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HILBERT’S 13TH PROBLEM

Ziqin Feng, PhD

University of Pittsburgh, 2010

The 13th Problem from Hilbert’s famous list [16] asks whether every continuous function of three

variables can be written as a superposition (in other words, composition) of continuous functions

of two variables. Let X be a space. A family Φ ⊆ C(X) is said to be basic for X if each f in

C(X) can be written: f =
∑n

q=1 (gq ◦ φq), for some φ1, · · · , φn in Φ and g1, . . . , gn ∈ C(R). For

ψ1, ψ2, . . . , ψm ∈ C(X), define Σ : Xm → R by Σ(x1, x2, . . . , xm) =
∑m

p=1 ψp(xp). A family Ψm

of maps X → R is elementary in dimension m if the family of maps Φm = {Σ(ψ1, ψ2, . . . , ψm) :

ψ1, . . . , ψm ∈ Ψm} is basic for Xm. Kolmogorov and Arnold [18, 4] showed that the closed unit

interval has a finite elementary family in every dimension, thereby solving Hilbert’s 13th Problem.

Define a new cardinal invariant basic (X) = min{|Φ| : Φ is a basic family for X}. It is estab-

lished that a space has a finite basic family if and only if it is finite dimensional, locally compact

and separable metrizable (or equivalently, homeomorphic to a closed subspace of Euclidean space).

Such a space has dim(X) ≤ n if and only if basic (X) ≤ 2n + 1. Separable metrizable spaces

either have finite basic (X) or basic (X) equal to the continuum. The value of basic (K) for a

compact space K is closely connected with the cofinality of the countable subsets of a basis B for

K of minimal size ordered by set inclusion.

It is proved that a space has a finite elementary family in every dimension m if and only if

it is homeomorphic to a closed subspace of Euclidean space. It is further shown that there is a

finite elementary family for the reals in each dimension m consisting of effectively computable

functions, and effective procedures for representing any continuous function of m real variables as

a superposition of these elementary functions and other univariate maps.
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1.0 INTRODUCTION

The 13th Problem from Hilbert’s famous list [16] asks (see Appendix A for the full text) whether

every continuous function of three variables can be written as a superposition (in other words,

composition) of continuous functions of two variables.

Hilbert motivated his problem from two rather different directions. First he explained that

a positive solution would have applications in nomography. Nomography is the use of graphics

to do calculations. Before the introduction of digital computers such graphical calculators were

widespread, but nomography is now almost a forgotten art.

The second motivation Hilbert gave came from finding roots of polynomial equations. As is

well known, polynomials of degree no more than four have roots obtained by applying the standard

arithmetical operations along with taking nth roots, but Abel showed that the quintic can not be

solved in radicals. However the general quintic equation, x5+a4x
4+a3x

3+a2x
2+a1x+a0 = 0, can

be reduced by use of Tschirnhaus transformations, to a quintic equation, y5 + b1y + b0 = 0, where

x = x(y, a4, . . . , a0) and bi = bi(a4, . . . , a0) can be computed using the arithmetical operations

and roots. Thus roots of the general quintic can be calculated as a superposition of continuous

functions of two or less variables, namely: arithmetical operations, roots and a two place function

y = y(b1, b0).

Tschirnhaus transformations also allow one to calculate the roots of the general sextic equation

as a superposition of continuous functions of two or fewer variables. But applying Tschirnhaus

transformations to the general septic equation apparently only reduces the equation to one in three

parameters, y7 +b3y
3 +b2y

2 +b1y+1 = 0. Hilbert felt that the difficulties encountered in trying to

eliminate an additional coefficient were real — the root function y = y(b3, b2, b1) was irreducibly
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a continuous function of three variables, it could not be written as a superposition of continuous

functions of two variables.

Hilbert, then, anticipated a negative answer to his 13th Problem, saying,

“it is probable that the root of the equation of the seventh degree is a function of its coefficients
which [...] cannot be constructed by a finite number of insertions of functions of two arguments.
In order to prove this, the proof would be necessary that the equation of the seventh degree f7 +
xf3 + yf2 + zf + 1 = 0 is not solvable with the help of any continuous functions of only two
arguments.”

It took over 50 years for significant progress to be made on Hilbert’s 13th Problem. Then in

1954 Vitushkin [37] found a result in the direction Hilbert expected: if m/q > m′/q′ then there

are functions of m variables with all qth order derivatives continuous which can not be written as

a superposition of functions of m′ variables and all q′th order derivatives continuous. In particular,

there are continuously differentiable functions of three variables which can not be written as a

superposition of continuously differentiable functions of two variables.

However Kolmogorov and Arnold subsequently proved a series of wonderful, and justly fa-

mous, results culminating with Kolmogorov’s Superposition Theorem (1957) [2, 4, 18]. (Here,

and subsequently, I denotes [0, 1], and C(X) denotes the set of continuous real valued functions

on the topological space X .)

Kolmogorov’s Superposition Theorem.

Step 1 There exist φ1 . . . , φ2m+1 in C(Im) such that

∀f ∈ C(Im) f =
2m+1∑
i=1

gi ◦ φi, for some gi ∈ C(I).

Step 2 Further, one can choose the φ1, . . . , φ2m+1 such that:

φi(y1, . . . ym) =
m∑
j=1

ψij(yj), for some ψij ∈ C(I).

2



Notice that this result really does solve Hilbert’s 13th Problem for functions of m variables

from [0, 1]. The first Step in the theorem says that there are 2m + 1 continuous functions on Im

(the φi) so that every continuous function on Im can be simply obtained from these combined with

addition and functions of one variable (the gi). Now we see that Hilbert’s 13th Problem has a

positive solution if and only if these particular functions, the φi, of m variables can be written as

a superposition of continuous functions of two or fewer variables. Step 2 assures us that is indeed

possible, in fact only one function of two variables, addition, is necessary, the other functions (the

ψij) are functions of just one variable.

Thus every continuous function of m variables from I can be written as a superposition of

functions of just one variable along with a single function of two variables, namely addition. This

is truly astonishing! It is as if there are no continuous functions of m variables for m > 1, except

addition, only continuous functions of one variable.

It is natural to wonder how far Kolmogorov’s Superposition Theorem can be extended. How

smooth can the ‘inner’ functions (the ψij) be chosen? Given a suitably smooth function f how

smooth can the ‘outer’ functions (the gi) be selected? Is the number of inner functions minimal?

Which spaces can be taken as the domain of the given function? An especially natural question in

the latter direction is to ask whether the closed unit interval appearing in Kolmogorov’s theorem

can be replaced with the reals: can every continuous function of m real variables be written as a

superposition of continuous functions of two real variables? Can this be done as in the Kolmogorov

Superposition Theorem?

Indeed many extensions to Kolmogorov’s theorem have been obtained. For example, Fridman

showed that the inner functions can be taken to be Lipschitz [9]. That this is the best possible result

in this direction follows from work of Vitushkin & Henkin, [15], who established results which

imply that the inner functions can not be continuously differentiable. Sprecher established that

the inner functions can all be taken to be scaled and translated versions of a single function [31].

The work of Sternfeld described in more detail below shows that the number of inner functions is

indeed minimal.

Lorentz showed that the outer functions can be taken to be all equal, and observed that they

can be chosen to be absolutely continuous [21].
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This thesis is particularly concerned with the domain of the given function, so especially rele-

vant here, is Ostrand’s extension in [23] from functions on Im to finite powers of finite–dimensional

compact, metrizable spaces.

Ostrand’s Theorem.

Step 1 Let X be compact, metrizable and of dimension n.

Then there exist φ1 . . . , φ2n+1 in C(X) such that

∀f ∈ C(X) f =
2n+1∑
i=1

gi ◦ φi, for some gi ∈ C(I).

Step 2 If X = Y m one can choose the φ1, . . . , φ2n+1 such that:

φi(y1, . . . ym) =
m∑
j=1

ψij(yj), for some ψij ∈ C(Y )

1.1 BASIC AND ELEMENTARY FAMILIES

Following Sternfeld, let us isolate the behavior of the families of functions φi and ψij appearing

in the Superposition Theorems of Kolmogorov and Ostrand. (Here, and below, unless otherwise

stated a ‘space’ is a Tychonoff topological space, andC∗(X) denotes the subset ofC(X) consisting

of bounded functions.)

Definition 1. Let X be a space. A family Φ ⊆ C(X) is said to be basic (respectively, basic∗) for

X if each f in C(X) (respectively, C∗(X)) can be written: f =
n∑
q=1

(gq ◦ φq),

for some φ1, · · · , φn in Φ and ‘co-ordinate functions’ g1, . . . , gn ∈ C(R).

Note that Step 1 of Ostrand’s theorem can now be restated as saying that every compact metriz-

able space of dimension n has a basic family of size 2n + 1. In the first step beyond compact

domains, and so having to deal with unbounded continuous functions, Doss [6] showed that Rn

has a basic family of size 4n.
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Beyond their intrinsic interest, basic functions have proved to be widely useful. Since the use of

basic functions reduces calculations of functions simply to addition and evaluation of a fixed finite

family of functions, applications to numerical analysis, approximation and function reconstruction

are immediately apparent. Also other applications have emerged including to neural networks.

In probably the deepest work on Hilbert’s 13th Problem following Kolmogorov’s Theorem,

Sternfeld [34] (a significantly shorter proof is given by Levin in [20]) showed that if X is a com-

pact, metrizable space of dimension n ≥ 2, then X does not have a basic family of size ≤ 2n. (In

dimension 1, the minimal size of a basic family can be one (X = I), two (X = the tripod) or 3 (the

circle). There is no characterization of which one dimensional compact metrizable spaces need

precisely two basic functions, but much is known from the work of Sternfeld [34], and Skopenkov

[29].) Combining this with Ostrand’s Theorem gives a characterization of the dimension of com-

pact metrizable spaces.

Theorem 2. Let n ≥ 1, and let X be a compact metrizable space.

Then dimX ≤ n if and only if X has a basic family with ≤ 2n+ 1 members.

To deal with the inner functions from Kolmogorov’s and Ostrand’s theorems we make the

following definitions. For maps ψ1, ψ2, . . . , ψm ∈ C(X), define Σ = Σ(ψ1, ψ2, . . . , ψm) : Xm →

R by Σ(x1, x2, . . . , xm) =
∑m

p=1 ψp(xp).

Definition 3. A family Ψm contained in C(X) is elementary in dimension m if the family of maps

Φm = {Σ(ψ1, ψ2, . . . , ψm) : ψ1, . . . , ψm ∈ Ψm} is basic for Xm.

Hence Step 2 of Ostrand’s Theorem is essentially equivalent to saying that a compact metriz-

able space of dimension n has an elementary family of size nm(2m+ 1) in dimension m.

1.2 THE PROBLEMS

The following questions and problem arise naturally from the discussion above of the Arnold–

Kolmogorov solution of Hilbert’s 13th Problem, Kolmogorov’s Superposition Theorem, and the
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subsequent work of Fridman, Ostrand, Doss, Sternfeld and others. They have all been raised either

in full, or in part, by numerous authors.

Question A Which spaces have a finite basic family?

Question B Given a space X , what is the minimal size of a basic family for X?

Question C Which spaces have a finite elementary family in every (or some) dimension?

In particular, does the real line have a finite elementary family in every dimension?

Kolmogorov’s Superposition Theorem promises much to numerical analysis, in principle con-

verting frequently intractable multivariate problems into ones involving only univariate functions

and addition. However the proof of Kolmogorov’s Theorem is highly non–constructive. Only very

recently (2007, published 2009) have Braun & Griebel [10] given a rigorous truly constructive

version of the Kolmogorov Superposition Theorem.

Problem D In those cases where finite basic or elementary families can be shown to exist, find

constructive versions, and explore applications.

1.3 SOLUTIONS

Theorem A. Let X be a space. Then the following are equivalent:

(1) X has a countable basic family,

(2) X has a finite basic family, and

(3) X is a finite dimensional, locally compact and separable metrizable, or equivalently, is home-

omorphic to a closed subspace of Euclidean space.

The proof of Theorem A is given in Chapter 2, where, in fact, a stronger result will be proved

where in (1) ‘countable basic family’ is weakened to ‘countable generating∗ family’. This theorem

gives strong and complete solutions to Problems 10, 11 of Sternfeld [34] and questions of Hattori

[11], among others.
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In order to investigate the minimal size of basic families of a given space, we introduce a new

cardinal invariant.

Definition 4. Let X be a space. Define basic (X) = min{|Φ| : Φ is a basic family for X}.

Theorem B.

1. For any spaceX , basic (X) ≤ 2n+1 if and only ifX is locally compact, separable metrizable

and has dimX ≤ n.

2. For X separable metrizable, then either basic (X) is finite or basic (X) = c.

3. For X compact, then basic (X) ≤ cof([w(X)]ℵ0 ,⊆),

and if X contains a discrete subspace D such that |D| = w(X) then:

either X is finite dimensional, and basic (X) = cof([w(X)]ℵ0 ,⊆),

or X is infinite dimensional, and basic (X) = |C(X)| = w(X)ℵ0 .

Theorem B is proved in Chapter 3.

Part 1 above answers Problems 12, 13 of Sternfeld [34]), and questions of Hattori, Doss and

others [6, 11].

The interest in Part 2 lies in the fact that the dichotomy ‘basic (X) is either finite or the con-

tinuum, c’ is true in ZFC (the standard axioms of set theory), and does not assume the Continuum

Hypothesis (for example). Any experienced Set Theorist or Set Theoretic Topologist would find

this absoluteness of basic (X), when X is separable metrizable, quite unexpected.

Part 3 yields considerable, if not complete, information on the possible values of basic (X)

when X is compact. Note that the ‘weight’, w(X), of a space X is the minimal size of a basis

for X . Further, for a set S, [S]ℵ0 is the set of countably infinite subsets of S, and cof([S]ℵ0 ,⊆)

is the minimal size of a cofinal family in [S]ℵ0 partially ordered by set containment. This leads to

some intriguing connections with Shelah’s Potential Cofinalities Theory (PCF), these are outlined

in Chapter 3.3.

Theorem C. Let X be a space. Then the following are equivalent:

(1) some power of X has a finite basic family

(2) X has a finite elementary family in some dimension

7



(3) X has finite elementary families in every dimension

(4) for every m,n ∈ N, there is an r ∈ N and ψpq from C(X,Rn), for q = 1, . . . , r and p =

1, . . . ,m, such that every f ∈ C(Xm,Rn) can be written

f(x1, . . . , xm) =
r∑
q=1

g

(
m∑
p=1

ψpq(xp)

)
,

for some g ∈ C(Rn,Rn);

(5) X is a locally compact, finite dimensional separable metric space, or equivalently, homeomor-

phic to a closed subspace of Euclidean space.

This Theorem encapsulates our strengthening of the Arnold–Kolmogorov solution to Hilbert’s

13th Problem — the answer is, from (5) implies (3), yes, any continuous real–valued function

of three real variables can be written as a superposition of continuous functions of two or fewer

variables. In fact R has elementary families in every dimension such that only a single co–ordinate

function is required and such that the elementary functions are Lipschitz, with Lipschitz constant

1.

From ‘(5) implies (4)’ we know this remains true if we consider complex–valued functions

and functions of complex variables. This includes, of course, the solution function f to the septic

equation f 7 + xf 3 + yf 2 + zf + 1 = 0.

The equivalence of (5) and (3) characterizes those spaces which satisfy a Superposition Theo-

rem of the Kolmogorov type. Theorem C is established in Chapter 4.

Theorem D. Let m be a natural number. Take any γ ≥ 2m+ 2, and let D = {k/γ` : k, ` ∈ Z} be

the set of all rationals base γ.

Then Rm has an elementary family, ψij where i = 1, . . . , 2m+ 1 and j = 1, . . . ,m, which are

defined constructively (in fact, recursively) on D.

Let φi(x1, . . . , xm) =
∑

j ψij(xj). Then, given f ∈ C(Rm), there is a constructive algorithm

for computing g1, . . . , g2m+1 in C(R) such that f =
∑
gi ◦ φi, to within a specified error ε > 0 on

any specified compact subset K of Rm.

8



Theorem D is proved in Chapter 5. We note that we use the term ‘algorithm’ a little loosely (as

is standard in numerical analysis) to mean a ‘procedure’ or ‘process’. However it would be straight-

forward to rephrase the algorithms in Chapter 5 to be algorithms in the sense of Blum–Cucker–

Shub–Smale Complexity and Real Computation, [30], or Weihrauch’s Computable Analysis, [39].

Computer code in the high level language Python implementing the algorithms of Theorem D is

given in Appendix B. Some comments on applications to neural networks are given in Chapter 5.3.

Appendix C deals with earlier work of the author on the generalized metric properties of func-

tion spaces.
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2.0 SPACES WITH FINITE BASIC FAMILIES

This chapter is devoted to proving Theorem 6, which is a strengthening of Theorem A.

To facilitate the proof, and provide full generality we make the following definition allowing

more general superposition representations than a ‘basic’ representation.

Definition 5. Let X be a space. A family Φ ⊆ C(X) is said to be generating (respectively,

generating∗) for X with respect to a ‘set of operations’ M of continuous functions mapping

from subsets of Euclidean space into subsets of Euclidean space, if each f ∈ C(X) (respectively,

C∗(X)) can be written as a composition of functions from Φ, M and C(R).

Clearly a basic family of functions is generating, a basic∗ family is generating∗, and a generat-

ing family is generating∗.

Theorem 6. Let X be a space. Then the following are equivalent:

(1) X has a countable generating∗ family,

(2) X has a finite basic family, and

(3) X is a finite dimensional, locally compact and separable metrizable, or equivalently, is home-

omorphic to a closed subspace of Euclidean space.

In Theorem 6, (2) =⇒ (1) is immediate. In the next section (Section 2.1) we prove (1) =⇒

(3), and then in Section 2.2 we establish (3) =⇒ (2).

10



2.1 RESTRICTIONS INDUCED BY GENERATING FAMILIES

Lemma 7. Let X have a generating∗ family Φ with respect to M . Then e : X → RΦ defined by

e(x) = (φ(x))φ∈Φ is an embedding.

Proof. Clearly e is continuous (each projection is a φ in Φ which is continuous). It is also easy

to see e is injective. Take distinct x, x′ in X . Pick f ∈ C∗(X) such that f(x) = 0, f(x′) = 1.

Represent f as a composition of φ1, . . . , φn in Φ, members of M and C(R). If e(x) = e(x′) then

φi(x) = φi(x
′) for all i, and so f(x) = f(x′), which is a contradiction.

It remains to show that the topology induced on X by e contains the original topology. Since

X is completely regular it is sufficient to check that for every f ∈ C∗(X) the map e(f) : e(X)→

R defined by e(f)(x) = f(e−1(x)) is continuous. But each f ∈ C∗(X) can be written as a

composition of some φ1, . . . , φn in Φ and members of M and C(R). Note that for each i we have

φ(e−1(x)) = πφi(x), where πφi is the projection map of RΦ onto the φith co-ordinate. Hence

e(f) = f ◦ e−1 is the composition of continuous maps, namely the πφis and functions in M and

C(R), and so is continuous as required.

Since any subspace of RN is separable metrizable and any subspace of Rn is finite dimensional,

we deduce from Lemma 7:

Corollary 8.

a) A space with a countable generating∗ family is separable metrizable.

b) A space with a finite generating∗ family is finite dimensional.

