
DESIGNING THE LIVER ALLOCATION

HIERARCHY: INCORPORATING EQUITY AND

UNCERTAINTY

by

Mehmet C. Demirci

B.S., Middle East Technical University, 2003

M.S., University of Pittsburgh, 2005

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2008

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Mehmet C. Demirci

It was defended on

May 2, 2008

and approved by

Andrew J. Schaefer, Associate Professor, Department of Industrial Engineering

Brady Hunsaker, Software Engineer, Google

Jayant Rajgopal, Associate Professor, Department of Industrial Engineering

Prakash Mirchandani, Professor, Katz Graduate School of Business

Mark S. Roberts, Professor, School of Medicine

Dissertation Director: Andrew J. Schaefer, Associate Professor, Department of Industrial

Engineering

ii

Copyright c© by Mehmet C. Demirci

2008

iii

DESIGNING THE LIVER ALLOCATION HIERARCHY:

INCORPORATING EQUITY AND UNCERTAINTY

Mehmet C. Demirci, PhD

University of Pittsburgh, 2008

Liver transplantation is the only available therapy for any acute or chronic condition result-

ing in irreversible liver dysfunction. The liver allocation system in the U.S. is administered

by the United Network for Organ Sharing (UNOS), a scientific and educational nonprofit

organization. The main components of the organ procurement and transplant network are

Organ Procurement Organizations (OPOs), which are collections of transplant centers re-

sponsible for maintaining local waiting lists, harvesting donated organs and carrying out

transplants. Currently in the U.S., OPOs are grouped into 11 regions to facilitate organ

allocation, and a three-tier mechanism is utilized that aims to reduce organ preservation

time and transport distance to maintain organ quality, while giving sicker patients higher

priority. Livers are scarce and perishable resources that rapidly lose viability, which makes

their transport distance a crucial factor in transplant outcomes. When a liver becomes avail-

able, it is matched with patients on the waiting list according to a complex mechanism that

gives priority to patients within the harvesting OPO and region. Transplants at the regional

level accounted for more than 50% of all transplants since 2000.

This dissertation focuses on the design of regions for liver allocation hierarchy, and

includes optimization models that incorporate geographic equity as well as uncertainty

throughout the analysis. We employ multi-objective optimization algorithms that involve

solving parametric integer programs to balance two possibly conflicting objectives in the

system: maximizing efficiency, as measured by the number of viability adjusted transplants,

and maximizing geographic equity, as measured by the minimum rate of organ flow into

iv

individual OPOs from outside of their own local area. Our results show that efficiency im-

provements of up to 6% or equity gains of about 70% can be achieved when compared to the

current performance of the system by redesigning the regional configuration for the national

liver allocation hierarchy.

We also introduce a stochastic programming framework to capture the uncertainty of

the system by considering scenarios that correspond to different snapshots of the national

waiting list and maximize the expected benefit from liver transplants under this stochastic

view of the system. We explore many algorithmic and computational strategies including

sampling methods, column generation strategies, branching and integer-solution generation

procedures, to aid the solution process of the resulting large-scale integer programs. We

also explore an OPO-based extension to our two-stage stochastic programming framework

that lends itself to more extensive computational testing. The regional configurations ob-

tained using these models are estimated to increase expected life-time gained per transplant

operation by up to 7% when compared to the current system.

This dissertation also focuses on the general question of designing efficient algorithms

that combine column and cut generation to solve large-scale two-stage stochastic linear

programs. We introduce a flexible method to combine column generation and the L-shaped

method for two-stage stochastic linear programming. We explore the performance of various

algorithm designs that employ stabilization subroutines for strengthening both column and

cut generation to effectively avoid degeneracy. We study two-stage stochastic versions of the

cutting stock and multi-commodity network flow problems to analyze the performances of

algorithms in this context.

Keywords: Organ allocation, large-scale medical optimization, column generation, branch-

and-price, multi-objective decision making, two-stage stochastic programming.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Liver Allocation in the U.S. 4

1.2 Problem Statement and Proposed Research Description 9

1.3 Contribution . 11

2.0 LITERATURE REVIEW . 13

2.1 Integer Programming (IP) . 13

2.1.1 IP Applications in Health Care . 14

2.1.2 Branch and Price . 15

2.2 Multi-objective Programming (MOP) . 16

2.2.1 Multi-objective Integer Programming (MOIP) 18

2.2.2 MOP and MOIP Applications in Health Care 19

2.3 Stochastic Programming (SP) . 20

2.3.1 SP Applications in Health Care . 22

2.4 Organ Allocation and Transplantation . 23

2.4.1 Previous Studies on Transplantation Region Design 27

3.0 BALANCING EFFICIENCY AND EQUITY IN THE LIVER ALLO-

CATION HIERARCHY . 29

3.1 Introduction . 29

3.2 Mathematical Models . 30

3.2.1 Mathematical Model for Maximizing Efficiency 31

3.2.2 Mathematical Model for Maximizing Equity 36

3.3 Algorithmic Approaches . 38

vi

3.3.1 Computational Approaches for Solving the Efficiency and Equity Models 38

3.3.1.1 Geographic Decomposition . 39

3.3.1.2 Set-partitioning Branching . 40

3.3.2 Approximating the Efficient Frontier 42

3.3.2.1 An Algorithm Using Parameterization 42

3.3.2.2 An Alternative Algorithm . 50

3.4 Computational Results . 52

3.4.1 Data Sources and Parameter Estimation 52

3.4.2 Efficient Frontier Approximations . 53

3.4.3 Evaluating the Regional Configurations 57

3.5 Conclusions . 59

4.0 DESIGNING LIVER TRANSPLANT REGIONS UNDER UNCER-

TAINTY USING A PATIENT-BASED MODEL 66

4.1 Introduction . 66

4.2 A Stochastic Programming Model for Region Design under Uncertainty . . . 67

4.2.1 First-Stage Model . 68

4.2.2 Second-Stage Model . 68

4.2.3 Branch-and-Price Framework . 72

4.3 Computational Approaches . 82

4.3.1 Computational Approaches for Scenario Generation 82

4.3.2 SPRINT Approach for Column Generation 84

4.3.3 Solution Methods for the Pricing Problem 85

4.3.3.1 Branching Routines . 85

4.3.3.2 Integer Solution Heuristic for Branch-and-Bound 88

4.4 Data Sources and Parameter Estimation . 89

4.5 Computational Results . 91

4.5.1 Evaluating the Results . 94

4.6 Conclusions . 98

5.0 DESIGNING LIVER TRANSPLANT REGIONS UNDER UNCER-

TAINTY USING AN OPO-BASED MODEL 102

vii

5.1 Introduction . 102

5.2 An Alternative Aggregate Model for Region Design under Uncertainty . . . 103

5.2.1 Column Generation Framework for the Aggregate Model 106

5.3 Computational Approaches and Parameter Estimation 115

5.3.1 Data Sources and Parameter Estimation 116

5.4 Computational Results . 116

5.5 Conclusions . 126

6.0 COLUMN GENERATION WITHIN THE L-SHAPED METHOD FOR

STOCHASTIC LINEAR PROGRAMS . 128

6.1 Introduction . 128

6.2 Theory and Reformulations for Column Generation within Two-stage Stochas-

tic Linear Programs . 129

6.3 Algorithms for Combining Dantzig-Wolfe Decomposition and the L-shaped

Method . 135

6.3.1 Main Algorithmic Approach . 135

6.3.2 Algorithmic Strategies . 145

6.3.2.1 L-shaped Cut Generation . 145

6.3.2.2 Column Generation . 146

6.3.2.3 Switching Criteria . 146

6.3.2.4 Stabilization Strategies . 148

6.4 Computational Results . 158

6.4.1 A Two-Stage Stochastic Cutting Stock Problem (SCSP) 158

6.4.1.1 Computational Results for SCSP 161

6.4.2 A Two-Stage Stochastic Multi-commodity Flow Problem (SMCFP) . . 168

6.4.2.1 Computational Results for SMCFP 174

6.5 Conclusions . 177

7.0 CONCLUSIONS AND FUTURE RESEARCH 179

7.1 Future Research . 181

BIBLIOGRAPHY . 184

viii

LIST OF TABLES

1.1 Leading causes of death in the U.S. in 2004 3

1.2 U.S. liver data between 2000-2007 . 4

1.3 Patient survival rates for liver transplants 6

3.1 Summary of geographic decomposition schemes used 53

3.2 CPU times for different geographic decomposition schemes 54

3.3 Paired t tests and confidence intervals on the difference in average number of

transplants per year . 62

3.4 Paired t tests and confidence intervals on the difference in average minimum

intra-regional transplant rate per patient per year 63

4.1 Constraint structure of the system of inequalities (4.9)-(4.12) 75

4.2 Results for initial computational experiments 92

4.3 Size of pricing problems for geographic decomposition scheme 20 10 93

4.4 Estimating the optimality gap for candidate solutions with B = 10, K = 200 95

4.5 Paired t tests and confidence intervals on the difference in expected life-days

gained per transplant . 99

5.1 Constraint structure of the system of inequalities (5.5)-(5.8) 109

5.2 Summary of initial tests with B = 10, K = 200 117

5.3 Estimating the optimality gap for candidate solutions using geographic de-

composition scheme 30 10 with B = 20, K = 1, 000 119

5.4 Paired t tests and confidence intervals on the difference in expected life-days

gained per transplant . 124

6.1 Characteristics of the instances tested for SCSP 162

ix

6.2 Summary of initial computational runs for SCSP 164

6.3 Summary of tests on switching criteria and cut-aggregation for SCSP 165

6.4 Summary of computational runs for testing pricing strategies 167

6.5 Summary of tests on pricing and stabilization strategies 169

6.6 Summary of tests on larger instances with 10,000 scenarios for SCSP 170

6.7 Characteristics of the instances tested for SMCFP 175

6.8 Summary of initial computational runs for SMCFP 175

6.9 Summary of tests on switching criteria and cut-aggregation for SMCFP . . . 176

6.10 Summary of tests on stabilization strategies for SMCFP 177

x

LIST OF FIGURES

1.1 Liver transplant waiting list trends in recent years 5

1.2 Map of current OPOs and liver transplant regions in the U.S. 8

1.3 UNOS liver allocation hierarchy . 9

3.1 An example of geographic decomposition . 39

3.2 A hypothetical representation of the actual efficient frontier for the integer

and linear programs . 43

3.3 An initial “outer envelope” for the efficient frontier based on the LP efficient

frontier . 45

3.4 Schematic illustration of iterations . 46

3.5 After one more iteration . 47

3.6 Schematic illustration of the initial steps of the alternative algortithm 50

3.7 After one more iteration of the alternative algorithm 50

3.8 A summary of efficient frontiers obtained by analyzing the system using dif-

ferent region covers for the geographic decomposition scheme 55

3.9 Efficient frontier obtained with geographic decomposition scheme 20 12 . . . 56

3.10 Maps of regions that correspond to the steps of the efficient frontier obtained

with geographic decomposition scheme 20 12 57

3.11 Efficient frontier obtained with geographic decomposition scheme 20 15 . . . 58

3.12 Maps of regions that correspond to the steps of the efficient frontier obtained

with geographic decomposition scheme 20 15 61

3.13 95% confidence intervals around the mean difference in number of transplants 62

xi

3.14 95% confidence intervals around the mean difference in number of transplants

as a percentage of transplants under the current system 63

3.15 95% confidence intervals around the mean difference in minimum intra-regional

transplant rate per patient . 64

3.16 95% confidence intervals around the mean difference in minimum intra-regional

transplant rate per patient as a percentage of the equity measure under the

current system . 65

4.1 Scenario sampling from the End-stage Liver Disease and organ allocation

simulation model . 90

4.2 Maps of regions obtained with geographic decomposition scheme 20 10 . . . 96

4.3 Maps of regions obtained with geographic decomposition scheme 20 10 con-

tinued . 97

4.4 95% confidence intervals around the mean difference in the expected life-days

gained per transplant . 100

4.5 95% confidence intervals around the mean difference in the expected life-days

gained per transplant as a percentage of the performance of the current system101

5.1 Creating the set of aggregate patients in a scenario 105

5.2 A comparison of percentage changes in objective values and run times for

different geographic schemes . 117

5.3 Maps of regions obtained with geographic decomposition scheme 30 10 . . . 120

5.4 Maps of regions obtained with geographic decomposition scheme 30 10 con-

tinued . 121

5.5 Maps of regions obtained with geographic decomposition scheme 30 10 con-

tinued . 122

5.6 Maps of regions obtained with geographic decomposition scheme 30 10 con-

tinued . 123

5.7 95% confidence intervals around the mean difference in the expected life-days

gained per transplant . 125

5.8 95% confidence intervals around the mean difference in the expected life-days

gained per transplant as a percentage of the performance of the current system126

xii

6.1 Schematic illustration of column generation within two-stage stochastic pro-

gramming . 130

6.2 Flow chart for column generation within the L-shaped method 137

xiii

ACKNOWLEDGEMENTS

This study is dedicated to my wonderful family: Hülya and Nuri Demirci, and Ayşegül

Demirci Çoban.

I would like to express my gratitude to my advisor, Dr. Andrew Schaefer, for his guidance

and for supporting me through my doctoral studies. I also would like to thank the rest of

my dissertation committee, Drs. Brady Hunsaker, Jayant Rajgopal, Prakash Mirchandani

and Mark Roberts, for their invaluable suggestions and insights.

I am grateful to my friends who made my stay in Pittsburgh a very enjoyable experience.

I would especially like to thank Marlene DeAngelo, Görkem Saka, Halil Bayrak, Alp Şekerci,

Nuri Mehmet Gökhan, Tuba Pınar Yıldırım, Mustafa Baz, Erkut Sönmez, Rob Koppenhaver,

Chris Roth, Anıl Yılmaz, Zeynep Erkin, Gözde İçten, Sakine Batun, Başak Yavçan, Özlem

Arısoy, Tuḡba Özkasap, Burhaneddin Sandıkçı, Murat Kurt, Osman Özaltın and Işıl Öndeş.

I wish to thank Drs. Jay Rosenberger and Edwin Romeijn, with whom I had the chance

to collaborate, for their input and valuable discussions. I also acknowledge the financial

support provided by National Science Foundation Grant DMI-0355433.

Many thanks go to Richard Brown, Minerva Pilachowski, Nora Siewiorek and Jim Segneff

for providing technical support throughout my graduate studies.

Most importantly, I am forever indebted to my parents Hülya and Nuri Demirci, my

sister Ayşegül Demirci Çoban and my nephew Efe Çoban. None of this would have been

possible without their endless love, inspiration, encouragement and unconditional support.

I am very lucky to have such a wonderful family!

xiv

1.0 INTRODUCTION

Health care continues to be a rising issue in the United States today. The U.S. health care

spending has historically shown significant growth over the years, amounting to $2.1 trillion

in 2006, which is equivalent to 16 percent of the nation’s Gross Domestic Product (GDP) or

$7,026 per person [30]. Currently, both on a per-capita basis and as a fraction of the GDP,

the U.S. spends more on health care than any other country in the world [180]. Furthermore,

the health care services share of the GDP is projected to reach 19.5 percent by the end of

2017, with a nominal expenditure of over $4.3 trillion [31]. Despite the increasing burden

of health care spending on the national economy, the World Health Organization (WHO)

ranked the the U.S. 37th in health care system performance and 72nd in overall level of health

among the 191 member countries in the World Health Report 2000 [181].

Concerns about the performance of the U.S. health care system and the increasing

proportion of health care expenses to the nation’s GDP have spurred a growing interest

in the field of medical decision making over the last few decades. Numerous researchers

have utilized optimization techniques to address the questions regarding how to design,

schedule or manage health care systems. The applications of operations research in health

care range from policy or systems design studies, like personnel scheduling [90, 120, 178],

ambulance location [26, 28], emergency room or operating room scheduling [36, 109], or-

gan allocation policy design [96, 97, 157], to the treatment of individual patients, such as

cancer treatment [103, 107, 112, 135, 182, 188], and optimal timing of organ transplants

[2, 4, 5, 6, 45, 80, 81, 150].

Donated human organs for transplantations are scarce and highly perishable resources

that have to be allocated efficiently in order to maximize potential outcomes and minimize

waste. Despite the fact that the number of organ transplants (kidney, liver, heart, lung,

1

pancreas or intestine) have been steadily increasing over the last 20 years, the number of

donations and transplants have not kept pace with the increase in the size of the waiting

list for organs [169]. For instance, in the U.S., 28,354 transplants were made within the year

2007 while 7,028 patients died while waiting for an organ, and 105,850 patients were waiting

for a transplant as of April 2008 [169].

In this dissertation, we focus on End-stage Liver Disease (ESLD) and the liver allocation

system in the U.S. End-stage liver disease is any acute or chronic condition resulting in

irreversible liver dysfunction, and includes diseases such as chronic liver disease, primary

biliary cirrhosis and hepatitis. Unlike other organs such as kidney, which has dialysis as

an alternative therapy, the only available therapy for ESLD is liver transplantation. ESLD

has consistently been a leading cause of death in the U.S. according to the National Vital

Statistics Reports published by the National Center for Health Statistics (NCHS). As can

be seen from Table 1.1, which shows the leading causes of death in the U.S. for the year

2004 [126], ESLD was the twelfth leading cause of death in the U.S. in 2004, claiming nearly

30,000 lives.

Table 1.2 shows the liver transplant waiting list related data between the years 2000 and

2007 [169]. As can be seen from this table, the number of donations and transplants have

not kept pace with the increase in the size of the ESLD patient population registered on the

national waiting list. In addition to around 2,000 patient deaths while waiting for a liver, it

is observed that almost 10% of the harvested livers were wasted. The trend in the national

waiting list between years 1996 and 2007 can be seen in Figure 1.1. These numbers suggest

the need for improvements in liver allocation system performance.

After receiving a liver transplant, ESLD patients can expect 1-year and 5-year survival

rates of around 90% and 78%, respectively. Table 1.3 shows the post-transplant patient

survival rates in the U.S. between 1997-2004. [169]. One critical factor that directly affects

transplant outcomes is the time the donated organ spends outside of a human body. Cold

ischemia time (CIT) is the time interval that begins when an organ is cooled with a cold

perfusion solution after organ procurement surgery and ends when the organ is implanted

[171]. Livers rapidly lose quality with time spent outside of the human body. Longer

distances between recipients and donated organs generally mean higher CITs, and hence,

2

Table 1.1: Leading causes of death in the U.S. in 2004 according to the National Vital

Statistics Report [126].

Rank Cause of death Number Percentage

- All causes 2,397,615 100.0

1 Diseases of heart 652,486 27.2

2 Malignant neoplasms 553,888 23.1

3 Cerebrovascular diseases 150,074 6.3

4 Chronic lower respiratory diseases 121,987 5.1

5 Accidents (unintentional injuries) 112,012 4.7

6 Diabetes mellitus 73,138 3.1

7 Alzheimers disease 65,965 2.8

8 Influenza and pneumonia 59,664 2.5

9 Nephritis, nephrotic syndrome and nephrosis 42,480 1.8

10 Septicemia 33,373 1.4

11 Intentional self-harm (suicide) 32,439 1.4

12 Chronic liver disease and cirrhosis 27,013 1.1

13 Essential hypertension and hypertensive renal disease 23,076 1.0

14 Parkinsons disease 17,989 0.8

15 Assault (homicide) 17,357 0.7

- All other causes 414,674 17.3

3

Table 1.2: U.S. liver data between 2000-2007 [169].

2000 2001 2002 2003 2004 2005 2006 2007
Patients waiting 16,440 18,269 17,072 17,310 17,411 17,673 17,523 17,167
Patients added 10,751 10,741 9,329 10,046 10,639 10,986 11,036 11,081
Deaths 1,823 2,082 1,935 1,889 1,922 1,925 1,782 1,602
Donations

All donors 5,399 5,628 5,657 6,004 6,642 7,015 7,305 7,204
Cadaveric 4,997 5,106 5,294 5,682 6,319 6,692 7,017 6,939

Living 402 522 363 322 323 323 288 265
Transplants

All donors 4,997 5,195 5,332 5,673 6,169 6,442 6,650 6,492
Cadaveric 4,595 4,673 4,969 5,351 5,846 6,119 6,362 6,227

Living 402 522 363 322 323 323 288 265
Wasted organsa 402 433 325 331 473 573 655 712

aA recovered liver is assumed to be wasted if it is donated by a deceased donor but is not used for
transplantation

decay in transplant quality. While the maximum acceptable CIT for livers is 18-24 hours

[39], most livers have a CIT less than 10 hours [171]. Hence, the liver allocation system in

the U.S. today aims to reduce organ preservation time and transport distance to maintain

organ quality, while giving sicker patients higher priority.

1.1 LIVER ALLOCATION IN THE U.S.

The liver allocation system in the U.S. is administered by the United Network for Organ

Sharing (UNOS) [169], a scientific and educational nonprofit organization. The organ pro-

curement and sharing network is composed of Organ Procurement Organizations (OPOs),

which are responsible for the identification and care of organ donors, and also organ retrieval,

preservation, transportation and transplantation. OPO staff work with donor families, and

educate medical staff and general public about organ donation [165].

4

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Registrations Deaths Donations Transplants

Figure 1.1: Liver transplant waiting list trends in recent years [169].

UNOS assesses the severity of ESLD in adults using the Model for End-Stage Liver

Disease (MELD), a scoring system for chronic liver disease [88, 113, 179]. The MELD score

is a function of total bilirubin, creatinine and prothrombin times. It was first introduced by

Malinchoc et al. [113] to evaluate the prognosis for liver cirrhosis patients. Wiesner et al.

[179] present the formula for MELD as follows:

MELD = 9.57× ln(creatinine mg/DL) + 3.78× ln(bilirubin mg/DL) + 11.2× ln(INR)

+6.43× (constant for liver disease etiology),

where INR, i.e., the international normalized ratio, is obtained by dividing the patient pro-

thrombin time by a normal prothrombin time value, and the constant for liver disease etiology

is 1 if the liver disease is alcohol or cholestatic related, and is 0 otherwise. UNOS uses a

modified version of the MELD score for the national liver allocation system [169]. As used

by UNOS, the MELD score of a patient is an integer between 6 and 40, and higher scores

5

Table 1.3: Kaplan-Meier patient survival rates for liver transplants performed: 1997 - 2004

[169].

Survival rate (%)
Donor Type

1-year 3-year 5-year

Cadaveric 86.3 78.0 72.1

Living 90.1 82.7 77.8

indicate greater sickness. Pediatric End-Stage Liver Disease (PELD) is a similar model to

assess the severity of liver disease in pediatric patients. UNOS employs different procedures

for adult and pediatric patients. In this dissertation we focus on the liver allocation system

for adults and do not consider patients under the age of 18.

Acutely ill patients with expected life times of less than one week without a transplant are

called Status 1 patients. After a policy change for Status 1 listing in August 2005, transplant

candidates must have fulminant hepatic failure, primary nonfunction of a transplanted liver,

hepatic artery thrombosis or acute decompensated Wilson’s disease to be listed as Status

1A [169]. Status 1B is exclusively used for pediatric patients with acute decompensation

of chronic liver disease. All other patients who are not assigned to a Status 1 level are

called MELD patients. Status 1 patients only make up less than 0.1% of the ESLD patient

population [169].

The UNOS organ allocation policies have been a subject of debate over the past years.

In the center of concerns regarding the organ allocation system lies the efficiency of the

allocation mechanism. There is trade off between encouraging local usage of organs and

allowing organ sharing across different regions of the country. Since transplantable organs

are highly perishable resources, local usage of organs are preferable due to the fact that

the expected transplant outcomes would be better. However, organ sharing across regions

increases the likelihood of finding better patient-organ matches.

6

Consequently, two different allocation approaches have been advocated in the past years.

The first approach emphasizes the importance of medical urgency and advocates a single

national waiting list where patients are ranked on their medical urgency, and no location

criteria is used while ranking the patients on the list. Since the CIT of a liver can go up

to 18-24 hours [39], national matching, in fact, is feasible for most cases. However, since

the livers lose quality with the time spent outside of a human body, transplant outcomes

will be worse if the organ has to be transported over long distances for transplantation.

Hence, a second approach focuses on the benefits of using organs locally due to lower CIT

and advocates local usage of organs. A possible shortcoming of enforcing local usage of

organs is the relatively low population pool for organ matching which might decrease the

chances of identifying good patient-organ matches. In an attempt to balance these concerns,

UNOS designed an allocation mechanism that is driven by both medical urgency and patient

location. Organ transplant regions were introduced to enable organ sharing across larger

areas while maintaining organ quality.

When a liver becomes available for transplantation, patients on the national waiting list

are ranked according to UNOS’s allocation mechanism. The ranking mechanism takes into

account factors such as the size of the organ and patient, medical urgency, blood type, tissue

type, waiting time on the list and patient location. After the list of potential recipients is

obtained, the transplant surgeons responsible for the patients on the list are contacted. The

transplant team is given one hour to decide whether to accept a liver offer or not [170].

The two most important factors affecting UNOS’s liver allocation hierarchy are the sever-

ity of illness and the geographic locations of potential recipients and the available organ.

UNOS liver allocation policies aim to reduce organ preservation time and transport distance

to maintain organ quality, while giving sicker patients higher priority. The liver allocation

system is based on a three-tier mechanism in which the patients within the service area of

the donor OPO have the top priority, followed by patients listed in the region of the donor

OPO, and finally, all patients nationwide.

The liver allocation system has been revised several times in the past decade, and UNOS

has also added some differentiations among both Status 1 and MELD patients that modified

the aforementioned three-tier framework [72, 169]. However, the underlying priorities in the

7

(a) (b)

Figure 1.2: (a) Current OPO service areas across the nation. (b) Current regional configu-

ration in the U.S.

main three-tier mechanism with respect to the geographic locations of donors and recipients

has remained intact. We refer to UNOS Policies and Bylaws [168] for further details on the

liver allocation mechanism. The steps of the allocation mechanism for adult ESLD patients

can be summarized as follows:

Step 1. Status 1 patients in the designated service area of the donor OPO.

Step 2. Status 1 patients in the region of the donor OPO.

Step 3. MELD patients in the designated service area of the donor OPO.

Step 4. MELD patients in the region of the donor OPO.

Step 5. All remaining Status 1 patients nationwide.

Step 6. All remaining MELD patients nationwide.

Figure 1.3, which is from Kong [96], shows a schematic representation of the allocation

hierarchy.

There are currently 58 OPOs in the U.S., which are grouped into 11 regions. Maps of

current OPOs and regions can be found in Figure 1.2. The regional structure was devel-

oped to facilitate organ allocation and provide individuals with the opportunity to identify

concerns regarding organ procurement, allocation and transplantation that are unique to

their particular geographic area [169]. In the three-tier system that UNOS manages, more

than 50% of the total transplants occur in the intra-regional level [169]. The design of the

8

Figure 1.3: UNOS liver allocation hierarchy [96].

regions is a crucial factor in the efficiency of these intra-regional transplants. Ideally, a re-

gion should be large enough to include sufficiently populated areas to increase the chances

of donor-recipient matches, but also compact enough so that organ transport times within

the region, which in turn directly affect organ and transplant quality, would be acceptable.

The current regions were put in place by the UNOS Board of Directors but no details were

released on quantitative analysis used throughout the process.

1.2 PROBLEM STATEMENT AND PROPOSED RESEARCH

DESCRIPTION

In this dissertation, we focus on the design of regions for the liver allocation hierarchy. We

analyze the liver allocation system under different objectives using multi-objective integer

programming and two-stage stochastic mixed-integer programming techniques. We seek to

maximize organ utilization and transplant benefits, and minimize organ wastage through

redesigning the regional configuration of OPOs across the U.S.

9

A common aspect of these models is that they all involve branch-and-price based solution

algorithms. We introduce set-partitioning based mathematical models to divide the nation

into liver transplant regions where binary variables represent different region designs, and

the objective is to find the optimal partitioning of OPOs into a distinct set of regions. We

utilize column generation to generate promising regions as needed throughout the solution

procedure. For parameter estimation and solution validation, we modify the ESLD and liver

allocation system simulation model of Shechter et al. [155].

Throughout this dissertation, we focus our attention to MELD patients on the waiting

list and ignore Status 1 patients. The reason behind this is that Status 1 patients only make

up less than 0.1% of the ESLD patient population [169], and incorporating them into our

modeling framework complicates the model structure. When Status 1 patients are not taken

into account, Steps 1 and 2 in Figure 1.3 can be eliminated, and the local matching phase

only consists of Step 3. Moreover, since the intra-OPO transplants are independent of region

design, there is no need to consider this phase in the model.

Allocation of organs at the national level, on the other hand, poses some additional

modeling problems. The flow of organs among regions at the national level depends on the

regional configuration of the country. Since the proposed set-partitioning based models can-

not explicitly incorporate the interdependency of regions, and the percentage of transplants

that occur at the national level is only around 5% [169], we do not fully model Steps 5 and

6 in Figure 1.3, but rather capture the effects of national level allocation implicitly in our

model parameters.

Hence, the main focus of our analysis is on the regional matching phase for MELD

patients in UNOS’s liver allocation mechanism, i.e., Step 4 in Figure 1.3. Previous studies

on region design [96, 97, 157] also relied on similar simplifications, and focused on the regional

organ allocation phase for MELD patients. The framework we adopt only focuses on the

design of regions for liver transplantation. We aim to maximize the national benefit by

redesigning the regions without interfering with any UNOS policy regarding how patients

should be prioritized.

Various performance measures can be monitored for the liver allocation system, the most

prominently studied one being the efficiency as measured by the number of transplants. An

10

alternative view of the efficiency of the system focuses on the expected benefit gained per

patient following a transplant, in terms of the life-time gained. We also study the minimum

geographic equity as measured by the patients’ access to organs from outside their own local

area.

1.3 CONTRIBUTION

In this dissertation, we extend previous studies on liver transplant region design [96, 97, 157]

in a number of ways. First, we construct a multi-objective optimization model using refined

estimates of geographic equity that takes into account the probability of organ flow between

OPO pairs, and solve the model using exact methods, in contrast to the approximate methods

used in previous studies [96, 157]. Furthermore, according to our validation tests using the

liver allocation system simulation model of Shechter et al. [155], our proposed regional

configurations outperform the alternative configurations provided by previous studies [97,

157] in almost all cases. We also design two-stage stochastic programming models that focus

on the uncertainty of the system, in contrast to the steady-state analysis of previous studies,

and adopt the objective of maximizing the expected outcome of transplants, as measured by

the life-time gained by the recipients, which has never been studied in a region-design context.

Motivated by the structure of our stochastic programming models, we also investigate the

general question of how to design effective algorithms that combine column generation with

the L-shaped method [22, 174] to solve two-stage stochastic linear programs that involve

too many variables to handle explicitly. We compare our work to existing literature in more

detail in Sections 2.3 and 2.4.

The rest of this dissertation is organized as follows: Chapter 2 presents a review of the

relevant literature on operations research applications in health care optimization. We par-

ticularly focus on the modeling and solution methodologies utilized in this dissertation and

their applications, primarily in the area of medical decision making. Chapter 3, introduces

parametric integer programming models for balancing efficiency and equity while designing

regions for the liver allocation system. The chapter discusses two exact algorithms that use

11

these parametric models to approximate the efficient frontier of the system under two possi-

bly conflicting objectives: maximizing efficiency and maximizing equity. Chapter 4 relaxes

the assumption of a steady-state system that all previous region design studies utilized in

the modeling phase, and adopts a stochastic view of the liver allocation mechanism in which

the objective is to maximize the outcome of liver transplants as measured by the expected

life-time gained. The chapter utilizes a column generation approach through the use of a

pricing problem that can handle the ranking of individual patients on the waiting list under

different scenarios. Chapter 5 modifies the stochastic programming framework of Chapter

4 by adopting an OPO-based approach in which patients in every OPO are replaced by

aggregate patients. This modification helps scale the problem down and allows for more

intensive computational testing using larger scenario samples. Chapter 6 generalizes the

solution techniques used in Chapters 4 and 5, and introduces a decomposition approach that

combines column generation and the L-shaped method to solve two-stage stochastic linear

programs. We discuss convergence and algorithmic variants, and utilize two-stage stochastic

versions of the cutting-stock and multi-commodity flow problems for computational experi-

ments. Finally, Chapter 7 summarizes our conclusions and discusses potential future research

directions.

12

2.0 LITERATURE REVIEW

In this chapter, we review the literature related to the problems and methodologies discussed

in this dissertation. In Section 2.1, we discuss the technique of integer programming and

review some applications, particularly in heath care. We also briefly discuss branch and

price and column generation techniques. Section 2.2 reviews multi-objective programming

techniques and applications with a focus on medical decision making applications. In Sec-

tion 2.3 we present a survey on stochastic programming and its applications in health care

optimization. Section 2.4 presents a survey regarding studies related to organ allocation

and transplantation systems. We focus on operations research literature on this subject, in

particular that describing liver transplant region design.

2.1 INTEGER PROGRAMMING (IP)

Integer programming has been a popular modeling framework for a wide variety of appli-

cations. Although integer programs are much harder to solve than linear programs, they

provide decision makers with modeling opportunities that can closely match modeling re-

quirements for real-world systems. Integer programs have been successfully applied to many

planning, scheduling, routing, etc., settings in various areas. We refer to Nemhauser and

Wolsey [128] for more information on modeling and solution techniques in integer program-

ming.

13

2.1.1 IP Applications in Health Care

In this section, we present a representative set of publications that summarize integer pro-

gramming applications in health care optimization. For comprehensive surveys of operations

research applications in health care, we refer to Brandeau et al. [27], Griffin et al. [73] and

Pierskalla and Brailer [133], which also include numerous references on integer programming

applications.

The location of health care facilities has drawn considerable attention in the operations

research literature. A recent survey of applications in health care facility location is provided

by Daskin and Dean [44], which lists numerous applications of classic location models, such

p-median and set covering models, in health care facility location [43]. Location applications

in health care include determining hospital locations [117, 156], ambulance locations [1, 26,

28, 57, 116], blood banks [85, 136], and emergency services [18, 56, 68, 125, 134, 152].

Integer programming has also been used for applications in cancer treatment, like ra-

diosurgery treatment planning [103]. Several recent studies have focused on brachytherapy

treatment planning and IMRT. Brachytherapy is a form of radiotherapy where a radioactive

source is placed inside or next to the area requiring treatment, and is commonly used for

treating prostate cancer, and cancers of the head and neck. Integer programming appli-

cations in brachytherapy treatment include [104, 105, 106, 107, 183]. Intensity Modulated

Radiotherapy Treatment (IMRT) is the medical use of radiation as part of cancer treatment

to control malignant cells in a cancer patient. IMRT design problems focus on how radiation

beams will travel through a patient so that a tumoricidal radiation dose will be effectively

delivered to the cancerous region with minimal damage to healthy organs and tissues. Recent

studies that utilized IP for IMRT design include [100, 101, 135, 145].

Integer programming models have also been utilized in areas like personnel scheduling

[90, 120, 178], organ allocation policy design [96, 97, 157], and vaccine selection and design

[86, 87, 153].

14

2.1.2 Branch and Price

As mentioned in Chapter 1, column generation and branch-and-price techniques are the

underlying solution methods in every chapter of this dissertation. In this section, we briefly

introduce these methods and discuss a few applications.

Column generation methodology is commonly used to solve mathematical problems that

involve a large number of variables. Instead of considering all of the columns of such a

problem explicitly, column generation techniques employ a master problem that contains a

subset of columns and a pricing subproblem that generates promising new columns. The

algorithm follows a loop in which the master problem is solved, and the dual solution is passed

on to the pricing problem, which tries to find the column with the most favorable reduced

cost. If favorable columns exist, some subset of them are inserted into the master problem;

if not, the algorithm stops. Column generation was first introduced by Ford and Fulkerson

[64] to enable the implicit handling of variables in a multi-commodity flow problem. Dantzig

and Wolfe [42] helped establish column generation as a powerful technique for large-scale

mathematical programming by utilizing this method in the algorithm known as Dantzig-

Wolfe decomposition.

Dantzig-Wolfe decomposition [42] is a technique that relies on column generation. In this

technique a set of “easy” constraints are replaced by variables. Each variable corresponds

to an extreme point or ray of the polyhedron defined by the “easy” constraints. Column

generation adds variables that have favorable reduced costs as needed. The master problem

(MP) contains a subset of all possible variables, and the dual solution of the MP is passed

on to the pricing subproblem. If there exists a variable that improves the objective value, it

is added to the MP; if not, the algorithm terminates.

Column generation has been successfully applied to an enormous number of deterministic

applications, including cutting stock problems [70], airline crew scheduling [12], political

redistricting [118], multicommodity flow [3] and vehicle routing [163].

Branch and price is the application of column generation throughout the branch-and-

bound tree to solve a large-scale integer program. The idea of combining the technique of

column generation with an LP-based branch-and-bound algorithm was first suggested by

15

Desrosiers et al. [53] to solve a vehicle routing problem with time windows. For further

details on column generation, and branch and price, the reader is referred to Barnhart et al.

[14], and Lübbecke and Desrosiers [110].

2.2 MULTI-OBJECTIVE PROGRAMMING (MOP)

Multi-objective programming deals with decision problems characterized by multiple and

possibly conflicting objective functions that are to be optimized over a feasible set of deci-

sions [63]. Multi-objective programming constitutes a vast area of research with numerous

modeling and solution techniques. In this section, we briefly introduce the general frame-

work on multi-objective programming, and emphasize its applications in health care and

the methodologies that are related to the techniques we utilize throughout the dissertation.

From a methodological point of view, we especially focus on multi-objective integer pro-

grams. Much of this section follows the outline and notation of Ehrgott [59], and Ehrgott

and Wiecek [63].

A general formulation for a multi-objective program (MOP) is given by

min Cx (2.1a)

subject to x ∈ X, (2.1b)

where X ⊂ IRn denotes a feasible set. Let C be a p × n objective function matrix, i.e.,

C : IRn → IRp is a linear objective function. Suppose that X can be written as a set of linear

constraints: X = {x ∈ IRn : Ax = b, x ≥ 0}, where A ∈ IRm×n, b ∈ IRm. Let ck denote the

kth row of C so that yk = ck is the kth objective value.

A feasible solution x∗ ∈ X is efficient, or Pareto optimal if there is no x ∈ X such that

Cx ≤ Cx∗, and Cix < Cix
∗ for at least one row Ci. Let Y := CX := {Cx : x ∈ X} ⊂ IRp

denote the image of X under C. We say y∗ = Cx∗ is nondominated if x∗ is efficient. The set

of all efficient solutions to MOP is XE ⊂ X and the set of nondominated points in criterion

space is YN ⊂ Y . Solving MOP usually means finding XE or YN .

16

Solution approaches for MOPs usually incorporate scalarization, which involves formu-

lating a single-objective problem by means of a scalarizing function [63]. The scalarizing

function is typically a function on the objective functions of the MOP. A popular solution

approach is the weighted sum approach in which a weighted sum of the objective functions

is minimized:

min

p∑

k=1

λkckx (2.2a)

subject to x ∈ X, (2.2b)

where λk ≥ 0 is the weight of the kth objective function, for k = 1, . . . , p. The most important

property of the weighted sum approach is that (2.2) has the same computational complexity

as the single objective version of MOP (2.1) [59]. The weighted sum approach also has

variants such as the weighted tth power approach, in which a weighted sum of the objective

functions taken to the tth power is minimized, and the weighted quadratic approach where a

quadratic function of the objective functions is minimized.

Another popular scalarization approach is the ε−constraint approach, in which one ob-

jective function is retained while all other objective functions are replaced by new constraints.

For instance, if the jth objective function is retained for minimization and all other p− 1 are

turned into constraints, the jth ε−constraint problem can be formulated as

min cjx (2.3a)

subject to ckx ≤ εk, k 6= j, (2.3b)

x ∈ X. (2.3c)

For general results on the ε−constraint method, see [32]. Two important results are as

follows: an optimal solution x∗ to (2.3) is weakly efficient, i.e., there is no x ∈ X such that

Cx < Cx∗. Furthermore, if the optimal solution to (2.3) is unique, it is also efficient [32, 59].

Solution techniques to approximate the Pareto set usually involve iterative methods that

incorporate a scalarization technique of choice to generate Pareto optimal points during the

solution procedure. For a recent survey of these techniques, the reader is referred to [63].

17

Two other well known multi-objective optimization methodologies, which are not scalar-

ization procedures, are goal programming (GP) and the analytic hierarchy process (AHP). In

GP, the decision maker is interested in achieving a desirable goal or target established for the

objective functions of the MOP. GP was introduced by Charnes et al. [34]. The technique

was formalized by Charnes and Cooper [33], and they introduced the term “goal program-

ming”. GP has been applied to many decisions, particularly in the last three decades [162].

AHP, which was introduced by Saaty [149], is a technique particularly suitable for complex

decisions that involve the comparison of decision elements that are difficult to quantify. It

involves building a hierarchy, or ranking, of decision elements and then making comparisons

between each possible pair in each cluster, as a matrix. This gives a weighting for each

element within a cluster, or level of the hierarchy, and also a consistency ratio.

2.2.1 Multi-objective Integer Programming (MOIP)

In Chapter 3, we construct a multi-objective integer programming framework to analyze

the liver allocation hierarchy under two objectives: maximizing efficiency and maximizing

equity. We use an iterative procedure built around the ε−constraint scalarization technique

to build the Pareto efficient frontier. Thus, we are particularly interested in methodologies

for multi-objective integer programming. Modifying the notation used for MOP, we can

simply define a general multi-objective integer programming (MOIP) formulation by (2.1),

where the feasible set X ⊂ ZZn is finite, C is a p× n objective function matrix with integer

coefficients cki for k = 1, . . . , p, i = 1, . . . , n, i.e., C : ZZn → ZZp is a linear objective function,

and X can be written as a set of linear constraints: X = {x ∈ ZZn : Ax = b, x ≥ 0}, where

A ∈ ZZm×n, b ∈ ZZm.

18

Although the weighted sum approach is an exact method for multi-objective linear pro-

grams, the discrete structure of MOIP destroys this property. Hence, there usually exists effi-

cient solutions, called nonsupported efficient solutions, that are not optimal for any weighted

sum of the objectives. However, the exactness of the ε−constraint technique still holds for

the integer case [58, 59, 60]. As we later discuss in Section 2.4, this shows that our methods

in Chapter 3 that build parametric integer programs based on the ε−constraint approach,

dominate the weighted sum approaches utilized by Stahl et al. [157] and Kong [96].

Our parametric integer programming models in Chapter 3 are solved using branch-and-

price. Thus, we utilize column generation within a multi-objective integer programming

framework. To the best of our knowledge, Ehrgott and Tind [62] provided the only other

study that uses column generation while solving a multi-objective integer program. In this

paper, they introduced a way to combine the ε−constraint method with a branch-and-bound

approach, and discussed how the method can also be applied using the elastic constraint

scalarization method of Ehrgott and Ryan [61].

For more details on MOIP we refer to [58, 60, 63].

2.2.2 MOP and MOIP Applications in Health Care

Health-care topics that have been studied under a multi-objective decision-making framework

include nurse scheduling [10, 20, 66, 124, 130, 131, 166], tour planning for mobile health care

facilities [54], capital budgeting in hospitals [92], health care planning [65, 142], location

and size of medical departments in a hospital network [158], radiotherapy treatment design

[75], priority setting in health policy [25, 129], information resource planning for health-

care systems [102], balancing policy in long-term care [35], community-based residential care

[127], design of ambulance services [11, 189], diet planning [146], blood center planning [91],

and time allocation in pharmacies [69].

