempering Tsallis statistics. 
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Figure  3.5 Ergodicity for the various simulation methods for the one-dimensional model at different 
temperatures. MMC denotes Metropolis Monte Carlo algorithm, TS denotes Tsallis statistics, PTMC 
denotes parallel tempering Monte Carlo, and PTTS denotes parallel tempering Tsallis statistics.  
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Figure  3.6 Heat capacity vs. T of Ar38 from PTMC simulations starting from the global minimum isomer. 
All production runs were carried out for 1 billion moves. Equilibrium periods ranged from 0.4 to 6.4x109. 
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Figure  3.7 Heat capacity vs. T of Ar38 from PTMC simulations starting from second lowest energy 
minimum isomer. All production runs were carried out for 1 billion moves. Equilibrium periods ranged 
from 0.4 to 6.4x109.
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Figure  3.8 Heat capacity vs. T of Ar38 from PTMC simulations starting from the global minimum and from 
the second lowest energy isomer. The equilibrium periods were 3.4x109 moves, and the production runs 
were carried out for 4x109 moves. 
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Figure  3.9 Inherent structures at the end of various length equilibration periods for PTMC simulations of 
Ar38: (a) starting from the global minimum, (b) starting from the second lowest energy minimum. The 
number of moves in each equilibration period is specified in the figure. 
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Figure  3.10 Inherent structure distributions from PTMC simulations of Ar38 starting from the second lowest 
energy minimum. Simulations were carried out with a production period of 1×109 moves and differ in the 
length of the equilibrium period. The inherent structures are labeled as follows: E = -41.821 (■), -41.659 
(●), -41.630 (▲), -41.588 (▼), -41.569 (♦) and > -41.569 kcal/mol (+). The inherent structures with 
energies of -41.821 and -41.659 kcal/mol are the global minimum and the second lowest energy minimum, 
respectively. 
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Figure  3.11 Inherent structure distributions from PTMC simulations of Ar38 starting from: (a) the global 
minimum and (b) the second lowest energy minimum. The simulations were carried out with an 
equilibration period of 3.4x109 moves and production runs of 4x109 moves. The inherent structures are 
labeled as follows: E = -41.821 (■), -41.659 (●), -41.630 (▲), -41.588 (▼), -41.569 (♦) and > -41.569 
kcal/mol (+). 
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Figure  3.12 Heat capacity vs. T of Ar38 from PTTS simulations starting from the second lowest energy 
minimum. Equilibration periods ranged from 0.4x108 to 2.6x109 moves, and production periods were 1x109 
moves for the case of an equilibration period of 0.4x108 moves and 0.6x109 moves in the other four cases. 
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4. Chapter 4 The application of Wang-Laudau free random walk algorithm on 
Ar cluster 

4.1. Introduction 

Simulations of systems with rough potential energy surfaces pose considerable 

challenges. Examples include high-density or low-temperature liquids, polymers, and 

proteins, for which the simulation is prone to be trapped in potential energy minima for 

large numbers of simulation steps. As mentioned in Chapter 1, numerous techniques have 

been proposed to overcome the quasi-ergodicity problem associated with rough 

landscapes and high energy barriers between energy minima. Techniques such as parallel 

tempering and multicanonical Monte Carlo have proven to be valuable. Multicanonical 

Monte Carlo simulations sample broad phase space by (ideally) using a uniform energy 

distribution. The trapping into energy minima can be artificially eliminated by assigning 

“weight” to different energy states. However the weight factors are not known so the 

multicanonical computation often requires tedious iterative calculations to get a good 

estimate of the weight factors. 

As we have mentioned in Chapter 1, the Wang-Landau method directly and self-

consistently determines the density of states by performing a random walk in the energy 

space. The WL algorithm has attracted a lot of attention, and it has been applied to 

biological systems and to quantum Monte Carlo calculations. The application of WL 

algorithm is very straightforward. The algorithm is also parallizable. Rathore et al.104 

have combined the WL algorithm and the parallel tempering scheme in their studies of 

the α-helix-coil and β-sheet-coil transitions of a designer peptide. Several new 

approaches105,106 based on modifications of the WL algorithm have been published 

recently. 
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4.2. Method 

The implementation of free random walk begins with a guess for the density of 

states, e.g., g(E)=1, initially for all states. g(E) is  improved  by the following procedure: 

1) Initialize conversion factor f0 to a large number. In the original papers of Wang et 

al.54,55 the value of the conversion factor was initially assigned as e = 2.718. 