A subspace C of a space X is said to be C∗-embedded in X if every f ∈ C∗(C) can be ex-

tended to a continuous bounded real valued function on X . In a normal space all closed subspaces

are C∗-embedded. Compact subspaces are always C∗-embedded. We note the following easy

lemma:

Lemma 9. If Φ is a generating∗ (respectively, basic∗) family for a space X with respect to M , and

C is C∗-embedded in X then Φ|C = {φ|C : φ ∈ Φ} is a generating∗ (respectively, basic∗) family

for C.
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Lemma 10. A space with a countable generating∗ family is locally compact.

Proof. Suppose the space X has a countable generating∗ family Φ with respect to M , but is not

locally compact. Since X is metrizable, it follows that the metric fan F (defined below) embeds as

a closed subspace in X . Hence by Lemma 9 it suffices to show that F does not admit a countable

generating∗ family (with respect to any set of operations M ).

The metric fan F has underlying set {∗}∪ (N× N) and topology in which all points other than

∗ are isolated and ∗ has basic neighborhoods B(∗, N) = {∗}∪ ([N,∞)× N). For a contradiction,

let Φ = {φ1, φ2, . . .} be a countable generating∗ family with respect to M .

For each i, let yi = φi(x0), and pick basic open Ui containing ∗ such that φi(Ui) ⊆ (y1 −

1, y1 +1). Now for each n let Vn =
⋂n
i=1 Ui. So φi(Vn) ⊆ (yi− 1, yi+1) for i = 1, . . . , n. We can

write Vn = {∗}∪ ([Nn,∞)× N) and suppose, without loss of generality, that Nn > Nm if n > m.

Fix n. Let D0 = {x0
k = (Nn, k) : k ∈ N}. As {φ1(x

0
k)}k∈N is a subset of [y1 − 1, y1 + 1],

which is sequentially compact, there is a D1 = {x1
k : k ∈ N} ⊆ D0 such that {φ1(x

1
k)}k∈N

is convergent. As {φ2(x
1
k)}k∈N is a subset of [y2 − 1, y2 + 1], which is sequentially compact,

there is a D2 = {x2
n : n ∈ N} ⊆ D0 such that {φ2(x

2
k)}k∈N is convergent. Inductively we get

Dn = {xnk : k ∈ N}, which is infinite closed discrete and for each i = 1, ..., n the sequence

{φi(xnk)}k∈N is convergent, say to zni . Define Dn
O = {xn2k−1 : k ∈ N} and Dn

E = {xn2k : k ∈ N}.

Define f : F → [0, 1] by: f is identically zero outside
⋃
nD

n
O (in particular, f is zero on each

Dn
E), and f is identically 1/n on Dn

O. Then f is continuous and bounded.

Hence, for some `, f can be written as the composition of φ1, . . . , φ` and members of M and

C(R). Now, on the one hand limk φi(x
`
2k−1) = zi.` = limk φi(x

`
2k) so by continuity of the elements

of M and C(R) in the compositional representation of f , limk f(x`2k−1) = limk f(x`2k), and on the

other hand, limk f(x`2k−1) = 1/` 6= 0 = limk f(x`2k). This is our desired contradiction.

Let Y be a locally compact separable metrizable space. Write Ck(Y ) for C(Y ) with the

compact-open topology. Then Ck(Y ) is a Polish (separable, completely metrizable) group. In

particular, for any n, Ck(R)n is a Polish group.

Lemma 11. If X has a countable generating∗ family with respect to a countable set of operations,

M , then X has a finite generating∗ family with respect to a finite set of operations M ′.

12



Proof. Let φ1, φ2, . . . be a countable generating∗ family for X with respect to the countable set of

operations M . By Lemma 10 X is locally compact and Ck(X) is a Polish group.

Let g1, g2, . . . be formal letters representing functions from R to R. Let W be the set of all

formal compositions of φis, elements of M and gis. Note thatW is countable.

Fix w in W . Then w induces a map (g1, . . . , gn) 7→ w(g1, . . . , gn) from Ck(R)n → Ck(X)

where we substitute actual gi ∈ C(R) for the corresponding formal letter. This map is continuous

with respect to the compact-open topology. Let Fw = w(Ck(R)n). It is analytic. Define Gw =

Fw ∩ Ck(X, (0, 1)). Since Ck(X, (0, 1)) is homeomorphic to Ck(X) it is Polish, and hence must

be a Gδ subset of Ck(X). So Gw is analytic in Ck(X, (0, 1)).

Note, by the generating∗ property, thatC∗k(X) ⊆
⋃
w∈W Fw. HenceCk(X, (0, 1)) =

⋃
w∈W Gw.

By the Baire Category Theorem there must be some particular w inW such that Gw is not meager.

Fix a homeomorphism h : R → (0, 1). Via h, addition and subtraction on R induce (contin-

uous) group operations ⊕,	 : (0, 1) × (0, 1) → (0, 1). These operations on (0, 1) in turn induce

operations on Ck(X, (0, 1)) making this space a Polish group.

Let Hw be the subgroup of Ck(X, (0, 1)) generated by Gw. By Pettis’ Theorem [26], since Gw

is non-meager and analytic, Gw 	 Gw has non-empty interior. Hence the subgroup Hw is open,

and so coincides with Ck(X, (0, 1)) (which is connected).

Set Φ′ to be the finite set of φis appearing in w, and set M ′ to be ⊕,	 and the finite set

of elements of M appearing in w. Since Hw = C(X, (0, 1)), each element of C(X, (0, 1)) is a

composition of members of Φ′, M ′ and C(R).

We check Φ′ is a finite generating∗ family with respect to M ′. For if f ∈ C∗(X), then f

maps into some open interval (a, b). Fix a homeomorphism g0 : R → R taking (0, 1) to (a, b).

Then f = g0 ◦
(
g−1
0 ◦ f

)
, where g−1

0 ◦ f is in Ck(X, (0, 1)). Hence g−1
0 ◦ f can be expressed

as a composition of elements of Φ′, M ′ and some g1, . . . , gn in C(R). But now f is g0 of this

composition and so is also expressible in terms of elements of Φ′, M ′ and C(R), as required.

We note that the finite generating∗ family is a subset of the original family, and also that if the

original family is generating then we can take M ′ ⊆M ∪ {+,−}.
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Proof of (1) =⇒ (3) in Theorem 6. Let X be a space with a countable generating∗ family with

respect to a countable set of operations. By Corollary 8 a) X is separable metrizable. Lemma 10

then says that X is locally compact. From Lemma 11 we deduce that X has a finite generating∗

family. Hence by Corollary 8 b) X is finite dimensional.

2.2 CONSTRUCTION OF FINITE BASIC FAMILIES

This section is devoted to proving:

Lemma 12. If X is a locally compact, separable metrizable space of dimension ≤ n then X has

a basic family of size 2n+ 1.

The implication ‘(3) =⇒ (2)’ of Theorem 6 then follows.

We should note the following prior work. Doss extended the first step in Kolmogorov’s The-

orem to the non-compact case, by showing that Rn has a finite basic family of size 4n [6]. While

Hattori [11] showed that every locally compact, separable metrizable space X of dimension n has

a finite basic∗ family of size 2n+ 1.

Lemma 12 and its proof improves on Doss’ and Hattori’s results and proof because: (1) it

applies to all functions (not necessarily bounded) on any locally compact, separable metrizable

finite–dimensional space (not just Rn), (2) it gives the minimal number of basic functions (Doss

does not), (3) it is somewhat constructive (Hattori’s argument uses a Baire category argument) and

(4) it is considerably shorter than Hattori’s. The proof is similar to that of Ostrand for compact

metric spaces. However difficulties arise because continuous real valued functions on a locally

compact space need not be bounded.

For this section, fix a locally compact, separable space X of dimension ≤ n, and with com-

patible metric d. We can find {Kb : b ≥ −1} a countable cover of X by compact sets such that

K−1 = K0 = ∅ and Kb ⊆ K◦
b+1 for each b ≥ −1. For each b ≥ 0 we put Hb = Kb \K◦

b−1, and

set Ub = K◦
b+1 \Kb−1. Since Ostrand has done the compact case, we can assume that the Kb’s are

strictly increasing. We show X has a basic family of size 2n+ 1.
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The basic functions φi are defined to be the limit of approximations f ik. The approximations

are defined inductively along with some families of ‘nice’ covers. These ‘nice’ covers come from

Ostrand’s Dimension Theorem.

Ostrand’s Dimension Theorem. A metric space X is of dimension ≤ n if and only if for each

open cover C ofX and each integer k ≥ n+1 there exist k discrete families of open sets U1, · · · ,Uk
such that the union of any n+ 1 of the Ui is a cover of X which refines C.

Lemma 13. Let γ > 0. There are 2n + 1 many families S1, . . . ,S2n+1 of open subsets of X , and

ηb > 0 for b ≥ 0, satisfying:

(1) Each S i is discrete in X.

(2) For k fixed and each x ∈ X fixed, |{S ∈
⋃2n+1
i=1 S i : x ∈ S}| ≥ n+ 1.

(3) diamS < γ for any S ∈
⋃2n+1
i=1 S i.

(4)
⋃2n+1
i=1 S i refines {Ub : b ∈ ω}.

(5) For any b ∈ N, {S : S ∈
⋃2n+1
i=1 S i, S ∩Kb 6= ∅} is finite.

(6) S(Hb, η
b) ∩ S = ∅ if Hb ∩ S = ∅ for any S ∈

⋃n+1
i=1 S i.

(7) S(Hb−1, ηb−1) ∩ S(Hb+1, ηb+1) = ∅.

In (6) and (7), S(Hb, η
b) = {x ∈ X : d(Hb, x) ≤ ηb}

Proof. Let C = {Ca : a ∈ N} be a locally finite open cover of X with: diam (Ca) < γ and

|{Hb : Hb∩Ca 6= ∅}| ≤ 2, for each a ∈ N. Then by Ostrand’s covering theorem, there exist 2n+1

discrete families of open sets S1, · · · ,S2n+1 which refines C. Also the union of any n+ 1 of the Si
is a cover of X . So 1)-4) are easy to verify.

Fix i with 1 ≤ i ≤ 2n + 1. As S i is discrete, {S : S ∩ Kb 6= ∅, S ∈ S i} is finite. Thus

condition 5) is satisfied.

Now fix i and b, the discreteness of S i guarantees that

Hb ∩
⋃
{S : S ∈ S i and Hb ∩ S = ∅} = ∅.

So d(Hb,
⋃
{S : S ∈ S i and Hb ∩ S = ∅}) > 0. Then we can pick ηbi such that S(Hb, η

b
i )∩S =

∅ if Hb ∩ S = ∅ for any S ∈ S i. Let ηb = min{ηbi : i = 1, · · · , 2n+ 1}. This satisfies 6).
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Notice that since Hb is compact for each b ∈ N, we can pick ηb small enough such that

S(Hb−1, ηb−1) ∩ S(Hb+1, ηb+1) = ∅, giving (7).

Proof. (Lemma 12) Step 1: Construction of the approximations

Again, we generalize the construction of Ostrand, but must find ways around the problem of not

having bounded functions.

By induction on k ≥ 0, using Lemma 13, for i = 1, ..., 2n + 1, there exist: positive real

numbers εk with ε1 < 1/4, γk, ηbk distinct positive prime numbers rik, discrete families S1
k , ...,S2n+1

k

and continuous functions f ik : X → [0, k + 1], with the following properties.

For each k ∈ N, the families S1
k , ...,S2n+1

k , γk and ηbk satisfy (1)–(7) of Lemma 13. Further:

(A) limk→∞ γk = limk→∞ εk = 0;

(B) εk < 1/Π2n+1
i=1 rik;

(C) f ik is constant on the closure of those members of S ik which have nonempty intersection

with Kb for (b ≤ k), the constant being an integral multiple of 1/rik, and takes different values on

distinct members. Then we can take a continuous extension of f ik to the rest of the space.

(D) For any S in S ik having nonempty intersection with Hb, b − 1 < f ib(S) < b + 1. Also for

b ≥ 2, by (7), we can make b − 1 < f ik(S(Hb, η
b
k) < b + 1. For each i ∈ N, if S ∩ Hb 6= ∅ and

S ∩Hb+1 6= ∅, then b < f ib(C) < b+ 1;if S ∩Hb 6= ∅ and S ∩Hb−1 6= ∅, then b− 1 < fb(S)i < b;

(E) For each ` < j < k and x ∈ K`, f ij(x) < f ik(x) < f ij(x) + εj − εk for any i.

Step 2: Construction of the basic functions

From (E), for any x ∈ Kb and k > b, f ib(x) < f ik(x) < f ib(x) + ε1 for any i = 1, . . . , 2n+ 1. Thus

we can take the uniform limit of f ik restricted on Kb. For any x ∈ Kb let φi(x) = limk→∞ f
i
k(x).

So φi is continuous on Kb for each b. Hence φi is continuous on X . Also by (D) for x ∈ Hb,

b− 1 < φi(x) < b+ 1 + 1/4.

Let V ik = {φi(S) : S ∈ S ik}. Then if S ∩Kb 6= ∅ and S ∈ S ik with k > b, φi(S) is contained

in the interval [f ik(S), f ik(S) + εk] by (E). By (B), these closed intervals are disjoint for each fixed

b and k with k ≥ b. Then each V ik is discrete.

Step 3: Construction of the coordinate functions

Take any function f ∈ C(X). We find g1, . . . , g2n+1 ∈ C(R) such that f =
∑2n+1

i=1 gi ◦ φi.
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For each s ≥ 0, define the compact subset Ls = Ks+1 \ K◦
s−1. Since K1 is compact and

K1 ⊆ K◦
2 , there exists a function f1 such that f1(x) = f(x) for x ∈ K1 and f1(x) = 0 for

x ∈ X \K◦
2 . Then letting g1 = f − f1, it is easy to see that g1(x) = 0 for x ∈ K1. Similarly, there

exists f2 such that f2(x) = g1(x) for x ∈ K2 and f2(x) = 0 for x ∈ X \K◦
3 . Inductively, f can be

written as an infinite sum
∑∞

s=1 fs such that fs(x) = 0 for x ∈ X \ Ls.

For each s, fs is bounded and uniformly continuous. Fix s ∈ N. Note that for each x ∈ Ls,

s− 2 < φi(x) < s+ 2 + 1/4.

By construction, if we restrict the discrete families S1, · · · ,S2n+1 and the functions φ1, · · · , φ2n+1

to Ks+1, then the discrete families and functions are exactly those defined by Ostrand [23].

In particular, the functions φ1|Ls, . . . , φ2n+1|Ls are basic for Ls (Lemma 2.1). Thus we can

represent fs|Ls(x) =
∑2n+1

i=1 gsi (φi|Ls(x)), for some gsi ∈ C(R). We can redefine gsi to be con-

stantly zero outside of [s−2, s+2+1/4] because the image of φi is contained in [s−2, s+2+1/4]

and fs(x) = 0 if x ∈ Ls \ (Ls)
◦. Now fs =

∑2n+1
i=1 gsi ◦ φi.

Finally, letting gi =
∑∞

s=1 g
s
i , we see that gi is continuous because gi(x) is a finite sum of

non-zero continuous functions for each x ∈ R, and f =
∑2n+1

i=1 gi ◦ φi – as required.
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3.0 MINIMAL SIZE OF BASIC FAMILIES

In this chapter we investigate the minimal size of basic families in a given space. In the process we

prove Theorem B (and more) from the Introduction.

The question of the minimal size of finite basic families is considered in Section 3.1.

Then we turn to the case when a space does not have a finite basic family. Since the natural

map of X into RΦ is an embedding when Φ is a basic family (Lemma 7) a simple restriction on

the size of basic families is: w(X) ≤ basic (X).ℵ0 ≤ |C(X)|. So further natural questions are:

when is basic (X) ≤ w(X)? when is basic (X) = |C(X)|? is it possible to have basic (X) strictly

between w(X) and |C(X)|?

In this chapter we consider these questions for separable metrizable spaces (Section 3.2) and

compact spaces (Section 3.3). Suppose first that X is separable metrizable. Then from Theo-

rem 6, either basic (X) is finite, and this happens if and only if X is locally compact and finite

dimensional, or ℵ1 ≤ basic (X) ≤ c = |C(X)|. Experience of other related cardinal invariants of

separable metrizable spaces would suggest that basic (X) should be undetermined by the standard

axioms of set theory (ZFC). For example k(X), which is the minimal size of a cofinal family in the

set of all compact subsets of X , is undetermined even when X is the rationals or the irrationals.

However (Theorem 17) basic (X) is determined in ZFC for all separable metrizable X:

either X is locally compact and finite dimensional, and basic (X) < ℵ0,

or X is either infinite dimensional or not locally compact, and basic (X) = c.

This theme — that basic (X) is remarkably absolute — is continued when we consider compact

spaces. Note that if K is compact, then Stone [35] has shown that |C(K)| = w(K)ℵ0 . Hence,

basic (K) lies between the weight of K and the countable power of the weight. This leads to some
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intriguing connections with Shelah’s Potential Cofinalities Theory (PCF).

Let κ be an uncountable cardinal. Shelah observed that κℵ0 = cof([κ]ℵ0 ,⊆)× |P(ℵ0)|. (Here

cof([κ]ℵ0 ,⊆) is the minimal size of a cofinal set in the countably infinite subsets of κ ordered by

inclusion.) If κ = ℵn for n ∈ N, then cof([κ]ℵ0 ,⊆) = κ, and so κℵ0 is easily computed — it is

max(κ, c).

However, if κ has countable cofinality then Shelah has shown [28] that interesting things hap-

pen. Whereas the value of |P(ℵ0)| = c is almost entirely unconstrained by the axioms of set

theory and can be made arbitrarily large, cof([κ]ℵ0 ,⊆) seems to be almost absolute. For example

ℵω < cof([ℵω]ℵ0 ,⊆) < ℵω4 , and making cof([ℵω]ℵ0 ,⊆) > ℵω+1 requires large cardinals.

We prove (Theorem 26) that ifK is compact and finite dimensional then basic (K) ≤ cof([w(K)]ℵ0 ,⊆

), and deduce (Theorem 28) that if K is suitably ‘nice’ (contains a discrete subset D with |D| =

w(K)) then

either K is finite dimensional, and basic (K) = cof([w(K)]ℵ0 ,⊆),

or K is infinite dimensional, and basic (K) = |C(K)| = w(K)ℵ0 .

This gives a lot of information on the possible values of basic (K) for compactK. These are teased

out and examples given below.

It is also interesting to note that if K is compact, finite dimensional, ‘nice’ and of weight

κ (for example, K = 2κ), and if Φ is a basic family for K of minimal size, then C(K) ∼⋃
n∈N (Φn × C(R)n) is a natural ‘topological realization’ of the cardinal identity κℵ0 = cof([κ]ℵ0 ,⊆

)× |P(ℵ0)|.

Finally we briefly discuss connections of the above results with Banach algebras. Let K be a

compact space. Then C(K) with the supremum norm is a Banach algebra. Sternfeld has observed

that for any φ ∈ C(K) the set L(φ) = {g ◦ φ : g ∈ C(R)} is a closed subring of C(K) containing

the constants and generated by a single element, and conversely every closed subring with these

properties is of the form L(φ) for some φ in C(K).