19

2.3 STOCHASTIC PROGRAMMING (SP)

Stochastic programs are mathematical programs where model parameters are subject to

uncertainty. In this section, we will focus on the most widely studied stochastic program-

ming models, i.e., two-stage stochastic linear programs. For more information on the field

stochastic programming, we refer to Birge and Louveaux [22].

In a conventional two-stage stochastic linear program, a first-stage LP must be solved

before all of the problem parameters are known with certainty. Once the uncertainty is real-

ized, the decision maker then solves a second linear program, known as a recourse problem,

that considers the solution to the first LP as well as the outcome of a random event. The

objective is to minimize the first-stage cost plus the expected second-stage cost.

Let ni be the number of columns in decision stage i for i = 1, 2. Let A be a real-valued

matrix of size m1×n1, and b be a vector in IRm1 . Let ξ be a discrete random variable describing

the uncertain parameters, and let Ξ be the finite support of ξ. For k = 1, . . . , K = |Ξ|, let ξk

describe the kth element in Ξ, called a scenario, and let pk be the probability that scenario

ξk is realized. For each scenario ξk ∈ Ξ, let {y(ξk)|T (ξk)x + W (ξk)y(ξk) ≥ h(ξk), y(ξk) ≥ 0}
be the set of feasible solutions for the second stage, where the technology matrix, T (ξk), and

the recourse matrix, W (ξk), are of sizes m2 × n1, m2 × n2, respectively.

Beale [15] and Dantzig [41] formulated a two-sage stochastic linear program as follows:

min cT x + IEξ[d(ξ)T y(ξ)] (2.4a)

subject to Ax ≥ b, (2.4b)

T (ξk)x + W (ξk)y(ξk) ≥ h(ξk), for k = 1, . . . , K, (2.4c)

x ≥ 0, (2.4d)

y(ξk) ≥ 0, for k = 1, . . . , K, (2.4e)

where c is a known vector in IRn1 , and for each scenario, d(ξk) ∈ IRn2 , h(ξk) ∈ IRm2 . A

scenario vector, ξk = (d(ξk)T , h(ξk)T , T (ξk), W (ξk)), represents the stochastic components

of the problem, for k = 1, . . . , K. For a given x, the second-stage subproblem decomposes

into K independent subproblems, one for each scenario.

20

The extensive form (2.4) is equivalent to the deterministic equivalent program:

min cT x +Q(x) (2.5)

subject to Ax ≥ b,

x ≥ 0,

where Q(x), the expected recourse function, is defined as

Q(x) = IEξQ(x, ξk)), (2.6)

and for every scenario ξk,

Q(x, ξk) = min d(ξk)T y (2.7a)

subject to W (ξk)y ≥ h(ξk)− T (ξk)x, (2.7b)

y ≥ 0. (2.7c)

The most common algorithm used for solving these types of problems is the L-shaped

method of Van Slyke and Wets [174], a variant of Benders decomposition [17] that decom-

poses the problem into first-stage (or master) variables and second-stage (or subproblem)

variables. The L-shaped method follows an iterative procedure where it repeatedly solves a

restricted master problem to find first-stage solutions, and then it solves the second-stage

problems, given the first-stage solution. The second-stage solutions are used to find opti-

mality and feasibility cuts for the restricted master problem. Using Minkowski’s finite basis

theorem [121, 128], the second-stage dual polyhedron is represented as a convex combination

of its extreme points and a nonnegative linear combination of its extreme rays. The cuts

correspond to these extreme points and rays.

In this dissertation, we introduce a general method that combines Dantzig-Wolfe decom-

position and the L-shaped method to solve large-scale two-stage stochastic linear programs.

This method generates columns as needed for the master problem of the L-Shaped method

with respect to the first-stage constraints and current feasibility and optimality cuts. It also

adds feasibility and optimality cuts generated from the second-stage subproblems based on

the current columns in the master problem. In other words, our method has a restricted

21

master problem (RMP) where second-stage variables and first-stage easy constraints are re-

placed by cuts and columns, respectively. We also discuss several variants of the algorithm

and perform computational tests on their performances. Although column generation and

stochastic programming are both popular topics in mathematical programming, there is very

little research that combines both techniques. Lulli and Sen [111] used a branch-and-price

algorithm to solve a multistage stochastic integer programming problem. Their technique

applied the Dantzig-Wolfe decomposition principle based on the convexification of the inte-

ger scenario polyhedra and the generated columns represented extreme points of the scenario

polyhedra.

Since the L-shaped method is based on Benders decomposition, the general method

we introduce can be regarded as a combined Benders and Dantzig-Wolfe decomposition

scheme. Cross-decomposition methods also combine Benders and Dantzig-Wolfe decomposi-

tion [76, 77, 78, 79, 173]. However, cross decomposition is fundamentally different from our

approach in that it decomposes both the primal problem and the Lagrangian dual problem

into a restricted master problem and a subproblem. Both subproblems are solved at every

iteration. On certain major iterations, one of the two master problems is solved to update

its corresponding subproblem.

2.3.1 SP Applications in Health Care

Stochastic programming literature in health care is modest in terms of volume when com-

pared to medical applications of deterministic linear/integer or multi-objective programs.

In this section, we discuss a few representative studies that use stochastic programming to

model health care systems.

Beraldi et al. [19] developed a stochastic programming model with probabilistic con-

straints to locate service sites and determine the number of emergency vehicles assigned to

each site, with the aim of achieving reliable service levels while minimizing the overall costs.

Kao and Queyranne [90] used stochastic programming models to determine budgets for

nursing workforce requirements in a hospital.

22

Punnakitikashem et al. [138] developed a two-stage stochastic integer programming

model for assigning nurses to patients under uncertainty with the objective of minimizing

excess workload for nurses.

Martel and Ouellet [114] modeled the problem of allocating resources among partially

interchangeable activities as a stochastic program with complete recourse. They reduced

the problem to a deterministic convex allocation problem through parametric programming.

They also provided an application of the model studied in the allocation of the budget of a

nursing unit in a hospital to registered nurses.

Lamiri et al. [99] introduced a stochastic model for operating room planning with two

types of demand for surgery: elective surgery, which can be planned ahead of time, and

emergency surgery. Their model assigns elective cases to different periods of a planning

horizon with the objective of minimizing total costs of operating rooms.

Sapountzis [151] formulated the problem of allocating units of blood from a regional

blood transfusion center to hospitals as a stochastic programming problem. He showed that

his formulation reduces to a deterministic linear program.

2.4 ORGAN ALLOCATION AND TRANSPLANTATION

In this section, we focus our attention to previous studies on organ allocation and trans-

portation. This is by no means a complete and exhaustive list of studies focusing on organ

allocation systems, but is an attempt to introduce a representative set of publications to

display the growing interest in this area.

23

For the past two decades, operations research applications on organ transplantation have

gained significant momentum. Generally, the studies in this area have focused on recipient-

donor matching for organ transplantation to maximize a reward function. These studies

have emphasized either the patient’s perspective for deciding whether to accept an organ

offer or not, or the perspective of a centralized decision maker representing the common

interests of the society. Recently, joint perspectives of both the patient and society have also

been researched. Alagoz et al. [8] provided a comprehensive survey of operations research

applications related to organ allocation and transplantation.

David and Yechiali [45] were among the first to model the perspective of a patient while

deciding whether to accept or reject a liver offer. The authors presented a time-dependent

control-limit policy under the assumption that organs arrive only at fixed time intervals.

They also modeled the organ arrival as a renewal process and assumed that patients’ health

states are always deteriorating. However, the authors did not model the system under the

actual matching criteria, and did not consider the waiting list.

Ahn and Hornberger [2] adopted a Markov Decision Process (MDP) framework to model

the decision regarding which kidneys maximize the duration and quality of life for a patient.

Hornberger and Ahn [80] used an MDP model to design kidney acceptance policies with

an explicit incorporation of the preferences of patients. They also modeled the waiting list

and estimated one-year survival rates after accepting an offer an receiving a transplant. In

both studies, patient health states are oversimplified and do not model physiology. For a

comprehensive review on MDPs, the reader is referred to Puterman [139].

Howard [81] introduced a decision model where a cadaveric organ is accepted or rejected

depending on the patient’s health state by her transplant surgeon. He also discussed the

reasons why a surgeon may chose to reject an organ offer and provided statistical evidence.

24

More recently, Alagoz et al. [4] introduced an MDP model to determine optimal accep-

tance/rejection decisions for ESLD patients waiting for living-donor liver transplants. They

showed the existence of optimal control-limit policies under mild conditions, and used the

model of Alagoz et al. [7] to estimate the progression of ESLD. In Alagoz et al. [6], the

authors investigated optimal acceptance/rejection policies for patients waiting for cadaveric

liver donations under an implicit representation of the waiting list. Alagoz et al. [5] extended

the MDP framework to the case where an ESLD patient can choose among cadaveric- and

living-donor transplants.

Previous studies focusing on the societal perspective usually involve multiple potential

recipients and organ offers under a stochastic modeling framework to capture the arrival and

status changes. Righter [143] developed a stochastic sequential assignment problem [52] and

provided structural properties for optimal policies. David and Yechiali [46] constructed an

infinite-horizon model in which potential recipients and organ offers arrive simultaneously.

In a later study, David and Yechiali [47] extended the modeling framework to incorporate the

random arrival of organs. They considered special cases where organ and patient numbers

are equal, there are more organs than patients, and there are more patients than organs.

They derived optimal matching policies to maximize the total discounter reward under a

static representation of patient health states where the waiting list is ignored.

Zenios et al. [187] constructed a Monte Carlo simulation model to compare several

kidney allocation policies. They used quality-adjusted life expectancy and survival rates as

performance measures. The authors also considered the notion of equity as measured by the

average waiting time for transplants for different ethnic groups. They showed that evidence-

based kidney allocation policies could potentially improve both efficiency and equity when

compared to current UNOS policies. However, their study was limited to the designated

service area of a single OPO. Zenios et al. [186] studied the problem of finding a kidney

allocation strategy to maximize total quality-adjusted life years and minimize two inequity

measures. The two inequity measures considered were the amount of access to organs across

different groups and inequity in waiting times. The authors built a deterministic fluid model

that did not lend itself to a closed-form solution. They employed a heuristic dynamic index

policy.

25

Zenios [184] developed a queueing model with different classes of patients and organs,

where patient death is modeled as reneging. He considered focused on randomized kidney

allocation policies and derived closed-form asymptotic expressions for the stationary waiting

time, stationary waiting time until transplantation, and proportion of patients who receive

transplantation for each patient class. In a later study, Zenios [185] modeled the mix of

direct and indirect kidney exchanges in order to maximize the expected total discounted

quality-adjusted life years of the recipients in participating pairs. He developed a double-

ended queueing model for an exchange system with two types of donor-candidate pairs, and

derived an optimal dynamic exchange policy using Brownian approximation. He discussed a

few design principles that would increase likelihood of the success of an exchange program.

Recent literature emphasizing the joint perspective of the patient and society include

[159, 160, 161]. Su and Zenios [159] developed an M/M/1 queue with homogeneous patients

and exponential reneging to model patient choice in the kidney transplant waiting system.

Organ transplants are captured in the model through the service process, and each service

instance has an associated variable reward that represents transplant quality. The patients

have the option to refuse an organ. The authors tested different queueing strategies us-

ing data clinical data. Su and Zenios [160] modeled the problem of allocating kidneys to

recipients when recipients have a right to refuse organ offers using a stochastic sequential

assignment problem. They solved two variants of the model for the cases where patients

cannot reject organ offers (and the numbers of offers and patients are equal) and when they

have the right to do so. In both problems, they aimed to maximize the total reward which

is a function of kidney and patient types. They derived structural properties for both cases,

and measured the effects of patient autonomy on acceptance/rejection rates. More recently,

Su and Zenios [161] developed a mechanism design model to explore the effect of information

asymmetry in the kidney allocation system. In their model, there are different queues cor-

responding to different potential recipient types, and patients join queues to maximize their

utility. Candidate types are only observed by the candidates, and each candidate chooses

the queue to join by reporting a type. Kidneys have heterogeneous types, and each kidney

is assigned to one of the queues depending on its type. They calculated utility using fluid

approximations, and used two alternative social welfare functions: aggregate utility (em-

26

phasizing efficiency) and minimum utility across all candidates (emphasizing equity). They

solved the problem under both objective functions in order to divide the organ supply among

the different queues to maximize social welfare.

A number of discrete-event simulation models have also been developed in order to facil-

itate policy design and evaluation for the U.S. liver allocation and transplantation system.

UNOS Liver Allocation Model (ULAM) was developed by UNOS and Pritsker Corporation

to model the process of patient listing, organ donations and matching policies [137]. Another

simulation model was developed by the CONSAD Corporation [40]. This model assumes that

all patients are registered in a single national waiting list. More recently, Shechter et al. [155]

built a discrete-event simulation model for ESLD and the liver allocation mechanism. This

model also captures the regional effects of organ allocation and is able to simulate different

regional configurations based on user inputs.

2.4.1 Previous Studies on Transplantation Region Design

To the best of our knowledge, the problem of optimally reorganizing regions for liver trans-

plantation was first addressed by Stahl et al. [157]. They formulated a set-partitioning

model to address the problem of optimizing the regional designs for liver allocation across

the United States, with binary variables representing different regions. They solved the

problem using an explicit enumeration of regions, where the set of regions was limited to

contiguous sets of no more than 9 OPOs. They also addressed the issue of geographic equity

using a multi-objective approach where they had a weighted equity component in the objec-

tive. They aimed to maximize the minimum equity measure of intra-regional transplant rate.

By performing sensitivity analysis on the weight component they demonstrated the tradeoff

between two objectives of maximizing efficiency and equity for a set of different objective

weights on the equity measure. Their regional efficiency and equity benefit estimates did not

include any component to capture the likelihood of organ allocation between OPO pairs but

were rather in terms of rates computed over the number of patients listed in different OPOs.

The models in [157] were extended by Kong [96] and Kong et al. [97] by employing

a Branch-and-Price approach that enabled region generation on-the-fly and lifted the hard

27

limits on the number of OPOs in each region. Furthermore, in these studies, a more accurate

estimate of the efficiency benefit that also captured the likelihood of liver allocation between

OPO pairs was utilized. Kong [96] revisited the multi-objective approach for balancing

allocation efficiency and equity with minor adjustments on the equity benefit estimate. He

also solved the combined efficiency and equity problem using an explicit enumeration of

regions, with different weights on the equity component.

As we discussed in Section 1.3, in this dissertation, we introduce approaches that extend

all previous work [96, 97, 157] on balancing efficiency and equity in the liver allocation

system. We provide exact methods to enumerate nondominated efficient frontier for the two

objectives of maximizing efficiency and equity. Stahl et al. [157] and Kong [96] used a set

of predetermined objective weights throughout their analysis instead, which is known to be

suboptimal [58, 59, 60], as we pointed out in Section 2.2. Furthermore, we solve the multi-

objective optimization problem within a branch-and-price setting, which lifts the limit on

the number of OPOs in regions that previous studies had due to their explicit enumeration

based techniques. We also use a refined equity measure that also incorporates the likelihood

of organ-patient matches between OPO pairs.

In addition to these, we also lift the steady-state assumption that was common in all

previous studies on the design of regions in the U.S. for the liver transplantation mechanism

[96, 97, 157]. In this dissertation, we construct two stochastic programming models that

capture the stochastic behavior of the national waiting list for livers. We also adopt a

different objective than all other previous studies on the region design problem [96, 97, 157]

in these chapters. To the best of our knowledge, this dissertation is the first study that aims

to optimize the expected life-days gained with liver transplants through region redesign.

28

3.0 BALANCING EFFICIENCY AND EQUITY IN THE LIVER

ALLOCATION HIERARCHY

3.1 INTRODUCTION

In this chapter, we introduce approaches that extend the literature [96, 97, 157] on balancing

efficiency and equity in the liver allocation system. We introduce exact methods that enable

a more comprehensive comparison and balancing of the two possibly conflicting objectives

of maximizing efficiency and equity. Under a multi-objective optimization framework, we

use two parametric integer programming models. The first maximizes the efficiency of the

allocation mechanism by considering only those region designs for which OPOs have sufficient

access to livers, while the second maximizes the equity measure across all OPOs subject to

minimum total efficiency. We solve many submodels using branch and price repeatedly

within an iterative process to approximate the efficient frontier of Pareto optimal solutions.

The solution methods that we discuss in this chapter can give the exact efficient fron-

tier within any degree of accuracy. We use iterative methods in which the construction

of the efficient frontier is guided by sensitivity analysis techniques to aid in the selection

of parameters for ε-constraint subproblems. Previous studies [96, 97, 157] used a set of

predetermined objective weights throughout their analysis instead, which is known to be

suboptimal since the weighted sum approach cannot be used to enumerate all efficient solu-

tions for multi-objective integer programs [58, 59, 60]. Furthermore, the solution approach

that was common in previous studies on balancing efficiency and equity was the explicit enu-

meration of a set of contiguous regions with no more than 9 OPOs as candidate regions. We

employ a branch-and-price approach that lifts the limit on the number of OPOs in regions.

29

The chapter is structured as follows: in Section 3.2, we introduce two parametric integer

programming models to analyze the two objectives of maximizing efficiency and maximizing

a minimum equity measure across all OPOs. We discuss our branch-and-price approaches

and derive pricing problems that will aid us in generating favorable regions “on-the-fly”.

Section 3.3 focuses on the algorithmic details in the branch-and-price implementation, and

constructs two algorithms to approximate the efficient frontier of the system. In Section 3.4,

we present and discuss our numerical results. And finally, in Section 3.5 we summarize our

findings for this chapter.

3.2 MATHEMATICAL MODELS

As we discussed in Section 1.2, we focus on MELD patients on the waiting list at the re-

gional matching phase, and ignore Status 1 patients and the national matching step in this

chapter. Status 1 patients only make up less than 0.1% of the ESLD patient population and

the percentage of transplants at the national level is only around 5% [169]. Furthermore,

incorporating these complicates the model structure considerably and disrupts the compu-

tational tractability of the problem. All studies on region design [96, 97, 157] utilized the

same simplification and focused on the regional organ allocation step for MELD patients,

i.e., Step 4 in Figure 1.3.

We make use of two parametric integer programming models throughout our analysis.

In Section 3.2.1, we introduce a parametric integer program that maximizes the efficiency

of the allocation mechanism considering only those region designs in which all OPOs have

sufficient access to organs. And later in Section 3.2.2, we introduce our second model which

maximizes a minimum equity measure throughout the nation subject to a minimum total

efficiency parameter.

30

3.2.1 Mathematical Model for Maximizing Efficiency

The efficiency model maximizes the efficiency of the liver allocation system, as measured by

the total national expected benefit of the region design, subject to a minimum equity level

for each OPO. The equity level captures the access of the population to organs in various

geographic locations throughout the nation.

We extend the notation developed in [97]. Let I denote the set of OPOs across the

U.S., R be the set of all potential regions of OPOs, and Ir denote the set of OPOs in region

r,∀r ∈ R. Also, define cr as the regional efficiency benefit of region r, and fir as the expected

intra-regional equity benefit of region r for OPO i, given i ∈ Ir. Let λ represent the smallest

desired geographic equity measure across OPOs. Let the binary coefficient air = 1, if OPO

i is in region r, and air = 0 otherwise. Finally, let xr be a binary variable such that xr = 1

if region r is selected in the regional configuration and xr = 0 otherwise, for each r ∈ R.

Note that the decision variables and parameters introduced depend on the set R, which

is exponential in size and impractical to enumerate explicitly. For instance, the number

of contiguous regions with no more than 8 OPOs is around 3.44 × 105, whereas there are

1.27×106 contiguous regions with up to 9 OPOs [96]. Therefore, the problem is solved within

a branch-and-price framework, by generating promising regions on-the-fly throughout the

branch-and-bound tree. The restricted set of regions, which consists of the regions generated

throughout the flow of the algorithm will be denoted by R′. Note that R′ ⊆ R and that all

of the definitions above are valid on the R′ domain. Then, we have the following restricted

parametric mathematical program given parameter λ:

η(λ) = max
∑

r∈R′
crxr (3.1a)

subject to
∑

r∈R′
airxr = 1, ∀i ∈ I, (3.1b)

∑

r∈R′
firxr ≥ λ, ∀i ∈ I, (3.1c)

xr ∈ {0, 1}, ∀r ∈ R′.

The objective function (3.1a) maximizes the expected benefit of liver transplantation.

The set-partitioning constraint set (3.1b) ensures that each OPO is contained within one

31

single region in the regional configuration. Constraint set (3.1c) requires the minimum eq-

uity measure to be satisfied across all OPOs. Although η(λ) also depends on the restricted

set of regions, R′, we drop R′ from notation for ease of exposition.

Estimating the Regional Efficiency and Equity Benefits

The regional efficiency benefit is based on two components: allocation likelihood (i.e., the

likelihood of organ-patient matches between different OPOs) and organ viability (i.e., the

organ’s quality loss due to cold ischemia time).

Kong et al. [97] utilized two important assumptions that come into play while analyzing

allocation likelihood. We keep these assumptions in our models as well.

Assumption 3.1. [97] The allocation process is in steady state.

Assumption 3.2. [97] The allocation likelihood depends only on the donor OPO, the recip-

ient OPO, and the potential region containing the two OPOs.

These assumptions enable a closed-form analysis of organ flows between OPOs. The

allocation mechanism is simplified through aggregating donors and patients, and allocation

of organs to recipients is modeled based on a macro-level proportional allocation scheme.

Thus, proportional allocation assumes that the flow of organs between two OPOs in any

potential region would be proportional to the flow of organs between the same OPOs under

a single national waiting list.

When an organ is matched to a patient, the benefit of the transplant is affected by the

decay of organ quality, which directly affects any outcome measure that accounts for viability

adjustment, such as post-transplant survival rates. The organs lose viability due to CIT,

and the main contributor to the duration the organ spends outside of the human body is

the distance it has to be transported. The following assumption from [96] deals with the

viability loss.

Assumption 3.3. [96] The viability-adjusted outcome for each transplant is only dependent

upon the locations of donor and recipient OPOs.

Here we list additional parameters to be used in computing intra-regional efficiency and

equity benefits. We use the notation from [96] and [97]. Define oi to be the number of

32

organs procured at OPO i ∈ I over a period of time and pi to be the number of patients

who register on the waiting list at OPO i ∈ I. We assume pi > 0,∀i ∈ I. Let αij be the

viability-adjustment multiplier for a transplant between donor OPO i and recipient OPO

j, which is directly affected by the organ transport distance between the two OPO service

areas. This multiplier captures the quality of the transplant after adjusting for the viability

loss and can be interpreted as follows: a decision maker would be indifferent between the

benefit gained by transplanting an organ procured at OPO i to a patient at OPO j, and

αij times the benefit of transplanting the same organ to the same patient at OPO i [96].

Two more parameters are needed to capture the allocation likelihood between OPO pairs:

let lij and l0i denote the pure distribution likelihood from donor OPO i to recipient OPO j,

and the pure national flow likelihood from donor OPO i, respectively. The pure distribution

likelihood is the likelihood of organ distribution between OPO pairs under a single national

waiting list. The expected likelihood of organ wastage and organ flow to all OPOs outside

of any potential region for the donor OPO is called the pure national flow likelihood. The

reader is referred to [96, 97] for further details.

Now we are ready to describe how to estimate cr for any possible region r ∈ R. Given

two OPOs i 6= j in region r, let zij denote the allocation likelihood from OPO i to OPO

j. Although zij is region-dependent we omit the region index r from notation for ease of

exposition. Then, for two OPOs i and j in region r, zij can be calculated as follows:

zij =
lij∑

k∈Ir\{i} lik + l0i
. (3.2)

Hence, the expected viability-adjusted number of transplants between donor OPO i and re-

cipient OPO j will be equal to oizijαij. Adding up this benefit for all OPOs in region r gives

the intra-regional efficiency benefit for region r, namely cr:

cr =
∑
i∈Ir

∑

j∈Ir\{i}
oi . zij . αij =

∑
i∈Ir

∑

j∈Ir\{i}
oi .

lij∑
k∈Ir\{i} lik + l0i

. αij. (3.3)

This, in fact, is the same definition of intra-regional transplant benefits that Kong [96, 97]

used. Stahl et al. [157] did not account explicitly for the allocation likelihood of organs

between OPO pairs but assumed the flow of organs was proportional to the size of patient

populations in the OPOs of a region.

33

We define the expected intra-regional equity benefit of region r for OPO i, i.e., fir, as

the rate of likelihood-adjusted intra-regional transplants per-patient for OPO i given i ∈ Ir.

Following our definition, fir can be calculated as follows:

fir =





∑
j∈Ir\{i}

(
oj

pi

)
. zji . αji, if OPO i ∈ region r,

0, otherwise.
(3.4)

Thus, for OPO i in region r, fir =
∑

j∈Ir\{i}
(

oj

pi

)
.

lji∑
k∈Ir\{j} ljk+l0j

. αji.

Our definition of the intra-regional equity benefit per OPO differs from that of Kong

[96] and Stahl et al. [157]. Both previous studies neglected the allocation likelihood among

OPOs when deriving the equity measure. The estimates they used are defined as intra-

regional transplant rates for an OPO in a certain region. Stahl et al. [157], defined equity

as
∑

j∈Ir\{i}
oj .

1

(
∑

k∈Ir
pk)− pj

.αji,

while Kong [96] defined it as
∑

j∈Ir\{i}
oj .

1∑
k∈Ir

pk

.αji.

Neither of these definitions consider the effects of allocation likelihood between OPO pairs

in the regions. Instead, they compute hypothetical rates of intra-regional transplants based

on patient populations without incorporating the probabilistic organ flows between OPOs

that compose a region. However, we include an additional allocation likelihood component

adjusting the rate of intra-regional transplants received by an OPO by the likelihood of organ

flow into that OPO from its own region.

Generating Regions for the Efficiency Model

Denote the dual variables associated with constraints (3.1b) and (3.1c) by π and σ, respec-

tively. Then the reduced cost of a potential region r ∈ R can be calculated as follows:

34

c̄r = cr −
∑
i∈I

airπi −
∑
i∈Ir

firσi (3.5a)

=
∑
i∈Ir

∑

j∈Ir\{i}
oizijαij −

∑
i∈Ir

πi −
∑
i∈Ir

∑

j∈Ir\{i}

(
oj

pi

)
zjiαjiσi (3.5b)

=
∑
i∈Ir

∑

j∈Ir\{i}

[
oiαij

(
1− σj

pj

)
zij

]
−

∑
i∈Ir

πi. (3.5c)

We modify Kong’s pricing problem [96] to include the effects of the equity rows and

employ the following MIP within our branch-and-price framework to generate promising

regions throughout the branch-and-bound tree.

RPPη(π, σ, λ) = max
∑
i∈I

∑

j∈I\{i}

[
oiαij

(
1− σj

pj

)
zij

]
−

∑
i∈I

πiyi (3.6a)

subject to
∑

j∈I\{i}
zij + z0

i = yi, ∀i ∈ I, (3.6b)

zij ≤ yj, ∀i, j ∈ I, i 6= j, (3.6c)

likzij ≤ lijzik + lik(1− wjk), ∀i, j, k ∈ I, i 6= j, k, j < k,

(3.6d)

lijzik ≤ likzij + lij(1− wjk), ∀i, j, k ∈ I, i 6= j, k, j < k,

(3.6e)

l0i zij ≤ lijz
0
i + l0i (1− wij), ∀i, j ∈ I, i < j, (3.6f)

lijz
0
i ≤ l0i zij + lij(1− wij), ∀i, j ∈ I, i < j, (3.6g)

l0jzji ≤ ljiz
0
j + l0i (1− wij), ∀i, j ∈ I, i < j, (3.6h)

ljiz
0
j ≤ l0jzji + lij(1− wij), ∀i, j ∈ I, i < j, (3.6i)

wij ≥ yi + yj − 1, ∀i, j ∈ I, i < j, (3.6j)

∑

j∈I\{i}

(
ojαji

pi

)
zji ≥ λyi, ∀i ∈ I, (3.6k)

yi ∈ {0, 1}, 0 ≤ z0
i ≤ 1,∀i ∈ I, (3.6l)

0 ≤ zij ≤ 1,∀i, j ∈ I, i 6= j, 0 ≤ wij ≤ 1, ∀i, j ∈ I, i < j. (3.6m)

35

The objective function (3.6a) of the above formulation maximizes the reduced cost of a

region. Constraints (3.6b) force the livers procured at an OPO to be allocated at the regional

level only if that particular OPO is chosen in the selected region. Constraint (3.6c) allows

organs procured at OPO i to be allocated to OPO j only if OPO j is chosen in the region

design.

In this pricing problem, variables wij help enforce proportional allocation requirements.

For instance, if OPOs i, j and k are chosen for a potential region, then by constraints (3.6j)

and (3.6m), wjk = 1. This forces constraints (3.6d) and (3.6e) to be satisfied with equality,

and hence, proportional allocation between OPOs j and k is enforced. In a similar fashion,

constraint sets (3.6f-3.6g) and (3.6h-3.6i) make sure that proportional allocation requirements

between OPO pairs in the same region and the regional level are met.

Formulation (3.6) differs from Kong’s pricing problem in two ways: the objective function

(3.6a) is different due to differences in the master problem structure, and we have additional

constraints (3.6k). Thus, Kong’s pricing problem [96] is a special case of the one shown above,

with λ = 0, σ = 0. Kong [96] proved that the pricing problem he formulated is NP-hard by

reducing from the maximum facility location problem. Hence, (3.6) is also NP-hard.

3.2.2 Mathematical Model for Maximizing Equity

Let η denote the smallest allocation efficiency measure for the whole nation. Then, we have

the following restricted parametric mathematical program over η:

λ(η) = max λ (3.7a)

subject to
∑

r∈R′
airxr = 1, ∀i ∈ I, (3.7b)

∑

r∈R′
firxr ≥ λ, ∀i ∈ I, (3.7c)

∑

r∈R′
crxr ≥ η, (3.7d)

xr ∈ {0, 1}, ∀r ∈ R′,

λ ≥ 0.

36

The objective function (3.7a) maximizes the minimum equity measure across all OPOs in the

country. The set-partitioning constraints (3.7b) and equity constraints (3.7c) stay the same.

Constraint (3.7d) ensures that the regional design fulfills the minimum allocation efficiency

requirement. Note that the left-hand side of this constraint actually is the objective function

of formulation (3.1), and the right-hand side of constraint set (3.1c) has been incorporated

into the objective function in the equity formulation (3.7). Once again, although λ(η) also

depends on R′ we drop R′ from notation for ease of exposition.

Generating Regions for the Equity Model

Denote the dual variables associated with constraints (3.7b), (3.7c) and (3.7d) by π, σ and γ,

respectively. Then the reduced cost of a potential region r ∈ R can be calculated as follows:

c̄r = 0−
∑
i∈I

airπi −
∑
i∈Ir

firσi − crγ (3.8a)

= −
∑
i∈Ir

πi −
∑
i∈Ir

∑

j∈Ir\{i}

(
oj

pi

)
zjiαjiσi −

∑
i∈Ir

∑

j∈Ir\{i}
oizijαijγ (3.8b)

= −
∑
i∈Ir

πi −
∑
i∈Ir

∑

j∈Ir\{i}

[
oiαij

(
γ +

σj

pj

)
zij

]
. (3.8c)

The pricing problem can be formulated as follows:

RPPλ(π, σ, γ) = max−
∑
i∈Ir

∑

j∈Ir\{i}

[
oiαij

(
γ +

σj

pj

)
zij

]
−

∑
i∈I

πiyi (3.9a)

subject to (3.6b)− (3.6j),

(3.6l)− (3.6m).

The constraint structure of formulation (3.9) is identical to that of Kong’s pricing problem

[96]. The only difference between the two formulations is the objective function. The pricing

problem utilized by Kong [96] is a special case of (3.9) with σ = 0, γ = −1. Hence, (3.9) is

also NP-hard.

37

3.3 ALGORITHMIC APPROACHES

The goal is to find the efficient frontier of a system with two possibly conflicting objectives:

maximizing efficiency versus maximizing equity. The models we employ are integer programs

that are solved using a branch-and-price framework. This section focuses on describing how

the efficient frontier will be approximated. First, we include some explanations about the

computational approaches to the parametric integer programs that have been introduced in

the previous section.

3.3.1 Computational Approaches for Solving the Efficiency and Equity Models

The efficiency of a branch-and-price algorithm, or more generally a column generation

scheme, depends on the pricing strategy and how effectively the pricing problem can be

solved. Column generation techniques usually utilize pricing problems that are “easy” to

solve, in the sense that they are either well suited with special structure that can be effi-

ciently exploited, or satisfy the integrality property. For instance, as we discuss in Chapter 5,

the pricing problems of multi-commodity flow and cutting stock problems are shortest-path

and integer knapsack problems, respectively. However, our pricing problems, (3.6) and (3.9),

lack desirable properties that would enable fast solutions and are hard to solve. In order to

alleviate the difficulty in solving these mixed integer programs, we utilize Kong’s Geographic

Decomposition approach [96, 97]. The main idea behind this technique is to create a number

of smaller pricing problems, each covering different geographic areas of the country called

region covers, instead of considering a very large pricing problem for the whole nation. We

also use a multiple pricing scheme in which we insert all columns with favorable reduced

costs found while optimizing the pricing problems, instead of just using the optimal solution.

38

3.3.1.1 Geographic Decomposition The number of constraints in the pricing problem

for the efficiency model is O(|I|3), and the full pricing problem for the whole nation, which

currently has |I| = 58, contains around 200,000 rows. When poor scalability properties of

integer programming is taken into account, one would rather create a number of smaller

pricing problems instead of solving a big one. This is the basic idea behind the Geographic

Decomposition technique.

We start by designing region covers, which are geographic areas in the country that cover

a number of OPOs. Each region cover has an associated pricing problem of its own, from

which new favorable regions can be generated. Two important things about region covers

are that we need a set of region covers that span the whole country, and these covers can

overlap. In fact, having covers that overlap is essential because the model can recapture

some potential regions that would be implicitly eliminated from consideration in case of

non-overlapping region covers.

Figure 3.1: An example of geographic decomposition.

Figure 3.1 illustrates the idea of geographic decomposition through region covers. In

this figure we have four overlapping region covers that span different portions of the country.

Suppose we have a set of region covers denoted by C. Let Ij denote the OPOs in region cover

j ∈ C. Let us denote the associated pricing problem for the efficiency and equity models

for region cover j ∈ C by RPPη(π, σ, λ, Ij) and RPPλ(π, σ, γ, Ij), respectively. Replacing

39

the term I with Ij in (3.6) and in (3.9) gives the description of the efficiency and equity

pricing problem for region cover j ∈ C, respectively. Note that without using Geographic

Decomposition, following the same notation, the pricing problems become RPPη(π, σ, λ, I)

and RPPλ(π, σ, γ, I). Once a set of region covers C is designed, during every column gener-

ation subroutine, the associated pricing problems for every j ∈ C is solved until no favorable

region is found in any j ∈ C.

Although the basic idea of this approach is to create smaller subproblems, we would

ideally want the region covers to be big enough so that it would be more likely to generate

favorable regions that are potentially in the optimal basis of the set-partitioning master

problem. Intuitively, the more and bigger region covers we have in set C, the more likely

we are to find a promising region. See Kong [96] for a detailed discussion on Geographic

Decomposition.

3.3.1.2 Set-partitioning Branching We employ the branching strategy of Ryan and

Foster [148] which has proven to be effective on set-partitioning type problems. Although

they did not consider column generation applications of their branching strategy, it has been

observed to be very useful in this context [115]. This branching rule is based on the following

proposition:

Proposition 3.1. [14, 115, 148] If A is a 0-1 matrix, and a basic solution to Ax = 1 is

fractional, i.e., at least one of the components of x is fractional, then there exist two rows s

and t of the master problem such that

0 <
∑

k:ask=1,atk=1

xk < 1. (3.10)

A pair of rows, s and t, that satisfies (3.10) gives the following pair of branching con-

straints:

∑

k:ask=1,atk=1

xk = 1, on one branch, and (3.11a)

∑

k:ask=1,atk=1

xk = 0, on the other. (3.11b)

40

Thus, the branching rule (3.11) forces the rows s and t to be covered by the same column

on one branch and by different columns on the other branch. In our problem, this branching

scheme has a natural interpretation: on one branch OPOs s and t are forced to be in the

same region, and on the other branch, they are forced to be in different regions. Kong calls

this Branching on OPO pairs [96, 97].

Note that the constraint matrix A of any set-partitioning master problem is a 0-1 matrix.

Proposition 3.1 shows that a branching pair can always be identified whenever node solution

to the master problem is fractional. Since there are only finitely many pairs of rows, a

branch-and-bound algorithm employing this strategy must terminate after a finite number

of branches.

Ryan and Foster’s branching strategy speeds up the branch-and-bound process by creat-

ing a more balanced tree, and eliminating more regions at earlier stages when compared to

traditional branching on variables [115]. In standard variable branching, on a branch where

a variable is set to 1, a huge number of region designs are eliminated from consideration.

On the contrary, on the other branch, where the same variable is set to 0, only a few region

designs are eliminated. This results in an unbalanced search tree. However, branching on

OPO pairs eliminates roughly equally many potential region designs on both branches, which

results in a more balanced branch-and-bound tree.

Furthermore, this branching strategy is well suited for branch-and-price applications.

As discussed in [14], one has to be very careful with branching decisions while implement-

ing a branch-and-price algorithm because techniques like traditional variable branching may

destroy the structure of the master problem, thus complicating the solution procedure. How-

ever, Ryan and Foster’s branching strategy can be implemented within the pricing problem,

leaving the structure of the master problem untouched.

Note that the full constraint matrices of our master problems, (3.1) and (3.7), are not

0-1 matrices. However, a fractional feasible solution for (3.1) is also a fractional solution

for (3.1b), which is a 0-1 matrix. Hence, by Proposition 3.1, a branching pair can always

be identified by looking at the rows of the set-partitioning constraints (3.1b). A similar

argument also holds for the equity model (3.7). In our implementation, as in [96, 97], during

branching after identifying an OPO pair s, t we enforce the branching constraints within the

41

corresponding pricing problem, i.e., we add ys = yt to the pricing problem to force the OPOs

to be grouped together on one branch, and add the constraint ys + yt ≤ 1 to the pricing

problem on the other branch to force them to be separate. In addition to the changes in

the pricing problem, on the together branch only columns that satisfy ask = atk = 0 or

ask = atk = 1 should be active and all other columns should be deleted. Similarly, on the

separate branch only columns that satisfy ask = atk = 0 or ask = 1, atk = 0 or ask = 0, atk = 1

should be permitted and all others should be deleted.

3.3.2 Approximating the Efficient Frontier

3.3.2.1 An Algorithm Using Parameterization Let ηmin and λmin denote the effi-

ciency and equity levels of the current regional configuration. We consider only those regional

configurations whose efficiency and equity exceed ηmin and λmin, respectively. Recall that

the maximum attainable efficiency value for a given equity measure λ is denoted by η(λ) and

a similar definition holds for λ(η). Additionally, suppose we denote the objective value of

the LP relaxation of formulation (3.1) for λ by ηLP (λ) and the LP relaxation objective value

of formulation (3.7) for η by λLP (η). Let ηmax = η(λmin), ηLP
max = ηLP (λmin), λmax = λ(ηmin)

and λLP
max = λLP (ηmin). Our approach for approximating the actual efficient frontier consists

of finding η(λ), where λmin ≤ λ ≤ λmax and λ values are guided by sensitivity analysis

techniques on the LP relaxations, and enumerating the nondominated solutions on our path.

Thus, we are embedding the ε-constraint method within an iterative algorithm to find the

Pareto-optimal set of the system.

Suppose that the actual efficient frontier of models (3.1) and (3.7), and the efficient

frontier of their LP relaxations are as shown in Figure 3.2(a), where the hollow dots represent

Pareto-optimal integer solutions and each of these solutions is actually associated with the

whole step that it lies on in the staircase structure. This staircase structure itself is the

efficient frontier of the system. The piecewise linear curve that lies atop is the efficient

frontier of the LP relaxation of the problem. Each segment of the piecewise linear LP

efficient frontier corresponds to an interval of λ where a dual solution of the LP relaxation

stays optimal, as discussed in Proposition 3.2.

42

Figure 3.2: A hypothetical representation of the actual efficient frontier for the integer and

linear programs.

The procedure that we adopt makes use of upper and lower bounds on the actual frontier

that can be calculated using the solutions at hand in any iteration. Obviously, the efficient

frontier for the LP is an upper bound on the actual efficient frontier for the IP (as shown in

Figure 3.2(a)), but this curve is not known at the beginning of the procedure. Our algorithm

partially builds the LP efficient frontier by iteratively creating segments of it and uses this

approximation to guide the enumeration of the IP curve. It iteratively constructs the line

segments that compose the LP efficient frontier and uses the extended segments to create

an upper bound on the actual IP frontier. Propositions 3.2 and 3.3 establish the validity of

these upper bounds.

Let Pη(λ) denote the LP relaxation of formulation (3.1) and let Dη(λ) denote the dual of

Pη(λ). Recall that π and σ denote the dual variables associated with constraints (3.1b) and

(3.1c), respectively. Then Dη(λ) can be written as follows:

min
∑
i∈I

πi + λ
∑
i∈I

σi (3.12a)

subject to
∑
i∈I

airπi +
∑
i∈I

firσi ≥ cr, ∀r ∈ R′, (3.12b)

πi : free, σi ≤ 0, ∀i ∈ I.

43

Proposition 3.2. Consider λmin ≤ λ̂ ≤ λmax, suppose Pη(λ̂) is bounded and feasible, and let

(π̂, σ̂) denote the optimal dual solution vector. Then,

ηLP (λ) =
∑
i∈I

π̂i + λ
∑
i∈I

σ̂i, for λ ∈ [λ̂l, λ̂u],

where λ̂l and λ̂u denote the lower and upper allowable limits, respectively, provided by sen-

sitivity analysis for the right-hand side parameter λ for the current basis of Pη(λ̂) to stay

optimal.

Proof. Denote the optimal primal solution for Pη(λ̂) by x̂, and the associated basis matrix

by B̂. Note that a change in λ does not affect the reduced costs of primal variables, hence,

also leaves the pricing problem unchanged. Consequently, the optimal primal basis and

associated dual solutions, (B̂, π̂, σ̂), will stay optimal as long as

xB̂ = B̂−1 ·




1
...

1

λ
...

λ




≥ 0. (3.13)

Hence, by strong duality

ηLP (λ) =
∑
i∈I

π̂i + λ
∑
i∈I

σ̂i, for λ ∈ [λ̂l, λ̂u].

Following Proposition 3.2, we know that for a range of λ where the optimal basis for

Pη(λ) remains unchanged, there exists a constant optimal dual solution. Suppose we denote

the optimal dual solution associated with the range [λl, λu] by (π[λl,λu], σ[λl,λu]).