Initialize all the density of states to 1.  

2) Do Monte Carlo simulations, with trial Monte Carlo moves accepted with 

probability: 

)
)(
)(

,1min(
j

i
ji Eg

Eg
P =→                                                                                     (4.1) 

3) After each trial move, update the energy histogram and density of states. The 

density of states is updated by 

fEgEg ⋅= )()(                                                                                          (4.2) 

If the move is accepted, the density of the accepted energy level is updated. 

Otherwise, the density of the old energy level is updated. 

4) Check if the energy histogram is flat. If it is not flat, go back to 2). If it is flat, 

update the converter using ii ff =+1 , reset the energy histogram entries to zero, 

and start a new iteration of the free random walk in energy space. 

5) Stop the simulation if f is close enough to 1. 

Using the resulting density of states, the internal energy and heat capacity can be 

calculated by: 
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4.3. Simulation details 

The WL free random walk algorithm was originally tested to investigate  phase 

transition of the Ising model54. After that, a number of groups have applied this method to 

applications include protein,107 polymer films.108,109 Thus far there is no report of the 

application of the WL algorithm to investigate the thermodynamic properties of clusters.  

One of the most intriguing aspects of this approach is that density of states can be 

used to obtain an estimate of the entropy. In this chapter, the WL free random walk 

algorithm is applied to the Ar13 and to the much more complicated Ar38 cluster. 

The thermodynamic properties of Ar13 have been explored with a wide range of 

algorithms.30,33,91 The system is defined by Lennard Jones interactions. In our 

simulations, a constraint sphere of 5 Å has been applied to the cluster. A single atom of 

Ar is chosen at random and moved to a new position. The maximum step size is 0.5 Å. 

The energy of the trial system is calculated and the probability of accepting the move is 

based on equation 4.1. The system is allowed to move in the energy range of -10.7 

kcal/mol to 0 kcal/mol. A total 50 bins were used to divide up the energy range. 

The free random walk algorithm was also applied to Ar38. In this case the 

constraint sphere was chosen to be 8.5 Å. The energy range in the simulation is from -

41.3 kcal/mol to -30 kcal/mol. The energy range was binned with a bin-size of 0.2 

kcal/mol. For the Ar38 cluster it is difficult to get a flat energy distribution, at least when 

using single atom moves. Since the system is allowed to move freely in the energy space, 

the acceptance ratio is proportional to the density of states. If the energy of a newly 

generated configuration fills within an energy bin which has not been visited before, the 

move will definitely be accepted. However, randomly generating configurations at the 

low energies is much more difficult than at high energies, particularly for the systems 
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with sharp funnels in their potential energy surface. A second approach has been tested 

for updating configurations. A pivot (reflection point within the constraint sphere) was 

randomly chosen, then the atoms within the distance of 3.5 Å of the pivot are subject to a 

reflection with respect to the pivot. The group and reflection method for updating the 

configurations has been applied in the geometric cluster algorithms developed by Luijten 

et al.110 Such multiple-moves are very useful in some cases since they keep the basic 

interactions within the group (e.g., in the water cluster, the reflection would retain 

hydrogen bonds within the group). 

Even with the geometry group scheme to update the configurations, it is still not 

possible to get a flat energy distribution in the region of the global and second lowest 

energy minima. In the simulation of Ar38, The energy range to do free random walk is -

41.3 kcal/mol to -30 kcal/mol. 

4.4. Results and discussion 

Figure 4.1 compares the heat capacity curve of Ar13 calculated using WL 

algorithm and with jump walk Monte Carlo method. It has been established that jump 

walk algorithm is suitable for Ar13 system33. 16 temperatures were used in the jump-walk 

Monte Carlo simulations. Overall there is a fair agreement between the heat capacity 

curves calculated using the two approaches. WL simulations are much faster to converge 

and do not depend on the spacing of the temperature grid. Basically you can calculate any 

thermodynamic properties at any temperature in the free random walk algorithm. 