Thus saying that basic (K) ≤ κ is the same as saying that C(K) is the sum of no more than κ

closed subrings containing the constants and generated by a single element. So the results above

imply that the problem of deciding whether the Banach algebra C(K) can be written as a sum of a
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certain size of ‘small’ closed subrings is closely linked to cof([w(K)]ℵ0 ,⊆) and PCF theory.

3.1 MINIMAL SIZE OF FINITE BASIC FAMILIES

Theorem 14. For any space X , basic (X) ≤ 2n+1 if and only if X is locally compact, separable

metrizable and has dimX ≤ n.

Note that this is Theorem B.1, and can also be read as a characterization of dimension in locally

compact, separable metrizable spaces.

Lemma 12 says that a locally compact, separable metrizable space of dimension ≤ n has a

basic family of size ≤ 2n+ 1, giving the reverse implication. For the converse:

Lemma 15. A space X with a basic∗ family φ1, . . . , φN , where N ≤ 2n+ 1, has dimension ≤ n.

Proof. Take any compact subset K of X . By Lemma 9, the maps Φ1|K, . . . ,ΦN |K form a basic∗

family for K, hence by compactness a basic family. By Sternfeld’s result connecting dimension

and basic families in compact spaces (Theorem 2), it follows that dimK ≤ n.

By Lemma 10, X is locally compact, separable metrizable. Hence it has a locally finite cover

by compact sets – each, by the above, of dimension ≤ n. By the Locally Finite Sum Theorem for

dimension, we deduce that X itself must have dimension ≤ n.

3.2 SEPARABLE METRIZABLE SPACES

The following simple lemma is used repeatedly and without further reference. Let Φ be a basic

family for a space X , and let C be a C–embedded subspace (every continuous real valued function

on C can be extended over X). Then clearly Φ � C = {φ � C : φ ∈ Φ} is basic for C. Hence:

Lemma 16. Let C be a C–embedded subspace of a space X — for example if X is normal, and

C is closed — then basic (X) ≥ basic (C).
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Theorem 17. Let X be separable metrizable. Then either basic (X) is finite, which occurs if and

only if X is locally compact and finite dimensional, or basic (X) = c.

Proof. Let X be separable metrizable. Four cases arise.

The first case is whenX is locally compact and finite dimensional. Then basic (X) ≤ 2 dim(X)+

1, by Theorem 6.

In all remaining cases we show basic (X) ≥ c, and so equals the continuum.

The second case is when X is not locally compact. Then, as X is first countable and normal,

X contains a closed copy of the metric fan, F (defined below). So basic (X) ≥ basic (F ) ≥ c by

Proposition 23 and Proposition 24.

Case 3 is that X is locally compact, infinite dimensional, but contains no infinite dimensional

compact subspaces. Then we can writeX as a union of open sets (Un)n such that, for all n, compact

Un ⊂ Un+1 and dim(Un) < dim(Un+1). Using the Countable Sum Theorem for dimension, we

can extract compact subsets Cn from the ‘gaps’ Un+1 \ Un such that dimCn < dimCn+1 for all

n. Now we see that C, the disjoint union of the Cn’s is a closed subspace of X satisfying the

conditions of Proposition 21, so we indeed have, basic (X) ≥ basic (C) ≥ c.

Finally, suppose X is locally compact and contains an infinite dimensional compact subspace

K. It suffices to show basic (K) ≥ c, which is the content of Proposition 22.

In vector spaces one method of giving a lower bound for the size of a basis is to find large

linearly independent sets. We apply the same approach to give lower bounds for basic (X). Note

that if V is a vector space, then L ⊆ V is linearly independent if and only if its intersection with

any subspace spanned by n members of V contains no more than n elements. This leads us to the

correct definition of ‘functional independence’.

Let C be a subset of C(X). We say that C is (functionally) independent if for all n, and any

φ1, . . . , φn ∈ C(X) we have |C ∩{
∑n

i=1 gi ◦φi : g1, . . . , gn ∈ C(R)}| ≤ n. (We omit the adjective

‘functionally’ except when we need to differentiate from linear independence in the vector space

sense.)

Further, we say C is weakly independent if for all n, and any φ1, . . . , φn ∈ C(X) we have

|C ∩ {
∑n

i=1 gi ◦ φi : g1, . . . , gn ∈ C(R)}| < c, and we say C is strongly independent if for all n,
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and any φ ∈ C(X,Rn) we have |C ∩ {g ◦ φ : g ∈ C(Rn)}| ≤ n.

Clearly ‘independent’ implies ‘weakly independent’. Further, writing
∑n

i=1 gi ◦ φi as g ◦

φ where φ(x1, . . . , xn) = (φ1(x1) . . . , φn(xn)) and g(y1, . . . , yn) =
∑n

i=1 gi(yi), we see that

“strongly independent’ implies ‘independent’.

Lemma 18. If a space X has a weakly independent family C of size ≥ c, then basic (X) ≥ c.

Proof. Let Φ be a basic family for X . For each f ∈ C, pick φ1, . . . , φn from Φ so that f =∑n
i=1 gi◦φi. Then as C is weakly independent, the map taking f in C to {φ1, . . . , φn} in

⋃
m∈N[Φ]m

is < c–to–1. Since |C| ≥ c, it follows that |Φ| ≥ c — as required.

To create large functionally independent families we will start from large sets generating lin-

early independent families in the vector space Rn (with its usual inner product).

Proposition 19. Fix a natural number n.

(a) There is a Cantor set C contained in the unit (n − 1)–sphere of Rn such that for any distinct

x1, . . . , xn in C, the xi’s form a basis of Rn.

(b) Let J be a non–trivial closed bounded interval, and B a homeomorph of the n–cube, Jn.

There is a Cantor set D contained in C(B, J) such that for any distinct d1, . . . , dn in D the

map d = (d1, . . . , dn) : B → Jn is an embedding.

Proof (of (a)). The setA = {(1, t, . . . , tn) : t ∈ I} is an arc in Rn such that any n distinct elements

from A are linearly independent. Projecting on the unit sphere, and picking a Cantor subset gives

what is claimed.

In fact one can show that ‘almost all’ (in the sense of Baire category applied to the Polish space

K(Rn)) Cantor subsets of Rn are such that any n distinct elements from the Cantor set are linearly

independent.

Proof (of (b)). First note that if (b) holds for one choice of J and B, then it holds for all. We will

use the interval J = [−1,+1], and the closed n–ball, B(n). Also note that we work in the inner

product space Rn.
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Fix a Cantor set C in the unit sphere of Rn as in part (a). Let Ĉ = {ĉ : c ∈ C} where ĉ is

the linear functional on Rn dual to c, namely ĉ(x) = 〈c, x〉. Then, by duality, Ĉ is a Cantor set in

R∗ ⊆ C(Rn,R), and any n–many distinct elements of Ĉ are linearly independent.

Let D = {ĉ � B(n) : c ∈ C}. Then D is a family of continuous functions mapping B(n) to

[−1,+1], with the required properties.

Proposition 20. Fix K a compact space of dimension > n ≥ 2.

Then there is a Cantor set C ⊆ C(K, I) such that for all φ ∈ C(K, In) we have |C ∩ {g ◦ φ :

g ∈ C(In, I)}| ≤ n.

Proof. Recall (see [1], for example) that a normal space, X , has dimension ≤ n if and only if

every continuous map from a closed subspace into the n–sphere (which is homeomorphic to the

boundary of the (n+ 1)–cube) has a continuous extension over X . Hence, as dimK > n, there is

a map p : K → In+1 and closed subspaceA, such that p � A : A→ ∂In+1 can not be continuously

extended (over K into ∂In+1). We may suppose that A = p−1(∂In+1).

By Proposition 19 (b) there is a Cantor set D contained in C(In+1, I) such that for any distinct

d1, . . . , dn+1 ∈ D the map d = (d1, . . . , dn+1) : In+1 → In+1 is an embedding. For distinct

d1, . . . , dn+1 ∈ D, and embedding d = (d1, . . . , dn+1) define fd = d ◦ p. Note that p is onto, hence

fd 6= fd′ if d 6= d′. Let C = {fd : d ∈ D}. This is a Cantor set in C(K, In+1).

Suppose, for a contradiction, for some φ ∈ C(K, In), there were (n + 1) distinct elements

f1, . . . , fn+1 in C ∩ {g ◦ φ : g ∈ C(In, I)}. So, for i = 1, . . . , n+ 1, we have fi = di ◦ p for some

(distinct) di ∈ D, and fi = gi ◦ φ for some gi ∈ C(In, I).

Let d = (d1, . . . , dn+1), and g = (g1, . . . , gn+1). So p ◦ d = g ◦ φ. Since d is an embedding,

we have p = h ◦ φ where h = (d−1 ◦ g) is in C(In, In+1).

Let A′ = h−1(∂In+1). Note that φ−1(A′) = p−1(∂In+1) = A, so φ maps A inside A′. Since

K ′ = φ(K) is contained in In, it has dimension ≤ n. Hence the map h � A′ : A′ → ∂In+1 has a

continuous extension h′ : K ′ → ∂In+1.

But now p � A : A → ∂In+1 has a continuous extension over K into ∂In+1 — namely h′ ◦ φ

— contradiction!
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Proposition 21. Let (Cn)n be a sequence of compact spaces such that eachCn has finite dimension

> n. Let X =
⊕

nCn, and γX be a compactification of X .

Then there is a Cantor set C contained in C(γX, I) ⊆ C(X) such that C is strongly indepen-

dent for C(X) (and hence for C(γX)). Hence basic (X) ≥ c and basic (γX) ≥ c

Proof. For each n ≥ 2, fix the Cantor set, En, guaranteed by Proposition 20 for the > n di-

mensional space Cn, and fix a homeomorphism hn from the standard Cantor set C to En. Let

C = {fc : c ∈ C} where fc is constantly equal to zero on C1 and on the remainder γX \X , and

equals hn(c)/n on Cn. Note that each fc is continuous, and so C is a Cantor set in C(γX, I).

Take any n ≥ 2 and φ ∈ C(X,Rn). Considering the restrictions of φ and elements of C to Cn,

it is immediate from the properties of En, that |C ∩ {g ◦ φ : g ∈ C(Rn)}| ≤ n. Thus C is strongly

independent.

Proposition 22. Let K be compact and infinite dimensional. Then there is a Cantor set C con-

tained in C(K, I) which is strongly independent. Hence, basic (K) ≥ c.

Proof. We show an appropriate, strongly independent, Cantor set C exists. Dowker has shown [7]

that if X is a normal space and M is a closed subspace with dim ≤ n then dimX ≤ n if and

only if dimF ≤ n for all closed subsets of X disjoint from M . In particular: (∗) if M contains a

single point, x, then dimX > n if and only if dimF > n for some closed subset F of X \ {x}.

For each point x in K pick a closed neighborhood of minimal dimension, Bx. By compactness,

for some x, Bx is infinite dimensional, and so all neighborhoods of x are infinite dimensional.

Let K1 = K. Apply (∗) to get a compact subset C1 of K1 not containing x with dimC1 > 1.

Pick a closed neighborhood K2 of x disjoint from C1. Apply (∗) to get a compact subset C2

of K2 not containing x with dimC2 > max(2, dimC1). Inductively, we get a pairwise disjoint

collection, {Cn : n ∈ N}, of compact subsets of K which are either (i) of strictly increasing

(finite) dimensions, or (ii) all infinite dimensional. Let K ′ be the closed subspace
⊕

nCn.

In the first case we apply Proposition 21 to K ′ to get a strongly independent Cantor set in

C(K ′) – and hence in C(K) – as required.
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In the second case, by Proposition 20, for each n there is a Cantor set En ⊆ C(Cn, I) such

that for all φ ∈ C(Cn, I
n) we have |En ∩ {g ◦ φ : g ∈ C(In, I)}| finite. Fix homeomorphisms hn

between the standard Cantor set C and En.

Define, for c ∈ C, a map fc : K ′ → I by: fc is identically zero on K ′ \
⊕

nCn and fc(x′) =

(1/n)hn(c)(x
′) if x′ ∈ Cn. Then the fc’s are continuous, can be continuously extended over K,

and so form a Cantor set C in C(K, I). Further, if φ ∈ C(K, I) and f1, . . . , fn+1 ∈ C, then

the fi’s are not all in {g ◦ φ : g ∈ C(In, I)}, because f1 � En, . . . , fn+1 � En are not all in

{g ◦ (φ � En) : g ∈ C(In, I)}, by choice of En.

Thus the Cantor set C is strongly independent as required.

Let F be the metric fan where F = (N × N) ∪ {∗}, points in N × N are isolated and basic

neighborhoods of ∗ areB(∗, n) = ([n,∞)×N)∪{∗}. Then a separable metric space is not locally

compact if and only if it contains a closed copy of the metric fan. Thus if basic (F ) = c then

basic (X) = c for every separable metric space X which is not locally compact.

We first reduce the calculation of basic (F ) to that of basic (N, [−1,+1]). Here we say that

a family Φ̂ ⊆ C(N, [−1. + 1]) is ‘basic for N into [−1, 1]’ if ∀f̂ ∈ C(N, [−1,+1]) there are

φ̂1, . . . , φ̂n ∈ Φ̂, and ĝ1, . . . , ĝn ∈ C(R) such that f̂ =
∑n

i=1 ĝi◦φ̂i, and define basic (N, [−1,+1]) =

min{|Φ̂| : Φ̂ is basic for N into [−1, 1]}.

Proposition 23. basic (F ) ≥ basic (N, [−1,+1]).

Proof. Let Φ be basic for F . We will show that there is a Φ̂ with |Φ̂| = |Φ| such that Φ̂ is basic for

N into [−1,+1].

For each φ ∈ Φ and n such that φ maps {n} × N into [−1,+1], define φ̂n in C(N, [−1,+1])

by φ̂n(m) = φ(n,m). Let Φ̂n = {φ̂n : φ ∈ Φ} and Φ̂ =
⋃
n Φ̂n. Note that |Φ̂| = |Φ|.

Take any f̂ ∈ C(N, [−1,+1]). Define f : F → [−1,+1] by f(∗) = 0 and f(n,m) = f̂(m)/n.

Note f is continuous. So there are φ1, . . . , φn in Φ and g1, . . . , gn in C(R) such that f =
∑

i gi◦φi.

By continuity of φ1, . . . , φn at ∗ there is an N such that each φi maps {N} × N into a closed

bounded interval, say Ii. Fix homeomorphisms hi of R with itself carrying Ii to [−1,+1]. Now

we see that, replacing gi with gi ◦ h−1
i and φi with hi ◦ φi, we can assume that the φi all map into

[−1,+1].
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Thus φ̂1 = (̂φ1)N , . . . , φ̂n = (̂φn)N are in Φ̂N ⊆ Φ̂. Further, as f̂(m)/N = f(N,m) =∑n
i=1 gi(φi(N,m)) =

∑
i gi(φ̂i(m)), we have that f̂ =

∑n
i=1 ĝi ◦ φ̂i where ĝi = N.gi — as

required.

Proposition 24. There is a Cantor set C contained in C(N, [−1,+1]) such that |C∩{
∑n

i=1 gi◦φi :

g1, . . . , gn ∈ C(R)}| ≤ ℵ0 for all φ1, . . . , φn from C(N, [−1,+1]).

ThusC is ‘weakly independent’ in the sense appropriate forC(N, [−1,+1]), and so basic (N, [−1,+1]) =

c.

Proof. Define C = {f ∈ C(N, [−1,+1]) : f(N) = {−1,+1}}. Then C is a Cantor set, and we

will prove that, for each n, and finite Φ′ ⊆ C(N, [−1,+1]) we have |C ∩ L(Φ′)| = ℵ0.

Fix n ≥ 1. Fix φ ∈ C(N, [−1,+1]n). As in the argument that ‘strongly independent’ implies

‘independent’ to prove the claim it suffices to show that there are only countably many f ∈ C

representable as g ◦ φ for some g ∈ C([−1,+1]n, [−1,+1]).

Let K = φ(N) — a compact subset of [−1,+1]n. A composition g ◦ φ : N → [−1,+1] is

determined by the values of g on φ(N), and so definitely determined by its values on K.

If g ◦ φ is in C, then, by continuity, g � K maps K onto {−1,+1}. Thus K is partitioned

into two non–empty clopen pieces, one of which is mapped by g to −1, and the other to +1. But

a compact metric space only has countably many clopen subsets. So there are only a countable

number of possibilities for g on K, and only countably many f ∈ C representable as g ◦ φ — as

claimed.

Corollary 25. Let X be finite dimensional, locally compact, not compact, separable metrizable.

Then:

(1) there is a basic family Φ ⊆ C(X) such that Φ is finite, but

(2) there is no basic∗ family Φ∗ consisting of bounded functions such that |Φ∗| < c.

Proof. The first claim is just Theorem 6. For the second part, first note that since N can be em-

bedded as a closed subspace of X , it is sufficient to show that (2) holds for N. Suppose, for con-

tradiction, there exists a basic family Φ∗ for N consisting of bounded function whose cardinality is

< c.
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Write Φ∗ =
⋃
n∈N Φn where Φn = {φ : −n ≤ φ(a) ≤ n, for each a ∈ N}. Then C∗(N) =⋃

n∈N L(Φn). Let F = {f ∈ C(N, [−1,+1]) : f(N) = {−1,+1}} as in the proof of Propo-

sition 24. There exists an m0 such that |F ∩ L(Φm0)| = c. But the argument in the proof of

Proposition 24 shows L(Φm0) ≤ |Φ∗| < c which is the desired contradiction.

3.3 COMPACT SPACES

Proposition 26. Suppose K is compact and finite dimensional.

Then basic (K) ≤ cof([w(K)]ℵ0 ,⊆).

Proof. Let K be compact of dimension n. Then there is a directed set (Λ,≤) where |Λ| = w(K),

compact metric Kλ with dimKλ ≤ n, and for all λ ≥ µ a continuous map fλ,µ such that K =

lim←−{Kλ : λ ∈ Λ} = {〈xλ〉 ∈
∏

λKλ : λ ≥ µ =⇒ fλ,µ(xλ) = xµ}. For any Λ0 ⊆ Λ let

πΛ0 :
∏

λ∈ΛKλ →
∏

λ∈Λ0
Kλ be the natural projection map.

Let C be cofinal in ([Λ]ℵ0 ,⊆). We may suppose that each C in C is directed. For each C ∈ C,

KC = lim←−{Kλ : λ ∈ C} is compact, metric of dimension ≤ n. So KC has a basic family Φ′
C

of size 2n + 1. Define pC = πC � lim←−{Kλ : λ ∈ Λ}. Define ΦC = {φ′ ◦ pC : φ′ ∈ Φ′
C}. and

Φ =
⋃
C∈C ΦC . Then |Φ| = |C|. We show that Φ is basic – as required.

To this end, take any f ∈ C(K). The first step is to show that there is a C ∈ C and continuous

g : lim←−{Kλ : λ ∈ C} → R such that f = g ◦ pC . We can do so by using the fact that the

corresponding property holds for continuous functions on products of compact metrizable spaces

[22]. (Alternatively we could proceed more directly by adapting the proof of the theorem for

products to the present situation.)