Proposition 3.3. The extension of a line segment of the LP frontier beyond its allowable

range gives a valid inequality for the system in the (η, λ) domain, i.e.,

∑
i∈I

π
[λ̂l,λ̂u]
i + λ

∑
i∈I

σ
[λ̂l,λ̂u]
i ≥ ηLP (λ) ≥ η(λ), for λmin ≤ λ ≤ λ̂l and λ̂u ≤ λ ≤ λmax.

44

Proof. Suppose Pη(λ) is solved to optimality for a particular λ̂. Then, from Proposition 3.2,

if the problem is bounded and feasible, we have:

ηLP (λ) =
∑
i∈I

π
[λ̂l,λ̂u]
i + λ

∑
i∈I

σ
[λ̂l,λ̂u]
i , ∀λ ∈ [λ̂l, λ̂u]

So, (π[λ̂l,λ̂u], σ[λ̂l,λ̂u]) constitutes a feasible solution for Dη(λ) for any λ since it satisfies

(3.12b), and hence, by weak duality, we have:

ηLP (λ) ≤
∑
i∈I

π
[λ̂l,λ̂u]
i + λ

∑
i∈I

σ
[λ̂l,λ̂u]
i , ∀λ /∈ [λ̂l, λ̂u],

which proves that the extension of a segment is an upper bound on the true LP efficient

frontier. Since the feasible region of the integer program is smaller than that of its linear

relaxation we also know that η(λ) ≤ ηLP (λ),∀λ.

The lower bound on the efficient frontier at any step of the algorithm will basically be

constructed by the nondominated integer solutions obtained up to that point. Since the set

of generated nondominated integer points represents a subset of the set of all nondominated

integer solutions, it constitutes a lower bound for the efficient frontier.

Figure 3.3: An initial “outer envelope” for the efficient frontier based on the LP efficient

frontier.

The initialization of our approximation technique is depicted in Figure 3.3(b). The

algorithm follows a path in which the LP frontier is constructed step by step while updating

45

the upper and lower bounds on the IP efficient frontier. In any iteration, after updating the

lower and upper bounds, the algorithm proceeds by selecting a λ value where the current

upper and lower bounds are farthest apart from each other, constructs a new line segment

of the LP frontier around it and updates the bounds appropriately. Thus it selects the λ

value where the extensions of the two neighboring line segments that are farthest away from

each other intersect. The dual values associated with each segment make it easier to find

the intersection points. Figures 3.4 and 3.5 depict two additional iterations of the algorithm

and show how the bounds are updated.

(a) (b)

Figure 3.4: Schematic illustration of iterations: (a) One more iteration: a new λ is chosen,

the IP and LP are solved, and the new line segment is constructed. (b) Updating the upper

and lower bounds.

Before giving a formal description of the algorithm, we introduce more notation. In the

description of the algorithm we make use of some attributes associated with a generated line

segment. A line segment k, has the following attributes that should be calculated when it’s

generated:

• λ′k: the lower endpoint of the segment,

• λ′′k: the higher endpoint of the segment,

• (πk, σk): the dual vector associated with the line segment (recall that each line segment

in the efficient frontier of the LP corresponds to one dual solution by Proposition 3.2).

• For each integer solution found on the path the following information should be stored:

46

Figure 3.5: After one more iteration.

– λk: the point in the segment for which an integer solution has been found,

– xk: the primal optimal solution of the efficiency model for λk.

Furthermore we construct two sets that sort the intervals and the values of λ for which

integer solutions have been found and store them in order. Namely, the Ordered Segment

Set, S, and Ordered Integer Solution Point Set, P , store the pairs of endpoints for each

constructed segment and the λ values for which an integer solution has been computed in an

increasing order, respectively. At each iteration, after the inclusion of new members, both

of these sets will be reordered and reindexed. The notations (λ′(i), λ
′′
(i)) and λ(i) will be used

denote the ith members of S and P at any point.

Finally, we define a set of tolerance parameters to be used throughout the algorithm.

Let εL, εη and ελ denote the tolerance parameters for the LP efficient frontier, efficiency

objective value comparison and enumerated integer point distance, respectively.

Now we are ready to list the steps of the algorithm:

Algorithm 3.1. Approximating the Efficient Frontier

1. Initialization.

a. Find ηmin and λmin from the currently used system.

b. Calculate ηmax = η(λmin) and ηLP
max = ηLP (λmin).

Construct Segment 1, namely S1:

47

• Set λ′1 = λmin,

• Set λ′′1 to the largest allowable λ value so that the current LP basis stays optimal,

• Set λ1 = λmin,

Let S = {S1} and P = {λ1}.
c. Calculate λmax = λ(ηmin) and λLP

max = λLP (ηmin).

Construct S2:

• Set λ′2 to the lowest allowable λ value so that the current LP basis stays optimal,

• Set λ′′2 = λLP
max,

• Set λ2 = λmax.

Put S2 into S. Reorder the set.

Put λ2 into P. Reorder the set.

d. Set the segment counter k = 3 and go to Step 2

2. Choosing a new λ. Choose two sequential members of S that are farthest away from each

other.

a. Choose

l∗ ∈ arg max(l):S(l)∈S,l<|S|(λ
′
(l+1) − λ′′(l)) (3.14)

b. If

λ′(l∗+1) − λ′′(l∗) < εL, (3.15)

the enumeration of the LP efficient frontier is complete; go to Step 4.

Otherwise, go to Step 3.

3. Constructing Sk.

a. Calculate

λk =
(
∑

i∈I π
(l∗+1)
i)− (

∑
i∈I π

(l∗)
i)

(
∑

i∈I σ
(l∗)
i)− (

∑
i∈I σ

(l∗+1)
i)

(3.16)

b. Find η(λk) and ηLP (λk),

c. Set λ′k to the lowest allowable λ value so that the current LP basis stays optimal,

d. Set λ′′k to the largest allowable λ value so that the current LP basis stays optimal.

Put Sk into S. Reorder the set.

Put λk into P. Reorder the set.

48

Set k = k + 1.

Go to Step 2.

4. Generating more integer points

a. Choose two sequential members of P that are farthest apart from each other.

i. Choose

l∗ ∈ arg max(l):λ(l)∈P,l<|P|{λ(l+1) − λ(l)|η(λ(l))− η(λ(l+1)) < εη} (3.17)

ii. If

λ(l∗+1) − λ(l∗) < ελ, (3.18)

the approximation of the IP efficient frontier is complete; STOP.

The approximate frontier is given by the following set:

η =





η∗(λ(i+1)), if λ(i) < λ ≤ λ(i+1), i ≤ |P| − 1,

η∗(λ(1)), if λ = λ(1),

0, otherwise

(3.19)

Otherwise go to Step 4b.

b. Calculate

λk =
λ(l∗) + λ(l∗+1)

2
(3.20)

Find η(λk) and ηLP (λk).

Put λk into P. Reorder the set.

Set k = k + 1.

Go to Step 4a.

49

(a) (b)

Figure 3.6: (a) Initialization of the alternative algorithm. (b) An additional iteration of the

alternative algorithm: a new λ is chosen, the new line segment is constructed, and bounds

are updated accordingly.

Figure 3.7: After one more iteration of the alternative algorithm.

3.3.2.2 An Alternative Algorithm Another possible way to trace the efficient frontier

of the LP and enumerate integer solutions on the way is to construct the curve by finding

the line segments that form the piecewise linear LP frontier in a sequential manner. In this

algorithm, we start by forming the first line segment around λmin and whenever a segment k

is formed, we construct the next segment around λk+1 = λ′′k + ε, if λ′′k + ε ≤ λmax. Thus, we

construct the line segments forming the efficient frontier of the LP sequentially by perturbing

50

the higher endpoints of each line segment that we find on our path. Once again, we solve

the IP and enumerate the integer solutions for each λk for all Sk ∈ S. Figures 3.6 and 3.7

show schematic representations of the iterations of the alternative algorithm.

Algorithm 3.2. An Alternative Algorithm for Approximating the Efficient Frontier

1. Initialization.

a. Find ηmin and λmin from the currently used system.

b. Calculate ηmax = η(λmin) and ηLP
max = ηLP (λmin).

Construct Segment 1, namely S1:

• Set λ′1 = λmin,

• Set λ′′1 to the largest allowable λ value so that the current LP basis stays optimal,

• Set λ1 = λmin,

Let P = {λ1}.
c. Calculate λmax = λ(ηmin) and λLP

max = λLP (ηmin).

Put λmax into P.

d. Set the segment counter k = 2 and go to Step 2

2. Choosing a new λ. Set λk = λ′′k−1 + ε. If λk ≥ λmax the enumeration of the LP efficient

frontier is complete; go to Step 4. Otherwise, go to Step 3.

3. Constructing Sk.

• Find η(λk) and ηLP (λk),

• Set λ′k = λ′′k−1,

• Set λ′′k to the largest allowable λ value so that the current LP basis stays optimal.

Put λk into P. Reorder the set.

Set k = k + 1.

Go to Step 2.

4. Generating more integer points

Follow Step 4 of Algorithm 3.1.

51

3.4 COMPUTATIONAL RESULTS

The optimization models were coded in C++ using COIN/BCP, an open source branch,

cut and price framework which is part of the COIN-OR, i.e., Computational Infrastructure

for Operations Research, project [37]. For a comprehensive description of COIN/BCP, the

reader is referred to [38, 140, 141]. In the application developed, COIN/BCP stays in charge

of the branch-and-bound tree management while it uses CPLEX 9.0 to solve the subproblems

throughout the execution of the algorithm. We used a UNIX machine with AMD Opteron

240 processor and 3.8 GB RAM.

3.4.1 Data Sources and Parameter Estimation

The main sources of data were the UNOS website and the UNOS Data Set available at

University of Pittsburh Medical Center that covered a time frame from the year 1988 to

the end of 2002 [169]. The discrete-event simulation model for End-Stage Liver Disease

and organ allocation of Shechter et al. [155] was modified to capture information on pure

distribution likelihood and the pure national flow likelihood estimates.

The national liver allocation system was simulated between the years 1999 and 2002

with no regions specified, i.e., one single national waiting list that ranks patients according

to severity of illness. In this case, lij was estimated as the percentage of organs donated at

OPO i and transplanted to a patient in OPO j averaged over 100 independent replications.

The pure national flow likelihood parameter for OPO i, i.e., l0i , was estimated using 50

randomly selected region configurations, with number of regions between 5 and 14, and

replicating the simulation 30 times for each configuration.

52

Table 3.1: Summary of geographic decomposition schemes used.

Geographic Number of Pricing Problem Analysis

Decomposition Region OPOs in Variables

Scheme ID Covers Each Cover Binary Total
Constraints

10 10 10 10 10 155 1055

20 10 20 10 10 155 1055

20 11 20 11 11 187 1397

20 12 20 12 12 222 1806

20 15 20 15 15 345 3495

For the measure of organ quality decay with respect to CIT we used the model introduced

by Totsuka et al. [164], which was also used in previous studies in liver transplantation region

design [96, 97, 157]. Thus, we consider PNF , i.e., primary non-function as the main source

of postoperative organ failure, and use the following formulas to measure the liver quality

decay with respect to CIT (cold-ischemia time) and OTD (organ transport distance):

CIT = 9.895 + 0.003×OTD, (3.21a)

PNF = −1.5545 + 1.17799× CIT − 0.03451× CIT 2 + 0.0004× CIT 3. (3.21b)

Let OTD(i, j) denote the organ transport distance in miles between donor OPO i and

recipient OPO j. Then, the viability-adjustment multiplier between OPOs i and j, αij, is

calculated as

αij = 1− PNF (CIT (OTD(i, j)). (3.22)

3.4.2 Efficient Frontier Approximations

We executed the algorithms discussed in Sections 3.3.2.1 and 3.3.2.2 using different geo-

graphic decomposition schemes with different region covers. Table 3.1 summarizes details

on the geographic decomposition schemes that have been utilized to solve the efficiency and

53

Table 3.2: CPU times for different geographic decomposition schemes.

Geographic Average CPU Time to Get Total CPU Time to

Decomposition a Step of the Frontier Enumerate the Frontier

Scheme ID (sec) (hour:min:sec)

10 10 546 00:27:18

20 10 1080 01:12:00

20 11 4254 04:43:36

20 12 10972 12:11:28

20 15 22809 38:00:54

equity models. The region covers are named in such a way that region cover K L contains K

geographic subsets, each containing L OPOs, following the notation in [96, 97]. This table

also shows data related to the pricing problems associated with each region cover in each de-

composition scheme. Recall that every region cover has its own pricing problem, and thus, a

scheme that employs K region covers will have K pricing problems. The numbers displayed

are for the pricing problem of the efficiency model (3.6), which has L more constraints than

the pricing model of the equity model (3.9), everything else being equal.

We came up with these sets of region covers after doing considerable initial testing on

different schemes. We used Kong’s geographic decomposition schemes [96] as a starting point

and finalized our sets of region covers after gradually modifying them based on the results

from initial testing.

During the execution of the enumeration algorithms we stored all column generated

during one solution of an IP for some value of λ and inserted those into the initial set

columns for subsequent solutions with new λ values. Initially, we started solving the first

IP with a set of columns that includes the current regional configuration, all single-OPO

regions, and all contiguous regions with 4 OPOs.

54

100%

101%

102%

103%

104%

105%

106%

107%

108%

109%

100% 105% 110% 115% 120% 125% 130% 135% 140%

Equity (as a percentage of the equity measure of the current system)

E
ff

ic
ie

n
cy

 (
as

 a
 p

er
ce

n
ta

g
e

o
f

th
e

ef
fi

ci
en

cy

m
ea

su
re

 o
f

th
e

cu
rr

en
t

sy
st

em
)

10_10 20_10 20_11 20_12 20_15

Figure 3.8: A summary of efficient frontiers obtained by analyzing the system using different

region covers for the geographic decomposition scheme.

The solution times obtained with our geographic decomposition schemes and the associ-

ated efficient frontiers can be seen in Table 3.2 and Figure 3.8, respectively. For every scheme,

Table 3.2 shows both the average CPU time in seconds to solve a parametric IP in order

to enumerate a step of the efficient frontier, and the total CPU time spent on constructing

the full frontier. As can be seen from Figure 3.8, the results we obtained using geographic

decomposition scheme 20 15 are the best. However, enumerating the efficient frontier using

20 15 is computationally expensive, requiring about 38 hours of CPU time. We decided not

to design bigger region covers after observing the jump in CPU time from scheme 20 12 to

20 15.

55

100%

101%

102%

103%

104%

105%

106%

107%

108%

109%

100% 105% 110% 115% 120% 125% 130% 135% 140%

Equity (as a percentage of the equity measure of the current system)

E
ff

ic
ie

n
cy

 (
as

 a
 p

er
ce

n
ta

g
e

o
f

th
e

ef
fi

ci
en

cy
 m

ea
su

re

o
f

th
e

cu
rr

en
t

sy
st

em
)

20_12

(a)

(b)
(c)

(d)

Figure 3.9: Efficient frontier obtained with geographic decomposition scheme 20 12.

We present the efficient frontier obtained with geographic decomposition scheme 20 12

and the corresponding regional configurations in Figures 3.9 and 3.10, respectively. Similarly,

the efficient frontier obtained using geographic decomposition scheme 20 15 and the corre-

sponding regional configurations can be found in Figures 3.11 and 3.12, respectively. Figure

3.11 also compares our set of Pareto-optimal solutions to alternative regional configurations

provided by Kong et al. [97] and Stahl et al. [157]. In both studies, a number of results

were mentioned without listing any details regarding what the individual groupings of OPOs

were. However, both papers included a map of recommended regional configurations, which

we evaluated and compared with our own results.

56

(a) Efficiency: 7.68% increase

Equity: 12.3% increase

(b) Efficiency: 7.06% increase

Equity: 23.33% increase

(c) Efficiency: 6.70% increase

Equity: 25.69% increase

(d) Efficiency: 6.04% increase

Equity: 28.62% increase

Figure 3.10: Maps of regions that correspond to the steps of the efficient frontier obtained

with geographic decomposition scheme 20 12.

3.4.3 Evaluating the Regional Configurations

In order to validate our solutions, we simulated our alternative configurations of Figure 3.12

and compared the results to the performance of the current regional configuration. We used

the simulation model of Shechter et al. [155], and simulated the liver allocation system

from 1996 to the end of 2002. We took 20 replications using each configuration and used a

warm-up period of 3 years. To demonstrate the significance of gains with respect to both

objectives, i.e., maximizing efficiency and maximizing minimum equity, we ran paired t tests

to compare the performances of our regional configurations with the current system. We also

simulated the regional configurations provided by Stahl et al. [157] and Kong et al. [97].

57

100%

101%

102%

103%

104%

105%

106%

107%

108%

109%

100% 105% 110% 115% 120% 125% 130% 135% 140%

Equity (as a percentage of the equity measure of the current system)

E
ff

ic
ie

n
cy

 (
as

 a
 p

er
ce

n
ta

g
e

o
f

th
e

ef
fi

ci
en

cy
 m

ea
su

re

o
f

th
e

cu
rr

en
t

sy
st

em
)

Efficient Frontier Stahl et al. Kong et al.

(3B)
(3C)

(3D) (3E) (3F)

(3A)

Figure 3.11: Efficient frontier obtained with geographic decomposition scheme 20 15. Our

results are also compared to solutions provided by Stahl et al. [157] and Kong et al. [97].

Table 3.3 shows the results of paired t tests for the difference in mean number of trans-

plants. Each row in the table corresponds to a paired t test comparing the performance of an

optimal regional configuration in Figure 3.12 to the current system. The null hypothesis of

these tests is that the average number of transplants are equal between an alternative config-

uration and the current regional configuration. Since the p value is 0 for each configuration,

we conclude that there is enough statistical evidence that shows that the configurations

shown in Figure 3.12 result in an increase in the average number of yearly transplants. Fig-

ures 3.13 and 3.14 depict the 95% confidence intervals shown in Table 3.3, and also display

the confidence intervals obtained for the solutions presented by Stahl et al. [157] and Kong

58

et al. [97]. As can be seen from these values, the regional configurations presented in Figure

3.12 result in a 5% increase in the number of yearly transplants on the average while the

alternative configurations of Stahl et al. [157] and Kong et al. [97] result in an average of

about 3% and 4.5% increase, respectively.

Table 3.4 displays the results of paired t tests for the difference in mean minimum intra-

regional transplant rates per patient. As in Table 3.3, each row in the table corresponds to a

paired t test comparing the performance of an optimal regional configuration in Figure 3.12

to the current system. Once again, since the p value is 0 for each configuration, we conclude

that there is enough statistical evidence that shows our regional configurations result in an

increase in the minimum rate of intra-regional transplants per patient. Figures 3.15 and 3.16

display the 95% confidence intervals shown in Table 3.4 along with the intervals constructed

for the solutions provided by Stahl et al. [157] and Kong et al. [97]. Although the amount

of increase in the minimum equity level looks too small, the average minimum equity level

for the current system is around 0.017 and our alternative region designs result in a 70%

increase. As can be seen from Figures 3.15 and 3.16, the solution presented in Stahl et al.

[157] results in a 40% increase in the equity measure. The paired t test for the regional

configuration presented in Kong et al. [97] has a p value of 0.114, which suggests that there

is not enough statistical evidence that this configuration will improve the current equity

levels.

3.5 CONCLUSIONS

In this chapter, we extended the models and solution techniques used for the region design

problem in the liver allocation hierarchy in the healthcare optimization literature. We in-

troduced an optimization framework that aimed to balance the efficiency and equity in the

system through the use of two parametric integer programs.

Our results indicate that there are alternative regional configurations that would benefit

the society by bringing gains to both the efficiency, as measured by the number of viability-

adjusted transplants, and equity, as measured by the fairness in terms of access to organs from

59

different geographic locations throughout the country, of the national liver allocation system.

The regional configurations presented in this chapter are estimated to bring 5% and 70%

gains in the efficiency and equity levels of the U.S. liver allocation system, respectively, when

tested using the simulation model of Shechter et al. [155]. Furthermore, their performances

appear to be superior when compared to alternative configurations suggested in the literature

[97, 157].

Possible directions of future research are relaxing the steady-state assumption in the

modeling phase and enabling a stochastic view of the system that explicitly accounts for

uncertainty. Moreover, in this study we have focused on geographic equity in a maxi-min

setting. Although alternative equity measures, such as racial, socioeconomical equity, etc.

are possible, no attempt has been done to integrate these factors into a decision-making

perspective for designing regional configurations for the liver allocation hierarchy.

60

(3A) Efficiency: 7.95% increase

Equity: 19.35% increase

(3B) Efficiency: 7.84% increase

Equity: 21.06% increase

(3C) Efficiency: 7.69% increase

Equity: 22.82% increase

(3D) Efficiency: 7.29% increase

Equity: 32.17% increase

(3E) Efficiency: 7.13% increase

Equity: 34.84% increase

(3F) Efficiency: 6.95% increase

Equity: 37.6% increase

Figure 3.12: Maps of regions that correspond to the steps of the efficient frontier obtained

with geographic decomposition scheme 20 15.

61

Table 3.3: Paired t tests and 95% confidence intervals on the difference in average number

of transplants per year: Regional configurations of Figure 3.12 vs. current system

Paired Differences

Regional Standard Standard 95% CI

Configuration Mean Deviation Error LL UL t p−value

3A 203.53 29.26 6.54 189.84 217.23 31.11 .0000

3B 204.95 31.91 7.14 190.01 219.89 28.72 .0000

3C 209.49 41.07 9.18 190.27 228.71 22.81 .0000

3D 197.32 38.92 8.70 179.11 215.54 22.67 .0000

3E 178.71 39.76 8.89 160.10 197.33 20.10 .0000

3F 196.08 35.29 7.89 179.57 212.60 24.85 .0000

100

120

140

160

180

200

220

240

3A 3B 3C 3D 3E 3F Kong
et al.

Stahl
et al.

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 3.13: 95% confidence intervals around the mean difference in number of transplants.

Solutions provided by Stahl et al. [157] and Kong et al. [97] are also evaluated. Detailed

results can be seen in Table 3.3.

62

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

5.50%

6.00%

3A 3B 3C 3D 3E 3F Kong
et al.

Stahl
et al.

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 3.14: 95% confidence intervals around the mean difference in number of transplants

as a percentage of transplants under the current system. Detailed results can be seen in

Table 3.3.

Table 3.4: Paired t tests and 95% confidence intervals on the difference in average minimum

intra-regional transplant rate per patient per year: Regional configurations of Figure 3.12

vs. current system

Paired Differences

Regional Standard Standard 95% CI

Configuration Mean Deviation Error LL UL t p−value

3A .0126 .0062 .0014 .0097 .01553 9.0336 .0000

3B .0120 .0039 .0009 .0102 .01385 13.8707 .0000

3C .0127 .0056 .0013 .0100 .01530 10.0699 .0000

3D .0129 .0044 .0010 .0108 .01497 12.9718 .0000

3E .0132 .0055 .0012 .0106 .01575 10.7129 .0000

3F .0108 .0040 .0009 .0089 .01262 12.0087 .0000

63

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

3A 3B 3C 3D 3E 3F Kong et
al.

Stahl et
al.

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 3.15: 95% confidence intervals around the mean difference in minimum intra-regional

transplant rate per patient. Detailed results can be seen in Table 3.4.

64

-20%

0%

20%

40%

60%

80%

100%

3A 3B 3C 3D 3E 3F Kong et
al.

Stahl et
al.

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 3.16: 95% confidence intervals around the mean difference in minimum intra-regional

transplant rate per patient as a percentage of the equity measure under the current system.

Detailed results can be seen in Table 3.4.

65

4.0 DESIGNING LIVER TRANSPLANT REGIONS UNDER

UNCERTAINTY USING A PATIENT-BASED MODEL

4.1 INTRODUCTION

Previous studies on the design of regions in the U.S. for the liver transplantation mechanism

[96, 97, 157] modeled the current system under steady-state assumptions, assuming constant

flow of organs between OPO pairs, organ donations and patient populations. In this chapter,

we lift the steady-state assumption and adopt a stochastic view of the system.

We start by constructing a two-stage stochastic recourse model, where the first-stage

decision is to design a regional configuration, and the second stage approximates the expected

benefit of a liver transplant under different scenarios that represent potential snapshots of

the waiting list. We show that a closed-form expression is available for the second-stage

expected value function, and concentrate on the resulting set-partitioning formulation. We

utilize a column generation approach on the set-partitioning formulation to find favorable

region designs. We formulate a pricing problem that explicitly considers a set of possible

scenarios for the composition of the national waiting list and generates promising regions.

We also adopt a different objective than all other previous studies on the region design

problem [96, 97, 157] for this chapter. We turn our attention from the number of (viability-

adjusted) transplants per year to the expected life-time gained from transplants. Hence, the

definition of efficiency throughout this chapter is different than our definition in Chapter 3,

and focuses on the expected life-days gained after the patients receive transplants.

In this chapter, as in Chapter 3, we focus our attention to MELD patients on the waiting

list and ignore Status 1 patients. And similarly, we exclude the national matching phase

from consideration. See Section 1.2 for more information.

66

The chapter is structured as follows: in Section 4.2, we introduce a stochastic pro-

gramming model to maximize the efficiency of the regional configuration of OPOs for liver

transplantation in the U.S. We also discuss our column generation approach and introduce

our pricing problem formulation. We focus on the solution methods for the resulting mod-

els and discuss various computational approaches in Section 4.3. Section 4.4 describes the

details about data sources and parameter estimation. We present our computational results

in Section 4.5. Finally, in Section 4.6 we summarize our discussions and results.

4.2 A STOCHASTIC PROGRAMMING MODEL FOR REGION DESIGN

UNDER UNCERTAINTY

Let I denote the set of OPOs across the U.S., R be the set of all potential regions of OPOs

and Ir denote the set of OPOs in region r,∀r ∈ R. Suppose Ξ denotes the finite support of

all scenarios, which represent potential states of the national waiting list. We assume that

the scenario space can be represented by a set of discrete scenarios, denoted by ξ1, . . . , ξK ,

where scenario ξk occurs with probability pk.

There are some important points that should be mentioned regarding the scenarios.

First, scenarios give different snapshots of the waiting list, and show possible compositions

of the national waiting list at discrete points in time. Suppose that in each scenario there is

one harvested liver at some OPO that is about to be matched with patients on the waiting

list at the regional level. Each scenario defines the characteristics of the harvested liver and

the characteristics of the patients on the waiting list (i.e., their physical and demographic

characteristics, which come into play in the ranking of patients and the expected benefit

resulting from giving the liver to a specific patient). Regarding the probability distribution

for scenarios, we state the following assumption for computational tractability:

Assumption 4.1. The probability distribution of scenarios is independent of the regional

configuration, i.e., pk is independent of the first-stage decision x, for ξ1, . . . , ξK.

67

A detailed discussion on the structures of scenarios will be given during the discussion

of the second-stage model.

4.2.1 First-Stage Model

Let xr = 1 if region r is selected for the regional configuration, and xr = 0 otherwise. Also

let air = 1 if OPO i is in region r, and air = 0 if not.

Then, the first-stage problem can be formulated as follows:

max IEξQ(x, ξk) (4.1a)

subject to
∑
r∈R

airxr = 1, ∀i ∈ I, (4.1b)

xr ∈ {0, 1}, ∀r ∈ R, (4.1c)

where Q(x, ξk) denotes the expected outcome of liver transplantation for regional configura-

tion x under scenario ξk. The objective function (4.1a) is composed only of the expectation

of the second-stage objective over all possible scenarios. There is no benefit for a particular

region enjoyed in the first stage. The objective is to maximize the expected benefit of liver

transplantation, which will be clarified during the discussion on the second-stage models.

The set-partitioning constraint (4.1b) ensures that each OPO is contained within one single

region in the regional configuration.

4.2.2 Second-Stage Model

For k = 1, . . . , K, scenario ξk lists an organ ready to be matched at the regional phase, and

a list of patients on the waiting list along with information on their OPOs and the expected

benefit each patient will get if she is offered the liver.

Let Mk = {1, . . . , |Mk|} denote the set of patients on the waiting list under scenario ξk.

We assume that patients are numbered so that if m′ < m′′, patient m′ is offered the liver

before patient m′′. This means that patient m′ is either sicker than m′′, i.e., has a higher

MELD score, or their MELD scores are equal but m′ has higher UNOS points due to a

better blood-type match, longer waiting time on the list, etc. See Section 1.1 for details on

68

the liver allocation system. Let O(k) ∈ I denote the OPO in which the liver is harvested

under scenario ξk. For every m ∈ Mk, let O(m, k) ∈ I denote the OPO where patient m

in scenario ξk is listed. Since we assume that the donated liver in OPO O(k) is available

for regional matching, i.e., was not matched locally within OPO O(k), we do not need to

consider patients listed in OPO O(k) for scenario ξk. Thus, {m ∈ Mk|O(m, k) = O(k)} = ∅.
Let c(ξk) ∈ IR

|Mk|
+ be the expected benefit vector where each entry, cm(ξk), is the expected

benefit to patient m given that the liver is transplanted to patient m [144]. Let T (ξk) ∈
IR|Mk|×|R| be the probability-ranking matrix where Tmr(ξ

k) = Prob{m|r, k} = Prob{patient

m gets the liver|region r chosen under scenario ξk}. In every scenario ξk, the characteristics

of the harvested liver and patients are reflected in the problem through the expected benefit

vector c(ξk) and the probability-ranking matrix T (ξk).

We also utilize the following assumption about patient sets:

Assumption 4.2. Patients do not multiply list, i.e., a patient registers for the national liver

waiting list only in one OPO.

Under the current policy, patients are actually allowed to multiply list, and around 3.3%

of ESLD patients in the U.S. do so [119]. However, Assumption 4.2 is not a limiting assump-

tion since a multiply-listed patient can simply be treated as two different patients that share

the same characteristics.

Modeling the Liver Allocation Probability Distribution

Before getting into the calculation of Prob{m|r, k} we introduce more notation.

Let Jk ∈ ZZ+ denote the maximum number of patients that we can offer the liver at the

regional phase due to CIT limitations under scenario ξk. Let qk denote the probability that

a patient accepts an organ offer under scenario ξk.

We state the following assumption, which was also utilized in Shechter et al. [155],

regarding transplant probabilities, which we will revisit shortly:

Assumption 4.3. For every scenario ξk ∈ Ξ, the rank of the patient that will receive the

transplantation has a geometric distribution with parameter qk.

69

In the framework we adopt, the only step we are concerned with in the UNOS allocation

policy is the regional allocation step. Our model maximizes the national benefit by redesign-

ing the regions without interfering with any UNOS policy regarding how patients should be

prioritized. Hence, once a regional design has been selected, the probability that a patient

gets a harvested liver is solely driven by the current policies of UNOS. In other words, there

is no societal optimization issue regarding who should get the liver or how patients should

be ranked, but we are rather concerned with the design of the regions, which constitutes a

very important step in the allocation mechanism, and maximizing the resulting outcome by

following UNOS’s policies for allocation within the regions. The goal of the second stage is to

capture the expected benefit of liver transplants under different scenarios, and second-stage

decisions regarding the probabilities of patients on the waiting list being offered a liver are

actually automatic, following UNOS’s liver allocation regulations, once a first-stage decision

has been made. This fact, combined with Assumption 4.3, allows the use of closed-form ex-

pressions to calculate patient-transplant probabilities and the second-stage effects of regions

designs.

For a candidate region r ∈ R, scenario ξk ∈ Ξ and patient m ∈ Mk, let j(m|r, k) denote

the rank of patient m on the regional waiting list for region r. Then, by Assumption 4.3, we

can calculate the probability that patient m gets the donated liver in scenario ξk as follows:

Prob{m|r, k} =





(1− qk)
j(m|r,k)−1 · qk, if O(k) ∈ r, and j(m|r, k) ≤ Jk,

0, otherwise.
(4.2)

Hence, with probability (1− qk)
Jk , the liver available under scenario ξk ∈ Ξ will not be used

at the regional phase.

Let w(ξk) ∈ IR|Mk| denote the probabilities of the liver being transplanted to the patients

on the waiting list under scenario ξk. The matching probabilities of organs and patients

depend on the regional configuration. Recall that T (ξk) gives the matching probabilities

for the candidate regions in the first-stage problem. Combining this information with a

first-stage solution x, which represents a chosen regional configuration, provides matching

probabilities for scenario ξk. So, we have

wm(ξk) = [T (ξk)x]m = Prob{patient m gets the liver under configuration x}.

70

For a given first-stage solution x and a scenario ξk, assume O(k) is in region r̂ and xr̂ = 1.

Note that although many different regions can contain O(k), only one region variable can be

set to 1, due to set-partitioning constraint (4.1b). Then, we can write

wm(ξk) = [T (ξk)x]m = Prob{patient m gets the liver under configuration x}
= Prob{m|r̂, k}.

Hence, the second-stage objective value of regional configuration x under scenario ξk can be

expressed as follows:

Q(x, ξk) = c(ξk)T w(ξk) = c(ξk)T T (ξk)x. (4.3)

Let Tr(ξ
k) denote the column of T (ξk) for region r ∈ R. Then, following equation (4.3),

which provides a closed-form expression for second-stage objective values in terms of x, we

can calculate the objective function coefficient of a region r as follows:

dr =
K∑

k=1

pkc(ξk)T Tr(ξ
k). (4.4)

Hence, we have proven the following proposition:

Proposition 4.1. The deterministic equivalent program (4.1) is equivalent to

max
∑
r∈R

drxr (4.5a)

subject to
∑
r∈R

airxr = 1, ∀i ∈ I, (4.5b)

xr ∈ {0, 1}, ∀r ∈ R. (4.5c)

71

4.2.3 Branch-and-Price Framework

The set of all potential regions, R, is exponential in size and impractical to enumerate

explicitly. As we mentioned in Chapter 3, the number of contiguous regions with no more

than 8 OPOs is around 3.44× 105, whereas there are 1.27× 106 contiguous regions with up

to 9 OPOs [96]. For this reason, we adopt a branch-and-price approach in which we utilize

a restricted set of regions, denoted by R′, and generate favorable regions as needed using

column generation, which continually updates R′. Note that R′ ⊆ R and that all of the

definitions above are valid on the R′ domain.

In this case, the Restricted Master Problem (RMP) becomes:

max
∑

r∈R′
drxr (4.6a)

subject to
∑

r∈R′
airxr = 1, ∀i ∈ I, (4.6b)

xr ∈ {0, 1}, ∀r ∈ R′. (4.6c)

Although the RMP depends on the restricted set of regions R′, we drop R′ from the notation

for ease of exposition.

Pricing Subproblem

Let πi denote the dual variable corresponding to the set-partitioning constraint for OPO i

(4.6b) in the LP relaxation of (4.6). Then, the reduced cost of a region r̂ can be calculated

as follows:

c̄r̂ = dr −
∑
i∈I

πiair̂ =

(
K∑

k=1

pkc(ξk)T Tr̂(ξ
k)

)
−

∑
i∈I

πiair̂. (4.7a)

Thus, we have to find Tr̂(ξ
k) for “non-existing” regions, i.e. regions that haven’t been

generated previously. Let cm(ξk) and Tmr̂(ξ
k) denote the mth entries of vectors c(ξk) and

Tr̂(ξ
k). Then, we have

c̄r̂ =
K∑

k=1

pk

(∑
m∈Mk

cm(ξk) Tmr̂(ξ
k)

)
−

∑
i∈I

πiair̂, (4.8a)

=
K∑

k=1

∑
m∈Mk

(
pkcm(ξk) Prob{m|r̂, k})−

∑
i∈I

πiair̂. (4.8b)

72

Finding Prob{m|r̂, k} for a “non-existing” region for all ξk ∈ Ξ and m ∈ Mk is nontrivial.

We introduce a pricing problem that does this by using binary variables for selecting OPOs

into a region and ensuring that the ranking of patients conforms to the liver allocation policies

in the newly designed region. The objective is to find a region design with the maximum

favorable reduced cost that can improve the objective function value of the RMP.

Let yi be a binary variable such that yi = 1 if OPO i ∈ I is chosen for the new region, and

yi = 0 otherwise, and let zmjk = 1 if patient m ∈ Mk is in jth place in the new region under

scenario ξk ∈ Ξ, and zmjk = 0 otherwise, for j = 0, . . . , min(m, Jk). Recall that Jk denotes

the number of ranks that matter due to offer limitations related to the CIT of the organ

for scenario ξk, for k = 1, . . . , K. Hence, for scenario ξk, all patients who are not ranked in

the first Jk spots are assigned to the 0th place, and consequently, have a zero probability of

getting the organ. Note that 0th place is not ahead of the 1st place but shows that a patient

is not ranked within the first Jk to be offered the available organ.

For every scenario ξk, a patient m ∈ Mk could be ranked in one of the spots 1 through

Jk, if (a) her OPO is chosen for the new region, i.e., yO(m,k) = 1, and (b) the donor OPO for

scenario ξk is in the new region, i.e. yO(k) = 1. Thus, we have

min(m,Jk)∑
j=1

zmjk ≤ yO(m,k), k = 1, . . . , K, ∀m ∈ Mk, (4.9a)

min(m,Jk)∑
j=1

zmjk ≤ yO(k), k = 1, . . . , K, ∀m ∈ Mk. (4.9b)

Moreover, each of the spots 1 through Jk, for scenario ξk, can only be used if and only

if the donor OPO for that particular scenario is a part of the new region. Hence,

|Mk|∑
m=j

zmjk = yO(k), k = 1, . . . , K, j = 1, . . . , Jk. (4.10)

Since we only consider organ-patient matching at the regional phase, for the benefits of a

scenario to be realized, the liver available under that scenario has to be in the selected region,

and we can only evaluate the benefits of transplant for patients in that particular region.

73

In addition to these requirements, under scenario ξk, a patient m ∈ Mk has to be either

ranked in one of the spots 1 through Jk, or be left unranked. Thus, we have

min(m,Jk)∑
j=0

zmjk = 1, k = 1, . . . , K, ∀m ∈ Mk. (4.11)

In order to make the constraint set of the pricing problem complete, we need one more

set of constraints that force the rankings to conform to UNOS’s policies. Recall that during

the regional matching phase of the three-tier allocation scheme, the harvested liver is offered

to patients listed in the region that contains the donor OPO in decreasing order of sickness.

In our modeling framework, the value of the binary vector y determines the set of OPOs

that go into the new region. Let bk
mi = 1 if O(m, k) = i (i.e., patient m is listed in OPO i

under scenario k), and bk
mi = 0 otherwise. Also, let nk

mi =
∑

l∈Mk:l≤m bk
li, so that nk

mi shows

the number of patients listed in OPO i who are ranked above or at the same spot as patient

m (including patient m herself) on the national waiting list, i.e., across the whole country,

under scenario ξk. Thus,
∑

i∈I nk
miyi is the number of people at least as sick as patient m

under scenario ξk that are listed in the new region, which is equal to the regional rank of

patient m under scenario ξk. The following set of constraints relies on this observation, and

together with constraints (4.9a), (4.9b), (4.10) and (4.11), enforces the regional ranks to be

assigned in decreasing order of illness severity within the region:

min(m,Jk)∑
j=1

j · zmjk + m · zm0k ≥
∑
i∈I

nk
mi · yi, k = 1, . . . , K, ∀m ∈ Mk. (4.12)

The system of inequalities described by (4.9)-(4.12) forms the constraint set of our pricing

problem. A very important observation is that for a fixed binary vector y, this system is

separable for each scenario k = 1, . . . , K. Table 4.1 shows the structure of the constraint

matrix formed by the system (4.9)-(4.12). Each row in the table corresponds to the coefficient

matrix for an individual scenario and the thick dots represent variable groups that have

nonzero coefficients for the constraint sets of that particular scenario. From Table 4.1, it is

easy to see that once the y variables are fixed, we are left with K independent subsystems,

each of which corresponds to an individual scenario in Ξ.

74

Table 4.1: Constraint structure of the system of inequalities represented by (4.9)-(4.12).

Variables
Scenario

y zmj1 zm01 zmj2 zm02 · · · zmjK zm0K

• •
• •

1 • •
• • •
• • •
• •
• •

2 • •
• • •
• • •
...

. . .

• •
• •

K • •
• • •
• • •

75

For a fixed y ∈ IB|I| and scenario ξk, let P (y, k) = {z|(4.13a)− (4.13g)}, where

min(m,Jk)∑
j=1

zmj ≤ yO(m,k), ∀m ∈ Mk, (4.13a)

min(m,Jk)∑
j=1

zmj ≤ yO(k), ∀m ∈ Mk, (4.13b)

|Mk|∑
m=j

zmj = yO(k), j = 1, . . . , Jk, (4.13c)

min(m,Jk)∑
j=0

zmj = 1, ∀m ∈ Mk, (4.13d)

min(m,Jk)∑
j=1

j · zmj + m · zm0 ≥
∑
i∈I

nk
mi · yi, ∀m ∈ Mk, (4.13e)

zm0 ∈ {0, 1}, ∀m ∈ Mk, (4.13f)

0 ≤ zmj ≤ 1, ∀m ∈ Mk, j = 1, . . . , Jk. (4.13g)

Now, we will prove that a solution to the system P (y, k) ranks the patients under scenario

ξk in decreasing order of sickness in the region defined by y. In order to prove this claim, we

need the following set of lemmas.

Lemma 4.1. For a fixed y ∈ IB|I| and scenario ξk ∈ Ξ,

(a) if yO(k) = 0, then zmj = 0 and zm0 = 1, ∀m ∈ Mk, j = 1, . . . , min(m, Jk),

(b) if yO(k) = 1, then for a patient m ∈ Mk such that yO(m,k) = 0, zm0 = 1 and zmj = 0, for

j = 1, . . . , min(m, Jk).

Proof. If yO(k) = 0, then by (4.13b) and (4.13g), zmj = 0,∀m ∈ Mk, j = 1, . . . , min(m, Jk).

Hence, (4.13d) forces zm0 = 1,∀m ∈ Mk, which implies that none of the patients in set Mk

will be offered the liver harvested under scenario ξk at the regional level.

If yO(k) = 1, for a patient m ∈ Mk such that yO(m,k) = 0, by (4.13a) and (4.13g),

zmj = 0, j = 1, . . . , min(m, Jk). So, by constraint (4.13d), zm0 = 1 is forced. Hence, patients

that are not listed in the region defined by y cannot be offered the liver harvested under

scenario ξk at the regional level.

76

Lemma 4.2. For a scenario ξk ∈ Ξ, patient m ∈ Mk and an integer 1 ≤ ` ≤ min(m, Jk),

(a) j′ =
{

max
∑`

j=1 j · zmj|
∑`

j=0 zmj = 1, zmj ≥ 0, j = 0, . . . , `
}

= `, and

(b) j′′ =
{

max
∑`

j=1 j · zmj + m · zm0|
∑`

j=0 zmj = 1, zmj ≥ 0, j = 0, . . . , `
}

= m.

Proof. The proof is straightforward. Here we just illustrate it for part (a). Note that the

variable with the biggest objective function coefficient is zm`, and the upper bound of zm` is

1. Setting zm` = 1 gives the maximum objective value, i.e., j′ = `.

Lemma 4.3. For an OPO vector y ∈ IB|I|, scenario ξk ∈ Ξ and patient m ∈ Mk, m ≥
∑

i∈I nk
miyi.