However for Ar38 the heat capacity curve calculated using the free random walk 

procedure is only in fair agreement with the PTTS curve depicted earlier. Figure 4.2 

compares the heat capacity curve of Ar38 calculated using WL algorithm and PTTS 
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method. The heat capacity shows a small bump at the temperature 15 K but the shape of 

the heat capacity curve is not correct.  

 

 

 

 

16 
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Figure  4.1 Heat capacity vs. temperature curves of the Ar13 cluster. The blue line denotes the result obtained 
using the WL algorithm, the purple line denotes results obtained using the jump walk algorithm. 
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Figure  4.2 Heat capacity vs. temperature curve of Ar38 obtained using the WL algorithm and PTTS 
algorithm. 
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Appendix A 
 

Computational study about the stereochemistry of the cyclization of a secondary 
alkyllithium 

 

I. Introduction 

Intramolecular carbolithiation has provided an efficient means for the 

construction of 5 or 6-membered carbocycles and their heterocyclic analogs.1-3  The 

attraction of this methodology lies in the high stereo selectivity when carbon carbon bond 

is being formed and the possibility of trapping the resulting cyclized organolithium with 

various electrophiles to introduce diverse functionality into the cyclized products.  It has 

been established that reductive lithiation of phenylthioether is a general method for the 

generation of organolithiums and an in depth study about its use in intramolecular 

carbolithiation has been reported4. Most interestingly, secondary alkyllithium cyclization 

(I, Scheme 1) is highly stereoselective with trans to cis ratios as high as of 40:1. Bailey 

observed similar trend but with lower yield in his study of the cyclization of the same 

secondary alkyllithium (I) generated from halogen–lithium exchange.5 In examining the 

molecular model, the presumed transition state structure shown as III in Scheme 1 would 

lead to cis product. When the C-Li bond is parallel to the remote C=C double bond, the 

methyl has to locate in a pseudoaxial position, which will cause some steric problem with 

the vinyl hydrogen on inner carbon of the olefin.  On the contrary, putting the methyl 

group on the pseudoequatorial position, which has no such steric effect as discussed 

above, would lead to the cis product (IV).  Since the experimental results show that trans 

product is predominant one, it is of interesting to see the reasoning why trans product is 

formed instead of cis one.  In his study of similar secondary alkylmagnesium cyclization, 
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Richey has proposed late transition state for his reaction to explain the high trans 

selectivity in his reaction (trans/cis=10:1 in his case).6 However, it will be interested to 

the synthetic community by doing calculations to explain the high trans selectivity in our 

secondary alkyllithium cyclization. Since THF is used as the solvent for the reaction and 

THF is known to be lithiophilic, it will be of interesting to examine the solvent effect. 

 

Li

Li

(I) (II)

Li

Li

(III) (IV)

?

 

Scheme 1 Secondary alkyllithium Cyclization  

II. Computational details 

Calculations employing the B3LYP hybrid density functional method7-9  were 

used to investigate the mechanisms of secondary cabanionic cyclization depicted in 

Scheme 1. Geometry optimization of all reactants, products and transition states were 

carried out using the 6-31+G(d) basis set10. Transition states were located using the 

synchronous transit-guided quasi-Newton method of Schegal (QST3). Harmonic 

frequency calculations were performed to establish the nature of  each stationary point, to 

calculate vibrational zero-point energy corrections, and to estimate free energies at the 

reaction temperature -78 °C. All calculations were carried out using Gaussian 038. 

The experiments were carried out in THF at -78 °C.  Initially the solvent effect 

was included through the polarizable continuum model (PCM)11,12. However, it is very 
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likely under these experimental conditions the Li+ ion is coordinated by THF molecules. 

In order to investigate the importance of such coordination, calculations were also carried 

out with inclusion of one or two THF molecules. Reactants, products and transition states 

coordinated with one or two THF molecules are indicated by (thf) n (n=1, 2) in the figures 

and tables.  

III. Result and Discussion 

The optimized minima and transition states are depicted schematically in Figures 

1-3. Detailed structural parameters and energies for all the structures are reported in the 

supporting information. The energies, ZPE’s, and free energy corrections of reactants, 

transition states, and products are reported in tables 1-3. 