So extend f : lim←−{Kλ : λ ∈ Λ} → R to continuous f̂ :
∏

λ∈ΛKλ → R. Then there is a

countable Λ0 ⊆ Λ and continuous g0 :
∏

λ∈Λ0
Kλ → R such that f̂ = g0◦πΛ0 . PickC ∈ C such that

C ⊇ Λ0. Note that as C is directed, {〈xλ〉λ∈C : λ ≥ µ =⇒ fλ,µ(xλ) = xµ} = lim←−{Kλ : λ ∈ C},

and πC maps lim←−{Kλ : λ ∈ Λ} to lim←−{Kλ : λ ∈ C}. We can write f̂ = ĝ ◦ πC where ĝ = g0 ◦ πCΛ0
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is a continuous map
∏

λ∈C Kλ into R. Thus f = f̂ � lim←−{Kλ : λ ∈ Λ} = g ◦ pC where

pC = πC � lim←−{Kλ : λ ∈ Λ} and g = ĝ � lim←−{Kλ : λ ∈ C}.

Now we see that g =
∑2n+1

i=1 gi ◦ φ′I where φ′C ∈ Φ′
C and gi ∈ C(R). Thus

f = g ◦ pC =
2n+1∑
i=1

gi ◦ (φ′i ◦ πC) =
2n+1∑
i=1

gi ◦ φi,

where φ1, . . . , φ2n+1 are in ΦC ⊆ Φ and g1, . . . , g2n+1 are in C(R).

Call a space X ‘nice’ if it contains a discrete subset D with |D| = w(X). Note that there are

many examples of compact ‘nice’ spaces, for example: 2κ, In× 2κ and Iκ are compact, ‘nice’ and

span the dimensions.

Proposition 27. If K is compact and ‘nice’, then basic (K) ≥ cof([w(K)]ℵ0 ,⊆).

Proof. Let D be discrete in K with w(K) = |D|. Let K ′ = D, and K ′
c = K ′ \ D. Since

w(K ′) = w(K) and basic (K) ≥ basic (K ′) it suffices to show basic (K ′) ≥ cof([w(K ′)]ℵ0 ,⊆).

Note that D is open in K ′, so K ′
c is compact. Take any function f ∈ C(K ′,Rn). Then f(K ′

c)

is a compact subset of Rn, so it is a Gδ subset, and we can write f(K ′
c) as

⋂
n∈N Un, where Un is

open set in Rn for each n. As K ′ is compact, each K ′ \ f−1(Un) is closed and discrete, and hence

finite. So we can define a countable subset of D for each f by Cf =
⋃
n∈NK

′ \ f−1(Un).

Now suppose Φ ⊆ C(K ′) with |Φ| < cof(|w(K ′)|ℵ0 ,⊆). We show Φ is not a basic family.

Given φ1, φ2, · · · , φn from Φ, let φ̂ = (φ1, . . . , φn) : K ′ → Rn, and C(φ1, . . . , φn) = Cφ̂.

Let C = {C(φ1, . . . , φn) : φ1, . . . , φn ∈ Φ}. Since |Φ| < cof([w(K ′)]ℵ0 ,⊆), the collection C is

not cofinal in [D]ℵ0 . Therefore there exists a countably infinite subset C of D such that for any

φ1, · · · , φn, C is not a subset of C(φ1, . . . , φn).

Take any φ1, . . . , φn in Φ. Pick x inC but not inC(φ1, . . . , φn). By definition ofC(φ1, . . . , φn)

there exists x′ ∈ K ′
c such that φ̂(x) = φ̂(x′). Then for any g1, . . . , gn from C(R),

∑n
i=1 gi ◦ φi

takes the same value at a point in C and at a point in K ′
c.

But now we see that if we enumerate C = {x1, x2, . . .}, and define h by h(xn) = 1/n and h is

identically zero outside C, then h is continuous and h(C) is disjoint from h(K ′
c). Thus h can not

be represented by any finite collection of Φ, and so Φ is not basic.
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From the identity w(K)ℵ0 = cof([w(K)]ℵ0 ,⊆) × c and Propositions 22, 26 and 27 we con-

clude:

Theorem 28. If K is compact and ‘nice’ then:

either K is finite dimensional and basic (K) = cof([w(K)]ℵ0 ,⊆),

or K is infinite dimensional and basic (K) = |C(K)| = w(K)ℵ0 .

Recall that for a compact space K we have w(K) ≤ basic (K) ≤ w(K)ℵ0 = |C(K)|. Either

or both of the inequalities can, at least consistently, be strict.

Taking K = 2ℵ1 , we have that w(K) = basic (K) and basic (K) < w(K)ℵ0 if and only if the

Continuum Hypothesis fails.

Taking K = 2ℵω or K = Iℵω then we have w(K) < basic (K), and while basic (Iℵω) must

equal w(Iℵω)ℵ0 , it is at least consistent that basic (2ℵω) = ℵω+1 < ℵω+2 = c = w(2ℵω)ℵ0 .
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4.0 HILBERT’S 13TH PROBLEM REVISITED

In this chapter, we show that the Kolmogorov Superposition Theorem holds for all continuous

functions f : Rm → R (Theorem 29). Further, using earlier work in the previous chapters, we

characterize the topological spaces satisfying a superposition result of the Kolmogorov type. It

turns out these spaces are precisely the locally compact, finite dimensional separable metrizable

spaces, or equivalently, those spaces homeomorphic to a closed subspace of Euclidean space (The-

orem 34). Together these results establish Theorem C from the Introduction.

4.1 SUPERPOSITIONS

Note that we always use the max norm. ‖ · ‖∞, on Rm.

Theorem 29. Fix m in N. There exist ψpq ∈ C(R), for q = 1, 2, . . . , 2m+ 1 and p = 1, 2, . . . ,m,

such that for any function f ∈ C(Rm), there can be found functions g1, . . . , g2m+1 in C(R) such

that:

f(x) =
2m+1∑
q=1

gq(φq(x)), where φq(x1, . . . , xm) = ψ1q(x1) + · · ·+ ψmq(xm).

Further, one can arrange it so that the co–ordinate functions, g1, . . . , g2m+1 are all identical (say

to g), and that the elementary functions, ψpq, (and hence the φq) are Lipschitz (with Lipschitz

contstant 1).

Proof. We break the proof into five parts. In the first step we define a family of ‘grids’, and

approximations to the functions ψpq. Next we define the ψpq and φq, and establish certain useful
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properties of the grids and functions. In the following two steps we show that the functions φq are

basic for Rm — using just a single co–ordinate function, first for compactly supported functions,

and then in general. Finally, we show that the constructed elementary functions can be modified to

be Lipschitz with Lipschitz constant 1.

1. Construction of the Grids and Approximations

We establish by induction on k, the existence for each k ∈ N, p = 1, 2, . . . ,m, and q = 1, 2, . . . , 2m+

1, of positive εk, γk < 1/10, distinct positive prime numbers P pq
k > m + 10, discrete families

(‘grids’) Sqk of open intervals of R and continuous functions fpqk : R→ R such that:

(1) the sequences of εk’s and γk’s both strictly decrease to zero (in fact, for all k, 0 < εk+1 < εk/6

and 0 < γk < 1/k),

(2) each member of Sqk has diameter ≤ γk,

for each fixed k any two of the families {Sqk : q = 1, . . . , 2m+ 1} cover [−k, k], and all cover

{−k, 0, k};

(3)
∏m

p=1 P
pq
k < P pq′

k given q < q′ for each fixed k;

(4) mεk < 1/
∏2m+1

q=1

∏m
p=1 P

pq
k ;

(5) fpqk is non–decreasing on R+, non–increasing on R− and constant outside [−k, k];

(6) fpqk is constant on each member of Sqk with value a positive integral multiple of 1/P pq
k , and

(fpqk (J1)− fpqk (J2))P
pq
k mod P pq

k 6= 0 given J1, J2 ∈ Spqk ;

additionally, if J is an interval containing 0, then fpqk maps J to 0;

(7) |fpqk (k)− k| < 1/(m+ 1) and |fpqk (−k)− k| < 1/(m+ 1);

(8) for each ` ≤ j < k and x ∈ [−`, `], fpqj (x) ≤ fpqk (x) ≤ fpqj (x) + εj − εk.

Base Step: It is straightforward to find discrete collections of open intervals Sq1 for q = 1, . . . , 2m+

1 such that any two of the families {Sq1 : q = 1, 2, · · · , 2m+1} cover [−1, 1], each of the fam-

ilies covers {1, 0,−1}, and each interval in the collection has length ≤ γ1 = 1/10.

Let n1 be the number of all the open interval in all the collections Sq1 (1 ≤ p ≤ m, 1 ≤ q ≤

2m+1). For q = 1, . . . , 2m+1 pick distinct primes P pq
1 larger thanm·n1 and

∏m
p=1 P

pq
1 < P pq′

1

given q < q′.
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Now we define fpq1 on [−1, 1]. Then for x > 1 define fpq1 (x) = fpq1 (1), and for x < −1 define

fpq1 (x) = fpq1 (−1).

If J ∈ Sq1 , then define fpq1 such that fpq1 restricted to J is a positive integral multiple of 1/P pq
1 .

More specifically, if 0 ∈ J then fpq1 (J) = 0; if 1 ∈ J then fpq1 (J) = 1 − 1/P pq
1 ; and if

−1 ∈ J then fpq1 (J) = 1 − 2/P pq
1 . This can easily be done so that fpq1 (as defined so far) is

non–decreasing on [0, 1] and non–increasing on [−1, 0].

For x in [−1, 1] \
⋃
Sq1 , interpolate fpq1 linearly.

Choose ε1 > 0 such that mε1 < 1/
∏2m+1

q=1

∏m
p=1 P

pq
1 .

All (applicable) conditions (1)–(8) hold.

Inductive Step: Suppose P pq
k−1, εk−1, γk−1, Sqk−1 and fpqk−1 are all given and satisfy the require-

ments (1)–(8).

By uniform continuity of fpqk−1 on [−(k−1), k−1], there exists γk < min{1/k, γk−1} such that

|fpqk−1(x1)−fpqk−1(x2)| < εk−1/6 if |x1−x2| < γk for each p = 1, . . . ,m and q = 1, . . . , 2m+1.

Then it is straightforward to find discrete collections of open intervals, Sqk for and 1 ≤ q ≤

2m + 1, such that any two of the families {Sqk : q = 1, 2, · · · , 2m + 1} cover [−k, k], each of

the families covers {k, 0,−k}, each interval in the collection has length ≤ γk and the distance

between each pair of adjacent intervals is also ≤ γk.

Let nk be the total number of open intervals in all the collections Sqk for q = 1, 2, . . . , 2m+ 1.

For each p, q select distinct primes P pq
k so that 2nk/P

pq
k < εk−1/6. Also,

∏m
p=1 P

pq
k < P pq′

k

given q < q′.

Next, we give the construction of fpqk on [−k, k]. Outside of [−k, k] extend constantly (as in

the Base Step).

• If J ∈ Sqk , then fpqk (J) is a positive integral multiple of 1/P pq
k . For any J ∈ Sqk with

J ∩ [−(k − 1), k − 1] 6= ∅, we can ensure that fpqk−1(x) < fpqk (x) < fpqk−1(x) + εk−1/3.

[i] Since 2nk/P
pq
k < εk−1/6 and |fpqk−1(x1)−fpqk−1(x2)| < εk−1/6 when |x1−x2| < γk,

there are 2nk possible choices for the value of fpqk (J) (J ∈ Sqk) which makes fpqk−1(x) ≤

fpqk (x) ≤ fpqk−1(x) + εk−1/3 for x ∈ J ∩ [−(k − 1), k − 1]. As there are many fewer

than 2nk elements in Sqk , we can select the fpqk (J)’s such that (fpqk (J1) − fpqk (J2))P
pq
k

32



mod P pq
k 6= 0 for any J1, J2 ∈ Sqk .

[ii] More specifically, if 0 ∈ J then fpqk (J) = 0, if k ∈ J then fpqk (J) = 1 − 1/P pq
k ,

and if −k ∈ J then fpqk (J) = 1− 2/P pq
k . This can easily be done to make fpqk (as defined

so far) non–decreasing on [0, k] and non-increasing on [−k, 0].

• If x /∈
⋃
Sqk , let JL and JR be the adjacent intervals in Spqk such that x lies between them.

Let xL be the right endpoint of JL and xR be the left end point of JR Then fpqk maps

[xL, xR] linearly to [fpqk−1(JL), fpqk−1(JR)]. Since |xL−xR| < γk, |fpqk−1(xL)− fpqk−1(xR)| <

εk−1/6, therefore, fpqk (x)− fpqk−1(x) < εk−1/3 + εk−1/6 = εk−1/2.

Choose εk such that mεk < min{1/
∏2m+1

q=1

∏m
p=1 P

pq
k , εk−1/6} .

All requirements (1)–(8) are satisfied.

By conditions (2), (3), (4) and (8), we have the following claim.

Claim 30. For each k, |
∑m

p=1 f
pq
k (Jp)−

∑m
p=1 f

pq′

k (J ′p)| > mεk, for different Jp ∈ Sqk and J ′p ∈ S
q′

k

where p = 1, . . . ,m.

2. Definition and Useful Properties of the Functions, ψpq and φq

For x ∈ R, let ψpq(x) = limk→∞f
pq
k (x). Now for a fixed n ∈ N, and any x ∈ [−n, n], fpqk (x) ≤

ψpq(x) ≤ fpqk (x) + εk for k > n + 1. So ψpq restricted to [−n, n], being the uniform limit of the

fpqk for k > n+ 1, is continuous on [−n, n]. Therefore, ψpq is continuous on R.

Also, by construction, the image of [n, n+ 1] under ψpq is a subset of [|n| − 1/(m+ 1), |n|+

1 + 1/(m+ 1)] for each n ∈ Z.

Let φq(x1, . . . , xm) = ψ1q(x1) + · · ·+ ψmq(xm) for (x1, x2, . . . , xm) ∈ Rm.

Our eventual goal is to show {φq : q = 1, 2, . . . , 2m + 1} is a basic family of Rm, however

first, we establish some useful properties of the grids and functions.

For each q and k, let J q
k = {C1 × C2 × · · · × Cm : Cp ∈ Sqk for each p = 1, 2, . . . ,m}. Then

we can say the following about J q
k .

• For a fixed q and k, J q
k is a discrete collection.

• For a fixed k, any element in Rm belongs to at least m+ 1 rectangles of J q
k , i.e. any m+ 1 of

{J q
k : q = 1, . . . , 2m+ 1} form an open cover of Rm.
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Let U qk = {φq(C) : C ∈ J q
k }. Take C = C1 × C2 × · · · × Cm ∈ J q

k , then φq(C) is contained

in the interval [
∑m

p=1 f
pq
k (Cp),

∑m
p=1 f

pq
k (Cp) + mεk]. By condition (4) in the construction of the

fpqk , these closed intervals are disjoint for fixed k. Therefore,

Claim 31.
⋃2m+1
q=1 U

q
k is a discrete collection of subsets of R for fixed k.

3. Construct The Co–Ordinate Function for Compactly Supported Functions

We now prove:

Claim 32. For any compactly supported h ∈ C(Rm), there is g in C(R) such that

h =
∑2m+1

q=1 g ◦ φq.

Fix a compactly supported h ∈ C(Rm). Choose ` in N so that h(x) = 0 for any x outside

K = [−`− 1, `+ 1]m.

For each integer r ≥ 0, find positive kr and continuous functions χr : R → R (k0 = ` and

χ1 = 0) such that if hr(x) =
∑2m+1

q=1

∑r
s=0 χs(φq(x)) and Mr = supx∈Rm|(h− hr)(x)|, then:

(1) kr+1 > kr;

(2) if ‖a− b‖∞ < m/γkr+1 , then |(h− hr)(a)− (h− hr)(b)| < (2m+ 2)−1Mr for a,b ∈ Rm;

(3) χr+1 is constant on each member of
⋃2m+1
q=1 U

q
kr+1

;

(4) if C ∩ (Rm \K) 6= ∅ for C ∈
⋃2m+1
q=1 J

q
kr+1

, then the value of χr+1 on φq(C) is 0,

otherwise, its value on φq(C) is (m + 1)−1(h − hr)(y) for some arbitrarily chosen element

y ∈ C; and

(5) χr+1(x) ≤ (m+ 1)−1Mr for each x ∈ R.

We can construct χr+1 which satisfies property (4) by Claim 31.

The kr and χr are defined inductively on r. Also for any a,b ∈ C ∈ J q
kr+1

, ‖a − b‖∞ <

m/10kr+1 . Therefore:

(6) for x ∈
⋃
{C : C ∈ Jkr+1},

|(m+ 1)−1(h− hr)(x)− χr+1(φq(x))| < (m+ 1)−1(2m+ 2)−1Mr.

Also for each x ∈ Rm, there are at least m + 1 distinct values of q such that x ∈
⋃
{C : C ∈

J q
kr+1
}. Then there are m + 1 values of q such that (6) is true; for the other m values of q, (5) in

the construction holds.
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Hence, for x ∈ K,

|(h− hr+1)(x)| = |(h− hr)(x)−
2m+1∑
q=1

χr+1(φq(x))|

< (m+ 1) · (m+ 1)−1(2m+ 2)−1Mr +m · (m+ 1)−1Mr

=
2m+ 1

2m+ 2
Mr.

While for x /∈ K,
∑2m+1

q=1 χr+1(φq(x)) = 0 by property (4).

Therefore, Mr+1 < (2m+ 1) · (2m+ 2)−1 ·Mr, so Mr < ((2m+ 1) · (2m+ 2)−1)r ·M0 for

each r, hence limr→∞Mr = 0, and thus h(x) = limr→∞hr(x) for all x ∈ Rm.

Moreover, by condition (5), the functions
∑r

s=0 χs converge uniformly to a continuous func-

tion g : R→ R and

h(x) = limr→∞hr(x) = lim
2m+1∑
q=1

r∑
s=0

χs(φq(x)) =
2m+1∑
q=1

g(φq(x)).

This complete the proof of the Claim.

4. Construct the Co–Ordinate Function for All Functions

We complete the proof of elementarity by showing:

Claim 33. For any f ∈ C(Rm), there is a g in C(R) such that f =
∑2m+1

q=1 g ◦ φq.

First some preliminary definitions. Let Ki
n be

{(x1, x2, · · · , xm) : xi ∈ [−n− 2,−n] ∪ [n, n+ 2], xj ∈ [−n− 2, n+ 2] for j 6= i},

and let K = {Kn =
⋃m
i=1K

i
n : n ∈ N ∪ {0}}.

For each n, the image of Kn under φq is {[n − 1,m(n + 2) + 1] : n ∈ N ∪ {0}} which is a

locally finite collection of subsets of R.

Next we inductively define a sequence of continuous functions αn on Rm for n ∈ N ∪ {0}, as

follows:

Base step: α0(x) = 1 for x ∈ [−1, 1]m, α0(x) = 0 for x ∈ Rm \K0.

Inductive step: αn(x) = 1− αn−1(x) for x ∈ Kn ∩Kn−1, αn(x) = 0 for x ∈ Rm \Kn.
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To prove the Claim, take any f ∈ C(Rm). Then f(x) =
∑∞

i=0 αi(x)·f(x). Also αi(x)·f(x) =

0 if x /∈ Ki.

From the Claim in the previous Step, for each i ∈ N ∪ {0}, there exist continuous functions gi

such that αi(x) · f(x) =
∑2m+1

q=1 gi(φq(x)).