Proof. Since yi ≤ 1,∀i ∈ I, we have
∑

i∈I nk
miyi ≤

∑
i∈I nk

mi. By using the definition of nk
mi,∑

i∈I nk
mi =

∑
i∈I

∑
l∈Mk:l≤m bk

li. Since a patient can only be listed in one OPO by Assumption

4.2, we know that
∑

i∈I bk
li = 1. Thus, by rearranging terms, we have

∑
i∈I

∑
l∈Mk:l≤m bk

li =
∑

l∈Mk:l≤m

∑
i∈I bk

li =
∑

l∈Mk:l≤m 1 = m.

For y ∈ IB|I| and k = 1, . . . , K, let m(y, `) denote the index m′ ∈ Mk such that
∑

i∈I nk
m′iyi = ` where M(y, k) = {m ∈ Mk|yO(m,k) = 1}, i.e., the set of patients in the

region defined by y. Note that m(y, `) shows the index of the patient whose regional UNOS

rank is ` under scenario ξk. Although m(y, `) also depends on scenario ξk, we drop k from

the notation for ease of exposition.

Lemma 4.4. For Jk < ` ≤ |M(y, k)|, zm(y,`)0 = 1 and zm(y,`)j = 0, for j = 1, . . . , min(m(y, `), Jk)

under scenario ξk ∈ Ξ.

Proof. By Lemma 4.2, max
∑Jk

j=1 j · zm(y,`)j = Jk. Since ` > Jk, (4.13e) cannot be satisfied

by setting
∑Jk

j=0 zm(y,`)j = 1. However, since m(y, `) ≥ ` by Lemma 4.3, setting zm(y,`)0 = 1

will make sure that both (4.13e) and (4.13d) are satisfied.

Now, consider the case where ` ≤ Jk.

Lemma 4.5. Suppose yO(k) = 1 for scenario ξk ∈ Ξ. Then, for ` ≤ Jk, (a) zm(y,`)0 = 0, and

(b) zm(y,`)` = 1, and zm(y,`)j = 0 for j = 1, . . . , min(m(y, `), Jk), j 6= `.

77

Proof. For the sake of simplicity in notation, assume m(y, `) ≥ Jk. Suppose for some

m(y, `′) = m′ ∈ M(y, k) where `′ ≤ Jk, zm′0 = 1. Then, by (4.13d),
∑Jk

j=1 zm′j = 0.

Summing up constraint set (4.13c) over the spots that have to be filled, i.e., j = 1, . . . , Jk,

yields
Jk∑

j=1

|Mk|∑
m=j

zmj = Jk. (4.14)

By Lemma 4.1, zmj = 0,∀m /∈ M(y, k), and by Lemma 4.4 and (4.13d), zm(y,`)j = 0 for

` = Jk + 1, . . . , |M(y, k)|. Thus, (4.14) becomes

Jk∑
j=1

Jk∑

`=1

zm(y,`)j = Jk. (4.15)

Changing the order of the summation terms in (4.15) gives

Jk∑

`=1

Jk∑
j=1

zm(y,`)j = Jk. (4.16)

Note that (4.16) can only hold if
∑Jk

j=1 zm(y,`)j = 1, for ` = 1, . . . , Jk. However, we have

already shown that for `′,
∑Jk

j=1 zm′j = 0. Thus, by contradiction, zm(y,`)0 = 0,∀m(y, `) ∈
M(y, k) where ` ≤ Jk. This proves part (a).

By part (a), for ` ≤ Jk, zm(y,`)0 = 0. Thus, for ` = 1, . . . , Jk, constraint (4.13e) becomes

Jk∑
j=1

j · zm(y,`)j ≥ `. (4.17)

For ` = Jk, by (4.17) and Lemma 4.2, zm(y,Jk)Jk
= 1. From (4.13d) and (4.13c), it follows

that zm(y,Jk)j = 0 for j = 1, . . . , Jk − 1, and zm(y,`)Jk
= 0 for ` = 1, . . . , Jk − 1. Assume the

claim holds for ` = l, . . . , Jk. Then, for ` = l − 1, constraint (4.13e) reduces to

l−1∑
j=1

j · zm(y,l−1)j ≥ l − 1. (4.18)

Constraint (4.18) is only satisfied if zm(y,l−1)l−1 = 1. From (4.13d) and (4.13c), it follows

that zm(y,l−1)j = 0 for j = 1, . . . , Jk, j 6= l − 1, and zm(y,`)l−1 = 0 for ` = 1, . . . , Jk, ` 6= l − 1.

Hence, by induction, part (b) is proven. The case where m(y, `) < Jk can be shown in a

similar fashion.

78

We are now ready to state Theorem 4.1. The proof follows from Lemmas 4.1 through

4.5.

Theorem 4.1. For a fixed OPO vector y ∈ IB|I| and scenario ξk ∈ Ξ, a solution to the

system P (y, k) ranks the patients under scenario ξk in decreasing order of sickness in the

region defined by y.

We have already discussed that the scenario constraint matrices are separable once a

fixed y is given (see Table 4.1). Hence, the following corollary follows:

Corollary 4.1. For a fixed OPO vector y ∈ IB|I|, a solution to the system

P (y) = {zm0k ∈ {0, 1}, 0 ≤ zmjk ≤ 1, for k = 1, . . . , K, m ∈ Mk,

j = 1, . . . , min(m, Jk)|(4.9)− (4.12)},

ranks the patients under all scenarios in Ξ in decreasing order of sickness in the region

defined by y.

Now, let us focus on the objective function of the pricing problem. For k = 1, . . . , K and

m ∈ Mk, let

c̃mjk =





(1− qk)
j−1 · qk · cm(ξk), if 1 ≤ j ≤ Jk,

0, otherwise.
(4.19)

The parameter c̃mjk can be interpreted as the contribution of patient m to the expected

benefit of liver transplantation for scenario ξk if the patient is ranked jth. For every scenario

ξk ∈ Ξ, by Assumption 4.3, the rank of the patient that will receive the transplantation has

a geometric distribution with parameter qk. So, if patient m is ranked in the jth spot then

by this assumption, the probability that patient m receives the liver will be (1− qk)
j−1 · qk,

and the benefit that this patient gets will be cm(ξk).

By using c̃mjk, (4.8b) becomes

K∑

k=1

∑
m∈Mk

min(m,Jk)∑
j=1

pk · c̃mjk · zmjk −
∑
i∈I

πi · yi. (4.20)

79

The pricing problem needs to be able to handle the ranking of patients for different

regions for every scenario, and needs to incorporate the patient-acceptance probabilities

that are dependent on these rankings. The following formulation manages this:

SRPP (π, I,K) = max
K∑

k=1

∑
m∈Mk

min(m,Jk)∑
j=1

pk · c̃mjk · zmjk −
∑
i∈I

πi · yi (4.21a)

subject to

min(m,Jk)∑
j=1

zmjk ≤ yO(m,k), k = 1, . . . , K, ∀m ∈ Mk, (4.21b)

min(m,Jk)∑
j=1

zmjk ≤ yO(k), k = 1, . . . , K, ∀m ∈ Mk, (4.21c)

|Mk|∑
m=j

zmjk = yO(k), k = 1, . . . , K, j = 1, . . . , Jk, (4.21d)

min(m,Jk)∑
j=0

zmjk = 1, k = 1, . . . , K, ∀m ∈ Mk, (4.21e)

min(m,Jk)∑
j=1

j · zmjk + m · zm0k ≥
∑
i∈I

nk
mi · yi, k = 1, . . . , K, ∀m ∈ Mk, (4.21f)

yi ∈ {0, 1}, ∀i ∈ I, (4.21g)

zm0k ∈ {0, 1}, k = 1, . . . , K, ∀m ∈ Mk, (4.21h)

0 ≤zmjk ≤ 1, k = 1, . . . , K, j = 1, . . . , Jk,∀m ∈ Mk. (4.21i)

The objective function (4.21a) maximizes the reduced cost of a region design. Constraint

set (4.21b) ensures that patients can only be ranked if they are listed in an OPO that is

chosen for new region design. Constraint (4.21c) makes sure that patients are ranked only

for scenarios that apply to the new region, i.e., scenarios under which a liver is harvested

within the region. Constraint set (4.21d) forces every spot from 1 to Jk to be assigned a

patient only if scenario ξk has a harvested organ within the new region, and no ranks to be

used otherwise. Constraint (4.21e) makes sure that each patient is either assigned to one

of the spots 1 through Jk or left unranked. Constraint set (4.21f) enforces the patients to

be ranked in descending order of the severity of illness. And finally, constraints (4.21g) and

(4.21h) force variables yi and zm0k to take on binary values, respectively, while constraint

(4.21i) determines the range for variables zmjk.

80

Note that the pricing problem (4.21) is a two-stage stochastic mixed-mixed integer pro-

gram. The deterministic equivalent of (4.21) can be formulated as follows:

SRPP (π, I, K) = max IEξQ̃(y, ξk)−
∑
i∈I

πi · yi (4.22a)

subject to yi ∈ {0, 1}, ∀i ∈ I, (4.22b)

where

Q̃(y, ξk) =



max

∑
m∈Mk

min(m,Jk)∑
j=1

c̃mjzmj|(4.13a)− (4.13g)



 , for k = 1, . . . , K. (4.23)

Suppose we solve the pricing problem (4.21) to optimality, and obtain the optimal so-

lution vector (y∗, z∗). Then, y∗ gives the region design with maximum reduced cost. Let

us denote this region by r̂. If the objective value (4.21a) is strictly positive, we add r̂ to

the restricted set of regions, R′, and the column that corresponds to region r̂ in formulation

(4.6) can be constructed as follows:

• Objective function (4.6a) coefficient for region r̂: dr̂ =
∑K

k=1 pk
(∑

m∈Mk
c̃mjk · z∗mjk

)
,

• For constraint set (4.6b), air̂ = y∗i , ∀i ∈ I.

Remark 4.1. Perhaps the most important effect of Theorem 4.1 and Corollary 4.1 is that

they show that variables zmjk do not have to be binary, but can simply be continuous for k =

1, . . . , K, m ∈ Mk, j = 1, . . . , min(m, Jk). For instance, suppose Jk = J for k = 1, . . . , K.

Then, the potential number of these variables is O(K · J2 · |I|), and being able to prove that

this many variables are actually implied binaries that do not have to branched on has an

immense effect on the computational tractability of the problem.

81

4.3 COMPUTATIONAL APPROACHES

In Section 4.2.3, we described the details for an ideal solution procedure, with a fixed number

of scenarios that capture the underlying uncertainty in the national waiting list and a pricing

problem solved for the whole nation, explicitly considering every scenario, that generates

promising regions throughout the branch-and-bound tree. However, the resulting formulation

poses significant computational challenges and is very hard to solve to optimality.

First, recall that the scenarios include information on the organs donated, donor charac-

teristics and OPOs, patient populations with respect to different geographic locations, and

patient characteristics. Hence, these sources of uncertainty in the system would lead to po-

tentially infinitely many scenarios to fully capture every possible state of the national liver

allocation system.

Secondly, the pricing problem formulation (4.21) that was discussed in the previous

section constitutes a very large-scale mixed-integer program that is hard to solve. In addition

to this, the pricing problem has to be solved over and over again throughout the solution

process. Further simplifications are needed to make this practical.

In this section we discuss our computational approaches on how to solve the large-scale

integer program that we introduced. We group our discussion under three main titles:

scenario generation, column generation, and the pricing problem.

4.3.1 Computational Approaches for Scenario Generation

As there are too many scenarios in the real-world system to consider explicitly from a mod-

eling and solution perspective, in this chapter, we explore methods that involve Monte Carlo

sampling procedures.

82

Each function value in a stochastic program can involve a multidimensional integral with

extremely high dimensions. Because Monte Carlo simulation appears to offer the best pos-

sibilities for higher dimensions [48], it seems to be the natural choice for use in stochastic

programs [23]. Monte Carlo approaches use samples from the underlying scenario distribu-

tion to approximate the stochastic behavior of the system. An important feature is using

statistical estimates to obtain confidence intervals of results.

A popular technique involving Monte Carlo sampling is External Sampling, which is also

known as the Sample Average Approximation (SAA), or Sample-Path Optimization method.

The basic idea in external sampling is to take a sample of K scenarios and solve the resulting

stochastic program that is based on this fixed sample to optimality. After repeating the

procedure a number of times using independent samples until a stopping criterion is met, it

is possible to derive statistical properties and confidence intervals around the quality of the

solution.

Using external sampling to construct and solve the sample average approximation prob-

lem for stochastic programs has been a widely used idea in the area of stochastic program-

ming. Many authors have explored statistical behavior of solutions for this method and used

the framework in a wide variety of applications [23, 95, 122, 154].

We now describe how the Sample Average Approximation (SAA) problem is formulated

for our stochastic region design problem. Let dK
r denote the objective function coefficient of

a region r for a sample of K scenarios. Then,

dK
r =

1

K

K∑

k=1

c(ξk)T Tr(ξ
k). (4.24)

Hence, under the SAA, the RMP (4.6) is replaced with the following (RMPSAA):

max ĝK(x) =
∑

r∈R′
dK

r xr (4.25a)

subject to (4.6b)− (4.6c), (4.25b)

and (4.25) is solved B times using B independent samples of K scenarios.

83

4.3.2 SPRINT Approach for Column Generation

As we discussed before, the sheer size of the pricing problem itself poses difficulties in the

solution procedure. We borrow the notion of SPRINT methods from airline crew scheduling

literature [12], which involve extensive pricing only in the root node of a branch-and-bound

tree to aid us in the solution process. In a SPRINT procedure, the problem is loaded with a

set of initial columns (potentially thousands), and the LP is optimized over those columns.

Then, a pricing process is carried out where thousands of more columns are added, and most

of the nonbasic columns are discarded. The process is repeated until all columns for the LP

have been considered. Then, the IP solution procedure starts with the current set of columns

in the formulation without any further pricing throughout the solution process. SPRINT

approaches have been very successful in solving large-scale airline crew-pairing problems

[12, 14], which are also set-partitioning based formulations, like our integer programming

formulation (4.5). These approaches have been widely studied in the literature [9, 24, 82].

Once again, we make use of the Geographic Decomposition approach of Kong [96] and

Kong et al. [97], as we did in Chapter 3. Thus, instead of considering a very large pricing

problem for the whole nation, we create a number of smaller pricing problems, each covering

different, but overlapping, geographic areas of the country, called region covers. Suppose we

have a set of region covers denoted by C. Let Ij denote the set of OPOs in region cover

j ∈ C, and let Kj denote the set of scenarios in which the donor OPO is within region

cover j ∈ C. Thus, Kj = {k = 1, . . . , K|O(k) ∈ Ij}. Let us denote the associated pricing

problem for region cover j ∈ C by SRPP (π, Ij, Kj). Replacing the terms I, K and Mk with

Ij, Kj and Mk,j in (4.21), where Mk,j = {m ∈ Mk|O(m, k) ∈ Ij}, gives the description of

the pricing problem for region cover j ∈ C, i.e., SRPP (π, Ij, Kj). Hence, using geographic

decomposition not only affects the OPO set in a pricing problem, but also scales down the

scenario and patient sets associated with the pricing problem, which makes the problem

computationally more tractable.

We also employ the branching strategy of Ryan and Foster [148] which has proven to

be effective on set-partitioning type problems. See Sections 3.3.1.1 and 3.3.1.2 for further

details on these techniques.

84

4.3.3 Solution Methods for the Pricing Problem

In order to be able to solve the pricing problem (4.21) effectively, we exploit the special

structure of the problem, and employ various branching, heuristic solution generation, and

pricing methods.

4.3.3.1 Branching Routines A very important observation about the pricing problem

structure is that once y is fixed, the ranking of patients under different scenarios is the

only feasible solution. The composition of the new region defined by the binary vector y is

the only factor that drives how patients are ranked, due to the fact that we strictly model

UNOS’s ranking policies for the regional phase. Of course, variables yi are not the only

variables in the pricing problem. In fact, they only constitute a very small number, i.e.,

|I|, when compared to the total number of variables. Still, during the branch-and-bound

process, how the values and bounds of y change throughout the solution procedure gives us

valuable information to be used in generating effective bounds for the binary variables zm0k

and fixing them, which enables us to construct effective branching patterns.

Before laying out the details of our branching routine for y variables, we present the

following observations:

• Down branch on variable yi

In the child node created by a down branch on some OPO variable yi none of the patients

listed in OPO i can be ranked, due to constraint (4.9a).

• Up branch on variable yi

Setting yi = 1 in the child-node resulting from an up branch will ensure that none of the

patients who are below the J th
k patient listed in OPO i can be ranked. Since OPO i is

being forced to be in the new region, the top-most Jk patients listed in OPO i will be

candidates for spots 1 through Jk to get an organ offer. Since we limit the number of

regional offers to Jk, no patient below the J th
k patient listed in OPO i can be offered the

organ. Hence, the corresponding zm0k variables for these patients can be set to 1 for this

up branch. In fact, a generalization of this idea is possible where we look at all OPOs

that are being forced into the region at an up branch and force a number patients to

85

be left unranked by counting the patient population in these enforced OPOs until the

counter hits Jk. While traversing the patient population in decreasing order of sickness,

none of the remaining patients, regardless of where they are listed, can be ranked once

the counter hits Jk, because this means that Jk transplant candidates have already been

identified in the region.

In this section, we give a branching routine that will be used every time an OPO vari-

able is selected to be branched on, during branch and bound. This routine kicks in after an

OPO variable has been identified and before creating new nodes as a result of branching.

The decision regarding which variable to branch on depends on variable selection strategy

utilized during the branch-and-bound process, i.e., pseudo-costs, strong branching, etc. Let

yi′ denote the variable chosen to be branched on.

Branching on an OPO variable (yi′)

1. Down branch. For the newly created child node,

• Set yi′ = 0.

• Set zm0k = 1, for k = 1, . . . , K, m ∈ Mk such that O(m, k) = i′.

2. Up branch. Let LB(yi) denote the lower bound of variable yi in the current node.

• Define C = {i′} ∪ {i ∈ I|LB(yi) = 1}.
• Define Mk(C, l) = {m ∈ Mk|O(m, k) ∈ C, m ≤ l}.
• Find m′ such that |Mk(C, m′)| = Jk

• For the newly created child node,

– Set yi′ = 1.

– Set zm0k = 1, for k = 1, . . . , K, m ∈ Mk such that m > m′.

Another important observation about the pricing problem structure is that once zm′0k

is fixed for some k, m′ ∈ Mk, this implies that a number of patient-unranked variables can

also be fixed. For instance, if zm′0k = 0, this implies zm0k = 0 for m < m′ such that

O(m, k) = O(m′, k). Similarly, setting zm′0k = 1 implies zm0k = 1 for m > m′ such that

O(m, k) = O(m′, k). A generalization similar to the one we utilized for y variables is also

possible.

86

We also give a branching routine that will be used every time a patient-unranked variable

is selected to be branched on, throughout the branch-and-bound process. Let zm′0k denote

the variable chosen to be branched on.

Branching on a patient-unranked variable (zm′0k)

1. Down branch. Let LB(yi) denote the lower bound of variable yi in the current node.

• Find C = {i ∈ I|LB(yi) = 1}.
• If O(m′, k) /∈ C, define C ′ = C ∪O(m′, k), otherwise set C ′ = C.

• For the newly created child node,

– Set zm′0k = 0.

– If O(m′, k) /∈ C, set yO(m′,k) = 1.

– Set zm0k = 0, for m ∈ Mk such that O(m, k) ∈ C ′,m < m′.

2. Up branch. For the newly created child node,

• Set zm′0k = 1.

• If O(m′, k) ∈ C, set zm0k = 1, for m ∈ Mk such that O(m, k) ∈ C,m > m′.

Otherwise, zm0k = 1, for m ∈ Mk such that O(m, k) = O(m′, k),m > m′.

In addition to our branching routines on variables, we used branching priorities and a

variable selection technique known as strong branching. We prioritized y variables over the

variables zm0k, so that whenever a fractional solution is found in a node of the branch-and-

bound tree, if at least one y variable is fractional, no zm0k can be branched on. In other

words, a fractional zm0k variable can be chosen for branching only if all y variables are

integers in the current node solution.

Strong branching is a variable selection technique that became available in CPLEX 7.5

[84]. The idea behind strong branching is to solve a number of subproblems partially with

tentative branches to see which branch is the most promising before actually branching on a

candidate variable [83]. Thus, temporary child nodes are created for each candidate variable,

and a number of simplex iterations are performed to evaluate the progress. Although strong

branching significantly reduces the number of nodes explored in a branch-and-bound tree, it

increases the time spent on each node when compared to other branching techniques. Hence,

87

its effect on the total solution time is problem dependent, and in some large-scale MIPs it

has proven to be very effective.

In addition to these, we employed a multiple-pricing approach and added all favorable

regions, instead of just the optimal solution, generated during the solution of a pricing

problem to the RMP.

4.3.3.2 Integer Solution Heuristic for Branch-and-Bound As mentioned previ-

ously, once an integral y is obtained, the rankings of patients can be calculated automati-

cally. In this section, we introduce the steps to generate integer solutions from integral y

values or by rounding y variables.

Integer Solution Heuristic

1. Define I(y) = {i ∈ I|yi > εy}, where εy denotes the threshold parameter for rounding.

2. Set yi = 1 for i ∈ I(y), and yi = 0 for i /∈ I(y).

3. For k = 1, . . . , K,

• Find m′ such that |Mk(I(y),m′)| = Jk.

• Let m(l) denote the lth sickest patient in set Mk(I(y),m′).

• For j = 1, . . . , Jk,

– set zm(j)jk = 1 and zm(j)0k = 0,

– set zm(j)sk = 0 for s = 1, . . . , min(m(j), Jk), s 6= j.

• For m /∈ Mk(I(y), m′), set zm0k = 1, and zmjk = 0 for j = 1, . . . , min(m, Jk).

4. Solution (y, z) is an integer solution for the pricing problem.

In our implementation, we used εy = 0.5 and calculated I(y) in every node. We executed

steps 2 through 4 only if I(y) constituted a different region then regions found earlier during

the branch-and-bound process.

88

4.4 DATA SOURCES AND PARAMETER ESTIMATION

The waiting list data for scenarios was generated using the discrete-event simulation of End-

Stage Liver Disease and organ allocation by Shechter et al. [155]. We modified the simulation

model to capture snapshots of the national liver waiting list, and created scenarios using a

sampling approach.

We generated scenarios in the following manner. National patient and organ arrival rates

in the simulation model, which are actually dependent on the simulation year, were aver-

aged over the period from the beginning of 1999 to the end of 2002. In order to generate B

independent and identically distributed batches of K scenarios, we ran the simulation with

B different random seeds until it reached steady state, and recorded all relevant information

regarding the national waiting list at the point of transition into a steady state. The sim-

ulation was preloaded with the steady-state conditions and was replicated K times for one

more year using K different random seeds for each batch. After one year into the steady

state, a replication was stopped whenever a liver became available at the regional stage, and

a scenario was created using the waiting list data at that point. Patient/liver related data,

like MELD scores, locations and expected benefit of the available liver for each patient, was

extracted from the terminal waiting list. Figure 4.1 depicts the sampling approach we used

to create discrete scenarios using the simulation model of Shechter et al. [155].

The number of patients that potentially can be offered the liver at the regional matching

phase, i.e., Jk for each scenario, was set to 10 across all scenarios. There are a couple of

reasons behind this. First, as mentioned in Section 1, although the medically acceptable

CIT for an organ can potentially go up to 18-24 hours [39], most livers have a CIT less

than 10 hours [171]. By policy, a transplant team, i.e., a potential organ recipient and the

transplant coordinator, surgeon and physician assigned to her, has only one hour to make

a decision about an organ offer [170]. Hence, for an average liver, setting Jk = 10 could

be considered to be sufficient. Furthermore, since the size of the pricing problems in our

modeling framework is sensitive to the number of candidates that have to be considered in

every OPO, Jk > 10 would significantly increase our computational time.

89

Batch

1

2

B

Steady State Scenario
(1,1)

(2,1)

(K,1)

(1,2)

(2,2)

(K,2)

(1,B)

(2,B)

(K,B)

1Seed

2Seed

BSeed

1,1Seed

1,2Seed

1,KSeed

2,1Seed

2,2Seed

2,KSeed

BSeed ,1

BSeed ,2

BKSeed ,

≈ 1 year

Figure 4.1: Scenario sampling from the End-stage Liver Disease and organ allocation simu-

lation model of Shechter et al. [155].

We also used a constant value for a patient’s probability of accepting a liver offer, i.e.,

qk, across all scenarios. As mentioned in earlier sections, in the three-tier liver allocation

mechanism, the number transplants that occur at the intra-regional level is roughly around

50% of all transplants while national-level transplants account for about 5% [169]. This would

be comparable to a case where 10% of the organs that become available to the regional level

end up not being used at the regional level. In our modeling framework, an available organ

at a certain scenario ξk, for k = 1, . . . , K, would not be transplanted at the regional phase if

the top Jk candidates in the region reject it. Since we set Jk = 10, by Assumption 4.3, the

90

probability of an organ not being used at the regional level could be calculated as

Prob{Liver is not used at the regional phase under scenario ξk} = 1−
10∑

j=1

(1− qk)
j−1qk,

(4.26)

and setting (4.26) to 0.10 yields qk = 0.206, for k = 1, . . . , K.

4.5 COMPUTATIONAL RESULTS

For our computational experiments, we used geographic decomposition scheme 20 10, which

was one of the schemes designed and used in Chapter 4. We generated 10 batches, each

containing 200 scenarios. We designed two sets of experiments: in one set, we solved these

10 batches using default CPLEX parameters during optimization, and in the other, we used

the computational approaches that were introduced in Section 4.3. The initial set of regions

in each solution approach was the set of all enumerated regions with no more than 3 OPOs.

We used a UNIX machine with AMD Opteron 240 processor and 3.8 GB RAM for our

computational tests, and coded the optimization algorithms using C++ and the CPLEX 9.0

Callable Library.

Table 4.2 shows the CPU times for the proposed solution approach versus using CPLEX

with default settings. Although our branching and integer solution generation schemes bring

computational savings of about 35% on the average when compared to the default CPLEX

settings, the average solution time for a batch of 200 scenarios was more than 4 hours.

This is mainly due to the size of the pricing problems. Table 4.3 displays the number

of rows, columns and nonzeros in every pricing problem for the geographic decomposition

scheme 20 10 for the first batch of scenarios. Although the numbers will be different for

other samples, since the number of scenarios is equal among all batches, they will still be

comparable.

91

Table 4.2: Results for initial computational experiments using CPLEX: Default setting versus

the proposed approach.

Total CPU time (hour:min:sec)
Batch

Default settings Proposed approacha
Savings in CPU time

1 5:40:40 4:21:41 23.19%

2 6:44:05 3:51:13 42.78%

3 6:51:08 5:03:49 26.10%

4 6:21:52 3:26:24 45.95%

5 6:08:09 3:24:31 44.45%

6 6:46:50 3:45:43 44.52%

7 6:48:15 4:04:41 40.07%

8 7:06:51 5:23:16 24.26%

9 5:28:13 3:44:34 31.58%

10 6:40:50 4:58:17 25.58%

average 6:27:41 4:12:25 34.85%

aUsing the branching and rounding routines described in Section 4.3.3 along with CPLEX.

92

Table 4.3: Size of pricing problems for geographic decomposition scheme 20 10.

Columns
Region Cover Rows

Binary Continuous Total
Nonzeros

1 11,855 1,784 19,335 21,119 140,474

2 8,127 1,218 13,235 14,453 95,915

3 14,396 2,198 23,585 25,783 173,175

4 13,444 1,980 21,790 23,770 156,709

5 7,852 1,130 12,630 13,760 90,036

6 15,730 2,392 25,745 28,137 189,423

7 8,481 1,293 13,875 15,168 101,843

8 12,044 1,840 19,730 21,570 145,221

9 18,617 2,840 30,500 33,340 224,446

10 10,334 1,599 16,990 18,589 126,948

11 15,642 2,385 25,620 28,005 188,906

12 14,702 2,242 24,080 26,322 177,343

13 10,224 1,564 16,750 18,314 123,006

14 16,624 2,535 27,230 29,765 199,724

15 12,958 2,003 21,305 23,308 158,570

16 13,860 2,140 22,785 24,925 169,512

17 13,036 1,992 21,360 23,352 158,290

18 20,461 3,120 33,520 36,640 246,768

19 14,979 2,313 24,625 26,938 183,820

20 16,600 2,531 27,190 29,721 199,849

average 13,498 2,055 22,094 24,149 162,499

93

As can be seen from Table 4.3, the pricing problems for the first sample of 200 scenarios

under geographic decomposition scheme 20 10 are large-scale mixed-integer programs with

around 13,000 rows and 24,000 variables (out of which 2,000 are binaries). The size of

the pricing problems makes the model impractical to test for more scenarios or geographic

decomposition schemes with larger region covers.

With a limited number of scenarios, this method may also be sensitive to outlier patients

that may exist within the samples. Hence, the optimal solutions of the SAA problems may

be driven by a number of individual patients with extreme expected benefits that are either

to high or too low. For the process to be able to smoothen this type of outlier data, it should

be executed using relatively larger sample sizes. However, the computational limitations due

to the size of the pricing problem creates a trade off with respect to solution quality and

computational tractability in this aspect as well.

To remedy these computational difficulties, we introduce an aggregate version of the

our modeling framework in Chapter 5. This approach aggregates the first Jk patients in

each OPO into a single aggregate patient for that particular OPO in every scenario. In

other words, the scenarios contain information on what an average patient (who is among

the sickest Jk in her OPO) looks like in every OPO, and ranks these average patients in

the order of decreasing sickness within the designed regions. Since the number of rows and

columns in the pricing problem are driven by the number of patients in each scenario, this

approach helps us in scaling the problem down. Hence, it enables us to consider more batches

with more scenarios and use bigger region covers.

4.5.1 Evaluating the Results

As mentioned before, it is possible to derive statistical properties and confidence intervals

around the quality of solutions obtained using the SAA method. We follow the notation

used by Kleywegt and Shapiro [95] during our discussion on the estimation of the optimality

gap.

Let v∗ denote the true optimal objective value of the RMP (4.6). Let v̂b
K denote the

optimal objective vale of the bth SAA replication, i.e., bth batch of K scenarios. Then, an

94

Table 4.4: Estimating the optimality gap for candidate solutions with B = 10, K = 200.

Opt. gap 95% CI
Batch Map ḡB

K(x̂b
K) v̂b

K (v̄B
K − ḡB

K(x̂b
K)) Absolute % of v̄B

K

(b) ref. Mean Var. LL UL LL Mean UL
1 4A 2115.34 2110.40 66.22 94.12 50.27 82.18 2.30% 3.04% 3.77%
2 4B 2095.12 2253.63 86.45 112.42 69.01 103.89 3.16% 3.96% 4.76%
3 4C 2090.98 2120.34 90.59 164.19 69.51 111.67 3.19% 4.15% 5.12%
4 4D 2106.37 2152.31 75.19 88.44 59.72 90.66 2.74% 3.45% 4.16%
5 4E 2095.24 2130.04 86.33 121.90 68.17 104.49 3.12% 3.96% 4.79%
6 4F 2101.52 2232.75 80.05 86.10 64.79 95.31 2.97% 3.67% 4.37%
7 4G 2090.24 2238.70 91.32 142.51 71.69 110.96 3.29% 4.19% 5.09%
8 4H 2100.73 2168.53 80.84 121.39 62.72 98.96 2.87% 3.71% 4.54%
9 4I 2102.66 2169.88 78.91 90.61 63.25 94.56 2.90% 3.62% 4.33%
10 4J 2081.61 2239.08 99.96 202.53 76.55 123.37 3.51% 4.58% 5.66%

estimator of v∗ is

v̄B
K =

1

B

B∑

b=1

v̂b
K . (4.27)

Let g(x̂) denote the real objective value of candidate solution x̂, and ĝb
K(x̂) denote the sample

average objective value at x̂ of the bth SAA sample of K scenarios. Hence,

ĝb
K(x̂) =

1

K

∑

k∈Kb

ĝK(x̂), (4.28)

where Kb is the set of K scenarios in the bth batch. Let ḡB
K(x̂) denote the mean sample

average objective value of solution x̂ for B batches, i.e.,

ḡB
K(x̂) =

1

K

B∑

b=1

ĝb
K(x̂). (4.29)

Then, an estimator of the optimality gap of candidate solution x̂, i.e., v∗−g(x̂), is v̄B
K−ḡB

K(x̂).

And the variance of v̄B
K − ḡB

K(x̂) is estimated as

S̄2

B
=

1

B(B − 1)

B∑

b=1

[(v̂b
K − ĝb

K(x̂))− (v̄B
K − ḡB

K(x̂))]2. (4.30)

Furthermore, a (1−α)100% confidence interval around the optimality gap for solution x̂ can

be computed as

v̄B
K − ḡB

K(x̂)± zα
S̄√
B

. (4.31)

95

(4A) (4B)

(4C) (4D)

(4E)

Figure 4.2: Maps of regions obtained with geographic decomposition scheme 20 10 with

B = 10, K = 200.

Let x̂b
K denote the optimal solution of the SAA problem associated with batch b, for

b = 1, . . . , B. We evaluated the estimates of optimality gaps for the optimal solutions of our

10 batches of 200 scenarios. Table 4.4 shows the results of the analysis. The map reference

column shows the letter index that corresponds to the map of each configuration in Figures

4.2 and 4.3, which display the optimal configurations for each batch of scenarios. Note that

96

(4F) (4G)

(4H) (4I)

(4J)

Figure 4.3: Maps of regions obtained with geographic decomposition scheme 20 10 with

B = 10, K = 200 continued.

the optimality gap estimates are valid for the case when the RMP (4.6) is solved under the

same geographic decomposition scheme as the SAA problem RMPSAA for every batch, which

is 20 10 in our case.

In order to validate the solutions obtained, we simulated the regional configurations

shown in Figures 4.2 and 4.3 along with the current regional configuration using the simu-

97

lation model of Shechter et al. [155]. We simulated the liver allocation system from 1996

to the end of 2002, and took 20 replications of each configuration using a warm-up period

of 3 years. In order to compare the performance of our alternative configurations with the

current system, we conducted paired t tests. The results of the analysis can be seen in Table

4.5, and Figures 4.4 and 4.5. The null hypothesis of these tests is that the average benefits

gained per transplant are equal between an alternative configuration and the current regional

configuration. Figure 4.4 displays the 95% confidence intervals around the mean difference

obtained in the expected benefit of each configuration when compared to the performance

of the current system while Figure 4.5 shows the same results as a percentage of the current

system. Since all p−values are 0, we conclude that the proposed regional configurations

bring significant increases to the expected benefits gained from liver transplants.

Note that Figures 4.2 and 4.3 present a mix of contiguous and noncontiguous regional

configurations. The regional configuration currently in use is composed only of contigu-

ous regions. However, contiguity is not listed as a requirement for the design of the liver

allocation system. In fact, some OPOs in the organ procurement and transplant network

are noncontiguous, as can be seen from Figure 1.2. If needed, it is possible to postprocess

noncontiguous solutions using local search techniques to generate contiguous regions.

4.6 CONCLUSIONS

In this chapter, we introduced a stochastic mixed-integer programming model to design liver

transplant regions under uncertainty in order to maximize the expected life-time gained

by transplants at the regional level. We utilized a set-partitioning master problem with a

closed-form expression representing the second-stage objective values in terms of first-stage

region selection variables. We solved the problem using a column generation approach that

generates favorable regions with respect to different snapshots of the national waiting list

composition in the root node of the branch-and-bound tree. We introduced branching and

heuristic integer-solution generation routines to take advantage of the special structure of

the pricing problems.

98

Table 4.5: Paired t tests and confidence intervals on the difference in expected life-days

gained per transplant: Regional configurations of Figures 4.2 and 4.3 vs. current system

Paired Differences

Regional Standard Standard 95% CI

Configuration Mean Deviation Error LL UL t p−value

4A 142.29 45.62 10.20 120.94 163.64 13.95 0.0000

4B 116.22 45.11 4.45 106.91 125.53 26.12 0.0000

4C 153.88 47.44 7.53 138.11 169.64 20.43 0.0000

4D 112.42 44.53 4.99 101.98 122.86 22.54 0.0000

4E 100.89 41.18 4.12 92.27 109.51 24.49 0.0000

4F 156.35 47.93 5.09 145.69 167.01 30.70 0.0000

4G 142.59 41.75 3.79 134.66 150.52 37.62 0.0000

4H 89.73 33.79 3.08 83.28 96.18 29.11 0.0000

4I 146.15 47.15 4.77 136.18 156.13 30.67 0.0000

4J 244.72 58.45 5.79 232.60 256.84 42.26 0.0000

99

80

100

120

140

160

180

200

220

240

260

280

4A 4B 4C 4D 4E 4F 4G 4H 4I 4J

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 4.4: 95% confidence intervals around the mean difference in the expected life-days

gained per transplant. Detailed results can be seen in Table 4.5.

We utilized a geographic decomposition scheme with 20 region covers with 10 OPOs

and generated 10 independent samples of 200 scenarios in our computational experiments.

Despite the fact that our solution approaches beat the performance of using CPLEX with

default settings by an average of 35% with respect to the solution time, we observed that

the size of the large-scale pricing problems gives us limited flexibility in being able to solve

the problem using larger region covers, more samples or bigger sample sizes. Hence, we

introduce an aggregate version of the modeling framework in Chapter 5 that enables us to

perform more extensive testing.

100

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

4A 4B 4C 4D 4E 4F 4G 4H 4I 4J

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 4.5: 95% confidence intervals around the mean difference in the expected life-days

gained per transplant as percentage of the performance of the current system. Detailed

results can be seen in Table 4.5.

Despite computational limitations, our results appear to be encouraging with respect to

estimated optimality gaps and the validity analysis we performed using the liver allocation

system simulation model of Shechter et al. [155]. The 10 alternative configurations presented

in this chapter have an average optimality gap of around 4% and the statistical tests on

simulation output suggests that an increase of around 5% in expected life-time gained with

a transplant can be attained using these region designs. Particularly, regional configuration

4J of Figure 4.3 appears to posses the potential of increasing the expected life-time gained

by 7% when compared to the performance levels of the system today.

101

5.0 DESIGNING LIVER TRANSPLANT REGIONS UNDER

UNCERTAINTY USING AN OPO-BASED MODEL

5.1 INTRODUCTION

As we discussed in Chapter 4, solving a model that considers every individual patient is

challenging. The model introduced in Chapter 4 does not lend itself well to computational

tests using larger samples of scenarios or geographic decomposition schemes with bigger

region covers. Moreover, as the number of scenarios that can be considered while solving the

model will be limited, the solutions will tend be sensitive to outlier patients.

In this chapter, we introduce an alternative aggregate model for the problem of designing

liver transplant regions under uncertainty. We keep most of the modeling framework of

Chapter 4 intact, however, aggregate the patients in every scenario into a single aggregated

patient per OPO whose characteristics reflect the average over the patients in the OPO.

Hence, the aggregate model relies on an aggregate set of patients in each scenario. This

approach scales down the size of the pricing problem and enables the use of larger samples

of scenarios and bigger geographic decomposition schemes. Intuitively, it is also less prone

to outlier patients with extreme characteristics since it averages patients out at the OPO

level.

The aggregate model we develop in this chapter and the one introduced in Chapter 4

present a trade off in terms of modeling the real-world system and computational tractability.

While Chapter 4 focuses on a more accurate representation of liver offers by considering the

probabilities of individual patient receiving offers, it develops a model that is very hard to

solve. The aggregate model, on the other hand, promises better computational performance

at the expenses of losing some level of detail through the aggregation of patients.

102

Once again we employ a column generation approach in which we perform extensive

pricing in the root node of the branch-and-bound tree. We solve a set of Sample Average

Approximation problems using different samples and geographic decomposition schemes. We

perform validation analysis on the results using statistical results from the SAA literature

and the liver allocation system simulation of Shechter et al. [155].

This chapter is organized as follows: in Section 5.2 we discuss the aggregate modeling

framework and how it differs from the model introduced in Chapter 4. In Section 5.3, we

present the computational approaches we utilize to solve and analyze the problem. Section

5.4 contains discussions on our computational results and validation analysis. And finally,

in Section 5.5, we summarize our conclusions for this chapter.

5.2 AN ALTERNATIVE AGGREGATE MODEL FOR REGION DESIGN

UNDER UNCERTAINTY

We extend the notation developed in Chapter 4. The aggregate model is a modification

of the stochastic programming model introduced in Chapter 4 where the patient set in a

scenario ξk, for k = 1, . . . , K, is aggregated so that the set only contains one average patient

per OPO. We also formulate a new pricing problem, similar to (4.21), for the aggregate

model. First, we start by introducing the modification of the patient sets, and hence, the

second-stage models.

An aggregate patient in OPO i ∈ I is a hypothetical patient who is created by averaging

the problem data for the sickest Jk patients listed in OPO i. Let M̃k denote the set of

aggregate patients under scenario ξk, for k = 1, . . . , K. In the aggregate modeling framework,

for every scenario ξk ∈ Ξ, the set of individual patients Mk is transformed into, and replaced

by, the set of aggregate patients, M̃k. Note that any notation that applies to members of set

Mk also applies to M̃k.

Let µm(ξk) denote the MELD score of an individual patient m ∈ Mk, under scenario

ξk ∈ Ξ. Let φm denote the probability that patient m gets the organ offer given the liver

is offered only to OPO O(m, k). Note that φm also depends on the scenario, but we drop

103

index k for ease of exposition. The parameter φm forces preference among patients listed in

the same OPO. For instance, one might want to assign probabilities increasing with respect

to the severity of the illness, i.e., φm′ > φm′′ for m′,m′′ ∈ Mk, O(m′) = O(m′′),m′ < m′′. For

every i ∈ I, note that
∑

m∈Mk:O(m,k)=i φm = 1 for k = 1, . . . , K. Hence, the mean MELD

score and expected benefit from the available liver in scenario ξk ∈ Ξ of the top Jk patients

in OPO i can be calculated as

µi(ξk) :=
∑

m∈Mk:O(m,k)=i

φmµm(ξk), (5.1)

and

ci(ξk) :=
∑

m∈Mk:O(m,k)=i

φmcm(ξk), (5.2)

respectively.

After calculating these values for every OPO i ∈ I, the aggregate patients are sorted in

descending order of µi(ξk), i.e., MELD score, and inserted into the set M̃k in that order.

Hence, as we did for Mk, we assume that M̃k is ordered such that if aggregate patient m′ is

sicker than aggregate patient m′′, i.e., has a higher MELD score, then m′ < m′′. Since we

assume the available liver is at the regional matching phase, there is no aggregate patient

for the donor OPO in scenario ξk. Thus, {m ∈ M̃k|O(m, k) = O(k)} = ∅.
Figure 5.1 shows an example where we form the set M̃k from Mk for a scenario ξk where

Jk = 2, |Mk| = 6, φm = 1
Jk

,∀m ∈ Mk and |I| = 3.

We keep the underlying modeling assumptions of Chapter 4 intact. Let q̃k denote the

probability that an aggregate patient will accept the organ available under scenario ξk ∈ Ξ.