The cyclohexane chair-like reactants are actually intermediates with the stability 

derived from interaction of the Li+ with the π bond13,14. There are cis and trans 

coordinated complexes. The reaction is racemic so both cis- and trans-complexes contain 

mirror image structures. As can be seen from the data summarized in Figure 1, the 

energies of cis reactant and trans reactant are very close with the cis-complex calculated 

to be only 0.50 kcal/mol lower in energy.  The greater stability of the cis complex appears 

to be due to the less steric effects. There are a number of short, non-bonded hydrogen-

hydrogen and carbon-hydrogen interactions present in the trans intermediate complex 

caused by the pseudoaxial methyl group.  

The trans product is predicted to be 3.0 kcal/mol more stable than the cis product 

as a consequence of steric effects of the cis product involving the methyl substituent and 

the –CH2Li on the cyclopentane ring.   
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First, the theoretical study of gas phase pathways leading to cis and trans product 

are conducted.  The transition state search gives a chair-like transition state for the cis 

reaction path.  However, two transition states, one chair-like and the other twisted, are 

found to lead to the trans product. In the twisted transition state, the methyl group 

connected to C6 is in the equatorial plane, while in the chair-like transition state it is in 

the pseudoaxial position. The twisted transition state is calculated to be about 0.18 

kcal/mol lower in energy than the chair-like transition state for the trans pathway.  The 

transition state on the cis pathway is calculated to be 0.14 and 0.52 kcal/mol lower in 

energy than the trans (twisted) and trans (chair-like) transition states, respectively. 

Hence, the theoretical results for the gas phase pathways do not account for the highly 

trans/cis ratio (40:1) observed in the experiments.  

The solvent effect was included by performing single point calculations on the 

optimized structures of the minima and transition states with PCM model of THF solvent. 

The results show almost no changes in the reaction activation energies and can’t explain 

the experiment results either.  

We now consider the results of the calculations including explicit THF molecules. 

Calculations about the effect of THF molecules on the reaction pathways are rare in the 

literature.  Piffl et al15 published their study on THF coordination with the sulfur-

stabilized allyllithium compounds both in NMR study and theoretical calculations.  Our 

study about the THF effect on the reaction pathways is shown in Figures 2 and 3, which 

depicted the optimized structures of the THF-containing complexes as well as the total 

energies with zero-point energy and free energy corrections.  From these figures, it can be 

seen that the C2-Li and C6-Li distances increase as a result of the coordination of THF. 
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The coordination of THF with Li+ weakens the interaction of Li with the π bond as well 

as the carbon-lithium bond. A single THF molecule cause a stabilization of the chair-like 

trans transition state relative to the twisted trans and cis transition states. In the chair-like 

trans transition state the two rings lie roughly in the same plane, minimizing the H-H 

non-bonded interactions. However, in the chair-like cis transition state and twisted trans 

transition state, the dihedral angles of the THF ring and the transition state ring are about 

150°.  This flipping up of THF ring is due to the existence of the equatorial methyl group 

connected to C5. With one THF molecule, the activation energy of the trans pathway is 

2.65 kcal/mol below that in the cis pathway which would lead to over a 99% selectivity 

for the trans product, well matching the experimental results. 

The net binding energy of two THFs with reactant complex is calculated to be 

about 18 kcal/mol.  The energy of the trans reactant complex is now calculated to be 

1.679 kcal/mol less stable than the cis complex.  The activation energies of all three 

pathways for two THF molecules are greater compared with one THF. However at 

temperature -78°C, the ∆H for evaporation is -9.05 kcal/mol. It appears that the second 

THF would prefer to stay in the solvent rather than  coordinate with Li+ . Probably it is 

rare for two THF molecules to coordinate with one Li+ at the same time. So this reaction 

pathway will not be very likely happened in the real system.   

IV. Conclusions 

The lithiophilic solvent THF plays an important role in the high steroselectivity 

reaction of secondary alkyllithium cyclization.  Steric effects have been shown to have a 

major influence on the selectivity of this reaction. Quantum mechanical calculations 

about the coordination of one THF molecule with Li+ can be used to explain the 
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experimental results very well.  THF is a principal member of the class of dipolar aprotic 

solvent, which serves as ideal media for a variety of important chemical reactions. The 

strong interaction of THF with Li+ and the steric effect caused by THF is believed to 

increase the selectivity of the cyclization reaction and even change the reaction pathway.  
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    Cis-
complex 