Then let g =
∑∞

i=0 g
i. This function is well-defined and continuous because {x : gi(x) 6=

0} ⊆ [i − 1,m(i + 2) + 1], which means there are only finitely many i with gi(x) 6= 0 for each

x ∈ R.

Then we have

f(x) =
∞∑
i=0

αi(x) · f(x) =
∞∑
i=0

2m+1∑
q=1

gi(φq(x)) =
2m+1∑
q=1

g(φq(x)),

— as claimed.

5. Lipschitz Elementary Functions

We conclude the proof by showing that the elementary functions, ψpq constructed above, can be

modified so as to be Lipschitz, with Lipschitz constant 1. Recall that the ψpq are monotone increas-

ing on R+ and monotone decreasing on R−.

Fix, for the moment, p between 1 andm. Defineψp : R→ R2m+1 byψp(t) = (ψp,1(t), . . . , ψp,2m+1(t)).

Then ψp is continuous. Let C+
p = ψp([0,∞)), C−p = ψp((−∞, 0]) and Cp = C+

p ∪C−p . Since the

co-ordinates ofψp are monotone on R+ and R−, C+
p , C−p andCp are rectifiable. LetArcL(t) be the

arc length along the curve Cp from ψp(0) to ψp(t). Then λp : R→ R defined by λp(t) = ArcL(t)

for t ≥ 0, otherwise, λp(t) = −ArcL(t) is continuous and monotone. Let λ−1
p be the (continuous,

monotone) inverse of λp. Observe that, given t, t′ ∈ R, the distance between ψp(t) and ψp(t
′)

along the curve Cp is |λp(t)− λp(t′)|.

We verify that the functions ψpq ◦ λ−1
p (for p = 1, . . . ,m and q = 1, . . . , 2m+ 1) are Lipschitz

with Lipschitz constant 1.

To see this, fix q, fix p again, and take any s, s′. Without loss of generality, suppose s′ ≤ s. Let

t′ = λ−1
p (s′) and t = λ−1

p (s). The distance along the curve Cp from ψp(λ
−1
p (s′)) to ψp(λ

−1
p (s)) is

the distance along the curve from ψp(t
′) to ψp(t), which is |λp(t) − λp(t′)| (by definition of λp),

and that equals s− s′ = |s− s′|.
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On the other hand, the distance along the curve Cp from ψp(λ
−1
p (s′)) to ψp(λ

−1
p (s)) is at least

as large as the change fromψp(λ
−1
p (s′)) toψp(λ

−1
p (s)) in just the qth coordinate. And the change in

the qth coordinate, is |(ψpq◦λ−1
p )(s)−(ψpq◦λ−1

p )(s′)|. So |(ψpq◦λ−1
p )(s)−(ψpq◦λ−1

p )(s′)| ≤ |s−s′|,

as claimed.

It remains to show that the functions are elementary for R in dimension m (using just a single

co–ordinate function).

Take any f ∈ C(Xm). Let f ′(x′1, . . . , x
′
m) = f(λ1(x

′
1), . . . , λm(x′m)). Then, as the ψpq are

elementary using a single co–ordinate function, there is a g in C(R) such that f ′(x′1, . . . , x
′
m) =∑2m+1

q=1 g(
∑m

p=1 ψpq(xp)).

Hence f(x1, . . . , xm) = f ′(λ−1
1 (x1), . . . , λ

−1
m (xm)) =

∑2m+1
q=1 g(

∑m
p=1 ψpq(λ

−1
p (xp)))

=
∑2m+1

q=1 g(
∑m

p=1(ψpq ◦ λ−1
p )(xp)), as required.

Remark 1: The theorem shows that for the space X = R, in each dimension m there is an

elementary family ψpq so that every f in C(Rm) can be written in the form f =
∑

q g ◦ φq using

a single co–ordinate function g. The same, of course, is true for X = I , but in this case it is

essentially trivial as sketched below. This easy argument does not work for X = R.

Suppose the maps ψpq are elementary for the closed unit interval, I . For each q, φq maps I to

some [aq, bq]. Scaling and translating the original elementary functions we may suppose, without

loss of generality, that the intervals [aq, bq] are pairwise disjoint and contained in I . For each q, let

hq : [aq, bq]→ I be a homeomorphism.

Take any f in C(Im). Then there are g1, . . . , g2m+1 in C(I) so that f =
∑

q gq ◦φq. Define g to

be gq ◦ hq on [aq, bq] and extend to a continuous function on I (this step is not, in general, possible

for X = R). Then f =
∑

q g ◦ φq, as required.

Remark 2: The argument given in Step 5 modifying the original elementary functions (which

are definitely not Lipschitz) via arc length so as to become Lipschitz, is an elaboration of an idea

of Kahane [17].
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4.2 CHARACTERIZATION

Theorem 34. Let X be a Tychonoff space. Then the following are equivalent:

(1) some power of X has a finite basic family;

(2) for every m,n ∈ N, there is an r ∈ N and ψpq from C(X,Rn), for q = 1, . . . , r and p =

1, . . . ,m, such that every f ∈ C(Xm,Rn) can be written

f(x1, . . . , xm) =
r∑
q=1

g

(
m∑
p=1

ψpq(xp)

)
,

for some g ∈ C(Rn,Rn);

(3) X is a locally compact, finite dimensional separable metric space, or equivalently, homeomor-

phic to a closed subspace of Euclidean space.

Proof. It was shown in Theorem 6 that a Tychonoff space has a finite basic family if and only if it

is a locally compact, finite dimensional separable metrizable space. Hence (1) implies (3), and (2)

implies (1).

Now suppose (3) holds and X is a locally compact, finite dimensional separable metric space.

Fix m. Then X is (homeomorphic to) a closed subspace of some R`. We establish (2) when n = 1.

The general case follows easily by working co–ordinatewise.

According to Theorem 29 there exist ψpq for p = 1, 2, . . . , `m and q = 1, 2, . . . , 2`m + 1

such that any f ∈ C(R`m) can be written as f(x1, . . . , x`m) =
∑2`m+1

q=1 g(
∑`m

p=1 ψpq(xp)) for some

g ∈ C(R).

Let r = 2`m + 1. Let Ψpq =
∑m+(p−1)m

i=1+(p−1)m ψiq for p = 1, . . . ,m and q = 1, . . . , r. Since X

is a closed subset of R`, any continuous function on X can be continuously extended to R`. Then

{Ψpq � X : p = 1, . . . ,m, and q = 1, . . . , r} are as required.

Note that from Theorem 34 (2) it follows that every continuous function of three complex

variables can be written as a superposition of addition and continuous functions of one complex

variable.
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4.3 AN APPLICATION TO CP–THEORY

Call two spaces X and Y `–equivalent if there is a linear homeomorphism between Cp(X) and

Cp(Y ), and say that X `–dominates Y if there is a continuous linear surjection of Cp(X) onto

Cp(Y ).

A beautiful result of Pestov [25] is that if two spacesX and Y are `–equivalent then the (cover-

ing) dimension ofX equals the (covering) dimension of Y . Arhangelskii asked whether it was true

that if a space X `–dominates another space Y , then dim(X) ≥ dim(Y ). This natural conjecture

was refuted by Leiderman et al. [24] who showed that the closed unit interval I `–dominates every

n–cube, In, using basic functions and a single co–ordinate function (very similarly to the argument

below for R).

Recently Gartside (private communication) has characterized the spaces `–dominated by I as

those which are compact, metrizable and strongly countable dimensional. Towards characterizing

those spaces `–dominated by the reals, we note the following consequence of Theorem 29.

Theorem 35. There is a continuous linear surjection of Cp(R) onto Cp(Rm) for any m ∈ N. In

other words, R `-dominates Rm for every m ∈ N.

The same linear surjection is also continuous as a function of Ck(R) to Ck(Rm),

Proof. Fix m ∈ N. Then by the Theorem 29, there exist φ1, φ2, . . . , φ2m+1 ∈ C(Rm) such that any

f ∈ C(Rm) can be represented as f =
∑2m+1

q=1 g ◦ φq for some g ∈ C(R). Hence we define the

map L : Cp(R) → Cp(Rm) as L(g) =
∑2m+1

q=1 g ◦ φq. Obviously L is linear, and is surjective by

the particular properties of the φq.

It is also easy to verify that L is continuous when the function spaces are either both given the

topology of pointwise convergence, or both given the compact–open topology.
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5.0 CONSTRUCTIVE PROOF AND APPLICATIONS

Theorem 29 from the previous chapter says that every continuous real–valued function of m–real

variables can be written as a superposition of continuous functions of one variable along with

addition. From a theoretical point of view this is absolutely unexpected, and quite remarkable.

However the proof of Theorem 29, as with Kolmogorov’s proof of his Superposition Theorem

does not give a computable algorithm.

The purpose of this Chapter is to present a genuinely computable variant of the Superposition

Theorem for Rm, and in doing so establish Theorem D from the Introduction. In Section 5.1

a family of effectively computable functions of the reals to the reals is given (Algorithm 36).

Continuity and other properties of these functions are then verified. In the following Section 5.2

it is established that these functions are elementary, and moreover algorithms are presented and

justified (Algorithm 45, Theorem 46 and Algorithm 50, Theorem 51) which given a continuous

function f : Rm → R computes the corresponding co–ordinate functions in the Kolmogorov

representation of f accurate to within a given error ε > 0 on any specified compact subset of Rm.

These results are encapsulated in Theorem 53, which extends Theorem D of the Introduction.

These algorithms are such that if the Kolmogorov representation is calculated to within ε on

compact set K, then if extra accuracy is required on K, or the error needs to be controlled on a

larger compact set, then the existing approximation can be reused (so no unnecessary recalculation

occurs). In Appendix B Python code is given implementing these algorithms for functions of two

real variables. The Algorithms given here build on the proof of Theorem 29 and earlier work by

Sprecher [32, 33], and Braun & Griebel [10] who gave constructive versions of Kolmogorov’s

Superposition Theorem.
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To conclude in Section 5.3 we give a brief introduction to neural networks, and explain how

the results of this Chapter have applications, both theoretical and practical, to the understanding

and use of neural networks.

5.1 CONSTRUCTION OF THE FUNCTIONS

Fix the dimension m, and γ ≥ 2m + 2. Define for any k ∈ N, Dk(γ)+ = {dk = i1,k/γ +∑k
r=2 ir · γ−r ∈ Q : 0 ≤ i1,k ≤ k · γk − 1 and 0 ≤ ij ≤ γ − 1 for j 6= 1 and dk ≤ k},

Dk(γ)− = {dk = i1,k/γ +
∑k

r=2 ir · γ−r ∈ Q : −(k · γk − 1) ≤ i1,k ≤ 0 and − (γ − 1) ≤ ij ≤

0 for j 6= 1 and − k ≤ dk}, and Dk = Dk(γ) = Dk(γ)+ ∪ Dk(γ)−. Note that Dk ⊆ [−k, k].

Then the set of all rational numbers base γ, D = {k/γ` : k, ` ∈ Z} (which is dense in R) is

the union over k of all the Dk’s.

We define, functions from the reals to the reals, ψ1, . . . , ψm, first recursively in k on the set

Dk, and then extend over the whole of R by taking limits. At the same time, a sequence of positive

numbers (εk)k and sequences of natural numbers (nk)k, (ak)k, (bk,s)k (s = 1, 2, . . . ,m) are also

introduced to control the functions. (The εk’s are only needed for the following proofs, but the

nk’s, ak’s and bk,s’s play a key role in the definition of the functions ψq.)

Algorithm 36. Define recursively numbers εk, ak , nk , bk,1, . . . , bk,m and functions onDk, ψ1, . . . , ψm.

Base Step k=1: Let n1 = 2, a1 = 2, and let b1,s = n1 + (s− 1)a1 for s = 1, 2, . . . ,m.

Take any d1 = i1,1/γ from D1

and set ψs(d1) =

2 · i1,1/γb1,s for i1,1 ≥ 0

(−2 · i1,1 + 1)/γb1,s for i1,1 < 0.

Let ε1 = 1/γn1+(m−1)a1+1.

Inductive Step: Now suppose we have defined ak−1, nk−1, bk−1,s and ψs for s = 1, 2, . . . ,m, on

Dk−1.

Let ak = k+plogγ(2k)q+1 and nk = nk−1+(m−1)ak−1+1+ak, and let bk,s = nk+(s−1)ak

for s = 1, 2, . . . ,m.
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Take any dk = i1,k/γ + · · ·+ ik/γ
k from Dk. Set dk−1 = dk − ik/γk, and define some indexes

of dk by

îdk =

2 · ik for dk ≥ 0

2 · (−ik) + 1 f or dk < 0

Cdk =

2 · i1,1 for i1,1 ≥ 0

−2 · i1,1 + 1 for i1,1 < 0 ,

and Idk =

2 · (γk−1i1,k + γk−2i2 + · · ·+ ik) for dk ≥ 0 ,

2 · (−γk−1i1,k − γk−2i2 − · · · − ik) + 1 for dk < 0

Define ψs, for s = 1, 2, . . . ,m in three cases depending on dk.

1. ik 6= ±(γ − 1) ∧ dk ∈ Dk ∩ [−(k − 1), k − 1]

For s = 1, 2, . . . ,m, we define ψs(dk) = ψs(dk − ik/γk) + îdk/γ
bk,s

2. dk ∈ Dk ∩ [−k,−(k − 1)) ∪ (k − 1, k]

For s = 1, 2, . . . ,m, we define ψs(dk) = Cdk/γ
2s−1 + Idk/γ

bk,s

3. ik = ±(γ − 1) ∧ dk ∈ Dk ∩ (−(k − 1), k − 1)

For each s, define ψs(dk) = 1/2(ψs(dk−1) + ψs(dk + dk/(|dk|γk))) + (Idk−1
+ γ)/γbk,s

Let εk = 1/γnk+(m−1)ak+1.

The functions ψ1, . . . , ψm are now defined on D =
⋃
k∈NDk, we extend them over R.

Every real number x ∈ R has a representation x =
∑∞

r=1 ir/γ
r = limk

∑k
1 ir/γ

r, and define,

for s = 1, . . . ,m:

ψs(x) := lim
k→∞

ψs(
k∑
r=1

ir/γ
r).

Notice that in this construction: if a, b ∈ Dk ∩ ([−k,−(k − 1)] ∪ [k − 1, k]) are distinct, then

|ψs(a)− ψs(b)| > 1/(γnk+(s−1)ak).

Proposition 37. The functions ψs, s = 1, 2, . . . ,m are monotonic increasing on R+, monotonic

decreasing on R− and continuous. (In particular they are well defined.)

Proof. First, we will show the monotonicity properties of ψs for some s = 1, 2, . . . ,m.

By the definition in Algorithm 36, for each k > n+ 1, ψs is strictly increasing on Dk ∩ [0, n].
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Then let x =
∑∞

r=1 ir/γ
r and x′ =

∑∞
r=1 i

′
r/γ

r. And suppose x < x′, then there exists r0 >

n + 1 such that
∑`

r=1 ir/γ
r <

∑`
r=1 i

′
r/γ

r for each ` ≥ r0. Hence for ` ≥ r0, ψs(
∑`

r=1 ir/γ
r) <

ψ(
∑`

r=1 i
′
r/γ

r). So

ψs(x) = lim
`→∞

ψs(
∑̀
r=1

ir/γ
r) ≤ lim

`→∞
ψs(
∑̀
r=1

i′r/γ
r) = ψs(x

′).

Therefore, ψs is monotonic increasing on [0, n] for each n, hence monotonic increasing on R+.

Similarly, we can prove that ψs is monotonic decreasing on R−.

Now we will show the continuity of ψs for some s = 1, 2, . . . ,m. Fix n ≥ 2, it is enough to

prove ψs is continuous on [0, n). Fix k ≥ n+1. Then define d+
k+j = dk+j +1/γk+j for j ∈ N, and

define τj = max{ψs(d+
k+j) − ψs(dk+j) : dk+j, d

+
k+j ∈ Dk+j}. Then by the Algorithm 36 , we see

that τj+1 ≤ τj/2 for j ∈ N. Therefore, τj ≤ τ0/2
j .

Now take x =
∑∞

r=1 ir/γ
r ∈ [0, n). Given arbitrary ε > 0, we need to find an open interval U

containing x such that for any y ∈ U , |ψs(x)− ψs(y)| < ε.

Pick J such that τj ≤ τ0/2
j < ε for j ≥ J . Then because ψs(x) = lim`→∞ ψs(

∑`
r=1 ir/γ

r),

we can find A > J such that |ψs(
∑`

r=1 ir/γ
r) − ψs(x)| < ε for ` ≥ A + k and

∑A+k
r=1 ir/γ

r +

1/γA+k ∈ (0, n). Take U to be the interval (
∑A+k

r=1 ir/γ
r,
∑A+k

r=1 ir/γ
r+1/γA+k)∩ [0, n]. It is easy

to see that x ∈ U , and

ψ(
A+k∑
r=1

ir/γ
r + 1/γA+k)− ψ(

A+k∑
r=1

ir/γ
r) < τ0/2

A+k < ε.

Therefore, for any y ∈ U , |ψs(x)−ψs(y)| < ε, by the monotonicity properties of ψs. Hence ψs

is continuous on [0, n). Then ψs is continuous on R+. Similarly, we can prove that ψs is continuous

R−.

Definition 38. Define φ in C(Rm) by φ(x1, . . . , xm) = ψ1(x1) + · · ·+ ψm(xm).

Lemma 39. For distinct d and d′ from Dmk , |φ(d)− φ(d′)| ≥ 1/γnk+(m−1)ak ,
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Proof. We will prove this by induction on k.

Base Case: k = 1. Here D1 = {i1,1/γ : −(γ − 1) ≤ i1,1 ≤ (γ − 1)}, and the conclusion of

the lemma follows immediately from the definition of the ψs.

Inductive Step. Suppose the conclusion is true for k − 1. Next we will show this is also true

for k. Suppose d,d′ ∈ Dk are distinct. Then for some s, the sth coordinates of d and d′, say ds

and d′s, are distinct.

Case: ds, d′s ∈ Dk ∩ [−(k − 1), k − 1]

Suppose ds = ik1/γ +
∑k

j=2 ij/γ
k and d′s = i′1,k/γ +

∑k
j=2 i

′
j/γ

k.

If i′k = (γ − 1) or ik = (γ − 1) or i′k 6= ik, then |ψs(ds) − ψs(d
′
s)| > 1/γnk+(s−1)ak by

construction from which the claim follows.

If i′k = ik and ik 6= (γ − 1), then ψs(ds) = ψs(ds − ik/γ
k) + ik/γ

nk+(s−1)ak . Therefore,

|ψs(ds)−ψs(d′s)| = |ψs(ds− ik/γk)−ψs(d′s− i′k/γk)| > 1/γnk−1+(m−1)ak−1 > 1/γnk+(m−1)ak

by hypothesis.

Case: ds, d′s ∈ Dk ∩ [−k,−(k − 1)) ∪ (k − 1, k]

In this case, |ψs(ds)− ψs(d′s)| > 1/γnk+(m−1)ak follows directly from the construction.

Case: ds ∈ Dk ∩ (−(k − 1), k − 1) ∧ d′s ∈ Dk ∩ [−k,−(k − 1)) ∪ (k − 1, k]

In this case, |ψs(ds)− ψs(d′s)| > 1/γnk+(m−1)ak follows directly from the construction.