We calculate q̃k using qk, i.e., the probability that an individual patient accepts an organ

offer, and define it as Prob{Liver in scenario ξk is accepted by one of the top Jk patients in

an OPO | it is offered to the OPO}. Thus, we have

q̃k =

Jk∑
j=1

(1− qk)
j−1 · qk. (5.3)

We modify Assumption 4.3 as follows:

Assumption 5.1. For every scenario ξk ∈ Ξ, the rank of the aggregate patient that will

receive the transplantation has a geometric distribution with parameter q̃k.

104

1

2

3

4

5

6

O(1,k) = 1�
1(�k) = 40

O(2,k) = 3�
2(�k) = 38

O(3,k) = 2�
3(�k) = 26

O(4,k) = 1�
4(�k) = 28

O(5,k) = 2�
5(�k) = 22

O(6,k) = 3�
6(�k) = 18

1

2

3

c1(�k) = 200

c2(�k) =100

c3(�k) = 300

c4(�k) = 300

c5(�k) = 100

c6(�k) = 600

1

3

2

�1(�k) = 34
c1(�k) = 250�2(�k) = 24
c2(�k) = 200�3(�k) = 28
c3(�k) = 350

O(1,k) = 1�
1(�k) = 34

c1(�k) = 250

O(2,k) = 3�
2(�k) = 28

c2(�k) =350

O(3,k) = 2�
3(�k) = 24

c3(�k) = 200

Aggregate
Patients kM

~
kM

Figure 5.1: An example for creating the set of aggregate patients in a scenario ξk ∈ Ξ,

where |I| = 3, Jk = 2, |Mk| = 6 and φm = 1
Jk

, ∀m ∈ Mk. Aggregate patients are formed by

averaging problem data for individual patients, and then sorted to form the set M̃k.

We also utilize the following remark:

Remark 5.1. For every scenario ξk ∈ Ξ, there is exactly one aggregate patient in every

OPO i ∈ I\{O(k)}.

If for some scenario ξk ∈ Ξ, there is no patient in OPO i ∈ I, we can create a dummy

aggregate patient in OPO i with a MELD score of 0 (which guarantees that the dummy

aggregate patient does not affect the ranking since the MELD score changes between 6 and

40) and an expected benefit of 0 days. By Remark 5.1, |M̃k| = |I| − 1, for k = 1, . . . , K.

105

5.2.1 Column Generation Framework for the Aggregate Model

As in Chapter 4, we utilize a column generation framework in which we generate regions

with favorable reduced costs using a pricing problem. The restricted master problem (RMP)

for the aggregate model is the same as in Chapter 4, and its formulation is given by (4.6).

We modify the pricing problem introduced in Chapter 4 and use the notation developed

in Section 4.2.3. As in the second-stage models, the set of individual patients, Mk, in scenario

ξk is replaced by the set of aggregate patients, M̃k, for k = 1, . . . , K, while formulating the

pricing problem for the aggregate modeling framework.

The reduced cost of a region r̂ ∈ R can be calculated as follows:

c̄r̂ =
K∑

k=1

pk


 ∑

m∈M̃k

cm(ξk) Tmr̂(ξ
k)


−

∑
i∈I

πiair̂, (5.4a)

=
K∑

k=1

∑

m∈M̃k

(
pkcm(ξk) Prob{m|r̂, k})−

∑
i∈I

πiair̂. (5.4b)

First, recall from Section 4.2.3 that yi is a binary variable such that yi = 1 if OPO i ∈ I

is chosen for the new region, and yi = 0 otherwise. We modify the definition of variables

zmjk such that zmjk = 1 if aggregate patient m ∈ M̃k is in jth place in the new region under

scenario ξk ∈ Ξ, and zmjk = 0 otherwise, for j = 1, . . . , |I| − 1.

In addition to the notation of Section 4.2.3, we introduce a set of dummy rank variables.

Since {m ∈ M̃k|O(m, k) = O(k)} = ∅ and there can only be one aggregate patient per OPO,

the number of spots that have to be filled by aggregate patients is |I| − 1 for the aggregate

problem. However, in a scenario ξk ∈ Ξ, aggregate patients can only be ranked if the donor

OPO O(k) and their OPOs are selected to be in the newly designed region. Hence, we need

dummy rank variables to make sure every spot is filled. Let Dj be the jth dummy rank

variable such that Dj = 1 if rank j is not used and Dj = 0 otherwise, for j = 1, . . . , |I| − 1.

Note that Dj does not depend on scenarios. This is due to the fact that in every scenario

ξk ∈ Ξ where yO(m,k) = 1, we need exactly |I| − 1 − ∑
i∈I\O(m,k) yi dummy rank variables

to be set to 1, and the vector y is independent of the scenarios. Since yO(m,k) = 1, we have

106

∑
i∈I yi+

∑|I|−1
j=1 Dj = |I|, which is scenario independent. However, we also need to make sure

that if Dj′ = 1, then Dj = 1 for j′ < j ≤ |I| − 1. Hence, we have the following constraints:

∑
i∈I

yi +

|I|−1∑
j=1

Dj = |I|, (5.5a)

Dj ≤ Dj+1, j = 1, . . . , |I| − 2. (5.5b)

As mentioned before, for every scenario ξk, an aggregate patient m ∈ M̃K can be ranked

in one of the spots 1 through |I| − 1, if (a) her OPO is chosen for the new region, i.e.,

yO(m,k) = 1, and (b) the donor OPO for scenario ξk is in the new region, i.e. yO(k) = 1. Thus,

m∑
j=1

zmjk ≤ yO(m,k), k = 1, . . . , K, ∀m ∈ M̃k, (5.6a)

m∑
j=1

zmjk ≤ yO(k), k = 1, . . . , K, ∀m ∈ M̃k. (5.6b)

The following set of constraints enforces the ranks to be assigned in decreasing order of

illness severity within the region:

m∑
j=1

j · zmjk + m · (2− yO(k) − yO(m,k)) ≥
∑
i∈I

nk
mi · yi, k = 1, . . . , K, ∀m ∈ M̃k. (5.7)

Note that (5.7) is automatically satisfied for scenario ξk ∈ Ξ and patient m ∈ M̃k if either

yO(k) = 0, or yO(m,k) = 0 (or both). However, if yO(k) = yO(m,k) = 1, it enforces the rankings

to follow the order of decreasing sickness levels.

Each of the spots 1 through |I| − 1, for scenario ξk, have to be filled if the donor OPO

for that particular scenario is a part of the new region. Moreover, a spot can be assigned to

at most one aggregate patient or dummy rank variable. Hence, we have

|I|−1∑
m=j

zmjk + Dj ≥ yO(k), k = 1, . . . , K, j = 1, . . . , |I| − 1, (5.8a)

|I|−1∑
m=j

zmjk + Dj ≤ 1, k = 1, . . . , K, j = 1, . . . , |I| − 1. (5.8b)

107

Since we only consider organ-patient matching at the regional phase, for the benefits of a

scenario to be realized, the liver available under that scenario has to be in the selected region,

and we can only evaluate the benefits of transplant for aggregate patients in that particular

region.

The system of inequalities described by (5.5)-(5.8) forms the constraint set of our pricing

problem. A very important observation is that for fixed binary vectors y ∈ IB|I| and D ∈
IB|I|−1, this system is separable for each scenario k = 1, . . . , K. Table 5.1 shows the structure

of the constraint matrix formed by the system (5.5)-(5.8). Each row in the table corresponds

to the coefficient matrix for an individual scenario, except for the first row which corresponds

to the first-stage constraint set (5.5), and the thick dots represent variable groups that have

nonzero coefficients for the constraint sets of that particular scenario. From Table 5.1, it

is easy to see that once the y and D variables are fixed, we are left with K independent

subsystems, each of which corresponds to an individual scenario in Ξ.

For a fixed OPO vector y ∈ IB|I|, dummy rank vector D ∈ IB|I|−1 such that (y,D) satisfies

(5.5), let P (y, D, k) = {z|(5.9a)− (5.9f)} for scenario ξk ∈ Ξ, where

m∑
j=1

zmj ≤ yO(m,k), ∀m ∈ M̃k, (5.9a)

m∑
j=1

zmj ≤ yO(k), ∀m ∈ M̃k, (5.9b)

m∑
j=1

j · zmj + m · (2− yO(k) − yO(m,k)) ≥
∑
i∈I

nk
mi · yi, ∀m ∈ M̃k, (5.9c)

|I|−1∑
m=j

zmj + Dj ≥ yO(k), j = 1, . . . , |I| − 1, (5.9d)

|I|−1∑
m=j

zmj + Dj ≤ 1, j = 1, . . . , |I| − 1. (5.9e)

0 ≤ zmj ≤ 1, ∀m ∈ M̃k, j = 1, . . . ,m. (5.9f)

Now, we will prove that a solution to the system P (y, D, k) ranks the aggregate patients

under scenario ξk in decreasing order of sickness in the region defined by y. In order to prove

this claim, we need the following set of lemmas. Lemmas 5.1 through 5.3 mirror Lemmas

4.1 through 4.3 and therefore the proofs are omitted.

108

Table 5.1: Constraint structure of the system of inequalities represented by (5.5)-(5.8).

Variables
Scenario

y D zmj1 zmj2 · · · zmjK

• •
-

•
• •
• •

1 • •
• • •

• •
• •
• •

2 • •
• • •

• •
...

. . .

• •
• •

K • •
• • •

• •

109

Lemma 5.1. For a fixed y ∈ IB|I| and scenario ξk ∈ Ξ,

(a) if yO(k) = 0, then zmj = 0, ∀m ∈ M̃k, j = 1, . . . , m,

(b) if yO(k) = 1, then for a patient m ∈ M̃k such that yO(m,k) = 0, zmj = 0, for j = 1, . . . ,m.

Lemma 5.2. For a scenario ξk ∈ Ξ, patient m ∈ M̃k and an integer 1 ≤ ` ≤ m

{
max

∑̀
j=1

j · zmj|
∑̀
j=1

zmj ≤ 1, zmj ≥ 0, j = 0, . . . , `

}
= `.

Lemma 5.3. For an OPO vector y ∈ IB|I|, scenario ξk ∈ Ξ and patient m ∈ M̃k, m ≥
∑

i∈I nk
miyi.

We also need to modify some notation. For y ∈ IB|I| and k = 1, . . . , K, let m̃(y, `) denote

the index m′ ∈ M̃k such that
∑

i∈I nk
m′iyi = ` where M̃(y, k) = {m ∈ M̃k|yO(m,k) = 1}, i.e.,

the set of aggregate patients in the region defined by y. Note that m̃(y, `) shows the index

of the aggregate patient whose regional rank is ` under scenario ξk. Although m̃(y, `) also

depends on scenario ξk, we drop k from the notation for ease of exposition.

Lemma 5.4. Consider a fixed OPO vector y ∈ IB|I| and dummy rank vector D ∈ IB|I|−1 such

that (y,D) satisfies (5.5). Suppose yO(k) = 1 for scenario ξk ∈ Ξ. Then, for |M̃(y, k)| < ` ≤
|I| − 1, D` = 1.

Proof. Since yO(k) = 1, (5.9d) and (5.9e) together imply

|I|−1∑
m=j

zmj + Dj = 1, j = 1, . . . , |I| − 1. (5.10)

Summing up (5.10) over the spots that have to filled, i.e., j = 1, . . . , |I| − 1, yields

|I|−1∑
j=1



|I|−1∑
m=j

zmj + Dj


 =

|I|−1∑
j=1

Dj +

|I|−1∑
j=1

|I|−1∑
m=j

zmj = |I| − 1. (5.11)

By the definition of M̃(y, k), summing up (5.9a) over m ∈ M̃k gives

|I|−1∑
m=1

m∑
j=1

zmj ≤
|I|−1∑
m=1

yO(m,k) = |M̃(y, k)|. (5.12)

110

By changing the summation terms in (5.12) we get

|I|−1∑
m=1

m∑
j=1

zmj =

|I|−1∑
j=1

|I|−1∑
m=j

zmj ≤ |M̃(y, k)|. (5.13)

Hence, by (5.11) and (5.13), we have

|I|−1∑
j=1

Dj ≥ |I| − 1− |M̃(y, k)|. (5.14)

Finally, combining (5.14) with (5.5b) and the fact that Dj ∈ {0, 1}, for j = 1, . . . , |I| − 1,

gives

Dj = 1, for j = |M̃(y, k)|+ 1, . . . , |I| − 1.

Lemma 5.5. Consider a fixed OPO vector y ∈ IB|I| and dummy rank vector D ∈ IB|I|−1 such

that (y, D) satisfies (5.5). Suppose yO(k) = 1 for scenario ξk. Then, for ` = 1, . . . , |M̃(y, k)|,
(a) D` = 0, and (b) zm̃(y,`)` = 1, and zm̃(y,`)j = 0 for j = 1, . . . , |I| − 1, j 6= `.

Proof. Since yO(k)=1 by assumption, and yO(m,k) = 1 for ` = 1, . . . , |M̃(y, k)| by the definition

of M̃(y, k), (5.9c) reduces to

m̃(y,`)∑
j=1

j · zm̃(y,`)j ≥ `, ` = 1, . . . , |M̃(y, k)|. (5.15)

By Lemma 5.4, Dj = 1 for |M̃(y, k)| < j ≤ |I| − 1. Hence, by (5.10), zm̃(y,`)j = 0 for

` = 1, . . . , |M̃(y, k)| and j = |M̃(y, k)| + 1, . . . , |I| − 1. Thus, since m̃(y, `) ≥ ` by Lemma

5.3, for ` = |M̃(y, k)|, (5.15) becomes

|M̃(y,k)|∑
j=1

j · zm̃(y,|M̃(y,k)|)j ≥ |M̃(y, k)|. (5.16)

By (5.16) and Lemma 5.2, zm̃(y,|M̃(y,k)|)|M̃(y,k)| = 1, and by (5.9a), zm̃(y,|M̃(y,k)|)j = 0 for

j = 1, . . . , |M̃(y, k)| − 1. Furthermore, by (5.10), zm̃(y,`)|M̃(y,k)| = 0 for ` = 1, . . . , |M̃(y, k)|,
and D|M̃(y,k)| = 0. Hence, by (5.5b), Dj = 0 for = 1, . . . , |M̃(y, k)|, which proves proves part

(a).

111

Assume the claim for part (b) holds for ` = l, . . . , |M̃(y, k)|. We have already shown that

it holds for ` = |M̃(y, k)|. Then, for ` = l − 1, constraint (5.9c) reduces to

l−1∑
j=1

j · zm̃(y,l−1)j ≥ l − 1. (5.17)

By Lemma 5.2 constraint (5.17) is only satisfied if zm̃(y,l−1)l−1 = 1. From (5.9a) and (5.10),

it follows that zm̃(y,l−1)j = 0 for j = 1, . . . , |I| − 1, j 6= l − 1, and zm̃(y,`)l−1 = 0 for ` =

1, . . . , |M̃(y, k)|, ` 6= l − 1. Hence, by induction, part (b) is proven.

We are now ready to state Theorem 5.1. The proof follows from Lemmas 5.1 through

5.5.

Theorem 5.1. For a fixed OPO vector y ∈ IB|I| and dummy rank vector D ∈ IB|I|−1 such

that (y,D) satisfies (5.5), a solution to the system P (y, D, k) ranks the aggregate patients

under scenario ξk ∈ Ξ in decreasing order of sickness in the region defined by y.

We have already discussed that the scenario constraint matrices are separable once fixed

y and D are given (see Table 5.1). Hence, the following corollary follows:

Corollary 5.1. For a fixed OPO vector y ∈ IB|I| and dummy rank vector D ∈ IB|I|−1 such

that (y, D) satisfies (5.5), a solution to the system

P (y, D) = {0 ≤ zmjk ≤ 1 for k = 1, . . . , K,m ∈ M̃k, j = 1, . . . , m|(5.6)− (5.8)},

ranks the aggregate patients under all scenarios in Ξ in decreasing order of sickness in the

region defined by y.

We modify c̃mjk of Section 4.2.3 as follows:

c̃mjk =





(1− q̃k)
j−1 · q̃k · cm(ξk), if 1 ≤ j ≤ m,

0, otherwise,
for k = 1, . . . , K,m ∈ M̃k. (5.18)

The parameter c̃mjk can be interpreted as the contribution of aggregate patient m to the

expected benefit of liver transplantation for scenario ξk if the patient is ranked jth.

112

The pricing problem needs to be able to handle the ranking of aggregate patients for

different regions for every scenario, and needs to incorporate the patient-acceptance prob-

abilities that are dependent on these rankings. The following formulation manages this:

SRPP (π, I, K) = max
K∑

k=1

∑

m∈M̃k

m∑
j=1

pk · c̃mjk · zmjk −
∑
i∈I

πi · yi (5.19a)

subject to
∑
i∈I

yi +

|I|−1∑
j=1

Dj = |I|, (5.19b)

Dj ≤ Dj+1, j = 1, . . . , |I| − 2, (5.19c)

m∑
j=1

zmjk ≤ yO(m,k), k = 1, . . . , K, ∀m ∈ M̃k, (5.19d)

m∑
j=1

zmjk ≤ yO(k), k = 1, . . . , K, ∀m ∈ M̃k, (5.19e)

m∑
j=1

j · zmjk + m · (2− yO(k) − yO(m,k)) ≥
∑
i∈I

nk
mi · yi, k = 1, . . . , K, ∀m ∈ M̃k, (5.19f)

|I|−1∑
m=j

zmjk + Dj ≥ yO(k), k = 1, . . . , K, j = 1, . . . , |I| − 1,

(5.19g)

|I|−1∑
m=j

zmjk + Dj ≤ 1, k = 1, . . . , K, j = 1, . . . , |I| − 1,

(5.19h)

yi ∈ {0, 1}, ∀i ∈ I, (5.19i)

Dj ∈ {0, 1}, j = 1, . . . , |I| − 1, (5.19j)

0 ≤zmjk ≤ 1, k = 1, . . . , K, ∀m ∈ M̃k, j = 1, . . . , m.

(5.19k)

The objective function (5.19a) maximizes the reduced cost of a region design. Constraint

(5.19b) makes sure that the number of OPOs chosen in a region plus the number of dummy

ranks used is equal to the total number of OPOs. Constraint set (5.19c) ensures that if the

dummy rank variable for spot j′ is used, dummy rank variables for spots j′ < j ≤ |I| − 1

113

also have to be used. Constraint set (5.19d) makes sure that patients can only be ranked if

they are listed in an OPO that is chosen for new region design. Similarly, constraint (5.19e)

makes sure that patients are ranked only for scenarios that apply to the new region, i.e.,

scenarios under which a liver is harvested within the region. Constraint (5.19f) enforces the

aggregate patients to be ranked in descending order of the severity of illness. Constraint

set (5.19g) forces every spot from 1 to |I| − 1 to be assigned either an aggregate patient

or dummy rank variable if scenario ξk has a harvested organ within the new region, while

(5.19h) limits the number of aggregate patients or dummy rank variables assigned to a spot

to at most 1. And finally, constraints (5.19i) and (5.19j) force variables yi and Dj to take

on binary values, while constraint (5.19k) determines the range for variables zmjk.

Note that the pricing problem (5.19) is a two-stage stochastic mixed-integer program

and its deterministic equivalent can be written as follows:

SRPP (π, I,K) = max IEξQ̃(y, D, ξk)−
∑
i∈I

πi · yi (5.20a)

subject to (5.19b)− (5.19c),

yi ∈ {0, 1}, ∀i ∈ I, (5.20b)

Dj ∈ {0, 1}, j = 1, . . . , |I| − 1, (5.20c)

where

Q̃(y, D, ξk) =



max

∑

m∈M̃k

m∑
j=1

c̃mjzmj|(5.9a)− (5.9f)



 , for k = 1, . . . , K. (5.21)

Suppose we solve this pricing problem to optimality, and obtain the optimal solution

vector (y∗, D∗, z∗). Then, y∗ gives the region design with maximum reduced cost. Let us

denote this region by r̂. If the objective value (5.19a) is strictly positive, we add r̂ to the

restricted set of regions, R′, and the column that corresponds to region r̂ in formulation (4.6)

can be constructed as follows:

• Objective function (4.6a) coefficient for region r̂: dr̂ =
∑K

k=1 pk
(∑

m∈Mk
c̃mjk · z∗mjk

)
,

• For constraint set (4.6b), air̂ = y∗i , ∀i ∈ I.

114

5.3 COMPUTATIONAL APPROACHES AND PARAMETER

ESTIMATION

Since the aggregate modeling framework introduced in this chapter is a modification of the

model in Chapter 4, similar concerns regarding the scenario space and the size of the pricing

problem, which we discussed in Section 4.3, also apply to the aggregate model. We address

solution methods that address these computational concerns in this section. We also discuss

our parameter estimation procedures.

As there are too many scenarios in the real-world system to consider explicitly from a

modeling and solution perspective, once again, we utilize the Sample Average Approximation

(SAA) method. As we discussed in Section 4.3.1, under the SAA method, the RMP (4.6)

is replaced with RMPSAA, i.e.,(4.25), and RMPSAA is solved B times using B independent

samples of K scenarios. See Section 4.3.1 for more details.

We also solve RMPSAA using SPRINT methods from airline crew scheduling literature

[12], which involve extensive pricing only in the root node of a branch-and-bound tree to aid

us in the solution process. See Section 4.3.2 for more details.

The pricing problem (5.19) introduced in this chapter constitutes a large scale stochastic

mixed-integer program that has to be solved repeatedly throughout the course of the SPRINT

algorithm. The number of rows in the pricing problem is O(K ·|I|) and the number of columns

is O(K · |I|2), out of which O(|I|) are binaries. In order to reduce the size of the pricing

problem we employ the Geographic Decomposition approach of Kong [96] and Kong et al.

[97], as we did in Chapters 3 and 4. Thus, instead of considering a very large pricing problem

for the whole nation, we create a number of smaller pricing problems, each covering different,

but overlapping, geographic areas of the country, called region covers. See Section 4.3.3 for

the application of geographic decomposition within our proposed modeling framework, and

see Section 3.3.1.1 for further details on this technique.

We also execute the branching strategy of Ryan and Foster [148] which has proven to

be effective on set-partitioning type problems. See Section 3.3.1.2 for further details on this

branching strategy.

115

5.3.1 Data Sources and Parameter Estimation

We followed the same method of generating scenarios as in Chapter 4. Thus, the waiting

list data for scenarios was generated using the discrete-event simulation of End-Stage Liver

Disease and organ allocation by Shechter et al. [155]. We modified the simulation model to

capture snapshots of the national liver waiting list, and created scenarios using a sampling

approach. Figure 4.1 depicts the sampling approach we used to create discrete scenarios

using the simulation model of Shechter et al. [155]. See Section 4.4 for more details.

We used a constant value for an aggregate patient’s probability of accepting a liver offer,

i.e., q̃k, across all scenarios. Using equation (5.3), and qk = 0.206 and Jk = 10, from Section

4.4, we get q̃k = 0.9004, for k = 1, . . . , K. While creating aggregate patients for each

scenario, we used a uniform distribution, and hence, set φm = 1
Jk

for k = 1, . . . , K, m ∈ Mk.

5.4 COMPUTATIONAL RESULTS

During our initial computational experiments, we tested the performance of different geo-

graphic decomposition schemes on 10 batches of 200 scenarios. The initial set of regions was

the set of all enumerated regions with no more than 3 OPOs in all cases. We used a UNIX

machine with AMD Opteron 240 processor and 3.8 GB RAM for our computational tests,

and coded the optimization algorithms using C++ and the CPLEX 9.0 Callable Library.

First, we tested the performance of geographic decomposition schemes that were intro-

duced in Chapter 3, i.e., 20 10, 20 11, 20 12 and 20 15. Table 5.2 shows the summary of our

initial analysis. Figure 5.2 shows the percentage increase in the objective value and CPU

time for each geographic decomposition scheme when compared to 20 10. Recall that a geo-

graphic decomposition scheme ID, K L, shows that the scheme includes K pricing problems

each containing L OPOs. We already discussed how the size of the pricing problems grow

with the number of OPOs included in the associated region cover. Table 5.2 and Figure 5.2

show that the CPU time is very sensitive to the number of OPOs in each region cover, i.e.,

L. After observing the relatively small increase in objective values at the expense of big

116

Table 5.2: Summary of initial tests with B = 10, K = 200.

Geographic Decomposition Average Average CPU

Scheme ID objective time (sec.)

20 10 2,297.48 290.21

20 11 2,299.52 781.06

20 12 2,303.56 1,953.25

20 15 2,306.55 19,137.28

30 10 2,306.19 392.73

20_10
20_11

20_12
20_15

30_10

Objective

CPU

0.00% 169.14% 573.05%

6494.28%

35.32%0.00%
0.09%

0.26%
0.40%

0.38%

0.00%

1000.00%

2000.00%

3000.00%

4000.00%

5000.00%

6000.00%

7000.00%

In
cr

ea
se

Geographic decomposition scheme

Objective CPU

Figure 5.2: A comparison of percentage changes in objective values and run times for different

geographic schemes when compared to 20 10.

117

jumps in run times when using geographic decomposition schemes with increasing L, and

discovering that the maximum number of OPOs selected for a region in the optimal configu-

rations obtained by our initial tests was 8, we decided to design and test a new scheme, i.e.,

30 10. Table 5.2 and Figure 5.2 also show the performance of 30 10 under the same batches

of scenarios. As can be seen from Figure 5.2, 30 10 brought almost the same amount of gain

in the optimal objective value as 20 15 with a much lower increase in CPU time, and also

generated better solutions faster than schemes 20 11 and 20 12. Hence, we chose 30 10 for

our second set of tests with larger batches of scenarios.

For the second set of computational tests we generated B = 20 batches of K = 1, 000

scenarios according to the process explained in Section 4.4. Once again, we used the set of

all contiguous OPOs with up to 3 OPOs as the initial set of columns for the master problem.

The average CPU time for a batch of 1,000 scenarios using geographic decomposition scheme

30 10 was 1 hour 13 minutes and 47 seconds. Recall from Section 4.5 that the average time

to solve an SAA problem with 200 scenarios using the patient-based model of Chapter 4

with geographic decomposition scheme 20 10 was around 4 hours. Hence, as intended, the

aggregate modeling framework provides greater flexibility in terms of computational testing

with different geographic decomposition schemes and larger batches of scenarios.

As we did in Section 4.5.1, we conducted statistical tests for obtaining estimates on

solution qualities. We refer to Section 4.5.1 for the notation and details on the optimality

gap estimates. Details on the optimal solutions found by solving each SAA problem in

the second set of tests along with estimated optimality gaps can be found in Table 5.3.

Table 5.3 shows that considerably tight optimality gaps of around 0.5% were obtained using

the SAA method with B = 20, K = 1, 000 under geographic decomposition scheme 30 10.

Furthermore, Figures 5.3 through 5.6 show the regional configurations that correspond to

these candidate solutions. Note that the maximum number of OPOs in any region shown in

these figures is 8.

As an attempt to investigate the validity of the solutions obtained, we simulated the re-

gional configurations shown in Figures 5.3 through 5.6 using the simulation model of Shechter

et al. [155]. We simulated the liver allocation system from 1996 to the end of 2002, and ran

20 replications of each configuration using a warm-up period of 3 years. In order to compare

118

Table 5.3: Estimating the optimality gap for candidate solutions using geographic decom-

position scheme 30 10 with B = 20, K = 1, 000.

Opt. gap 95% CI
Batch Map ḡB

K(x̂b
K) v̂b

K (v̄B
K − ḡB

K(x̂b
K)) Absolute % of v̄B

K

(b) ref. Mean Var. LL UL LL Mean UL
1 5A 2,253.17 2,271.17 15.06 1.66 10.03 20.09 0.44% 0.66% 0.89%
2 5B 2,252.39 2,253.09 15.84 1.64 10.83 20.84 0.48% 0.70% 0.92%
3 5C 2,249.30 2,265.93 18.93 1.54 14.09 23.77 0.62% 0.83% 1.05%
4 5D 2,255.26 2,248.37 12.96 1.28 8.55 17.38 0.38% 0.57% 0.77%
5 5E 2,258.37 2,270.38 9.86 1.29 5.42 14.30 0.24% 0.43% 0.63%
6 5F 2,254.16 2,298.94 14.06 1.54 9.21 18.92 0.41% 0.62% 0.83%
7 5G 2,254.82 2,272.49 13.40 1.40 8.78 18.02 0.39% 0.59% 0.79%
8 5H 2,253.51 2,282.39 14.72 1.25 10.36 19.08 0.46% 0.65% 0.84%
9 5I 2,253.07 2,268.02 15.16 1.13 11.01 19.31 0.49% 0.67% 0.85%
10 5J 2,254.91 2,246.37 13.32 1.22 9.01 17.63 0.40% 0.59% 0.78%
11 5K 2,255.02 2,255.80 13.21 1.50 8.42 17.99 0.37% 0.58% 0.79%
12 5L 2,252.69 2,265.90 15.53 1.72 10.42 20.65 0.46% 0.68% 0.91%
13 5M 2,253.94 2,234.03 14.29 2.00 8.76 19.81 0.39% 0.63% 0.87%
14 5N 2,259.43 2,298.54 8.80 1.00 4.89 12.71 0.22% 0.39% 0.56%
15 5O 2,256.47 2,278.26 11.76 1.12 7.63 15.89 0.34% 0.52% 0.70%
16 5P 2,255.82 2,282.34 12.41 1.36 7.85 16.96 0.35% 0.55% 0.75%
17 5Q 2,252.23 2,271.12 16.00 2.75 9.52 22.47 0.42% 0.71% 0.99%
18 5R 2,254.15 2,255.17 14.08 1.29 9.65 18.52 0.43% 0.62% 0.82%
19 5S 2,258.40 2,249.81 9.83 1.88 4.47 15.19 0.20% 0.43% 0.67%
20 5T 2,255.47 2,296.43 12.76 2.28 6.87 18.65 0.30% 0.56% 0.82%

119

(5A) (5B)

(5C) (5D)

(5E)

Figure 5.3: Maps of regions obtained with geographic decomposition scheme 30 10 with

B = 20, K = 1, 000.

the performance of our alternative configurations with the current system, we conducted

paired t tests. The results of the analysis can be seen in Table 5.4, and Figures 5.7 and

5.8. As in Chapter 4, the null hypothesis of these tests is that the average benefits gained

per transplant are equal between an alternative configuration and the current regional con-

figuration. Figure 5.7 displays the 95% confidence intervals around the mean difference

120

(5F) (5G)

(5H) (5I)

(5J)

Figure 5.4: Maps of regions obtained with geographic decomposition scheme 30 10 with

B = 20, K = 1, 000 continued.

obtained in the expected benefit of each configuration when compared to the performance

of the current system while Figure 5.8 shows the same results as a percentage of the current

system. Since all p−values are 0, we conclude that the proposed regional configurations

bring significant increases to the expected benefits gained from liver transplants.

121

(5K) (5L)

(5M) (5N)

(5O)

Figure 5.5: Maps of regions obtained with geographic decomposition scheme 30 10 with

B = 20, K = 1, 000 continued.

Comparing Tables 4.5 and 5.4 shows that the solutions obtained using the patient-based

model of Chapter 4 and OPO-based model introduced in this chapter resulted in a similar

performance in terms of the expected life-time gained by liver transplants. We already

mentioned that the OPO-based model is much faster than its patient-based counterpart,

solving a sample with K = 1, 000 under geographic decomposition scheme 30 10 in a little

122

(5P) (5Q)

(5R) (5S)

(5T)

Figure 5.6: Maps of regions obtained with geographic decomposition scheme 30 10 with

B = 20, K = 1, 000 continued.

over an hour on the average when compared to the 4 hour average solution time for the

patient-based model under scheme 20 10 with K = 200. However, when we look at the

candidate configurations listed in Tables 4.5 and 5.4, we observe that the configuration that

performed best in simulation tests was regional configuration 4J of Figure 4.3, i.e., a solution

found using the patient-based model. On the average, the solutions provided in Chapter 4

123

Table 5.4: Paired t tests and confidence intervals on the difference in expected life-days

gained per transplant: Regional configurations of Figures 5.3 through 5.4 vs. current system

Paired Differences

Regional Standard Standard 95% CI

Configuration Mean Deviation Error LL UL t p−value

5A 149.91 33.18 7.42 134.38 165.44 20.21 0.0000

5B 167.46 47.46 3.77 159.56 175.36 44.36 0.0000

5C 167.61 40.10 3.01 161.31 173.91 55.67 0.0000

5D 181.08 40.44 2.81 175.19 186.96 64.37 0.0000

5E 166.51 33.44 2.55 161.16 171.86 65.18 0.0000

5F 166.90 38.77 3.07 160.49 173.32 54.45 0.0000

5G 174.91 45.65 3.84 166.87 182.95 45.52 0.0000

5H 160.49 36.51 3.89 152.34 168.65 41.21 0.0000

5I 167.77 36.67 2.58 162.36 173.17 64.92 0.0000

5J 170.07 44.54 3.44 162.88 177.27 49.50 0.0000

5K 173.13 49.52 4.27 164.20 182.07 40.55 0.0000

5L 164.90 41.47 3.25 158.11 171.70 50.81 0.0000

5M 173.77 53.34 4.36 164.65 182.89 39.89 0.0000

5N 158.42 42.05 3.07 151.99 164.84 51.64 0.0000

5O 162.45 39.56 3.39 155.34 169.55 47.86 0.0000

5P 170.50 40.03 4.32 161.46 179.54 39.48 0.0000

5Q 170.41 39.69 3.54 163.01 177.82 48.17 0.0000

5R 177.59 44.65 3.39 170.49 184.69 52.36 0.0000

5S 175.18 43.99 3.20 168.49 181.88 54.76 0.0000

5T 146.24 41.20 3.15 139.64 152.85 46.37 0.0000

124

100

110

120

130

140

150

160

170

180

190

200

5A 5B 5C 5D 5E 5F 5G 5H 5I 5J 5K 5L 5M 5N 5O 5P 5Q 5R 5S 5T

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 5.7: 95% confidence intervals around the mean difference in the expected life-days

gained per transplant. Detailed results can be seen in Table 5.4.

and this section resulted in improvements of 4.14% and 4.93% in the expected life-time gained

per transplant, respectively. The sample of scenarios used while generating configuration 4J

of Figure 4.3 may possibly be a lucky choice of 200 scenarios.

Another interesting observation is that when Figures 4.2, 4.3 and 5.3 through 5.6 are

examined, we observe that the patient-based model of Chapter 4 is more likely to produce

noncontiguous configurations whereas, due to the smoothing of data through aggregation,

the OPO-based approach produces contiguous solutions more frequently.

125

3.00%

3.50%

4.00%

4.50%

5.00%

5.50%

6.00%

5A 5B 5C 5D 5E 5F 5G 5H 5I 5J 5K 5L 5M 5N 5O 5P 5Q 5R 5S 5T

Regional configuration

M
ea

n
 d

if
fe

re
n

ce

LL MEAN UL

Figure 5.8: 95% confidence intervals around the mean difference in the expected life-days

gained per transplant as percentage of the performance of the current system. Detailed

results can be seen in Table 5.4.

5.5 CONCLUSIONS

In this chapter, we modified the patient-based stochastic mixed-integer programming model

of Chapter 4 in order to develop a more computationally tractable framework for designing

liver transplant regions under uncertainty. We preserved the same objective, i.e., maximizing

the expected life-time gained by transplants at the regional level. We kept the main modeling

structure and assumptions of Chapter 4 intact while aggregating the patient-related data in

every scenario in an attempt to scale down the size of the problem.

126

We tested the performances on various geographic decomposition schemes on 10 samples

of 200 scenarios, and observed that the solution time was driven by the size of region covers

employed. We conducted a second set of tests using geographic decomposition scheme 30 10,

which appeared to produce a good balance of solution quality and CPU time, on larger

samples. Our tests resulted in tight optimality gap estimates, averaging around 0.5%.

We also simulated the regional configurations obtained using the simulation model of

Shechter et al. [155]. The results show that our proposed regions are capable of improving

the expected outcomes of liver transplant by an average of around 5%.

A possible direction for future research is testing different distributions of parameter

φm, which shows the probability of patient m being offered the organ if the organ was only

offered in her own OPO. In this chapter, we used a uniform distribution, and hence, created

aggregate patients by averaging the data for the top patients in each OPO with an equal

weight for each patient.

Incorporating an equity measure for the liver allocation system under a stochastic pro-

gramming model is also left for future research. The models that patient- and OPO-based

two-stage stochastic programming models that we introduced in this dissertation only focus

on the efficiency of the system.

127

6.0 COLUMN GENERATION WITHIN THE L-SHAPED METHOD FOR

STOCHASTIC LINEAR PROGRAMS

6.1 INTRODUCTION

In Chapters 4 and 5, we solved two-stage stochastic region-design problems using column

generation. However, the fact that we modeled the ranking policies of UNOS within regions

made second-stage decisions automatic and enabled a closed-form expression of the second-

stage objectives. Hence, this eliminated the need for a mechanism combining column and cut

generation to be used. If our models allowed for decisions on how to rank patients, then we

would need to generate cuts and columns simultaneously for the master problem. Motivated

by this observation, this chapter deals with the general question of how to design effective

implementations of column generation methods within a two-stage stochastic programming

framework.

We develop a method that incorporates column generation within the L-shaped method

for solving two-stage stochastic linear programs [22, 174]. This method adds feasibility

and optimality cuts generated from the second-stage subproblems based on the current

columns in the master problem of the L-shaped method. It also generates columns for the

master problem with respect to the first-stage constraints as well as existing feasibility and

optimality cuts. We present different algorithmic strategies and prove finite convergence for

a wide variety of approaches. We explore the performance of various algorithmic strategies

that employ stabilization subroutines for strengthening both column and cut generation

to effectively avoid degeneracy. To demonstrate the computational performances of the

algorithmic approaches, we study two-stage stochastic versions of the well-known cutting

stock and multi-commodity flow problems.

128

The primary contribution of this chapter is to apply combined column and cut generation

to problems whose natural formulation involves a large number of columns. In this sense,

the contribution may be seen as a modeling advance rather than a new solution technique

that will perform well on problems for which column generation is inappropriate.

Two-stage stochastic linear programs are typically solved using decomposition methods

that employ smaller subproblems that correspond to different scenarios. In the proposed

approach, in addition to the second-stage scenario subproblems, we also have additional

pricing subproblems to generate columns for the master problem. A comparison of the

execution of the proposed approach and traditional stochastic programming is depicted in

Figure 6.1.

The rest of the chapter is organized as follows: in Section 6.2, we discuss the the-

ory behind our approach and perform the necessary reformulations for two-stage stochastic

linear column generation models. In Section 6.3, we present the general framework for

a class of algorithms incorporating column generation within the L-shaped method. We

also discuss convergence issues and develop several algorithmic strategies involving different

cut-aggregation, pricing and stabilization approaches. Then, in Section 6.4, we introduce

two-stage stochastic versions of the cutting stock and multi-commodity flow problems, and

analyze our computational experiments exploring the performance of our algorithmic ap-

proaches on these problems. Finally, we summarize our conclusions in Section 6.5.

6.2 THEORY AND REFORMULATIONS FOR COLUMN GENERATION

WITHIN TWO-STAGE STOCHASTIC LINEAR PROGRAMS

Let ni be the number of columns in stage i for i = 1, 2. Let {x|A′x ≥ b′, A′′x ≥ b′′, x ≥ 0}
be the set of feasible solutions for the first stage, where A′ and A′′ are known real-valued

matrices of sizes m′
1 × n1 and m′′

1 × n1, respectively. Let b′ and b′′ be known vectors in IRm′
1

and IRm′′
1 , respectively. We divide the constraints that define this set into two such that one

group of constraints (A′x ≥ b′) is “hard” and the other (A′′x ≥ b′′, x ≥ 0) is “easy”.

129

?

6

1st Stage

2nd Stage

Traditional L-shaped

Method

1st Stage
Solutions

L-shaped
Cuts

?

6

-

¾

-

¾

1st Stage
Master

2nd Stage
Master

1st Stage
Pricing

2nd Stage
Pricing

L-shaped Method

with Column Generation

1st Stage
Solutions

L-shaped
Cuts

Duals

1st Stage
Columns

Duals

2nd Stage Columns

Figure 6.1: Schematic illustration of column generation within two-stage stochastic program-

ming.

130

Let ξ̃ be a discrete random variable describing the uncertain parameters, and let Ξ be

the finite support of ξ̃. For k = 1, . . . , K = |Ξ|, let ξk describe the kth element in Ξ, called a

scenario, and let pk be the probability that scenario ξk is realized. For each scenario ξk ∈ Ξ,

let {y(ξk)|T (ξk)x + W ′(ξk)y(ξk) ≥ h′(ξk),W ′′(ξk)y(ξ) ≥ h′′(ξk), y(ξk) ≥ 0} be the set of

feasible solutions for the second stage, where the technology matrix, T (ξk), and the recourse

matrices, W ′(ξk) and W ′′(ξk), are of sizes m′
2×n1, m′

2×n2 and m′′
2×n2, respectively. Suppose

the constraints that define this set can be divided into two, such that one group of constraints,

{T (ξk)x+W ′(ξk)y(ξk) ≥ h′(ξk)}, is “hard” and the other, {W ′′(ξk)y(ξ) ≥ h′′(ξk), y(ξk) ≥ 0},
is “easy”.

A standard formulation of the extensive form of such a two-stage stochastic linear pro-

gram, (P), following the formulations by Beale [15] and Dantzig [41] is as follows:

min cT x + IEξ̃[d(ξ̃)T y(ξ̃)] (6.1a)

subject to A′x ≥ b′, (6.1b)

A′′x ≥ b′′, (6.1c)

T (ξk)x + W ′(ξk)y(ξk) ≥ h′(ξk), for k = 1, . . . , K, (6.1d)

W ′′(ξk)y(ξ) ≥ h′′(ξk), for k = 1, . . . , K, (6.1e)

x ≥ 0, (6.1f)

y(ξk) ≥ 0, for k = 1, . . . , K, (6.1g)

where c is a known vector in IRn1 , and the “hard” first-stage constraints are defined by the

constraint set (6.1b) whereas the “easy” first-stage constraints are constraints (6.1c) and

(6.1f). Also, for each scenario, d(ξk) ∈ IRn2 , h(ξk) ∈ IRm2 , and the “hard” second-stage con-

straints are defined by the constraint set (6.1d) whereas the “easy” second-stage constraints

are constraints (6.1e) and (6.1g). Piecing together the stochastic components of the problem,

we obtain the scenario vector ξk = (d(ξk)T , h′(ξk)T , h′′(ξk)T , T (ξk),W ′(ξk),W ′′(ξk)). For

a given value of the first-stage vector x, the second-stage subproblem decomposes into K

independent subproblems, one for each scenario.