Trans-
complex 

Cis-TS(chair) Trans-
TS(twist) 

Trans-
TS(chair) 

Cis-prodcut Trans-product

HF energy -282.06134       -282.06084 -282.04964 -282.048355 -282.04857 -282.72592 -282.07551

Zero-point correction 0.18211       
       

       

        

0.18231 0.18314 0.18228 0.18281 0.18478 0.18418
Sum of electronic and thermal Free 

Energies 
-281.89888 -281.898085 -281.88539 -281.885175 -281.88474 -281.90703 -281.91108

detaG(kcal/mol) 8.464 8.101(twist)
8.369(chair) 

5.113 8.152

deta(detaG)(/kcal/mol) 0.363 3.039

  
Table 1 Calculated B3LYP/6-31+g(d) Energies of reaction is gas phase. (Structures are depicted in Figure 1) 

The units of energy in the table are Hartree if not specified. 1H = 627.51 kcal/mol. 
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Cis-

complex-
THF 

Trans-complex-
THF 

Cis-TS(chair)-
THF trans-TS(twist) Trans-TS(chair)-

THF 
Cis-product-

THF 
Trans-

product-
THF 

HF energy -514.547115       
       

       

     

       

-514.546865 -514.53132 -514.53421 -514.53513 -514.56442 -514.56818
Zero-point correction 0.30104 0.30093 0.30128 0.30093 0.30134 0.30358 0.30321

Sum of electronic and thermal Free 
Energies -514.271859 -514.271634 -514.255691 -514.25867 -514.25969 -514.28716 -514.29188

detaG(kcal/mol) 10.145 7.492 (chair) 
8.135(twist) 

deta(detaG)(kcal/mol) 2.653

 
Table 2 Calculated B3LYP/6-31+g(d) Energies of reaction with 1 THF. (Structures are depicted in Figure 2) 

The units of energy in the table are Hartree if not specified. 1H = 627.51 kcal/mol. 
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 Cis-complex-
2THF 

Trans-complex-
2THF 

Cis-
TS(chair)-

2THF 

Trans-
TS(twist) 

Trans-
TS(chair)-

2THF 

Cis-product-
2THF 

Trans-product-
2THF 

HF energy 
 -747.01897       

       

       

     

       

-747.01768 -746.99930 -747.00212 -747.00701 -747.04213 -747.04602

Zero-point correction 
 0.41883 0.41896 0.41965 0.41912 0.41961 0.42174 0.42135

Sum of electronic and thermal Free 
Energies -746.63247 -746.62980 -746.61069 -746.61407 -746.61914 -746.653445 -746.65820

detaG(kcal/mol) 
 13.672 6.685(chair) 

9.867(Twist) 
Deta(detaG)(kcal/mol) 

 6.987

 
Table 3 Calculated B3LYP/6-31+g(d) Energies of reaction with 2 THF. (Structures are depicted in Figure 3) 

The units of energy in the table are Hartree if not specified. 1H = 627.51 kcal/mol 
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cis-complex 

(0.0) 

 
cis TS (chair-like)  

(8.464) 

 
cis-product  

(-5.113) 

 
trans TS (chair-like) 

(8.875) 

 
trans-complex 

(0.499) 

trans TS (twist) 
(8.606) 

trans product 
(-7.652) 

 
Figure 1 Calculated reaction paths. The numbers within () denote the relative energy in 
kcal/mol.
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cis-complex with 1THF 

(0.0) 
 

cis TS with THF (chair-like) 
(10.145) 

 
cis-product-with 1THF 

(-9.603) 

trans TS with THF(chair-
like) 

(7.639) 

 
trans-complex with 1THF 

(0.141) 

 
trans TS with THF(twist) 

(8.2743) 

trans-product with 1THF 
(-12.563) 

 
Figure 2 Calculated reaction paths with 1 explicit THF molecule. The numbers within ( ) 
denote the relative energy in kcal/mol
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cis-complex with 2THF 

(0.0) 

 
cis TS with 2THF(chair) 

(13.672) 

 
cis product 
(-13.160) 

 
trans TS with 2THF(chair) 

(8.365) 

 
trans-complex with 2THF 

(1.679) 

 
trans TS with 2THF(twist) 

(11.546) 

 
trans product 

(-16.143) 

 
 