Lemma 40. For each integer k ∈ N, let ρk = (γ − 2)/((γ − 1) · γk) = (γ − 2)/γk ·
∑∞

j=1 1/γj .

Then for all d ∈ Dk and s = 1, 2, . . . ,m, we have

ψs(d+ ρk) = ψs(d) + (γ − 2)
∞∑

j=k+1

1/γbj,s < ψs(d) + εk/2

A direct consequence of this lemma is given in the next lemma.

Lemma 41. For fixed k ∈ N and d = (d1, d2, · · · , dm) ∈ Dmk , the pairwise disjoint cubes

Sk(d) = Ek(d1)× Ek(d2)× . . .× Ek(dm) where

Ek(ds) = [ds, ds + ρk] for s = 1, 2, . . . ,m,

are mapped by φ into the pairwise disjoint intervals Tk(d) = [φ(d), φ(d) + εk].
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Definition 42. Define δ = 1
γ(γ−1)

=
∑∞

r=2
1
γr

and δ = (δ, . . . , δ) ∈ Rm.

For q = 0, 1, . . . , 2m, define φq(x) = φ(x + qδ) for x ∈ Rm.

Fix k. Define δk =
∑k

r=2 1/γr, and δk = (δk, . . . , δk) ∈ Rm.

For q = 0, 1, . . . , 2m, define φkq(x) = φ(x + qδk) for x ∈ Rm.

Definition 43. For q = 0, 1, . . . , 2m and d = (d1, d2, · · · , dm) ∈ Dmk , define

Eq
k(ds) = [ds + qδk − qδ, ds + qδk − qδ + ρk]

for s = 1, 2, . . . ,m and ρk = (γ − 2)/(γ − 1) · 1/γk = (γ − 2)/γk ·
∑∞

j=1 1/γj .

Define Sqk(d) = Eq
k(d1)× Eq

k(d2)× · · · × Eq
k(dm), and T qk (d) = [φkq(d), φkq(d) + εk].

For s = 1, 2, . . . ,m, we can see that Eq
k(ds) are separated by gaps Gq

k(ds) = (ds + qδk − qδ +

ρk, dj+qδk+γ
−k) with width 1/(γ−1) ·γ−k for ds ∈ Dk. Further, the image of Sqk(d) for d ∈ Dmk

under the mapping φq(x) is a subset of T qk (d). It follows from Lemma 41, that {T qk (d) : d ∈ Dmk }

is a collection of disjoint closed intervals.

5.2 THE FUNCTIONS ARE ELEMENTARY

We now present the algorithm which implements the representation of an arbitrary continuous

function f with support contained in the cube [−N + 1, N − 1]m as a superposition of single

variable functions. Let ‖ · ‖ denote the maximum norm of bounded functions. Furthermore, let η

be a fixed real number satisfying 1 > η > 2m/(2m + 1). Let ξ = ((2m + 1)η − 2m)/(m + 1).

Note that 0 < m+1
2m+1

ξ + 2m
2m+1

≤ η < 1.

Definition 44. Fix d in Dmk . Define ω(y;d, q, k) to be the piecewise linear function in the variable

y which is identically equal to zero outside Uk(d, q) = (φkq(d) − εk+1, φ
k
q(d) + εk + εk+1) and

identically equal to one on T qk (d) = [φkq(d), φkq(d) + εk].

Algorithm 45. Set f0 = f , and g0
0, . . . , g

0
2m ≡ 0.

For r = 1, 2, 3, . . . , iterate the following steps until ηr‖f‖ is less than the desired error in the

Kolmogorov representation
∑2m

q=0 gq ◦ φq of f where gq =
∑r

i=0 g
i
q:
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I. Given the function fr−1, determine an integer kr > N + 2 such that any two points x,x′ ∈

[−N,N ]m which satisfy ‖x− x′‖ ≤ γ−kr , it is true that |fr−1(x)− fr−1(x
′)| ≤ ξ‖fr−1‖.

II. Set gr0, . . . , g
r
2m ≡ 0.

For each d from (Dkr ∩ [−N,N ])m:

– Calculate f̃ = fr−1(d).

– For q = 0, 1, . . . , 2m:

(a) Compute φkrq (d)−εkr+1, φ
kr
q (d), φkrq (d)+εkr , and φkrq (d)+εkr+εkr+1, and so compute

the function ω(y;d, q, kr).

(b) Add the term 1
2m+1

f̃ · ω(y;d, q, kr) to grq .

Thus for each q,

grq(y) =
1

2m+ 1

∑
fr−1(d)ω(y;d, q, kr),

where the sum is over all d ∈ (Dkr ∩ [−N,N ])m.

III. Compute the function

fr = fr−1 −
2m∑
q=0

grq ◦ φq = f −
2m∑
q=0

r∑
j=0

gjq ◦ φq.

That this algorithm does its job is established by the following result.

Theorem 46. For r = 1, 2, 3, · · · , there hold the following estimates:

‖grq‖ ≤
1

2m+ 1
· ηr−1‖f‖ and ‖fr‖ =

∥∥∥∥∥f −
2m∑
q=0

r∑
j=1

gjq ◦ φq

∥∥∥∥∥ ≤ ηr‖f‖.

Hence the functions gq =
∑

j g
j
q are well defined, continuous and satisfy f =

∑2m
q=0 gq ◦ φq, and

to calculate the Kolmogorov approximation
∑2m

q=0

(∑r
j=0 g

j
q

)
◦ φq to f within an error ε > 0 it

suffices to iterate until ηr‖f‖ < ε.

From the definition of ω, we easily see:

Lemma 47. For each q and r, grq is continuous and the following estimate holds: ‖grq‖ ≤ 1
2m+1
‖fr−1‖.

Thus Theorem 46 follows by induction from Lemma 47 and:
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Theorem 48. For the approximations fr, r = 0, 1, 2, . . ., defined in Algorithm 45, there holds the

estimate

‖fr‖ =

∥∥∥∥∥f −
2m∑
q=0

r∑
j=1

gjq ◦ φq

∥∥∥∥∥ ≤ η‖fr−1‖

.

Proof. Here fr−1, fr, N , r are as in Algorithm 45. Let kr > N + 2 be the integer given in step I ,

so if ‖x−x′‖max ≤ γ−kr then |fr−1(x)−fr−1(x
′)| ≤ ξ‖fr−1‖. Fix q, for d ∈ Dmkr , the mapping φq

associates to each Sqkr(d) a unique image T qkr(d) on the real line and the images of any two squares

form the set {Sqkr(d) : d ∈ Dmkr} have empty intersections. Now consider step I of Algorithm 45.

Remember that 0 < m+1
2m+1

ξ + 2m
2m+1

= η < 1 where ξ and η are fixed.

Let x ∈ [−N,N ]m be an arbitrary point, then there are m + 1 values of q in {0, . . . , 2m}

such that there is some d ∈ (Dkr ∩ [−N,N ])m such that x ∈ Sqkr(d). List these q as q̃j for

j = 1, 2, . . . ,m+ 1, and let dj be the corresponding elements in (Dkr ∩ [−N,N ])m.

Now fix j. Since dj ∈ S q̃jkr(d
j), it follows that |fr−1(x)− fr−1(d

j))| ≤ ξ‖fr−1‖.

Also, for this x, we have that φq̃j(x) ∈ T
q̃j
k (dj), so by definition of ω, ω(y;dj, q̃j, kr) ≡ 1

on T q̃jk (dj). Therefore, grq̃j(φq̃j(x)) = 1
2m+1

fr−1(d
j). This shows | 1

2m+1
fr−1(x) − grq̃j(φq̃j(x))| ≤

ξ
2m+1
‖fr−1‖ for j = 1, 2, . . . ,m+ 1.

Note that this estimate does not hold for the remaining values of q for which there might

not exist d ∈ (Dkr ∩ [−N,N ])m such that x ∈ Sqkr(d). Let us now denote these values by

q̄i, i = 1, 2, . . . ,m. By Lemma 47, we have ‖grq̄i‖ ≤
1

2m+1
‖fr−1‖.

Then with the special choice of the values ξ and η we obtain the estimate

‖fr‖ =

∥∥∥∥∥fr−1 −
2m∑
q=0

grq ◦ φq

∥∥∥∥∥
=

∥∥∥∥∥
2m∑
q=0

1

2m+ 1
fr−1 −

m+1∑
j=1

grq̃j ◦ φq̃j −
m∑
i=1

grq̄i ◦ φq̄i

∥∥∥∥∥
≤

∥∥∥∥∥ m

2m+ 1
fr−1 +

m+1∑
j=1

1

2m+ 1
fr−1 −

m+1∑
j=1

grq̃j ◦ φq̃j

∥∥∥∥∥+
m

2m+ 1
‖fr−1‖

≤ [
m+ 1

2m+ 1
ξ +

2m

2m+ 1
]‖fr−1‖

≤ η‖fr−1‖.
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This complete the proof of Theorem 48.

Next, we can use this algorithm to implement the representation of an arbitrary continuous

multivariate function f defined on Rm as superposition of single variable functions. First some

definitions.

Definition 49. Let Kn =
⋃m
s=1{(x1, x2, · · · , xm) : −n− 1 ≤ xj ≤ n+ 1 for j 6= s;n− 1 ≤ xs ≤

n+ 1 or − n− 1 ≤ xs ≤ −n+ 1} where n > 0.

Define αn : Rm → R by:

α1(x) =


1 for x ∈ [−1, 1]m

2− ‖x‖ for x ∈ [−2, 2]m \ [−1, 1]m

0 for x /∈ [−2, 2]m

,

and for n > 1:

αn(x) =


‖x‖ − n+ 1 for x ∈ Kn ∩Kn−1

n+ 1− ‖x‖ for x ∈ Kn \Kn−1

0 for x /∈ Kn

.

Algorithm 50. Given f ∈ C(Rm), ε > 0 and N , construct g0, . . . , g2m in C(R) such that |f(x)−∑2m
q=0 gq(φq(x))| < ε for all x in [−N,N ]m, as follows:

I. Compute fn = αn · f for n = 1, . . . , N + 1.

II. For each n ≤ N+1, apply Algorithm 45 to fn on [−(n+1), n+1]m to get continuous functions

gnq (q = 0, . . . , 2m) so that ‖fn −
∑2m

q=0 g
n
q ◦ φq‖ < ε/(N + 1) on [−(n+ 1), n+ 1]m.

III. Calculate gq =
∑N+1

n=1 g
n
q .

This algorithm does what is claimed.

Theorem 51. In the notation of Algorithm 50 above, we have that the gq are well–defined, contin-

uous and are such that |f(x)−
∑2m

q=0 gq(φq(x))| < ε for all x in [−N,N ]m.
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Proof. First note that, for every n, αn is continuous and has support contained in Kn, so fn is

continuous and has support contained in Kn, and so contained in [−(n+ 1), n+ 1]m. Thus we can

indeed apply Algorithm 45 in step II, to get the gnq with the claimed properties.

Hence the gq in step III are continuous. Since
∑∞

n=1 αn ≡ 1 everywhere, and
∑N+1

n=1 αn ≡ 1

on [−N,N ]m. Hence, on [−N,N ]m, f =
∑N+1

n=1 fn, and so for x in [−N,N ]m,

∣∣∣∣∣f(x)−
2m∑
q=0

gq(φq(x))

∣∣∣∣∣ =

∣∣∣∣∣
N+1∑
n=1

(
fn(x)−

2m∑
q=0

gnq (φq(x))

)∣∣∣∣∣ < (N + 1)ε/(N + 1) = ε,

— as required.

Lemma 52. For any x ∈ Kn, 20(n−1)−2
γ2m ≤ φq(x) ≤

∑m
s=1

20(n+1)+3
γ2s .

Proof. Since Kn =
⋃m
s=1{(x1, x2, · · · , xm) : −n − 1 ≤ xj ≤ n + 1 for j 6= s;n − 1 ≤ xs ≤

n+ 1 or − n− 1 ≤ xs ≤ −n+ 1} where n ≥ 1, the minimal value of φ on Kn is obtained at the

point (0, 0, · · · , 0, n− 1) where it has value 20(n−1)
γ2m .

The maximal value of φ on Kn is obtained at the point (−n−1,−n−1, · · · ,−n−1,−n−1),

where it has value
∑m

s=1
20(n+1)+2

γ2s .

Then the claim follows immediately from the definition of φq, and the monotonicity properties

the of ψs for s = 1, 2, . . . ,m.

Finally, we are in the position to prove the main theorem of this Chapter:

Theorem 53. Let m ≥ 2 and γ ≥ 2m+ 2. Set δ = 1
γ(γ−1)

and D = {k/γ` : k, ` ∈ Z}.

Then there are functions, given by Algorithm 36, ψ1, ψ2, . . . , ψm in C(R) which are effectively

computable on the dense set D of R, such that: for an arbitrary continuous f ∈ C(R), there exist

2m+ 1 continuous functions gq, q = 0, . . . , 2m such that

f =
2m∑
q=0

gq ◦ φq, where φq(x1, . . . , xm) =
m∑
s=1

ψs(xs + qδ).

Further the functions gq can be effectively computed to within any given error ε > 0 on any

specified compact subset of Rm, by applying Algorithm 50 (and Algorithm 45).
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Proof. Everything claimed has already been established in Theorems 46 and 51 — except that the

functions gq exist, are continuous and are such that f =
∑2m

q=0 gq ◦ φq.

Given a function f ∈ C(Rm), we can write f as a sum of compactly supported family of

functions fn where fn = αn · f . For each n, we can find functions gnq from Theorem 46 so that

fn =
∑2m

q=0 g
n
q ◦ φq. Define gq =

∑∞
n=1 g

n
q .

By the Lemma 52, gnq (y) ≡ 0 if y >
∑m

s=1
20(n+1)+3

γ2s or y < 20(n−1)−2
γ2m . So gq(y) is a finite sum

for each value of y ∈ R. Then by the continuity of each gnq , it follows that gq exists is continuous

at every point y. And since,
∑
αn ≡ 1, f =

∑
fn =

∑2m
q=0 gq ◦ φq, as required.

5.3 NEURAL NETWORKS

A neural network is a way to perform computations using networks of interconnected computa-

tional units vaguely analogous to neurons simulating how our brain solves them. A ‘neuron’ in a

neural net is a device with m real inputs x1, . . . , xm and an output y = g(w1x1 + ...+wmxm+w0).

Here, g(x) is a function that is called an activation function, and parameters wi are called weights

(w0 is also called a threshold). If we send the output of some neurons as inputs to others, we get a

neural network.

Two fundamental questions about neural networks arise, in essence they ask how powerful a

neural network can be in theory, and in practice. Let X be a subset of R. Let us say that neural

networks are universal for X if every continuous function f : Xm → R can be exactly computed

by a neural network, and they are approximately universal for X if every continuous function

f : Xm → R can be computed arbitrarily well by a neural network.

The history of neural networks started with a lot of hype and excitement, as researchers started

investigating two layer neural networks (also known as perceptrons). This period came to an

abrupt end when it was shown that perceptrons were extremely limited in the functions they could

compute.

Interest returned to neural networks when Hecht–Nielsen [12, 13, 14] noticed that Kolmogorov’s

Superposition Theorem shows that four layer neural networks are universal for compact intervals.
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Later Kurkova [19], among many others, developed approximate versions of Kolmogorov’s Su-

perposition Theorem which give algorithms for constructing neural nets approximating a given

function. Neural nets are now very actively studied and used.

As we remarked before when discussing the restriction in Kolmogorov’s Superposition Theo-

rem to functions on a compact cube, it makes little sense, and may well be very inconvenient, to

restrict neural nets to only have inputs from a compact interval.

Theorem 29 and the algorithms of this Chapter remove this unnatural restriction:

Theorem 54. Let X be any closed subset of the reals.

• Four layer neural networks are universal for X .

• There is a constructive algorithm witnessing that four layer neural networks are approximately

universal for X .

To prove this theorem we simply sketch how, given a continuous function f of two variables,

to connect together a four layer neural network computing the Kolmogorov representation of f .

The more general results are immediate.
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Figure 5.1: Neural Network
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6.0 OPEN QUESTIONS AND PROPOSED RESEARCH

My results presented in this thesis on spaces with a finite basic or elementary families are complete.

Theorem 29 shows that a space has a finite basic family if and only if it has a finite elementary

family, and this occurs if and only if the space is homeomorphic to a closed subspace of Euclidean

space.

However, a number of open problems remain. In this chapter, I will present some interesting

open problems related to Hilbert’s 13th problem along with my future research plan.

6.1 SMOOTH FUNCTIONS AND ANALYTIC FUNCTIONS

Hilbert in posing the 13th Problem remarked that there is an analytic function of 3 variables which

can not be represented as a superposition of analytic functions of 2 variables. Ostrowski subse-

quently proved that the analytic function ξ(x, y) =
∑∞

n=1
xn

ny
can not be represented as a super-

position of infinitely differentiable functions of one variable and algebraic functions of arbitrarily

many variables. In the 1930’s Hilbert studied the algebraic aspect of his 13th Problem, showing,

for example, that the solution of the general equation of degree 9 can be represented as a super-

position of algebraic functions of 4 variables (down from the 5 obtained by applying Tschirnhaus

transformations). Later, in 1954, Vitushkin gave partial confirmation to Hilbert’s intuition that

some functions are irreducibly of 3 or more variables. Let f be an r-times continuously differen-

tiable function of n–variables. Vitushkin [37] showed that the characteristic χ = r/n can be used

to measure the complexity of a class of functions as follows:
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Theorem 55. If χ = r/n > r0/n0 = χ0 > 0 with r ≥ 1, then there are functions of characteristic

χ which can not be represented as a superposition of functions of characteristic χ0.

The following questions are very natural:

Question 1 (Vitushkin). Can every analytic, or C∞, function of 2 variables can be represented

as a superposition of continuously differentiable functions of one variable and the operation of

addition?

Question 2 (Arnold [3]). Is the converse of Vitushkin’s Theorem true, namely: if χ = r/n ≤

r0/n0 = χ0 > 0 with r ≥ 1, then can every function of characteristic χ be represented as a

superposition of functions of characteristic χ0?

Vitushkin repeated his question in a very recent paper [38]. My conjectural answer is ‘no’ to

both these questions.

6.2 MINIMAL BASIC FAMILIES

The results on basic (X) are complete whenX is separable metrizable, but there is an inconvenient

gap for compact X — is the restriction to ‘nice’ compacta in Proposition 27 necessary?

Question 3. Is it true that basic (K) ≥ cof([w(K)]ℵ0 ,⊆) for all compact spaces K?

The proofs of the results for compact spaces clearly rely on facts and techniques that only

apply to compact spaces. But it seems possible that the results could be extended to larger classes

of spaces.

Question 4. Do the results for basic (K) for compact K hold for (1) locally compact, Lindelöf

spaces or even (2) all Lindelöf spaces?

In a different direction, what about discrete spaces?

Question 5. Is basic (D(ℵ1)) = ℵ1? = 2ℵ0?
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6.3 CONSTRUCTION OF LIPSCHITZ BASIC OR ELEMENTARY FUNCTIONS AND

APPLICATIONS

In the construction of Chapter 5, the elementary functions ψpq are not Lipschitz. This reduces their

value for applications. Further the co–ordinate functions, gq appear to be highly irregular, how bad

are they?

Problem 6. In the constructive versions of basic or elementary families, improve the basic or

elementary functions to be Lipschitz and then explore more applications.