131

The extensive form (6.1) is equivalent to the so-called deterministic equivalent program:

min cT x + Q(x) (6.2)

subject to A′x ≥ b′,

A′′x ≥ b′′,

x ≥ 0,

where Q(x), the expected recourse function, is given by

Q(x) = IEξ̃Q(x, ξk)), (6.3)

and for every scenario ξk,

Q(x, ξk) = min d(ξk)T y (6.4a)

subject to W ′(ξk)y ≥ h′(ξk)− T (ξk)x, (6.4b)

W ′′(ξk)y ≥ h′′(ξk), (6.4c)

y ≥ 0. (6.4d)

Algorithms for solving two-stage stochastic LPs exploit the fact that the expected re-

course function Q(x) is convex [23]. Note that, for each ξk ∈ Ξ, we can express the polyhe-

dron defined by the second-stage easy constraints, i.e., (6.4c) and (6.4d), as follows:

Λk = {y ∈ IRn2
+ |W ′′(ξk)y ≥ h′′(ξk)}. (6.5)

Let y1
k, . . . , y

qk

k and yqk+1
k , . . . , yrk

k be the extreme points and extreme rays of Λk, respectively,

and define

1. ζi(ξ
k) = d(ξk)T yi

k, i = 1, . . . , rk, where ζi(ξ
k) ∈ IR,

2. %i(ξ
k) = W ′(ξk)yi

k, i = 1, . . . , rk, where %i(ξ
k) ∈ IRm′

2 .

132

Then, by applying Minkowski’s finite basis theorem [121] to the second-stage easy polyhedra,

we can rewrite each second-stage subproblem as shown below:

Q(x, ξk) = min

rk∑
i=1

ζi(ξ
k)ui (6.6a)

subject to

rk∑
i=1

%i(ξ
k)ui ≥ h′(ξk)− T (ξk)x, (6.6b)

qk∑
i=1

ui = 1, (6.6c)

ui ≥ 0, for i = 1, . . . , rk. (6.6d)

Now, for each scenario ξk ∈ Ξ, define the dual polyhedron

∆k = {δ ∈ IR
m′

2
+ , δ0 ∈ IR1|δT %i(ξ

k) + δ0 ≤ ζi(ξ
k), for i = 1, . . . , qk,

δT %i(ξ
k) ≤ ζi(ξ

k), for i = qk + 1, . . . , rk}. (6.7)

Let (δk
1 , δ

0k
1), . . . , (δ

k
lk
, δ0k

lk) denote the extreme points of ∆k, and let (δk
lk+1

, δ0k
lk+1), . . . , (δ

k
µk , δ

0k
µk)

denote the extreme rays of ∆k. Then, applying the L-shaped reformulation [174] yields the

following equivalent formulation:

min cT x +
K∑

k=1

θk (6.8a)

subject to A′x ≥ b′, (6.8b)

A′′x ≥ b′′, (6.8c)

(δk
j)T (h′(ξk)− T (ξk)x) + δ0k

j) ≤ 0, for k = 1, . . . , K, j = lk + 1, . . . , µk, (6.8d)

pk
(
(δk

j)T (h′(ξk)− T (ξk)x) + δ0k
j)

)
≤ θk, for k = 1, . . . , K, j = 1, . . . , lk, (6.8e)

x ≥ 0, (6.8f)

where constraint sets (6.8e) and (6.8d) represent the optimality and feasibility cuts generated

by the L-shaped subproblems, respectively.

133

In the formulation above, constraint sets (6.8c) and (6.8f) are easy constraints, and sets

(6.8b), (6.8e) and (6.8d) are hard constraints. Consider the polyhedron defined by constraint

sets (6.8c) and (6.8f), i.e. the easy constraints:

Λ = {x ∈ IRn1
+ |A′′x ≥ b′′}, (6.9)

and let x1, . . . xq and xq+1, . . . , xr be the extreme points and extreme rays of Λ. By using

Minkowski’s finite basis theorem [121] we can rewrite Λ as

Λ =

{
x =

r∑
i=1

zix
i

∣∣∣∣∣z ∈ IRr
+,

q∑
i=1

zi = 1

}
. (6.10)

By rewriting x in the problem defined in (6.8) in terms of zi and xi, we get

min cT

(
r∑

i=1

zix
i

)
+

K∑

k=1

θk (6.11a)

subject to A′
(

r∑
i=1

zix
i

)
≥ b′, (6.11b)

(δk
j)T

[
h′(ξk)− T (ξk)

(
r∑

i=1

zix
i

)]
+ δ0k

j ≤ 0, for k = 1, . . . , K, j = lk + 1, . . . , µk,

(6.11c)

pk

[
(δk

j)T

(
h′(ξk)− T (ξk)

(
r∑

i=1

zix
i

))
+ δ0k

j

]
≤ θk, for k = 1, . . . , K, j = 1, . . . , lk,

(6.11d)

q∑
i=1

zi = 1, (6.11e)

zi ≥ 0, for i = 1, . . . , r. (6.11f)

Define

1. fi = cT xi, i = 1, . . . , r, where fi ∈ IR,

2. gi = A′xi, i = 1, . . . , r, where gi ∈ IRm′
1 ,

3. γk
i = T (ξk)xi, i = 1, . . . , r, k = 1, . . . , K, where γk

i ∈ IRm2 .

134

Then the problem above can be rewritten as (P ′):

min
r∑

i=1

fizi +
K∑

k=1

θk (6.12a)

subject to
r∑

i=1

gizi ≥ b′, (6.12b)

(δk
j)T

(
h(ξk)−

r∑
i=1

γk
i zi

)
+ δ0k

j ≤ 0, for k = 1, . . . , K, j = lk + 1, . . . , µk, (6.12c)

pk

[
(δk

j)T

(
h(ξk)−

r∑
i=1

γk
i zi

)
+ δ0k

j

]
≤ θk, for k = 1, . . . , K, j = 1, . . . , lk, (6.12d)

q∑
i=1

zi = 1, (6.12e)

zi ≥ 0, for i = 1, . . . , r. (6.12f)

Thus, we have just proven the following theorem:

Theorem 6.1. The reformulation (P ′) is an equivalent representation of the original problem

(P).

Formulation (P ′) is simply derived by applying the L-shaped and two Dantzig-Wolfe

reformulations to (P).

6.3 ALGORITHMS FOR COMBINING DANTZIG-WOLFE

DECOMPOSITION AND THE L-SHAPED METHOD

6.3.1 Main Algorithmic Approach

Note that (P ′) assumes that all extreme points and rays of the polyhedra Λ, Λk and ∆k, for

k = 1, . . . , K are known. However, computing all of these requires huge amounts of time

and storage, and the resulting number of variables and constraints can be extremely large.

Instead, an iterative procedure combining the column generation approach and the L-shaped

method can be followed. This procedure is composed of a restricted master problem (RMP)

which includes subsets of the extreme points and rays of the polyhedra Λ, Λk and ∆k, for

135

k = 1, . . . , K, at any point in the algorithm. Consequently, we will have subsets of the z

variables and subsets of optimality and feasibility cuts in the RMP, out of the total possible

number of z variables and constraints of the original problem (P ′). New columns, i.e. new z

variables, and new optimality and feasibility cuts will be generated as needed, through the

use of subproblems. To clarify the notation, we describe our algorithm in the context of the

single-cut L-shaped method; the extension to the multi-cut version [22] is straightforward.

A simple framework of a possible algorithm to incorporate column generation within the

L-shaped method can be given as follows:

1. Solve the RMP.

2. Search for an L-shaped cut or a favorable first-stage column (solve the corresponding

second-stage subproblems to optimality when searching for a cut).

3. a. If none exists, the current solution is optimal.

b. Otherwise, add the cut or column generated to the RMP and go to Step 1.

Figure 6.2 shows a flow chart for the general algorithm. The details of the algorithm are

explained below:

• Initialization.

– Set sf = so = ν = 0. The first two are counters for feasibility and optimality cuts

in the RMP, and the last one is the iteration counter.

– Set NeedCuts = NeedCols = True. These two variables indicate whether the

current RMP is optimal with respect to the first-stage columns and L-shaped cuts,

respectively. The RMP is optimal with respect to the first-stage columns (L-shaped

cuts) when NeedCuts = False (NeedCols = False).

– Let τ and ϕ denote the index sets of known extreme points and rays of the polyhedron

Λ, respectively (i.e. the number of z variables equals |τ |+|ϕ|). We assume |τ |+|ϕ| >
0 at the beginning, and utilize a Phase-I type approach to generate initial columns

in cases where constructing an initial feasible solution for the RMP is nontrivial.

136

Initialization

Optimality
check

If NeedCuts = True
 NeedCols = False

If NeedCuts = True
NeedCols = True

If NeedCuts = False
NeedCols = True

If NeedCuts = False
NeedCols = False

Cuts or
columns?

Cuts

Solve RMP
Get primal solution

Feasibility cut check

Feas.
cut(s)?

Yes

No

Optimality cut check

Opt.
cut(s)?

Yes

No

Solve RMP
Get dual solution

1st stage pricing

Yes

No

Set NeedCols = False

Set NeedCuts = False

OPTIMALITY

Columns

Favorable
column(s)?

Set NeedCuts = True
NeedCols = True

Add first-stage
column(s)

L-shaped cut search

First-stage column generaion

Set NeedCuts = True

Add feasibility cut(s)

Set NeedCols = True

Add optimality cut(s)

Set NeedCols = True

2nd stage column
generation

2nd stage column
generation

Figure 6.2: Flow chart for column generation within the L-shaped method.

137

– For every k = 1, . . . , K, let τ̄k and ϕ̄k denote the sets of known extreme points and

rays of the easy second-stage polyhedron Λk, respectively. We assume |τ̄k|+ |ϕ̄k| > 0,

for k = 1, . . . , K, at the beginning, and utilize a Phase-I type approach to generate

initial columns in cases where constructing initial feasible solutions for the second-

stage subproblems is nontrivial.

• Optimality check.

This procedure checks whether the current solution is optimal. If not, it selects a proce-

dure to use.

– If NeedCuts = NeedCols = True, then go to either one of the procedures L-shaped

cut generation or First-stage column generation depending on the choice of

the user. The procedure L-shaped cut generation (First-stage column generation)

may be interrupted by the Optimality check procedure after the addition of a cut

(column), and depending on the user’s preference on when to switch, the algorithm

may resume the same procedure or switch to First-stage column generation (L-

shaped cut generation).

– If NeedCuts = True and NeedCols = False, then go to the procedure L-shaped

cut generation .

– If NeedCuts = False and NeedCols = True, then go to the procedure First-stage

column generation .

– If NeedCuts = NeedCols = False, then STOP; the current solution is OPTIMAL.

• L-shaped cut generation.

1. Master problem. Set ν = ν + 1. Solve the restricted master problem (RMP) below:

min fT z + θ (6.13a)

subject to gT z ≥ b′, (6.13b)

D̄ιz ≥ d̄ι, for ι = 1, . . . , sf , (6.13c)

Ēιz + θ ≥ ēι, for ι = 1, . . . , so, (6.13d)
∑
i∈τ

zi = 1, (6.13e)

zi ≥ 0, for i ∈ τ ∪ ϕ, (6.13f)

138

where constraint sets (6.13c) and (6.13d) are the L-shaped feasibility and optimality

cuts, respectively. Let (zν , θν) denote the optimal solution to the RMP. If so = 0,

then θ is assumed to be equal to −∞ for iteration ν.

2. Feasibility cut generation. Set the scenario index k = 1.

a. Feasibility subproblem. Solve the following linear program:

w′ = min 1T v+ − 1T v− (6.14a)

subject to
∑

i∈τ̄k∪ϕ̄k

%i(ξ
k)ui + I+v+ − I−v− ≥ h′(ξk)− Γkzν , (6.14b)

∑
i∈τ̄k

ui = 1, (6.14c)

ui ≥ 0, ∀i ∈ τ̄k ∪ ϕ̄k, (6.14d)

where 1 is a vector of ones and Γk is the m2×(|τ |+|ϕ|) matrix where the columns

correspond to γk
i , i ∈ τ ∪ ϕ. Let δk and δ0

k denote the optimal dual variables

corresponding to constraint sets (6.14b) and (6.14c), respectively.

– If w′ = 0 and k = K, go to step 3 (optimality cut generation) .

– If w′ = 0 and k < K, set k = k + 1 and go to step 2a (feasibility subproblem).

– If w′ > 0, no feasible solution can be generated by using the current elements

of the sets τ̄k and ϕ̄k. However, this does not show that the whole subproblem

is infeasible. We have to generate more extreme points and rays for the sets

τ̄k and ϕ̄k. Go to step 2b (second-stage column generation for the feasibility

subproblem).

b. Second-stage column generation for the feasibility subproblem. Solve the following

second-stage pricing subproblem:

max c̄y = δT
k W ′(ξk)y (6.15a)

subject to W ′′(ξk)y ≥ h′′(ξk), (6.15b)

y ≥ 0. (6.15c)

– If c̄y ≤ −δ0
k, then no column can improve the objective function, w′, so the

whole second-stage subproblem is infeasible. Go to step 2c (feasibility cut

insertion).

139

– If c̄y = ∞, add a corresponding extreme ray of the polyhedron Λk to ϕ̄k, add

the corresponding u variable to the feasibility subproblem, and return to step

2a (feasibility subproblem).

– If −δ0
k < c̄y < ∞, add the corresponding extreme point of Λk to τ̄k, add the

corresponding u variable to the feasibility subproblem and return to step 2a

(feasibility subproblem).

c. Feasibility cut insertion. Calculate the cut coefficients for existing variables in

the RMP and the right-hand side:

D̄sf+1 = (δν
k)T Γk, (6.16a)

d̄sf+1 = (δν
k)T h′(ξk) + δ0

k, (6.16b)

and add a feasibility cut of the form (6.13c). Calculate and store the implicit

technology coefficients that will be used to construct new columns:

D̃sf+1 = (δν
k)T T (ξk). (6.17)

Set sf = sf + 1, NeedCols = True. Go to procedure Optimality check .

3. Optimality cut generation. Set the scenario index k = 1.

a. Optimality subproblem. Solve the following linear program:

Q(zν , ξk) = min
∑

i∈τ̄k∪ϕ̄k

ζi(ξ
k)ui (6.18a)

subject to
∑

i∈τ̄k∪ϕ̄k

%i(ξ
k)ui ≥ h′(ξk)− γkzν , (6.18b)

∑
i∈τ̄k

ui = 1, (6.18c)

ui ≥ 0, ∀i ∈ τ̄k ∪ ϕ̄k. (6.18d)

Let δk and δ0
k denote the optimal dual variables corresponding to constraint sets

(6.18b) and (6.18c), respectively. If Q(zν , ξk) is unbounded, this shows that the

original problem is unbounded and the algorithm terminates. Otherwise, go to

step 3b (second-stage column generation for the optimality subproblem).

140

b. Second-stage column generation for the optimality subproblem. Solve the follow-

ing second-stage pricing subproblem:

min c̄y = (d(ξk)T − δT
k W ′(ξk))y (6.19a)

subject to W ′′(ξk)y ≥ h′′(ξk), (6.19b)

y ≥ 0. (6.19c)

– If c̄y ≥ δ0
k, then if k = K, go to step 3c (optimality cut insertion), otherwise

set k = k + 1 and go to step 3a (optimality subproblem) .

– If c̄y = −∞, add a corresponding extreme ray of the polyhedron Λk to ϕ̄k,

add the corresponding u variable to Q(z, ξk), and return to step 3a (optimality

subproblem).

– If −∞ < c̄y < δ0
k, add the corresponding extreme point of Λk to τ̄k, add

the corresponding u variable to the corresponding optimality subproblem and

return to step 3a (optimality subproblem).

c. Optimality cut insertion. Calculate the cut coefficients for existing variables in

the RMP and the right-hand side:

Ēso+1 =
K∑

k=1

pk(δk)
T Γk, (6.20a)

ēso+1 =
K∑

k=1

pk((δk)
T h′(ξk) + δ0

k). (6.20b)

Calculate and store the implicit technology coefficients that will be used to con-

struct new columns:

Ẽso+1 =
K∑

k=1

pk(δk)
T T (ξk). (6.21)

– If wν = ēso+1 − Ēso+1z
ν > θν , add the corresponding optimality cut of the

form (6.13d) and set so = so + 1, NeedCols = True. Go to procedure

Optimality check .

141

– Otherwise, the RMP is optimal for the current set of z variables. So, no

optimality cut can be added. Set NeedCuts = False. Go to procedure

Optimality check .

• First-stage column generation.

1. Master problem. Solve the RMP (6.13), get the optimal dual values and set ν = ν+1.

Let π̂ν , σ̂ν , ρ̂ν and η̂ν represent the optimal dual variables corresponding to constraint

sets (6.13b), (6.13c), (6.13d) and (6.13e), respectively.

2. First-stage pricing subproblem. Solve the following linear program:

min c̄ν =

(
cT − (π̂ν)T A′ −

[
sf∑
ι=1

σ̂ν
ι D̃ι

]
−

[
so∑

ι=1

ρ̂ν
ι Ẽι

])
x (6.22a)

subject to A′′x ≥ b′′, (6.22b)

x ≥ 0. (6.22c)

– If c̄ν ≥ η̂ν , the current set of columns in the RMP is optimal. Set NeedCols =

False. Go to procedure Optimality check .

– Otherwise, if c̄ν < η̂ν and is bounded, add the z column corresponding to this ex-

treme point of Λ, i.e. x, to the RMP, update τ accordingly, set NeedCuts = True

and go to procedure Optimality check . If c̄ν < η̂ν is unbounded, find the

corresponding extreme ray, add the necessary z variable, update ϕ accordingly,

set NeedCuts = True and go to procedure Optimality check .

Note that the general algorithm explained above gives rise to a wide variety of algorithmic

strategies by providing flexibility in the choice of when to search for L-shaped cuts or first-

stage columns in the Optimality Check procedure.

Although the reformulation (P ′) assumes that all extreme points and rays of ∆k, ∀k =

1, . . . , K, are known, in the procedure explained above, for a given master solution z, we

compute optimal dual vectors of the optimality subproblems for every scenario ξk ∈ Ξ at

a particular iteration and generate an optimality cut by using these dual extreme points.

Similarly, we derive feasibility cuts based on the rays generated from an incomplete dual

polyhedron. A natural question that arises is whether these cuts will be valid for the whole

formulation or not. The following proposition answers in the affirmative:

142

Proposition 6.1. The cuts derived by using dual information from the second-stage sub-

problems at a particular iteration of the algorithm are valid for the whole formulation.

Proof. Validity of feasibility cuts: Assume we generate a feasibility cut at iteration ν

from the feasibility subproblem for scenario ξk by using the dual vector (δk, δ0
k). Then, (δk,

δ0
k) is a ray of the incomplete dual polyhedron for scenario ξk at iteration ν, namely ∆kν . So,

(δk, δ0
k) ∈ ∆0

kν , which is the recession cone of ∆kν . Since we have solved the corresponding

feasibility subproblem to optimality, we know that no excluded column prices out favorably.

So, the necessary reduced cost calculations for any excluded variable, uî, show that

δk
T %î(ξ

k) + δ0
k ≤ 0, if uî corresponds to an extreme point of Λk,

and,

δk
T %î(ξ

k) ≤ 0, if uî corresponds to an extreme ray of Λk,

which indicate that all the remaining constraints of ∆0
k, i.e. the recession cone of the complete

dual polyhedron, ∆k, which are not present in ∆0
kν , will automatically be satisfied by (δk,

δ0
k). So, (δk, δ0

k) ∈ ∆0
k. This proves that (δk, δ0

k) is a ray for ∆k.

Validity of optimality cuts: Assume that at a particular iteration ν, we get (δk, δ0
k),

for k = 1, . . . , K, and generate the corresponding optimality cut. Pick an arbitrary k and

consider (δk, δ0
k). Since it is the optimal dual solution to the second-stage subproblem for

scenario ξk, it has to be an extreme point of the incomplete dual formulation of the corre-

sponding iteration, namely ∆kν . Since (δk, δ0
k) was generated by solving the corresponding

second-stage subproblem to optimality at iteration ν, we know that all the excluded u vari-

ables at that point have unfavorable, i.e. non-negative, reduced costs. The necessary reduced

costs calculations for an excluded second-stage variable, say uî , then, show that

δk
T %î(ξ

k) + δ0
k ≤ ζî(ξ

k), if uî corresponds to an extreme point of Λk,

and,

δk
T %î(ξ

k) ≤ ζî(ξ
k), if uî corresponds to an extreme ray of Λk,

which indicate that all the remaining constraints of ∆k, which are not present in ∆kν , will

automatically be satisfied by (δk, δ0
k). So, (δk, δ0

k) ∈ ∆k.

143

Now, assume that (δk, δ0
k) is not an extreme point of ∆k. Then there exist two points

r1, r2 ∈ ∆1 such that (δk, δ0
k) can be written as a convex combination of r1 and r2. However,

since (δk, δ0
k) is an extreme point of ∆kν , it cannot be expressed as a convex combination

of any two points in ∆kν . So, it should be the case that r1 /∈ ∆kν or r2 /∈ ∆kν which is a

contradiction since ∆k ⊆ ∆kν . Thus, (δk, δ0
k) is an extreme point of ∆k.

The following theorem shows that convergence can be shown for a wide variety of possible

algorithmic strategies. The proof follows from the fact that there are a finite number of

columns and L-shaped cuts.

Theorem 6.2. As long as an algorithm adds at least one first-stage column or an L-shaped

cut from an infeasible or optimal second-stage solution at every iteration without removing

any columns or cuts, such an algorithm will converge to the optimal solution.

Proof. Assume that solving the RMP at the beginning of an iteration generates the first-stage

solution (ẑ, θ̂). Now, there are three possibilities:

1. If (ẑ, θ̂) violates any of the L-shaped feasibility or optimality cuts, i.e. (6.12d) and (6.12c),

it will be cut off by generating a cut generated from the second-stage subproblems.

2. Otherwise, if (ẑ, θ̂) does not violate any L-shaped cuts but there exists at least one

excluded first-stage variable that has a strictly negative reduced cost, such a variable

will be generated by solving the first-stage pricing subproblem.

3. Otherwise, if (ẑ, θ̂) does not violate any L-shaped cuts and all excluded first-stage vari-

ables have non-negative reduced costs, (ẑ, θ̂) is the optimal solution to the whole problem.

144

Note that conditions 1 and 2 indicate that (ẑ, θ̂) is non-optimal. If (ẑ, θ̂) satisfies either

condition 1 or 2, solving the RMP after the addition of the corresponding L-shaped cut

or first-stage column is guaranteed to change (ẑ, θ̂). So, any algorithm checking the condi-

tions stated above and updating the incumbent first-stage solution accordingly will converge

finitely (since there are finitely many first-stage columns and L-shaped cuts, and added

cuts/columns are not removed). Checking the above conditions and updating the first-stage

solution simply involves adding at least one L-shaped cut or one improving first-stage col-

umn when (ẑ, θ̂) is not optimal. Hence, any algorithm that guarantees this will converge

finitely.

6.3.2 Algorithmic Strategies

In this section we explore different strategies to design algorithms that follow the main

framework.

6.3.2.1 L-shaped Cut Generation The main algorithmic framework shown in Section

6.3.1 adopts a complete aggregation of the dual information over all scenarios and follows

the single-cut L-shaped method [174]. An alternative strategy that can be implemented

regarding cut generation is the multi-cut L-shaped method [22], which places one cut per

scenario, if the cut is violated, at every iteration. Both the single and multi-cut versions

of the L-shaped method have their advantages and disadvantages, and their relative perfor-

mances are problem dependent [22, 67]. Hybrid cut-generation strategies that involve the

aggregation of dual information from a number of scenarios to generate aggregate cuts try

to take advantage of the strengths of both of these methods by adding multiple cuts per

iteration while aiming at keeping the size of the master problem relatively small. These

types of approaches have proven to be useful [167].

Aggregation approaches divide the scenario set Ξ into mutually exclusive and exhaustive

sets of scenarios, say S1, S2, ..., SC , where S1 ∪ S2 ∪ . . . SC = Ξ, and Si ∩ Sj = ∅ for i 6= j.

Each scenario set produces one optimality cut per iteration through aggregation of dual

information coming from individual members of the set. Within the context of the algorithm

145

explained in Section 6.3.1, the cut coefficients and implicit technology coefficients for an

optimality cut ι from scenario set Si can be calculated as Ēι =
∑

k∈Si
pk(δk)

T Γk, ēι =
∑

k∈Si
pk((δk)

T h′(ξk)+ δ0
k), and Ẽι =

∑
k∈Si

pk(δν
k)T T (ξk). In this chapter, in addition to the

single and multi-cut L-shaped methods, we also test the performance of static cut-aggregation

methods.

6.3.2.2 Column Generation In the main algorithmic framework of Section 6.3.1, one

favorable column is generated, if available, each time a pricing problem is solved, and the

pricing problem is solved to optimality at every iteration. In fact, any column with a favorable

reduced cost will suffice for the algorithm to work, and numerous strategies involving column

generation can be employed.

One possible approach would be heuristically generating a favorable column, or termi-

nating the solution of the pricing problem whenever a favorable column has been found

without fully optimizing it at every iteration. As long as approaches like these are utilized

in a way that guarantees that all columns are implicitly considered when no favorable col-

umn is returned, the algorithm will converge. An alternative would be generating multiple

columns, if available, each time the pricing problem is solved. For our computational tests,

we also test the performances of column generation strategies involving returning the first

favorable column generated throughout the solution of the pricing problem without fully op-

timizing it, and inserting all enumerated favorable columns while solving the pricing problem

to optimality.

6.3.2.3 Switching Criteria We explore different strategies involving switching criteria,

which determine when to search for cuts and when to search for first-stage columns. We

may define different switching criteria in order to come up with algorithmic variants. Note

that it is impossible to create an exhaustive list of all possible switching strategies. In this

section we introduce a few classes of intuitive switching criteria.

At an arbitrary iteration, the algorithm may either generate more columns for the RMP

or generate L-shaped cuts from the second-stage subproblem. An algorithm could generate

all favorable first-stage columns before it considers the second stage. It could then generate

146

all possible feasibility and optimality cuts in the second stage before returning to the first

stage. This corresponds to an exhaustive switching criterion. However, because Benders’

decomposition and Dantzig-Wolfe decomposition exhibit “tailing off” in practice [115], other

approaches may be more effective. The efficiency of generating columns versus cuts is likely to

depend on the difficulty of the first-stage pricing subproblem and second-stage subproblems.

Note that we still assume that each second-stage subproblem is solved to optimality for a

given first-stage solution. That is, all necessary columns for a second-stage subproblem will

be added until there are no favorable columns left when solving a second-stage subproblem

at any iteration of the algorithm. So, the procedure of generating second-stage columns

has nothing to do with the switching criterion. This ensures the validity of the L-shaped

cuts derived from the second-stage subproblems, as discussed in Proposition 6.1. Therefore,

through the remainder of this section, we will refer to generating first-stage columns when

talking about column generation and assume that all favorable second-stage columns are

added while solving a subproblem to add L-shaped cuts to the RMP.

In our computational experiments, we started the algorithm with the L-shaped cut

search. A major iteration begins when the RMP is solved to get the primal optimal val-

ues before adding any cuts during that major iteration. Then, the search for cuts begins

while the set of first-stage columns is held fixed. After that, the set of cuts becomes fixed

and the search for favorable first-stage columns is performed. The major iteration ends

when switching back from searching for first-stage columns to cuts occurs. So multiple cuts

and first-stage columns are typically generated during a major iteration. A minor iteration

means that the RMP is solved to get either the primal or dual optimal solutions in order to

carry out one iteration of cut or column generation based on those solutions.

Some examples of switching criteria are as follows:

• All-cuts-all-columns: During a major iteration, add all possible cuts and all possible

first-stage columns.

• All-cuts-one-column: During a major iteration, add all possible cuts but add at most

one first-stage column.

• One-cut-all-columns: During a major iteration, add at most one cut but all favorable

first-stage columns should be added.

147

• Threshold approaches: During a major iteration, the number of cuts and first-stage

columns added depends on the objective function changes caused by the previously added

cuts or first-stage columns at the same major iteration.

– Comparing to the first cut/column: If the objective change caused by the last

cut added is below a certain percentage P of the objective change resulting from

the addition of the first cut during the same major iteration, stop searching for cuts

and switch to columns. Switching back from first-stage columns to cuts, in a similar

manner, depends on the objective value change caused by the addition of the first

first-stage column added during that particular major iteration.

– Comparing to the best cut/column: If the objective change caused by the last

cut added is below a certain percentage P of the objective change resulting from

adding the best cut during the same major iteration (i.e. the cut that caused the

maximum increase in the objective at that major iteration), stop searching for cuts

and switch to columns. Switching back from first-stage columns to cuts, similarly,

depends on the objective value change caused by the addition of the best first-stage

column added during that particular major iteration (i.e. the first-stage column that

brought the maximum decrease in the objective at that major iteration).

– Comparing to the last cut/column: If the objective change caused by the last

cut added is below a certain percentage P of the objective change resulting from

the addition of the previous cut during the same major iteration, stop searching for

cuts and switch to columns. Switching back from first-stage columns to cuts, in a

similar manner, depends on the objective value change caused by the addition of the

first-stage column added most recently during that particular major iteration.

6.3.2.4 Stabilization Strategies Both the L-shaped method and column generation

are prone to slow convergence due to degeneracy [21, 110, 177]. Hence, we also test the

performances of stabilization schemes for column generation of du Merle et al. [55] and the

bundle-trust region method for the L-shaped method of Linderoth and Wright [108] within

the context of our combined cut/column generation framework.

148

Stabilization for Column Generation

Column generation methods are known for poor convergence properties. The dual variables

tend to oscillate, and do not follow a smooth convergence pattern to their respective optima.

Although a near-optimal solution is often approached relatively quickly, little progress is

made per iteration close to the optimum [110].

In this chapter, we explore the stabilization method of du Merle et al. [55] within

the context of our algorithm. This approach is a combined box-penalty and ε-perturbation

strategy. It makes use of surplus and slack variables with penalties, which in turn is equivalent

to requiring soft lower and upper bounds on the dual variables and penalizing the variables

when they lie outside the bounds.

Applying stabilized first-stage column generation within the main algorithmic framework

of Section 6.3.1 replaces the First-stage Column Generation procedure with the following,

and everything else stays the same:

Stabilized First-stage Column Generation.

1. Initialize stabilization parameters for first-stage column generation. Let π̂ν , σ̂ν , ρ̂ν and

η̂ν represent the optimal dual variables corresponding to constraint sets (6.13b), (6.13c),

(6.13d) and (6.13e) at the latest iteration, respectively.

a. Set the initial dual box:

• δa
− = π̂ν − ε, δa

+ = π̂ν + ε,

• δf
− = σ̂ν − ε, δf

+ = σ̂ν + ε,

• δo
− = ρ̂ν − ε, δo

+ = ρ̂ν + ε, and

• δc
− = η̂ν − ε, δc

+ = η̂ν + ε,

for some ε ≥ 0. Let δ− = (δa
−, δf

−, δo
−, δc

−) and δ+ = (δa
+, δf

+, δo
+, δc

+). Go to step 1b.

149

b. Set the initial dual penalties:

• εa
− = ε0, εa

+ = ε0,

• εf
− = ε0, εf

+ = ε0,

• εo
− = ε0, εo

+ = ε0, and

• εc
− = ε0, εc

+ = ε0,

where ε0 is the initial dual penalty parameter. Let ε− = (εa
−, εf

−, εo
−, εc

−) and ε+ =

(εa
+, εf

+, εo
+, εc

+). Go to step 2.

2. Master problem. Set ν = ν + 1. Solve the stabilized column generation restricted master

problem (RMP-ColG) below:

min fT z + θ − δa
−va

− + δa
+va

+ − δf
−vf

− + δf
+vf

+ − δo
−vo

− + δo
+vo

+ − δc
−vc

− + δc
+vc

+

subject to gT z − va
− + va

+ ≥ b′, (6.23a)

D̄ιz − vf
ι− + vf

ι+
≥ d̄ι, for ι = 1, . . . , sf , (6.23b)

Ēιz + θ − vo
ι− + vo

ι+
≥ ēι, for ι = 1, . . . , so, (6.23c)

∑
i∈τ

zi − vc
− + vc

+ = 1, (6.23d)

va
− ≤ εa

−, va
+ ≤ εa

+, (6.23e)

vf
− ≤ εf

−, vf
+ ≤ εf

+, (6.23f)

vo
− ≤ εo

−, vo
+ ≤ εo

+, (6.23g)

vc
− ≤ εc

−, vc
+ ≤ εc

+, (6.23h)

zi ≥ 0, for i ∈ τ ∪ ϕ. (6.23i)

Get the optimal dual values. Let π̂, σ̂, ρ̂ and η̂ represent the optimal dual variables

corresponding to constraint sets (6.23a), (6.23b), (6.23c) and (6.23d), respectively. Let

π̃ = (π̂, σ̂, ρ̂, η̂), v− = (va
−, vf

−, vo
−, vc

−) and v+ = (va
+, vf

+, vo
+, vc

+).

3. First-stage pricing subproblem. Solve the linear program (6.22).

• If ĉ ≥ η̂ and v− = v+ = 0, the current set of columns in the RMP is optimal. Set

NeedCols = False. Go to procedure Optimality check .

150

• Otherwise,

– if ĉ < η̂ and is bounded, add the z column to the RMP, update τ accordingly,

and set NeedCuts = True,

– or, if ĉ < η̂ and is unbounded, find the corresponding extreme ray, add the

necessary z variable, update ϕ accordingly, and set NeedCuts = True.

– Update-δ. If ĉ ≥ η̂, set δ− = π̃ − ε and δ+ = π̃ + ε.

– Update-ε. If ĉ ≥ η̂, set ε− = ε−
εRF

and ε+ = ε+

εRF
, where εRF is the reduction

factor that we use to reduce the dual penalties. Otherwise, set ε− = ε− · εIF

and ε+ = ε+ · εIF , , where εIF is the multiplier that we use to increase the dual

penalties.

– Go to procedure Optimality check .

Formulation (6.23) introduces surplus and slack variables, v− and v+, respectively, that

allow for a perturbation of the right-hand side by ε ∈ [−ε+, ε−], in order to help reduce

degeneracy. These surplus and slack variables are penalized by δ− and δ+, respectively. In

the dual problem, this is equivalent to penalizing the dual variables π̃ if they lie outside the

box defined by [δ−, δ+]. The optimal solution to RMP-ColG will also be optimal for the

RMP if one of the two following conditions holds: (a) ε− = ε+ = 0, or (b) δ− < π̃ < δ+.

The selection of parameters ε−, ε+, δ− and δ+, and how they are updated throughout the

column generation algorithm are crucial factors for the effectiveness of the algorithm. The

user is flexible in defining the details of the Update-δ and Update-ε steps in the procedure

above. The main idea is to increase the penalties ε− and ε+, and reduce the size of the box

[δ−, δ+] if π̃ lies in it. On the other hand, if π̃ lies outside the box, one should enlarge the box

width and decrease the associated penalties. The update can actually be performed in every

iteration or only if the pricing problem returns a non-negative reduced cost. The column

generation procedure is guaranteed to converge finitely if the two following properties hold

[55]: (a) after some number of iterations, ε− and ε+ decrease so that they vanish in a finite

number of iterations, (b) after a given number of iterations, δ− and δ+ are updated only if

the column returned by the pricing problem has a non-negative reduced cost.

151

We treat the column generation part of every major iteration as a separate column

generation algorithm and use the initialization step in each major iteration as long as at

least one L-shaped cut has been added from one major iteration to the other. However, if

between two major iterations no cuts have been added, then we skip the initialization phase

of the stabilized column generation procedure and utilize the latest values of δ and ε from

the previous major iteration.

Application of this method to second-stage column generation is straightforward. Here

we show how the routine for optimality-cut generation will change when stabilization is em-

ployed. If second-stage column generation is used, then Step 3 in procedure L-shaped cut

generation should be replaced with the following:

L-shaped cut generation (Stabilized second-stage column generation step)

3. Optimality cut generation. Set the scenario index k = 1.

a. Initialize stabilization parameters for second-stage column generation. Choose the

initial dual box1 defined by δ̂k and δ̂0
k, and the dual penalty parameter ε0.

i. Set the initial dual box:

• αa
− = δ̂k − ε, αa

+ = δ̂k + ε, and

• αc
− = δ̂0

k − ε, αc
+ = δ̂0

k + ε,

for some ε ≥ 0. Let α− = (αa
−, αc

−) and α+ = (αa
+, αc

+). Go to step 3aii.

ii. Set the initial dual penalties:

• εa
− = ε0, εa

+ = ε0, and

• εc
− = ε0, εc

+ = ε0,

where ε0 is the initial dual penalty parameter. Let ε− = (εa
−, εc

−) and ε+ =

(εa
+, εc

+). Go to step 3b.

1The user can either perform a minor iteration without stabilization and then start the stabilization
procedure using the duals found, or store the last duals from the previous major iteration and set the initial
box to those values.

152

b. Optimality subproblem. Solve the following linear program:

Q(zν , ξk) = min
∑

i∈τ̄k∪ϕ̄k

ζi(ξ
k)ui − αa

−va
− + αa

+va
+ − αc

−vc
− + αc

+vc
+ (6.24a)

subject to
∑

i∈τ̄k∪ϕ̄k

%i(ξ
k)ui − va

− + va
+ ≥ h′(ξk)− γkzν , (6.24b)

∑
i∈τ̄k

ui − vc
− + vc

+ = 1, (6.24c)

va
− ≤ εa

−, va
+ ≤ εa

+, (6.24d)

vc
− ≤ εc

−, vc
+ ≤ εc

+, (6.24e)

ui ≥ 0, ∀i ∈ τ̄k ∪ ϕ̄k. (6.24f)

Let δk and δ0
k denote the optimal dual variables corresponding to constraint sets

(6.24b) and (6.24c), respectively. Let δ̃ = (δk, δ
0
k), v− = (va

−, vc
−) and v+ = (v−+a, vc

+).

If Q(zν , ξk) is unbounded, this shows that the original problem is unbounded and the

algorithm terminates. Otherwise, go to step 3c (second-stage column generation for

the optimality subproblem).

c. Second-stage column generation for the optimality subproblem. Solve the second-stage

pricing subproblem (6.19).

• If c̄y ≥ δ0
k and v− = v+ = 0, then if k = K, go to step 3d (optimality cut insertion),

otherwise set k = k + 1 and go to step 3a (initialize stabilization parameters for

second-stage column generation).

• Otherwise,

– if c̄y = −∞, add a corresponding extreme ray of the polyhedron Λk to ϕ̄k, add

the corresponding u variable to Q(z, ξk),

– or, if −∞ < c̄y < δ0
k, add the corresponding extreme point of Λk to τ̄k, and add

the corresponding u variable to the corresponding optimality subproblem.

– Update-α. If c̄y ≥ δ0
k, set α− = δ̃ − ε and α+ = δ̃ + ε.

– Update-ε. If c̄y ≥ δ0
k, set ε− = ε−

εRF
and ε+ = ε+

εRF
. Otherwise, set ε− = ε− · εIF

and ε+ = ε+ · εIF .

– Go to step 3b (optimality subproblem).

153

d. Optimality cut insertion. Calculate the cut coefficients for existing variables in the

RMP and the right-hand side as shown in (6.20a) and (6.20b). Calculate and store

the implicit technology coefficients that will be used to construct new columns as

shown in (6.21).

• If wν = ēso+1 − Ēso+1z
ν > θν , add the corresponding optimality cut of the form

(6.13d) and set so = so + 1, NeedCols = True. Go to procedure Optimality

check .

• Otherwise, the RMP is optimal for the current set of z variables. So, no optimal-

ity cut can be added. Set NeedCuts = False. Go to procedure Optimality

check .

Note that stabilization parameters α, ε, εRF and εIF may also depend on the scenario k,

for k = 1, . . . , K. We omitted k from our notation for these parameters for ease of exposi-

tion. This stabilization subroutine can also be applied to second-stage column generation in

a very similar way.

Stabilization for L-shaped Cut Generation

We test the bundle-trust region method for the L-shaped method of Linderoth and Wright

[108] within the context of our combined cut/column generation framework. This method

uses a box-shaped trust region that imposes an `∞ norm bound on the size of the step. It

has certain similarities to the regularized decomposition method of Ruszczyński [147] and

the bundle-trust-region methods of Kiwiel [94] and Hiriart-Urruty and Lemaréchal [74], but

is different in the sense that it employs linear programming subproblems and the size of the

trust region is controlled directly rather than indirectly through the use of a regularization

parameter.

Recall that Q(x), stands for the expected recourse function (6.3), and Q(x, ξk) denotes

the optimal second-stage objective value (6.4) for scenario ξk and first-stage vector x. Ap-

plying the bundle-trust-region method within the main algorithmic framework of Section

6.3.1 replaces the L-shaped Cut Generation procedure with the following:

154

Stabilized L-shaped cut generation.

1. Initialize stabilization parameters for L-shaped cut generation. Choose starting point z̄.

Initialize ∆0, ∆High, εacceptZ and εtol. Set ∆ = ∆0. Set counter = 0.

2. Master problem. Set ν = ν + 1. Solve the cut-generation restricted master problem

(RMP-CutG) below:

min mν(z) = fT z + θ (6.25a)

subject to (6.13b) − (6.13e),

1T (−∆) ≤ z − z̄ ≤ 1T (∆), (6.25b)

zi ≥ 0, for i ∈ τ ∪ ϕ. (6.25c)

Let (zν , θν) denote the optimal solution to the RMP. If so = 0, then θ is assumed to be

equal to −∞ and is not considered in the model.

3. Convergence test.

• If

fT z̄ +Q(z̄)−mν(zν) ≤ εtol(1 + |fT z̄ +Q(z̄)|), (6.26)

then stop the cut generation iteration, set NeedCuts = False, and go to procedure

Optimality check .

• Otherwise, go to step 4 (function and subgradient evaluation).

4. Function and subgradient evaluation.

a. Feasibility cut generation. Set the scenario index k = 1.

i. Feasibility subproblem. Solve the linear program (6.14). Let δk and δ0
k denote

the optimal dual variables corresponding to constraint sets (6.14b) and (6.14c),

respectively.

• If w′ = 0 and k = K, go to step 4b (optimality cut generation) .

• If w′ = 0 and k < K, set k = k + 1 and go to step 4ai (feasibility subproblem).

155

• If w′ > 0, no feasible solution can be generated by using the current elements

of the sets τ̄k and ϕ̄k. However, this does not show that the whole subproblem

is infeasible. We have to generate more extreme points and rays for the sets

τ̄k and ϕ̄k. Go to step 4aii (second-stage column generation for the feasibility

subproblem).

ii. Second-stage column generation for the feasibility subproblem. Solve the second-

stage pricing subproblem (6.15).

• If c̄y ≤ −δ0
k, then no column can improve the objective function, w′, so the

whole second-stage subproblem is infeasible. Go to step 4aiii (feasibility cut

insertion).

• If c̄y = ∞, add a corresponding extreme ray of the polyhedron Λk to ϕ̄k, add

the corresponding u variable to the feasibility subproblem, and return to step

4ai (feasibility subproblem).

• If −δ0
k < c̄y < ∞, add the corresponding extreme point of Λk to τ̄k, add the

corresponding u variable to the feasibility subproblem and return to step 4ai

(feasibility subproblem).

iii. Feasibility cut insertion. Calculate the cut coefficients for existing variables in

the RMP and the right-hand side as shown in (6.16a) and (6.16b), and add a

feasibility cut of the form (6.13c). Calculate and store the implicit technology

coefficients as shown in (6.17). Set sf = sf + 1, NeedCols = True. Go to

procedure Optimality check .

b. Optimality cut generation. Set the scenario index k = 1.

i. Optimality subproblem. Solve the linear program (6.18). Let δk and δ0
k denote

the optimal dual variables corresponding to constraint sets (6.18b) and (6.18c),

respectively. If Q(zν , ξk) is unbounded, this shows that the original problem is

unbounded and the algorithm terminates. Otherwise, go to step 4bii (second-

stage column generation for the optimality subproblem).

ii. Second-stage column generation for the optimality subproblem. Solve the second-

stage pricing subproblem (6.19).