Figure 3 Calculated reaction paths with two explicit THF molecules. The numbers within 
() denote the relative energy in kcal/mol.
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Theoretical characterization of the (H2O)21 cluster 

 
Jun Cui, Hanbin Liu, and Kenneth D. Jordan* 

Department of Chemistry and Center for Molecular and Materials Simulations 

University of Pittsburgh 

Pittsburgh, PA 15260 

Abstract: In this paper, we examine theoretically the structures and energies of selected 

low energy isomers of (H2O)20 and (H2O)21, with particular attention paid to isomers 

derived from water dodecahedron. Results are reported for the Becke3LYP density 

functional and the RI-MP2 electronic structure methods, as well as for several water 

models. The calculations reveal that the global minimum structure of (H2O)21 is a water 

dodecahedron with an interior water molecule engaged in four hydrogen bonds. This 

indicates that the excess proton is not “driving” the high stability of the magic number 

H+(H2O)21 cluster, the global minimum of which is also derived from the water 

dodecahedron and has interior water molecule. 
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I. Introduction 

Over the past few years, major strides have been made in understanding of the structure 

and dynamics of water clusters.  Recently, there has been renewed interest in the 

H+(H2O)21 cluster,1-5 which appears as a magic number in the mass spectra of H+(H2O)n 

clusters6-9 over three decades ago. Searcy and Fenn proposed that the n = 21 protonated 

cluster has a structure corresponding to a water dodecahedron with an enclosed water 

monomer and the excess proton on the surface.6 Wei and Castleman, on the basis of a 

titration experiment, offered an alternative interpretation, namely that the H+(H2O)21 

cluster is comprised of a water dodecahedron with an interior H3O+ ion.7 Recently it has 

become possible to determine the vibrational spectrum of the H+(H2O)21 cluster by means 

of vibrational predissociation spectroscopy. Comparison of the measured spectrum, with 

the calculated spectra of various isomers, leads to the conclusion that the experimentally 

observed isomer is that originally proposed by Searcy and Fenn.1-3 Moreover the 

calculations indicate that the Searcy-Fenn isomer is the global minimum of 

H+(H2O)21.
1,4,5

For the neutral (H2O)20 cluster, the most stable dodecahedral isomer lies about 10 

kcal/mol above the global minimum isomer which has a pentagonal prism (PP) 

structure.10,11 This would seem to suggest that the presence of the proton is the key to the 

special stability of the dodecahedrally-derived global minimum isomer of H+(H2O)21. 

However, there is experimental data that suggests that the neutral (H2O)21 cluster itself is 

especially stable.  Specifically, Lee and Beauchamp observed a magic number at n = 21 

for the tetrabutylammonium(H2O)n
+ cluster.12 Since the charge in this mixed cluster is 

associated with the amine, this suggests that the water molecules are present as an 

(H2O)21 cluster with especially high stability. Although H+(H2O)21 and (H2O)20 have been 
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the subject of numerous theoretical studies, the neutral (H2O)21 cluster has received much 

less attention. Wales and Hodges have characterized (H2O)21 using the TIP4P water 

model13 and reported that the global minimum has a “flat” structure comprised of fused 

four- and five- membered rings,10 and hereafter referred to as TIP4P-gm(21). 

In this paper, we examine theoretically the structures and energies of selected low 

energy isomers of (H2O)20 and (H2O)21, with particular attention paid to isomers derived 

from water dodecahedron. Results are reported for the Becke3LYP density functional14-16 

and the resolvent of the identity second order Møller-Plesset perturbation Theory (RI-

MP2) electronic structure methods,17 as well as for the TIP4P effective two-body model 

potential, and for the Dang-Chang,18 AMOEBA,19 and TTM2-F20 polarizable water 

models.   