For a smooth function f how wild are the co-ordinate functions produced by the Contructive

Algorithm? Can they be made to be Lip− α?

Also, in the constructive proof of Theorem 29, the elementary functions are well-defined and

continuous. However the co–ordinate functions gq are given by infinite number of iterations. It

would be very useful to fix gq at a dense set of R in finite steps. This will also enhance the

application of the Theorem 29 enormously.

One Application: Wavelet image decompositions

Most of the signal processing techniques are applied in 1D or 2D and they can not easily ex-

tended to higher dimensions. Using the Theorem 29, any multivariate function can be decomposed

into two types of univariate functions, inner and external functions.
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APPENDIX A

HILBERT’S 13TH PROBLEM

David Hilbert presented a lecture to the International Congress of Mathematicians at Paris in 1900,

titled Mathematical Problems. In this lecture he laid out his famous list of 23 ‘Hilbert Problems’.

The lecture was published in the Göttinger Nachrichten, 1900, pp. 253-297, and in the Archiv der

Mathernatik und Physik, 3d ser., vol. 1 (1901), pp. 44-63 and 213-237, and subsequently translated

from the original German by Dr Mary Newson for the Bulletin of the American Math Society.

Here is the text for the 13th Problem:

13. IMPOSSIBILITY OF THE SOLUTION OF THE GENERAL EQUATION OF THE

7TH DEGREE BY MEANS OF FUNCTIONS OF ONLY TWO ARGUMENTS.

Nomography1 deals with the problem: to solve equations by means of drawings of families

of curves depending on an arbitrary parameter. It is seen at once that every root of an equation

whose coefficients depend upon only two parameters, that is, every function of two independent

variables, can be represented in manifold ways according to the principle lying at the foundation

of nomography. Further, a large class of functions of three or more variables can evidently be rep-

resented by this principle alone without the use of variable elements, namely all those which can

be generated by forming first a function of two arguments, then equating each of these arguments

to a function of two arguments, next replacing each of those arguments in their turn by a function

1d’Ocagne, Traité de Nomographie, Paris, 1899.
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of two arguments, and so on, regarding as admissible any finite number of insertions of functions

of two arguments. So, for example, every rational function of any number of arguments belongs to

this class of functions constructed by nomographic tables; for it can be generated by the processes

of addition, subtraction, multiplication and division and each of these processes produces a func-

tion of only two arguments. One sees easily that the roots of all equations which are solvable by

radicals in the natural realm of rationality belong to this class of functions; for here the extraction

of roots is adjoined to the four arithmetical operations and this, indeed, presents a function of one

argument only. Likewise the general equations of the 5th and 6th degrees are solvable by suitable

nomographic tables; for, by means of Tschirnhausen transformations, which require only extrac-

tion of roots, they can be reduced to a form where the coefficients depend upon two parameters

only.

Now it is probable that the root of the equation of the seventh degree is a function of its

coefficients which does not belong to this class of functions capable of nomographic construction,

i.e., that it cannot be constructed by a finite number of insertions of functions of two arguments.

In order to prove this, the proof would be necessary that the equation of the seventh degree f 7 +

xf 3 + yf 2 + zf + 1 = 0 is not solvable with the help of any continuous functions of only two

arguments. I may be allowed to add that I have satisfied myself by a rigorous process that there

exist analytical functions of three arguments x, y, z which cannot be obtained by a finite chain of

functions of only two arguments.

By employing auxiliary movable elements, nomography succeeds in constructing functions of

more than two arguments, as d’Ocagne has recently proved in the case of the equation of the 7th

degree.
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APPENDIX B

PYTHON CODE

In this Appendix Python code implementing the Algorithms of Chapter 5 are presented. Only

functions of two variables will dealt with (m = 2), and γ will be taken to be 10.

Python was used as it is a high level language, treating functions as first–order objects, and has

a succinct and descriptive notation. Additionally Python has a built–in module for exact decimal

arithmetic. (This is important because standard floating point arithmetic is inexact and would cause

the algorithms to fail.)

We start, then, by importing the decimal and math packages.

from d e c i m a l import ∗

from math import log , c e i l

Next some useful functions for dealing with functions. The first is the function which is iden-

tically zero. Then there is a function which adds two functions, another which multiplies two

functions. Lastly there is a function which takes a list of pairs of decimals and creates the function

which is the piecewise linear interpolate through these points.

def i d e n t i c a l l y _ z e r o _ f n ( x ) : re turn Decimal ( ’ 0 . 0 ’ )

def add_fn ( f , g ) : re turn lambda x : f ( x ) +g ( x )
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def m u l t i p l y _ f n ( f , g ) : re turn lambda x : f ( x ) ∗g ( x )

def p i e c e w i s e _ f n _ f r o m _ l i s t ( g ) :

def fn_g ( x ) :

i0 , i 1 =0 , l e n ( g )−1

whi le (1 < >0) :

sm_pt , sm_val= g [ i 0 ]

i f ( x<=sm_pt ) : re turn sm_val

l g _ p t , l g _ v a l = g [ i 1 ]

i f ( x>= l g _ p t ) : re turn l g _ v a l

i f ( ( i1−i 0 ) ==1) :

i f ( sm_val == l g _ v a l ) : re turn sm_val

re turn ( x−sm_pt ) ∗ ( l g _ v a l−sm_val ) / ( l g _ p t−sm_pt ) +

sm_val

i_mid = i 0 +( i1−i 0 ) / 2

mid_pt , mid_va l =g [ i_mid ]

i f ( x <= mid_pt ) : i 1 = i_mid

i f ( x> mid_pt ) : i 0 = i_mid

re turn fn_g

The following function takes a decimal d, and returns a pair whose first component is the

minimal k so d is in Dk and second component is d’s representation as an element of Dk (see the

definition of Dk).

def dec ima l2dk ( d ) :

d=d . n o r m a l i z e ( )

i f ( d ==0) : re turn ( 0 , )

d t =d . a s _ t u p l e ( )

k=max ( abs ( i n t ( d ) ) + i n t ( c e i l ( abs ( d− i n t ( d ) ) ) ) , −( d t [ 2 ] ) )

sn =1−2∗( d t [ 0 ] )
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f r o n t _ d g s = i n t ( d ∗10)

i f ( k ==1) : re turn ( 1 , ( f r o n t _ d g s , ) )

r e m _ s t r = s t r ( ( ( d ∗10)−f r o n t _ d g s ) . n o r m a l i z e ( ) )

i f ( r e m _ s t r == ’ 0 ’ ) : rem_dgs = ( )

e l s e : rem_dgs= t u p l e ( sn ∗ i n t ( dg ) f o r dg in ( r e m _ s t r . s p l i t ( ’ .

’ ) ) [ 1 ] )

pad=k−l e n ( rem_dgs )−1

pad_dgs = t u p l e (0 f o r n in r a n g e ( pad ) )

a l l _ d g s =( f r o n t _ d g s , ) +rem_dgs+ pad_dgs

re turn ( k , a l l _ d g s )

Now we can get down to implementing Algorithm 36. First the sequences of ak’s and the nk’s.

(The bn,k’s are subsumed in the following definition of ψ1 and ψ2.) Then the functions psi_one

(ψ1) and psi_two (ψ2), both of which are functions of decimals to decimals.

def a ( k ) :

i f ( k ==1) : re turn 2

e l s e : re turn k+ i n t ( c e i l ( l o g (2∗ k , 1 0 ) ) ) +1

def n ( k ) :

i f ( k ==1) : re turn 2

e l s e : re turn n ( k−1)+a ( k−1)+a ( k ) +1

def p s i _ o n e ( d ) :

i f ( d ==0) : re turn Decimal ( " 0 " )

# o t h e r w i s e d<>) , and have more work t o do

k , i = dec ima l2dk ( d )

i f ( k ==1) :

i f ( i [ 0 ] < 0 ) : re turn Decimal (−2∗ i [ 0 ] + 1 ) / ( 1 0∗∗ n ( 1 ) )

e l s e : re turn Decimal (2∗ i [ 0 ] ) / ( 1 0∗∗ n ( 1 ) )

# o t h e r w i s e k >1 , and proceed i n d u c t i v e l y . . .
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i k = i [ k−1]

dp=d−Decimal ( i k ) / ( 1 0∗∗ k )

i f ( d <0) : i _ h a t =1+2∗(− i k )

e l s e : i _ h a t =2∗ i k

i f ( d <0) : b i g _ I =2∗sum(− i [ j ]∗ ( 1 0∗∗ ( k−1− j ) ) f o r j in r a n g e ( k )

) +1

e l s e : b i g _ I =2∗sum ( i [ j ]∗ ( 1 0∗∗ ( k−1− j ) ) f o r j in r a n g e ( k ) )

i f ( d <0) :

b i g _ I _ o n e =(−2∗ i [ 0 ] + 1 ) ∗ ( 1 0∗∗ ( k−1) ) +2∗sum(− i [ j

+ 1 ]∗ ( 1 0∗∗ ( k−j −2) ) f o r j in r a n g e ( k−1) ) +1

e l s e : b i g _ I _ o n e =2∗sum ( i [ j ]∗ ( 1 0∗∗ ( k−1− j ) ) f o r j in r a n g e

( k ) )

i f ( abs ( d ) <(k−1) ) :

i f ( abs ( i k ) <>9) :

re turn ( p s i _ o n e ( dp ) +Decimal ( i _ h a t ) / ( 1 0∗∗ n

( k ) ) )

e l i f ( d <0) :

re turn ( ( p s i _ o n e ( dp ) + p s i _ o n e ( d−Decimal

( 1 ) / ( 1 0∗∗ k ) ) ) ) /2+ Decimal ( b i g _ I +10)

/ ( 1 0∗∗ n ( k ) )

e l i f ( d >0) :

re turn ( ( p s i _ o n e ( dp ) + p s i _ o n e ( d+Decimal

( 1 ) / ( 1 0∗∗ k ) ) ) ) /2+ Decimal ( b i g _ I +10)

/ ( 1 0∗∗ n ( k ) )

e l s e :

# o t h e r w i s e d n o t i n ( −(k−1) , ( k−1) )

re turn ( Decimal ( b i g _ I _ o n e ) / ( 1 0 ∗ ∗ ( k +1) ) +Decimal (

b i g _ I ) / ( 1 0∗∗ n ( k ) ) )
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def p s i _ t w o ( d ) :

i f ( d ==0) : re turn Decimal ( " 0 " )

k , i = dec ima l2dk ( d )

i f ( k ==1) :

i f ( i [ 0 ] < 0 ) : re turn Decimal (−2∗ i [ 0 ] + 1 ) / ( 1 0 ∗ ∗ ( n ( 1 ) +a ( 1 )

) )

e l s e : re turn Decimal (2∗ i [ 0 ] ) / ( 1 0 ∗ ∗ ( n ( 1 ) +a ( 1 ) ) )

# o t h e r w i s e k >1 , and proceed i n d u c t i v e l y . . .

i k = i [ k−1]

dp=d−Decimal ( i k ) / ( 1 0∗∗ k )

i f ( d <0) : i _ h a t =1+2∗(− i k )

e l s e : i _ h a t =2∗ i k

i f ( d <0) : b i g _ I =2∗sum(− i [ j ]∗ ( 1 0∗∗ ( k−1− j ) ) f o r j in r a n g e ( k )

) +1

e l s e : b i g _ I =2∗sum ( i [ j ]∗ ( 1 0∗∗ ( k−1− j ) ) f o r j in r a n g e ( k ) )

i f ( d <0) :

b i g _ I _ o n e =(−2∗ i [ 0 ] + 1 ) ∗ ( 1 0∗∗ ( k−1) ) +2∗sum(− i [ j

+ 1 ]∗ ( 1 0∗∗ ( k−j −2) ) f o r j in r a n g e ( k−1) ) +1

e l s e : b i g _ I _ o n e =2∗sum ( i [ j ]∗ ( 1 0∗∗ ( k−1− j ) ) f o r j in r a n g e

( k ) )

i f ( abs ( d ) <(k−1) ) :

i f ( abs ( i k ) <>9) :

re turn p s i _ t w o ( dp ) +Decimal ( i _ h a t ) / ( 1 0 ∗ ∗ ( n ( k ) +a ( k ) ) )

i f ( d <0) :

re turn ( ( p s i _ t w o ( dp ) + p s i _ t w o ( d−Decimal

( 1 ) / ( 1 0∗∗ k ) ) ) ) /2+ Decimal ( b i g _ I +10)

/ ( 1 0 ∗ ∗ ( n ( k ) +a ( k ) ) )
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e l s e :

re turn ( ( p s i _ t w o ( dp ) + p s i _ t w o ( d+Decimal ( 1 ) / ( 1 0∗∗ k ) ) ) )

/2+ Decimal ( b i g _ I +10) / ( 1 0 ∗ ∗ ( n ( k ) +a ( k ) ) )

e l s e :

# o t h e r w i s e d n o t i n ( −(k−1) , ( k−1) )

re turn ( Decimal ( b i g _ I _ o n e ) / ( 1 0 ∗ ∗ ( k +3) ) +Decimal (

b i g _ I ) / ( 1 0 ∗ ∗ ( n ( k ) +a ( k ) ) ) )

Now for the implementation of Algorithm 45. This is broken into three parts: first calculate

one step of the iteration (one_iteration_step), second the computation of the new function

(new_f), and third a complete implementation of the algorithm finding the Kolmogorov approxi-

mation to a compactly supported function (cptly_supp_k).

one_iteration_step(A,f,k) takes as its inputs a function f taking two decimals and

returning a decimal, which is supported on the square [−A,A]2, and an integer k. It returns the 5

functions g0, g1, g2, g3, g4 as in the iterative step of Algorithm 45.

def o n e _ i t e r a t i o n _ s t e p (A, f , k ) :

g0 , g1 , g2 , g3 , g4 = [ ] , [ ] , [ ] , [ ] , [ ]

e p s _ b i g =Decimal ( ’ 1 . 0 ’ ) / ( 1 0 ∗ ∗ ( n ( k ) +a ( k ) +1) )

e p s _ s m a l l =Decimal ( ’ 1 . 0 ’ ) / ( 1 0 ∗ ∗ ( n ( k +1)+a ( k +1) +1) )

d e l t a =sum ( Decimal ( ’ 1 . 0 ’ ) / ( 1 0∗∗ r ) f o r r in r a n g e ( 2 , k +1) )

D e l t a =Decimal ( ’ 1 . 0 ’ ) / ( 1 0∗∗ k )

d1=−Decimal (A)

whi le ( d1 <Decimal (A) ) :

p s i 1 d = p s i _ o n e ( d1 )

p s i 1 d 1 = p s i _ o n e ( d1+ d e l t a )

p s i 1 d 2 = p s i _ o n e ( d1 +2∗ d e l t a )

p s i 1 d 3 = p s i _ o n e ( d1 +3∗ d e l t a )

63



p s i 1 d 4 = p s i _ o n e ( d1 +4∗ d e l t a )

d2=−Decimal (A)

whi le ( d2 < Decimal (A) ) :

fd = f ( d1 , d2 )

ph i_d0 = p s i 1 d + p s i _ t w o ( d2 )

g0 [ l e n ( g0 ) : ] = [ ( phi_d0−e p s _ s m a l l , 0 ) , ( phi_d0 , fd / 5 ) , (

ph i_d0 + eps_b ig , fd / 5 ) , ( ph i_d0 + e p s _ b i g + e p s _ s m a l l

, 0 ) ]

ph i_d1 = p s i 1 d 1 + p s i _ t w o ( d2+ d e l t a )

g1 [ l e n ( g1 ) : ] = [ ( phi_d1−e p s _ s m a l l , 0 ) , ( phi_d1 , fd / 5 ) , (

ph i_d1 + eps_b ig , fd / 5 ) , ( ph i_d1 + e p s _ b i g + e p s _ s m a l l

, 0 ) ]

ph i_d2 = p s i 1 d 2 + p s i _ t w o ( d2 +2∗ d e l t a )

g2 [ l e n ( g2 ) : ] = [ ( phi_d2−e p s _ s m a l l , 0 ) , ( phi_d2 , fd / 5 ) , (

ph i_d2 + eps_b ig , fd / 5 ) , ( ph i_d2 + e p s _ b i g + e p s _ s m a l l

, 0 ) ]

ph i_d3 = p s i 1 d 3 + p s i _ t w o ( d2 +3∗ d e l t a )

g3 [ l e n ( g3 ) : ] = [ ( phi_d3−e p s _ s m a l l , 0 ) , ( phi_d3 , fd / 5 ) , (

ph i_d3 + eps_b ig , fd / 5 ) , ( ph i_d3 + e p s _ b i g + e p s _ s m a l l

, 0 ) ]

ph i_d4 = p s i 1 d 4 + p s i _ t w o ( d2 +4∗ d e l t a )

g4 [ l e n ( g4 ) : ] = [ ( phi_d4−e p s _ s m a l l , 0 ) , ( phi_d4 , fd / 5 ) , (

ph i_d4 + eps_b ig , fd / 5 ) , ( ph i_d4 + e p s _ b i g + e p s _ s m a l l

, 0 ) ]

d2=d2+ D e l t a

d1=d1+ D e l t a

re turn ( g0 , g1 , g2 , g3 , g4 )
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def new_f ( f , G0 , G1 , G2 , G3 , G4 , d ) :

re turn lambda x , y : f ( x , y )−G0 ( p s i _ o n e ( x ) + p s i _ t w o ( y ) )−G1 (

p s i _ o n e ( x+d ) + p s i _ t w o ( y+d ) )−G2 ( p s i _ o n e ( x+2∗d ) + p s i _ t w o ( y+2∗d

) )−G3 ( p s i _ o n e ( x+3∗d ) + p s i _ t w o ( y+3∗d ) )−G4 ( p s i _ o n e ( x+4∗d ) +

p s i _ t w o ( y+4∗d ) )

cptly_supp_k(A,f,delta,M,error) takes a positive integer A, a function f taking

pairs of decimals to a decimal, which has support contained in [−A,A]2, a function delta taking

decimals to decimals which is a ‘delta of uniform continuity of f on [−A,A]2’, an upper bound

M (decimal) on the norm of f (on [−A,A]2), and strictly positive decimal error. It returns

functions G0, G1, .., G4 from decimals to decimals such that |f −
∑

iGioφi| < error.

def c p t l y _ s u p p _ k (A, f , d e l t a ,M, e r r o r ) :

r , k , d , F=0 , [ ] , [ ] , [ f ]

G0=[ i d e n t i c a l l y _ z e r o _ f n ]

G1=[ i d e n t i c a l l y _ z e r o _ f n ]

G2=[ i d e n t i c a l l y _ z e r o _ f n ]

G3=[ i d e n t i c a l l y _ z e r o _ f n ]

G4=[ i d e n t i c a l l y _ z e r o _ f n ]

whi le (M>= e r r o r ) :

k . append ( i n t ( c e i l ( l o g ( f l o a t ( 1 / d e l t a (M/ 1 8 ) ) , 1 0 ) ) ) )

g0 , g1 , g2 , g3 , g4 = o n e _ i t e r a t i o n _ s t e p (A, F [ r ] , k [ r ] )

G0 . append ( add_fn ( G0 [ r ] , p i e c e w i s e _ f n _ f r o m _ l i s t ( g0 ) ) )

G1 . append ( add_fn ( G1 [ r ] , p i e c e w i s e _ f n _ f r o m _ l i s t ( g1 ) ) )

G2 . append ( add_fn ( G2 [ r ] , p i e c e w i s e _ f n _ f r o m _ l i s t ( g2 ) ) )

G3 . append ( add_fn ( G3 [ r ] , p i e c e w i s e _ f n _ f r o m _ l i s t ( g3 ) ) )

G4 . append ( add_fn ( G4 [ r ] , p i e c e w i s e _ f n _ f r o m _ l i s t ( g4 ) ) )

#new d e l t a f n XXXXX

d e l t a = d e l t a

#new d
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d . append ( sum ( Decimal ( ’ 1 . 0 ’ ) / ( 1 0∗∗ s ) f o r s in r a n g e ( 2 , k [ r

] + 1 ) ) )

#new f

F . append ( new_f ( F [ r ] , G0 [ r ] , G1 [ r ] , G2 [ r ] , G3 [ r ] , G4 [ r ] , d [ r ] ) )

#new upper bound , M

M=(5∗M) / 6

# i n c r e a s e r , go round aga in

r = r +1

re turn ( G0 [ r ] , G1 [ r ] , G2 [ r ] , G3 [ r ] , G4 [ r ] )

Towards implementing Algorithm 50 define the functions αn as alpha(n).

def a l p h a ( n ) :

i f ( n ==1) :

def a l p h a _ n ( x1 , x2 ) :

i f ( ( abs ( x1 ) >2) or ( abs ( x2 ) >2) ) : re turn 0

e l i f ( ( abs ( x1 ) <1) and ( abs ( x2 ) <1) ) : re turn 1

e l s e : re turn 2−max ( abs ( x1 ) , abs ( x2 ) )

e l s e :

def a l p h a _ n ( x1 , x2 ) :

i f ( abs ( x1 ) >n +1) or ( abs ( x2 ) >n +2) or ( abs ( x1 ) <n−1) or

( abs ( x2 ) <n−1) :

re turn 0

e l i f ( ( abs ( x1 ) >n ) or ( abs ( x2 ) >n ) ) :

re turn n+1−max ( abs ( x1 ) , abs ( x2 ) )

e l s e : re turn max ( abs ( x1 ) , abs ( x2 ) )−n+1

re turn a l p h a _ n

Finally implement Algorithm 50. The function gen_k(f,delta,M,N,error) takes as

inputs: a function f of pairs of decimals to decimals, integer N , uniform delta of continuity on
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[−(N+1), N+1]2 called delta, an upper boundM on the same square, and error bound, error.