156

• If c̄y ≥ δ0
k, then if k = K, go to step 5 (trust-region center test), otherwise set

k = k + 1 and go to step 4bi (optimality subproblem) .

• If c̄y = −∞, add a corresponding extreme ray of the polyhedron Λk to ϕ̄k, add

the corresponding u variable to Q(z, ξk), and return to step 4bi (optimality

subproblem).

• If −∞ < c̄y < δ0
k, add the corresponding extreme point of Λk to τ̄k, add

the corresponding u variable to the corresponding optimality subproblem and

return to step 4bi (optimality subproblem).

5. Trust-region center test.

• If

fT zν +Q(zν) ≤ (fT z̄ +Q(z̄))− εacceptZ(fT z̄ +Q(z̄)−mν(zν)), (6.27)

– Re-center the trust-region. Set z̄ = zν .

– Increase trust-region radius. If

fT zν+Q(zν) ≤ (fT z̄+Q(z̄))−0.5(fT z̄+Q(z̄)−mν(zν)), ‖z̄−zν‖∞ = ∆, (6.28)

set ∆ = min(∆High, 2∆), and go to step 2 (master problem).

• Otherwise, go to step 6 (optimality cut insertion).

6. Optimality cut insertion. Calculate the cut coefficients for existing variables in the RMP

and the right-hand side as shown in (6.20a) and (6.20b). Calculate and store the implicit

technology coefficients that will be used to construct new columns as shown in (6.21).

• If wν = ēs0+1 − Ēs0+1z
ν > θν , add the corresponding optimality cut of the form

(6.13d) and set so = so + 1, NeedCols = True. Go to step 7 (reduce-∆).

• Otherwise, the RMP is optimal for the current set of z variables. So, no optimality

cut can be added. Set NeedCuts = False. Go to procedure Optimality check .

7. Reduce-∆. Evaluate

ρ = min(1, ∆)
(fT zν +Q(zν))− (fT z̄ +Q(z̄))

(fT z̄ +Q(z̄))−mν(zν)
, (6.29)

• if ρ > 0, set counter = counter + 1,

157

• if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3]),

– set ∆ = 1
min(ρ,4)

∆,

– reset counter = 0.

• Go to procedure Optimality check .

At the beginning of each stabilized L-shaped cut generation subroutine in every major

iteration, we set z̄ to the first-stage solution found during the last iteration of column gen-

eration, and set ∆ = ∆0, if at least one column has been added since the previous major

iteration. If this is not the case, then we skip the initialization phase of the above procedure

and use the latest values of z̄ and ∆ from the previous major iteration.

6.4 COMPUTATIONAL RESULTS

As mentioned before, this chapter aims to solve stochastic programs whose natural formu-

lation involves a large number of columns efficiently through integrating column generation

within the L-shaped method. To illustrate this idea of combined column and cut generation,

and to evaluate the algorithmic variants defined in Section 6.3.2.3, we introduce two-stage

stochastic versions of the well-known cutting stock and multi-commodity flow problems. We

used a UNIX machine with AMD Opteron 240 processor and 3.8 GB RAM for our computa-

tional tests, and coded the optimization algorithms using C++ and the CPLEX 9.0 Callable

Library.

6.4.1 A Two-Stage Stochastic Cutting Stock Problem (SCSP)

The classical (deterministic) cutting stock problem is a widely studied application of column

generation. In the deterministic version of the cutting stock problem, we have a number of

rolls of paper (or steel, etc.) of fixed width waiting to be cut. Different customers demand

different numbers of rolls of various-sized widths. The problem is how to cut the rolls so as

to minimize the number of rolls used.

158

The deterministic cutting stock problem was introduced by Kantorovich [89] and a col-

umn generation formulation was presented by Gilmore and Gomory [70]. Valério de Carvalho

and Rodrigues [172] solved a two-stage cutting stock problem. In their definition of the two-

stage cutting stock problem, the stock was cut twice, which is usually the case in the cutting

stock literature, but they ignored uncertainty. Vanderbeck [176] combined column and cut

generation in a branch-and-price-and-cut algorithm that minimized the number of setups.

Super-additive cuts were applied within the branch-and-bound tree to improve computa-

tional efficiency. Krichagina et al. [98] introduced the two-stage stochastic cutting stock

problem with uncertain demand and used a suboptimal two-step approach to solve it. The

first step was a linear programming problem, and the second step used Brownian control.

See Ben Amor and Valério de Carvalho [16] for a recent survey on cutting stock problems.

In our two-stage stochastic cutting stock problem, we have two different sets of customer

orders: a set of deterministic orders for which we know the amounts demanded and widths,

and a stochastic set of orders for which widths are known but the amounts demanded vary

among scenarios. Failure to meet demands or surplus products leads to shortage and surplus

costs. The shortage costs may represent the cost of missing customer orders while the surplus

cost may correspond to a storage or disposal cost. The stock is only cut once, and the second-

stage variables only show the shortage/surplus amounts. Thus, the problem is how to cut

the rolls so as to minimize expected wasted leftovers and shortage/surplus penalties.

In our model, let M1 be the set of deterministic orders, M2 be the set of variable orders,

N denote the set of possible cutting patterns, and ξ1, . . . , ξK be a set of scenarios, where

scenario ξk occurs with probability pk.

First-Stage Model

• z ∈ IR
|N |
+ is the vector showing the number of times patterns are cut.

• b ∈ IR
|M1|
+ is the demand vector for deterministic orders.

• A ∈ IR
|M1|×|N |
+ is the deterministic cutting matrix such that each entry, (aij), shows how

many units of the deterministic product i is cut when a single pattern j is used.

• 1 ∈ IR|N | is a vector with all entries equal to 1.

159

In this formulation, using a pattern corresponds to using a full roll, and a pattern may consist

of both deterministic and stochastic orders.

Then the first-stage model can be written as follows::

min 1T z + Eξ̃Q(z, ξk) (6.30a)

subject to Az ≥ b, (6.30b)

z ≥ 0. (6.30c)

Second-Stage Model

• Γ ∈ IR
|M2|×|N |
+ is the second-stage cutting matrix where each entry, (γij), shows the

amount of the stochastic product i cut using a single pattern j.

• ds(ξ
k), de(ξ

k) ∈ IR
|M2|
+ are shortage and surplus cost vectors for stochastic orders under

scenario ξk, respectively.

• ys(ξ
k), ye(ξ

k) ∈ IR
|M2|
+ show the amounts of shortage and surplus for stochastic orders

under scenario ξk, respectively.

• h(ξk) ∈ IR
|M2|
+ is the demand vector for stochastic orders under scenario ξk.

Then, for k = 1, . . . , K,

Q(z, ξk) = min ds(ξ
k)T ys(ξ

k)+de(ξ
k)T ye(ξ

k) (6.31a)

subject to Γz + ys(ξ
k)− ye(ξ

k) = h(ξk), (6.31b)

ys(ξ
k) ≥ 0, (6.31c)

ye(ξ
k) ≥ 0. (6.31d)

First-Stage Pricing Subproblem

• x ∈ IR
|M1|+|M2|
+ is the vector showing the amounts of products cut by using the pattern.

• W ∈ IR+ is the total width of the roll to be cut.

• w ∈ IR
|M1|+|M2|
+ is the vector of product widths.

• π ∈ IR|M1| is the dual vector corresponding to the original problem constraints in the

RMP.

160

• ρ ∈ IRso
+ is the dual vector corresponding to the current optimality cuts in the RMP,

where so is the number of optimality cuts in the RMP at some iteration where the

pricing problem is solved.

Then the first-stage pricing subproblem can be written as a knapsack problem as follows:

min c̄z = 1−
∑

i∈M1

πixi −
∑

i∈M2

(
so∑

ι=1

ριẼ
i
ι)xi

subject to
∑

i∈M1∪M2

wixi ≤ W,

x ∈ ZZ
|M1|+|M2|
+ .

where Ẽi
ι corresponds to the ith column of Ẽι, ι = 1, . . . , so (see (6.21)). If c̄z ≥ 0, there is no

need to add any new patterns to the RMP for the given set of optimality cuts and original

problem constraints. Otherwise, if c̄z < 0, add the z column corresponding to this pattern

to the RMP.

Note that, normally, we should also require that the z variables be integer values. How-

ever, in this chapter we used the linear relaxation of the SCSP to demonstrate the computa-

tional performances of different algorithmic approaches to the column generation model that

we propose. In this particular problem, all first-stage solutions have feasible second-stage

solutions. So, the “feasibility cut” step of the general algorithm disappears in the solu-

tion procedure for the SCSP. Also, note that the SCSP formulation has a simple recourse

structure, which would actually ease the solution procedure, if properly exploited. However,

during the computational experiments, we did not exploit this structure and treated the

problem as a general two-stage stochastic linear model.

As the initial feasible columns, we used xi, where the ith component of xi is
⌊

W
wi

⌋
and its

remaining components are 0, for i = 1, . . . ,M1 +M2.

6.4.1.1 Computational Results for SCSP We tested the different algorithmic strate-

gies mentioned in Section 6.3.2.3 on five problem classes and generated 10 instances for each

class. These problem classes are based on real-world deterministic instances provided by

Vanderbeck [175]. These deterministic instances were modified to include some uncertainty

161

Table 6.1: Characteristics of the instances tested for SCSP.

Class

Name

Deterministic

Orders

Stochastic

Orders

Number of

Patterns

Number of

Maximal Patterns

Scenarios Instances

CSTR18p22 9 9 2,341,570 1,222,875 2500 10

CSTR25p0 12 13 4,090,522 2,374,200 1500 10

CSTR28p0 14 14 251,561,215 126,412,627 1500 10

CSTR30p0 15 15 76,713,823 47,845,631 1500 10

CSTRd43p21 21 22 1,397,337 612,034 1500 10

in the following manner: at least half of the orders were set to be stochastic and their cor-

responding demand and cost parameters were pulled from normal distributions where mean

µ equals the value given in the deterministic case and standard deviation σ = ρµ where

ρ ∈ {0.1, 0.2, 0.25}. Table 6.1 summarizes the characteristics of the problem classes used

throughout the computational experiments. This table also displays information on the

number of all possible (and maximal) cutting patterns, i.e., columns, for each of the problem

classes. These numbers suggest that an explicit enumeration of cutting patterns would be

impractical.

In this section we summarize our computational results. We group our experiments with

respect to the specific algorithmic strategies tested in each group. Each subsection starts

with information on the notation for strategies and parameter settings that we tested in

order to make it easier for the reader to follow the tables.

162

Tests on Switching Criteria and L-shaped Cut Aggregation Strategies

Let L denote the number of scenarios that are grouped in a scenario set for the aggregate

L-shaped cut approach, that is, dual information from L scenarios is aggregated into one cut

for each scenario set. We tested for L ∈ {1, 50, 100, 500, K} where K = 1500 for all problem

classes except CSTR18p22, for which K = 2500. Note that L = 1 is the multi-cut L-shaped

approach, and L = K is the single-cut L-shaped method.

We tested the following switching criteria: AllCutsAllCols (All-cuts-all-columns), AllCut-

sOneCol (All-cuts-one-column), OneCutAllCols (One-cut-all-columns), FirstP (Comparing

to the first cut/column), BestP (Comparing to the best cut/column), and LastP (Comparing

to the last cut/column). Explanations of these can be found in Section 6.3.2.3.

We first solved our test problems using column generation on the extensive forms of

the stochastic programs. These results formed a base case for our computational tests.

Table 6.2 shows the results on the performances of the switching strategies AllCutsAllCols,

AllCutsOneCol and OneCutAllCols, and compares them with column generation on the

extensive form. For each one of these switching criteria, we also tested different L-shaped

cut aggregation strategies. Table 6.2 shows that cut aggregation strategies are very effective,

and that AllCutsAllCols seemed to be the best strategy among the ones tested initially. We

decided to drop column generation on the extensive form, AllCutsOneCol and OneCutAllCols

from further tests.

Next, we focused on threshold switching strategies and examined the affect of cut aggrega-

tion on these classes of algorithms. For threshold approaches (i.e., FirstP, BestP and LastP),

we set the switching threshold P , which is the relative tolerance between the objective change

of the most recent cut/column compared to that of an earlier cut/column, to 0.25, 0.50, 0.75,

1.0 and 2.0. Our initial tests suggested that decreasing P along the way was an effective

strategy, so we also introduced a modification factor, namely Pfactor, to adjust the threshold

limit between major iterations, and tested for Pfactor ∈ {0.25, 0.50, 0.75, 1.0, 1.5, 2.0}. Hence,

if P l denotes the threshold limit in major iteration l, then in the next major iteration we set

P l+1 = P l · Pfactor.

Table 6.3 compares the performances of our threshold strategies with respect to different

cut-aggregation and switching tolerance schemes. For each value of L, we display the pa-

163

Table 6.2: Summary of initial computational runs for SCSP (averages over all 50 instances).

Algorithm Class L # of iterations # of CPU time

Major Minor Columns Cuts (sec.)

CGonExtensiveForm - 94.5 - 93.5 - 69.4

1 2.2 86.2 80.4 3294.4 85.2

50 2.2 94.0 80.6 317.0 28.4

AllCutsAllCols 100 2.0 101.8 83.8 236.0 32.4

500 2.2 146.6 87.0 173.4 39.6

K 4.2 243.0 84.2 154.8 69.1

1 41.2 123.4 79.8 3508.8 92.7

50 44.0 139.6 85.2 332.4 42.0

AllCutsOneCol 100 43.6 143.0 84.4 246.8 41.5

500 44.2 187.6 86.0 179.8 55.7

K 42.0 286.2 81.4 161.8 79.9

1 3.6 114.1 106.9 3938.0 140.9

50 4.7 125.8 116.5 156.0 48.71

OneCutAllCols 100 5.5 152.6 141.7 92.3 52.4

500 9.9 250.6 230.9 32.2 76.5

K 20.0 431.6 391.6 23.8 126.0

164

Table 6.3: Summary of tests on switching criteria and cut-aggregation strategies for SCSP

(averages over all 50 instances).

Algorithm Class Parameters # of iterations # of CPU time

L P Pfactor Major Minor Columns Cuts (sec.)

1 - - 2.2 86.2 80.4 3294.4 85.2

50 - - 2.2 94.0 80.6 317.0 28.4

AllCutsAllCols 100 - - 2.0 101.8 83.8 236.0 32.4

500 - - 2.2 146.6 87.0 173.4 39.6

K - - 4.2 243.0 84.2 154.8 69.1

1 .75 .50 9.0 95.2 83.6 3436.6 38.7

50 .50 .25 6.8 98.5 83.8 306.2 10.3

FirstP 100 .25 .50 7.0 101.0 81.4 231.0 11.6

500 .75 .25 7.2 140.4 82.4 164.8 18.1

K 2.0 1.0 84.6 169.2 83.6 84.6 32.6

1 .50 .25 7.2 88.6 78.8 3440.2 36.4

50 .50 .25 7.9 97.9 82.2 308.6 10.4

BestP 100 .50 .75 12.8 105.0 81.2 223.6 10.9

500 .25 .25 6.6 140.0 80.4 171.2 17.0

K 1.0 1.0 33.6 178.4 85.2 91.8 33.1

1 .50 .25 6.0 89.6 80.8 3420.8 32.8

50 .50 .25 6.3 95.3 80.1 310.5 9.8

LastP 100 .50 .25 6.2 103.6 83.2 234.2 9.9

500 2.0 .50 9.6 136.2 79.0 160.2 16.0

K .75 1.0 32.4 184.0 86.6 94.6 30.0

165

rameter setting for P and Pfactor that had the fastest average solution time. Table 6.3 shows

that algorithms using threshold switching criteria and cut-aggregation clearly dominate the

AllCutsAllCols approach. After examining these results, AllCutsAllCols was excluded from

further testing, and the standard parameter settings for all threshold approaches were set to

P = 0.50 and Pfactor = 0.25 for the remainder of the testing process.

Tests on Column Generation Strategies

We tested the following pricing strategies: OPri (solving the pricing problem to optimality

and adding the column of the optimal solution), MPri (solving the pricing problem to op-

timality and adding all favorable column found on the way), and FPri (solving the pricing

problem only until a favorable column is found without fully optimizing it).

Table 6.4 compares the performances of our column generation strategies. These results

show that multiple pricing could be an effective strategy for the design of algorithms. How-

ever, FPri did not appear to be competitive and was eliminated from further testing.

Tests on Stabilization Strategies

For stabilized column generation, we tested for ε0 ∈ {0.001, 0.01, 0.1, 1.0}, εRF ∈ {10, 100, 1000},
and εIF ∈ {1.001, 1.01, 1.1, 1.2, 1.5, 2.0}. For stabilized L-shaped cut generation, we tested for

∆0 ∈ {1, 10, 100, 1000}, ∆High ∈ {10, 100, 1000, 10000}, and εacceptZ ∈ {0.0001, 0.001, 0.01, 0.1}.
For a combined stabilization approach for both column and cut generation, we tested com-

binations of these parameters together.

Table 6.5 shows the results for stabilized algorithms when compared to algorithms with-

out any stabilization schemes. We tested for threshold switching strategies, and both multi-

ple and optimal pricing options. Results for stabilized algorithms are results obtained with

parameter settings that had the overall fastest average run time.

The fact that stabilization did not appear to help solution times for our test set motivated

us to generate larger instances to assess the performance of stabilization on bigger problems.

We generated 50 instances of the problem class CSTRd43p21, each with 10000 scenarios.

After running some initial tests for cut aggregation, we set L = 500,P = .50,Pfactor = .25.

Table 6.6 summarizes the results for algorithms with different threshold switching, pricing

166

Table 6.4: Summary of computational runs for testing pricing strategies (with settings L =

50,P = .50,Pfactor = .25).

Algorithm # of iterations # of CPU time

Switching Pricing Major Minor Columns Cuts (sec.)

OPri 6.8 98.5 83.8 306.2 10.3

FirstP MPri 6.0 70.2 136.2 299.4 10.2

FPri 11.7 171.2 151.7 304.7 16.3

OPri 7.9 97.9 82.2 308.2 10.4

BestP MPri 6.7 69.2 132.7 300.7 10.2

FPri 13.8 173.7 152.1 309.5 18.0

OPri 6.3 95.3 80.1 310.5 9.8

LastP MPri 5.3 69.4 134.5 309.1 9.5

FPri 12.4 172.1 151.0 307.9 16.8

167

and stabilization strategies. The table is sorted in ascending order of average solution times,

and also displays information on the number of times an algorithm was the fastest to solve

a problem instance and the number of times it was in the top 5.

Results from Tables 6.5 and 6.6 suggest that performance gains from stabilization be-

come more apparent on larger problems. For comparison purposes we also solved the same

instances of Table 6.6 using column generation on the extensive form. The average solution

time for this approach was 1634 seconds.

Tables 6.2 through 6.6 also show that our algorithms end up generating only a small

fraction of the total number of potential columns, which can be seen on Table 6.1.

6.4.2 A Two-Stage Stochastic Multi-commodity Flow Problem (SMCFP)

Distribution problems are naturally modeled on a network, with commodities flowing be-

tween nodes along arcs. Each node has a net supply (with negative numbers corresponding

to demand), and each arc has a capacity. In many applications, multiple commodities must

be routed through a network. In such a model, each node has a vector of net supplies,

and the total amount traversing an arc must respect the capacity restrictions [3]. There

are two main approaches to solving multi-commodity network flow problems. The arc-based

formulation has variables that specify the amount of each commodity that flows along each

arc. Flow-balance constraints are separable by commodity, but arc capacity constraints are

not. These models are typically solved using Lagrangian relaxation [3, 128]. The path-based

formulation defines a variable for every commodity, and every possible path from a source

to a sink. The variable describes how much should flow along each path. There are typically

far more paths than could be explicitly stated, so a column generation approach based on

Dantzig-Wolfe decomposition [42] is employed. This generates new paths dynamically based

on the dual solution to a restricted master problem.

168

Table 6.5: Summary of tests on pricing and stabilization strategies (with settings L =

50,P = .50,Pfactor = .25).

Algorithm # of iterations # of CPU time
Switching Pricing Stabilization Major Minor Columns Cuts (sec.)

- 6.8 98.5 83.8 306.2 10.3
StabilizedColGen a 6.3 97.6 81.6 307.5 10.2
StabilizedCutGen b 9.2 115.2 97.5 307.5 12.1

OPri

StabilizedCol&CutGen c 9.0 121.5 96.9 302.2 12.5
- 6.0 70.2 136.2 299.4 10.2
StabilizedColGen 5.8 68.1 132.4 301.4 9.9
StabilizedCutGen 9.5 89.1 169.0 311.8 14.7

FirstP

MPri

StabilizedCol&CutGen 9.4 98.0 168.8 310.6 15.2
- 7.9 97.9 82.2 308.6 10.4
StabilizedColGen 7.5 100.8 84.6 309.0 10.7
StabilizedCutGen 7.6 104.8 88.2 312.9 11.2

OPri

StabilizedCol&CutGen 7.6 107.1 88.0 312.6 11.5
- 6.7 69.2 132.7 300.7 10.2
StabilizedColGen 6.5 69.5 130.5 300.0 10.1
StabilizedCutGen 7.0 78.0 148.9 309.7 11.5

BestP

MPri

StabilizedCol&CutGen 6.9 79.1 144.3 310.0 11.7
- 6.3 95.3 80.1 310.5 9.8
StabilizedColGen 6.0 96.9 81.2 311.6 9.9
StabilizedCutGen 6.7 104.5 88.7 313.3 10.8

OPri

StabilizedCol&CutGen 6.4 103.5 86.8 312.3 10.7
- 5.3 69.4 134.5 309.1 9.5
StabilizedColGen 5.1 70.3 131.2 309.3 9.6
StabilizedCutGen 5.8 74.9 141.4 309.0 10.5

LastP

MPri

StabilizedCol&CutGen 5.9 76.8 140.2 309.7 10.9

aStabilized column generation with ε0 = 0.001, εRF = 100, εIF = 1.1.
bStabilized cut generation with ∆0 = 100, ∆High = 1000, εacceptZ = 0.001.
cStabilized column and cut generation with ε0 = 0.001, εRF = 1000, εIF = 1.1;∆0 = 10, ∆High =

100, εacceptZ = 0.01.

169

Table 6.6: Summary of tests on larger instances with 10,000 scenarios for SCSP (with settings

L = 500,P = .50,Pfactor = .25).

Algorithm Iterations # of CPU time # of times
Switching Pricing Stabilization Maj Min Col Cut (sec.) Top 5 Fastest
LastP OPri StabilizedColGen 6.4 134.3 119.0 187.2 81.6 27 6
FirstP OPri StabilizedCol&CutGen 8.3 154.1 133.3 185.2 82.6 10 0
FirstP OPri StabilizedCutGen 8.1 148.9 133.1 186.0 83.3 15 1
LastP MPri - 5.7 91.0 192.5 186.4 85.1 16 6
FirstP MPri - 6.3 91.1 191.7 177.8 85.2 20 7
BestP OPri StabilizedColGen 8.1 134.5 118.5 187.4 85.2 14 0
LastP MPri StabilizedColGen 5.7 92.3 191.3 186.2 88.5 18 6
FirstP OPri StabilizedColGen 7.0 133.2 118.1 181.3 90.0 19 9
LastP OPri StabilizedCutGen 7.7 142.5 125.9 194.8 90.2 10 0
LastP OPri StabilizedCol&CutGen 7.3 145.2 126.7 195.3 92.1 13 2
BestP MPri StabilizedColGen 7.1 92.4 189.7 183.0 93.9 7 1
FirstP MPri StabilizedColGen 6.0 91.1 188.4 178.1 96.1 12 2
FirstP OPri - 8.1 134.4 118.9 181.7 96.2 14 2
BestP MPri - 7.1 90.7 189.5 183.5 96.6 13 2
BestP OPri StabilizedCutGen 8.9 144.8 127.0 196.5 100.7 5 0
LastP OPri - 7.6 135.6 119.6 188.7 101.8 17 4
LastP MPri StabilizedCol&CutGen 6.2 100.5 202.4 194.8 104.6 1 0
LastP MPri StabilizedCutGen 6.0 97.6 198.8 195.8 104.7 8 1
BestP OPri StabilizedCol&CutGen 8.9 150.3 130.1 196.4 105.6 4 0
BestP MPri StabilizedCol&CutGen 7.4 104.5 207.0 195.5 110.2 1 0
BestP OPri - 8.9 133.9 117.7 187.4 115.3 4 1
BestP MPri StabilizedCutGen 7.4 101.1 204.3 196.5 115.8 2 0
FirstP MPri StabilizedCol&CutGen 8.2 118.0 239.6 187.4 117.5 0 0
FirstP MPri StabilizedCutGen 8.2 110.2 240.1 187.5 121.2 0 0

170

In the proposed framework, the net supply vectors and arc capacities are unknown in the

first stage. The decision maker has an opportunity to “pre-position” commodities at various

nodes before the uncertainty is realized. As soon as the uncertainty has been realized, the

net node supplies and arc capacities are known. The objective is to minimize the cost of

pre-positioning the commodities plus the expected cost of meeting the demand when the

uncertainty is realized.

Deterministic multi-commodity flow problems are well studied; for a survey see [3]. Re-

cent literature on the integer multi-commodity flow problem includes [13, 29, 93]. Although

several multi-commodity flow models have combined column and cut generation [13, 93],

the cuts are valid inequalities that improve computational efficiency. The only paper on

stochastic multi-commodity flow of which we are aware is [71]. They solved an arc-based

multi-commodity flow model with random arc capacities. In this chapter we consider a model

more general than the one they developed.

We assume that the second-stage capacity is unaffected by the amount of first-stage flow,

but the model can be easily modified to handle such a case. Let

• G = (N,A) be a directed graph.

• L be a set of commodities.

• ξ1, . . . , ξK be a set of scenarios, where scenario ξk occurs with probability pk.

• u0
ij be the first-stage capacity for arc (i, j) ∈ A.

• z be the pre-position vector, so that zl
i units of commodity l have been pre-positioned

at node i in the first stage. A negative value of z implies the corresponding commodity

should be moved from the node.

• gl
i ≥ 0 be the initial supply of commodity l ∈ L at node i ∈ N .

First-Stage Model:

• Let Π be the set of all simple directed paths.

• For each node i ∈ N , let Π+
i (Π−

i) be the set of paths to (from) node i.

• For each path P , let δP
ij = 1 if path P uses arc (i, j) ∈ A, and 0 otherwise.

• For each commodity l ∈ L, and each path P ∈ Π, let f l
P be the amount of commodity l

that flows along path P .

171

• Let cl
P be the cost of sending a single unit of commodity l along path P .

Then the path-based first-stage model is as follows:

min
∑
P∈Π

∑

l∈L

cl
P f l

P + Eξ̃Q(z, ξk))

subject to
∑

P∈Π+
i

f l
P −

∑

P∈Π−i

f l
P = zl

i, ∀ i ∈ N, ∀ l ∈ L, (6.32a)

∑
P∈Π

∑

l∈L

f l
P δP

ij ≤ u0
ij, ∀(i, j) ∈ A, (6.32b)

f l
P ≥ 0, ∀ l ∈ L, ∀P ∈ Π, (6.32c)

zl
i ≥ −max(gl

i, 0), ∀ i ∈ N, ∀ l ∈ L. (6.32d)

The lower bound on z, (6.32d), means that a node may not send out more of a commodity

than its initial supply.

Second-Stage Model:

Define:

• hl
i(ξ

k) to be the net demand of commodity l at node i under scenario ξk.

• For each arc (i, j) ∈ A, and each scenario ξk, let uij(ξ
k) be its second-stage capacity

under scenario ξk.

For each scenario define:

• f l
P (ξk) to be the amount of commodity l that flows along path P ∈ Π for any commodity

l ∈ L under scenario ξk.

• cl
P (ξk) to be the cost of sending a single unit of commodity l along path P under scenario

ξk.

172

Then for each scenario ξk,

Q(z, ξk) = min
∑

l∈L

∑
P∈Π

cl
P (ξk)f l

P (ξk)

subject to
∑

P∈Π+
i

f l
P (ξk)−

∑

P∈Π−i

f l
P (ξk) = hl

i(ξ
k) − zl

i, ∀ i ∈ N, ∀ l ∈ L, (6.33a)

∑

l∈L

∑
P∈Π

f l
P (ξk)δP

ij ≤ uij(ξ
k), ∀(i, j) ∈ A, (6.33b)

f l
P (ξk) ≥ 0, ∀ l ∈ L, ∀P ∈ Πi

l(ξ
k). (6.33c)

First-Stage Pricing Problems:

Assume we add two dummy nodes to the underlying network: a super-supply and a super-

demand node. Let nodes 0 and S denote the super-supply and super-demand nodes, respec-

tively. There will be an arc going from 0 to each node in the network, except S. Similarly,

there will be an arc going from each node in the network, except 0, to S. A first-stage pricing

subproblem will be used to generate a “favorable” path, namely P , from 0 to S in order to

perform the “pre-positioning” operations. Now, let

• xl
ij =





1, if the arc (i, j) is in path P,

0, otherwise
(i, j) ∈ A, l ∈ L.

• cl
ij, (i, j) ∈ A, l ∈ L, denote the cost of sending one unit of commodity l from i to j.

• σl
i, i ∈ N, l ∈ L, denote the dual variables corresponding to constraints (6.32a).

• wij, (i, j) ∈ A, denote the dual variables corresponding to constraints (6.32b).

• δ+(i), i ∈ N , denote the set of nodes j ∈ N such that (i, j) ∈ A.

• δ−(i), i ∈ N , denote the set of nodes j ∈ N such that (j, i) ∈ A.

Then, the first-stage pricing subproblem for commodity l ∈ L can be formulated as:

min c̄l
P =

∑

(i,j)∈A
(cl

ij − wij)x
l
ij +

∑
i∈N

σl
ix

l
0i −

∑
i∈N

σl
ix

l
iS

subject to

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ij =





1, if i = 0

0, if i ∈ N, i 6= 0 and i 6= S

−1, if i = S

173

xl
ij ≥ 0, (i, j) ∈ A.

If c̄l
P ≥ 0, there is no need to add the path P to the second-stage subproblem corresponding

to scenario ξk. Otherwise, if c̄l
P < 0, path P should be added. Note that we just have a

shortest path problem with modified arc costs as the pricing subproblem for each scenario

and commodity.

Second-Stage Pricing Problems:

The second-stage pricing subproblems will be used to generate a “favorable” path from 0

to S for satisfying the demand for commodity l under scenario ξk, l ∈ L, k = 1, . . . , K. We

have one second-stage pricing problem for each commodity l ∈ L and scenario ξk ∈ Ξ, and

their parameters and formulations will be the same as their first-stage counterparts, except

for the fact that σ and w denote to the dual variables corresponding to the second-stage

constraints (6.33a) and (6.33b), respectively, in this case.

6.4.2.1 Computational Results for SMCFP In this section we summarize our com-

putational results our stochastic multi-commodity flow problems. We use the same notation

developed in earlier sections of the chapter. We tested the different algorithmic strategies

mentioned in Section 6.3.2.3 on four problem classes and generated 10 instances for each

class. These problem classes are based on real-world deterministic instances provided by

Vance [123]. These deterministic instances were modified to include some uncertainty in

the following manner: node demand/supply and arc capacity parameters were pulled from

normal distributions where mean µ equals the value given in the deterministic case and stan-

dard deviation σ = ρµ where ρ ∈ {0.1, 0.25, 0.50}. Table 6.7 summarizes the characteristics

of the problem classes used throughout the computational experiments.

For cut-aggregation strategies, we tested for L ∈ {1, 5, 10, 25, 50}. Note that L = 1 is the

multi-cut L-shaped approach, and L = 50 is the single-cut L-shaped method. Table 6.8 shows

the results on the performances of the switching strategies AllCutsAllCols, AllCutsOneCol

and OneCutAllCols. For each one of these switching criteria, we also tested different L-

shaped cut aggregation strategies. Table 6.8 shows that cut aggregation strategies are very

effective, and that AllCutsAllCols seemed to be the best strategy among the ones tested

174

Table 6.7: Characteristics of the instances tested for SMCFP.

Class Name Nodes Arcs Commodities Scenarios Instances

p1 50 201 517 10 50 10

p2 50 201 501 10 50 10

p3 50 201 508 10 50 10

p4 50 201 520 10 50 10

Table 6.8: Summary of initial computational runs for SMCFP (averages over all 40 in-

stances).

Algorithm Class L # of iterations # of CPU time

Major Minor Columns Cuts (sec.)

1 2.8 441.0 8860.0 1582.8 1022.2

5 2.8 480.9 8693.0 1086.0 336.7

AllCutsAllCols 10 2.5 520.8 9038.1 808.5 384.8

25 2.8 749.9 9383.2 592.7 469.0

50 5.0 1243.0 9081.3 527.6 829.8

1 40.1 666.2 8706.6 2378.0 1158.0

5 50.8 753.7 9295.8 1268.8 583.2

AllCutsOneCol 10 44.6 772.0 9208.5 942.0 471.5

25 52.2 1012.8 9383.1 686.3 932.8

50 42.0 1545.1 8881.4 617.6 1379.9

1 47.3 502.2 10096.3 2478.4 1653.8

5 61.7 553.7 10229.5 932.6 563.0

OneCutAllCols 10 67.1 152.6 9941.5 714.4 609.9

25 130.1 1103.1 10908.0 451.7 891.4

50 262.8 1899.8 11511.0 333.3 1477.8

175

Table 6.9: Summary of tests on switching criteria and cut-aggregation strategies for SMCFP

(averages over all 40 instances).

Algorithm Class Parameters # of iterations # of CPU time

L P Pfactor Major Minor Columns Cuts (sec.)

AllCutsAllCols 5 - - 2.8 480.9 8693.0 1086.0 336.7

FirstP 5 .50 .25 5.0 588.1 8814.1 934.6 187.3

BestP 5 .50 .25 4.8 537.2 9022.2 940.7 288.4

LastP 5 .50 .25 4.1 564.1 8960.2 960.6 220.4

initially. We decided to drop column generation on the extensive form, AllCutsOneCol and

OneCutAllCols from further tests, and to set L = 5 for the remainder of the tests.

Next, we focused on threshold switching strategies and how they compared to AllCutsAll-

Cols. We used the settings that worked for our tests in Section 6.4.1.1, and hence, set P = .50

and Pfactor = .25. Table 6.9 compares the performances of our threshold strategies using

these cut-aggregation settings. Table 6.9 shows that algorithms using threshold switching

criteria and cut-aggregation dominate the AllCutsAllCols approach. After examining these

results, AllCutsAllCols was excluded from further testing.

For tests on stabilization, we used the parameter values that we found to be useful in

Section 6.4.1.1. We used identical initialization parameters for both first- and second-stage

column generation stabilization routines. The results of these tests are presented in Table

6.10. The table is sorted in ascending order of average solution times, and also displays

information on the number of times an algorithm was the fastest to solve a problem instance

and the number of times it was in the top 3.

176

Table 6.10: Summary of tests on stabilization strategies for SMCFP (with settings L =

5,P = .50,Pfactor = .25).

Algorithm Iterations # of CPU time # of times
Switching Stabilization Maj Min Col Cut (sec.) Top 3 Fastest
FirstP StabilizedCol&CutGena 5.2 787.5 8554.2 976.8 160.8 22 8
FirstP StabilizedCutGenb 5.0 873.1 10538.4 881.9 162.1 10 1
LastP StabilizedColGenc 3.4 756.8 8313.2 1151.4 172.7 12 2
FirstP StabilizedColGen 4.3 781.1 8334.9 1052.0 175.2 16 12
FirstP - 5.0 588.1 8814.1 934.6 187.3 14 2
LastP StabilizedCutGen 4.1 803.0 9553.2 998.1 193.0 10 3
LastP StabilizedCol&CutGen 3.9 818.8 8915.8 1101.2 197.5 12 3
BestP StabilizedColGen 4.4 740.5 8685.5 1142.7 205.2 10 3
LastP - 4.1 564.1 8960.2 960.6 220.4 7 4
BestP StabilizedCutGen 4.8 797.2 10058.8 934.8 248.0 4 2
BestP StabilizedCol&CutGen 4.8 827.5 10304.3 995.5 261.6 2 0
BestP - 4.8 537.2 9022.2 940.7 288.4 1 0

aStabilized column and cut generation with ε0 = 0.001, εRF = 1000, εIF = 1.1;∆0 = 10, ∆High =
100, εacceptZ = 0.01.

bStabilized cut generation with ∆0 = 100, ∆High = 1000, εacceptZ = 0.001.
cStabilized column generation with ε0 = 0.001, εRF = 100, εIF = 1.1.

6.5 CONCLUSIONS

In this chapter we developed a new method that flexibly combines column generation with

the L-shaped method for two-stage stochastic linear programs. This new method gives

rise to a wide variety of algorithmic strategies that are guaranteed to converge under mild

conditions, and brings computational advantages for large-scale problems. Particularly for

those models where column generation constitutes a natural solution approach, this method

brings a novel approach for computationally effective solutions.

We have tested the performances of various different algorithmic strategies on a num-

ber of instances of a two-stage stochastic cutting stock problem and a two-stage stochastic

multi-commodity flow problem. These computational experiments suggest that the thresh-

old algorithms, especially LastP and FirstP, combined with L-shaped cut aggregation are

fast and effective. Since there are virtually infinitely many strategies that can be considered,

it is not possible to reach concrete conclusions on what type of strategy may be the best.

177

But our findings confirm that strategies like threshold switching, L-shaped cut aggregation,

multiple pricing and stabilization are of great help in designing computationally effective

algorithms.

The method described in this chapter allows column generation within a two-stage

stochastic linear programming setting. However, an extension to a branch-cut-and-price

framework is possible, and exploring the performance of our algorithmic approaches in a

stochastic integer programming setting is left for future research.

178

7.0 CONCLUSIONS AND FUTURE RESEARCH

This dissertation focuses on the design of regions for the liver allocation hierarchy. It in-

troduces multi-objective integer programming and two-stage stochastic mixed-integer pro-

gramming models to analyze various aspects of the system. The primary goal is to maximize

organ utilization and transplant benefits, and minimize organ wastage through redesigning

the regional configuration of OPOs across the U.S. under current liver allocation policies.

We formulate set-partitioning based mathematical models using binary variables that

represent different region designs with the objective of finding the optimal partitioning of

OPOs into a distinct set of regions with respect to different objectives. Column genera-

tion is the common methodology utilized in all our region design models, and we generate

promising regions as needed throughout the solution procedure. We modify the ESLD and

liver allocation system simulation model of Shechter et al. [155] for parameter estimation,

scenario generation and solution validation purposes.

In Chapter 3, we introduce two parametric integer programming models based on the

ε-constraint method for balancing the two objectives of maximizing efficiency and maximiz-

ing equity while designing regions for the liver allocation system. We extend previous work

[96, 157] in a number of ways by utilizing a refined equity estimate, providing exact methods

to obtain the Pareto frontier and embedding branch and price as a solution method within

the multi-objective integer programming framework. Simulation analysis for our proposed

regional configurations shows an average 5% increase in efficiency and 70% increase in equity

levels when compared to current system performance, and also shows that our results dom-

inate configurations provided by Stahl [157] and Kong et al. [97]. We also have a working

paper [50] based on this chapter.

179

In Chapter 4, we introduce a stochastic programming model in order to incorporate

uncertainty while modeling the national waiting list. We use a column generation approach

and formulate a pricing problem that is capable of ranking patients on the waiting list

under different scenarios while generating promising regions for the master problem. We use

sampling methods to generate scenarios. In addition to relaxing the steady-state assumption

which is common for all previous liver transplant region design studies [96, 97, 157], we also

adopt a different objective: maximizing the expected life-time gained per transplant.

Chapter 5 introduces a modification of the stochastic mixed-integer program of Chapter

4 by switching to an OPO-based model, and replaces individual patients in every OPO with

aggregate patients for every scenario. This aggregate model enables us to solve the problem

using larger samples of scenarios and more batches, which results in tighter estimated opti-

mality gaps for candidate solutions found using the sample average approximation method.

According to our simulation analysis, the proposed region configurations of Chapters 4 and

5 bring up to a 7% increase in expected transplant outcomes for patients. Demirci et al. [49]

is based on Chapters 4 and 5.

Motivated by Chapters 4 and 5, Chapter 6 introduces a decomposition framework that

embeds column generation within the L-shaped method for two-stage stochastic linear pro-

grams with a large number of variables. In Chapters 4 and 5, we solve two-stage stochastic

region-design problems using column generation. The fact that we model the ranking policies

of UNOS within regions makes second-stage decisions automatic and enables a closed-form

expression of the second-stage objectives. Consequently, this eliminates the need for a mech-

anism combining column and cut generation to be used. If our models allowed for decisions

on how to rank patients, there would be a need to generate cuts and columns simultaneously

for the master problem. Based on this observation, Chapter 6 deals with the general question

of how to design effective implementations of column generation methods within a two-stage

stochastic programming framework. We present many different algorithmic strategies, in-

cluding stabilization techniques for both column and cut generation, and utilize two-stage

stochastic versions of the cutting-stock and multi-commodity flow problems for extensive

computational experiments. Demirci et al. [51] is based on this chapter.

180

7.1 FUTURE RESEARCH

In this section, we present several potential future research directions related to the models

and solution techniques discussed in this dissertation.

Alternative models for equity: In Chapter 3, we model the equity level of the liver allo-

cation system using a mini-max setting and focus on geographic equity, as measured by the

intra-OPO transplant rate per patient in every OPO. However, there are many other defini-

tions of equity, such as racial/ethnic or socieconomic equity. For instance, policy makers may

want to make sure that system performance is similar across different ethnic groups. For

future research, we plan to formulate models that incorporate alternative equity measures

for the liver allocation system. In addition to this, this study focuses on an equity measure

at the OPO level. In the future, we plan to design region-based equity measures that look

at the overall equity levels within organ allocation regions.

Incorporating equity within a stochastic programming framework: In this disser-

tation, we study equity under a deterministic multi-objective programming setting. Further-

more, the stochastic programming models of Chapters 4 and 5 only focus on the efficiency of

the model in terms of transplant outcomes per recipient. Our future research plans include

formulating models that incorporate equity within a stochastic programming framework. A

later extension might also look at extending these models into a multi-objective stochastic

programming setting, in which both efficiency and equity could be analyzed under uncer-

tainty.

Extending the region design models for other types of organs: In this dissertation,

we study the liver allocation system and introduce models for designing liver transplant

regions. The models discussed in this study can also be applied to other types of organs.

In fact, an interesting application would be looking at how optimal regional configurations

would change for different types of transplantable organs.

181

Extending the multi-objective optimization model: We propose a multi-objective

programming framework to balance two objectives in the liver allocation system: maximiz-

ing the viability-adjusted number of transplants and maximizing the minimum geographic

equity measure across all OPOs. A future research idea is to expand this multi-objective

framework to incorporate the objective adopted in Chapters 4 and 5, i.e., maximizing the

expected survival outcome per transplant.