II. Computational details 

The Becke3LYP calculations were performed with both the 6-31+G(d) and aug-cc-

pVDZ21,22 basis sets, and the RI-MP2 calculations were performed using both the aug-cc-

pVDZ and aug-cc-pVTZ(-f)21,22 basis sets. The –f in the latter case indicates that the f 

functions on the O atoms and the d functions on the H atoms that would be present in the 

full aug-cc-pVTZ basis set have been omitted. The RI-MP2 calculations with the aug-cc-

pVTZ(-f) basis set were carried out using the RI-MP2/aug-cc-pVDZ optimized 

geometries. The Becke3LYP and RI-MP2 calculations were carried out using Gaussian 

0316 and Turbomole,23,24 respectively. The calculations with the TIP4P and Dang-Chang, 

AMOEBA force fields were carried out using the Tinker program,19,25-27 and the 

calculations with the TTM2-F force field were carried out using the Occident program 

from Xantheas group.20
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Clusters of the size of (H2O)20 and (H2O)21 have a very large number of low-lying local 

minima, making location of the global minimum especially challenging.10 In this work 

we adopted several strategies in searching for low energy minima. First, we selected low-

energy structures from the Cambridge Cluster Database10 which were located by means 

of the basin hopping Monte Carlo procedure28 and using the TIP4P water model. In the 

case of (H2O)21, we also built structures by adding a water molecule in the interior of the 

(H2O)20 dodecahedron. Since there are multiple isomers of this type, these structures were 

used to initialize eigenmode-following searches29-31 for other minima and as initial 

structures for use in simulated annealing calculations, carried out with molecular 

dynamics simulations and the AMOEBA force field. For (H2O)20, we also examined 

structures formed by removing one of the surface water molecule from the most stable 

dodecahedrally derived form of (H2O)21. The lowest energy structures thus located were 

used to initiate geometry optimizations with the various force fields as well as with the 

Becke3LYP and RI-MP2 electronic structure methods. 

III. Results and Discussion 

In discussing the results for (H2O)21, we focus primarily on the two isomers denoted 

TIP4P-gm(21) and DD(20,1) and depicted in Figure 1. The former is the global minimum 

located by Wales and Hodges using the TIP4P model, and the latter denotes a distorted 

dodecahedron with an interior water molecule engaged in four hydrogen bonds. The 

DD(20,1) isomer has a structure similar to the global minimum of (H2O)21 except for the 

absence of the excess proton in H+(H2O)21. Figure 2 reports for the TIP4P-gm(21) and 

DD(20,1) isomers of (H2O)21 as well as of four forms of (H2O)20 the binding energies. 

The Becke3LYP/aug-cc-pVDZ and RI-MP2/aug-cc-pVDZ calculations place the 

 101



DD(20,1) isomer energetically below the TIP4P-gm(21) isomer by 6.7 and 4.2 kcal/mol, 

respectively. The energy difference between the two isomers is 4.6 kcal/mol at the RI-

MP2/aug-cc-pVTZ(-f) level. Inclusion of corrections for vibrational zero-point energy 

(estimated at the Becke3LYP/6-31+G(d) level) further stablizes the DD(20,1) structure 

over the TIP4P-gm(21) isomer by 1.2 kcal/mol.  

At the RI-MP2/aug-cc-pVDZ level of theory the counterpoise correction for basis set 

superposition error (BSSE) is 43.1 kcal/mol for both the DD(20,1) and TIP4P-gm(21) 

isomers. The corresponding counterpoise corrections are -28.1 and -27.5 kcal/mol at the 

RI-MP2/aug-cc-PVTZ(-f) level. Thus, while the BSSE corrections are large for the basis 

sets employed, they are nearly identical for the two isomers, for both basis sets 

considered. As a result, we conclude that the DD(20,1) isomer would be about 5 kcal/mol 

more stable (before ZPE correction) than the TIP4P-gm(21) isomer in the complete basis 

set limit.  

The TTM2-F and AMOEBA polarizable models favor the DD(20,1) isomer by 1.1 and 

4.0 kcal/mol respectively. On the other hand, the TIP4P and DC models both predict the 

TIP4P-gm(21) isomer to be slightly more stable than the DD(20,1) isomer. Thus, it 

appears that in a model potential approach both distributed polarizable sites and a 

realistic description of the electrostatics are required in order to properly describe the 

energy difference between the TIP4P-gm(21) and DD(20,1) isomers of (H2O)21.  