The outputs are the functions g0, g1, g2, g3, g4 in the Kolmogorov approximation of f on [−N,N ]2

to within error given by Algorithm 50.

def gen_k ( f , d e l t a ,M, N, e r r o r ) :

g0 , g1= i d e n t i c a l l y _ z e r o _ f n , i d e n t i c a l l y _ z e r o _ f n

g2 , g3 , g4= i d e n t i c a l l y _ z e r o _ f n , i d e n t i c a l l y _ z e r o _ f n ,

i d e n t i c a l l y _ z e r o _ f n

f o r n in r a n g e ( 1 ,N+2) :

f_n = m u l t i p l y _ f n ( f , a l p h a ( n ) )

g0_n , g1_n , g2_n , g3_n , g4_n= c p t l y _ s u p p _ k ( n +1 , f_n , d e l t a , M,

e r r o r / ( N+1) )

g0= add_fn ( g0 , g0_n )

g1= add_fn ( g1 , g1_n )

g2= add_fn ( g2 , g2_n )

g3= add_fn ( g3 , g3_n )

g4= add_fn ( g4 , g4_n )

re turn ( g0 , g1 , g2 , g3 , g4 )
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APPENDIX C

FUNCTION SPACE AND GENERALIZED METRIC PROPERTIES

C.1 INTRODUCTION

In [27] Gartside & Reznichenko showed that the space Ck(X) of continuous real valued func-

tions on a Polish (i.e., separable, completely metrizable) space X is stratifiable (definition below).

Interestingly it remains unknown if these function spaces are necessarily M1 (have a σ-closure

preserving base), and Ck(irrationals) is a prime candidate for a counter-example to the M3 ⇒ M1

question whether every M3-space is an M1-space or not.

Here in this note we expand the class of function spaces known to be stratifiable by showing: if

X is a compact-covering image of a closed subspace of product of a σ-compact Polish space and a

compact space, then Ck(X,M), the space of continuous maps ofX intoM with the compact-open

topology, is stratifiable for any metric space M .

Our proof of stratifiability is necessarily completely different from the argument of [27] where

essential use was made of the separability of Ck(X) when X is Polish. There are two kinds of

differences. First, instead of making σ−cushioned pair base, we demonstrate the existence of g-

functions as in the definition of stratifiability: a space Z is stratifiable if for every point z of Z

there is a decreasing sequence g(n, z) of open sets with intersection {z} such that if z is in an

open set U , then there exists an open W and integer N such that z ∈ W ⊆ U and if y /∈ U then

g(N, y) ∩W = ∅.
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Second, we apply the argument due to Gruenhage & Tamano [36] who showed, if X is a σ-

compact Polish space then there are two collections, K and P , of compact sets with the following

properties:

1) K is dominating (in the family of all compact subsets of X), closure-preserving and:

(∗) whenever xn ∈ Kn ∈ K, and xn /∈
⋃
j 6=nKj , then the set {xn}n∈ω has a limit point;

2) P = {Pn : n ∈ ω} is an increasing collection whose union is X and:

(∗∗) for any n ∈ ω and K ∈ K, Pn \ Pn−1 ⊂ K or (Pn \ Pn−1)
⋂
K = ∅.

Their proof then proceeds by induction on C-scattered rank. If X is σ-compact Polish then de-

fine X(0) = X , and inductively X(α+1) = X(α)\ (all points of X(α) with a compact neighborhood)

and X(λ) =
⋂
β<λX

(β) for limit λ.

For some minimal α < ω1, called the C-scattered rank, X(α) = ∅. Gruenhage & Tamano used

these collections to show that if X is σ-compact Polish then Ck(X) is M1. In Section 3 we will

similarly show that: if X is σ-compact Polish, K is compact and M metric then Ck(X ×K,M) is

m1 (every point has a closure preserving local base) and hence is M1.

In the final Section we give some relevant examples.

Let B be a Banach space with norm ‖ · ‖. For any f ∈ Ck(X,B), compact set K, and ε > 0,

let B(f,K, ε) = {g ∈ Ck(X,B) :‖ g(x)− f(x) ‖< ε}.

C.2 STRATIFIABILITY

Theorem 56. Suppose X is a σ-compact Polish space and B is a Banach space with norm ‖ · ‖.

Then Ck(X,B) is stratifiable.

Proof: The proof is by induction on the C-scattered rank.

Case 1. X is locally compact. This corresponds to X having C-scattered rank one. Write X

as an increasing union of compact sets Ln, n ∈ ω, where Ln is contained in the interior of Ln+1.

Then {B(f, Ln, 1/(m+ 1)) : n ∈ ω,m ∈ ω} is a countable local base of f ∈ Ck(X,B).

Therefore, Ck(X,B) is metrizable, and hence stratifiable, since it is a first countable topologi-
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cal group.

Case 2. X has a locally-finite cover G = {Gm : m ∈ ω} by closed sets such that Ck(Gm, B)

is stratifiable for each m ∈ ω. Note that this case is satisfied if X has C-scattered rank a limit

ordinal.

Fix a g-function gm for each Ck(Gm, B). Then, for any f ∈ Ck(X,B), we can consider f |Gm
the restriction of f on Gm, and the {gm(n, f |Gm) : n ∈ ω} satisfy the requirements of a g-function

of stratifiable spaces.

Also, we may assume that gm(n, f |Gm) is of the form B(f |Gm , K, ε) = {g ∈ Ck(Gm, B) :‖

g(x) − f(x) ‖< ε for any x ∈ K} for some compact set K ⊂ Gm and ε > 0. Then gm(n, f |Gm)

can be considered as an open subset ĝm(n, f |Gm) = B(f,K, ε) = {g ∈ Ck(X,B) :‖ g(x) −

f(x) ‖< ε for any x ∈ K} of Ck(X,B). So we can denote gm(n, f |Gm) as gm(n, f), and define

g(n, f) =
⋂
i≤n,j≤n gi(j, f). Then, by the local finiteness of G and the definition of g(n, f), it is

easy to check g(n, f) a g-function for Ck(X,B).

Case 3. The C-scattered rank of X is a successor ordinal α + 1 (where α ≥ 1). In this

case, suppose A = X(α). By case 2), it is sufficient to prove this when A is compact. Then

by Borges-Dugundji Extension Theorem [5],[8], Ck(X,B) can be embedded as a subspace of

Ck(A,B) × Ck,0(X/A,B) by taking f to (f |A, f − e(f |A)). Here e is the extension map, and

Ck,0(X/A,B) is the subspace of Ck(X/A,B) consisting of all maps assigning the point A to the

zero element in B. Since it is obvious that Ck(A,B) is metrizable, we just need to show that

Ck,0(X/A,B) is stratifiable.

In the following, we will first give the definition of the g-function of Ck,0(X/A,B), then verify

it has the requisite properties.

1. Definition of the g-function.

By above remark, it suffices to show that the space Ck,0(X,B) = {f ∈ Ck(X,B) : f(∗) = θ}

has a g-function in case that X(α) = {∗}(one point set).
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Fix a non increasing local base (Uk)k∈ω at ∗U0 = X . Let Vk = Uk\Uk+1. Hence, r(Vk) < α+1

for each k. So, by our Inductive Hypothesis, for any f ∈ Ck(X,B), f |Vk has g-function for each

k ∈ ω denoted byGk(n, f |Vk). Notice thatGk(n, f |Vk) can be considered as an open neighborhood

of f in Ck,0(X,B). So, here we can denote this open neighborhood by Gk(n, f).

Let K and {Pn : n ∈ ω} be the collection of the compact subsets of X satisfying (∗) and (∗∗)

from the Introduction.

For each k ∈ ω and K ∈ K, let Kk = K ∩ Vk and Kk = {Kk : K ∈ K}, and P k
n = Pn ∩ Vk.

Then since Vk is closed for each k ∈ ω, it is obvious that Kk and {P k
n : n ∈ ω} also have the

properties (∗) and (∗∗) with respect to each Vk.

Let q be any positive rational, and let qn = (1− 1/2n+1)q. For each L ∈ K, define

Bq(L) = {f ∈ Ck,0(X,B) : ∀n∀x ∈ L ∩ Pn(‖ f(x) ‖< qn)}

Claim: Bq(L) is open in Ck,0(X,B).

Proof of Claim: Fix f ∈ Bq(L). Since L is compact, there exists x ∈ L such that ‖ f(x) ‖=

sup{‖ f(y) ‖: y ∈ L}. Then x ∈ P k
n for some n ∈ ω. Hence, ‖ f(x) ‖< qn. Let εi = min{qi− ‖

f(y) ‖: y ∈ L
⋂
P k
i }, if L

⋂
P k
i 6= ∅. Finally let ε = min{εi : 1 ≤ i ≤ n, L ∩ Pi 6= ∅}.

Then we can check B(f,K, ε) ⊆ Bq(K
k).

Fix a ∈ ω. Since f is continuous and f(∗) = θ, we can get Ma
f ∈ ω, such that ‖ f(x) ‖<

(1− 1/2)10−(a+1) for any x ∈ Vm with m ≥Ma
f .

In the following, set q = 10−(a+1) and q` = (1−1/2`+1)10−(a+1), and letKkf = {Kk ∈ Kk, f /∈

Bq(Kk)}.

Call x ∈ Vk a bad point of f if there exits ` ∈ ω such that x ∈ P` ∩ Vk but ‖ f(x) ‖> q`. (This

terminology, and the following proof is similar to the argument in [36].) It is easy to see that f has

a bad point in every Kk ∈ Kkf . Also, we can see Kkf = ∅ if k ≥Ma
f .

Fix k ∈ ω with Kkf 6= ∅.

Let `0 be the least such that there is a bad point x0 ∈ P k
`0

of f which is in some Kk
0 ∈ Kkf .

Then there exists εk0 such that B(f, {x0}, εk0) ∩Bq(K
k) = ∅, for any Kk with x0 ∈ Kk ∈ Kkf .

Then take Kk1,f = {Kk ∈ Kkf : x0 /∈ Kk}. If Kk1,f 6= ∅, we can get x1, `1, ε
k
1, and Kk

1 .
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Here, `1 is the least number such that there is a bad point x0 ∈ P k
`0

of f in some Kk
1 ∈ Kk1,f and

B(f, {x1}, εk1) ∩Bq(K
k) = ∅, for any Kk with x1 ∈ Kk ∈ Kk1,f .

Then we can take Kk2,f = {Kk ∈ Kkf : x1 /∈ Kk}.

Inductively we get xi ∈ Kk
i ∈ Kki,f , where xi is in P`i \P`i−1

and is a bad point of f , `0 < `1 <

..., and Kk
i contains no bad points of f in P`i−1.

In particular, this implies xi /∈ Kk
j if i < j. We show, by contradiction that this process must

terminate after a finite number of steps.

If not, suppose that we get an infinite sequence {xi : i ∈ ω}. We claim the xi’s form a closed

discrete set. For suppose they have a limit point y, say y ∈ PL. Then y is a bad point of f (note

f(y) ≥ q). For sufficiently large j, `j > L, it follows that y is not in Kk
j . Then by closure-

preserving, the set
⋃
{Kk

j : `j > L} is closed, contains all but finitely many xi’s and misses y – a

contradiction. Since {xj : j ∈ ω} is discrete, we can pass to an infinite subset A of ω such that,

for i 6= j ∈ A, we have xi not in Kj . Then by the convergence property (∗) of Kk, {xi} must have

a limit point – contradiction.

Therefore, we can suppose the above stops in `k,af steps. Take εkf = min{εk0, ..., εk`k,af
} and

F k,a
f = {x0, ..., x`k,af

}. Now B(f, F k,a
f , εk,af ) ∩B10−(a+1)(Kk) = ∅, for any Kk ∈ Kkf .

Finally we can give the definition of the g-function at f .

g(n, f) = (
n⋂
i=0

Gi(n, f)) ∩ (
n⋂
a=1

Ma
f⋂

k=0

B(f, F k,a
f , εk,af )).

2. Verification of the g-Function.

Take ψ ∈ C0(X,B), K ∈ K, n ∈ ω and let U = B(ψ,K, 10−n). Since ψ(∗) = θ and ψ

is continuous, there exists Mψ such that ‖ ψ(x) ‖< 10−(n+1) for any x ∈ UMψ
. So, we can see

ψ ∈ B10−(n+1)(K ∩ UMψ
).

For each Vi, i ≤Mψ, we have ni andWi which contains ψ|Vi satisfying thatGi(ni, h)∩Wi = ∅

for any h ∈ Ck,0(Vi, B) \B(ψ|Vi , K ∩ Vi, 10−n).
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Define N = max{n1, ..., nMψ
, n} and W = W1 ∩ ... ∩WMψ

∩B10−(n+1)(K ∩ UMψ
).

It remains to check the g(n, f)’s, N and W satisfy the conditions in the definition of stratifia-

bility.

Take f /∈ U , which means there exists x ∈ K such that

(1): ‖ f(x)− ψ(x) ‖> 10−n. Two cases arise.

Case 1, x ∈ Vi and 1 ≤ i ≤Mψ. Then easily, we get g(N, f) ∩W = ∅.

Case 2, x ∈ Vi and i > Mψ. Then since ‖ ψ(x) ‖< 10−(n+1), from inequality (1), we get

‖ f(x) ‖> 9 · 10−(n+1). Hence f /∈ B10−(n+1)(Ki), so Ki ∈ Kif Then we know B(f, F i
n, \ε

i,n
f ) ∩

B10−(n+1)(Ki) = ∅. Now g(N, f) is a subset of the first term and W is a subset of the second one,

and hence g(N, f) ∩W = ∅. �

More generally, we have the following theorem.

Theorem 57. Suppose Y is a σ-compact Polish space, K is a compact space, and M is a metric

space. If X is a compact-covering image of a closed subspace of Y × K, then Ck(X,M) is

stratifiable.

This follows directly from the theorem above and the following observations: stratifiability is

hereditary, and for X, Y,K and M as in the theorem Ck(X,M) embeds in Ck(Y,Ck(K)×B) for

any Banach space B containing M .

C.3 M1 PROPERTY

Theorem 58. Suppose X is a σ-compact Polish space and B is a Banach space with norm ‖ · ‖.

Then Ck(X,B) is an m1-space, and hence M1.

Hence, if K is a compact space, then Ck(X ×K) is m1 and M1.

Proof: First recall that a stratifiable m1 space is M1[5]. So it is sufficient to show Ck(X,B) is

m1. Further, since Ck(X,B) is a topological group, we only need to construct a closure preserving

base for the zero function 0.
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Let q > 0, and let qn = (1/2n+1)q. As in [36], for each K ∈ K, define Bq(K) = {f ∈

C(X,B) : ∀n∀x ∈ K ∩ Pn(‖ f(x) ‖< qn)}. Then the same proof as in [36] shows that

{Bq(K) : K ∈ K} is closure-preserving (Note that the difference is only between the absolute

value and the norm). Take an increasing cover {Kn}n∈ω of X consisting of elements of K. Then

{B(0, Kn, 1/2
n) : n ∈ ω} is an open family of Ck(X,B) which is locally finite outside {0}.

Now define Bn = {B1/2n(K) : Kn ⊆ K} and B = {Bn}. Then B is a closure-preserving open

neighborhood base of 0. �

C.4 EXAMPLES

Observe that if we take any σ-compact Polish space, Y , which is not locally compact, for example

an open disc in the plane along with one boundary point, or the metric fan (see below), and any

non-metrizable compactum, K, say [0, 1]ω1 , then Ck(Y ×K) is non-separable, stratifiable but not

metrizable.

Now we give an example of a non-metrizable space X which is the compact-covering image

of a σ-compact Polish space. Then Ck(X) is (separable) stratifiable but not metrizable.

Let X = F be the metric fan and σ be the metric fan topology. So F has underlying set

(ω × ω) ∪ {∗}, points in ω × ω are isolated, and a basic neighborhood of ∗ has the form {∗} ∪

((N,∞)× ω) for some N ∈ ω. This is indeed σ-compact Polish, but not locally compact.

Fix P a non-principal ultrafilter on ω. Define a new topology τ as follows: points of ω × ω

are isolated, and basic neighborhoods of ∗ are of the form {∗} ∪ ((N,∞)× ω)∪ (
⋃
n≤N{n}×F )

where F ∈ P and N ∈ ω.

Claim: The compact subsets of (F, τ) coincides with the compact subsets of (F, σ).

Proof of Claim: First observe that {n} × ω
τ

= {n} × ω ∪ {∗}.

Take any compact subset K ⊆ (F, τ). Then for each n ∈ ω, K ∩ ({n} × ω) ⊆ K ∩ ({n} ×

ω ∪ {∗}) which is finite. Therefore, K is compact in (F, σ).

Since τ ⊆ σ, it is clear that sets compact in (F, σ) are τ -compact.
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Therefore (F, τ) is a (continuous) compact-covering image of (F, σ) by the identity mapping.

Since ∗ has no countable local base in (F, τ), (F, τ) is not metrizable.
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