Designing new modeling and solution techniques for the patient-based stochas-

tic programming model of Chapter 4: The regional configuration that performed the

best during simulation analysis for Chapters 4 and 5 was 4J, i.e., a solution found using the

patient-based model. Since this model adopts a more realistic representation of liver offers,

it might be expected to generate better results than those of Chapter 5 when solved over a

sufficiently large sample of scenarios. However, as we discussed previously, the patient-based

model is very hard to solve. Hence, our future research will focus on designing new mod-

eling and solution approaches for this model, including polyhedral studies, generating valid

inequalities, an exploring decomposition approaches, in order to test the performance of the

model on larger scenario samples.

Using full branch and price for the stochastic programming models introduced in

Chapters 4 and 5: We solve the models introduced in Chapters 4 and 5 using the SPRINT

approach, and hence, use column generation only in the root node of the branch-and-bound

tree while solving the models. In the future we will use full branch-and-price approaches

to solve these models, i.e., with column generation in every node of the branch-and-bound

tree. It would be interesting to compare the results obtained with SPRINT to those found

with full branch-and-price, and analyze the trade off between solution quality and CPU time.

182

Extending the combined cut and column generation framework of Chapter 6 to

stochastic integer programming: In this dissertation, we design a general framework

that combines column generation and the L-shaped methods for two-stage stochastic linear

programs. In the future, we will extend this method to a two-stage stochastic integer pro-

gramming setting by embedding the procedure within branch and price.

Extending the combined cut and column generation framework of Chapter 6

to a multi-stage setting: Our research plans also include extending our combined cut

and column generation framework to multi-stage stochastic linear programming. We will

construct algorithms that combine column generation and nested Benders decomposition

[21, 132] for multi-stage stochastic linear programs, and explore computational strategies,

such as stabilization, within this framework.

183

BIBLIOGRAPHY

[1] B. Adenso-Diaz and F. Rodriguez. A simple search heuristic for the MCLP: Application
to the location of ambulance bases in a rural region. Omega-International Journal Of
Management Science, 25(2):181–187, 1997.

[2] J.-H. Ahn and J. C. Hornberger. Involving patients in the cadaveric kidney transplant
allocation process: A decision-theoretic perspective. Management Science, 42(5):629–
641, 1996.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[4] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts. The optimal timing of
living-donor liver transplantation. Management Science, 50(10):1420–1430, 2004.

[5] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts. Choosing among living-
donor and cadaveric livers. Management Science, 53(11), 2007.

[6] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts. Determining the ac-
ceptance of cadaveric livers using an implicit model of the waiting list. Operations
Research, 55(1):24–36, 2007.

[7] O. Alagoz, M. S. Roberts, C. L. Bryce, A. J. Schaefer, J. Chang, and D. C. Angus.
Incorporating biological natural history in simulation models: Empiric estimates of the
progression of end-stage liver disease. Medical Decision Making, 25(6):620–632, 2005.

[8] O. Alagoz, A. J. Schaefer, and M. S. Roberts. Optimization in organ allocation.
In P. Pardalos and E. Romeijn, editors, To appear in Handbok of Optimization in
Medicine. Kluwer Academic Publishers, 2005.

[9] R. Anbil, R. Tanga, and E. L. Johnson. A global approach to crew-pairing optimization.
IBM Systems Journal, 31(1):71–78, 1992.

[10] J. L. Arthur and A. Ravidran. A multiple objective nurse scheduling model. IIE
Transactions, 13(1):55–60, 1981.

184

[11] J. R. Baker, E. R. Clayton, and L. J. Moore. Redesign of primary response areas for
county ambulance services. European Journal of Operational Research, 41(1):23–32,
1989.

[12] C. Barnhart, A. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, and P. H. Vance.
Airline crew scheduling. In R.W. Hall, editor, Handbook of Transportation Science.
Kluwer Academic Publishers, Norwell, MA, 2nd edition, 2002.

[13] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to
solve origin-destination integer multicommodity flow problems. Operations Research,
48(2):318–326, 2000.

[14] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316–329, 1998.

[15] E. M. L. Beale. On minimizing a convex function subject to linear inequalities. Journal
of the Royal Statistical Society Series B, 17(2):173–184, 1955.

[16] H. Ben Amor and J. M. Valério de Carvalho. Cutting stock problems. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation. Springer, New York,
2005.

[17] J. F. Benders. Partitioning procedures for solving mixed variables programming prob-
lems. Numerische Mathematics, 4(1):238–252, 1962.

[18] J. M. Benedict. Three Hierarchical Objective Models Which Incorporate the Concept
of Excess Coverage to Locate EMS Vehicles or Hospitals. PhD thesis, Northwestern
University, Evanston, IL, 1983.

[19] P. Beraldi, M. E. Bruni, and D. Conforti. Designing robust emergency medical service
via stochastic programming. European Journal Of Operational Research, 158(1):183–
193, 2004.

[20] I. Berrada, J. A. Ferland, and P. Michelon. A multi-objective approach to nurse
scheduling with both hard and soft constraints. Socio-Economic Planning Science,
30(3):183–193, 1996.

[21] J. R. Birge. Decomposition and partitioning methods for multistage stochastic linear
programs. Operations Research, 33(5):989–1007, 1985.

[22] J. R. Birge and F. V. Louveaux. A multicut algorithm for two stage stochastic linear
programs. European Journal of Operational Research, 34(3):384–392, 1988.

[23] J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer,
New York, 1997.

185

[24] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very-
large scale linear programming: A case study in combining interior point and simplex
methods. Operations Research, 40(5):885–897, 1992.

[25] P. W. G. Bots and J. A. M. Hulshof. Designing multi-criteria decision analysis processes
for priority setting in health policy. Journal of Multi-Criteria Decision Analysis, 9(1-
3):56–75, 2000.

[26] C. C. Branas, E. J. MacKenzie, and C. S. ReVelle. A trauma resource allocation model
for ambulances and hospitals. Health Services Research, 35(2):489–507, 2000.

[27] M. L. Brandeau, F. Sainfort, and W. P. Pierskalla. Operations Research and Health
Care: A Handbook of Methods and Applications. Kluwer Academic Publishers, Boston,
MA, 2004.

[28] L. Brotcorne, G. Laporte, and F. Semet. Ambulance location and relocation models.
European Journal of Operations Research, 147(3):451–463, 2003.

[29] L. Brunetta, M. Conforti, and M. Fischetti. Polyhedral approach to an integer multi-
commodity flow problem. Discrete Applied Mathematics, 101(1):13–36, 2000.

[30] Centers for Medicare and Medicaid Services (CMS). National
Health Expenditure Data: NHE Fact Sheet. Available from
http://www.cms.hhs.gov/nationalhealthexpenddata/25 nhe fact sheet.asp, infor-
mation and data accessed on April 13, 2008.

[31] Centers for Medicare and Medicaid Services (CMS). Na-
tional Health Expenditure Projections 2007-2017. Available from
http://www.cms.hhs.gov/nationalhealthexpenddata/downloads/proj2007.pdf, in-
formation and data accessed on April 13, 2008.

[32] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making Theory and Method-
ology. Elsevier Science, New York, NY, 1983.

[33] A. Charnes and W. W. Cooper. Management Models and Industrial Applications of
Linear Programming. Wiley, New York, NY, 1961.

[34] A. Charnes, W. W. Cooper, and R. Ferguson. Optimal estimation of executive com-
pensation by linear programming. Management Science, 1(2):138–151, 1955.

[35] J. B. Christainson. Balancing policy objectives in long-term care. Health Services
Research, 13(2):157–1 70, 1983.

[36] R. Church, P. Sorensen, and W. Corrigan. Manpower deployment in emergency ser-
vices. Fire Technology, 55(2):420–427, 2003.

[37] COIN-OR. http://www.coin-or.org.

186

[38] COIN-OR. COIN-OR Documentation: Branch-Cut-Price Framework. Available from
http://www.coin-or.org/documentation.html.

[39] CORE - Center for Organ Recovery and Education. http://www.core.org, information
and data accessed on November 7, 2007.

[40] CONSAD Research Corporation. An analysis of alternative national policies for allocat-
ing donor livers for transplantation. Technical report, CONSAD Research Corporation,
Pittsburgh, PA, 1995.

[41] G. B. Dantzig. Linear programming under uncertainty. Management Science, 1(3-
4):197–206, 1955.

[42] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960.

[43] M. S. Daskin. Network and Discrete Location: Models, Algorithms and Applications.
Wiley, New York, NY, 1995.

[44] M. S. Daskin and L. K. Dean. Locations of health care facilities. In M. L. Brandeau,
F. Sainfort, and W. P. Pierskalla, editors, Operations Research and Health Care: A
Handbook of Methods and Applications. Kluwer Academic Publishers, Boston, MA,
2004.

[45] I. David and U. Yechiali. A time-dependent stopping problem with application to live
organ transplants. Operations Research, 33(3):491–504, 1985.

[46] I. David and U. Yechiali. Sequential assignment match processes with arrivals of candi-
dates and offers. Probability in the Engineering and Informational Sciences, 4(4):413–
430, 1990.

[47] I. David and U. Yechiali. One-attribute sequential assignment match processes in
discrete time. Operations Research, 43(5):879–884, 1995.

[48] I. Deák. Multidimensional integration and stochastic programming. In Y. Ermoliev and
R. Wets, editors, Numerical Techniques for Stochastic Optimization. Springer-Verlag,
Berlin, 1988.

[49] M. C. Demirci, A. J. Schaefer, and M. S. Roberts. Designing liver transplant regions
under uncertainty. Technical report, University of Pittsburgh, Department of Industrial
Engineering, 2008.

[50] M. C. Demirci, A. J. Schaefer, H. E. Romeijn, and M. S. Roberts. Balancing efficiency
and equity in the liver allocation hierarchy. Technical report, University of Pittsburgh,
Department of Industrial Engineering, 2008.

187

[51] M. C. Demirci, A. J. Schaefer, and J. M. Rosenberger. Column generation within
the L-shaped method for stochastic linear programs. Technical report, University of
Pittsburgh, Department of Industrial Engineering, 2008.

[52] C. Derman, G. J. Lieberman, and S. M. Ross. A sequential stochastic assignment
problem. Management Science, 18(7):349–355, 1972.

[53] J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time windows by column
generation. Networks, 14(4):545–565, 1984.

[54] K. Doerner, A. Focke, and W. J. Gutjahr. Multicriteria tour planning for mobile
healthcare facilities in a developing country. European Journal of Operational Research,
179(3):1078–1096, 2007.

[55] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.
Discrete Mathematics, 194(1-3):229–237, 1999.

[56] D. J. Eaton, M. S. Daskin, D. Simmons, B. Bulloch, and G. Jansma. Determining
emergency medical service vehicle deployment in Austin, Texas. Interfaces, 15(1):96–
108, 1985.

[57] D. J. Eaton, H. M. Sanchez, R. R. Lantigua, and J. Morgan. Determining ambulance
deployment in Santo-Domingo, Dominican-Republic. Journal Of The Operational Re-
search Society, 37(2):113–126, 1986.

[58] M. Ehrgott. Multicriteria optimization. Springer, Berlin, 2005.

[59] M. Ehrgott. A discussion of scalarization techniques for multiple objective integer
programming. Annals of Operations Research, 147(1):343–360, 2006.

[60] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR Spektrum, 22(4):425–460, 2000.

[61] M. Ehrgott and D. Ryan. Constructing robust crew schedules with bicriteria optimiza-
tion. Journal of Multi-Criteria Decision Analysis, 11(3):139–150, 2003.

[62] M. Ehrgott and J. Tind. Column generation in integer programming with applications
in multicriteria optimization. Technical report, The University of Auckland, Depart-
ment of Engineering Science, 2007.

[63] M. Ehrgott and M. M. Wiecek. Multiobjective programming. In J. Figueria, S. Greco,
and M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys.
Kluwer Academic Publishers, Boston, MA, 2005.

[64] L. R. Ford and D. R. Fulkerson. A suggested computation for maximal multicommodity
network flows. Management Science, 5(1):97–101, 1958.

188

[65] L. S. Franz, T. R. Rakes, and A. S. Wynne. A chance-constrained multiobjective model
for mental health services planning. Socio-Economic Planning Science, 18(2):89–95,
1984.

[66] V. Gascon, S. Villeneuve, P. Michelon, and J. A. Ferland. Scheduling the flying squad
nurses of a hospital using a multi-objective programming model. Annals of Operational
Research, 96:149–166, 2000.

[67] H. I. Gassmann. MSLiP: A computer code for the multistage stochastic lienar pro-
gramming problem. Mathematical Programming, 47:407–423, 1990.

[68] M. Gendreau, G. Laporte, and F. Semet. The maximal expected coverage reloca-
tion problem for emergency vehicles. Journal Of The Operational Research Society,
57(1):22–28, 2006.

[69] P. Ghandfaroush. Optimal allocation of time in a hospital pharmacy using goal pro-
gramming. European Journal of Operational Research, 70:191–198, 1993.

[70] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting stock
problem. Operations Research, 9:849–859, 1961.

[71] G. D. Glockner and G. L. Nemhauser. A dynamic network flow problem with uncertain
arc capacities: fomulation and problem structure. Operations Research, 48(2):233–242,
2000.

[72] Government Accounting Office. Current Policies and Practices. Available from
http://www.gao.gov/special.pubs/organ/chapter2.pdf, information and data accessed
on April 13, 2008, 2003.

[73] P. Griffin, M. Savelsbergh, and J. L. Swann. The health care system: Operations
research and improving access. Technical report, Georgia Institute of Technology,
School of Industrial and Systems Engineering, 2007.

[74] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms
II. Comprehensive Studies in Mathematics. Springer-Verlag, 1993.

[75] A. Holder. Radiotherapy treatment design and linear programming. In M. L. Brandeau,
F. Sainfort, and W. P. Pierskalla, editors, Operations Research and Health Care: A
Handbook of Methods and Applications. Kluwer Academic Publishers, Boston, MA,
2004.

[76] K. Holmberg. Generalized cross decomposition with variable and constraint duplication
techniques. Technical Report LiTH-MAT-R-1988-17, Linköping Institute of Technol-
ogy, Department of Mathematics, 1988.

[77] K. Holmberg. Cross decomposition and Lagrangean relaxation of the Benders master
probles. Technical Report LiTH-MAT-R-1989-14, Linköping Institute of Technology,
Department of Mathematics, 1989.

189

[78] K. Holmberg. On the convergence of cross decomposition. Mathematical Programming,
47(1-3):269–296, 1990.

[79] K. Holmberg. Cross decomposition applied to integer programming problems: Duality
gaps and convexification in parts. Operations Research, 42(4):657–668, 1994.

[80] J. C. Hornberger and J.-H. Ahn. Deciding eligibility for transplantation when a donor
kidney becomes available. Medical Decision Making, 17(2):160–170, 1997.

[81] D. H. Howard. Why do transplant surgeons turn down organs? A model of the
accept/reject decision. Journal of Health Economics, 21(2):957–969, 2002.

[82] J. Hu and E. L. Johnson. Computational results with a primal-dual subproblem simplex
method. Operations Research Letters, 25(4):149–157, 1999.

[83] ILOG. CPLEX 9.0 user’s manual. 2003.

[84] ILOG CPLEX: High Performance Software for Mathematical Programming and Opti-
mization. http://www.ilog.com/products/cplex/.

[85] D. A. Jacobs, M. N. Silan, and B. A. Clemson. An analysis of alternative locations and
service areas of American Red Cross blood facilities. Interfaces, 26(3):40–50, 1996.

[86] S. H. Jacobson and E. C. Sewell. Designing pediatric formularies for childhood immu-
nization using inter programming models. In M. L. Brandeau, F. Sainfort, , and W. P.
Pierskalla, editors, Operations Research and Health Care: A Handbook of Methods and
Applications. Kluwer Academic Publishers, Boston, MA, 2004.

[87] S. H. Jacobson, E. C. Sewell, R. Deuson, and B. G. Weniger. An integer programming
model for vaccine procurement and delivery for childhood immunization: a pilot study.
Health Care Management Science, 2(1):1–9, 1999.

[88] P.S. Kamath, R.H. Wiesner, M. Malinchoc, W. Kremers, T.M. Therneau, C.L. Kos-
berg, G. D’Amico, E.R. Dickson, and W.R. Kim. A model to predict survival in
patients with end-stage liver disease. Hepatology, 33(2):464–70, 2001.

[89] L.V. Kantorovich. Mathematical methods of organizing and planning production
(translation of a report presented to Leningrad State University May 1939). Man-
agement Science, 6(4):366–422, 1960.

[90] E. P. C. Kao and M. Queyranne. Budgeting costs of nursing in a hospital. Management
Science, 31(5):608–621, 1985.

[91] K. E. Kendall and S. M. Lee. Formulating blood rotation policies with multiple objec-
tives. Management Science, 26(11):1145–1157, 1980.

[92] A. J. Keown and J. D. Martin. An integer goal programming model for capital bud-
geting in hospitals. Financial Management, 5(3):28–35, 1976.

190

[93] D. Kim and C. Barnhart. Multimodal express shipment service design: Models and
algorithms. Computers and Industrial Engineering, 33(3):685–688, 1997.

[94] K. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimiza-
tion. Mathematical Programming, 46(1-3):105–122, 1990.

[95] A. J. Kleywegt, A. Shapiro, and T. Homem De Mello. The sample average approxi-
mation method for stochastic discrete optimization. SIAM Journal on Optimization,
12(2):479–502, 2001.

[96] N. Kong. Optimizing the Efficiency of the United States Organ Allocation System
Through Region Reorganization. PhD thesis, University of Pittsburgh, Pittsburgh, PA,
2006.

[97] N. Kong, A.J. Schaefer, B. Hunsaker, and M. S. Roberts. Maximizing the efficiency
of the U.S. liver allocation system through region design. Technical report, Purdue
University, Weldon School of Biomedical Engineering, 2007.

[98] E. V. Krichagina, R. Rubio, M. I. Taksar, and L. Wein. A dynamic stochastic stock-
cutting problem. Operations Research, 46(5):690–701, 1998.

[99] M. Lamiri, X. Xie, A. Dolgui, and F. Grimaud. A stochastic model for operating
room planning with elective and emergency demand for surgery. European Journal Of
Operational Research, 185:1026–1037, 2008.

[100] M. Langer, R. Brown, M. Urie, J. Leong, M. Stracher, and J. Shapiro. Large scale
optimization of beam weights under dose-volume restrictions. International Journal of
Radiation Oncology, Biology, Physics, 18(4):887–893, 1990.

[101] M. Langer and J. Leong. Optimization of beam weights under dose-volume restrictions.
International Journal of Radiation Oncology, Biology, Physics, 13(8):1255–1260, 1987.

[102] C. W. Lee and N. K. Kwak. Information resource planning for a health-care system
using an AHP-based goal programming method. Journal of the Operational Research
Society, 50(12):1191–1198, 1998.

[103] E. K. Lee, T. Fox, and I. Crocker. Optimization of radiosurgery treatment planning
via mixed-integer programming. Medical Physics, 27(5):995–1004, 2000.

[104] E. K. Lee, R. J. Gallagher, D. Silvern, C. S. Wuu, and M. Zaider. Treatment plan-
ning for brachytherapy. An integer programming model, two computational approaches
and experiments with permanent implant planning. Physics in Medicine and Biology,
44(1):145–165, 1999.

[105] E. K. Lee and M. Zaider. Determining an effective planning volume for permanent
prostate implants. International Journal of Radiation Oncology, Biology, Physics,
49(4):1197–1206, 2001.

191

[106] E. K. Lee and M. Zaider. Intra-operative dynamic dose optimization in permanent
prostate implants. International Journal of Radiation Oncology, Biology, Physics,
56(3):854–861, 2003.

[107] E. K. Lee and M. Zaider. Mixed integer programming approaches to treatment planning
for brachytherapy - application to permanent prostate implants. Annals of Operations
Research, 119(1-4):147–163, 2003.

[108] J. Linderoth and S. Wright. Decomposition algorithms for stochastic programming on
a computational grid. Computational Optimization and Applications, 24(2-3):207–250,
2003.

[109] B. G. Lopez-Valcarel and P. B. Perez. Evaluation of alternative functional designs in
an emergency department by means of simulation. Simulation, 63(1):20–28, 1994.

[110] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005.

[111] G. Lulli and S. Sen. A branch-and-price algorithm for multistage stochastic integer pro-
gramming with application to stochastic batch-sizing problems. Management Science,
50(6):786–796, 2004.

[112] G. Lyberatos and E. M. Abulesz. Analysis of periodic injections in cancer chemother-
apy. International Journal of Systems Science, 21(8):1659–1671, 1990.

[113] M. Malinchoc, P. S. Kamath, F. D. Gordon, C. J Peine, J. Rank, and P. L. ter Borg.
A model to predict poor survival in patients undergoing transjugular intrahepatic por-
tosystemic shunts. Hepatology, 31(4):864–871, 2000.

[114] A. Martel and J. Ouellet. Stochastic allocation of a resource among partially inter-
changeable activities. European Journal Of Operational Research, 74(3):528–539, 1994.

[115] R. K. Martin. Large Scale Linear and Integer Optimization: A Unified Approach.
Kluwer Academic Press, 1999.

[116] W. E. McAleer and I. A. Naqvi. The relocation of ambulance stations - A successful
case-study. European Journal Of Operational Research, 75(3):582–588, 1994.

[117] A. Mehrez, Z. Sinuany-Stern, A.-G. Tal, and B. Shemuel. On the implementation of
quantitative facility location models: The case of a hospital in a rural region. Journal
of the Operational Research Society, 47(5):612–625, 1996.

[118] A. Mehrotra, E. L. Johnson, and G. L. Nemhauser. An optimization based heuristic
for political districting. Management Science, 44(8):1100–1114, 1998.

[119] R. M. Merion, M. K. Guidinger, J. M. Newmann, M. D. Ellison, F. K. Port, and
R. A. Wolfe. Prevalence and outcomes of multiple-listing for cadaveric kidney and
liver transplantation. American Journal of Transplantation, 4(1):94–100, 2004.

192

[120] H. E. Miller, W. P. Pierskalla, and G. J. Rath. Nurse scheduling using mathematical
programming. Operations Research, 24(5):857–870, 1976.

[121] H. Minkowski. Geometrie der Zahlen. Teubner Leipzig, 1896.

[122] D. P. Morton and R. K. Wood. On a stochastic knapsack problem and generaliza-
tions. In D. L. Woodruff, editor, Advances in Computational and Stochastic Opti-
mization, Logic Programming, and Heuristic Search: Interfaces in Computer Science
and Operations Research, pages 149–168. Kluwer Academic Publishers, Dordrecht, the
Netherlands, 1998.

[123] Multicommodity problems. Available from ftp://ftp.eng.auburn.edu/pub/pvance/data/
mcf/mcf data.

[124] A. A. Musa and U. Saxena. Scheduling nurses using goal-programming techniques.
IEE Transactions, 16(3):216–221, 1984.

[125] S. Narashimhan, H. Pirkul, and D. A. Schilling. Capacitated emergency facility siting
with multiple levels of backup. Annals of Operations Research, 40:323–337, 1992.

[126] National Center for Health Statistics (NCHS). National Vital Statistics Re-
port - Deaths: Final Data for 2004. NVSR Vol. 55, No. 19. Available from
http://www.cdc.gov/nchs/data/nvsr/nvsr55/nvsr55 19.pdf.

[127] C. A. Nelson and J. R. Wolch. Intrametroplitan planning for community based residen-
tial care: A goal programming approach. Socio-Economic Planning Science, 19(3):205–
212, 1985.

[128] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, New York, NY, 1988.

[129] F. F. Nobre, L. T. F. Trotta, and L. F. A. M. Gomes. Multi-criteria decision making
- An approach to setting priorities in heath care. Statistics in Medicine, 18,(23):3345–
3354, 1999.

[130] I. Ozkarahan and J.E. Bailey. Goal programming model subsystem of a flexible nurse
scheduling support system. IEE Transactions, 20(3):306–316, 1988.

[131] D. Parr and J.M. Thompson. Solving the multi-objective nurse scheduling problem
with a weighted cost function. Annals of Operations Research, 155:279–288, 2007.

[132] M. V. F. Pereira and L. M. V. G. Pinto. Stochastic optimization of a multireservoir
hydroelectric system - A decomposition approach. Water Resources Research, 21:779–
792, 1985.

[133] W. P. Pierskalla and D. J. Brailer. Applications of operations research in health care
delivery. In S. M. Pollock, M. H. Rothkopf, and A. Barnett, editors, Handbooks on

193

Operations Research and Management Sciences Vol. 6. Elsevier Science, Amsterdam,
The Netherlands, 1994.

[134] H. Pirkul and D. A. Schilling. The siting of emergency service facilities with workload
capacities and backup service. Management Science, 34(7):896–908, 1988.

[135] F. D. Preciado-Walters, R. L. Rardin, M. Langer, and V. Thai. A coupled column gen-
eration, mixed integer approach to optimal planning of intensity modulated radiation
therapy for cancer. Mathematical Programming, 101(2):319–338, 2004.

[136] W. L. Price and M. Turcotte. Locating a blood-bank. Interfaces, 16(5):17–26, 1986.

[137] A. A. B. Pritsker. Life and death decisions: Organ transplantation allocation policy
analysis. OR/MS Today, 25(4):22–28, 1998.

[138] P. Punnakitikashem, J. M. Rosenberger, and D. B. Behan. Stochastic programming for
nurse assignment. To appear in Computational Optimization and Applications, 2006.

[139] M. L. Puterman. Markov Decision Processes. Wiley, New York, NY, 1994.

[140] T. K. Ralphs and L. Ladányi. COIN/OR user’s manual. Technical report, IBM T. J.
Watson Reserach Center, Yorktown Heights, NY, 2001.

[141] T. K. Ralphs, L. Ladányi, and M. J. Saltzman. Parallel branch, cut and price for
large-scale discrete optimization. Mathematical Programming, 98(1-3):253–280, 2003.

[142] A. K. Rifai and J. O. Pecenka. An application of goal programming in healthcare
planning. International Journal of Production Management, 10(3):28–37, 1989.

[143] R. Righter. A resource allocation problem in a random environment. Operations
Research, 37(2):329–338, 1989.

[144] M.S. Roberts, D. C. Angus, C. L. Bryce, Z. Valenta, and L. Weissfeld. Survival af-
ter liver transplantation in the united states: a disease-specific analysis of the unos
database. Liver Transplantation, 10(7):886–97, 2004.

[145] H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar. A column generation
approach to radiation therapy treatment planning using aperture modulation. SIAM
Journal on Optimization, 15(3):838–862, 2005.

[146] C. Romero and T. Rehman. A note on diet planning in the third world by linear and
goal programming. Journal of the Operational Research Society, 35:555–558, 1984.

[147] A Ruszczyński. A regularized decomposition method for minimizing a sum of polyhe-
dral functions. Mathematical Programming, 35(3):309–333, 1986.

194

[148] D. M. Ryan and A. B. Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport Urban Passenger Vehicle
and Crew Scheduling. North-Holland, Amsterdam, The Netherlands, 1981.

[149] T. L. Saaty. The Analytic Hierarchy Process. McGraw Hill, New York, NY, 1980.

[150] B. Sandıkçı, L. M. Maillart, A. J. Schaefer, O. Alagoz, and M. S. Roberts. Estimating
the patients price of privacy in liver transplantation. Technical report, University of
Pittsburgh, Department of Industrial Engineering, 2008.

[151] C. Sapountzis. Allocating blood to hospitals. Journal of the Operational Research
Society, 40(5):443–449, 1989.

[152] R.S. Segall. Some quantitative methods for determining capacities and locations of
military emergency medical facilities. Applied Mathematical Modelling, 24(5-6):365–
389, 2000.

[153] E. C. Sewell and S. H. Jacobson. Using an integer programming model to determine
the price of combination vaccines for childhood immunization. Annals Of Operations
Research, 119(1-4):261–284, 2003.

[154] A. Shapiro. Monte carlo sampling methods. In A. Ruszczynski and A. Shapiro, editors,
Stochastic Programming, Handbook in Operations Research and Management Science
Vol. 10. Elsevier Science, Amsterdam, 2003.

[155] S. M. Shechter, C. L. Bryce, O. Alagoz, J. E. Kreke, J. E. Stahl, A. J. Schaefer, D. C.
Angus, and M. S. Roberts. A clinically based discrete-event simulation of end-stage
liver disease and the organ allocation process. Medical Decision Making, 25(2):199–209,
2005.

[156] Z. Sinuany-Stern, A. Mehrez, A.-G. Tal, and B. Shemuel. The location of a hospital
in a rural region: The case of the Negev. Location Science, 3(4):255–266, 1995.

[157] J. E. Stahl, N. Kong, S. M. Shechter, A. J. Schaefer, and M. S. Roberts. A methodolog-
ical framework for optimally reorganizing liver transplant regions. Medical Decision
Making, 25(1):35–46, 2005.

[158] C. Stummer, K. Doerner, A. Focke, and K. Heidenberger. Determining location and
size of medical departments in a hospital network: A multiobjective decision support
approach. Health Care Management Science, 7(1):63–71, 2004.

[159] X. Su and S. A. Zenios. Patient choice in kidney allocation: The role of the queueing
discipline. Manufacturing & Service Operations Management, 6(4):280–301, 2004.

[160] X. Su and S. A. Zenios. Patient choice in kidney allocation: A sequential stochastic
assignment model. Operations Research, 53(3):443–455, 2005.

195

[161] X. Su and S. A. Zenios. Recipient choice can address the efficiency-equity trade-off in
kidney transplantation: A mechanism design model. Management Science, 52(1):1647–
1660, 2006.

[162] M. Tamiz, D. Jones, and C. Romero. Goal programming for decision making: An
overview of the current state-of-the-art. European Journal of Operational Research,
111(3):569–581, 1998.

[163] P. Toth and D. Vigo. The Vehicle Routing Problem. SIAM, 2002.

[164] E. Totsuka, J. J. Fung, M.C. Lee, T. Ishii, M. Umehara, Y. Makino, T. H. Chang,
Y. Toyoki, S. Narumi, K. Hakamada, and M. Sasaki. Influence of cold ischemia time
and graft transport distance on postoperative outcome in human liver transplantation.
Surgery Today, 32(9):792–799, 2002.

[165] TransWeb. http://www.transweb.org, information and data accessed on November 7,
2007.

[166] V. M. Trivedi. A mixed-integer goal programming model for nursing service budgeting.
Operations Research, 29(5):1019–1034, 1981.

[167] S. Trukhanov, L. Ntaimo, and A. J. Schaefer. On adaptive multicut aggregation for two-
stage stochastic linear programs. Technical report, Texas A&M University, Department
of Industrial and Systems Engineering, 2008.

[168] United Network for Organ Sharing (UNOS). Allocation of livers. Available from
http://www.unos.org/policiesandbylaws2/policies/pdfs/policy 8.pdf, information and
data accessed on April 13, 2008.

[169] United Network for Organ Sharing (UNOS). http://www.unos.org, information and
data accessed on April 13, 2008.

[170] U.S. Department of Health and Human Services, Health Re-
souces and Services Administration. Partnering with Your Trans-
plant Team: The Patient’s Guide to Transplantation. Available from
http://www.unos.org/sharedcontentdocuments/transplantation guide final-3-04-
04.pdf.

[171] US Transplant - Scientific Registry of Transplant Recipients.
http://www.ustransplant.org, information and data accessed on November 7,
2007.

[172] J. M. Valério de Carvalho and A. J. Guimarães Rodrigues. An LP-based approach to a
two-stage cutting stock problem. European Journal of Operations Research, 84(3):580–
589, 1996.

[173] T. J. Van Roy. Cross decomposition for mixed integer programming. Mathematical
Programming, 25(1):46–63, 1983.

196

[174] R. Van Slyke and R. J-B. Wets. L-shaped linear programs with applications to op-
timal control and stochastic programming. SIAM Journal on Applied Mathematics,
17(4):638–663, 1969.

[175] F. Vanderbeck. Computational study of a column generation algorithm for bin packing
and cutting stock problems. Mathematical Programming, 86(3):565–594, 1999.

[176] F. Vanderbeck. Exact algorithm for minimizing the number of setups in the one-
dimensional cutting stock problem. Operations Research, 48(6):915–926, 2000.

[177] F. Vanderbeck. Implementing mixed integer column generation. In Desaulniers G.,
Desrosiers J., and Solomon M. M., editors, Column Generation. Springer-Verlag,
Boston,MA, 2005.

[178] D. M. Warner. Scheduling nursing personnel according to nursing preference: A math-
ematical programming approach. Operations Research, 24(5):842–856, 1976.

[179] R. H. Wiesner, S. V. McDiarmid, P. S. Kamath, E. B. Edwards, M. Malinchoc, W. K.
Kremers, R. A. F. Krom, and W. R. Kim. MELD and PELD: Application of survival
models to liver allocation. Liver Transplantation, 7(7):567–580, 2001.

[180] World Health Organization (WHO). Core Health Indicators. Available from
http://www.who.int/whosis/database/core/core select.cfm, information and data ac-
cessed on April 13, 2008.

[181] World Health Organization (WHO). World Health Report 2000. Available from
http://www.who.int/whr/2000/en/whr00 en.pdf, information and data accessed on
April 13, 2008.

[182] S. Yoo, M. E. Kowalok, B. R. Thomasden, and D. L. Henderson. Treatment planning
for prostate brachytherapy using region of interest adjoint functions and a greedy
heuristic. Physics in Medicine and Biology, 48(24):4077–4090, 2003.

[183] M. Zaider, M. Zelefsky, E. K. Lee, K. Zakian, H. A. Amols, J. Dyke, and J. Koutcher.
Treatment planning for prostate implants using MR spectroscopy imaging. Interna-
tional Journal of Radiation Oncology, Biology, Physics, 47(4):1085–1096, 2000.

[184] S. A. Zenios. Modeling the transplant waiting list: A queuing model with reneging.
Queuing Systems, 31(3-4):239–251, 1999.

[185] S. A. Zenios. Optimal control of a paired-kidney exchange program. Management
Science, 48(3):328–342, 2002.

[186] S. A. Zenios, G.M. Chertow, and L.M. Wein. Dynamic allocation of kidneys to candi-
dates on the transplant waiting list. Operations Research, 48(4):549–569, 2000.

[187] S. A. Zenios, L.M. Wein, and G.M. Chertow. Evidence-based organ allocation. Amer-
ican Journal of Medicine, 107(1):52–61, 1999.

197

[188] P. P. Zhang, J. Wu, D. Dean, L. Xing, J. Y. Xue, R. Maciunas, and C. Sibata. Plug
pattern optimization for gamma knife radiosurgery treatment planning. International
Journal of Radiation Oncology Biology Physics, 55(2):420–427, 2003.

[189] Z. Zhu and M. A. McKnew. A goal programming workload balancing optimization
model for ambulance allocation: An application to Shanghai, P R. China. Socio-
Economic Planning Science, 27(2):137–148, 1993.

198

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1.1. Leading causes of death in the U.S. in 2004
	1.2. U.S. liver data between 2000-2007
	1.3. Patient survival rates for liver transplants
	3.1. Summary of geographic decomposition schemes used
	3.2. CPU times for different geographic decomposition schemes
	3.3. Paired t tests and confidence intervals on the difference in average number of transplants per year
	3.4. Paired t tests and confidence intervals on the difference in average minimum intra-regional transplant rate per patient per year
	4.1. Constraint structure of the system of inequalities (4.9)-(4.12)
	4.2. Results for initial computational experiments
	4.3. Size of pricing problems for geographic decomposition scheme 20_10
	4.4. Estimating the optimality gap for candidate solutions with B=10, K=200
	4.5. Paired t tests and confidence intervals on the difference in expected life-days gained per transplant
	5.1. Constraint structure of the system of inequalities (5.5)-(5.8)
	5.2. Summary of initial tests with B=10, K=200
	5.3. Estimating the optimality gap for candidate solutions using geographic decomposition scheme 30_10 with B=20, K=1,000
	5.4. Paired t tests and confidence intervals on the difference in expected life-days gained per transplant
	6.1. Characteristics of the instances tested for SCSP
	6.2. Summary of initial computational runs for SCSP
	6.3. Summary of tests on switching criteria and cut-aggregation for SCSP
	6.4. Summary of computational runs for testing pricing strategies
	6.5. Summary of tests on pricing and stabilization strategies
	6.6. Summary of tests on larger instances with 10,000 scenarios for SCSP
	6.7. Characteristics of the instances tested for SMCFP
	6.8. Summary of initial computational runs for SMCFP
	6.9. Summary of tests on switching criteria and cut-aggregation for SMCFP
	6.10. Summary of tests on stabilization strategies for SMCFP

	LIST OF FIGURES
	1.1. Liver transplant waiting list trends in recent years
	1.2. Map of current OPOs and liver transplant regions in the U.S.
	1.3. UNOS liver allocation hierarchy
	3.1. An example of geographic decomposition
	3.2. A hypothetical representation of the actual efficient frontier for the integer and linear programs
	3.3. An initial ``outer envelope" for the efficient frontier based on the LP efficient frontier
	3.4. Schematic illustration of iterations
	3.5. After one more iteration
	3.6. Schematic illustration of the initial steps of the alternative algortithm
	3.7. After one more iteration of the alternative algorithm
	3.8. A summary of efficient frontiers obtained by analyzing the system using different region covers for the geographic decomposition scheme
	3.9. Efficient frontier obtained with geographic decomposition scheme 20_12
	3.10. Maps of regions that correspond to the steps of the efficient frontier obtained with geographic decomposition scheme 20_12
	3.11. Efficient frontier obtained with geographic decomposition scheme 20_15
	3.12. Maps of regions that correspond to the steps of the efficient frontier obtained with geographic decomposition scheme 20_15
	3.13. 95% confidence intervals around the mean difference in number of transplants
	3.14. 95% confidence intervals around the mean difference in number of transplants as a percentage of transplants under the current system
	3.15. 95% confidence intervals around the mean difference in minimum intra-regional transplant rate per patient
	3.16. 95% confidence intervals around the mean difference in minimum intra-regional transplant rate per patient as a percentage of the equity measure under the current system
	4.1. Scenario sampling from the End-stage Liver Disease and organ allocation simulation model
	4.2. Maps of regions obtained with geographic decomposition scheme 20_10
	4.3. Maps of regions obtained with geographic decomposition scheme 20_10 continued
	4.4. 95% confidence intervals around the mean difference in the expected life-days gained per transplant
	4.5. 95% confidence intervals around the mean difference in the expected life-days gained per transplant as a percentage of the performance of the current system
	5.1. Creating the set of aggregate patients in a scenario
	5.2. A comparison of percentage changes in objective values and run times for different geographic schemes
	5.3. Maps of regions obtained with geographic decomposition scheme 30_10
	5.4. Maps of regions obtained with geographic decomposition scheme 30_10 continued
	5.5. Maps of regions obtained with geographic decomposition scheme 30_10 continued
	5.6. Maps of regions obtained with geographic decomposition scheme 30_10 continued
	5.7. 95% confidence intervals around the mean difference in the expected life-days gained per transplant
	5.8. 95% confidence intervals around the mean difference in the expected life-days gained per transplant as a percentage of the performance of the current system
	6.1. Schematic illustration of column generation within two-stage stochastic programming
	6.2. Flow chart for column generation within the L-shaped method

	1.0 INTRODUCTION
	1.1 Liver Allocation in the U.S.
	1.2 Problem Statement and Proposed Research Description
	1.3 Contribution

	2.0 LITERATURE REVIEW
	2.1 Integer Programming (IP)
	2.1.1 IP Applications in Health Care
	2.1.2 Branch and Price

	2.2 Multi-objective Programming (MOP)
	2.2.1 Multi-objective Integer Programming (MOIP)
	2.2.2 MOP and MOIP Applications in Health Care

	2.3 Stochastic Programming (SP)
	2.3.1 SP Applications in Health Care

	2.4 Organ Allocation and Transplantation
	2.4.1 Previous Studies on Transplantation Region Design

	3.0 BALANCING EFFICIENCY AND EQUITY IN THE LIVER ALLOCATION HIERARCHY
	3.1 Introduction
	3.2 Mathematical Models
	3.2.1 Mathematical Model for Maximizing Efficiency
	3.2.2 Mathematical Model for Maximizing Equity

	3.3 Algorithmic Approaches
	3.3.1 Computational Approaches for Solving the Efficiency and Equity Models
	3.3.1.1 Geographic Decomposition
	3.3.1.2 Set-partitioning Branching

	3.3.2 Approximating the Efficient Frontier
	3.3.2.1 An Algorithm Using Parameterization
	3.3.2.2 An Alternative Algorithm

	3.4 Computational Results
	3.4.1 Data Sources and Parameter Estimation
	3.4.2 Efficient Frontier Approximations
	3.4.3 Evaluating the Regional Configurations

	3.5 Conclusions

	4.0 DESIGNING LIVER TRANSPLANT REGIONS UNDER UNCERTAINTY USING A PATIENT-BASED MODEL
	4.1 Introduction
	4.2 A Stochastic Programming Model for Region Design under Uncertainty
	4.2.1 First-Stage Model
	4.2.2 Second-Stage Model
	4.2.3 Branch-and-Price Framework

	4.3 Computational Approaches
	4.3.1 Computational Approaches for Scenario Generation
	4.3.2 SPRINT Approach for Column Generation
	4.3.3 Solution Methods for the Pricing Problem
	4.3.3.1 Branching Routines
	4.3.3.2 Integer Solution Heuristic for Branch-and-Bound

	4.4 Data Sources and Parameter Estimation
	4.5 Computational Results
	4.5.1 Evaluating the Results

	4.6 Conclusions

	5.0 DESIGNING LIVER TRANSPLANT REGIONS UNDER UNCERTAINTY USING AN OPO-BASED MODEL
	5.1 Introduction
	5.2 An Alternative Aggregate Model for Region Design under Uncertainty
	5.2.1 Column Generation Framework for the Aggregate Model

	5.3 Computational Approaches and Parameter Estimation
	5.3.1 Data Sources and Parameter Estimation

	5.4 Computational Results
	5.5 Conclusions

	6.0 COLUMN GENERATION WITHIN THE L-SHAPED METHOD FOR STOCHASTIC LINEAR PROGRAMS
	6.1 Introduction
	6.2 Theory and Reformulations for Column Generation within Two-stage Stochastic Linear Programs
	6.3 Algorithms for Combining Dantzig-Wolfe Decomposition and the L-shaped Method
	6.3.1 Main Algorithmic Approach
	6.3.2 Algorithmic Strategies
	6.3.2.1 L-shaped Cut Generation
	6.3.2.2 Column Generation
	6.3.2.3 Switching Criteria
	6.3.2.4 Stabilization Strategies

	6.4 Computational Results
	6.4.1 A Two-Stage Stochastic Cutting Stock Problem (SCSP)
	6.4.1.1 Computational Results for SCSP

	6.4.2 A Two-Stage Stochastic Multi-commodity Flow Problem (SMCFP)
	6.4.2.1 Computational Results for SMCFP

	6.5 Conclusions

	7.0 CONCLUSIONS AND FUTURE RESEARCH
	7.1 Future Research

	BIBLIOGRAPHY