For (H2O)20, results are reported in Figure 2 for the “perfect” dodecahedron [PD(20)], 

the pentagonal prism [PP(20)], and the DD(19,1) isomer, which is formed by removing a 

water from the surface of DD(20,1) and allowing for geometrical relaxation. The 

structures of the PD(20), PP(20), and DD(19,1) isomers are depicted on Figure 1. Figure 
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2 also reports energies for a structure designated DD(20,0), formed by removing the 

interior water molecule from DD(20,1), without allowing relaxation of the geometry. As 

seen from Figure 2, for (H2O)20, PP(20) is the global minimum at all levels of theory 

considered, although the energy gap between PP(20) and DD(19,1) is only 1.3 kcal/mol 

at the RI-MP2/aug-cc-pVTZ(-f) level. The DD(20,0) species is calculated to be less 

stable by 5-15 kcal/mol, depending on the theoretical method employed, than the PD(20) 

isomer. This represents the energetic cost of distorting the (H2O)20 dodecahedron into the 

structure it has in the DD(20,1) isomer. The DD(20,1) species is 26-35 kcal/mol more 

stable than the DD(20,0) species, for the theoretical methods considered. Again, the 

energy difference obtained using the TTM2-F and AMOEBA models are in fairly good 

agreement with the RI-MP2/aug-cc-pVTZ(-f) results. 

There are siginificant differences between the relative energies, and those from the 

AMOEBA and RI-MP2 calculations. This may be a consequence of the well-known 

inadequency of the density functional methods for describing dispersion interactions.32

IV. Conclusions 

The present study provides evidence that the DD(20,1) isomer of (H2O)21, which 

consists of a distorted water dodecahedron with an interior water engaged in four H-

bonds, is significantly more stable than the TIP4P-gm(21) isomer, which is lowest energy 

isomer of (H2O)21 located with the TIP4P water model. At the RI-MP2/aug-cc-pVTZ(-f) 

level the DD(20,1) isomer is calculated to be 22.9 kcal/mol more stable than the global 

minimum of (H2O)20. This is an unusually large difference in stability for two adjacent 

(i.e., n and n+1) water clusters and is consistent with the experiments of Lee et al., which 

suggested an unusually high stability of (H2O)21. The high stability of the DD(20,1) 
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isomer derives from the presence of the four strong H-bonds involving the interior water 

molecule. These results also indicate that the high stability of the Searcy-Fenn form of 

H+(H2O)21 is due primarily to the strong H-bonds involving the interior water monomer 

rather than to the excess proton. 

Surprisingly, it is found that Dang-Chang polarizable water model fails to predict that 

DD(20,1) isomer is more stable than TIP4P-gm(21). The TTM2-F and AMOEBA water 

models, which employ distributed polarizable sites, do predict the DD(20,1) isomer to be 

more stable than the TIP4P-gm(21) isomer. Of these two models, the AMOEBA model, 

which also employs distributed multipoles, gives an energy difference closer to the RI-

MP2 results than does the TTM2-F model. Thus it appears that the use of both distributed 

multipoles and distributed polarizable sites is necessary to provide a realistic description 

of (H2O)21. 

For (H2O)20 the RI-MP2 calculations predict that the DD(19, 1) isomer to be only 1.3 

kcal/mol less stable than the PP(20) global minimum isomer. Interestingly, several 

papers, discussing various type of isomers of (H2O)20, have not mentioned this 

species.11,33,34

The DD(20,1) isomer investigated here is calculated to have a dipole moment of 3.00 

D. As a result, this isomer should form a stable dipole bound anion, which would allow 

access to the neutral DD(20,1) form of (H2O)21 via photo-detachment of the anion. 
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TIP4P-gm(21) DD(20,1) 

PD(20) DD(19,1) PP(20) 
 

Figure 1 RI-MP2/aug-cc-pVDZ optimized geometries of the DD(20,1) and TIP4P-gm(21) isomers of (H2O)21 
and of the D(19,1), pentagonal prism [PP(20)], and “perfect” dodecahedron [PD(20)] isomers of (H2O)20. 
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Figure 2 Interaction energies for the DD(20,0), PD(20), DD(19,1), PP(20), DD(20,1), TIP4P-gm(21) isomers at 
the TIP4P, DC, TTM2-F, AMOEBA, B3LYP/aug-cc-PVDZ, and RI_MP2/aug-cc-PVTZ(-f) levels of theory. 
B3LYP/aDZ refers to B3LYP/aug-cc-pVDZ Calculations. MP2/aTZ(-f) refers to RI-MP2/aug-cc-pVTZ(-f) 
calculations.  
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